WorldWideScience

Sample records for quasi synchronous control

  1. Remote Synchronization Experiments for Quasi-Zenith Satellite System Using Multiple Navigation Signals as Feedback Control

    Directory of Open Access Journals (Sweden)

    Toshiaki Iwata

    2011-01-01

    Full Text Available The remote synchronization system for the onboard crystal oscillator (RESSOX is a remote control method that permits synchronization between a ground station atomic clock and Japanese quasi-zenith satellite system (QZSS crystal oscillators. To realize the RESSOX of the QZSS, the utilization of navigation signals of QZSS for feedback control is an important issue. Since QZSS transmits seven navigation signals (L1C/A, L1CP, L1CD, L2CM, L2CL, L5Q, and L5I, all combinations of these signals should be evaluated. First, the RESSOX algorithm will be introduced. Next, experimental performance will be demonstrated. If only a single signal is available, ionospheric delay should be input from external measurements. If multiple frequency signals are available, any combination, except for L2 and L5, gives good performance with synchronization error being within two nanoseconds that of RESSOX. The combination of L1CD and L5Q gives the best synchronization performance (synchronization error within 1.14 ns. Finally, in the discussion, comparisons of long-duration performance, computer simulation, and sampling number used in feedback control are considered. Although experimental results do not correspond to the simulation results, the tendencies are similar. For the overlapping Allan deviation of long duration, the stability of 1.23×10−14 at 100,160 s is obtained.

  2. Synchronization and chaos control in a periodically forced quasi-geostrophic two-layer model of baroclinic instability

    Directory of Open Access Journals (Sweden)

    F. J. R. Eccles

    2006-01-01

    Full Text Available Cyclic forcing on many timescales is believed to have a significant effect on various quasi-periodic, geophysical phenomena such as El Niño, the Quasi-Biennial Oscillation, and glacial cycles. This variability has been investigated by numerous previous workers, in models ranging from simple energy balance constructions to full general circulation models. We present a numerical study in which periodic forcing is applied to a highly idealised, two-layer, quasi-geostrophic model on a β-plane. The bifurcation structure and (unforced behaviour of this particular model has been extensively examined by Lovegrove et al. (2001 and Lovegrove et al. (2002. We identify from their work three distinct regimes on which we perform our investigations: a steady, travelling wave regime, a quasi-periodic, modulated wave regime and a chaotic regime. In the travelling wave regime a nonlinear resonance is found. In the periodic regime, Arnol'd tongues, frequency locking and a Devil's staircase is seen for small amplitudes of forcing. As the forcing is increased the Arnol'd tongues undergo a period doubling route to chaos, and for larger forcings still, the parameter space we explored is dominated by either period 1 behaviour or chaotic behaviour. In the chaotic regime we extract unstable periodic orbits (UPOs and add the periodic forcing at periods corresponding to integer multiples of the UPO periods. We find regions of synchronization, similar to Arnol'd tongue behaviour but more skewed and centred approximately on these periods. The regions where chaos suppression took place are smaller than the synchronization regions, and are contained within them.

  3. Hysteresis Current Controller Based Grid Connected Wind Energy Conversion System for Permanent Magnet Synchronous Generator and Quasi Z-Source Inverter Using Power Quality Improvement

    Directory of Open Access Journals (Sweden)

    E.Rajendran

    2013-10-01

    Full Text Available Wind energy is a leader area of application for variable-speed generators operating on the constant grid frequency. This paper depicts the power quality enhancement in wind power system using permanent magnet synchronous generator (PMSG and Quasi Z-source Inverter. The PMSG is connected to the power network by means of a quasi z-source inverter (qZSI. The PMSG are used by these technologies due to extraordinary characteristics such as a smaller amount weight and volume, superior performance, eradicate the gear box and no need of peripheral power in permanent magnet excitation. The PMSG overcome the induction generator and other generators, because of their splendid performances without take up the grid power. But Induction Generator always needs the grid connectionfor getting power to start. In this paper the quasi Z-source inverter is a present that is a novel topology conjugated from the traditional Z source Inverter. The qZSI inherits all the advantages of the ZSI, that is performs buck-boost, inversion and power control in wind energy conversion system (WECS Moreover, the proposed qZSI the matchless advantages of less component ratings and stable dc current from the source. All over boost control methods are built for the ZSI can be used by the qZSI .This Paper presents hysteresis current control technique for the quasi Z- source inverter.

  4. Regulation and controlled synchronization

    NARCIS (Netherlands)

    Huijberts, H.J.C.; Huijberts, H.J.C.; Nijmeijer, Henk; Willems, R.M.A.

    1998-01-01

    We investigate the problem of controlled synchronization as a regulator problem. In controlled synchronization one is given autonomous transmitter dynamics and controlled receiver dynamics. The question is to find a (output) feedback controller that achieves matching between transmitter and

  5. Control of synchronous motors

    CERN Document Server

    Louis, Jean-Paul

    2013-01-01

    Synchronous motors are indubitably the most effective device to drive industrial production systems and robots with precision and rapidity. Their control law is thus critical for combining at the same time high productivity to reduced energy consummation. As far as possible, the control algorithms must exploit the properties of these actuators. Therefore, this work draws on well adapted models resulting from the Park's transformation, for both the most traditional machines with sinusoidal field distribution and for machines with non-sinusoidal field distribution which are more and more used in

  6. Quasi-perfect FIFO: Synchronous or asynchronous with application in controller design for the UNICON laser memory. [digital memory and buffer storage

    Science.gov (United States)

    Lim, R. S.

    1974-01-01

    The first-in-first-out memory buffer (FIFO), is an elastic digital memory whose main application is in data buffering between devices operating at different rates. Data written into the top is moved autonomously down toward the bottom of the FIFO to the lowest unoccupied location, and data read from the bottom of the FIFO will cause data from the top to move autonomously down toward the bottom. The FIFO is available in MOS LSI asynchronous form with data rate in the 1 MHz region. The FIFO described yields a simple high-speed iterative implementation, either synchronous of asynchronous. Because of this simple iterative structure, the FIFO is expandable in both number of words and bits per word, and it is attractive from the viewpoint of integrated-circuit production. For the synchronous FIFO, a model was built and successfully used in the controller for the UNICON laser memory. For the asynchronous FIFO, a model was built and also successfully used in a high-performance magnetic tape controller.

  7. Chua's Circuit: Control and Synchronization

    Science.gov (United States)

    Irimiciuc, Stefan-Andrei; Vasilovici, Ovidiu; Dimitriu, Dan-Gheorghe

    Chaos-based data encryption is one of the most reliable methods used in secure communications. This implies a good control of a chaotic system and a good synchronization between the involved systems. Here, experimental results are shown on the control and synchronization of Chua's circuits. The control of the chaotic circuit was achieved by using the switching method. The influence of the control signal characteristics (amplitude, frequency and shape) on the system's states was also investigated. The synchronization of two similar chaotic circuits was studied, emphasizing the importance of the chaotic state characteristics of the Master system in respect to those of Slave system. It was shown that the synchronization does not depend on the chaotic state type, neither on the dimension (x, y or z) used for synchronization.

  8. Chaotic synchronization via linear controller

    Institute of Scientific and Technical Information of China (English)

    Chen Feng-Xiang; Zhang Wei-Dong

    2007-01-01

    A technical framework of constructing a linear controller for chaotic synchronization by utilizing the stability theory of cascade-connected system is presented. Based on the method developed in the paper, two simple and linear feedback controllers, as examples, are derived for the synchronization of Liu chaotic system and Duffing oscillator, respectively.This method is quite flexible in constructing a control law. Its effectiveness is also illustrated by the simulation results.

  9. A satellite mobile communication system based on Band-Limited Quasi-Synchronous Code Division Multiple Access (BLQS-CDMA)

    Science.gov (United States)

    Degaudenzi, R.; Elia, C.; Viola, R.

    1990-01-01

    Discussed here is a new approach to code division multiple access applied to a mobile system for voice (and data) services based on Band Limited Quasi Synchronous Code Division Multiple Access (BLQS-CDMA). The system requires users to be chip synchronized to reduce the contribution of self-interference and to make use of voice activation in order to increase the satellite power efficiency. In order to achieve spectral efficiency, Nyquist chip pulse shaping is used with no detection performance impairment. The synchronization problems are solved in the forward link by distributing a master code, whereas carrier forced activation and closed loop control techniques have been adopted in the return link. System performance sensitivity to nonlinear amplification and timing/frequency synchronization errors are analyzed.

  10. Control of non-conventional synchronous motors

    CERN Document Server

    Louis, Jean-Paul

    2013-01-01

    Classical synchronous motors are the most effective device to drive industrial production systems and robots with precision and rapidity. However, numerous applications require efficient controls in non-conventional situations. Firstly, this is the case with synchronous motors supplied by thyristor line-commutated inverters, or with synchronous motors with faults on one or several phases. Secondly, many drive systems use non-conventional motors such as polyphase (more than three phases) synchronous motors, synchronous motors with double excitation, permanent magnet linear synchronous motors,

  11. Passive synchronized Q-switching between a quasi-three-level and a four-level laser

    DEFF Research Database (Denmark)

    Cheng, Haynes Pak Hay; Tidemand-Lichtenberg, Peter; Jensen, Ole Bjarlin;

    2011-01-01

    Synchronized Q-switching between quasi-three-level and four-level lasers is interesting for sum-frequency generation into the blue and ultraviolet. We report, for the first time, stable synchronized Q-switching between a quasi-three-level laser at 946 nm and a four-level laser at 1064 nm in an al...

  12. Feedback Controller Design for the Synchronization of Boolean Control Networks.

    Science.gov (United States)

    Liu, Yang; Sun, Liangjie; Lu, Jianquan; Liang, Jinling

    2016-09-01

    This brief investigates the partial and complete synchronization of two Boolean control networks (BCNs). Necessary and sufficient conditions for partial and complete synchronization are established by the algebraic representations of logical dynamics. An algorithm is obtained to construct the feedback controller that guarantees the synchronization of master and slave BCNs. Two biological examples are provided to illustrate the effectiveness of the obtained results.

  13. Active control strategy for synchronization and anti-synchronization of a fractional chaotic financial system

    Science.gov (United States)

    Huang, Chengdai; Cao, Jinde

    2017-05-01

    This paper is concerned with the issues of synchronization and anti-synchronization for fractional chaotic financial system with market confidence by taking advantage of active control approach. Some sufficient conditions are derived to guarantee the synchronization and anti-synchronization for the proposed fractional system. Moreover, the relationship between the order and synchronization(anti-synchronization) is demonstrated numerically. It reveals that synchronization(anti-synchronization) is faster as the order increases. Finally, two illustrative examples are exploited to verify the efficiency of the obtained theoretical results.

  14. Control and synchronization of spatiotemporal chaos.

    Science.gov (United States)

    Ahlborn, Alexander; Parlitz, Ulrich

    2008-01-01

    Chaos control methods for the Ginzburg-Landau equation are presented using homogeneously, inhomogeneously, and locally applied multiple delayed feedback signals. In particular, it is shown that a small number of control cells is sufficient for stabilizing plane waves or for trapping spiral waves, and that successful control is closely connected to synchronization of the dynamics in regions close to the control cells.

  15. Adaptive Control Algorithm of the Synchronous Generator

    Directory of Open Access Journals (Sweden)

    Shevchenko Victor

    2017-01-01

    Full Text Available The article discusses the the problem of controlling a synchronous generator, namely, maintaining the stability of the control object in the conditions of occurrence of noise and disturbances in the regulatory process. The model of a synchronous generator is represented by a system of differential equations of Park-Gorev, where state variables are computed relative to synchronously rotating d, q-axis. Management of synchronous generator is proposed to organize on the basis of the position-path control using algorithms to adapt with the reference model. Basic control law directed on the stabilizing indicators the frequency generated by the current and the required power level, which is achieved by controlling the mechanical torque on the shaft of the turbine and the value of the excitation voltage of the synchronous generator. Modification of the classic adaptation algorithm using the reference model, allowing to minimize the error of the reference regulation and the model under investigation within the prescribed limits, produced by means of the introduction of additional variables controller adaptation in the model. Сarried out the mathematical modeling of control provided influence on the studied model of continuous nonlinear and unmeasured the disturbance. Simulation results confirm the high level accuracy of tracking and adaptation investigated model with respect to the reference, and the present value of the loop error depends on parameters performance of regulator.

  16. Synchronization and Stabilization of Chaotic Dynamics in a Quasi-1D Bose-Einstein Condensate

    Directory of Open Access Journals (Sweden)

    B. A. Idowu

    2013-01-01

    Full Text Available A nonlinear control is proposed for the exponential stabilization and synchronization of chaotic behaviour in a model of Bose-Einstein condensate (BEC. The active control technique is designed based on Lyapunov stability theory and Routh-Hurwitz criteria. The control design approach in both cases guarantees the stability of the controlled states. Whereas the synchronization of two identical BEC in their chaotic states can be realized using the scheme; a suitable controller is also capable of driving the otherwise chaotic oscillation to a stable state which could be expected in practice. The effectiveness of this technique is theoretically and numerically demonstrated.

  17. Control of partial synchronization in chaotic oscillators

    Indian Academy of Sciences (India)

    R Banerjee; E Padmanaban; S K Dana

    2015-02-01

    A design of coupling is proposed to control partial synchronization in two chaotic oscillators in a driver–response mode. A control of synchrony between one response variables is made possible (a transition from a complete synchronization to antisynchronization via amplitude death and vice versa without loss of synchrony) keeping the other pairs of variables undisturbed in their pre-desired states of coherence. Further, one of the response variables can be controlled so as to follow the dynamics of an external signal (periodic or chaotic) while keeping the coherent status of other variables unchanged. The stability of synchronization is established using the Hurwitz matrix criterion. Numerical example of an ecological foodweb model is presented. The control scheme is demonstrated in an electronic circuit of the Sprott system.

  18. A Quasi Time Optimal Receding Horizon Control

    OpenAIRE

    Bania, Piotr

    2007-01-01

    This paper presents a quasi time optimal receding horizon control algorithm. The proposed algorithm generates near time optimal control when the state of the system is far from the target. When the state attains a certain neighbourhood of the aim, it begins the adaptation of the cost function. The purpose of this adaptation is to move from the time optimal control to the stabilizing control. Sufficient conditions for the stability of the closed loop system and the manner of the adaptation of ...

  19. Controlled Limiter in the Synchronous Detection Circuit

    Directory of Open Access Journals (Sweden)

    Yauheni Bialetski

    2017-07-01

    Full Text Available This variant of construction of the electrical circuit is aimed at reducing the effects of impulse noise. The measuring channels of the primary transducers are subject to interference of various types. In the case of a small ratio between a useful signal and noise level, synchronous detection is used. Impulse noise leaves a big mark even after using synchronous detection. To improve the performance of such measuring devices, it is proposed to use a controlled amplitude limiter at the input. Comparative analysis of solutions with controlled limiters is carried out in the article and conditions for its optimal operation are determined.

  20. Regulation and controlled synchronization for complex dynamical systems

    NARCIS (Netherlands)

    Huijberts, H.J.C.; Nijmeijer, Henk; Willems, R.M.A.

    2000-01-01

    In this paper we investigate the problem of controlled synchronization as a regulator problem. In controlled synchronization one is given autonomous transmitter dynamics and controlled receiver dynamics. The question is to find a (output) feedback controller that achieves matching between

  1. Control and Synchronization of Neuron Ensembles

    CERN Document Server

    Li, Jr-Shin; Ruths, Justin

    2011-01-01

    Synchronization of oscillations is a phenomenon prevalent in natural, social, and engineering systems. Controlling synchronization of oscillating systems is motivated by a wide range of applications from neurological treatment of Parkinson's disease to the design of neurocomputers. In this article, we study the control of an ensemble of uncoupled neuron oscillators described by phase models. We examine controllability of such a neuron ensemble for various phase models and, furthermore, study the related optimal control problems. In particular, by employing Pontryagin's maximum principle, we analytically derive optimal controls for spiking single- and two-neuron systems, and analyze the applicability of the latter to an ensemble system. Finally, we present a robust computational method for optimal control of spiking neurons based on pseudospectral approximations. The methodology developed here is universal to the control of general nonlinear phase oscillators.

  2. Quantum synchronization in an optomechanical system based on Lyapunov control.

    Science.gov (United States)

    Li, Wenlin; Li, Chong; Song, Heshan

    2016-06-01

    We extend the concepts of quantum complete synchronization and phase synchronization, which were proposed in A. Mari et al., Phys. Rev. Lett. 111, 103605 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.103605, to more widespread quantum generalized synchronization. Generalized synchronization can be considered a necessary condition or a more flexible derivative of complete synchronization, and its criterion and synchronization measure are proposed and analyzed in this paper. As examples, we consider two typical generalized synchronizations in a designed optomechanical system. Unlike the effort to construct a special coupling synchronization system, we purposefully design extra control fields based on Lyapunov control theory. We find that the Lyapunov function can adapt to more flexible control objectives, which is more suitable for generalized synchronization control, and the control fields can be achieved simply with a time-variant voltage. Finally, the existence of quantum entanglement in different generalized synchronizations is also discussed.

  3. Synchronous generator wind energy conversion control system

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, A.L.R. [Wind Energy Group, Recife (Brazil); Lima, A.M.N.; Jacobina, C.B.; Simoes, F.J. [DEE, Campina Grande (Brazil)

    1996-12-31

    This paper presents the performance evaluation and the design of the control system of a WECS (Wind Energy Conversion System) that employs a synchronous generator based on its digital simulation. The WECS discussed in this paper is connected to the utility grid through two Pulse Width Modulated (PWM) power converters. The structure of the proposed WECS enables us to achieve high performance energy conversion by: (i) maximizing the wind energy capture and (ii) minimizing the reactive power flowing between the grid and the synchronous generator. 8 refs., 19 figs.

  4. Chaos in nonlinear oscillations controlling and synchronization

    CERN Document Server

    Lakshamanan, M

    1996-01-01

    This book deals with the bifurcation and chaotic aspects of damped and driven nonlinear oscillators. The analytical and numerical aspects of the chaotic dynamics of these oscillators are covered, together with appropriate experimental studies using nonlinear electronic circuits. Recent exciting developments in chaos research are also discussed, such as the control and synchronization of chaos and possible technological applications.

  5. Synchronization trigger control system for flow visualization

    Science.gov (United States)

    Chun, K. S.

    1987-01-01

    The use of cinematography or holographic interferometry for dynamic flow visualization in an internal combustion engine requires a control device that globally synchronizes camera and light source timing at a predefined shaft encoder angle. The device is capable of 0.35 deg resolution for rotational speeds of up to 73 240 rpm. This was achieved by implementing the shaft encoder signal addressed look-up table (LUT) and appropriate latches. The developed digital signal processing technique achieves 25 nsec of high speed triggering angle detection by using direct parallel bit comparison of the shaft encoder digital code with a simulated angle reference code, instead of using angle value comparison which involves more complicated computation steps. In order to establish synchronization to an AC reference signal whose magnitude is variant with the rotating speed, a dynamic peak followup synchronization technique has been devised. This method scrutinizes the reference signal and provides the right timing within 40 nsec. Two application examples are described.

  6. Feedback control and synchronization of Mandelbrot sets

    Science.gov (United States)

    Zhang, Yong-Ping

    2013-01-01

    The movement of a particle could be depicted by the Mandelbrot set from the fractal viewpoint. According to the requirement, the movement of the particle needs to show different behaviors. In this paper, the feedback control method is taken on the classical Mandelbrot set. By amending the feedback item in the controller, the control method is applied to the generalized Mandelbrot set and by taking the reference item to be the trajectory of another system, the synchronization of Mandelbrot sets is achieved.

  7. Sensorless Control of Permanent Magnet Synchronous Machines

    DEFF Research Database (Denmark)

    Matzen, Torben N.

    to appear. Sensorless control implies control of the machine without using a direct measurement of the rotor position. Instead, more information is extracted from the existing controller feedback signals - often the machine currents - and this information is used together with accurate system knowledge...... machine is also used for servo applications where higher dynamics is required, e.g. in industrial automation. The energy efficiency is essential for battery powered electric vehicles where the electric storage capacity is limited by cost, mass and volume. The control system necessary to operate...... the synchronous machine requires knowledge of the rotor shaft position due to the synchronous and undamped nature of the machine. The rotor position may be measured using a mechanical sensor, but the sensor reduces reliability and adds cost to the system and for this reason sensorless control methods started...

  8. DNA, dichotomic classes and frame synchronization: a quasi-crystal framework.

    Science.gov (United States)

    Giannerini, Simone; Gonzalez, Diego Luis; Rosa, Rodolfo

    2012-06-28

    In this article, we show how a new mathematical model of the genetic code can be exploited for investigating the almost periodic properties of DNA and mRNA protein-coding sequences. We present the main mathematical features of the model and highlight its connections with both number theory and group theory. The group theoretic framework presents interesting analogies with the theory of crystals. Moreover, we exploit the information provided by dichotomic classes, binary variables naturally derived from the mathematical model, in order to build statistical classifiers for retrieving and predicting the normal reading frame used by the ribosome in protein synthesis. The results show that coding sequences possess a local informational structure that can be related to frame synchronization processes. The information for retrieving the normal reading frame, which implies the existence of short-range correlations and almost periodic structures related to the organization of codons, offers an interesting analogy with the properties of quasi-crystals. From a theoretical point of view, our results might contribute to clarifying the relation between biological information and shape in nucleic acids and proteins. Also, from the point of view of applications, we present new promising tools for designing efficient algorithms for frame synchronization, which plays a crucial role in faithful synthesis of proteins.

  9. Synchronous Control Method and Realization of Automated Pharmacy Elevator

    Science.gov (United States)

    Liu, Xiang-Quan

    Firstly, the control method of elevator's synchronous motion is provided, the synchronous control structure of double servo motor based on PMAC is accomplished. Secondly, synchronous control program of elevator is implemented by using PMAC linear interpolation motion model and position error compensation method. Finally, the PID parameters of servo motor were adjusted. The experiment proves the control method has high stability and reliability.

  10. Control of Abnormal Synchronization in Neurological Disorders

    Directory of Open Access Journals (Sweden)

    Oleksandr V. Popovych

    2014-12-01

    Full Text Available In the nervous system synchronization processes play an important role, e.g., in the context of information processing and motor control. However, pathological, excessive synchronization may strongly impair brain function and is a hallmark of several neurological disorders. This focused review addresses the question of how an abnormal neuronal synchronization can specifically be counteracted by invasive and non-invasive brain stimulation as, for instance, by deep brain stimulation for the treatment of Parkinson's disease, or by acoustic stimulation for the treatment of tinnitus. On the example of coordinated reset (CR neuromodulation we illustrate how insights into the dynamics of complex systems contribute to successful model-based approaches, which use methods from synergetics, nonlinear dynamics, and statistical physics, for the development of novel therapies for normalization of brain function and synaptic connectivity. Based on the intrinsic multistability of the neuronal populations induced by spike timing-dependent plasticity (STDP,CR neuromodulation utilizes the mutual interdependence between synaptic connectivity and dynamics of the neuronal networks in order to restore more physiological patterns of connectivity via desynchronization of neuronal activity. The very goal is to shift the neuronal population by stimulation from anabnormally coupled and synchronized state to a desynchronized regime with normalized synaptic connectivity, which significantly outlasts the stimulation cessation, so that long-lasting therapeutic effects can be achieved.

  11. Synchronization of Coupled Neurons Controlled by a Pacemaker

    Institute of Scientific and Technical Information of China (English)

    LI Mei-Sheng; ZHANG Hong-Hui; ZHAO Yong; SHI Xia

    2011-01-01

    We investigate synchronization of Hindmarsh-Rose neurons with gap junctions under the control of a pacemaker. In a ring Hindmarsh-Rose neuronal network, the coupled neurons with the pacemaker can occur in synchronization more easily than those without the pacemaker. Furthermore, the pacemaker can induce phase synchronization or nearly-complete synchronization of nonidentical neurons. This synchronization can occur more easily when time delay is considered. Theses results can be helpful to understand the activities of the real neuronal system.

  12. CAN-based Synchronized Motion Control for Induction Motors

    Institute of Scientific and Technical Information of China (English)

    Jun Ren; Chun-Wen Li; De-Zong Zhao

    2009-01-01

    A control area network (CAN) based multi-motor synchronized motion control system with an advanced synchronized control strategy is proposed.The strategy is to incorporate the adjacent cross-coupling control strategy into the sliding mode control architecture. As illustrated by the four-induction-motor-based experimental results,the multi-motor synchronized motion control system,via the CAN bus,has been successfully implemented.With the employment of the advanced synchronized motion control strategy,the synchronization performance can be significantly improved.

  13. Feedback control and synchronization of Mandelbrot sets

    Institute of Scientific and Technical Information of China (English)

    Zhang Yong-Ping

    2013-01-01

    The movement of a particle could be depicted by the Mandelbrot set from the fractal viewpoint.According to the requirement,the movement of the particle needs to show different behaviors.In this paper,the feedback control method is taken on the classical Mandelbrot set.By amending the feedback item in the controller,the control method is applied to the generalized Mandelbrot set and by taking the reference item to be the trajectory of another system,the synchronization of Mandelbrot sets is achieved.

  14. Nonlinear Dynamics of Controlled Synchronizations of Manipulator System

    Directory of Open Access Journals (Sweden)

    Qingkai Han

    2014-01-01

    Full Text Available The nonlinear dynamics of the manipulator system which is controlled to achieve the synchronization motions is investigated in the paper. Firstly, the control strategies and modeling approaches of the manipulator system are given, in which the synchronization goal is defined by both synchronization errors and its derivatives. The synchronization controllers applied on the manipulator system include neuron synchronization controller, improved OPCL synchronization controller, and MRAC-PD synchronization controller. Then, an improved adaptive synchronized control strategy is proposed in order to estimate online the unknown structure parameters and state variables of the manipulator system and to realize the needed synchronous compensation. Furthermore, a robust adaptive synchronization controller is also researched to guarantee the dynamic stability of the system. Finally, the stability of motion synchronizations of the manipulator system possessing nonlinear component is discussed, together with the effect of control parameters and joint friction and others. Some typical motions such as motion bifurcations and the loss of synchronization of it are obtained and illustrated as periodic, multiperiodic, and/or chaotic motion patterns.

  15. Stochastic Chaos with Its Control and Synchronization

    Institute of Scientific and Technical Information of China (English)

    Zhang Ying; Xu Wei; Zhang Tianshu; Yang Xiaoli; Wu Cunli; Fang Tong

    2008-01-01

    conditions but also to different samples of the random parameter or the random excitation. Thus, the unique common feature of deterministic chaos and stochastic chaos is that they all have at least one positive top Lyapunov exponent for their chaotic motion. For analysis of random phenomena, one used to look for the PDFs (Probability Density Functions) of the ensemble random responses. However, it is a pity that PDF information is not favorable to studying repellency of the neighboring chaotic responses nor to calculating the related TLE, so we would rather study stochastic chaos through its sample responses. Moreover, since any sample of stochastic chaos is a deterministic one, we need not supplement any additional definition on stochastic chaos, just mentioning that every sample of stochastic chaos should be deterministic chaos.We are mainly concerned with the following two basic kinds of nonlinear stochastie systems, i.e. one with random variables as its parameters and one with ergodical random processes as its excitations. To solve the stoehastie chaos problems of these two kinds of systems, we first transform the original stochastie system into their equivalent deterministic ones. Namely, we can transform the former stochastic system into an equivalent deterministic system in the sense of mean square approximation with respect to the random parameter space by the orthogonal polynomial approximation, and transform the latter one simply through replacing its ergodical random excitations by their representative deterministic samples.Having transformed the original stochastic chaos problem into the deterministic chaos problem of equivalent systems, we can use all the available effective methods for further ehaos analysis. In this paper, we aim to review the state of art of studying stochastic chaos with its control and synchronization by the above-mentioned strategy.

  16. Comparison On Sensorless Control Of Synchronous Motors

    Directory of Open Access Journals (Sweden)

    Liviu KREINDLER

    2002-12-01

    Full Text Available The paper compares two different methods for speed and position estimation in AC permanent magnet synchronous motors vector control applications. The first method implies two observer blocks — one for the speed, and the other for the electrical position, using the voltage equations in the (d,q reference frames. The second method estimates the same variables starting from the calculation of instantaneous reactive power. The tests have proved excellent behaviour in steady state (method 1 as well as in transient state (method 2. The implementation has been made on the 16 bits fixed-point DSP - TMS320F240 from Texas Instruments.

  17. Robust chaos synchronization using input-to-state stable control

    Indian Academy of Sciences (India)

    Choon Ki Ahn

    2010-05-01

    In this paper, we propose a new input-to-state stable (ISS) synchronization method for a general class of chaotic systems with disturbances. Based on Lyapunov theory and linear matrix inequality (LMI) approach, for the first time, the ISS synchronization controller is presented not only to guarantee the asymptotic synchronization but also to achieve the bounded synchronization error for any bounded disturbance. The proposed controller can be obtained by solving a convex optimization problem represented by the LMI. Simulation studies are presented to demonstrate the effectiveness of the proposed ISS synchronization scheme.

  18. The CARIBU EBIS control and synchronization system

    Science.gov (United States)

    Dickerson, Clayton; Peters, Christopher

    2015-01-01

    The Californium Rare Isotope Breeder Upgrade (CARIBU) Electron Beam Ion Source (EBIS) charge breeder has been built and tested. The bases of the CARIBU EBIS electrical system are four voltage platforms on which both DC and pulsed high voltage outputs are controlled. The high voltage output pulses are created with either a combination of a function generator and a high voltage amplifier, or two high voltage DC power supplies and a high voltage solid state switch. Proper synchronization of the pulsed voltages, fundamental to optimizing the charge breeding performance, is achieved with triggering from a digital delay pulse generator. The control system is based on National Instruments realtime controllers and LabVIEW software implementing Functional Global Variables (FGV) to store and access instrument parameters. Fiber optic converters enable network communication and triggering across the platforms.

  19. Adaptive Control and Synchronization of the Shallow Water Model

    Directory of Open Access Journals (Sweden)

    P. Sangapate

    2012-01-01

    Full Text Available The shallow water model is one of the important models in dynamical systems. This paper investigates the adaptive chaos control and synchronization of the shallow water model. First, adaptive control laws are designed to stabilize the shallow water model. Then adaptive control laws are derived to chaos synchronization of the shallow water model. The sufficient conditions for the adaptive control and synchronization have been analyzed theoretically, and the results are proved using a Barbalat's Lemma.

  20. Dsp-based Robust Nonlinear Speed Control of PM Synchronous Motor

    Energy Technology Data Exchange (ETDEWEB)

    Baik, I.C.; Kim, K.H.; Youn, M.J. [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-02-01

    A DSP-based robust nonlinear speed control of a permanent magnet synchronous motor(PMSM) is presented. A quasi-linearized and decoupled model including the influence of parameter variations and speed measurement error on the nonlinear speed control of a PMSM is derived. Based on this model, a boundary layer integral sliding mode controller to improve the robustness and performance of the nonlinear speed control of a PMSM is designed and compared with the conventional controller. To show the validity of the proposed control scheme, simulations and experimental works are carried out and compared with the conventional control scheme. (author). 17 refs., 10 figs.

  1. Chaotic control and synchronization for system identification.

    Science.gov (United States)

    Carroll, T L

    2004-04-01

    Research into applications of synchronized chaotic systems assumes that it will be necessary to build many different drive-response pairs, but little is known in general about designing higher dimensional chaotic flows. In this paper, I do not add any design techniques, but I show that it is possible to create multiple drive-response pairs from one chaotic system by applying chaos control techniques to the drive and response systems. If one can design one chaotic system with the desired properties, then many drive-response pairs can be built from this system, so that it is not necessary to solve the design problem more than once. I show both numerical simulations and experimental work with chaotic circuits. I also test the response systems for ability to overcome noise or other interference.

  2. Synchronous Control Effort Minimized for Magnetic-Bearing-Supported Shaft

    Science.gov (United States)

    Brown, Gerald V.

    2001-01-01

    Various disturbances that are synchronous with the shaft speed can complicate radial magnetic bearing control. These include position sensor target irregularities (runout) and shaft imbalance. The method presented here allows the controller to ignore all synchronous harmonics of the shaft position input (within the closed-loop bandwidth) and to respond only to asynchronous motions. The result is reduced control effort.

  3. Synchronization of chaotic fractional-order systems via linear control

    OpenAIRE

    Odibat, Zaid,; Corson, Nathalie; Aziz-Alaoui, Moulay; Bertelle, Cyrille

    2010-01-01

    International audience; The chaotic dynamics of fractional-order systems has attracted much attention recently. Chaotic synchronization of fractional-order systems is further studied in this paper. We investigate the chaos synchronization of two identical systems via a suitable linear controller applied to the response system. Based on the stability results of linear fractional-order systems, sufficient conditions for chaos synchronization of these systems are given. Control laws are derived ...

  4. Synchronization of generalized Henon map by using adaptive fuzzy controller

    CERN Document Server

    Xue Yue Ju

    2003-01-01

    In this paper, an adaptive fuzzy control method is presented to synchronize model-unknown discrete-time generalized Henon map. The proposed method is robust to approximate errors and disturbances, because it integrates the merits of adaptive fuzzy and the variable structure control. Moreover, it can realize the synchronizations of non-identical chaotic systems. The simulation results of synchronization of generalized Henon map show that it not only can synchronize model-unknown generalized Henon map but also is robust against the noise of the systems. These merits are advantageous for engineering realization.

  5. Chaos control and synchronization in a fractional neuron network system

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Shangbo [Computer Department of Chongqing University, Chongqing 400044 (China); Li Hua [Department of Mathematics and Computer Science, University of Lethbridge, T1K 3M4 (Canada)], E-mail: hua.li@uleth.ca; Zhu Zhengzhou [Computer Department of Chongqing University, Chongqing 400044 (China)

    2008-05-15

    In this paper, an algorithm of numerical solution for fractional differential equations is presented. Chaos in a neuron network system is also illustrated. Moreover, chaos feedback control and synchronization systems are constructed. The study and experiment indicate that the chaos in fractional order neuron networks could be controlled and synchronized.

  6. Global synchronization of two parametrically excited systems using active control

    Energy Technology Data Exchange (ETDEWEB)

    Lei Youming [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China)] e-mail: leiyouming@nwpu.edu.cn; Xu Wei [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China)] e-mail: weixu@nwpu.edu.cn; Shen Jianwei [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China); Fang Tong [Department of Engineering Mechanics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2006-04-01

    In this paper, we apply an active control technique to synchronize a kind of two parametrically excited chaotic systems. Based on Lyapunov stability theory and Routh-Hurwitz criteria, some generic sufficient conditions for global asymptotic synchronization are obtained. Illustrative examples on synchronization of two Duffing systems subject to a harmonic parametric excitation and that of two parametrically excited chaotic pendulums are considered here. Numerical simulations show the validity and feasibility of the proposed method.

  7. Synchronization analysis on cascaded multilevel converters with distributed control

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Cascaded multilevel converters built with integrated modules have many advantages such as increased power density,flexible distributed control, multi-functionality, increased reliability and short design cycles. However, the system performance will be affected due to the synchronization errors among each integrated modules. This paper analyzes the impact of the three kinds of synchronization errors on the whole system performance, as well as detailed synchronization implementation. Some valuable conclusions are derived from the theoretical analysis, simulations and experimental results.

  8. Drift Intermittent Synchronization and Controllability in a Simple Model

    Institute of Scientific and Technical Information of China (English)

    XIE Bai-Song; YU Ming-Young

    2005-01-01

    A simple model of three coupled oscillators as an approximation of main modes behaviors in a spatial extended system is proposed. Multi-looping generalized synchronization and drift intermittent lag phase synchronization phenomena are found in this simple model. For a certain of parameters in which chaotic-like intermittent behavior exhibit the amplitudes and phases of three modes are controlled to be synchronized states via coupling them with an external periodic mode.

  9. Remote Synchronization Experiments for Quasi-Senith Satellite System Using Current Geostationary Satellites

    Directory of Open Access Journals (Sweden)

    Toshiaki Iwata

    2010-01-01

    Full Text Available The remote synchronization system for the onboard crystal oscillator (RESSOX realizes accurate synchronization between an atomic clock at a ground station and the QZSS onboard crystal oscillator, reduces overall cost and satellite power consumption, as well as onboard weight and volume, and is expected to have a longer lifetime than a system with onboard atomic clocks. Since a QZSS does not yet exist, we have been conducting synchronization experiments using geostationary earth orbit satellites (JCSAT-1B or Intelsat-4 to confirm that RESSOX is an excellent system for timing synchronization. JCSAT-1B, the elevation angle of which is 46.5 degrees at our institute, is little affected by tropospheric delay, whereas Intelsat-4, the elevation angle of which is 7.9 degrees, is significantly affected. The experimental setup and the results of uplink experiments and feedback experiments using mainly Intelsat-4 are presented. The results show that synchronization within 10 ns is realized.

  10. Design and control of noise-induced synchronization patterns

    CERN Document Server

    Kurebayashi, Wataru; Hasegawa, Mikio; Nakao, Hiroya

    2015-01-01

    We propose a method for controlling synchronization patterns of limit-cycle oscillators by common noisy inputs, i.e., by utilizing noise-induced synchronization. Various synchronization patterns, including fully synchronized and clustered states, can be realized by using linear filters that generate appropriate common noisy signals from given noise. The optimal linear filter can be determined from the linear phase response property of the oscillators and the power spectrum of the given noise. The validity of the proposed method is confirmed by numerical simulations.

  11. Quasi-synchronous multi-parameter anomalies associated with the 2010–2011 New Zealand earthquake sequence

    Directory of Open Access Journals (Sweden)

    K. Qin

    2012-04-01

    Full Text Available Positive thermal anomalies about one month before the 3 September 2010 Mw = 7.1 New Zealand earthquake and "coincidental" quasi-synchronous fluctuations of GPS displacement were reported. Whether there were similar phenomena associated with the aftershocks? To answer it, the following was investigated: multiple parameters including surface and near-surface air temperature, surface latent heat flux, GPS displacement and soil moisture, using a long-term statistical analysis method. We found that local thermal and deformation anomalies appeared quasi-synchronously in three particular tectonic zones, not only about one month before the mainshock, but also tens of days before the 21 February 2011 Mw = 6.3 aftershock, and that the time series of soil moisture on the epicenter pixel had obvious peaks on most of the anomalous days. Based on local tectonic geology, hydrology and meteorology, the particular lithosphere-coversphere-atmosphere coupling mode is interpreted and four mechanisms (magmatic-hydrothermal fluids upwelling, soil moisture increasing, underground pore gases leaking, and positive holes activating and recombining are discussed.

  12. Controlling synchronization in large laser networks using number theory

    CERN Document Server

    Nixon, Micha; Ronen, Eitan; Friesem, Asher A; Davidson, Nir; Kanter, Ido

    2011-01-01

    Synchronization in networks with delayed coupling are ubiquitous in nature and play a key role in almost all fields of science including physics, biology, ecology, climatology and sociology. In general, the published works on network synchronization are based on data analysis and simulations, with little experimental verification. Here we develop and experimentally demonstrate various multi-cluster phase synchronization scenarios within coupled laser networks. Synchronization is controlled by the network connectivity in accordance to number theory, whereby the number of synchronized clusters equals the greatest common divisor of network loops. This dependence enables remote switching mechanisms to control the optical phase coherence among distant lasers by local network connectivity adjustments. Our results serve as a benchmark for a broad range of coupled oscillators in science and technology, and offer feasible routes to achieve multi-user secure protocols in communication networks and parallel distribution...

  13. Fractional order control and synchronization of chaotic systems

    CERN Document Server

    Vaidyanathan, Sundarapandian; Ouannas, Adel

    2017-01-01

    The book reports on the latest advances in and applications of fractional order control and synchronization of chaotic systems, explaining the concepts involved in a clear, matter-of-fact style. It consists of 30 original contributions written by eminent scientists and active researchers in the field that address theories, methods and applications in a number of research areas related to fractional order control and synchronization of chaotic systems, such as: fractional chaotic systems, hyperchaotic systems, complex systems, fractional order discrete chaotic systems, chaos control, chaos synchronization, jerk circuits, fractional chaotic systems with hidden attractors, neural network, fuzzy logic controllers, behavioral modeling, robust and adaptive control, sliding mode control, different types of synchronization, circuit realization of chaotic systems, etc. In addition to providing readers extensive information on chaos fundamentals, fractional calculus, fractional differential equations, fractional contro...

  14. Hybrid Force Motion Synchronization Control of Robot Manipulators

    OpenAIRE

    Fikkan, Kristoffer

    2010-01-01

    The main objective of this thesis was to combine the theory on synchronization of robot manipulators with the concept of hybrid force/motion control; resulting in a controller capable of following both the trajectory of another robot and a desired force trajectory at the same time. This report includes a short introduction to synchronization theory for robot manipulators, and a more thorough summary of existing hybrid control schemes. An intuitive method for describing constraints caused...

  15. Synchronization of general complex networks via adaptive control schemes

    Indian Academy of Sciences (India)

    Ping He; Chun-Guo Jing; Chang-Zhong Chen; Tao Fan; Hassan Saberi Nik

    2014-03-01

    In this paper, the synchronization problem of general complex networks is investigated by using adaptive control schemes. Time-delay coupling, derivative coupling, nonlinear coupling etc. exist universally in real-world complex networks. The adaptive synchronization scheme is designed for the complex network with multiple class of coupling terms. A criterion guaranteeing synchronization of such complex networks is established by employing the Lyapunov stability theorem and adaptive control schemes. Finally, an illustrative example with numerical simulation is given to show the feasibility and efficiency of theoretical results.

  16. Perfect synchronization of chaotic systems: a controllability perspective

    Institute of Scientific and Technical Information of China (English)

    Sun Ming-Xuan; He Xiong-Xiong; Yu Li

    2006-01-01

    This paper presents a synchronization method, motivated from the constructive controllability analysis, for two identical chaotic systems. This technique is applied to achieve perfect synchronization for Lorenz systems and coupled dynamo systems. It turns out that states of the drive system and the response system are synchronized within finite time, and the reaching time is independent of initial conditions, which can be specified in advance. In addition to the simultaneous synchronization, the response system is synchronized un-simultaneously to the drive system with different reaching time for each state. The performance of the resulting system is analytically quantified in the face of initial condition error, and with numerical experiments the proposed method is demonstrated to perform well.

  17. A Method of Controlling Synchronization in Different Systems

    Institute of Scientific and Technical Information of China (English)

    陈骏; 刘曾荣

    2003-01-01

    A new control method to synchronize between two different systems is proposed and the mathematical proof of this method is provided. Moreover, numerical simulation validates the efficiency of the proposed method.

  18. Distributed Synchronization Control to Trajectory Tracking of Multiple Robot Manipulators

    Directory of Open Access Journals (Sweden)

    Yassine Bouteraa

    2011-01-01

    while tracking a common desired trajectory. Based on the well-known consensus algorithm, the control strategy consists in synchronizing the joint position and the velocity of each robot in the network with respect to neighboring robots' joints and velocities. Modeled by an undirected graph, the cooperative robot network requires just local neighbor-to-neighbor information exchange between manipulators. So, it does not assume the existence of an explicit leader in the team. Based above all on combination of Lyapunov direct method and cross-coupling strategy, the proposed decentralized control law is extended to an adaptive synchronization control taking into account parameter uncertainties. To address the time delay problems in the network communication channels, the suggested synchronization control law robustly synchronizes robots to track a given trajectory. To this end, Krasovskii functional method has been used to deal with the delay-dependent stability problem. A real-time software simulator is developed to visualize the robot manipulators coordination.

  19. Speed Synchronization of web winding System with Sliding Mode Control

    Directory of Open Access Journals (Sweden)

    Hachemi Glaoui

    2013-02-01

    Full Text Available A continuous web winding system is a large-scale, complex interconnected dynamic system with numerous tension zones to transport the web while processing it. There are two control schemes for large-scale system control: the centralized scheme and the decentralized scheme. Centralized control is the traditional control method, which considers all the information about the system to be a single dynamic model and design a control system for this model. A speed synchronization control strategy for multiple induction motors, based on adjacent cross-coupling control structure, is developed by employing total sliding mode control method. The proposed control strategy is to stabilize speed tracking of each induction motor while synchronizing its speed with the speed of the other motors so as to make speed synchronization error amongst induction motors converge to zero. The global stability and the convergence of the designed controller are proved by using Lyapunov method. Simulation results demonstrate the effectiveness of the proposed method.

  20. Projective synchronization in fractional order chaotic systems and its control

    OpenAIRE

    Li, Chunguang

    2006-01-01

    The chaotic dynamics of fractional (non-integer) order systems have begun to attract much attention in recent years. In this paper, we study the projective synchronization in two coupled fractional order chaotic oscillators. It is shown that projective synchronization can also exist in coupled fractional order chaotic systems. A simple feedback control method for controlling the scaling factor onto a desired value is also presented.

  1. Chaos synchronization of two stochastic Duffing oscillators by feedback control

    Energy Technology Data Exchange (ETDEWEB)

    Wu Cunli [Department of Engineering Mechanics, Northwestern Polytechnical University, Xi' an 710072 (China); Aircraft Strength Research Institute of China, 3 No. 2 Electron Road, Xi' an 710065 (China)]. E-mail: wucunli@yahoo.com; Fang Tong [Department of Engineering Mechanics, Northwestern Polytechnical University, Xi' an 710072 (China)]. E-mail: tfang@nwpu.edu.cn; Rong Haiwu [Department of Mathematics, Foshan University, Foshan, Guang Dong 528000 (China)

    2007-05-15

    This paper addresses chaos synchronization of two identical stochastic Duffing oscillators with bounded random parameters subject to harmonic excitations. In the analysis the stochastic Duffing oscillator is first transformed into an equivalent deterministic nonlinear system by Gegenbauer polynomial approximation, so that the chaos synchronization problem of stochastic Duffing oscillators can be reduced into that of the equivalent deterministic systems. Then a feedback control strategy is adopted to synchronize chaotic responses of two identical equivalent deterministic systems under different initial conditions. The feedback parameters are determined through analysis of the top Lyapunov exponent of the variational equation of the controlled responding system. Numerical analysis shows that the feedback control strategy is an effective way to synchronize two identical stochastic Duffing systems.

  2. Quasi serializable concurrency control in mobile broadcast environments

    Institute of Scientific and Technical Information of China (English)

    Dang Depeng; Liu Yunsheng

    2007-01-01

    The problem of maintaining data consistency in mobile broadcast environments is researched.Quasi serializability is formally defined and analyzed at first.It was shown that quasi serializability is less stringent than serializability when database consistency is maintained for transactions.Then,corresponding concurrency control protocol that supports both update transactions and read-only transactions is outlined for mobile broadcast environments.Finally,the simulation results confirmed that the proposed protocol could improve the response time significantly.

  3. Optical synchronization and electron bunch diagnostic at the quasi-cw accelerator ELBE

    Energy Technology Data Exchange (ETDEWEB)

    Kuntzsch, Michael [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Technische Univ. Dresden (Germany); Lehnert, Ulf; Roeser, Fabian [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Czwalinna, Marie Kristin; Schulz, Sebastian; Schlarb, Holger; Vilcins, Silke [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-07-01

    The continuous wave electron accelerator ELBE is upgraded to generate short and highly charged electron bunches (200 fs duration, up to 1 nC) with an energy of up to 40 MeV. In the last years a prototype of an optical synchronization system using a mode locked fiber laser has been build up which is now in commissioning phase. The stabilized pulse train can be used for new methods of electron bunch diagnostics like bunch arrival time measurement with the resolution down to a few femtoseconds. At ELBE a bunch arrival time monitor (BAM) has been designed and tested at the accelerator. The contribution shows the concept of the femtosecond synchronization system, the design of the BAM and first measurement results.

  4. An active control synchronization for two modified Chua circuits

    Institute of Scientific and Technical Information of China (English)

    Li Guo-Hui

    2005-01-01

    From modern control theory, an active control method to synchronize two modified Chua circuits with each other, which exhibit chaos, is presented. Some sufficient conditions of linear stability of the chaotic synchronization are obtained from rigorous mathematic justification. On the basis of the state-observer, the controller is analytically deduced using the active control. It is shown that this technique can be applied to achieve synchroniztion of the tow systems with each other, whether they are identical or not. Finally, numerical simulations show the effectiveness of the proposed control scheme.

  5. Synchronization control for ultrafast laser parallel microdrilling system

    Science.gov (United States)

    Zhai, Zhongsheng; Kuang, Zheng; Ouyang, Jinlei; Liu, Dun; Perrie, Walter; Edwardson, Stuart P.; Dearden, Geoff

    2014-11-01

    Ultrafast lasers, emitting ultra-short pulses of light, generally of the order of femtoseconds to ten picoseconds, are widely used in micro-processing with the advantage of very little thermal damage. Parallel micro-processing is seen significant developments in laser fabrication, thanking to the spatial light modulator (SLM) which can concert single beam to multiple beams through computer generate holograms (CGHs). However, without synchronization control, on the conditions of changing different holograms or processing on large area beyond scanning galvo's ability, the fabrication will be interrupted constantly for changing holograms and moving the stages. Therefore, synchronization control is very important to improve the convenience and application of parallel micro-processing. A synchronization control method, carried out through two application software: SAMLight (or WaveRunner) and Labview, is presented in this paper. SAMLight is used to control the laser and the scanning galvo to implement microprocessing, and the developed program with Labview is used to control the SLM and motion stages. The synchronization signals, transmitted between the two software, are utilized by a National Instruments (NI) device USB-6008. Using optimal control methods, the synchronized system can easily and automatically accomplish complicated fabrications with minimum time. A multi-drilling application is provided to verify the affectivity of the synchronized control method. It uses multiple annular beams, generated by superimposing multi-beam CGH onto a diffractive axicon CGH, to drill multiple holes at one time, and it can automatically finish different patterns based on synchronization control. This drilling way is an optical trepanning and it avoids huge laser energy waste with attenuation. The multi-beam CGHs, generated by the Grating and Lens algorithm, are different for different patterns. The processing is over 200 times faster than traditional mechanical trepanning

  6. Synchronization between two different chaotic systems with nonlinear feedback control

    Institute of Scientific and Technical Information of China (English)

    Lü Ling; Guo Zhi-An; Zhang Chao

    2007-01-01

    This paper presents chaos synchronization between two different chaotic systems by using a nonlinear controller, in which the nonlinear functions of the system are used as a nonlinear feedback term. The feedback controller is designed on the basis of stability theory, and the area of feedback gain is determined. The artificial simulation results show that this control method is commendably effective and feasible.

  7. Synchronization and Control of Linearly Coupled Singular Systems

    Directory of Open Access Journals (Sweden)

    Fang Qingxiang

    2013-01-01

    Full Text Available The synchronization and control problem of linearly coupled singular systems is investigated. The uncoupled dynamical behavior at each node is general and can be chaotic or, otherwise the coupling matrix is not assumed to be symmetrical. Some sufficient conditions for globally exponential synchronization are derived based on Lyapunov stability theory. These criteria, which are in terms of linear matrix inequality (LMI, indicate that the left and right eigenvectors corresponding to eigenvalue zero of the coupling matrix play key roles in the stability analysis of the synchronization manifold. The controllers are designed for state feedback control and pinning control, respectively. Finally, a numerical example is provided to illustrate the effectiveness of the proposed conditions.

  8. Distributed Synchronization Control of Multiagent Systems With Unknown Nonlinearities.

    Science.gov (United States)

    Su, Shize; Lin, Zongli; Garcia, Alfredo

    2016-01-01

    This paper revisits the distributed adaptive control problem for synchronization of multiagent systems where the dynamics of the agents are nonlinear, nonidentical, unknown, and subject to external disturbances. Two communication topologies, represented, respectively, by a fixed strongly-connected directed graph and by a switching connected undirected graph, are considered. Under both of these communication topologies, we use distributed neural networks to approximate the uncertain dynamics. Decentralized adaptive control protocols are then constructed to solve the cooperative tracker problem, the problem of synchronization of all follower agents to a leader agent. In particular, we show that, under the proposed decentralized control protocols, the synchronization errors are ultimately bounded, and their ultimate bounds can be reduced arbitrarily by choosing the control parameter appropriately. Simulation study verifies the effectiveness of our proposed protocols.

  9. Cost and effect of pinning control for network synchronization

    Institute of Scientific and Technical Information of China (English)

    Li Rong; Duan Zhi-Sheng; Chen Guan-Rong

    2009-01-01

    The problem of pinning control for the synchronization of complex dynamical networks is discussed in this paper. A cost function of the controlled network is defined by the feedback gain and the coupling strength of the network. An interesting result is that a lower cost is achieved by using the control scheme of pinning nodes with smaller degrees. Some strict mathematical analyses are presented for achieving a lower cost in the synchronization of different star-shaped various star-shaped networks are performed for verification and illustration.

  10. PID control for chaotic synchronization using particle swarm optimization

    Energy Technology Data Exchange (ETDEWEB)

    Chang, W.-D. [Department of Computer and Communication, Shu-Te University, Kaohsiung 824, Taiwan (China)], E-mail: wdchang@mail.stu.edu.tw

    2009-01-30

    In this paper, we attempt to use the proportional-integral-derivative (PID) controller to achieve the chaos synchronization for delayed discrete chaotic systems. Three PID control gains can be optimally determined by means of using a novel optimization algorithm, called the particle swarm optimization (PSO). The algorithm is motivated from the organism behavior of fish schooling and bird flocking, and involves the social psychology principles in socio-cognition human agents and evolutionary computations. It has a good numerical convergence for solving optimization problem. To show the validity of the PSO-based PID control for chaos synchronization, several cases with different initial populations are considered and some simulation results are shown.

  11. Motion synchronization in unmanned aircrafts formation control with communication delays

    Science.gov (United States)

    Rezaee, Hamed; Abdollahi, Farzaneh

    2013-03-01

    This paper proposes a formation control strategy for unmanned aircrafts using a virtual structure. Cross coupled sliding mode controllers are introduced to cope with uncertainties in the attitude measurement systems of the unmanned aircrafts and unmeasurable bounded external disturbances such as wind effects, and also to provide motion synchronization in the multi-agent system. This motion synchronization strategy improves the agents convergence to their desired positions, and this is useful for a multi-agent system with faulty agents. Moreover, the proposed motion synchronization strategy is not restricted to specific communication topologies, and sufficient conditions are provided to guarantee the multi-agent system stability in the presence of communication delays. Numerical simulations are presented for a team of five unmanned aircrafts to make a pentagon formation and confirm the accepted performance of the proposed control strategy.

  12. Hysteresis Control for a DC Connected Synchronous Generator

    DEFF Research Database (Denmark)

    Rasmussen, Tonny Wederberg; Evangelos, Dimarakis

    2009-01-01

    Abstract— for offshore wind farms the distance to the coast increases, therefore DC cables will have to be used. For a variable speed wind turbine a rectifier and a synchronous generator with a boost converter is used. As a new suggestion for control the generator speed hysteresis control...

  13. Synchronization of uncertain chaotic systems using active sliding mode control

    Energy Technology Data Exchange (ETDEWEB)

    Haeri, Mohammad [Advanced Control System Lab, Electrical Engineering Department, Sharif University of Technology, Azadi Avenue, 11365-9363 Tehran (Iran, Islamic Republic of)]. E-mail: haeri@sina.sharif.edu; Tavazoei, Mohammad Saleh [Advanced Control System Lab, Electrical Engineering Department, Sharif University of Technology, Azadi Avenue, 11365-9363 Tehran (Iran, Islamic Republic of); Naseh, Majid Reza [Electrical Engineering Department, Islamic Azad University of Birjand, Birjand (Iran, Islamic Republic of)

    2007-08-15

    We apply the active sliding mode controller to synchronize two uncertain chaotic systems. Uncertainties are considered both in linear and nonlinear parts of the system dynamics. We have also studied the case that the signals are contaminated by measuring channel noise. It is shown that having some conditions on the uncertainties and noise magnitude, the closed loop stability can be guaranteed. The synchronization errors are shown to be confined into some bounded value. Numerical simulations are presented to evaluate the analysis and effectiveness of the controller.

  14. A New Torque Control System of Permanent Magnet Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Evstratov Andrey

    2017-01-01

    Full Text Available The article describes a new approach to control of permanent magnet synchronous motor drive based on the analysis of the electromechanical transformation. The proposed control system provides quick response and low ripple of the motor torque and flux. To synthesis this control system, the authors put the electromagnetic torque and the modulus of stator flux vector as controlled values and use the Lyapunov’s second method. In addition, the stator voltage constriction and ability of low-pass filtration are taken into account. The investigation of the proposed control system has carried out with the simulation and the experimental research which have confirmed that the proposed control system correspond to all above-mentioned control tasks and the permanent magnet synchronous motor controlled under this system may be recommended to use in robotics.

  15. Control of Synchronization Regimes in Networks of Mobile Interacting Agents

    Science.gov (United States)

    Perez-Diaz, Fernando; Zillmer, Ruediger; Groß, Roderich

    2017-05-01

    We investigate synchronization in a population of mobile pulse-coupled agents with a view towards implementations in swarm-robotics systems and mobile sensor networks. Previous theoretical approaches dealt with range and nearest-neighbor interactions. In the latter case, a synchronization-hindering regime for intermediate agent mobility is found. We investigate the robustness of this intermediate regime under practical scenarios. We show that synchronization in the intermediate regime can be predicted by means of a suitable metric of the phase response curve. Furthermore, we study more-realistic K -nearest-neighbor and cone-of-vision interactions, showing that it is possible to control the extent of the synchronization-hindering region by appropriately tuning the size of the neighborhood. To assess the effect of noise, we analyze the propagation of perturbations over the network and draw an analogy between the response in the hindering regime and stable chaos. Our findings reveal the conditions for the control of clock or activity synchronization of agents with intermediate mobility. In addition, the emergence of the intermediate regime is validated experimentally using a swarm of physical robots interacting with cone-of-vision interactions.

  16. Speed tracking and synchronization of multiple motors using ring coupling control and adaptive sliding mode control.

    Science.gov (United States)

    Li, Le-Bao; Sun, Ling-Ling; Zhang, Sheng-Zhou; Yang, Qing-Quan

    2015-09-01

    A new control approach for speed tracking and synchronization of multiple motors is developed, by incorporating an adaptive sliding mode control (ASMC) technique into a ring coupling synchronization control structure. This control approach can stabilize speed tracking of each motor and synchronize its motion with other motors' motion so that speed tracking errors and synchronization errors converge to zero. Moreover, an adaptive law is exploited to estimate the unknown bound of uncertainty, which is obtained in the sense of Lyapunov stability theorem to minimize the control effort and attenuate chattering. Performance comparisons with parallel control, relative coupling control and conventional PI control are investigated on a four-motor synchronization control system. Extensive simulation results show the effectiveness of the proposed control scheme.

  17. Optimal nonlinear feedback control of quasi-Hamiltonian systems

    Institute of Scientific and Technical Information of China (English)

    朱位秋; 应祖光

    1999-01-01

    An innovative strategy for optimal nonlinear feedback control of linear or nonlinear stochastic dynamic systems is proposed based on the stochastic averaging method for quasi-Hamiltonian systems and stochastic dynamic programming principle. Feedback control forces of a system are divided into conservative parts and dissipative parts. The conservative parts are so selected that the energy distribution in the controlled system is as requested as possible. Then the response of the system with known conservative control forces is reduced to a controlled diffusion process by using the stochastic averaging method. The dissipative parts of control forces are obtained from solving the stochastic dynamic programming equation.

  18. Sliding mode control for synchronous electric drives

    CERN Document Server

    Ryvkin, Sergey E

    2011-01-01

    This volume presents the theory of control systems with sliding mode applied to electrical motors and power converters. It demonstrates the methodology of control design and the original algorithms of control and observation. Practically all semiconductor devices are used in power converters, that feed electrical motors, as power switches. A switching mode offers myriad attractive, inherent properties from a control viewpoint, especially a sliding mode. Sliding mode control supplies high dynamics to systems, invariability of systems to changes of their parameters and of exterior loads in combi

  19. Multivariable nonlinear control of STATCOM for synchronous generator stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, N.C. [Multimedia Univ., Melaka (Malaysia). Faculty of Engineering and Technology; Panigrahi, B.K.; Panda, G. [Multimedia Univ., Selangor (Malaysia); Dash, P.K. [National Inst. of Technology, Rourkela (India)

    2004-01-01

    A static synchronous compensator (STATCOM) is a typical flexible ac transmission system device playing a vital role as a stability aid for small and large transient disturbances in an interconnected power system. This article deals with design and evaluation of a feedback linearizing nonlinear controller for STATCOM installed in a single-machine infinite-bus power system. In addition to the coordinated control of ac and dc bus voltages, the proposed controller also provides good damping to the electromechanical oscillation of the synchronous generator under transient disturbances. The efficiency of the control strategy is evaluated by computer simulation studies. The comparative study of these results with the conventional cascade control structure establishes the elegance of the proposed control scheme. (author)

  20. Lag Synchronization in Nonlinear Systems Based on Adaptive Control

    Institute of Scientific and Technical Information of China (English)

    赵德勤; 刘曾荣

    2004-01-01

    Active control is an effective method for synchronizing two identical chaotic systems. However, this method works only for a certain class of chaotic systems with known parameters. An improvement method was proposed in order to overcome this limitation in this paper. A classical example was used to demonstrate the method. Finally, numerical examples were given to validate the efficiency of the method.

  1. Controlled synchronization of complex network with different kinds of nodes

    Institute of Scientific and Technical Information of China (English)

    Zhengquan YANG; Zhongxin LIU; Zengqiang CHEN; Zhuzhi YUAN

    2008-01-01

    In this paper, a new dynamical network model is introduced, in which the nodes of the network are different. It is shown that by the designed controllers, the state of the network can exponentially synchronize onto a homogeneous stationary state. Some criteria are derived and some examples are presented. The numerical simulations coincide with theoretical analysis.

  2. DSP-based Robust Nonlinear Speed Control of PM Synchronous Motor Using Adaptive and Sliding Mode Control Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Baik, I.C.; Kim, K.H.; Cho, K.Y.; Youn, M.J. [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-04-01

    A DSP-based robust nonlinear speed control of a permanent magnet synchronous motor (PMSM) which is robust to unknown parameter variations and speed measurement error is presented. The model reference adaptive system (MRAS) based adaptation mechanisms for the estimation of slowly varying parameters are derived using the Lyapunov stability theory. For the disturbances or quickly varying parameters, a quasi-linearized and decoupled model including the influence of parameter variations and speed measurement error on the nonlinear speed control of a PMSM is derived. Based on this model, a boundary layer integral sliding mode controller to improve the robustness and performance of the nonlinear speed control of a PMSM is designed and compared with the conventional controller. To show the validity of the proposed control scheme, simulations and experimental works are carried out and compared with the conventional control scheme. (author). 19 refs., 14 figs., 6 tabs.

  3. Synchronization in a Random Length Ring Network for SDN-Controlled Optical TDM Switching

    DEFF Research Database (Denmark)

    Kamchevska, Valerija; Cristofori, Valentina; Da Ros, Francesco;

    2016-01-01

    . In addition, we propose a novel synchronization algorithm that enables automatic synchronization of software defined networking controlled all-optical TDM switching nodes connected in a ring network. Besides providing synchronization, the algorithm also can facilitate dynamic slot size change and failure...... multiplexing transmission and switching of data bursts when using the proposed algorithm to provide synchronization....

  4. Damping torque analysis of VSC-based system utilizing power synchronization control

    Science.gov (United States)

    Fu, Q.; Du, W. J.; Zheng, K. Y.; Wang, H. F.

    2017-05-01

    Power synchronization control is a new control strategy of VSC-HVDC for connecting a weak power system. Different from the vector control method, this control method utilizes the internal synchronization mechanism in ac systems, in principle, similar to the operation of a synchronous machine. So that the parameters of controllers in power synchronization control will change the electromechanical oscillation modes and make an impact on the transient stability of power system. This paper present a mathematical model for small-signal stability analysis of VSC station used power synchronization control and analyse the impact of the dynamic interactions by calculating the contribution of the damping torque from the power synchronization control, besides, the parameters of controllers which correspond to damping torque and synchronous torque in the power synchronization control is defined respectively. At the end of the paper, an example power system is presented to demonstrate and validate the theoretical analysis and associated conclusions are made.

  5. Stabilization of synchronous generator by fuzzy logic controlled braking resistor

    Energy Technology Data Exchange (ETDEWEB)

    Ali, M.H.; Funamoto, T.; Murata, T.; Tamura, J. [Kitami Inst. of Technology, Dept. of Electrical and Electronic Engineering, Hokkaido (Japan)

    2000-08-01

    In order to enhance the transient stability of synchronous generator, a fuzzy logic switching control scheme for the braking resistor is proposed. Following a fault, variable rotor speed of the generator is measured and the firing-angle of the thyristor switch in the braking resistor is determined from the crispy output of the fuzzy controller. By controlling the firing-angle of the thyristor, braking resistor can control the accelerating power in generator and thus improves the transient stability. Simulation results have been demonstrated for both balanced and unbalanced faults. It can be concluded from the simulation results that the proposed strategy provides a simple and effective method of stabilization of synchronous generator under transient conditions. (orig.)

  6. Chaos control and synchronization of a modified chaotic system

    Energy Technology Data Exchange (ETDEWEB)

    Sun Huijing [Department of Mathematics, School of Science, Beijing Jiaotong University, Beijing 100044 (China)], E-mail: jingsnoopy@126.com; Cao Hongjun [Department of Mathematics, School of Science, Beijing Jiaotong University, Beijing 100044 (China)], E-mail: hjcao@center.njtu.edu.cn

    2008-09-15

    By replacing a quadratic nonlinear term in Lue system with a piecewise linear signum (PWL) function, a new simplified three-dimensional piecewise continuous autonomous system (a modified Lue system) is introduced. The qualitative properties of the modified Lue system are studied. Based on these properties, the feedback control law is applied to suppress chaos to one of the three equilibria. Several different synchronized methods, such as the active control, one way coupling by active control, and the adaptive active control are applied to achieve the state synchronization of two identical modified Lue systems. These results show that after the simplification, the modified Lue system can still keep the basic and typical nonlinear phenomena. Compared with the original Lue system, the modified Lue system has a lot of advantages, by which the modified Lue system can be more easily implemented by theoretical analysis, and more practicable made by secret communications.

  7. Sensorless Control of Permanent Magnet Synchronous Machines

    DEFF Research Database (Denmark)

    Matzen, Torben N.

    Permanent magnet machines, with either surface mounted or embedded magnets on the rotor, are becoming more common due to the key advantages of higher energy conversion efficiency and higher torque density compared to the classical induction machine. Besides energy efficiency the permanent magnet...... are dependent on the phase currents and rotor position. Based on the flux linkages the differential inductances are determined and used to establish the inductance saliency in terms of ratio and orientation. The orientation and its dependence on the current and rotor position are used to analyse the behaviour...... and establish the suitability of the machine for sensorless control using inductance saliency tracking methods. The same electromagnetic behaviour is used in the implementation of a dynamical simulation model of the machine useful for evaluation of sensorless control methods at the control design stage. Further...

  8. A Synchronous Mutual Position Control for Vertical Pneumatic Servo System

    Science.gov (United States)

    Shibata, Satoru; Yamamoto, Tomonori; Jindai, Mitsuru

    Synchronous control of mutual position for two vertical-type pneumatic servo systems is discussed for practical use in this study. In the proposed control system, a fuzzy controller is used in each pneumatic servo system so that the output of each plant can follow the reference input. A PD controller is introduced to realize the synchronization of both pneumatic servo systems, in which the outputs from this controller are the inputs for revision to both plants. A fuzzy virtual reference generator that can adjust the reference input to both fuzzy controllers adaptively by fuzzy rules is constructed to improve the transient performances of both axes. In addition, the adjustment controller produces a representative value of both cylinder outputs, which is used to synthesize the inputs to the fuzzy virtual reference generator, in order to reach a compromise between the follow-up ability to the reference input in each axis and synchronization of both axes. The applicability of the proposed method is confirmed by experiments using two existent vertical-type pneumatic servo systems.

  9. Adaptive Feedback Control for Chaos Control and Synchronization for New Chaotic Dynamical System

    Directory of Open Access Journals (Sweden)

    M. M. El-Dessoky

    2012-01-01

    Full Text Available This paper investigates the problem of chaos control and synchronization for new chaotic dynamical system and proposes a simple adaptive feedback control method for chaos control and synchronization under a reasonable assumption. In comparison with previous methods, the present control technique is simple both in the form of the controller and its application. Based on Lyapunov's stability theory, adaptive control law is derived such that the trajectory of the new system with unknown parameters is globally stabilized to the origin. In addition, an adaptive control approach is proposed to make the states of two identical systems with unknown parameters asymptotically synchronized. Numerical simulations are shown to verify the analytical results.

  10. The Complex Network Synchronization via Chaos Control Nodes

    Directory of Open Access Journals (Sweden)

    Yin Li

    2013-01-01

    Full Text Available We investigate chaos control nodes of the complex network synchronization. The structure of the coupling functions between the connected nodes is obtained based on the chaos control method and Lyapunov stability theory. Moreover a complex network with nodes of the new unified Loren-Chen-Lü system, Coullet system, Chee-Lee system, and the New system is taken as an example; numerical simulations are used to verify the effectiveness of the method.

  11. Generalized Mutual Synchronization between Two Controlled Interdependent Networks

    Directory of Open Access Journals (Sweden)

    Quan Xu

    2014-01-01

    Full Text Available This paper mainly focuses on the generalized mutual synchronization between two controlled interdependent networks. First, we propose the general model of controlled interdependent networks A and B with time-varying internetwork delays coupling. Then, by constructing Lyapunov functions and utilizing adaptive control technique, some sufficient conditions are established to ensure that the mutual synchronization errors between the state variables of networks A and B can asymptotically converge to zero. Finally, two numerical examples are given to illustrate the effectiveness of the theoretical results and to explore potential application in future smart grid. The simulation results also show how interdependent topologies and internetwork coupling delays influence the mutual synchronizability, which help to design interdependent networks with optimal mutual synchronizability.

  12. Exact Synchronization for a Coupled System of Wave Equations with Dirichlet Boundary Controls

    Institute of Scientific and Technical Information of China (English)

    Tatsien LI; Bopeng RAO

    2013-01-01

    In this paper,the exact synchronization for a coupled system of wave equations with Dirichlet boundary controls and some related concepts are introduced.By means of the exact null controllability of a reduced coupled system,under certain conditions of compatibility,the exact synchronization,the exact synchronization by groups,and the exact null controllability and synchronization by groups are all realized by suitable boundary controls.

  13. Control of chaotic oscillators via a class of model free active controller: Suppresion and synchronization

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Lopez, Ricardo [Division de Ciencias Basicas e Ingenieria, Universidad Autonoma Metropolitana, Av. San Pablo No. 180, Reynosa-Tamaulipas, 02200, Azcapotzalco, Mexico D.F. (Mexico)], E-mail: raguilar@correo.azc.uam.mx; Martinez-Guerra, Rafael [Departamento de Control Automatico, CINVESTAV-IPN, Apartado Postal 14-740, 07360 Mexico D.F. (Mexico)], E-mail: rguerra@ctrl.cinvestav.mx

    2008-10-15

    The goal of this work is related with the control of chaotic oscillators for chaos suppression and synchronization purposes. The proposed methodology is related with a class of robust active control (RAC) law, where the stabilizing part of the control structure is related with an integral high order sliding-mode and proportional form of the so-called control error. The proposed controller is applied to chaos suppression, synchronization and anti-synchronization tasks for nonlinear oscillators with different order and structure. Numerical experiments illustrate the satisfactory performance of the proposed methodology, when it is applied to Duffing and Chen oscillators.

  14. Mean deviation coupling synchronous control for multiple motors via second-order adaptive sliding mode control.

    Science.gov (United States)

    Li, Lebao; Sun, Lingling; Zhang, Shengzhou

    2016-05-01

    A new mean deviation coupling synchronization control strategy is developed for multiple motor control systems, which can guarantee the synchronization performance of multiple motor control systems and reduce complexity of the control structure with the increasing number of motors. The mean deviation coupling synchronization control architecture combining second-order adaptive sliding mode control (SOASMC) approach is proposed, which can improve synchronization control precision of multiple motor control systems and make speed tracking errors, mean speed errors of each motor and speed synchronization errors converge to zero rapidly. The proposed control scheme is robustness to parameter variations and random external disturbances and can alleviate the chattering phenomena. Moreover, an adaptive law is employed to estimate the unknown bound of uncertainty, which is obtained in the sense of Lyapunov stability theorem to minimize the control effort. Performance comparisons with master-slave control, relative coupling control, ring coupling control, conventional PI control and SMC are investigated on a four-motor synchronization control system. Extensive comparative results are given to shown the good performance of the proposed control scheme.

  15. Permanent Magnetic Synchronous Motor Control System Based on ADRC

    Directory of Open Access Journals (Sweden)

    Song Wang

    2013-06-01

    Full Text Available Permanent magnetic synchronous motor (PMSM is a strong coupling and non-linear system. In the PMSM speed-regulation system, PID controller is the conventional one, it is difficult to decide the parameters of PID. Moreover, the performance of PID controller is not very well in large disturbance. In the paper, the Active Disturbance Rejection Controller (ADRC is applied to the PMSM speed-regulation system. The result of simulations and experiments show that this algorithm has better anti-load-disturbance performance than PID controller.

  16. Robust controller for synchronous generator with local load via VSC

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera-Vazquez, J. [Universidad de Guadalajara, Centro Universitario de Ciencias Exactas e Ingenierias, Departamento de Electronica, Av. Revolucion No. 1500, Modulo ' ' O' ' , Apdo. Postal 44840, Guadalajara Jalisco (Mexico); Loukianov, Alexander G.; Canedo, Jose M. [Centro de Investigacion y de Estudios Avanzados del IPN, Apdo. Postal 31-438, Plaza La Luna, C. P. 44550, Guadalajara, Jalisco (Mexico); Utkin, Vadim I. [Department of Electrical Engineering, The Ohio-State University, Columbus, OH 43210-1272 (United States)

    2007-05-15

    The objective of this paper is to design a nonlinear observer-based excitation controller for power system comprising a single synchronous generator connected to an infinite bus with local load. The controller proposed is based on the using first singular perturbation systems concepts and then Sliding Mode Control technique combining with Block Control Principle. To reduce ''chattering'' a nonlinear observer with estimation of the mechanical torque and rotor fluxes is designed. This combined approach enables to compensate the inherent nonlinearities of the generator and to reject external disturbances. (author)

  17. Quasi-Optical Control of Intense Microwave Transmission

    CERN Document Server

    Hirshfield, Jay L

    2005-01-01

    This volume assembles the texts of presentations given at the NATO-sponsored Advanced Research Workshop on Quasi-Optical Transmission of High-Power Microwaves, held in Nizhny Novgorod, Russia in February 2004. The presentations bridge a wide range of technical areas, but share common tools of analysis and design. Applications of quasi-optics extend to the use of high-power microwaves—including millimeter-waves— for radar and communications (especially deep space millimeter-wave systems, space debris detection radar, and radar for the detection of small targets moving over heavy clutter); particle accelerators (especially for a future high-acceleration-gradient electron-positron collider); plasma research (especially for controlled nuclear fusion and waste decontamination); and material processing (in particular, ceramic sintering with millimeter-waves, and the coating of metal surfaces with protective dielectric films.). Scientists and engineers working in any of these areas should benefit significantly f...

  18. Control and Synchronization of Heteroclinic Chaos: Implications for Neurodynamics

    Science.gov (United States)

    Arecchi, F. Tito

    2004-12-01

    Heteroclinic chaos (HC) implies the recurrent return of the dynamical trajectory to a saddle focus (SF) in whose neighborhood the system response to an external perturbation is very high and hence it is very easy to lock to an external stimulus. Thus HC appears as the easiest way to encode information in time by a train of equal spikes occurring at erratic times. Implementing such a dynamics with a single mode CO2 laser with feedback, we have a heteroclinic connection between the SF and a saddle node (SN) whose role it to regularize the phase space orbit away from SF. Due to these two different fixed points, the laser intensity displays identical spikes separated by erratic ISIs (interspike intervals). Such a dynamics is highly prone to spike-synchronization, either by an external signal or by mutual interaction in a network of identical systems. Applications to communication and noise induced synchronization will be reported. In experimental neuroscience a recent finding is that feature binding ,that is, combination of external stimuli with internal memories into new coherent patterns of meaning, implies the mutual synchronization of axonal spike trains in neurons which can be far away and yet share the same sequence. Several dynamical systems have been proposed to model such a behavior. We introduce a measurable parameter, namely, the synchronization "propensity". Propensity is the amount of synchronization achieved in a chaotic system by a small sinusoidal perturbation of a control parameter. It is very low for coupled Lorenz or FitzHugh-Nagumo chains. It displays isolated peaks for the Hindmarsh-Rose model, showing that this is a convenient description of the bursting behavior typical of neurons in the CPG (central pattern generator) system. Instead, HC shows a high propensity over a wide input frequency range, demonstrating that it is the most convenient model for semantic neurons.

  19. On the quasi-controllability of continuous-time dynamic fuzzy control systems

    Energy Technology Data Exchange (ETDEWEB)

    Feng Yuhu [Department of Applied Mathematics, Dong Hua University, Shanghai 200051 (China)]. E-mail: yhfeng@dhu.edu.cn; Hu Liangjian [Department of Applied Mathematics, Dong Hua University, Shanghai 200051 (China)

    2006-10-15

    This paper gives the controllability analysis of continuous-time dynamic fuzzy control system from the aspect of fuzzy differential equations. The fuzzy state is different from the crisp state, as the counterpart of the controllability concept in the classical control theory, the controllable target state must be restricted within some limits. Hence, the concepts of admissible controllable state subset and quasi-controllability are introduced to describe the controllability property for fuzzy control system. The sufficient and necessary conditions for the fuzzy control system to be quasi-controllable are obtained and some examples are given to demonstrate the problems discussed in this paper.

  20. Controlling chaos and synchronization for new chaotic system using linear feedback control

    Energy Technology Data Exchange (ETDEWEB)

    Yassen, M.T. [Mathematics Department, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt)] e-mail: mtyassen@yahoo.com

    2005-11-01

    This paper is devoted to study the problem of controlling chaos for new chaotic dynamical system (four-scroll dynamical system). Linear feedback control is used to suppress chaos to unstable equilibria and to achieve chaos synchronization of two identical four-scroll systems. Routh-Hurwitz criteria is used to study the conditions of the asymptotic stability of the equilibrium points of the controlled system. The sufficient conditions for achieving synchronization of two identical four-scroll systems are derived by using Lyapunov stability theorem. Numerical simulations are presented to demonstrate the effectiveness of the proposed chaos control and synchronization schemes.

  1. Synthesis for robust synchronization of chaotic systems under output feedback control with multiple random delays

    Energy Technology Data Exchange (ETDEWEB)

    Wen Guilin [Key Laboratory of Advanced Technology for Vehicle Body Design and Manufactory, M.O.E, College of Mechanical and Automotive Engineering, Hunan University, Changsha, Hunan 410082 (China); Wang Qingguo [Department of Electrical and Computer Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260 (Singapore)]. E-mail: elewqg@nus.edu.sg; Lin Chong [Department of Electrical and Computer Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260 (Singapore); Han Xu [Key Laboratory of Advanced Technology for Vehicle Body Design and Manufactory, M.O.E, College of Mechanical and Automotive Engineering, Hunan University, Changsha, Hunan 410082 (China); Li Guangyao [Key Laboratory of Advanced Technology for Vehicle Body Design and Manufactory, M.O.E, College of Mechanical and Automotive Engineering, Hunan University, Changsha, Hunan 410082 (China)

    2006-09-15

    Synchronization under output feedback control with multiple random time delays is studied, using the paradigm in nonlinear physics-Chua's circuit. Compared with other synchronization control methods, output feedback control with multiple random delay is superior for a realistic synchronization application to secure communications. Sufficient condition for global stability of delay-dependent synchronization is established based on the LMI technique. Numerical simulations fully support the analytical approach, in spite of the random delays.

  2. Impulsive control for synchronization of nonlinear R(o)ssler chaotic systems

    Institute of Scientific and Technical Information of China (English)

    Li Yang; Liao Xiao-Feng; Li Chuan-Dong; Chen Guo

    2006-01-01

    This paper reports that an impulsive control theory for synchronization of nonlinear R(o)ssler chaotic systems is developed. A new framework for impulsive synchronization between such chaotic systems is presented, which makes the synchronization error system a linear impulsive control system. Therefore, it is easy to derive the impulsive synchronization law. The proposed impulsive control scheme is illustrated by nonlinear R(o)ssler chaotic systems and the simulation results demonstrate the effectiveness of the method.

  3. Stability and synchronization control of stochastic neural networks

    CERN Document Server

    Zhou, Wuneng; Zhou, Liuwei; Tong, Dongbing

    2016-01-01

    This book reports on the latest findings in the study of Stochastic Neural Networks (SNN). The book collects the novel model of the disturbance driven by Levy process, the research method of M-matrix, and the adaptive control method of the SNN in the context of stability and synchronization control. The book will be of interest to university researchers, graduate students in control science and engineering and neural networks who wish to learn the core principles, methods, algorithms and applications of SNN.

  4. Impulsive control of chaotic systems and its applications in synchronization

    Institute of Scientific and Technical Information of China (English)

    Wu Bo; Liu Yang; Lu Jian-Quan

    2011-01-01

    In this paper, some novel sufficient conditions for asymptotic stability of impulsive control systems are presented by comparison systems. The results are used to obtain the conditions under which the chaotic systems can be asymptotically controlled to the origin via impulsive control. Compared with some existing results, our results are more relaxed in the sense that the Lyapunov function is required to be nonincreasing only along a subsequence of switchings. Moreover, a larger upper bound of impulsive intervals for stabilization and synchronization is obtained.

  5. Bearingless Permanent Magnet Synchronous Motor using Independent Control

    Directory of Open Access Journals (Sweden)

    Normaisharah Mamat

    2015-06-01

    Full Text Available Bearingless permanent magnet synchronous motor (BPMSM combines the characteristic of the conventional permanent magent synchronous motor and magnetic bearing in one electric motor. BPMSM is a kind of high performance motor due to having both advantages of PMSM and magnetic bearing with simple structure, high efficiency, and reasonable cost. The research on BPMSM is to design and analyse BPMSM by using Maxwell 2-Dimensional of ANSYS Finite Element Method (FEM. Independent suspension force model and bearingless PMSM model are developed by using the method of suspension force. Then, the mathematical model of electromagnetic torque and radial suspension force has been developed by using Matlab/Simulink. The relation between force, current, distance and other parameter are determined. This research covered the principle of suspension force, the mathematical model, FEM analysis and digital control system of bearingless PMSM. This kind of motor is widely used in high speed application such as compressors, pumps and turbines.

  6. On the internal model principle in formation control and in output synchronization of nonlinear systems

    NARCIS (Netherlands)

    Persis, Claudio De; Jayawardhana, Bayu

    2012-01-01

    The role of internal model principle is investigated in this paper in the context of collective synchronization and formation control problems. In the collective synchronization problem for nonlinear systems, we propose distributed control laws for passive systems which synchronize to the solution o

  7. On the internal model principle in formation control and in output synchronization of nonlinear systems

    NARCIS (Netherlands)

    Persis, Claudio De; Jayawardhana, Bayu

    2012-01-01

    The role of internal model principle is investigated in this paper in the context of collective synchronization and formation control problems. In the collective synchronization problem for nonlinear systems, we propose distributed control laws for passive systems which synchronize to the solution o

  8. On the internal model principle in formation control and in output synchronization of nonlinear systems

    NARCIS (Netherlands)

    Persis, Claudio De; Jayawardhana, Bayu

    2012-01-01

    The role of internal model principle is investigated in this paper in the context of collective synchronization and formation control problems. In the collective synchronization problem for nonlinear systems, we propose distributed control laws for passive systems which synchronize to the solution

  9. Discrete Current Control Strategy of Permanent Magnet Synchronous Motors

    Directory of Open Access Journals (Sweden)

    Yan Dong

    2013-01-01

    Full Text Available A control strategy of permanent magnet synchronous motors (PMSMs, which is different from the traditional vector control (VC and direct torque control (DTC, is proposed. Firstly, the circular rotating magnetic field is analyzed on the simplified model and discredited into stepping magnetic field. The stepping magnetomotive force will drive the rotor to run as the stepping motor. Secondly, the stator current orientation is used to build the control model instead of rotor flux orientation. Then, the discrete current control strategy is set and adopted in positioning control. Three methods of the strategy are simulated in computer and tested on the experiment platform of PMSM. The control precision is also verified through the experiment.

  10. Passive control and synchronization of hyperchaotic Chen system

    Institute of Scientific and Technical Information of China (English)

    Zhang Qun-Jiao; Lu Jun-An

    2008-01-01

    This paper investigates the control and synchronization of hyperchaotic Chen system based on the passive theory.By using two outputs,novel passive controllers are respectively designed to realize the globally asymptotical stability of the hyperchaotic Chen system and the error dynamical system,which avoids mistakes in Ref.[ll],where function W(z) cannot guarantee that f0(z) is globally asymptotically stable via only one output and W(z) is the Lyapunov function of f0(z).Furthermore,numerical simulations are given to show the effectiveness of our method.

  11. Research on Time-Synchronization-Based Test and Control System of Aeroengine

    Institute of Scientific and Technical Information of China (English)

    WU Wen-jie; QIN Dong-xing; DONG Wei

    2004-01-01

    This paper presents a method of NTP-based time synchronization and a strategy of master-slave server structured time synchronization to ensure the test and control system of aeroengine to be time-synchronized. Based on time synchronization, the hierarchy and the integration of the measurement and control system of aeroengine are investigated. In result, our method is successfully applied for multiple front-end tests in a simulative altitude test facility of aeroengine.

  12. Synchronization of Fractional-Order Hyperchaotic Systems via Fractional-Order Controllers

    OpenAIRE

    Tianzeng Li; Yu Wang; Yong Yang

    2014-01-01

    In this paper, the synchronization of fractional-order chaotic systems is studied and a new fractional-order controller for hyperchaos synchronization is presented based on the Lyapunov stability theory. The proposed synchronized method can be applied to an arbitrary four-dimensional fractional hyperchaotic system. And we give the optimal value of control parameters to achieve synchronization of fractional hyperchaotic system. This approach is universal, simple, and theoretically rigorous. Nu...

  13. Quasi-Controllability and Estimates of Amplitudes of Transient Regimes in Discrete Systems

    CERN Document Server

    Kozyakin, V; Pokrovskii, A

    2009-01-01

    Families of regimes for discrete control systems are studied possessing a special quasi-controllability property that is similar to the Kalman controllability property. A new approach is proposed to estimate the amplitudes of transient regimes in quasi-controllable systems. Its essence is in obtaining of constructive a priori bounds for degree of overshooting in terms of the quasi-controllability measure. The results are applicable for analysis of transients, classical absolute stability problem and, especially, for stability problem for desynchronized systems.

  14. Position Control of Synchronous Motor Drive by Modified Adaptive Two-phase Sliding Mode Controller

    Institute of Scientific and Technical Information of China (English)

    Mohamed Said Sayed Ahmed; Ping Zhang; Yun-Jie Wu

    2008-01-01

    A modified adaptive two-phase sliding mode controller for the synchronous motor drive that is highly robust to uncertain-ties and external disturbances is proposed in this paper. The proposed controller uses two-phase sliding mode control (SMC) where the 1st phase mainly controls the system in steady states and disturbed states-it is a smoothing phase. The 2nd phase is used mainly in the case of disturbed states. Also, it is an autotuning phase and uses a simple adaptive algorithm to tune the gain of conventional variable structure control (VSC). The modified controller is useful in position control of a permanent magnet synchronous drive.

  15. Noise controlled synchronization in potassium coupled neural models

    DEFF Research Database (Denmark)

    Postnov, Dmitry E; Ryazanova, Ludmila S; Zhirin, Roman A;

    2007-01-01

    The paper applies biologically plausible models to investigate how noise input to small ensembles of neurons, coupled via the extracellular potassium concentration, can influence their firing patterns. Using the noise intensity and the volume of the extracellular space as control parameters, we...... show that potassium induced depolarization underlies the formation of noise-induced patterns such as delayed firing and synchronization. These phenomena are associated with the appearance of new time scales in the distribution of interspike intervals that may be significant for the spatio...

  16. The Stability Analysis of Multimedia Playout Synchronization Using Buffer Level Control

    Institute of Scientific and Technical Information of China (English)

    CHEN Bin; ZHU Xiang-Hua

    2004-01-01

    From the viewpoint of Cybernetics, multimedia playout synchronization system is a closed loop control system. The paper analyses the stability of a typical buffer-oriented playout synchronization model[1] with Routh criterion. The sufficient and necessary condition of system stability is obtained. The restriction relationship between two important system parameters: synchronization adaptation phase L and smoothing factor а is also given.

  17. Speed Synchronization of Multiple Bldcmotors In Textile &Paper Mills Using Micro Controller

    Directory of Open Access Journals (Sweden)

    Ankur Shukla

    2015-05-01

    Full Text Available Multiple motor setup has vast application in industries. The application can be in textile mills, paper mills and robotics. In these all application the synchronization is must between the motors to perform certain task. Speed synchronization is very essential in these all operation to avoid damage to the product. The synchronization is done by using microcontroller chip which controls the master slave whose speed is followed by the other motors which all have to be synchronized.

  18. Synchronous temperature rate control for refrigeration with reduced energy consumption

    Science.gov (United States)

    Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Steven J.; Litch, Andrew D.; Richmond, Peter J.; Wu, Guolian

    2015-09-22

    Methods of operation for refrigerator appliance configurations with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper, and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The methods may include synchronizing alternating cycles of cooling each compartment to a temperature approximately equal to the compartment set point temperature by operation of the compressor, fans, damper and/or valve system. The methods may also include controlling the cooling rate in one or both compartments. Refrigeration compartment cooling may begin at an interval before or after when the freezer compartment reaches its lower threshold temperature. Freezer compartment cooling may begin at an interval before or after when the freezer compartment reaches its upper threshold temperature.

  19. Synchronously Driven Power Converter Controller Solution for MedAustron

    CERN Document Server

    Šepetavc, Luka; Tavčar, Rok; Moser, Roland; Gutleber, Johannes

    2011-01-01

    MedAustron is an ion beam cancer therapy and research centre currently under construction in Wiener Neustadt, Austria. This facility features a synchrotron particle accelerator for light ions. Cosylab is closely working together with MedAustron on the development of a power converter controller (PCC) for the 260 deployed power converters – power supplies. Power converters deliver power to magnets used for focusing and steering particle beams. We have designed and developed software and hardware which allows integration of different types of power converters into MedAustron's control system (MACS). PCC's role is to synchronously control and monitor connected power converters. Custom real-time fibre optics link and modular front end devices have been designed for this purpose. Modular front end devices make it possible to interface with almost any type of power converter – with or without built in regulation logic. We implemented realtime mechanisms and a dedicated real-time fibre link to ...

  20. Adaptive chaos control and synchronization in only locally Lipschitz systems

    Energy Technology Data Exchange (ETDEWEB)

    Lin Wei [Key Laboratory of Mathematics for Nonlinear Sciences (Fudan University), Ministry of Education, School of Mathematical Sciences, Fudan University, Shanghai 200433 (China); CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (China)], E-mail: wlin@fudan.edu.cn

    2008-04-28

    In the existing results on chaos control and synchronization based on the adaptive controlling technique (ACT), a uniform Lipschitz condition on a given dynamical system is always assumed in advance. However, without this uniform Lipschitz condition, the ACT might be failed in both theoretical analysis and in numerical experiment. This Letter shows how to utilize the ACT to get a rigorous control for the system which is not uniformly Lipschitz but only locally Lipschitz, and even for the system which has unbounded trajectories. In fact, the ACT is proved to possess some limitation, which is actually induced by the nonlinear degree of the original system. Consequently, a piecewise ACT is proposed so as to improve the performance of the existing techniques.

  1. Synchronization of Fractional-order Chaotic Systems with Gaussian fluctuation by Sliding Mode Control

    OpenAIRE

    Yong Xu; Hua Wang

    2013-01-01

    This paper is devoted to the problem of synchronization between fractional-order chaotic systems with Gaussian fluctuation by the method of fractional-order sliding mode control. A fractional integral (FI) sliding surface is proposed for synchronizing the uncertain fractional-order system, and then the sliding mode control technique is carried out to realize the synchronization of the given systems. One theorem about sliding mode controller is presented to prove the proposed controller can ma...

  2. Synchronization of motor controller and PC system clocks

    Science.gov (United States)

    Kittmann, Frank; Bertram, Thomas; Briegel, Florian; Mohr, Lars; Berwein, Jürgen

    2010-07-01

    The power of the Large Binocular Telescope (LBT) with its two 8.4m primary mirrors sharing a common mount will unfold its full potential with the LINC-NIRVANA (LN) instrument. LINC-NIRVANA is a German-Italian beam combiner for the LBT and will interfere the light from the two 8.4m mirrors of the LBT in Fizeau mode. More than 140 motors have to be handled by custom developed Motor Controllers (MoCons). One important feature of the MoCon is the support of externally computed trajectories. Motion profiles provide information on the movement of the motor along a defined path over a certain period of time. Such profiles can be uploaded to the MoCon over Ethernet and can be started at a specific time. For field derotation it is critical that the derotation trajectories are executed with a very precise relative and absolute timing. This raises the problem of the synchronization of the MoCon internal clock with the system time of the servers that are hosting LINCNIRVANA's Instrument Control Software. The MoCon time should be known by the servers with an uncertainty of few milliseconds in order to match the start time of the motion profile and the field rotation trajectory. In this paper we will discuss how to synchronize the MoCon internal time and the PC system time.

  3. Collaborative simulation method with spatiotemporal synchronization process control

    Science.gov (United States)

    Zou, Yisheng; Ding, Guofu; Zhang, Weihua; Zhang, Jian; Qin, Shengfeng; Tan, John Kian

    2016-10-01

    When designing a complex mechatronics system, such as high speed trains, it is relatively difficult to effectively simulate the entire system's dynamic behaviors because it involves multi-disciplinary subsystems. Currently,a most practical approach for multi-disciplinary simulation is interface based coupling simulation method, but it faces a twofold challenge: spatial and time unsynchronizations among multi-directional coupling simulation of subsystems. A new collaborative simulation method with spatiotemporal synchronization process control is proposed for coupling simulating a given complex mechatronics system across multiple subsystems on different platforms. The method consists of 1) a coupler-based coupling mechanisms to define the interfacing and interaction mechanisms among subsystems, and 2) a simulation process control algorithm to realize the coupling simulation in a spatiotemporal synchronized manner. The test results from a case study show that the proposed method 1) can certainly be used to simulate the sub-systems interactions under different simulation conditions in an engineering system, and 2) effectively supports multi-directional coupling simulation among multi-disciplinary subsystems. This method has been successfully applied in China high speed train design and development processes, demonstrating that it can be applied in a wide range of engineering systems design and simulation with improved efficiency and effectiveness.

  4. Synchronization analysis and control of three eccentric rotors in a vibrating system using adaptive sliding mode control algorithm

    Science.gov (United States)

    Kong, Xiangxi; Zhang, Xueliang; Chen, Xiaozhe; Wen, Bangchun; Wang, Bo

    2016-05-01

    In this paper, self- and controlled synchronizations of three eccentric rotors (ERs) in line driven by induction motors rotating in the same direction in a vibrating system are investigated. The vibrating system is a typical underactuated mechanical-electromagnetic coupling system. The analysis and control of the vibrating system convert to the synchronization motion problem of three ERs. Firstly, the self-synchronization motion of three ERs is analyzed according to self-synchronization theory. The criterions of synchronization and stability of self-synchronous state are obtained by using a modified average perturbation method. The significant synchronization motion of three ERs with zero phase differences cannot be implemented according to self-synchronization theory through analysis and simulations. To implement the synchronization motion of three ERs with zero phase differences, an adaptive sliding mode control (ASMC) algorithm based on a modified master-slave control strategy is employed to design the controllers. The stability of the controllers is verified by using Lyapunov theorem. The performances of the controlled synchronization system are presented by simulations to demonstrate the effectiveness of controllers. Finally, the effects of reference speed and non-zero phase differences on the controlled system are discussed to show the strong robustness of the proposed controllers. Additionally, the dynamic responses of the vibrating system in different synchronous states are analyzed.

  5. Voltage controlled resistor using quasi-floating-gate MOSFETs

    Directory of Open Access Journals (Sweden)

    Susheel Sharma

    2013-01-01

    Full Text Available A voltage controlled resistor (VCR using quasi-floating-gate MOSFETs (QFGMOS suitable for low voltage applications is presented. The performance of the VCR implemented with QFGMOS is compared with its floating-gate MOSFET (FGMOS version. It was found that QFGMOS offers better performance than FGMOS in terms of frequency response, offsets and chip area. The VCR using QFGMOS offers high bandwidth and low power dissipation and yields high value of resistance as compared to its FGMOS counterpart. The workability of the presented circuits was tested by PSpice simulations using level 3 parameters of 0.5μm CMOS technology with supply voltage of ± 0.75V. The simulations results were found to be in accordance with the theoretical predictions.

  6. The synchronization of loosely coupled motion control systems

    Energy Technology Data Exchange (ETDEWEB)

    Tuominen, P. [VTT Automation, Tampere (Finland). Machine Automation

    1996-12-31

    The aim of this thesis is to create an easily implemented, effective, dynamically schedulable flow control method, and to show how the methods introduced can be analysed using fixed priority scheduling. One of the most important problems in a distributed system is the delay and variation of it (the jitter) caused by a serial based network, especially when media load is relatively high. This thesis has looked for possibilities to implement a deterministic motion control system which can also operate with high media loads. The problem of end-to-end delay in distributed control systems has been addressed. The most promising ones are based on the two window concept, where critical messages are transmitted in the statically scheduled part of window while other, non-critical messages are transmitted in the remaining part. The concept of the chained link is introduced and it is shown how the latency time of a certain set of messages can be controlled. This thesis has introduced the detailed characteristics of this easy-to-assemble chain which is simpler than time or sync-message based methods used commercially. One benefit is that only those nodes needing synchronization must support synchronization tasks. Other nodes are exempt from supporting unnecessary functions, making system programming easier. The chain can be scheduled dynamically as one long message. The concept of a CAN based producer-consumer method, a statical scheduling method which can be used with a bus-master has been introduced. A hydraulic mobile is used as a practical example for analysing and comparing the introduced distribution and flow control methods

  7. Flux-weakening control methods for hybrid excitation synchronous motor

    Directory of Open Access Journals (Sweden)

    Mingming Huang

    2015-09-01

    Full Text Available The hybrid excitation synchronous motor (HESM, which aim at combining the advantages of permanent magnet motor and wound excitation motor, have the characteristics of low-speed high-torque hill climbing and wide speed range. Firstly, a new kind of HESM is presented in the paper, and its structure and mathematical model are illustrated. Then, based on a space voltage vector control, a novel flux-weakening method for speed adjustment in the high speed region is presented. The unique feature of the proposed control method is that the HESM driving system keeps the q-axis back-EMF components invariable during the flux-weakening operation process. Moreover, a copper loss minimization algorithm is adopted to reduce the copper loss of the HESM in the high speed region. Lastly, the proposed method is validated by the simulation and the experimental results.

  8. Programmable logic controller based synchronous motor excitation system

    Directory of Open Access Journals (Sweden)

    Janda Žarko

    2011-01-01

    Full Text Available This paper presents a 3.5 MW synchronous motor excitation system reconstruction. In the proposed solution programmable logic controller is used to control motor, which drives the turbo compressor. Comparing to some other solutions that are used in similar situations, the proposed solution is superior due to its flexibility and usage of mass-production hardware. Moreover, the implementation of PLC enables easy integration of the excitation system with the other technological processes in the plant as well as in the voltage regulation of 'smart grid' system. Also, implementation of various optimization algorithms can be done comfortably and it does not require additional investment in hardware. Some experimental results that depict excitation current during motor start-up, as well as, measured static characteristics of the motor, were presented.

  9. Synchronization control for large-scale network systems

    CERN Document Server

    Wu, Yuanqing; Su, Hongye; Shi, Peng; Wu, Zheng-Guang

    2017-01-01

    This book provides recent advances in analysis and synthesis of Large-scale network systems (LSNSs) with sampled-data communication and non-identical nodes. In its first chapter of the book presents an introduction to Synchronization of LSNSs and Algebraic Graph Theory as well as an overview of recent developments of LSNSs with sampled data control or output regulation control. The main text of the book is organized into two main parts - Part I: LSNSs with sampled-data communication and Part II: LSNSs with non-identical nodes. This monograph provides up-to-date advances and some recent developments in the analysis and synthesis issues for LSNSs with sampled-data communication and non-identical nodes. It describes the constructions of the adaptive reference generators in the first stage and the robust regulators in the second stage. Examples are presented to show the effectiveness of the proposed design techniques.

  10. Intelligent Controller for Synchronization New Three Dimensional Chaotic System

    Directory of Open Access Journals (Sweden)

    Alireza Sahab

    2014-07-01

    Full Text Available One of the most important phenomena of some systems is chaos which is caused by nonlinear dynamics. In this paper, the new 3 dimensional chaotic system is first investigated and then utilized an intelligent controller based on brain emotional learning (BELBIC, this new chaotic system is synchronized. The BELBIC consists of reward signal which accepts positive values. Improper selection of the parameters causes an improper behavior which may cause serious problems such as instability of the system. It is needed to optimize these parameters. Genetic Algorithm (GA, Cuckoo Optimization Algorithm (COA, Particle Swarm Optimization Algorithm (PSO and Imperialist Competitive Algorithm (ICA are used to compute the optimal parameters for the reward signal of BELBIC. These algorithms can select appropriate and optimal values for the parameters. These minimize the Cost Function, so the optimal values for the parameters will be founded. Selected cost function is defined to minimizing the least square errors. Cost function enforces the system errors to decay to zero rapidly. Numerical simulation will show that this method much better, faster and more effective than previous methods can be new 3D chaotic system mode to bring synchronized.

  11. A noninteracting control strategy for the robust output synchronization of linear heterogeneous networks

    Institute of Scientific and Technical Information of China (English)

    Saman KHODAVERDIAN; J ¨urgen ADAMY

    2014-01-01

    This paper deals with the problem of robust output synchronization for heterogeneous multi-agent systems. First, a new synchronization approach is presented to synchronize the outputs of heterogeneous agents. Based on noninteracting control techniques, a method is derived for homogenizing the input-output behavior of every agent. Hence, applying the same reference input signal to every agent leads to synchronization. Furthermore, a strategy for increasing the robustness of the synchronization process against exogenous disturbances is presented, which leads to a structurally constrained optimization problem. However, by a convenient reformulation of the problem, well established tools from robust control theory can be used. Moreover, it is shown that this procedure allows to separate the robustness issue from the synchronization task. The effectiveness of the approach is illustrated by a robust output synchronization example for a heterogeneous aircraft fleet.

  12. Chaos Control and Synchronization of a Novel Chaotic System Based upon Adaptive Control Algorithm

    Directory of Open Access Journals (Sweden)

    Israr Ahmad

    2014-08-01

    Full Text Available Controlling chaos is stabilizing one of the unstable periodic orbits either to its equilibrium point or to a stable periodic orbit by means of an appropriate continuous signal injected to the system. On the other hand, chaos synchronization refers to a procedure where two chaotic oscillators (either identical or nonidentical adjust a given property of their motion to a common behavior. This research paper concerns itself with the Adaptive Control and Synchronization of a new chaotic system with unknown parameters. Based on the Lyapunov Direct Method, the Adaptive Control Techniques are designed in such a way that the trajectory of the new chaotic system is globally stabilized to one of its equilibrium points of the uncontrolled system. Moreover, the Adaptive Control Law is also applied to achieve the synchronization state of two identical systems and two different chaotic systems with fully unknown parameters. The parameters identification, chaos control and synchronization of the chaotic system have been carried out simultaneously by the Adaptive Controller. All simulation results are carried out to corroborate the effectiveness and the robustness of the proposed methodology and possible feasibility for synchronizing two chaotic systems by using mathematica 9.

  13. Chaos Control and Synchronization of a Hyperchaotic Zhou System by Integral Sliding Mode control

    Directory of Open Access Journals (Sweden)

    Yashar Toopchi

    2014-12-01

    Full Text Available In this paper, an adaptive integral sliding mode control scheme is proposed for synchronization of hyperchaotic Zhou systems. In the proposed scheme, an integral sliding mode control is designed to stabilize a hyperchaotic Zhou system with known parameters to its unstable equilibrium at the origin. The control is then applied to the synchronization of two identical systems, i.e., a slave and a master hyperchaotic Zhou system with unknown parameters. The adaptive control mechanism introduced synchronizes the systems by estimating the unknown parameters. Simulation results have shown that the proposed method has an excellent convergence from both speed and accuracy points of view, and it outperforms Vaidyanathan’s scheme, which is a well-recognized scheme in this area.

  14. Neural Network Controllers in DTC of Synchronous Motor Drives

    Directory of Open Access Journals (Sweden)

    Sudhakar Ambarapu

    2013-07-01

    Full Text Available In recent times, permanent magnet synchronous motors (PMSM have gained numerous industrial applications, because of simple structure, high efficiency and ease of maintenance. But these motors have a nonlinear mathematical model. To resolve this problem several studies have suggested the application of vector control (VC and direct torque control (DTC with soft-computing (SC techniques. This paper presents neuro direct torque control (NDTC of PMSM. Hence this paper aims to present a technique to control speed and torque with reduced ripple compared to previous techniques. The outputs of Artificial Neural Network(ANN controller mechanism is compared with that of classical DTC and the results demonstrate the influence of ANN is improved compared to classical DTC topology. The system is also verified and proved to be operated stably with reduced torque ripple, very low speed, sudden speed reversals, at low torque and at high torque. The proposed method validity and effectiveness has been verified by computer simulations using Matlab/Simulink®. These results are compared with the ones obtained with a classical DTC using PI speed controller.

  15. A novel mixed-synchronization phenomenon in coupled Chua's circuits via non-fragile linear control

    Institute of Scientific and Technical Information of China (English)

    Wang Jun-Wei; Ma Qing-Hua; Zeng Li

    2011-01-01

    Dynamical variables of coupled nonlinear oscillators can exhibit different synchronization patterns depending on the designed coupling scheme.In this paper,a non-fragile linear feedback control strategy with multiplicative controller gain uncertainties is proposed for realizing the mixed-synchronization of Chua's circuits connected in a drive-response configuration.In particular,in the mixed-synchronization regime,different state variables of the response system can evolve into complete synchronization,anti-synchronization and even amplitude death simultaneously with the drive variables for an appropriate choice of scaling matrix.Using Lyapunov stability theory,we derive some sufficient criteria for achieving global mixed-synchronization.It is shown that the desired non-fragile state feedback controller can be constructed by solving a set of linear matrix inequalities(LMIs).Numerical simulations are also provided to demonstrate the effectiveness of the proposed control approach.

  16. Bifurcations, Chaos, Controlling and Synchronization of Certain Nonlinear Oscillators

    CERN Document Server

    Lakshmanan, M

    1997-01-01

    In this set of lectures, we review briefly some of the recent developments in the study of the chaotic dynamics of nonlinear oscillators, particularly of damped and driven type. By taking a representative set of examples such as the Duffing, Bonhoeffer-van der Pol and MLC circuit oscillators, we briefly explain the various bifurcations and chaos phenomena associated with these systems. We use numerical and analytical as well as analogue simulation methods to study these systems. Then we point out how controlling of chaotic motions can be effected by algorithmic procedures requiring minimal perturbations. Finally we briefly discuss how synchronization of identically evolving chaotic systems can be achieved and how they can be used in secure communications.

  17. Frequency control in synchronized networks of inhibitory neurons

    CERN Document Server

    Chow, C C; Ritt, J; Kopell, N; Chow, Carson C.; White, John A.; Ritt, Jason; Kopell, Nancy

    1998-01-01

    We analyze the control of frequency for a synchronized inhibitory neuronal network. The analysis is done for a reduced membrane model with a biophysically-based synaptic influence. We argue that such a reduced model can quantitatively capture the frequency behavior of a larger class of neuronal models. We show that in different parameter regimes, the network frequency depends in different ways on the intrinsic and synaptic time constants. Only in one portion of the parameter space, called `phasic', is the network period proportional to the synaptic decay time. These results are discussed in connection with previous work of the authors, which showed that for mildly heterogeneous networks, the synchrony breaks down, but coherence is preserved much more for systems in the phasic regime than in the other regimes. These results imply that for mildly heterogeneous networks, the existence of a coherent rhythm implies a linear dependence of the network period on synaptic decay time, and a much weaker dependence on th...

  18. Global Chaos Synchronization Between Two New DifferentChaotic Systems Via Active Control

    Institute of Scientific and Technical Information of China (English)

    XU Guang-Li

    2009-01-01

    This work presents chaos synchronization between two new different chaotic systems by using active control.The proposed controller ensures that the states of the controlled chaotic response system asymptotically synchronizes the states of the drive system.Numerical simulations are shown to verify the result.

  19. Method of Time-Delay Calculating and Correcting to Control Spin-Stabilized Satellite Synchronously

    Institute of Scientific and Technical Information of China (English)

    YangTianshe; LiJisheng; HuangYongxuan

    2005-01-01

    The key to control Spin-Stabilized Satellites Synchronously is to determine the models for calculating and correcting of time-delay at the different situations. Based on the principle of Synchronous-Control mode, the methods of determining the models of calculating and correcting of time-delay are proposed. The methods have been proved to be effective in real satellite control engineering.

  20. Global Chaos Synchronization between Two New Different Chaotic Systems via Active Control

    Institute of Scientific and Technical Information of China (English)

    SUN Feng-Yun

    2006-01-01

    We present chaos synchronization between two new different chaotic systems by using active control.The proposed controller ensures that the states of the controlled chaotic response system asymptotically synchronizes the states of the drive system.Numerical simulations are shown to verify the result.

  1. Anti-Synchronization of Tigan and Li Systems with Unknown Parameters via Adaptive Control

    OpenAIRE

    Vaidyanathan, Sundarapandian; Rajagopal, Karthikeyan

    2012-01-01

    In this paper, the adaptive nonlinear control method has been deployed to derive new resultsfor the anti-synchronization of identical Tigan systems (2008), identical Li systems (2009) and nonidenticalTigan and Li systems. In adaptive anti-synchronization of identical chaotic systems, theparameters of the master and slave systems are unknown and the feedback control law has been derivedusing the estimates of the system parameters. In adaptive anti-synchronization of non-identical chaoticsystem...

  2. Realization of generalized synchronization between different chaotic systems via scalar controller

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, a very simple generalized synchronization method between different chaotic systems is presented.Only a scalar controller is used in this method. The method of obtaining the scalar controller from chaotic systems is established. The sufficient and necessary condition of generalized synchronization is obtained from a rigorous theory,and the sufficient and necessary condition of generalized synchronization is irrelative to chaotic system itself. Theoretical analyses and simulation results show that the method established in this paper is effective.

  3. Wave Synchronizing Crane Control during Water Entry in Offshore Moonpool Operations - Experimental Results

    OpenAIRE

    2004-01-01

    A new strategy for active control in heavy-lift offshore crane operations is suggested, by introducing a new concept referred to as wave synchronization. Wave synchronization reduces the hydrodynamic forces by minimization of variations in the relative vertical velocity between payload and water using a wave amplitude measurement. Wave synchronization is combined with conventional active heave compensation to obtain accurate control. Experimental results using a scale model of a semi-submerge...

  4. A new theorem to synchronization of unified chaotic systems via adaptive control

    Institute of Scientific and Technical Information of China (English)

    Lequan Min; Jianyi Jing

    2003-01-01

    Chaos synchronization has been applied in secure communication, chemical reaction, biological systems, and information processing. A new theorem to synchronization of unified chaotic systems via adaptive control is proposed. The consutructive theorem provides the design scheme for adaptive controller such that a respond system can synchronize with respect to an uncertain drive system. One example for discontinuous chaotic system is proposed to illustrate the effectiveness and feasibility.

  5. Synchronizing chaotic dynamics with uncertainties based on a sliding mode control design.

    Science.gov (United States)

    Yang, Tao; Shao, Hui He

    2002-04-01

    The synchronization of two chaotic systems with uncertainties is studied in this paper. A feedback controller is provided based on a sliding mode control design. A kind of extended state observer is used to compensate for the systems' uncertainties, such as the structure difference or parameter mismatching, using only the available synchronizing error. Then the feedback controller becomes physically realizable based on the states of the observer, and can be used to synchronize two continuous chaotic systems. Illustrative examples of the synchronization of Duffing and Van der Pol oscillators as well as two Lorenz systems with parameter mismatching are proposed to show the effectiveness of this method.

  6. CHAOS CONTROL AND SYNCHRONIZATION USING SYNERGETIC CONTROLLER WITH FRACTIONAL AND LINEAR EXTENDED MANIFOLD

    Directory of Open Access Journals (Sweden)

    Morteza Pourmehdi

    2016-04-01

    Full Text Available In this manuscript, for the first time, a fractional-order manifold in a synergetic approach using a fractional order controller is introduced. Furtheremore, in the synergetic theory a macro variable is expended into a linear combination of state variables. An aim is to increase the convergence rate as well as time response of the whole closed loop system. Quality of the proposed controller is investigated to control and synchronize a nonlinear chaotic Coullet system in comparison with an integer order manifold synergetic controller. The stability of the proposed controller is proven using the Lyapunov method. In this regard stabilizing control effort is yielded. Simulation result confirm convergence of states towards zero. This is achieved through a control effort with fewer oscillations and lower amplitude of signls which confirm feasibility of the control effort in practice.KEYWORDS:  synergetic control theory; fractional order system; synchronization; nonlinear chaotic Coullet system; chaos control

  7. Interaction of multiple actuators for synchronized switching damping control

    Science.gov (United States)

    Cazzulani, Gabriele; Braghin, Francesco; Mazzocchi, Fabrizio

    2016-04-01

    The semi-active Synchronized Switching Damping (SSD) family is based on a nonlinear shunting circuit applied to piezoelectric actuators, where the circuit characteristics are switched along the vibration cycles of the structure. SSD offers many advantages with respect to other vibration suppression techniques using piezoelectric actuators. Indeed, multiple modes can be suppressed with a relatively simple system and with very low power consumption. This allows the realization of self-powered control systems, without the need of wiring and external power supply. Moreover, the characteristics of this control strategy make it very robust to the variation of the dynamic characteristics of the structure, outperforming the classic passive linear shunts. Different SSD techniques have been developed, varying the circuit characteristics and the switching logic. Although this control family has been studied for many years, all the works are limited to the single actuator case, losing in generality with respect to many practical cases. For this reason, the aim of this work is to apply SSD control with multiple actuators and to study the interaction of the actuators and their shunting circuits in order to optimize the damping performance. The study will be performed numerically and then an experimental setup will be realized to test the proposed solutions.

  8. Concept of quasi-periodic undulator - control of radiation spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Shigemi [Japan Atomic Energy Research Institute, Ibaraki (Japan)

    1995-02-01

    A new type of undulator, the quasi-periodic undulator (QPU) is considered which generates the irrational harmonics in the radiation spectrum. This undulator consists of the arrays of magnet blocks aligned in a quasi-periodic order, and consequentially lead to a quasi-periodic motion of electron. A combination of the QPU and a conventional crystal/grating monochromator provides pure monochromatic photon beam for synchrotron radiation users because the irrational harmonics do not be diffracted in the same direction by a monochromator. The radiation power and width of each radiation peak emitted from this undulator are expected to be comparable with those of the conventional periodic undulator.

  9. Control and synchronization of a hyperchaotic system based on passive control

    Institute of Scientific and Technical Information of China (English)

    Zhu Da-Rui; Liu Chong-Xin; Yan Bing-Nan

    2012-01-01

    In this paper,a new hyperchaotic system is proposed,and the basic properties of this system are analyzed by means of the equilibrium point,a Poincaré map,the bifurcation diagram,and the Lyapunov exponents.Based on the passivity theory,the controllers are designed to achieve the new hyperchaotic system globally,asymptotically stabilized at the equilibrium point,and also realize the synchronization between the two hyperchaotic systems under different initial values respectively.Finally,the numerical simulation results show that the proposed control and synchronization schemes are effective.

  10. Chaos control and global synchronization of Liu chaotic systems using linear balanced feedback control

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.-H. [Department of Mechanical Engineering, HsiuPing Institute of Technology, Taichung 412, Taiwan (China)], E-mail: richard@mail.hit.edu.tw

    2009-04-15

    Liu chaotic systems exhibit two- or four-scroll attractors and are observed in a variety of engineering phenomena, including rigid body motion, brushless DC motor system and so forth. This study applies the Lyapunov stability theorem to identify the sufficient conditions for the asymptotic stability of the equilibrium points of Liu chaotic systems. A linear balanced feedback gain control method is then employed to design a controller to achieve the global synchronization of two identical four-scroll Liu chaotic systems. The feasibility and effectiveness of the proposed chaos stability and synchronization schemes are verified via numerical simulations.

  11. Chaos Synchronization on Parameters Adaptive Control for Chen Chaotic System

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ping

    2003-01-01

    Chaos synchronization of Chen chaotic system for parameters unknown is discussed in this paper using a scalar output. Using the concept of conditional Lyapunov exponents, the negativity of all Lyapunov exponents shows the synchronization of transmitter systems with receiver systems even though system parametes are not known to receiver systems.

  12. Synchronization of Switched Neural Networks With Communication Delays via the Event-Triggered Control.

    Science.gov (United States)

    Wen, Shiping; Zeng, Zhigang; Chen, Michael Z Q; Huang, Tingwen

    2017-10-01

    This paper addresses the issue of synchronization of switched delayed neural networks with communication delays via event-triggered control. For synchronizing coupled switched neural networks, we propose a novel event-triggered control law which could greatly reduce the number of control updates for synchronization tasks of coupled switched neural networks involving embedded microprocessors with limited on-board resources. The control signals are driven by properly defined events, which depend on the measurement errors and current-sampled states. By using a delay system method, a novel model of synchronization error system with delays is proposed with the communication delays and event-triggered control in the unified framework for coupled switched neural networks. The criteria are derived for the event-triggered synchronization analysis and control synthesis of switched neural networks via the Lyapunov-Krasovskii functional method and free weighting matrix approach. A numerical example is elaborated on to illustrate the effectiveness of the derived results.

  13. Spatiotemporal chaos synchronization of an uncertain network based on sliding mode control

    Institute of Scientific and Technical Information of China (English)

    Lü Ling; Yu Miao; Wei Lin-Ling; Zhang Meng; Li Yu-Shan

    2012-01-01

    The sliding mode control method is used to study spatiotemporal chaos synchronization of an uncertain network.The method is extended from synchronization between two chaotic systems to the synchronization of complex network composed of N spatiotemporal chaotic systems.The sliding surface of the network and the control input are designed.Furthermore,the effectiveness of the method is analysed based on the stability theory. The Burgers equation with spatiotemporal chaos behavior is taken as an example to simulate the experiment.It is found that the synchronization performance of the network is very stable.

  14. Synchronization of noise-perturbed generalized Lorenz system by sliding mode control*

    Institute of Scientific and Technical Information of China (English)

    Kong Cui-Cui; Chen Shi-Hua

    2009-01-01

    Synchronization of a noise-perturbed generalized Lorenz system by using sliding mode control method is investigated in this paper. Two sliding mode control methods are proposed to synchronize the noise-perturbed generalized Lorenz system. Numerical simulations are also provided for the illustration and verification of the methods.

  15. Some new criteria for lag synchronization of chaotic Lur'e systems by replacing variables control

    Institute of Scientific and Technical Information of China (English)

    Xiaofeng WU; Yi ZHAO; Xiaohua HUANG

    2004-01-01

    Some new criteria for the chaotic lag synchronization are proposed.At first,lag synchronization scheme for identical master-slave Lur'e systems by replacing variables control and the relevant error system are given,and the relations between absolute stability of the error system and the chaotic lag synchronization are described.Then,based on a quadratic Lyapunov function,two new Lur'e criteria for the above chaotic lag synchronization are proved.Four corresponding frequency domain criteria are further derived by means of Meyer-Kalman-Yacubovia Lemma.These frequency domain criteria are applied to analyze the lag synchronization of general master-slave Chua's circuits so that some ranges of the parameters in which the master-slave Chua's circuits achieve chaotic lag synchronization by replacing single-variable control are attained.Finally,some examples are given to verify the theoretical results.

  16. H∞ SYNCHRONIZATION CONTROL OF LINEAR SYSTEMS AND ITS APPLICATION TO WAFER-RETICAL STAGE

    Institute of Scientific and Technical Information of China (English)

    Zhou Di

    2005-01-01

    For the outputs of two nth-order linear control systems to work in synchronization and meanwhile to track their commands, a H∞ synchronization control scheme is presented. In terms of two uncoupled single variable linear systems, a multivariable coupled system is established by choosing one output and the difference of the two outputs as a new output vector, so that both command tracking and synchronization properties can be demonstrated by a H∞ performance index. To improve the synchronization and tracking performance and to guarantee the system robust stability, the mixed sensitivity H∞ design methodology is adopted. The presented synchronization scheme is then extended to the case where one of the two systems include two input variables, and then applied to the position synchronization control of a wafer-retical stage. The wafer-reticle stage consists of a wafer stage, a reticle coarse stage, and a reticle fine stage. The reticle coarse stage picks up the reticle fine stage. The three stages ought to tack their commands, but synchronization between the wafer stage and the reticle fine stage must be stressed in the tracking process. In the application, by appropriately determining the weighting matrices for the sensitivity function and the complementary sensitivity function, a satisfactory H∞ synchronization controller is obtained to realize highly accurate position synchronization,and to guarantee tracking performance. The above results are verified by simulation experiments.

  17. Synchronization control of cross-strict feedback hyperchaotic system based on cross active backstepping design

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jing [School of Electrical Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)], E-mail: wjnotice@gmail.com; Gao Jinfeng [School of Electrical Engineering, Zhengzhou University, Zhengzhou 450002 (China); Ma Xikui [School of Electrical Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)

    2007-10-01

    This Letter presents a novel cross active backstepping design method for synchronization control of cross-strict feedback hyperchaotic system, in which the ordinary backstepping design is unavailable. The proposed control method, combining backstepping design and active control approach, extends the application of backstepping technique in chaos control. Based on this method, different combinations of controllers can be designed to meet the needs of different applications. The proposed method is applied to achieve chaos synchronization of two identical cross-strict feedback hyperchaotic systems. Also it is used to implement synchronization between cross-strict feedback hyperchaotic system and Roessler hyperchaotic system. Numerical examples illustrate the validity of the control method.

  18. Complete Synchronization Of Hyperchaotic Xu And Hyperchaotic Lu Systems Via Active Control

    OpenAIRE

    Sundarapandian Vaidyanathan

    2012-01-01

    This paper deploys active control for achieving complete synchronization of hyperchaotic Xu (2009) andhyperchaotic Lü (2006) systems. Specifically, this paper derives complete synchronization results foridentical hyperchaotic Xu systems, identical hyperchaotic Lü systems and non-identical hyperchaotic Xuand Lü systems. The complete synchronization results have been proved using Lyapunov stability theory.Numerical simulations have been shown to validate and demonstrate the effectiveness of th...

  19. Synchronization of Different Fractional Order Time-Delay Chaotic Systems Using Active Control

    Directory of Open Access Journals (Sweden)

    Jianeng Tang

    2014-01-01

    Full Text Available Chaos synchronization of different fractional order time-delay chaotic systems is considered. Based on the Laplace transform theory, the conditions for achieving synchronization of different fractional order time-delay chaotic systems are analyzed by use of active control technique. Then numerical simulations are provided to verify the effectiveness and feasibility of the developed method. At last, effects of the fraction order and the time delay on synchronization are further researched.

  20. Synchronization of Different Fractional Order Time-Delay Chaotic Systems Using Active Control

    OpenAIRE

    Jianeng Tang

    2014-01-01

    Chaos synchronization of different fractional order time-delay chaotic systems is considered. Based on the Laplace transform theory, the conditions for achieving synchronization of different fractional order time-delay chaotic systems are analyzed by use of active control technique. Then numerical simulations are provided to verify the effectiveness and feasibility of the developed method. At last, effects of the fraction order and the time delay on synchronization are further researched.

  1. Estimates of Amplitudes of Transient Regimes in Quasi-Controllable Discrete Systems

    CERN Document Server

    Kozyakin, V

    2009-01-01

    Families of regimes for discrete control systems are studied possessing a special quasi-controllability property that is similar to the Kalman controllability property. A new approach is proposed to estimate the amplitudes of transient regimes in quasi-controllable systems. Its essence is in obtaining of constructive a priori bounds for degree of overshooting in terms of the quasi-controllability measure. The results are applicable for analysis of transients, classical absolute stability problem and, especially, for stability problem for desynchronized (asynchronous, switching) systems.

  2. Pinning-controlled synchronization of delayed neural networks with distributed-delay coupling via impulsive control.

    Science.gov (United States)

    He, Wangli; Qian, Feng; Cao, Jinde

    2017-01-01

    This paper investigates pinning synchronization of coupled neural networks with both current-state coupling and distributed-delay coupling via impulsive control. A novel impulse pinning strategy involving pinning ratio is proposed and a general criterion is derived to ensure an array of neural networks with two different topologies synchronizes with the desired trajectory. In order to handle the difficulties of high-dimension criteria, some inequality techniques and matrix decomposition methods through simultaneous diagonalization of two matrices are introduced and low-dimensional criteria are obtained. Finally, an illustrative example is given to show the effectiveness of the proposed method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Control and switching synchronization of fractional order chaotic systems using active control technique

    KAUST Repository

    Radwan, A.G.

    2013-03-13

    This paper discusses the continuous effect of the fractional order parameter of the Lü system where the system response starts stable, passing by chaotic behavior then reaching periodic response as the fractional-order increases. In addition, this paper presents the concept of synchronization of different fractional order chaotic systems using active control technique. Four different synchronization cases are introduced based on the switching parameters. Also, the static and dynamic synchronizations can be obtained when the switching parameters are functions of time. The nonstandard finite difference method is used for the numerical solution of the fractional order master and slave systems. Many numeric simulations are presented to validate the concept for different fractional order parameters.

  4. Control and switching synchronization of fractional order chaotic systems using active control technique

    Directory of Open Access Journals (Sweden)

    A.G. Radwan

    2014-01-01

    Full Text Available This paper discusses the continuous effect of the fractional order parameter of the Lü system where the system response starts stable, passing by chaotic behavior then reaching periodic response as the fractional-order increases. In addition, this paper presents the concept of synchronization of different fractional order chaotic systems using active control technique. Four different synchronization cases are introduced based on the switching parameters. Also, the static and dynamic synchronizations can be obtained when the switching parameters are functions of time. The nonstandard finite difference method is used for the numerical solution of the fractional order master and slave systems. Many numeric simulations are presented to validate the concept for different fractional order parameters.

  5. Robust synchronization of chaotic non-autonomous systems using adaptive-feedback control

    Energy Technology Data Exchange (ETDEWEB)

    Lei Youming [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China)]. E-mail: leiyouming@nwpu.edu.cn; Xu Wei [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China); Shen Jianwei [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2007-01-15

    In this paper, we apply the simple adaptive-feedback control scheme to synchronize a class of chaotic non-autonomous systems. Based on the invariance principle of differential equations, some generic sufficient conditions for global asymptotic synchronization are obtained. Unlike the usual linear feedback, the variable feedback strength is automatically adapted to completely synchronize two identical systems and simple to implement in practice. As illustrative examples, synchronization of two parametrically excited chaotic pendulums and that of two 4D new systems are considered here. Numerical simulations show the proposed method is effective and robust against the effect of noise.

  6. Hybrid dislocated control and general hybrid projective dislocated synchronization for the modified Lue chaotic system

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yuhua [College of Information Science and Technology, Donghua University, Shanghai 201620 (China) and Department of Maths, Yunyang Teacher' s College, Hubei 442000 (China)], E-mail: yuhuaxu2004@163.com; Zhou Wuneng [College of Information Science and Technology, Donghua University, Shanghai 201620 (China)], E-mail: wnzhou@163.com; Fang Jianan [College of Information Science and Technology, Donghua University, Shanghai 201620 (China)

    2009-11-15

    This paper introduces a modified Lue chaotic system, and some basic dynamical properties are studied. Based on these properties, we present hybrid dislocated control method for stabilizing chaos to unstable equilibrium and limit cycle. In addition, based on the Lyapunov stability theorem, general hybrid projective dislocated synchronization (GHPDS) is proposed, which includes complete dislocated synchronization, dislocated anti-synchronization and projective dislocated synchronization as its special item. The drive and response systems discussed in this paper can be strictly different dynamical systems (including different dimensional systems). As examples, the modified Lue chaotic system, Chen chaotic system and hyperchaotic Chen system are discussed. Numerical simulations are given to show the effectiveness of these methods.

  7. Inverse synchronization of coupled fractional-order systems through open-plus-closed-loop control

    Indian Academy of Sciences (India)

    Junwei Wang; Li Zeng; Qinghua Ma

    2011-03-01

    In this paper, the inverse synchronization problem of fractional-order dynamical systems is investigated. A general explicit coupling via an open-plus-closed-loop control for inverse synchronization of two arbitrary unidirectionally or bidirectionally coupled fractional-order systems is proposed. The inverse synchronization is proved analytically based on the stability theorem of the fractional differential equations. A key feature of this proposed scheme is that it can be applied not only to nonchaotic but also to chaotic fractional-order systems whenever they exhibit regular or irregular oscillations. Feasibility of the proposed inverse synchronization scheme is illustrated through numerical simulations.

  8. Chaos control and reduced-order generalized synchronization for the Chen-Liao system

    Institute of Scientific and Technical Information of China (English)

    Li Rui-Hong; Xu Wei; Li Shuang

    2007-01-01

    This paper deals with the problem of chaos control and synchronization of the Chen-Liao system. Prom rigorous mathematic justification, the chaotic trajectories of the Chen-Liao system are led to a type of points whose four-dimensional coordinates have a particular functional relation among them. Meanwhile, a new synchronization manner, reduced-order generalized synchronization (RGS), is proposed which has the characteristic of having a functional relation between the slave and the partial master systems. It is shown that this new synchronization phenomenon can be realized by a novel technique. Numerical simulations have verified the effectiveness of the proposed scheme.

  9. Passive control of Permanent Magnet Synchronous Motor chaotic systems

    Institute of Scientific and Technical Information of China (English)

    QI Dong-lian; WANG Jia-jun; ZHAO Guang-zhou

    2005-01-01

    Permanent Magnet Synchronous Motor model can exhibit a variety of chaotic phenomena under some choices of system parameters and external input. Based on the property of passive system, the essential conditions were studied, by which Permanent Magnet Synchronous Motor chaotic system could be equivalent to passive system. Using Lyapunov stability theory, the convergence condition deciding the system's characters was discussed. In the convergence condition area, the equivalent passive system could be globally asymptotically stabilized by smooth state feedback.

  10. Projective Synchronization in Drive-Response Networks via Impulsive Control

    Institute of Scientific and Technical Information of China (English)

    GUO Liu-Xiao; XU Zhen-Yuan; HU Man-Feng

    2008-01-01

    @@ Impulsive projective synchronization in 1 + N coupled chaotic systems are investigated with the drive-response dynamical network (DRDN) model. Based on impulsive stability theory, some simple but less conservative criteria are achieved for projective synchronization in DRDNs. Furthermore, impulsive pinning scheme is also adopted to direct the scaling factor onto the desired value. Numerical simulations on generalized chaotic unified system are illustrated to verify the theoretical results.

  11. Synchronization of a chaotic optical system using control

    Science.gov (United States)

    Lai, Ying-Cheng; Grebogi, Celso

    1993-11-01

    It has been demonstrated that two identical chaotic systems can be made to synchronize by applying small, judiciously chosen, temporal parameter perturbations to one of them [Y. C. Lai and C. Grebogi, Phys. Rev. E 47, 2357(1993)]. This idea is applied to a nonlinear optical ring resonator modeled by the Ikeda-Hammel-Jones-Maloney map. The average time to achieve synchronization and the effect of noise are also discussed.

  12. Position Control of Linear Synchronous Motor Drives with Exploitation of Forced Dynamics Control Principles

    Directory of Open Access Journals (Sweden)

    Jan Vittek

    2004-01-01

    Full Text Available Closed-loop position control of mechanisms directly driven by linear synchronous motors with permanent magnets is presented. The control strategy is based on forced dynamic control, which is a form of feedback linearisation, yielding a non-liner multivariable control law to obtain a prescribed linear speed dynamics together with the vector control condition of mutal orthogonality between the stator current and magnetic flux vectors (assuming perfect estimates of the plant parameters. Outer position control loop is closed via simple feedback with proportional gain. Simulations of the design control sysstem, including the drive with power electronic switching, predict the intended drive performance.

  13. DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)

    DEFF Research Database (Denmark)

    Swierczynski, Dariusz; Kazmierkowski, Marian P.; Blaabjerg, Frede

    2002-01-01

    DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)......DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)...

  14. DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)

    DEFF Research Database (Denmark)

    Swierczynski, Dariusz; Kazmierkowski, Marian P.; Blaabjerg, Frede

    2002-01-01

    DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)......DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)...

  15. Passive control of Permanent Magnet Synchronous Motor chaotic system based on state observer

    Institute of Scientific and Technical Information of China (English)

    QI Dong-lian; WANG Qiao

    2006-01-01

    Passive system theory was applied to propose a new passive control method with nonlinear observer of the Permanent Magnet Synchronous Motor chaotic system. Through constructing a Lyapunov function, the subsystem of the Permanent Magnet Synchronous Motor chaotic system could be proved to be globally stable at the equilibrium point. Then a controller with smooth state feedback is designed so that the Permanent Magnet Synchronous Motor chaotic system can be equivalent to a passive system.To get the state variables of the controller, the nonlinear observer is also studied. It is found that the outputs of the nonlinear observer can approximate the state variables of the Permanent Magnet Synchronous Motor chaotic system if the system's nonlinear function is a globally Lipschitz function. Simulation results showed that the equivalent passive system of Permanent Magnet Synchronous Motor chaotic system could be globally asymptotically stabilized by smooth state feedback in the observed parameter convergence condition area.

  16. Projective synchronization of nonidentical fractional-order neural networks based on sliding mode controller.

    Science.gov (United States)

    Ding, Zhixia; Shen, Yi

    2016-04-01

    This paper investigates global projective synchronization of nonidentical fractional-order neural networks (FNNs) based on sliding mode control technique. We firstly construct a fractional-order integral sliding surface. Then, according to the sliding mode control theory, we design a sliding mode controller to guarantee the occurrence of the sliding motion. Based on fractional Lyapunov direct methods, system trajectories are driven to the proposed sliding surface and remain on it evermore, and some novel criteria are obtained to realize global projective synchronization of nonidentical FNNs. As the special cases, some sufficient conditions are given to ensure projective synchronization of identical FNNs, complete synchronization of nonidentical FNNs and anti-synchronization of nonidentical FNNs. Finally, one numerical example is given to demonstrate the effectiveness of the obtained results.

  17. Anti-Synchronization of Tigan and Li Systems with Unknown Parameters via Adaptive Control

    Directory of Open Access Journals (Sweden)

    Sundarapandian VAIDYANATHAN

    2012-01-01

    Full Text Available In this paper, the adaptive nonlinear control method has been deployed to derive new resultsfor the anti-synchronization of identical Tigan systems (2008, identical Li systems (2009 and nonidenticalTigan and Li systems. In adaptive anti-synchronization of identical chaotic systems, theparameters of the master and slave systems are unknown and the feedback control law has been derivedusing the estimates of the system parameters. In adaptive anti-synchronization of non-identical chaoticsystems, the parameters of the master system are known, but the parameters of the slave system areunknown and accordingly, the feedback control law has been derived using the estimates of theparameters of the slave system. Our adaptive synchronization results derived in this paper for theuncertain Tigan and Li systems are established using Lyapunov stability theory. Numerical simulationsare shown to demonstrate the effectiveness of the adaptive anti-synchronization schemes for theuncertain chaotic systems addressed in this paper.

  18. Global chaos synchronization of the parametrically excited Duffing oscillators by linear state error feedback control

    Energy Technology Data Exchange (ETDEWEB)

    Wu Xiaofeng [Center for Control and Optimizations, South China University of Technology, Guangzhou 510640 (China) and Guangzhou Naval Academy, Guangzhou 510430 (China)], E-mail: wuxiaof@21cn.com; Cai Jianping [Department of Applied Mechanics and Engineering, Zhongshan University, Guangzhou 510275 (China); Wang Muhong [Guangzhou Naval Academy, Guangzhou 510430 (China)

    2008-04-15

    The paper deals with a linear state error feedback control technique which is utilized to synchronize two parametrically excited non-autonomous Duffing oscillators. Some sufficient criteria for global chaos synchronization are obtained by means of Lyapunov's direct method. A few examples are illustrated to verify the proposed theoretical results.

  19. Tracking control and synchronization of chaotic systems based upon sampled-data feedback

    Institute of Scientific and Technical Information of China (English)

    陈士华; 刘杰; 谢进; 陆君安

    2002-01-01

    A novel tracking control and synchronization method is proposed based upon sampled-data feedback. This methodcan make a chaotic system approach any desired smooth orbit and synchronize the driving system and the responsesystem, both in the same structure and in diverse structures. Finally, a numerical simulation with a Lorenz system isprovided for the purpose of illustration and verification.

  20. Parameter self-adaptive synchronization control for a kind of financial chaotic systems

    Institute of Scientific and Technical Information of China (English)

    PU Xing-cheng; WANG Hai-ying

    2009-01-01

    A parameter adaptive control approach was applied to a kind of financial chaotic systems. According to Lyapunov stability theorem, synchronization of two financial chaotic systems with different certain parameters or the same uncertain parameters were implemented through designing proper control functions and using parameters self-adaptive control principle. The sufficient synchronization conditions of the two financial systems were obtained. Under the situation of the same uncertain parameters, the synchronization system has simpler controller and better performance. Numerical simulations show the effectiveness of the method.

  1. Adaptive Control and Function Projective Synchronization in 2D Discrete-Time Chaotic Systems

    Institute of Scientific and Technical Information of China (English)

    LI Yin; CHEN Yong; LI Biao

    2009-01-01

    This study addresses the adaptive control and function projective synchronization problems between 2D Rulkov discrete-time system and Network discrete-time system.Based on backstepping design with three controllers, a systematic, concrete and automatic scheme is developed to investigate the function projective synchronization of discrete-time chaotic systems.In addition, the adaptive control function is applied to achieve the state synchronization of two discrete-time systems.Numerical results demonstrate the effectiveness of the proposed control scheme.

  2. Control, anticontrol and synchronization of chaos for an autonomous rotational machine system with time-delay

    Energy Technology Data Exchange (ETDEWEB)

    Ge Zhengming [Department of Mechanical Engineering, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan (China)]. E-mail: zmg@cc.nctu.edu.tw; Lee, Ching-I [Department of Mechanical Engineering, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan (China)

    2005-03-01

    Chaos, control, anticontrol and synchronization of chaos for an autonomous rotational machine system with a hexagonal centrifugal governor and spring for which time-delay effect is considered are studied in the paper. By applying numerical results, phase diagram and power spectrum are presented to observe periodic and chaotic motions. Linear feedback control and adaptive control algorithm are used to control chaos effectively. Linear and nonlinear feedback synchronization and phase synchronization for the coupled systems are presented. Finally, anticontrol of chaos for this system is also studied.

  3. Study on Super-Twisting synchronization control of chaotic system based on U model

    Directory of Open Access Journals (Sweden)

    Jianhua ZHANG

    2016-06-01

    Full Text Available A U model based Super-Twisting synchronization control method for chaotic systems is proposed. The chaos control of chaotic systems is prescribed, then, based on the current research status of chaotic systems and some useful research results in nonlinear system design, some new methods for chaos control and synchronization are provided, and the controller is designed to achieve the finite time chaos synchronization. The numerical simulations are carried out for Lorenz system and Chen system, and the result proves the effectiveness of the method.

  4. Adaptive H-infinity control of synchronous generators with steam valve via Hamiltonian function method

    Institute of Scientific and Technical Information of China (English)

    Shujuan LI; Yuzhen WANG

    2006-01-01

    Based on Hamiltonian formulation, this paper proposes a design approach to nonlinear feedback excitation control of synchronous generators with steam valve control, disturbances and unknown parameters. It is shown that the dynamics of the synchronous generators can be expressed as a dissipative Hamiltonian system, based on which an adaptive H-infinity controller is then designed for the systems by using the structure properties of dissipative Hamiltonian systems.Simulations show that the controller obtained in this paper is very effective.

  5. On Impulsive Control for Synchronization and Its Application to Matsumoto-Chua-Kobayashi (MCK) Circuit

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The issue of impulsive control theory for synchronization of the MCK circuit is developed. We propose an impulsive control scheme for the complete synchronization of the MCK circuit including chaotic systems. A sufficient condition for the impulsive control is derived, with an easily calculated maximum impulsive interval. The proposed impulsive control scheme is applied to the MCK circuit and the simulation result demonstrates the effectiveness of the method.

  6. Adaptive fuzzy sliding mode control for synchronization of uncertain fractional order chaotic systems

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Tsung-Chih, E-mail: tclin@fcu.edu.tw [Department of Electronic Engineering, Feng-Chia University, Taichung, Taiwan (China); Lee, Tun-Yuan [Department of Electronic Engineering, Feng-Chia University, Taichung, Taiwan (China); Balas, Valentina E. [Aurel Vlaicu University of Arad, B-dul Revolutiei 77, 310130 Arad (Romania)

    2011-10-15

    Highlights: > We study uncertain fractional order chaotic systems synchronization. > Lyapunov synthesis is used to derive control law and adaptive laws. > Based on sliding mode control, chattering phenomena in the control effort can be reduced. - Abstract: This paper deals with chaos synchronization between two different uncertain fractional order chaotic systems based on adaptive fuzzy sliding mode control (AFSMC). With the definition of fractional derivatives and integrals, a fuzzy Lyapunov synthesis approach is proposed to tune free parameters of the adaptive fuzzy controller on line by output feedback control law and adaptive law. Moreover, chattering phenomena in the control efforts can be reduced. The sliding mode design procedure not only guarantees the stability and robustness of the proposed AFSMC, but also the external disturbance on the synchronization error can be attenuated. The simulation example is included to confirm validity and synchronization performance of the advocated design methodology.

  7. STOCHASTIC OPTIMAL CONTROL FOR THE RESPONSE OF QUASI NON-INTEGRABLE HAMILTONIAN SYSTEMS~

    Institute of Scientific and Technical Information of China (English)

    DengMaolin; HongMingchao; ZhuWeiqiu

    2003-01-01

    A strategy is proposed based on the stochastic averaging method for quasi nonintegrable Hamiltonian systems and the stochastic dynamical programming principle. The proposed strategy can be used to design nonlinear stochastic optimal control to minimize the response of quasi non-integrable Hamiltonian systems subject to Gaussian white noise excitation. By using the stochastic averaging method for quasi non-integrable Hamiltonian systems the equations of motion of a controlled quasi non-integrable Hamiltonian system is reduced to a one-dimensional averaged Ito stochastic differential equation. By using the stochastic dynamical programming principle the dynamical programming equation for minimizing the response of the system is formulated.The optimal control law is derived from the dynamical programming equation and the bounded control constraints. The response of optimally controlled systems is predicted through solving the FPK equation associated with It5 stochastic differential equation. An example is worked out in detail to illustrate the application of the control strategy proposed.

  8. Backstepping-Based Synchronization Control of Cross-Strict Feedback Hyper-Chaotic Systems

    Institute of Scientific and Technical Information of China (English)

    李海燕; 胡云安

    2011-01-01

    A certain backstepping control is proposed for synchronization of a class of hyper-chaotic systems.Only two control inputs are used to realize synchronization between hyper-chaotic systems,and the control avoids the possible singularity in the virtual control design.In addition,the adaptive backstepping control is proposed for the synchronization when the system parameters are unknown.The proposed methods can be applied to a variety of chaos systems which can be described by the so-called cross-strict feedback form.Numerical simulations are given to demonstrate the effciency of the proposed control schemes.%A certain backstepping control is proposed for synchronization of a class of hyper-chaotic systems. Only two control inputs are used to realize synchronization between hyper-chaotic systems, and the control avoids the possible singularity in the virtual control design. In addition, the adaptive backstepping control is proposed for the synchronization when the system parameters are unknown. The proposed methods can be applied to a variety of chaos systems which can be described by the so-called cross-strict feedback form. Numerical simulations are given to demonstrate the efficiency of the proposed control schemes.

  9. Online MTPA Control Approach for Synchronous Reluctance Motor Drives Based on Emotional Controller

    DEFF Research Database (Denmark)

    Daryabeigi, Ehsan; Zarchi, Hossein Abootorabi; Markadeh, G. R. Arab

    2015-01-01

    In this paper, speed and torque control modes (SCM and TCM) of synchronous reluctance motor (SynRM) drives are proposed based on emotional controllers and space vector modulation under an automatic search of the maximum-torque-per-ampere (MTPA) strategy. Furthermore, in order to achieve an MTPA...... variations and external disturbances in both TCM and SCM. In addition, the proposed MTPA strategy shows a reliable and fast response to operating point change....

  10. Optimal Control of Generalized Quasi-Variational Hemivariational Inequalities and Its Applications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhenhai, E-mail: zhhliu@hotmail.com; Zeng, Biao, E-mail: zengbiao316711602@163.com [Guangxi University for Nationalities, Guangxi Key Laboratory of Universities Optimization Control and Engineering Calculation, and College of Sciences (China)

    2015-10-15

    The purpose of this paper is to study optimal control of generalized quasi-variational hemivariational inequalities involving multivalued mapping. Under some suitable conditions, we give existence results of the optimal control. We also consider the convergence behavior of the optimal control when the data for the underlying quasi-variational hemivariational inequalities is contaminated by some noise. In the last section, we give an example to illustrate our main results.

  11. Analysis and Anti-Synchronization of a Novel Chaotic System via Active and Adaptive Controllers

    Directory of Open Access Journals (Sweden)

    V. Sundarapandian

    2013-09-01

    Full Text Available Anti-synchronization of chaotic systems deals with the problem of asymptotically synchronizing the sum of states of a pair of chaotic systems called master and slave systems with the help of controllers attached to the slave system. When two chaotic systems are anti-synchronized, then their states are asymptotically equal in magnitude, but opposite in phase. Anti-synchronization of chaotic systems has applications in many engineering areas such as secure communications, secure data encryption, cryptosystems, etc. This paper announces a novel 3-D chaotic system and describes its qualitative properties. Next, this paper deals with the design of active and adaptive controllers for synchronizing the states of identical novel chaotic systems. Active controllers are used when the system parameters are available for measurement and the synchronization result is established using Lyapunov stability theory. Adaptive controllers are used when the system parameters are unknown. In this case, estimates are used in lieu of the unknown system parameters and adaptive controllers are designed using adaptive control theory and Lyapunov stability theory. Numerical simulations using MATLAB have been shown to demonstrate the proposed active and adaptive synchronization results for novel chaotic systems.

  12. Synchronization Control of Neural Networks With State-Dependent Coefficient Matrices.

    Science.gov (United States)

    Zhang, Junfeng; Zhao, Xudong; Huang, Jun

    2016-11-01

    This brief is concerned with synchronization control of a class of neural networks with state-dependent coefficient matrices. Being different from the existing drive-response neural networks in the literature, a novel model of drive-response neural networks is established. The concepts of uniformly ultimately bounded (UUB) synchronization and convex hull Lyapunov function are introduced. Then, by using the convex hull Lyapunov function approach, the UUB synchronization design of the drive-response neural networks is proposed, and a delay-independent control law guaranteeing the bounded synchronization of the neural networks is constructed. All present conditions are formulated in terms of bilinear matrix inequalities. By comparison, it is shown that the neural networks obtained in this brief are less conservative than those ones in the literature, and the bounded synchronization is suitable for the novel drive-response neural networks. Finally, an illustrative example is given to verify the validity of the obtained results.

  13. An Optimal Integrated Control Scheme for Permanent Magnet Synchronous Generator-Based Wind Turbines under Asymmetrical Grid Fault Conditions

    Directory of Open Access Journals (Sweden)

    Dan Wang

    2016-04-01

    Full Text Available In recent years, the increasing penetration level of wind energy into power systems has brought new issues and challenges. One of the main concerns is the issue of dynamic response capability during outer disturbance conditions, especially the fault-tolerance capability during asymmetrical faults. In order to improve the fault-tolerance and dynamic response capability under asymmetrical grid fault conditions, an optimal integrated control scheme for the grid-side voltage-source converter (VSC of direct-driven permanent magnet synchronous generator (PMSG-based wind turbine systems is proposed in this paper. The optimal control strategy includes a main controller and an additional controller. In the main controller, a double-loop controller based on differential flatness-based theory is designed for grid-side VSC. Two parts are involved in the design process of the flatness-based controller: the reference trajectories generation of flatness output and the implementation of the controller. In the additional control aspect, an auxiliary second harmonic compensation control loop based on an improved calculation method for grid-side instantaneous transmission power is designed by the quasi proportional resonant (Quasi-PR control principle, which is able to simultaneously restrain the second harmonic components in active power and reactive power injected into the grid without the respective calculation for current control references. Moreover, to reduce the DC-link overvoltage during grid faults, the mathematical model of DC-link voltage is analyzed and a feedforward modified control factor is added to the traditional DC voltage control loop in grid-side VSC. The effectiveness of the optimal control scheme is verified in PSCAD/EMTDC simulation software.

  14. Generalized synchronization with uncertain parameters of nonlinear dynamic system via adaptive control.

    Science.gov (United States)

    Yang, Cheng-Hsiung; Wu, Cheng-Lin

    2014-01-01

    An adaptive control scheme is developed to study the generalized adaptive chaos synchronization with uncertain chaotic parameters behavior between two identical chaotic dynamic systems. This generalized adaptive chaos synchronization controller is designed based on Lyapunov stability theory and an analytic expression of the adaptive controller with its update laws of uncertain chaotic parameters is shown. The generalized adaptive synchronization with uncertain parameters between two identical new Lorenz-Stenflo systems is taken as three examples to show the effectiveness of the proposed method. The numerical simulations are shown to verify the results.

  15. Complete synchronization of uncertain chaotic systems via a single proportional adaptive controller: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Israr, E-mail: iak-2000plus@yahoo.com; Saaban, Azizan Bin, E-mail: azizan.s@uum.edu.my; Ibrahim, Adyda Binti, E-mail: adyda@uum.edu.my [School of Quantitative Sciences, College of Arts & Sciences, UUM (Malaysia); Shahzad, Mohammad, E-mail: dmsinfinite@gmail.com [College of Applied Sciences Nizwa, Ministry of Higher Education, Sultanate of Oman (Oman)

    2015-12-11

    This paper addresses a comparative computational study on the synchronization quality, cost and converging speed for two pairs of identical chaotic and hyperchaotic systems with unknown time-varying parameters. It is assumed that the unknown time-varying parameters are bounded. Based on the Lyapunov stability theory and using the adaptive control method, a single proportional controller is proposed to achieve the goal of complete synchronizations. Accordingly, appropriate adaptive laws are designed to identify the unknown time-varying parameters. The designed control strategy is easy to implement in practice. Numerical simulations results are provided to verify the effectiveness of the proposed synchronization scheme.

  16. Design and implementation of EP-based PID controller for chaos synchronization of Rikitake circuit systems.

    Science.gov (United States)

    Hou, Yi-You

    2017-09-01

    This article addresses an evolutionary programming (EP) algorithm technique-based and proportional-integral-derivative (PID) control methods are established to guarantee synchronization of the master and slave Rikitake chaotic systems. For PID synchronous control, the evolutionary programming (EP) algorithm is used to find the optimal PID controller parameters kp, ki, kd by integrated absolute error (IAE) method for the convergence conditions. In order to verify the system performance, the basic electronic components containing operational amplifiers (OPAs), resistors, and capacitors are used to implement the proposed chaotic Rikitake systems. Finally, the experimental results validate the proposed Rikitake chaotic synchronization approach. Copyright © 2017. Published by Elsevier Ltd.

  17. Stochastic optimal control of partially observable nonlinear quasi-integrable Hamiltonian systems

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The stochastic optimal control of partially observable nonlinear quasi-integrable Hamiltonian systems is investigated. First, the stochastic optimal control problem of a partially observable nonlinear quasi-integrable Hamiltonian system is converted into that of a completely observable linear system based on a theorem due to Charalambous and Elliot. Then, the converted stochastic optimal control problem is solved by applying the stochastic averaging method and the stochastic dynamical programming principle. The response of the controlled quasi Hamiltonian system is predicted by solving the averaged Fokker-Planck-Kolmogorov equation and the Riccati equation for the estimated error of system states. As an example to illustrate the procedure and effectiveness of the proposed method, the stochastic optimal control problem of a partially observable two-degree-of-freedom quasi-integrable Hamiltonian system is worked out in detail.

  18. Adaptive chaos control and synchronization for uncertain new chaotic dynamical system

    Energy Technology Data Exchange (ETDEWEB)

    Yassen, M.T. [Mathematics Department, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt)]. E-mail: mtyassen@yahoo.com

    2006-01-30

    This Letter presents the adaptive control and synchronization problems for uncertain new chaotic dynamical system (Liu system). Based on Lyapunov stability theory, adaptive control law is derived such that the trajectory of Liu system with unknown parameters is globally stabilized to each unstable equilibrium point of the uncontrolled system. In addition, an adaptive control approach is proposed to make the states of two identical Liu systems with unknown parameters asymptotically synchronized. Numerical simulations are shown to verify the results.

  19. Global synchronization of memristive neural networks subject to random disturbances via distributed pinning control.

    Science.gov (United States)

    Guo, Zhenyuan; Yang, Shaofu; Wang, Jun

    2016-12-01

    This paper presents theoretical results on global exponential synchronization of multiple memristive neural networks in the presence of external noise by means of two types of distributed pinning control. The multiple memristive neural networks are coupled in a general structure via a nonlinear function, which consists of a linear diffusive term and a discontinuous sign term. A pinning impulsive control law is introduced in the coupled system to synchronize all neural networks. Sufficient conditions are derived for ascertaining global exponential synchronization in mean square. In addition, a pinning adaptive control law is developed to achieve global exponential synchronization in mean square. Both pinning control laws utilize only partial state information received from the neighborhood of the controlled neural network. Simulation results are presented to substantiate the theoretical results.

  20. Distributed neural network control for adaptive synchronization of uncertain dynamical multiagent systems.

    Science.gov (United States)

    Peng, Zhouhua; Wang, Dan; Zhang, Hongwei; Sun, Gang

    2014-08-01

    This paper addresses the leader-follower synchronization problem of uncertain dynamical multiagent systems with nonlinear dynamics. Distributed adaptive synchronization controllers are proposed based on the state information of neighboring agents. The control design is developed for both undirected and directed communication topologies without requiring the accurate model of each agent. This result is further extended to the output feedback case where a neighborhood observer is proposed based on relative output information of neighboring agents. Then, distributed observer-based synchronization controllers are derived and a parameter-dependent Riccati inequality is employed to prove the stability. This design has a favorable decouple property between the observer and the controller designs for nonlinear multiagent systems. For both cases, the developed controllers guarantee that the state of each agent synchronizes to that of the leader with bounded residual errors. Two illustrative examples validate the efficacy of the proposed methods.

  1. Stochastic optimal bounded control of MDOF quasi nonintegrable-hamiltonian systems with actuator saturation

    Energy Technology Data Exchange (ETDEWEB)

    Huan, Ronghua; Zhu, Weiqiu [Zhejiang University, Department of Mechanics, State Key Laboratory of Fluid Power Transmission and Control, Hangzhou (China); Wu, Yongjun [East China University of Science and Technology, School of Information Science and Engineering, Shanghai (China)

    2009-02-15

    A new bounded optimal control strategy for multi-degree-of-freedom (MDOF) quasi nonintegrable-Hamiltonian systems with actuator saturation is proposed. First, an n-degree-of-freedom (n-DOF) controlled quasi nonintegrable-Hamiltonian system is reduced to a partially averaged Ito stochastic differential equation by using the stochastic averaging method for quasi nonintegrable-Hamiltonian systems. Then, a dynamical programming equation is established by using the stochastic dynamical programming principle, from which the optimal control law consisting of optimal unbounded control and bang-bang control is derived. Finally, the response of the optimally controlled system is predicted by solving the Fokker-Planck-Kolmogorov (FPK) equation associated with the fully averaged Ito equation. An example of two controlled nonlinearly coupled Duffing oscillators is worked out in detail. Numerical results show that the proposed control strategy has high control effectiveness and efficiency and that chattering is reduced significantly compared with the bang-bang control strategy. (orig.)

  2. Control and Synchronization of Chaos in RCL-Shunted Josephson Junction with Noise Disturbance Using Only One Controller Term

    Directory of Open Access Journals (Sweden)

    Di-Yi Chen

    2012-01-01

    Full Text Available This paper investigates the control and synchronization of the shunted nonlinear resistive-capacitive-inductance junction (RCLSJ model under the condition of noise disturbance with only one single controller. Based on the sliding mode control method, the controller is designed to eliminate the chaotic behavior of Josephson junctions and realize the achievement of global asymptotic synchronization of coupled system. Numerical simulation results are presented to demonstrate the validity of the proposed method. The approach is simple and easy to implement and provides reference for chaos control and synchronization in relevant systems.

  3. Synchronization of discrete-time spatiotemporal chaos via adaptive fuzzy control

    CERN Document Server

    Xue Yue Ju

    2003-01-01

    A discrete-time adaptive fuzzy control scheme is presented to synchronize model-unknown coupled Henon-map lattices (CHMLs). The proposed method is robust to approximate errors, parameter mismatches and disturbances, because it integrates the merits of the adaptive fuzzy systems and the variable structure control with a sector. The simulation results of synchronization of CHMLs show that it not only can synchronize model-unknown CHMLs but also is robust against parameter mismatches and noise of the systems. These merits are advantageous for engineering realization.

  4. Synchronization of neural networks with stochastic perturbation via aperiodically intermittent control.

    Science.gov (United States)

    Zhang, Wei; Li, Chuandong; Huang, Tingwen; Xiao, Mingqing

    2015-11-01

    In this paper, the synchronization problem for neural networks with stochastic perturbation is studied with intermittent control via adaptive aperiodicity. Under the framework of stochastic theory and Lyapunov stability method, we develop some techniques of intermittent control with adaptive aperiodicity to achieve the synchronization of a class of neural networks, modeled by stochastic systems. Some effective sufficient conditions are established for the realization of synchronization of the underlying network. Numerical simulations of two examples are provided to illustrate the theoretical results obtained in the paper.

  5. Chaos synchronization based on a continuous chaos control method in semiconductor lasers with optical feedback.

    Science.gov (United States)

    Murakami, A; Ohtsubo, J

    2001-06-01

    Chaos synchronization using a continuous chaos control method was studied in two identical chaotic laser systems consisting of semiconductor lasers and optical feedback from an external mirror. Numerical calculations for rate equations indicate that the stability of chaos synchronization depends significantly on the external mirror position. We performed a linear stability analysis for the rate equations. Our results show that the stability of the synchronization is much influenced by the mode interaction between the relaxation oscillation frequency of the semiconductor laser and the external cavity frequency. Due to this interaction, an intensive mode competition between the two frequencies destroys the synchronization, but stable synchronization can be achieved when the mode competition is very weak.

  6. 77 FR 26789 - Certain Semiconductor Chips Having Synchronous Dynamic Random Access Memory Controllers and...

    Science.gov (United States)

    2012-05-07

    ... From the Federal Register Online via the Government Publishing Office ] INTERNATIONAL TRADE COMMISSION Certain Semiconductor Chips Having Synchronous Dynamic Random Access Memory Controllers and Products Containing Same; Determination Rescinding the Exclusion Order and Cease and Desist Orders...

  7. Synchronization criteria for generalized reaction-diffusion neural networks via periodically intermittent control.

    Science.gov (United States)

    Gan, Qintao; Lv, Tianshi; Fu, Zhenhua

    2016-04-01

    In this paper, the synchronization problem for a class of generalized neural networks with time-varying delays and reaction-diffusion terms is investigated concerning Neumann boundary conditions in terms of p-norm. The proposed generalized neural networks model includes reaction-diffusion local field neural networks and reaction-diffusion static neural networks as its special cases. By establishing a new inequality, some simple and useful conditions are obtained analytically to guarantee the global exponential synchronization of the addressed neural networks under the periodically intermittent control. According to the theoretical results, the influences of diffusion coefficients, diffusion space, and control rate on synchronization are analyzed. Finally, the feasibility and effectiveness of the proposed methods are shown by simulation examples, and by choosing different diffusion coefficients, diffusion spaces, and control rates, different controlled synchronization states can be obtained.

  8. Implementation of anomaly detection algorithms for detecting transmission control protocol synchronized flooding attacks

    CSIR Research Space (South Africa)

    Mkuzangwe, NNP

    2015-08-01

    Full Text Available This work implements two anomaly detection algorithms for detecting Transmission Control Protocol Synchronized (TCP SYN) flooding attack. The two algorithms are an adaptive threshold algorithm and a cumulative sum (CUSUM) based algorithm...

  9. Outer Synchronization of Complex Networks with Nondelayed and Time-Varying Delayed Couplings via Pinning Control or Impulsive Control

    Directory of Open Access Journals (Sweden)

    Jianwen Feng

    2015-01-01

    synchronization between two complex networks. Secondly, impulsive control is added to the nodes of corresponding response network. Based on the generalized inequality about time-varying delayed different equation, the sufficient conditions for outer synchronization are derived. Finally, some examples are presented to demonstrate the effectiveness and feasibility of the results obtained in this paper.

  10. Multivariable PD controller design for fast chaos synchronization of Lur'e systems

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Guilin [State Key Laboratory of Advanced Design and Manufactory for Vehicle Body, College of Mechanical and Automotive Engineering, Hunan University, Changsha, Hunan 410082 (China); Wang, Qing-Guo [Department of Electrical and Computer Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260 (Singapore)]. E-mail: elewqg@nus.edu.sg; He, Yong [Department of Electrical and Computer Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260 (Singapore); Ye, Zhen [Department of Electrical and Computer Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260 (Singapore)

    2007-03-26

    In this Letter, a strategy for fast master-slave synchronization is proposed for Lur'e systems under PD control based on the free-weighting matrix approach and the S-procedure. The purpose of the derivative action is to improve the closed-loop stability and speed synchronization response. The proposed strategy covers the existing result for the proportional control alone as a special case. This approach is illustrated by the Chua's chaotic circuit system.

  11. Adaptive backstepping control and synchronization of a modified and chaotic Van der Pol-Duffing oscillator

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In this paper,we propose a backstepping approach for the synchronization and control of modified Van-der Pol Duffing oscillator circuits.The method is such that one controller function that depends essentially on available circuit parameters that is sufficient to drive the two coupled circuits to a synchronized state as well achieve the global stabilization of the system to its regular dynamics.Numerical simulations are given to demonstrate the effectiveness of the technique.

  12. Multimodel Modeling and Predictive Control for Direct-Drive Wind Turbine with Permanent Magnet Synchronous Generator

    OpenAIRE

    Lei Wang; Tao Shen; Chen Chen

    2014-01-01

    The safety and reliability of the wind turbines wholly depend on the completeness and reliability of the control system which is an important problem for the validity of the wind energy conversion systems (WECSs). A method based on multimodel modeling and predictive control is proposed for the optimal operation of direct-drive wind turbine with permanent magnet synchronous generator in this paper. In this strategy, wind turbine with direct-drive permanent magnet synchronous generator is model...

  13. Control and Synchronization of the Fractional-Order Lorenz Chaotic System via Fractional-Order Derivative

    Directory of Open Access Journals (Sweden)

    Ping Zhou

    2012-01-01

    Full Text Available The unstable equilibrium points of the fractional-order Lorenz chaotic system can be controlled via fractional-order derivative, and chaos synchronization for the fractional-order Lorenz chaotic system can be achieved via fractional-order derivative. The control and synchronization technique, based on stability theory of fractional-order systems, is simple and theoretically rigorous. The numerical simulations demonstrate the validity and feasibility of the proposed method.

  14. Multimodel Modeling and Predictive Control for Direct-Drive Wind Turbine with Permanent Magnet Synchronous Generator

    OpenAIRE

    Lei Wang; Tao Shen; Chen Chen

    2014-01-01

    The safety and reliability of the wind turbines wholly depend on the completeness and reliability of the control system which is an important problem for the validity of the wind energy conversion systems (WECSs). A method based on multimodel modeling and predictive control is proposed for the optimal operation of direct-drive wind turbine with permanent magnet synchronous generator in this paper. In this strategy, wind turbine with direct-drive permanent magnet synchronous generator is model...

  15. Control and Synchronization of the Fractional-Order Lorenz Chaotic System via Fractional-Order Derivative

    OpenAIRE

    Ping Zhou; Rui Ding

    2012-01-01

    The unstable equilibrium points of the fractional-order Lorenz chaotic system can be controlled via fractional-order derivative, and chaos synchronization for the fractional-order Lorenz chaotic system can be achieved via fractional-order derivative. The control and synchronization technique, based on stability theory of fractional-order systems, is simple and theoretically rigorous. The numerical simulations demonstrate the validity and feasibility of the proposed method.

  16. Finite-Time Chaos Control of a Complex Permanent Magnet Synchronous Motor System

    Directory of Open Access Journals (Sweden)

    Xiaobing Zhou

    2014-01-01

    Full Text Available This paper investigates the finite-time chaos control of a permanent magnet synchronous motor system with complex variables. Based on the finite-time stability theory, two control strategies are proposed to realize stabilization of the complex permanent magnet synchronous motor system in a finite time. Two numerical simulations have been conducted to demonstrate the validity and feasibility of the theoretical analysis.

  17. Hybrid model predictive control for speed control of permanent magnet synchronous motor with saturation

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    A discrete-time hybrid model of a permanent magnet synchronous motor (PMSM) with saturation in voltage and current is formulated.The controller design with incorporated constraints is achieved in a systematic way from modeling to control synthesis and implementation.The Hybrid System Description Language is used to obtain a mixed-logical dynamical (MLD) model.Based on the MLD model,a model predictive controller is designed for an optimal speed regulation of the motor.For reducing computation complexity and ...

  18. Controlled Synchronization of One Class of Nonlinear Systems under Information Constraints

    CERN Document Server

    Fradkov, Alexander L; Evans, Robin J

    2007-01-01

    Output feedback controlled synchronization problems for a class of nonlinear unstable systems under information constraints imposed by limited capacity of the communication channel are analyzed. A binary time-varying coder-decoder scheme is described and a theoretical analysis for multi-dimensional master-slave systems represented in Lurie form (linear part plus nonlinearity depending only on measurable outputs) is provided. An output feedback control law is proposed based on the Passification Theorem. It is shown that the synchronization error exponentially tends to zero for sufficiantly high transmission rate (channel capacity). The results obtained for synchronization problem can be extended to tracking problems in a straightforward manner, if the reference signal is described by an {external} ({exogenious}) state space model. The results are applied to controlled synchronization of two chaotic Chua systems via a communication channel with limited capacity.

  19. Supervisor control strategy of synchronizer for wet DCT based on online estimation of clutch drag torque

    Science.gov (United States)

    Lu, Tongli; Li, Hongkui; Zhang, Jianwu; Hao, Hongtao

    2016-01-01

    The objective of this paper is to improve the performance of the synchronizer control strategy by considering the effect of clutch drag torque. The research of synchronization process in wet dual clutch transmission is performed in this paper. The significant effect of clutch drag torque is analyzed by adding a complex clutch drag torque module to synchronizer model. This paper focuses on the development of original estimation method of clutch drag torque. The estimation method offers an effective way to obtain accurate clutch drag torque, and it is applied to develop a new supervisor control strategy. Results have demonstrated that the estimation method has satisfied efficiency and accuracy and the control strategy improves the performance of the synchronizer mechanism significantly.

  20. Sliding mode control for synchronization of chaotic systems with structure or parameters mismatching

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-run; ZHAO Liao-ying; ZHAO Guang-zhou

    2005-01-01

    This paper deals with the synchronization of chaotic systems with structure or parameters difference. Nonlinear differential geometry theory was applied to transform the chaotic discrepancy system into canonical form. A feedback control for synchronizing two chaotic systems is proposed based on sliding mode control design. To make this controller physically realizable,an extended state observer is used to estimate the error between the transmitter and receiver. Two illustrative examples were carried out: (1) The Chua oscillator was used to show that synchronization was achieved and the message signal was recovered in spite of parametric variations; (2) Two second-order driven oscillators were presented to show that the synchronization can be achieved and that the message can be recovered in spite of the strictly different model.

  1. Synchronization of different chaotic systems via active radial basis functions sliding mode controller

    Institute of Scientific and Technical Information of China (English)

    Guo Hui-Jun; Yin You-Wei; Wang Hua-Min

    2008-01-01

    This paper presents a new method to synchronize different chaotic systems with disturbances via an active radial basis function (RBF) sliding controller.This method incorporates the advantages of active control,neural network and sliding mode control.The main part of the controller is given based on the output of the RBF neural networks and the weights of these single layer networks are tuned on-line based on the sliding mode reaching law.Only several radial basis functions are required for this controller which takes the sliding mode variable as the only input.The proposed controller can make the synchronization error converge to zero quickly and can overcome external disturbances.Analysis of the stability for the controller is carried out based on the Lyapunov stability theorem.Finally,five examples are given to illustrate the robustness and effectiveness of the proposed synchronization control strategy.

  2. Speed Synchronization of Multi Induction Motors with Fuzzy Sliding Mode Control

    Directory of Open Access Journals (Sweden)

    HACHEMI Glaoui

    2013-05-01

    Full Text Available A continuous web winding system is a large-scale, complex interconnected dynamic system with numerous tension zones to transport the web while processing it. There are two control schemes for large-scale system control: the centralized scheme and the decentralized scheme. Centralized control is the traditional control method, which considers all the information about the system to be a single dynamic model and design a control system for this model. Aspeed synchronization control strategy for multiple induction motors, based on adjacent cross-coupling control structure, is developed by employing total sliding mode control method. The proposed controlstrategy is to stabilize speed tracking of each induction motor while synchronizing its speed with the speed of the other motors so as to make speed synchronization error amongst induction motors converge to zero. The global stability and the convergence of the designedcontroller are proved by using Lyapunov method. Simulation results demonstrate the effectiveness of the proposed method.

  3. Finite Time Control Design for Bilateral Teleoperation System With Position Synchronization Error Constrained.

    Science.gov (United States)

    Yang, Yana; Hua, Changchun; Guan, Xinping

    2016-03-01

    Due to the cognitive limitations of the human operator and lack of complete information about the remote environment, the work performance of such teleoperation systems cannot be guaranteed in most cases. However, some practical tasks conducted by the teleoperation system require high performances, such as tele-surgery needs satisfactory high speed and more precision control results to guarantee patient' health status. To obtain some satisfactory performances, the error constrained control is employed by applying the barrier Lyapunov function (BLF). With the constrained synchronization errors, some high performances, such as, high convergence speed, small overshoot, and an arbitrarily predefined small residual constrained synchronization error can be achieved simultaneously. Nevertheless, like many classical control schemes only the asymptotic/exponential convergence, i.e., the synchronization errors converge to zero as time goes infinity can be achieved with the error constrained control. It is clear that finite time convergence is more desirable. To obtain a finite-time synchronization performance, the terminal sliding mode (TSM)-based finite time control method is developed for teleoperation system with position error constrained in this paper. First, a new nonsingular fast terminal sliding mode (NFTSM) surface with new transformed synchronization errors is proposed. Second, adaptive neural network system is applied for dealing with the system uncertainties and the external disturbances. Third, the BLF is applied to prove the stability and the nonviolation of the synchronization errors constraints. Finally, some comparisons are conducted in simulation and experiment results are also presented to show the effectiveness of the proposed method.

  4. Chaotic incommensurate fractional order Rössler system: active control and synchronization

    Directory of Open Access Journals (Sweden)

    Baleanu Dumitru

    2011-01-01

    Full Text Available Abstract In this article, we present an active control methodology for controlling the chaotic behavior of a fractional order version of Rössler system. The main feature of the designed controller is its simplicity for practical implementation. Although in controlling such complex system several inputs are used in general to actuate the states, in the proposed design, all states of the system are controlled via one input. Active synchronization of two chaotic fractional order Rössler systems is also investigated via a feedback linearization method. In both control and synchronization, numerical simulations show the efficiency of the proposed methods.

  5. Ultrahigh brilliance quasi-monochromatic MeV γ-rays based on self-synchronized all-optical Compton scattering

    Science.gov (United States)

    Yu, Changhai; Qi, Rong; Wang, Wentao; Liu, Jiansheng; Li, Wentao; Wang, Cheng; Zhang, Zhijun; Liu, Jiaqi; Qin, Zhiyong; Fang, Ming; Feng, Ke; Wu, Ying; Tian, Ye; Xu, Yi; Wu, Fenxiang; Leng, Yuxin; Weng, Xiufeng; Wang, Jihu; Wei, Fuli; Yi, Yicheng; Song, Zhaohui; Li, Ruxin; Xu, Zhizhan

    2016-07-01

    Inverse Compton scattering between ultra-relativistic electrons and an intense laser field has been proposed as a major route to generate compact high-brightness and high-energy γ-rays. Attributed to the inherent synchronization mechanism, an all-optical Compton scattering γ-ray source, using one laser to both accelerate electrons and scatter via the reflection of a plasma mirror, has been demonstrated in proof-of-principle experiments to produce a x-ray source near 100 keV. Here, by designing a cascaded laser wakefield accelerator to generate high-quality monoenergetic e-beams, which are bound to head-on collide with the intense driving laser pulse via the reflection of a 20-um-thick Ti foil, we produce tunable quasi-monochromatic MeV γ-rays (33% full-width at half-maximum) with a peak brilliance of ~3 × 1022 photons s-1 mm-2 mrad-2 0.1% BW at 1 MeV. To the best of our knowledge, it is one order of magnitude higher than ever reported value of its kinds in MeV regime. This compact ultrahigh brilliance γ-ray source may provide applications in nuclear resonance fluorescence, x-ray radiology and ultrafast pump-probe nondestructive inspection.

  6. Speed Tracking of Field Oriented Control Permanent Magnet Synchronous Motor Using Neural Network

    Directory of Open Access Journals (Sweden)

    Wahyu Mulyo Utomo

    2014-05-01

    Full Text Available The field oriented control theory and space vector pulse width modulation technique make a permanent magnet synchronous motor can achieve the performance as well as a DC motor. However, due to the nonlinearity of the permanent magnet synchronous motor drive characteristics, it is difficult to control by using conventional proportional-integral-derivative controller. By this reason in this paper an online neural network controller for the permanent magnet synchronous motor is proposed. The controller is designed to tracks variations of speed references and also during load disturbance. The effectiveness of the proposed method is verified by develop simulation model in MATLAB-simulink program. The simulation results show that the proposed controller can reduce the overshoot, settling time and rise time. It can be concluded that the performance of the controller is improved.

  7. Fuzzy Adaptive Model Following Speed Control for Vector Controlled Permanent Magnet Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Baghdad BELABES

    2008-12-01

    Full Text Available In this paper a hybrid controller combining a linear model following controller (LMFC and fuzzy logic control (FLC for speed vector controlled permanent magnet synchronous motor (PMSM is described on this study. The FLC is introduced at the adaptive mechanism level. First, an LMFC system is designed to allow the plant states to be controlled to follow the states produced by a reference model. In the nominal conditions, the model following is perfect and the adaptive mechanism based on the fuzzy logic is idle. Secondly, when parameter variations or external disturbances occur, an augmented signal will be generated by FLC mechanism to preserve the desired model following control performance. The effectiveness and robustness of the proposed controller is demonstrated by some simulation results.

  8. Torque vector control using neural network controller for synchronous reluctance motor

    Energy Technology Data Exchange (ETDEWEB)

    Feng, X. [Teco-Westinghouse Motor Co, R and D Center, Round Rock, TX (United States); Belmans, R.; Hameyer, K. [Katholieke Universiteit Leuven, Dic. ELEN, Dept. ESAT, Leuven-Heverlee (Belgium)

    2000-08-01

    This paper presents the torque vector control technique using a neural network controller for a synchronous reluctance motor. As the artificial neural network controller has the advantages of faster execution speed, harmonic ripple immunity and fault tolerance compared to a DSP-based controller, different multi-layer neural network controllers are designed and trained to produce a correct target vector when presented with the corresponding input vector. The trained result and calculated flops show that although the designed three layer controller with tansig, purelin and hard limit functions has more processing layers, the neuron number of each layer is less than that of other kinds of neural network controller, the requiring less flops and yielding faster execution and response. (orig.)

  9. Projective Synchronization in Modulated Time-Delayed Chaotic Systems Using an Active Control Approach

    Institute of Scientific and Technical Information of China (English)

    冯存芳; 汪映海

    2011-01-01

    Projective synchronization in modulated time-delayed systems is studied by applying an active control method. Based on the Lyapunov asymptotical stability theorem, the controller and sufficient condition for projective synchronization are calculated analytically. We give a genera./ method with which we can achieve projective synchronization in modulated time-delayed chaotic systems. This method allows us to adjust the desired scaling factor arbitrarily. The effectiveness of our method is confirmed by using the famous delay-differential equations related to optical bistable or hybrid optical bistable devices. Numerical simulations fully support the analytical approach.%Projective synchronization in modulated time-delayed systems is studied by applying an active control method.Based on the Lyapunov asymptotical stability theorem,the controller and sufficient condition for projective synchronization are calculated analytically.We give a general method with which we can achieve projective synchronization in modulated time-delayed chaotic systems.This method allows us to adjust the desired scaling factor arbitrarily.The effectiveness of our method is confirmed by using the famous delay-differential equations related to optical bistable or hybrid optical bistable devices.Numerical simulations fully support the analytical approach.

  10. Wave Synchronizing Crane Control during Water Entry in Offshore Moonpool Operations - Experimental Results

    Directory of Open Access Journals (Sweden)

    Tor A. Johansen

    2004-01-01

    Full Text Available A new strategy for active control in heavy-lift offshore crane operations is suggested, by introducing a new concept referred to as wave synchronization. Wave synchronization reduces the hydrodynamic forces by minimization of variations in the relative vertical velocity between payload and water using a wave amplitude measurement. Wave synchronization is combined with conventional active heave compensation to obtain accurate control. Experimental results using a scale model of a semi-submerged vessel with a moonpool shows that wave synchronization leads to significant improvements in performance. Depending on the sea state and payload, the results indicate that the reduction in the standard deviation of the wire tension may be up to 50

  11. Chaos synchronization between single and double wells Duffing-Van der Pol oscillators using active control

    Energy Technology Data Exchange (ETDEWEB)

    Njah, A.N. [Department of Physics, University of Agriculture, P.M.B 2240, Abeokuta (Nigeria)], E-mail: njahabdul@yahoo.com; Vincent, U.E. [Department of Physics, Olabisi Onabanjo University, P.M.B 2002, Ago-Iwoye (Nigeria)], E-mail: ue_vincent@yahoo.com

    2008-09-15

    This paper presents chaos synchronization between single and double wells Duffing-Van der Pol (DVP) oscillators with {phi}{sup 4} potential based on the active control technique. The technique is applied to achieve global synchronization between identical double-well DVP oscillators, identical single-well DVP oscillators and non-identical DVP oscillators, consisting of the double-well and the single-well DVP oscillators, respectively. Numerical simulations are also presented to verify the analytical results.

  12. Synchronization of hyperchaotic Rossler system with uncertain parameters via nonlinear control

    Institute of Scientific and Technical Information of China (English)

    DONG En-zeng; CHEN Zeng-qiang; YUAN Zhu-zhi

    2006-01-01

    @@ Based on the Lyapunov stability theory,a new method for synchronization of hyperchaotic Rossler system with uncertain parameters is proposed.By this method,choosing appropriate control law and adaptive update law of uncertain parameters,all the errors of system variable synchronization and of uncertain parameter track are asymptotically stable.The theoretical analysis and the numerical simulations prove the effectiveness of the proposed method.

  13. Fuzzy Approximation-Based Global Pinning Synchronization Control of Uncertain Complex Dynamical Networks.

    Science.gov (United States)

    Li, Xiao-Jian; Yang, Guang-Hong

    2017-04-01

    This paper is concerned with the global pinning synchronization problem of uncertain complex dynamical networks with communication constraints. First, an adaptive fuzzy controller is designed within a given compact set. In addition, a robust controller is introduced outside the compact set to pull back the system states. Then, a new pinning control scheme is given such that the global synchronization can be ensured. Moreover, via the Lyapunov theory and graph theory, the synchronization errors are proved to be asymptotically convergent. Especially, in an uncertainty-free environment, the proposed control scheme includes two easy-to-implement pinning control strategies as special cases, which improve the existing results from the view point of reducing the number of feedback controllers. Finally, two simulation examples are provided to validate the theoretical results.

  14. Design of permanent magnet synchronous motor speed control system based on SVPWM

    Science.gov (United States)

    Wu, Haibo

    2017-04-01

    The control system is designed to realize TMS320F28335 based on the permanent magnet synchronous motor speed control system, and put it to quoting all electric of injection molding machine. The system of the control method used SVPWM, through the sampling motor current and rotating transformer position information, realize speed, current double closed loop control. Through the TMS320F28335 hardware floating-point processing core, realize the application for permanent magnet synchronous motor in the floating point arithmetic, to replace the past fixed-point algorithm, and improve the efficiency of the code.

  15. Robust H∞ observer-based control for synchronization of a class of complex dynamical networks

    Institute of Scientific and Technical Information of China (English)

    Zheng Hai-Qing; Jing Yuan-Wei

    2011-01-01

    This paper is concerned with the robust H∞ synchronization problem for a class of complex dynamical networks by applying the observer-based control. The proposed feedback control scheme is developed to ensure the asymptotic stability of the augmented system, to reconstruct the non-measurable state variables of each node and to improve the H∞ performance related to the synchronization error and observation error despite the external disturbance. Based on the Lyapunov stability theory, a synchronization criterion is obtained under which the controlled network can be robustly stabilized onto a desired state with a guaranteed H∞ performance. The controller and the observer gains can be given by the feasible solutions of a set of linear matrix inequalities (LMIs). The effectiveness of the proposed control scheme is demonstrated by a numerical example through simulation.

  16. Synchronization for an array of neural networks with hybrid coupling by a novel pinning control strategy.

    Science.gov (United States)

    Gong, Dawei; Lewis, Frank L; Wang, Liping; Xu, Ke

    2016-05-01

    In this paper, a novel pinning synchronization (synchronization with pinning control) scheme for an array of neural networks with hybrid coupling is investigated. The main contributions are as follows: (1) A novel pinning control strategy is proposed for the first time. Pinning control schemes are introduced as an array of column vector. The controllers are designed as simple linear systems, which are easy to be analyzed or tested. (2) Augmented Lyapunov-Krasovskii functional (LKF) is applied to introduce more relax variables, which can alleviate the requirements of the positive definiteness of the matrix. (3) Based on the appropriate LKF, by introducing some free weighting matrices, some novel synchronization criteria are derived. Furthermore, the proposed pinning control scheme described by column vector can also be expanded to almost all the other array of neural networks. Finally, numerical examples are provided to show the effectiveness of the proposed results.

  17. Simulator verification of thyristor controlled series capacitor SVR (Synchronous Voltage Reversal) scheme

    Energy Technology Data Exchange (ETDEWEB)

    Dickmander, D.L. [ABB Power T and D Company Inc., Raleigh, NC (United States). Transmission Technology Inst.; Rudin, S. [ABB Power Systems AB, Vaesteraas (Sweden). Reactive Power Compensation Div.

    1995-12-31

    This paper presents a simulator small-signal verification study conducted for a new Thyristor Controlled Series Capacitor (TCSC) control scheme referred to as the Synchronous Voltage Reversal (SVR) scheme. The goal of the SVR scheme is to achieve an inherently inductive sub-synchronous impedance characteristic for the TCSC, while preserving the capability to add higher level control loops. A detailed TCSC control model using field-proven digital control hardware, and programmed with the SVR scheme, was incorporated into a simulator representation of the IEEE First Benchmark system. Detailed measurements are presented in the paper to demonstrate that the SVR scheme successfully mitigates SSR (sub-synchronous resonance) conditions for the studied system. 8 refs, 13 figs, 2 tabs

  18. Synchronization control of Hodgkin-Huxley neurons exposed to ELF electric field

    Energy Technology Data Exchange (ETDEWEB)

    Che Yanqiu [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China); Wang Jiang [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)], E-mail: jiangwang@tju.edu.cn; Zhou Sisi; Deng Bin [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)

    2009-05-30

    This paper presents an adaptive neural network H{sub {infinity}} control for unidirectional synchronization of modified Hodgkin-Huxley (HH) neurons exposed to extremely low frequency (ELF) electric field. The proposed modified HH neurons exhibit periodic and chaotic dynamics in response to sinusoidal electric field stimulation. Based on the Lyapunov stability theory, we derive the updated laws of neural network for approximating the nonlinear uncertain functions of the error dynamical system. The H{sub {infinity}} design technique makes the controller robust to unmodeled dynamics, disturbances and approximate errors. The proposed controller not only ensures closed-loop stability, but also guarantees an H{sub {infinity}} performance for the synchronization error system. The states of the controlled slave system exponentially synchronize with that of the master one after control. The simulation results demonstrate the validity of the proposed method.

  19. Nonlinear Control and Synchronization with Time Delays of Multiagent Robotic Systems

    Directory of Open Access Journals (Sweden)

    Yassine Bouteraa

    2011-01-01

    Full Text Available We investigate the cooperative control and global asymptotic synchronization Lagrangian system groups, such as industrial robots. The proposed control approach works to accomplish multirobot systems synchronization under an undirected connected communication topology. The control strategy is to synchronize each robot in position and velocity to others robots in the network with respect to the common desired trajectory. The cooperative robot network only requires local neighbor-to-neighbor information exchange between manipulators and does not assume the existence of an explicit leader in the team. It is assumed that network robots have the same number of joints and equivalent joint work spaces. A combination of the lyapunov-based technique and the cross-coupling method has been used to establish the multirobot system asymptotic stability. The developed control combines trajectory tracking and coordination algorithms. To address the time-delay problem in the cooperative network communication, the suggested synchronization control law is shown to synchronize multiple robots as well as to track given trajectory, taking into account the presence of the time delay. To this end, Krasovskii functional method has been used to deal with the delay-dependent stability problem.

  20. Effects of Scale-Free Topological Properties on Dynamical Synchronization and Control in Coupled Map Lattices

    Institute of Scientific and Technical Information of China (English)

    CHEN Wei; FANG Jin-Qing; KANG Ge-Wen

    2007-01-01

    In the paper,we study effects of scale-free (SF) topology on dynamical synchronization and control in coupled map lattices (CML).Our strategy is to apply three feedback control methods,including constant feedback and two types of time-delayed feedback,to a small fraction of network nodes to reach desired synchronous state.Two controlled bifurcation diagrams verses feedback strength are obtained respectively.It is found that the value of critical feedback strength γc for the first time-delayed feedback control is increased linearly as ε is increased linearly.The CML with SF loses synchronization and intermittency occurs if γ,>γc.Numerical examples are presented to demonstrate all results.

  1. Realization of synchronization of nonlinear oscillators under intermittent coupling controlled by pulse signal

    Science.gov (United States)

    Yuan, L. H.; Wang, C. N.; Zhang, Z. Z.

    2016-10-01

    Based on the Lyapunov stability theory, an improved Lyapunov function scheme is used to understand the complete synchronization of hyperchaotic systems by imposing pulse linear coupling on the response system. According to this scheme, the controller begins to control the response system in a period when the output error variables are increasing; otherwise, the controller turns off. The distribution of conditional Lyapunov exponent versus coupling intensity, and the synchronization cost (averaged power consumption of controller) is calculated, respectively. By designing an exponential type of Lyapunov function, it is found that complete synchronization could be realized between two Chen hyperchaotic systems and two 4-dimensional LC hyperchaotic systems. Our numerical results are consistent with the previous theoretical discussion.

  2. Stabilization and synchronization for a mechanical system via adaptive sliding mode control.

    Science.gov (United States)

    Song, Zhankui; Sun, Kaibiao; Ling, Shuai

    2017-03-06

    In this paper, we investigate the synchronization problem of chaotic centrifugal flywheel governor with parameters uncertainty and lumped disturbances. A slave centrifugal flywheel governor system is considered as an underactuated following-system which a control input is designed to follow a master centrifugal flywheel governor system. To tackle lumped disturbances and uncertainty parameters, a novel synchronization control law is developed by employing sliding mode control strategy and Nussbaum gain technique. Adaptation updating algorithms are derived in the sense of Lyapunov stability analysis such that the lumped disturbances can be suppressed and the adverse effect caused by uncertainty parameters can be compensated. In addition, the synchronization tracking-errors are proven to converge to a small neighborhood of the origin. Finally, simulation results demonstrate the effectiveness of the proposed control scheme.

  3. Adaptive Control and Synchronization of Sprott J System With Estimation Of Fully Unknown Parameters

    Directory of Open Access Journals (Sweden)

    Islam Mitul

    2015-06-01

    Full Text Available This communication develops an adaptive scheme for control and synchronization of Sprott J system with fully unknown parameters. The scheme provides an elegant strategy of designing estimators for identification of the unknown parameters of the underlying dynamical system. Adaptive control and update laws are proposed to globally stabilize the chaotic Sprott J system. A pair of identical Sprott J systems with un- known parameters are globally synchronized with the help of adaptive control and parameter update laws. The results are established using LaSalle invariance principle, which lays down weaker restrictions on the derivatives of the Lyapunov function, and producing more general results. All the results obtained in the paper are global in nature. Numerical simulations are performed to illustrate the validity and effectiveness of the proposed adaptive control and synchronization scheme in the context of the Sprott J system. The parameter identification capability of the scheme is also explored.

  4. On chaos control and synchronization of the commensurate fractional order Liu system

    Science.gov (United States)

    Hegazi, A. S.; Ahmed, E.; Matouk, A. E.

    2013-05-01

    In this work, we study chaos control and synchronization of the commensurate fractional order Liu system. Based on the stability theory of fractional order systems, the conditions of local stability of nonlinear three-dimensional commensurate fractional order systems are discussed. The existence and uniqueness of solutions for a class of commensurate fractional order Liu systems are investigated. We also obtain the necessary condition for the existence of chaotic attractors in the commensurate fractional order Liu system. The effect of fractional order on chaos control of this system is revealed by showing that the commensurate fractional order Liu system is controllable just in the fractional order case when using a specific choice of controllers. Moreover, we achieve chaos synchronization between the commensurate fractional order Liu system and its integer order counterpart via function projective synchronization. Numerical simulations are used to verify the analytical results.

  5. Quasi Serializable Concurrency Control in Distributed Real-Time Database Systems

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This paper formally defines and analyses the new notion of correctness called quasi serializability, and then outlines corresponding concurrency control protocol QDHP for distributed real-time databases. Finally, through a series of simulation studies, it shows that using the new concurrency control protocol the performance of distributed real-time databases can be much improved.

  6. Adaptive control and synchronization of an uncertain new hyperchaotic Lorenz system

    Institute of Scientific and Technical Information of China (English)

    Cai Guo-Liang; Zheng Song; Tian Li-Xin

    2008-01-01

    This paper is involved with the adaptive control and synchronization problems for an uncertain new hyperchaotic Lorenz system. Based on the Lyapunov stability theory, the adaptive control law is derived such that the trajectory of hyperchaotic Lorenz system with unknown parameters can be globally stabilized to an unstable equilibrium point of the uncontrolled system. Furthermore, an adaptive control approach is presented to the synchronizations between two identical hyperchaotic systems, particularly between two different uncertain hyperchaotic systems. Numerical simulations show the effectiveness of the presented method.

  7. A single adaptive controller with one variable for synchronization of fractional-order chaotic systems

    Institute of Scientific and Technical Information of China (English)

    Zhang Ruo-Xun; Yang Shi-Ping

    2012-01-01

    In this paper we investigate the synchronization of a class of three-dimensional fractional-order chaotic systems.Based on the Lyapunov stability theory and adaptive control technique,a single adaptive-feedback controller is developed to synchronize a class of fractional-order chaotic systems.The presented controller which only contains a single driving variable is simple both in design and in implementation.Numerical simulation and circuit experimental results for fractional-order chaotic system are provided to illustrate the effectiveness of the proposed scheme.

  8. Synchronization analysis of coloured delayed networks under decentralized pinning intermittent control

    Indian Academy of Sciences (India)

    JIANG SHENGQIN; LU XIAOBO

    2016-06-01

    This paper investigates synchronization of coloured delayed networks under decentralized pinning intermittent control. To begin with, the time delays are taken into account in the coloured networks. In addition, we propose a decentralized pinning intermittent control for coloured delayed networks, which is different from that most of pinning intermittent controls are only appliedto the nodes from 1 to l or centralized nodes. Moreover, sufficient conditions are derived to guarantee the synchronization of coloured delayed networks based on Lyapunov stability theorem. Finally, numerical simulations are provided to verify the validity of the obtained results.

  9. Research on the control strategy of distributed energy resources inverter based on improved virtual synchronous generator.

    Science.gov (United States)

    Gao, Changwei; Liu, Xiaoming; Chen, Hai

    2017-08-22

    This paper focus on the power fluctuations of the virtual synchronous generator(VSG) during the transition process. An improved virtual synchronous generator(IVSG) control strategy based on feed-forward compensation is proposed. Adjustable parameter of the compensation section can be modified to achieve the goal of reducing the order of the system. It can effectively suppress the power fluctuations of the VSG in transient process. To verify the effectiveness of the proposed control strategy for distributed energy resources inverter, the simulation model is set up in MATLAB/SIMULINK platform and physical experiment platform is established. Simulation and experiment results demonstrate the effectiveness of the proposed IVSG control strategy.

  10. Pinning synchronization of two general complex networks with periodically intermittent control

    Directory of Open Access Journals (Sweden)

    Meng Fanyu

    2015-12-01

    Full Text Available In this paper, the method of periodically pinning intermittent control is introduced to solve the problem of outer synchronization between two complex networks. Based on the Lyapunov stability theory, differential inequality method and adaptive technique, some simple synchronous criteria have been derived analytically. At last, both the theoretical and numerical analysis illustrate the effectiveness of the proposed control methodology. This method not only reduces the conservatism of control gain but also saves the cost of production.These advantages make this method having a large application scope in the real production process.

  11. Lag synchronization of chaotic systems with time-delayed linear terms via impulsive control

    Indian Academy of Sciences (India)

    Ranchao Wu; Dongxu Cao

    2013-11-01

    In this paper, the lag synchronization of chaotic systems with time-delayed linear terms via impulsive control is investigated. Based on the stability theory of impulsive delayed differential equations, some sufficient conditions are obtained guaranteeing the synchronized behaviours between two delayed chaotic systems. Numerical simulations on time-delayed Lorenz and hyperchaotic Chen systems are also carried out to show the effectiveness of the proposed scheme. Note that under the scheme the chaotic system is controlled only at discrete time instants, and so it reduces the control cost in real applications.

  12. Chaos control and synchronization of the Newton-Leipnik chaotic system

    Energy Technology Data Exchange (ETDEWEB)

    Jia Qiang [Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu 212013 (China)], E-mail: jqujs@yahoo.com.cn

    2008-02-15

    The remarkable Newton-Leipnik system, possessing a double strange attractor, is studied from the view of chaos control and synchronization in this paper. Effective linear feedback controllers are proposed for stabilizing chaos to unstable equilibria. In addition, Chaos synchronization, not only between two identical Newton-Leipnik systems, including between the two chaotic attractors, but particularly also between the Newton-Leipnik system and the Sprott-O system, is achieved by employing active control scheme. Numerical simulations are presented for the purpose of verification and illustration.

  13. Chaos control and function projective synchronization of fractional-order systems through the backstepping method

    Science.gov (United States)

    Das, S.; Yadav, V. K.

    2016-10-01

    We study the chaos control and the function projective synchronization of a fractional-order T-system and Lorenz chaotic system using the backstepping method. Based on stability theory, we consider the condition for the local stability of nonlinear three-dimensional commensurate fractional-order system. Using the feedback control method, we control the chaos in the considered fractional-order T-system. We simulate the function projective synchronization between the fractional-order T-system and Lorenz system numerically using MATLAB and depict the results with plots.

  14. Increasing the efficiency of the synchronous converter with a dedicated controller; Accroitre le rendement du convertisseur synchrone avec un controleur dedie

    Energy Technology Data Exchange (ETDEWEB)

    Abdoulin, E. [International Rectifier France, 91 - Saint Michel sur Orge (France)

    2000-03-01

    Power MOSFETs used as synchronous rectifiers in isolated DC to DC converters allow to design energy efficient power supplies. In order to improve the efficiency of the isolated DC-DC converter of about 5%, the synchronous controller rectifier designed by International Rectifier is based on a predictive method in order to generate the appropriate signals for the driving of the secondary stage MOSFETs. In addition, the PWM architecture of the primary stage is not modified. (J.S.)

  15. Pinning Control Strategies for Synchronization of Linearly Coupled Neural Networks With Reaction-Diffusion Terms.

    Science.gov (United States)

    Wang, Jin-Liang; Wu, Huai-Ning; Huang, Tingwen; Ren, Shun-Yan

    2016-04-01

    Two types of coupled neural networks with reaction-diffusion terms are considered in this paper. In the first one, the nodes are coupled through their states. In the second one, the nodes are coupled through the spatial diffusion terms. For the former, utilizing Lyapunov functional method and pinning control technique, we obtain some sufficient conditions to guarantee that network can realize synchronization. In addition, considering that the theoretical coupling strength required for synchronization may be much larger than the needed value, we propose an adaptive strategy to adjust the coupling strength for achieving a suitable value. For the latter, we establish a criterion for synchronization using the designed pinning controllers. It is found that the coupled reaction-diffusion neural networks with state coupling under the given linear feedback pinning controllers can realize synchronization when the coupling strength is very large, which is contrary to the coupled reaction-diffusion neural networks with spatial diffusion coupling. Moreover, a general criterion for ensuring network synchronization is derived by pinning a small fraction of nodes with adaptive feedback controllers. Finally, two examples with numerical simulations are provided to demonstrate the effectiveness of the theoretical results.

  16. Analysis and control of excitation, field weakening and stability in direct torque controlled electrically excited synchronous motor drives

    Energy Technology Data Exchange (ETDEWEB)

    Pyrhoenen, O.

    1998-12-31

    Direct torque control (DTC) is a new control method for rotating field electrical machines. DTC controls directly the motor stator flux linkage with the stator voltage, and no stator current controllers are used. With the DTC method very good torque dynamics can be achieved. Until now, DTC has been applied to asynchronous motor drives. The purpose of this work is to analyse the applicability of DTC to electrically excited synchronous motor drives. Compared with asynchronous motor drives, electrically excited synchronous motor drives require an additional control for the rotor field current. The field current control is called excitation control in this study. The dependence of the static and dynamic performance of DTC synchronous motor drives on the excitation control has been analysed and a straightforward excitation control method has been developed and tested. In the field weakening range the stator flux linkage modulus must be reduced in order to keep the electro motive force of the synchronous motor smaller than the stator voltage and in order to maintain a sufficient voltage reserve. The dynamic performance of the DTC synchronous motor drive depends on the stator flux linkage modulus. Another important factor for the dynamic performance in the field weakening range is the excitation control. The field weakening analysis considers both dependencies. A modified excitation control method, which maximises the dynamic performance in the field weakening range, has been developed. In synchronous motor drives the load angle must be kept in a stabile working area in order to avoid loss of synchronism. The traditional vector control methods allow to adjust the load angle of the synchronous motor directly by the stator current control. In the DTC synchronous motor drive the load angle is not a directly controllable variable, but it is formed freely according to the motor`s electromagnetic state and load. The load angle can be limited indirectly by limiting the torque

  17. New adaptive quasi-sliding mode control for nonlinear discrete-time systems

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A new adaptive quasi-sliding mode control algorithm is developed for a class of nonlinear diecrete-time systems,which is especially useful for nonlinear systems with vaguely known dynamics.This design is model-free,and is based directly on pseudo-partial-derivatives derived on-line from the input and output information of the system using an improved recursive projection type of identification algorithm.The theoretical analysis and simulation results show that the adaptive quasi-sliding mode control system is stable and convergent.

  18. Robust chaos synchronization based on adaptive fuzzy delayed feedback $\\mathcal{H}_{∞}$ control

    Indian Academy of Sciences (India)

    Choon Ki Ahn

    2012-03-01

    In this paper, we propose a new adaptive $\\mathcal_{∞}$ synchronization strategy, called an adaptive fuzzy delayed feedback $\\mathcal_{∞}$ synchronization (AFDFHS) strategy, for chaotic systems with uncertain parameters and external disturbances. Based on Lyapunov–Krasovskii theory, Takagi–Sugeno (T–S) fuzzy model and adaptive delayed feedback $\\mathcal_{∞}$ control scheme, the AFDFHS controller is presented such that the synchronization error system is asymptotically stable with a guaranteed $\\mathcal_{∞}$ performance. It is shown that the design of the AFDFHS controller with adaptive law can be achieved by solving a linear matrix inequality (LMI), which can be easily facilitated by using some standard numerical packages. An illustrative example is given to demonstrate the effectiveness of the proposed AFDFHS approach.

  19. Achieving control and synchronization merely through a stochastically adaptive feedback coupling

    Science.gov (United States)

    Lin, Wei; Chen, Xin; Zhou, Shijie

    2017-07-01

    Techniques of deterministically adaptive feedback couplings have been successfully and extensively applied to realize control or/and synchronization in chaotic dynamical systems and even in complex dynamical networks. In this article, a technique of stochastically adaptive feedback coupling is novelly proposed to not only realize control in chaotic dynamical systems but also achieve synchronization in unidirectionally coupled systems. Compared with those deterministically adaptive couplings, the proposed stochastic technique interestingly shows some advantages from a physical viewpoint of time and energy consumptions. More significantly, the usefulness of the proposed stochastic technique is analytically validated by the theory of stochastic processes. It is anticipated that the proposed stochastic technique will be widely used in achieving system control and network synchronization.

  20. Cluster synchronization of community network with distributed time delays via impulsive control

    Science.gov (United States)

    Leng, Hui; Wu, Zhao-Yan

    2016-11-01

    Cluster synchronization is an important dynamical behavior in community networks and deserves further investigations. A community network with distributed time delays is investigated in this paper. For achieving cluster synchronization, an impulsive control scheme is introduced to design proper controllers and an adaptive strategy is adopted to make the impulsive controllers unified for different networks. Through taking advantage of the linear matrix inequality technique and constructing Lyapunov functions, some synchronization criteria with respect to the impulsive gains, instants, and system parameters without adaptive strategy are obtained and generalized to the adaptive case. Finally, numerical examples are presented to demonstrate the effectiveness of the theoretical results. Project supported by the National Natural Science Foundation of China (Grant No. 61463022), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20161BAB201021), and the Natural Science Foundation of Jiangxi Educational Committee, China (Grant No. GJJ14273).

  1. Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control

    Institute of Scientific and Technical Information of China (English)

    WANG Xing-Yuan; REN Xiao-Li

    2011-01-01

    @@ Chaotic synchronization of two electrical coupled FitzHugh-Nagumo(FHN) neurons with unknown parameters via adaptive control is investigated.Based on the Lyapunov stability theory,an adaptive controller and a parameter update law are designed,which can achieve the synchronization of the two gap junction coupled FHN neurons when the individual neuron is chaotic,without considering the coupling strength.Moreover,the unknown parameters are identified successfully and the controller is robust to the random noise.The numerical simulation results confirm the effectiveness of the designed controller.%Chaotic synchronization of two electrical coupled FitzHugh-Nagumo (FHN) neurons with unknown parameters via adaptive control is investigated. Based on the Lyapunov stability theory, an adaptive controller and a parameter update law are designed, which can achieve the synchronization of the two gap junction coupled FHN neurons when the individual neuron is chaotic, without considering the coupling strength. Moreover, the unknown parameters are identified successfully and the controller is robust to the random noise. The numerical simulation results confirm the effectiveness of the designed controller.

  2. Tracking Control and Synchronization for Two-Dimension Discrete Chaotic Systems

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The popular method of tracking control and synchronization for two-dimension discrete chaotic systems is put forward in this paper, and the chaotic system track arbitrarily reference signal is realized. This method is applied to two chaotic systems, and one can get good control result.

  3. Time synchronization and carrier frequency control of CAPS navigation signals generated on the ground

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The Chinese Area Positioning System (CAPS) works without atomic clocks on the satellite, and the CAPS navigation signals transmitted on the ground may achieve the same effect as that with high-performance atomic clocks on the satellite. The primary means of achieving that effect is through the time synchronization and carrier frequency control of the CAPS navigation signals generated on the ground. In this paper the synchronization requirements of different time signals are analyzed by the formation of navigation signals, and the theories and methods of the time synchronization of the CAPS navigation signals generated on the ground are also introduced. According to the conditions of the high-precision satellite velocitymeasurement signal source, the carrier frequency and its chains of the navigation signals are constructed. CAPS velocity measurement is realized by the expected deviation of real time control to the carrier frequency, and the precision degree of this method is also analyzed. The experimental results show that the time synchronization precision of CAPS generating signals is about 0.3 ns and the precision of the velocity measurement signal source is about 4 cm/s. This proves that the theories and methods of the generating time synchronization and carrier frequency control are workable.

  4. Time synchronization and carrier frequency control of CAPS navigation signals generated on the ground

    Institute of Scientific and Technical Information of China (English)

    WU HaiTao; BIAN YuJing; LU XiaoChun; LI XiaoHui; WANG DanNi

    2009-01-01

    The Chinese Area Positioning System (CAPS) works without atomic clocks on the satellite,and the CAPS navigation signals transmitted on the ground may achieve the same effect as that with high-performance atomic clocks on the satellite.The primary means of achieving that effect is through the time synchronization and carrier frequency control of the CAPS navigation signals generated on the ground.In this paper the synchronization requirements of different time signals are analyzed by the formation of navigation signals,and the theories and methods of the time synchronization of the CAPS navigation signals generated on the ground are also introduced.According to the conditions of the high-precision satellite velocity-measurement signal source,the carrier frequency and its chains of the navigation signals are constructed.CAPS velocity measurement is realized by the expected deviation of real time control to the carrier frequency,end the precision degree of this method is also analyzed.The experimental results show that the time synchronization precision of CAPS generating signals is about 0.3 ns and the precision of the velocity measurement signal source is about 4 cm/s.This proves that the theories and methods of the generating time synchronization and carrier frequency control are workable.

  5. Pinning control of complex networked systems synchronization, consensus and flocking of networked systems via pinning

    CERN Document Server

    Su, Housheng

    2013-01-01

    Synchronization, consensus and flocking are ubiquitous requirements in networked systems. Pinning Control of Complex Networked Systems investigates these requirements by using the pinning control strategy, which aims to control the whole dynamical network with huge numbers of nodes by imposing controllers for only a fraction of the nodes. As the direct control of every node in a dynamical network with huge numbers of nodes might be impossible or unnecessary, it’s then very important to use the pinning control strategy for the synchronization of complex dynamical networks. The research on pinning control strategy in consensus and flocking of multi-agent systems can not only help us to better understand the mechanisms of natural collective phenomena, but also benefit applications in mobile sensor/robot networks. This book offers a valuable resource for researchers and engineers working in the fields of control theory and control engineering.   Housheng Su is an Associate Professor at the Department of Contro...

  6. On stochastic optimal control of partially observable nonlinear quasi Hamiltonian systems

    Institute of Scientific and Technical Information of China (English)

    朱位秋; 应祖光

    2004-01-01

    A stochastic optimal control strategy for partially observable nonlinear quasi Hamiltonian systems is proposed.The optimal control forces consist of two parts. The first part is determined by the conditions under which the stochastic optimal control problem of a partially observable nonlinear system is converted into that of a completely observable linear system. The second part is determined by solving the dynamical programming equation derived by applying the stochastic averaging method and stochastic dynamical programming principle to the completely observable linear control system. The response of the optimally controlled quasi Hamiltonian system is predicted by solving the averaged Fokker-Planck-Kolmogorov equation associated with the optimally controlled completely observable linear system and solving the Riccati equation for the estimated error of system states. An example is given to illustrate the procedure and effectiveness of the proposed control strategy.

  7. Science Letters:On stochastic optimal control of partially observable nonlinear quasi Hamiltonian systems

    Institute of Scientific and Technical Information of China (English)

    朱位秋; 应祖光

    2004-01-01

    A stochastic optimal control strategy for partially observable nonlinear quasi Hamiltonian systems is proposed. The optimal control forces consist of two parts. The first part is determined by the conditions under which the stochastic optimal control problem of a partially observable nonlinear system is converted into that of a completely observable linear system. The second part is determined by solving the dynamical programming equation derived by applying the stochastic averaging method and stochastic dynamical programming principle to the completely observable linear control system. The response of the optimally controlled quasi Hamiltonian system is predicted by solving the averaged Fokker-Planck-Kolmogorov equation associated with the optimally controlled completely observable linear system and solving the Riccati equation for the estimated error of system states. An example is given to illustrate the procedure and effectiveness of the proposed control strategy.

  8. Synchronization for unified chaotic systems with noise-disturbed parameters by sliding mode control

    Institute of Scientific and Technical Information of China (English)

    HEN Yuan; ZHANG Qun-jiao

    2008-01-01

    In this paper,the active sliding mode control method is utilized to study the synchronization for unified chaotic systems with noise-disturbed parameters.Some novet results about the suitable sliding mode surface and the synchronizing control law are derived,which avoid the mistake inequality sC△Ae≤‖△A‖∞ sCe in Ref.[Chaos,Solitons & Fractals 21(2004) 1249].Finally,numerical sireulations are included to show the correctness of our results and the effectiveness of the developed approach.

  9. Robust master-slave synchronization for general uncertain delayed dynamical model based on adaptive control scheme.

    Science.gov (United States)

    Wang, Tianbo; Zhou, Wuneng; Zhao, Shouwei; Yu, Weiqin

    2014-03-01

    In this paper, the robust exponential synchronization problem for a class of uncertain delayed master-slave dynamical system is investigated by using the adaptive control method. Different from some existing master-slave models, the considered master-slave system includes bounded unmodeled dynamics. In order to compensate the effect of unmodeled dynamics and effectively achieve synchronization, a novel adaptive controller with simple updated laws is proposed. Moreover, the results are given in terms of LMIs, which can be easily solved by LMI Toolbox in Matlab. A numerical example is given to illustrate the effectiveness of the method.

  10. Exponential synchronization of delayed memristor-based chaotic neural networks via periodically intermittent control.

    Science.gov (United States)

    Zhang, Guodong; Shen, Yi

    2014-07-01

    This paper investigates the exponential synchronization of coupled memristor-based chaotic neural networks with both time-varying delays and general activation functions. And here, we adopt nonsmooth analysis and control theory to handle memristor-based chaotic neural networks with discontinuous right-hand side. In particular, several new criteria ensuring exponential synchronization of two memristor-based chaotic neural networks are obtained via periodically intermittent control. In addition, the new proposed results here are very easy to verify and also complement, extend the earlier publications. Numerical simulations on the chaotic systems are presented to illustrate the effectiveness of the theoretical results.

  11. Synchronization and Antisynchronization of a Planar Oscillation of Satellite in an Elliptic Orbit via Active Control

    Directory of Open Access Journals (Sweden)

    Mohammad Shahzad

    2011-01-01

    Full Text Available We have investigated the synchronization and antisynchronization behaviour of two identical planar oscillation of a satellite in elliptic orbit evolving from different initial conditions using the active control technique based on the Lyapunov stability theory and the Routh-Hurwitz criteria. The designed controller, with our own choice of the coefficient matrix of the error dynamics that satisfy the Lyapunov stability theory and the Routh-Hurwitz criteria, is found to be effective in the stabilization of the error states at the origin, thereby, achieving synchronization and antisynchronization between the states variables of two nonlinear dynamical systems under consideration. The results are validated by numerical simulations using mathematica.

  12. Torque Ripple Suppression Integrated Starter/Generator Control Strategy for Brushless Wound-Field Synchronous Motor

    Institute of Scientific and Technical Information of China (English)

    骆光照; 张围围; 杨南方; 马鹏; 刘卫国

    2012-01-01

    A flux linkage compensation field oriented control (FOC) method was proposed to suppress the speed and torque ripples of a hrusbless wound-fleld synchronous motor in its starting process. The starting process was analyzed and the model of wound-field synchronous electric machine was established. The change of field current of the electric machine was described mathematically for simplified exciter and rotate rectifier. Based on the traditional field control, the flux linkage compensation was introduced in d-axis current to counteract the flux ripple. Some simulation and preliminary experiments were implemented. The results show that the proposed method is feasible and effective.

  13. Chaos, control and synchronization of a fractional order rotational mechanical system with a centrifugal governor

    Energy Technology Data Exchange (ETDEWEB)

    Ge Zhengming [Department of Mechanical Engineering, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan (China)]. E-mail: zmg@cc.nctu.edu.tw; Jhuang Weiren [Department of Mechanical Engineering, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan (China)

    2007-07-15

    Chaos, its control and synchronization for a fractional order rotational mechanical system with a centrifugal governor are studied for both the autonomous and the nonautonomous cases. It is found that chaos exists in the fractional order systems with order less than and more than the number of states of the system. Controlling the chaotic motion of a fractional order system to its equilibrium point is obtained for both the autonomous and the nonautonomous cases. The rotational mechanical systems with the same fractional order and with the different fractional orders are synchronized by linear coupling for both the autonomous and the nonautonomous cases.

  14. Feedback control and adaptive synchronization of chaotic forced Bonhoeffer-van der Pol oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Kontchou, E W Chimi; Fotsin, H B [Laboratoire d' Electronique, Departement de Physique, Faculte des Sciences, Universite de Dschang, B P 67 Dschang (Cameroon); Woafo, P [Laboratory of Modelling and Simulation in Engineering and Biological Physics, Faculty of Science, University of Yaounde I, Box 812, Yaounde (Cameroon)], E-mail: hbfotsin@yahoo.fr

    2008-04-15

    This paper deals with chaos control and synchronization in forced Bonhoeffer-van der Pol (FBVP) oscillators. The state equations of the model are first established and the stability is analysed. A feedback control strategy for stabilizing the chaotic dynamics on a periodic orbit of the phase space is investigated. Adaptive synchronization of two FBVP oscillators, based on parameter estimation and a nonlinear observer approach, is also investigated. It appears that a particular unknown parameter of the model can be estimated, which gives the possibility of recovering information through chaotic masking. An application in secure communications is presented.

  15. Finite-time synchronization control of a class of memristor-based recurrent neural networks.

    Science.gov (United States)

    Jiang, Minghui; Wang, Shuangtao; Mei, Jun; Shen, Yanjun

    2015-03-01

    This paper presents a global and local finite-time synchronization control law for memristor neural networks. By utilizing the drive-response concept, differential inclusions theory, and Lyapunov functional method, we establish several sufficient conditions for finite-time synchronization between the master and corresponding slave memristor-based neural network with the designed controller. In comparison with the existing results, the proposed stability conditions are new, and the obtained results extend some previous works on conventional recurrent neural networks. Two numerical examples are provided to illustrate the effective of the design method.

  16. Decentralized attitude synchronization tracking control for multiple spacecraft under directed communication topology

    Institute of Scientific and Technical Information of China (English)

    Zheng Zhong; Xu Ying; Zhang Lisong; Song Shenmin

    2016-01-01

    This paper studies the attitude synchronization tracking control of spacecraft formation flying with a directed communication topology and presents three different controllers. By introduc-ing a novel error variable associated with rotation matrix, a decentralized attitude synchronization controller, which could obtain almost global asymptotical stability of the closed-loop system, is developed. Then, considering model uncertainties and unknown external disturbances, we propose a robust adaptive attitude synchronization controller by designing adaptive laws to estimate the unknown parameters. After that, the third controller is proposed by extending this method to the case of time-varying communication delays via Lyapunov–Krasovskii analysis. The distinctive feature of this work is to address attitude coordinated control with model uncertainties, unknown disturbances and time-varying delays in a decentralized framework, with a strongly connected direc-ted information flow. It is shown that tracking and synchronization of an arbitrary desired attitude can be achieved when the stability condition is satisfied. Simulation results are provided to demon-strate the effectiveness of the proposed control schemes.

  17. Performance Improvement for Quasi Periodical Disturbances in PH Control

    Directory of Open Access Journals (Sweden)

    STEBEL, K.

    2015-02-01

    Full Text Available Proper operation of control systems is essential for achieving good economic results and reducing control effort. The paper is focused on presenting a new application of a well-known concept. The main scope of the paper is a practical presentation of obtaining a minimum process performance index by means of known statistical tools. This is achievable by appropriate selection of the correction value for set-point and the width of the time window of a statistical algorithm. The proposed novel algorithm was successfully implemented in the pilot neutralization process. On one hand, the proposed algorithm is a corrector of the statistical properties of the control error, and, on the other one, of a set point of the control system.

  18. Decentralized adaptive sliding mode control for beam synchronization of tethered InSAR system

    Science.gov (United States)

    Zhang, Jinxiu; Zhang, Zhigang; Wu, Baolin

    2016-10-01

    Beam synchronization problem of tethered interferometric synthetic aperture radar (InSAR) is addressed in this paper. Two antennas of the system are carried by separate satellites connected through a tether to obtain a preferable baseline. A Total Zero Doppler Steering (TZDS) is implemented to mother-satellite to cancel the residual Doppler. Subsequently attitude reference trajectories for the two satellites are generated to achieve the beam synchronization and TZDS. Thereafter, a decentralized adaptive sliding mode control law is proposed to track these reference trajectories in the presence of model uncertainties and external disturbances. Finally, the stability of closed-loop system is proved by the corollary of Barbalat's Lemma. Simulation results show the proposed control law is effective to achieve beam synchronization of the system.

  19. Runge-Kutta model-based nonlinear observer for synchronization and control of chaotic systems.

    Science.gov (United States)

    Beyhan, Selami

    2013-07-01

    This paper proposes a novel nonlinear gradient-based observer for synchronization and observer-based control of chaotic systems. The model is based on a Runge-Kutta model of the chaotic system where the evolution of the states or parameters is derived based on the error-square minimization. The stability and convergence conditions of observer and control methods are analyzed using a Lyapunov stability approach. In numerical simulations, the proposed observer and well-known sliding-mode observer are compared for the synchronization of a Lü chaotic system and observer-based stabilization of a Chen chaotic system. The noisy case for synchronization and parameter uncertainty case for stabilization are also considered for both observer-based methods. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Hybrid Dislocated Control and General Hybrid Projective Dislocated Synchronization for Memristor Chaotic Oscillator System

    Directory of Open Access Journals (Sweden)

    Junwei Sun

    2014-01-01

    Full Text Available Some important dynamical properties of the memristor chaotic oscillator system have been studied in the paper. A novel hybrid dislocated control method and a general hybrid projective dislocated synchronization scheme have been realized for memristor chaotic oscillator system. The paper firstly presents hybrid dislocated control method for stabilizing chaos to the unstable equilibrium point. Based on the Lyapunov stability theorem, general hybrid projective dislocated synchronization has been studied for the drive memristor chaotic oscillator system and the same response memristor chaotic oscillator system. For the different dimensions, the memristor chaotic oscillator system and the other chaotic system have realized general hybrid projective dislocated synchronization. Numerical simulations are given to show the effectiveness of these methods.

  1. PID control design for chaotic synchronization using a tribes optimization approach

    Energy Technology Data Exchange (ETDEWEB)

    Santos Coelho, Leandro dos [Industrial and Systems Engineering Graduate Program, LAS/PPGEPS, Pontifical Catholic University of Parana, PUCPR, Imaculada Conceicao, 1155, 80215-901 Curitiba, Parana (Brazil)], E-mail: leandro.coelho@pucpr.br; Andrade Bernert, Diego Luis de [Industrial and Systems Engineering Graduate Program, LAS/PPGEPS, Pontifical Catholic University of Parana, PUCPR, Imaculada Conceicao, 1155, 80215-901 Curitiba, Parana (Brazil)], E-mail: dbernert@gmail.com

    2009-10-15

    Recently, the investigation of synchronization and control problems for discrete chaotic systems has stimulated a wide range of research activity including both theoretical studies and practical applications. This paper deals with the tuning of a proportional-integral-derivative (PID) controller using a modified Tribes optimization algorithm based on truncated chaotic Zaslavskii map (MTribes) for synchronization of two identical discrete chaotic systems subject the different initial conditions. The Tribes algorithm is inspired by the social behavior of bird flocking and is also an optimization adaptive procedure that does not require sociometric or swarm size parameter tuning. Numerical simulations are given to show the effectiveness of the proposed synchronization method. In addition, some comparisons of the MTribes optimization algorithm with other continuous optimization methods, including classical Tribes algorithm and particle swarm optimization approaches, are presented.

  2. Evolve the Controller for Static Synchronous Series Compensator Based on Control Strategy of Sen Transformer

    Directory of Open Access Journals (Sweden)

    Raju Jayaraman

    2014-02-01

    Full Text Available Real and Reactive power flow in an alternating current transmission line can be independently controlled by connecting, to the transmission line, a series-compensating voltage, which is variable in magnitude and phase angle. The Static Synchronous Series Compensator (SSSC, a solid-state voltage source inverter (VSC coupled with a transformer, is connected in series with a transmission line. An SSSC injects an almost sinusoidal voltage, of variable magnitude, in series with a transmission line. This injected voltage is almost in quadrature with the line current, thereby emulating an inductive or a capacitive reactance in series with the transmission line. This emulated variable reactance, inserted by the injected voltage source, influences the electric power flow in the transmission line. In this report, an attempt is made to evolve the model of SSSC and VSC with preliminary studies for the controller design.

  3. Impulsive control of stochastic systems with applications in chaos control, chaos synchronization, and neural networks.

    Science.gov (United States)

    Li, Chunguang; Chen, Luonan; Aihara, Kazuyuki

    2008-06-01

    Real systems are often subject to both noise perturbations and impulsive effects. In this paper, we study the stability and stabilization of systems with both noise perturbations and impulsive effects. In other words, we generalize the impulsive control theory from the deterministic case to the stochastic case. The method is based on extending the comparison method to the stochastic case. The method presented in this paper is general and easy to apply. Theoretical results on both stability in the pth mean and stability with disturbance attenuation are derived. To show the effectiveness of the basic theory, we apply it to the impulsive control and synchronization of chaotic systems with noise perturbations, and to the stability of impulsive stochastic neural networks. Several numerical examples are also presented to verify the theoretical results.

  4. Advanced Control of Permanent Magnet Synchronous Generators for Variable Speed Wind Energy Conversion Systems

    Science.gov (United States)

    Hostettler, Jacob

    Various environmental and economic factors have lead to increased global investment in alternative energy technologies such as solar and wind power. Although methodologies for synchronous generator control are well researched, wind turbines present control systems challenges not presented by traditional generation. The varying nature of wind makes achieving synchronism with the existing electrical power grid a greater challenge. Departing from early use of induction machines, permanent magnet synchronous generators have become the focus of power systems and control systems research into wind energy systems. This is due to their self excited nature, along with their high power density. The problem of grid synchronism is alleviated through the use of high performance power electronic converters. In achievement of the optimal levels of efficiency, advanced control systems techniques oer promise over more traditional approaches. Research into sliding mode control, and linear matrix inequalities with nite time boundedness and Hinfinity performance criteria, when applied to the dynamical models of the system, demonstrate the potential of these control methodologies as future avenues for achieving higher levels of performance and eciency in wind energy.

  5. Predictive current control of permanent magnet synchronous motor based on linear active disturbance rejection control

    Science.gov (United States)

    Li, Kunpeng

    2017-01-01

    The compatibility problem between rapidity and overshooting in the traditional predictive current control structure is inevitable and difficult to solve by reason of using PI controller. A novel predictive current control (PCC) algorithm for permanent magnet synchronous motor (PMSM) based on linear active disturbance rejection control (LADRC) is presented in this paper. In order to displace PI controller, the LADRC strategy which consisted of linear state error feedback (LSEF) control algorithm and linear extended state observer (LESO), is designed based on the mathematic model of PMSM. The purpose of LSEF is to make sure fast response to load mutation and system uncertainties, and LESO is designed to estimate the uncertain disturbances. The principal structures of the proposed system are speed outer loop based on LADRC and current inner loop based on predictive current control. Especially, the instruction value of qaxis current in inner loop is derived from the control quantity which is designed in speed outer loop. The simulation is carried out in Matlab/Simulink software, and the results illustrate that the dynamic and static performances of proposed system are satisfied. Moreover the robust against model parameters mismatch is enhanced obviously.

  6. A minimax optimal control strategy for uncertain quasi-Hamiltonian systems

    Institute of Scientific and Technical Information of China (English)

    Yong WANC; Zu-guang YING; Wei-qiu ZHU

    2008-01-01

    A minimax optimal control strategy for quasi-Hamiltonian systems with bounded parametric and/or external disturbances is proposed based on the stochastic averaging method and stochastic differential game. To conduct the system energy control, the partially averaged It6 stochastic differential equations for the energy processes are first derived by using the stochastic averaging method for quasi-Hamiltonian systems. Combining the above equations with an appropriate performance index, the proposed strategy is searching for an optimal worst-case controller by solving a stochastic differential game problem. The worst-case disturbances and the optimal controls are obtained by solving a Hamilton-Jacobi-Isaacs (HJI) equation. Numerical results for a controlled and stochastically excited Duffing oscillator with uncertain disturbances exhibit the efficacy of the proposed control strategy.

  7. IMPULSIVE CONTROL FOR THE STABILIZATION AND SYNCHRONIZATION OF LUR'E SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    孙继涛; 吴启迪

    2004-01-01

    An impulsive control scheme of the Lur' e system and several theorems on stability of impulsive control systems was presented, these theorems were then used to find the conditions under which the Lur' e system can be stabilized by using impulsive control with varying impulsive intervals.The parameters of Lur' e system and impulsive control law are given, a theory of impulsive synchronization of two Lur' e system is also presented. A numerical example is used to verify the theoretical result.

  8. Compensation for time-delayed feedback bang-bang control of quasi-integrable Hamiltonian systems

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The stochastic averaging method for quasi-integrable Hamiltonian systems with time-delayed feedback bang-bang control is first introduced. Then, two time delay compensation methods, namely the method of changing control force amplitude (CFA) and the method of changing control delay time (CDT), are proposed. The conditions applicable to each compensation method are discussed. Finally, an example is worked out in detail to illustrate the application and effectiveness of the proposed methods and the two compensation methods in combination.

  9. MODELLING AND TORQUE TRACKING CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR FOR HYBRID ELECTRIC VEHICLES

    Directory of Open Access Journals (Sweden)

    Mohd Sabirin Rahmat

    2013-06-01

    Full Text Available This paper presents a detailed derivation of a permanent magnet synchronous motor, which may be used as the electric power train for the simulation of a hybrid electric vehicle. A torque tracking control of the permanent magnet synchronous motor is developed by using an adaptive proportional-integral-derivative controller. Several tests such as step function, saw tooth function, sine wave function and square wave function were used in order to examine the performance of the proposed control structure. The effectiveness of the proposed controller was verified and compared with the same system under a PID controller and the desired control. The result of the observations shows that the proposed control structure proves to be effective in tracking the desired torque with a good response. The findings of this study will be considered in the design, optimisation and experimentation of series hybrid electric vehicle.

  10. Quasi-Newton-type optimized iterative learning control for discrete linear time invariant systems

    Institute of Scientific and Technical Information of China (English)

    Yan GENG; Xiaoe RUAN

    2015-01-01

    In this paper, a quasi-Newton-type optimized iterative learning control (ILC) algorithm is investigated for a class of discrete linear time-invariant systems. The proposed learning algorithm is to update the learning gain matrix by a quasi-Newton-type matrix instead of the inversion of the plant. By means of the mathematical inductive method, the monotone convergence of the proposed algorithm is analyzed, which shows that the tracking error monotonously converges to zero after a finite number of iterations. Compared with the existing optimized ILC algorithms, due to the superlinear convergence of quasi-Newton method, the proposed learning law operates with a faster convergent rate and is robust to the ill-condition of the system model, and thus owns a wide range of applications. Numerical simulations demonstrate the validity and effectiveness.

  11. Fast synchronization of ultradian oscillators controlled by delta-notch signaling with cis-inhibition.

    Directory of Open Access Journals (Sweden)

    Hendrik B Tiedemann

    2014-10-01

    Full Text Available While it is known that a large fraction of vertebrate genes are under the control of a gene regulatory network (GRN forming a clock with circadian periodicity, shorter period oscillatory genes like the Hairy-enhancer-of split (Hes genes are discussed mostly in connection with the embryonic process of somitogenesis. They form the core of the somitogenesis-clock, which orchestrates the periodic separation of somites from the presomitic mesoderm (PSM. The formation of sharp boundaries between the blocks of many cells works only when the oscillators in the cells forming the boundary are synchronized. It has been shown experimentally that Delta-Notch (D/N signaling is responsible for this synchronization. This process has to happen rather fast as a cell experiences at most five oscillations from its 'birth' to its incorporation into a somite. Computer simulations describing synchronized oscillators with classical modes of D/N-interaction have difficulties to achieve synchronization in an appropriate time. One approach to solving this problem of modeling fast synchronization in the PSM was the consideration of cell movements. Here we show that fast synchronization of Hes-type oscillators can be achieved without cell movements by including D/N cis-inhibition, wherein the mutual interaction of DELTA and NOTCH in the same cell leads to a titration of ligand against receptor so that only one sort of molecule prevails. Consequently, the symmetry between sender and receiver is partially broken and one cell becomes preferentially sender or receiver at a given moment, which leads to faster entrainment of oscillators. Although not yet confirmed by experiment, the proposed mechanism of enhanced synchronization of mesenchymal cells in the PSM would be a new distinct developmental mechanism employing D/N cis-inhibition. Consequently, the way in which Delta-Notch signaling was modeled so far should be carefully reconsidered.

  12. Dynamic Shift Coordinated Control Based on Motor Active Speed Synchronization with the New Hybrid System

    Directory of Open Access Journals (Sweden)

    Ting Yan

    2017-01-01

    Full Text Available Considering the inherent disadvantages that severely affect driving comfortability during the shift process in HEVs, a dynamic shift coordinated control based on motor active speed synchronization is proposed to improve shift quality by reduction of shift vibration. The whole control scheme is comprised of three phases, preparatory phase, speed regulation phase, and synchronization phase, which are implemented consecutively in order. The key to inhibiting impact and jerk depends on the speed regulation phase, where motor active speed synchronization is utilized to reach the minimum speed difference between the two ends of synchronizer. A new hybrid system with superior performances is applied to present the validity of the adopted control algorithm during upshift or downshift, which can represent planetary gear system and conventional AMT shift procedure, respectively. Bench test, simulation, and road test results show that, compared with other methods, the proposed dynamic coordinated control can achieve shifting control in real time to effectively improve gear-shift comfort and shorten power interruption transients, with robustness in both conventional AMT and planetary gear train.

  13. Optimal control strategies for stochastically excited quasi partially integrable Hamiltonian systems

    Institute of Scientific and Technical Information of China (English)

    Ronghua Huan; Maolin Deng; Weiqiu Zhu

    2007-01-01

    In this paper two different control strategies designed to alleviate the response of quasi partially integrable Hamiltonian systems subjected to stochastic excitation are proposed. First, by using the stochastic averaging method for quasi partially integrable Hamiltonian systems, an n-DOF controlled quasi partially integrable Hamiltonian system with stochastic excitation is converted into a set of partially averaged Ito stochastic differential equations. Then, the dynamical programming equation associated with the partially averaged Ito equations is formulated by applying the stochastic dynamical programming principle. In the first control strategy, the optimal control law is derived from the dynamical programming equation and the control constraints without solving the dynamical programming equation. In the second control strategy, the optimal control law is obtained by solving the dynamical programming equation. Finally, both the responses of controlled and uncontrolled systems are predicted through solving the Fokker-Plank-Kolmogorov equation associated with fully averaged Ito equations. An example is worked out to illustrate the application and effectiveness of the two proposed control strategies.

  14. STOCHASTIC OPTIMAL VIBRATION CONTROL OF PARTIALLY OBSERVABLE NONLINEAR QUASI HAMILTONIAN SYSTEMS WITH ACTUATOR SATURATION

    Institute of Scientific and Technical Information of China (English)

    Ronghua Huan; Lincong Chen; Weiliang Jin; Weiqiu Zhu

    2009-01-01

    An optimal vibration control strategy for partially observable nonlinear quasi Hamil-tonian systems with actuator saturation is proposed. First, a controlled partially observable non-linear system is converted into a completely observable linear control system of finite dimension based on the theorem due to Charalambous and Elliott. Then the partially averaged Ito stochas-tic differential equations and dynamical programming equation associated with the completely observable linear system are derived by using the stochastic averaging method and stochastic dynamical programming principle, respectively. The optimal control law is obtained from solving the final dynamical programming equation. The results show that the proposed control strategy has high control effectiveness and control efficiency.

  15. Static Synchronous Series Compensator Controller based on Fuzzy Logic Control for Power System Stabilization

    Directory of Open Access Journals (Sweden)

    Prechanon Kumkratug

    2011-01-01

    Full Text Available Problem statement: Modern power system consists of the complicated network of transmission lines and carries heavy demand. Thus they cause in the stability problem. Approach: Static Synchronous Series Compensator (SSSC is a power electronic based device that has the capability of controlling the power flow through a line. The series voltage injection model of SSSC is modeled into power flow equation and thus it is used to determine its control strategy. This study applies the fuzzy logic applies the SSSC to improve stability of power system. The mathematical model and control strategy of a SSSC are presented. The SSSC is represented by variable voltage injection with associate transformer leakage control to derive control strategy of SSSC. The swing curves of the three phase faulted power system without and with a SSSC is tested and compared in various cases. Results: The swing curve of the system with SSSC based fuzzy logic control has the less amplitude during the dynamic period. Conclusion: It was found from simulation results that SSSC can improve the power system oscillation after disturbance.

  16. Mixed Tracking and Projective Synchronization of 5D Hyperchaotic System Using Active Control

    Science.gov (United States)

    Ojo, Kayode; Ogunjo, Samuel T.; Williams, Oluwafemi

    2013-08-01

    This paper examines mixed tracking control and hy- brid synchronization of two identical 5-D hyperchaotic Lorenz systems via active control technique. The de- signed control functions for the mixed tracking enable each of the system state variables to stabilize at differ- ent chosen positions as well as control each state vari- ables of the system to track different desired smooth function of time. Also, the active control technique is used to design control functions which achieve projec- tive synchronization between the slave state variables and the master state variables. We also show that the coupling strength is inversely proportional to the syn- chronization time. Numerical simulations are carried out to validate the effectiveness of the analytical tech- nique.

  17. Chaos Synchronization Using Adaptive Dynamic Neural Network Controller with Variable Learning Rates

    Directory of Open Access Journals (Sweden)

    Chih-Hong Kao

    2011-01-01

    Full Text Available This paper addresses the synchronization of chaotic gyros with unknown parameters and external disturbance via an adaptive dynamic neural network control (ADNNC system. The proposed ADNNC system is composed of a neural controller and a smooth compensator. The neural controller uses a dynamic RBF (DRBF network to online approximate an ideal controller. The DRBF network can create new hidden neurons online if the input data falls outside the hidden layer and prune the insignificant hidden neurons online if the hidden neuron is inappropriate. The smooth compensator is designed to compensate for the approximation error between the neural controller and the ideal controller. Moreover, the variable learning rates of the parameter adaptation laws are derived based on a discrete-type Lyapunov function to speed up the convergence rate of the tracking error. Finally, the simulation results which verified the chaotic behavior of two nonlinear identical chaotic gyros can be synchronized using the proposed ADNNC scheme.

  18. Exponential stabilization and synchronization for fuzzy model of memristive neural networks by periodically intermittent control.

    Science.gov (United States)

    Yang, Shiju; Li, Chuandong; Huang, Tingwen

    2016-03-01

    The problem of exponential stabilization and synchronization for fuzzy model of memristive neural networks (MNNs) is investigated by using periodically intermittent control in this paper. Based on the knowledge of memristor and recurrent neural network, the model of MNNs is formulated. Some novel and useful stabilization criteria and synchronization conditions are then derived by using the Lyapunov functional and differential inequality techniques. It is worth noting that the methods used in this paper are also applied to fuzzy model for complex networks and general neural networks. Numerical simulations are also provided to verify the effectiveness of theoretical results.

  19. Sensorless control of interior permanent-magnet synchronous motors with compressor load

    DEFF Research Database (Denmark)

    Huang, Shoudao; Gao, Jian; Xiao, Lei

    2013-01-01

    This paper analyzes the mathematical model of the interior permanent-magnet synchronous motors (IPMSM). Through the mathematical deformation, the paper proposes the new sensorless method based on sliding mode observer for a IPMSM. The model is only associated with the q-axis inductance, and without...... of all the control strategies....

  20. Small-signal model of a decoupled double synchronous reference frame current controller

    DEFF Research Database (Denmark)

    Dowlatabadi, Mohammadkazem Bakhshizadeh; Hjerrild, Jester; Kocewiak, Lukasz;

    2016-01-01

    the dq signals are not dc anymore, and therefore, linearization cannot be done. In this paper a Decoupled Double Synchronous Frame PLL is used to eliminate the oscillations in the dq frame signals. The small signal model of this PLL including an unbalanced current controller is presented in this paper....

  1. Chaos synchronization in noisy environment using nonlinear filtering and sliding mode control

    Energy Technology Data Exchange (ETDEWEB)

    Behzad, Mehdi [Center of Excellence in Design, Robotics, and Automation (CEDRA), Department of Mechanical Engineering, Sharif University of Technology, Postal Code 11365-9567, Azadi Avenue, Tehran (Iran, Islamic Republic of)], E-mail: m_behzad@sharif.edu; Salarieh, Hassan [Center of Excellence in Design, Robotics, and Automation (CEDRA), Department of Mechanical Engineering, Sharif University of Technology, Postal Code 11365-9567, Azadi Avenue, Tehran (Iran, Islamic Republic of)], E-mail: salarieh@mech.sharif.edu; Alasty, Aria [Center of Excellence in Design, Robotics, and Automation (CEDRA), Department of Mechanical Engineering, Sharif University of Technology, Postal Code 11365-9567, Azadi Avenue, Tehran (Iran, Islamic Republic of)], E-mail: aalasti@sharif.edu

    2008-06-15

    This paper presents an algorithm for synchronizing two different chaotic systems, using a combination of the extended Kalman filter and the sliding mode controller. It is assumed that the drive chaotic system has a random excitation with a stochastically chaotic behavior. Two different cases are considered in this study. At first it is assumed that all state variables of the drive system are available, i.e. complete state measurement, and a sliding mode controller is designed for synchronization. For the second case, it is assumed that the output of the drive system does not contain the whole state variables of the drive system, and it is also affected by some random noise. By combination of extended Kalman filter and the sliding mode control, a synchronizing control law is proposed. As a case study, the presented algorithm is applied to the Lur'e-Genesio chaotic systems as the drive-response dynamic systems. Simulation results show the good performance of the algorithm in synchronizing the chaotic systems in presence of noisy environment.

  2. Control perspective on synchronization and the Takens-Aeyels-Sauer reconstruction theorem

    NARCIS (Netherlands)

    Huijberts, H.J.C.; Lilge, T.; Nijmeijer, H.

    1999-01-01

    method, based on ideas from control theory, is described for the synchronization of discrete time transmitter and receiver dynamics. Conceptually, the methodology consists of constructing observer-receiver dynamics that exploit the drive signal and past values of the drive signal at each time instan

  3. CURRENT VECTOR CONTROL OF PERMANENT-MAGNET SYNCHRONOUS MOTOR OF HYBRID VEHICLE ENGINE

    Directory of Open Access Journals (Sweden)

    S. Serikov

    2009-01-01

    Full Text Available Characteristics of traction permanent-magnet synchronous motor under current vector optimum control in the possible traction-speed mode area which are relevant for hybrid vehicle engine have been investigated. As a criterion of optimality a maximum of electromagnetic moment per unit of current have been taken.

  4. Lag Synchronization of a Class of Time-delayed Chaotic Neural Networks by Impulsive Control

    Directory of Open Access Journals (Sweden)

    Jing Wan

    2013-06-01

    Full Text Available The paper studies the exponential lag synchronization of a class of delayed chaotic neural networks with impulsive effects via the unidirectional linear coupling. Some sufficient conditions are derived by establishing impulsive differential delay inequality and using M-matrix theory. An illustrative example is also provided to show the effectiveness and feasibility of the impulsive control method.  

  5. Control strategy for permanent magnet synchronous motor with contra-rotating rotors under unbalanced loads condition

    DEFF Research Database (Denmark)

    Cheng, Shuangyin; Luo, Derong; Huang, Shoudao;

    2015-01-01

    is developed and the instability of the system with unbalanced loads is analysed. Based on the analysis, a control strategy which can keep synchronism of the two rotors under varying load is implemented. In addition, a method for starting the motor reliably is proposed, which is applicable to ship or under...

  6. A low-power circuit for piezoelectric vibration control by synchronized switching on voltage sources

    CERN Document Server

    Shen, Hui; Ji, Hongli; Zhu, Kongjun; Balsi, Marco; Giorgio, Ivan; dell'Isola, Francesco

    2010-01-01

    In the paper, a vibration damping system powered by harvested energy with implementation of the so-called SSDV (synchronized switch damping on voltage source) technique is designed and investigated. In the semi-passive approach, the piezoelectric element is intermittently switched from open-circuit to specific impedance synchronously with the structural vibration. Due to this switching procedure, a phase difference appears between the strain induced by vibration and the resulting voltage, thus creating energy dissipation. By supplying the energy collected from the piezoelectric materials to the switching circuit, a new low-power device using the SSDV technique is proposed. Compared with the original self-powered SSDI (synchronized switch damping on inductor), such a device can significantly improve its performance of vibration control. Its effectiveness in the single-mode resonant damping of a composite beam is validated by the experimental results.

  7. Innovative standstill position detection combined with sensorless control of synchronous motors

    OpenAIRE

    Persson, Jan

    2005-01-01

    Sensorless control of PMSM's (Permanent Magnet Synchronous Motors) has occupied scientists for a long time. The result of this research is becoming widely accepted by the industry due to its low cost and reliability. However, the majority of today's motor drives are still equipped with some kind of position sensor. The reason is that sensorless control still have several limitations and is usually more complex than a traditional motor control. A new method to estimate the standstill position ...

  8. A two-loop excitation control system for synchronous generators

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Ramirez, Jose; Cervantes, Ilse; Escarela-Perez, Rafael; Espinosa-Perez, Gerardo [Seccion de Estudios de Posgrado e Investigacion ESIME-C, Av. Santa Ana 1000 Col. San Francisco Culhuacan, Mexico D.F. 04430 (Mexico)

    2005-10-01

    An excitation controller for a single generator based on modern multi-loop design methodology is presented in this paper. The proposed controller consists of two-loops: a stabilizing (damping injection) loop and a voltage regulating loop. The task of the stabilizing loop is to add damping in the face of voltage oscillations. The voltage regulating loop is basically a PI compensator whose objective is to obtain terminal voltage regulation about the prescribed reference. The main contribution of this paper is to give some insights into the systematic derivation of multi-loop controllers of power generators. Certain connections between the two-loop excitation controller and standard PSS-AVR schemes are discussed. In this way, some insight into the stability of the standard PSS scheme is obtained from the analysis of the proposed controller. The proposed controller is evaluated via numerical simulations on a full finite-element model. (author)

  9. Versatile synchronized real-time MEG hardware controller for large-scale fast data acquisition

    Science.gov (United States)

    Sun, Limin; Han, Menglai; Pratt, Kevin; Paulson, Douglas; Dinh, Christoph; Esch, Lorenz; Okada, Yoshio; Hämäläinen, Matti

    2017-05-01

    Versatile controllers for accurate, fast, and real-time synchronized acquisition of large-scale data are useful in many areas of science, engineering, and technology. Here, we describe the development of a controller software based on a technique called queued state machine for controlling the data acquisition (DAQ) hardware, continuously acquiring a large amount of data synchronized across a large number of channels (>400) at a fast rate (up to 20 kHz/channel) in real time, and interfacing with applications for real-time data analysis and display of electrophysiological data. This DAQ controller was developed specifically for a 384-channel pediatric whole-head magnetoencephalography (MEG) system, but its architecture is useful for wide applications. This controller running in a LabVIEW environment interfaces with microprocessors in the MEG sensor electronics to control their real-time operation. It also interfaces with a real-time MEG analysis software via transmission control protocol/internet protocol, to control the synchronous acquisition and transfer of the data in real time from >400 channels to acquisition and analysis workstations. The successful implementation of this controller for an MEG system with a large number of channels demonstrates the feasibility of employing the present architecture in several other applications.

  10. Distributed Active Synchronization Strategy for Microgrid Seamless Reconnection to the Grid under Unbalance and Harmonic Distortion

    DEFF Research Database (Denmark)

    Tang, Fen; Guerrero, Josep M.; Vasquez, Juan Carlos

    2015-01-01

    Microgrids can operate in both grid-connected and islanded modes. In order to seamlessly transfer from islanded to grid-connected modes, it is necessary to synchronize microgrid voltage, frequency and phase to the main grid. However, since the microgrid is often based on power electronics...... converters, the synchronization process is quite different compared to the quasi-synchronism control in conventional power systems. Firstly, in order to address this concern, the microgrid synchronization criteria are derived. Based on these criteria, a novel distributed active synchronization strategy...

  11. Synchronization of Coupled Chaotic Neurons with Unknown Time Delays via Adaptive Backstepping Control

    Directory of Open Access Journals (Sweden)

    Li Yang

    2013-05-01

    Full Text Available In this study, an adaptive Neural Network (NN based backstepping controller is proposed to realize chaos synchronization of two gap junction coupled FitzHugh-Nagumo (FHN neurons with uncertain time delays. In the designed backstepping controller, a simple Radial Basis Function (RBF NN is used to approximate the uncertain nonlinear part of the error dynamical system. The weights of the NN are tuned on-line. A Lyapunov-Krasovskii function is designed to overcome the difficulties from the unknown time delays. Moreover, to relax the requirement for boundness of disturbance, an adaptive law to adapt the disturbance in real time is given. According to the Lyapunov stability theory, the stability of the closed error system is guaranteed. The control scheme is robust to the uncertainties such as approximate error, ionic channel noise and external disturbances. Chaos synchronization is obtained by proper choice of the control parameters. The simulation results demonstrate the effectiveness of the proposed control method.

  12. Adaptive Sliding Mode Control of Chaos in Permanent Magnet Synchronous Motor via Fuzzy Neural Networks

    Directory of Open Access Journals (Sweden)

    Tat-Bao-Thien Nguyen

    2014-01-01

    Full Text Available In this paper, based on fuzzy neural networks, we develop an adaptive sliding mode controller for chaos suppression and tracking control in a chaotic permanent magnet synchronous motor (PMSM drive system. The proposed controller consists of two parts. The first is an adaptive sliding mode controller which employs a fuzzy neural network to estimate the unknown nonlinear models for constructing the sliding mode controller. The second is a compensational controller which adaptively compensates estimation errors. For stability analysis, the Lyapunov synthesis approach is used to ensure the stability of controlled systems. Finally, simulation results are provided to verify the validity and superiority of the proposed method.

  13. Artificial Sun synchronous frozen orbit control scheme design based on J2 perturbation

    Institute of Scientific and Technical Information of China (English)

    Gong-Bo Wang; Yun-He Meng; Wei Zheng; Guo-Jian Tang

    2011-01-01

    Sun synchronous orbit and frozen orbit formed due to J2 perturbation have very strict constraints on orbital parameters,which have restricted the application a lot.In this paper,several control strategies were illustrated to realize Sun synchronous frozen orbit with arbitrary orbital elements using continuous low-thrust.Firstly,according to mean element method,the averaged rate of change of the orbital elements,originating from disturbing constant accelerations over one orbital period,was derived from Gauss' variation of parameters equations.Then,we proposed that binormal acceleration could be used to realize Sun synchronous orbit,and radial or transverse acceleration could be adopted to eliminate the rotation of the argument of the perigee.Finally,amending methods on the control strategies mentioned above were presented to eliminate the residual secular growth.Simulation results showed that the control strategies illustrated in this paper could realize Sun synchronous frozen orbit with arbitrary orbital elements,and can save much more energy than the schemes presented in previous studies,and have no side effect on other orbital parameters' secular motion.

  14. Sensorless Control of PM Synchronous Motors and Brushless DC Motors

    DEFF Research Database (Denmark)

    Montesinos, D.; Galceran, Samuel; Blaabjerg, Frede

    2005-01-01

    This paper provides a review of the literature addressing sensorless operation methods of PM brushless machines. The methods explained are state-of-the-art of open and closed loop control strategies. The closed loop review includes those methods based on voltage and current measurements, those...... methods based on back emf measurements, and those methods based on novel techniques not included in the previous categories. The paper concludes with a comparison table including all main features for all control strategies....

  15. Adaptive Quasi-Sliding Mode Control for Permanent Magnet DC Motor

    Directory of Open Access Journals (Sweden)

    Fredy E. Hoyos

    2013-01-01

    Full Text Available The motor speed of a buck power converter and DC motor coupled system is controlled by means of a quasi-sliding scheme. The fixed point inducting control technique and the zero average dynamics strategy are used in the controller design. To estimate the load and friction torques an online estimator, computed by the least mean squares method, is used. The control scheme is tested in a rapid control prototyping system which is based on digital signal processing for a dSPACE platform. The closed loop system exhibits adequate performance, and experimental and simulation results match.

  16. Unit Template Synchronous Reference Frame Theory Based Control Algorithm for DSTATCOM

    Science.gov (United States)

    Bangarraju, J.; Rajagopal, V.; Jayalaxmi, A.

    2014-04-01

    This article proposes new and simplified unit templates instead of standard phase locked loop (PLL) for Synchronous Reference Frame Theory Control Algorithm (SRFT). The extraction of synchronizing components (sinθ and cosθ) for parks and inverse parks transformation using standard PLL takes more execution time. This execution time in control algorithm delays the extraction of reference source current generation. The standard PLL not only takes more execution time but also increases the reactive power burden on the Distributed Static Compensator (DSTATCOM). This work proposes a unit template based SRFT control algorithm for four-leg insulated gate bipolar transistor based voltage source converter for DSTATCOM in distribution systems. This will reduce the execution time and reactive power burden on the DSTATCOM. The proposed DSTATCOM suppress harmonics, regulates the terminal voltage along with neutral current compensation. The DSTATCOM in distribution systems with proposed control algorithm is modeled and simulated using MATLAB using SIMULINK and Simpower systems toolboxes.

  17. Synchronous Control of Reconfiguration in Fractal Component-based Systems -- a Case Study

    CERN Document Server

    Bouhadiba, Tayeb; Delaval, Gwenaël; Rutten, Éric

    2011-01-01

    In the context of component-based embedded systems, the management of dynamic reconfiguration in adaptive systems is an increasingly important feature. The Fractal component-based framework, and its industrial instantiation MIND, provide for support for control operations in the lifecycle of components. Nevertheless, the use of complex and integrated architectures make the management of this reconfiguration operations difficult to handle by programmers. To address this issue, we propose to use Synchronous languages, which are a complete approach to the design of reactive systems, based on behavior models in the form of transition systems. Furthermore, the design of closed-loop reactive managers of reconfigurations can benefit from formal tools like Discrete Controller Synthesis. In this paper we describe an approach to concretely integrate synchronous reconfiguration managers in Fractal component-based systems. We describe how to model the state space of the control problem, and how to specify the control obj...

  18. Fuzzy Modeling, Tracking Control and Synchronization of the Rossler's Chaotic System

    Institute of Scientific and Technical Information of China (English)

    方建安; 范丹丹

    2004-01-01

    In this paper, a novel method to model, track control and synchronize the Rossler's chaotic system is proposed. The fuzzy logical system is used so that the fuzzy inference rule is transferred into a type of variable coef ficient nonlinear ordinary differential equation. Consequently the model of the chaotic system is obtained. Then a fuzzy tracking control and a fuzzy synchronization for chaotic systems is proposed as well. First, a known tracking control for the Rossler's system is used in this paper. We represent the Rossler's chaotic and control systems into fuzzy inference rules. Then the variable coefficient nonlinear ordinary differential equation is also got. Simulation results show that such an approach is effective and has a high precision.

  19. Chaos control and synchronization of two neurons exposed to ELF external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jiang [School of Electrical and Automation Engineering, Tianjin University, Tianjin 300072 (China)]. E-mail: jiangwang@tju.edu.cn; Zhang Ting [School of Electrical and Automation Engineering, Tianjin University, Tianjin 300072 (China); Che Yanqiu [School of Electrical and Automation Engineering, Tianjin University, Tianjin 300072 (China)

    2007-11-15

    Chaos control and synchronization of two unidirectional coupled neurons exposed to ELF electrical field via nonlinear control technique is investigated. Based on results of space-time characteristics of trans-membrane voltage, the variation of cell trans-membrane voltage exposed to extremely low frequency (ELF) electric field is analyzed. The dynamical behaviors of the modified Hodgkin-Huxley (HH) model are identified under the periodic ELF electric field using both analytical and numerical analysis. Then, using the results of the analysis, a nonlinear feedback linearization control scheme and a modified adaptive control strategy are designed to synchronize the two unidirectional coupled neurons and stabilize the chaotic trajectory of the slave system to desired periodic orbit of the master system. The simulation results demonstrated the efficiency of the proposed algorithms.

  20. Quasi-Experiments in Schools: The Case for Historical Cohort Control Groups

    Directory of Open Access Journals (Sweden)

    Tamara M. Walser

    2014-06-01

    Full Text Available There is increased emphasis on using experimental and quasi-experimental methods to evaluate educational programs; however, educational evaluators and school leaders are often faced with challenges when implementing such designs in educational settings. Use of a historical cohort control group design provides a viable option for conducting quasi-experiments in school-based outcome evaluation. A cohort is a successive group that goes through some experience together, such as a grade level or a training program. A historical cohort comparison group is a cohort group selected from pre-treatment archival data and matched to a subsequent cohort currently receiving a treatment. Although prone to the same threats to study validity as any quasi-experiment, issues related to selection, history, and maturation can be particularly challenging. However, use of a historical cohort control group can reduce noncomparability of treatment and control conditions through local, focal matching. In addition, a historical cohort control group design can alleviate concerns about denying program access to students in order to form a control group, minimize resource requirements and disruption to school routines, and make use of archival data schools and school districts collect and find meaningful.

  1. An integrated system for synchronous culture of animal cells under controlled conditions.

    Science.gov (United States)

    Mendoza-Pérez, Elena; Hernández, Vanessa; Palomares, Laura A; Serrato, José A

    2016-01-01

    The cell cycle has fundamental effects on cell cultures and their products. Tools to synchronize cultured cells allow the study of cellular physiology and metabolism at particular cell cycle phases. However, cells are most often arrested by methods that alter their homeostasis and are then cultivated in poorly controlled environments. Cell behavior could then be affected by the synchronization method and culture conditions used, and not just by the particular cell cycle phase under study. Moreover, only a few viable cells are recovered. Here, we designed an integrated system where a large number of cells from a controlled bioreactor culture is separated by centrifugal elutriation at high viabilities. In contrast to current elutriation methods, cells are injected directly from a bioreactor into an injection loop, allowing the introduction of a large number of cells into the separation chamber without stressful centrifugation. A low pulsation peristaltic pump increases the stability of the elutriation chamber. Using this approach, a large number of healthy cells at each cell cycle phase were obtained, allowing their direct inoculation into fully instrumented bioreactors. Hybridoma cells synchronized and cultured in this system behaved as expected for a synchronous culture.

  2. Control of Permanent Magnet Synchronous Generator for large wind turbines

    DEFF Research Database (Denmark)

    Busca, Cristian; Stan, Ana-Irina; Stanciu, Tiberiu

    2010-01-01

    converter topology was chosen for design. Parameters from a 2 MW wind turbine were used for system modeling. All the components of the wind turbine system (WTS), except the DC-link and the grid site converter were implemented in MATLAB/Simulink. The pitch controller was used to limit the output power...

  3. Anti-synchronizing control for supermarket refrigeration systems

    DEFF Research Database (Denmark)

    Larsen, Lars Finn Sloth; Thybo, Claus; Wisniewski, Rafal

    2007-01-01

    Abstract—A supermarket refrigeration system is a hybrid system with switched nonlinear dynamics and discrete-valued input variables such as opening/closing of valves and start/stop of compressors. Practical and simulation studies have shown that the use of distributed hysteresis controllers...

  4. Synchronization and Desynchronizing Control Schemes for Supermarket Refrigeration Systems

    DEFF Research Database (Denmark)

    Larsen, Lars Finn Sloth; Thybo, Claus Thybo; Izadi-Zamanabadi, Roozbeh

    2007-01-01

    A supermarket refrigeration system is a hybrid system with switched nonlinear dynamics and discrete-valued input variables such as opening/closing of valves and start/stop of compressors. Practical and simulation studies have shown that the use of distributed hysteresis controllers to operate...

  5. Impact Assessment of Various Methods for Control of Synchronous Generator Excitation on Quality of Transient Processes

    Directory of Open Access Journals (Sweden)

    Y. D. Filipchik

    2011-01-01

    Full Text Available The paper considers an impact of various methods for control of an exciting current pertaining to a synchronous generator on the nature of transient processes. A control algorithm for the exciting current in relation to changes in sliding and acceleration of a generator rotor has been proposed in the paper. The algorithm makes it possible to improve quality of the transient processes due to reduction of oscillation range concerning as an active power so a δ-angle as well.

  6. Super-twisting sliding mode control of torque and flux in permanent magnet synchronous machine drives

    DEFF Research Database (Denmark)

    Lascu, Christian; Boldea, Ion; Blaabjerg, Frede

    2013-01-01

    This paper investigates a permanent magnet synchronous motor drive controlled by a second-order variable structure control technique, known as the super-twisting sliding modes (STSM) control. The STSM controller is designed as a direct torque and flux controller and it works in the stator flux...... reference frame, rather than the rotor frame, as a regular vector control scheme. Another second-order sliding mode controller (SMC) was developed and compared with the STSM controller. Also for comparison, a similar direct torque control scheme based on linear PI controllers was developed and tested....... The tests show that the STSM controller displays very robust behavior, like any SMC, and it works without notable chattering, like the linear PI-based controller. The paper presents theoretical aspects for the STSM control, several design and implementation details, and comparative experimental results...

  7. The Paralleling of High Power High Frequency Amplifier Based on Synchronous and Asynchronous Control

    Institute of Scientific and Technical Information of China (English)

    程荣仓; 刘正之

    2004-01-01

    The vertical position of plasma in the HT-7U Tokamak is inherently unstable. In order to realize active stabilization, the response rate of the high-power high-frequency amplifier feeding the active control coils must be fast enough. This paper analyzes the paralleling scheme of the power amplifier through two kinds of control mode. One is the synchronous control; the other is the asynchronous control. Via the comparison of the two kinds of control mode, both of their characteristics are given in the text. At last, the analyzed result is verified by a small power experiment.

  8. Nonlinear Adaptive Slewing Motion Control of Spacecraft Truss Driven by Synchronous V-gimbaled CMG Precession

    Institute of Scientific and Technical Information of China (English)

    Zhou Di; Zhou Jingyang

    2007-01-01

    The slewing motion control of a truss arm driven by a V-gimbaled control-moment-gyro (CMG) is a nonlinear control problem.The V-gimbaled CMG consists of a pair of gyros that must precess synchronously. The moment of inertia of the system, the angular momentum of the gyros and the external disturbances are not exactly known. With the help of feedback linearization and recursive Lyapunov design method, an adaptive nonlinear controller is designed to deal with the unknown items. Performance of the proposed controller is verified by simulation.

  9. A simple and robust speed control scheme of permanent magnet synchronous motor

    Institute of Scientific and Technical Information of China (English)

    Dianguo XU; Yang GAO

    2004-01-01

    This paper presents a simple and robust speed control scheme of Permanent Magnet Synchronous Motor(PMSM). It is to achieve accurate control peffommance m the presence of load torque and plant parameter variation. A robust disturbance cancellation feed forward controller is used to estimate the torque disturbance. The simple and practical control scheme is easily implemented on a PMSM driver using a TMS320LF2407 DSP. The effectiveness of the proposed robust speed control approach is demonstrated by simulation and experimental results.

  10. Position Sensorless Control for Permanent Magnet Synchronous Motor Using Sliding Mode Observer

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    An approach of position sensorless control for permanent magnet synchronous motor (PMSM) is put forward based on a sliding mode observer. The mathematical model of PMSM in a stationary αβ reference frame is adopted, and the system is controlled by the digital signal processor (DSP) TMS320LF2407 according to the control theory of sliding mode observer. In order to achieve closed loop operation of the motor, the stator magnetic field should be vertical with the rotor magnetic field and be synchronous with rotor rotating, so the position and speed of PMSM is estimated in real time and the estimated position is modified continuously. The simulation results indicate that the proposed observer has high precision in estimation of PMSM position and speed, and is more robust to the parametric variation and load torque disturbance.

  11. Robust lag synchronization between two different chaotic systems via dual-stage impulsive control

    Institute of Scientific and Technical Information of China (English)

    Zhang Hua-Guang; Ma Tie-Dong; Fu Jie; Tong Shao-Cheng

    2009-01-01

    In this paper,an improved impulsive lag synchronization scheme for different chaotic systems with parametric uncertainties is proposed. Based on the new definition of synchronization with error bound and a novel impulsive control scheme (the so-called duai-stage impulsive control),some new and less conservative sufficient conditions are established to guarantee that the error dynamics can converge to a predetermined level,which is more reasonable and rigorous than the existing results. In particular,some simpler and more convenient conditions are derived by taking the same impulsive distances and control gains. Finally,some numerical simulations for the Lorenz system and the Chen system are given to demonstrate the effectiveness and feasibility of the proposed method.

  12. Linear matrix inequality approach for synchronization control of fuzzy cellular neural networks with mixed time delays

    Institute of Scientific and Technical Information of China (English)

    P. Balasubramaniam; M. Kalpana; R. Rakkiyappan

    2012-01-01

    Fuzzy cellular neural networks (FCNNs) are special kinds of cellular neural networks (CNNs).Each cell in an FCNN contains fuzzy operating abilities.The entire network is governed by cellular computing laws.The design of FCNNs is based on fuzzy local rules.In this paper,a linear matrix inequality (LMI) approach for synchronization control of FCNNs with mixed delays is investigated.Mixed delays include discrete time-varying delays and unbounded distributed delays.A dynamic control scheme is proposed to achieve the synchronization between a drive network and a response network.By constructing the Lyapunov-Krasovskii functional which contains a triple-integral term and the free-weighting matrices method an improved delay-dependent stability criterion is derived in terms of LMIs.The controller can be easily obtained by solving the derived LMIs.A numerical example and its simulations are presented to illustrate the effectiveness of the proposed method.

  13. A research on adaptive control to stabilize and synchronize a hyperchaotic system with uncertain parameters

    Directory of Open Access Journals (Sweden)

    Israr Ahmad

    2015-07-01

    Full Text Available This paper addresses the chaos control and synchronization problems of a hyperchaotic system. It is assumed that the parameters of the hyperchaotic system are unknown and the system is perturbed by the external disturbance. Based on the Lyapunov stability theory and the adaptive control theory, suitable nonlinear controllers are designed for the asymptotic stability of the closed-loop system both for stabilization of hyperchaos at the origin and complete synchronization of two identical hyperchaotic systems. Accordingly, suitable update laws are proposed to estimate the fully uncertain parameters. All simulation results are carried out to validate the effectiveness of the theoretical findings. The effect of external disturbance is under our discussion.

  14. Chaos control and synchronization for a special generalized Lorenz canonical system - The SM system

    Energy Technology Data Exchange (ETDEWEB)

    Liao Xiaoxin [Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Xu, F. [Department of Applied Mathematics, University of Western Ontario, London, Ontario, N6A 5B7 (Canada); Wang, P. [School of Automation, Wuhan University of Technology, Wuhan, Hubei 430070 (China); Yu Pei [Department of Applied Mathematics, The University of Western Ontario, London, Ontario, N6A 5B7 (Canada)], E-mail: pyu@pyu1.apmaths.uwo.ca

    2009-03-15

    This paper presents some simple feedback control laws to study global stabilization and global synchronization for a special chaotic system described in the generalized Lorenz canonical form (GLCF) when {tau} = -1 (which, for convenience, we call Shimizu-Morioka system, or simply SM system). For an arbitrarily given equilibrium point, a simple feedback controller is designed to globally, exponentially stabilize the system, and reach globally exponent synchronization for two such systems. Based on the system's coefficients and the structure of the system, simple feedback control laws and corresponding Lyapunov functions are constructed. Because all conditions are obtained explicitly in terms of algebraic expressions, they are easy to be implemented and applied to real problems. Numerical simulation results are presented to verify the theoretical predictions.

  15. An Introduction to Control of Chaos for Quasi-Integrable Hamiltonian Systems

    CERN Document Server

    Silva, Vilarbo da

    2013-01-01

    Quasi-integrable Hamiltonian systems are of great interest in many research fields of physics and mathematics. In these systems, the phase space has regular and chaotic trajectories. These trajectories depend in part on the magnitude of perturbation that breaks the integrability of the system. The value of the critical perturbation responsible for this transition is a key element in the control of chaos . In this paper, we explore a procedure for the control in quasi-integrable Hamiltonian systems via canonical map. Initially, we present the basic tools for this study: Hamiltonian map, linearization of the map and Chirikov criterion. Subsequently, we investigated the behavior of a wave-particle interaction front perturbation. Finally, we confront with a numerical analytical approach (iteration of the map) results, showing a good agreement.

  16. Synchronizing Spatiotemporal Chaos via a Composite Disturbance Observer-Based Sliding Mode Control

    Directory of Open Access Journals (Sweden)

    Congyan Chen

    2014-01-01

    Full Text Available The sliding mode control schemes are investigated to synchronize two spatiotemporal chaotic systems, which are two arrays of a large number of coupled chaotic oscillators. Firstly, sliding mode manifolds with the desired performance are designed. The asymptotic convergence to the origin of the synchronization errors is also proved. However, the terms from parameter fluctuations in equivalent controls are usually impossible to be measured directly. So we regard them as lumped disturbances, but, for practical application, it is difficult to obtain the upper bound of lumped disturbances in advance which often results in a conservative sliding mode control law with large control effort, causing a large amount of chattering. To reduce the chattering and improve the performance of the system, a disturbance observer is designed to estimate the lumped disturbances. A composite synchronization controller that consists of a sliding mode feedback part and a feedforward compensation part based on disturbance observer is developed. The numerical simulation results are presented to show the effectiveness of the proposed methods.

  17. Analysis, design and implementation of a quasi-proportional-resonant controller for multifunctional capacitive-coupling grid-connected inverter

    DEFF Research Database (Denmark)

    Ye, Tao; Dai, Ning-Yi; Lam, Chi-Seng

    2015-01-01

    . A Quasi-proportional-resonant (Quasi-PR) current controller is designed for the CGCI in this paper. Its modeling and parameter selection are studied in detail. In contrast with proportional-integration (PI) current controller, the Quasi-PR controller reduces steady-state error. It also generates a voltage...... and current control characteristics differs from the conventional inductive-coupling grid-connected inverter. The direct current tracking with hysteresis pulse width modulation (PWM) was used in previous studies. However, this method suffers from widely varying switching frequency and large current ripples...... reference for applying the carrier-based PWM to improve output waveform quality. Simulation results are provided to verify the Quasi-PR controller and comparison with the PI controller is also done. A lab-scale prototype is built. Experimental results are given to show the validity of the proposed control...

  18. Adaptive control and synchronization of chaotic systems consisting of Van der Pol oscillators coupled to linear oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Fotsin, Hilaire [Laboratoire d' Electronique, Departement de Physique, Faculte des Sciences, Universite de Dschang, B.P. 67 Dschang (Cameroon); INPL-CRAN, UMR CNRS-INPL-UHP 7039 ENSEM-2, Avenue de la Foret de Haye-54516, Vandoeuvre-les-Nancy Cedex (France); E-mail: hbfotsin@yahoo.fr; Bowong, Samuel [Laboratoire de Mathematiques Appliquees, Departement de Mathematiques et Informatique, Faculte des sciences, Universite de Douala, B.P. 24157 Douala (Cameroon)] e-mail: sbowong@uycdc.uninet.cm

    2006-02-01

    This paper deals with the problem of control and synchronization of coupled second-order oscillators showing a chaotic behavior. A classical feedback controller is first used to stabilize the system at its equilibrium. An adaptive observer is then designed to synchronize the states of the master and slave oscillators using a single scalar signal corresponding to an observable state variable of the driving oscillator. An interesting feature of the proposed approach is that it can be used for chaos control as well as synchronization purposes. Numerical simulations results confirming the analytical predictions are shown and pspice simulations are also performed to confirm the efficiency of the proposed control scheme.

  19. Implementation of IEEE-1588 timing and synchronization for ATCA control and data acquisition systems

    Energy Technology Data Exchange (ETDEWEB)

    Correia, Miguel, E-mail: miguelfc@lei.fis.uc.pt [Associacao EURATOM/IST, Instituto de Plasmas e Fusao Nuclear-Laboratorio Associado, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Lisboa (Portugal); Sousa, Jorge; Combo, Alvaro; Rodrigues, Antonio P.; Carvalho, Bernardo B.; Batista, Antonio J.N.; Goncalves, Bruno [Associacao EURATOM/IST, Instituto de Plasmas e Fusao Nuclear-Laboratorio Associado, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Lisboa (Portugal); Correia, Carlos M.B.A. [Grupo de Electronica e Instrumentacao do Centro de Instrumentacao, Dept. de Fisica, Universidade de Coimbra, Coimbra (Portugal); Varandas, Carlos A.F. [Associacao EURATOM/IST, Instituto de Plasmas e Fusao Nuclear-Laboratorio Associado, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Lisboa (Portugal)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer IEEE-1588 over Ethernet protocol is implemented for the synchronization of all clock signals of an ATCA AMC carrier module. Black-Right-Pointing-Pointer The ATCA hardware consists of an AMC quad-carrier main-board with PCI Express switching. Black-Right-Pointing-Pointer IEEE-1588 is to be implemented on a Virtex-6 FPGA. Black-Right-Pointing-Pointer Timing signals on the ATX-AMC4-PTP are managed and routed by a crosspoint-switch implemented on a Virtex-6 FPGA. Black-Right-Pointing-Pointer Each clock signal source may be independently located (on each of the AMC cards, RTM or ATCA backplane). - Abstract: Control and data acquisition (C and DA) systems for Fusion experiments are required to provide accurate timing and synchronization (T and S) signals to all of its components. IPFN adopted PICMG's Advanced Telecommunications Computing Architecture (ATCA) industry standard to develop C and DA instrumentation. ATCA was chosen not only for its high throughput characteristics but also for its high availability (HA) features which become of greater importance in steady-state operation scenarios. However, the specified ATCA clock and synchronization interface may be too limited for the timing and synchronization needs in advanced Physics experiments. Upcoming specification extensions, developed by the 'xTCA for Physics' workgroups, will contemplate, among others, a complementary timing specification, developed by the PICMG xTCA for Physics IO, Timing and Synchronization Technical Committee. The IEEE-1588 Precision Time Protocol (PTP) over Ethernet is one of the protocols, proposed by the Committee, aiming for precise synchronization of clocks in measurement and control systems, based on low jitter and slave-to-slave skew criteria. The paper presents an implementation of IEEE-1588 over Ethernet, in an ATCA hardware platform. The ATCA hardware consists of an Advanced Mezzanine Card (AMC) quad-carrier front board with PCI

  20. Fault tolerant synchronization of chaotic heavy symmetric gyroscope systems versus external disturbances via Lyapunov rule-based fuzzy control.

    Science.gov (United States)

    Farivar, Faezeh; Shoorehdeli, Mahdi Aliyari

    2012-01-01

    In this paper, fault tolerant synchronization of chaotic gyroscope systems versus external disturbances via Lyapunov rule-based fuzzy control is investigated. Taking the general nature of faults in the slave system into account, a new synchronization scheme, namely, fault tolerant synchronization, is proposed, by which the synchronization can be achieved no matter whether the faults and disturbances occur or not. By making use of a slave observer and a Lyapunov rule-based fuzzy control, fault tolerant synchronization can be achieved. Two techniques are considered as control methods: classic Lyapunov-based control and Lyapunov rule-based fuzzy control. On the basis of Lyapunov stability theory and fuzzy rules, the nonlinear controller and some generic sufficient conditions for global asymptotic synchronization are obtained. The fuzzy rules are directly constructed subject to a common Lyapunov function such that the error dynamics of two identical chaotic motions of symmetric gyros satisfy stability in the Lyapunov sense. Two proposed methods are compared. The Lyapunov rule-based fuzzy control can compensate for the actuator faults and disturbances occurring in the slave system. Numerical simulation results demonstrate the validity and feasibility of the proposed method for fault tolerant synchronization.

  1. A new synchronization control circuit based on FPGA for the laser range-gated imaging system

    Science.gov (United States)

    He, Shan; Li, Li; Zhou, Yan

    2009-07-01

    Synchronization control is a kernel technique of the laser range-gated (LRG) imaging system which controls the synchronization of the pulsed laser and the ICCD camera directly. It can achieve range gating effectively and improve the resolution of image precisely. Conventional control circuits which are composed of discrete components have a poor performance of anti-interference, and the transmitting signal has a bad delay which affects the conventional circuit’s precision and stabilization seriously. To solve these problems, a range-gated synchronization control circuit is designed. This circuit, which takes the advantages of FPGA’s high compact and flexibility, uses the phase-locking-loop (PLL) to multiply the global clock frequency. This design improves the precision and stabilization greatly, makes the precision up to a nanosecond level and provides a real-time selection of the values of pulse width and delays. Experiments results indicate that this circuit has a high precise and stable range-gated pulse.

  2. A new synchronization control circuit based on FPGA for the laser range-gated imaging system

    Institute of Scientific and Technical Information of China (English)

    HE Shan; LI Li; ZHOU Yan

    2009-01-01

    Synchronization control is a kernel technique of the laser range-gated (LRG) imaging system which controls the synchro-nization of the pulsed laser and the ICCD camera directly. It can achieve range gating effectively and improve the resolution of image precisely. Conventional control circuits which are composed of discrete components have a poor performance of anti-interference, and the transmitting signal has a-bad delay which affects the conventional circuit's precision and stabili-zation seriously. To solve these problems, a range-gated synchronization control circuit is designed. This circuit, which takes the advantages of FPGA's high compact and flexibility, uses the phase-locking-loop (PLL) to multiply the global clock frequency. This design improves the precision and stabilization greatly, makes the precision up to a nanosecond level and provides a real-time selection of the values of pulse width and delays. Experiments results indicate that this circuit has a high precise and stable range-gated pulse.

  3. Sensorless interior permanent magnet synchronous motor control with rotational inertia adjustment

    Directory of Open Access Journals (Sweden)

    Yongle Mao

    2016-12-01

    Full Text Available Mechanical model is generally required in high dynamic sensorless motor control schemes for zero phase lag estimation of rotor position and speed. However, the rotational inertia uncertainty will cause dynamic estimation errors, eventually resulting in performance deterioration of the sensorless control system. Therefore, this article proposes a high dynamic performance sensorless control strategy with online adjustment of the rotational inertia. Based on a synthetic back electromotive force model, the voltage equation of interior permanent magnet synchronous motor is transformed to that of an equivalent non-salient permanent magnet synchronous motor. Then, an extended nonlinear observer is designed for interior permanent magnet synchronous motor in the stator-fixed coordinate frame, with rotor position, speed and load torque simultaneously estimated. The effect of inaccurate rotational inertia on the estimation of rotor position and speed is investigated, and a novel rotational inertia adjustment approach that employs the gradient descent algorithm is proposed to suppress the dynamic estimation errors. The effectiveness of the proposed control strategy is demonstrated by experimental tests.

  4. Controlling Chaos in permanent magnet synchronous motor based on finite-time stability theory

    Institute of Scientific and Technical Information of China (English)

    Wei Du-Qu; Zhang So

    2009-01-01

    This paper reports that the performance of permanent magnet synchronous motor(PMSM)degrades due to chaos when its systemic parameters fall into a certain area.To control the undesirable chaos in PMSM,a nonlinear controller,which is simple and easy to be constructed,is presented to achieve finite-time chaos control based on the finite-time stability theory.Computer simulation results show that the proposed controller is very effective.The obtained results may help to maintain the industrial servo driven system's security operation.

  5. Chaos Control and Synchronization in Fractional-Order Lorenz-Like System

    Directory of Open Access Journals (Sweden)

    Sachin Bhalekar

    2012-01-01

    Full Text Available The present paper deals with fractional-order version of a dynamical system introduced by Chongxin et al. (2006. The chaotic behavior of the system is studied using analytic and numerical methods. The minimum effective dimension is identified for chaos to exist. The chaos in the proposed system is controlled using simple linear feedback controller. We design a controller to place the eigenvalues of the system Jacobian in a stable region. The effectiveness of the controller in eliminating the chaotic behavior from the state trajectories is also demonstrated using numerical simulations. Furthermore, we synchronize the system using nonlinear feedback.

  6. Distributed adaptive pinning control for cluster synchronization of nonlinearly coupled Lur'e networks

    Science.gov (United States)

    Tang, Ze; Park, Ju H.; Lee, Tae H.

    2016-10-01

    This paper is devoted to the cluster synchronization issue of nonlinearly coupled Lur'e networks under the distributed adaptive pinning control strategy. The time-varying delayed networks consisted of identical and nonidentical Lur'e systems are discussed respectively by applying the edge-based pinning control scheme. In each cluster, the edges belonging to the spanning tree are pinned. In view of the nonlinearly couplings of the networks, for the first time, an efficient distributed nonlinearly adaptive update law based on the local information of the dynamical behaviors of node is proposed. Sufficient criteria for the achievement of cluster synchronization are derived based on S-procedure, Kronecker product and Lyapunov stability theory. Additionally, some illustrative examples are provided to demonstrate the effectiveness of the theoretical results.

  7. Network-based H∞ synchronization control of time-delay neural networks with communication constraints

    Science.gov (United States)

    Dong, Hui; Ling, Rongyao; Zhang, Dan

    2016-03-01

    This paper is concerned with the network-based H∞ synchronization control for a class of discrete time-delay neural networks, and attention is focused on how to reduce the communication rate since the communication resource is limited. Techniques such as the measurement size reduction, signal quantization and stochastic signal transmission are introduced to achieve the above goal. An uncertain switched system model is first proposed to capture the above-networked uncertainties. Based on the switched system theory and Lyapunov stability approach, a sufficient condition is obtained such that the closed-loop synchronization system is exponentially stable in the mean-square sense with a prescribed H∞ performance level. The controller gains are determined by solving a set of linear matrix inequalities (LMIs). A numerical example is finally presented to show the effectiveness of the proposed design method.

  8. A COMPENSATOR APPLICATION USING SYNCHRONOUS MOTOR WITH A PI CONTROLLER BASED ON PIC

    Directory of Open Access Journals (Sweden)

    Ramazan BAYINDIR

    2009-01-01

    Full Text Available In this paper, PI control of a synchronous motor has been realized by using a PIC 18F452 microcontroller and it has been worked as ohmic, inductive and capacitive with different excitation currents. Instead of solving integral operation of PI control which has difficulties with conversion to the digital system, summation of all error values of a defined time period are multiplied with the sampling period. Reference values of the PI algorithm are determined with Ziegler-Nicholas method. These parameters are calculated into the microcontroller and changed according to the algorithm. In addition, this work designed to provide visualization for the users. Current, voltage and power factor data of the synchronous motor can be observed easily on the LCD instantly.

  9. Motion synchronization of dual-cylinder pneumatic servo systems with integration of adaptive robust control and cross-coupling approach

    Institute of Scientific and Technical Information of China (English)

    De-yuan MENG; Guo-liang TAO; Ai-min LI; Wei LI

    2014-01-01

    We investigate motion synchronization of dual-cylinder pneumatic servo systems and develop an adaptive robust synchronization controller. The proposed controller incorporates the cross-coupling technology into the integrated direct/indirect adaptive robust control (DIARC) architecture by feeding back the coupled position errors, which are formed by the trajectory tracking errors of two cylinders and the synchronization error between them. The controller employs an online recursive least squares estimation algorithm to obtain accurate estimates of model parameters for reducing the extent of parametric uncertainties, and uses a robust control law to attenuate the effects of parameter estimation errors, unmodeled dynamics, and disturbances. Therefore, asymptotic convergence to zero of both trajectory tracking and synchronization errors can be guaranteed. Experimental results verify the effectiveness of the proposed controller.

  10. Script Controlled Modeling of Low Noise Permanent Magnet Synchronous Machines by using JMAG Designer

    OpenAIRE

    RUSU Tiberiu; BÎRTE Ovidiu; SZABÓ Loránd; MARŢIŞ Claudia Steluţa

    2013-01-01

    This paper deals with the parameterizedmodeling of permanent magnet synchronous machines(PMSM) by means of JMAG Designer, an advancedsimulation software for electromechanical design. Thismethod enables the designer to simulate diverse topologies ofthe machines by only changing some basic parameters of thescript controlling the preprocessing phase of the simulations.For this purpose a graphical user interface for modeling themachine was built up in Visual Basic. Thru it the users canenter the ...

  11. Control bandwidth improvements in GRAVITY fringe tracker by switching to a synchronous real time computer architecture

    Science.gov (United States)

    Abuter, Roberto; Dembet, Roderick; Lacour, Sylvestre; di Lieto, Nicola; Woillez, Julien; Eisenhauer, Frank; Fedou, Pierre; Phan Duc, Than

    2016-08-01

    The new VLTI (Very Large Telescope Interferometer) 1 instrument GRAVITY5, 22, 23 is equipped with a fringe tracker16 able to stabilize the K-band fringes on six baselines at the same time. It has been designed to achieve a performance for average seeing conditions of a residual OPD (Optical Path Difference) lower than 300 nm with objects brighter than K = 10. The control loop implementing the tracking is composed of a four stage real time computer system compromising: a sensor where the detector pixels are read in and the OPD and GD (Group Delay) are calculated; a controller receiving the computed sensor quantities and producing commands for the piezo actuators; a concentrator which combines both the OPD commands with the real time tip/tilt corrections offloading them to the piezo actuator; and finally a Kalman15 parameter estimator. This last stage is used to monitor current measurements over a window of few seconds and estimate new values for the main Kalman15 control loop parameters. The hardware and software implementation of this design runs asynchronously and communicates the four computers for data transfer via the Reflective Memory Network3. With the purpose of improving the performance of the GRAVITY5, 23 fringe tracking16, 22 control loop, a deviation from the standard asynchronous communication mechanism has been proposed and implemented. This new scheme operates the four independent real time computers involved in the tracking loop synchronously using the Reflective Memory Interrupts2 as the coordination signal. This synchronous mechanism had the effect of reducing the total pure delay of the loop from 3.5 [ms] to 2.0 [ms] which then translates on a better stabilization of the fringes as the bandwidth of the system is substantially improved. This paper will explain in detail the real time architecture of the fringe tracker in both is synchronous and synchronous implementation. The achieved improvements on reducing the delay via this mechanism will be

  12. Pinning lag synchronization of drive-response complex networks via intermittent control with two different switched periods

    Science.gov (United States)

    Wang, Jian-an; Ma, Xiaohui; Wen, Xinyu; Sun, Qianlai

    2016-11-01

    This paper develops an intermittent control with two switched periods to study the pinning lag synchronization problem of drive-response complex networks. These two switched periods may have different control rates. By designing appropriate adaptive intermittent pinning controllers and using Lyapunov stability theory, some sufficient conditions for ensuring the lag synchronization between two coupled networks are derived. The minimum number of pinned nodes is determined by node dynamics, coupling strength, inner coupling matrix and a design parameter. Two simple pinning lag synchronization criteria are obtained from the proposed conditions. A numerical example is provided to illustrate the feasibility of the theoretical results.

  13. Finite-time synchronization for second-order nonlinear multi-agent system via pinning exponent sliding mode control.

    Science.gov (United States)

    Hou, Huazhou; Zhang, Qingling

    2016-11-01

    In this paper we investigate the finite-time synchronization for second-order multi-agent system via pinning exponent sliding mode control. Firstly, for the nonlinear multi-agent system, differential mean value theorem is employed to transfer the nonlinear system into linear system, then, by pinning only one node in the system with novel exponent sliding mode control, we can achieve synchronization in finite time. Secondly, considering the 3-DOF helicopter system with nonlinear dynamics and disturbances, the novel exponent sliding mode control protocol is applied to only one node to achieve the synchronization. Finally, the simulation results show the effectiveness and the advantages of the proposed method.

  14. Synchronizing chaos in an experimental chaotic pendulum using methods from linear control theory.

    Science.gov (United States)

    Kaart, S; Schouten, J C; van den Bleek, C M

    1999-05-01

    Linear feedback control, specifically model predictive control (MPC), was used successfully to synchronize an experimental chaotic pendulum both on unstable periodic and aperiodic orbits. MPC enables tuning of the controller to give an optimal controller performance. That is, both the fluctuations around the target trajectory and the necessary control actions are minimized using a least-squares solution of the linearized problem. It is thus shown that linear control methods can be applied to experimental chaotic systems, as long as an adequate model is available that can be linearized along the desired trajectory. This model is used as an observer, i.e., it is synchronized with the experimental pendulum to estimate the state of the experimental pendulum. In contrast with other chaos control procedures like the map-based Ott, Grebogi, and York method [Phys. Rev. Lett. 64, 1196 (1990)], the continuous type feedback control proposed by Pyragas [Phys. Lett. A 170, 421 (1992)], or the feedback control method recently proposed by Brown and Rulkov [Chaos 7 (3), 395 (1997)], the procedure outlined in this paper automatically results in a choice for the feedback gains that gives optimum performance, i.e., minimum fluctuations around the desired trajectory using minimum control actions.

  15. Guaranteed Cost Control for Exponential Synchronization of Cellular Neural Networks with Mixed Time-Varying Delays via Hybrid Feedback Control

    Directory of Open Access Journals (Sweden)

    T. Botmart

    2013-01-01

    Full Text Available The problem of guaranteed cost control for exponential synchronization of cellular neural networks with interval nondifferentiable and distributed time-varying delays via hybrid feedback control is considered. The interval time-varying delay function is not necessary to be differentiable. Based on the construction of improved Lyapunov-Krasovskii functionals is combined with Leibniz-Newton's formula and the technique of dealing with some integral terms. New delay-dependent sufficient conditions for the exponential synchronization of the error systems with memoryless hybrid feedback control are first established in terms of LMIs without introducing any free-weighting matrices. The optimal guaranteed cost control with linear error hybrid feedback is turned into the solvable problem of a set of LMIs. A numerical example is also given to illustrate the effectiveness of the proposed method.

  16. Nonlinear Speed Control of Permanent Magnet Synchronous Motor with Salient Poles

    Directory of Open Access Journals (Sweden)

    K. Kyslan

    2015-12-01

    Full Text Available This paper presents the speed control of permanent magnet synchronous motor with salient poles based on two-step linearization method. In the first step, the direct compensation of the nonlinearities in the equations of current is used. In the second step, the input-output linearization in the state space is used for the decoupling of flux and torque axis. Simulated results are compared to the field oriented vector control structure with PI controllers in order to show differences in the performance of both approaches.

  17. Chaos control and synchronization, with input saturation, via recurrent neural networks.

    Science.gov (United States)

    Sanchez, Edgar N; Ricalde, Luis J

    2003-01-01

    This paper deals with the adaptive tracking problem of non-linear systems in presence of unknown parameters, unmodelled dynamics and input saturation. A high order recurrent neural network is used in order to identify the unknown system and a learning law is obtained using the Lyapunov methodology. Then a stabilizing control law for the reference tracking error dynamics is developed using the Lyapunov methodology and the Sontag control law. Tracking error boundedness is established as a function of a design parameter. The new approach is illustrated by examples of complex dynamical systems: chaos control and synchronization.

  18. Analysis of load transfer stability control strategy in hydraulic synchronized continuous slippage

    Institute of Scientific and Technical Information of China (English)

    LIU Yan-bo; WU Jian-zhong; ZHANG Xuan

    2006-01-01

    Hydraulic synchronized continuous slippage technique,which integrates mechanical,electrical and hydraulic control,is introduced in this paper for the practical requirements of some construction projects.The core of this technique (the stability of the load transfer) is illustrated in detail.Three speed control strategies to transfer the load-excessive,lower and same speed-are presented to accomplish the smoothness and stability in the process of slippage.An optimization of the speed control strategy (same speed) is deduced from the modeling analysis and its validity and maneuverability are tested by practical application,which provides evidence for similar engineering in theory and practice.

  19. Synchronous temperature rate control and apparatus for refrigeration with reduced energy consumption

    Science.gov (United States)

    Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Steven J.; Litch, Andrew D.; Richmond, Peter J.; Wu, Guolian

    2015-09-22

    A refrigerator appliance configuration, and associated methods of operation, for an appliance with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper, and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The controller, by operation of the compressor, fans, damper and/or valve system, depending on the appliance configuration, synchronizes alternating cycles of cooling each compartment to a temperature approximately equal to the compartment set point temperature.

  20. Closed-Loop Control of Satellite Formations Using a Quasi-Rigid Body Formulation

    Science.gov (United States)

    Blake, Christopher; Misra, Arun K.

    2011-04-01

    Satellites in formation work together to fulfill the role of a larger satellite. The purpose of this article is to develop a quasi-rigid body formulation for modeling and controlling such a formation as a single entity. In this article, a definition of a quasi-rigid body coordinate frame is presented, which, when attached to a formation, conveniently describes its orientation in space. Using this formulation, the equations of motion for a satellite formation are recast, and natural circular formations are expressed more succinctly. When the J 2 perturbation is considered, a correction factor on the formation's spin rate is introduced. The control of a satellite formation can effectively be separated into (1) a control torque to maintain the attitude and (2) control forces that maintain the rigidity of the formation. With this in mind, a nonlinear Lyapunov controller is derived using the formulation, which acts on the formation as a whole. Simulations validate this controller and illustrate its utility for maintaining circular formations, in particular, in the presence of gravitational perturbations.

  1. Multimodel Modeling and Predictive Control for Direct-Drive Wind Turbine with Permanent Magnet Synchronous Generator

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2015-01-01

    Full Text Available The safety and reliability of the wind turbines wholly depend on the completeness and reliability of the control system which is an important problem for the validity of the wind energy conversion systems (WECSs. A method based on multimodel modeling and predictive control is proposed for the optimal operation of direct-drive wind turbine with permanent magnet synchronous generator in this paper. In this strategy, wind turbine with direct-drive permanent magnet synchronous generator is modeled and a backpropagation artificial neural network is designed to estimate the wind speed loaded into the turbine model in real time through the estimated turbine shaft speed and mechanical power. The nonlinear wind turbine system is presented by multiple linear models. The desired trajectory of the nonlinear system is decomposed to be suitable for the reference trajectory of multiple models that are presented by the linear models of the nonlinear system, which simplifies the nonlinear optimization problems and decreases the calculation difficulty. Then a multivariable control strategy based on model predictive control techniques for the control of variable-speed variable-pitch wind turbines is proposed. Finally, simulation results are given to illustrate the effectiveness of the proposed strategy, and the conclusion that multiple model predictive controller (MMPC has better control performance than the PI control method is obtained.

  2. Time-delayed feedback control optimization for quasi linear systems under random excitations

    Institute of Scientific and Technical Information of China (English)

    Xueping Li; Detain Wei; Weiqiu Zhu

    2009-01-01

    A strategy for time-delayed feedback control optimization of quasi linear systems with random excita-tion is proposed. First, the stochastic averaging method is used to reduce the dimension of the state space and to derive the stationary response of the system. Secondly, the control law is assumed to be velocity feedback control with time delay and the unknown control gains are determined by the performance indices. The response of the controlled system is predicted through solving the Fokker-Plank-Kolmogorov equation associated with the averaged It6 equation. Finally, numerical examples are used to illustrate the proposed con-trol method, and the numerical results are confirmed by Monte Carlo simulation.

  3. Fourier Series Learning Control for Torque Ripple Minimization in Permanent Magnet Synchronous Motors

    Directory of Open Access Journals (Sweden)

    Eduardo Espíndola-López

    2016-09-01

    Full Text Available A new Fourier Series Learning Controller (FSLC for velocity control on a Permanent Magnet Synchronous Motor (PMSM is proposed and implemented. An analysis of the error convergence for the FSLC is presented, and the update law for the Fourier series coefficients is specified. The field-oriented control method is used as a basic element to implement three different controllers for a PMSM. The performance of the FSLC is compared with two control methods, a classical PI (Proportional Integral controller and an artificial neural network controller. The periodic nature of torque ripple in PMSMs is considered as a periodic disturbance, which must be compensated by the controller. With the FSLC implementation, a substantial reduction of the velocity ripple is obtained. Furthermore, a higher speed of learning is achieved with the FSLC in comparison with the artificial neural network.

  4. Synchronization and Control of Halo-Chaos in Beam Transport Network with Small World Topology

    Institute of Scientific and Technical Information of China (English)

    LIU Qiang; FANG Jin-Qing; LI Yong

    2007-01-01

    The synchronous conditions of two kinds of the small-world (SW) network are studied.The small world topology can affect on dynamical behaviors of the beam transport network (BTN) largely,if the BTN is constructed with the SWtopology,the global linear coupling and special linear feedback can realize the synchronization control of beam halo-chaos as well as periodic state in the BTN with the SW topology,respectively.This important result can provide an effective way for the experimental study and the engineering design of the BTN in the high-current accelerator driven radioactive clean nuclear power systems,and may have potential use in prospective applications for halo-chaos secure communication.

  5. HEP - A semaphore-synchronized multiprocessor with central control. [Heterogeneous Element Processor

    Science.gov (United States)

    Gilliland, M. C.; Smith, B. J.; Calvert, W.

    1976-01-01

    The paper describes the design concept of the Heterogeneous Element Processor (HEP), a system tailored to the special needs of scientific simulation. In order to achieve high-speed computation required by simulation, HEP features a hierarchy of processes executing in parallel on a number of processors, with synchronization being largely accomplished by hardware. A full-empty-reserve scheme of synchronization is realized by zero-one-valued hardware semaphores. A typical system has, besides the control computer and the scheduler, an algebraic module, a memory module, a first-in first-out (FIFO) module, an integrator module, and an I/O module. The architecture of the scheduler and the algebraic module is examined in detail.

  6. Chaos Suppression in Fractional Order Permanent Magnet Synchronous Motor and PI controlled Induction motor by Extended Back stepping Control

    Science.gov (United States)

    Rajagopal, Karthikeyan; Karthikeyan, Anitha; Duraisamy, Prakash

    2016-12-01

    In this paper we investigate the control of three-dimensional non-autonomous fractional-order model of a permanent magnet synchronous motor (PMSM) and PI controlled fractional order Induction motor via recursive extended back stepping control technique. A robust generalized weighted controllers are derived to suppress the chaotic oscillations of the fractional order model. As the direct Lyapunov stability analysis of the controller is difficult for a fractional order first derivative, we have derived a new lemma to analyze the stability of the system. Numerical simulations of the proposed chaos suppression methodology are given to prove the analytical results.

  7. Torque control of synchronous and induction generators for variable speed operation of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Ola; Ulen, E. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Electric Power Engineering

    1996-12-01

    The aim of this paper is to investigate variable speed electrical systems. Synchronous generators with diode rectifiers and line-commutated thyristor converters are compared with induction generators with force commutated transistor converters and scalar control. The system characteristics are examined regarding possible speed of response (bandwidth) of the torque control, including the sensitivity to disturbances for the drive train and also the possibility to get damping of the drive train resonance. Analyses, simulations and laboratory tests with a 40 kW machine set-up have been performed. The investigation shows that the system with synchronous generator is well suited for wind power applications. A rapid standard DC-current regulator is included in the torque control and can be used for damping of the resonance. The torque control has a bandwidth up to about 3 Hz and the DC-voltage controller up to about 1 Hz. The system with induction generator with scalar control (no transformations) is more difficult to control. A linear approach is only possible up to about 1.5 Hz. In this region it turns out that the behaviour can be visualized as an added inertia on the generator side that can be rather big. 4 refs, 9 figs

  8. Direct torque control via feedback linearization for permanent magnet synchronous motor drives

    DEFF Research Database (Denmark)

    Lascu, Cristian; Boldea, Ion; Blaabjerg, Frede

    2012-01-01

    The paper describes a direct torque controlled (DTC) permanent magnet synchronous motor (PMSM) drive that employs feedback linearization and uses sliding-mode and linear controllers. We introduce a new feedback linearization approach that yields a decoupled linear PMSM model with two state...... variables, the torque and the square of stator flux magnitude. This linear model is intuitive and allows the implementation of DTC-type controllers that preserve all DTC advantages and eliminate its main drawback, the flux and torque ripple. Next, we investigate two controllers for toque and flux....... A variable structure controller (VSC) which is robust, fast, and produces low-ripple control is compared with a linear-DTC scheme which is ripple free. The torque time response is similar to a conventional DTC drive and the proposed solutions are flexible and highly tunable. We present the controller design...

  9. A Fuzzy Predictive PID Control Scheme for the Excitation System of Synchronous Generator

    Directory of Open Access Journals (Sweden)

    Zheng Yang

    2016-01-01

    Full Text Available With the rapid development of the process control theories in the electrical engineering, new control strategies which lead to better performances are urgently demanded for the excitation control of synchronous generators. For the sake of improving the convergence rate of the terminal voltage and covering the weakness in the adaptability of operational conditions of conventional controls in disturbances, a fuzzy predictive PID excitation control method is proposed in this paper. This control scheme can be divided into three steps in every sample interval: PID parameter adaptation, rolling state prediction and real-time control movement integration. Numerical simulations have been conducted under different operational conditions with the proposed method as well as the conventional ones, respectively. Experimental comparisons indicate the superiority in voltage regulation performance of the proposed method.

  10. Introducing state-trajectory control for the synchronous interleaved boost converter

    DEFF Research Database (Denmark)

    Peña-Alzola, Rafael; Ksiazek, Peter; Ordonez, Martin;

    2015-01-01

    Synchronous interleaved boost converters (SIBCs) result in lower ripple currents and bidirectional power flow. The boost topology has a non-minimum phase characteristic, producing instability problems when a large bandwidth is required. Linear controllers inherently limit the boost controller...... bandwidth, resulting in a slow response. In this paper, state-trajectory control of the SIBC based on boundary control is proposed to provide an outstanding dynamic response during start-up and sudden load changes, close to the physical limit of the system. The proposed controller and derivation provides...... a rigorous framework that deals with four switching states, and three state equations, resulting in a simple control law with very fast dynamic response. The normalized trajectories for the SIBC are determined in the geometric domain along with the control law. The exact trajectories are used for fast...

  11. A minimum-time based fuzzy logic dynamic braking resistor control for sub-synchronous resonance

    Energy Technology Data Exchange (ETDEWEB)

    Rahim, A.H.M.A. [University of Petroleum and Minerals, Dhahran (Saudi Arabia). Dept. of Electrical Engineering

    2004-03-01

    Dynamically switched resistor banks connected to the generator transformer bus are known to improve transient stability of the power system. In this article, a braking resistor control strategy designed through fuzzy logic control theory has been proposed to damp the slowly growing sub-synchronous resonant (SSR) frequency oscillations of a power system. The proposed control has been tested on the IEEE second benchmark model for SSR studies. A fuzzy logic controller designed through a classical minimum-time strategy was compared with a general fuzzy strategy employing generator speed variation and acceleration as input to the controller. It was observed that the proposed minimum-time based fuzzy controller provides better damping control; and it is computationally very efficient. (author)

  12. A Novel Adaptive Observer-Based Control Scheme for Synchronization and Suppression of a Class of Uncertain Chaotic Systems

    Institute of Scientific and Technical Information of China (English)

    WANG Jing; TAN Zhen-Yu; MA Xi-Kui; GAO Jin-Feng

    2009-01-01

    A novel adaptive observer-based control scheme is presented for synchronization and suppression of a class of uncertain chaotic system. First, an adaptive observer based on an orthogonal neural network is designed. Subsequently, the sliding mode controllers via the proposed adaptive observer are proposed for synchronization and suppression of the uncertain chaotic systems. Theoretical analysis and numerical simulation show the effectiveness of the proposed scheme.

  13. LABORATORY INVESTIGATION OF VARIABLE SPEED CONTROL OF SYNCHRONOUS GENERATOR WITH A BOOST CONVERTER FOR WIND TURBINE APPLICATIONS

    DEFF Research Database (Denmark)

    Sharma, Ranjan; Rasmussen, Tonny Wederberg

    2008-01-01

    This paper includes the experimental and simulated results of variable speed control of a synchronous generator. To achieve controlled variable speed operation, the synchronous generator is loaded with a three phase rectifier and a boost converter. The terminal voltage of the generator can...... showed some promising results and the overall system response is found positive. Also a Matlab simulation is performed for single turbine system including grid side inverter. The results are presented here in brief....

  14. Synchronization Algorithm for SDN-controlled All-Optical TDM Switching in a Random Length Ring Network

    DEFF Research Database (Denmark)

    Kamchevska, Valerija; Cristofori, Valentina; Da Ros, Francesco

    2016-01-01

    We propose and demonstrate an algorithm that allows for automatic synchronization of SDN-controlled all-optical TDM switching nodes connected in a ring network. We experimentally show successful WDM-SDM transmission of data bursts between all ring nodes.......We propose and demonstrate an algorithm that allows for automatic synchronization of SDN-controlled all-optical TDM switching nodes connected in a ring network. We experimentally show successful WDM-SDM transmission of data bursts between all ring nodes....

  15. Modeling and control of a variable-speed wind turbine equipped with permanent magnet synchronous generator

    Energy Technology Data Exchange (ETDEWEB)

    Aliprantis, D.C.; Papathanassiou, S.A.; Papadopoulos, M.P.; Kladas, A.G. [Purdue University, Electrical and Computer Engineering, West Lafayette, IN (United States)

    2000-08-01

    In this paper the operation of a variable-speed, stall regulated wind turbine equipped with a permanent magnet synchronous generator (PMSG) is examined. The emphasis is placed on the analysis of the electric part of the system, i.e. the electrical generator, the power electronics converters and the control. The operational characteristics of the machine are investigated through a series of computer simulations and the speed control system is designed to maximize the power output and achieve a smooth torque and power profile. (orig.)

  16. Enhanced Decoupled Double Synchronous Reference Frame Current Controller for Unbalanced Grid-Voltage Conditions

    DEFF Research Database (Denmark)

    Reyes, M.; Rodriguez, Pedro; Vazquez, S.;

    2012-01-01

    . In these codes, the injection of positive- and negative-sequence current components becomes necessary for fulfilling, among others, the low-voltage ride-through requirements during balanced and unbalanced grid faults. However, the performance of classical dq current controllers, applied to power converters......, under unbalanced grid-voltage conditions is highly deficient, due to the unavoidable appearance of current oscillations. This paper analyzes the performance of the double synchronous reference frame controller and improves its structure by adding a decoupling network for estimating and compensating...

  17. Control of chaos in permanent magnet synchronous motor by using optimal Lyapunov exponents placement

    Energy Technology Data Exchange (ETDEWEB)

    Ataei, Mohammad, E-mail: ataei@eng.ui.ac.i [Department of Electrical Engineering, Faculty of Engineering, University of Isfahan, Hezar-Jerib St., Postal Code 8174673441, Isfahan (Iran, Islamic Republic of); Kiyoumarsi, Arash, E-mail: kiyoumarsi@eng.ui.ac.i [Department of Electrical Engineering, Faculty of Engineering, University of Isfahan, Hezar-Jerib St., Postal Code 8174673441, Isfahan (Iran, Islamic Republic of); Ghorbani, Behzad, E-mail: behzad.ghorbani63@gmail.co [Department of Control Engineering, Najafabad Azad University, Najafabad, Isfahan (Iran, Islamic Republic of)

    2010-09-13

    Permanent Magnet Synchronous Motor (PMSM) experiences chaotic behavior for a certain range of its parameters. In this case, since the performance of the PMSM degrades, the chaos should be eliminated. In this Letter, the control of the undesirable chaos in PMSM using Lyapunov exponents (LEs) placement is proposed that is also improved by choosing optimal locations of the LEs in the sense of predefined cost function. Moreover, in order to provide the physical realization of the method, nonlinear parameter estimator for the system is suggested. Finally, to show the effectiveness of the proposed methodology, the simulation results for applying this control strategy are provided.

  18. A novel fractional sliding mode control configuration for synchronizing disturbed fractional-order chaotic systems

    Indian Academy of Sciences (India)

    KARIMA RABAH; SAMIR LADACI; MOHAMED LASHAB

    2017-09-01

    In this paper, a new design of fractional-order sliding mode control scheme is proposed for the synchronization of a class of nonlinear fractional-order systems with chaotic behaviour. The considered design approach provides a set of fractional-order laws that guarantee asymptotic stability of fractional-order chaotic systems in the sense of the Lyapunov stability theorem. Two illustrative simulation examples on the fractional-order Genesio–Tesi chaotic systems and the fractional-order modified Jerk systems are provided. These examples show the effectiveness and robustness of this control solution.

  19. Stabilizing control system preventing loss of synchronism from extension and its actual operating experience

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzawa, K.; Yanagihashi, K.; Tsukita, J. [Tokyo Electric Power Co. (Japan); Sato, M.; Nakamura, T.; Takeuchi, A.

    1995-08-01

    This paper presents a stabilizing control system that was implemented to the power system of Tokyo Electric Power Company and worked successfully, shedding the minimum number of generators and preventing the extension of loss of synchronism to the other generators when a severe fault occurred on May 22, 1992. The stabilizing control system measures voltage and current at the rate of 600 Hz, predicts the change of phase angles of generators and decides the minimum number of generators to be shed for stabilization when instability is predicted and sheds them.

  20. Synchronization control of memristor-based recurrent neural networks with perturbations.

    Science.gov (United States)

    Wang, Weiping; Li, Lixiang; Peng, Haipeng; Xiao, Jinghua; Yang, Yixian

    2014-05-01

    In this paper, the synchronization control of memristor-based recurrent neural networks with impulsive perturbations or boundary perturbations is studied. We find that the memristive connection weights have a certain relationship with the stability of the system. Some criteria are obtained to guarantee that memristive neural networks have strong noise tolerance capability. Two kinds of controllers are designed so that the memristive neural networks with perturbations can converge to the equilibrium points, which evoke human's memory patterns. The analysis in this paper employs the differential inclusions theory and the Lyapunov functional method. Numerical examples are given to show the effectiveness of our results.

  1. Clock Synchronization in Wireless Sensor Networks: A New Model and Analysis Approach Based on Networked Control Perspective

    Directory of Open Access Journals (Sweden)

    Wang Ting

    2014-01-01

    Full Text Available Motivated by the importance of the clock synchronization in wireless sensor networks (WSNs, this paper proposes a new research approach and model approach, which quantitatively analyzes clock synchronization from the perspective of modern control theory. Two kinds of control strategies are used as examples to analyze the effect of the control strategy on clock synchronization from different perspectives, namely, the single-step optimal control and the LQG global optimal control. The proposed method establishes a state space model for clock relationship, thus making dimension extension and parameter identification easier, and is robust to changes under the condition of node failures and new nodes. And through the design of different control strategies and performance index functions, the method can satisfy various requirements of the synchronization precision, convergence speed, energy consumption and the computational complexity, and so on. Finally, the simulations show that the synchronization accuracy of the proposed method is higher than that of the existing protocol, and the former convergence speed of the synchronization error is faster.

  2. A novel fault tolerant permanent magnet synchronous motor with improved optimal torque control for aerospace application

    Directory of Open Access Journals (Sweden)

    Guo Hong

    2015-04-01

    Full Text Available Improving fault tolerant performance of permanent magnet synchronous motor has always been the central issue of the electrically supplied actuator for aerospace application. In this paper, a novel fault tolerant permanent magnet synchronous motor is proposed, which is characterized by two stators and two rotors on the same shaft with a circumferential displacement of mechanical angle of 4.5°. It helps to reduce the cogging torque. Each segment of the stator and the rotor can be considered as an 8-pole/10-slot five-phase permanent magnet synchronous motor with concentrated, single-layer and alternate teeth wound winding, which enhance the fault isolation capacity of the motor. Furthermore, the motor has high phase inductance to restrain the short-circuit current. In addition, an improved optimal torque control strategy is proposed to make the motor work well under the open-circuit fault and short-circuit fault conditions. Simulation and experiment results show that the proposed fault tolerant motor system has excellent fault tolerant capacity, which is able to operate continuously under the third open-circuit fault and second short-circuit fault condition without system performance degradation, which was not available earlier.

  3. Power Maximization Control of Variable Speed Wind Generation System Using Permanent Magnet Synchronous Generator

    Science.gov (United States)

    Morimoto, Shigeo; Nakamura, Tomohiko; Takeda, Yoji

    This paper proposes the sensorless output power maximization control of the wind generation system. A permanent magnet synchronous generator (PMSG) is used as a variable speed generator in the proposed system. The generator torque is suitably controlled according to the generator speed and thus the power from a wind turbine settles down on the maximum power point by the proposed MPPT control method, where the information of wind velocity is not required. Moreover, the maximum available generated power is obtained by the optimum current vector control. The current vector of PMSG is optimally controlled according to the generator speed and the required torque in order to minimize the losses of PMSG considering the voltage and current constraints. The proposed wind power generation system can be achieved without mechanical sensors such as a wind velocity detector and a position sensor. Several experimental results show the effectiveness of the proposed control method.

  4. Discrete Optimal Multirate Techniques for Excitation Controller Design of a Synchronous Machine

    Directory of Open Access Journals (Sweden)

    D. I. Pappas

    2016-02-01

    Full Text Available An optimal control strategy based on Two-Point-Multirate Controllers (TPMRCs, is used to design a desirable excitation controller of a hydrogenerator system, in order to enhance its dynamic stability characteristics. In the TPMRCs based scheme, the control is constrained to a certain piecewise constant signal, while each of the controlled plant outputs is detected many times over a fundamental sampling period T0. On the basis on this strategy, the original problem is reduced to an associate discrete-time linear quadratic (LQ regulation problem for the performance index with cross product terms, for which a fictitious static state feedback controller is needed to be computed. Simulation results for the actual 117 MVA synchronous generator with conventional exciter supplying line to an infinite grid show the effectiveness of the proposed method which has a quite satisfactory performance.

  5. Aggression and 5HTT polymorphism in females: study of synchronized swimming and control groups.

    Science.gov (United States)

    Sysoeva, Olga V; Maluchenko, Natalia V; Timofeeva, Marina A; Portnova, Galina V; Kulikova, Maria A; Tonevitsky, Alexandr G; Ivanitsky, Alexey M

    2009-05-01

    Aggression is a heterogeneous heritable psychological trait, also influenced by environmental factors. Previous studies, mostly conducted on male population, have found some associations of the aggression with the polymorphisms of genes, regulating the activity of serotonin (5-HT) in the brain. However, psychological as well as biochemical manifestations of the aggression are different in males and females. Our study aimed to investigate the association of 5-HTT gene polymorphism with different facets of aggression (BDHI) in females. Two groups: the synchronized swimming and non-athlete control, - were examined to study the possible modulation effect of sport on the association between 5-HTT gene polymorphism and aggression. It was found that in both groups the low-active 5-HTT polymorphism (SS) was associated with increased scores on Indirect Hostility scale and decreased scores on Negativism scale, compared to LL genotype. No interaction effect between sport and 5-HTT polymorphism was found. The higher percentage of LL-carriers and lower of LS-carriers in the synchronized swimming group compared to the control one was observed. This may be the sign of the importance of LL polymorphism of 5-HTT gene, previously associated with higher resistance to stress factors, for being an athlete, although this result has to be taken cautiously keeping in mind the stratification problem. Synchronized swimmers had lower scores on Assault, Negativism, Irritability and Verbal Hostility compared to age-matched control girls (in general and for each 5-HTT genotype separately), suggesting that they may have more matured emotional system (older control group has also lower scores on these scales).

  6. Phase and Antiphase Synchronization between 3-Cell CNN and Volta Fractional-Order Chaotic Systems via Active Control

    Directory of Open Access Journals (Sweden)

    Zahra Yaghoubi

    2012-01-01

    Full Text Available Synchronization of fractional-order chaotic dynamical systems is receiving increasing attention owing to its interesting applications in secure communications of analog and digital signals and cryptographic systems. In this paper, a drive-response synchronization method is studied for “phase and antiphase synchronization” of a class of fractional-order chaotic systems via active control method, using the 3-cell and Volta systems as an example. These examples are used to illustrate the effectiveness of the synchronization method.

  7. Sensorless Speed Control of Permanent Magnet Synchronous Motors by Neural Network Algorithm

    Directory of Open Access Journals (Sweden)

    Ming-Shyan Wang

    2014-01-01

    Full Text Available The sliding mode control has the merits with respect to the variation of the disturbance and robustness. In this paper, the sensorless sliding-mode observer with least mean squared error approach for permanent magnet synchronous motor (PMSM to detect the rotor position by counter electromotive force and then compute motor speed is designed and implemented. In addition, the neural network control is also used to compensate the PI gain tuning to increase the speed accuracy without regarding the errors of the current measurement and motor noise. In this paper, a digital signal processor TMS320F2812 utilizes its high-speed ADC module to get current feedback information and thus to estimate the rotor position and takes advantage of the built-in modules to achieve SVPWM current control so that the senseless speed control will be accomplished. The correctness and effectiveness of the proposed control system will be verified from the experimental results.

  8. Robust Sliding Mode Control of Permanent Magnet Synchronous Generator-Based Wind Energy Conversion Systems

    Directory of Open Access Journals (Sweden)

    Guangping Zhuo

    2016-12-01

    Full Text Available The subject of this paper pertains to sliding mode control and its application in nonlinear electrical power systems as seen in wind energy conversion systems. Due to the robustness in dealing with unmodeled system dynamics, sliding mode control has been widely used in electrical power system applications. This paper presents first and high order sliding mode control schemes for permanent magnet synchronous generator-based wind energy conversion systems. The application of these methods for control using dynamic models of the d-axis and q-axis currents, as well as those of the high speed shaft rotational speed show a high level of efficiency in power extraction from a varying wind resource. Computer simulation results have shown the efficacy of the proposed sliding mode control approaches.

  9. Point defect reduction in wide bandgap semiconductors by defect quasi Fermi level control

    Science.gov (United States)

    Reddy, P.; Hoffmann, M. P.; Kaess, F.; Bryan, Z.; Bryan, I.; Bobea, M.; Klump, A.; Tweedie, J.; Kirste, R.; Mita, S.; Gerhold, M.; Collazo, R.; Sitar, Z.

    2016-11-01

    A theoretical framework for a general approach to reduce point defect density in materials via control of defect quasi Fermi level (dQFL) is presented. The control of dQFL is achieved via excess minority carrier generation. General guidelines for controlling dQFL that lead to a significant reduction in compensating point defects in any doped material is proposed. The framework introduces and incorporates the effects of various factors that control the efficacy of the defect reduction process such as defect level, defect formation energy, bandgap, and excess minority carrier density. Modified formation energy diagrams are proposed, which illustrate the effect of the quasi Fermi level control on the defect formation energies. These formation energy diagrams provide powerful tools to determine the feasibility and requirements to produce the desired reduction in specified point defects. An experimental study of the effect of excess minority carriers on point defect incorporation in GaN and AlGaN shows an excellent quantitative agreement with the theoretical predictions. Illumination at energies larger than the bandgap is employed as a means to generate excess minority carriers. The case studies with CN in Si doped GaN, H and VN in Mg doped GaN and VM-2ON in Si doped Al0.65Ga0.35N revealed a significant reduction in impurities in agreement with the proposed theory. Since compensating point defects control the material performance (this is particularly challenging in wide and ultra wide bandgap materials), dQFL control is a highly promising technique with wide scope and may be utilized to improve the properties of various materials systems and performance of devices based upon them.

  10. Current error vector based prediction control of the section winding permanent magnet linear synchronous motor

    Energy Technology Data Exchange (ETDEWEB)

    Hong Junjie, E-mail: hongjjie@mail.sysu.edu.cn [School of Engineering, Sun Yat-Sen University, Guangzhou 510006 (China); Li Liyi, E-mail: liliyi@hit.edu.cn [Dept. Electrical Engineering, Harbin Institute of Technology, Harbin 150000 (China); Zong Zhijian; Liu Zhongtu [School of Engineering, Sun Yat-Sen University, Guangzhou 510006 (China)

    2011-10-15

    Highlights: {yields} The structure of the permanent magnet linear synchronous motor (SW-PMLSM) is new. {yields} A new current control method CEVPC is employed in this motor. {yields} The sectional power supply method is different to the others and effective. {yields} The performance gets worse with voltage and current limitations. - Abstract: To include features such as greater thrust density, higher efficiency without reducing the thrust stability, this paper proposes a section winding permanent magnet linear synchronous motor (SW-PMLSM), whose iron core is continuous, whereas winding is divided. The discrete system model of the motor is derived. With the definition of the current error vector and selection of the value function, the theory of the current error vector based prediction control (CEVPC) for the motor currents is explained clearly. According to the winding section feature, the motion region of the mover is divided into five zones, in which the implementation of the current predictive control method is proposed. Finally, the experimental platform is constructed and experiments are carried out. The results show: the current control effect has good dynamic response, and the thrust on the mover remains constant basically.

  11. Testing a satellite automatic nutation control system. [on synchronous meteorological satellite

    Science.gov (United States)

    Hrasiar, J. A.

    1974-01-01

    Testing of a particular nutation control system for the synchronous meteorological satellite (SMS) is described. The test method and principles are applicable to nutation angle control for other satellites with similar requirements. During its ascent to synchronous orbit, a spacecraft like the SMS spins about its minimum-moment-of-inertia axis. An uncontrolled spacecraft in this state is unstable because torques due to fuel motion increase the nutation angle. However, the SMS is equipped with an automatic nutation control (ANC) system which will keep the nutation angle close to zero. Because correct operation of this system is critical to mission success, it was tested on an air-bearing table. The ANC system was mounted on the three-axis air-bearing table which was scaled to the SMS and equipped with appropriate sensors and thrusters. The table was spun up in an altitude chamber and nutation induced so that table motion simulated spacecraft motion. The ANC system was used to reduce the nutation angle. This dynamic test of the ANC system met all its objectives and provided confidence that the ANC system will control the SMS nutation angle.

  12. A Novel Direct Torque Control Permanent Magnet Synchronous Motor Drive used in Electrical Vehicle

    Directory of Open Access Journals (Sweden)

    Yaohua Li

    2011-10-01

    Full Text Available In this paper, a modified direct torque control (DTC scheme for permanent magnet synchronous motor (PMSM is investigated, which enables low torque ripple by using an improved voltage vector selection strategy instead of switching table used in conventional DTC. Based on the control of stator flux, torque angle and torque, voltage vector selection strategy of PMSM DTC drive is proposed. In the proposed voltage vector selection strategy, the applied voltage vector is determined according to outputs of hysteresis comparators for stator flux and torque, angular position of stator flux and torque angle, which is finally synthesized by space vector modulation (SVM. Modeling and experimental results for an interior PMSM used in Honda Civic 06My Hybrid electrical vehicle are given. Simulation and experimental results show torque ripple is reduced and the total harmonics of stator current is decreased when compared those of conventional DTC. And a fixed switching frequency is obtained with the help of SVM. In addition, the proposed DTC doesn’t need any additional PI controller, which maintains the simplicity in conventional DTC. Keywords: direct torque control, permanent magnet synchronous motor, electrical vehicle, torque ripple, switching frequency

  13. Development of Digital Control for High Power Permanent-Magnet Synchronous Motor Drives

    Directory of Open Access Journals (Sweden)

    Ming-Hung Chen

    2014-01-01

    Full Text Available This paper is concerned with the development of digital control system for high power permanent-magnet synchronous motor (PMSM to yield good speed regulation, low current harmonic, and stable output speed. The design of controller is conducted by digitizing the mathematical model of PMSM using impulse invariance technique. The predicted current estimator, which is insensitive to motor feedback currents, is proposed to function under stationary frame for harmonic current suppression. In the AC/DC power converter, mathematical model and dc-link voltage limit of the three-phase switch-mode rectifier are derived. In addition, a current controller under synchronous frame is introduced to reduce the current harmonics and increase the power factor on the input side. A digital control system for 75 kW PMSM is realized with digital signal processor (R5F5630EDDFP. Experimental results indicate that the total harmonic distortion of current is reduced from 4.1% to 2.8% for 50 kW output power by the proposed predicted current estimator technique.

  14. Robust Stability for Nonlinear Systems with Time-Varying Delay and Uncertainties via the H∞ Quasi-Sliding Mode Control

    OpenAIRE

    Yi-You Hou; Zhang-Lin Wan

    2014-01-01

    This paper considers the problem of the robust stability for the nonlinear system with time-varying delay and parameters uncertainties. Based on the H∞ theorem, Lyapunov-Krasovskii theory, and linear matrix inequality (LMI) optimization technique, the H∞ quasi-sliding mode controller and switching function are developed such that the nonlinear system is asymptotically stable in the quasi-sliding mode and satisfies the disturbance attenuation (H∞-norm performance). The effectiveness and accura...

  15. Master-slave exponential synchronization of delayed complex-valued memristor-based neural networks via impulsive control.

    Science.gov (United States)

    Li, Xiaofan; Fang, Jian-An; Li, Huiyuan

    2017-09-01

    This paper investigates master-slave exponential synchronization for a class of complex-valued memristor-based neural networks with time-varying delays via discontinuous impulsive control. Firstly, the master and slave complex-valued memristor-based neural networks with time-varying delays are translated to two real-valued memristor-based neural networks. Secondly, an impulsive control law is constructed and utilized to guarantee master-slave exponential synchronization of the neural networks. Thirdly, the master-slave synchronization problems are transformed into the stability problems of the master-slave error system. By employing linear matrix inequality (LMI) technique and constructing an appropriate Lyapunov-Krasovskii functional, some sufficient synchronization criteria are derived. Finally, a numerical simulation is provided to illustrate the effectiveness of the obtained theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Synchronicity from Synchronized Chaos

    Directory of Open Access Journals (Sweden)

    Gregory S. Duane

    2015-03-01

    Full Text Available The synchronization of loosely-coupled chaotic oscillators, a phenomenon investigated intensively for the last two decades, may realize the philosophical concept of “synchronicity”—the commonplace notion that related eventsmysteriously occur at the same time. When extended to continuous media and/or large discrete arrays, and when general (non-identical correspondences are considered between states, intermittent synchronous relationships indeed become ubiquitous. Meaningful synchronicity follows naturally if meaningful events are identified with coherent structures, defined by internal synchronization between remote degrees of freedom; a condition that has been posited as necessary for synchronizability with an external system. The important case of synchronization between mind and matter is realized if mind is analogized to a computer model, synchronizing with a sporadically observed system, as in meteorological data assimilation. Evidence for the ubiquity of synchronization is reviewed along with recent proposals that: (1 synchronization of different models of the same objective process may be an expeditious route to improved computational modeling and may also describe the functioning of conscious brains; and (2 the nonlocality in quantum phenomena implied by Bell’s theorem may be explained in a variety of deterministic (hidden variable interpretations if the quantum world resides on a generalized synchronization “manifold”.

  17. Sliding Mode Control and Modified Generalized Projective Synchronization of a New Fractional-Order Chaotic System

    Directory of Open Access Journals (Sweden)

    Junbiao Guan

    2015-01-01

    Full Text Available A new fractional-order chaotic system is addressed in this paper. By applying the continuous frequency distribution theory, the indirect Lyapunov stability of this system is investigated based on sliding mode control technique. The adaptive laws are designed to guarantee the stability of the system with the uncertainty and external disturbance. Moreover, the modified generalized projection synchronization (MGPS of the fractional-order chaotic systems is discussed based on the stability theory of fractional-order system, which may provide potential applications in secure communication. Finally, some numerical simulations are presented to show the effectiveness of the theoretical results.

  18. Predictive control of a chaotic permanent magnet synchronous generator in a wind turbine system

    Science.gov (United States)

    Manal, Messadi; Adel, Mellit; Karim, Kemih; Malek, Ghanes

    2015-01-01

    This paper investigates how to address the chaos problem in a permanent magnet synchronous generator (PMSG) in a wind turbine system. Predictive control approach is proposed to suppress chaotic behavior and make operating stable; the advantage of this method is that it can only be applied to one state of the wind turbine system. The use of the genetic algorithms to estimate the optimal parameter values of the wind turbine leads to maximization of the power generation. Moreover, some simulation results are included to visualize the effectiveness and robustness of the proposed method. Project supported by the CMEP-TASSILI Project (Grant No. 14MDU920).

  19. Sensorless Speed Control including zero speed of Non Salient PM Synchronous Drives

    DEFF Research Database (Denmark)

    Rasmussen, Henrik

    This paper presents a position sensorless drive of non salient pole PM synchronous motors for all speeds including zero speed. Using adaptive Lyapunov design a new approach for the design of an observer is developed. The resulting scheme leads to a nonlinear full order observer for the motor states...... including the rotor speed. Assuming motor parameters known the design achieves stability with guaranteed region of attraction even at zero speed. The control method is made robust at zero and low speed by changing the direct vector current component to a value different from zero. In order to verify...

  20. Adaptive control and synchronization of a fractional-order chaotic system

    Indian Academy of Sciences (India)

    Chunlai Li; Yaonan Tong

    2013-04-01

    In this paper, the chaotic dynamics of a three-dimensional fractional-order chaotic system is investigated. The lowest order for exhibiting chaos in the fractional-order system is obtained. Adaptive schemes are proposed for control and synchronization of the fractional-order chaotic system based on the stability theory of fractional-order dynamic systems. The presented schemes, which contain only a single-state variable, are simple and flexible. Numerical simulations are used to demonstrate the feasibility of the presented methods.

  1. Phase and Antiphase Synchronization between 3-Cell CNN and Volta Fractional-Order Chaotic Systems via Active Control

    OpenAIRE

    Zahra Yaghoubi; Hassan Zarabadipour

    2012-01-01

    Synchronization of fractional-order chaotic dynamical systems is receiving increasing attention owing to its interesting applications in secure communications of analog and digital signals and cryptographic systems. In this paper, a drive-response synchronization method is studied for “phase and antiphase synchronization” of a class of fractional-order chaotic systems via active control method, using the 3-cell and Volta systems as an example. These examples are used to illustrate the effecti...

  2. Design and Implementation of Recursive Model Predictive Control for Permanent Magnet Synchronous Motor Drives

    Directory of Open Access Journals (Sweden)

    Xuan Wu

    2015-01-01

    Full Text Available In order to control the permanent-magnet synchronous motor system (PMSM with different disturbances and nonlinearity, an improved current control algorithm for the PMSM systems using recursive model predictive control (RMPC is developed in this paper. As the conventional MPC has to be computed online, its iterative computational procedure needs long computing time. To enhance computational speed, a recursive method based on recursive Levenberg-Marquardt algorithm (RLMA and iterative learning control (ILC is introduced to solve the learning issue in MPC. RMPC is able to significantly decrease the computation cost of traditional MPC in the PMSM system. The effectiveness of the proposed algorithm has been verified by simulation and experimental results.

  3. Adaptive fuzzy dynamic surface control for the chaotic permanent magnet synchronous motor using Nussbaum gain

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Shaohua [School of Automation, Chongqing University, Chongqing 400044, China and College of Mechanical Engineering, Hunan University of Arts and Science, Hunan 415000 (China)

    2014-09-01

    This paper is concerned with the problem of adaptive fuzzy dynamic surface control (DSC) for the permanent magnet synchronous motor (PMSM) system with chaotic behavior, disturbance and unknown control gain and parameters. Nussbaum gain is adopted to cope with the situation that the control gain is unknown. And the unknown items can be estimated by fuzzy logic system. The proposed controller guarantees that all the signals in the closed-loop system are bounded and the system output eventually converges to a small neighborhood of the desired reference signal. Finally, the numerical simulations indicate that the proposed scheme can suppress the chaos of PMSM and show the effectiveness and robustness of the proposed method.

  4. Assesment and Analyze Hybride Control System in Distribution Static Synchronous Compensator Based Current Source Converter

    Directory of Open Access Journals (Sweden)

    Seyed Mohammad Ali Zanjani

    2011-10-01

    Full Text Available With the rapid technology advancement in control processes, electric utilities are experiencing more demanding requirements on the power quality from the large industrial power consumers. For achieved this purpose use of FACTS devices. One of kind compensator is D-Statcom, using in distribution system for conquest of power quality problem. This paper presents system modeling and control design techniques of distribution static synchronous compensator. For reach an optimal design, using a hybride state-feedback and d-q control systems. Using direct sampling on network parameter, than conventional control system, as well as fast dynamic responses are achieved. The derived simulations are tried to verify the result of this paper.

  5. Synchronous compartment temperature control and apparatus for refrigeration with reduced energy consumption

    Science.gov (United States)

    Gomes, Alberto Regio; Keres, Stephen L.; Kuehl, Stephen J.; Litch, Andrew D.; Richmond, Peter J.; Wu, Guolian

    2015-09-22

    A refrigerator appliance configuration, and associated methods of operation, for an appliance with a controller, a condenser, at least one evaporator, a compressor, and two refrigeration compartments. The configuration may be equipped with a variable-speed or variable-capacity compressor, variable speed evaporator or compartment fans, a damper and/or a dual-temperature evaporator with a valve system to control flow of refrigerant through one or more pressure reduction devices. The controller, by operation of the compressor, fans, damper and/or valve system, depending on the appliance configuration, controls the cooling rate in one or both compartments to synchronize, alternating cycles of cooling the compartments to their set point temperatures.

  6. Distributed embedded controller development with petri nets application to globally-asynchronous locally-synchronous systems

    CERN Document Server

    Moutinho, Filipe de Carvalho

    2016-01-01

    This book describes a model-based development approach for globally-asynchronous locally-synchronous distributed embedded controllers.  This approach uses Petri nets as modeling formalism to create platform and network independent models supporting the use of design automation tools.  To support this development approach, the Petri nets class in use is extended with time-domains and asynchronous-channels. The authors’ approach uses models not only providing a better understanding of the distributed controller and improving the communication among the stakeholders, but also to be ready to support the entire lifecycle, including the simulation, the verification (using model-checking tools), the implementation (relying on automatic code generators), and the deployment of the distributed controller into specific platforms. Uses a graphical and intuitive modeling formalism supported by design automation tools; Enables verification, ensuring that the distributed controller was correctly specified; Provides flex...

  7. Adaptive fuzzy dynamic surface control for the chaotic permanent magnet synchronous motor using Nussbaum gain

    Science.gov (United States)

    Luo, Shaohua

    2014-09-01

    This paper is concerned with the problem of adaptive fuzzy dynamic surface control (DSC) for the permanent magnet synchronous motor (PMSM) system with chaotic behavior, disturbance and unknown control gain and parameters. Nussbaum gain is adopted to cope with the situation that the control gain is unknown. And the unknown items can be estimated by fuzzy logic system. The proposed controller guarantees that all the signals in the closed-loop system are bounded and the system output eventually converges to a small neighborhood of the desired reference signal. Finally, the numerical simulations indicate that the proposed scheme can suppress the chaos of PMSM and show the effectiveness and robustness of the proposed method.

  8. 同步发电机模型在MMC并网控制中的应用%Application of Synchronous Generator's Model in Grid-connected Control of MMC

    Institute of Scientific and Technical Information of China (English)

    刘喜梅; 陈朋; 张群; 赵倩

    2013-01-01

    为了实现模块化多电平换流器MMC (modular multilevel converter)快速、平滑并网,该文将同步发电机模型与同步发电机准同步并网原理应用于MMC并网控制.先对同步发电机进行建模,根据MMC的原理及其控制原则确定控制策略,并结合同步发电机模型设计控制器控制MMC输送到电网的功率,实现功率跟踪;引入同步发电机准同步并网原理,根据锁相环PLL (phase locked loop)检测到的电网电压与MMC输出电压的相位信息自动搜寻最佳合闸时间,控制MMC在最佳时刻平滑并入电网,实现友好并网.MATLAB/Simulink仿真结果验证了该控制策略的正确性和有效性.%In order to realize modular multilevel converter (MMC) grid-connected fast and smoothly, the model and quasi synchronous principle of synchronous generator is applied to control MMC in this paper. First, a model of synchronous generator is built, and a control strategy is determined according to the theory and control principle of MMC, and a controller is designed with the model of synchronous generator to control MMC conveying power to the grid and realize power tracking. The quasi synchronous principle of synchronous generator is introduced to search the optimal switching time according to the phase of grid voltage and MMC output voltage detected by PLL, and control MMC to connect with grid smoothly at the optimal time to realize grid-connected friendly. Simulation results of MATLAB/ simulink verify the correctness and effectiveness of this control strategy.

  9. Schemes for Oestrus Synchronization Protocols and Controlled Breeding Programs in Cattle

    Science.gov (United States)

    Sabo, Y. G.; Sandabe, U. K.; Maina, V. A.; Balla, H. G.

    Today prostaglandin and progesterone has been found widely used in several schemes of oestrus synchronization and controlled breeding program. Several controlled breeding program, have been developed for synchronizing groups of all open or lactating cows within a breeding group with or without ovarian palpation. Such programs are reviewed in this article which involves extending the luteal phase by treatment with exogenous progesterone such as: progesterone treatment regimes using syncro-mate-B, progesterone releasing intravaginal device, melengesterol acetate-select and melegestrol acetate plus prostaglandin. Also reviewed in the program is the termination of the luteal phase by treatment with prostaglandin or its analogues. These includes, controlled breeding without ovarian palpation such as, the 7-days program; 11-days program, target breeding, ovsynch program, Heat synch, Cosynch and pre synch-ovsynch program. In our opinion full potential of progesterone and prostaglandin for the detection of oestrus and timed artificial insemination should be utilized. This reduces the much labour input employed in previous years. The practitioner of the livestock herd health must-develop strategies for the delivery of this technology to livestock farmers, its use and limitations.

  10. Controllable conversion of quasi-freestanding polymer chains to graphene nanoribbons

    Science.gov (United States)

    Ma, Chuanxu; Xiao, Zhongcan; Zhang, Honghai; Liang, Liangbo; Huang, Jingsong; Lu, Wenchang; Sumpter, Bobby G.; Hong, Kunlun; Bernholc, J.; Li, An-Ping

    2017-03-01

    In the bottom-up synthesis of graphene nanoribbons (GNRs) from self-assembled linear polymer intermediates, surface-assisted cyclodehydrogenations usually take place on catalytic metal surfaces. Here we demonstrate the formation of GNRs from quasi-freestanding polymers assisted by hole injections from a scanning tunnelling microscope (STM) tip. While catalytic cyclodehydrogenations typically occur in a domino-like conversion process during the thermal annealing, the hole-injection-assisted reactions happen at selective molecular sites controlled by the STM tip. The charge injections lower the cyclodehydrogenation barrier in the catalyst-free formation of graphitic lattices, and the orbital symmetry conservation rules favour hole rather than electron injections for the GNR formation. The created polymer-GNR intraribbon heterostructures have a type-I energy level alignment and strongly localized interfacial states. This finding points to a new route towards controllable synthesis of freestanding graphitic layers, facilitating the design of on-surface reactions for GNR-based structures.

  11. Fractional order sliding-mode control based on parameters auto-tuning for velocity control of permanent magnet synchronous motor.

    Science.gov (United States)

    Zhang, BiTao; Pi, YouGuo; Luo, Ying

    2012-09-01

    A fractional order sliding mode control (FROSMC) scheme based on parameters auto-tuning for the velocity control of permanent magnet synchronous motor (PMSM) is proposed in this paper. The control law of the proposed F(R)OSMC scheme is designed according to Lyapunov stability theorem. Based on the property of transferring energy with adjustable type in F(R)OSMC, this paper analyzes the chattering phenomenon in classic sliding mode control (SMC) is attenuated with F(R)OSMC system. A fuzzy logic inference scheme (FLIS) is utilized to obtain the gain of switching control. Simulations and experiments demonstrate that the proposed FROSMC not only achieve better control performance with smaller chatting than that with integer order sliding mode control, but also is robust to external load disturbance and parameter variations.

  12. LPV control for the full region operation of a wind turbine integrated with synchronous generator.

    Science.gov (United States)

    Cao, Guoyan; Grigoriadis, Karolos M; Nyanteh, Yaw D

    2015-01-01

    Wind turbine conversion systems require feedback control to achieve reliable wind turbine operation and stable current supply. A robust linear parameter varying (LPV) controller is proposed to reduce the structural loads and improve the power extraction of a horizontal axis wind turbine operating in both the partial load and the full load regions. The LPV model is derived from the wind turbine state space models extracted by FAST (fatigue, aerodynamics, structural, and turbulence) code linearization at different operating points. In order to assure a smooth transition between the two regions, appropriate frequency-dependent varying scaling parametric weighting functions are designed in the LPV control structure. The solution of a set of linear matrix inequalities (LMIs) leads to the LPV controller. A synchronous generator model is connected with the closed LPV control loop for examining the electrical subsystem performance obtained by an inner speed control loop. Simulation results of a 1.5 MW horizontal axis wind turbine model on the FAST platform illustrates the benefit of the LPV control and demonstrates the advantages of this proposed LPV controller, when compared with a traditional gain scheduling PI control and prior LPV control configurations. Enhanced structural load mitigation, improved power extraction, and good current performance were obtained from the proposed LPV control.

  13. LPV Control for the Full Region Operation of a Wind Turbine Integrated with Synchronous Generator

    Directory of Open Access Journals (Sweden)

    Guoyan Cao

    2015-01-01

    Full Text Available Wind turbine conversion systems require feedback control to achieve reliable wind turbine operation and stable current supply. A robust linear parameter varying (LPV controller is proposed to reduce the structural loads and improve the power extraction of a horizontal axis wind turbine operating in both the partial load and the full load regions. The LPV model is derived from the wind turbine state space models extracted by FAST (fatigue, aerodynamics, structural, and turbulence code linearization at different operating points. In order to assure a smooth transition between the two regions, appropriate frequency-dependent varying scaling parametric weighting functions are designed in the LPV control structure. The solution of a set of linear matrix inequalities (LMIs leads to the LPV controller. A synchronous generator model is connected with the closed LPV control loop for examining the electrical subsystem performance obtained by an inner speed control loop. Simulation results of a 1.5 MW horizontal axis wind turbine model on the FAST platform illustrates the benefit of the LPV control and demonstrates the advantages of this proposed LPV controller, when compared with a traditional gain scheduling PI control and prior LPV control configurations. Enhanced structural load mitigation, improved power extraction, and good current performance were obtained from the proposed LPV control.

  14. Control of cell interaction using quasi-monochromatic light with varying spatiotemporal coherence

    Science.gov (United States)

    Budagovsky, A. V.; Maslova, M. V.; Budagovskaya, O. N.; Budagovsky, I. A.

    2017-02-01

    By the example of plants, fungi and bacteria, we consider the possibility of controlling the interaction of cells, being in competitive, antagonistic, or parasitic relations. For this aim we used short-time irradiation (a few seconds or minutes) with the red (633 nm) quasi-monochromatic light having different spatiotemporal coherence. It is shown that the functional activity is mostly increased in the cells whose size does not exceed the coherence length and the correlation radius of the light field. Thus, in the case of cells essentially differing in size, it is possible to increase the activity of smaller cells, avoiding the stimulation of larger ones. For example, the radiation having relatively low coherence (Lcoh, rcor plant cells by pathogen fungi, while the exposure to light with less statistical regularity (Lcoh = 4 μm, rcor = 5 μm) inhibits the growth of the Fusarium microcera fungus, infected by the bacterium of the Pseudomonas species. The quasi-monochromatic radiation with sufficiently high spatiotemporal coherence stimulated all interacting species (bacteria, fungi, plants). In the considered biocenosis, the equilibrium was shifted towards the favour of organisms having the highest rate of cell division or the ones better using their adaptation potential.

  15. Quasi optimal and adaptive sparse grids with control variates for PDEs with random diffusion coefficient

    KAUST Repository

    Tamellini, Lorenzo

    2016-01-05

    In this talk we discuss possible strategies to minimize the impact of the curse of dimensionality effect when building sparse-grid approximations of a multivariate function u = u(y1, ..., yN ). More precisely, we present a knapsack approach , in which we estimate the cost and the error reduction contribution of each possible component of the sparse grid, and then we choose the components with the highest error reduction /cost ratio. The estimates of the error reduction are obtained by either a mixed a-priori / a-posteriori approach, in which we first derive a theoretical bound and then tune it with some inexpensive auxiliary computations (resulting in the so-called quasi-optimal sparse grids ), or by a fully a-posteriori approach (obtaining the so-called adaptive sparse grids ). This framework is very general and can be used to build quasi-optimal/adaptive sparse grids on bounded and unbounded domains (e.g. u depending on uniform and normal random distributions for yn), using both nested and non-nested families of univariate collocation points. We present some theoretical convergence results as well as numerical results showing the efficiency of the proposed approach for the approximation of the solution of elliptic PDEs with random diffusion coefficients. In this context, to treat the case of rough permeability fields in which a sparse grid approach may not be suitable, we propose to use the sparse grids as a control variate in a Monte Carlo simulation.

  16. Optimal Control Design of Static Synchronous Series Compensator for Damping Power System Oscillation

    Directory of Open Access Journals (Sweden)

    Prechanon Kumkratug

    2011-01-01

    Full Text Available Problem statement: In power systems, there exists a continuous challenge to improve dynamic performance of power system. Approach: The Static Synchronous Series Compensator (SSSC is a power electronic based device that has capability of controlling the power flow through the line both in steady state and dynamic sate. This study applied the SSSC to damp power system oscillation. The optimal control design is applied to derive the control strategy of SSSC. The simulation results are tested on a Single Machine Infinite bus. The proposed method is equipped in sample system with disturbance. The generator rotor angle curve of the system without and with a SSSC is plotted and compared. Results: It was found that the system without a SSSC has high variation whereas that of the system with a SSSC has much smaller variation. Conclusion: From the simulation results, the SSSC can damp power system oscillation.

  17. SOC Synchronization Control Method of Electric Vehicles Considering Customers' Convenience for Suppression of System Frequency Fluctuation

    Science.gov (United States)

    Shimizu, Koichiro; Masuta, Taisuke; Ota, Yutaka; Yokoyama, Akihiko

    Nowadays, a large integration of photovoltaic and wind power generations causes an imbalance between supply and demand in power systems because their outputs are intermittent. To solve the mentioned problem, Vehicle-to-Grid (V2G), which is one of the smart grid technologies, has gained much attention. Under the concept of V2G, batteries of Electric Vehicles (EVs) can be used as Battery Storage Energy Systems (BESS) in the power system. In this paper, we are developing a new Load Frequency Control (LFC) method using EVs, which is named the State Of Charge (SOC) synchronization control. In the proposal control method, a number of EVs in the power system can be considered as one large-capacity BESS. Moreover, the EVs can be plugged-in/out whenever the users want to and can store the sufficient energy for the next trip at plug-out.

  18. Synchronization between integer-order chaotic systems and a class of fractional-order chaotic systems via sliding mode control.

    Science.gov (United States)

    Chen, Diyi; Zhang, Runfan; Sprott, J C; Chen, Haitao; Ma, Xiaoyi

    2012-06-01

    In this paper, we focus on the synchronization between integer-order chaotic systems and a class of fractional-order chaotic system using the stability theory of fractional-order systems. A new sliding mode method is proposed to accomplish this end for different initial conditions and number of dimensions. More importantly, the vector controller is one-dimensional less than the system. Furthermore, three examples are presented to illustrate the effectiveness of the proposed scheme, which are the synchronization between a fractional-order Chen chaotic system and an integer-order T chaotic system, the synchronization between a fractional-order hyperchaotic system based on Chen's system and an integer-order hyperchaotic system, and the synchronization between a fractional-order hyperchaotic system based on Chen's system and an integer-order Lorenz chaotic system. Finally, numerical results are presented and are in agreement with theoretical analysis.

  19. Improved inertial control for permanent magnet synchronous generator wind turbine generators

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ziping; Gao, Wenzhong; Wang, Xiao; Kang, Moses; Hwang, Min; Kang, Yong Cheol; Gevogian, Vahan; Muljadi, Eduard

    2016-05-31

    With increasing integrations of large-scale systems based on permanent magnet synchronous generator wind turbine generators (PMSG-WTGs), the overall inertial response of a power system will tend to deteriorate as a result of the decoupling of rotor speed and grid frequency through the power converter as well as the scheduled retirement of conventional synchronous generators. Thus, PMSG-WTGs can provide value to an electric grid by contributing to the system's inertial response through the inherent kinetic energy stored in their rotating masses and fast power converter control. In this study, an improved inertial control method based on the maximum power point tracking operation curve is introduced to enhance the overall frequency support capability of PMSG-WTGs in the case of large supply-demand imbalances. Moreover, this method is implemented in the CART2-PMSG integrated model in MATLAB/Simulink to investigate its impact on the wind turbine's structural loads during the inertial response process. Simulation results indicate that the proposed method can effectively reduce the frequency nadir, arrest the rate of change of frequency, and alleviate the secondary frequency dip while imposing no negative impact on the major mechanical components of the wind turbine.

  20. Tonic GABAA conductance bidirectionally controls interneuron firing pattern and synchronization in the CA3 hippocampal network.

    Science.gov (United States)

    Pavlov, Ivan; Savtchenko, Leonid P; Song, Inseon; Koo, Jaeyeon; Pimashkin, Alexey; Rusakov, Dmitri A; Semyanov, Alexey

    2014-01-07

    The spiking output of interneurons is key for rhythm generation in the brain. However, what controls interneuronal firing remains incompletely understood. Here we combine dynamic clamp experiments with neural network simulations to understand how tonic GABAA conductance regulates the firing pattern of CA3 interneurons. In baseline conditions, tonic GABAA depolarizes these cells, thus exerting an excitatory action while also reducing the excitatory postsynaptic potential (EPSP) amplitude through shunting. As a result, the emergence of weak tonic GABAA conductance transforms the interneuron firing pattern driven by individual EPSPs into a more regular spiking mode determined by the cell intrinsic properties. The increased regularity of spiking parallels stronger synchronization of the local network. With further increases in tonic GABAA conductance the shunting inhibition starts to dominate over excitatory actions and thus moderates interneuronal firing. The remaining spikes tend to follow the timing of suprathreshold EPSPs and thus become less regular again. The latter parallels a weakening in network synchronization. Thus, our observations suggest that tonic GABAA conductance can bidirectionally control brain rhythms through changes in the excitability of interneurons and in the temporal structure of their firing patterns.

  1. LVRT SCHEME OF WIND ENERGY SYSTEM USING PERMANENT MAGNET SYNCHRONOUS GENERATOR AND HYSTERESIS CURRENT CONTROLLER

    Directory of Open Access Journals (Sweden)

    E.RAJENDRAN

    2013-04-01

    Full Text Available In this research paper provided the information about low-voltage ride-through (LVRT scheme for the permanent magnet synchronous generator (PMSG, and wind energy conversion system. The dc-link voltage is uncomfortable by the generator side converter instead of the grid-side converter (GSC. Considering the nonlinear correlation between the generator speed (ωm and the dc-link voltage (Vdc, a dc-link Voltage controller is anticipated using a hysteresis current controller. Among all, low-voltage ride-through has been fundamental in the field, which is one of the most important challenges for wind energy conversion system. It is essential to design an included controller to protect the converter from overvoltage/overcurrent and to support the grid voltage during faults and recoveries. A unified dc-link voltage control scheme and hysteresis current controller based wind energy conversion system is proposed. The controllers for grid-side converters are coordinated to provide fault ride-through capability. The generator side is forced by space vector modulationand grid side implemented hysteresis current controller. The Grid Side Controller controls the grid active power and maximum power deliver to the grid. The ability of this control algorithm has been confirmed by simulation results.

  2. Control-Oriented Model of a Generating Set Comprising a Diesel Engine and a Synchronous Generator

    Directory of Open Access Journals (Sweden)

    Mutaz Tuffaha

    2015-10-01

    Full Text Available A generating set (Genset comprises a prime mover such as a Diesel Engine, and a synchronous generator. The most important controllers of such systems are the speed governor to regulate the engine or shaft speed and the automatic voltage regulator (AVR to regulate the terminal voltage. The speed governor is a PID controller that uses the difference between the speed and its desired value as a feedback signal to change the fuel mass input by changing the fuel rack position. AVR is also a PID that uses the difference between the terminal voltage of the generator and its desired value, and changes it by manipulating the voltage of the field excitation circuit. Thus, the two controllers act separately. That is to say, if the speed varies from the desired value, the speed governor will react, while the AVR will not react as long as the voltage is stable, and vice versa. In this work, a control-oriented model is suggested for a Genset, and then a controller, that regulates the shaft speed and the terminal voltage, is designed by feedback linearisation. The proposed controller has two inputs: the fuel mass and the field circuit voltage. Simulations show that the proposed controller makes the two inputs act, simultaneously. Thus, any change of the speed e.g., forces the two input controls to react, in contrast to the ordinary PID controllers. Further, we discuss the robustness of the proposed controller to uncertainties and time delay.

  3. Analysis, Design, and Experimental Verification of A Synchronous Reference Frame Voltage Control for Single-Phase Inverters

    DEFF Research Database (Denmark)

    Monfared, Mohammad; Golestan, Saeed; Guerrero, Josep M.

    2014-01-01

    damping and improve both transient and steady-state performances, a voltage decoupling feedforward to improve the system robustness, and a multi-resonant harmonic compensator to prevent low-order load current harmonics to distort the inverter output voltage. Since, the voltage loop works......Control of three-phase power converters in the synchronous reference frame is now a mature and well developed research topic. However, for single-phase converters, it is not as well-established as three-phase applications. This paper deals with the design of a synchronous reference frame multi......-loop control strategy for single phase inverter-based islanded distributed generation (DG) systems. The proposed controller uses a synchronous reference frame PI (SRFPI) controller to regulate the instantaneous output voltage, a capacitor current shaping loop in the stationary reference frame to provide active...

  4. Synchronic, optical transmission data link integrated with FPGA circuits (for TESLA LLRF control system)

    Energy Technology Data Exchange (ETDEWEB)

    Zielinski, J.S.

    2006-07-15

    The X-ray free-electron laser X-FEL that is being planned at the DESY research center in cooperation with European partners will produce high-intensity ultra-short X-ray flashes with the properties of laser light. This new light source, which can only be described in terms of superlatives, will open up a whole range of new possibilities for the natural sciences. It could also offer very promising opportunities for industrial users. SIMCON (SIMulator and CONtroller) is the project of the fast, low latency digital controller dedicated to the LLRF1 system in VUV FEL experiment It is being developed by the ELHEP2 group in the Institute of Electronic Systems at Warsaw University of Technology. The main purpose of the project is to create a controller to stabilize the vector sum of fields in cavities of one cryo-module in the experiment. The device can be also used as the simulator of the cavity and test bench for other devices. The synchronic, optical link project was made for the accelerator X-FEL laser TESLA, the LLRF control system experiment at DESY, Hamburg. The control and diagnostic data is transmitted up to 2.5Gbit/s through a plastic fiber in a distance up to a few hundred meters. The link is synchronized once after power up, and never resynchronized when data is transmitted with maximum speed. The one way link bit error rate is less then 10{sup -15}. The transceiver component written in VHDL that works in the dedicated Altera registered Stratix registered GX FPGA circuit. During the work in the PERG laboratory a 2,5Gbit/s serial link with the long vector parallel interface transceiver was created. Long-Data-Vector transceiver transmits 16bit vector each 8ns with 120ns latency. (orig.)

  5. The Simulation Research on Fuzzy Quasi PR Control of PV Grid Connected Inverter%光伏并网逆变器模糊准 PR 控制仿真研究

    Institute of Scientific and Technical Information of China (English)

    姚鑫; 罗晓曙; 廖志贤; 李志红

    2014-01-01

    针对光伏并网逆变器系统的非线性特性,在固定参数 PR 控制方法的基础上,提出了一种模糊准 PR 控制方法。首先介绍单相光伏并网逆变器的结构,并分析准 PR 控制的实现算法、离散化和谐波滤除,然后把模糊控制和准 PR 控制结合应用于并网逆变器同步控制。最后利用 Matlab / simulink 平台进行仿真实验,结果表明:与准 PR 方法相比,所提出的控制方法可使电网电流同步误差更小,适应性和抗干扰性更强,因而具有较好的应用价值。%A fuzzy quasi PR method is proposed for the nonlinear characteristics of photovoltaic grid connected inverter system based on the research on the PR control method with fixed parameters. Firstly,the structure of single - phase photovoltaic grid connected inverter will be introduced. Besides,the working principle of quasi PR control algorithm, the discretization method and the harmonic filtering out will be analyzed in detail. Then,the fuzzy control and quasi PR control will be combined to be applied in grid connected inverter synchronization. At last,by using the Matlab /simulink platform simulation and experimental verification,the simulation experiment results show that the proposed fuzzy quasi PR method can effectively improve the tracking effect compared with the traditional quasi PR method. So this method has a great application value.

  6. Symplectic Synchronization of Lorenz-Stenflo System with Uncertain Chaotic Parameters via Adaptive Control

    Directory of Open Access Journals (Sweden)

    Cheng-Hsiung Yang

    2013-01-01

    Full Text Available A new symplectic chaos synchronization of chaotic systems with uncertain chaotic parameters is studied. The traditional chaos synchronizations are special cases of the symplectic chaos synchronization. A sufficient condition is given for the asymptotical stability of the null solution of error dynamics and a parameter difference. The symplectic chaos synchronization with uncertain chaotic parameters may be applied to the design of secure communication systems. Finally, numerical results are studied for symplectic chaos synchronized from two identical Lorenz-Stenflo systems in three different cases.

  7. A General Response System Control Method Based on Backstepping Design for Synchronization of Continuous Scalar Chaotic Signal

    Institute of Scientific and Technical Information of China (English)

    WANG Jing; GAO Jin-Feng; MA Xi-Kui; LIANG Zhan-Hong

    2006-01-01

    @@ A general response system control method for synchronization of continuous scalar chaotic signal is presented. The proposed canonical general response system can cover most of the well-known chaotic systems. Conversely, each of these chaotic systems can also be used to construct the general response system. Furthermore, a novel controller of the proposed response system is designed based on backstepping technique, with which the output of the general response system and the given continuous chaotic signal can synchronize perfectly. Two numerical examples are given to illustrate the effectiveness of the proposed control method.

  8. Synchronization of uncertain fractional-order chaotic systems with disturbance based on a fractional terminal sliding mode controller

    Institute of Scientific and Technical Information of China (English)

    Wang Dong-Feng; Zhang Jin-Ying; Wang Xiao-Yan

    2013-01-01

    This paper provides a novel method to synchronize uncertain fractional-order chaotic systems with external disturbance via fractional terminal sliding mode control.Based on Lyapunov stability theory,a new fractional-order switching manifold is proposed,and in order to ensure the occurrence of sliding motion in finite time,a corresponding sliding mode control law is designed.The proposed control scheme is applied to synchronize the fractional-order Lorenz chaotic system and fractional-order Chen chaotic system with uncertainty and external disturbance parameters.The simulation results show the applicability and efficiency of the proposed scheme.

  9. H∞ LPV Control with Pole Placement Constraints for Synchronous Buck Converters with Piecewise-Constant Loads

    Directory of Open Access Journals (Sweden)

    Hwanyub Joo

    2015-01-01

    Full Text Available This paper addresses the output regulation problem of synchronous buck converters with piecewise-constant load fluctuations via linear parameter varying (LPV control scheme. To this end, an output-error state-space model is first derived in the form of LPV systems so that it can involve a mismatch error that temporally arises from the process of generating a feedforward control. Then, to attenuate the mismatch error in parallel with improving the transient behavior of the converter, this paper proposes an LMI-based stabilization condition capable of achieving both H∞ and pole-placement objectives. Finally, the simulation and experimental results are provided to show the validity of our approach.

  10. Combination synchronization of time-delay chaotic system via robust adaptive sliding mode control

    Indian Academy of Sciences (India)

    AYUB KHAN; SHIKHA

    2017-06-01

    In this paper, the methodology to achieve combination synchronization of time-delay chaotic system via robust adaptive sliding mode control is introduced. The methodology is implemented by taking identical time-delayLorenz chaotic system. The selection of switching surface and the design of control law is also discussed, which is an important issue. By utilizing rigorous mathematical theory, sufficient condition is drawn for the stability of error dynamics based on Lyapunov stability theory. Theoretical results are supported with the numerical simulations. The complexity of this methodology is useful to strengthen the security of communication. The hidden message can be partitioned into several parts loaded in two master systems to improve the accuracy of communication.

  11. Combination synchronization of time-delay chaotic system via robust adaptive sliding mode control

    Science.gov (United States)

    Khan, Ayub; Shikha

    2017-06-01

    In this paper, the methodology to achieve combination synchronization of time-delay chaotic system via robust adaptive sliding mode control is introduced. The methodology is implemented by taking identical time-delay Lorenz chaotic system. The selection of switching surface and the design of control law is also discussed, which is an important issue. By utilizing rigorous mathematical theory, sufficient condition is drawn for the stability of error dynamics based on Lyapunov stability theory. Theoretical results are supported with the numerical simulations. The complexity of this methodology is useful to strengthen the security of communication. The hidden message can be partitioned into several parts loaded in two master systems to improve the accuracy of communication.

  12. A distributed Synchronous reservation multiple access control protocol for mobile Ad hoc networks

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yanling; SUN Xianpu; LI Jiandong

    2007-01-01

    This study proposes a new multiple access control protocol named distributed synchronous reservation multiple access control protocol.in which the hidden and exposed terminal problems are solved,and the quality of service(QoS)requirements for real-time traffic are guaranteed.The protocol is founded on time division multiplex address and a different type of traffic is assigned to difierent priority,according to which a node should compete for and reserve the free slots in a different method.Moreover,there is a reservation acknowledgement process before data transmit in each reserved slot,so that the intruded terminal problem is solved.The throughput and average packets drop probability of this protocol are analyzed and simulated in a fully connected network.the results of which indicate that this protocol is efficient enough to support the real-time traffic.and it is more suitable to MANETs.

  13. Head position control on quasi-static read/write tester

    Science.gov (United States)

    Kusumi, Takayuki; Yamakawa, Kiyoshi; Ouchi, Kazuhiro

    2005-02-01

    To develop high-density magnetic recording systems, a simple feedback system without servo writing was applied to a quasi-static read/write tester in which a medium reciprocates against a stand-still head. The head position signal in cross-track direction during the scanning is fed back to the high-precision piezoelectric actuator of the media stage. The stage is controlled so as to make the head/medium alignment error zero. A contact head slider assembled on a parallel-link suspension was used to evaluate the feedback system. The tester shows an accuracy of 1.5 nm in cross-track direction which is preferable for the read/write tests at future high recording densities.

  14. FPA Tuned Fuzzy Logic Controlled Synchronous Buck Converter for a Wave/SC Energy System

    Directory of Open Access Journals (Sweden)

    SAHIN, E.

    2017-02-01

    Full Text Available This paper presents a flower pollination algorithm (FPA tuned fuzzy logic controlled (FLC synchronous buck converter (SBC for an integrated wave/ supercapacitor (SC hybrid energy system. In order to compensate the irregular wave effects on electrical side of the wave energy converter (WEC, a SC unit charged by solar panels is connected in parallel to the WEC system and a SBC is controlled to provide more reliable and stable voltage to the DC load. In order to test the performance of the designed FLC, a classical proportional-integral-derivative (PID controller is also employed. Both of the controllers are optimized by FPA which is a pretty new optimization algorithm and a well-known optimization algorithm of which particle swarm optimization (PSO to minimize the integral of time weighted absolute error (ITAE performance index. Also, the other error-based objective functions are considered. The entire energy system and controllers are developed in Matlab/Simulink and realized experimentally. Real time applications are done through DS1104 Controller Board. The simulation and experimental results show that FPA tuned fuzzy logic controller provides lower value performance indices than conventional PID controller by reducing output voltage sags and swells of the wave/SC energy system.

  15. High-Order Sliding Mode-Based Synchronous Control of a Novel Stair-Climbing Wheelchair Robot

    Directory of Open Access Journals (Sweden)

    Juanxiu Liu

    2015-01-01

    Full Text Available For the attitude control of a novel stair-climbing wheelchair with inertial uncertainties and external disturbance torques, a new synchronous control method is proposed via combing high-order sliding mode control techniques with cross-coupling techniques. For this purpose, a proper controller is designed, which can improve the performance of the system under conditions of uncertainties and torque perturbations and also can guarantee the synchronization of the system. Firstly, a robust high-order sliding mode control law is designed to track the desired position trajectories effectively. Secondly, considering the coordination of the multiple joints, a high-order sliding mode synchronization controller is designed to reduce the synchronization errors and tracking errors based on the controller designed previously. Stability of the closed-loop system is proved by Lyapunov theory. The simulation is performed by MATLAB to verify the effectiveness of the proposed controller. By comparing the simulation results of two controllers, it is obvious that the proposed scheme has better performance and stronger robustness.

  16. Exponential synchronization of discontinuous neural networks with time-varying mixed delays via state feedback and impulsive control.

    Science.gov (United States)

    Yang, Xinsong; Cao, Jinde; Ho, Daniel W C

    2015-04-01

    This paper investigates drive-response synchronization for a class of neural networks with time-varying discrete and distributed delays (mixed delays) as well as discontinuous activations. Strict mathematical proof shows the global existence of Filippov solutions to neural networks with discontinuous activation functions and the mixed delays. State feedback controller and impulsive controller are designed respectively to guarantee global exponential synchronization of the neural networks. By using Lyapunov function and new analysis techniques, several new synchronization criteria are obtained. Moreover, lower bound on the convergence rate is explicitly estimated when state feedback controller is utilized. Results of this paper are new and some existing ones are extended and improved. Finally, numerical simulations are given to verify the effectiveness of the theoretical results.

  17. Transient and dynamic control of a variable speed wind turbine with synchronous generator

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, Clemens [Riso National Laboratory, Wind Energy Department, PO Box 49, DK 4000 Roskilde, (Denmark)

    2007-02-14

    In this article, a controller for dynamic and transient control of a variable speed wind turbine with a full-scale converter-connected high-speed synchronous generator is presented. First, the phenomenon of drive train oscillations in wind turbines with full-scale converter-connected generators is discussed. Based on this discussion, a controller is presented that dampens these oscillations without impacting on the power that the wind turbine injects into the grid. Since wind turbines are increasingly demanded to take over power system stabilizing and control tasks, the presented wind turbine design is further enhanced to support the grid in transient grid events. A controller is designed that allows the wind turbine to ride through transient grid faults. Since such faults often cause power system oscillations, another controller is added that enables the turbine to participate in the damping of such oscillations. It is concluded that the controllers presented keep the wind turbine stable under any operating conditions, and that they are capable of adding substantial damping to the power system. (Author).

  18. Chaotic Synchronization of the Master Slave Chaotic Systems with Different Structures Based on BANG-BANG Control Principle

    Institute of Scientific and Technical Information of China (English)

    WANG Jian-Gen; ZHAO Yi

    2005-01-01

    @@ We propose a Bang-Bang control scheme that can synchronize master-slave chaotic systems. The chaotic systems considered here are structurally different from each other. Different from some control strategies reported previously, the scheme proposed here can be taken as a generalone that is independent of the chaotic system itself.

  19. Light-controlled microwave whispering-gallery-mode quasi-optical resonators at 50W LED array illumination

    Directory of Open Access Journals (Sweden)

    V. B. Yurchenko

    2015-08-01

    Full Text Available We present experimental observations of light-controlled resonance effects in microwave whispering-gallery-mode quasi-optical dielectric-semiconductor disk resonators in the frequency band of 5 GHz to 20 GHz arising due to illumination from a light emitting diode (LED of 50W power range. We obtain huge enhancement of photo-sensitivity (growing with the resonator Q-factor that makes light-microwave interaction observable with an ordinary light (no laser at conventional brightness (like an office lighting in quasi-optical microwave structures at rather long (centimeter-scale wavelength. We also demonstrate non-conventional photo-response of Fano resonances when the light suppresses one group of resonances and enhances another group. The effects could be used for the optical control and quasi-optical switching of microwave propagation through either one or another frequency channel.

  20. Comparison of backstepping and modified active control in projective synchronization of chaos in an extended Bonhöffer–van der Pol oscillator

    Indian Academy of Sciences (India)

    K S Ojo; A N Njah; S T Ogunjo

    2013-05-01

    In this article, projective synchronization of double–scroll attractor of an extended Bonöffer–van der Pol oscillator (BVPO) is considered via the backstepping and active control techniques. In each synchronization scheme, a single control function is designed to achieve projective synchronization between two Bonhöffer–van der Pol oscillator evolving from different initial conditions. To obtain a single control function via the active control, the coefficient of the error dynamics is chosen such that the number of control functions is reduced from three to one, thereby, reducing control function complexity in design. The results show that the transient error dynamics convergence and synchronization time are achieved faster via the backstepping than that of the active control technique. However, the control function obtained via the active control is simpler with a more stable synchronization time and hence, it is more suitable for practical implementation. Numerical simulations are presented to confirm the effectiveness of the analytical results.

  1. Phase Synchronization as a Mechanism of Controlling Spatiotemporal Chaos via External Periodic Signal

    Institute of Scientific and Technical Information of China (English)

    SANG Hai-Bo; HE Kai-Fen

    2004-01-01

    @@ We find that phase synchronization (PS) is a mechanism in which the spatiotemporal chaos (STC) can be suppressed to a spatially regular (SR) state by applying an external periodic signal in a one-dimensional driven drift-wave system. In the driving wave coordinate, the nonlinear system can be transformed to a set of coupled oscillators moving in a periodic potential. In this multi-dimensional system, the internal modes are slaved one by one through PS by the control signal. Two types of responses of the internal modes to the external periodic signal are observed. For some modes, the stabilization is through frequency-locking; while for the other modes,a special kind of PS without frequency-locking, namely multi-looping PS, is developed.

  2. An improved switching control law for the optimized synchronous electric charge extraction circuit

    Science.gov (United States)

    Liu, Weiqun; Badel, Adrien; Formosa, Fabien; Liu, Congzhi; Hu, Guangdi

    2015-12-01

    Nonlinear switching interface circuits are considered as an efficient way to improve the performance of vibration energy harvesters. Among the various approaches, OSECE (Optimized Synchronous Electric Charge Extraction) exhibits satisfying properties: simple switching strategy, good performance in low coupling cases and low load dependency. However, the overdamping induced by the voltage inversion at maximal points leads to performance degeneration in high coupling cases. This paper presents an improved switching control law for the OSECE technique. The new OSECE_PT (OSECE with switching Phase Tuning) technique presented here is to let the switches act ahead or after the maximal point with a phase tuning. Theoretical analysis and numerical simulations show that the OSECE_PT technique can improve the power performance effectively and preserves desired load independence properties.

  3. Power flow control for transmission networks with implicit modeling of static synchronous series compensator

    DEFF Research Database (Denmark)

    Kamel, S.; Jurado, F.; Chen, Zhe

    2015-01-01

    This paper presents an implicit modeling of Static Synchronous Series Compensator (SSSC) in Newton–Raphson load flow method. The algorithm of load flow is based on the revised current injection formulation. The developed model of SSSC is depended on the current injection approach. In this model......, the voltage source representation of SSSC is transformed to current source, and then this current is injected at the sending and auxiliary buses. These injected currents at the terminals of SSSC are a function of the required line flow and voltage of buses. These currents can be included easily...... to the original mismatches at the terminal buses of SSSC. The developed model can be used to control active and reactive line flow together or individually. The implicit modeling of SSSC device decreases the complexity of load flow code, the modification of Jacobian matrix is avoided, the change only...

  4. Distributed adaptive tracking control for synchronization of unknown networked Lagrangian systems.

    Science.gov (United States)

    Chen, Gang; Lewis, Frank L

    2011-06-01

    This paper investigates the cooperative tracking control problem for a group of Lagrangian vehicle systems with directed communication graph topology. All the vehicles can have different dynamics. A design method for a distributed adaptive protocol is given which guarantees that all the networked systems synchronize to the motion of a target system. The dynamics of the networked systems, as well as the target system, are all assumed unknown. A neural network (NN) is used at each node to approximate the distributed dynamics. The resulting protocol consists of a simple decentralized proportional-plus-derivative term and a nonlinear term with distributed adaptive tuning laws at each node. The case with nonconstant NN approximation error is considered. There, a robust term is added to suppress the external disturbances and the approximation errors of the NNs. Simulation examples are included to demonstrate the effectiveness of the proposed algorithms.

  5. Different Types of Projective Synchronization in a Class of Time-Delayed Chaotic Systems Using Active Control Approach

    Institute of Scientific and Technical Information of China (English)

    FENG Cun-Fang; WANG Ying-Hai

    2011-01-01

    We study different types of projective synchronization (projective-anticipating, projective, and projectivelag synchronization) in a class of time-delayed chaotic systems related to optical bistable or hybrid optical bistable devices.We relax some limitations of previous work, where the scaling factor a can not be any desired value.In this paper, we achieve projective-anticipating, projective, and projective-lag synchronization without the limitation of α.A suitable controller is chosen using active control approach.Based on the Lyapunov stability theory, we derive the sutficient stability condition through theoretical analysis.The analytical results are validated by the numerical simulations using Ikeda model and Mackey-Glass model.

  6. Carrier Phase Error Detection Method and Synchronization Control of Parallel-Connected PWM Inverters without Signal Line

    Science.gov (United States)

    Kohara, Tatsuya; Noguchi, Toshihiko; Kondo, Seiji

    In recent years, parallel-operation of inverters is employed to increase reliability and capacity in an uninterruptible power supply (UPS) system. A phase error in PWM carrier-signals of each inverter causes high frequency loop current between inverters. Therefore, the PWM carrier-signal of each inverter should be adjusted in phase. This paper proposes a detection method of phase error in PWM carrier-signal and its application to synchronization control for parallel-connected inverters. A simple definite-integral circuit achieves the detection of carrier phase error from high frequency loop current using no signal line between inverters. The detected carrier phase error is applied to synchronize the PWM carrier-signal through a PI-compensator, and then the high frequency loop current can be suppressed. Several experimental test-results show the validity of the proposed detection method and synchronization control.

  7. Chaos Synchronization in the Belousov-Zhabotinsky Chemical Reaction by Adaptive Control Scheme

    Institute of Scientific and Technical Information of China (English)

    LI,Yan-Ni(李艳妮); CHEN,Lan(陈兰); CAI,Zun-Sheng(蔡遵生); ZHAO,Xue-Zhuang(赵学庄)

    2002-01-01

    The adaptive synchronization scheme proposed by John and Amritkar was employed into the Belousov-Zhabotinsky (BZ) 4-variable-Montanator model system. By the parameter adjustment, chaos synchronization has been obtained. Through calculating thetransient time, the optimal combination of the stiffness constant and damping constant was obtained. Furthermore, the relationships among the transient time, conditional Lyapunov exponents, the stiffness constant and damping constant were discussed. Also, the BZ system with the adaptive synchronization scheme might be used for the communication purposes.

  8. Synchronous control for the hydraulic width system of edger rolling mill

    Science.gov (United States)

    Ning, Shurong; Fan, Zhuoyu

    2008-10-01

    Edger rolling mill is a load system in which the upper and the lower cylinder actuate a side vertical roller at the same time. Due to the linkage of the load, the output and control of two channels influence each other. Synchronic-control issue is discussed aim to the system with serious coupling. Neural network inverse as decoupling controller is proposed to account for the complicated process dynamics characterized by nonlinear, time-varying, uncertain and load couple properties. Firstly, the reversibility of the system is analyzed and the ANN inverse dynamic is constructed based on a feed forward and neural network structure with enlarged back propagation algorithm. Secondly, the system is changed into two pseudo-linear sub-system through connecting the controlled system and inverse dynamic model in series. Aim to two pseudo-linear sub-system pole assignments method is proposed to enhance the whole system performance. A series simulation was conducted and results showed the proposed controller does better than traditional PID not only on decoupling but also on the transient response, as well as robustness under vary conditions.

  9. Analysis, Design and Implementation of a Quasi-Proportional-Resonant Controller for a Multifunctional Capacitive-Coupling Grid-Connected Inverter

    DEFF Research Database (Denmark)

    Ye, Tao; Dai, Ning-Yi; Lam, Chi-Seng

    2016-01-01

    . A comprehensive design method for the quasi-PR controller in a CGCI is developed. The quasi-PR controller is also compared with a proportional-integration current controller. Simulation results are provided to verify the effectiveness of the quasi-PR controller and its design method in a CGCI. The current....... The quasi-PR controller generates the voltage reference for use of carrier-based pulse width modulation, which can effectively reduce output current ripples. The second-order coupling impedance of the CGCI causes its modeling and controller design to differ from that of the conventional IGCI...... tracking errors are greatly reduced when the quasi-PR controller rather than the proportional-integration controller is applied. Experimental results are also provided to validate the CGCI as a multifunctional grid-connected inverter....

  10. Exponential synchronization of generalized neural networks with mixed time-varying delays and reaction-diffusion terms via aperiodically intermittent control

    Science.gov (United States)

    Gan, Qintao

    2017-01-01

    In this paper, the exponential synchronization problem of generalized reaction-diffusion neural networks with mixed time-varying delays is investigated concerning Dirichlet boundary conditions in terms of p-norm. Under the framework of the Lyapunov stability method, stochastic theory, and mathematical analysis, some novel synchronization criteria are derived, and an aperiodically intermittent control strategy is proposed simultaneously. Moreover, the effects of diffusion coefficients, diffusion space, and stochastic perturbations on the synchronization process are explicitly expressed under the obtained conditions. Finally, some numerical simulations are performed to illustrate the feasibility of the proposed control strategy and show different synchronization dynamics under a periodically/aperiodically intermittent control.

  11. Dynamical Analysis and FPGA Implementation of a Novel Hyperchaotic System and Its Synchronization Using Adaptive Sliding Mode Control and Genetically Optimized PID Control

    Directory of Open Access Journals (Sweden)

    Karthikeyan Rajagopal

    2017-01-01

    Full Text Available We announce a new 4D hyperchaotic system with four parameters. The dynamic properties of the proposed hyperchaotic system are studied in detail; the Lyapunov exponents, Kaplan-Yorke dimension, bifurcation, and bicoherence contours of the novel hyperchaotic system are derived. Furthermore, control algorithms are designed for the complete synchronization of the identical hyperchaotic systems with unknown parameters using sliding mode controllers and genetically optimized PID controllers. The stabilities of the controllers and parameter update laws are proved using Lyapunov stability theory. Use of the optimized PID controllers ensures less time of convergence and fast synchronization speed. Finally the proposed novel hyperchaotic system is realized in FPGA.

  12. Characterization of endocrine events during the periestrous period in sheep after estrous synchronization with controlled internal drug release (CIDR) device.

    Science.gov (United States)

    Van Cleeff, J; Karsch, F J; Padmanabhan, V

    1998-01-01

    The Controlled Internal Drug Releasing (CIDR) device is an intravaginal pessary containing progesterone (P4) designed for synchronizing estrus in ruminants. To date, there has been little information available on the timing, duration, and quality of the follicular phase after CIDR removal and how those characteristics compare with natural periovulatory endocrine events. The present communication relates the results of methods we used to characterize the endocrine events that followed CIDR synchronization. Breeding-season ewes were given an injection (10 mg) of Lutalyse (PGF2 alpha), and then studied during three consecutive estrous cycles, beginning in the luteal phase after the estrus induced by PGF2 alpha. Cycle 1 estrus was synchronized with 1 CIDR (Type G) inserted for 8 d beginning 10 d after PGF2 alpha. Cycles 2 and 3 were synchronized with two CIDRs for 8 d beginning 10 d after previous CIDR removal. Cycle 1 estrous behavior and serum gonadotropins showed a follicular phase (the interval from CIDR withdrawal to gonadotropin surge [surge] peak) of 38.2 +/- 1.5 hr. Two CIDRs lengthened the interval to 46.2 +/- 1.5 hr (P synchronization concentrated surges within a 24-hr period in 92% of the ewes in Cycles 1 and 2. Cycles 3 ewes were euthanized at estimated luteal, early follicular, late follicular, LH surge, and secondary FSH rise timepoints. Endocrine data and ovaries showed that 88% of the ewes synchronized with two CIDRs were in the predicted stage of the estrous cycle. These data demonstrate that the CIDR device applied during the luteal phase effectively synchronizes estrus and results in a CIDR removal-to-surge interval of similar length to a natural follicular phase.

  13. Robust Stability for Nonlinear Systems with Time-Varying Delay and Uncertainties via the H∞ Quasi-Sliding Mode Control

    Directory of Open Access Journals (Sweden)

    Yi-You Hou

    2014-01-01

    Full Text Available This paper considers the problem of the robust stability for the nonlinear system with time-varying delay and parameters uncertainties. Based on the H∞ theorem, Lyapunov-Krasovskii theory, and linear matrix inequality (LMI optimization technique, the H∞ quasi-sliding mode controller and switching function are developed such that the nonlinear system is asymptotically stable in the quasi-sliding mode and satisfies the disturbance attenuation (H∞-norm performance. The effectiveness and accuracy of the proposed methods are shown in numerical simulations.

  14. Overlapping Domain Decomposition Methods for Elliptic Quasi-Variational Inequalities Related to Impulse Control Problem with Mixed Boundary Conditions

    Indian Academy of Sciences (India)

    Mohamed Haiour; Salah Boulaaras

    2011-11-01

    In this paper we provide a maximum norm analysis of an overlapping Schwarz method on non-matching grids for quasi-variational inequalities related to impulse control problem with mixed boundary conditions. We provide that the discretization on every sub-domain converges in uniform norm. Furthermore, a result of approximation in uniform norm is given.

  15. Design of a Control Scheme for Distribution Static Synchronous Compensators with Power-Quality Improvement Capability

    Directory of Open Access Journals (Sweden)

    Pedro Roncero-Sànchez

    2014-04-01

    Full Text Available Electric power systems are among the greatest achievements of the last century. Today, important issues, such as an ever-increasing demand, the flexible and reliable integration of distributed generation or a growth in disturbing loads, must be borne in mind. In this context, smart grids play a key role, allowing better efficiency of power systems. Power electronics provides solutions to the aforementioned matters, since it allows various energy sources to be integrated into smart grids. Nevertheless, the design of the various control schemes that are necessary for the correct operation of the power-electronic interface is a very important issue that must always be taken into consideration. This paper deals with the design of the control system of a distribution static synchronous compensator (DSTATCOM based on flying-capacitor multilevel converters. The control system is tailored to compensate for both voltage sags by means of reactive-power injection and voltage imbalances caused by unbalanced loads. The design of the overall control is carried out by using the root-locus and frequency-response techniques, improving both the transient response and the steady-state error of the closed-loop system. Simulation results obtained using PSCADTM/EMTDCTM (Manitoba Hydro International Ltd., Commerce Drive, Winnipeg, MB, Canada show the resultant voltage regulation.

  16. Tobacco control policies and perinatal health: a national quasi-experimental study

    Science.gov (United States)

    Peelen, Myrthe J.; Sheikh, Aziz; Kok, Marjolein; Hajenius, Petra; Zimmermann, Luc J.; Kramer, Boris W.; Hukkelhoven, Chantal W.; Reiss, Irwin K.; Mol, Ben W.; Been, Jasper V.

    2016-01-01

    We investigated whether changes in perinatal outcomes occurred following introduction of key tobacco control policies in the Netherlands: smoke-free legislation in workplaces plus a tobacco tax increase and mass media campaign (January-February 2004); and extension of the smoke-free law to the hospitality industry, accompanied by another tax increase and mass media campaign (July 2008). This was a national quasi-experimental study using Netherlands Perinatal Registry data (2000–2011; registration: ClinicalTrials.gov NCT02189265). Primary outcome measures were: perinatal mortality, preterm birth, and being small-for-gestational age (SGA). The association with timing of the tobacco control policies was investigated using interrupted time series logistic regression analyses with adjustment for confounders. Among 2,069,695 singleton births, there were 13,027 (0.6%) perinatal deaths, 116,043 (5.6%) preterm live-births and 187,966 (9.1%) SGA live-births. The 2004 policies were not associated with significant changes in the odds of developing any of the primary outcomes. After the 2008 policy change, a -4.4% (95% CI -2.4; -6.4, p < 0.001) decrease in odds of being SGA was observed. A reduction in SGA births, but not preterm birth or perinatal mortality, was observed in the Netherlands after extension of the smoke-free workplace law to bars and restaurants in conjunction with a tax increase and mass media campaign. PMID:27103591

  17. Tobacco control policies and perinatal health: a national quasi-experimental study.

    Science.gov (United States)

    Peelen, Myrthe J; Sheikh, Aziz; Kok, Marjolein; Hajenius, Petra; Zimmermann, Luc J; Kramer, Boris W; Hukkelhoven, Chantal W; Reiss, Irwin K; Mol, Ben W; Been, Jasper V

    2016-04-22

    We investigated whether changes in perinatal outcomes occurred following introduction of key tobacco control policies in the Netherlands: smoke-free legislation in workplaces plus a tobacco tax increase and mass media campaign (January-February 2004); and extension of the smoke-free law to the hospitality industry, accompanied by another tax increase and mass media campaign (July 2008). This was a national quasi-experimental study using Netherlands Perinatal Registry data (2000-2011; registration: ClinicalTrials.gov NCT02189265). Primary outcome measures were: perinatal mortality, preterm birth, and being small-for-gestational age (SGA). The association with timing of the tobacco control policies was investigated using interrupted time series logistic regression analyses with adjustment for confounders. Among 2,069,695 singleton births, there were 13,027 (0.6%) perinatal deaths, 116,043 (5.6%) preterm live-births and 187,966 (9.1%) SGA live-births. The 2004 policies were not associated with significant changes in the odds of developing any of the primary outcomes. After the 2008 policy change, a -4.4% (95% CI -2.4; -6.4, p tax increase and mass media campaign.

  18. Motion synchronization in a dual redundant HA/EHA system by using a hybrid integrated intelligent control design

    Institute of Scientific and Technical Information of China (English)

    Waheed Ur Rehman; Wang Shaoping; Wang Xingjian; Fan Lei; Kamran Ali Shah

    2016-01-01

    This paper presents an integrated fuzzy controller design approach to synchronize a dis-similar redundant actuation system of a hydraulic actuator (HA) and an electro-hydrostatic actu-ator (EHA) with system uncertainties and disturbances. The motion synchronous control system consists of a trajectory generator, an individual position controller for each actuator, and a fuzzy force tracking controller (FFTC) for both actuators. The trajectory generator provides the desired motion dynamics and designing parameters of the trajectory which are taken according to the dynamic characteristics of the EHA. The position controller consists of a feed-forward controller and a fuzzy position tracking controller (FPTC) and acts as a decoupled controller, improving posi-tion tracking performance with the help of the feed-forward controller and the FPTC. The FFTC acts as a coupled controller and takes into account the inherent coupling effect. The simulation results show that the proposed controller not only eliminates initial force fighting by synchronizing the two actuators, but also improves disturbance rejection performance.

  19. ProjectiveSynchronization of Complex Dynamical Networks with Time-Varying Coupling Strength via Hybrid Feedback Control

    Institute of Scientific and Technical Information of China (English)

    郭晓永; 李俊民

    2011-01-01

    We introduce a hybrid feedback control scheme to design a controller for the projective synchronization of complex dynamical networks with unknown periodically time-varying parameters.A differential-difference mixed parametric learning law and an adaptive learning control law are constructed to ensure the asymptotic convergence of the error in the sense of square error norm.Moreover,numerical simulation results are used to verify the effectiveness of the proposed method.%We introduce a hybrid feedback control scheme to design a controller for the projective synchronization of complex dynamical networks with unknown periodically time-varying parameters. A differential-difference mixed parametric learning law and an adaptive learning control law are constructed to ensure the asymptotic convergence of the error in the sense of square error norm. Moreover, numerical simulation results are used to verify the effectiveness of the proposed method.

  20. Parameter identification and synchronization of an uncertain Chen chaotic system via adaptive control

    Institute of Scientific and Technical Information of China (English)

    陈士华; 赵立民; 刘杰

    2002-01-01

    A systematic design process of adaptive synchronization and parameter identification of an uncertain Chen chaotic system is provided. With this new and effective method, parameter identification and synchronization of the Chen system, with all the system parameters unknown, can be achieved simultaneously. Theoretical proof and numerical simulation demonstrate the effectiveness and feasibility of the proposed method.

  1. Resonant power converter with dead-time control of synchronous rectification circuit

    DEFF Research Database (Denmark)

    2017-01-01

    The invention relates in a first aspect to a resonant power converter comprising a synchronous rectifier for supplying a DC output voltage. The synchronous rectifier is configured for alternatingly connecting a resonant output voltage to positive and negative DC output nodes via first and second ...

  2. Synchronization in networks of minimum-phase, non-introspective agents without exchange of controller states: Homogeneous, heterogeneous, and nonlinear

    NARCIS (Netherlands)

    Grip, H°avard Fjær; Saberi, Ali; Stoorvogel, Anton A.

    2015-01-01

    We consider the synchronization problem for a class of directed networks where the agents receive relative output information from their neighbors, but lack independent information about their own state or output (they are non-introspective) and are unable to exchange internal controller states with

  3. Chaos control and synchronization in Bragg acousto-optic bistable systems driven by a separate chaotic system.

    Science.gov (United States)

    Wang, Rong; Gao, Jin-Yue

    2005-09-01

    In this paper we propose a new scheme to achieve chaos control and synchronization in Bragg acousto-optic bistable systems. In the scheme, we use the output of one system to drive two identical chaotic systems. Using the maximal conditional Lyapunov exponent (MCLE) as the criterion, we analyze the conditions for realizing chaos synchronization. Numerical calculation shows that the two identical systems in chaos with negative MCLEs and driven by a chaotic system can go into chaotic synchronization whether or not they were in chaos initially. The two systems can go into different periodic states from chaos following an inverse period-doubling bifurcation route as well when driven by a periodic system.

  4. Improving psychology students' attitudes toward people with schizophrenia: A quasi-randomized controlled study.

    Science.gov (United States)

    Magliano, Lorenza; Rinaldi, Angela; Costanzo, Regina; De Leo, Renata; Schioppa, Giustina; Petrillo, Miriam; Read, John

    2016-01-01

    Despite scientific evidence that the majority of people with schizophrenia (PWS) have personal histories of traumatic life events and adversities, their needs for psychological support often remain unmet. Poor availability of nonpharmacological therapies in schizophrenia may be partly because of professionals' attitudes toward people diagnosed with this disorder. As future health professionals, psychology students represent a target population for efforts to increase the probability that PWS will be offered effective psychological therapies. This quasi-randomized controlled study investigated the effect of an educational intervention, addressing common prejudices via scientific evidence and prerecorded audio-testimony from PWS, on the attitudes of psychology students toward PWS. Students in their fifth year of a master's degree in Psychology at the Second University of Naples, Italy were randomly assigned to an experimental group-which attended two 3-hr sessions a week apart-or to a control group. Compared with their baseline assessment, at 1-month reassessment the 76 educated students endorsed more psychosocial causes and more of them recommended psychologists in the treatment of schizophrenia. They were also more optimistic about recovery, less convinced that PWS are recognizable and unpredictable, and more convinced that treatments, pharmacological and psychological, are useful. No significant changes were found, from baseline to 1-month reassessment, in the 112 controls. At 1-month reassessment, educated students were more optimistic about recovery and less convinced that PWS are unpredictable than controls. These findings suggest that psychology students' attitudes toward PWS can be improved by training initiatives including education and indirect contact with users. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  5. Impulsive control of time-delay systems using delayed impulse and its application to impulsive master-slave synchronization

    Energy Technology Data Exchange (ETDEWEB)

    Sun Jitao [Department of Mathematics, Tongji University, Shanghai 200092 (China); Centre for Intelligent and Networked Systems, Central Queensland University, Rockhampton Qld 4702 (Australia); Han Qinglong [Centre for Intelligent and Networked Systems, Central Queensland University, Rockhampton Qld 4702 (Australia); School of Computing Sciences, Central Queensland University, Rockhampton Qld 4702 (Australia)], E-mail: q.han@cqu.edu.au; Jiang Xiefu [Centre for Intelligent and Networked Systems, Central Queensland University, Rockhampton Qld 4702 (Australia); School of Automation, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang (China)

    2008-10-13

    This Letter is concerned with impulsive control of a class of nonlinear time-delay systems. Some uniform stability criteria for the closed-loop time-delay system under delayed impulsive control are derived by using piecewise Lyapunov functions. Then the criteria are applied to impulsive master-slave synchronization of some secure communication systems with transmission delays and sample delays under delayed impulsive control. Two numerical examples are given to illustrate the effectiveness of the derived results.

  6. Magnetic Field Equivalent Current Analysis-Based Radial Force Control for Bearingless Permanent Magnet Synchronous Motors

    Directory of Open Access Journals (Sweden)

    Huangqiu Zhu

    2015-05-01

    Full Text Available Bearingless permanent magnet synchronous motors (BPMSMs, with all advantages of permanent magnet motors (PMSMs and magnetic bearings, have become an important research direction in the bearingless motor field. To realize a stable suspension for the BPMSM, accurate decoupling control between the electromagnetic torque and radial suspension force is indispensable. In this paper, a concise and reliable analysis method based on a magnetic field equivalent current is presented. By this analysis method, the operation principle is analyzed theoretically, and the necessary conditions to produce a stable radial suspension force are confirmed. In addition, mathematical models of the torque and radial suspension force are established which is verified by the finite element analysis (FEA software ANSYS. Finally, an experimental prototype of a 2-4 poles surface-mounted BPMSM is tested with the customized control strategy. The simulation and experimental results have shown that the motor has good rotation and suspension performance, and validated the accuracy of the proposed analysis method and the feasibility of the control strategy.

  7. Hyperchaos, adaptive control and synchronization of a novel 4-D hyperchaotic system with two quadratic nonlinearities

    Directory of Open Access Journals (Sweden)

    Vaidyanathan Sundarapandian

    2016-12-01

    Full Text Available This research work announces an eleven-term novel 4-D hyperchaotic system with two quadratic nonlinearities. We describe the qualitative properties of the novel 4-D hyperchaotic system and illustrate their phase portraits. We show that the novel 4-D hyperchaotic system has two unstable equilibrium points. The novel 4-D hyperchaotic system has the Lyapunov exponents L1 = 3.1575, L2 = 0.3035, L3 = 0 and L4 = −33.4180. The Kaplan-Yorke dimension of this novel hyperchaotic system is found as DKY = 3.1026. Since the sum of the Lyapunov exponents of the novel hyperchaotic system is negative, we deduce that the novel hyperchaotic system is dissipative. Next, an adaptive controller is designed to stabilize the novel 4-D hyperchaotic system with unknown system parameters. Moreover, an adaptive controller is designed to achieve global hyperchaos synchronization of the identical novel 4-D hyperchaotic systems with unknown system parameters. The adaptive control results are established using Lyapunov stability theory. MATLAB simulations are depicted to illustrate all the main results derived in this research work.

  8. Application of neural networks for permanent magnet synchronous motor direct torque control

    Institute of Scientific and Technical Information of China (English)

    Zhang Chunmei; Liu Heping; Chen Shujin; Wang Fangjun

    2008-01-01

    Neural networks require a lot of training to understand the model of a plant or a process. Issues such as learning speed, stability, and weight convergence remain as areas of research and comparison of many training algorithms. The application of neural networks to control interior permanent magnet synchronous motor using direct torque control (DTC) is discussed. A neural network is used to emulate the state selector of the DTC. The neural networks used are the back-propagation and radial basis function. To reduce the training patterns and increase the execution speed of the training process, the inputs of switching table are converted to digital signals, i.e., one bit represent the flux error, one bit the torque error, and three bits the region of stator flux. Computer simulations of the motor and neural-network system using the two approaches are presented and compared. Discussions about the back-propagation and radial basis function as the most promising training techniques are presented, giving its advantages and disadvantages. The system using back-propagation and radial basis function networks controller has quick parallel speed and high torque response.

  9. Optimal Velocity Control for a Battery Electric Vehicle Driven by Permanent Magnet Synchronous Motors

    Directory of Open Access Journals (Sweden)

    Dongbin Lu

    2014-01-01

    Full Text Available The permanent magnet synchronous motor (PMSM has high efficiency and high torque density. Field oriented control (FOC is usually used in the motor to achieve maximum efficiency control. In the electric vehicle (EV application, the PMSM efficiency model, combined with the EV and road load system model, is used to study the optimal energy-saving control strategy, which is significant for the economic operation of EVs. With the help of GPS, IMU, and other information technologies, the road conditions can be measured in advance. Based on this information, the optimal velocity of the EV driven by PMSM can be obtained through the analytical algorithm according to the efficiency model of PMSM and the vehicle dynamic model in simple road conditions. In complex road conditions, considering the dynamic characteristics, the economic operating velocity trajectory of the EV can be obtained through the dynamic programming (DP algorithm. Simulation and experimental results show that the minimum energy consumption and global energy optimization can be achieved when the EV operates in the economic operation area.

  10. Robust synchronization control scheme of a population of nonlinear stochastic synthetic genetic oscillators under intrinsic and extrinsic molecular noise via quorum sensing

    Directory of Open Access Journals (Sweden)

    Chen Bor-Sen

    2012-10-01

    Full Text Available Abstract Background Collective rhythms of gene regulatory networks have been a subject of considerable interest for biologists and theoreticians, in particular the synchronization of dynamic cells mediated by intercellular communication. Synchronization of a population of synthetic genetic oscillators is an important design in practical applications, because such a population distributed over different host cells needs to exploit molecular phenomena simultaneously in order to emerge a biological phenomenon. However, this synchronization may be corrupted by intrinsic kinetic parameter fluctuations and extrinsic environmental molecular noise. Therefore, robust synchronization is an important design topic in nonlinear stochastic coupled synthetic genetic oscillators with intrinsic kinetic parameter fluctuations and extrinsic molecular noise. Results Initially, the condition for robust synchronization of synthetic genetic oscillators was derived based on Hamilton Jacobi inequality (HJI. We found that if the synchronization robustness can confer enough intrinsic robustness to tolerate intrinsic parameter fluctuation and extrinsic robustness to filter the environmental noise, then robust synchronization of coupled synthetic genetic oscillators is guaranteed. If the synchronization robustness of a population of nonlinear stochastic coupled synthetic genetic oscillators distributed over different host cells could not be maintained, then robust synchronization could be enhanced by external control input through quorum sensing molecules. In order to simplify the analysis and design of robust synchronization of nonlinear stochastic synthetic genetic oscillators, the fuzzy interpolation method was employed to interpolate several local linear stochastic coupled systems to approximate the nonlinear stochastic coupled system so that the HJI-based synchronization design problem could be replaced by a simple linear matrix inequality (LMI-based design problem

  11. Robust pre-specified time synchronization of chaotic systems by employing time-varying switching surfaces in the sliding mode control scheme

    Science.gov (United States)

    Khanzadeh, Alireza; Pourgholi, Mahdi

    2016-08-01

    In the conventional chaos synchronization methods, the time at which two chaotic systems are synchronized, is usually unknown and depends on initial conditions. In this work based on Lyapunov stability theory a sliding mode controller with time-varying switching surfaces is proposed to achieve chaos synchronization at a pre-specified time for the first time. The proposed controller is able to synchronize chaotic systems precisely at any time when we want. Moreover, by choosing the time-varying switching surfaces in a way that the reaching phase is eliminated, the synchronization becomes robust to uncertainties and exogenous disturbances. Simulation results are presented to show the effectiveness of the proposed method of stabilizing and synchronizing chaotic systems with complete robustness to uncertainty and disturbances exactly at a pre-specified time.

  12. PREFACE: International Conference on Control and Synchronization of Dynamical Systems (CSDS-2005)

    Science.gov (United States)

    Pisarchik, Alexander N.

    2005-01-01

    This volume of Journal of Physics: Conference Series contains selected articles by the participants at the International Conference on Control and Synchronization of Dynamical Systems (CSDS-2005) organized by Centro de Investigaciones en Optica (CIO) in cooperation with the Society for Industrial and Applied Mathematics (SIAM), which was held in Leon, Guanajuato, Mexico on 4-7 October 2005. CSDS-2005 featured the latest research in nonlinear dynamics concentrating on the theory of control and synchronization of complex systems and its applications in different areas of science and engineering, including optics, electronics, mechanics, chemistry, medicine, economy, communication, etc. The conference brought together leading researchers, both theoreticians and experimentalists, from different fields of science and provided an excellent opportunity for sharing ideas and problems among specialists in controlling dynamical systems and synchronization. The meeting served a dual purpose: to expose the scientific community to the cutting edge of forefront research done by leaders in this area from as many as 25 countries and to attract the attention of Mexican researchers to this field of science. These proceedings are intended to be a record of this conference and to serve as a reference for future research which the conference hopes to have initiated. After the pioneering work on controlling chaos of E Ott, C Grebogi and J Yorke appeared in Physical Review Letters in 1990, the number of works on this topic grew tremendously. Our extensive bibliographic search among 110 peer reviewed journals yielded more than 1500 papers on controlling chaos and more than 2500 on synchronization of chaotic systems published during the last decade. The numbers of publications are still at their peaks that began to saturate, in 1998 and 2003, respectively. It is my pleasure to acknowledge the contribution of the program and organizing committees, the funding agencies and cooperating

  13. Hanbury-Brown Twiss noise correlation with time controlled quasi-particles in ballistic quantum conductors

    Science.gov (United States)

    Glattli, D. C.; Roulleau, P.

    2016-02-01

    We study the Hanbury Brown and Twiss correlation of electronic quasi-particles injected in a quantum conductor using current noise correlations and we experimentally address the effect of finite temperature. By controlling the relative time of injection of two streams of electrons it is possible to probe the fermionic antibunching, performing the electron analog of the optical Hong Ou Mandel (HOM) experiment. The electrons are injected using voltage pulses with either sine-wave or Lorentzian shape. In the latter case, we propose a set of orthogonal wavefunctions, describing periodic trains of multiply charged electron pulses, which give a simple interpretation to the HOM shot noise. The effect of temperature is then discussed and experimentally investigated. We observe a perfect electron anti-bunching for a large range of temperature, showing that, as recently predicted, thermal mixing of the states does not affect anti-bunching properties, a feature qualitatively different from dephasing. For single charge Lorentzian pulses, we provide experimental evidence of the prediction that the HOM shot noise variation versus the emission time delay is remarkably independent of the temperature.

  14. Global Exponential Projective Synchronization and Lag Synchronization of Hyperchaotic Lü System

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qun-Jiao; LU Jun-An; JIA Zhen

    2009-01-01

    This paper investigates the projective synchronization and lag synchronization of a new hyperchaotic system[Physica A 364 (2006) 103]. On the basis of Lyapunov stability theory, two novel nonlinear controllers are respectively designed to guarantee the global exponential projective synchronization (including complete synchronization and anti-synchronization) and lag synchronization. Finally, numerical simulations are given to show the effectiveness of the main results.

  15. Flicker Mitigation by Speed Control of Permanent Magnet Synchronous Generator Variable-Speed Wind Turbines

    Directory of Open Access Journals (Sweden)

    Yanting Hu

    2013-07-01

    Full Text Available Grid-connected wind turbines are fluctuating power sources that may produce flicker during continuous operation. This paper presents a simulation model of a MW-level variable speed wind turbine with a full-scale back-to-back power converter and permanent magnet synchronous generator (PMSG developed in the simulation tool of PSCAD/EMTDC. Flicker emission of this system is investigated. The 3p (three times per revolution power oscillation due to wind shear and tower shadow effects is the significant part in the flicker emission of variable speed wind turbines with PMSG during continuous operation. A new method of flicker mitigation by controlling the rotational speed is proposed. It smoothes the 3p active power oscillations from wind shear and tower shadow effects of the wind turbine by varying the rotational speed of the PMSG. Simulation results show that damping the 3p active power oscillation by using the flicker mitigation speed controller is an effective means for flicker mitigation of variable speed wind turbines with full-scale back-to-back power converters and PMSG during continuous operation.

  16. Magnetic Field Analysis of Interior Composite-Rotor Controllable-Flux Permanent Magnet Synchronous Machine

    Institute of Scientific and Technical Information of China (English)

    CHEN Yiguang; PAN Wei; SHEN Yonghuan; TANG Renyuan

    2006-01-01

    Conventional permanent magnet synchronous machine(PMSM)has the problem of large stator copper loss and narrow speed range. To solve this problem, an interior composite-rotor controllable-flux PMSM adaptive to multi-polar is proposed. This machine has the characteristics of low stator copper loss and wide-speed operation. The half-radial-set and half-tangential-set permanent magnets(PMs)are NdFeB that has high remanent flux density and high coercive force. The tangential-set PMs are AlNiCo that has high remanent flux density and low coercive force. By applying the pulse of d-axis stator current id, the magnetized intensity and direction of AlNiCo can be controlled. The flux created by NdFeB is repelled to stator and air-gap PM-flux is intensified, or is partially bypassed by AlNiCo in the rotor, so the air-gap PM-flux is weakened. The internal magnetic field distribution in two ultra magnetized situations is analyzed by finite element method. The dimension of PMs and magnetic structure are demonstrated. Especially when the q-axis magnetic resistance is larger and the q-axis inductance is smaller, the result of flux-weakening is better and the influence of armature reaction on air-gap PM-flux is weakened.

  17. Study on Chaotic Fault Tolerant Synchronization Control Based on Adaptive Observer

    Directory of Open Access Journals (Sweden)

    Dongming Chen

    2014-01-01

    Full Text Available Aiming at the abrupt faults of the chaotic system, an adaptive observer is proposed to trace the states of the master system. The sufficient conditions for synchronization of such chaotic systems are also derived. Then the feasibility and effectiveness of the proposed method are illustrated via numerical simulations of chaotic Chen system. Finally, the proposed synchronization schemes are applied to secure communication system successfully. The experimental results demonstrate that the employed observer can manage real-time fault diagnosis and parameter identification as well as states tracing of the master system, and so the synchronization of master system and slave system is achieved.

  18. Design of PDC Controllers by Matrix Reversibility for Synchronization of Yin and Yang Chaotic Takagi-Sugeno Fuzzy Henon Maps

    Directory of Open Access Journals (Sweden)

    Chun-Yen Ho

    2012-01-01

    Full Text Available This paper investigates the synchronization of Yin and Yang chaotic T-S fuzzy Henon maps via PDC controllers. Based on the Chinese philosophy, Yin is the decreasing, negative, historical, or feminine principle in nature, while Yang is the increasing, positive, contemporary, or masculine principle in nature. Yin and Yang are two fundamental opposites in Chinese philosophy. The Henon map is an invertible map; so the Henon maps with increasing and decreasing argument can be called the Yang and Yin Henon maps, respectively. Chaos synchronization of Yin and Yang T-S fuzzy Henon maps is achieved by PDC controllers. The design of PDC controllers is based on the linear invertible matrix theory. The T-S fuzzy model of Yin and Yang Henon maps and the design of PDC controllers are novel, and the simulation results show that the approach is effective.

  19. A 3-D Novel Conservative Chaotic System and its Generalized Projective Synchronization via Adaptive Control

    Directory of Open Access Journals (Sweden)

    S. Vaidyanathan

    2014-11-01

    Full Text Available This research work proposes a five-term 3-D novel conservative chaotic system with a quadratic nonlinearity and a quartic nonlinearity. The conservative chaotic systems have the important property that they are volume conserving. The Lyapunov exponents of the 3-D novel chaotic system are obtained as �! = 0.0836, �! = 0 and �! = −0.0836. Since the sum of the Lyapunov exponents is zero, the 3-D novel chaotic system is conservative. Thus, the Kaplan-Yorke dimension of the 3-D novel chaotic system is easily seen as 3.0000. The phase portraits of the novel chaotic system simulated using MATLAB depict the chaotic attractor of the novel system. This research work also discusses other qualitative properties of the system. Next, an adaptive controller is designed to achieve Generalized Projective Synchronization (GPS of two identical novel chaotic systems with unknown system parameters. MATLAB simulations are shown to validate and demonstrate the GPS results derived in this work.

  20. Synchronization New 3D Chaotic System Using Brain Emotional Learning Based Intelligent Controller

    Directory of Open Access Journals (Sweden)

    Masoud Taleb Ziabari

    2015-01-01

    Full Text Available One of the most important phenomena of some systems is chaos which is caused by nonlinear dynamics. In this paper, the new 3 dimensional chaotic system is firstly investigated and then utilizing an intelligent controller which based on brain emotional learning (BELBIC, this new chaotic system is synchronized. The BELBIC consists of reward signal which accept positive values. Improper selection of the parameters causes an improper behavior which may cause serious problems such as instability of system. It is needed to optimize these parameters. Genetic Algorithm (GA, Cuckoo Optimization Algorithm (COA, Particle Swarm Optimization Algorithm (PSO and Imperialist Competitive Algorithm (ICA are used to compute the optimal parameters for the reward signal of BELBIC. These algorithms can select appropriate and optimal values for the parameters. These minimize the Cost Function, so the optimal values for the parameters will be founded. Selected cost function is defined to minimizing the least square errors. Cost function enforce the system errors to decay to zero rapidly. Numerical simulation results are presented to show the effectiveness of the proposed method.

  1. Breath-synchronized plume-control inhaler for pulmonary delivery of fluticasone propionate.

    Science.gov (United States)

    Shrewsbury, Stephen B; Armer, Thomas A; Newman, Stephen P; Pitcairn, Gary

    2008-05-22

    A novel breath-synchronized, plume-control inhaler (Tempo inhaler) was developed to overcome limitations of a pressurized metered-dose inhaler. This report compared the Tempo inhaler and a commercial inhaler for fine particle distribution and lung deposition of fluticasone propionate. In vitro fine particle distribution was determined using the Andersen Cascade Impactor at inspiration rates of 28.3 and 45L/min. In vivo lung deposition was assessed in a randomized, two-arm, crossover study of (99m)Tc-radiolabeled fluticasone propionate in 12 healthy adult subjects, analyzed by gamma scintigraphy. In vitro: fine particle fractions at 28.3 and 45L/min were 88.6+/-3.6% and 89.2+/-3.0% (Tempo inhaler) versus 40.4+/-4.7% and 43.1+/-4.4% (commercial inhaler). In vivo: lung deposition was 41.5+/-9.8% (Tempo inhaler) versus 13.8+/-7.4% (commercial inhaler) and oropharyngeal deposition was 18.3+/-7.7% (Tempo inhaler) versus 76.8+/-7.1% (commercial inhaler). Variability of lung deposition was reduced from 55% (commercial inhaler) to 24% (Tempo inhaler) of the delivered dose. The Tempo inhaler produced significantly higher fine particle fraction values, reduced oropharyngeal deposition by 75%, and increased whole, central, intermediate, and peripheral lung delivery by more than 200%. Thus, the Tempo inhaler enhances efficient drug delivery to the lungs.

  2. 基于准同雨团样本概念雷达和雨量计的实时同步结合方法%Real time synchronously integrated technique for radar and raingauge based on concept of quasi-same rain volume sample.

    Institute of Scientific and Technical Information of China (English)

    万玉发; 吴翠红; 金鸿祥

    2008-01-01

    The real time synchronously integrated technique for radar and raingauge (R&G) based on the concept of quasi-same rain volume sample was presented. Because of the presence of temporal and spatial discrepancies as well as resolution differences, the same sample correspondence of R&G has long been a difficult, lasting problem. However, the observations indicate that there exists the correlation conforming to the power-law between hourly accumulation of raingauge measurement QG and radar detected echo aloft over the rain gauge vertically (ZOH). On the basis of this fact, aiming to eliminate the temporal and spatial discrepancies, the concept of quasi-same rain volume sample and the five direct correspondence relationships of R&G are built up. The quite convenient and practical TIVS, i.e. time integral vertical synchronous sampling, and its ZOH-QG relationship with power law are emphatically studied. What has significance is that under the fixed exponent, the coefficient AB or AM can flexibly vary in accordance with the temporal and spatial variability of the natural precipitation, and has a function to synchronously integrate the Z-R conversion and the gauge adjustment into a single equation, thus the precipitation estimation error caused by detecting resolution differences between radar and gauge can be obviously mitigated. It is apparently different from the traditional methods wherein precipitation is estimated by radar and gauge, respectively. The real time synchronously integrated technique using the ZOH-QG relationship to estimate hourly ground rainfall accumulation, is called radar-gauge synchronously integrated method (RASIM). The experiments of two cases show that the correctness rate for area estimation within 230 km is about 90% and the average relative error rate for point estimation over the whole process is about 20%.Through the analysis of effects for various wind drifts in three kinds of environment fields, the physical substance of TIVS has been

  3. Fuzzy Logic Control of Wind Turbine System Connection to PM Synchronous Generator for Maximum Power Point Tracking

    Directory of Open Access Journals (Sweden)

    Hadi Sefidgar

    2014-06-01

    Full Text Available in this paper, a fuzzy logic control (FLC is proposed for maximum power point tracking (MPPT in wind turbine connection to Permanent Magnet Synchronous Generator (PMSG. The proposed fuzzy logic controller tracks the maximum power point (MPP by measurements the load voltage and current. This controller calculates the load power and sent through the fuzzy logic system. The main goal of this paper is design of the fuzzy logic controller in the model of DC-DC converter (boost converter. This method allows the MPPT controller output (duty cycle adjusts the voltage input to the converter to track the maximum power point of the wind generator.

  4. Analysis, Adaptive Control and Synchronization of a Novel 4-D Hyperchaotic Hyperjerk System via Backstepping Control Method

    Directory of Open Access Journals (Sweden)

    Vaidyanathan Sundarapandian

    2016-09-01

    Full Text Available A hyperjerk system is a dynamical system, which is modelled by an nth order ordinary differential equation with n ≥ 4 describing the time evolution of a single scalar variable. Equivalently, using a chain of integrators, a hyperjerk system can be modelled as a system of n first order ordinary differential equations with n ≥ 4. In this research work, a 4-D novel hyperchaotic hyperjerk system with two nonlinearities has been proposed, and its qualitative properties have been detailed. The novel hyperjerk system has a unique equilibrium at the origin, which is a saddle-focus and unstable. The Lyapunov exponents of the novel hyperjerk system are obtained as L1 = 0.14219, L2 = 0.04605, L3 = 0 and L4 = −1.39267. The Kaplan-Yorke dimension of the novel hyperjerk system is obtained as DKY = 3.1348. Next, an adaptive controller is designed via backstepping control method to stabilize the novel hyperjerk chaotic system with three unknown parameters. Moreover, an adaptive controller is designed via backstepping control method to achieve global synchronization of the identical novel hyperjerk systems with three unknown parameters. MATLAB simulations are shown to illustrate all the main results derived in this research work on a novel hyperjerk system.

  5. Dynamic boundary layer based neural network quasi-sliding mode control for soft touching down on asteroid

    Science.gov (United States)

    Liu, Xiaosong; Shan, Zebiao; Li, Yuanchun

    2017-04-01

    Pinpoint landing is a critical step in some asteroid exploring missions. This paper is concerned with the descent trajectory control for soft touching down on a small irregularly-shaped asteroid. A dynamic boundary layer based neural network quasi-sliding mode control law is proposed to track a desired descending path. The asteroid's gravitational acceleration acting on the spacecraft is described by the polyhedron method. Considering the presence of input constraint and unmodeled acceleration, the dynamic equation of relative motion is presented first. The desired descending path is planned using cubic polynomial method, and a collision detection algorithm is designed. To perform trajectory tracking, a neural network sliding mode control law is given first, where the sliding mode control is used to ensure the convergence of system states. Two radial basis function neural networks (RBFNNs) are respectively used as an approximator for the unmodeled term and a compensator for the difference between the actual control input with magnitude constraint and nominal control. To improve the chattering induced by the traditional sliding mode control and guarantee the reachability of the system, a specific saturation function with dynamic boundary layer is proposed to replace the sign function in the preceding control law. Through the Lyapunov approach, the reachability condition of the control system is given. The improved control law can guarantee the system state move within a gradually shrinking quasi-sliding mode band. Numerical simulation results demonstrate the effectiveness of the proposed control strategy.

  6. The prediction of equatorial total ozone up to the end of 2018 basing on the exact seasonal synchronization of the quasi-biennial oscillation (QBO) of equatorial stratospheric zonal wind.

    Science.gov (United States)

    Gabis, Irina; Troshichev, Oleg

    2015-04-01

    Significant effect of the quasi-biennial oscillation (QBO) on the processes determining the Earth's weather and climate causes the need to forecast the QBO evolution. The quasi-biennial alternations of zonal wind direction in the equatorial stratosphere are related with successive descent of easterly and westerly wind regimes. Our analysis has shown that the delay (stagnation stage) of easterly wind regime descent is observed during each QBO cycle, not just occasionally, as is commonly believed. Moreover, every stagnation starts near solstice (in January or July) and lasts up to the following first, second or third equinox (April or October). The duration of stagnation varies discretely (one, three or five seasons) from cycle to cycle causing the discretely variable period of QBO cycle, which can be equal only 24, 30, or 36 months being appointed as time interval between the beginnings of successive stagnations. The unambiguous relation of the QBO period with duration of corresponding stagnation makes it possible to predict in advance the wind changes. The verification of our previous forecasts for QBO cycles in 2002-2013 shows the excellent agreement between the really observed and predicted wind variations that proves the validity of forecast by this method. The correlation between model and actual wind speed values is 0.95, which is statistically significant at the 99% confidence level. Consequently we can predict the evolution of two QBO cycles up to the end of 2018. The current QBO cycle, starting in January 2014, will last 30 months and will be ended in June 2016. The subsequent QBO cycle will begin in July 2016, will last also 30 months and will be ended in December 2018. Thereafter the following QBO cycle will certainly begin in January 2019; however, its period can be determined only by the end of 2018, when the length of appropriate stagnation stage will be defined. Basing on the predicted wind QBO we can forecast the equatorial total column ozone (TOZ

  7. Wind Turbine Driving a PM Synchronous Generator Using Novel Recurrent Chebyshev Neural Network Control with the Ideal Learning Rate

    Directory of Open Access Journals (Sweden)

    Chih-Hong Lin

    2016-06-01

    Full Text Available A permanent magnet (PM synchronous generator system driven by wind turbine (WT, connected with smart grid via AC-DC converter and DC-AC converter, are controlled by the novel recurrent Chebyshev neural network (NN and amended particle swarm optimization (PSO to regulate output power and output voltage in two power converters in this study. Because a PM synchronous generator system driven by WT is an unknown non-linear and time-varying dynamic system, the on-line training novel recurrent Chebyshev NN control system is developed to regulate DC voltage of the AC-DC converter and AC voltage of the DC-AC converter connected with smart grid. Furthermore, the variable learning rate of the novel recurrent Chebyshev NN is regulated according to discrete-type Lyapunov function for improving the control performance and enhancing convergent speed. Finally, some experimental results are shown to verify the effectiveness of the proposed control method for a WT driving a PM synchronous generator system in smart grid.

  8. Position Sensorless Vector Control for Permanent Magnet Synchronous Motors Based on Maximum Torque Control Frame

    Science.gov (United States)

    Hida, Hajime; Tomigashi, Yoshio; Kishimoto, Keiji

    High efficiency drive can be achieved by the maximum torque-per-ampere (MTPA) control which used reluctance torque effectively. However, the calculations for estimating rotor position and for controlling the d-axis current are required. The motor parameters of inductance etc. that are easily affected by magnetic saturation are included in those calculations. This paper proposes a new MTPA control method, which is robust against changes of motor parameters caused by magnetic saturation. In addition, complex calculation for d-axis current or reference to the table is not necessary. In this method, we define a novel coordinate frame, which has one axis aligned with the current vector of the MTPA control, and estimate the frame directly. Because the parameter Lqm for estimating the frame is less affected by the magnetic saturation than the conventional Lq, the effect of magnetic saturation on the position estimation can be greatly suppressed. First, an extended electromotive force model based on the proposed frame and a parameter Lqm for an estimation of the frame are derived. Next, the effectiveness of this proposed method is confirmed by simulations and experiments.

  9. Shift control method for the local time at descending node based on sun-synchronous orbit satellite

    Institute of Scientific and Technical Information of China (English)

    Yang Yong'an; Feng Zuren; Sun Linyan; Tan Wei

    2009-01-01

    This article analyzes the shift factors of the descending node local time for sun-synchronous satellites and proposes a shift control method to keep the local time shift within an allowance range. It is found that the satellite orbit design and the orbit injection deviation are the causes for the initial shift velocity, whereas the atmospheric drag and the sun gravitational perturbation produce the shift acceleration. To deal with these shift factors, a shift control method is put forward, through such methods as orbit variation design, orbit altitude, and inclination keeping control. The simulation experiment and practical application have proved the effectiveness of this control method.

  10. Development of A Super High Speed Permanent Magnet Synchronous Motor (PMSM Controller and Analysis of The Experimental Results

    Directory of Open Access Journals (Sweden)

    Limei Zhao

    2005-02-01

    Full Text Available This paper presents the design and implementation of a DSP-based controller for a super high-speed (>80,000 rpm permanent magnet synchronous motor (PMSM. The PMSM is a key component of the centrifugal compressor drive of a reverse Brayton cryocooler that is currently under development for NASA and Florida Solar Energy Center. The design of the PMSM open-loop control is presented. Experimental results with open-loop control schemes are presented. System optimization and analysis are also illustrated. They verify the effectiveness of the controller design and the optimization scheme.

  11. Non-linear control of variable-speed wind turbines with permanent magnet synchronous generators: a robust backstepping approach

    Science.gov (United States)

    Şeker, Murat; Zergeroğlu, Erkan; Tatlicioğlu, Enver

    2016-01-01

    In this study, a robust backstepping approach for the control problem of the variable-speed wind turbine with a permanent magnet synchronous generator is presented. Specifically, to overcome the negative effects of parametric uncertainties in both mechanical and electrical subsystems, a robust controller with a differentiable compensation term is proposed. The proposed methodology ensures the generator velocity tracking error to uniformly approach a small bound where practical tracking is achieved. Stability of the overall system is ensured by Lyapunov-based arguments. Comparative simulation studies with a standard proportional-integral-type controller are performed to illustrate the effectiveness, feasibility and efficiency of the proposed controller.

  12. Output Feedback Adaptive Dynamic Surface Control of Permanent Magnet Synchronous Motor with Uncertain Time Delays via RBFNN

    Directory of Open Access Journals (Sweden)

    Shaohua Luo

    2014-01-01

    Full Text Available This paper focuses on an adaptive dynamic surface control based on the Radial Basis Function Neural Network for a fourth-order permanent magnet synchronous motor system wherein the unknown parameters, disturbances, chaos, and uncertain time delays are presented. Neural Network systems are used to approximate the nonlinearities and an adaptive law is employed to estimate accurate parameters. Then, a simple and effective controller has been obtained by introducing dynamic surface control technique on the basis of first-order filters. Asymptotically tracking stability in the sense of uniformly ultimate boundedness is achieved in a short time. Finally, the performance of the proposed control has been illustrated through simulation results.

  13. Frequency-domain criterion for the chaos synchronization of time-delay power systems under linear feedback control

    Indian Academy of Sciences (India)

    Qian Lin; Xiaofeng Wu; Yun Chen

    2015-12-01

    This paper studies the global synchronization of non-autonomous, time-delay, chaotic power systems via linear state-error feedback control. The frequency domain criterion and the LMI criterion are proposed and applied to design the coupling matrix. Some algebraic criteria via a single-variable linear coupling are derived and formulated in simple algebraic inequalities. The effectiveness of the new criteria is illustrated with numerical examples.

  14. Control of ovarian follicular and corpus luteum development for the synchronization of ovulation in cattle.

    Science.gov (United States)

    Thatcher, W W; Santos, J E P

    2007-01-01

    The objective of this review is to integrate strategies to optimize an ovulatory control program which then serves as a platform to improve the reproductive performance of lactating dairy cows. Programmed management of follicle growth, regression of the CL and induction of ovulation led to development of the Ovsynch program. Pre-synchronization of estrous cycles followed 12 to 14 days later with the Ovsynch program increased pregnancy rates to timed inseminations. Initiation of the Ovsynch program on day 3 of the estrous cycle reduced ovulation to GnRH and resulted in a smaller proportion of excellent and good quality embryos following timed insemination. The pregnancy rate to a timed insemination of Ovsynch was greater when cows ovulated to the first injection of GnRH. The Presynch-Ovsynch program provided a platform to identify factors regulating reproductive performance; such as, parity, body condition score and anovulation. Treatment with hCG at day 5 after insemination increased pregnancy rate in lactating dairy cows. Injection of bovine somatotropin at insemination increased pregnancy rate, conceptus length and interferon-tau content in uterine luminal flushings and altered endometrial gene expression at day 17 of pregnancy. During heat stress, timed embryo transfer increased pregnancy rate and using embryos cultured with IGF-I and transferred fresh resulted in a greater pregnancy rate. Induction of ovulation with estradiol cypionate, as a component of a timed insemination program, increased fertility. Manipulation of the estrous cycle to improve follicle/oocyte competence and management of the post-ovulatory dialogue between embryonic and uterine tissues should enhance embryo development and survival.

  15. Synchronization dynamics of two different dynamical systems

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Albert C.J., E-mail: aluo@siue.edu [Department of Mechanical and Industrial Engineering, Southern Illinois University Edwardsville, Edwardsville, IL 62026-1805 (United States); Min Fuhong [Department of Mechanical and Industrial Engineering, Southern Illinois University Edwardsville, Edwardsville, IL 62026-1805 (United States)

    2011-06-15

    Highlights: > Synchronization dynamics of two distinct dynamical systems. > Synchronization, de-synchronization and instantaneous synchronization. > A controlled pendulum synchronizing with the Duffing oscillator. > Synchronization invariant set. > Synchronization parameter map. - Abstract: In this paper, synchronization dynamics of two different dynamical systems is investigated through the theory of discontinuous dynamical systems. The necessary and sufficient conditions for the synchronization, de-synchronization and instantaneous synchronization (penetration or grazing) are presented. Using such a synchronization theory, the synchronization of a controlled pendulum with the Duffing oscillator is systematically discussed as a sampled problem, and the corresponding analytical conditions for the synchronization are presented. The synchronization parameter study is carried out for a better understanding of synchronization characteristics of the controlled pendulum and the Duffing oscillator. Finally, the partial and full synchronizations of the controlled pendulum with periodic and chaotic motions are presented to illustrate the analytical conditions. The synchronization of the Duffing oscillator and pendulum are investigated in order to show the usefulness and efficiency of the methodology in this paper. The synchronization invariant domain is obtained. The technique presented in this paper should have a wide spectrum of applications in engineering. For example, this technique can be applied to the maneuvering target tracking, and the others.

  16. Anti-synchronization on autonomous and non-autonomous chaotic systems via adaptive feedback control

    Energy Technology Data Exchange (ETDEWEB)

    Li Ruihong [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China)], E-mail: llylrh8077@mail.nwpu.edu.cn; Xu Wei [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China)], E-mail: weixu@nwpu.edu.cn; Li Shuang [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2009-05-15

    In this paper, the anti-synchronization of a general class of chaotic systems is investigated. A simple adaptive feedback scheme is proposed to anti-synchronize many familiar chaotic systems, including autonomous systems and non-autonomous systems. Lyapunov analysis for the error system gives the asymptotic stability conditions based on the invariance principle of differential equations. The schemes are successfully applied to three groups of examples: the van der Pol-Duffing oscillator, the parametrically harmonically excited 4D system, and the additionally harmonically excited Murali-Lakshmanan-Chua circuit. Numerical results are presented to justify the theoretical analysis in this paper.

  17. Chaos Synchronization in the Belousov—Zhabotinsky Chemical Reaction by Adaptive Control Scheme

    Institute of Scientific and Technical Information of China (English)

    李艳妮; 陈兰; 等

    2002-01-01

    The adaptive synchronization sc heme proposed by John and Amritkar was employed into the Belousov-Zhabotinsky(BZ)4-varibale-Montanator model system.By the parameter adjustment,chaos synchroniztion has been obtained ,Through calculating the transient time,the optimal combination of the stiffness constant and damping constant was obtained .Furthermore,the relationships among the transient time,conditional Lyapunov exponents,the stiffiness constant and damping constant were discussed ,Also ,the BZ system with the adaptive synchronization scheme might be used for the communication purposes.

  18. MODELING AND STUDY OF HYDROELECTRIC GENERATING SETS OF SMALL HYDRO POWER PLANTS WITH FREQUENCY-CONTROLLED PERMANENT MAGNET SYNCHRONOUS GENERATORS

    Directory of Open Access Journals (Sweden)

    R. I. Mustafayev

    2016-01-01

    Full Text Available Currently, the hydroelectric generating sets of small HPPs with Pelton turbines employ as their generating units conventional synchronous generators with electromagnetic excitation. To deal with the torque pulsatile behaviour, they generally install a supplementary flywheel on the system shaft that levels the pulsations. The Pelton turbine power output is adjusted by the needle changing water flow in the nozzle, whose advancement modifies the nozzle area and eventually – the flow. They limit the needle full stroke time to 20–40 sec. since quick shutting the nozzle for swift water flow reduction may result in pressure surges. For quick power adjustment so-called deflectors are employed, whose task is retraction of water jets from the Pelton turbine buckets. Thus, the mechanical method of power output regulation requires agreement between the needle stroke inside the turbine nozzles and the deflector. The paper offers employing frequency-controlled synchronous machines with permanent magnets qua generating units for the hydroelectric generating sets of small HPPs with Pelton turbines. The developed computer model reveals that this provides a higher level of adjustability towards rapid-changing loads in the grid. Furthermore, this will replace the power output mechanical control involving the valuable deflector drive and the turbine nozzle needles with electrical revolution rate and power output regulation by a frequency converter located in the generator stator circuit. Via frequency start, the controllable synchronous machine ensures stable operation of the hydroelectric generating set with negligibly small amount of water (energy carrier. Finally, in complete absence of water, the frequency-relay start facilitates shifting the generator operation to the synchronous capacitor mode, which the system operating parameter fluctograms obtained through computer modeling prove. 

  19. Robust Adaptive Sliding Mode Control for Generalized Function Projective Synchronization of Different Chaotic Systems with Unknown Parameters

    Directory of Open Access Journals (Sweden)

    Xiuchun Li

    2013-01-01

    Full Text Available When the parameters of both drive and response systems are all unknown, an adaptive sliding mode controller, strongly robust to exotic perturbations, is designed for realizing generalized function projective synchronization. Sliding mode surface is given and the controlled system is asymptotically stable on this surface with the passage of time. Based on the adaptation laws and Lyapunov stability theory, an adaptive sliding controller is designed to ensure the occurrence of the sliding motion. Finally, numerical simulations are presented to verify the effectiveness and robustness of the proposed method even when both drive and response systems are perturbed with external disturbances.

  20. Dynamical Analysis and FPGA Implementation of a Novel Hyperchaotic System and Its Synchronization Using Adaptive Sliding Mode Control and Genetically Optimized PID Control

    OpenAIRE

    Karthikeyan Rajagopal; Laarem Guessas; Sundarapandian Vaidyanathan; Anitha Karthikeyan; Ashokkumar Srinivasan

    2017-01-01

    We announce a new 4D hyperchaotic system with four parameters. The dynamic properties of the proposed hyperchaotic system are studied in detail; the Lyapunov exponents, Kaplan-Yorke dimension, bifurcation, and bicoherence contours of the novel hyperchaotic system are derived. Furthermore, control algorithms are designed for the complete synchronization of the identical hyperchaotic systems with unknown parameters using sliding mode controllers and genetically optimized PID controllers. The st...