Introduction to quasi-Monte Carlo integration and applications
Leobacher, Gunther
2014-01-01
This textbook introduces readers to the basic concepts of quasi-Monte Carlo methods for numerical integration and to the theory behind them. The comprehensive treatment of the subject with detailed explanations comprises, for example, lattice rules, digital nets and sequences and discrepancy theory. It also presents methods currently used in research and discusses practical applications with an emphasis on finance-related problems. Each chapter closes with suggestions for further reading and with exercises which help students to arrive at a deeper understanding of the material presented. The book is based on a one-semester, two-hour undergraduate course and is well-suited for readers with a basic grasp of algebra, calculus, linear algebra and basic probability theory. It provides an accessible introduction for undergraduate students in mathematics or computer science.
Uniform distribution and quasi-Monte Carlo methods discrepancy, integration and applications
Kritzer, Peter; Pillichshammer, Friedrich; Winterhof, Arne
2014-01-01
The survey articles in this book focus on number theoretic point constructions, uniform distribution theory, and quasi-Monte Carlo methods. As deterministic versions of the Monte Carlo method, quasi-Monte Carlo rules enjoy increasing popularity, with many fruitful applications in mathematical practice, as for example in finance, computer graphics, and biology.
Monte Carlo and Quasi-Monte Carlo Sampling
Lemieux, Christiane
2009-01-01
Presents essential tools for using quasi-Monte Carlo sampling in practice. This book focuses on issues related to Monte Carlo methods - uniform and non-uniform random number generation, variance reduction techniques. It covers several aspects of quasi-Monte Carlo methods.
Efficient quadrature rules for illumination integrals from quasi Monte Carlo to Bayesian Monte Carlo
Marques, Ricardo; Santos, Luís Paulo; Bouatouch, Kadi
2015-01-01
Rendering photorealistic images is a costly process which can take up to several days in the case of high quality images. In most cases, the task of sampling the incident radiance function to evaluate the illumination integral is responsible for an important share of the computation time. Therefore, to reach acceptable rendering times, the illumination integral must be evaluated using a limited set of samples. Such a restriction raises the question of how to obtain the most accurate approximation possible with such a limited set of samples. One must thus ensure that sampling produces the highe
Applicability of quasi-Monte Carlo for lattice systems
International Nuclear Information System (INIS)
Ammon, Andreas; Deutsches Elektronen-Synchrotron; Hartung, Tobias; Jansen, Karl; Leovey, Hernan; Griewank, Andreas; Mueller-Preussker, Michael
2013-11-01
This project investigates the applicability of quasi-Monte Carlo methods to Euclidean lattice systems in order to improve the asymptotic error scaling of observables for such theories. The error of an observable calculated by averaging over random observations generated from ordinary Monte Carlo simulations scales like N -1/2 , where N is the number of observations. By means of quasi-Monte Carlo methods it is possible to improve this scaling for certain problems to N -1 , or even further if the problems are regular enough. We adapted and applied this approach to simple systems like the quantum harmonic and anharmonic oscillator and verified an improved error scaling of all investigated observables in both cases.
Applicability of quasi-Monte Carlo for lattice systems
Energy Technology Data Exchange (ETDEWEB)
Ammon, Andreas [Berlin Humboldt-Univ. (Germany). Dept. of Physics; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Hartung, Tobias [King' s College London (United Kingdom). Dept. of Mathematics; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Leovey, Hernan; Griewank, Andreas [Berlin Humboldt-Univ. (Germany). Dept. of Mathematics; Mueller-Preussker, Michael [Berlin Humboldt-Univ. (Germany). Dept. of Physics
2013-11-15
This project investigates the applicability of quasi-Monte Carlo methods to Euclidean lattice systems in order to improve the asymptotic error scaling of observables for such theories. The error of an observable calculated by averaging over random observations generated from ordinary Monte Carlo simulations scales like N{sup -1/2}, where N is the number of observations. By means of quasi-Monte Carlo methods it is possible to improve this scaling for certain problems to N{sup -1}, or even further if the problems are regular enough. We adapted and applied this approach to simple systems like the quantum harmonic and anharmonic oscillator and verified an improved error scaling of all investigated observables in both cases.
Energy Technology Data Exchange (ETDEWEB)
Leoevey, H.; Roemisch, W. [Humboldt-Univ., Berlin (Germany)
2015-07-01
We discuss progress in quasi Monte Carlo methods for numerical calculation integrals or expected values and justify why these methods are more efficient than the classic Monte Carlo methods. Quasi Monte Carlo methods are found to be particularly efficient if the integrands have a low effective dimension. That's why We also discuss the concept of effective dimension and prove on the example of a stochastic Optimization model of the energy industry that such models can posses a low effective dimension. Modern quasi Monte Carlo methods are therefore for such models very promising. [German] Wir diskutieren Fortschritte bei Quasi-Monte Carlo Methoden zur numerischen Berechnung von Integralen bzw. Erwartungswerten und begruenden warum diese Methoden effizienter sind als die klassischen Monte Carlo Methoden. Quasi-Monte Carlo Methoden erweisen sich als besonders effizient, falls die Integranden eine geringe effektive Dimension besitzen. Deshalb diskutieren wir auch den Begriff effektive Dimension und weisen am Beispiel eines stochastischen Optimierungsmodell aus der Energiewirtschaft nach, dass solche Modelle eine niedrige effektive Dimension besitzen koennen. Moderne Quasi-Monte Carlo Methoden sind deshalb fuer solche Modelle sehr erfolgversprechend.
11th International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing
Nuyens, Dirk
2016-01-01
This book presents the refereed proceedings of the Eleventh International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing that was held at the University of Leuven (Belgium) in April 2014. These biennial conferences are major events for Monte Carlo and quasi-Monte Carlo researchers. The proceedings include articles based on invited lectures as well as carefully selected contributed papers on all theoretical aspects and applications of Monte Carlo and quasi-Monte Carlo methods. Offering information on the latest developments in these very active areas, this book is an excellent reference resource for theoreticians and practitioners interested in solving high-dimensional computational problems, arising, in particular, in finance, statistics and computer graphics.
Randomized quasi-Monte Carlo simulation of fast-ion thermalization
International Nuclear Information System (INIS)
Höök, L J; Johnson, T; Hellsten, T
2012-01-01
This work investigates the applicability of the randomized quasi-Monte Carlo method for simulation of fast-ion thermalization processes in fusion plasmas, e.g. for simulation of neutral beam injection and radio frequency heating. In contrast to the standard Monte Carlo method, the quasi-Monte Carlo method uses deterministic numbers instead of pseudo-random numbers and has a statistical weak convergence close to O(N -1 ), where N is the number of markers. We have compared different quasi-Monte Carlo methods for a neutral beam injection scenario, which is solved by many realizations of the associated stochastic differential equation, discretized with the Euler-Maruyama scheme. The statistical convergence of the methods is measured for time steps up to 2 14 . (paper)
Randomized quasi-Monte Carlo simulation of fast-ion thermalization
Höök, L. J.; Johnson, T.; Hellsten, T.
2012-01-01
This work investigates the applicability of the randomized quasi-Monte Carlo method for simulation of fast-ion thermalization processes in fusion plasmas, e.g. for simulation of neutral beam injection and radio frequency heating. In contrast to the standard Monte Carlo method, the quasi-Monte Carlo method uses deterministic numbers instead of pseudo-random numbers and has a statistical weak convergence close to {O}(N^{-1}) , where N is the number of markers. We have compared different quasi-Monte Carlo methods for a neutral beam injection scenario, which is solved by many realizations of the associated stochastic differential equation, discretized with the Euler-Maruyama scheme. The statistical convergence of the methods is measured for time steps up to 214.
A first look at Quasi-Monte Carlo for lattice field theory problems
International Nuclear Information System (INIS)
Jansen, K.; Leovey, H.; Griewank, A.; Nube, A.; Humboldt-Universitaet, Berlin; Mueller-Preussker, M.
2012-11-01
In this project we initiate an investigation of the applicability of Quasi-Monte Carlo methods to lattice field theories in order to improve the asymptotic error behavior of observables for such theories. In most cases the error of an observable calculated by averaging over random observations generated from an ordinary Monte Carlo simulation behaves like N -1/2 , where N is the number of observations. By means of Quasi-Monte Carlo methods it is possible to improve this behavior for certain problems to up to N -1 . We adapted and applied this approach to simple systems like the quantum harmonic and anharmonic oscillator and verified an improved error scaling.
Quasi-Monte Carlo methods for lattice systems. A first look
International Nuclear Information System (INIS)
Jansen, K.; Cyprus Univ., Nicosia; Leovey, H.; Griewank, A.; Nube, A.; Humboldt-Universitaet, Berlin; Mueller-Preussker, M.
2013-02-01
We investigate the applicability of Quasi-Monte Carlo methods to Euclidean lattice systems for quantum mechanics in order to improve the asymptotic error behavior of observables for such theories. In most cases the error of an observable calculated by averaging over random observations generated from an ordinary Markov chain Monte Carlo simulation behaves like N -1/2 , where N is the number of observations. By means of Quasi-Monte Carlo methods it is possible to improve this behavior for certain problems up to N -1 . We adapted and applied this approach to simple systems like the quantum harmonic and anharmonic oscillator and verified an improved error scaling.
A first look at quasi-Monte Carlo for lattice field theory problems
International Nuclear Information System (INIS)
Jansen, K; Nube, A; Leovey, H; Griewank, A; Mueller-Preussker, M
2013-01-01
In this project we initiate an investigation of the applicability of Quasi-Monte Carlo methods to lattice field theories in order to improve the asymptotic error behavior of observables for such theories. In most cases the error of an observable calculated by averaging over random observations generated from an ordinary Monte Carlo simulation behaves like N −1/2 , where N is the number of observations. By means of Quasi-Monte Carlo methods it is possible to improve this behavior for certain problems to up to N −1 . We adapted and applied this approach to simple systems like the quantum harmonic and anharmonic oscillator and verified an improved error scaling
Quasi-Monte Carlo methods for lattice systems. A first look
Energy Technology Data Exchange (ETDEWEB)
Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Leovey, H.; Griewank, A. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Mathematik; Nube, A. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Mueller-Preussker, M. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik
2013-02-15
We investigate the applicability of Quasi-Monte Carlo methods to Euclidean lattice systems for quantum mechanics in order to improve the asymptotic error behavior of observables for such theories. In most cases the error of an observable calculated by averaging over random observations generated from an ordinary Markov chain Monte Carlo simulation behaves like N{sup -1/2}, where N is the number of observations. By means of Quasi-Monte Carlo methods it is possible to improve this behavior for certain problems up to N{sup -1}. We adapted and applied this approach to simple systems like the quantum harmonic and anharmonic oscillator and verified an improved error scaling.
A first look at Quasi-Monte Carlo for lattice field theory problems
Energy Technology Data Exchange (ETDEWEB)
Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Leovey, H.; Griewank, A. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Mathematik; Nube, A. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Mueller-Preussker, M. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik
2012-11-15
In this project we initiate an investigation of the applicability of Quasi-Monte Carlo methods to lattice field theories in order to improve the asymptotic error behavior of observables for such theories. In most cases the error of an observable calculated by averaging over random observations generated from an ordinary Monte Carlo simulation behaves like N{sup -1/2}, where N is the number of observations. By means of Quasi-Monte Carlo methods it is possible to improve this behavior for certain problems to up to N{sup -1}. We adapted and applied this approach to simple systems like the quantum harmonic and anharmonic oscillator and verified an improved error scaling.
Zhang, G.; Lu, D.; Ye, M.; Gunzburger, M.
2011-12-01
Markov Chain Monte Carlo (MCMC) methods have been widely used in many fields of uncertainty analysis to estimate the posterior distributions of parameters and credible intervals of predictions in the Bayesian framework. However, in practice, MCMC may be computationally unaffordable due to slow convergence and the excessive number of forward model executions required, especially when the forward model is expensive to compute. Both disadvantages arise from the curse of dimensionality, i.e., the posterior distribution is usually a multivariate function of parameters. Recently, sparse grid method has been demonstrated to be an effective technique for coping with high-dimensional interpolation or integration problems. Thus, in order to accelerate the forward model and avoid the slow convergence of MCMC, we propose a new method for uncertainty analysis based on sparse grid interpolation and quasi-Monte Carlo sampling. First, we construct a polynomial approximation of the forward model in the parameter space by using the sparse grid interpolation. This approximation then defines an accurate surrogate posterior distribution that can be evaluated repeatedly at minimal computational cost. Second, instead of using MCMC, a quasi-Monte Carlo method is applied to draw samples in the parameter space. Then, the desired probability density function of each prediction is approximated by accumulating the posterior density values of all the samples according to the prediction values. Our method has the following advantages: (1) the polynomial approximation of the forward model on the sparse grid provides a very efficient evaluation of the surrogate posterior distribution; (2) the quasi-Monte Carlo method retains the same accuracy in approximating the PDF of predictions but avoids all disadvantages of MCMC. The proposed method is applied to a controlled numerical experiment of groundwater flow modeling. The results show that our method attains the same accuracy much more efficiently
Quasi-Monte Carlo methods: applications to modeling of light transport in tissue
Schafer, Steven A.
1996-05-01
Monte Carlo modeling of light propagation can accurately predict the distribution of light in scattering materials. A drawback of Monte Carlo methods is that they converge inversely with the square root of the number of iterations. Theoretical considerations suggest that convergence which scales inversely with the first power of the number of iterations is possible. We have previously shown that one can obtain at least a portion of that improvement by using van der Corput sequences in place of a conventional pseudo-random number generator. Here, we present our further analysis, and show that quasi-Monte Carlo methods do have limited applicability to light scattering problems. We also discuss potential improvements which may increase the applicability.
[Study of Determination of Oil Mixture Components Content Based on Quasi-Monte Carlo Method].
Wang, Yu-tian; Xu, Jing; Liu, Xiao-fei; Chen, Meng-han; Wang, Shi-tao
2015-05-01
Gasoline, kerosene, diesel is processed by crude oil with different distillation range. The boiling range of gasoline is 35 ~205 °C. The boiling range of kerosene is 140~250 °C. And the boiling range of diesel is 180~370 °C. At the same time, the carbon chain length of differentmineral oil is different. The carbon chain-length of gasoline is within the scope of C7 to C11. The carbon chain length of kerosene is within the scope of C12 to C15. And the carbon chain length of diesel is within the scope of C15 to C18. The recognition and quantitative measurement of three kinds of mineral oil is based on different fluorescence spectrum formed in their different carbon number distribution characteristics. Mineral oil pollution occurs frequently, so monitoring mineral oil content in the ocean is very important. A new method of components content determination of spectra overlapping mineral oil mixture is proposed, with calculation of characteristic peak power integrationof three-dimensional fluorescence spectrum by using Quasi-Monte Carlo Method, combined with optimal algorithm solving optimum number of characteristic peak and range of integral region, solving nonlinear equations by using BFGS(a rank to two update method named after its inventor surname first letter, Boyden, Fletcher, Goldfarb and Shanno) method. Peak power accumulation of determined points in selected area is sensitive to small changes of fluorescence spectral line, so the measurement of small changes of component content is sensitive. At the same time, compared with the single point measurement, measurement sensitivity is improved by the decrease influence of random error due to the selection of points. Three-dimensional fluorescence spectra and fluorescence contour spectra of single mineral oil and the mixture are measured by taking kerosene, diesel and gasoline as research objects, with a single mineral oil regarded whole, not considered each mineral oil components. Six characteristic peaks are
Crevillén-García, D.; Power, H.
2017-08-01
In this study, we apply four Monte Carlo simulation methods, namely, Monte Carlo, quasi-Monte Carlo, multilevel Monte Carlo and multilevel quasi-Monte Carlo to the problem of uncertainty quantification in the estimation of the average travel time during the transport of particles through random heterogeneous porous media. We apply the four methodologies to a model problem where the only input parameter, the hydraulic conductivity, is modelled as a log-Gaussian random field by using direct Karhunen-Loéve decompositions. The random terms in such expansions represent the coefficients in the equations. Numerical calculations demonstrating the effectiveness of each of the methods are presented. A comparison of the computational cost incurred by each of the methods for three different tolerances is provided. The accuracy of the approaches is quantified via the mean square error.
Crevillén-García, D; Power, H
2017-08-01
In this study, we apply four Monte Carlo simulation methods, namely, Monte Carlo, quasi-Monte Carlo, multilevel Monte Carlo and multilevel quasi-Monte Carlo to the problem of uncertainty quantification in the estimation of the average travel time during the transport of particles through random heterogeneous porous media. We apply the four methodologies to a model problem where the only input parameter, the hydraulic conductivity, is modelled as a log-Gaussian random field by using direct Karhunen-Loéve decompositions. The random terms in such expansions represent the coefficients in the equations. Numerical calculations demonstrating the effectiveness of each of the methods are presented. A comparison of the computational cost incurred by each of the methods for three different tolerances is provided. The accuracy of the approaches is quantified via the mean square error.
Particle filters, a quasi-Monte-Carlo-solution for segmentation of coronaries.
Florin, Charles; Paragios, Nikos; Williams, Jim
2005-01-01
In this paper we propose a Particle Filter-based approach for the segmentation of coronary arteries. To this end, successive planes of the vessel are modeled as unknown states of a sequential process. Such states consist of the orientation, position, shape model and appearance (in statistical terms) of the vessel that are recovered in an incremental fashion, using a sequential Bayesian filter (Particle Filter). In order to account for bifurcations and branchings, we consider a Monte Carlo sampling rule that propagates in parallel multiple hypotheses. Promising results on the segmentation of coronary arteries demonstrate the potential of the proposed approach.
Gastellu-Etchegorry, Jean-Philippe; Yin, Tiangang; Lauret, Nicolas; Grau, Eloi; Rubio, Jeremy; Cook, Bruce D.; Morton, Douglas C.; Sun, Guoqing
2016-01-01
Light Detection And Ranging (LiDAR) provides unique data on the 3-D structure of atmosphere constituents and the Earth's surface. Simulating LiDAR returns for different laser technologies and Earth scenes is fundamental for evaluating and interpreting signal and noise in LiDAR data. Different types of models are capable of simulating LiDAR waveforms of Earth surfaces. Semi-empirical and geometric models can be imprecise because they rely on simplified simulations of Earth surfaces and light interaction mechanisms. On the other hand, Monte Carlo ray tracing (MCRT) models are potentially accurate but require long computational time. Here, we present a new LiDAR waveform simulation tool that is based on the introduction of a quasi-Monte Carlo ray tracing approach in the Discrete Anisotropic Radiative Transfer (DART) model. Two new approaches, the so-called "box method" and "Ray Carlo method", are implemented to provide robust and accurate simulations of LiDAR waveforms for any landscape, atmosphere and LiDAR sensor configuration (view direction, footprint size, pulse characteristics, etc.). The box method accelerates the selection of the scattering direction of a photon in the presence of scatterers with non-invertible phase function. The Ray Carlo method brings traditional ray-tracking into MCRT simulation, which makes computational time independent of LiDAR field of view (FOV) and reception solid angle. Both methods are fast enough for simulating multi-pulse acquisition. Sensitivity studies with various landscapes and atmosphere constituents are presented, and the simulated LiDAR signals compare favorably with their associated reflectance images and Laser Vegetation Imaging Sensor (LVIS) waveforms. The LiDAR module is fully integrated into DART, enabling more detailed simulations of LiDAR sensitivity to specific scene elements (e.g., atmospheric aerosols, leaf area, branches, or topography) and sensor configuration for airborne or satellite LiDAR sensors.
Hameren, Andreas Ferdinand Willem van
2001-01-01
Discrepancies play an important role in the study of uniformity properties of point sets. Their probability distributions are a help in the analysis of the efficiency of the Quasi Monte Carlo method of numerical integration, which uses point sets that are distributed more uniformly than sets of
On the use of stochastic approximation Monte Carlo for Monte Carlo integration
Liang, Faming
2009-01-01
The stochastic approximation Monte Carlo (SAMC) algorithm has recently been proposed as a dynamic optimization algorithm in the literature. In this paper, we show in theory that the samples generated by SAMC can be used for Monte Carlo integration
Mean field simulation for Monte Carlo integration
Del Moral, Pierre
2013-01-01
In the last three decades, there has been a dramatic increase in the use of interacting particle methods as a powerful tool in real-world applications of Monte Carlo simulation in computational physics, population biology, computer sciences, and statistical machine learning. Ideally suited to parallel and distributed computation, these advanced particle algorithms include nonlinear interacting jump diffusions; quantum, diffusion, and resampled Monte Carlo methods; Feynman-Kac particle models; genetic and evolutionary algorithms; sequential Monte Carlo methods; adaptive and interacting Marko
On the use of stochastic approximation Monte Carlo for Monte Carlo integration
Liang, Faming
2009-03-01
The stochastic approximation Monte Carlo (SAMC) algorithm has recently been proposed as a dynamic optimization algorithm in the literature. In this paper, we show in theory that the samples generated by SAMC can be used for Monte Carlo integration via a dynamically weighted estimator by calling some results from the literature of nonhomogeneous Markov chains. Our numerical results indicate that SAMC can yield significant savings over conventional Monte Carlo algorithms, such as the Metropolis-Hastings algorithm, for the problems for which the energy landscape is rugged. © 2008 Elsevier B.V. All rights reserved.
Fourier path-integral Monte Carlo methods: Partial averaging
International Nuclear Information System (INIS)
Doll, J.D.; Coalson, R.D.; Freeman, D.L.
1985-01-01
Monte Carlo Fourier path-integral techniques are explored. It is shown that fluctuation renormalization techniques provide an effective means for treating the effects of high-order Fourier contributions. The resulting formalism is rapidly convergent, is computationally convenient, and has potentially useful variational aspects
Optimum biasing of integral equations in Monte Carlo calculations
International Nuclear Information System (INIS)
Hoogenboom, J.E.
1979-01-01
In solving integral equations and estimating average values with the Monte Carlo method, biasing functions may be used to reduce the variancee of the estimates. A simple derivation was used to prove the existence of a zero-variance collision estimator if a specific biasing function and survival probability are applied. This optimum biasing function is the same as that used for the well known zero-variance last-event estimator
Entropic sampling in the path integral Monte Carlo method
International Nuclear Information System (INIS)
Vorontsov-Velyaminov, P N; Lyubartsev, A P
2003-01-01
We have extended the entropic sampling Monte Carlo method to the case of path integral representation of a quantum system. A two-dimensional density of states is introduced into path integral form of the quantum canonical partition function. Entropic sampling technique within the algorithm suggested recently by Wang and Landau (Wang F and Landau D P 2001 Phys. Rev. Lett. 86 2050) is then applied to calculate the corresponding entropy distribution. A three-dimensional quantum oscillator is considered as an example. Canonical distributions for a wide range of temperatures are obtained in a single simulation run, and exact data for the energy are reproduced
Adaptive time-stepping Monte Carlo integration of Coulomb collisions
Särkimäki, K.; Hirvijoki, E.; Terävä, J.
2018-01-01
We report an accessible and robust tool for evaluating the effects of Coulomb collisions on a test particle in a plasma that obeys Maxwell-Jüttner statistics. The implementation is based on the Beliaev-Budker collision integral which allows both the test particle and the background plasma to be relativistic. The integration method supports adaptive time stepping, which is shown to greatly improve the computational efficiency. The Monte Carlo method is implemented for both the three-dimensional particle momentum space and the five-dimensional guiding center phase space. Detailed description is provided for both the physics and implementation of the operator. The focus is in adaptive integration of stochastic differential equations, which is an overlooked aspect among existing Monte Carlo implementations of Coulomb collision operators. We verify that our operator converges to known analytical results and demonstrate that careless implementation of the adaptive time step can lead to severely erroneous results. The operator is provided as a self-contained Fortran 95 module and can be included into existing orbit-following tools that trace either the full Larmor motion or the guiding center dynamics. The adaptive time-stepping algorithm is expected to be useful in situations where the collision frequencies vary greatly over the course of a simulation. Examples include the slowing-down of fusion products or other fast ions, and the Dreicer generation of runaway electrons as well as the generation of fast ions or electrons with ion or electron cyclotron resonance heating.
Streamlining resummed QCD calculations using Monte Carlo integration
Energy Technology Data Exchange (ETDEWEB)
Farhi, David; Feige, Ilya; Freytsis, Marat; Schwartz, Matthew D. [Center for the Fundamental Laws of Nature, Harvard University,17 Oxford St., Cambridge, MA 02138 (United States)
2016-08-18
Some of the most arduous and error-prone aspects of precision resummed calculations are related to the partonic hard process, having nothing to do with the resummation. In particular, interfacing to parton-distribution functions, combining various channels, and performing the phase space integration can be limiting factors in completing calculations. Conveniently, however, most of these tasks are already automated in many Monte Carlo programs, such as MADGRAPH http://dx.doi.org/10.1007/JHEP07(2014)079, ALPGEN http://dx.doi.org/10.1088/1126-6708/2003/07/001 or SHERPA http://dx.doi.org/10.1088/1126-6708/2009/02/007. In this paper, we show how such programs can be used to produce distributions of partonic kinematics with associated color structures representing the hard factor in a resummed distribution. These distributions can then be used to weight convolutions of jet, soft and beam functions producing a complete resummed calculation. In fact, only around 1000 unweighted events are necessary to produce precise distributions. A number of examples and checks are provided, including e{sup +}e{sup −} two- and four-jet event shapes, n-jettiness and jet-mass related observables at hadron colliders at next-to-leading-log (NLL) matched to leading order (LO). Attached code can be used to modify MADGRAPH to export the relevant LO hard functions and color structures for arbitrary processes.
Markov chain Monte Carlo with the Integrated Nested Laplace Approximation
Gómez-Rubio, Virgilio
2017-10-06
The Integrated Nested Laplace Approximation (INLA) has established itself as a widely used method for approximate inference on Bayesian hierarchical models which can be represented as a latent Gaussian model (LGM). INLA is based on producing an accurate approximation to the posterior marginal distributions of the parameters in the model and some other quantities of interest by using repeated approximations to intermediate distributions and integrals that appear in the computation of the posterior marginals. INLA focuses on models whose latent effects are a Gaussian Markov random field. For this reason, we have explored alternative ways of expanding the number of possible models that can be fitted using the INLA methodology. In this paper, we present a novel approach that combines INLA and Markov chain Monte Carlo (MCMC). The aim is to consider a wider range of models that can be fitted with INLA only when some of the parameters of the model have been fixed. We show how new values of these parameters can be drawn from their posterior by using conditional models fitted with INLA and standard MCMC algorithms, such as Metropolis–Hastings. Hence, this will extend the use of INLA to fit models that can be expressed as a conditional LGM. Also, this new approach can be used to build simpler MCMC samplers for complex models as it allows sampling only on a limited number of parameters in the model. We will demonstrate how our approach can extend the class of models that could benefit from INLA, and how the R-INLA package will ease its implementation. We will go through simple examples of this new approach before we discuss more advanced applications with datasets taken from the relevant literature. In particular, INLA within MCMC will be used to fit models with Laplace priors in a Bayesian Lasso model, imputation of missing covariates in linear models, fitting spatial econometrics models with complex nonlinear terms in the linear predictor and classification of data with
Markov chain Monte Carlo with the Integrated Nested Laplace Approximation
Gó mez-Rubio, Virgilio; Rue, Haavard
2017-01-01
The Integrated Nested Laplace Approximation (INLA) has established itself as a widely used method for approximate inference on Bayesian hierarchical models which can be represented as a latent Gaussian model (LGM). INLA is based on producing an accurate approximation to the posterior marginal distributions of the parameters in the model and some other quantities of interest by using repeated approximations to intermediate distributions and integrals that appear in the computation of the posterior marginals. INLA focuses on models whose latent effects are a Gaussian Markov random field. For this reason, we have explored alternative ways of expanding the number of possible models that can be fitted using the INLA methodology. In this paper, we present a novel approach that combines INLA and Markov chain Monte Carlo (MCMC). The aim is to consider a wider range of models that can be fitted with INLA only when some of the parameters of the model have been fixed. We show how new values of these parameters can be drawn from their posterior by using conditional models fitted with INLA and standard MCMC algorithms, such as Metropolis–Hastings. Hence, this will extend the use of INLA to fit models that can be expressed as a conditional LGM. Also, this new approach can be used to build simpler MCMC samplers for complex models as it allows sampling only on a limited number of parameters in the model. We will demonstrate how our approach can extend the class of models that could benefit from INLA, and how the R-INLA package will ease its implementation. We will go through simple examples of this new approach before we discuss more advanced applications with datasets taken from the relevant literature. In particular, INLA within MCMC will be used to fit models with Laplace priors in a Bayesian Lasso model, imputation of missing covariates in linear models, fitting spatial econometrics models with complex nonlinear terms in the linear predictor and classification of data with
Numerical integration of the Langevin equation: Monte Carlo simulation
International Nuclear Information System (INIS)
Ermak, D.L.; Buckholz, H.
1980-01-01
Monte Carlo simulation techniques are derived for solving the ordinary Langevin equation of motion for a Brownian particle in the presence of an external force. These methods allow considerable freedom in selecting the size of the time step, which is restricted only by the rate of change in the external force. This approach is extended to the generalized Langevin equation which uses a memory function in the friction force term. General simulation techniques are derived which are independent of the form of the memory function. A special method requiring less storage space is presented for the case of the exponential memory function
Energy Technology Data Exchange (ETDEWEB)
Garcia, Claudio; Costa, Artur; Bittencourt, Euclides [TRANSPETRO - PETROBRAS Transporte, Rio de Janeiro, RJ (Brazil)
2005-07-01
Due to the growing relevance of safety and environmental protection policies in PETROBRAS and its subsidiaries, as well as official regulatory agencies and population requirements, integrity management of oil and gas pipelines became a priority activity in TRANSPETRO, involving several sectors of the company's Support Management Department. Inspection activities using intelligent PIGs, field correlations and replacement of pipeline segments are known as high cost operations and request complex logistics. Thus, it is imperative the adoption of management tools that optimize the available resources. This study presents Monte Carlo simulation method as an additional tool for evaluation and management of pipeline structural integrity. The method consists in foreseeing future physical conditions of most significant defects found in intelligent PIG In Line Inspections based on a probabilistic approach. Through Monte Carlo simulation, probability functions of failure for each defect are produced, helping managers to decide which repairs should be executed in order to reach the desired or accepted risk level. The case that illustrates this study refers to the reconditioning of ORSOL 14'' (35,56 mm) pipeline. This pipeline was constructed to transfer petroleum from Urucu's production fields to Solimoes port, in Coari, city in Brazilian Amazon Region. The result of this analysis indicated critical points for repair, in addition to the results obtained by the conventional evaluation (deterministic ASME B-31G method). Due to the difficulties to mobilize staff and execute necessary repairs in remote areas like Amazon forest, the probabilistic tool was extremely useful, improving pipeline integrity level and avoiding future additional costs. (author)
International Nuclear Information System (INIS)
Quirk, Thomas J. IV
2004-01-01
The Integrated TIGER Series (ITS) is a software package that solves coupled electron-photon transport problems. ITS performs analog photon tracking for energies between 1 keV and 1 GeV. Unlike its deterministic counterpart, the Monte Carlo calculations of ITS do not require a memory-intensive meshing of phase space; however, its solutions carry statistical variations. Reducing these variations is heavily dependent on runtime. Monte Carlo simulations must therefore be both physically accurate and computationally efficient. Compton scattering is the dominant photon interaction above 100 keV and below 5-10 MeV, with higher cutoffs occurring in lighter atoms. In its current model of Compton scattering, ITS corrects the differential Klein-Nishina cross sections (which assumes a stationary, free electron) with the incoherent scattering function, a function dependent on both the momentum transfer and the atomic number of the scattering medium. While this technique accounts for binding effects on the scattering angle, it excludes the Doppler broadening the Compton line undergoes because of the momentum distribution in each bound state. To correct for these effects, Ribbefor's relativistic impulse approximation (IA) will be employed to create scattering cross section differential in both energy and angle for each element. Using the parameterizations suggested by Brusa et al., scattered photon energies and angle can be accurately sampled at a high efficiency with minimal physical data. Two-body kinematics then dictates the electron's scattered direction and energy. Finally, the atomic ionization is relaxed via Auger emission or fluorescence. Future work will extend these improvements in incoherent scattering to compounds and to adjoint calculations.
User's guide to Monte Carlo methods for evaluating path integrals
Westbroek, Marise J. E.; King, Peter R.; Vvedensky, Dimitri D.; Dürr, Stephan
2018-04-01
We give an introduction to the calculation of path integrals on a lattice, with the quantum harmonic oscillator as an example. In addition to providing an explicit computational setup and corresponding pseudocode, we pay particular attention to the existence of autocorrelations and the calculation of reliable errors. The over-relaxation technique is presented as a way to counter strong autocorrelations. The simulation methods can be extended to compute observables for path integrals in other settings.
Testing and tuning symplectic integrators for the hybrid Monte Carlo algorithm in lattice QCD
International Nuclear Information System (INIS)
Takaishi, Tetsuya; Forcrand, Philippe de
2006-01-01
We examine a new second-order integrator recently found by Omelyan et al. The integration error of the new integrator measured in the root mean square of the energy difference, 2 > 1/2 , is about 10 times smaller than that of the standard second-order leapfrog (2LF) integrator. As a result, the step size of the new integrator can be made about three times larger. Taking into account a factor 2 increase in cost, the new integrator is about 50% more efficient than the 2LF integrator. Integrating over positions first, then momenta, is slightly more advantageous than the reverse. Further parameter tuning is possible. We find that the optimal parameter for the new integrator is slightly different from the value obtained by Omelyan et al., and depends on the simulation parameters. This integrator could also be advantageous for the Trotter-Suzuki decomposition in quantum Monte Carlo
International Nuclear Information System (INIS)
Nakayama, Akira; Taketsugu, Tetsuya; Shiga, Motoyuki
2009-01-01
Efficiency of the ab initio hybrid Monte Carlo and ab initio path integral hybrid Monte Carlo methods is enhanced by employing an auxiliary potential energy surface that is used to update the system configuration via molecular dynamics scheme. As a simple illustration of this method, a dual-level approach is introduced where potential energy gradients are evaluated by computationally less expensive ab initio electronic structure methods. (author)
Treur, M.; Postma, M.
2014-01-01
Objectives: Patient-level simulation models provide increased flexibility to overcome the limitations of cohort-based approaches in health-economic analysis. However, computational requirements of reaching convergence is a notorious barrier. The objective was to assess the impact of using
Monte Carlo evaluation of path integral for the nuclear shell model
International Nuclear Information System (INIS)
Lang, G.H.
1993-01-01
The authors present a path-integral formulation of the nuclear shell model using auxillary fields; the path-integral is evaluated by Monte Carlo methods. The method scales favorably with valence-nucleon number and shell-model basis: full-basis calculations are demonstrated up to the rare-earth region, which cannot be treated by other methods. Observables are calculated for the ground state and in a thermal ensemble. Dynamical correlations are obtained, from which strength functions are extracted through the Maximum Entropy method. Examples in the s-d shell, where exact diagonalization can be carried out, compared well with exact results. The open-quotes sign problemclose quotes generic to quantum Monte Carlo calculations is found to be absent in the attractive pairing-plus-multipole interactions. The formulation is general for interacting fermion systems and is well suited for parallel computation. The authors have implemented it on the Intel Touchstone Delta System, achieving better than 99% parallelization
High-order Path Integral Monte Carlo methods for solving strongly correlated fermion problems
Chin, Siu A.
2015-03-01
In solving for the ground state of a strongly correlated many-fermion system, the conventional second-order Path Integral Monte Carlo method is plagued with the sign problem. This is due to the large number of anti-symmetric free fermion propagators that are needed to extract the square of the ground state wave function at large imaginary time. In this work, I show that optimized fourth-order Path Integral Monte Carlo methods, which uses no more than 5 free-fermion propagators, in conjunction with the use of the Hamiltonian energy estimator, can yield accurate ground state energies for quantum dots with up to 20 polarized electrons. The correlations are directly built-in and no explicit wave functions are needed. This work is supported by the Qatar National Research Fund NPRP GRANT #5-674-1-114.
Path-integral Monte Carlo study of phonons in the bcc phase of Helium-3
Sorkin, V.; Polturak, E.; Adler, Joan
2006-01-01
Using Path Integral Monte Carlo and the Maximum Entropy method, we calculate the dynamic structure factor of solid He-3 in the bcc phase at a finite temperature of T = 1.6 K and a molar volume of 21.5 cm^3. From the single phonon dynamic structure factor, we obtain both the longitudinal and transverse phonon branches along the main crystalline directions, [001], [011] and [111]. Our results are compared with other theoretical predictions and available experimental data.
International Nuclear Information System (INIS)
Garnier, Robert; Chevalier, Marcel
2000-01-01
Studying large and complex industrial sites, requires more and more accuracy in modeling. In particular, when considering Spares, Maintenance and Repair / Replacement processes, determining optimal Integrated Logistic Support policies requires a high level modeling formalism, in order to make the model as close as possible to the real considered processes. Generally, numerical methods are used to process this kind of study. In this paper, we propose an alternate way to process optimal Integrated Logistic Support policy determination when dealing with large, complex and distributed multi-policies industrial sites. This method is based on the use of behavioral Monte Carlo simulation, supported by Generalized Stochastic Petri Nets. (author)
Testing and tuning new symplectic integrators for Hybrid Monte Carlo algorithm in lattice QCD
Takaishi, T; Takaishi, Tetsuya; Forcrand, Philippe de
2006-01-01
We examine a new 2nd order integrator recently found by Omelyan et al. The integration error of the new integrator measured in the root mean square of the energy difference, $\\bra\\Delta H^2\\ket^{1/2}$, is about 10 times smaller than that of the standard 2nd order leapfrog (2LF) integrator. As a result, the step size of the new integrator can be made about three times larger. Taking into account a factor 2 increase in cost, the new integrator is about 50% more efficient than the 2LF integrator. Integrating over positions first, then momenta, is slightly more advantageous than the reverse. Further parameter tuning is possible. We find that the optimal parameter for the new integrator is slightly different from the value obtained by Omelyan et al., and depends on the simulation parameters. This integrator, together with a new 4th order integrator, could also be advantageous for the Trotter-Suzuki decomposition in Quantum Monte Carlo.
Energy Technology Data Exchange (ETDEWEB)
Davidenko, V. D., E-mail: Davidenko-VD@nrcki.ru; Zinchenko, A. S., E-mail: zin-sn@mail.ru; Harchenko, I. K. [National Research Centre Kurchatov Institute (Russian Federation)
2016-12-15
Integral equations for the shape functions in the adiabatic, quasi-static, and improved quasi-static approximations are presented. The approach to solving these equations by the Monte Carlo method is described.
Methods for enhancing numerical integration
International Nuclear Information System (INIS)
Doncker, Elise de
2003-01-01
We give a survey of common strategies for numerical integration (adaptive, Monte-Carlo, Quasi-Monte Carlo), and attempt to delineate their realm of applicability. The inherent accuracy and error bounds for basic integration methods are given via such measures as the degree of precision of cubature rules, the index of a family of lattice rules, and the discrepancy of uniformly distributed point sets. Strategies incorporating these basic methods often use paradigms to reduce the error by, e.g., increasing the number of points in the domain or decreasing the mesh size, locally or uniformly. For these processes the order of convergence of the strategy is determined by the asymptotic behavior of the error, and may be too slow in practice for the type of problem at hand. For certain problem classes we may be able to improve the effectiveness of the method or strategy by such techniques as transformations, absorbing a difficult part of the integrand into a weight function, suitable partitioning of the domain, transformations and extrapolation or convergence acceleration. Situations warranting the use of these techniques (possibly in an 'automated' way) are described and illustrated by sample applications
International Nuclear Information System (INIS)
Devine, R.T.; Hsu, Hsiao-Hua
1994-01-01
The current basis for conversion coefficients for calibrating individual photon dosimeters in terms of dose equivalents is found in the series of papers by Grosswent. In his calculation the collision kerma inside the phantom is determined by calculation of the energy fluence at the point of interest and the use of the mass energy absorption coefficient. This approximates the local absorbed dose. Other Monte Carlo methods can be sued to provide calculations of the conversion coefficients. Rogers has calculated fluence-to-dose equivalent conversion factors with the Electron-Gamma Shower Version 3, EGS3, Monte Carlo program and produced results similar to Grosswent's calculations. This paper will report on calculations using the Integrated TIGER Series Version 3, ITS3, code to calculate the conversion coefficients in ICRU Tissue and in PMMA. A complete description of the input parameters to the program is given and comparison to previous results is included
Quantum Mechanical Single Molecule Partition Function from PathIntegral Monte Carlo Simulations
Energy Technology Data Exchange (ETDEWEB)
Chempath, Shaji; Bell, Alexis T.; Predescu, Cristian
2006-10-01
An algorithm for calculating the partition function of a molecule with the path integral Monte Carlo method is presented. Staged thermodynamic perturbation with respect to a reference harmonic potential is utilized to evaluate the ratio of partition functions. Parallel tempering and a new Monte Carlo estimator for the ratio of partition functions are implemented here to achieve well converged simulations that give an accuracy of 0.04 kcal/mol in the reported free energies. The method is applied to various test systems, including a catalytic system composed of 18 atoms. Absolute free energies calculated by this method lead to corrections as large as 2.6 kcal/mol at 300 K for some of the examples presented.
Energy Technology Data Exchange (ETDEWEB)
Baltas, D; Geramani, K N; Ioannidis, G T; Kolotas, C; Zamboglou, N [Strahlenklinik, Stadtische Kliniken Offenbach, Offenbach (Germany); Giannouli, S [Department of Electrical and Computer Engineering, National Technical University of Athens, Athens (Greece)
1999-12-31
Source anisotropy is a very important factor in brachytherapy quality assurance of high dose rate HDR Ir 192 afterloading stepping sources. If anisotropy is not taken into account then doses received by a brachytherapy patient in certain directions can be in error by a clinically significant amount. Experimental measurements of anisotropy are very labour intensive. We have shown that within acceptable limits of accuracy, Monte Carlo integration (MCI) of a modified Sievert integral (3D generalisation) can provide the necessary data within a much shorter time scale than can experiments. Hence MCI can be used for routine quality assurance schedules whenever a new design of HDR or PDR Ir 192 is used for brachytherapy afterloading. Our MCI calculation results are comparable with published experimental data and Monte Carlo simulation data for microSelectron and VariSource Ir 192 sources. We have shown not only that MCI offers advantages over alternative numerical integration methods, but also that treating filtration coefficients as radial distance-dependent functions improves Sievert integral accuracy at low energies. This paper also provides anisotropy data for three new Ir 192 sources, one for microSelectron-HDR and two for the microSelectron-PDR, for which data currently is not available. The information we have obtained in this study can be incorporated into clinical practice.
Propagation of Nuclear Data Uncertainties in Integral Measurements by Monte-Carlo Calculations
Energy Technology Data Exchange (ETDEWEB)
Noguere, G.; Bernard, D.; De Saint-Jean, C. [CEA Cadarache, 13 - Saint Paul lez Durance (France)
2006-07-01
Full text of the publication follows: The generation of Multi-group cross sections together with relevant uncertainties is fundamental to assess the quality of integral data. The key information that are needed to propagate the microscopic experimental uncertainties to macroscopic reactor calculations are (1) the experimental covariance matrices, (2) the correlations between the parameters of the model and (3) the covariance matrices for the multi-group cross sections. The propagation of microscopic errors by Monte-Carlo technique was applied to determine the accuracy of the integral trends provided by the OSMOSE experiment carried out in the MINERVE reactor of the CEA Cadarache. The technique consists in coupling resonance shape analysis and deterministic codes. The integral trend and its accuracy obtained on the {sup 237}Np(n,{gamma}) reaction will be presented. (author)
A Novel Multiple-Time Scale Integrator for the Hybrid Monte Carlo Algorithm
International Nuclear Information System (INIS)
Kamleh, Waseem
2011-01-01
Hybrid Monte Carlo simulations that implement the fermion action using multiple terms are commonly used. By the nature of their formulation they involve multiple integration time scales in the evolution of the system through simulation time. These different scales are usually dealt with by the Sexton-Weingarten nested leapfrog integrator. In this scheme the choice of time scales is somewhat restricted as each time step must be an exact multiple of the next smallest scale in the sequence. A novel generalisation of the nested leapfrog integrator is introduced which allows for far greater flexibility in the choice of time scales, as each scale now must only be an exact multiple of the smallest step size.
Golden Ratio Versus Pi as Random Sequence Sources for Monte Carlo Integration
Sen, S. K.; Agarwal, Ravi P.; Shaykhian, Gholam Ali
2007-01-01
We discuss here the relative merits of these numbers as possible random sequence sources. The quality of these sequences is not judged directly based on the outcome of all known tests for the randomness of a sequence. Instead, it is determined implicitly by the accuracy of the Monte Carlo integration in a statistical sense. Since our main motive of using a random sequence is to solve real world problems, it is more desirable if we compare the quality of the sequences based on their performances for these problems in terms of quality/accuracy of the output. We also compare these sources against those generated by a popular pseudo-random generator, viz., the Matlab rand and the quasi-random generator ha/ton both in terms of error and time complexity. Our study demonstrates that consecutive blocks of digits of each of these numbers produce a good random sequence source. It is observed that randomly chosen blocks of digits do not have any remarkable advantage over consecutive blocks for the accuracy of the Monte Carlo integration. Also, it reveals that pi is a better source of a random sequence than theta when the accuracy of the integration is concerned.
Data assimilation using a GPU accelerated path integral Monte Carlo approach
Quinn, John C.; Abarbanel, Henry D. I.
2011-09-01
The answers to data assimilation questions can be expressed as path integrals over all possible state and parameter histories. We show how these path integrals can be evaluated numerically using a Markov Chain Monte Carlo method designed to run in parallel on a graphics processing unit (GPU). We demonstrate the application of the method to an example with a transmembrane voltage time series of a simulated neuron as an input, and using a Hodgkin-Huxley neuron model. By taking advantage of GPU computing, we gain a parallel speedup factor of up to about 300, compared to an equivalent serial computation on a CPU, with performance increasing as the length of the observation time used for data assimilation increases.
DEFF Research Database (Denmark)
Blasone, Roberta-Serena; Madsen, Henrik; Rosbjerg, Dan
2008-01-01
uncertainty estimation (GLUE) procedure based on Markov chain Monte Carlo sampling is applied in order to improve the performance of the methodology in estimating parameters and posterior output distributions. The description of the spatial variations of the hydrological processes is accounted for by defining......In recent years, there has been an increase in the application of distributed, physically-based and integrated hydrological models. Many questions regarding how to properly calibrate and validate distributed models and assess the uncertainty of the estimated parameters and the spatially......-site validation must complement the usual time validation. In this study, we develop, through an application, a comprehensive framework for multi-criteria calibration and uncertainty assessment of distributed physically-based, integrated hydrological models. A revised version of the generalized likelihood...
International Nuclear Information System (INIS)
Popescu, Bogdan; Hanson, M. M.
2010-01-01
We present Monte Carlo models of open stellar clusters with the purpose of mapping out the behavior of integrated colors with mass and age. Our cluster simulation package allows for stochastic variations in the stellar mass function to evaluate variations in integrated cluster properties. We find that UBVK colors from our simulations are consistent with simple stellar population (SSP) models, provided the cluster mass is large, M cluster ≥ 10 6 M sun . Below this mass, our simulations show two significant effects. First, the mean value of the distribution of integrated colors moves away from the SSP predictions and is less red, in the first 10 7 to 10 8 years in UBV colors, and for all ages in (V - K). Second, the 1σ dispersion of observed colors increases significantly with lower cluster mass. We attribute the former to the reduced number of red luminous stars in most of the lower mass clusters and the latter to the increased stochastic effect of a few of these stars on lower mass clusters. This latter point was always assumed to occur, but we now provide the first public code able to quantify this effect. We are completing a more extensive database of magnitudes and colors as a function of stellar cluster age and mass that will allow the determination of the correlation coefficients among different bands, and improve estimates of cluster age and mass from integrated photometry.
Calculation Aspects of the European Rebalanced Basket Option using Monte Carlo Methods: Valuation
Directory of Open Access Journals (Sweden)
CJ van der Merwe
2012-06-01
Full Text Available Extra premiums can be charged to a client to guarantee a minimum payout of a contract on a portfolio that gets rebalanced on a regular basis back to fixed proportions. The valuation of this premium can be changed to that of the pricing of a European put option with underlying rebalanced portfolio. This article finds the most efficient estimators for the value of this path-dependant multi-asset put option using different Monte Carlo methods. With the help of a refined method, computing time of the value decreased significantly. Furthermore, Variance Reduction Techniques and Quasi-Monte Carlo methods delivered more accurate and faster converging estimates as well.
Accelerating execution of the integrated TIGER series Monte Carlo radiation transport codes
International Nuclear Information System (INIS)
Smith, L.M.; Hochstedler, R.D.
1997-01-01
Execution of the integrated TIGER series (ITS) of coupled electron/photon Monte Carlo radiation transport codes has been accelerated by modifying the FORTRAN source code for more efficient computation. Each member code of ITS was benchmarked and profiled with a specific test case that directed the acceleration effort toward the most computationally intensive subroutines. Techniques for accelerating these subroutines included replacing linear search algorithms with binary versions, replacing the pseudo-random number generator, reducing program memory allocation, and proofing the input files for geometrical redundancies. All techniques produced identical or statistically similar results to the original code. Final benchmark timing of the accelerated code resulted in speed-up factors of 2.00 for TIGER (the one-dimensional slab geometry code), 1.74 for CYLTRAN (the two-dimensional cylindrical geometry code), and 1.90 for ACCEPT (the arbitrary three-dimensional geometry code)
CAD-based Monte Carlo program for integrated simulation of nuclear system SuperMC
International Nuclear Information System (INIS)
Wu, Y.; Song, J.; Zheng, H.; Sun, G.; Hao, L.; Long, P.; Hu, L.
2013-01-01
SuperMC is a (Computer-Aided-Design) CAD-based Monte Carlo (MC) program for integrated simulation of nuclear systems developed by FDS Team (China), making use of hybrid MC-deterministic method and advanced computer technologies. The design aim, architecture and main methodology of SuperMC are presented in this paper. The taking into account of multi-physics processes and the use of advanced computer technologies such as automatic geometry modeling, intelligent data analysis and visualization, high performance parallel computing and cloud computing, contribute to the efficiency of the code. SuperMC2.1, the latest version of the code for neutron, photon and coupled neutron and photon transport calculation, has been developed and validated by using a series of benchmarking cases such as the fusion reactor ITER model and the fast reactor BN-600 model
Accelerating execution of the integrated TIGER series Monte Carlo radiation transport codes
Smith, L. M.; Hochstedler, R. D.
1997-02-01
Execution of the integrated TIGER series (ITS) of coupled electron/photon Monte Carlo radiation transport codes has been accelerated by modifying the FORTRAN source code for more efficient computation. Each member code of ITS was benchmarked and profiled with a specific test case that directed the acceleration effort toward the most computationally intensive subroutines. Techniques for accelerating these subroutines included replacing linear search algorithms with binary versions, replacing the pseudo-random number generator, reducing program memory allocation, and proofing the input files for geometrical redundancies. All techniques produced identical or statistically similar results to the original code. Final benchmark timing of the accelerated code resulted in speed-up factors of 2.00 for TIGER (the one-dimensional slab geometry code), 1.74 for CYLTRAN (the two-dimensional cylindrical geometry code), and 1.90 for ACCEPT (the arbitrary three-dimensional geometry code).
Integrated layout based Monte-Carlo simulation for design arc optimization
Shao, Dongbing; Clevenger, Larry; Zhuang, Lei; Liebmann, Lars; Wong, Robert; Culp, James
2016-03-01
Design rules are created considering a wafer fail mechanism with the relevant design levels under various design cases, and the values are set to cover the worst scenario. Because of the simplification and generalization, design rule hinders, rather than helps, dense device scaling. As an example, SRAM designs always need extensive ground rule waivers. Furthermore, dense design also often involves "design arc", a collection of design rules, the sum of which equals critical pitch defined by technology. In design arc, a single rule change can lead to chain reaction of other rule violations. In this talk we present a methodology using Layout Based Monte-Carlo Simulation (LBMCS) with integrated multiple ground rule checks. We apply this methodology on SRAM word line contact, and the result is a layout that has balanced wafer fail risks based on Process Assumptions (PAs). This work was performed at the IBM Microelectronics Div, Semiconductor Research and Development Center, Hopewell Junction, NY 12533
Kinetic energy of solid and liquid para-hydrogen: a path integral Monte Carlo simulation
International Nuclear Information System (INIS)
Zoppi, M.; Neumann, M.
1992-01-01
The translational (center of mass) kinetic energy of solid and liquid para-hydrogen have been recently measured by means of Deep Inelastic Neutron Scattering. We have evaluated the same quantity, in similar thermodynamic conditions, by means of Path Integral Monte Carlo computer simulation, modelling the system as composed of a set of spherical molecules interacting through a pairwise additive Lennard-Jones potential. In spite of the crude approximations on the interaction potential, the agreement is excellent. The pressure was also computed by means of the same simulations. This quantity, compared with the equation of state for solid para-hydrogen given by Driessen and Silvera, gives an agreement of a lesser quality and a negative value for the liquid state. We attribute this discrepancy to the limitations of the Lennard-Jones potential. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Jasper, Ahren W. [Chemical Sciences and Engineering; Gruey, Zackery B. [Chemical Sciences and Engineering; Harding, Lawrence B. [Chemical Sciences and Engineering; Georgievskii, Yuri [Chemical Sciences and Engineering; Klippenstein, Stephen J. [Chemical Sciences and Engineering; Wagner, Albert F. [Chemical Sciences and Engineering
2018-02-03
Monte Carlo phase space integration (MCPSI) is used to compute full dimensional and fully anharmonic, but classical, rovibrational partition functions for 22 small- and medium-sized molecules and radicals. Several of the species considered here feature multiple minima and low-frequency nonlocal motions, and efficiently sampling these systems is facilitated using curvilinear (stretch, bend, and torsion) coordinates. The curvilinear coordinate MCPSI method is demonstrated to be applicable to the treatment of fluxional species with complex rovibrational structures and as many as 21 fully coupled rovibrational degrees of freedom. Trends in the computed anharmonicity corrections are discussed. For many systems, rovibrational anharmonicities at elevated temperatures are shown to vary consistently with the number of degrees of freedom and with temperature once rovibrational coupling and torsional anharmonicity are accounted for. Larger corrections are found for systems with complex vibrational structures, such as systems with multiple large-amplitude modes and/or multiple minima.
Bioethanol and power from integrated second generation biomass: A Monte Carlo simulation
International Nuclear Information System (INIS)
Osaki, Márcia R.; Seleghim, Paulo
2017-01-01
Highlights: • The impacts of integrating new sugarcane conversion using bagasse and straw. • Industrial conversion of sugarcane into energy carriers: ethanol and electricity. • A reference sugarcane industrial was simulated by the Monte Carlo method. • Simultaneously optimal ethanol production and electricity generation occur at low burning bagasse rates. - Abstract: The main objective of this work is to assess the impacts of integrating new biomass conversion technologies into an existing sugarcane industrial processing plant in terms of its multi-objective optimal operating conditions. A typical sugarcane mill is identified and a second generation ethanol production pathway is incorporated to give the operator the possibility of controlling the ratio between the rates of burning bagasse and straw (sugarcane tops and leaves) to their second generation processing to achieve optimal ethanol and electricity outputs. A set of equations describing the associated conversion unit operations and chemical reactions is simulated by the Monte Carlo method and the corresponding operating envelope is constructed and statistically analyzed. These equations permit to calculate ethanol production and electricity generation in terms of a virtually infinite number of scenarios characterized by two controlled variables (burning bagasse and straw mass flow rates) and several uncontrolled variables (biomass composition, cellulose, hemicelluloses and lignin yields, fermentation efficiencies, etc.). Results reveal that the input variables have specific statistical characteristics when the corresponding operating states lay near the maximum energy limit (Pareto frontier). For example, since the objectives being optimized are intrinsically antagonistic, i.e. the increase of one dictates the decrease of the other, it is better to convert bagasse to ethanol via second generation pathway because of the high energy requirements of its dewatering prior to combustion and low heat
A Monte Carlo Application to Approximate the Integral from a to b of e Raised to the x Squared.
Easterday, Kenneth; Smith, Tommy
1992-01-01
Proposes an alternative means of approximating the value of complex integrals, the Monte Carlo procedure. Incorporating a discrete approach and probability, an approximation is obtained from the ratio of computer-generated points falling under the curve to the number of points generated in a predetermined rectangle. (MDH)
CAD-based Monte Carlo program for integrated simulation of nuclear system SuperMC
International Nuclear Information System (INIS)
Wu, Yican; Song, Jing; Zheng, Huaqing; Sun, Guangyao; Hao, Lijuan; Long, Pengcheng; Hu, Liqin
2015-01-01
Highlights: • The new developed CAD-based Monte Carlo program named SuperMC for integrated simulation of nuclear system makes use of hybrid MC-deterministic method and advanced computer technologies. SuperMC is designed to perform transport calculation of various types of particles, depletion and activation calculation including isotope burn-up, material activation and shutdown dose, and multi-physics coupling calculation including thermo-hydraulics, fuel performance and structural mechanics. The bi-directional automatic conversion between general CAD models and physical settings and calculation models can be well performed. Results and process of simulation can be visualized with dynamical 3D dataset and geometry model. Continuous-energy cross section, burnup, activation, irradiation damage and material data etc. are used to support the multi-process simulation. Advanced cloud computing framework makes the computation and storage extremely intensive simulation more attractive just as a network service to support design optimization and assessment. The modular design and generic interface promotes its flexible manipulation and coupling of external solvers. • The new developed and incorporated advanced methods in SuperMC was introduced including hybrid MC-deterministic transport method, particle physical interaction treatment method, multi-physics coupling calculation method, geometry automatic modeling and processing method, intelligent data analysis and visualization method, elastic cloud computing technology and parallel calculation method. • The functions of SuperMC2.1 integrating automatic modeling, neutron and photon transport calculation, results and process visualization was introduced. It has been validated by using a series of benchmarking cases such as the fusion reactor ITER model and the fast reactor BN-600 model. - Abstract: Monte Carlo (MC) method has distinct advantages to simulate complicated nuclear systems and is envisioned as a routine
Energy Technology Data Exchange (ETDEWEB)
Schoof, Tim
2017-03-08
The reliable quantum mechanical description of thermodynamic properties of fermionic many-body systems at high densities and strong degeneracy is of increasing interest due to recent experimental progress in generating systems that exhibit a non-trivial interplay of quantum, temperature, and coupling effects. While quantum Monte Carlo methods are among the most accurate approaches for the description of the ground state, finite-temperature path integral Monte Carlo (PIMC) simulations cannot correctly describe weakly to moderately coupled and strongly degenerate Fermi systems due to the so-called fermion sign problem. By switching from the coordinate representation to a basis of anti-symmetric Slater-determinants, the Configuration Path Integral Monte Carlo (CPIMC) approach greatly reduces the sign problem and allows for the exact computation of thermodynamic properties in this regime. During this work, the CPIMC algorithm was greatly improved in terms of efficiency and accessible observables. The first successful implementation of the diagrammatic worm algorithm for a general Hamiltonian in Fock space with arbitrary pair interactions gives direct access to the Matsubara Green function. This allows for the reconstruction of dynamic properties from simulations in thermodynamic equilibrium and significantly reduces the statistical variance of derived estimators, such as the one-particle density. The strongly improved MC sampling, the much more efficient calculation of update probabilities, and the successful parallelization to thousands of CPU cores, which have been achieved as part of the new implementation, are essential for the subsequent application of the method to much larger systems than in previous works. This thesis demonstrates the capabilities of the CPIMC approach for a model system of Coulomb interacting fermions in a two-dimensional harmonic trap. The correctness of the CPIMC implementation is verified by rigorous comparisons with an exact
Learning Algorithm of Boltzmann Machine Based on Spatial Monte Carlo Integration Method
Directory of Open Access Journals (Sweden)
Muneki Yasuda
2018-04-01
Full Text Available The machine learning techniques for Markov random fields are fundamental in various fields involving pattern recognition, image processing, sparse modeling, and earth science, and a Boltzmann machine is one of the most important models in Markov random fields. However, the inference and learning problems in the Boltzmann machine are NP-hard. The investigation of an effective learning algorithm for the Boltzmann machine is one of the most important challenges in the field of statistical machine learning. In this paper, we study Boltzmann machine learning based on the (first-order spatial Monte Carlo integration method, referred to as the 1-SMCI learning method, which was proposed in the author’s previous paper. In the first part of this paper, we compare the method with the maximum pseudo-likelihood estimation (MPLE method using a theoretical and a numerical approaches, and show the 1-SMCI learning method is more effective than the MPLE. In the latter part, we compare the 1-SMCI learning method with other effective methods, ratio matching and minimum probability flow, using a numerical experiment, and show the 1-SMCI learning method outperforms them.
Pérez-López, Paula; Montazeri, Mahdokht; Feijoo, Gumersindo; Moreira, María Teresa; Eckelman, Matthew J
2018-06-01
The economic and environmental performance of microalgal processes has been widely analyzed in recent years. However, few studies propose an integrated process-based approach to evaluate economic and environmental indicators simultaneously. Biodiesel is usually the single product and the effect of environmental benefits of co-products obtained in the process is rarely discussed. In addition, there is wide variation of the results due to inherent variability of some parameters as well as different assumptions in the models and limited knowledge about the processes. In this study, two standardized models were combined to provide an integrated simulation tool allowing the simultaneous estimation of economic and environmental indicators from a unique set of input parameters. First, a harmonized scenario was assessed to validate the joint environmental and techno-economic model. The findings were consistent with previous assessments. In a second stage, a Monte Carlo simulation was applied to evaluate the influence of variable and uncertain parameters in the model output, as well as the correlations between the different outputs. The simulation showed a high probability of achieving favorable environmental performance for the evaluated categories and a minimum selling price ranging from $11gal -1 to $106gal -1 . Greenhouse gas emissions and minimum selling price were found to have the strongest positive linear relationship, whereas eutrophication showed weak correlations with the other indicators (namely greenhouse gas emissions, cumulative energy demand and minimum selling price). Process parameters (especially biomass productivity and lipid content) were the main source of variation, whereas uncertainties linked to the characterization methods and economic parameters had limited effect on the results. Copyright © 2018 Elsevier B.V. All rights reserved.
ITS - The integrated TIGER series of coupled electron/photon Monte Carlo transport codes
International Nuclear Information System (INIS)
Halbleib, J.A.; Mehlhorn, T.A.
1985-01-01
The TIGER series of time-independent coupled electron/photon Monte Carlo transport codes is a group of multimaterial, multidimensional codes designed to provide a state-of-the-art description of the production and transport of the electron/photon cascade. The codes follow both electrons and photons from 1.0 GeV down to 1.0 keV, and the user has the option of combining the collisional transport with transport in macroscopic electric and magnetic fields of arbitrary spatial dependence. Source particles can be either electrons or photons. The most important output data are (a) charge and energy deposition profiles, (b) integral and differential escape coefficients for both electrons and photons, (c) differential electron and photon flux, and (d) pulse-height distributions for selected regions of the problem geometry. The base codes of the series differ from one another primarily in their dimensionality and geometric modeling. They include (a) a one-dimensional multilayer code, (b) a code that describes the transport in two-dimensional axisymmetric cylindrical material geometries with a fully three-dimensional description of particle trajectories, and (c) a general three-dimensional transport code which employs a combinatorial geometry scheme. These base codes were designed primarily for describing radiation transport for those situations in which the detailed atomic structure of the transport medium is not important. For some applications, it is desirable to have a more detailed model of the low energy transport. The system includes three additional codes that contain a more elaborate ionization/relaxation model than the base codes. Finally, the system includes two codes that combine the collisional transport of the multidimensional base codes with transport in macroscopic electric and magnetic fields of arbitrary spatial dependence
Path Integral Monte Carlo Simulations of Warm Dense Matter and Plasmas
Energy Technology Data Exchange (ETDEWEB)
Militzer, Burkhard [Univ. of California, Berkeley, CA (United States)
2018-01-13
New path integral Monte Carlo simulation (PIMC) techniques will be developed and applied to derive the equation of state (EOS) for the regime of warm dense matter and dense plasmas where existing first-principles methods cannot be applied. While standard density functional theory has been used to accurately predict the structure of many solids and liquids up to temperatures on the order of 10,000 K, this method is not applicable at much higher temperature where electronic excitations become important because the number of partially occupied electronic orbitals reaches intractably large numbers and, more importantly, the use of zero-temperature exchange-correlation functionals introduces an uncontrolled approximation. Here we focus on PIMC methods that become more and more efficient with increasing temperatures and still include all electronic correlation effects. In this approach, electronic excitations increase the efficiency rather than reduce it. While it has commonly been assumed such methods can only be applied to elements without core electrons like hydrogen and helium, we recently showed how to extend PIMC to heavier elements by performing the first PIMC simulations of carbon and water plasmas [Driver, Militzer, Phys. Rev. Lett. 108 (2012) 115502]. Here we propose to continue this important development to extend the reach of PIMC simulations to yet heavier elements and also lower temperatures. The goal is to provide a robust first-principles simulation method that can accurately and efficiently study materials with excited electrons at solid-state densities in order to access parts of the phase diagram such the regime of warm dense matter and plasmas where so far only more approximate, semi-analytical methods could be applied.
International Nuclear Information System (INIS)
Pop-Jordanov, J.
1963-02-01
General mathematical Monte Carlo approach is described with the elements which enable solution of specific problems (verification was done by estimation of a simple integral). Special attention was devoted to systematic presentation which demanded explanation of fundamental topics of statistics and probability. This demands a procedure for modelling the stochastic process i.e. Monte Carlo method [sr
Monte Carlo evaluation of derivative-based global sensitivity measures
Energy Technology Data Exchange (ETDEWEB)
Kucherenko, S. [Centre for Process Systems Engineering, Imperial College London, London SW7 2AZ (United Kingdom)], E-mail: s.kucherenko@ic.ac.uk; Rodriguez-Fernandez, M. [Process Engineering Group, Instituto de Investigaciones Marinas, Spanish Council for Scientific Research (C.S.I.C.), C/ Eduardo Cabello, 6, 36208 Vigo (Spain); Pantelides, C.; Shah, N. [Centre for Process Systems Engineering, Imperial College London, London SW7 2AZ (United Kingdom)
2009-07-15
A novel approach for evaluation of derivative-based global sensitivity measures (DGSM) is presented. It is compared with the Morris and the Sobol' sensitivity indices methods. It is shown that there is a link between DGSM and Sobol' sensitivity indices. DGSM are very easy to implement and evaluate numerically. The computational time required for numerical evaluation of DGSM is many orders of magnitude lower than that for estimation of the Sobol' sensitivity indices. It is also lower than that for the Morris method. Efficiencies of Monte Carlo (MC) and quasi-Monte Carlo (QMC) sampling methods for calculation of DGSM are compared. It is shown that the superiority of QMC over MC depends on the problem's effective dimension, which can also be estimated using DGSM.
Monte Carlo evaluation of derivative-based global sensitivity measures
International Nuclear Information System (INIS)
Kucherenko, S.; Rodriguez-Fernandez, M.; Pantelides, C.; Shah, N.
2009-01-01
A novel approach for evaluation of derivative-based global sensitivity measures (DGSM) is presented. It is compared with the Morris and the Sobol' sensitivity indices methods. It is shown that there is a link between DGSM and Sobol' sensitivity indices. DGSM are very easy to implement and evaluate numerically. The computational time required for numerical evaluation of DGSM is many orders of magnitude lower than that for estimation of the Sobol' sensitivity indices. It is also lower than that for the Morris method. Efficiencies of Monte Carlo (MC) and quasi-Monte Carlo (QMC) sampling methods for calculation of DGSM are compared. It is shown that the superiority of QMC over MC depends on the problem's effective dimension, which can also be estimated using DGSM.
International Nuclear Information System (INIS)
Snyder, Abigail C.; Jiao, Yu
2010-01-01
Neutron experiments at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) frequently generate large amounts of data (on the order of 106-1012 data points). Hence, traditional data analysis tools run on a single CPU take too long to be practical and scientists are unable to efficiently analyze all data generated by experiments. Our goal is to develop a scalable algorithm to efficiently compute high-dimensional integrals of arbitrary functions. This algorithm can then be used to integrate the four-dimensional integrals that arise as part of modeling intensity from the experiments at the SNS. Here, three different one-dimensional numerical integration solvers from the GNU Scientific Library were modified and implemented to solve four-dimensional integrals. The results of these solvers on a final integrand provided by scientists at the SNS can be compared to the results of other methods, such as quasi-Monte Carlo methods, computing the same integral. A parallelized version of the most efficient method can allow scientists the opportunity to more effectively analyze all experimental data.
Integrated Cost and Schedule using Monte Carlo Simulation of a CPM Model - 12419
Energy Technology Data Exchange (ETDEWEB)
Hulett, David T. [Hulett and Associates, LLC (United States); Nosbisch, Michael R. [Project Time and Cost, Inc. (United States)
2012-07-01
This discussion of the recommended practice (RP) 57R-09 of AACE International defines the integrated analysis of schedule and cost risk to estimate the appropriate level of cost and schedule contingency reserve on projects. The main contribution of this RP is to include the impact of schedule risk on cost risk and hence on the need for cost contingency reserves. Additional benefits include the prioritizing of the risks to cost, some of which are risks to schedule, so that risk mitigation may be conducted in a cost-effective way, scatter diagrams of time-cost pairs for developing joint targets of time and cost, and probabilistic cash flow which shows cash flow at different levels of certainty. Integrating cost and schedule risk into one analysis based on the project schedule loaded with costed resources from the cost estimate provides both: (1) more accurate cost estimates than if the schedule risk were ignored or incorporated only partially, and (2) illustrates the importance of schedule risk to cost risk when the durations of activities using labor-type (time-dependent) resources are risky. Many activities such as detailed engineering, construction or software development are mainly conducted by people who need to be paid even if their work takes longer than scheduled. Level-of-effort resources, such as the project management team, are extreme examples of time-dependent resources, since if the project duration exceeds its planned duration the cost of these resources will increase over their budgeted amount. The integrated cost-schedule risk analysis is based on: - A high quality CPM schedule with logic tight enough so that it will provide the correct dates and critical paths during simulation automatically without manual intervention. - A contingency-free estimate of project costs that is loaded on the activities of the schedule. - Resolves inconsistencies between cost estimate and schedule that often creep into those documents as project execution proceeds
Path integral Monte Carlo simulations of dense carbon-hydrogen plasmas
Zhang, Shuai; Militzer, Burkhard; Benedict, Lorin X.; Soubiran, François; Sterne, Philip A.; Driver, Kevin P.
2018-03-01
Carbon-hydrogen plasmas and hydrocarbon materials are of broad interest to laser shock experimentalists, high energy density physicists, and astrophysicists. Accurate equations of state (EOSs) of hydrocarbons are valuable for various studies from inertial confinement fusion to planetary science. By combining path integral Monte Carlo (PIMC) results at high temperatures and density functional theory molecular dynamics results at lower temperatures, we compute the EOSs for hydrocarbons from simulations performed at 1473 separate (ρ, T)-points distributed over a range of compositions. These methods accurately treat electronic excitation effects with neither adjustable parameter nor experimental input. PIMC is also an accurate simulation method that is capable of treating many-body interaction and nuclear quantum effects at finite temperatures. These methods therefore provide a benchmark-quality EOS that surpasses that of semi-empirical and Thomas-Fermi-based methods in the warm dense matter regime. By comparing our first-principles EOS to the LEOS 5112 model for CH, we validate the specific heat assumptions in this model but suggest that the Grüneisen parameter is too large at low temperatures. Based on our first-principles EOSs, we predict the principal Hugoniot curve of polystyrene to be 2%-5% softer at maximum shock compression than that predicted by orbital-free density functional theory and SESAME 7593. By investigating the atomic structure and chemical bonding of hydrocarbons, we show a drastic decrease in the lifetime of chemical bonds in the pressure interval from 0.4 to 4 megabar. We find the assumption of linear mixing to be valid for describing the EOS and the shock Hugoniot curve of hydrocarbons in the regime of partially ionized atomic liquids. We make predictions of the shock compression of glow-discharge polymers and investigate the effects of oxygen content and C:H ratio on its Hugoniot curve. Our full suite of first-principles simulation results may
Thomas B. Lynch; Jeffrey H. Gove
2014-01-01
The typical "double counting" application of the mirage method of boundary correction cannot be applied to sampling systems such as critical height sampling (CHS) that are based on a Monte Carlo sample of a tree (or debris) attribute because the critical height (or other random attribute) sampled from a mirage point is generally not equal to the critical...
SWAT3.1 - the integrated burnup code system driving continuous energy Monte Carlo codes MVP and MCNP
International Nuclear Information System (INIS)
Suyama, Kenya; Mochizuki, Hiroki; Takada, Tomoyuki; Ryufuku, Susumu; Okuno, Hiroshi; Murazaki, Minoru; Ohkubo, Kiyoshi
2009-05-01
Integrated burnup calculation code system SWAT is a system that combines neutronics calculation code SRAC,which is widely used in Japan, and point burnup calculation code ORIGEN2. It has been used to evaluate the composition of the uranium, plutonium, minor actinides and the fission products in the spent nuclear fuel. Based on this idea, the integrated burnup calculation code system SWAT3.1 was developed by combining the continuous energy Monte Carlo code MVP and MCNP, and ORIGEN2. This enables us to treat the arbitrary fuel geometry and to generate the effective cross section data to be used in the burnup calculation with few approximations. This report describes the outline, input data instruction and several examples of the calculation. (author)
Directory of Open Access Journals (Sweden)
Qian Zhang
2014-01-01
Full Text Available The paper presents a framework for the construction of Monte Carlo finite volume element method (MCFVEM for the convection-diffusion equation with a random diffusion coefficient, which is described as a random field. We first approximate the continuous stochastic field by a finite number of random variables via the Karhunen-Loève expansion and transform the initial stochastic problem into a deterministic one with a parameter in high dimensions. Then we generate independent identically distributed approximations of the solution by sampling the coefficient of the equation and employing finite volume element variational formulation. Finally the Monte Carlo (MC method is used to compute corresponding sample averages. Statistic error is estimated analytically and experimentally. A quasi-Monte Carlo (QMC technique with Sobol sequences is also used to accelerate convergence, and experiments indicate that it can improve the efficiency of the Monte Carlo method.
Directory of Open Access Journals (Sweden)
Bardenet Rémi
2013-07-01
Full Text Available Bayesian inference often requires integrating some function with respect to a posterior distribution. Monte Carlo methods are sampling algorithms that allow to compute these integrals numerically when they are not analytically tractable. We review here the basic principles and the most common Monte Carlo algorithms, among which rejection sampling, importance sampling and Monte Carlo Markov chain (MCMC methods. We give intuition on the theoretical justification of the algorithms as well as practical advice, trying to relate both. We discuss the application of Monte Carlo in experimental physics, and point to landmarks in the literature for the curious reader.
Shang, Yu; Li, Ting; Chen, Lei; Lin, Yu; Toborek, Michal; Yu, Guoqiang
2014-05-01
Conventional semi-infinite solution for extracting blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements may cause errors in estimation of BFI (αDB) in tissues with small volume and large curvature. We proposed an algorithm integrating Nth-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in tissue for the extraction of αDB. The volume and geometry of the measured tissue were incorporated in the Monte Carlo simulation, which overcome the semi-infinite restrictions. The algorithm was tested using computer simulations on four tissue models with varied volumes/geometries and applied on an in vivo stroke model of mouse. Computer simulations shows that the high-order (N ≥ 5) linear algorithm was more accurate in extracting αDB (errors values of errors in extracting αDB were similar to those reconstructed from the noise-free DCS data. In addition, the errors in extracting the relative changes of αDB using both linear algorithm and semi-infinite solution were fairly small (errors < ±2.0%) and did not rely on the tissue volume/geometry. The experimental results from the in vivo stroke mice agreed with those in simulations, demonstrating the robustness of the linear algorithm. DCS with the high-order linear algorithm shows the potential for the inter-subject comparison and longitudinal monitoring of absolute BFI in a variety of tissues/organs with different volumes/geometries.
International Nuclear Information System (INIS)
Franke, B.C.; Kensek, R.P.; Prinja, A.K.
2013-01-01
Stochastic-media simulations require numerous boundary crossings. We consider two Monte Carlo electron transport approaches and evaluate accuracy with numerous material boundaries. In the condensed-history method, approximations are made based on infinite-medium solutions for multiple scattering over some track length. Typically, further approximations are employed for material-boundary crossings where infinite-medium solutions become invalid. We have previously explored an alternative 'condensed transport' formulation, a Generalized Boltzmann-Fokker-Planck (GBFP) method, which requires no special boundary treatment but instead uses approximations to the electron-scattering cross sections. Some limited capabilities for analog transport and a GBFP method have been implemented in the Integrated Tiger Series (ITS) codes. Improvements have been made to the condensed history algorithm. The performance of the ITS condensed-history and condensed-transport algorithms are assessed for material-boundary crossings. These assessments are made both by introducing artificial material boundaries and by comparison to analog Monte Carlo simulations. (authors)
International Nuclear Information System (INIS)
Peter, Joerg; Semmler, Wolfhard
2007-01-01
Alongside and in part motivated by recent advances in molecular diagnostics, the development of dual-modality instruments for patient and dedicated small animal imaging has gained attention by diverse research groups. The desire for such systems is high not only to link molecular or functional information with the anatomical structures, but also for detecting multiple molecular events simultaneously at shorter total acquisition times. While PET and SPECT have been integrated successfully with X-ray CT, the advance of optical imaging approaches (OT) and the integration thereof into existing modalities carry a high application potential, particularly for imaging small animals. A multi-modality Monte Carlo (MC) simulation approach at present has been developed that is able to trace high-energy (keV) as well as optical (eV) photons concurrently within identical phantom representation models. We show that the involved two approaches for ray-tracing keV and eV photons can be integrated into a unique simulation framework which enables both photon classes to be propagated through various geometry models representing both phantoms and scanners. The main advantage of such integrated framework for our specific application is the investigation of novel tomographic multi-modality instrumentation intended for in vivo small animal imaging through time-resolved MC simulation upon identical phantom geometries. Design examples are provided for recently proposed SPECT-OT and PET-OT imaging systems
International Nuclear Information System (INIS)
Kirk, B.L.
1985-12-01
The ITS (Integrated Tiger Series) Monte Carlo code package developed at Sandia National Laboratories and distributed as CCC-467/ITS by the Radiation Shielding Information Center (RSIC) at Oak Ridge National Laboratory (ORNL) consists of eight codes - the standard codes, TIGER, CYLTRAN, ACCEPT; the P-codes, TIGERP, CYLTRANP, ACCEPTP; and the M-codes ACCEPTM, CYLTRANM. The codes have been adapted to run on the IBM 3081, VAX 11/780, CDC-7600, and Cray 1 with the use of the update emulator UPEML. This manual should serve as a guide to a user running the codes on IBM computers having 370 architecture. The cases listed were tested on the IBM 3033, under the MVS operating system using the VS Fortran Level 1.3.1 compiler
ITS Version 6 : the integrated TIGER series of coupled electron/photon Monte Carlo transport codes.
Energy Technology Data Exchange (ETDEWEB)
Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William
2008-04-01
ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of lineartime-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 6, the latest version of ITS, contains (1) improvements to the ITS 5.0 codes, and (2) conversion to Fortran 90. The general user friendliness of the software has been enhanced through memory allocation to reduce the need for users to modify and recompile the code.
Energy Technology Data Exchange (ETDEWEB)
Sheu, R.-D.; Chui, C.-S.; Jiang, S.-H. E-mail: shjiang@mx.nthu.edu.tw
2003-12-01
A simplified method, based on the integral of the first collision kernel, is presented for performing gamma-ray skyshine calculations for the collimated sources. The first collision kernels were calculated in air for a reference air density by use of the EGS4 Monte Carlo code. These kernels can be applied to other air densities by applying density corrections. The integral first collision kernel (IFCK) method has been used to calculate two of the ANSI/ANS skyshine benchmark problems and the results were compared with a number of other commonly used codes. Our results were generally in good agreement with others but only spend a small fraction of the computation time required by the Monte Carlo calculations. The scheme of the IFCK method for dealing with lots of source collimation geometry is also presented in this study.
International Nuclear Information System (INIS)
Grieshemer, D.P.; Gill, D.F.; Nease, B.R.; Carpenter, D.C.; Joo, H.; Millman, D.L.; Sutton, T.M.; Stedry, M.H.; Dobreff, P.S.; Trumbull, T.H.; Caro, E.
2013-01-01
MC21 is a continuous-energy Monte Carlo radiation transport code for the calculation of the steady-state spatial distributions of reaction rates in three-dimensional models. The code supports neutron and photon transport in fixed source problems, as well as iterated-fission-source (eigenvalue) neutron transport problems. MC21 has been designed and optimized to support large-scale problems in reactor physics, shielding, and criticality analysis applications. The code also supports many in-line reactor feedback effects, including depletion, thermal feedback, xenon feedback, eigenvalue search, and neutron and photon heating. MC21 uses continuous-energy neutron/nucleus interaction physics over the range from 10 -5 eV to 20 MeV. The code treats all common neutron scattering mechanisms, including fast-range elastic and non-elastic scattering, and thermal- and epithermal-range scattering from molecules and crystalline materials. For photon transport, MC21 uses continuous-energy interaction physics over the energy range from 1 keV to 100 GeV. The code treats all common photon interaction mechanisms, including Compton scattering, pair production, and photoelectric interactions. All of the nuclear data required by MC21 is provided by the NDEX system of codes, which extracts and processes data from EPDL-, ENDF-, and ACE-formatted source files. For geometry representation, MC21 employs a flexible constructive solid geometry system that allows users to create spatial cells from first- and second-order surfaces. The system also allows models to be built up as hierarchical collections of previously defined spatial cells, with interior detail provided by grids and template overlays. Results are collected by a generalized tally capability which allows users to edit integral flux and reaction rate information. Results can be collected over the entire problem or within specific regions of interest through the use of phase filters that control which particles are allowed to score each
Asselineau, Charles-Alexis; Zapata, Jose; Pye, John
2015-06-01
A stochastic optimisation method adapted to illumination and radiative heat transfer problems involving Monte-Carlo ray-tracing is presented. A solar receiver shape optimisation case study illustrates the advantages of the method and its potential: efficient receivers are identified using a moderate computational cost.
Gorshkov, Anton V; Kirillin, Mikhail Yu
2015-08-01
Over two decades, the Monte Carlo technique has become a gold standard in simulation of light propagation in turbid media, including biotissues. Technological solutions provide further advances of this technique. The Intel Xeon Phi coprocessor is a new type of accelerator for highly parallel general purpose computing, which allows execution of a wide range of applications without substantial code modification. We present a technical approach of porting our previously developed Monte Carlo (MC) code for simulation of light transport in tissues to the Intel Xeon Phi coprocessor. We show that employing the accelerator allows reducing computational time of MC simulation and obtaining simulation speed-up comparable to GPU. We demonstrate the performance of the developed code for simulation of light transport in the human head and determination of the measurement volume in near-infrared spectroscopy brain sensing.
ITS Version 3.0: The Integrated TIGER Series of coupled electron/photon Monte Carlo transport codes
International Nuclear Information System (INIS)
Halbleib, J.A.; Kensek, R.P.; Valdez, G.D.; Mehlhorn, T.A.; Seltzer, S.M.; Berger, M.J.
1993-01-01
ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of linear time-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields. It combines operational simplicity and physical accuracy in order to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Flexibility of construction permits tailoring of the codes to specific applications and extension of code capabilities to more complex applications through simple update procedures
ITS Version 3.0: The Integrated TIGER Series of coupled electron/photon Monte Carlo transport codes
Energy Technology Data Exchange (ETDEWEB)
Halbleib, J.A.; Kensek, R.P.; Valdez, G.D.; Mehlhorn, T.A. [Sandia National Labs., Albuquerque, NM (United States); Seltzer, S.M.; Berger, M.J. [National Inst. of Standards and Technology, Gaithersburg, MD (United States). Ionizing Radiation Div.
1993-06-01
ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of linear time-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields. It combines operational simplicity and physical accuracy in order to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Flexibility of construction permits tailoring of the codes to specific applications and extension of code capabilities to more complex applications through simple update procedures.
Energy Technology Data Exchange (ETDEWEB)
Pop-Jordanov, J [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)
1963-02-15
General mathematical Monte Carlo approach is described with the elements which enable solution of specific problems (verification was done by estimation of a simple integral). Special attention was devoted to systematic presentation which demanded explanation of fundamental topics of statistics and probability. This demands a procedure for modelling the stochastic process i.e. Monte Carlo method. Dat je matematicki prilaz Monte Carlo metodi uopste, a po elementima koji dozvoljavaju konkretno resavanje izvesnih problema. (Provera je izvrsena na estimiranju prostog integrala). Narocito je vodjeno racuna o sistematicnosti izlaganja materije sto je mestimicno zahtevalo tretiranje i osnovnih pojmova, statistike i verovatnoce, a sve to skupa zahteva postupak modeliranja stohastickog procesa odnosno Monte Carlo metod (author)
Rodriguez, M.; Brualla, L.
2018-04-01
Monte Carlo simulation of radiation transport is computationally demanding to obtain reasonably low statistical uncertainties of the estimated quantities. Therefore, it can benefit in a large extent from high-performance computing. This work is aimed at assessing the performance of the first generation of the many-integrated core architecture (MIC) Xeon Phi coprocessor with respect to that of a CPU consisting of a double 12-core Xeon processor in Monte Carlo simulation of coupled electron-photonshowers. The comparison was made twofold, first, through a suite of basic tests including parallel versions of the random number generators Mersenne Twister and a modified implementation of RANECU. These tests were addressed to establish a baseline comparison between both devices. Secondly, through the p DPM code developed in this work. p DPM is a parallel version of the Dose Planning Method (DPM) program for fast Monte Carlo simulation of radiation transport in voxelized geometries. A variety of techniques addressed to obtain a large scalability on the Xeon Phi were implemented in p DPM. Maximum scalabilities of 84 . 2 × and 107 . 5 × were obtained in the Xeon Phi for simulations of electron and photon beams, respectively. Nevertheless, in none of the tests involving radiation transport the Xeon Phi performed better than the CPU. The disadvantage of the Xeon Phi with respect to the CPU owes to the low performance of the single core of the former. A single core of the Xeon Phi was more than 10 times less efficient than a single core of the CPU for all radiation transport simulations.
International Nuclear Information System (INIS)
Theis, Christian; Feldbaumer, Eduard; Forkel-Wirth, Doris; Jaegerhofer, Lukas; Roesler, Stefan; Vincke, Helmut; Buchegger, Karl Heinz
2010-01-01
Nowadays radiation transport Monte Carlo simulations have become an indispensable tool in various fields of physics. The applications are diversified and range from physics simulations, like detector studies or shielding design, to medical applications. Usually a significant amount of time is spent on the quite cumbersome and often error prone task of implementing geometries, before the actual physics studies can be performed. SimpleGeo is an interactive solid modeler which allows for the interactive creation and visualization of geometries for various Monte Carlo particle transport codes in 3D. Even though visual validation of the geometry is important, it might not reveal subtle errors like overlapping or undefined regions. These might eventually corrupt the execution of the simulation or even lead to incorrect results, the latter being sometimes hard to identify. In many cases a debugger is provided by the Monte Carlo package, but most often they lack interactive visual feedback, thus making it hard for the user to localize and correct the error. In this paper we describe the latest developments in SimpleGeo, which include debugging facilities that support immediate visual feedback, and apply various algorithms based on deterministic, Monte Carlo or Quasi Monte Carlo methods. These approaches allow for a fast and robust identification of subtle geometry errors that are also marked visually. (author)
Cieslak, Mikolaj; Seleznyova, Alla N; Hanan, Jim
2011-04-01
Functional-structural modelling can be used to increase our understanding of how different aspects of plant structure and function interact, identify knowledge gaps and guide priorities for future experimentation. By integrating existing knowledge of the different aspects of the kiwifruit (Actinidia deliciosa) vine's architecture and physiology, our aim is to develop conceptual and mathematical hypotheses on several of the vine's features: (a) plasticity of the vine's architecture; (b) effects of organ position within the canopy on its size; (c) effects of environment and horticultural management on shoot growth, light distribution and organ size; and (d) role of carbon reserves in early shoot growth. Using the L-system modelling platform, a functional-structural plant model of a kiwifruit vine was created that integrates architectural development, mechanistic modelling of carbon transport and allocation, and environmental and management effects on vine and fruit growth. The branching pattern was captured at the individual shoot level by modelling axillary shoot development using a discrete-time Markov chain. An existing carbon transport resistance model was extended to account for several source/sink components of individual plant elements. A quasi-Monte Carlo path-tracing algorithm was used to estimate the absorbed irradiance of each leaf. Several simulations were performed to illustrate the model's potential to reproduce the major features of the vine's behaviour. The model simulated vine growth responses that were qualitatively similar to those observed in experiments, including the plastic response of shoot growth to local carbon supply, the branching patterns of two Actinidia species, the effect of carbon limitation and topological distance on fruit size and the complex behaviour of sink competition for carbon. The model is able to reproduce differences in vine and fruit growth arising from various experimental treatments. This implies it will be a valuable
Energy Technology Data Exchange (ETDEWEB)
Bandura, L., E-mail: bandura@msu.ed [Argonne National Laboratory, Argonne, IL 60439 (United States); Erdelyi, B. [Argonne National Laboratory, Argonne, IL 60439 (United States); Northern Illinois University, DeKalb, IL 60115 (United States); Nolen, J. [Argonne National Laboratory, Argonne, IL 60439 (United States)
2010-12-01
An integrated beam optics-nuclear processes framework is essential for accurate simulation of fragment separator beam dynamics. The code COSY INFINITY provides powerful differential algebraic methods for modeling and beam dynamics simulations in absence of beam-material interactions. However, these interactions are key for accurately simulating the dynamics of heavy ion fragmentation and fission. We have developed an extended version of the code that includes these interactions, and a set of new tools that allow efficient and accurate particle transport: by transfer map in vacuum and by Monte Carlo methods in materials. The new framework is presented, along with several examples from a preliminary layout of a fragment separator for a facility for rare isotope beams.
International Nuclear Information System (INIS)
Bandura, L.; Erdelyi, B.; Nolen, J.
2010-01-01
An integrated beam optics-nuclear processes framework is essential for accurate simulation of fragment separator beam dynamics. The code COSY INFINITY provides powerful differential algebraic methods for modeling and beam dynamics simulations in absence of beam-material interactions. However, these interactions are key for accurately simulating the dynamics of heavy ion fragmentation and fission. We have developed an extended version of the code that includes these interactions, and a set of new tools that allow efficient and accurate particle transport: by transfer map in vacuum and by Monte Carlo methods in materials. The new framework is presented, along with several examples from a preliminary layout of a fragment separator for a facility for rare isotope beams.
Yan, Yangqian; Blume, D
2016-06-10
The unitary equal-mass Fermi gas with zero-range interactions constitutes a paradigmatic model system that is relevant to atomic, condensed matter, nuclear, particle, and astrophysics. This work determines the fourth-order virial coefficient b_{4} of such a strongly interacting Fermi gas using a customized ab initio path-integral Monte Carlo (PIMC) algorithm. In contrast to earlier theoretical results, which disagreed on the sign and magnitude of b_{4}, our b_{4} agrees within error bars with the experimentally determined value, thereby resolving an ongoing literature debate. Utilizing a trap regulator, our PIMC approach determines the fourth-order virial coefficient by directly sampling the partition function. An on-the-fly antisymmetrization avoids the Thomas collapse and, combined with the use of the exact two-body zero-range propagator, establishes an efficient general means to treat small Fermi systems with zero-range interactions.
Monte Carlo Methods in Physics
International Nuclear Information System (INIS)
Santoso, B.
1997-01-01
Method of Monte Carlo integration is reviewed briefly and some of its applications in physics are explained. A numerical experiment on random generators used in the monte Carlo techniques is carried out to show the behavior of the randomness of various methods in generating them. To account for the weight function involved in the Monte Carlo, the metropolis method is used. From the results of the experiment, one can see that there is no regular patterns of the numbers generated, showing that the program generators are reasonably good, while the experimental results, shows a statistical distribution obeying statistical distribution law. Further some applications of the Monte Carlo methods in physics are given. The choice of physical problems are such that the models have available solutions either in exact or approximate values, in which comparisons can be mode, with the calculations using the Monte Carlo method. Comparison show that for the models to be considered, good agreement have been obtained
Bauer, J; Sommerer, F; Mairani, A; Unholtz, D; Farook, R; Handrack, J; Frey, K; Marcelos, T; Tessonnier, T; Ecker, S; Ackermann, B; Ellerbrock, M; Debus, J; Parodi, K
2014-08-21
Monte Carlo (MC) simulations of beam interaction and transport in matter are increasingly considered as essential tools to support several aspects of radiation therapy. Despite the vast application of MC to photon therapy and scattered proton therapy, clinical experience in scanned ion beam therapy is still scarce. This is especially the case for ions heavier than protons, which pose additional issues like nuclear fragmentation and varying biological effectiveness. In this work, we present the evaluation of a dedicated framework which has been developed at the Heidelberg Ion Beam Therapy Center to provide automated FLUKA MC simulations of clinical patient treatments with scanned proton and carbon ion beams. Investigations on the number of transported primaries and the dimension of the geometry and scoring grids have been performed for a representative class of patient cases in order to provide recommendations on the simulation settings, showing that recommendations derived from the experience in proton therapy cannot be directly translated to the case of carbon ion beams. The MC results with the optimized settings have been compared to the calculations of the analytical treatment planning system (TPS), showing that regardless of the consistency of the two systems (in terms of beam model in water and range calculation in different materials) relevant differences can be found in dosimetric quantities and range, especially in the case of heterogeneous and deep seated treatment sites depending on the ion beam species and energies, homogeneity of the traversed tissue and size of the treated volume. The analysis of typical TPS speed-up approximations highlighted effects which deserve accurate treatment, in contrast to adequate beam model simplifications for scanned ion beam therapy. In terms of biological dose calculations, the investigation of the mixed field components in realistic anatomical situations confirmed the findings of previous groups so far reported only in
International Nuclear Information System (INIS)
Dubi, A.; Gerstl, S.A.W.
1979-05-01
The contributon Monte Carlo method is based on a new recipe to calculate target responses by means of volume integral of the contributon current in a region between the source and the detector. A comprehensive description of the method, its implementation in the general-purpose MCNP code, and results of the method for realistic nonhomogeneous, energy-dependent problems are presented. 23 figures, 10 tables
Richardson, Erin; Hays, M. J.; Blackwood, J. M.; Skinner, T.
2014-01-01
The Liquid Propellant Fragment Overpressure Acceleration Model (L-FOAM) is a tool developed by Bangham Engineering Incorporated (BEi) that produces a representative debris cloud from an exploding liquid-propellant launch vehicle. Here it is applied to the Core Stage (CS) of the National Aeronautics and Space Administration (NASA) Space Launch System (SLS launch vehicle). A combination of Probability Density Functions (PDF) based on empirical data from rocket accidents and applicable tests, as well as SLS specific geometry are combined in a MATLAB script to create unique fragment catalogues each time L-FOAM is run-tailored for a Monte Carlo approach for risk analysis. By accelerating the debris catalogue with the BEi blast model for liquid hydrogen / liquid oxygen explosions, the result is a fully integrated code that models the destruction of the CS at a given point in its trajectory and generates hundreds of individual fragment catalogues with initial imparted velocities. The BEi blast model provides the blast size (radius) and strength (overpressure) as probabilities based on empirical data and anchored with analytical work. The coupling of the L-FOAM catalogue with the BEi blast model is validated with a simulation of the Project PYRO S-IV destruct test. When running a Monte Carlo simulation, L-FOAM can accelerate all catalogues with the same blast (mean blast, 2 s blast, etc.), or vary the blast size and strength based on their respective probabilities. L-FOAM then propagates these fragments until impact with the earth. Results from L-FOAM include a description of each fragment (dimensions, weight, ballistic coefficient, type and initial location on the rocket), imparted velocity from the blast, and impact data depending on user desired application. LFOAM application is for both near-field (fragment impact to escaping crew capsule) and far-field (fragment ground impact footprint) safety considerations. The user is thus able to use statistics from a Monte Carlo
Directory of Open Access Journals (Sweden)
2008-05-01
Full Text Available Entrevista (en español Presentación Carlos Romero, politólogo, es profesor-investigador en el Instituto de Estudios Políticos de la Facultad de Ciencias Jurídicas y Políticas de la Universidad Central de Venezuela, en donde se ha desempeñado como coordinador del Doctorado, subdirector y director del Centro de Estudios de Postgrado. Cuenta con ocho libros publicados sobre temas de análisis político y relaciones internacionales, siendo uno de los últimos Jugando con el globo. La política exter...
Directory of Open Access Journals (Sweden)
Thiago Yamada
2017-11-01
Full Text Available ABSTRACT It is well-known that conducting experimental research aiming the characterization of canopy structure of forests can be a difficult and costly task and, generally, requires an expert to extract, in loco, relevant information. Aiming at easing studies related to canopy structures, several techniques have been proposed in the literature and, among them, various are based on canopy digital image analysis. The research work described in this paper empirically compares two techniques that measure the integrity of the canopy structure of a forest fragment; one of them is based on central parts of canopy cover images and, the other, on canopy closure images. For the experiments, 22 central parts of canopy cover images and 22 canopy closure images were used. The images were captured along two transects: T1 (located in the conserved area and T2 (located in the naturally disturbance area. The canopy digital images were computationally processed and analyzed using the MATLAB platform for the canopy cover images and the Gap Light Analyzer (GLA, for the canopy closure images. The results obtained using these two techniques showed that canopy cover images and, among the employed algorithms, the Jseg, characterize the canopy integrity best. It is worth mentioning that part of the analysis can be automatically conducted, as a quick and precise process, with low material costs involved.
International Nuclear Information System (INIS)
Rajabalinejad, M.
2010-01-01
To reduce cost of Monte Carlo (MC) simulations for time-consuming processes, Bayesian Monte Carlo (BMC) is introduced in this paper. The BMC method reduces number of realizations in MC according to the desired accuracy level. BMC also provides a possibility of considering more priors. In other words, different priors can be integrated into one model by using BMC to further reduce cost of simulations. This study suggests speeding up the simulation process by considering the logical dependence of neighboring points as prior information. This information is used in the BMC method to produce a predictive tool through the simulation process. The general methodology and algorithm of BMC method are presented in this paper. The BMC method is applied to the simplified break water model as well as the finite element model of 17th Street Canal in New Orleans, and the results are compared with the MC and Dynamic Bounds methods.
International Nuclear Information System (INIS)
Chang, J.; Sandler, S.I.
1995-01-01
The correlation functions of homonuclear hard-sphere chain fluids are studied using the Wertheim integral equation theory for associating fluids and the Monte Carlo simulation method. The molecular model used in the simulations is the freely jointed hard-sphere chain with spheres that are tangentially connected. In the Wertheim theory, such a chain molecule is described by sticky hard spheres with two independent attraction sites on the surface of each sphere. The OZ-like equation for this associating fluid is analytically solved using the polymer-PY closure and by imposing a single bonding condition. By equating the mean chain length of this associating hard sphere fluid to the fixed length of the hard-sphere chains used in simulation, we find that the correlation functions for the chain fluids are accurately predicted. From the Wertheim theory we also obtain predictions for the overall correlation functions that include intramolecular correlations. In addition, the results for the average intermolecular correlation functions from the Wertheim theory and from the Chiew theory are compared with simulation results, and the differences between these theories are discussed
Wilson, Robert H.; Vishwanath, Karthik; Mycek, Mary-Ann
2009-02-01
Monte Carlo (MC) simulations are considered the "gold standard" for mathematical description of photon transport in tissue, but they can require large computation times. Therefore, it is important to develop simple and efficient methods for accelerating MC simulations, especially when a large "library" of related simulations is needed. A semi-analytical method involving MC simulations and a path-integral (PI) based scaling technique generated time-resolved reflectance curves from layered tissue models. First, a zero-absorption MC simulation was run for a tissue model with fixed scattering properties in each layer. Then, a closed-form expression for the average classical path of a photon in tissue was used to determine the percentage of time that the photon spent in each layer, to create a weighted Beer-Lambert factor to scale the time-resolved reflectance of the simulated zero-absorption tissue model. This method is a unique alternative to other scaling techniques in that it does not require the path length or number of collisions of each photon to be stored during the initial simulation. Effects of various layer thicknesses and absorption and scattering coefficients on the accuracy of the method will be discussed.
Applications of Monte Carlo method in Medical Physics
International Nuclear Information System (INIS)
Diez Rios, A.; Labajos, M.
1989-01-01
The basic ideas of Monte Carlo techniques are presented. Random numbers and their generation by congruential methods, which underlie Monte Carlo calculations are shown. Monte Carlo techniques to solve integrals are discussed. The evaluation of a simple monodimensional integral with a known answer, by means of two different Monte Carlo approaches are discussed. The basic principles to simualate on a computer photon histories reduce variance and the current applications in Medical Physics are commented. (Author)
The MC21 Monte Carlo Transport Code
International Nuclear Information System (INIS)
Sutton TM; Donovan TJ; Trumbull TH; Dobreff PS; Caro E; Griesheimer DP; Tyburski LJ; Carpenter DC; Joo H
2007-01-01
MC21 is a new Monte Carlo neutron and photon transport code currently under joint development at the Knolls Atomic Power Laboratory and the Bettis Atomic Power Laboratory. MC21 is the Monte Carlo transport kernel of the broader Common Monte Carlo Design Tool (CMCDT), which is also currently under development. The vision for CMCDT is to provide an automated, computer-aided modeling and post-processing environment integrated with a Monte Carlo solver that is optimized for reactor analysis. CMCDT represents a strategy to push the Monte Carlo method beyond its traditional role as a benchmarking tool or ''tool of last resort'' and into a dominant design role. This paper describes various aspects of the code, including the neutron physics and nuclear data treatments, the geometry representation, and the tally and depletion capabilities
Elements of Monte Carlo techniques
International Nuclear Information System (INIS)
Nagarajan, P.S.
2000-01-01
The Monte Carlo method is essentially mimicking the real world physical processes at the microscopic level. With the incredible increase in computing speeds and ever decreasing computing costs, there is widespread use of the method for practical problems. The method is used in calculating algorithm-generated sequences known as pseudo random sequence (prs)., probability density function (pdf), test for randomness, extension to multidimensional integration etc
Lebensohn, Ricardo A.
2012-03-01
This special issue contains selected contributions from invited speakers to the 'Polycrystal Modelling with Experimental Integration: A Symposium Honoring Carlos Tomé', held as part of the 2011 TMS Annual Meeting and Exhibition, that took place on February 27-March 3, 2011 in San Diego, CA, USA. This symposium honored the remarkable contributions of Dr Carlos N Tomé to the field of mechanical behavior of polycrystalline materials, on the occasion of his 60th birthday. Throughout his career, Dr Tomé has pioneered the theoretical and numerical development of models of polycrystal mechanical behavior, with emphasis on the role played by texture and microstructure on the anisotropic behavior of engineering materials. His many contributions have been critical in establishing a strong connection between models and experiments, and in bridging different scales in the pursuit of robust multiscale models with experimental integration. Among his achievements, the numerical codes that Dr Tomé and co-workers have developed are extensively used in the materials science and engineering community as predictive tools for parameter identification, interpretation of experiments, and multiscale calculations in academia, national laboratories and industry. The symposium brought together materials scientists and engineers to address current theoretical, computational and experimental issues related to microstructure-property relationships in polycrystalline materials deforming in different regimes, including the effects of single crystal anisotropy, texture and microstructure evolution. Synergetic studies, involving different crystal plasticity-based models, including multiscale implementations of the latter, and measurements of global and local textures, internal strains, dislocation structures, twinning, phase distribution, etc, were discussed in more than 90 presentations. The papers in this issue are representative of the different length-scales, materials, and experimental and
Determination of Component Contents of Blend Oil Based on Characteristics Peak Value Integration.
Xu, Jing; Hou, Pei-guo; Wang, Yu-tian; Pan, Zhao
2016-01-01
Edible blend oil market is confused at present. It has some problems such as confusing concepts, randomly named, shoddy and especially the fuzzy standard of compositions and ratios in blend oil. The national standard fails to come on time after eight years. The basic reason is the lack of qualitative and quantitative detection of vegetable oils in blend oil. Edible blend oil is mixed by different vegetable oils according to a certain proportion. Its nutrition is rich. Blend oil is eaten frequently in daily life. Different vegetable oil contains a certain components. The mixed vegetable oil can make full use of their nutrients and make the nutrients more balanced in blend oil. It is conducive to people's health. It is an effectively way to monitor blend oil market by the accurate determination of single vegetable oil content in blend oil. The types of blend oil are known, so we only need for accurate determination of its content. Three dimensional fluorescence spectra are used for the contents in blend oil. A new method of data processing is proposed with calculation of characteristics peak value integration in chosen characteristic area based on Quasi-Monte Carlo method, combined with Neural network method to solve nonlinear equations to obtain single vegetable oil content in blend oil. Peanut oil, soybean oil and sunflower oil are used as research object to reconcile into edible blend oil, with single oil regarded whole, not considered each oil's components. Recovery rates of 10 configurations of edible harmonic oil is measured to verify the validity of the method of characteristics peak value integration. An effective method is provided to detect components content of complex mixture in high sensitivity. Accuracy of recovery rats is increased, compared the common method of solution of linear equations used to detect components content of mixture. It can be used in the testing of kinds and content of edible vegetable oil in blend oil for the food quality detection
International Nuclear Information System (INIS)
Kashima, Takao; Suyama, Kenya; Takada, Tomoyuki
2015-03-01
There have been two versions of SWAT depending on details of its development history: the revised SWAT that uses the deterministic calculation code SRAC as a neutron transportation solver, and the SWAT3.1 that uses the continuous energy Monte Carlo code MVP or MCNP5 for the same purpose. It takes several hours, however, to execute one calculation by the continuous energy Monte Carlo code even on the super computer of the Japan Atomic Energy Agency. Moreover, two-dimensional burnup calculation is not practical using the revised SWAT because it has problems on production of effective cross section data and applying them to arbitrary fuel geometry when a calculation model has multiple burnup zones. Therefore, SWAT4.0 has been developed by adding, to SWAT3.1, a function to utilize the deterministic code SARC2006, which has shorter calculation time, as an outer module of neutron transportation solver for burnup calculation. SWAT4.0 has been enabled to execute two-dimensional burnup calculation by providing an input data template of SRAC2006 to SWAT4.0 input data, and updating atomic number densities of burnup zones in each burnup step. This report describes outline, input data instruction, and examples of calculations of SWAT4.0. (author)
Dunn, William L
2012-01-01
Exploring Monte Carlo Methods is a basic text that describes the numerical methods that have come to be known as "Monte Carlo." The book treats the subject generically through the first eight chapters and, thus, should be of use to anyone who wants to learn to use Monte Carlo. The next two chapters focus on applications in nuclear engineering, which are illustrative of uses in other fields. Five appendices are included, which provide useful information on probability distributions, general-purpose Monte Carlo codes for radiation transport, and other matters. The famous "Buffon's needle proble
Isotopic depletion with Monte Carlo
International Nuclear Information System (INIS)
Martin, W.R.; Rathkopf, J.A.
1996-06-01
This work considers a method to deplete isotopes during a time- dependent Monte Carlo simulation of an evolving system. The method is based on explicitly combining a conventional estimator for the scalar flux with the analytical solutions to the isotopic depletion equations. There are no auxiliary calculations; the method is an integral part of the Monte Carlo calculation. The method eliminates negative densities and reduces the variance in the estimates for the isotope densities, compared to existing methods. Moreover, existing methods are shown to be special cases of the general method described in this work, as they can be derived by combining a high variance estimator for the scalar flux with a low-order approximation to the analytical solution to the depletion equation
Shell model Monte Carlo methods
International Nuclear Information System (INIS)
Koonin, S.E.; Dean, D.J.; Langanke, K.
1997-01-01
We review quantum Monte Carlo methods for dealing with large shell model problems. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; the resultant path integral is evaluated stochastically. We first discuss the motivation, formalism, and implementation of such Shell Model Monte Carlo (SMMC) methods. There then follows a sampler of results and insights obtained from a number of applications. These include the ground state and thermal properties of pf-shell nuclei, the thermal and rotational behavior of rare-earth and γ-soft nuclei, and the calculation of double beta-decay matrix elements. Finally, prospects for further progress in such calculations are discussed. (orig.)
Shell model Monte Carlo methods
International Nuclear Information System (INIS)
Koonin, S.E.
1996-01-01
We review quantum Monte Carlo methods for dealing with large shell model problems. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; resultant path integral is evaluated stochastically. We first discuss the motivation, formalism, and implementation of such Shell Model Monte Carlo methods. There then follows a sampler of results and insights obtained from a number of applications. These include the ground state and thermal properties of pf-shell nuclei, thermal behavior of γ-soft nuclei, and calculation of double beta-decay matrix elements. Finally, prospects for further progress in such calculations are discussed. 87 refs
Random Numbers and Monte Carlo Methods
Scherer, Philipp O. J.
Many-body problems often involve the calculation of integrals of very high dimension which cannot be treated by standard methods. For the calculation of thermodynamic averages Monte Carlo methods are very useful which sample the integration volume at randomly chosen points. After summarizing some basic statistics, we discuss algorithms for the generation of pseudo-random numbers with given probability distribution which are essential for all Monte Carlo methods. We show how the efficiency of Monte Carlo integration can be improved by sampling preferentially the important configurations. Finally the famous Metropolis algorithm is applied to classical many-particle systems. Computer experiments visualize the central limit theorem and apply the Metropolis method to the traveling salesman problem.
Murthy, K. P. N.
2001-01-01
An introduction to the basics of Monte Carlo is given. The topics covered include, sample space, events, probabilities, random variables, mean, variance, covariance, characteristic function, chebyshev inequality, law of large numbers, central limit theorem (stable distribution, Levy distribution), random numbers (generation and testing), random sampling techniques (inversion, rejection, sampling from a Gaussian, Metropolis sampling), analogue Monte Carlo and Importance sampling (exponential b...
Discrete diffusion Monte Carlo for frequency-dependent radiative transfer
International Nuclear Information System (INIS)
Densmore, Jeffery D.; Thompson, Kelly G.; Urbatsch, Todd J.
2011-01-01
Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Implicit Monte Carlo radiative-transfer simulations. In this paper, we develop an extension of DDMC for frequency-dependent radiative transfer. We base our new DDMC method on a frequency integrated diffusion equation for frequencies below a specified threshold. Above this threshold we employ standard Monte Carlo. With a frequency-dependent test problem, we confirm the increased efficiency of our new DDMC technique. (author)
Mielke, Steven L; Dinpajooh, Mohammadhasan; Siepmann, J Ilja; Truhlar, Donald G
2013-01-07
We present a procedure to calculate ensemble averages, thermodynamic derivatives, and coordinate distributions by effective classical potential methods. In particular, we consider the displaced-points path integral (DPPI) method, which yields exact quantal partition functions and ensemble averages for a harmonic potential and approximate quantal ones for general potentials, and we discuss the implementation of the new procedure in two Monte Carlo simulation codes, one that uses uncorrelated samples to calculate absolute free energies, and another that employs Metropolis sampling to calculate relative free energies. The results of the new DPPI method are compared to those from accurate path integral calculations as well as to results of two other effective classical potential schemes for the case of an isolated water molecule. In addition to the partition function, we consider the heat capacity and expectation values of the energy, the potential energy, the bond angle, and the OH distance. We also consider coordinate distributions. The DPPI scheme performs best among the three effective potential schemes considered and achieves very good accuracy for all of the properties considered. A key advantage of the effective potential schemes is that they display much lower statistical sampling variances than those for accurate path integral calculations. The method presented here shows great promise for including quantum effects in calculations on large systems.
International Nuclear Information System (INIS)
Cramer, S.N.
1984-01-01
The MORSE code is a large general-use multigroup Monte Carlo code system. Although no claims can be made regarding its superiority in either theoretical details or Monte Carlo techniques, MORSE has been, since its inception at ORNL in the late 1960s, the most widely used Monte Carlo radiation transport code. The principal reason for this popularity is that MORSE is relatively easy to use, independent of any installation or distribution center, and it can be easily customized to fit almost any specific need. Features of the MORSE code are described
Energy Technology Data Exchange (ETDEWEB)
Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William
2005-09-01
ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of linear time-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 5.0, the latest version of ITS, contains (1) improvements to the ITS 3.0 continuous-energy codes, (2) multigroup codes with adjoint transport capabilities, (3) parallel implementations of all ITS codes, (4) a general purpose geometry engine for linking with CAD or other geometry formats, and (5) the Cholla facet geometry library. Moreover, the general user friendliness of the software has been enhanced through increased internal error checking and improved code portability.
Variational Monte Carlo Technique
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 8. Variational Monte Carlo Technique: Ground State Energies of Quantum Mechanical Systems. Sukanta Deb. General Article Volume 19 Issue 8 August 2014 pp 713-739 ...
Sikora, M; Dohm, O; Alber, M
2007-08-07
A dedicated, efficient Monte Carlo (MC) accelerator head model for intensity modulated stereotactic radiosurgery treatment planning is needed to afford a highly accurate simulation of tiny IMRT fields. A virtual source model (VSM) of a mini multi-leaf collimator (MLC) (the Elekta Beam Modulator (EBM)) is presented, allowing efficient generation of particles even for small fields. The VSM of the EBM is based on a previously published virtual photon energy fluence model (VEF) (Fippel et al 2003 Med. Phys. 30 301) commissioned with large field measurements in air and in water. The original commissioning procedure of the VEF, based on large field measurements only, leads to inaccuracies for small fields. In order to improve the VSM, it was necessary to change the VEF model by developing (1) a method to determine the primary photon source diameter, relevant for output factor calculations, (2) a model of the influence of the flattening filter on the secondary photon spectrum and (3) a more realistic primary photon spectrum. The VSM model is used to generate the source phase space data above the mini-MLC. Later the particles are transmitted through the mini-MLC by a passive filter function which significantly speeds up the time of generation of the phase space data after the mini-MLC, used for calculation of the dose distribution in the patient. The improved VSM model was commissioned for 6 and 15 MV beams. The results of MC simulation are in very good agreement with measurements. Less than 2% of local difference between the MC simulation and the diamond detector measurement of the output factors in water was achieved. The X, Y and Z profiles measured in water with an ion chamber (V = 0.125 cm(3)) and a diamond detector were used to validate the models. An overall agreement of 2%/2 mm for high dose regions and 3%/2 mm in low dose regions between measurement and MC simulation for field sizes from 0.8 x 0.8 cm(2) to 16 x 21 cm(2) was achieved. An IMRT plan film verification
Diffusion Monte Carlo approach versus adiabatic computation for local Hamiltonians
Bringewatt, Jacob; Dorland, William; Jordan, Stephen P.; Mink, Alan
2018-02-01
Most research regarding quantum adiabatic optimization has focused on stoquastic Hamiltonians, whose ground states can be expressed with only real non-negative amplitudes and thus for whom destructive interference is not manifest. This raises the question of whether classical Monte Carlo algorithms can efficiently simulate quantum adiabatic optimization with stoquastic Hamiltonians. Recent results have given counterexamples in which path-integral and diffusion Monte Carlo fail to do so. However, most adiabatic optimization algorithms, such as for solving MAX-k -SAT problems, use k -local Hamiltonians, whereas our previous counterexample for diffusion Monte Carlo involved n -body interactions. Here we present a 6-local counterexample which demonstrates that even for these local Hamiltonians there are cases where diffusion Monte Carlo cannot efficiently simulate quantum adiabatic optimization. Furthermore, we perform empirical testing of diffusion Monte Carlo on a standard well-studied class of permutation-symmetric tunneling problems and similarly find large advantages for quantum optimization over diffusion Monte Carlo.
Monte Carlo codes and Monte Carlo simulator program
International Nuclear Information System (INIS)
Higuchi, Kenji; Asai, Kiyoshi; Suganuma, Masayuki.
1990-03-01
Four typical Monte Carlo codes KENO-IV, MORSE, MCNP and VIM have been vectorized on VP-100 at Computing Center, JAERI. The problems in vector processing of Monte Carlo codes on vector processors have become clear through the work. As the result, it is recognized that these are difficulties to obtain good performance in vector processing of Monte Carlo codes. A Monte Carlo computing machine, which processes the Monte Carlo codes with high performances is being developed at our Computing Center since 1987. The concept of Monte Carlo computing machine and its performance have been investigated and estimated by using a software simulator. In this report the problems in vectorization of Monte Carlo codes, Monte Carlo pipelines proposed to mitigate these difficulties and the results of the performance estimation of the Monte Carlo computing machine by the simulator are described. (author)
Bayesian Optimal Experimental Design Using Multilevel Monte Carlo
Ben Issaid, Chaouki
2015-01-01
informative data about the model parameters. One of the major difficulties in evaluating the expected information gain is that it naturally involves nested integration over a possibly high dimensional domain. We use the Multilevel Monte Carlo (MLMC) method
International Nuclear Information System (INIS)
Brown, F.B.
1981-01-01
Examination of the global algorithms and local kernels of conventional general-purpose Monte Carlo codes shows that multigroup Monte Carlo methods have sufficient structure to permit efficient vectorization. A structured multigroup Monte Carlo algorithm for vector computers is developed in which many particle events are treated at once on a cell-by-cell basis. Vectorization of kernels for tracking and variance reduction is described, and a new method for discrete sampling is developed to facilitate the vectorization of collision analysis. To demonstrate the potential of the new method, a vectorized Monte Carlo code for multigroup radiation transport analysis was developed. This code incorporates many features of conventional general-purpose production codes, including general geometry, splitting and Russian roulette, survival biasing, variance estimation via batching, a number of cutoffs, and generalized tallies of collision, tracklength, and surface crossing estimators with response functions. Predictions of vectorized performance characteristics for the CYBER-205 were made using emulated coding and a dynamic model of vector instruction timing. Computation rates were examined for a variety of test problems to determine sensitivities to batch size and vector lengths. Significant speedups are predicted for even a few hundred particles per batch, and asymptotic speedups by about 40 over equivalent Amdahl 470V/8 scalar codes arepredicted for a few thousand particles per batch. The principal conclusion is that vectorization of a general-purpose multigroup Monte Carlo code is well worth the significant effort required for stylized coding and major algorithmic changes
2009-01-01
Carlo Rubbia turned 75 on March 31, and CERN held a symposium to mark his birthday and pay tribute to his impressive contribution to both CERN and science. Carlo Rubbia, 4th from right, together with the speakers at the symposium.On 7 April CERN hosted a celebration marking Carlo Rubbia’s 75th birthday and 25 years since he was awarded the Nobel Prize for Physics. "Today we will celebrate 100 years of Carlo Rubbia" joked CERN’s Director-General, Rolf Heuer in his opening speech, "75 years of his age and 25 years of the Nobel Prize." Rubbia received the Nobel Prize along with Simon van der Meer for contributions to the discovery of the W and Z bosons, carriers of the weak interaction. During the symposium, which was held in the Main Auditorium, several eminent speakers gave lectures on areas of science to which Carlo Rubbia made decisive contributions. Among those who spoke were Michel Spiro, Director of the French National Insti...
Off-diagonal expansion quantum Monte Carlo.
Albash, Tameem; Wagenbreth, Gene; Hen, Itay
2017-12-01
We propose a Monte Carlo algorithm designed to simulate quantum as well as classical systems at equilibrium, bridging the algorithmic gap between quantum and classical thermal simulation algorithms. The method is based on a decomposition of the quantum partition function that can be viewed as a series expansion about its classical part. We argue that the algorithm not only provides a theoretical advancement in the field of quantum Monte Carlo simulations, but is optimally suited to tackle quantum many-body systems that exhibit a range of behaviors from "fully quantum" to "fully classical," in contrast to many existing methods. We demonstrate the advantages, sometimes by orders of magnitude, of the technique by comparing it against existing state-of-the-art schemes such as path integral quantum Monte Carlo and stochastic series expansion. We also illustrate how our method allows for the unification of quantum and classical thermal parallel tempering techniques into a single algorithm and discuss its practical significance.
SPQR: a Monte Carlo reactor kinetics code
International Nuclear Information System (INIS)
Cramer, S.N.; Dodds, H.L.
1980-02-01
The SPQR Monte Carlo code has been developed to analyze fast reactor core accident problems where conventional methods are considered inadequate. The code is based on the adiabatic approximation of the quasi-static method. This initial version contains no automatic material motion or feedback. An existing Monte Carlo code is used to calculate the shape functions and the integral quantities needed in the kinetics module. Several sample problems have been devised and analyzed. Due to the large statistical uncertainty associated with the calculation of reactivity in accident simulations, the results, especially at later times, differ greatly from deterministic methods. It was also found that in large uncoupled systems, the Monte Carlo method has difficulty in handling asymmetric perturbations
Leonardo Rossi
Carlo Caso (1940 - 2007) Our friend and colleague Carlo Caso passed away on July 7th, after several months of courageous fight against cancer. Carlo spent most of his scientific career at CERN, taking an active part in the experimental programme of the laboratory. His long and fruitful involvement in particle physics started in the sixties, in the Genoa group led by G. Tomasini. He then made several experiments using the CERN liquid hydrogen bubble chambers -first the 2000HBC and later BEBC- to study various facets of the production and decay of meson and baryon resonances. He later made his own group and joined the NA27 Collaboration to exploit the EHS Spectrometer with a rapid cycling bubble chamber as vertex detector. Amongst their many achievements, they were the first to measure, with excellent precision, the lifetime of the charmed D mesons. At the start of the LEP era, Carlo and his group moved to the DELPHI experiment, participating in the construction and running of the HPC electromagnetic c...
Variational Monte Carlo Technique
Indian Academy of Sciences (India)
ias
on the development of nuclear weapons in Los Alamos ..... cantly improved the paper. ... Carlo simulations of solids, Reviews of Modern Physics, Vol.73, pp.33– ... The computer algorithms are usually based on a random seed that starts the ...
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 3. Markov Chain Monte Carlo - Examples. Arnab Chakraborty. General Article Volume 7 Issue 3 March 2002 pp 25-34. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/007/03/0025-0034. Keywords.
Monte Carlo principles and applications
Energy Technology Data Exchange (ETDEWEB)
Raeside, D E [Oklahoma Univ., Oklahoma City (USA). Health Sciences Center
1976-03-01
The principles underlying the use of Monte Carlo methods are explained, for readers who may not be familiar with the approach. The generation of random numbers is discussed, and the connection between Monte Carlo methods and random numbers is indicated. Outlines of two well established Monte Carlo sampling techniques are given, together with examples illustrating their use. The general techniques for improving the efficiency of Monte Carlo calculations are considered. The literature relevant to the applications of Monte Carlo calculations in medical physics is reviewed.
Directory of Open Access Journals (Sweden)
Pedro Medina Avendaño
1981-01-01
Full Text Available Carlos Vega Duarte tenía la sencillez de los seres elementales y puros. Su corazón era limpio como oro de aluvión. Su trato directo y coloquial ponía de relieve a un santandereano sin contaminaciones que amaba el fulgor de las armas y se encandilaba con el destello de las frases perfectas
International Nuclear Information System (INIS)
Wollaber, Allan Benton
2016-01-01
This is a powerpoint presentation which serves as lecture material for the Parallel Computing summer school. It goes over the fundamentals of the Monte Carlo calculation method. The material is presented according to the following outline: Introduction (background, a simple example: estimating @@), Why does this even work? (The Law of Large Numbers, The Central Limit Theorem), How to sample (inverse transform sampling, rejection), and An example from particle transport.
International Nuclear Information System (INIS)
Creutz, M.
1986-01-01
The author discusses a recently developed algorithm for simulating statistical systems. The procedure interpolates between molecular dynamics methods and canonical Monte Carlo. The primary advantages are extremely fast simulations of discrete systems such as the Ising model and a relative insensitivity to random number quality. A variation of the algorithm gives rise to a deterministic dynamics for Ising spins. This model may be useful for high speed simulation of non-equilibrium phenomena
Energy Technology Data Exchange (ETDEWEB)
Wollaber, Allan Benton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-06-16
This is a powerpoint presentation which serves as lecture material for the Parallel Computing summer school. It goes over the fundamentals of the Monte Carlo calculation method. The material is presented according to the following outline: Introduction (background, a simple example: estimating π), Why does this even work? (The Law of Large Numbers, The Central Limit Theorem), How to sample (inverse transform sampling, rejection), and An example from particle transport.
2009-01-01
On 7 April CERN will be holding a symposium to mark the 75th birthday of Carlo Rubbia, who shared the 1984 Nobel Prize for Physics with Simon van der Meer for contributions to the discovery of the W and Z bosons, carriers of the weak interaction. Following a presentation by Rolf Heuer, lectures will be given by eminent speakers on areas of science to which Carlo Rubbia has made decisive contributions. Michel Spiro, Director of the French National Institute of Nuclear and Particle Physics (IN2P3) of the CNRS, Lyn Evans, sLHC Project Leader, and Alan Astbury of the TRIUMF Laboratory will talk about the physics of the weak interaction and the discovery of the W and Z bosons. Former CERN Director-General Herwig Schopper will lecture on CERN’s accelerators from LEP to the LHC. Giovanni Bignami, former President of the Italian Space Agency and Professor at the IUSS School for Advanced Studies in Pavia will speak about his work with Carlo Rubbia. Finally, Hans Joachim Sch...
2009-01-01
On 7 April CERN will be holding a symposium to mark the 75th birthday of Carlo Rubbia, who shared the 1984 Nobel Prize for Physics with Simon van der Meer for contributions to the discovery of the W and Z bosons, carriers of the weak interaction. Following a presentation by Rolf Heuer, lectures will be given by eminent speakers on areas of science to which Carlo Rubbia has made decisive contributions. Michel Spiro, Director of the French National Institute of Nuclear and Particle Physics (IN2P3) of the CNRS, Lyn Evans, sLHC Project Leader, and Alan Astbury of the TRIUMF Laboratory will talk about the physics of the weak interaction and the discovery of the W and Z bosons. Former CERN Director-General Herwig Schopper will lecture on CERN’s accelerators from LEP to the LHC. Giovanni Bignami, former President of the Italian Space Agency, will speak about his work with Carlo Rubbia. Finally, Hans Joachim Schellnhuber of the Potsdam Institute for Climate Research and Sven Kul...
Directory of Open Access Journals (Sweden)
Charlie Samuya Veric
2001-12-01
Full Text Available The importance of Carlos Bulosan in Filipino and Filipino-American radical history and literature is indisputable. His eminence spans the pacific, and he is known, diversely, as a radical poet, fictionist, novelist, and labor organizer. Author of the canonical America Iis the Hearts, Bulosan is celebrated for chronicling the conditions in America in his time, such as racism and unemployment. In the history of criticism on Bulosan's life and work, however, there is an undeclared general consensus that views Bulosan and his work as coherent permanent texts of radicalism and anti-imperialism. Central to the existence of such a tradition of critical reception are the generations of critics who, in more ways than one, control the discourse on and of Carlos Bulosan. This essay inquires into the sphere of the critical reception that orders, for our time and for the time ahead, the reading and interpretation of Bulosan. What eye and seeing, the essay asks, determine the perception of Bulosan as the angel of radicalism? What is obscured in constructing Bulosan as an immutable figure of the political? What light does the reader conceive when the personal is brought into the open and situated against the political? the essay explores the answers to these questions in Bulosan's loving letters to various friends, strangers, and white American women. The presence of these interrogations, the essay believes, will secure ultimately the continuing importance of Carlos Bulosan to radical literature and history.
Energy Technology Data Exchange (ETDEWEB)
Brockway, D.; Soran, P.; Whalen, P.
1985-01-01
A Monte Carlo algorithm to efficiently calculate static alpha eigenvalues, N = ne/sup ..cap alpha..t/, for supercritical systems has been developed and tested. A direct Monte Carlo approach to calculating a static alpha is to simply follow the buildup in time of neutrons in a supercritical system and evaluate the logarithmic derivative of the neutron population with respect to time. This procedure is expensive, and the solution is very noisy and almost useless for a system near critical. The modified approach is to convert the time-dependent problem to a static ..cap alpha../sup -/eigenvalue problem and regress ..cap alpha.. on solutions of a/sup -/ k/sup -/eigenvalue problem. In practice, this procedure is much more efficient than the direct calculation, and produces much more accurate results. Because the Monte Carlo codes are intrinsically three-dimensional and use elaborate continuous-energy cross sections, this technique is now used as a standard for evaluating other calculational techniques in odd geometries or with group cross sections.
Bayesian Optimal Experimental Design Using Multilevel Monte Carlo
Ben Issaid, Chaouki; Long, Quan; Scavino, Marco; Tempone, Raul
2015-01-01
Experimental design is very important since experiments are often resource-exhaustive and time-consuming. We carry out experimental design in the Bayesian framework. To measure the amount of information, which can be extracted from the data in an experiment, we use the expected information gain as the utility function, which specifically is the expected logarithmic ratio between the posterior and prior distributions. Optimizing this utility function enables us to design experiments that yield the most informative data for our purpose. One of the major difficulties in evaluating the expected information gain is that the integral is nested and can be high dimensional. We propose using Multilevel Monte Carlo techniques to accelerate the computation of the nested high dimensional integral. The advantages are twofold. First, the Multilevel Monte Carlo can significantly reduce the cost of the nested integral for a given tolerance, by using an optimal sample distribution among different sample averages of the inner integrals. Second, the Multilevel Monte Carlo method imposes less assumptions, such as the concentration of measures, required by Laplace method. We test our Multilevel Monte Carlo technique using a numerical example on the design of sensor deployment for a Darcy flow problem governed by one dimensional Laplace equation. We also compare the performance of the Multilevel Monte Carlo, Laplace approximation and direct double loop Monte Carlo.
Bayesian Optimal Experimental Design Using Multilevel Monte Carlo
Ben Issaid, Chaouki
2015-01-07
Experimental design is very important since experiments are often resource-exhaustive and time-consuming. We carry out experimental design in the Bayesian framework. To measure the amount of information, which can be extracted from the data in an experiment, we use the expected information gain as the utility function, which specifically is the expected logarithmic ratio between the posterior and prior distributions. Optimizing this utility function enables us to design experiments that yield the most informative data for our purpose. One of the major difficulties in evaluating the expected information gain is that the integral is nested and can be high dimensional. We propose using Multilevel Monte Carlo techniques to accelerate the computation of the nested high dimensional integral. The advantages are twofold. First, the Multilevel Monte Carlo can significantly reduce the cost of the nested integral for a given tolerance, by using an optimal sample distribution among different sample averages of the inner integrals. Second, the Multilevel Monte Carlo method imposes less assumptions, such as the concentration of measures, required by Laplace method. We test our Multilevel Monte Carlo technique using a numerical example on the design of sensor deployment for a Darcy flow problem governed by one dimensional Laplace equation. We also compare the performance of the Multilevel Monte Carlo, Laplace approximation and direct double loop Monte Carlo.
DEFF Research Database (Denmark)
Emerek, Ruth
2004-01-01
Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration......Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration...
The Monte Carlo method the method of statistical trials
Shreider, YuA
1966-01-01
The Monte Carlo Method: The Method of Statistical Trials is a systematic account of the fundamental concepts and techniques of the Monte Carlo method, together with its range of applications. Some of these applications include the computation of definite integrals, neutron physics, and in the investigation of servicing processes. This volume is comprised of seven chapters and begins with an overview of the basic features of the Monte Carlo method and typical examples of its application to simple problems in computational mathematics. The next chapter examines the computation of multi-dimensio
Gómez Rodríguez, Rafael Ángel
2014-01-01
To say that someone possesses integrity is to claim that that person is almost predictable about responses to specific situations, that he or she can prudentially judge and to act correctly. There is a closed interrelationship between integrity and autonomy, and the autonomy rests on the deeper moral claim of all humans to integrity of the person. Integrity has two senses of significance for medical ethic: one sense refers to the integrity of the person in the bodily, psychosocial and intellectual elements; and in the second sense, the integrity is the virtue. Another facet of integrity of the person is la integrity of values we cherish and espouse. The physician must be a person of integrity if the integrity of the patient is to be safeguarded. The autonomy has reduced the violations in the past, but the character and virtues of the physician are the ultimate safeguard of autonomy of patient. A field very important in medicine is the scientific research. It is the character of the investigator that determines the moral quality of research. The problem arises when legitimate self-interests are replaced by selfish, particularly when human subjects are involved. The final safeguard of moral quality of research is the character and conscience of the investigator. Teaching must be relevant in the scientific field, but the most effective way to teach virtue ethics is through the example of the a respected scientist.
Proceedings of the conference on frontiers of Quantum Monte Carlo
International Nuclear Information System (INIS)
Gubernatis, J.E.
1986-01-01
This journal of conference proceedings includes papers on topics such as: computers and science; Quantum Monte Carlo; condensed matter physics (with papers including the statistical error of Green's Function Monte Carlo, a study of Trotter-like approximations, simulations of the Hubbard model, and stochastic simulation of fermions); chemistry (including papers on quantum simulations of aqueous systems, fourier path integral methods, and a study of electron solvation in polar solvents using path integral calculations); atomic molecular and nuclear physics; high-energy physics, and advanced computer designs
On the efficient numerical solution of lattice systems with low-order couplings
International Nuclear Information System (INIS)
Ammon, A.; Genz, A.; Hartung, T.; Jansen, K.; Volmer, J.; Leoevey, H.
2015-10-01
We apply the Quasi Monte Carlo (QMC) and recursive numerical integration methods to evaluate the Euclidean, discretized time path-integral for the quantum mechanical anharmonic oscillator and a topological quantum mechanical rotor model. For the anharmonic oscillator both methods outperform standard Markov Chain Monte Carlo methods and show a significantly improved error scaling. For the quantum mechanical rotor we could, however, not find a successful way employing QMC. On the other hand, the recursive numerical integration method works extremely well for this model and shows an at least exponentially fast error scaling.
Mosaic crystal algorithm for Monte Carlo simulations
Seeger, P A
2002-01-01
An algorithm is presented for calculating reflectivity, absorption, and scattering of mosaic crystals in Monte Carlo simulations of neutron instruments. The algorithm uses multi-step transport through the crystal with an exact solution of the Darwin equations at each step. It relies on the kinematical model for Bragg reflection (with parameters adjusted to reproduce experimental data). For computation of thermal effects (the Debye-Waller factor and coherent inelastic scattering), an expansion of the Debye integral as a rapidly converging series of exponential terms is also presented. Any crystal geometry and plane orientation may be treated. The algorithm has been incorporated into the neutron instrument simulation package NISP. (orig.)
Lectures on Monte Carlo methods
Madras, Neal
2001-01-01
Monte Carlo methods form an experimental branch of mathematics that employs simulations driven by random number generators. These methods are often used when others fail, since they are much less sensitive to the "curse of dimensionality", which plagues deterministic methods in problems with a large number of variables. Monte Carlo methods are used in many fields: mathematics, statistics, physics, chemistry, finance, computer science, and biology, for instance. This book is an introduction to Monte Carlo methods for anyone who would like to use these methods to study various kinds of mathemati
Advanced Multilevel Monte Carlo Methods
Jasra, Ajay; Law, Kody; Suciu, Carina
2017-01-01
This article reviews the application of advanced Monte Carlo techniques in the context of Multilevel Monte Carlo (MLMC). MLMC is a strategy employed to compute expectations which can be biased in some sense, for instance, by using the discretization of a associated probability law. The MLMC approach works with a hierarchy of biased approximations which become progressively more accurate and more expensive. Using a telescoping representation of the most accurate approximation, the method is able to reduce the computational cost for a given level of error versus i.i.d. sampling from this latter approximation. All of these ideas originated for cases where exact sampling from couples in the hierarchy is possible. This article considers the case where such exact sampling is not currently possible. We consider Markov chain Monte Carlo and sequential Monte Carlo methods which have been introduced in the literature and we describe different strategies which facilitate the application of MLMC within these methods.
Advanced Multilevel Monte Carlo Methods
Jasra, Ajay
2017-04-24
This article reviews the application of advanced Monte Carlo techniques in the context of Multilevel Monte Carlo (MLMC). MLMC is a strategy employed to compute expectations which can be biased in some sense, for instance, by using the discretization of a associated probability law. The MLMC approach works with a hierarchy of biased approximations which become progressively more accurate and more expensive. Using a telescoping representation of the most accurate approximation, the method is able to reduce the computational cost for a given level of error versus i.i.d. sampling from this latter approximation. All of these ideas originated for cases where exact sampling from couples in the hierarchy is possible. This article considers the case where such exact sampling is not currently possible. We consider Markov chain Monte Carlo and sequential Monte Carlo methods which have been introduced in the literature and we describe different strategies which facilitate the application of MLMC within these methods.
TARC: Carlo Rubbia's Energy Amplifier
Laurent Guiraud
1997-01-01
Transmutation by Adiabatic Resonance Crossing (TARC) is Carlo Rubbia's energy amplifier. This CERN experiment demonstrated that long-lived fission fragments, such as 99-TC, can be efficiently destroyed.
Monte Carlo simulation for IRRMA
International Nuclear Information System (INIS)
Gardner, R.P.; Liu Lianyan
2000-01-01
Monte Carlo simulation is fast becoming a standard approach for many radiation applications that were previously treated almost entirely by experimental techniques. This is certainly true for Industrial Radiation and Radioisotope Measurement Applications - IRRMA. The reasons for this include: (1) the increased cost and inadequacy of experimentation for design and interpretation purposes; (2) the availability of low cost, large memory, and fast personal computers; and (3) the general availability of general purpose Monte Carlo codes that are increasingly user-friendly, efficient, and accurate. This paper discusses the history and present status of Monte Carlo simulation for IRRMA including the general purpose (GP) and specific purpose (SP) Monte Carlo codes and future needs - primarily from the experience of the authors
Adjoint electron Monte Carlo calculations
International Nuclear Information System (INIS)
Jordan, T.M.
1986-01-01
Adjoint Monte Carlo is the most efficient method for accurate analysis of space systems exposed to natural and artificially enhanced electron environments. Recent adjoint calculations for isotropic electron environments include: comparative data for experimental measurements on electronics boxes; benchmark problem solutions for comparing total dose prediction methodologies; preliminary assessment of sectoring methods used during space system design; and total dose predictions on an electronics package. Adjoint Monte Carlo, forward Monte Carlo, and experiment are in excellent agreement for electron sources that simulate space environments. For electron space environments, adjoint Monte Carlo is clearly superior to forward Monte Carlo, requiring one to two orders of magnitude less computer time for relatively simple geometries. The solid-angle sectoring approximations used for routine design calculations can err by more than a factor of 2 on dose in simple shield geometries. For critical space systems exposed to severe electron environments, these potential sectoring errors demand the establishment of large design margins and/or verification of shield design by adjoint Monte Carlo/experiment
Monte Carlo theory and practice
International Nuclear Information System (INIS)
James, F.
1987-01-01
Historically, the first large-scale calculations to make use of the Monte Carlo method were studies of neutron scattering and absorption, random processes for which it is quite natural to employ random numbers. Such calculations, a subset of Monte Carlo calculations, are known as direct simulation, since the 'hypothetical population' of the narrower definition above corresponds directly to the real population being studied. The Monte Carlo method may be applied wherever it is possible to establish equivalence between the desired result and the expected behaviour of a stochastic system. The problem to be solved may already be of a probabilistic or statistical nature, in which case its Monte Carlo formulation will usually be a straightforward simulation, or it may be of a deterministic or analytic nature, in which case an appropriate Monte Carlo formulation may require some imagination and may appear contrived or artificial. In any case, the suitability of the method chosen will depend on its mathematical properties and not on its superficial resemblance to the problem to be solved. The authors show how Monte Carlo techniques may be compared with other methods of solution of the same physical problem
DEFF Research Database (Denmark)
Olwig, Karen Fog
2011-01-01
, while the countries have adopted disparate policies and ideologies, differences in the actual treatment and attitudes towards immigrants and refugees in everyday life are less clear, due to parallel integration programmes based on strong similarities in the welfare systems and in cultural notions...... of equality in the three societies. Finally, it shows that family relations play a central role in immigrants’ and refugees’ establishment of a new life in the receiving societies, even though the welfare society takes on many of the social and economic functions of the family....
Angular biasing in implicit Monte-Carlo
International Nuclear Information System (INIS)
Zimmerman, G.B.
1994-01-01
Calculations of indirect drive Inertial Confinement Fusion target experiments require an integrated approach in which laser irradiation and radiation transport in the hohlraum are solved simultaneously with the symmetry, implosion and burn of the fuel capsule. The Implicit Monte Carlo method has proved to be a valuable tool for the two dimensional radiation transport within the hohlraum, but the impact of statistical noise on the symmetric implosion of the small fuel capsule is difficult to overcome. We present an angular biasing technique in which an increased number of low weight photons are directed at the imploding capsule. For typical parameters this reduces the required computer time for an integrated calculation by a factor of 10. An additional factor of 5 can also be achieved by directing even smaller weight photons at the polar regions of the capsule where small mass zones are most sensitive to statistical noise
Markov Chain Monte Carlo from Lagrangian Dynamics.
Lan, Shiwei; Stathopoulos, Vasileios; Shahbaba, Babak; Girolami, Mark
2015-04-01
Hamiltonian Monte Carlo (HMC) improves the computational e ciency of the Metropolis-Hastings algorithm by reducing its random walk behavior. Riemannian HMC (RHMC) further improves the performance of HMC by exploiting the geometric properties of the parameter space. However, the geometric integrator used for RHMC involves implicit equations that require fixed-point iterations. In some cases, the computational overhead for solving implicit equations undermines RHMC's benefits. In an attempt to circumvent this problem, we propose an explicit integrator that replaces the momentum variable in RHMC by velocity. We show that the resulting transformation is equivalent to transforming Riemannian Hamiltonian dynamics to Lagrangian dynamics. Experimental results suggests that our method improves RHMC's overall computational e ciency in the cases considered. All computer programs and data sets are available online (http://www.ics.uci.edu/~babaks/Site/Codes.html) in order to allow replication of the results reported in this paper.
Multilevel sequential Monte Carlo samplers
Beskos, Alexandros; Jasra, Ajay; Law, Kody; Tempone, Raul; Zhou, Yan
2016-01-01
In this article we consider the approximation of expectations w.r.t. probability distributions associated to the solution of partial differential equations (PDEs); this scenario appears routinely in Bayesian inverse problems. In practice, one often has to solve the associated PDE numerically, using, for instance finite element methods which depend on the step-size level . hL. In addition, the expectation cannot be computed analytically and one often resorts to Monte Carlo methods. In the context of this problem, it is known that the introduction of the multilevel Monte Carlo (MLMC) method can reduce the amount of computational effort to estimate expectations, for a given level of error. This is achieved via a telescoping identity associated to a Monte Carlo approximation of a sequence of probability distributions with discretization levels . âˆž>h0>h1â‹¯>hL. In many practical problems of interest, one cannot achieve an i.i.d. sampling of the associated sequence and a sequential Monte Carlo (SMC) version of the MLMC method is introduced to deal with this problem. It is shown that under appropriate assumptions, the attractive property of a reduction of the amount of computational effort to estimate expectations, for a given level of error, can be maintained within the SMC context. That is, relative to exact sampling and Monte Carlo for the distribution at the finest level . hL. The approach is numerically illustrated on a Bayesian inverse problem. Â© 2016 Elsevier B.V.
Multilevel sequential Monte Carlo samplers
Beskos, Alexandros
2016-08-29
In this article we consider the approximation of expectations w.r.t. probability distributions associated to the solution of partial differential equations (PDEs); this scenario appears routinely in Bayesian inverse problems. In practice, one often has to solve the associated PDE numerically, using, for instance finite element methods which depend on the step-size level . hL. In addition, the expectation cannot be computed analytically and one often resorts to Monte Carlo methods. In the context of this problem, it is known that the introduction of the multilevel Monte Carlo (MLMC) method can reduce the amount of computational effort to estimate expectations, for a given level of error. This is achieved via a telescoping identity associated to a Monte Carlo approximation of a sequence of probability distributions with discretization levels . âˆž>h0>h1â‹¯>hL. In many practical problems of interest, one cannot achieve an i.i.d. sampling of the associated sequence and a sequential Monte Carlo (SMC) version of the MLMC method is introduced to deal with this problem. It is shown that under appropriate assumptions, the attractive property of a reduction of the amount of computational effort to estimate expectations, for a given level of error, can be maintained within the SMC context. That is, relative to exact sampling and Monte Carlo for the distribution at the finest level . hL. The approach is numerically illustrated on a Bayesian inverse problem. Â© 2016 Elsevier B.V.
Monte Carlo numerical study of lattice field theories
International Nuclear Information System (INIS)
Gan Cheekwan; Kim Seyong; Ohta, Shigemi
1997-01-01
The authors are interested in the exact first-principle calculations of quantum field theories which are indeed exact ones. For quantum chromodynamics (QCD) at low energy scale, a nonperturbation method is needed, and the only known such method is the lattice method. The path integral can be evaluated by putting a system on a finite 4-dimensional volume and discretizing space time continuum into finite points, lattice. The continuum limit is taken by making the lattice infinitely fine. For evaluating such a finite-dimensional integral, the Monte Carlo numerical estimation of the path integral can be obtained. The calculation of light hadron mass in quenched lattice QCD with staggered quarks, 3-dimensional Thirring model calculation and the development of self-test Monte Carlo method have been carried out by using the RIKEN supercomputer. The motivation of this study, lattice QCD formulation, continuum limit, Monte Carlo update, hadron propagator, light hadron mass, auto-correlation and source size dependence are described on lattice QCD. The phase structure of the 3-dimensional Thirring model for a small 8 3 lattice has been mapped. The discussion on self-test Monte Carlo method is described again. (K.I.)
Vectorizing and macrotasking Monte Carlo neutral particle algorithms
International Nuclear Information System (INIS)
Heifetz, D.B.
1987-04-01
Monte Carlo algorithms for computing neutral particle transport in plasmas have been vectorized and macrotasked. The techniques used are directly applicable to Monte Carlo calculations of neutron and photon transport, and Monte Carlo integration schemes in general. A highly vectorized code was achieved by calculating test flight trajectories in loops over arrays of flight data, isolating the conditional branches to as few a number of loops as possible. A number of solutions are discussed to the problem of gaps appearing in the arrays due to completed flights, which impede vectorization. A simple and effective implementation of macrotasking is achieved by dividing the calculation of the test flight profile among several processors. A tree of random numbers is used to ensure reproducible results. The additional memory required for each task may preclude using a larger number of tasks. In future machines, the limit of macrotasking may be possible, with each test flight, and split test flight, being a separate task
Analysis of error in Monte Carlo transport calculations
International Nuclear Information System (INIS)
Booth, T.E.
1979-01-01
The Monte Carlo method for neutron transport calculations suffers, in part, because of the inherent statistical errors associated with the method. Without an estimate of these errors in advance of the calculation, it is difficult to decide what estimator and biasing scheme to use. Recently, integral equations have been derived that, when solved, predicted errors in Monte Carlo calculations in nonmultiplying media. The present work allows error prediction in nonanalog Monte Carlo calculations of multiplying systems, even when supercritical. Nonanalog techniques such as biased kernels, particle splitting, and Russian Roulette are incorporated. Equations derived here allow prediction of how much a specific variance reduction technique reduces the number of histories required, to be weighed against the change in time required for calculation of each history. 1 figure, 1 table
Monte Carlo calculations of thermodynamic properties of deuterium under high pressures
International Nuclear Information System (INIS)
Levashov, P R; Filinov, V S; BoTan, A; Fortov, V E; Bonitz, M
2008-01-01
Two different numerical approaches have been applied for calculations of shock Hugoniots and compression isentrope of deuterium: direct path integral Monte Carlo and reactive Monte Carlo. The results show good agreement between two methods at intermediate pressure which is an indication of correct accounting of dissociation effects in the direct path integral Monte Carlo method. Experimental data on both shock and quasi-isentropic compression of deuterium are well described by calculations. Thus dissociation of deuterium molecules in these experiments together with interparticle interaction play significant role
Strategije drevesnega preiskovanja Monte Carlo
VODOPIVEC, TOM
2018-01-01
Po preboju pri igri go so metode drevesnega preiskovanja Monte Carlo (ang. Monte Carlo tree search – MCTS) sprožile bliskovit napredek agentov za igranje iger: raziskovalna skupnost je od takrat razvila veliko variant in izboljšav algoritma MCTS ter s tem zagotovila napredek umetne inteligence ne samo pri igrah, ampak tudi v številnih drugih domenah. Čeprav metode MCTS združujejo splošnost naključnega vzorčenja z natančnostjo drevesnega preiskovanja, imajo lahko v praksi težave s počasno konv...
Is Monte Carlo embarrassingly parallel?
Energy Technology Data Exchange (ETDEWEB)
Hoogenboom, J. E. [Delft Univ. of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Delft Nuclear Consultancy, IJsselzoom 2, 2902 LB Capelle aan den IJssel (Netherlands)
2012-07-01
Monte Carlo is often stated as being embarrassingly parallel. However, running a Monte Carlo calculation, especially a reactor criticality calculation, in parallel using tens of processors shows a serious limitation in speedup and the execution time may even increase beyond a certain number of processors. In this paper the main causes of the loss of efficiency when using many processors are analyzed using a simple Monte Carlo program for criticality. The basic mechanism for parallel execution is MPI. One of the bottlenecks turn out to be the rendez-vous points in the parallel calculation used for synchronization and exchange of data between processors. This happens at least at the end of each cycle for fission source generation in order to collect the full fission source distribution for the next cycle and to estimate the effective multiplication factor, which is not only part of the requested results, but also input to the next cycle for population control. Basic improvements to overcome this limitation are suggested and tested. Also other time losses in the parallel calculation are identified. Moreover, the threading mechanism, which allows the parallel execution of tasks based on shared memory using OpenMP, is analyzed in detail. Recommendations are given to get the maximum efficiency out of a parallel Monte Carlo calculation. (authors)
Is Monte Carlo embarrassingly parallel?
International Nuclear Information System (INIS)
Hoogenboom, J. E.
2012-01-01
Monte Carlo is often stated as being embarrassingly parallel. However, running a Monte Carlo calculation, especially a reactor criticality calculation, in parallel using tens of processors shows a serious limitation in speedup and the execution time may even increase beyond a certain number of processors. In this paper the main causes of the loss of efficiency when using many processors are analyzed using a simple Monte Carlo program for criticality. The basic mechanism for parallel execution is MPI. One of the bottlenecks turn out to be the rendez-vous points in the parallel calculation used for synchronization and exchange of data between processors. This happens at least at the end of each cycle for fission source generation in order to collect the full fission source distribution for the next cycle and to estimate the effective multiplication factor, which is not only part of the requested results, but also input to the next cycle for population control. Basic improvements to overcome this limitation are suggested and tested. Also other time losses in the parallel calculation are identified. Moreover, the threading mechanism, which allows the parallel execution of tasks based on shared memory using OpenMP, is analyzed in detail. Recommendations are given to get the maximum efficiency out of a parallel Monte Carlo calculation. (authors)
Exact Monte Carlo for molecules
International Nuclear Information System (INIS)
Lester, W.A. Jr.; Reynolds, P.J.
1985-03-01
A brief summary of the fixed-node quantum Monte Carlo method is presented. Results obtained for binding energies, the classical barrier height for H + H 2 , and the singlet-triplet splitting in methylene are presented and discussed. 17 refs
Monte Carlo - Advances and Challenges
International Nuclear Information System (INIS)
Brown, Forrest B.; Mosteller, Russell D.; Martin, William R.
2008-01-01
Abstract only, full text follows: With ever-faster computers and mature Monte Carlo production codes, there has been tremendous growth in the application of Monte Carlo methods to the analysis of reactor physics and reactor systems. In the past, Monte Carlo methods were used primarily for calculating k eff of a critical system. More recently, Monte Carlo methods have been increasingly used for determining reactor power distributions and many design parameters, such as β eff , l eff , τ, reactivity coefficients, Doppler defect, dominance ratio, etc. These advanced applications of Monte Carlo methods are now becoming common, not just feasible, but bring new challenges to both developers and users: Convergence of 3D power distributions must be assured; confidence interval bias must be eliminated; iterated fission probabilities are required, rather than single-generation probabilities; temperature effects including Doppler and feedback must be represented; isotopic depletion and fission product buildup must be modeled. This workshop focuses on recent advances in Monte Carlo methods and their application to reactor physics problems, and on the resulting challenges faced by code developers and users. The workshop is partly tutorial, partly a review of the current state-of-the-art, and partly a discussion of future work that is needed. It should benefit both novice and expert Monte Carlo developers and users. In each of the topic areas, we provide an overview of needs, perspective on past and current methods, a review of recent work, and discussion of further research and capabilities that are required. Electronic copies of all workshop presentations and material will be available. The workshop is structured as 2 morning and 2 afternoon segments: - Criticality Calculations I - convergence diagnostics, acceleration methods, confidence intervals, and the iterated fission probability, - Criticality Calculations II - reactor kinetics parameters, dominance ratio, temperature
Response decomposition with Monte Carlo correlated coupling
International Nuclear Information System (INIS)
Ueki, T.; Hoogenboom, J.E.; Kloosterman, J.L.
2001-01-01
Particle histories that contribute to a detector response are categorized according to whether they are fully confined inside a source-detector enclosure or cross and recross the same enclosure. The contribution from the confined histories is expressed using a forward problem with the external boundary condition on the source-detector enclosure. The contribution from the crossing and recrossing histories is expressed as the surface integral at the same enclosure of the product of the directional cosine and the fluxes in the foregoing forward problem and the adjoint problem for the whole spatial domain. The former contribution can be calculated by a standard forward Monte Carlo. The latter contribution can be calculated by correlated coupling of forward and adjoint histories independently of the former contribution. We briefly describe the computational method and discuss its application to perturbation analysis for localized material changes. (orig.)
Response decomposition with Monte Carlo correlated coupling
Energy Technology Data Exchange (ETDEWEB)
Ueki, T.; Hoogenboom, J.E.; Kloosterman, J.L. [Delft Univ. of Technology (Netherlands). Interfaculty Reactor Inst.
2001-07-01
Particle histories that contribute to a detector response are categorized according to whether they are fully confined inside a source-detector enclosure or cross and recross the same enclosure. The contribution from the confined histories is expressed using a forward problem with the external boundary condition on the source-detector enclosure. The contribution from the crossing and recrossing histories is expressed as the surface integral at the same enclosure of the product of the directional cosine and the fluxes in the foregoing forward problem and the adjoint problem for the whole spatial domain. The former contribution can be calculated by a standard forward Monte Carlo. The latter contribution can be calculated by correlated coupling of forward and adjoint histories independently of the former contribution. We briefly describe the computational method and discuss its application to perturbation analysis for localized material changes. (orig.)
(U) Introduction to Monte Carlo Methods
Energy Technology Data Exchange (ETDEWEB)
Hungerford, Aimee L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-03-20
Monte Carlo methods are very valuable for representing solutions to particle transport problems. Here we describe a “cook book” approach to handling the terms in a transport equation using Monte Carlo methods. Focus is on the mechanics of a numerical Monte Carlo code, rather than the mathematical foundations of the method.
Zimmerman, George B.
Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ions and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved 50X in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burn and burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials.
International Nuclear Information System (INIS)
Zimmerman, G.B.
1997-01-01
Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ions and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved 50X in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burn and burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials. copyright 1997 American Institute of Physics
International Nuclear Information System (INIS)
Zimmerman, George B.
1997-01-01
Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ions and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved 50X in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burn and burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials
A contribution Monte Carlo method
International Nuclear Information System (INIS)
Aboughantous, C.H.
1994-01-01
A Contribution Monte Carlo method is developed and successfully applied to a sample deep-penetration shielding problem. The random walk is simulated in most of its parts as in conventional Monte Carlo methods. The probability density functions (pdf's) are expressed in terms of spherical harmonics and are continuous functions in direction cosine and azimuthal angle variables as well as in position coordinates; the energy is discretized in the multigroup approximation. The transport pdf is an unusual exponential kernel strongly dependent on the incident and emergent directions and energies and on the position of the collision site. The method produces the same results obtained with the deterministic method with a very small standard deviation, with as little as 1,000 Contribution particles in both analog and nonabsorption biasing modes and with only a few minutes CPU time
Parallel Monte Carlo reactor neutronics
International Nuclear Information System (INIS)
Blomquist, R.N.; Brown, F.B.
1994-01-01
The issues affecting implementation of parallel algorithms for large-scale engineering Monte Carlo neutron transport simulations are discussed. For nuclear reactor calculations, these include load balancing, recoding effort, reproducibility, domain decomposition techniques, I/O minimization, and strategies for different parallel architectures. Two codes were parallelized and tested for performance. The architectures employed include SIMD, MIMD-distributed memory, and workstation network with uneven interactive load. Speedups linear with the number of nodes were achieved
Adaptive Multilevel Monte Carlo Simulation
Hoel, H
2011-08-23
This work generalizes a multilevel forward Euler Monte Carlo method introduced in Michael B. Giles. (Michael Giles. Oper. Res. 56(3):607–617, 2008.) for the approximation of expected values depending on the solution to an Itô stochastic differential equation. The work (Michael Giles. Oper. Res. 56(3):607– 617, 2008.) proposed and analyzed a forward Euler multilevelMonte Carlo method based on a hierarchy of uniform time discretizations and control variates to reduce the computational effort required by a standard, single level, Forward Euler Monte Carlo method. This work introduces an adaptive hierarchy of non uniform time discretizations, generated by an adaptive algorithmintroduced in (AnnaDzougoutov et al. Raùl Tempone. Adaptive Monte Carlo algorithms for stopped diffusion. In Multiscale methods in science and engineering, volume 44 of Lect. Notes Comput. Sci. Eng., pages 59–88. Springer, Berlin, 2005; Kyoung-Sook Moon et al. Stoch. Anal. Appl. 23(3):511–558, 2005; Kyoung-Sook Moon et al. An adaptive algorithm for ordinary, stochastic and partial differential equations. In Recent advances in adaptive computation, volume 383 of Contemp. Math., pages 325–343. Amer. Math. Soc., Providence, RI, 2005.). This form of the adaptive algorithm generates stochastic, path dependent, time steps and is based on a posteriori error expansions first developed in (Anders Szepessy et al. Comm. Pure Appl. Math. 54(10):1169– 1214, 2001). Our numerical results for a stopped diffusion problem, exhibit savings in the computational cost to achieve an accuracy of ϑ(TOL),from(TOL−3), from using a single level version of the adaptive algorithm to ϑ(((TOL−1)log(TOL))2).
Geometrical splitting in Monte Carlo
International Nuclear Information System (INIS)
Dubi, A.; Elperin, T.; Dudziak, D.J.
1982-01-01
A statistical model is presented by which a direct statistical approach yielded an analytic expression for the second moment, the variance ratio, and the benefit function in a model of an n surface-splitting Monte Carlo game. In addition to the insight into the dependence of the second moment on the splitting parameters the main importance of the expressions developed lies in their potential to become a basis for in-code optimization of splitting through a general algorithm. Refs
Extending canonical Monte Carlo methods
International Nuclear Information System (INIS)
Velazquez, L; Curilef, S
2010-01-01
In this paper, we discuss the implications of a recently obtained equilibrium fluctuation-dissipation relation for the extension of the available Monte Carlo methods on the basis of the consideration of the Gibbs canonical ensemble to account for the existence of an anomalous regime with negative heat capacities C α with α≈0.2 for the particular case of the 2D ten-state Potts model
International Nuclear Information System (INIS)
Mercier, B.
1985-04-01
We have shown that the transport equation can be solved with particles, like the Monte-Carlo method, but without random numbers. In the Monte-Carlo method, particles are created from the source, and are followed from collision to collision until either they are absorbed or they leave the spatial domain. In our method, particles are created from the original source, with a variable weight taking into account both collision and absorption. These particles are followed until they leave the spatial domain, and we use them to determine a first collision source. Another set of particles is then created from this first collision source, and tracked to determine a second collision source, and so on. This process introduces an approximation which does not exist in the Monte-Carlo method. However, we have analyzed the effect of this approximation, and shown that it can be limited. Our method is deterministic, gives reproducible results. Furthermore, when extra accuracy is needed in some region, it is easier to get more particles to go there. It has the same kind of applications: rather problems where streaming is dominant than collision dominated problems
International Nuclear Information System (INIS)
Kennedy, D.C. II.
1987-01-01
This is an update on the progress of the BREMMUS Monte Carlo simulator, particularly in its current incarnation, BREM5. The present report is intended only as a follow-up to the Mark II/Granlibakken proceedings, and those proceedings should be consulted for a complete description of the capabilities and goals of the BREMMUS program. The new BREM5 program improves on the previous version of BREMMUS, BREM2, in a number of important ways. In BREM2, the internal loop (oblique) corrections were not treated in consistent fashion, a deficiency that led to renormalization scheme-dependence; i.e., physical results, such as cross sections, were dependent on the method used to eliminate infinities from the theory. Of course, this problem cannot be tolerated in a Monte Carlo designed for experimental use. BREM5 incorporates a new way of treating the oblique corrections, as explained in the Granlibakken proceedings, that guarantees renormalization scheme-independence and dramatically simplifies the organization and calculation of radiative corrections. This technique is to be presented in full detail in a forthcoming paper. BREM5 is, at this point, the only Monte Carlo to contain the entire set of one-loop corrections to electroweak four-fermion processes and renormalization scheme-independence. 3 figures
Calculations of pair production by Monte Carlo methods
International Nuclear Information System (INIS)
Bottcher, C.; Strayer, M.R.
1991-01-01
We describe some of the technical design issues associated with the production of particle-antiparticle pairs in very large accelerators. To answer these questions requires extensive calculation of Feynman diagrams, in effect multi-dimensional integrals, which we evaluate by Monte Carlo methods on a variety of supercomputers. We present some portable algorithms for generating random numbers on vector and parallel architecture machines. 12 refs., 14 figs
Statistical implications in Monte Carlo depletions - 051
International Nuclear Information System (INIS)
Zhiwen, Xu; Rhodes, J.; Smith, K.
2010-01-01
As a result of steady advances of computer power, continuous-energy Monte Carlo depletion analysis is attracting considerable attention for reactor burnup calculations. The typical Monte Carlo analysis is set up as a combination of a Monte Carlo neutron transport solver and a fuel burnup solver. Note that the burnup solver is a deterministic module. The statistical errors in Monte Carlo solutions are introduced into nuclide number densities and propagated along fuel burnup. This paper is towards the understanding of the statistical implications in Monte Carlo depletions, including both statistical bias and statistical variations in depleted fuel number densities. The deterministic Studsvik lattice physics code, CASMO-5, is modified to model the Monte Carlo depletion. The statistical bias in depleted number densities is found to be negligible compared to its statistical variations, which, in turn, demonstrates the correctness of the Monte Carlo depletion method. Meanwhile, the statistical variation in number densities generally increases with burnup. Several possible ways of reducing the statistical errors are discussed: 1) to increase the number of individual Monte Carlo histories; 2) to increase the number of time steps; 3) to run additional independent Monte Carlo depletion cases. Finally, a new Monte Carlo depletion methodology, called the batch depletion method, is proposed, which consists of performing a set of independent Monte Carlo depletions and is thus capable of estimating the overall statistical errors including both the local statistical error and the propagated statistical error. (authors)
A contribution to the Monte Carlo method in the reactor theory
International Nuclear Information System (INIS)
Lieberoth, J.
1976-01-01
The report gives a contribution to the further development of the Monte-Carlo Method to solve the neutron transport problem. The necessary fundamentals, mainly of statistical nature, are collected and partly derived, such as the statistical weight, the use of random numbers or the Monte-Carlo integration method. Special emphasis is put on the so-called team-method, which will help to reduce the statistical error of Monte-Carlo estimates, and on the path-method, which can be used to calculate the neutron fluxes in pre-defined local points
Test and commissioning of the CARLOS control boards for the ALICE Silicon Drift Detectors
Alessandro, Bruno; Beolè, S; Coli, S; Costa, F; De Remigis, P; Falchieri, Davide; Gandolfi, Enzo; Giraudo, G; Giubellino, P; Kral, J F; Masetti, Massimo; Mazza, G; Rashevsky, A; Riccati, Lodovico; Rivetti, A; Senyukov, S; Toscano, Letterio; Tosello, F; Wheadon, R
2007-01-01
This paper presents the test strategy employed during the installation of the CARLOS end ladder boards developed for the Silicon Drift Detectors (SDD) of ALICE. Each CARLOS board compresses the data provided by the front-end electronics of one SDD and sends them via an optical link of 800 Mbit/s to the data concentrator card (CARLOSrx) located in the counting room. The paper describes the integration of the CARLOS boards in the final SDD system, including its cooling and mechanical support, the power supply distribution and the optical interconnections. The results of the tests performed after each step of the installation sequence are reported.
Selection of important Monte Carlo histories
International Nuclear Information System (INIS)
Egbert, Stephen D.
1987-01-01
The 1986 Dosimetry System (DS86) for Japanese A-bomb survivors uses information describing the behavior of individual radiation particles, simulated by Monte Carlo methods, to calculate the transmission of radiation into structures and, thence, into humans. However, there are practical constraints on the number of such particle 'histories' that may be used. First, the number must be sufficiently high to provide adequate statistical precision fir any calculated quantity of interest. For integral quantities, such as dose or kerma, statistical precision of approximately 5% (standard deviation) is required to ensure that statistical uncertainties are not a major contributor to the overall uncertainty of the transmitted value. For differential quantities, such as scalar fluence spectra, 10 to 15% standard deviation on individual energy groups is adequate. Second, the number of histories cannot be so large as to require an unacceptably large amount of computer time to process the entire survivor data base. Given that there are approx. 30,000 survivors, each having 13 or 14 organs of interest, the number of histories per organ must be constrained to less than several ten's of thousands at the very most. Selection and use of the most important Monte Carlo leakage histories from among all those calculated allows the creation of an efficient house and organ radiation transmission system for use at RERF. While attempts have been made during the adjoint Monte Carlo calculation to bias the histories toward an efficient dose estimate, this effort has been far from satisfactory. Many of the adjoint histories on a typical leakage tape are either starting in an energy group in which there is very little kerma or dose or leaking into an energy group with very little free-field couple with. By knowing the typical free-field fluence and the fluence-to-dose factors with which the leaking histories will be used, one can select histories rom a leakage tape that will contribute to dose
Monte Carlo modelling of TRIGA research reactor
El Bakkari, B.; Nacir, B.; El Bardouni, T.; El Younoussi, C.; Merroun, O.; Htet, A.; Boulaich, Y.; Zoubair, M.; Boukhal, H.; Chakir, M.
2010-10-01
The Moroccan 2 MW TRIGA MARK II research reactor at Centre des Etudes Nucléaires de la Maâmora (CENM) achieved initial criticality on May 2, 2007. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes for their use in agriculture, industry, and medicine. This study deals with the neutronic analysis of the 2-MW TRIGA MARK II research reactor at CENM and validation of the results by comparisons with the experimental, operational, and available final safety analysis report (FSAR) values. The study was prepared in collaboration between the Laboratory of Radiation and Nuclear Systems (ERSN-LMR) from Faculty of Sciences of Tetuan (Morocco) and CENM. The 3-D continuous energy Monte Carlo code MCNP (version 5) was used to develop a versatile and accurate full model of the TRIGA core. The model represents in detailed all components of the core with literally no physical approximation. Continuous energy cross-section data from the more recent nuclear data evaluations (ENDF/B-VI.8, ENDF/B-VII.0, JEFF-3.1, and JENDL-3.3) as well as S( α, β) thermal neutron scattering functions distributed with the MCNP code were used. The cross-section libraries were generated by using the NJOY99 system updated to its more recent patch file "up259". The consistency and accuracy of both the Monte Carlo simulation and neutron transport physics were established by benchmarking the TRIGA experiments. Core excess reactivity, total and integral control rods worth as well as power peaking factors were used in the validation process. Results of calculations are analysed and discussed.
International Nuclear Information System (INIS)
Xiao Gang; Li Zhizhong
2004-01-01
Based on integral equaiton describing the life-history of Markov system, six types of estimators of the current unavailability of Markov system with dependent repair are propounded. Combining with the biased sampling of state transition time of system, six types of Monte Carlo for estimating the current unavailability are given. Two numerical examples are given to deal with the variances and efficiencies of the six types of Monte Carlo methods. (authors)
MATLAB platform for Monte Carlo planning and dosimetry experimental evaluation
International Nuclear Information System (INIS)
Baeza, J. A.; Ureba, A.; Jimenez-Ortega, E.; Pereira-Barbeiro, A. R.; Leal, A.
2013-01-01
A new platform for the full Monte Carlo planning and an independent experimental evaluation that it can be integrated into clinical practice. The tool has proved its usefulness and efficiency and now forms part of the flow of work of our research group, the tool used for the generation of results, which are to be suitably revised and are being published. This software is an effort of integration of numerous algorithms of image processing, along with planning optimization algorithms, allowing the process of MCTP planning from a single interface. In addition, becomes a flexible and accurate tool for the evaluation of experimental dosimetric data for the quality control of actual treatments. (Author)
Cuartel San Carlos. Yacimiento veterano
Directory of Open Access Journals (Sweden)
Mariana Flores
2007-01-01
Full Text Available El Cuartel San Carlos es un monumento histórico nacional (1986 de finales del siglo XVIII (1785-1790, caracterizado por sufrir diversas adversidades en su construcción y soportar los terremotos de 1812 y 1900. En el año 2006, el organismo encargado de su custodia, el Instituto de Patrimonio Cultural del Ministerio de Cultura, ejecutó tres etapas de exploración arqueológica, que abarcaron las áreas Traspatio, Patio Central y las Naves Este y Oeste de la edificación. Este trabajo reseña el análisis de la documentación arqueológica obtenida en el sitio, a partir de la realización de dicho proyecto, denominado EACUSAC (Estudio Arqueológico del Cuartel San Carlos, que representa además, la tercera campaña realizada en el sitio. La importancia de este yacimiento histórico, radica en su participación en los acontecimientos que propiciaron conflictos de poder durante el surgimiento de la República y en los sucesos políticos del siglo XX. De igual manera, se encontró en el sitio una amplia muestra de materiales arqueológicos que reseñan un estilo de vida cotidiana militar, así como las dinámicas sociales internas ocurridas en el San Carlos, como lugar estratégico para la defensa de los diferentes regímenes que atravesó el país, desde la época del imperialismo español hasta nuestros días.
Carlos Battilana: Profesor, Gestor, Amigo
Directory of Open Access Journals (Sweden)
José Pacheco
2009-12-01
Full Text Available El Comité Editorial de Anales ha perdido a uno de sus miembros más connotados. Brillante docente de nuestra Facultad, Carlos Alberto Battilana Guanilo (1945-2009 supo transmitir los conocimientos y atraer la atención de sus auditorios, de jóvenes estudiantes o de contemporáneos ya no tan jóvenes. Interesó a sus alumnos en la senda de la capacitación permanente y en la investigación. Por otro lado, comprometió a médicos distinguidos a conformar y liderar grupos con interés en la ciencia-amistad. Su vocación docente lo vinculó a facultades de medicina y academias y sociedades científicas, en donde coordinó cursos y congresos de grato recuerdo. Su producción científica la dedicó a la nefrología, inmunología, cáncer, costos en el tratamiento médico. Su capacidad gestora y de liderazgo presente desde su época de estudiante, le permitió llegar a ser director regional de un laboratorio farmacéutico de mucho prestigio, organizar una facultad de medicina y luego tener el cargo de decano de la facultad de ciencias de la salud de dicha universidad privada. Carlos fue elemento importante para que Anales alcanzara un sitial de privilegio entre las revistas biomédicas peruanas. En la semblanza que publicamos tratamos de resumir apretadamente la trayectoria de Carlos Battilana, semanas después de su partida sin retorno.
Monte Carlo Particle Lists: MCPL
DEFF Research Database (Denmark)
Kittelmann, Thomas; Klinkby, Esben Bryndt; Bergbäck Knudsen, Erik
2017-01-01
A binary format with lists of particle state information, for interchanging particles between various Monte Carlo simulation applications, is presented. Portable C code for file manipulation is made available to the scientific community, along with converters and plugins for several popular...... simulation packages. Program summary: Program Title: MCPL. Program Files doi: http://dx.doi.org/10.17632/cby92vsv5g.1 Licensing provisions: CC0 for core MCPL, see LICENSE file for details. Programming language: C and C++ External routines/libraries: Geant4, MCNP, McStas, McXtrace Nature of problem: Saving...
Directory of Open Access Journals (Sweden)
Rafael Maya
1979-04-01
Full Text Available Entre los poetasa del Centenario tuvo Luis Carlos López mucha popularidad en el extranjero, desde la publicación de su primer libro. Creo que su obra llamó la atención de filósofos como Unamuno y, si no estoy equivocado, Darío se refirió a ella en términos elogiosos. En Colombia ha sido encomiada hiperbólicamente por algunos, a tiemp que otros no le conceden mayor mérito.
Monte Carlo techniques in radiation therapy
Verhaegen, Frank
2013-01-01
Modern cancer treatment relies on Monte Carlo simulations to help radiotherapists and clinical physicists better understand and compute radiation dose from imaging devices as well as exploit four-dimensional imaging data. With Monte Carlo-based treatment planning tools now available from commercial vendors, a complete transition to Monte Carlo-based dose calculation methods in radiotherapy could likely take place in the next decade. Monte Carlo Techniques in Radiation Therapy explores the use of Monte Carlo methods for modeling various features of internal and external radiation sources, including light ion beams. The book-the first of its kind-addresses applications of the Monte Carlo particle transport simulation technique in radiation therapy, mainly focusing on external beam radiotherapy and brachytherapy. It presents the mathematical and technical aspects of the methods in particle transport simulations. The book also discusses the modeling of medical linacs and other irradiation devices; issues specific...
Energy Technology Data Exchange (ETDEWEB)
Baeza, J. A.; Ureba, A.; Jimenez-Ortega, E.; Pereira-Barbeiro, A. R.; Leal, A.
2013-07-01
A new platform for the full Monte Carlo planning and an independent experimental evaluation that it can be integrated into clinical practice. The tool has proved its usefulness and efficiency and now forms part of the flow of work of our research group, the tool used for the generation of results, which are to be suitably revised and are being published. This software is an effort of integration of numerous algorithms of image processing, along with planning optimization algorithms, allowing the process of MCTP planning from a single interface. In addition, becomes a flexible and accurate tool for the evaluation of experimental dosimetric data for the quality control of actual treatments. (Author)
Multiple-time-stepping generalized hybrid Monte Carlo methods
Energy Technology Data Exchange (ETDEWEB)
Escribano, Bruno, E-mail: bescribano@bcamath.org [BCAM—Basque Center for Applied Mathematics, E-48009 Bilbao (Spain); Akhmatskaya, Elena [BCAM—Basque Center for Applied Mathematics, E-48009 Bilbao (Spain); IKERBASQUE, Basque Foundation for Science, E-48013 Bilbao (Spain); Reich, Sebastian [Universität Potsdam, Institut für Mathematik, D-14469 Potsdam (Germany); Azpiroz, Jon M. [Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC), P.K. 1072, Donostia (Spain)
2015-01-01
Performance of the generalized shadow hybrid Monte Carlo (GSHMC) method [1], which proved to be superior in sampling efficiency over its predecessors [2–4], molecular dynamics and hybrid Monte Carlo, can be further improved by combining it with multi-time-stepping (MTS) and mollification of slow forces. We demonstrate that the comparatively simple modifications of the method not only lead to better performance of GSHMC itself but also allow for beating the best performed methods, which use the similar force splitting schemes. In addition we show that the same ideas can be successfully applied to the conventional generalized hybrid Monte Carlo method (GHMC). The resulting methods, MTS-GHMC and MTS-GSHMC, provide accurate reproduction of thermodynamic and dynamical properties, exact temperature control during simulation and computational robustness and efficiency. MTS-GHMC uses a generalized momentum update to achieve weak stochastic stabilization to the molecular dynamics (MD) integrator. MTS-GSHMC adds the use of a shadow (modified) Hamiltonian to filter the MD trajectories in the HMC scheme. We introduce a new shadow Hamiltonian formulation adapted to force-splitting methods. The use of such Hamiltonians improves the acceptance rate of trajectories and has a strong impact on the sampling efficiency of the method. Both methods were implemented in the open-source MD package ProtoMol and were tested on a water and a protein systems. Results were compared to those obtained using a Langevin Molly (LM) method [5] on the same systems. The test results demonstrate the superiority of the new methods over LM in terms of stability, accuracy and sampling efficiency. This suggests that putting the MTS approach in the framework of hybrid Monte Carlo and using the natural stochasticity offered by the generalized hybrid Monte Carlo lead to improving stability of MTS and allow for achieving larger step sizes in the simulation of complex systems.
New Monte Carlo approach to the adjoint Boltzmann equation
International Nuclear Information System (INIS)
De Matteis, A.; Simonini, R.
1978-01-01
A class of stochastic models for the Monte Carlo integration of the adjoint neutron transport equation is described. Some current general methods are brought within this class, thus preparing the ground for subsequent comparisons. Monte Carlo integration of the adjoint Boltzmann equation can be seen as a simulation of the transport of mathematical particles with reaction kernels not normalized to unity. This last feature is a source of difficulty: It can influence the variance of the result negatively and also often leads to preparation of special ''libraries'' consisting of tables of normalization factors as functions of energy, presently used by several methods. These are the two main points that are discussed and that are taken into account to devise a nonmultigroup method of solution for a certain class of problems. Reactions considered in detail are radiative capture, elastic scattering, discrete levels and continuum inelastic scattering, for which the need for tables has been almost completely eliminated. The basic policy pursued to avoid a source of statistical fluctuations is to try to make the statistical weight of the traveling particle dependent only on its starting and current energies, at least in simple cases. The effectiveness of the sampling schemes proposed is supported by numerical comparison with other more general adjoint Monte Carlo methods. Computation of neutron flux at a point by means of an adjoint formulation is the problem taken as a test for numerical experiments. Very good results have been obtained in the difficult case of resonant cross sections
Monte Carlo surface flux tallies
International Nuclear Information System (INIS)
Favorite, Jeffrey A.
2010-01-01
Particle fluxes on surfaces are difficult to calculate with Monte Carlo codes because the score requires a division by the surface-crossing angle cosine, and grazing angles lead to inaccuracies. We revisit the standard practice of dividing by half of a cosine 'cutoff' for particles whose surface-crossing cosines are below the cutoff. The theory behind this approximation is sound, but the application of the theory to all possible situations does not account for two implicit assumptions: (1) the grazing band must be symmetric about 0, and (2) a single linear expansion for the angular flux must be applied in the entire grazing band. These assumptions are violated in common circumstances; for example, for separate in-going and out-going flux tallies on internal surfaces, and for out-going flux tallies on external surfaces. In some situations, dividing by two-thirds of the cosine cutoff is more appropriate. If users were able to control both the cosine cutoff and the substitute value, they could use these parameters to make accurate surface flux tallies. The procedure is demonstrated in a test problem in which Monte Carlo surface fluxes in cosine bins are converted to angular fluxes and compared with the results of a discrete ordinates calculation.
Monte Carlo simulations of neutron scattering instruments
International Nuclear Information System (INIS)
Aestrand, Per-Olof; Copenhagen Univ.; Lefmann, K.; Nielsen, K.
2001-01-01
A Monte Carlo simulation is an important computational tool used in many areas of science and engineering. The use of Monte Carlo techniques for simulating neutron scattering instruments is discussed. The basic ideas, techniques and approximations are presented. Since the construction of a neutron scattering instrument is very expensive, Monte Carlo software used for design of instruments have to be validated and tested extensively. The McStas software was designed with these aspects in mind and some of the basic principles of the McStas software will be discussed. Finally, some future prospects are discussed for using Monte Carlo simulations in optimizing neutron scattering experiments. (R.P.)
The MCLIB library: Monte Carlo simulation of neutron scattering instruments
Energy Technology Data Exchange (ETDEWEB)
Seeger, P.A.
1995-09-01
Monte Carlo is a method to integrate over a large number of variables. Random numbers are used to select a value for each variable, and the integrand is evaluated. The process is repeated a large number of times and the resulting values are averaged. For a neutron transport problem, first select a neutron from the source distribution, and project it through the instrument using either deterministic or probabilistic algorithms to describe its interaction whenever it hits something, and then (if it hits the detector) tally it in a histogram representing where and when it was detected. This is intended to simulate the process of running an actual experiment (but it is much slower). This report describes the philosophy and structure of MCLIB, a Fortran library of Monte Carlo subroutines which has been developed for design of neutron scattering instruments. A pair of programs (LQDGEOM and MC{_}RUN) which use the library are shown as an example.
Exploring Various Monte Carlo Simulations for Geoscience Applications
Blais, R.
2010-12-01
Computer simulations are increasingly important in geoscience research and development. At the core of stochastic or Monte Carlo simulations are the random number sequences that are assumed to be distributed with specific characteristics. Computer generated random numbers, uniformly distributed on (0, 1), can be very different depending on the selection of pseudo-random number (PRN), or chaotic random number (CRN) generators. Equidistributed quasi-random numbers (QRNs) can also be used in Monte Carlo simulations. In the evaluation of some definite integrals, the resulting error variances can even be of different orders of magnitude. Furthermore, practical techniques for variance reduction such as Importance Sampling and Stratified Sampling can be implemented to significantly improve the results. A comparative analysis of these strategies has been carried out for computational applications in planar and spatial contexts. Based on these experiments, and on examples of geodetic applications of gravimetric terrain corrections and gravity inversion, conclusions and recommendations concerning their performance and general applicability are included.
Exploring pseudo- and chaotic random Monte Carlo simulations
Blais, J. A. Rod; Zhang, Zhan
2011-07-01
Computer simulations are an increasingly important area of geoscience research and development. At the core of stochastic or Monte Carlo simulations are the random number sequences that are assumed to be distributed with specific characteristics. Computer-generated random numbers, uniformly distributed on (0, 1), can be very different depending on the selection of pseudo-random number (PRN) or chaotic random number (CRN) generators. In the evaluation of some definite integrals, the resulting error variances can even be of different orders of magnitude. Furthermore, practical techniques for variance reduction such as importance sampling and stratified sampling can be applied in most Monte Carlo simulations and significantly improve the results. A comparative analysis of these strategies has been carried out for computational applications in planar and spatial contexts. Based on these experiments, and on some practical examples of geodetic direct and inverse problems, conclusions and recommendations concerning their performance and general applicability are included.
Monte Carlo simulation of tomography techniques using the platform Gate
International Nuclear Information System (INIS)
Barbouchi, Asma
2007-01-01
Simulations play a key role in functional imaging, with applications ranging from scanner design, scatter correction, protocol optimisation. GATE (Geant4 for Application Tomography Emission) is a platform for Monte Carlo Simulation. It is based on Geant4 to generate and track particles, to model geometry and physics process. Explicit modelling of time includes detector motion, time of flight, tracer kinetics. Interfaces to voxellised models and image reconstruction packages improve the integration of GATE in the global modelling cycle. In this work Monte Carlo simulations are used to understand and optimise the gamma camera's performances. We study the effect of the distance between source and collimator, the diameter of the holes and the thick of the collimator on the spatial resolution, energy resolution and efficiency of the gamma camera. We also study the reduction of simulation's time and implement a model of left ventricle in GATE. (Author). 7 refs
Geometric allocation approaches in Markov chain Monte Carlo
International Nuclear Information System (INIS)
Todo, S; Suwa, H
2013-01-01
The Markov chain Monte Carlo method is a versatile tool in statistical physics to evaluate multi-dimensional integrals numerically. For the method to work effectively, we must consider the following key issues: the choice of ensemble, the selection of candidate states, the optimization of transition kernel, algorithm for choosing a configuration according to the transition probabilities. We show that the unconventional approaches based on the geometric allocation of probabilities or weights can improve the dynamics and scaling of the Monte Carlo simulation in several aspects. Particularly, the approach using the irreversible kernel can reduce or sometimes completely eliminate the rejection of trial move in the Markov chain. We also discuss how the space-time interchange technique together with Walker's method of aliases can reduce the computational time especially for the case where the number of candidates is large, such as models with long-range interactions
The MCLIB library: Monte Carlo simulation of neutron scattering instruments
International Nuclear Information System (INIS)
Seeger, P.A.
1995-01-01
Monte Carlo is a method to integrate over a large number of variables. Random numbers are used to select a value for each variable, and the integrand is evaluated. The process is repeated a large number of times and the resulting values are averaged. For a neutron transport problem, first select a neutron from the source distribution, and project it through the instrument using either deterministic or probabilistic algorithms to describe its interaction whenever it hits something, and then (if it hits the detector) tally it in a histogram representing where and when it was detected. This is intended to simulate the process of running an actual experiment (but it is much slower). This report describes the philosophy and structure of MCLIB, a Fortran library of Monte Carlo subroutines which has been developed for design of neutron scattering instruments. A pair of programs (LQDGEOM and MC RUN) which use the library are shown as an example
International Nuclear Information System (INIS)
Moore, J.G.
1974-01-01
The Monte Carlo code MONK is a general program written to provide a high degree of flexibility to the user. MONK is distinguished by its detailed representation of nuclear data in point form i.e., the cross-section is tabulated at specific energies instead of the more usual group representation. The nuclear data are unadjusted in the point form but recently the code has been modified to accept adjusted group data as used in fast and thermal reactor applications. The various geometrical handling capabilities and importance sampling techniques are described. In addition to the nuclear data aspects, the following features are also described; geometrical handling routines, tracking cycles, neutron source and output facilities. 12 references. (U.S.)
Monte Carlo lattice program KIM
International Nuclear Information System (INIS)
Cupini, E.; De Matteis, A.; Simonini, R.
1980-01-01
The Monte Carlo program KIM solves the steady-state linear neutron transport equation for a fixed-source problem or, by successive fixed-source runs, for the eigenvalue problem, in a two-dimensional thermal reactor lattice. Fluxes and reaction rates are the main quantities computed by the program, from which power distribution and few-group averaged cross sections are derived. The simulation ranges from 10 MeV to zero and includes anisotropic and inelastic scattering in the fast energy region, the epithermal Doppler broadening of the resonances of some nuclides, and the thermalization phenomenon by taking into account the thermal velocity distribution of some molecules. Besides the well known combinatorial geometry, the program allows complex configurations to be represented by a discrete set of points, an approach greatly improving calculation speed
Monte Carlo simulation of experiments
International Nuclear Information System (INIS)
Opat, G.I.
1977-07-01
An outline of the technique of computer simulation of particle physics experiments by the Monte Carlo method is presented. Useful special purpose subprograms are listed and described. At each stage the discussion is made concrete by direct reference to the programs SIMUL8 and its variant MONTE-PION, written to assist in the analysis of the radiative decay experiments μ + → e + ν sub(e) antiνγ and π + → e + ν sub(e)γ, respectively. These experiments were based on the use of two large sodium iodide crystals, TINA and MINA, as e and γ detectors. Instructions for the use of SIMUL8 and MONTE-PION are given. (author)
Advanced Computational Methods for Monte Carlo Calculations
Energy Technology Data Exchange (ETDEWEB)
Brown, Forrest B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2018-01-12
This course is intended for graduate students who already have a basic understanding of Monte Carlo methods. It focuses on advanced topics that may be needed for thesis research, for developing new state-of-the-art methods, or for working with modern production Monte Carlo codes.
Nested Sampling with Constrained Hamiltonian Monte Carlo
Betancourt, M. J.
2010-01-01
Nested sampling is a powerful approach to Bayesian inference ultimately limited by the computationally demanding task of sampling from a heavily constrained probability distribution. An effective algorithm in its own right, Hamiltonian Monte Carlo is readily adapted to efficiently sample from any smooth, constrained distribution. Utilizing this constrained Hamiltonian Monte Carlo, I introduce a general implementation of the nested sampling algorithm.
International Nuclear Information System (INIS)
Densmore, Jeffery D.; Thompson, Kelly G.; Urbatsch, Todd J.
2012-01-01
Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Implicit Monte Carlo radiative-transfer simulations in optically thick media. In DDMC, particles take discrete steps between spatial cells according to a discretized diffusion equation. Each discrete step replaces many smaller Monte Carlo steps, thus improving the efficiency of the simulation. In this paper, we present an extension of DDMC for frequency-dependent radiative transfer. We base our new DDMC method on a frequency-integrated diffusion equation for frequencies below a specified threshold, as optical thickness is typically a decreasing function of frequency. Above this threshold we employ standard Monte Carlo, which results in a hybrid transport-diffusion scheme. With a set of frequency-dependent test problems, we confirm the accuracy and increased efficiency of our new DDMC method.
Monte Carlo Treatment Planning for Advanced Radiotherapy
DEFF Research Database (Denmark)
Cronholm, Rickard
This Ph.d. project describes the development of a workflow for Monte Carlo Treatment Planning for clinical radiotherapy plans. The workflow may be utilized to perform an independent dose verification of treatment plans. Modern radiotherapy treatment delivery is often conducted by dynamically...... modulating the intensity of the field during the irradiation. The workflow described has the potential to fully model the dynamic delivery, including gantry rotation during irradiation, of modern radiotherapy. Three corner stones of Monte Carlo Treatment Planning are identified: Building, commissioning...... and validation of a Monte Carlo model of a medical linear accelerator (i), converting a CT scan of a patient to a Monte Carlo compliant phantom (ii) and translating the treatment plan parameters (including beam energy, angles of incidence, collimator settings etc) to a Monte Carlo input file (iii). A protocol...
Monte Carlo simulation in nuclear medicine
International Nuclear Information System (INIS)
Morel, Ch.
2007-01-01
The Monte Carlo method allows for simulating random processes by using series of pseudo-random numbers. It became an important tool in nuclear medicine to assist in the design of new medical imaging devices, optimise their use and analyse their data. Presently, the sophistication of the simulation tools allows the introduction of Monte Carlo predictions in data correction and image reconstruction processes. The availability to simulate time dependent processes opens up new horizons for Monte Carlo simulation in nuclear medicine. In a near future, these developments will allow to tackle simultaneously imaging and dosimetry issues and soon, case system Monte Carlo simulations may become part of the nuclear medicine diagnostic process. This paper describes some Monte Carlo method basics and the sampling methods that were developed for it. It gives a referenced list of different simulation software used in nuclear medicine and enumerates some of their present and prospective applications. (author)
LPTAU, Quasi Random Sequence Generator
International Nuclear Information System (INIS)
Sobol, Ilya M.
1993-01-01
1 - Description of program or function: LPTAU generates quasi random sequences. These are uniformly distributed sets of L=M N points in the N-dimensional unit cube: I N =[0,1]x...x[0,1]. These sequences are used as nodes for multidimensional integration; as searching points in global optimization; as trial points in multi-criteria decision making; as quasi-random points for quasi Monte Carlo algorithms. 2 - Method of solution: Uses LP-TAU sequence generation (see references). 3 - Restrictions on the complexity of the problem: The number of points that can be generated is L 30 . The dimension of the space cannot exceed 51
Quantification of Airfoil Geometry-Induced Aerodynamic Uncertainties---Comparison of Approaches
Liu, Dishi; Litvinenko, Alexander; Schillings, Claudia; Schulz, Volker
2015-01-01
Uncertainty quantification in aerodynamic simulations calls for efficient numerical methods to reduce computational cost, especially for uncertainties caused by random geometry variations which involve a large number of variables. This paper compares five methods, including quasi-Monte Carlo quadrature, polynomial chaos with coefficients determined by sparse quadrature and by point collocation, radial basis function and a gradient-enhanced version of kriging, and examines their efficiency in estimating statistics of aerodynamic performance upon random perturbation to the airfoil geometry which is parameterized by independent Gaussian variables. The results show that gradient-enhanced surrogate methods achieve better accuracy than direct integration methods with the same computational cost.
Maintaining symmetry of simulated likelihood functions
DEFF Research Database (Denmark)
Andersen, Laura Mørch
This paper suggests solutions to two different types of simulation errors related to Quasi-Monte Carlo integration. Likelihood functions which depend on standard deviations of mixed parameters are symmetric in nature. This paper shows that antithetic draws preserve this symmetry and thereby...... improves precision substantially. Another source of error is that models testing away mixing dimensions must replicate the relevant dimensions of the quasi-random draws in the simulation of the restricted likelihood. These simulation errors are ignored in the standard estimation procedures used today...
Quantification of Airfoil Geometry-Induced Aerodynamic Uncertainties---Comparison of Approaches
Liu, Dishi
2015-04-14
Uncertainty quantification in aerodynamic simulations calls for efficient numerical methods to reduce computational cost, especially for uncertainties caused by random geometry variations which involve a large number of variables. This paper compares five methods, including quasi-Monte Carlo quadrature, polynomial chaos with coefficients determined by sparse quadrature and by point collocation, radial basis function and a gradient-enhanced version of kriging, and examines their efficiency in estimating statistics of aerodynamic performance upon random perturbation to the airfoil geometry which is parameterized by independent Gaussian variables. The results show that gradient-enhanced surrogate methods achieve better accuracy than direct integration methods with the same computational cost.
Applications to shielding design and others of monte carlo method
Energy Technology Data Exchange (ETDEWEB)
Ito, Daiichiro [Mitsui Engineering and Shipbuiding Co., Ltd., Tokyo (Japan)
2001-01-01
One-dimensional or two-dimensional Sn computer code (ANISN, DOT3.5, etc.) and a point attenuation kernel integral code (QAD, etc.) have been used widely for shielding design. Application examples of monte carlo method which could follow precisely the three-dimensional configuration of shielding structure are shown as follow: (1) CASTER cask has a complex structure which consists of a large number of fuel baskets (stainless steel), neutron moderators (polyethylene rods), the body (cast iron), and cooling fin. The R-{theta} model of Sn code DOT3.5 cannot follow closely the complex form of polyethylene rods and fuel baskets. A monte carlo code MORSE is used to ascertain the calculation results of DOT3.5. The discrepancy between the calculation results of DOT3.5 and MORSE was in 10% for dose rate at distance of 1 m from the cask surface. (2) The dose rates of an iron cell at 10 cm above the floor are calculated by the code QAD and the MORSE. The reflected components of gamma ray caused by the auxiliary floor shield (lead) are analyzed by the MORSE. (3) A monte carlo code MCNP4A is used for skyshine evaluation of spent fuel carrier ship 'ROKUEIMARU'. The direct and skyshine components of gamma ray and neutron flux are estimated at each center of engine room and wheel house. The skyshine dose rate of neutron flux is 5-15 times larger than the gamma ray. (M. Suetake)
Inverse Monte Carlo: a unified reconstruction algorithm for SPECT
International Nuclear Information System (INIS)
Floyd, C.E.; Coleman, R.E.; Jaszczak, R.J.
1985-01-01
Inverse Monte Carlo (IMOC) is presented as a unified reconstruction algorithm for Emission Computed Tomography (ECT) providing simultaneous compensation for scatter, attenuation, and the variation of collimator resolution with depth. The technique of inverse Monte Carlo is used to find an inverse solution to the photon transport equation (an integral equation for photon flux from a specified source) for a parameterized source and specific boundary conditions. The system of linear equations so formed is solved to yield the source activity distribution for a set of acquired projections. For the studies presented here, the equations are solved using the EM (Maximum Likelihood) algorithm although other solution algorithms, such as Least Squares, could be employed. While the present results specifically consider the reconstruction of camera-based Single Photon Emission Computed Tomographic (SPECT) images, the technique is equally valid for Positron Emission Tomography (PET) if a Monte Carlo model of such a system is used. As a preliminary evaluation, experimentally acquired SPECT phantom studies for imaging Tc-99m (140 keV) are presented which demonstrate the quantitative compensation for scatter and attenuation for a two dimensional (single slice) reconstruction. The algorithm may be expanded in a straight forward manner to full three dimensional reconstruction including compensation for out of plane scatter
Understanding quantum tunneling using diffusion Monte Carlo simulations
Inack, E. M.; Giudici, G.; Parolini, T.; Santoro, G.; Pilati, S.
2018-03-01
In simple ferromagnetic quantum Ising models characterized by an effective double-well energy landscape the characteristic tunneling time of path-integral Monte Carlo (PIMC) simulations has been shown to scale as the incoherent quantum-tunneling time, i.e., as 1 /Δ2 , where Δ is the tunneling gap. Since incoherent quantum tunneling is employed by quantum annealers (QAs) to solve optimization problems, this result suggests that there is no quantum advantage in using QAs with respect to quantum Monte Carlo (QMC) simulations. A counterexample is the recently introduced shamrock model (Andriyash and Amin, arXiv:1703.09277), where topological obstructions cause an exponential slowdown of the PIMC tunneling dynamics with respect to incoherent quantum tunneling, leaving open the possibility for potential quantum speedup, even for stoquastic models. In this work we investigate the tunneling time of projective QMC simulations based on the diffusion Monte Carlo (DMC) algorithm without guiding functions, showing that it scales as 1 /Δ , i.e., even more favorably than the incoherent quantum-tunneling time, both in a simple ferromagnetic system and in the more challenging shamrock model. However, a careful comparison between the DMC ground-state energies and the exact solution available for the transverse-field Ising chain indicates an exponential scaling of the computational cost required to keep a fixed relative error as the system size increases.
Alexander, Andrew William
Within the field of medical physics, Monte Carlo radiation transport simulations are considered to be the most accurate method for the determination of dose distributions in patients. The McGill Monte Carlo treatment planning system (MMCTP), provides a flexible software environment to integrate Monte Carlo simulations with current and new treatment modalities. A developing treatment modality called energy and intensity modulated electron radiotherapy (MERT) is a promising modality, which has the fundamental capabilities to enhance the dosimetry of superficial targets. An objective of this work is to advance the research and development of MERT with the end goal of clinical use. To this end, we present the MMCTP system with an integrated toolkit for MERT planning and delivery of MERT fields. Delivery is achieved using an automated "few leaf electron collimator" (FLEC) and a controller. Aside from the MERT planning toolkit, the MMCTP system required numerous add-ons to perform the complex task of large-scale autonomous Monte Carlo simulations. The first was a DICOM import filter, followed by the implementation of DOSXYZnrc as a dose calculation engine and by logic methods for submitting and updating the status of Monte Carlo simulations. Within this work we validated the MMCTP system with a head and neck Monte Carlo recalculation study performed by a medical dosimetrist. The impact of MMCTP lies in the fact that it allows for systematic and platform independent large-scale Monte Carlo dose calculations for different treatment sites and treatment modalities. In addition to the MERT planning tools, various optimization algorithms were created external to MMCTP. The algorithms produced MERT treatment plans based on dose volume constraints that employ Monte Carlo pre-generated patient-specific kernels. The Monte Carlo kernels are generated from patient-specific Monte Carlo dose distributions within MMCTP. The structure of the MERT planning toolkit software and
Monte carlo depletion analysis of SMART core by MCNAP code
International Nuclear Information System (INIS)
Jung, Jong Sung; Sim, Hyung Jin; Kim, Chang Hyo; Lee, Jung Chan; Ji, Sung Kyun
2001-01-01
Depletion an analysis of SMART, a small-sized advanced integral PWR under development by KAERI, is conducted using the Monte Carlo (MC) depletion analysis program, MCNAP. The results are compared with those of the CASMO-3/ MASTER nuclear analysis. The difference between MASTER and MCNAP on k eff prediction is observed about 600pcm at BOC, and becomes smaller as the core burnup increases. The maximum difference bet ween two predict ions on fuel assembly (FA) normalized power distribution is about 6.6% radially , and 14.5% axially but the differences are observed to lie within standard deviation of MC estimations
Burnup calculation methodology in the serpent 2 Monte Carlo code
International Nuclear Information System (INIS)
Leppaenen, J.; Isotalo, A.
2012-01-01
This paper presents two topics related to the burnup calculation capabilities in the Serpent 2 Monte Carlo code: advanced time-integration methods and improved memory management, accomplished by the use of different optimization modes. The development of the introduced methods is an important part of re-writing the Serpent source code, carried out for the purpose of extending the burnup calculation capabilities from 2D assembly-level calculations to large 3D reactor-scale problems. The progress is demonstrated by repeating a PWR test case, originally carried out in 2009 for the validation of the newly-implemented burnup calculation routines in Serpent 1. (authors)
Foam: A general purpose Monte Carlo cellular algorithm
International Nuclear Information System (INIS)
Jadach, S.
2003-01-01
A general-purpose, self-adapting Monte Carlo (MC) algorithm implemented in the program Foam is described. The high efficiency of the MC, that is small maximum weight or variance of the MC weight is achieved by means of dividing the integration domain into small cells. The cells can be n-dimensional simplices, hyperrectangles cells. The next cell to be divided and the position/direction of the division hyperplane is chosen by the algorithm which optimizes the ratio of the maximum weight to the average weight or (optionally) the total variance. The algorithm is able to deal, in principle, with an arbitrary pattern of the singularities in the distribution
Quantum Monte Carlo studies in Hamiltonian lattice gauge theory
International Nuclear Information System (INIS)
Hamer, C.J.; Samaras, M.; Bursill, R.J.
2000-01-01
Full text: The application of Monte Carlo methods to the 'Hamiltonian' formulation of lattice gauge theory has been somewhat neglected, and lags at least ten years behind the classical Monte Carlo simulations of Euclidean lattice gauge theory. We have applied a Green's Function Monte Carlo algorithm to lattice Yang-Mills theories in the Hamiltonian formulation, combined with a 'forward-walking' technique to estimate expectation values and correlation functions. In this approach, one represents the wave function in configuration space by a discrete ensemble of random walkers, and application of the time development operator is simulated by a diffusion and branching process. The approach has been used to estimate the ground-state energy and Wilson loop values in the U(1) theory in (2+1)D, and the SU(3) Yang-Mills theory in (3+1)D. The finite-size scaling behaviour has been explored, and agrees with the predictions of effective Lagrangian theory, and weak-coupling expansions. Crude estimates of the string tension are derived, which agree with previous results at intermediate couplings; but more accurate results for larger loops will be required to establish scaling behaviour at weak couplings. A drawback to this method is that it is necessary to introduce a 'trial' or 'guiding wave function' to guide the walkers towards the most probable regions of configuration space, in order to achieve convergence and accuracy. The 'forward-walking' estimates should be independent of this guidance, but in fact for the SU(3) case they turn out to be sensitive to the choice of trial wave function. It would be preferable to use some sort of Metropolis algorithm instead to produce a correct distribution of walkers: this may point in the direction of a Path Integral Monte Carlo approach
Monte Carlo Codes Invited Session
International Nuclear Information System (INIS)
Trama, J.C.; Malvagi, F.; Brown, F.
2013-01-01
This document lists 22 Monte Carlo codes used in radiation transport applications throughout the world. For each code the names of the organization and country and/or place are given. We have the following computer codes. 1) ARCHER, USA, RPI; 2) COG11, USA, LLNL; 3) DIANE, France, CEA/DAM Bruyeres; 4) FLUKA, Italy and CERN, INFN and CERN; 5) GEANT4, International GEANT4 collaboration; 6) KENO and MONACO (SCALE), USA, ORNL; 7) MC21, USA, KAPL and Bettis; 8) MCATK, USA, LANL; 9) MCCARD, South Korea, Seoul National University; 10) MCNP6, USA, LANL; 11) MCU, Russia, Kurchatov Institute; 12) MONK and MCBEND, United Kingdom, AMEC; 13) MORET5, France, IRSN Fontenay-aux-Roses; 14) MVP2, Japan, JAEA; 15) OPENMC, USA, MIT; 16) PENELOPE, Spain, Barcelona University; 17) PHITS, Japan, JAEA; 18) PRIZMA, Russia, VNIITF; 19) RMC, China, Tsinghua University; 20) SERPENT, Finland, VTT; 21) SUPERMONTECARLO, China, CAS INEST FDS Team Hefei; and 22) TRIPOLI-4, France, CEA Saclay
Advanced computers and Monte Carlo
International Nuclear Information System (INIS)
Jordan, T.L.
1979-01-01
High-performance parallelism that is currently available is synchronous in nature. It is manifested in such architectures as Burroughs ILLIAC-IV, CDC STAR-100, TI ASC, CRI CRAY-1, ICL DAP, and many special-purpose array processors designed for signal processing. This form of parallelism has apparently not been of significant value to many important Monte Carlo calculations. Nevertheless, there is much asynchronous parallelism in many of these calculations. A model of a production code that requires up to 20 hours per problem on a CDC 7600 is studied for suitability on some asynchronous architectures that are on the drawing board. The code is described and some of its properties and resource requirements ae identified to compare with corresponding properties and resource requirements are identified to compare with corresponding properties and resource requirements are identified to compare with corresponding properties and resources of some asynchronous multiprocessor architectures. Arguments are made for programer aids and special syntax to identify and support important asynchronous parallelism. 2 figures, 5 tables
Adaptive Markov Chain Monte Carlo
Jadoon, Khan
2016-08-08
A substantial interpretation of electromagnetic induction (EMI) measurements requires quantifying optimal model parameters and uncertainty of a nonlinear inverse problem. For this purpose, an adaptive Bayesian Markov chain Monte Carlo (MCMC) algorithm is used to assess multi-orientation and multi-offset EMI measurements in an agriculture field with non-saline and saline soil. In the MCMC simulations, posterior distribution was computed using Bayes rule. The electromagnetic forward model based on the full solution of Maxwell\\'s equations was used to simulate the apparent electrical conductivity measured with the configurations of EMI instrument, the CMD mini-Explorer. The model parameters and uncertainty for the three-layered earth model are investigated by using synthetic data. Our results show that in the scenario of non-saline soil, the parameters of layer thickness are not well estimated as compared to layers electrical conductivity because layer thicknesses in the model exhibits a low sensitivity to the EMI measurements, and is hence difficult to resolve. Application of the proposed MCMC based inversion to the field measurements in a drip irrigation system demonstrate that the parameters of the model can be well estimated for the saline soil as compared to the non-saline soil, and provide useful insight about parameter uncertainty for the assessment of the model outputs.
Importance iteration in MORSE Monte Carlo calculations
International Nuclear Information System (INIS)
Kloosterman, J.L.; Hoogenboom, J.E.
1994-01-01
An expression to calculate point values (the expected detector response of a particle emerging from a collision or the source) is derived and implemented in the MORSE-SGC/S Monte Carlo code. It is outlined how these point values can be smoothed as a function of energy and as a function of the optical thickness between the detector and the source. The smoothed point values are subsequently used to calculate the biasing parameters of the Monte Carlo runs to follow. The method is illustrated by an example that shows that the obtained biasing parameters lead to a more efficient Monte Carlo calculation
Monte Carlo approaches to light nuclei
International Nuclear Information System (INIS)
Carlson, J.
1990-01-01
Significant progress has been made recently in the application of Monte Carlo methods to the study of light nuclei. We review new Green's function Monte Carlo results for the alpha particle, Variational Monte Carlo studies of 16 O, and methods for low-energy scattering and transitions. Through these calculations, a coherent picture of the structure and electromagnetic properties of light nuclei has arisen. In particular, we examine the effect of the three-nucleon interaction and the importance of exchange currents in a variety of experimentally measured properties, including form factors and capture cross sections. 29 refs., 7 figs
Monte Carlo approaches to light nuclei
Energy Technology Data Exchange (ETDEWEB)
Carlson, J.
1990-01-01
Significant progress has been made recently in the application of Monte Carlo methods to the study of light nuclei. We review new Green's function Monte Carlo results for the alpha particle, Variational Monte Carlo studies of {sup 16}O, and methods for low-energy scattering and transitions. Through these calculations, a coherent picture of the structure and electromagnetic properties of light nuclei has arisen. In particular, we examine the effect of the three-nucleon interaction and the importance of exchange currents in a variety of experimentally measured properties, including form factors and capture cross sections. 29 refs., 7 figs.
Importance iteration in MORSE Monte Carlo calculations
International Nuclear Information System (INIS)
Kloosterman, J.L.; Hoogenboom, J.E.
1994-02-01
An expression to calculate point values (the expected detector response of a particle emerging from a collision or the source) is derived and implemented in the MORSE-SGC/S Monte Carlo code. It is outlined how these point values can be smoothed as a function of energy and as a function of the optical thickness between the detector and the source. The smoothed point values are subsequently used to calculate the biasing parameters of the Monte Carlo runs to follow. The method is illustrated by an example, which shows that the obtained biasing parameters lead to a more efficient Monte Carlo calculation. (orig.)
Monte carlo simulation for soot dynamics
Zhou, Kun
2012-01-01
A new Monte Carlo method termed Comb-like frame Monte Carlo is developed to simulate the soot dynamics. Detailed stochastic error analysis is provided. Comb-like frame Monte Carlo is coupled with the gas phase solver Chemkin II to simulate soot formation in a 1-D premixed burner stabilized flame. The simulated soot number density, volume fraction, and particle size distribution all agree well with the measurement available in literature. The origin of the bimodal distribution of particle size distribution is revealed with quantitative proof.
International Nuclear Information System (INIS)
Zivanovic, Rastko; Bokov, Pavel M.
2010-01-01
This paper discusses the use of the dimension-wise expansion model for cross-section parameterization. The components of the model were approximated with tensor products of orthogonal polynomials. As we demonstrate, the model for a specific cross-section can be built in a systematic way directly from data without any a priori knowledge of its structure. The methodology is able to construct a finite basis of orthogonal polynomials that is required to approximate a cross-section with pre-specified accuracy. The methodology includes a global sensitivity analysis that indicates irrelevant state parameters which can be excluded from the model without compromising the accuracy of the approximation and without repetition of the fitting process. To fit the dimension-wise expansion model, Randomised Quasi-Monte-Carlo Integration and Sparse Grid Integration methods were used. To test the parameterization methods with different integrations embedded we have used the OECD PBMR 400 MW benchmark problem. It has been shown in this paper that the Sparse Grid Integration achieves pre-specified accuracy with a significantly (up to 1-2 orders of magnitude) smaller number of samples compared to Randomised Quasi-Monte-Carlo Integration.
Quantum Monte Carlo approaches for correlated systems
Becca, Federico
2017-01-01
Over the past several decades, computational approaches to studying strongly-interacting systems have become increasingly varied and sophisticated. This book provides a comprehensive introduction to state-of-the-art quantum Monte Carlo techniques relevant for applications in correlated systems. Providing a clear overview of variational wave functions, and featuring a detailed presentation of stochastic samplings including Markov chains and Langevin dynamics, which are developed into a discussion of Monte Carlo methods. The variational technique is described, from foundations to a detailed description of its algorithms. Further topics discussed include optimisation techniques, real-time dynamics and projection methods, including Green's function, reptation and auxiliary-field Monte Carlo, from basic definitions to advanced algorithms for efficient codes, and the book concludes with recent developments on the continuum space. Quantum Monte Carlo Approaches for Correlated Systems provides an extensive reference ...
Monte Carlo simulations for plasma physics
International Nuclear Information System (INIS)
Okamoto, M.; Murakami, S.; Nakajima, N.; Wang, W.X.
2000-07-01
Plasma behaviours are very complicated and the analyses are generally difficult. However, when the collisional processes play an important role in the plasma behaviour, the Monte Carlo method is often employed as a useful tool. For examples, in neutral particle injection heating (NBI heating), electron or ion cyclotron heating, and alpha heating, Coulomb collisions slow down high energetic particles and pitch angle scatter them. These processes are often studied by the Monte Carlo technique and good agreements can be obtained with the experimental results. Recently, Monte Carlo Method has been developed to study fast particle transports associated with heating and generating the radial electric field. Further it is applied to investigating the neoclassical transport in the plasma with steep gradients of density and temperatures which is beyong the conventional neoclassical theory. In this report, we briefly summarize the researches done by the present authors utilizing the Monte Carlo method. (author)
Frontiers of quantum Monte Carlo workshop: preface
International Nuclear Information System (INIS)
Gubernatis, J.E.
1985-01-01
The introductory remarks, table of contents, and list of attendees are presented from the proceedings of the conference, Frontiers of Quantum Monte Carlo, which appeared in the Journal of Statistical Physics
Monte Carlo code development in Los Alamos
International Nuclear Information System (INIS)
Carter, L.L.; Cashwell, E.D.; Everett, C.J.; Forest, C.A.; Schrandt, R.G.; Taylor, W.M.; Thompson, W.L.; Turner, G.D.
1974-01-01
The present status of Monte Carlo code development at Los Alamos Scientific Laboratory is discussed. A brief summary is given of several of the most important neutron, photon, and electron transport codes. 17 references. (U.S.)
"Shaakal" Carlos kaebas arreteerija kohtusse / Margo Pajuste
Pajuste, Margo
2006-01-01
Ilmunud ka: Postimees : na russkom jazõke 3. juuli lk. 11. Vangistatud kurikuulus terrorist "Shaakal" Carlos alustas kohtuasja oma kunagise vahistaja vastu. Ta süüdistab Prantsusmaa luureteenistuse endist juhti inimröövis
Experience with the Monte Carlo Method
Energy Technology Data Exchange (ETDEWEB)
Hussein, E M.A. [Department of Mechanical Engineering University of New Brunswick, Fredericton, N.B., (Canada)
2007-06-15
Monte Carlo simulation of radiation transport provides a powerful research and design tool that resembles in many aspects laboratory experiments. Moreover, Monte Carlo simulations can provide an insight not attainable in the laboratory. However, the Monte Carlo method has its limitations, which if not taken into account can result in misleading conclusions. This paper will present the experience of this author, over almost three decades, in the use of the Monte Carlo method for a variety of applications. Examples will be shown on how the method was used to explore new ideas, as a parametric study and design optimization tool, and to analyze experimental data. The consequences of not accounting in detail for detector response and the scattering of radiation by surrounding structures are two of the examples that will be presented to demonstrate the pitfall of condensed.
Experience with the Monte Carlo Method
International Nuclear Information System (INIS)
Hussein, E.M.A.
2007-01-01
Monte Carlo simulation of radiation transport provides a powerful research and design tool that resembles in many aspects laboratory experiments. Moreover, Monte Carlo simulations can provide an insight not attainable in the laboratory. However, the Monte Carlo method has its limitations, which if not taken into account can result in misleading conclusions. This paper will present the experience of this author, over almost three decades, in the use of the Monte Carlo method for a variety of applications. Examples will be shown on how the method was used to explore new ideas, as a parametric study and design optimization tool, and to analyze experimental data. The consequences of not accounting in detail for detector response and the scattering of radiation by surrounding structures are two of the examples that will be presented to demonstrate the pitfall of condensed
Monte Carlo Transport for Electron Thermal Transport
Chenhall, Jeffrey; Cao, Duc; Moses, Gregory
2015-11-01
The iSNB (implicit Schurtz Nicolai Busquet multigroup electron thermal transport method of Cao et al. is adapted into a Monte Carlo transport method in order to better model the effects of non-local behavior. The end goal is a hybrid transport-diffusion method that combines Monte Carlo Transport with a discrete diffusion Monte Carlo (DDMC). The hybrid method will combine the efficiency of a diffusion method in short mean free path regions with the accuracy of a transport method in long mean free path regions. The Monte Carlo nature of the approach allows the algorithm to be massively parallelized. Work to date on the method will be presented. This work was supported by Sandia National Laboratory - Albuquerque and the University of Rochester Laboratory for Laser Energetics.
A continuation multilevel Monte Carlo algorithm
Collier, Nathan; Haji Ali, Abdul Lateef; Nobile, Fabio; von Schwerin, Erik; Tempone, Raul
2014-01-01
We propose a novel Continuation Multi Level Monte Carlo (CMLMC) algorithm for weak approximation of stochastic models. The CMLMC algorithm solves the given approximation problem for a sequence of decreasing tolerances, ending when the required error
Simulation and the Monte Carlo method
Rubinstein, Reuven Y
2016-01-01
Simulation and the Monte Carlo Method, Third Edition reflects the latest developments in the field and presents a fully updated and comprehensive account of the major topics that have emerged in Monte Carlo simulation since the publication of the classic First Edition over more than a quarter of a century ago. While maintaining its accessible and intuitive approach, this revised edition features a wealth of up-to-date information that facilitates a deeper understanding of problem solving across a wide array of subject areas, such as engineering, statistics, computer science, mathematics, and the physical and life sciences. The book begins with a modernized introduction that addresses the basic concepts of probability, Markov processes, and convex optimization. Subsequent chapters discuss the dramatic changes that have occurred in the field of the Monte Carlo method, with coverage of many modern topics including: Markov Chain Monte Carlo, variance reduction techniques such as the transform likelihood ratio...
Hybrid Monte Carlo methods in computational finance
Leitao Rodriguez, A.
2017-01-01
Monte Carlo methods are highly appreciated and intensively employed in computational finance in the context of financial derivatives valuation or risk management. The method offers valuable advantages like flexibility, easy interpretation and straightforward implementation. Furthermore, the
Bartalini, P.; Kryukov, A.; Selyuzhenkov, Ilya V.; Sherstnev, A.; Vologdin, A.
2004-01-01
We present the Monte-Carlo events Data Base (MCDB) project and its development plans. MCDB facilitates communication between authors of Monte-Carlo generators and experimental users. It also provides a convenient book-keeping and an easy access to generator level samples. The first release of MCDB is now operational for the CMS collaboration. In this paper we review the main ideas behind MCDB and discuss future plans to develop this Data Base further within the CERN LCG framework.
Multilevel Monte Carlo in Approximate Bayesian Computation
Jasra, Ajay
2017-02-13
In the following article we consider approximate Bayesian computation (ABC) inference. We introduce a method for numerically approximating ABC posteriors using the multilevel Monte Carlo (MLMC). A sequential Monte Carlo version of the approach is developed and it is shown under some assumptions that for a given level of mean square error, this method for ABC has a lower cost than i.i.d. sampling from the most accurate ABC approximation. Several numerical examples are given.
Monte Carlo method applied to medical physics
International Nuclear Information System (INIS)
Oliveira, C.; Goncalves, I.F.; Chaves, A.; Lopes, M.C.; Teixeira, N.; Matos, B.; Goncalves, I.C.; Ramalho, A.; Salgado, J.
2000-01-01
The main application of the Monte Carlo method to medical physics is dose calculation. This paper shows some results of two dose calculation studies and two other different applications: optimisation of neutron field for Boron Neutron Capture Therapy and optimization of a filter for a beam tube for several purposes. The time necessary for Monte Carlo calculations - the highest boundary for its intensive utilisation - is being over-passed with faster and cheaper computers. (author)
Monte carlo sampling of fission multiplicity.
Energy Technology Data Exchange (ETDEWEB)
Hendricks, J. S. (John S.)
2004-01-01
Two new methods have been developed for fission multiplicity modeling in Monte Carlo calculations. The traditional method of sampling neutron multiplicity from fission is to sample the number of neutrons above or below the average. For example, if there are 2.7 neutrons per fission, three would be chosen 70% of the time and two would be chosen 30% of the time. For many applications, particularly {sup 3}He coincidence counting, a better estimate of the true number of neutrons per fission is required. Generally, this number is estimated by sampling a Gaussian distribution about the average. However, because the tail of the Gaussian distribution is negative and negative neutrons cannot be produced, a slight positive bias can be found in the average value. For criticality calculations, the result of rejecting the negative neutrons is an increase in k{sub eff} of 0.1% in some cases. For spontaneous fission, where the average number of neutrons emitted from fission is low, the error also can be unacceptably large. If the Gaussian width approaches the average number of fissions, 10% too many fission neutrons are produced by not treating the negative Gaussian tail adequately. The first method to treat the Gaussian tail is to determine a correction offset, which then is subtracted from all sampled values of the number of neutrons produced. This offset depends on the average value for any given fission at any energy and must be computed efficiently at each fission from the non-integrable error function. The second method is to determine a corrected zero point so that all neutrons sampled between zero and the corrected zero point are killed to compensate for the negative Gaussian tail bias. Again, the zero point must be computed efficiently at each fission. Both methods give excellent results with a negligible computing time penalty. It is now possible to include the full effects of fission multiplicity without the negative Gaussian tail bias.
A systematic framework for Monte Carlo simulation of remote sensing errors map in carbon assessments
S. Healey; P. Patterson; S. Urbanski
2014-01-01
Remotely sensed observations can provide unique perspective on how management and natural disturbance affect carbon stocks in forests. However, integration of these observations into formal decision support will rely upon improved uncertainty accounting. Monte Carlo (MC) simulations offer a practical, empirical method of accounting for potential remote sensing errors...
An order αs Monte Carlo calculation of hadronic double photon production
International Nuclear Information System (INIS)
Owens, J.F.
1992-01-01
The results of an order α s calculation of hadronic double photon production are discussed and compared with data from both colliding beam and fixed target experiments. The calculation utilizes a combination of analytic and Monte Carlo integration methods which make it easy to calculate a variety of observables and impose experimental cuts. (author) 8 refs.; 2 figs
Transmedia Narrative in the Era of the Social mobbile. Carlos, King Emperor
Directory of Open Access Journals (Sweden)
José L. CARREÑO VILLADA
2016-06-01
Full Text Available Transmedia narratives are an integral part of mobile communication and are becoming one of the most recurrent when presenting a new audiovisual format forms. Carlos, King Emperor series makes use of transmedia storytelling to reach the user and interact with it through the different elements of your macro narrative universe, elements such as video game or profiles on social networks.
Recent Developments in Real and Harmonic Analysis In Honor of Carlos Segovia
Cabrelli, Carlos A
2008-01-01
Featuring a collection of invited chapters dedicated to Carlos Segovia, this volume examines the developments in real and harmonic analysis. It includes topics such as: Vector-valued singular integral equations; Harmonic analysis related to Hermite expansions; Gas flow in porous media; and, Global well-posedness of the KPI Equation
CMS Monte Carlo production in the WLCG computing grid
International Nuclear Information System (INIS)
Hernandez, J M; Kreuzer, P; Hof, C; Khomitch, A; Mohapatra, A; Filippis, N D; Pompili, A; My, S; Abbrescia, M; Maggi, G; Donvito, G; Weirdt, S D; Maes, J; Mulders, P v; Villella, I; Wakefield, S; Guan, W; Fanfani, A; Evans, D; Flossdorf, A
2008-01-01
Monte Carlo production in CMS has received a major boost in performance and scale since the past CHEP06 conference. The production system has been re-engineered in order to incorporate the experience gained in running the previous system and to integrate production with the new CMS event data model, data management system and data processing framework. The system is interfaced to the two major computing Grids used by CMS, the LHC Computing Grid (LCG) and the Open Science Grid (OSG). Operational experience and integration aspects of the new CMS Monte Carlo production system is presented together with an analysis of production statistics. The new system automatically handles job submission, resource monitoring, job queuing, job distribution according to the available resources, data merging, registration of data into the data bookkeeping, data location, data transfer and placement systems. Compared to the previous production system automation, reliability and performance have been considerably improved. A more efficient use of computing resources and a better handling of the inherent Grid unreliability have resulted in an increase of production scale by about an order of magnitude, capable of running in parallel at the order of ten thousand jobs and yielding more than two million events per day
Smoothing the payoff for efficient computation of Basket option prices
Bayer, Christian
2017-07-22
We consider the problem of pricing basket options in a multivariate Black–Scholes or Variance-Gamma model. From a numerical point of view, pricing such options corresponds to moderate and high-dimensional numerical integration problems with non-smooth integrands. Due to this lack of regularity, higher order numerical integration techniques may not be directly available, requiring the use of methods like Monte Carlo specifically designed to work for non-regular problems. We propose to use the inherent smoothing property of the density of the underlying in the above models to mollify the payoff function by means of an exact conditional expectation. The resulting conditional expectation is unbiased and yields a smooth integrand, which is amenable to the efficient use of adaptive sparse-grid cubature. Numerical examples indicate that the high-order method may perform orders of magnitude faster than Monte Carlo or Quasi Monte Carlo methods in dimensions up to 35.
MCB. A continuous energy Monte Carlo burnup simulation code
International Nuclear Information System (INIS)
Cetnar, J.; Wallenius, J.; Gudowski, W.
1999-01-01
A code for integrated simulation of neutrinos and burnup based upon continuous energy Monte Carlo techniques and transmutation trajectory analysis has been developed. Being especially well suited for studies of nuclear waste transmutation systems, the code is an extension of the well validated MCNP transport program of Los Alamos National Laboratory. Among the advantages of the code (named MCB) is a fully integrated data treatment combined with a time-stepping routine that automatically corrects for burnup dependent changes in reaction rates, neutron multiplication, material composition and self-shielding. Fission product yields are treated as continuous functions of incident neutron energy, using a non-equilibrium thermodynamical model of the fission process. In the present paper a brief description of the code and applied methods are given. (author)
R and D on automatic modeling methods for Monte Carlo codes FLUKA
International Nuclear Information System (INIS)
Wang Dianxi; Hu Liqin; Wang Guozhong; Zhao Zijia; Nie Fanzhi; Wu Yican; Long Pengcheng
2013-01-01
FLUKA is a fully integrated particle physics Monte Carlo simulation package. It is necessary to create the geometry models before calculation. However, it is time- consuming and error-prone to describe the geometry models manually. This study developed an automatic modeling method which could automatically convert computer-aided design (CAD) geometry models into FLUKA models. The conversion program was integrated into CAD/image-based automatic modeling program for nuclear and radiation transport simulation (MCAM). Its correctness has been demonstrated. (authors)
Parallel Monte Carlo simulations on an ARC-enabled computing grid
International Nuclear Information System (INIS)
Nilsen, Jon K; Samset, Bjørn H
2011-01-01
Grid computing opens new possibilities for running heavy Monte Carlo simulations of physical systems in parallel. The presentation gives an overview of GaMPI, a system for running an MPI-based random walker simulation on grid resources. Integrating the ARC middleware and the new storage system Chelonia with the Ganga grid job submission and control system, we show that MPI jobs can be run on a world-wide computing grid with good performance and promising scaling properties. Results for relatively communication-heavy Monte Carlo simulations run on multiple heterogeneous, ARC-enabled computing clusters in several countries are presented.
Advantages of Analytical Transformations in Monte Carlo Methods for Radiation Transport
International Nuclear Information System (INIS)
McKinley, M S; Brooks III, E D; Daffin, F
2004-01-01
Monte Carlo methods for radiation transport typically attempt to solve an integral by directly sampling analog or weighted particles, which are treated as physical entities. Improvements to the methods involve better sampling, probability games or physical intuition about the problem. We show that significant improvements can be achieved by recasting the equations with an analytical transform to solve for new, non-physical entities or fields. This paper looks at one such transform, the difference formulation for thermal photon transport, showing a significant advantage for Monte Carlo solution of the equations for time dependent transport. Other related areas are discussed that may also realize significant benefits from similar analytical transformations
Successful vectorization - reactor physics Monte Carlo code
International Nuclear Information System (INIS)
Martin, W.R.
1989-01-01
Most particle transport Monte Carlo codes in use today are based on the ''history-based'' algorithm, wherein one particle history at a time is simulated. Unfortunately, the ''history-based'' approach (present in all Monte Carlo codes until recent years) is inherently scalar and cannot be vectorized. In particular, the history-based algorithm cannot take advantage of vector architectures, which characterize the largest and fastest computers at the current time, vector supercomputers such as the Cray X/MP or IBM 3090/600. However, substantial progress has been made in recent years in developing and implementing a vectorized Monte Carlo algorithm. This algorithm follows portions of many particle histories at the same time and forms the basis for all successful vectorized Monte Carlo codes that are in use today. This paper describes the basic vectorized algorithm along with descriptions of several variations that have been developed by different researchers for specific applications. These applications have been mainly in the areas of neutron transport in nuclear reactor and shielding analysis and photon transport in fusion plasmas. The relative merits of the various approach schemes will be discussed and the present status of known vectorization efforts will be summarized along with available timing results, including results from the successful vectorization of 3-D general geometry, continuous energy Monte Carlo. (orig.)
Monte Carlo sensitivity analysis of an Eulerian large-scale air pollution model
International Nuclear Information System (INIS)
Dimov, I.; Georgieva, R.; Ostromsky, Tz.
2012-01-01
Variance-based approaches for global sensitivity analysis have been applied and analyzed to study the sensitivity of air pollutant concentrations according to variations of rates of chemical reactions. The Unified Danish Eulerian Model has been used as a mathematical model simulating a remote transport of air pollutants. Various Monte Carlo algorithms for numerical integration have been applied to compute Sobol's global sensitivity indices. A newly developed Monte Carlo algorithm based on Sobol's quasi-random points MCA-MSS has been applied for numerical integration. It has been compared with some existing approaches, namely Sobol's ΛΠ τ sequences, an adaptive Monte Carlo algorithm, the plain Monte Carlo algorithm, as well as, eFAST and Sobol's sensitivity approaches both implemented in SIMLAB software. The analysis and numerical results show advantages of MCA-MSS for relatively small sensitivity indices in terms of accuracy and efficiency. Practical guidelines on the estimation of Sobol's global sensitivity indices in the presence of computational difficulties have been provided. - Highlights: ► Variance-based global sensitivity analysis is performed for the air pollution model UNI-DEM. ► The main effect of input parameters dominates over higher-order interactions. ► Ozone concentrations are influenced mostly by variability of three chemical reactions rates. ► The newly developed MCA-MSS for multidimensional integration is compared with other approaches. ► More precise approaches like MCA-MSS should be applied when the needed accuracy has not been achieved.
Yours in Revolution: Retrofitting Carlos the Jackal
Directory of Open Access Journals (Sweden)
Samuel Thomas
2013-09-01
Full Text Available This paper explores the representation of ‘Carlos the Jackal’, the one-time ‘World’s Most Wanted Man’ and ‘International Face of Terror’ – primarily in cin-ema but also encompassing other forms of popular culture and aspects of Cold War policy-making. At the centre of the analysis is Olivier Assayas’s Carlos (2010, a transnational, five and a half hour film (first screened as a TV mini-series about the life and times of the infamous militant. Concentrating on the var-ious ways in which Assayas expresses a critical preoccupation with names and faces through complex formal composition, the project examines the play of ab-straction and embodiment that emerges from the narrativisation of terrorist vio-lence. Lastly, it seeks to engage with the hidden implications of Carlos in terms of the intertwined trajectories of formal experimentation and revolutionary politics.
Monte Carlo strategies in scientific computing
Liu, Jun S
2008-01-01
This paperback edition is a reprint of the 2001 Springer edition This book provides a self-contained and up-to-date treatment of the Monte Carlo method and develops a common framework under which various Monte Carlo techniques can be "standardized" and compared Given the interdisciplinary nature of the topics and a moderate prerequisite for the reader, this book should be of interest to a broad audience of quantitative researchers such as computational biologists, computer scientists, econometricians, engineers, probabilists, and statisticians It can also be used as the textbook for a graduate-level course on Monte Carlo methods Many problems discussed in the alter chapters can be potential thesis topics for masters’ or PhD students in statistics or computer science departments Jun Liu is Professor of Statistics at Harvard University, with a courtesy Professor appointment at Harvard Biostatistics Department Professor Liu was the recipient of the 2002 COPSS Presidents' Award, the most prestigious one for sta...
Reflections on early Monte Carlo calculations
International Nuclear Information System (INIS)
Spanier, J.
1992-01-01
Monte Carlo methods for solving various particle transport problems developed in parallel with the evolution of increasingly sophisticated computer programs implementing diffusion theory and low-order moments calculations. In these early years, Monte Carlo calculations and high-order approximations to the transport equation were seen as too expensive to use routinely for nuclear design but served as invaluable aids and supplements to design with less expensive tools. The earliest Monte Carlo programs were quite literal; i.e., neutron and other particle random walk histories were simulated by sampling from the probability laws inherent in the physical system without distoration. Use of such analogue sampling schemes resulted in a good deal of time being spent in examining the possibility of lowering the statistical uncertainties in the sample estimates by replacing simple, and intuitively obvious, random variables by those with identical means but lower variances
Monte Carlo simulation of Markov unreliability models
International Nuclear Information System (INIS)
Lewis, E.E.; Boehm, F.
1984-01-01
A Monte Carlo method is formulated for the evaluation of the unrealibility of complex systems with known component failure and repair rates. The formulation is in terms of a Markov process allowing dependences between components to be modeled and computational efficiencies to be achieved in the Monte Carlo simulation. Two variance reduction techniques, forced transition and failure biasing, are employed to increase computational efficiency of the random walk procedure. For an example problem these result in improved computational efficiency by more than three orders of magnitudes over analog Monte Carlo. The method is generalized to treat problems with distributed failure and repair rate data, and a batching technique is introduced and shown to result in substantial increases in computational efficiency for an example problem. A method for separating the variance due to the data uncertainty from that due to the finite number of random walks is presented. (orig.)
Shell model the Monte Carlo way
International Nuclear Information System (INIS)
Ormand, W.E.
1995-01-01
The formalism for the auxiliary-field Monte Carlo approach to the nuclear shell model is presented. The method is based on a linearization of the two-body part of the Hamiltonian in an imaginary-time propagator using the Hubbard-Stratonovich transformation. The foundation of the method, as applied to the nuclear many-body problem, is discussed. Topics presented in detail include: (1) the density-density formulation of the method, (2) computation of the overlaps, (3) the sign of the Monte Carlo weight function, (4) techniques for performing Monte Carlo sampling, and (5) the reconstruction of response functions from an imaginary-time auto-correlation function using MaxEnt techniques. Results obtained using schematic interactions, which have no sign problem, are presented to demonstrate the feasibility of the method, while an extrapolation method for realistic Hamiltonians is presented. In addition, applications at finite temperature are outlined
Shell model the Monte Carlo way
Energy Technology Data Exchange (ETDEWEB)
Ormand, W.E.
1995-03-01
The formalism for the auxiliary-field Monte Carlo approach to the nuclear shell model is presented. The method is based on a linearization of the two-body part of the Hamiltonian in an imaginary-time propagator using the Hubbard-Stratonovich transformation. The foundation of the method, as applied to the nuclear many-body problem, is discussed. Topics presented in detail include: (1) the density-density formulation of the method, (2) computation of the overlaps, (3) the sign of the Monte Carlo weight function, (4) techniques for performing Monte Carlo sampling, and (5) the reconstruction of response functions from an imaginary-time auto-correlation function using MaxEnt techniques. Results obtained using schematic interactions, which have no sign problem, are presented to demonstrate the feasibility of the method, while an extrapolation method for realistic Hamiltonians is presented. In addition, applications at finite temperature are outlined.
Current and future applications of Monte Carlo
International Nuclear Information System (INIS)
Zaidi, H.
2003-01-01
Full text: The use of radionuclides in medicine has a long history and encompasses a large area of applications including diagnosis and radiation treatment of cancer patients using either external or radionuclide radiotherapy. The 'Monte Carlo method'describes a very broad area of science, in which many processes, physical systems, and phenomena are simulated by statistical methods employing random numbers. The general idea of Monte Carlo analysis is to create a model, which is as similar as possible to the real physical system of interest, and to create interactions within that system based on known probabilities of occurrence, with random sampling of the probability density functions (pdfs). As the number of individual events (called 'histories') is increased, the quality of the reported average behavior of the system improves, meaning that the statistical uncertainty decreases. The use of the Monte Carlo method to simulate radiation transport has become the most accurate means of predicting absorbed dose distributions and other quantities of interest in the radiation treatment of cancer patients using either external or radionuclide radiotherapy. The same trend has occurred for the estimation of the absorbed dose in diagnostic procedures using radionuclides as well as the assessment of image quality and quantitative accuracy of radionuclide imaging. As a consequence of this generalized use, many questions are being raised primarily about the need and potential of Monte Carlo techniques, but also about how accurate it really is, what would it take to apply it clinically and make it available widely to the nuclear medicine community at large. Many of these questions will be answered when Monte Carlo techniques are implemented and used for more routine calculations and for in-depth investigations. In this paper, the conceptual role of the Monte Carlo method is briefly introduced and followed by a survey of its different applications in diagnostic and therapeutic
Monte Carlo method for array criticality calculations
International Nuclear Information System (INIS)
Dickinson, D.; Whitesides, G.E.
1976-01-01
The Monte Carlo method for solving neutron transport problems consists of mathematically tracing paths of individual neutrons collision by collision until they are lost by absorption or leakage. The fate of the neutron after each collision is determined by the probability distribution functions that are formed from the neutron cross-section data. These distributions are sampled statistically to establish the successive steps in the neutron's path. The resulting data, accumulated from following a large number of batches, are analyzed to give estimates of k/sub eff/ and other collision-related quantities. The use of electronic computers to produce the simulated neutron histories, initiated at Los Alamos Scientific Laboratory, made the use of the Monte Carlo method practical for many applications. In analog Monte Carlo simulation, the calculation follows the physical events of neutron scattering, absorption, and leakage. To increase calculational efficiency, modifications such as the use of statistical weights are introduced. The Monte Carlo method permits the use of a three-dimensional geometry description and a detailed cross-section representation. Some of the problems in using the method are the selection of the spatial distribution for the initial batch, the preparation of the geometry description for complex units, and the calculation of error estimates for region-dependent quantities such as fluxes. The Monte Carlo method is especially appropriate for criticality safety calculations since it permits an accurate representation of interacting units of fissile material. Dissimilar units, units of complex shape, moderators between units, and reflected arrays may be calculated. Monte Carlo results must be correlated with relevant experimental data, and caution must be used to ensure that a representative set of neutron histories is produced
Monte Carlo simulation applied to alpha spectrometry
International Nuclear Information System (INIS)
Baccouche, S.; Gharbi, F.; Trabelsi, A.
2007-01-01
Alpha particle spectrometry is a widely-used analytical method, in particular when we deal with pure alpha emitting radionuclides. Monte Carlo simulation is an adequate tool to investigate the influence of various phenomena on this analytical method. We performed an investigation of those phenomena using the simulation code GEANT of CERN. The results concerning the geometrical detection efficiency in different measurement geometries agree with analytical calculations. This work confirms that Monte Carlo simulation of solid angle of detection is a very useful tool to determine with very good accuracy the detection efficiency.
Simplified monte carlo simulation for Beijing spectrometer
International Nuclear Information System (INIS)
Wang Taijie; Wang Shuqin; Yan Wuguang; Huang Yinzhi; Huang Deqiang; Lang Pengfei
1986-01-01
The Monte Carlo method based on the functionization of the performance of detectors and the transformation of values of kinematical variables into ''measured'' ones by means of smearing has been used to program the Monte Carlo simulation of the performance of the Beijing Spectrometer (BES) in FORTRAN language named BESMC. It can be used to investigate the multiplicity, the particle type, and the distribution of four-momentum of the final states of electron-positron collision, and also the response of the BES to these final states. Thus, it provides a measure to examine whether the overall design of the BES is reasonable and to decide the physical topics of the BES
Self-learning Monte Carlo (dynamical biasing)
International Nuclear Information System (INIS)
Matthes, W.
1981-01-01
In many applications the histories of a normal Monte Carlo game rarely reach the target region. An approximate knowledge of the importance (with respect to the target) may be used to guide the particles more frequently into the target region. A Monte Carlo method is presented in which each history contributes to update the importance field such that eventually most target histories are sampled. It is a self-learning method in the sense that the procedure itself: (a) learns which histories are important (reach the target) and increases their probability; (b) reduces the probabilities of unimportant histories; (c) concentrates gradually on the more important target histories. (U.K.)
Burnup calculations using Monte Carlo method
International Nuclear Information System (INIS)
Ghosh, Biplab; Degweker, S.B.
2009-01-01
In the recent years, interest in burnup calculations using Monte Carlo methods has gained momentum. Previous burn up codes have used multigroup transport theory based calculations followed by diffusion theory based core calculations for the neutronic portion of codes. The transport theory methods invariably make approximations with regard to treatment of the energy and angle variables involved in scattering, besides approximations related to geometry simplification. Cell homogenisation to produce diffusion, theory parameters adds to these approximations. Moreover, while diffusion theory works for most reactors, it does not produce accurate results in systems that have strong gradients, strong absorbers or large voids. Also, diffusion theory codes are geometry limited (rectangular, hexagonal, cylindrical, and spherical coordinates). Monte Carlo methods are ideal to solve very heterogeneous reactors and/or lattices/assemblies in which considerable burnable poisons are used. The key feature of this approach is that Monte Carlo methods permit essentially 'exact' modeling of all geometrical detail, without resort to ene and spatial homogenization of neutron cross sections. Monte Carlo method would also be better for in Accelerator Driven Systems (ADS) which could have strong gradients due to the external source and a sub-critical assembly. To meet the demand for an accurate burnup code, we have developed a Monte Carlo burnup calculation code system in which Monte Carlo neutron transport code is coupled with a versatile code (McBurn) for calculating the buildup and decay of nuclides in nuclear materials. McBurn is developed from scratch by the authors. In this article we will discuss our effort in developing the continuous energy Monte Carlo burn-up code, McBurn. McBurn is intended for entire reactor core as well as for unit cells and assemblies. Generally, McBurn can do burnup of any geometrical system which can be handled by the underlying Monte Carlo transport code
Improvements for Monte Carlo burnup calculation
Energy Technology Data Exchange (ETDEWEB)
Shenglong, Q.; Dong, Y.; Danrong, S.; Wei, L., E-mail: qiangshenglong@tsinghua.org.cn, E-mail: d.yao@npic.ac.cn, E-mail: songdr@npic.ac.cn, E-mail: luwei@npic.ac.cn [Nuclear Power Inst. of China, Cheng Du, Si Chuan (China)
2015-07-01
Monte Carlo burnup calculation is development trend of reactor physics, there would be a lot of work to be done for engineering applications. Based on Monte Carlo burnup code MOI, non-fuel burnup calculation methods and critical search suggestions will be mentioned in this paper. For non-fuel burnup, mixed burnup mode will improve the accuracy of burnup calculation and efficiency. For critical search of control rod position, a new method called ABN based on ABA which used by MC21 will be proposed for the first time in this paper. (author)
A keff calculation method by Monte Carlo
International Nuclear Information System (INIS)
Shen, H; Wang, K.
2008-01-01
The effective multiplication factor (k eff ) is defined as the ratio between the number of neutrons in successive generations, which definition is adopted by most Monte Carlo codes (e.g. MCNP). Also, it can be thought of as the ratio of the generation rate of neutrons by the sum of the leakage rate and the absorption rate, which should exclude the effect of the neutron reaction such as (n, 2n) and (n, 3n). This article discusses the Monte Carlo method for k eff calculation based on the second definition. A new code has been developed and the results are presented. (author)
Monte Carlo electron/photon transport
International Nuclear Information System (INIS)
Mack, J.M.; Morel, J.E.; Hughes, H.G.
1985-01-01
A review of nonplasma coupled electron/photon transport using Monte Carlo method is presented. Remarks are mainly restricted to linerarized formalisms at electron energies from 1 keV to 1000 MeV. Applications involving pulse-height estimation, transport in external magnetic fields, and optical Cerenkov production are discussed to underscore the importance of this branch of computational physics. Advances in electron multigroup cross-section generation is reported, and its impact on future code development assessed. Progress toward the transformation of MCNP into a generalized neutral/charged-particle Monte Carlo code is described. 48 refs
Monte Carlo simulation of neutron scattering instruments
International Nuclear Information System (INIS)
Seeger, P.A.
1995-01-01
A library of Monte Carlo subroutines has been developed for the purpose of design of neutron scattering instruments. Using small-angle scattering as an example, the philosophy and structure of the library are described and the programs are used to compare instruments at continuous wave (CW) and long-pulse spallation source (LPSS) neutron facilities. The Monte Carlo results give a count-rate gain of a factor between 2 and 4 using time-of-flight analysis. This is comparable to scaling arguments based on the ratio of wavelength bandwidth to resolution width
Monte Carlo applications to radiation shielding problems
International Nuclear Information System (INIS)
Subbaiah, K.V.
2009-01-01
Monte Carlo methods are a class of computational algorithms that rely on repeated random sampling of physical and mathematical systems to compute their results. However, basic concepts of MC are both simple and straightforward and can be learned by using a personal computer. Uses of Monte Carlo methods require large amounts of random numbers, and it was their use that spurred the development of pseudorandom number generators, which were far quicker to use than the tables of random numbers which had been previously used for statistical sampling. In Monte Carlo simulation of radiation transport, the history (track) of a particle is viewed as a random sequence of free flights that end with an interaction event where the particle changes its direction of movement, loses energy and, occasionally, produces secondary particles. The Monte Carlo simulation of a given experimental arrangement (e.g., an electron beam, coming from an accelerator and impinging on a water phantom) consists of the numerical generation of random histories. To simulate these histories we need an interaction model, i.e., a set of differential cross sections (DCS) for the relevant interaction mechanisms. The DCSs determine the probability distribution functions (pdf) of the random variables that characterize a track; 1) free path between successive interaction events, 2) type of interaction taking place and 3) energy loss and angular deflection in a particular event (and initial state of emitted secondary particles, if any). Once these pdfs are known, random histories can be generated by using appropriate sampling methods. If the number of generated histories is large enough, quantitative information on the transport process may be obtained by simply averaging over the simulated histories. The Monte Carlo method yields the same information as the solution of the Boltzmann transport equation, with the same interaction model, but is easier to implement. In particular, the simulation of radiation
Simulation of transport equations with Monte Carlo
International Nuclear Information System (INIS)
Matthes, W.
1975-09-01
The main purpose of the report is to explain the relation between the transport equation and the Monte Carlo game used for its solution. The introduction of artificial particles carrying a weight provides one with high flexibility in constructing many different games for the solution of the same equation. This flexibility opens a way to construct a Monte Carlo game for the solution of the adjoint transport equation. Emphasis is laid mostly on giving a clear understanding of what to do and not on the details of how to do a specific game
Monte Carlo dose distributions for radiosurgery
International Nuclear Information System (INIS)
Perucha, M.; Leal, A.; Rincon, M.; Carrasco, E.
2001-01-01
The precision of Radiosurgery Treatment planning systems is limited by the approximations of their algorithms and by their dosimetrical input data. This fact is especially important in small fields. However, the Monte Carlo methods is an accurate alternative as it considers every aspect of particle transport. In this work an acoustic neurinoma is studied by comparing the dose distribution of both a planning system and Monte Carlo. Relative shifts have been measured and furthermore, Dose-Volume Histograms have been calculated for target and adjacent organs at risk. (orig.)
Modelling of electron contamination in clinical photon beams for Monte Carlo dose calculation
International Nuclear Information System (INIS)
Yang, J; Li, J S; Qin, L; Xiong, W; Ma, C-M
2004-01-01
The purpose of this work is to model electron contamination in clinical photon beams and to commission the source model using measured data for Monte Carlo treatment planning. In this work, a planar source is used to represent the contaminant electrons at a plane above the upper jaws. The source size depends on the dimensions of the field size at the isocentre. The energy spectra of the contaminant electrons are predetermined using Monte Carlo simulations for photon beams from different clinical accelerators. A 'random creep' method is employed to derive the weight of the electron contamination source by matching Monte Carlo calculated monoenergetic photon and electron percent depth-dose (PDD) curves with measured PDD curves. We have integrated this electron contamination source into a previously developed multiple source model and validated the model for photon beams from Siemens PRIMUS accelerators. The EGS4 based Monte Carlo user code BEAM and MCSIM were used for linac head simulation and dose calculation. The Monte Carlo calculated dose distributions were compared with measured data. Our results showed good agreement (less than 2% or 2 mm) for 6, 10 and 18 MV photon beams
Monte Carlo Method with Heuristic Adjustment for Irregularly Shaped Food Product Volume Measurement
Directory of Open Access Journals (Sweden)
Joko Siswantoro
2014-01-01
Full Text Available Volume measurement plays an important role in the production and processing of food products. Various methods have been proposed to measure the volume of food products with irregular shapes based on 3D reconstruction. However, 3D reconstruction comes with a high-priced computational cost. Furthermore, some of the volume measurement methods based on 3D reconstruction have a low accuracy. Another method for measuring volume of objects uses Monte Carlo method. Monte Carlo method performs volume measurements using random points. Monte Carlo method only requires information regarding whether random points fall inside or outside an object and does not require a 3D reconstruction. This paper proposes volume measurement using a computer vision system for irregularly shaped food products without 3D reconstruction based on Monte Carlo method with heuristic adjustment. Five images of food product were captured using five cameras and processed to produce binary images. Monte Carlo integration with heuristic adjustment was performed to measure the volume based on the information extracted from binary images. The experimental results show that the proposed method provided high accuracy and precision compared to the water displacement method. In addition, the proposed method is more accurate and faster than the space carving method.
Monte Carlo method with heuristic adjustment for irregularly shaped food product volume measurement.
Siswantoro, Joko; Prabuwono, Anton Satria; Abdullah, Azizi; Idrus, Bahari
2014-01-01
Volume measurement plays an important role in the production and processing of food products. Various methods have been proposed to measure the volume of food products with irregular shapes based on 3D reconstruction. However, 3D reconstruction comes with a high-priced computational cost. Furthermore, some of the volume measurement methods based on 3D reconstruction have a low accuracy. Another method for measuring volume of objects uses Monte Carlo method. Monte Carlo method performs volume measurements using random points. Monte Carlo method only requires information regarding whether random points fall inside or outside an object and does not require a 3D reconstruction. This paper proposes volume measurement using a computer vision system for irregularly shaped food products without 3D reconstruction based on Monte Carlo method with heuristic adjustment. Five images of food product were captured using five cameras and processed to produce binary images. Monte Carlo integration with heuristic adjustment was performed to measure the volume based on the information extracted from binary images. The experimental results show that the proposed method provided high accuracy and precision compared to the water displacement method. In addition, the proposed method is more accurate and faster than the space carving method.
Fast sequential Monte Carlo methods for counting and optimization
Rubinstein, Reuven Y; Vaisman, Radislav
2013-01-01
A comprehensive account of the theory and application of Monte Carlo methods Based on years of research in efficient Monte Carlo methods for estimation of rare-event probabilities, counting problems, and combinatorial optimization, Fast Sequential Monte Carlo Methods for Counting and Optimization is a complete illustration of fast sequential Monte Carlo techniques. The book provides an accessible overview of current work in the field of Monte Carlo methods, specifically sequential Monte Carlo techniques, for solving abstract counting and optimization problems. Written by authorities in the
Monte Carlo MP2 on Many Graphical Processing Units.
Doran, Alexander E; Hirata, So
2016-10-11
In the Monte Carlo second-order many-body perturbation (MC-MP2) method, the long sum-of-product matrix expression of the MP2 energy, whose literal evaluation may be poorly scalable, is recast into a single high-dimensional integral of functions of electron pair coordinates, which is evaluated by the scalable method of Monte Carlo integration. The sampling efficiency is further accelerated by the redundant-walker algorithm, which allows a maximal reuse of electron pairs. Here, a multitude of graphical processing units (GPUs) offers a uniquely ideal platform to expose multilevel parallelism: fine-grain data-parallelism for the redundant-walker algorithm in which millions of threads compute and share orbital amplitudes on each GPU; coarse-grain instruction-parallelism for near-independent Monte Carlo integrations on many GPUs with few and infrequent interprocessor communications. While the efficiency boost by the redundant-walker algorithm on central processing units (CPUs) grows linearly with the number of electron pairs and tends to saturate when the latter exceeds the number of orbitals, on a GPU it grows quadratically before it increases linearly and then eventually saturates at a much larger number of pairs. This is because the orbital constructions are nearly perfectly parallelized on a GPU and thus completed in a near-constant time regardless of the number of pairs. In consequence, an MC-MP2/cc-pVDZ calculation of a benzene dimer is 2700 times faster on 256 GPUs (using 2048 electron pairs) than on two CPUs, each with 8 cores (which can use only up to 256 pairs effectively). We also numerically determine that the cost to achieve a given relative statistical uncertainty in an MC-MP2 energy increases as O(n 3 ) or better with system size n, which may be compared with the O(n 5 ) scaling of the conventional implementation of deterministic MP2. We thus establish the scalability of MC-MP2 with both system and computer sizes.
Specialized Monte Carlo codes versus general-purpose Monte Carlo codes
International Nuclear Information System (INIS)
Moskvin, Vadim; DesRosiers, Colleen; Papiez, Lech; Lu, Xiaoyi
2002-01-01
The possibilities of Monte Carlo modeling for dose calculations and optimization treatment are quite limited in radiation oncology applications. The main reason is that the Monte Carlo technique for dose calculations is time consuming while treatment planning may require hundreds of possible cases of dose simulations to be evaluated for dose optimization. The second reason is that general-purpose codes widely used in practice, require an experienced user to customize them for calculations. This paper discusses the concept of Monte Carlo code design that can avoid the main problems that are preventing wide spread use of this simulation technique in medical physics. (authors)
Application of the Monte Carlo method to diagnostic radiology
International Nuclear Information System (INIS)
Persliden, J.
1986-01-01
A Monte Carlo program for photon transport is developed. The program is used to investigate the energy imparted to water slabs (simulating patients), and the related backscattered and transmitted energies as functions of primary photon energy and water slab thickness. The accuracy of the results depends on the cross-section data for the probabilities of the various interactions in the slab and on the physical quantity calculated. Backscattered energy fractions can vary by as much as 10-20 %, using different sets of published data for the photoelectric cross section while imparted fractions are only slightly affected. The results are used to calculate improved conversion factors for determining the energy imparted to the patient in X-ray diagnostic examinations from measurements of the air collision kerma integrated over beam area. The small angle distribution of scattered photons transmitted through a water slab, relevant to problems of image quality, is calculated taking into account the diffraction phenomena of liquid water. The calculations are performed with a collision density estimator. This estimator makes it possible to calculate important physical quantities which are virtually impracticable to assess with the Monte Carlo codes commonly used in medical physics or in experiments. With the collision density estimator, the influence of air gaps on the reduction of scattered radiation is investigated for different detectors, field areas and primary X-ray spectra. Contrast degradation and contrast improvement factors are given as functions of field area for various air gaps. (With 105 refs.) (author)
Application of Monte Carlo codes to neutron dosimetry
International Nuclear Information System (INIS)
Prevo, C.T.
1982-01-01
In neutron dosimetry, calculations enable one to predict the response of a proposed dosimeter before effort is expended to design and fabricate the neutron instrument or dosimeter. The nature of these calculations requires the use of computer programs that implement mathematical models representing the transport of radiation through attenuating media. Numerical, and in some cases analytical, solutions of these models can be obtained by one of several calculational techniques. All of these techniques are either approximate solutions to the well-known Boltzmann equation or are based on kernels obtained from solutions to the equation. The Boltzmann equation is a precise mathematical description of neutron behavior in terms of position, energy, direction, and time. The solution of the transport equation represents the average value of the particle flux density. Integral forms of the transport equation are generally regarded as the formal basis for the Monte Carlo method, the results of which can in principle be made to approach the exact solution. This paper focuses on the Monte Carlo technique
KAMCCO, a reactor physics Monte Carlo neutron transport code
International Nuclear Information System (INIS)
Arnecke, G.; Borgwaldt, H.; Brandl, V.; Lalovic, M.
1976-06-01
KAMCCO is a 3-dimensional reactor Monte Carlo code for fast neutron physics problems. Two options are available for the solution of 1) the inhomogeneous time-dependent neutron transport equation (census time scheme), and 2) the homogeneous static neutron transport equation (generation cycle scheme). The user defines the desired output, e.g. estimates of reaction rates or neutron flux integrated over specified volumes in phase space and time intervals. Such primary quantities can be arbitrarily combined, also ratios of these quantities can be estimated with their errors. The Monte Carlo techniques are mostly analogue (exceptions: Importance sampling for collision processes, ELP/MELP, Russian roulette and splitting). Estimates are obtained from the collision and track length estimators. Elastic scattering takes into account first order anisotropy in the center of mass system. Inelastic scattering is processed via the evaporation model or via the excitation of discrete levels. For the calculation of cross sections, the energy is treated as a continuous variable. They are computed by a) linear interpolation, b) from optionally Doppler broadened single level Breit-Wigner resonances or c) from probability tables (in the region of statistically distributed resonances). (orig.) [de
International Nuclear Information System (INIS)
Greensite, J.
1984-03-01
It is likely that the quark confinement mechanism at large N should be understood purely in terms of high-order planar Feynman diagrams; in particular, the center of the gauge group can play no role whatever. The author considers the diagrammatic expansion of loop integrals in planar wrong-sign phi4 theory. It is shown that the sum of all fishnet diagrams contributing to the loop can be expressed as the grand partition function of an unusual gas, whose dynamics can be simulated on a computer. The 'molecules' of this gas correspond to vertices of the position-space diagrams, the molecular interactions are determined by the propagators, and the coupling constant plays the role of a chemical potential. The most remarkable feature of this gas is the existence of a critical coupling gsub(c), where string formation takes place. As g → gsub(c) the fishnet vertices tend to cluster around the minimal surface of the loop, thereby forming a string. The role of asymptotic freedom in bringing the coupling to the critical point, and the connection to the Polyakov string, are also discussed. In the Hamiltonian formulation, a very straightforward explanation of quark confinement is presented. (Auth.)
Contemporary computational mathematics a celebration of the 80th birthday of Ian Sloan
Kuo, Frances; Woźniakowski, Henryk
2018-01-01
This book is a tribute to Professor Ian Hugh Sloan on the occasion of his 80th birthday. It consists of nearly 60 articles written by international leaders in a diverse range of areas in contemporary computational mathematics. These papers highlight the impact and many achievements of Professor Sloan in his distinguished academic career. The book also presents state of the art knowledge in many computational fields such as quasi-Monte Carlo and Monte Carlo methods for multivariate integration, multi-level methods, finite element methods, uncertainty quantification, spherical designs and integration on the sphere, approximation and interpolation of multivariate functions, oscillatory integrals, and in general in information-based complexity and tractability, as well as in a range of other topics. The book also tells the life story of the renowned mathematician, family man, colleague and friend, who has been an inspiration to many of us. The reader may especially enjoy the story from the perspective of his fami...
Parallel processing Monte Carlo radiation transport codes
International Nuclear Information System (INIS)
McKinney, G.W.
1994-01-01
Issues related to distributed-memory multiprocessing as applied to Monte Carlo radiation transport are discussed. Measurements of communication overhead are presented for the radiation transport code MCNP which employs the communication software package PVM, and average efficiency curves are provided for a homogeneous virtual machine
Monte Carlo determination of heteroepitaxial misfit structures
DEFF Research Database (Denmark)
Baker, J.; Lindgård, Per-Anker
1996-01-01
We use Monte Carlo simulations to determine the structure of KBr overlayers on a NaCl(001) substrate, a system with large (17%) heteroepitaxial misfit. The equilibrium relaxation structure is determined for films of 2-6 ML, for which extensive helium-atom scattering data exist for comparison...
Juan Carlos D'Olivo: A portrait
Aguilar-Arévalo, Alexis A.
2013-06-01
This report attempts to give a brief bibliographical sketch of the academic life of Juan Carlos D'Olivo, researcher and teacher at the Instituto de Ciencias Nucleares of UNAM, devoted to advancing the fields of High Energy Physics and Astroparticle Physics in Mexico and Latin America.
The Monte Carlo applied for calculation dose
International Nuclear Information System (INIS)
Peixoto, J.E.
1988-01-01
The Monte Carlo method is showed for the calculation of absorbed dose. The trajectory of the photon is traced simulating sucessive interaction between the photon and the substance that consist the human body simulator. The energy deposition in each interaction of the simulator organ or tissue per photon is also calculated. (C.G.C.) [pt
Monte Carlo code for neutron radiography
International Nuclear Information System (INIS)
Milczarek, Jacek J.; Trzcinski, Andrzej; El-Ghany El Abd, Abd; Czachor, Andrzej
2005-01-01
The concise Monte Carlo code, MSX, for simulation of neutron radiography images of non-uniform objects is presented. The possibility of modeling the images of objects with continuous spatial distribution of specific isotopes is included. The code can be used for assessment of the scattered neutron component in neutron radiograms
Monte Carlo code for neutron radiography
Energy Technology Data Exchange (ETDEWEB)
Milczarek, Jacek J. [Institute of Atomic Energy, Swierk, 05-400 Otwock (Poland)]. E-mail: jjmilcz@cyf.gov.pl; Trzcinski, Andrzej [Institute for Nuclear Studies, Swierk, 05-400 Otwock (Poland); El-Ghany El Abd, Abd [Institute of Atomic Energy, Swierk, 05-400 Otwock (Poland); Nuclear Research Center, PC 13759, Cairo (Egypt); Czachor, Andrzej [Institute of Atomic Energy, Swierk, 05-400 Otwock (Poland)
2005-04-21
The concise Monte Carlo code, MSX, for simulation of neutron radiography images of non-uniform objects is presented. The possibility of modeling the images of objects with continuous spatial distribution of specific isotopes is included. The code can be used for assessment of the scattered neutron component in neutron radiograms.
Monte Carlo method in neutron activation analysis
International Nuclear Information System (INIS)
Majerle, M.; Krasa, A.; Svoboda, O.; Wagner, V.; Adam, J.; Peetermans, S.; Slama, O.; Stegajlov, V.I.; Tsupko-Sitnikov, V.M.
2009-01-01
Neutron activation detectors are a useful technique for the neutron flux measurements in spallation experiments. The study of the usefulness and the accuracy of this method at similar experiments was performed with the help of Monte Carlo codes MCNPX and FLUKA
Atomistic Monte Carlo simulation of lipid membranes
DEFF Research Database (Denmark)
Wüstner, Daniel; Sklenar, Heinz
2014-01-01
Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC) simulation of lipid membranes. We provide an introduction...... of local-move MC methods in combination with molecular dynamics simulations, for example, for studying multi-component lipid membranes containing cholesterol....
Computer system for Monte Carlo experimentation
International Nuclear Information System (INIS)
Grier, D.A.
1986-01-01
A new computer system for Monte Carlo Experimentation is presented. The new system speeds and simplifies the process of coding and preparing a Monte Carlo Experiment; it also encourages the proper design of Monte Carlo Experiments, and the careful analysis of the experimental results. A new functional language is the core of this system. Monte Carlo Experiments, and their experimental designs, are programmed in this new language; those programs are compiled into Fortran output. The Fortran output is then compiled and executed. The experimental results are analyzed with a standard statistics package such as Si, Isp, or Minitab or with a user-supplied program. Both the experimental results and the experimental design may be directly loaded into the workspace of those packages. The new functional language frees programmers from many of the details of programming an experiment. Experimental designs such as factorial, fractional factorial, or latin square are easily described by the control structures and expressions of the language. Specific mathematical modes are generated by the routines of the language
Scalable Domain Decomposed Monte Carlo Particle Transport
Energy Technology Data Exchange (ETDEWEB)
O' Brien, Matthew Joseph [Univ. of California, Davis, CA (United States)
2013-12-05
In this dissertation, we present the parallel algorithms necessary to run domain decomposed Monte Carlo particle transport on large numbers of processors (millions of processors). Previous algorithms were not scalable, and the parallel overhead became more computationally costly than the numerical simulation.
Monte Carlo methods beyond detailed balance
Schram, Raoul D.; Barkema, Gerard T.|info:eu-repo/dai/nl/101275080
2015-01-01
Monte Carlo algorithms are nearly always based on the concept of detailed balance and ergodicity. In this paper we focus on algorithms that do not satisfy detailed balance. We introduce a general method for designing non-detailed balance algorithms, starting from a conventional algorithm satisfying
Monte Carlo studies of ZEPLIN III
Dawson, J; Davidge, D C R; Gillespie, J R; Howard, A S; Jones, W G; Joshi, M; Lebedenko, V N; Sumner, T J; Quenby, J J
2002-01-01
A Monte Carlo simulation of a two-phase xenon dark matter detector, ZEPLIN III, has been achieved. Results from the analysis of a simulated data set are presented, showing primary and secondary signal distributions from low energy gamma ray events.
Biases in Monte Carlo eigenvalue calculations
Energy Technology Data Exchange (ETDEWEB)
Gelbard, E.M.
1992-12-01
The Monte Carlo method has been used for many years to analyze the neutronics of nuclear reactors. In fact, as the power of computers has increased the importance of Monte Carlo in neutronics has also increased, until today this method plays a central role in reactor analysis and design. Monte Carlo is used in neutronics for two somewhat different purposes, i.e., (a) to compute the distribution of neutrons in a given medium when the neutron source-density is specified, and (b) to compute the neutron distribution in a self-sustaining chain reaction, in which case the source is determined as the eigenvector of a certain linear operator. In (b), then, the source is not given, but must be computed. In the first case (the ``fixed-source`` case) the Monte Carlo calculation is unbiased. That is to say that, if the calculation is repeated (``replicated``) over and over, with independent random number sequences for each replica, then averages over all replicas will approach the correct neutron distribution as the number of replicas goes to infinity. Unfortunately, the computation is not unbiased in the second case, which we discuss here.
Biases in Monte Carlo eigenvalue calculations
Energy Technology Data Exchange (ETDEWEB)
Gelbard, E.M.
1992-01-01
The Monte Carlo method has been used for many years to analyze the neutronics of nuclear reactors. In fact, as the power of computers has increased the importance of Monte Carlo in neutronics has also increased, until today this method plays a central role in reactor analysis and design. Monte Carlo is used in neutronics for two somewhat different purposes, i.e., (a) to compute the distribution of neutrons in a given medium when the neutron source-density is specified, and (b) to compute the neutron distribution in a self-sustaining chain reaction, in which case the source is determined as the eigenvector of a certain linear operator. In (b), then, the source is not given, but must be computed. In the first case (the fixed-source'' case) the Monte Carlo calculation is unbiased. That is to say that, if the calculation is repeated ( replicated'') over and over, with independent random number sequences for each replica, then averages over all replicas will approach the correct neutron distribution as the number of replicas goes to infinity. Unfortunately, the computation is not unbiased in the second case, which we discuss here.
Dynamic bounds coupled with Monte Carlo simulations
Energy Technology Data Exchange (ETDEWEB)
Rajabalinejad, M., E-mail: M.Rajabalinejad@tudelft.n [Faculty of Civil Engineering, Delft University of Technology, Delft (Netherlands); Meester, L.E. [Delft Institute of Applied Mathematics, Delft University of Technology, Delft (Netherlands); Gelder, P.H.A.J.M. van; Vrijling, J.K. [Faculty of Civil Engineering, Delft University of Technology, Delft (Netherlands)
2011-02-15
For the reliability analysis of engineering structures a variety of methods is known, of which Monte Carlo (MC) simulation is widely considered to be among the most robust and most generally applicable. To reduce simulation cost of the MC method, variance reduction methods are applied. This paper describes a method to reduce the simulation cost even further, while retaining the accuracy of Monte Carlo, by taking into account widely present monotonicity. For models exhibiting monotonic (decreasing or increasing) behavior, dynamic bounds (DB) are defined, which in a coupled Monte Carlo simulation are updated dynamically, resulting in a failure probability estimate, as well as a strict (non-probabilistic) upper and lower bounds. Accurate results are obtained at a much lower cost than an equivalent ordinary Monte Carlo simulation. In a two-dimensional and a four-dimensional numerical example, the cost reduction factors are 130 and 9, respectively, where the relative error is smaller than 5%. At higher accuracy levels, this factor increases, though this effect is expected to be smaller with increasing dimension. To show the application of DB method to real world problems, it is applied to a complex finite element model of a flood wall in New Orleans.
Dynamic bounds coupled with Monte Carlo simulations
Rajabali Nejad, Mohammadreza; Meester, L.E.; van Gelder, P.H.A.J.M.; Vrijling, J.K.
2011-01-01
For the reliability analysis of engineering structures a variety of methods is known, of which Monte Carlo (MC) simulation is widely considered to be among the most robust and most generally applicable. To reduce simulation cost of the MC method, variance reduction methods are applied. This paper
Design and analysis of Monte Carlo experiments
Kleijnen, Jack P.C.; Gentle, J.E.; Haerdle, W.; Mori, Y.
2012-01-01
By definition, computer simulation or Monte Carlo models are not solved by mathematical analysis (such as differential calculus), but are used for numerical experimentation. The goal of these experiments is to answer questions about the real world; i.e., the experimenters may use their models to
Some problems on Monte Carlo method development
International Nuclear Information System (INIS)
Pei Lucheng
1992-01-01
This is a short paper on some problems of Monte Carlo method development. The content consists of deep-penetration problems, unbounded estimate problems, limitation of Mdtropolis' method, dependency problem in Metropolis' method, random error interference problems and random equations, intellectualisation and vectorization problems of general software
Monte Carlo simulations in theoretical physic
International Nuclear Information System (INIS)
Billoire, A.
1991-01-01
After a presentation of the MONTE CARLO method principle, the method is applied, first to the critical exponents calculations in the three dimensions ISING model, and secondly to the discrete quantum chromodynamic with calculation times in function of computer power. 28 refs., 4 tabs
Monte Carlo method for random surfaces
International Nuclear Information System (INIS)
Berg, B.
1985-01-01
Previously two of the authors proposed a Monte Carlo method for sampling statistical ensembles of random walks and surfaces with a Boltzmann probabilistic weight. In the present paper we work out the details for several models of random surfaces, defined on d-dimensional hypercubic lattices. (orig.)
Monte Carlo simulation of the microcanonical ensemble
International Nuclear Information System (INIS)
Creutz, M.
1984-01-01
We consider simulating statistical systems with a random walk on a constant energy surface. This combines features of deterministic molecular dynamics techniques and conventional Monte Carlo simulations. For discrete systems the method can be programmed to run an order of magnitude faster than other approaches. It does not require high quality random numbers and may also be useful for nonequilibrium studies. 10 references
Variance Reduction Techniques in Monte Carlo Methods
Kleijnen, Jack P.C.; Ridder, A.A.N.; Rubinstein, R.Y.
2010-01-01
Monte Carlo methods are simulation algorithms to estimate a numerical quantity in a statistical model of a real system. These algorithms are executed by computer programs. Variance reduction techniques (VRT) are needed, even though computer speed has been increasing dramatically, ever since the
Gian-Carlos Rota and Combinatorial Math.
Kolata, Gina Bari
1979-01-01
Presents the first of a series of occasional articles about mathematics as seen through the eyes of its prominent scholars. In an interview with Gian-Carlos Rota of the Massachusetts Institute of Technology he discusses how combinatorial mathematics began as a field and its future. (HM)
Coded aperture optimization using Monte Carlo simulations
International Nuclear Information System (INIS)
Martineau, A.; Rocchisani, J.M.; Moretti, J.L.
2010-01-01
Coded apertures using Uniformly Redundant Arrays (URA) have been unsuccessfully evaluated for two-dimensional and three-dimensional imaging in Nuclear Medicine. The images reconstructed from coded projections contain artifacts and suffer from poor spatial resolution in the longitudinal direction. We introduce a Maximum-Likelihood Expectation-Maximization (MLEM) algorithm for three-dimensional coded aperture imaging which uses a projection matrix calculated by Monte Carlo simulations. The aim of the algorithm is to reduce artifacts and improve the three-dimensional spatial resolution in the reconstructed images. Firstly, we present the validation of GATE (Geant4 Application for Emission Tomography) for Monte Carlo simulations of a coded mask installed on a clinical gamma camera. The coded mask modelling was validated by comparison between experimental and simulated data in terms of energy spectra, sensitivity and spatial resolution. In the second part of the study, we use the validated model to calculate the projection matrix with Monte Carlo simulations. A three-dimensional thyroid phantom study was performed to compare the performance of the three-dimensional MLEM reconstruction with conventional correlation method. The results indicate that the artifacts are reduced and three-dimensional spatial resolution is improved with the Monte Carlo-based MLEM reconstruction.
Biases in Monte Carlo eigenvalue calculations
International Nuclear Information System (INIS)
Gelbard, E.M.
1992-01-01
The Monte Carlo method has been used for many years to analyze the neutronics of nuclear reactors. In fact, as the power of computers has increased the importance of Monte Carlo in neutronics has also increased, until today this method plays a central role in reactor analysis and design. Monte Carlo is used in neutronics for two somewhat different purposes, i.e., (a) to compute the distribution of neutrons in a given medium when the neutron source-density is specified, and (b) to compute the neutron distribution in a self-sustaining chain reaction, in which case the source is determined as the eigenvector of a certain linear operator. In (b), then, the source is not given, but must be computed. In the first case (the ''fixed-source'' case) the Monte Carlo calculation is unbiased. That is to say that, if the calculation is repeated (''replicated'') over and over, with independent random number sequences for each replica, then averages over all replicas will approach the correct neutron distribution as the number of replicas goes to infinity. Unfortunately, the computation is not unbiased in the second case, which we discuss here
Monte Carlo studies of uranium calorimetry
International Nuclear Information System (INIS)
Brau, J.; Hargis, H.J.; Gabriel, T.A.; Bishop, B.L.
1985-01-01
Detailed Monte Carlo calculations of uranium calorimetry are presented which reveal a significant difference in the responses of liquid argon and plastic scintillator in uranium calorimeters. Due to saturation effects, neutrons from the uranium are found to contribute only weakly to the liquid argon signal. Electromagnetic sampling inefficiencies are significant and contribute substantially to compensation in both systems. 17 references
Uncertainty analysis in Monte Carlo criticality computations
International Nuclear Information System (INIS)
Qi Ao
2011-01-01
Highlights: ► Two types of uncertainty methods for k eff Monte Carlo computations are examined. ► Sampling method has the least restrictions on perturbation but computing resources. ► Analytical method is limited to small perturbation on material properties. ► Practicality relies on efficiency, multiparameter applicability and data availability. - Abstract: Uncertainty analysis is imperative for nuclear criticality risk assessments when using Monte Carlo neutron transport methods to predict the effective neutron multiplication factor (k eff ) for fissionable material systems. For the validation of Monte Carlo codes for criticality computations against benchmark experiments, code accuracy and precision are measured by both the computational bias and uncertainty in the bias. The uncertainty in the bias accounts for known or quantified experimental, computational and model uncertainties. For the application of Monte Carlo codes for criticality analysis of fissionable material systems, an administrative margin of subcriticality must be imposed to provide additional assurance of subcriticality for any unknown or unquantified uncertainties. Because of a substantial impact of the administrative margin of subcriticality on economics and safety of nuclear fuel cycle operations, recently increasing interests in reducing the administrative margin of subcriticality make the uncertainty analysis in criticality safety computations more risk-significant. This paper provides an overview of two most popular k eff uncertainty analysis methods for Monte Carlo criticality computations: (1) sampling-based methods, and (2) analytical methods. Examples are given to demonstrate their usage in the k eff uncertainty analysis due to uncertainties in both neutronic and non-neutronic parameters of fissionable material systems.
Pore-scale uncertainty quantification with multilevel Monte Carlo
Icardi, Matteo; Hoel, Haakon; Long, Quan; Tempone, Raul
2014-01-01
. Since there are no generic ways to parametrize the randomness in the porescale structures, Monte Carlo techniques are the most accessible to compute statistics. We propose a multilevel Monte Carlo (MLMC) technique to reduce the computational cost
Prospect on general software of Monte Carlo method
International Nuclear Information System (INIS)
Pei Lucheng
1992-01-01
This is a short paper on the prospect of Monte Carlo general software. The content consists of cluster sampling method, zero variance technique, self-improved method, and vectorized Monte Carlo method
Bayesian phylogeny analysis via stochastic approximation Monte Carlo
Cheon, Sooyoung; Liang, Faming
2009-01-01
in simulating from the posterior distribution of phylogenetic trees, rendering the inference ineffective. In this paper, we apply an advanced Monte Carlo algorithm, the stochastic approximation Monte Carlo algorithm, to Bayesian phylogeny analysis. Our method
Acceleration of a Monte Carlo radiation transport code
International Nuclear Information System (INIS)
Hochstedler, R.D.; Smith, L.M.
1996-01-01
Execution time for the Integrated TIGER Series (ITS) Monte Carlo radiation transport code has been reduced by careful re-coding of computationally intensive subroutines. Three test cases for the TIGER (1-D slab geometry), CYLTRAN (2-D cylindrical geometry), and ACCEPT (3-D arbitrary geometry) codes were identified and used to benchmark and profile program execution. Based upon these results, sixteen top time-consuming subroutines were examined and nine of them modified to accelerate computations with equivalent numerical output to the original. The results obtained via this study indicate that speedup factors of 1.90 for the TIGER code, 1.67 for the CYLTRAN code, and 1.11 for the ACCEPT code are achievable. copyright 1996 American Institute of Physics
An update on the BQCD Hybrid Monte Carlo program
Haar, Taylor Ryan; Nakamura, Yoshifumi; Stüben, Hinnerk
2018-03-01
We present an update of BQCD, our Hybrid Monte Carlo program for simulating lattice QCD. BQCD is one of the main production codes of the QCDSF collaboration and is used by CSSM and in some Japanese finite temperature and finite density projects. Since the first publication of the code at Lattice 2010 the program has been extended in various ways. New features of the code include: dynamical QED, action modification in order to compute matrix elements by using Feynman-Hellman theory, more trace measurements (like Tr(D-n) for K, cSW and chemical potential reweighting), a more flexible integration scheme, polynomial filtering, term-splitting for RHMC, and a portable implementation of performance critical parts employing SIMD.
An update on the BQCD Hybrid Monte Carlo program
Directory of Open Access Journals (Sweden)
Haar Taylor Ryan
2018-01-01
Full Text Available We present an update of BQCD, our Hybrid Monte Carlo program for simulating lattice QCD. BQCD is one of the main production codes of the QCDSF collaboration and is used by CSSM and in some Japanese finite temperature and finite density projects. Since the first publication of the code at Lattice 2010 the program has been extended in various ways. New features of the code include: dynamical QED, action modification in order to compute matrix elements by using Feynman-Hellman theory, more trace measurements (like Tr(D-n for K, cSW and chemical potential reweighting, a more flexible integration scheme, polynomial filtering, term-splitting for RHMC, and a portable implementation of performance critical parts employing SIMD.
Exploring Monte Carlo Simulation Strategies for Geoscience Applications
Blais, J.; Grebenitcharsky, R.; Zhang, Z.
2008-12-01
Computer simulations are an increasingly important area of geoscience research and development. At the core of stochastic or Monte Carlo simulations are the random number sequences that are assumed to be distributed with specific characteristics. Computer generated random numbers, uniformly distributed on [0, 1], can be very different depending on the selection of pseudo-random number (PRN), quasi-random number (QRN) or chaotic random number (CRN) generators. In the evaluation of some definite integrals, the expected error variances are generally of different orders for the same number of random numbers. A comparative analysis of these three strategies has been carried out for geodetic and related applications in planar and spherical contexts. Based on these computational experiments, conclusions and recommendations concerning their performance and error variances are included.
Data Analysis Recipes: Using Markov Chain Monte Carlo
Hogg, David W.; Foreman-Mackey, Daniel
2018-05-01
Markov Chain Monte Carlo (MCMC) methods for sampling probability density functions (combined with abundant computational resources) have transformed the sciences, especially in performing probabilistic inferences, or fitting models to data. In this primarily pedagogical contribution, we give a brief overview of the most basic MCMC method and some practical advice for the use of MCMC in real inference problems. We give advice on method choice, tuning for performance, methods for initialization, tests of convergence, troubleshooting, and use of the chain output to produce or report parameter estimates with associated uncertainties. We argue that autocorrelation time is the most important test for convergence, as it directly connects to the uncertainty on the sampling estimate of any quantity of interest. We emphasize that sampling is a method for doing integrals; this guides our thinking about how MCMC output is best used. .
Foam: A general purpose Monte Carlo cellular algorithm
International Nuclear Information System (INIS)
Jadach, S.
2002-01-01
A general-purpose, self-adapting Monte Carlo (MC) algorithm implemented in the program Foam is described. The high efficiency of the MC, that is small maximum weight or variance of the MC weight is achieved by means of dividing the integration domain into small cells. The cells can be n-dimensional simplices, hyperrectangles or a Cartesian product of them. The grid of cells, called 'foam', is produced in the process of the binary split of the cells. The choice of the next cell to be divided and the position/direction of the division hyperplane is driven by the algorithm which optimizes the ratio of the maximum weight to the average weight or (optionally) the total variance. The algorithm is able to deal, in principle, with an arbitrary pattern of the singularities in the distribution. (author)
HYDRA: a Java library for Markov Chain Monte Carlo
Directory of Open Access Journals (Sweden)
Gregory R. Warnes
2002-03-01
Full Text Available Hydra is an open-source, platform-neutral library for performing Markov Chain Monte Carlo. It implements the logic of standard MCMC samplers within a framework designed to be easy to use, extend, and integrate with other software tools. In this paper, we describe the problem that motivated our work, outline our goals for the Hydra pro ject, and describe the current features of the Hydra library. We then provide a step-by-step example of using Hydra to simulate from a mixture model drawn from cancer genetics, first using a variable-at-a-time Metropolis sampler and then a Normal Kernel Coupler. We conclude with a discussion of future directions for Hydra.
Foam A General purpose Monte Carlo Cellular Algorithm
Jadach, Stanislaw
2002-01-01
A general-purpose, self-adapting Monte Carlo (MC) algorithm implemented in the program {\\tt Foam} is described. The high efficiency of the MC, that is small maximum weight or variance of the MC weight is achieved by means of dividing the integration domain into small cells. The cells can be $n$-dimensional simplices, hyperrectangles or a Cartesian product of them. The grid of cells, ``foam'', is produced in the process of the binary split of the cells. The next cell to be divided and the position/direction of the division hyperplane is chosen by the algorithm which optimizes the ratio of the maximum weight to the average weight or (optionally) the total variance. The algorithm is able to deal, in principle, with an arbitrary pattern of the singularities in the distribution.
The ATLAS Fast Monte Carlo Production Chain Project
Jansky, Roland Wolfgang; The ATLAS collaboration
2015-01-01
During the last years ATLAS has successfully deployed a new integrated simulation framework (ISF) which allows a flexible mixture of full and fast detector simulation techniques within the processing of one event. The thereby achieved possible speed-up in detector simulation of up to a factor 100 makes subsequent digitization and reconstruction the dominant contributions to the Monte Carlo (MC) production CPU cost. The slowest components of both digitization and reconstruction are inside the Inner Detector due to the complex signal modeling needed in the emulation of the detector readout and in reconstruction due to the combinatorial nature of the problem to solve, respectively. Alternative fast approaches have been developed for these components: for the silicon based detectors a simpler geometrical clustering approach has been deployed replacing the charge drift emulation in the standard digitization modules, which achieves a very high accuracy in describing the standard output. For the Inner Detector track...
How Monte Carlo heuristics aid to identify the physical processes of drug release kinetics.
Lecca, Paola
2018-01-01
drug release, we point out how Monte Carlo heuristics can be integrated in an evolutionary algorithmic approach to infer the mode of MCS best fitting the observed data, and thus the observed release kinetics.•The software implementing the method is written in R language, the free most used language in the bioinformaticians community.
Enhanced Monte-Carlo-Linked Depletion Capabilities in MCNPX
International Nuclear Information System (INIS)
Fensin, Michael L.; Hendricks, John S.; Anghaie, Samim
2006-01-01
As advanced reactor concepts challenge the accuracy of current modeling technologies, a higher-fidelity depletion calculation is necessary to model time-dependent core reactivity properly for accurate cycle length and safety margin determinations. The recent integration of CINDER90 into the MCNPX Monte Carlo radiation transport code provides a completely self-contained Monte-Carlo-linked depletion capability. Two advances have been made in the latest MCNPX capability based on problems observed in pre-released versions: continuous energy collision density tracking and proper fission yield selection. Pre-released versions of the MCNPX depletion code calculated the reaction rates for (n,2n), (n,3n), (n,p), (n,a), and (n,?) by matching the MCNPX steady-state 63-group flux with 63-group cross sections inherent in the CINDER90 library and then collapsing to one-group collision densities for the depletion calculation. This procedure led to inaccuracies due to the miscalculation of the reaction rates resulting from the collapsed multi-group approach. The current version of MCNPX eliminates this problem by using collapsed one-group collision densities generated from continuous energy reaction rates determined during the MCNPX steady-state calculation. MCNPX also now explicitly determines the proper fission yield to be used by the CINDER90 code for the depletion calculation. The CINDER90 code offers a thermal, fast, and high-energy fission yield for each fissile isotope contained in the CINDER90 data file. MCNPX determines which fission yield to use for a specified problem by calculating the integral fission rate for the defined energy boundaries (thermal, fast, and high energy), determining which energy range contains the majority of fissions, and then selecting the appropriate fission yield for the energy range containing the majority of fissions. The MCNPX depletion capability enables complete, relatively easy-to-use depletion calculations in a single Monte Carlo code
Monte Carlo computation in the applied research of nuclear technology
International Nuclear Information System (INIS)
Xu Shuyan; Liu Baojie; Li Qin
2007-01-01
This article briefly introduces Monte Carlo Methods and their properties. It narrates the Monte Carlo methods with emphasis in their applications to several domains of nuclear technology. Monte Carlo simulation methods and several commonly used computer software to implement them are also introduced. The proposed methods are demonstrated by a real example. (authors)
Foam A General Purpose Cellular Monte Carlo Event Generator
Jadach, Stanislaw
2003-01-01
A general purpose, self-adapting, Monte Carlo (MC) event generator (simulator) is described. The high efficiency of the MC, that is small maximum weight or variance of the MC weight is achieved by means of dividing the integration domain into small cells. The cells can be $n$-dimensional simplices, hyperrectangles or Cartesian product of them. The grid of cells, called ``foam'', is produced in the process of the binary split of the cells. The choice of the next cell to be divided and the position/direction of the division hyper-plane is driven by the algorithm which optimizes the ratio of the maximum weight to the average weight or (optionally) the total variance. The algorithm is able to deal, in principle, with an arbitrary pattern of the singularities in the distribution. As any MC generator, it can also be used for the MC integration. With the typical personal computer CPU, the program is able to perform adaptive integration/simulation at relatively small number of dimensions ($\\leq 16$). With the continu...
Directory of Open Access Journals (Sweden)
He Deyu
2016-09-01
Full Text Available Assessing the risks of steering system faults in underwater vehicles is a human-machine-environment (HME systematic safety field that studies faults in the steering system itself, the driver’s human reliability (HR and various environmental conditions. This paper proposed a fault risk assessment method for an underwater vehicle steering system based on virtual prototyping and Monte Carlo simulation. A virtual steering system prototype was established and validated to rectify a lack of historic fault data. Fault injection and simulation were conducted to acquire fault simulation data. A Monte Carlo simulation was adopted that integrated randomness due to the human operator and environment. Randomness and uncertainty of the human, machine and environment were integrated in the method to obtain a probabilistic risk indicator. To verify the proposed method, a case of stuck rudder fault (SRF risk assessment was studied. This method may provide a novel solution for fault risk assessment of a vehicle or other general HME system.
Monte Carlo-based tail exponent estimator
Barunik, Jozef; Vacha, Lukas
2010-11-01
In this paper we propose a new approach to estimation of the tail exponent in financial stock markets. We begin the study with the finite sample behavior of the Hill estimator under α-stable distributions. Using large Monte Carlo simulations, we show that the Hill estimator overestimates the true tail exponent and can hardly be used on samples with small length. Utilizing our results, we introduce a Monte Carlo-based method of estimation for the tail exponent. Our proposed method is not sensitive to the choice of tail size and works well also on small data samples. The new estimator also gives unbiased results with symmetrical confidence intervals. Finally, we demonstrate the power of our estimator on the international world stock market indices. On the two separate periods of 2002-2005 and 2006-2009, we estimate the tail exponent.
No-compromise reptation quantum Monte Carlo
International Nuclear Information System (INIS)
Yuen, W K; Farrar, Thomas J; Rothstein, Stuart M
2007-01-01
Since its publication, the reptation quantum Monte Carlo algorithm of Baroni and Moroni (1999 Phys. Rev. Lett. 82 4745) has been applied to several important problems in physics, but its mathematical foundations are not well understood. We show that their algorithm is not of typical Metropolis-Hastings type, and we specify conditions required for the generated Markov chain to be stationary and to converge to the intended distribution. The time-step bias may add up, and in many applications it is only the middle of a reptile that is the most important. Therefore, we propose an alternative, 'no-compromise reptation quantum Monte Carlo' to stabilize the middle of the reptile. (fast track communication)
Multilevel Monte Carlo Approaches for Numerical Homogenization
Efendiev, Yalchin R.
2015-10-01
In this article, we study the application of multilevel Monte Carlo (MLMC) approaches to numerical random homogenization. Our objective is to compute the expectation of some functionals of the homogenized coefficients, or of the homogenized solutions. This is accomplished within MLMC by considering different sizes of representative volumes (RVEs). Many inexpensive computations with the smallest RVE size are combined with fewer expensive computations performed on larger RVEs. Likewise, when it comes to homogenized solutions, different levels of coarse-grid meshes are used to solve the homogenized equation. We show that, by carefully selecting the number of realizations at each level, we can achieve a speed-up in the computations in comparison to a standard Monte Carlo method. Numerical results are presented for both one-dimensional and two-dimensional test-cases that illustrate the efficiency of the approach.
Status of Monte Carlo at Los Alamos
International Nuclear Information System (INIS)
Thompson, W.L.; Cashwell, E.D.
1980-01-01
At Los Alamos the early work of Fermi, von Neumann, and Ulam has been developed and supplemented by many followers, notably Cashwell and Everett, and the main product today is the continuous-energy, general-purpose, generalized-geometry, time-dependent, coupled neutron-photon transport code called MCNP. The Los Alamos Monte Carlo research and development effort is concentrated in Group X-6. MCNP treats an arbitrary three-dimensional configuration of arbitrary materials in geometric cells bounded by first- and second-degree surfaces and some fourth-degree surfaces (elliptical tori). Monte Carlo has evolved into perhaps the main method for radiation transport calculations at Los Alamos. MCNP is used in every technical division at the Laboratory by over 130 users about 600 times a month accounting for nearly 200 hours of CDC-7600 time
Monte Carlo simulations in skin radiotherapy
International Nuclear Information System (INIS)
Sarvari, A.; Jeraj, R.; Kron, T.
2000-01-01
The primary goal of this work was to develop a procedure for calculation the appropriate filter shape for a brachytherapy applicator used for skin radiotherapy. In the applicator a radioactive source is positioned close to the skin. Without a filter, the resultant dose distribution would be highly nonuniform.High uniformity is usually required however. This can be achieved using an appropriately shaped filter, which flattens the dose profile. Because of the complexity of the transport and geometry, Monte Carlo simulations had to be used. An 192 Ir high dose rate photon source was used. All necessary transport parameters were simulated with the MCNP4B Monte Carlo code. A highly efficient iterative procedure was developed, which enabled calculation of the optimal filter shape in only few iterations. The initially non-uniform dose distributions became uniform within a percent when applying the filter calculated by this procedure. (author)
Coevolution Based Adaptive Monte Carlo Localization (CEAMCL
Directory of Open Access Journals (Sweden)
Luo Ronghua
2008-11-01
Full Text Available An adaptive Monte Carlo localization algorithm based on coevolution mechanism of ecological species is proposed. Samples are clustered into species, each of which represents a hypothesis of the robot's pose. Since the coevolution between the species ensures that the multiple distinct hypotheses can be tracked stably, the problem of premature convergence when using MCL in highly symmetric environments can be solved. And the sample size can be adjusted adaptively over time according to the uncertainty of the robot's pose by using the population growth model. In addition, by using the crossover and mutation operators in evolutionary computation, intra-species evolution can drive the samples move towards the regions where the desired posterior density is large. So a small size of samples can represent the desired density well enough to make precise localization. The new algorithm is termed coevolution based adaptive Monte Carlo localization (CEAMCL. Experiments have been carried out to prove the efficiency of the new localization algorithm.
Multilevel sequential Monte-Carlo samplers
Jasra, Ajay
2016-01-01
Multilevel Monte-Carlo methods provide a powerful computational technique for reducing the computational cost of estimating expectations for a given computational effort. They are particularly relevant for computational problems when approximate distributions are determined via a resolution parameter h, with h=0 giving the theoretical exact distribution (e.g. SDEs or inverse problems with PDEs). The method provides a benefit by coupling samples from successive resolutions, and estimating differences of successive expectations. We develop a methodology that brings Sequential Monte-Carlo (SMC) algorithms within the framework of the Multilevel idea, as SMC provides a natural set-up for coupling samples over different resolutions. We prove that the new algorithm indeed preserves the benefits of the multilevel principle, even if samples at all resolutions are now correlated.
Monte Carlo simulation of gas Cerenkov detectors
International Nuclear Information System (INIS)
Mack, J.M.; Jain, M.; Jordan, T.M.
1984-01-01
Theoretical study of selected gamma-ray and electron diagnostic necessitates coupling Cerenkov radiation to electron/photon cascades. A Cerenkov production model and its incorporation into a general geometry Monte Carlo coupled electron/photon transport code is discussed. A special optical photon ray-trace is implemented using bulk optical properties assigned to each Monte Carlo zone. Good agreement exists between experimental and calculated Cerenkov data in the case of a carbon-dioxide gas Cerenkov detector experiment. Cerenkov production and threshold data are presented for a typical carbon-dioxide gas detector that converts a 16.7 MeV photon source to Cerenkov light, which is collected by optics and detected by a photomultiplier
EU Commissioner Carlos Moedas visits SESAME
CERN Bulletin
2015-01-01
The European Commissioner for research, science and innovation, Carlos Moedas, visited the SESAME laboratory in Jordan on Monday 13 April. When it begins operation in 2016, SESAME, a synchrotron light source, will be the Middle East’s first major international science centre, carrying out experiments ranging from the physical sciences to environmental science and archaeology. CERN Director-General Rolf Heuer (left) and European Commissioner Carlos Moedas with the model SESAME magnet. © European Union, 2015. Commissioner Moedas was accompanied by a European Commission delegation led by Robert-Jan Smits, Director-General of DG Research and Innovation, as well as Rolf Heuer, CERN Director-General, Jean-Pierre Koutchouk, coordinator of the CERN-EC Support for SESAME Magnets (CESSAMag) project and Princess Sumaya bint El Hassan of Jordan, a leading advocate of science in the region. They toured the SESAME facility together with SESAME Director, Khaled Tou...
Hypothesis testing of scientific Monte Carlo calculations
Wallerberger, Markus; Gull, Emanuel
2017-11-01
The steadily increasing size of scientific Monte Carlo simulations and the desire for robust, correct, and reproducible results necessitates rigorous testing procedures for scientific simulations in order to detect numerical problems and programming bugs. However, the testing paradigms developed for deterministic algorithms have proven to be ill suited for stochastic algorithms. In this paper we demonstrate explicitly how the technique of statistical hypothesis testing, which is in wide use in other fields of science, can be used to devise automatic and reliable tests for Monte Carlo methods, and we show that these tests are able to detect some of the common problems encountered in stochastic scientific simulations. We argue that hypothesis testing should become part of the standard testing toolkit for scientific simulations.
Multilevel sequential Monte-Carlo samplers
Jasra, Ajay
2016-01-05
Multilevel Monte-Carlo methods provide a powerful computational technique for reducing the computational cost of estimating expectations for a given computational effort. They are particularly relevant for computational problems when approximate distributions are determined via a resolution parameter h, with h=0 giving the theoretical exact distribution (e.g. SDEs or inverse problems with PDEs). The method provides a benefit by coupling samples from successive resolutions, and estimating differences of successive expectations. We develop a methodology that brings Sequential Monte-Carlo (SMC) algorithms within the framework of the Multilevel idea, as SMC provides a natural set-up for coupling samples over different resolutions. We prove that the new algorithm indeed preserves the benefits of the multilevel principle, even if samples at all resolutions are now correlated.
Monte Carlo Simulation for Particle Detectors
Pia, Maria Grazia
2012-01-01
Monte Carlo simulation is an essential component of experimental particle physics in all the phases of its life-cycle: the investigation of the physics reach of detector concepts, the design of facilities and detectors, the development and optimization of data reconstruction software, the data analysis for the production of physics results. This note briefly outlines some research topics related to Monte Carlo simulation, that are relevant to future experimental perspectives in particle physics. The focus is on physics aspects: conceptual progress beyond current particle transport schemes, the incorporation of materials science knowledge relevant to novel detection technologies, functionality to model radiation damage, the capability for multi-scale simulation, quantitative validation and uncertainty quantification to determine the predictive power of simulation. The R&D on simulation for future detectors would profit from cooperation within various components of the particle physics community, and synerg...
Status of Monte Carlo at Los Alamos
International Nuclear Information System (INIS)
Thompson, W.L.; Cashwell, E.D.; Godfrey, T.N.K.; Schrandt, R.G.; Deutsch, O.L.; Booth, T.E.
1980-05-01
Four papers were presented by Group X-6 on April 22, 1980, at the Oak Ridge Radiation Shielding Information Center (RSIC) Seminar-Workshop on Theory and Applications of Monte Carlo Methods. These papers are combined into one report for convenience and because they are related to each other. The first paper (by Thompson and Cashwell) is a general survey about X-6 and MCNP and is an introduction to the other three papers. It can also serve as a resume of X-6. The second paper (by Godfrey) explains some of the details of geometry specification in MCNP. The third paper (by Cashwell and Schrandt) illustrates calculating flux at a point with MCNP; in particular, the once-more-collided flux estimator is demonstrated. Finally, the fourth paper (by Thompson, Deutsch, and Booth) is a tutorial on some variance-reduction techniques. It should be required for a fledging Monte Carlo practitioner
Topological zero modes in Monte Carlo simulations
International Nuclear Information System (INIS)
Dilger, H.
1994-08-01
We present an improvement of global Metropolis updating steps, the instanton hits, used in a hybrid Monte Carlo simulation of the two-flavor Schwinger model with staggered fermions. These hits are designed to change the topological sector of the gauge field. In order to match these hits to an unquenched simulation with pseudofermions, the approximate zero mode structure of the lattice Dirac operator has to be considered explicitly. (orig.)
Handbook of Markov chain Monte Carlo
Brooks, Steve
2011-01-01
""Handbook of Markov Chain Monte Carlo"" brings together the major advances that have occurred in recent years while incorporating enough introductory material for new users of MCMC. Along with thorough coverage of the theoretical foundations and algorithmic and computational methodology, this comprehensive handbook includes substantial realistic case studies from a variety of disciplines. These case studies demonstrate the application of MCMC methods and serve as a series of templates for the construction, implementation, and choice of MCMC methodology.
The lund Monte Carlo for jet fragmentation
International Nuclear Information System (INIS)
Sjoestrand, T.
1982-03-01
We present a Monte Carlo program based on the Lund model for jet fragmentation. Quark, gluon, diquark and hadron jets are considered. Special emphasis is put on the fragmentation of colour singlet jet systems, for which energy, momentum and flavour are conserved explicitly. The model for decays of unstable particles, in particular the weak decay of heavy hadrons, is described. The central part of the paper is a detailed description on how to use the FORTRAN 77 program. (Author)
Monte Carlo methods for preference learning
DEFF Research Database (Denmark)
Viappiani, P.
2012-01-01
Utility elicitation is an important component of many applications, such as decision support systems and recommender systems. Such systems query the users about their preferences and give recommendations based on the system’s belief about the utility function. Critical to these applications is th...... is the acquisition of prior distribution about the utility parameters and the possibility of real time Bayesian inference. In this paper we consider Monte Carlo methods for these problems....
Monte Carlo methods for shield design calculations
International Nuclear Information System (INIS)
Grimstone, M.J.
1974-01-01
A suite of Monte Carlo codes is being developed for use on a routine basis in commercial reactor shield design. The methods adopted for this purpose include the modular construction of codes, simplified geometries, automatic variance reduction techniques, continuous energy treatment of cross section data, and albedo methods for streaming. Descriptions are given of the implementation of these methods and of their use in practical calculations. 26 references. (U.S.)
General purpose code for Monte Carlo simulations
International Nuclear Information System (INIS)
Wilcke, W.W.
1983-01-01
A general-purpose computer called MONTHY has been written to perform Monte Carlo simulations of physical systems. To achieve a high degree of flexibility the code is organized like a general purpose computer, operating on a vector describing the time dependent state of the system under simulation. The instruction set of the computer is defined by the user and is therefore adaptable to the particular problem studied. The organization of MONTHY allows iterative and conditional execution of operations
Autocorrelations in hybrid Monte Carlo simulations
International Nuclear Information System (INIS)
Schaefer, Stefan; Virotta, Francesco
2010-11-01
Simulations of QCD suffer from severe critical slowing down towards the continuum limit. This problem is known to be prominent in the topological charge, however, all observables are affected to various degree by these slow modes in the Monte Carlo evolution. We investigate the slowing down in high statistics simulations and propose a new error analysis method, which gives a realistic estimate of the contribution of the slow modes to the errors. (orig.)
Introduction to the Monte Carlo methods
International Nuclear Information System (INIS)
Uzhinskij, V.V.
1993-01-01
Codes illustrating the use of Monte Carlo methods in high energy physics such as the inverse transformation method, the ejection method, the particle propagation through the nucleus, the particle interaction with the nucleus, etc. are presented. A set of useful algorithms of random number generators is given (the binomial distribution, the Poisson distribution, β-distribution, γ-distribution and normal distribution). 5 figs., 1 tab
Sequential Monte Carlo with Highly Informative Observations
Del Moral, Pierre; Murray, Lawrence M.
2014-01-01
We propose sequential Monte Carlo (SMC) methods for sampling the posterior distribution of state-space models under highly informative observation regimes, a situation in which standard SMC methods can perform poorly. A special case is simulating bridges between given initial and final values. The basic idea is to introduce a schedule of intermediate weighting and resampling times between observation times, which guide particles towards the final state. This can always be done for continuous-...
Monte Carlo codes use in neutron therapy
International Nuclear Information System (INIS)
Paquis, P.; Mokhtari, F.; Karamanoukian, D.; Pignol, J.P.; Cuendet, P.; Iborra, N.
1998-01-01
Monte Carlo calculation codes allow to study accurately all the parameters relevant to radiation effects, like the dose deposition or the type of microscopic interactions, through one by one particle transport simulation. These features are very useful for neutron irradiations, from device development up to dosimetry. This paper illustrates some applications of these codes in Neutron Capture Therapy and Neutron Capture Enhancement of fast neutrons irradiations. (authors)
Quantum Monte Carlo calculations of light nuclei
International Nuclear Information System (INIS)
Pandharipande, V. R.
1999-01-01
Quantum Monte Carlo methods provide an essentially exact way to calculate various properties of nuclear bound, and low energy continuum states, from realistic models of nuclear interactions and currents. After a brief description of the methods and modern models of nuclear forces, we review the results obtained for all the bound, and some continuum states of up to eight nucleons. Various other applications of the methods are reviewed along with future prospects
Monte-Carlo simulation of electromagnetic showers
International Nuclear Information System (INIS)
Amatuni, Ts.A.
1984-01-01
The universal ELSS-1 program for Monte Carlo simulation of high energy electromagnetic showers in homogeneous absorbers of arbitrary geometry is written. The major processes and effects of electron and photon interaction with matter, particularly the Landau-Pomeranchuk-Migdal effect, are taken into account in the simulation procedures. The simulation results are compared with experimental data. Some characteristics of shower detectors and electromagnetic showers for energies up 1 TeV are calculated
Cost of splitting in Monte Carlo transport
International Nuclear Information System (INIS)
Everett, C.J.; Cashwell, E.D.
1978-03-01
In a simple transport problem designed to estimate transmission through a plane slab of x free paths by Monte Carlo methods, it is shown that m-splitting (m > or = 2) does not pay unless exp(x) > m(m + 3)/(m - 1). In such a case, the minimum total cost in terms of machine time is obtained as a function of m, and the optimal value of m is determined
Monte Carlo simulation of Touschek effect
Directory of Open Access Journals (Sweden)
Aimin Xiao
2010-07-01
Full Text Available We present a Monte Carlo method implementation in the code elegant for simulating Touschek scattering effects in a linac beam. The local scattering rate and the distribution of scattered electrons can be obtained from the code either for a Gaussian-distributed beam or for a general beam whose distribution function is given. In addition, scattered electrons can be tracked through the beam line and the local beam-loss rate and beam halo information recorded.
Bayesian Optimal Experimental Design Using Multilevel Monte Carlo
Ben Issaid, Chaouki
2015-05-12
Experimental design can be vital when experiments are resource-exhaustive and time-consuming. In this work, we carry out experimental design in the Bayesian framework. To measure the amount of information that can be extracted from the data in an experiment, we use the expected information gain as the utility function, which specifically is the expected logarithmic ratio between the posterior and prior distributions. Optimizing this utility function enables us to design experiments that yield the most informative data about the model parameters. One of the major difficulties in evaluating the expected information gain is that it naturally involves nested integration over a possibly high dimensional domain. We use the Multilevel Monte Carlo (MLMC) method to accelerate the computation of the nested high dimensional integral. The advantages are twofold. First, MLMC can significantly reduce the cost of the nested integral for a given tolerance, by using an optimal sample distribution among different sample averages of the inner integrals. Second, the MLMC method imposes fewer assumptions, such as the asymptotic concentration of posterior measures, required for instance by the Laplace approximation (LA). We test the MLMC method using two numerical examples. The first example is the design of sensor deployment for a Darcy flow problem governed by a one-dimensional Poisson equation. We place the sensors in the locations where the pressure is measured, and we model the conductivity field as a piecewise constant random vector with two parameters. The second one is chemical Enhanced Oil Recovery (EOR) core flooding experiment assuming homogeneous permeability. We measure the cumulative oil recovery, from a horizontal core flooded by water, surfactant and polymer, for different injection rates. The model parameters consist of the endpoint relative permeabilities, the residual saturations and the relative permeability exponents for the three phases: water, oil and
Monte Carlo method for neutron transport problems
International Nuclear Information System (INIS)
Asaoka, Takumi
1977-01-01
Some methods for decreasing variances in Monte Carlo neutron transport calculations are presented together with the results of sample calculations. A general purpose neutron transport Monte Carlo code ''MORSE'' was used for the purpose. The first method discussed in this report is the method of statistical estimation. As an example of this method, the application of the coarse-mesh rebalance acceleration method to the criticality calculation of a cylindrical fast reactor is presented. Effective multiplication factor and its standard deviation are presented as a function of the number of histories and comparisons are made between the coarse-mesh rebalance method and the standard method. Five-group neutron fluxes at core center are also compared with the result of S4 calculation. The second method is the method of correlated sampling. This method was applied to the perturbation calculation of control rod worths in a fast critical assembly (FCA-V-3) Two methods of sampling (similar flight paths and identical flight paths) are tested and compared with experimental results. For every cases the experimental value lies within the standard deviation of the Monte Carlo calculations. The third method is the importance sampling. In this report a biased selection of particle flight directions discussed. This method was applied to the flux calculation in a spherical fast neutron system surrounded by a 10.16 cm iron reflector. Result-direction biasing, path-length stretching, and no biasing are compared with S8 calculation. (Aoki, K.)
Biased Monte Carlo optimization: the basic approach
International Nuclear Information System (INIS)
Campioni, Luca; Scardovelli, Ruben; Vestrucci, Paolo
2005-01-01
It is well-known that the Monte Carlo method is very successful in tackling several kinds of system simulations. It often happens that one has to deal with rare events, and the use of a variance reduction technique is almost mandatory, in order to have Monte Carlo efficient applications. The main issue associated with variance reduction techniques is related to the choice of the value of the biasing parameter. Actually, this task is typically left to the experience of the Monte Carlo user, who has to make many attempts before achieving an advantageous biasing. A valuable result is provided: a methodology and a practical rule addressed to establish an a priori guidance for the choice of the optimal value of the biasing parameter. This result, which has been obtained for a single component system, has the notable property of being valid for any multicomponent system. In particular, in this paper, the exponential and the uniform biases of exponentially distributed phenomena are investigated thoroughly
Quantum Monte Carlo for vibrating molecules
International Nuclear Information System (INIS)
Brown, W.R.; Lawrence Berkeley National Lab., CA
1996-08-01
Quantum Monte Carlo (QMC) has successfully computed the total electronic energies of atoms and molecules. The main goal of this work is to use correlation function quantum Monte Carlo (CFQMC) to compute the vibrational state energies of molecules given a potential energy surface (PES). In CFQMC, an ensemble of random walkers simulate the diffusion and branching processes of the imaginary-time time dependent Schroedinger equation in order to evaluate the matrix elements. The program QMCVIB was written to perform multi-state VMC and CFQMC calculations and employed for several calculations of the H 2 O and C 3 vibrational states, using 7 PES's, 3 trial wavefunction forms, two methods of non-linear basis function parameter optimization, and on both serial and parallel computers. In order to construct accurate trial wavefunctions different wavefunctions forms were required for H 2 O and C 3 . In order to construct accurate trial wavefunctions for C 3 , the non-linear parameters were optimized with respect to the sum of the energies of several low-lying vibrational states. In order to stabilize the statistical error estimates for C 3 the Monte Carlo data was collected into blocks. Accurate vibrational state energies were computed using both serial and parallel QMCVIB programs. Comparison of vibrational state energies computed from the three C 3 PES's suggested that a non-linear equilibrium geometry PES is the most accurate and that discrete potential representations may be used to conveniently determine vibrational state energies
Lattice gauge theories and Monte Carlo simulations
International Nuclear Information System (INIS)
Rebbi, C.
1981-11-01
After some preliminary considerations, the discussion of quantum gauge theories on a Euclidean lattice takes up the definition of Euclidean quantum theory and treatment of the continuum limit; analogy is made with statistical mechanics. Perturbative methods can produce useful results for strong or weak coupling. In the attempts to investigate the properties of the systems for intermediate coupling, numerical methods known as Monte Carlo simulations have proved valuable. The bulk of this paper illustrates the basic ideas underlying the Monte Carlo numerical techniques and the major results achieved with them according to the following program: Monte Carlo simulations (general theory, practical considerations), phase structure of Abelian and non-Abelian models, the observables (coefficient of the linear term in the potential between two static sources at large separation, mass of the lowest excited state with the quantum numbers of the vacuum (the so-called glueball), the potential between two static sources at very small distance, the critical temperature at which sources become deconfined), gauge fields coupled to basonic matter (Higgs) fields, and systems with fermions
Extracting the Single-Particle Gap in Carbon Nanotubes with Lattice Quantum Monte Carlo
Directory of Open Access Journals (Sweden)
Berkowitz Evan
2018-01-01
Full Text Available We show how lattice Quantum Monte Carlo simulations can be used to calculate electronic properties of carbon nanotubes in the presence of strong electron-electron correlations. We employ the path integral formalism and use methods developed within the lattice QCD community for our numerical work and compare our results to empirical data of the Anti-Ferromagnetic Mott Insulating gap in large diameter tubes.
The codes WAV3BDY and WAV4BDY and the variational Monte Carlo method
International Nuclear Information System (INIS)
Schiavilla, R.
1987-01-01
A description of the codes WAV3BDY and WAV4BDY, which generate the variational ground state wave functions of the A=3 and 4 nuclei, is given, followed by a discussion of the Monte Carlo integration technique, which is used to calculate expectation values and transition amplitudes of operators, and for whose implementation WAV3BDY and WAV4BDY are well suited
Automatic modeling for the Monte Carlo transport code Geant4 in MCAM
International Nuclear Information System (INIS)
Nie Fanzhi; Hu Liqin; Wang Guozhong; Wang Dianxi; Wu Yican; Wang Dong; Long Pengcheng; FDS Team
2014-01-01
Geant4 is a widely used Monte Carlo transport simulation package. Its geometry models could be described in geometry description markup language (GDML), but it is time-consuming and error-prone to describe the geometry models manually. This study implemented the conversion between computer-aided design (CAD) geometry models and GDML models. The conversion program was integrated into Multi-Physics Coupling Analysis Modeling Program (MCAM). The tests, including FDS-Ⅱ model, demonstrated its accuracy and feasibility. (authors)
Generalized hybrid Monte Carlo - CMFD methods for fission source convergence
International Nuclear Information System (INIS)
Wolters, Emily R.; Larsen, Edward W.; Martin, William R.
2011-01-01
In this paper, we generalize the recently published 'CMFD-Accelerated Monte Carlo' method and present two new methods that reduce the statistical error in CMFD-Accelerated Monte Carlo. The CMFD-Accelerated Monte Carlo method uses Monte Carlo to estimate nonlinear functionals used in low-order CMFD equations for the eigenfunction and eigenvalue. The Monte Carlo fission source is then modified to match the resulting CMFD fission source in a 'feedback' procedure. The two proposed methods differ from CMFD-Accelerated Monte Carlo in the definition of the required nonlinear functionals, but they have identical CMFD equations. The proposed methods are compared with CMFD-Accelerated Monte Carlo on a high dominance ratio test problem. All hybrid methods converge the Monte Carlo fission source almost immediately, leading to a large reduction in the number of inactive cycles required. The proposed methods stabilize the fission source more efficiently than CMFD-Accelerated Monte Carlo, leading to a reduction in the number of active cycles required. Finally, as in CMFD-Accelerated Monte Carlo, the apparent variance of the eigenfunction is approximately equal to the real variance, so the real error is well-estimated from a single calculation. This is an advantage over standard Monte Carlo, in which the real error can be underestimated due to inter-cycle correlation. (author)
Monte Carlo methods and models in finance and insurance
Korn, Ralf; Kroisandt, Gerald
2010-01-01
Offering a unique balance between applications and calculations, Monte Carlo Methods and Models in Finance and Insurance incorporates the application background of finance and insurance with the theory and applications of Monte Carlo methods. It presents recent methods and algorithms, including the multilevel Monte Carlo method, the statistical Romberg method, and the Heath-Platen estimator, as well as recent financial and actuarial models, such as the Cheyette and dynamic mortality models. The authors separately discuss Monte Carlo techniques, stochastic process basics, and the theoretical background and intuition behind financial and actuarial mathematics, before bringing the topics together to apply the Monte Carlo methods to areas of finance and insurance. This allows for the easy identification of standard Monte Carlo tools and for a detailed focus on the main principles of financial and insurance mathematics. The book describes high-level Monte Carlo methods for standard simulation and the simulation of...
The Development and Comparison of Molecular Dynamics Simulation and Monte Carlo Simulation
Chen, Jundong
2018-03-01
Molecular dynamics is an integrated technology that combines physics, mathematics and chemistry. Molecular dynamics method is a computer simulation experimental method, which is a powerful tool for studying condensed matter system. This technique not only can get the trajectory of the atom, but can also observe the microscopic details of the atomic motion. By studying the numerical integration algorithm in molecular dynamics simulation, we can not only analyze the microstructure, the motion of particles and the image of macroscopic relationship between them and the material, but can also study the relationship between the interaction and the macroscopic properties more conveniently. The Monte Carlo Simulation, similar to the molecular dynamics, is a tool for studying the micro-molecular and particle nature. In this paper, the theoretical background of computer numerical simulation is introduced, and the specific methods of numerical integration are summarized, including Verlet method, Leap-frog method and Velocity Verlet method. At the same time, the method and principle of Monte Carlo Simulation are introduced. Finally, similarities and differences of Monte Carlo Simulation and the molecular dynamics simulation are discussed.
Floris, F.; Filippi, Claudia; Amovilli, C.
2012-01-01
We present density functional theory (DFT) and quantum Monte Carlo (QMC) calculations of the glutamic acid and glutamate ion in vacuo and in various dielectric continuum media within the polarizable continuum model (PCM). In DFT, we employ the integral equation formalism variant of PCM while, in
Guideline of Monte Carlo calculation. Neutron/gamma ray transport simulation by Monte Carlo method
2002-01-01
This report condenses basic theories and advanced applications of neutron/gamma ray transport calculations in many fields of nuclear energy research. Chapters 1 through 5 treat historical progress of Monte Carlo methods, general issues of variance reduction technique, cross section libraries used in continuous energy Monte Carlo codes. In chapter 6, the following issues are discussed: fusion benchmark experiments, design of ITER, experiment analyses of fast critical assembly, core analyses of JMTR, simulation of pulsed neutron experiment, core analyses of HTTR, duct streaming calculations, bulk shielding calculations, neutron/gamma ray transport calculations of the Hiroshima atomic bomb. Chapters 8 and 9 treat function enhancements of MCNP and MVP codes, and a parallel processing of Monte Carlo calculation, respectively. An important references are attached at the end of this report.
Liang, Faming; Jin, Ick-Hoon
2013-01-01
Simulating from distributions with intractable normalizing constants has been a long-standing problem inmachine learning. In this letter, we propose a new algorithm, the Monte Carlo Metropolis-Hastings (MCMH) algorithm, for tackling this problem. The MCMH algorithm is a Monte Carlo version of the Metropolis-Hastings algorithm. It replaces the unknown normalizing constant ratio by a Monte Carlo estimate in simulations, while still converges, as shown in the letter, to the desired target distribution under mild conditions. The MCMH algorithm is illustrated with spatial autologistic models and exponential random graph models. Unlike other auxiliary variable Markov chain Monte Carlo (MCMC) algorithms, such as the Møller and exchange algorithms, the MCMH algorithm avoids the requirement for perfect sampling, and thus can be applied to many statistical models for which perfect sampling is not available or very expensive. TheMCMHalgorithm can also be applied to Bayesian inference for random effect models and missing data problems that involve simulations from a distribution with intractable integrals. © 2013 Massachusetts Institute of Technology.
Liang, Faming
2013-08-01
Simulating from distributions with intractable normalizing constants has been a long-standing problem inmachine learning. In this letter, we propose a new algorithm, the Monte Carlo Metropolis-Hastings (MCMH) algorithm, for tackling this problem. The MCMH algorithm is a Monte Carlo version of the Metropolis-Hastings algorithm. It replaces the unknown normalizing constant ratio by a Monte Carlo estimate in simulations, while still converges, as shown in the letter, to the desired target distribution under mild conditions. The MCMH algorithm is illustrated with spatial autologistic models and exponential random graph models. Unlike other auxiliary variable Markov chain Monte Carlo (MCMC) algorithms, such as the Møller and exchange algorithms, the MCMH algorithm avoids the requirement for perfect sampling, and thus can be applied to many statistical models for which perfect sampling is not available or very expensive. TheMCMHalgorithm can also be applied to Bayesian inference for random effect models and missing data problems that involve simulations from a distribution with intractable integrals. © 2013 Massachusetts Institute of Technology.
Monte Carlo simulations for generic granite repository studies
Energy Technology Data Exchange (ETDEWEB)
Chu, Shaoping [Los Alamos National Laboratory; Lee, Joon H [SNL; Wang, Yifeng [SNL
2010-12-08
In a collaborative study between Los Alamos National Laboratory (LANL) and Sandia National Laboratories (SNL) for the DOE-NE Office of Fuel Cycle Technologies Used Fuel Disposition (UFD) Campaign project, we have conducted preliminary system-level analyses to support the development of a long-term strategy for geologic disposal of high-level radioactive waste. A general modeling framework consisting of a near- and a far-field submodel for a granite GDSE was developed. A representative far-field transport model for a generic granite repository was merged with an integrated systems (GoldSim) near-field model. Integrated Monte Carlo model runs with the combined near- and farfield transport models were performed, and the parameter sensitivities were evaluated for the combined system. In addition, a sub-set of radionuclides that are potentially important to repository performance were identified and evaluated for a series of model runs. The analyses were conducted with different waste inventory scenarios. Analyses were also conducted for different repository radionuelide release scenarios. While the results to date are for a generic granite repository, the work establishes the method to be used in the future to provide guidance on the development of strategy for long-term disposal of high-level radioactive waste in a granite repository.
Parallelization of a Monte Carlo particle transport simulation code
Hadjidoukas, P.; Bousis, C.; Emfietzoglou, D.
2010-05-01
We have developed a high performance version of the Monte Carlo particle transport simulation code MC4. The original application code, developed in Visual Basic for Applications (VBA) for Microsoft Excel, was first rewritten in the C programming language for improving code portability. Several pseudo-random number generators have been also integrated and studied. The new MC4 version was then parallelized for shared and distributed-memory multiprocessor systems using the Message Passing Interface. Two parallel pseudo-random number generator libraries (SPRNG and DCMT) have been seamlessly integrated. The performance speedup of parallel MC4 has been studied on a variety of parallel computing architectures including an Intel Xeon server with 4 dual-core processors, a Sun cluster consisting of 16 nodes of 2 dual-core AMD Opteron processors and a 200 dual-processor HP cluster. For large problem size, which is limited only by the physical memory of the multiprocessor server, the speedup results are almost linear on all systems. We have validated the parallel implementation against the serial VBA and C implementations using the same random number generator. Our experimental results on the transport and energy loss of electrons in a water medium show that the serial and parallel codes are equivalent in accuracy. The present improvements allow for studying of higher particle energies with the use of more accurate physical models, and improve statistics as more particles tracks can be simulated in low response time.
Error reduction techniques for Monte Carlo neutron transport calculations
International Nuclear Information System (INIS)
Ju, J.H.W.
1981-01-01
Monte Carlo methods have been widely applied to problems in nuclear physics, mathematical reliability, communication theory, and other areas. The work in this thesis is developed mainly with neutron transport applications in mind. For nuclear reactor and many other applications, random walk processes have been used to estimate multi-dimensional integrals and obtain information about the solution of integral equations. When the analysis is statistically based such calculations are often costly, and the development of efficient estimation techniques plays a critical role in these applications. All of the error reduction techniques developed in this work are applied to model problems. It is found that the nearly optimal parameters selected by the analytic method for use with GWAN estimator are nearly identical to parameters selected by the multistage method. Modified path length estimation (based on the path length importance measure) leads to excellent error reduction in all model problems examined. Finally, it should be pointed out that techniques used for neutron transport problems may be transferred easily to other application areas which are based on random walk processes. The transport problems studied in this dissertation provide exceptionally severe tests of the error reduction potential of any sampling procedure. It is therefore expected that the methods of this dissertation will prove useful in many other application areas
A sequential Monte Carlo model of the combined GB gas and electricity network
International Nuclear Information System (INIS)
Chaudry, Modassar; Wu, Jianzhong; Jenkins, Nick
2013-01-01
A Monte Carlo model of the combined GB gas and electricity network was developed to determine the reliability of the energy infrastructure. The model integrates the gas and electricity network into a single sequential Monte Carlo simulation. The model minimises the combined costs of the gas and electricity network, these include gas supplies, gas storage operation and electricity generation. The Monte Carlo model calculates reliability indices such as loss of load probability and expected energy unserved for the combined gas and electricity network. The intention of this tool is to facilitate reliability analysis of integrated energy systems. Applications of this tool are demonstrated through a case study that quantifies the impact on the reliability of the GB gas and electricity network given uncertainties such as wind variability, gas supply availability and outages to energy infrastructure assets. Analysis is performed over a typical midwinter week on a hypothesised GB gas and electricity network in 2020 that meets European renewable energy targets. The efficacy of doubling GB gas storage capacity on the reliability of the energy system is assessed. The results highlight the value of greater gas storage facilities in enhancing the reliability of the GB energy system given various energy uncertainties. -- Highlights: •A Monte Carlo model of the combined GB gas and electricity network was developed. •Reliability indices are calculated for the combined GB gas and electricity system. •The efficacy of doubling GB gas storage capacity on reliability of the energy system is assessed. •Integrated reliability indices could be used to assess the impact of investment in energy assets
Statistical estimation Monte Carlo for unreliability evaluation of highly reliable system
International Nuclear Information System (INIS)
Xiao Gang; Su Guanghui; Jia Dounan; Li Tianduo
2000-01-01
Based on analog Monte Carlo simulation, statistical Monte Carlo methods for unreliable evaluation of highly reliable system are constructed, including direct statistical estimation Monte Carlo method and weighted statistical estimation Monte Carlo method. The basal element is given, and the statistical estimation Monte Carlo estimators are derived. Direct Monte Carlo simulation method, bounding-sampling method, forced transitions Monte Carlo method, direct statistical estimation Monte Carlo and weighted statistical estimation Monte Carlo are used to evaluate unreliability of a same system. By comparing, weighted statistical estimation Monte Carlo estimator has smallest variance, and has highest calculating efficiency
Bayesian estimation of realized stochastic volatility model by Hybrid Monte Carlo algorithm
International Nuclear Information System (INIS)
Takaishi, Tetsuya
2014-01-01
The hybrid Monte Carlo algorithm (HMCA) is applied for Bayesian parameter estimation of the realized stochastic volatility (RSV) model. Using the 2nd order minimum norm integrator (2MNI) for the molecular dynamics (MD) simulation in the HMCA, we find that the 2MNI is more efficient than the conventional leapfrog integrator. We also find that the autocorrelation time of the volatility variables sampled by the HMCA is very short. Thus it is concluded that the HMCA with the 2MNI is an efficient algorithm for parameter estimations of the RSV model
Investigating the impossible: Monte Carlo simulations
International Nuclear Information System (INIS)
Kramer, Gary H.; Crowley, Paul; Burns, Linda C.
2000-01-01
Designing and testing new equipment can be an expensive and time consuming process or the desired performance characteristics may preclude its construction due to technological shortcomings. Cost may also prevent equipment being purchased for other scenarios to be tested. An alternative is to use Monte Carlo simulations to make the investigations. This presentation exemplifies how Monte Carlo code calculations can be used to fill the gap. An example is given for the investigation of two sizes of germanium detector (70 mm and 80 mm diameter) at four different crystal thicknesses (15, 20, 25, and 30 mm) and makes predictions on how the size affects the counting efficiency and the Minimum Detectable Activity (MDA). The Monte Carlo simulations have shown that detector efficiencies can be adequately modelled using photon transport if the data is used to investigate trends. The investigation of the effect of detector thickness on the counting efficiency has shown that thickness for a fixed diameter detector of either 70 mm or 80 mm is unimportant up to 60 keV. At higher photon energies, the counting efficiency begins to decrease as the thickness decreases as expected. The simulations predict that the MDA of either the 70 mm or 80 mm diameter detectors does not differ by more than a factor of 1.15 at 17 keV or 1.2 at 60 keV when comparing detectors of equivalent thicknesses. The MDA is slightly increased at 17 keV, and rises by about 52% at 660 keV, when the thickness is decreased from 30 mm to 15 mm. One could conclude from this information that the extra cost associated with the larger area Ge detectors may not be justified for the slight improvement predicted in the MDA. (author)
Monte Carlo Simulation of an American Option
Directory of Open Access Journals (Sweden)
Gikiri Thuo
2007-04-01
Full Text Available We implement gradient estimation techniques for sensitivity analysis of option pricing which can be efficiently employed in Monte Carlo simulation. Using these techniques we can simultaneously obtain an estimate of the option value together with the estimates of sensitivities of the option value to various parameters of the model. After deriving the gradient estimates we incorporate them in an iterative stochastic approximation algorithm for pricing an option with early exercise features. We illustrate the procedure using an example of an American call option with a single dividend that is analytically tractable. In particular we incorporate estimates for the gradient with respect to the early exercise threshold level.
Monte Carlo study of the multiquark systems
International Nuclear Information System (INIS)
Kerbikov, B.O.; Polikarpov, M.I.; Zamolodchikov, A.B.
1986-01-01
Random walks have been used to calculate the energies of the ground states in systems of N=3, 6, 9, 12 quarks. Multiquark states with N>3 are unstable with respect to the spontaneous dissociation into color singlet hadrons. The modified Green's function Monte Carlo algorithm which proved to be more simple and much accurate than the conventional few body methods have been employed. In contrast to other techniques, the same equations are used for any number of particles, while the computer time increases only linearly V, S the number of particles
Monte Carlo eigenfunction strategies and uncertainties
International Nuclear Information System (INIS)
Gast, R.C.; Candelore, N.R.
1974-01-01
Comparisons of convergence rates for several possible eigenfunction source strategies led to the selection of the ''straight'' analog of the analytic power method as the source strategy for Monte Carlo eigenfunction calculations. To insure a fair game strategy, the number of histories per iteration increases with increasing iteration number. The estimate of eigenfunction uncertainty is obtained from a modification of a proposal by D. B. MacMillan and involves only estimates of the usual purely statistical component of uncertainty and a serial correlation coefficient of lag one. 14 references. (U.S.)
ATLAS Monte Carlo tunes for MC09
The ATLAS collaboration
2010-01-01
This note describes the ATLAS tunes of underlying event and minimum bias description for the main Monte Carlo generators used in the MC09 production. For the main shower generators, pythia and herwig (with jimmy), the MRST LO* parton distribution functions (PDFs) were used for the first time in ATLAS. Special studies on the performance of these, conceptually new, PDFs for high pt physics processes at LHC energies are presented. In addition, a tune of jimmy for CTEQ6.6 is presented, for use with MC@NLO.
Markov chains analytic and Monte Carlo computations
Graham, Carl
2014-01-01
Markov Chains: Analytic and Monte Carlo Computations introduces the main notions related to Markov chains and provides explanations on how to characterize, simulate, and recognize them. Starting with basic notions, this book leads progressively to advanced and recent topics in the field, allowing the reader to master the main aspects of the classical theory. This book also features: Numerous exercises with solutions as well as extended case studies.A detailed and rigorous presentation of Markov chains with discrete time and state space.An appendix presenting probabilistic notions that are nec
Atomistic Monte Carlo simulation of lipid membranes
DEFF Research Database (Denmark)
Wüstner, Daniel; Sklenar, Heinz
2014-01-01
Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC) simulation of lipid membranes. We provide an introduction...... into the various move sets that are implemented in current MC methods for efficient conformational sampling of lipids and other molecules. In the second part, we demonstrate for a concrete example, how an atomistic local-move set can be implemented for MC simulations of phospholipid monomers and bilayer patches...
Monte Carlo method in radiation transport problems
International Nuclear Information System (INIS)
Dejonghe, G.; Nimal, J.C.; Vergnaud, T.
1986-11-01
In neutral radiation transport problems (neutrons, photons), two values are important: the flux in the phase space and the density of particles. To solve the problem with Monte Carlo method leads to, among other things, build a statistical process (called the play) and to provide a numerical value to a variable x (this attribution is called score). Sampling techniques are presented. Play biasing necessity is proved. A biased simulation is made. At last, the current developments (rewriting of programs for instance) are presented due to several reasons: two of them are the vectorial calculation apparition and the photon and neutron transport in vacancy media [fr
A note on simultaneous Monte Carlo tests
DEFF Research Database (Denmark)
Hahn, Ute
In this short note, Monte Carlo tests of goodness of fit for data of the form X(t), t ∈ I are considered, that reject the null hypothesis if X(t) leaves an acceptance region bounded by an upper and lower curve for some t in I. A construction of the acceptance region is proposed that complies to a...... to a given target level of rejection, and yields exact p-values. The construction is based on pointwise quantiles, estimated from simulated realizations of X(t) under the null hypothesis....
IN MEMORIAM CARLOS RESTREPO. UN VERDADERO MAESTRO
Pelayo Correa
2009-01-01
Carlos Restrepo fue el primer profesor de Patología y un miembro ilustre del grupo de pioneros que fundaron la Facultad de Medicina de la Universidad del Valle. Estos pioneros convergieron en Cali en la década de 1950, en posesión de un espíritu renovador y creativo que emprendió con mucho éxito la labor de cambiar la cultura académica del Valle del Cauca. Ellos encontraron una sociedad apacible, que disfrutaba de la generosidad de su entorno, sin deseos de romper las tradiciones centenarias ...
Monte Carlo methods to calculate impact probabilities
Rickman, H.; Wiśniowski, T.; Wajer, P.; Gabryszewski, R.; Valsecchi, G. B.
2014-09-01
Context. Unraveling the events that took place in the solar system during the period known as the late heavy bombardment requires the interpretation of the cratered surfaces of the Moon and terrestrial planets. This, in turn, requires good estimates of the statistical impact probabilities for different source populations of projectiles, a subject that has received relatively little attention, since the works of Öpik (1951, Proc. R. Irish Acad. Sect. A, 54, 165) and Wetherill (1967, J. Geophys. Res., 72, 2429). Aims: We aim to work around the limitations of the Öpik and Wetherill formulae, which are caused by singularities due to zero denominators under special circumstances. Using modern computers, it is possible to make good estimates of impact probabilities by means of Monte Carlo simulations, and in this work, we explore the available options. Methods: We describe three basic methods to derive the average impact probability for a projectile with a given semi-major axis, eccentricity, and inclination with respect to a target planet on an elliptic orbit. One is a numerical averaging of the Wetherill formula; the next is a Monte Carlo super-sizing method using the target's Hill sphere. The third uses extensive minimum orbit intersection distance (MOID) calculations for a Monte Carlo sampling of potentially impacting orbits, along with calculations of the relevant interval for the timing of the encounter allowing collision. Numerical experiments are carried out for an intercomparison of the methods and to scrutinize their behavior near the singularities (zero relative inclination and equal perihelion distances). Results: We find an excellent agreement between all methods in the general case, while there appear large differences in the immediate vicinity of the singularities. With respect to the MOID method, which is the only one that does not involve simplifying assumptions and approximations, the Wetherill averaging impact probability departs by diverging toward
MBR Monte Carlo Simulation in PYTHIA8
Ciesielski, R.
We present the MBR (Minimum Bias Rockefeller) Monte Carlo simulation of (anti)proton-proton interactions and its implementation in the PYTHIA8 event generator. We discuss the total, elastic, and total-inelastic cross sections, and three contributions from diffraction dissociation processes that contribute to the latter: single diffraction, double diffraction, and central diffraction or double-Pomeron exchange. The event generation follows a renormalized-Regge-theory model, successfully tested using CDF data. Based on the MBR-enhanced PYTHIA8 simulation, we present cross-section predictions for the LHC and beyond, up to collision energies of 50 TeV.
Spectral functions from Quantum Monte Carlo
International Nuclear Information System (INIS)
Silver, R.N.
1989-01-01
In his review, D. Scalapino identified two serious limitations on the application of Quantum Monte Carlo (QMC) methods to the models of interest in High T c Superconductivity (HTS). One is the ''sign problem''. The other is the ''analytic continuation problem'', which is how to extract electron spectral functions from QMC calculations of the imaginary time Green's functions. Through-out this Symposium on HTS, the spectral functions have been the focus for the discussion of normal state properties including the applicability of band theory, Fermi liquid theory, marginal Fermi liquids, and novel non-perturbative states. 5 refs., 1 fig
An analysis of Monte Carlo tree search
CSIR Research Space (South Africa)
James, S
2017-02-01
Full Text Available Tree Search Steven James∗, George Konidaris† & Benjamin Rosman∗‡ ∗University of the Witwatersrand, Johannesburg, South Africa †Brown University, Providence RI 02912, USA ‡Council for Scientific and Industrial Research, Pretoria, South Africa steven....james@students.wits.ac.za, gdk@cs.brown.edu, brosman@csir.co.za Abstract Monte Carlo Tree Search (MCTS) is a family of directed search algorithms that has gained widespread attention in re- cent years. Despite the vast amount of research into MCTS, the effect of modifications...
Monte Carlo simulation for the transport beamline
Energy Technology Data Exchange (ETDEWEB)
Romano, F.; Cuttone, G.; Jia, S. B.; Varisano, A. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Attili, A.; Marchetto, F.; Russo, G. [INFN, Sezione di Torino, Via P.Giuria, 1 10125 Torino (Italy); Cirrone, G. A. P.; Schillaci, F.; Scuderi, V. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Institute of Physics Czech Academy of Science, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Carpinelli, M. [INFN Sezione di Cagliari, c/o Dipartimento di Fisica, Università di Cagliari, Cagliari (Italy); Tramontana, A. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Università di Catania, Dipartimento di Fisica e Astronomia, Via S. Sofia 64, Catania (Italy)
2013-07-26
In the framework of the ELIMED project, Monte Carlo (MC) simulations are widely used to study the physical transport of charged particles generated by laser-target interactions and to preliminarily evaluate fluence and dose distributions. An energy selection system and the experimental setup for the TARANIS laser facility in Belfast (UK) have been already simulated with the GEANT4 (GEometry ANd Tracking) MC toolkit. Preliminary results are reported here. Future developments are planned to implement a MC based 3D treatment planning in order to optimize shots number and dose delivery.
Monte Carlo simulation for the transport beamline
International Nuclear Information System (INIS)
Romano, F.; Cuttone, G.; Jia, S. B.; Varisano, A.; Attili, A.; Marchetto, F.; Russo, G.; Cirrone, G. A. P.; Schillaci, F.; Scuderi, V.; Carpinelli, M.; Tramontana, A.
2013-01-01
In the framework of the ELIMED project, Monte Carlo (MC) simulations are widely used to study the physical transport of charged particles generated by laser-target interactions and to preliminarily evaluate fluence and dose distributions. An energy selection system and the experimental setup for the TARANIS laser facility in Belfast (UK) have been already simulated with the GEANT4 (GEometry ANd Tracking) MC toolkit. Preliminary results are reported here. Future developments are planned to implement a MC based 3D treatment planning in order to optimize shots number and dose delivery
Diffusion quantum Monte Carlo for molecules
International Nuclear Information System (INIS)
Lester, W.A. Jr.
1986-07-01
A quantum mechanical Monte Carlo method has been used for the treatment of molecular problems. The imaginary-time Schroedinger equation written with a shift in zero energy [E/sub T/ - V(R)] can be interpreted as a generalized diffusion equation with a position-dependent rate or branching term. Since diffusion is the continuum limit of a random walk, one may simulate the Schroedinger equation with a function psi (note, not psi 2 ) as a density of ''walks.'' The walks undergo an exponential birth and death as given by the rate term. 16 refs., 2 tabs
Monte Carlo modelling for neutron guide losses
International Nuclear Information System (INIS)
Cser, L.; Rosta, L.; Toeroek, Gy.
1989-09-01
In modern research reactors, neutron guides are commonly used for beam conducting. The neutron guide is a well polished or equivalently smooth glass tube covered inside by sputtered or evaporated film of natural Ni or 58 Ni isotope where the neutrons are totally reflected. A Monte Carlo calculation was carried out to establish the real efficiency and the spectral as well as spatial distribution of the neutron beam at the end of a glass mirror guide. The losses caused by mechanical inaccuracy and mirror quality were considered and the effects due to the geometrical arrangement were analyzed. (author) 2 refs.; 2 figs
Monte Carlo learning/biasing experiment with intelligent random numbers
International Nuclear Information System (INIS)
Booth, T.E.
1985-01-01
A Monte Carlo learning and biasing technique is described that does its learning and biasing in the random number space rather than the physical phase-space. The technique is probably applicable to all linear Monte Carlo problems, but no proof is provided here. Instead, the technique is illustrated with a simple Monte Carlo transport problem. Problems encountered, problems solved, and speculations about future progress are discussed. 12 refs
Monte Carlo criticality analysis for dissolvers with neutron poison
International Nuclear Information System (INIS)
Yu, Deshun; Dong, Xiufang; Pu, Fuxiang.
1987-01-01
Criticality analysis for dissolvers with neutron poison is given on the basis of Monte Carlo method. In Monte Carlo calculations of thermal neutron group parameters for fuel pieces, neutron transport length is determined in terms of maximum cross section approach. A set of related effective multiplication factors (K eff ) are calculated by Monte Carlo method for the three cases. Related numerical results are quite useful for the design and operation of this kind of dissolver in the criticality safety analysis. (author)
Temperature variance study in Monte-Carlo photon transport theory
International Nuclear Information System (INIS)
Giorla, J.
1985-10-01
We study different Monte-Carlo methods for solving radiative transfer problems, and particularly Fleck's Monte-Carlo method. We first give the different time-discretization schemes and the corresponding stability criteria. Then we write the temperature variance as a function of the variances of temperature and absorbed energy at the previous time step. Finally we obtain some stability criteria for the Monte-Carlo method in the stationary case [fr
International Nuclear Information System (INIS)
Chen, Zhenping; Song, Jing; Zheng, Huaqing; Wu, Bin; Hu, Liqin
2015-01-01
Highlights: • The subdivision combines both advantages of uniform and non-uniform schemes. • The grid models were proved to be more efficient than traditional CSG models. • Monte Carlo simulation performance was enhanced by Optimal Spatial Subdivision. • Efficiency gains were obtained for realistic whole reactor core models. - Abstract: Geometry navigation is one of the key aspects of dominating Monte Carlo particle transport simulation performance for large-scale whole reactor models. In such cases, spatial subdivision is an easily-established and high-potential method to improve the run-time performance. In this study, a dedicated method, named Optimal Spatial Subdivision, is proposed for generating numerically optimal spatial grid models, which are demonstrated to be more efficient for geometry navigation than traditional Constructive Solid Geometry (CSG) models. The method uses a recursive subdivision algorithm to subdivide a CSG model into non-overlapping grids, which are labeled as totally or partially occupied, or not occupied at all, by CSG objects. The most important point is that, at each stage of subdivision, a conception of quality factor based on a cost estimation function is derived to evaluate the qualities of the subdivision schemes. Only the scheme with optimal quality factor will be chosen as the final subdivision strategy for generating the grid model. Eventually, the model built with the optimal quality factor will be efficient for Monte Carlo particle transport simulation. The method has been implemented and integrated into the Super Monte Carlo program SuperMC developed by FDS Team. Testing cases were used to highlight the performance gains that could be achieved. Results showed that Monte Carlo simulation runtime could be reduced significantly when using the new method, even as cases reached whole reactor core model sizes
CAD-based Monte Carlo automatic modeling method based on primitive solid
International Nuclear Information System (INIS)
Wang, Dong; Song, Jing; Yu, Shengpeng; Long, Pengcheng; Wang, Yongliang
2016-01-01
Highlights: • We develop a method which bi-convert between CAD model and primitive solid. • This method was improved from convert method between CAD model and half space. • This method was test by ITER model and validated the correctness and efficiency. • This method was integrated in SuperMC which could model for SuperMC and Geant4. - Abstract: Monte Carlo method has been widely used in nuclear design and analysis, where geometries are described with primitive solids. However, it is time consuming and error prone to describe a primitive solid geometry, especially for a complicated model. To reuse the abundant existed CAD models and conveniently model with CAD modeling tools, an automatic modeling method for accurate prompt modeling between CAD model and primitive solid is needed. An automatic modeling method for Monte Carlo geometry described by primitive solid was developed which could bi-convert between CAD model and Monte Carlo geometry represented by primitive solids. While converting from CAD model to primitive solid model, the CAD model was decomposed into several convex solid sets, and then corresponding primitive solids were generated and exported. While converting from primitive solid model to the CAD model, the basic primitive solids were created and related operation was done. This method was integrated in the SuperMC and was benchmarked with ITER benchmark model. The correctness and efficiency of this method were demonstrated.
Multi-Index Monte Carlo (MIMC)
Haji Ali, Abdul Lateef
2016-01-06
We propose and analyze a novel Multi-Index Monte Carlo (MIMC) method for weak approximation of stochastic models that are described in terms of differential equations either driven by random measures or with random coefficients. The MIMC method is both a stochastic version of the combination technique introduced by Zenger, Griebel and collaborators and an extension of the Multilevel Monte Carlo (MLMC) method first described by Heinrich and Giles. Inspired by Giles s seminal work, instead of using first-order differences as in MLMC, we use in MIMC high-order mixed differences to reduce the variance of the hierarchical differences dramatically. Under standard assumptions on the convergence rates of the weak error, variance and work per sample, the optimal index set turns out to be of Total Degree (TD) type. When using such sets, MIMC yields new and improved complexity results, which are natural generalizations of Giles s MLMC analysis, and which increase the domain of problem parameters for which we achieve the optimal convergence, O(TOL-2).
Multi-Index Monte Carlo (MIMC)
Haji Ali, Abdul Lateef; Nobile, Fabio; Tempone, Raul
2016-01-01
We propose and analyze a novel Multi-Index Monte Carlo (MIMC) method for weak approximation of stochastic models that are described in terms of differential equations either driven by random measures or with random coefficients. The MIMC method is both a stochastic version of the combination technique introduced by Zenger, Griebel and collaborators and an extension of the Multilevel Monte Carlo (MLMC) method first described by Heinrich and Giles. Inspired by Giles s seminal work, instead of using first-order differences as in MLMC, we use in MIMC high-order mixed differences to reduce the variance of the hierarchical differences dramatically. Under standard assumptions on the convergence rates of the weak error, variance and work per sample, the optimal index set turns out to be of Total Degree (TD) type. When using such sets, MIMC yields new and improved complexity results, which are natural generalizations of Giles s MLMC analysis, and which increase the domain of problem parameters for which we achieve the optimal convergence, O(TOL-2).
Multi-Index Monte Carlo (MIMC)
Haji Ali, Abdul Lateef; Nobile, Fabio; Tempone, Raul
2015-01-01
We propose and analyze a novel Multi-Index Monte Carlo (MIMC) method for weak approximation of stochastic models that are described in terms of differential equations either driven by random measures or with random coefficients. The MIMC method is both a stochastic version of the combination technique introduced by Zenger, Griebel and collaborators and an extension of the Multilevel Monte Carlo (MLMC) method first described by Heinrich and Giles. Inspired by Giles’s seminal work, instead of using first-order differences as in MLMC, we use in MIMC high-order mixed differences to reduce the variance of the hierarchical differences dramatically. Under standard assumptions on the convergence rates of the weak error, variance and work per sample, the optimal index set turns out to be of Total Degree (TD) type. When using such sets, MIMC yields new and improved complexity results, which are natural generalizations of Giles’s MLMC analysis, and which increase the domain of problem parameters for which we achieve the optimal convergence.
International Nuclear Information System (INIS)
Ohta, Shigemi
1996-01-01
The Self-Test Monte Carlo (STMC) method resolves the main problems in using algebraic pseudo-random numbers for Monte Carlo (MC) calculations: that they can interfere with MC algorithms and lead to erroneous results, and that such an error often cannot be detected without known exact solution. STMC is based on good randomness of about 10 10 bits available from physical noise or transcendental numbers like π = 3.14---. Various bit modifiers are available to get more bits for applications that demands more than 10 10 random bits such as lattice quantum chromodynamics (QCD). These modifiers are designed so that a) each of them gives a bit sequence comparable in randomness as the original if used separately from each other, and b) their mutual interference when used jointly in a single MC calculation is adjustable. Intermediate data of the MC calculation itself are used to quantitatively test and adjust the mutual interference of the modifiers in respect of the MC algorithm. STMC is free of systematic error and gives reliable statistical error. Also it can be easily implemented on vector and parallel supercomputers. (author)
Algorithms for Monte Carlo calculations with fermions
International Nuclear Information System (INIS)
Weingarten, D.
1985-01-01
We describe a fermion Monte Carlo algorithm due to Petcher and the present author and another due to Fucito, Marinari, Parisi and Rebbi. For the first algorithm we estimate the number of arithmetic operations required to evaluate a vacuum expectation value grows as N 11 /msub(q) on an N 4 lattice with fixed periodicity in physical units and renormalized quark mass msub(q). For the second algorithm the rate of growth is estimated to be N 8 /msub(q) 2 . Numerical experiments are presented comparing the two algorithms on a lattice of size 2 4 . With a hopping constant K of 0.15 and β of 4.0 we find the number of operations for the second algorithm is about 2.7 times larger than for the first and about 13 000 times larger than for corresponding Monte Carlo calculations with a pure gauge theory. An estimate is given for the number of operations required for more realistic calculations by each algorithm on a larger lattice. (orig.)
Quantum Monte Carlo for atoms and molecules
International Nuclear Information System (INIS)
Barnett, R.N.
1989-11-01
The diffusion quantum Monte Carlo with fixed nodes (QMC) approach has been employed in studying energy-eigenstates for 1--4 electron systems. Previous work employing the diffusion QMC technique yielded energies of high quality for H 2 , LiH, Li 2 , and H 2 O. Here, the range of calculations with this new approach has been extended to include additional first-row atoms and molecules. In addition, improvements in the previously computed fixed-node energies of LiH, Li 2 , and H 2 O have been obtained using more accurate trial functions. All computations were performed within, but are not limited to, the Born-Oppenheimer approximation. In our computations, the effects of variation of Monte Carlo parameters on the QMC solution of the Schroedinger equation were studied extensively. These parameters include the time step, renormalization time and nodal structure. These studies have been very useful in determining which choices of such parameters will yield accurate QMC energies most efficiently. Generally, very accurate energies (90--100% of the correlation energy is obtained) have been computed with single-determinant trail functions multiplied by simple correlation functions. Improvements in accuracy should be readily obtained using more complex trial functions
Monte Carlo simulation of grain growth
Directory of Open Access Journals (Sweden)
Paulo Blikstein
1999-07-01
Full Text Available Understanding and predicting grain growth in Metallurgy is meaningful. Monte Carlo methods have been used in computer simulations in many different fields of knowledge. Grain growth simulation using this method is especially attractive as the statistical behavior of the atoms is properly reproduced; microstructural evolution depends only on the real topology of the grains and not on any kind of geometric simplification. Computer simulation has the advantage of allowing the user to visualize graphically the procedures, even dynamically and in three dimensions. Single-phase alloy grain growth simulation was carried out by calculating the free energy of each atom in the lattice (with its present crystallographic orientation and comparing this value to another one calculated with a different random orientation. When the resulting free energy is lower or equal to the initial value, the new orientation replaces the former. The measure of time is the Monte Carlo Step (MCS, which involves a series of trials throughout the lattice. A very close relationship between experimental and theoretical values for the grain growth exponent (n was observed.
Multi-Index Monte Carlo (MIMC)
Haji Ali, Abdul Lateef
2015-01-07
We propose and analyze a novel Multi-Index Monte Carlo (MIMC) method for weak approximation of stochastic models that are described in terms of differential equations either driven by random measures or with random coefficients. The MIMC method is both a stochastic version of the combination technique introduced by Zenger, Griebel and collaborators and an extension of the Multilevel Monte Carlo (MLMC) method first described by Heinrich and Giles. Inspired by Giles’s seminal work, instead of using first-order differences as in MLMC, we use in MIMC high-order mixed differences to reduce the variance of the hierarchical differences dramatically. Under standard assumptions on the convergence rates of the weak error, variance and work per sample, the optimal index set turns out to be of Total Degree (TD) type. When using such sets, MIMC yields new and improved complexity results, which are natural generalizations of Giles’s MLMC analysis, and which increase the domain of problem parameters for which we achieve the optimal convergence.
[Carlos Parsloe (1919-2009) - in memory].
Reis Júnior, Almiro Dos
2009-01-01
Dr. Carlos Pereira Parsloe was the most important and well known Brazilian anesthesiologist, and the one who achieved greater world repercussion. He played a fundamental role as President of the Scientific Commission of the III World congress of Anesthesiology (Brazil). He was President of SAESP and President of WFSA. His autobiography was published by the Wood Library-Museum of Anesthesiology (Illinois, USA). With his passing in January of 2009, Brazilian Anesthesiology lost one of its most valuable members. The life of Dr. Parsloe, emphasizing his character, competence, and achievements, is described. Events from his childhood to the medical course in Rio de Janeiro and his first years as a physician in Rio de Janeiro and Chicago (USA) are described. This paper describes events during his two-year residency in Madison (Wisconsin) under the guidance of Ralph Waters, of which he was proud. It reports his temporary return to Brazil, his second period in Madison, and his definitive return to our country and his life, and the importance of the Medical Anesthetic Service (SMA, from the Portuguese) of São Paulo. And it covers some of the countless tributes he received, both in Brazil and abroad. This tribute, based on his meaning to Brazilian and International Anesthesia, which defined who he was and what he did for our subspecialty, WFSA, SBA, SAESP, several other national and international societies, and for many anesthesiologists in our country, comes after de death of Dr. Carlos Pereira Parsloe in 2009.
Parallel Monte Carlo Search for Hough Transform
Lopes, Raul H. C.; Franqueira, Virginia N. L.; Reid, Ivan D.; Hobson, Peter R.
2017-10-01
We investigate the problem of line detection in digital image processing and in special how state of the art algorithms behave in the presence of noise and whether CPU efficiency can be improved by the combination of a Monte Carlo Tree Search, hierarchical space decomposition, and parallel computing. The starting point of the investigation is the method introduced in 1962 by Paul Hough for detecting lines in binary images. Extended in the 1970s to the detection of space forms, what came to be known as Hough Transform (HT) has been proposed, for example, in the context of track fitting in the LHC ATLAS and CMS projects. The Hough Transform transfers the problem of line detection, for example, into one of optimization of the peak in a vote counting process for cells which contain the possible points of candidate lines. The detection algorithm can be computationally expensive both in the demands made upon the processor and on memory. Additionally, it can have a reduced effectiveness in detection in the presence of noise. Our first contribution consists in an evaluation of the use of a variation of the Radon Transform as a form of improving theeffectiveness of line detection in the presence of noise. Then, parallel algorithms for variations of the Hough Transform and the Radon Transform for line detection are introduced. An algorithm for Parallel Monte Carlo Search applied to line detection is also introduced. Their algorithmic complexities are discussed. Finally, implementations on multi-GPU and multicore architectures are discussed.
Monte Carlo simulation for radiographic applications
International Nuclear Information System (INIS)
Tillack, G.R.; Bellon, C.
2003-01-01
Standard radiography simulators are based on the attenuation law complemented by built-up-factors (BUF) to describe the interaction of radiation with material. The assumption of BUF implies that scattered radiation reduces only the contrast in radiographic images. This simplification holds for a wide range of applications like weld inspection as known from practical experience. But only a detailed description of the different underlying interaction mechanisms is capable to explain effects like mottling or others that every radiographer has experienced in practice. The application of Monte Carlo models is capable to handle primary and secondary interaction mechanisms contributing to the image formation process like photon interactions (absorption, incoherent and coherent scattering including electron-binding effects, pair production) and electron interactions (electron tracing including X-Ray fluorescence and Bremsstrahlung production). It opens up possibilities like the separation of influencing factors and the understanding of the functioning of intensifying screen used in film radiography. The paper discusses the opportunities in applying the Monte Carlo method to investigate special features in radiography in terms of selected examples. (orig.) [de
Reactor perturbation calculations by Monte Carlo methods
International Nuclear Information System (INIS)
Gubbins, M.E.
1965-09-01
Whilst Monte Carlo methods are useful for reactor calculations involving complicated geometry, it is difficult to apply them to the calculation of perturbation worths because of the large amount of computing time needed to obtain good accuracy. Various ways of overcoming these difficulties are investigated in this report, with the problem of estimating absorbing control rod worths particularly in mind. As a basis for discussion a method of carrying out multigroup reactor calculations by Monte Carlo methods is described. Two methods of estimating a perturbation worth directly, without differencing two quantities of like magnitude, are examined closely but are passed over in favour of a third method based on a correlation technique. This correlation method is described, and demonstrated by a limited range of calculations for absorbing control rods in a fast reactor. In these calculations control rod worths of between 1% and 7% in reactivity are estimated to an accuracy better than 10% (3 standard errors) in about one hour's computing time on the English Electric KDF.9 digital computer. (author)
Odd-flavor Simulations by the Hybrid Monte Carlo
Takaishi, Tetsuya; Takaishi, Tetsuya; De Forcrand, Philippe
2001-01-01
The standard hybrid Monte Carlo algorithm is known to simulate even flavors QCD only. Simulations of odd flavors QCD, however, can be also performed in the framework of the hybrid Monte Carlo algorithm where the inverse of the fermion matrix is approximated by a polynomial. In this exploratory study we perform three flavors QCD simulations. We make a comparison of the hybrid Monte Carlo algorithm and the R-algorithm which also simulates odd flavors systems but has step-size errors. We find that results from our hybrid Monte Carlo algorithm are in agreement with those from the R-algorithm obtained at very small step-size.
Wielandt acceleration for MCNP5 Monte Carlo eigenvalue calculations
International Nuclear Information System (INIS)
Brown, F.
2007-01-01
Monte Carlo criticality calculations use the power iteration method to determine the eigenvalue (k eff ) and eigenfunction (fission source distribution) of the fundamental mode. A recently proposed method for accelerating convergence of the Monte Carlo power iteration using Wielandt's method has been implemented in a test version of MCNP5. The method is shown to provide dramatic improvements in convergence rates and to greatly reduce the possibility of false convergence assessment. The method is effective and efficient, improving the Monte Carlo figure-of-merit for many problems. In addition, the method should eliminate most of the underprediction bias in confidence intervals for Monte Carlo criticality calculations. (authors)
Monte Carlo shielding analyses using an automated biasing procedure
International Nuclear Information System (INIS)
Tang, J.S.; Hoffman, T.J.
1988-01-01
A systematic and automated approach for biasing Monte Carlo shielding calculations is described. In particular, adjoint fluxes from a one-dimensional discrete ordinates calculation are used to generate biasing parameters for a Monte Carlo calculation. The entire procedure of adjoint calculation, biasing parameters generation, and Monte Carlo calculation has been automated. The automated biasing procedure has been applied to several realistic deep-penetration shipping cask problems. The results obtained for neutron and gamma-ray transport indicate that with the automated biasing procedure Monte Carlo shielding calculations of spent-fuel casks can be easily performed with minimum effort and that accurate results can be obtained at reasonable computing cost
Monte Carlo techniques for analyzing deep-penetration problems
International Nuclear Information System (INIS)
Cramer, S.N.; Gonnord, J.; Hendricks, J.S.
1986-01-01
Current methods and difficulties in Monte Carlo deep-penetration calculations are reviewed, including statistical uncertainty and recent adjoint optimization of splitting, Russian roulette, and exponential transformation biasing. Other aspects of the random walk and estimation processes are covered, including the relatively new DXANG angular biasing technique. Specific items summarized are albedo scattering, Monte Carlo coupling techniques with discrete ordinates and other methods, adjoint solutions, and multigroup Monte Carlo. The topic of code-generated biasing parameters is presented, including the creation of adjoint importance functions from forward calculations. Finally, current and future work in the area of computer learning and artificial intelligence is discussed in connection with Monte Carlo applications
Igo - A Monte Carlo Code For Radiotherapy Planning
International Nuclear Information System (INIS)
Goldstein, M.; Regev, D.
1999-01-01
The goal of radiation therapy is to deliver a lethal dose to the tumor, while minimizing the dose to normal tissues and vital organs. To carry out this task, it is critical to calculate correctly the 3-D dose delivered. Monte Carlo transport methods (especially the Adjoint Monte Carlo have the potential to provide more accurate predictions of the 3-D dose the currently used methods. IG0 is a Monte Carlo code derived from the general Monte Carlo Program - MCNP, tailored specifically for calculating the effects of radiation therapy. This paper describes the IG0 transport code, the PIG0 interface and some preliminary results
Quantum statistical Monte Carlo methods and applications to spin systems
International Nuclear Information System (INIS)
Suzuki, M.
1986-01-01
A short review is given concerning the quantum statistical Monte Carlo method based on the equivalence theorem that d-dimensional quantum systems are mapped onto (d+1)-dimensional classical systems. The convergence property of this approximate tansformation is discussed in detail. Some applications of this general appoach to quantum spin systems are reviewed. A new Monte Carlo method, ''thermo field Monte Carlo method,'' is presented, which is an extension of the projection Monte Carlo method at zero temperature to that at finite temperatures
Variational Variance Reduction for Monte Carlo Criticality Calculations
International Nuclear Information System (INIS)
Densmore, Jeffery D.; Larsen, Edward W.
2001-01-01
A new variational variance reduction (VVR) method for Monte Carlo criticality calculations was developed. This method employs (a) a variational functional that is more accurate than the standard direct functional, (b) a representation of the deterministically obtained adjoint flux that is especially accurate for optically thick problems with high scattering ratios, and (c) estimates of the forward flux obtained by Monte Carlo. The VVR method requires no nonanalog Monte Carlo biasing, but it may be used in conjunction with Monte Carlo biasing schemes. Some results are presented from a class of criticality calculations involving alternating arrays of fuel and moderator regions
Applications of the Monte Carlo method in radiation protection
International Nuclear Information System (INIS)
Kulkarni, R.N.; Prasad, M.A.
1999-01-01
This paper gives a brief introduction to the application of the Monte Carlo method in radiation protection. It may be noted that an exhaustive review has not been attempted. The special advantage of the Monte Carlo method has been first brought out. The fundamentals of the Monte Carlo method have next been explained in brief, with special reference to two applications in radiation protection. Some sample current applications have been reported in the end in brief as examples. They are, medical radiation physics, microdosimetry, calculations of thermoluminescence intensity and probabilistic safety analysis. The limitations of the Monte Carlo method have also been mentioned in passing. (author)
Energy Technology Data Exchange (ETDEWEB)
Wu, Y., E-mail: yican.wu@fds.org.cn [Inst. of Nuclear Energy Safety Technology, Hefei, Anhui (China)
2015-07-01
'Full text:' Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems (SuperMC) is a CAD-based Monte Carlo (MC) program for integrated simulation of nuclear system by making use of hybrid MC-deterministic method and advanced computer technologies. The main usability features are automatic modeling of geometry and physics, visualization and virtual simulation and cloud computing service. SuperMC 2.3, the latest version, can perform coupled neutron and photon transport calculation. SuperMC has been verified by more than 2000 benchmark models and experiments, and has been applied in tens of major nuclear projects, such as the nuclear design and analysis of International Thermonuclear Experimental Reactor (ITER) and China Lead-based reactor (CLEAR). Development and applications of SuperMC are introduced in this presentation. (author)
Implicit Monte Carlo methods and non-equilibrium Marshak wave radiative transport
International Nuclear Information System (INIS)
Lynch, J.E.
1985-01-01
Two enhancements to the Fleck implicit Monte Carlo method for radiative transport are described, for use in transparent and opaque media respectively. The first introduces a spectral mean cross section, which applies to pseudoscattering in transparent regions with a high frequency incident spectrum. The second provides a simple Monte Carlo random walk method for opaque regions, without the need for a supplementary diffusion equation formulation. A time-dependent transport Marshak wave problem of radiative transfer, in which a non-equilibrium condition exists between the radiation and material energy fields, is then solved. These results are compared to published benchmark solutions and to new discrete ordinate S-N results, for both spatially integrated radiation-material energies versus time and to new spatially dependent temperature profiles. Multigroup opacities, which are independent of both temperature and frequency, are used in addition to a material specific heat which is proportional to the cube of the temperature. 7 refs., 4 figs
International Nuclear Information System (INIS)
Sarkar, P.K.; Prasad, M.A.
1989-01-01
A numerical study for effective implementation of the antithetic variates technique with geometric splitting/Russian roulette in Monte Carlo radiation transport calculations is presented. The study is based on the theory of Monte Carlo errors where a set of coupled integral equations are solved for the first and second moments of the score and for the expected number of flights per particle history. Numerical results are obtained for particle transmission through an infinite homogeneous slab shield composed of an isotropically scattering medium. Two types of antithetic transformations are considered. The results indicate that the antithetic transformations always lead to reduction in variance and increase in efficiency provided optimal antithetic parameters are chosen. A substantial gain in efficiency is obtained by incorporating antithetic transformations in rule of thumb splitting. The advantage gained for thick slabs (∼20 mfp) with low scattering probability (0.1-0.5) is attractively large . (author). 27 refs., 9 tabs
International Nuclear Information System (INIS)
Wu, Y.
2015-01-01
'Full text:' Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems (SuperMC) is a CAD-based Monte Carlo (MC) program for integrated simulation of nuclear system by making use of hybrid MC-deterministic method and advanced computer technologies. The main usability features are automatic modeling of geometry and physics, visualization and virtual simulation and cloud computing service. SuperMC 2.3, the latest version, can perform coupled neutron and photon transport calculation. SuperMC has been verified by more than 2000 benchmark models and experiments, and has been applied in tens of major nuclear projects, such as the nuclear design and analysis of International Thermonuclear Experimental Reactor (ITER) and China Lead-based reactor (CLEAR). Development and applications of SuperMC are introduced in this presentation. (author)
Energy Technology Data Exchange (ETDEWEB)
Grimes, Joshua, E-mail: grimes.joshua@mayo.edu [Department of Physics and Astronomy, University of British Columbia, Vancouver V5Z 1L8 (Canada); Celler, Anna [Department of Radiology, University of British Columbia, Vancouver V5Z 1L8 (Canada)
2014-09-15
Purpose: The authors’ objective was to compare internal dose estimates obtained using the Organ Level Dose Assessment with Exponential Modeling (OLINDA/EXM) software, the voxel S value technique, and Monte Carlo simulation. Monte Carlo dose estimates were used as the reference standard to assess the impact of patient-specific anatomy on the final dose estimate. Methods: Six patients injected with{sup 99m}Tc-hydrazinonicotinamide-Tyr{sup 3}-octreotide were included in this study. A hybrid planar/SPECT imaging protocol was used to estimate {sup 99m}Tc time-integrated activity coefficients (TIACs) for kidneys, liver, spleen, and tumors. Additionally, TIACs were predicted for {sup 131}I, {sup 177}Lu, and {sup 90}Y assuming the same biological half-lives as the {sup 99m}Tc labeled tracer. The TIACs were used as input for OLINDA/EXM for organ-level dose calculation and voxel level dosimetry was performed using the voxel S value method and Monte Carlo simulation. Dose estimates for {sup 99m}Tc, {sup 131}I, {sup 177}Lu, and {sup 90}Y distributions were evaluated by comparing (i) organ-level S values corresponding to each method, (ii) total tumor and organ doses, (iii) differences in right and left kidney doses, and (iv) voxelized dose distributions calculated by Monte Carlo and the voxel S value technique. Results: The S values for all investigated radionuclides used by OLINDA/EXM and the corresponding patient-specific S values calculated by Monte Carlo agreed within 2.3% on average for self-irradiation, and differed by as much as 105% for cross-organ irradiation. Total organ doses calculated by OLINDA/EXM and the voxel S value technique agreed with Monte Carlo results within approximately ±7%. Differences between right and left kidney doses determined by Monte Carlo were as high as 73%. Comparison of the Monte Carlo and voxel S value dose distributions showed that each method produced similar dose volume histograms with a minimum dose covering 90% of the volume (D90
Dragovitsch, Peter; Linn, Stephan L.; Burbank, Mimi
1994-01-01
The Table of Contents for the book is as follows: * Preface * Heavy Fragment Production for Hadronic Cascade Codes * Monte Carlo Simulations of Space Radiation Environments * Merging Parton Showers with Higher Order QCD Monte Carlos * An Order-αs Two-Photon Background Study for the Intermediate Mass Higgs Boson * GEANT Simulation of Hall C Detector at CEBAF * Monte Carlo Simulations in Radioecology: Chernobyl Experience * UNIMOD2: Monte Carlo Code for Simulation of High Energy Physics Experiments; Some Special Features * Geometrical Efficiency Analysis for the Gamma-Neutron and Gamma-Proton Reactions * GISMO: An Object-Oriented Approach to Particle Transport and Detector Modeling * Role of MPP Granularity in Optimizing Monte Carlo Programming * Status and Future Trends of the GEANT System * The Binary Sectioning Geometry for Monte Carlo Detector Simulation * A Combined HETC-FLUKA Intranuclear Cascade Event Generator * The HARP Nucleon Polarimeter * Simulation and Data Analysis Software for CLAS * TRAP -- An Optical Ray Tracing Program * Solutions of Inverse and Optimization Problems in High Energy and Nuclear Physics Using Inverse Monte Carlo * FLUKA: Hadronic Benchmarks and Applications * Electron-Photon Transport: Always so Good as We Think? Experience with FLUKA * Simulation of Nuclear Effects in High Energy Hadron-Nucleus Collisions * Monte Carlo Simulations of Medium Energy Detectors at COSY Jülich * Complex-Valued Monte Carlo Method and Path Integrals in the Quantum Theory of Localization in Disordered Systems of Scatterers * Radiation Levels at the SSCL Experimental Halls as Obtained Using the CLOR89 Code System * Overview of Matrix Element Methods in Event Generation * Fast Electromagnetic Showers * GEANT Simulation of the RMC Detector at TRIUMF and Neutrino Beams for KAON * Event Display for the CLAS Detector * Monte Carlo Simulation of High Energy Electrons in Toroidal Geometry * GEANT 3.14 vs. EGS4: A Comparison Using the DØ Uranium/Liquid Argon
Monte Carlo simulations of low background detectors
International Nuclear Information System (INIS)
Miley, H.S.; Brodzinski, R.L.; Hensley, W.K.; Reeves, J.H.
1995-01-01
An implementation of the Electron Gamma Shower 4 code (EGS4) has been developed to allow convenient simulation of typical gamma ray measurement systems. Coincidence gamma rays, beta spectra, and angular correlations have been added to adequately simulate a complete nuclear decay and provide corrections to experimentally determined detector efficiencies. This code has been used to strip certain low-background spectra for the purpose of extremely low-level assay. Monte Carlo calculations of this sort can be extremely successful since low background detectors are usually free of significant contributions from poorly localized radiation sources, such as cosmic muons, secondary cosmic neutrons, and radioactive construction or shielding materials. Previously, validation of this code has been obtained from a series of comparisons between measurements and blind calculations. An example of the application of this code to an exceedingly low background spectrum stripping will be presented. (author) 5 refs.; 3 figs.; 1 tab
Homogenized group cross sections by Monte Carlo
International Nuclear Information System (INIS)
Van Der Marck, S. C.; Kuijper, J. C.; Oppe, J.
2006-01-01
Homogenized group cross sections play a large role in making reactor calculations efficient. Because of this significance, many codes exist that can calculate these cross sections based on certain assumptions. However, the application to the High Flux Reactor (HFR) in Petten, the Netherlands, the limitations of such codes imply that the core calculations would become less accurate when using homogenized group cross sections (HGCS). Therefore we developed a method to calculate HGCS based on a Monte Carlo program, for which we chose MCNP. The implementation involves an addition to MCNP, and a set of small executables to perform suitable averaging after the MCNP run(s) have completed. Here we briefly describe the details of the method, and we report on two tests we performed to show the accuracy of the method and its implementation. By now, this method is routinely used in preparation of the cycle to cycle core calculations for HFR. (authors)
Nuclear reactions in Monte Carlo codes
Ferrari, Alfredo
2002-01-01
The physics foundations of hadronic interactions as implemented in most Monte Carlo codes are presented together with a few practical examples. The description of the relevant physics is presented schematically split into the major steps in order to stress the different approaches required for the full understanding of nuclear reactions at intermediate and high energies. Due to the complexity of the problem, only a few semi-qualitative arguments are developed in this paper. The description will be necessarily schematic and somewhat incomplete, but hopefully it will be useful for a first introduction into this topic. Examples are shown mostly for the high energy regime, where all mechanisms mentioned in the paper are at work and to which perhaps most of the readers are less accustomed. Examples for lower energies can be found in the references. (43 refs) .
An accurate nonlinear Monte Carlo collision operator
International Nuclear Information System (INIS)
Wang, W.X.; Okamoto, M.; Nakajima, N.; Murakami, S.
1995-03-01
A three dimensional nonlinear Monte Carlo collision model is developed based on Coulomb binary collisions with the emphasis both on the accuracy and implementation efficiency. The operator of simple form fulfills particle number, momentum and energy conservation laws, and is equivalent to exact Fokker-Planck operator by correctly reproducing the friction coefficient and diffusion tensor, in addition, can effectively assure small-angle collisions with a binary scattering angle distributed in a limited range near zero. Two highly vectorizable algorithms are designed for its fast implementation. Various test simulations regarding relaxation processes, electrical conductivity, etc. are carried out in velocity space. The test results, which is in good agreement with theory, and timing results on vector computers show that it is practically applicable. The operator may be used for accurately simulating collisional transport problems in magnetized and unmagnetized plasmas. (author)
Computation cluster for Monte Carlo calculations
International Nuclear Information System (INIS)
Petriska, M.; Vitazek, K.; Farkas, G.; Stacho, M.; Michalek, S.
2010-01-01
Two computation clusters based on Rocks Clusters 5.1 Linux distribution with Intel Core Duo and Intel Core Quad based computers were made at the Department of the Nuclear Physics and Technology. Clusters were used for Monte Carlo calculations, specifically for MCNP calculations applied in Nuclear reactor core simulations. Optimization for computation speed was made on hardware and software basis. Hardware cluster parameters, such as size of the memory, network speed, CPU speed, number of processors per computation, number of processors in one computer were tested for shortening the calculation time. For software optimization, different Fortran compilers, MPI implementations and CPU multi-core libraries were tested. Finally computer cluster was used in finding the weighting functions of neutron ex-core detectors of VVER-440. (authors)
Monte Carlo stratified source-sampling
International Nuclear Information System (INIS)
Blomquist, R.N.; Gelbard, E.M.
1997-01-01
In 1995, at a conference on criticality safety, a special session was devoted to the Monte Carlo open-quotes eigenvalue of the worldclose quotes problem. Argonne presented a paper, at that session, in which the anomalies originally observed in that problem were reproduced in a much simplified model-problem configuration, and removed by a version of stratified source-sampling. The original test-problem was treated by a special code designed specifically for that purpose. Recently ANL started work on a method for dealing with more realistic eigenvalue of the world configurations, and has been incorporating this method into VIM. The original method has been modified to take into account real-world statistical noise sources not included in the model problem. This paper constitutes a status report on work still in progress
Monte Carlo simulation of a CZT detector
International Nuclear Information System (INIS)
Chun, Sung Dae; Park, Se Hwan; Ha, Jang Ho; Kim, Han Soo; Cho, Yoon Ho; Kang, Sang Mook; Kim, Yong Kyun; Hong, Duk Geun
2008-01-01
CZT detector is one of the most promising radiation detectors for hard X-ray and γ-ray measurement. The energy spectrum of CZT detector has to be simulated to optimize the detector design. A CZT detector was fabricated with dimensions of 5x5x2 mm 3 . A Peltier cooler with a size of 40x40 mm 2 was installed below the fabricated CZT detector to reduce the operation temperature of the detector. Energy spectra of were measured with 59.5 keV γ-ray from 241 Am. A Monte Carlo code was developed to simulate the CZT energy spectrum, which was measured with a planar-type CZT detector, and the result was compared with the measured one. The simulation was extended to the CZT detector with strip electrodes. (author)
Vectorization of Monte Carlo particle transport
International Nuclear Information System (INIS)
Burns, P.J.; Christon, M.; Schweitzer, R.; Lubeck, O.M.; Wasserman, H.J.; Simmons, M.L.; Pryor, D.V.
1989-01-01
This paper reports that fully vectorized versions of the Los Alamos National Laboratory benchmark code Gamteb, a Monte Carlo photon transport algorithm, were developed for the Cyber 205/ETA-10 and Cray X-MP/Y-MP architectures. Single-processor performance measurements of the vector and scalar implementations were modeled in a modified Amdahl's Law that accounts for additional data motion in the vector code. The performance and implementation strategy of the vector codes are related to architectural features of each machine. Speedups between fifteen and eighteen for Cyber 205/ETA-10 architectures, and about nine for CRAY X-MP/Y-MP architectures are observed. The best single processor execution time for the problem was 0.33 seconds on the ETA-10G, and 0.42 seconds on the CRAY Y-MP
Computation cluster for Monte Carlo calculations
Energy Technology Data Exchange (ETDEWEB)
Petriska, M.; Vitazek, K.; Farkas, G.; Stacho, M.; Michalek, S. [Dep. Of Nuclear Physics and Technology, Faculty of Electrical Engineering and Information, Technology, Slovak Technical University, Ilkovicova 3, 81219 Bratislava (Slovakia)
2010-07-01
Two computation clusters based on Rocks Clusters 5.1 Linux distribution with Intel Core Duo and Intel Core Quad based computers were made at the Department of the Nuclear Physics and Technology. Clusters were used for Monte Carlo calculations, specifically for MCNP calculations applied in Nuclear reactor core simulations. Optimization for computation speed was made on hardware and software basis. Hardware cluster parameters, such as size of the memory, network speed, CPU speed, number of processors per computation, number of processors in one computer were tested for shortening the calculation time. For software optimization, different Fortran compilers, MPI implementations and CPU multi-core libraries were tested. Finally computer cluster was used in finding the weighting functions of neutron ex-core detectors of VVER-440. (authors)
Monte Carlo calculations of channeling radiation
International Nuclear Information System (INIS)
Bloom, S.D.; Berman, B.L.; Hamilton, D.C.; Alguard, M.J.; Barrett, J.H.; Datz, S.; Pantell, R.H.; Swent, R.H.
1981-01-01
Results of classical Monte Carlo calculations are presented for the radiation produced by ultra-relativistic positrons incident in a direction parallel to the (110) plane of Si in the energy range 30 to 100 MeV. The results all show the characteristic CR(channeling radiation) peak in the energy range 20 keV to 100 keV. Plots of the centroid energies, widths, and total yields of the CR peaks as a function of energy show the power law dependences of γ 1 5 , γ 1 7 , and γ 2 5 respectively. Except for the centroid energies and power-law dependence is only approximate. Agreement with experimental data is good for the centroid energies and only rough for the widths. Adequate experimental data for verifying the yield dependence on γ does not yet exist
Monte Carlo simulations on SIMD computer architectures
International Nuclear Information System (INIS)
Burmester, C.P.; Gronsky, R.; Wille, L.T.
1992-01-01
In this paper algorithmic considerations regarding the implementation of various materials science applications of the Monte Carlo technique to single instruction multiple data (SIMD) computer architectures are presented. In particular, implementation of the Ising model with nearest, next nearest, and long range screened Coulomb interactions on the SIMD architecture MasPar MP-1 (DEC mpp-12000) series of massively parallel computers is demonstrated. Methods of code development which optimize processor array use and minimize inter-processor communication are presented including lattice partitioning and the use of processor array spanning tree structures for data reduction. Both geometric and algorithmic parallel approaches are utilized. Benchmarks in terms of Monte Carl updates per second for the MasPar architecture are presented and compared to values reported in the literature from comparable studies on other architectures
Monte Carlo simulation of neutron scattering instruments
International Nuclear Information System (INIS)
Seeger, P.A.; Daemen, L.L.; Hjelm, R.P. Jr.
1998-01-01
A code package consisting of the Monte Carlo Library MCLIB, the executing code MC RUN, the web application MC Web, and various ancillary codes is proposed as an open standard for simulation of neutron scattering instruments. The architecture of the package includes structures to define surfaces, regions, and optical elements contained in regions. A particle is defined by its vector position and velocity, its time of flight, its mass and charge, and a polarization vector. The MC RUN code handles neutron transport and bookkeeping, while the action on the neutron within any region is computed using algorithms that may be deterministic, probabilistic, or a combination. Complete versatility is possible because the existing library may be supplemented by any procedures a user is able to code. Some examples are shown
Monte Carlo simulation of the ARGO
International Nuclear Information System (INIS)
Depaola, G.O.
1997-01-01
We use GEANT Monte Carlo code to design an outline of the geometry and simulate the performance of the Argentine gamma-ray observer (ARGO), a telescope based on silicon strip detector technlogy. The γ-ray direction is determined by geometrical means and the angular resolution is calculated for small variations of the basic design. The results show that the angular resolutions vary from a few degrees at low energies (∝50 MeV) to 0.2 , approximately, at high energies (>500 MeV). We also made simulations using as incoming γ-ray the energy spectrum of PKS0208-512 and PKS0528+134 quasars. Moreover, a method based on multiple scattering theory is also used to determine the incoming energy. We show that this method is applicable to energy spectrum. (orig.)
Variational Monte Carlo study of pentaquark states
Energy Technology Data Exchange (ETDEWEB)
Mark W. Paris
2005-07-01
Accurate numerical solution of the five-body Schrodinger equation is effected via variational Monte Carlo. The spectrum is assumed to exhibit a narrow resonance with strangeness S=+1. A fully antisymmetrized and pair-correlated five-quark wave function is obtained for the assumed non-relativistic Hamiltonian which has spin, isospin, and color dependent pair interactions and many-body confining terms which are fixed by the non-exotic spectra. Gauge field dynamics are modeled via flux tube exchange factors. The energy determined for the ground states with J=1/2 and negative (positive) parity is 2.22 GeV (2.50 GeV). A lower energy negative parity state is consistent with recent lattice results. The short-range structure of the state is analyzed via its diquark content.
Geometric Monte Carlo and black Janus geometries
Energy Technology Data Exchange (ETDEWEB)
Bak, Dongsu, E-mail: dsbak@uos.ac.kr [Physics Department, University of Seoul, Seoul 02504 (Korea, Republic of); B.W. Lee Center for Fields, Gravity & Strings, Institute for Basic Sciences, Daejeon 34047 (Korea, Republic of); Kim, Chanju, E-mail: cjkim@ewha.ac.kr [Department of Physics, Ewha Womans University, Seoul 03760 (Korea, Republic of); Kim, Kyung Kiu, E-mail: kimkyungkiu@gmail.com [Department of Physics, Sejong University, Seoul 05006 (Korea, Republic of); Department of Physics, College of Science, Yonsei University, Seoul 03722 (Korea, Republic of); Min, Hyunsoo, E-mail: hsmin@uos.ac.kr [Physics Department, University of Seoul, Seoul 02504 (Korea, Republic of); Song, Jeong-Pil, E-mail: jeong_pil_song@brown.edu [Department of Chemistry, Brown University, Providence, RI 02912 (United States)
2017-04-10
We describe an application of the Monte Carlo method to the Janus deformation of the black brane background. We present numerical results for three and five dimensional black Janus geometries with planar and spherical interfaces. In particular, we argue that the 5D geometry with a spherical interface has an application in understanding the finite temperature bag-like QCD model via the AdS/CFT correspondence. The accuracy and convergence of the algorithm are evaluated with respect to the grid spacing. The systematic errors of the method are determined using an exact solution of 3D black Janus. This numerical approach for solving linear problems is unaffected initial guess of a trial solution and can handle an arbitrary geometry under various boundary conditions in the presence of source fields.
Radiation Modeling with Direct Simulation Monte Carlo
Carlson, Ann B.; Hassan, H. A.
1991-01-01
Improvements in the modeling of radiation in low density shock waves with direct simulation Monte Carlo (DSMC) are the subject of this study. A new scheme to determine the relaxation collision numbers for excitation of electronic states is proposed. This scheme attempts to move the DSMC programs toward a more detailed modeling of the physics and more reliance on available rate data. The new method is compared with the current modeling technique and both techniques are compared with available experimental data. The differences in the results are evaluated. The test case is based on experimental measurements from the AVCO-Everett Research Laboratory electric arc-driven shock tube of a normal shock wave in air at 10 km/s and .1 Torr. The new method agrees with the available data as well as the results from the earlier scheme and is more easily extrapolated to di erent ow conditions.
Monte Carlo work at Argonne National Laboratory
International Nuclear Information System (INIS)
Gelbard, E.M.; Prael, R.E.
1974-01-01
A simple model of the Monte Carlo process is described and a (nonlinear) recursion relation between fission sources in successive generations is developed. From the linearized form of these recursion relations, it is possible to derive expressions for the mean square coefficients of error modes in the iterates and for correlation coefficients between fluctuations in successive generations. First-order nonlinear terms in the recursion relation are analyzed. From these nonlinear terms an expression for the bias in the eigenvalue estimator is derived, and prescriptions for measuring the bias are formulated. Plans for the development of the VIM code are reviewed, and the proposed treatment of small sample perturbations in VIM is described. 6 references. (U.S.)
Methods for Monte Carlo simulations of biomacromolecules.
Vitalis, Andreas; Pappu, Rohit V
2009-01-01
The state-of-the-art for Monte Carlo (MC) simulations of biomacromolecules is reviewed. Available methodologies for sampling conformational equilibria and associations of biomacromolecules in the canonical ensemble, given a continuum description of the solvent environment, are reviewed. Detailed sections are provided dealing with the choice of degrees of freedom, the efficiencies of MC algorithms and algorithmic peculiarities, as well as the optimization of simple movesets. The issue of introducing correlations into elementary MC moves, and the applicability of such methods to simulations of biomacromolecules is discussed. A brief discussion of multicanonical methods and an overview of recent simulation work highlighting the potential of MC methods are also provided. It is argued that MC simulations, while underutilized biomacromolecular simulation community, hold promise for simulations of complex systems and phenomena that span multiple length scales, especially when used in conjunction with implicit solvation models or other coarse graining strategies.
William Carlos Williams’ cubism: The sensory dimension
Directory of Open Access Journals (Sweden)
J-L Kruger
1995-05-01
Full Text Available In this article the cubism of the American poet William Carlos Williams is discussed as a product of sensory elements combined with techniques derived from the work of the visual artists associated with this style. Through the study o f a number of poems written in the period between 1917 and 1923 it is shown that Williams employs the cubist intersection of sensory planes in particular to create a sensory dimension that not only renews the traditions and mode of poetry, but also reveals the cubist concern with the defamiliarization and foregrounding of fragments of everyday experiences. Ultimately the article is an attempt to indicate Williams’ incorporation o f a sensual dimension in creating a style that achieves modernist presentation revealing an independence from both traditional literary and visual styles.
San Carlos Apache Tribe - Energy Organizational Analysis
Energy Technology Data Exchange (ETDEWEB)
Rapp, James; Albert, Steve
2012-04-01
The San Carlos Apache Tribe (SCAT) was awarded $164,000 in late-2011 by the U.S. Department of Energy (U.S. DOE) Tribal Energy Program's "First Steps Toward Developing Renewable Energy and Energy Efficiency on Tribal Lands" Grant Program. This grant funded: The analysis and selection of preferred form(s) of tribal energy organization (this Energy Organization Analysis, hereinafter referred to as "EOA"). Start-up staffing and other costs associated with the Phase 1 SCAT energy organization. An intern program. Staff training. Tribal outreach and workshops regarding the new organization and SCAT energy programs and projects, including two annual tribal energy summits (2011 and 2012). This report documents the analysis and selection of preferred form(s) of a tribal energy organization.
PEPSI: a Monte Carlo generator for polarized leptoproduction
International Nuclear Information System (INIS)
Mankiewicz, L.
1992-01-01
We describe PEPSI (Polarized Electron Proton Scattering Interactions) a Monte Carlo program for the polarized deep inelastic leptoproduction mediated by electromagnetic interaction. The code is a modification of the LEPTO 4.3 Lund Monte Carlo for unpolarized scattering and requires the standard polarization-independent JETSET routines to perform fragmentation into final hadrons. (orig.)
Closed-shell variational quantum Monte Carlo simulation for the ...
African Journals Online (AJOL)
Closed-shell variational quantum Monte Carlo simulation for the electric dipole moment calculation of hydrazine molecule using casino-code. ... Nigeria Journal of Pure and Applied Physics ... The variational quantum Monte Carlo (VQMC) technique used in this work employed the restricted Hartree-Fock (RHF) scheme.
Efficiency and accuracy of Monte Carlo (importance) sampling
Waarts, P.H.
2003-01-01
Monte Carlo Analysis is often regarded as the most simple and accurate reliability method. Be-sides it is the most transparent method. The only problem is the accuracy in correlation with the efficiency. Monte Carlo gets less efficient or less accurate when very low probabilities are to be computed
Exponential convergence on a continuous Monte Carlo transport problem
International Nuclear Information System (INIS)
Booth, T.E.
1997-01-01
For more than a decade, it has been known that exponential convergence on discrete transport problems was possible using adaptive Monte Carlo techniques. An adaptive Monte Carlo method that empirically produces exponential convergence on a simple continuous transport problem is described
Multiple histogram method and static Monte Carlo sampling
Inda, M.A.; Frenkel, D.
2004-01-01
We describe an approach to use multiple-histogram methods in combination with static, biased Monte Carlo simulations. To illustrate this, we computed the force-extension curve of an athermal polymer from multiple histograms constructed in a series of static Rosenbluth Monte Carlo simulations. From
Debating the Social Thinking of Carlos Nelson Coutinho
Directory of Open Access Journals (Sweden)
Bruno Bruziguessi
2017-10-01
Full Text Available BRAZ, Marcelo; RODRIGUES, Mavi (Org.. Cultura, democracia e socialismo: as idéias de Carlos Nelson Coutinho em debate. [Culture, democracy and socialism: The ideas of Carlos Nelson Coutinho in debate]. Rio de Janeiro: Mórula, 2016. 248 p.
A Monte Carlo approach to combating delayed completion of ...
African Journals Online (AJOL)
The objective of this paper is to unveil the relevance of Monte Carlo critical path analysis in resolving problem of delays in scheduled completion of development projects. Commencing with deterministic network scheduling, Monte Carlo critical path analysis was advanced by assigning probability distributions to task times.
Hybrid SN/Monte Carlo research and results
International Nuclear Information System (INIS)
Baker, R.S.
1993-01-01
The neutral particle transport equation is solved by a hybrid method that iteratively couples regions where deterministic (S N ) and stochastic (Monte Carlo) methods are applied. The Monte Carlo and S N regions are fully coupled in the sense that no assumption is made about geometrical separation or decoupling. The hybrid Monte Carlo/S N method provides a new means of solving problems involving both optically thick and optically thin regions that neither Monte Carlo nor S N is well suited for by themselves. The hybrid method has been successfully applied to realistic shielding problems. The vectorized Monte Carlo algorithm in the hybrid method has been ported to the massively parallel architecture of the Connection Machine. Comparisons of performance on a vector machine (Cray Y-MP) and the Connection Machine (CM-2) show that significant speedups are obtainable for vectorized Monte Carlo algorithms on massively parallel machines, even when realistic problems requiring variance reduction are considered. However, the architecture of the Connection Machine does place some limitations on the regime in which the Monte Carlo algorithm may be expected to perform well
Forest canopy BRDF simulation using Monte Carlo method
Huang, J.; Wu, B.; Zeng, Y.; Tian, Y.
2006-01-01
Monte Carlo method is a random statistic method, which has been widely used to simulate the Bidirectional Reflectance Distribution Function (BRDF) of vegetation canopy in the field of visible remote sensing. The random process between photons and forest canopy was designed using Monte Carlo method.
New Approaches and Applications for Monte Carlo Perturbation Theory
Energy Technology Data Exchange (ETDEWEB)
Aufiero, Manuele; Bidaud, Adrien; Kotlyar, Dan; Leppänen, Jaakko; Palmiotti, Giuseppe; Salvatores, Massimo; Sen, Sonat; Shwageraus, Eugene; Fratoni, Massimiliano
2017-02-01
This paper presents some of the recent and new advancements in the extension of Monte Carlo Perturbation Theory methodologies and application. In particular, the discussed problems involve Brunup calculation, perturbation calculation based on continuous energy functions, and Monte Carlo Perturbation Theory in loosely coupled systems.
A Monte Carlo algorithm for the Vavilov distribution
International Nuclear Information System (INIS)
Yi, Chul-Young; Han, Hyon-Soo
1999-01-01
Using the convolution property of the inverse Laplace transform, an improved Monte Carlo algorithm for the Vavilov energy-loss straggling distribution of the charged particle is developed, which is relatively simple and gives enough accuracy to be used for most Monte Carlo applications
Neutron point-flux calculation by Monte Carlo
International Nuclear Information System (INIS)
Eichhorn, M.
1986-04-01
A survey of the usual methods for estimating flux at a point is given. The associated variance-reducing techniques in direct Monte Carlo games are explained. The multigroup Monte Carlo codes MC for critical systems and PUNKT for point source-point detector-systems are represented, and problems in applying the codes to practical tasks are discussed. (author)
Crop canopy BRDF simulation and analysis using Monte Carlo method
Huang, J.; Wu, B.; Tian, Y.; Zeng, Y.
2006-01-01
This author designs the random process between photons and crop canopy. A Monte Carlo model has been developed to simulate the Bi-directional Reflectance Distribution Function (BRDF) of crop canopy. Comparing Monte Carlo model to MCRM model, this paper analyzes the variations of different LAD and
Non-analog Monte Carlo estimators for radiation momentum deposition
International Nuclear Information System (INIS)
Hykes, Joshua M.; Densmore, Jeffery D.
2009-01-01
The standard method for calculating radiation momentum deposition in Monte Carlo simulations is the analog estimator, which tallies the change in a particle's momentum at each interaction with the matter. Unfortunately, the analog estimator can suffer from large amounts of statistical error. In this paper, we present three new non-analog techniques for estimating momentum deposition. Specifically, we use absorption, collision, and track-length estimators to evaluate a simple integral expression for momentum deposition that does not contain terms that can cause large amounts of statistical error in the analog scheme. We compare our new non-analog estimators to the analog estimator with a set of test problems that encompass a wide range of material properties and both isotropic and anisotropic scattering. In nearly all cases, the new non-analog estimators outperform the analog estimator. The track-length estimator consistently yields the highest performance gains, improving upon the analog-estimator figure of merit by factors of up to two orders of magnitude.
Monte Carlo in radiotherapy: experience in a distributed computational environment
Caccia, B.; Mattia, M.; Amati, G.; Andenna, C.; Benassi, M.; D'Angelo, A.; Frustagli, G.; Iaccarino, G.; Occhigrossi, A.; Valentini, S.
2007-06-01
New technologies in cancer radiotherapy need a more accurate computation of the dose delivered in the radiotherapeutical treatment plan, and it is important to integrate sophisticated mathematical models and advanced computing knowledge into the treatment planning (TP) process. We present some results about using Monte Carlo (MC) codes in dose calculation for treatment planning. A distributed computing resource located in the Technologies and Health Department of the Italian National Institute of Health (ISS) along with other computer facilities (CASPUR - Inter-University Consortium for the Application of Super-Computing for Universities and Research) has been used to perform a fully complete MC simulation to compute dose distribution on phantoms irradiated with a radiotherapy accelerator. Using BEAMnrc and GEANT4 MC based codes we calculated dose distributions on a plain water phantom and air/water phantom. Experimental and calculated dose values below ±2% (for depth between 5 mm and 130 mm) were in agreement both in PDD (Percentage Depth Dose) and transversal sections of the phantom. We consider these results a first step towards a system suitable for medical physics departments to simulate a complete treatment plan using remote computing facilities for MC simulations.
Monte Carlo simulation of the turbulent transport of airborne contaminants
International Nuclear Information System (INIS)
Watson, C.W.; Barr, S.
1975-09-01
A generalized, three-dimensional Monte Carlo model and computer code (SPOOR) are described for simulating atmospheric transport and dispersal of small pollutant clouds. A cloud is represented by a large number of particles that we track by statistically sampling simulated wind and turbulence fields. These fields are based on generalized wind data for large-scale flow and turbulent energy spectra for the micro- and mesoscales. The large-scale field can be input from a climatological data base, or by means of real-time analyses, or from a separate, subjectively defined data base. We introduce the micro- and mesoscale wind fluctuations through a power spectral density, to include effects from a broad spectrum of turbulent-energy scales. The role of turbulence is simulated in both meander and dispersal. Complex flow fields and time-dependent diffusion rates are accounted for naturally, and shear effects are simulated automatically in the ensemble of particle trajectories. An important adjunct has been the development of computer-graphics displays. These include two- and three-dimensional (perspective) snapshots and color motion pictures of particle ensembles, plus running displays of differential and integral cloud characteristics. The model's versatility makes it a valuable atmospheric research tool that we can adapt easily into broader, multicomponent systems-analysis codes. Removal, transformation, dry or wet deposition, and resuspension of contaminant particles can be readily included
Monte Carlo codes use in neutron therapy; Application de codes Monte Carlo en neutrontherapie
Energy Technology Data Exchange (ETDEWEB)
Paquis, P.; Mokhtari, F.; Karamanoukian, D. [Hopital Pasteur, 06 - Nice (France); Pignol, J.P. [Hopital du Hasenrain, 68 - Mulhouse (France); Cuendet, P. [CEA Centre d' Etudes de Saclay, 91 - Gif-sur-Yvette (France). Direction des Reacteurs Nucleaires; Fares, G.; Hachem, A. [Faculte des Sciences, 06 - Nice (France); Iborra, N. [Centre Antoine-Lacassagne, 06 - Nice (France)
1998-04-01
Monte Carlo calculation codes allow to study accurately all the parameters relevant to radiation effects, like the dose deposition or the type of microscopic interactions, through one by one particle transport simulation. These features are very useful for neutron irradiations, from device development up to dosimetry. This paper illustrates some applications of these codes in Neutron Capture Therapy and Neutron Capture Enhancement of fast neutrons irradiations. (authors)
Baräo, Fernando; Nakagawa, Masayuki; Távora, Luis; Vaz, Pedro
2001-01-01
This book focusses on the state of the art of Monte Carlo methods in radiation physics and particle transport simulation and applications, the latter involving in particular, the use and development of electron--gamma, neutron--gamma and hadronic codes. Besides the basic theory and the methods employed, special attention is paid to algorithm development for modeling, and the analysis of experiments and measurements in a variety of fields ranging from particle to medical physics.
Research on perturbation based Monte Carlo reactor criticality search
International Nuclear Information System (INIS)
Li Zeguang; Wang Kan; Li Yangliu; Deng Jingkang
2013-01-01
Criticality search is a very important aspect in reactor physics analysis. Due to the advantages of Monte Carlo method and the development of computer technologies, Monte Carlo criticality search is becoming more and more necessary and feasible. Traditional Monte Carlo criticality search method is suffered from large amount of individual criticality runs and uncertainty and fluctuation of Monte Carlo results. A new Monte Carlo criticality search method based on perturbation calculation is put forward in this paper to overcome the disadvantages of traditional method. By using only one criticality run to get initial k_e_f_f and differential coefficients of concerned parameter, the polynomial estimator of k_e_f_f changing function is solved to get the critical value of concerned parameter. The feasibility of this method was tested. The results show that the accuracy and efficiency of perturbation based criticality search method are quite inspiring and the method overcomes the disadvantages of traditional one. (authors)
Statistics of Monte Carlo methods used in radiation transport calculation
International Nuclear Information System (INIS)
Datta, D.
2009-01-01
Radiation transport calculation can be carried out by using either deterministic or statistical methods. Radiation transport calculation based on statistical methods is basic theme of the Monte Carlo methods. The aim of this lecture is to describe the fundamental statistics required to build the foundations of Monte Carlo technique for radiation transport calculation. Lecture note is organized in the following way. Section (1) will describe the introduction of Basic Monte Carlo and its classification towards the respective field. Section (2) will describe the random sampling methods, a key component of Monte Carlo radiation transport calculation, Section (3) will provide the statistical uncertainty of Monte Carlo estimates, Section (4) will describe in brief the importance of variance reduction techniques while sampling particles such as photon, or neutron in the process of radiation transport
Reconstruction of Monte Carlo replicas from Hessian parton distributions
Energy Technology Data Exchange (ETDEWEB)
Hou, Tie-Jiun [Department of Physics, Southern Methodist University,Dallas, TX 75275-0181 (United States); Gao, Jun [INPAC, Shanghai Key Laboratory for Particle Physics and Cosmology,Department of Physics and Astronomy, Shanghai Jiao-Tong University, Shanghai 200240 (China); High Energy Physics Division, Argonne National Laboratory,Argonne, Illinois, 60439 (United States); Huston, Joey [Department of Physics and Astronomy, Michigan State University,East Lansing, MI 48824 (United States); Nadolsky, Pavel [Department of Physics, Southern Methodist University,Dallas, TX 75275-0181 (United States); Schmidt, Carl; Stump, Daniel [Department of Physics and Astronomy, Michigan State University,East Lansing, MI 48824 (United States); Wang, Bo-Ting; Xie, Ke Ping [Department of Physics, Southern Methodist University,Dallas, TX 75275-0181 (United States); Dulat, Sayipjamal [Department of Physics and Astronomy, Michigan State University,East Lansing, MI 48824 (United States); School of Physics Science and Technology, Xinjiang University,Urumqi, Xinjiang 830046 (China); Center for Theoretical Physics, Xinjiang University,Urumqi, Xinjiang 830046 (China); Pumplin, Jon; Yuan, C.P. [Department of Physics and Astronomy, Michigan State University,East Lansing, MI 48824 (United States)
2017-03-20
We explore connections between two common methods for quantifying the uncertainty in parton distribution functions (PDFs), based on the Hessian error matrix and Monte-Carlo sampling. CT14 parton distributions in the Hessian representation are converted into Monte-Carlo replicas by a numerical method that reproduces important properties of CT14 Hessian PDFs: the asymmetry of CT14 uncertainties and positivity of individual parton distributions. The ensembles of CT14 Monte-Carlo replicas constructed this way at NNLO and NLO are suitable for various collider applications, such as cross section reweighting. Master formulas for computation of asymmetric standard deviations in the Monte-Carlo representation are derived. A correction is proposed to address a bias in asymmetric uncertainties introduced by the Taylor series approximation. A numerical program is made available for conversion of Hessian PDFs into Monte-Carlo replicas according to normal, log-normal, and Watt-Thorne sampling procedures.
Monte Carlo Solutions for Blind Phase Noise Estimation
Directory of Open Access Journals (Sweden)
Çırpan Hakan
2009-01-01
Full Text Available This paper investigates the use of Monte Carlo sampling methods for phase noise estimation on additive white Gaussian noise (AWGN channels. The main contributions of the paper are (i the development of a Monte Carlo framework for phase noise estimation, with special attention to sequential importance sampling and Rao-Blackwellization, (ii the interpretation of existing Monte Carlo solutions within this generic framework, and (iii the derivation of a novel phase noise estimator. Contrary to the ad hoc phase noise estimators that have been proposed in the past, the estimators considered in this paper are derived from solid probabilistic and performance-determining arguments. Computer simulations demonstrate that, on one hand, the Monte Carlo phase noise estimators outperform the existing estimators and, on the other hand, our newly proposed solution exhibits a lower complexity than the existing Monte Carlo solutions.
Sampling from a polytope and hard-disk Monte Carlo
International Nuclear Information System (INIS)
Kapfer, Sebastian C; Krauth, Werner
2013-01-01
The hard-disk problem, the statics and the dynamics of equal two-dimensional hard spheres in a periodic box, has had a profound influence on statistical and computational physics. Markov-chain Monte Carlo and molecular dynamics were first discussed for this model. Here we reformulate hard-disk Monte Carlo algorithms in terms of another classic problem, namely the sampling from a polytope. Local Markov-chain Monte Carlo, as proposed by Metropolis et al. in 1953, appears as a sequence of random walks in high-dimensional polytopes, while the moves of the more powerful event-chain algorithm correspond to molecular dynamics evolution. We determine the convergence properties of Monte Carlo methods in a special invariant polytope associated with hard-disk configurations, and the implications for convergence of hard-disk sampling. Finally, we discuss parallelization strategies for event-chain Monte Carlo and present results for a multicore implementation
Linear filtering applied to Monte Carlo criticality calculations
International Nuclear Information System (INIS)
Morrison, G.W.; Pike, D.H.; Petrie, L.M.
1975-01-01
A significant improvement in the acceleration of the convergence of the eigenvalue computed by Monte Carlo techniques has been developed by applying linear filtering theory to Monte Carlo calculations for multiplying systems. A Kalman filter was applied to a KENO Monte Carlo calculation of an experimental critical system consisting of eight interacting units of fissile material. A comparison of the filter estimate and the Monte Carlo realization was made. The Kalman filter converged in five iterations to 0.9977. After 95 iterations, the average k-eff from the Monte Carlo calculation was 0.9981. This demonstrates that the Kalman filter has the potential of reducing the calculational effort of multiplying systems. Other examples and results are discussed
Problems in radiation shielding calculations with Monte Carlo methods
International Nuclear Information System (INIS)
Ueki, Kohtaro
1985-01-01
The Monte Carlo method is a very useful tool for solving a large class of radiation transport problem. In contrast with deterministic method, geometric complexity is a much less significant problem for Monte Carlo calculations. However, the accuracy of Monte Carlo calculations is of course, limited by statistical error of the quantities to be estimated. In this report, we point out some typical problems to solve a large shielding system including radiation streaming. The Monte Carlo coupling technique was developed to settle such a shielding problem accurately. However, the variance of the Monte Carlo results using the coupling technique of which detectors were located outside the radiation streaming, was still not enough. So as to bring on more accurate results for the detectors located outside the streaming and also for a multi-legged-duct streaming problem, a practicable way of ''Prism Scattering technique'' is proposed in the study. (author)
Cluster monte carlo method for nuclear criticality safety calculation
International Nuclear Information System (INIS)
Pei Lucheng
1984-01-01
One of the most important applications of the Monte Carlo method is the calculation of the nuclear criticality safety. The fair source game problem was presented at almost the same time as the Monte Carlo method was applied to calculating the nuclear criticality safety. The source iteration cost may be reduced as much as possible or no need for any source iteration. This kind of problems all belongs to the fair source game prolems, among which, the optimal source game is without any source iteration. Although the single neutron Monte Carlo method solved the problem without the source iteration, there is still quite an apparent shortcoming in it, that is, it solves the problem without the source iteration only in the asymptotic sense. In this work, a new Monte Carlo method called the cluster Monte Carlo method is given to solve the problem further
Unified definition of a class of Monte Carlo estimators
International Nuclear Information System (INIS)
Lux, I.
1978-01-01
A unified definition of a wide class of Monte Carlo reaction rate estimators is presented, since most commonly used estimators belong to that class. The definition is given through an integral transformation of an arbitrary estimator of the class. Since the transformation contains an arbitrary function, in principle an infinite number of new estimators can be defined on the basis of one known estimator. It is shown that the most common estimators belonging to the class, such as the track-length and expectation estimators, are special cases of transformation, corresponding to the simplest transformation kernels when transforming the usual collision estimator. A pair of new estimators is defined and their variances are compared to the variance of the expectation estimator. One of the new estimators, called the trexpectation estimator, seems to be appropriate for flux-integral estimation in moderator regions. The other one, which uses an intermediate estimation of the final result and is therefore called the self-improving estimator, always yields a lower variance than the expectation estimator. As is shown, this estimator approximates well to possibly the best estimator of the class. Numerical results are presented for the simplest geometries, and these results indicate that for absorbers that are not too strong, in practical cases the standard deviation of the self-improving estimator is less than that of the expectation estimator by more than 10%. The experiments also suggest that the self-improving estimator is always superior to the track-length estimator as well, i.e., that it is the best of all known estimators belonging to the class. In the Appendices, for simplified cases, approximate conditions are given for which the trexpectation and track-length estimators show a higher efficiency than the expectation estimator
GPU-Monte Carlo based fast IMRT plan optimization
Directory of Open Access Journals (Sweden)
Yongbao Li
2014-03-01
Full Text Available Purpose: Intensity-modulated radiation treatment (IMRT plan optimization needs pre-calculated beamlet dose distribution. Pencil-beam or superposition/convolution type algorithms are typically used because of high computation speed. However, inaccurate beamlet dose distributions, particularly in cases with high levels of inhomogeneity, may mislead optimization, hindering the resulting plan quality. It is desire to use Monte Carlo (MC methods for beamlet dose calculations. Yet, the long computational time from repeated dose calculations for a number of beamlets prevents this application. It is our objective to integrate a GPU-based MC dose engine in lung IMRT optimization using a novel two-steps workflow.Methods: A GPU-based MC code gDPM is used. Each particle is tagged with an index of a beamlet where the source particle is from. Deposit dose are stored separately for beamlets based on the index. Due to limited GPU memory size, a pyramid space is allocated for each beamlet, and dose outside the space is neglected. A two-steps optimization workflow is proposed for fast MC-based optimization. At first step, a rough dose calculation is conducted with only a few number of particle per beamlet. Plan optimization is followed to get an approximated fluence map. In the second step, more accurate beamlet doses are calculated, where sampled number of particles for a beamlet is proportional to the intensity determined previously. A second-round optimization is conducted, yielding the final result.Results: For a lung case with 5317 beamlets, 105 particles per beamlet in the first round, and 108 particles per beam in the second round are enough to get a good plan quality. The total simulation time is 96.4 sec.Conclusion: A fast GPU-based MC dose calculation method along with a novel two-step optimization workflow are developed. The high efficiency allows the use of MC for IMRT optimizations.--------------------------------Cite this article as: Li Y, Tian Z
Kinetics of electron-positron pair plasmas using an adaptive Monte Carlo method
International Nuclear Information System (INIS)
Pilla, R.P.; Shaham, J.
1997-01-01
A new algorithm for implementing the adaptive Monte Carlo method is given. It is used to solve the Boltzmann equations that describe the time evolution of a nonequilibrium electron-positron pair plasma containing high-energy photons. These are coupled nonlinear integro-differential equations. The collision kernels for the photons as well as pairs are evaluated for Compton scattering, pair annihilation and creation, bremsstrahlung, and Coulomb collisions. They are given as multidimensional integrals which are valid for all energies. For an homogeneous and isotropic plasma with no particle escape, the equilibrium solution is expressed analytically in terms of the initial conditions. For two specific cases, for which the photon and the pair spectra are initially constant or have a power-law distribution within the given limits, the time evolution of the plasma is analyzed using the new method. The final spectra are found to be in a good agreement with the analytical solutions. The new algorithm is faster than the Monte Carlo scheme based on uniform sampling and more flexible than the numerical methods used in the past, which do not involve Monte Carlo sampling. It is also found to be very stable. Some astrophysical applications of this technique are discussed. copyright 1997 The American Astronomical Society
PhyloSim - Monte Carlo simulation of sequence evolution in the R statistical computing environment
Directory of Open Access Journals (Sweden)
Massingham Tim
2011-04-01
Full Text Available Abstract Background The Monte Carlo simulation of sequence evolution is routinely used to assess the performance of phylogenetic inference methods and sequence alignment algorithms. Progress in the field of molecular evolution fuels the need for more realistic and hence more complex simulations, adapted to particular situations, yet current software makes unreasonable assumptions such as homogeneous substitution dynamics or a uniform distribution of indels across the simulated sequences. This calls for an extensible simulation framework written in a high-level functional language, offering new functionality and making it easy to incorporate further complexity. Results PhyloSim is an extensible framework for the Monte Carlo simulation of sequence evolution, written in R, using the Gillespie algorithm to integrate the actions of many concurrent processes such as substitutions, insertions and deletions. Uniquely among sequence simulation tools, PhyloSim can simulate arbitrarily complex patterns of rate variation and multiple indel processes, and allows for the incorporation of selective constraints on indel events. User-defined complex patterns of mutation and selection can be easily integrated into simulations, allowing PhyloSim to be adapted to specific needs. Conclusions Close integration with R and the wide range of features implemented offer unmatched flexibility, making it possible to simulate sequence evolution under a wide range of realistic settings. We believe that PhyloSim will be useful to future studies involving simulated alignments.
Prediction of Monte Carlo errors by a theory generalized to treat track-length estimators
International Nuclear Information System (INIS)
Booth, T.E.; Amster, H.J.
1978-01-01
Present theories for predicting expected Monte Carlo errors in neutron transport calculations apply to estimates of flux-weighted integrals sampled directly by scoring individual collisions. To treat track-length estimators, the recent theory of Amster and Djomehri is generalized to allow the score distribution functions to depend on the coordinates of two successive collisions. It has long been known that the expected track length in a region of phase space equals the expected flux integrated over that region, but that the expected statistical error of the Monte Carlo estimate of the track length is different from that of the flux integral obtained by sampling the sum of the reciprocals of the cross sections for all collisions in the region. These conclusions are shown to be implied by the generalized theory, which provides explicit equations for the expected values and errors of both types of estimators. Sampling expected contributions to the track-length estimator is also treated. Other general properties of the errors for both estimators are derived from the equations and physically interpreted. The actual values of these errors are then obtained and interpreted for a simple specific example
Iterative acceleration methods for Monte Carlo and deterministic criticality calculations
International Nuclear Information System (INIS)
Urbatsch, T.J.
1995-11-01
If you have ever given up on a nuclear criticality calculation and terminated it because it took so long to converge, you might find this thesis of interest. The author develops three methods for improving the fission source convergence in nuclear criticality calculations for physical systems with high dominance ratios for which convergence is slow. The Fission Matrix Acceleration Method and the Fission Diffusion Synthetic Acceleration (FDSA) Method are acceleration methods that speed fission source convergence for both Monte Carlo and deterministic methods. The third method is a hybrid Monte Carlo method that also converges for difficult problems where the unaccelerated Monte Carlo method fails. The author tested the feasibility of all three methods in a test bed consisting of idealized problems. He has successfully accelerated fission source convergence in both deterministic and Monte Carlo criticality calculations. By filtering statistical noise, he has incorporated deterministic attributes into the Monte Carlo calculations in order to speed their source convergence. He has used both the fission matrix and a diffusion approximation to perform unbiased accelerations. The Fission Matrix Acceleration method has been implemented in the production code MCNP and successfully applied to a real problem. When the unaccelerated calculations are unable to converge to the correct solution, they cannot be accelerated in an unbiased fashion. A Hybrid Monte Carlo method weds Monte Carlo and a modified diffusion calculation to overcome these deficiencies. The Hybrid method additionally possesses reduced statistical errors
Iterative acceleration methods for Monte Carlo and deterministic criticality calculations
Energy Technology Data Exchange (ETDEWEB)
Urbatsch, T.J.
1995-11-01
If you have ever given up on a nuclear criticality calculation and terminated it because it took so long to converge, you might find this thesis of interest. The author develops three methods for improving the fission source convergence in nuclear criticality calculations for physical systems with high dominance ratios for which convergence is slow. The Fission Matrix Acceleration Method and the Fission Diffusion Synthetic Acceleration (FDSA) Method are acceleration methods that speed fission source convergence for both Monte Carlo and deterministic methods. The third method is a hybrid Monte Carlo method that also converges for difficult problems where the unaccelerated Monte Carlo method fails. The author tested the feasibility of all three methods in a test bed consisting of idealized problems. He has successfully accelerated fission source convergence in both deterministic and Monte Carlo criticality calculations. By filtering statistical noise, he has incorporated deterministic attributes into the Monte Carlo calculations in order to speed their source convergence. He has used both the fission matrix and a diffusion approximation to perform unbiased accelerations. The Fission Matrix Acceleration method has been implemented in the production code MCNP and successfully applied to a real problem. When the unaccelerated calculations are unable to converge to the correct solution, they cannot be accelerated in an unbiased fashion. A Hybrid Monte Carlo method weds Monte Carlo and a modified diffusion calculation to overcome these deficiencies. The Hybrid method additionally possesses reduced statistical errors.
Monte Carlo based diffusion coefficients for LMFBR analysis
International Nuclear Information System (INIS)
Van Rooijen, Willem F.G.; Takeda, Toshikazu; Hazama, Taira
2010-01-01
A method based on Monte Carlo calculations is developed to estimate the diffusion coefficient of unit cells. The method uses a geometrical model similar to that used in lattice theory, but does not use the assumption of a separable fundamental mode used in lattice theory. The method uses standard Monte Carlo flux and current tallies, and the continuous energy Monte Carlo code MVP was used without modifications. Four models are presented to derive the diffusion coefficient from tally results of flux and partial currents. In this paper the method is applied to the calculation of a plate cell of the fast-spectrum critical facility ZEBRA. Conventional calculations of the diffusion coefficient diverge in the presence of planar voids in the lattice, but our Monte Carlo method can treat this situation without any problem. The Monte Carlo method was used to investigate the influence of geometrical modeling as well as the directional dependence of the diffusion coefficient. The method can be used to estimate the diffusion coefficient of complicated unit cells, the limitation being the capabilities of the Monte Carlo code. The method will be used in the future to confirm results for the diffusion coefficient obtained of the Monte Carlo code. The method will be used in the future to confirm results for the diffusion coefficient obtained with deterministic codes. (author)
Present status and future prospects of neutronics Monte Carlo
International Nuclear Information System (INIS)
Gelbard, E.M.
1990-01-01
It is fair to say that the Monte Carlo method, over the last decade, has grown steadily more important as a neutronics computational tool. Apparently this has happened for assorted reasons. Thus, for example, as the power of computers has increased, the cost of the method has dropped, steadily becoming less and less of an obstacle to its use. In addition, more and more sophisticated input processors have now made it feasible to model extremely complicated systems routinely with really remarkable fidelity. Finally, as we demand greater and greater precision in reactor calculations, Monte Carlo is often found to be the only method accurate enough for use in benchmarking. Cross section uncertainties are now almost the only inherent limitations in our Monte Carlo capabilities. For this reason Monte Carlo has come to occupy a special position, interposed between experiment and other computational techniques. More and more often deterministic methods are tested by comparison with Monte Carlo, and cross sections are tested by comparing Monte Carlo with experiment. In this way one can distinguish very clearly between errors due to flaws in our numerical methods, and those due to deficiencies in cross section files. The special role of Monte Carlo as a benchmarking tool, often the only available benchmarking tool, makes it crucially important that this method should be polished to perfection. Problems relating to Eigenvalue calculations, variance reduction and the use of advanced computers are reviewed in this paper. (author)
Accelerating staggered-fermion dynamics with the rational hybrid Monte Carlo algorithm
International Nuclear Information System (INIS)
Clark, M. A.; Kennedy, A. D.
2007-01-01
Improved staggered-fermion formulations are a popular choice for lattice QCD calculations. Historically, the algorithm used for such calculations has been the inexact R algorithm, which has systematic errors that only vanish as the square of the integration step size. We describe how the exact rational hybrid Monte Carlo (RHMC) algorithm may be used in this context, and show that for parameters corresponding to current state-of-the-art computations it leads to a factor of approximately seven decrease in cost as well as having no step-size errors
Reliability Assessment of Active Distribution System Using Monte Carlo Simulation Method
Directory of Open Access Journals (Sweden)
Shaoyun Ge
2014-01-01
Full Text Available In this paper we have treated the reliability assessment problem of low and high DG penetration level of active distribution system using the Monte Carlo simulation method. The problem is formulated as a two-case program, the program of low penetration simulation and the program of high penetration simulation. The load shedding strategy and the simulation process were introduced in detail during each FMEA process. Results indicate that the integration of DG can improve the reliability of the system if the system was operated actively.
PBMC: Pre-conditioned Backward Monte Carlo code for radiative transport in planetary atmospheres
García Muñoz, A.; Mills, F. P.
2017-08-01
PBMC (Pre-Conditioned Backward Monte Carlo) solves the vector Radiative Transport Equation (vRTE) and can be applied to planetary atmospheres irradiated from above. The code builds the solution by simulating the photon trajectories from the detector towards the radiation source, i.e. in the reverse order of the actual photon displacements. In accounting for the polarization in the sampling of photon propagation directions and pre-conditioning the scattering matrix with information from the scattering matrices of prior (in the BMC integration order) photon collisions, PBMC avoids the unstable and biased solutions of classical BMC algorithms for conservative, optically-thick, strongly-polarizing media such as Rayleigh atmospheres.
International Nuclear Information System (INIS)
Noack, K.
1982-01-01
The perturbation source method may be a powerful Monte-Carlo means to calculate small effects in a particle field. In a preceding paper we have formulated this methos in inhomogeneous linear particle transport problems describing the particle fields by solutions of Fredholm integral equations and have derived formulae for the second moment of the difference event point estimator. In the present paper we analyse the general structure of its variance, point out the variance peculiarities, discuss the dependence on certain transport games and on generation procedures of the auxiliary particles and draw conclusions to improve this method
Monte Carlo study of four-spinon dynamic structure function in antiferromagnetic Heisenberg model
International Nuclear Information System (INIS)
Si-Lakhal, B.; Abada, A.
2003-11-01
Using Monte Carlo integration methods, we describe the behavior of the exact four-s pinon dynamic structure function S 4 in the antiferromagnetic spin 1/2 Heisenberg quantum spin chain as a function of the neutron energy ω and momentum transfer k. We also determine the fourspinon continuum, the extent of the region in the (k, ω) plane outside which S 4 is identically zero. In each case, the behavior of S 4 is shown to be consistent with the four-spinon continuum and compared to the one of the exact two-spinon dynamic structure function S 2 . Overall shape similarity is noted. (author)
Monte Carlo approach to define the refrigerator capacities for JT-60SA
International Nuclear Information System (INIS)
Wanner, Manfred; Barabaschi, Pietro; Lamaison, Valerie; Michel, Frederic; Reynaud, Pascal; Roussel, Pascal
2011-01-01
The JT-60SA cryogenic system shall provide refrigeration to keep the superconducting magnets and their structures at 4.4 K, cryo-pumps at 3.7 K, thermal shields at 80-100 K, and deliver a flow of 50 K helium to the current leads. A Monte Carlo method is proposed to determine the capacity contingencies for the refrigeration system. Attributing individual contingencies and distribution probability functions to the design variables allows the different load contributions to be statistically averaged. The total refrigeration contingency is derived for each temperature level from the 95% confidence level of the integrated distribution function.
Monte Carlo simulation study of the muon-induced neutron flux at LNGS
International Nuclear Information System (INIS)
Persiani, R.; Garbini, M.; Massoli, F.; Sartorelli, G; Selvi, M.
2011-01-01
Muon-induced neutrons are ultimate background for all the experiments searching for rare events in underground laboratories. Several measurements and simulations were performed concerning the neutron production and propagation but there are disagreements between experimental data and simulations. In this work we present our Monte-Carlo simulation study, based on Geant4, to estimate the muon-induced neutron flux at LNGS. The obtained integral flux of neutrons above 1 MeV is 2.31 x 10 -10 n/cm 2 /s.