WorldWideScience

Sample records for quasar luminosity function

  1. THE z = 5 QUASAR LUMINOSITY FUNCTION FROM SDSS STRIPE 82

    Energy Technology Data Exchange (ETDEWEB)

    McGreer, Ian D.; Fan Xiaohui [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065 (United States); Jiang Linhua [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Richards, Gordon T. [Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Strauss, Michael A. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Ross, Nicholas P.; White, Martin [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 92420 (United States); Shen Yue [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Schneider, Donald P.; Brandt, W. Niel [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Myers, Adam D. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); DeGraf, Colin [McWilliams Center for Cosmology, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Glikman, Eilat [Department of Physics and Yale Center for Astronomy and Astrophysics, Yale University, P.O. Box 208121, New Haven, CT 06520-8121 (United States); Ge Jian [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States); Streblyanska, Alina, E-mail: imcgreer@as.arizona.edu [Instituto de Astrofisica de Canarias (IAC), E-38200 La Laguna, Tenerife (Spain)

    2013-05-10

    We present a measurement of the Type I quasar luminosity function at z = 5 using a large sample of spectroscopically confirmed quasars selected from optical imaging data. We measure the bright end (M{sub 1450} < -26) with Sloan Digital Sky Survey (SDSS) data covering {approx}6000 deg{sup 2}, then extend to lower luminosities (M{sub 1450} < -24) with newly discovered, faint z {approx} 5 quasars selected from 235 deg{sup 2} of deep, coadded imaging in the SDSS Stripe 82 region (the celestial equator in the Southern Galactic Cap). The faint sample includes 14 quasars with spectra obtained as ancillary science targets in the SDSS-III Baryon Oscillation Spectroscopic Survey, and 59 quasars observed at the MMT and Magellan telescopes. We construct a well-defined sample of 4.7 < z < 5.1 quasars that is highly complete, with 73 spectroscopic identifications out of 92 candidates. Our color selection method is also highly efficient: of the 73 spectra obtained, 71 are high-redshift quasars. These observations reach below the break in the luminosity function (M{sub 1450}{sup *}{approx}-27). The bright-end slope is steep ({beta} {approx}< -4), with a constraint of {beta} < -3.1 at 95% confidence. The break luminosity appears to evolve strongly at high redshift, providing an explanation for the flattening of the bright-end slope reported previously. We find a factor of {approx}2 greater decrease in the number density of luminous quasars (M{sub 1450} < -26) from z = 5 to z = 6 than from z = 4 to z = 5, suggesting a more rapid decline in quasar activity at high redshift than found in previous surveys. Our model for the quasar luminosity function predicts that quasars generate {approx}30% of the ionizing photons required to keep hydrogen in the universe ionized at z = 5.

  2. Revisiting the Completeness and the Luminosity Function in High-Redshift Low-Luminosity Quasar Surveys

    CERN Document Server

    Niida, Mana; Ikeda, Hiroyuki; Matsuoka, Kenta; Kobayashi, Masakazu A R; Toba, Yoshiki; Taniguchi, Yoshiaki

    2016-01-01

    Recent studies have derived quasar luminosity functions (QLFs) at various redshifts. However, the faint side of the QLF at high redshifts is still too uncertain. An accurate estimate of the survey completeness is essential to derive an accurate QLF for use in studying the luminosity-dependent density evolution of the quasar population. Here we investigate how the luminosity dependence of quasar spectra (the Baldwin effect) and the attenuation model for the inter-galactic medium (IGM) affect the completeness estimates. For this purpose, we revisit the completeness of quasar surveys specifically at $z\\sim4-5$, using the COSMOS images observed with Subaru/Suprime-Cam. As the result, we find that the completeness estimates are sensitive to the luminosity dependence of the quasar spectrum and difference in the IGM attenuation models. At $z\\sim4$, the number density of quasars when we adopt the latest IGM model and take the luminosity dependence of spectra into account are $(3.49\\pm1.62)\\times10^{-7}$ Mpc$^{-3}$ ma...

  3. The Mid-Infrared Luminosity Evolution and Luminosity Function of Quasars with SDSS and WISE

    CERN Document Server

    Singal, J; Gerber, A

    2016-01-01

    We determine the 22$\\mu$m luminosity evolution and luminosity function for quasars from a data set of over 20,000 objects obtained by combining flux-limited Sloan Digital Sky Survey optical and Wide field Infrared Survey Explorer mid-infrared data. We apply methods developed in previous works to access the intrinsic population distributions non-parametrically, taking into account the truncations and correlations inherent in the data. We find that the population of quasars exhibits positive luminosity evolution with redshift in the mid-infrared, but with considerably less mid-infrared evolution than in the optical or radio bands. With the luminosity evolutions accounted for, we determine the density evolution and local mid-infrared luminosity function. The latter displays a sharp flattening at local luminosities below $\\sim 10^{31}$ erg sec$^{-1}$ Hz$^{-1}$, which has been reported previously at 15 $\\mu$m for AGN classified as both type-1 and type-2. We calculate the integrated total emission from quasars at 2...

  4. Quasar UV luminosity function evolution up to z = 8

    Science.gov (United States)

    Manti, S.; Gallerani, S.; Ferrara, A.; Greig, B.; Feruglio, C.

    2017-04-01

    We study the redshift evolution of the quasar (QSO) UV luminosity function (LF) for 0.5 up to date observational data and, in particular, the recently discovered population of faint active galactic nuclei (AGNs). We fit the QSO LF using either a double power-law function or a Schechter function, finding that both forms provide good fits to the data. We derive empirical relations for the LF parameters as a function of redshift and, based on these results, predict the QSO UV LF at z = 8. From the inferred LF evolution, we compute the redshift evolution of the QSO/AGN comoving ionizing emissivity and hydrogen photoionization rate. If faint AGNs are included, the contribution of QSOs to reionization increases substantially. However, their level of contribution critically depends on the detailed shape of the QSO LF, which can be constrained by efficient searches of high-z QSOs. To this aim, we predict the expected (i) number of z > 6 QSOs detectable by ongoing and future near-infrared surveys (as EUCLID and Wide-Field Infrared Survey Telescope), and (ii) number counts for a single radio-recombination line observation with Square Kilometre Array-MID (FoV = 0.49 deg2) as a function of the Hnα flux density, at 0 < z < 8. These surveys (even at z < 6) will be fundamental to better constrain the role of QSOs as reionization sources.

  5. The Luminosity Function of Quasars. Major Mergers of Haloes,Growth of Massive Black Holes and Evolving Luminosity Function of Quasars

    CERN Document Server

    Hatziminaoglou, E; Solanes, J M; Manrique, A; Salvador-Solé, E; Hatziminaoglou, Evanthia; Mathez, Guy; Solanes, Jose-Maria; Manrique, Alberto; Salvador-Sole, Eduard

    2003-01-01

    We construct a physically motivated analytical model for the quasar luminosity function, based on the joint star formation and feeding of massive black holes suggested by the observed correlation between the black hole mass and the stellar mass of the hosting spheroids. The parallel growth of massive black holes and host galaxies is assumed to take place at the occasion of major mergers suffered by haloes. The halo major merger rate is computed in the frame of the extended Press-Schechter model. The evolution of black holes on cosmological timescales is achieved by the integration of the governing set of differential equations, established from a few reasonable assumptions that account for the distinct (Eddington-limited or supply-limited) accretion regimes. Finally, the typical lightcurves of the reactivated quasars are obtained under the assumption that, in such accretion episodes, the fall of matter onto the black hole is achieved in a self-regulated stationary way. The predicted quasar luminosity function...

  6. Probing the faint end of the quasar luminosity function at z ~ 4 in the COSMOS field

    CERN Document Server

    Ikeda, H; Matsuoka, K; Taniguchi, Y; Shioya, Y; Trump, J R; Capak, P; Comastri, A; Enoki, M; Ideue, Y; Kakazu, Y; Koekemoer, A M; Morokuma, T; Murayama, T; Saito, T; Salvato, M; Schinnerer, E; Scoville, N Z; Silverman, J D

    2010-01-01

    We searched for quasars that are ~ 3 mag fainter than the SDSS quasars in the redshift range 3.7 < z < 4.7 in the COSMOS field to constrain the faint end of the quasar luminosity function. Using optical photometric data, we selected 31 quasar candidates with 22 < i' < 24 at z ~ 4. We obtained optical spectra for most of these candidates using FOCAS on the Subaru telescope, and identified 8 low-luminosity quasars at z ~ 4. In order to derive the quasar luminosity function (QLF) based on our spectroscopic follow-up campaign, we estimated the photometric completeness of our quasar survey through detailed Monte Carlo simulations. Our QLF at z ~ 4 has a much shallower faint-end slope beta = -1.67^{+0.11}_{-0.17} than that obtained by other recent surveys in the same redshift. Our result is consistent with the scenario of downsizing evolution of active galactic nuclei inferred by recent optical and X-ray quasar surveys at lower redshifts.

  7. Quasars in a merger model comparison with the observed luminosity function

    CERN Document Server

    Krivitsky, D S

    1998-01-01

    Connection between the quasar luminosity function and galaxy mass function is investigated in the framework of a phenomenological approach which relates AGN formation to galaxy mergers. Quasars are assumed to be short-lived, the luminosity of a quasar is controlled by the masses and angular momenta of the merged galaxies which have formed the quasar, and the amount of gas in them (the masses and momenta determine the quantity of mass which loses its angular momentum and can fall to the center). The proposed model can explain the shape and evolution of the quasar luminosity function, and allows us to estimate the parameters: the fraction of matter which falls into the center $\\eta$ (which seems to be related to the quantity of gas in the galaxies) and $\\kappa$ (an average density contrast in the regions where quasars form). The obtained values of $\\kappa$ vary from $\\sim 4--7$ at $z=0.5$ to $\\sim 1--2$ at $z=2$, values close to 1 at $z=2$. In contrast to the cases considered earlier by the authors, the Eddingt...

  8. The SDSS-III Baryon Oscillation Spectroscopic Survey: The Quasar Luminosity Function from Data Release Nine

    CERN Document Server

    Ross, Nicholas P; White, Martin; Richards, Gordon T; Myers, Adam D; Palanque-Delabrouille, Nathalie; Strauss, Michael A; Anderson, Scott F; Shen, Yue; Brandt, W N; Yeche, Christophe; Swanson, Molly E C; Aubourg, Eric; Bailey, Stephen; Bizyaev, Dmitry; Bovy, Jo; Brewington, Howard; Brinkmann, J; DeGraf, Colin; Di Matteo, Tiziana; Ebelke, Garrett; Fan, Xiaohui; Ge, Jian; Malanushenko, Elena; Malanushenko, Viktor; Mandelbaum, Rachel; Maraston, Claudia; Muna, Demitri; Oravetz, Daniel; Pan, Kaike; Paris, Isabelle; Petitjean, Patrick; Schawinski, Kevin; Schlegel, David J; Schneider, Donald P; Silverman, John D; Simmons, Audrey; Snedden, Stephanie; Streblyanska, Alina; Suzuki, Nao; Weinberg, David H; York, Donald

    2012-01-01

    We present a new measurement of the optical Quasar Luminosity Function (QLF), using data from the Sloan Digital Sky Survey-III: Baryon Oscillation Spectroscopic Survey (SDSS-III: BOSS). From the SDSS-III Data Release Nine (DR9), we select a uniform sample of 22,301 i<=21.8 quasars over an area of 2236 sq. deg with confirmed spectroscopic redshifts between 2.2luminosity-redshift plane for optical quasar studies. We derive the completeness of the survey through simulated quasar photometry, and check this completeness estimate using a sample of quasars selected by their photometric variability within the BOSS footprint. We investigate the level of systematics associated with our quasar sample using the simulations, in the process generating color-redshift relations and a new quasar k-correction. We probe the faint end of the QLF to M_i(z=2.2) = -24.5 and see a clear break in the QLF at all redshifts up to z=3.5. We find that a log-linear relation (in log[Phi*] - M*) ...

  9. Evolution of the Quasar Luminosity Function Over 3 < z < 5 in the COSMOS Survey Field

    CERN Document Server

    Masters, Daniel; Salvato, Mara; Civano, Francesca; Mobasher, Bahram; Siana, Brian; Hasinger, Guenther; Impey, Christopher; Nagao, Tohru; Trump, Jonathan; Ikeda, Hiroyuki; Elvis, Martin; Scoville, Nicholas

    2012-01-01

    We investigate the high-redshift quasar luminosity function (QLF) down to an apparent magnitude of I(AB) = 25 in the Cosmic Evolution Survey (COSMOS). Careful analysis of the extensive COSMOS photometry and imaging data allows us to identify and remove stellar and low-redshift contaminants, enabling a selection that is nearly complete for type-1 quasars at the redshifts of interest. We find 155 likely quasars at z > 3.1, 39 of which have prior spectroscopic confirmation. We present our sample in detail and use these confirmed and likely quasars to compute the rest-frame UV QLF in the redshift bins 3.1 3 is similar to what has been found for more luminous optical and X-ray quasars. We compare the rest-frame UV luminosity functions found here with the X-ray luminosity function at z > 3, and find that they evolve similarly between z \\sim 3.2 and z \\sim 4; however, the different normalizations imply that roughly 75% of X-ray bright active galactic nuclei (AGN) at z \\sim 3 - 4 are optically obscured. This fractio...

  10. The radio luminosity function and redshift evolution of radio-mode and quasar-mode AGN

    Science.gov (United States)

    Pracy, Mike

    2016-08-01

    The properties of the AGN population indicate that there are two fundamentally different accretion modes operating. In the quasar-mode, material is accreted onto the supermassive black hole via a small, thin, optically luminous accretion disc. Accretion in this mode is recognisable by emission lines in the optical spectrum. However, there is a population of AGN observable only by their radio emission and without optical emission lines. These radio-mode AGN are likely powered by radiatively inefficient accretion from a hot gas halo. I will describe the cosmic evolution of these two populations via radio luminosity functions. The radio luminosity functions are constructed from a new survey of over 4000 radio galaxies out to z=1, all with confirmed redshifts and their accretion mode classified from their optical spectra. This is 20 times larger than the only other survey used to make such a measurement. The radio-mode AGN population displays no statistically significant evolution in space density out to redshift z=1. In contrast the quasar mode AGN exhibits rapid evolution in space density, increasing by a factor of 8 over the same redshift range. The characteristic break in the radio luminosity function occurs at a significantly higher power for the quasar-mode AGN in comparison to the radio-mode AGN and we demonstrate this is consistent with the two populations representing fundamentally different accretion modes. The radio luminosity function is used to estimate the total amount of mechanical energy available for radio mode feedback as a function of redshift, and is found to be in good agreement with cosmological models and previous measurements. Again, by separating by accretion mode, the previously estimated increase in available mechanical energy per unit volume out to z=1 (approximately a factor of 2) can be attributed to the rapid evolution of the quasar-mode AGN, while for the classical radio-mode AGN the total mechanical energy output remains roughly

  11. Nature and evolution of powerful radio galaxies and their link with the quasar luminosity function

    CERN Document Server

    van Velzen, Sjoert; Koerding, Elmar

    2014-01-01

    Current wide-area radio surveys are dominated by active galactic nuclei, yet many of these sources have no identified optical counterparts. Here we investigate whether one can constrain the nature and properties of these sources, using Fanaroff-Riley type II (FRII) radio galaxies as probes. These sources are easy to identify since the angular separation of their lobes remains almost constant at some tens of arcseconds for z>1. Using a simple algorithm applied to the FIRST survey, we obtain the largest FRII sample to date, containing over ten thousand double-lobed sources. A subset of 459 sources is matched to SDSS quasars. This sample yields a statistically meaningful description of the fraction of quasars with lobes as a function of redshift and luminosity. This relation is combined with the bolometric quasar luminosity function, as derived from surveys at IR to hard X-ray frequencies, and a disc-lobe correlation to obtain a robust prediction for the density of FRIIs on the radio sky. We find that the observ...

  12. The z~4 Quasar Luminosity Function: Implications for supermassive black hole growth, reionization, and future time domain surveys

    Science.gov (United States)

    AlSayyad, Yusra; Connolly, Andrew J.; McGreer, Ian D.; Ivezic, Zeljko; Fan, Xiaohui; LSST Data Management

    2017-01-01

    Upcoming time-domain imaging surveys such as the LSST will detect over a million high-redshift (z > 4) quasars, making complete spectroscopic followup unfeasible. Statistical estimates such as luminosity functions and clustering measurements will require purely photometric methods for classifying objects, estimating redshifts and estimating selection functions. We develop these methods and constrain the optical, type I quasar luminosity function (QLF) at 3.75 +60; -1.26 +1.26) known as Stripe 82, we extracted 40 million new lightcurves using the LSST data management software and selected a statistical sample of z~4 quasars based on colors and variability metrics. We confirmed these using a spectroscopically complete 55 sq. deg. sub-region augmented with 102 new spectroscopic observations of quasars at z > 3.4 with i 3.75) and constraint on the characteristic luminosity M*1450 = -26.7 from a single, uniformly-selected survey at z~4.

  13. A survey of luminous high-redshift quasars with SDSS and WISE II. the bright end of the quasar luminosity function at z ~ 5

    CERN Document Server

    Yang, Jinyi; Wu, Xue-Bing; Fan, Xiaohui; McGreer, Ian D; Bian, Fuyan; Yi, Weimin; Yang, Qian; Ai, Yanli; Dong, Xiaoyi; Zuo, Wenwen; Green, Richard; Jiang, Linhua; Wang, Shu; Wang, Ran; Yue, Minghao

    2016-01-01

    This is the second paper in a series on a new luminous z ~ 5 quasar survey using optical and near-infrared colors. Here we present a new determination of the bright end of the quasar luminosity function (QLF) at z ~ 5. Combined our 45 new quasars with previously known quasars that satisfy our selections, we construct the largest uniform luminous z ~ 5 quasar sample to date, with 99 quasars in the range 4.7 <= z < 5.4 and -29 < M1450 <= -26.8, within the Sloan Digital Sky Survey (SDSS) footprint. We use a modified 1/Va method including flux limit correction to derive a binned QLF, and we model the parametric QLF using maximum likelihood estimation. With the faint-end slope of the QLF fixed as alpha = -2.03 from previous deeper samples, the best fit of our QLF gives a flatter bright end slope beta = -3.58+/-0.24 and a fainter break magnitude M*1450 = -26.98+/-0.23 than previous studies at similar redshift. Combined with previous work at lower and higher redshifts, our result is consistent with a lum...

  14. Updating quasar bolometric luminosity corrections

    CERN Document Server

    Runnoe, Jessie C; Shang, Zhaohui

    2012-01-01

    Bolometric corrections are used in quasar studies to quantify total energy output based on a measurement of a monochromatic luminosity. First, we enumerate and discuss the practical difficulties of determining such corrections, then we present bolometric luminosities between 1 \\mu m and 8 keV rest frame and corrections derived from the detailed spectral energy distributions of 63 bright quasars of low to moderate redshift (z = 0.03-1.4). Exploring several mathematical fittings, we provide practical bolometric corrections of the forms L_iso=\\zeta \\lambda L_{\\lambda} and log(L_iso)=A+B log(\\lambda L_{\\lambda}) for \\lambda= 1450, 3000, and 5100 \\AA, where L_iso is the bolometric luminosity calculated under the assumption of isotropy. The significant scatter in the 5100 \\AA\\ bolometric correction can be reduced by adding a first order correction using the optical slope, \\alpha_\\lambda,opt. We recommend an adjustment to the bolometric correction to account for viewing angle and the anisotropic emission expected fr...

  15. Properties of High Redshift Quasars-II: What does the quasar luminosity function tell us about super-massive black-hole evolution?

    CERN Document Server

    Wyithe, S; Wyithe, Stuart

    2006-01-01

    In the local universe, the masses of Super-Massive Black-Holes (SMBH) appear to correlate with the physical properties of their hosts, including the mass of the dark-matter halo. Using these clues as a starting point many studies have produced models that can explain phenomena like the quasar luminosity function. The shortcoming of this approach is that working models are not unique, and as a result it is not always clear what input physics is being constrained. Here we take a different approach. We identify critical parameters that describe the evolution of SMBHs at high redshift, and constrain their parameter space based on observations of high redshift quasars from the Sloan Digital Sky Survey. We find that the luminosity function taken in isolation is somewhat limited in its ability to constrain SMBH evolution due to some strong degeneracies. This explains the presence in the literature of a range of equally successful models based on different physical hypotheses. Including the constraint of the local SM...

  16. The Luminosity Function of Fermi-detected Flat-Spectrum Radio Quasars

    Energy Technology Data Exchange (ETDEWEB)

    Ajello, M.; Shaw, M.S.; Romani, R.W.; Dermer, C.D.; Costamante, L.; King, O.G.; Max-Moerbeck, W.; Readhead, A.; Reimer, A.; Richards, J.L.; Stevenson, M.

    2012-04-16

    Fermi has provided the largest sample of {gamma}-ray selected blazars to date. In this work we use a complete sample of FSRQs detected during the first year of operation to determine the luminosity function (LF) and its evolution with cosmic time. The number density of FSRQs grows dramatically up to redshift {approx}0.5-2.0 and declines thereafter. The redshift of the peak in the density is luminosity dependent, with more luminous sources peaking at earlier times; thus the LF of {gamma}-ray FSRQs follows a luminosity-dependent density evolution similarly to that of radio-quiet AGN. Also using data from the Swift Burst Alert Telescope we derive the average spectral energy distribution of FSRQs in the 10 keV-100GeV band and show that there is no correlation of the peak {gamma}-ray luminosity with {gamma}-ray peak frequency. The coupling of the SED and LF allows us to predict that the contribution of FSRQs to the Fermi isotropic {gamma}-ray background is 9.3{sub -1.0}{sup +1.6}% ({+-}3% systematic uncertainty) in the 0.1-100GeV band. Finally we determine the LF of unbeamed FSRQs, finding that FSRQs have an average Lorentz factor of {gamma} = 11.7{sub -2.2}{sup +3.3}, that most are seen within 5{sup o} of the jet axis, and that they represent only {approx}0.1% of the parent population.

  17. Errata: A Wide-Field Multicolor Survey for High-Redshift Quasars, Z >= 2.2. III. The Luminosity Function

    Science.gov (United States)

    Warren, Stephen J.; Hewett, Paul C.; Osmer, Patrick S.

    1995-01-01

    In the paper "A Wide-Field Multicolor Survey for High-Redshift Quasars, z >= 2.2. III. The Luminosity Function" by Stephen. Warren, Paul C. Hewett and Patrick S. Osmer (ApJ, 421,412 [1994]), two equations should be corrected: On page 419, column one, line 11, the expression following the words "the error,, should have an opening parenthesis just before the integral sign, to read: [{SIGMA} 1/({integral} ρ(z)dV_a_)^2^]^1/2^. On page 421, equation (15) is missing the asterisk (*) in the M_c_^*^ term just prior to (β + 1); that is, the exponent in the second term the denominator should read: 0.4(M_c_ - M_c_^*^)(β + 1). The authors wish to draw these errors to the attention of any readers who will be using the expression and equation.

  18. On the Radio and Optical Luminosity Evolution of Quasars

    Energy Technology Data Exchange (ETDEWEB)

    Singal, J.; /KIPAC, Menlo Park /SLAC; Petrosian, V.; /KIPAC, Menlo Park /SLAC /Stanford U., Phys. Dept. /Stanford U., Appl. Phys. Dept.; Lawrence, A.; /Edinburgh U., Inst. Astron.; Stawarz, L.; /JAXA, Sagamihara /Jagiellonian U., Astron. Observ.

    2011-05-20

    We calculate simultaneously the radio and optical luminosity evolutions of quasars, and the distribution in radio loudness R defined as the ratio of radio and optical luminosities, using a flux limited data set containing 636 quasars with radio and optical fluxes from White et al. We first note that when dealing with multivariate data it is imperative to first determine the true correlations among the variables, not those introduced by the observational selection effects, before obtaining the individual distributions of the variables. We use the methods developed by Efron and Petrosian which are designed to obtain unbiased correlations, distributions, and evolution with redshift from a data set truncated due to observational biases. It is found that as expected the population of quasars exhibits strong positive correlation between the radio and optical luminosities and that this correlation deviates from a simple linear relation in a way indicating that more luminous quasars are more radio loud. We also find that there is a strong luminosity evolution with redshift in both wavebands, with significantly higher radio than optical evolution. We conclude that the luminosity evolution obtained by arbitrarily separating the sources into radio loud (R > 10) and radio quiet (R < 10) populations introduces significant biases that skew the result considerably. We also construct the local radio and optical luminosity functions and the density evolution. Finally, we consider the distribution of the radio loudness parameter R obtained from careful treatment of the selection effects and luminosity evolutions with that obtained from the raw data without such considerations. We find a significant difference between the two distributions and no clear sign of bi-modality in the true distribution. Our results indicate therefore, somewhat surprisingly, that there is no critical switch in the efficiency of the production of disk outflows/jets between very radio quiet and very radio

  19. Minor Contribution of Quasars to Ionizing Photon Budget at z ∼ 6: Update on Quasar Luminosity Function at the Faint End with Subaru/Suprime-Cam

    Science.gov (United States)

    Onoue, Masafusa; Kashikawa, Nobunari; Willott, Chris J.; Hibon, Pascale; Im, Myungshin; Furusawa, Hisanori; Harikane, Yuichi; Imanishi, Masatoshi; Ishikawa, Shogo; Kikuta, Satoshi; Matsuoka, Yoshiki; Nagao, Tohru; Niino, Yuu; Ono, Yoshiaki; Ouchi, Masami; Tanaka, Masayuki; Tang, Ji-Jia; Toshikawa, Jun; Uchiyama, Hisakazu

    2017-10-01

    We constrain the quasar contribution to the cosmic reionization based on our deep optical survey of z ∼ 6 quasars down to z R = 24.15 using Subaru/Suprime-Cam in three UKIDSS-DXS fields covering 6.5 deg2. In Kashikawa et al. (2015), we select 17 quasar candidates and report our initial discovery of two low-luminosity quasars ({M}1450∼ -23) from seven targets, one of which might be a Lyα-emitting galaxy. From an additional optical spectroscopy, none of the four candidates out of the remaining 10 turn out to be genuine quasars. Moreover, the deeper optical photometry provided by the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) shows that, unlike the two already-known quasars, the i ‑ z and z ‑ y colors of the last six candidates are consistent with M- or L-type brown dwarfs. Therefore, the quasar luminosity function (QLF) measurement in the previous paper is confirmed. Compiling the QLF measurements from the literature over a wide magnitude range, including an extremely faint AGN candidate from Parsa et al. (2017), to fit them with a double power law, we find that the best-fit faint-end slope is α =-{2.04}-0.18+0.33 (-{1.98}-0.21+0.48) and characteristic magnitude is {M}1450* =-{25.8}-1.9+1.1 (-{25.7}-1.8+1.0) in the case of two (one) quasar detection. Our result suggests that, if the QLF is integrated down to {M}1450=-18, quasars produce ∼1%–12% of the ionizing photons required to fully ionize the universe at z ∼ 6 with a 2σ confidence level, assuming that the escape fraction is {f}{esc}=1 and the intergalactic medium clumpy factor is C = 3. Even when the systematic uncertainties are taken into account, our result supports the scenario that quasars are the minor contributors of the reionization.

  20. Measuring Lensing Magnification of Quasars by Large Scale Structure using the Variability-Luminosity Relation

    CERN Document Server

    Bauer, Anne H; Jerke, Jonathan; Scalzo, Richard; Rabinowitz, David; Ellman, Nancy; Baltay, Charles

    2011-01-01

    We introduce a technique to measure gravitational lensing magnification using the variability of type I quasars. Quasars' variability amplitudes and luminosities are tightly correlated, on average. Magnification due to gravitational lensing increases the quasars' apparent luminosity, while leaving the variability amplitude unchanged. Therefore, the mean magnification of an ensemble of quasars can be measured through the mean shift in the variability-luminosity relation. As a proof of principle, we use this technique to measure the magnification of quasars spectroscopically identified in the Sloan Digital Sky Survey, due to gravitational lensing by galaxy clusters in the SDSS MaxBCG catalog. The Palomar-QUEST Variability Survey, reduced using the DeepSky pipeline, provides variability data for the sources. We measure the average quasar magnification as a function of scaled distance (r/R200) from the nearest cluster; our measurements are consistent with expectations assuming NFW cluster profiles, particularly a...

  1. What does the local black hole mass distribution tell us about the evolution of the quasar luminosity function?

    CERN Document Server

    Ciotti, L; Ostriker, J P; Ciotti, Luca; Haiman, Zoltan; Ostriker, Jeremiah P.

    2001-01-01

    We present a robust method to derive the duty cycle of QSO activity based on the empirical QSO luminosity function and on the present-day linear relation between the masses of supermassive black holes and those of their spheroidal host stellar systems. It is found that the duty cycle is substantially less than unity, with characteristic values in the range $3-6\\times 10^{-3}$. Finally, we tested the expectation that the QSO luminosity evolution and the star formation history should be roughly parallel, as a consequence of the above--mentioned relation between BH and galaxy masses.

  2. Counting quasar--radio source pairs to derive the millijansky radio luminosity function and clustering strength to z=3.5

    CERN Document Server

    Fine, S; Johnston, R; Jarvis, M J; Mauch, T

    2015-01-01

    We apply a cross-correlation technique to infer the $S>3$mJy radio luminosity function (RLF) from the NRAO VLA sky survey (NVSS) to $z\\sim3.5$. We measure $\\Sigma$ the over density of radio sources around spectroscopically confirmed quasars. $\\Sigma$ is related to the space density of radio sources at the distance of the quasars and the clustering strength between the two samples, hence knowledge of one constrains the other. Under simple assumptions we find $\\Phi\\propto (1+z)^{3.7\\pm0.7}$ out to $z\\sim2$. Above this redshift the evolution slows and we constrain the evolution exponent to $<1.01$ ($2\\sigma$). This behaviour is almost identical to that found by previous authors for the bright end of the RLF potentially indicating that we are looking at the same population. This suggests that the NVSS is dominated by a single population; most likely radio sources associated with high-excitation cold-mode accretion. Inversely, by adopting a previously modelled RLF we can constrain the clustering of high-redshif...

  3. Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs): New z > 6 Quasar Survey with Subaru/HSC

    Science.gov (United States)

    Matsuoka, Yoshiki; SHELLQs Collaboration

    2017-01-01

    Quasars at high redshift are an important and unique probe of the distant Universe, for understanding the origin and progress of cosmic reionization, the early growth of supermassive black holes, and the evolution of quasar host galaxies and their dark matter halos, among other topics. We are currently carrying out a new spectroscopic survey, called SHELLQs (Subaru High-z Exploration of Low-Luminosity Quasars), to search for low-luminosity quasars at z > 6. By exploiting the exquisite imaging data produced by the Subaru Hyper Suprime-Cam (HSC) survey, we aim to probe quasar luminosities down to M1450 ~ -22 mag, i.e., below the classical threshold between quasars and Seyfert galaxies. Candidate selection is performed by combining several photometric approaches including a Bayesian probabilistic algorithm. A large spectroscopic observing program is underway, using Subaru/FOCAS, GTC/OSIRIS, and Gemini/GMOS; in particular, SHELLQs has been approved as a Subaru intensive program to use 20 nights in the coming four semesters. As of August 2016, we have discovered ~40 quasars and bright galaxies at z ~ 6 and beyond, from the first 100 deg2 of the HSC survey (Matsuoka et al. 2016, ApJ, 828, 26). Surprisingly, we are starting to see the steep rise of the luminosity function of high-z galaxies, compared with that of quasars, at magnitudes fainter than M1450 ~ -22 mag or zAB ~ 24 mag. Multi-wavelength follow-up studies of the discovered objects as well as further survey observations are ongoing.

  4. The Protostellar Luminosity Function

    CERN Document Server

    Offner, Stella

    2011-01-01

    The protostellar luminosity function (PLF) is the present-day luminosity function of the protostars in a region of star formation. It is determined using the protostellar mass function (PMF) in combination with a stellar evolutionary model that provides the luminosity as a function of instantaneous and final stellar mass. As in McKee & Offner (2010), we consider three main accretion models: the Isothermal Sphere model, the Turbulent Core model, and an approximation of the Competitive Accretion model. We also consider the effect of an accretion rate that tapers off linearly in time and an accelerating star formation rate. For each model, we characterize the luminosity distribution using the mean, median, maximum, ratio of the median to the mean, standard deviation of the logarithm of the luminosity, and the fraction of very low luminosity objects. We compare the models with bolometric luminosities observed in local star forming regions and find that models with an approximately constant accretion time, suc...

  5. Cross-Correlation of SDSS DR7 Quasars and DR10 BOSS Galaxies: The Weak Luminosity Dependence of Quasar Clustering at z~0.5

    CERN Document Server

    Shen, Yue; White, Martin; Zheng, Zheng; Myers, Adam D; Guo, Hong; Kirkpatrick, Jessica A; Padmanabhan, Nikhil; Parejko, John K; Ross, Nicholas P; Schlegel, David J; Schneider, Donald P; Streblyanska, Alina; Swanson, Molly E C; Zehavi, Idit; Pan, Kaike; Bizyaev, Dmitry; Brewington, Howard; Ebelke, Garrett; Malanushenko, Viktor; Malanushenko, Elena; Oravetz, Daniel; Simmons, Audrey; Snedden, Stephanie

    2012-01-01

    We present the measurement of the two-point cross-correlation function (CCF) of 8,198 Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) quasars and 349,608 DR10 CMASS galaxies from the Baryonic Oscillation Spectroscopic Survey (BOSS) at redshift ~0.5 (0.3=0.53 from the CCF measurements. This linear bias corresponds to a characteristic host halo mass of ~4x10^12 M_sun/h, compared to ~10^13 M_sun/h characteristic host halo mass for CMASS galaxies. We divide the quasar sample in luminosity and constrain the luminosity dependence of quasar bias to be db_Q/dlogL=0.20+-0.34 or 0.11+-0.32 (depending on different luminosity divisions) for quasar luminosities -23.5>M_i(z=2)>-25.5, implying a weak luminosity dependence of quasar clustering for the bright end of the quasar population at ~0.5. We compare our measurements with theoretical predictions, Halo Occupation Distribution (HOD) models and mock catalogs. These comparisons suggest quasars reside in a broad range of host halos, and the host halo mass distributions...

  6. Updating quasar bolometric luminosity corrections - III. [O iii] bolometric corrections

    Science.gov (United States)

    Pennell, Alison; Runnoe, Jessie C.; Brotherton, M. S.

    2017-06-01

    We present quasar bolometric corrections using the [O III] λ 5007 narrow emission line luminosity based on the detailed spectral energy distributions of 53 bright quasars at low to moderate redshift (0.0345 diversity, introduces scatter into the L_{[O III]}-Liso relationship. We found that the {[O III]} bolometric correction can be significantly improved by adding a term including the equivalent width ratio R_{Fe II} ≡ EW_{{Fe II}}/EW_{Hβ }, which is an EV1 indicator. Inclusion of R_{Fe II} in predicting Liso is significant at nearly the 3σ level and reduces the scatter and systematic offset of the luminosity residuals. Typically, {[O III]} bolometric corrections are adopted for Type 2 sources where the quasar continuum is not observed and in these cases, R_{Fe II} cannot be measured. We searched for an alternative measure of EV1 that could be measured in the optical spectra of Type 2 sources but were unable to identify one. Thus, the main contribution of this work is to present an improved {[O III]} bolometric correction based on measured bolometric luminosities and highlight the EV1 dependence of the correction in Type 1 sources.

  7. The Redshift Distribution of Intervening Weak MgII Quasar Absorbers and a Curious Dependence on Quasar Luminosity

    CERN Document Server

    Evans, Jessica L; Murphy, Michael T; Nielsen, Nikole M; Klimek, Elizabeth S

    2013-01-01

    We have identified 469 MgII doublet systems having W_r >= 0.02 {\\AA} in 252 Keck/HIRES and UVES/VLT quasar spectra over the redshift range 0.1 = 1.0 {\\AA}) absorbers. For weak absorption, dN/dz toward bright quasars is ~ 25% higher than toward faint quasars (10 sigma at low redshift, 0.4 <= z <= 1.4, and 4 sigma at high redshift, 1.4 < z <= 2.34). For strong absorption the trend reverses, with dN/dz toward faint quasars being ~ 20% higher than toward bright quasars (also 10 sigma at low redshift and 4 sigma at high redshift). We explore scenarios in which beam size is proportional to quasar luminosity and varies with absorber and quasar redshifts. These do not explain dN/dz's dependence on quasar luminosity.

  8. STRUCTURE FUNCTION ANALYSIS OF LONG-TERM QUASAR VARIABILITY

    Energy Technology Data Exchange (ETDEWEB)

    de Vries, W; Becker, R; White, R; Loomis, C

    2004-11-15

    In our second paper on long-term quasar variability, we employ a much larger database of quasars than in de Vries, Becker & White. This expanded sample, containing 35,165 quasars from the Sloan Digital Sky Survey Data Release 2, and 6,413 additional quasars in the same area of the sky taken from the 2dF QSO Redshift Survey, allows us to significantly improve on our earlier conclusions. As before, all the historic quasar photometry has been calibrated onto the SDSS scale by using large numbers of calibration stars around each quasar position. We find the following: (1) the outbursts have an asymmetric light-curve profile, with a fast-rise, slow-decline shape; this argues against a scenario in which micro-lensing events along the line-of-sight to the quasars are dominating the long-term variations in quasars; (2) there is no turnover in the Structure Function of the quasars up to time-scales of {approx}40 years, and the increase in variability with increasing time-lags is monotonic and constant; and consequently, (3) there is not a single preferred characteristic outburst time-scale for the quasars, but most likely a continuum of outburst time-scales, (4) the magnitude of the quasar variability is a function of wavelength: variability increases toward the blue part of the spectrum, (5) high-luminosity quasars vary less than low-luminosity quasars, consistent with a scenario in which variations have limited absolute magnitude. Based on this, we conclude that quasar variability is intrinsic to the Active Galactic Nucleus, is caused by chromatic outbursts/flares with a limited luminosity range and varying time-scales, and which have an overall asymmetric light-curve shape. Currently the model that has the most promise of fitting the observations is based on accretion disk instabilities.

  9. properties and luminosity functions

    Directory of Open Access Journals (Sweden)

    Hektor Monteiro

    2007-01-01

    Full Text Available In this article, we present an investigation of a sample of 1072 stars extracted from the Villanova Catalog of Spectroscopically Identified White Dwarfs (2005 on-line version, studying their distribution in the Galaxy, their physical properties and their luminosity functions. The distances and physical properties of the white dwarfs are determined through interpolation of their (B-V or (b-y colors in model grids. The solar position relative to the Galactic plane, luminosity function, as well as separate functions for each white dwarf spectral type are derived and discussed. We show that the binary fraction does not vary significantly as a function of distance from the Galactic disk out to 100 pc. We propose that the formation rates of DA and non-DAs have changed over time and/or that DAs evolve into non-DA types. The luminosity functions for DAs and DBs have peaks possibly related to a star burst event.

  10. Reverberation Measurements of Quasars and the Size-Mass-Luminosity Relations in Active Galactic Nuclei

    CERN Document Server

    Kaspi, S

    2000-01-01

    A 7.5 years spectrophotometric monitoring program of 28 Palomar-Green quasars to determine the size of their broad emission line region (BLR) is reviewed. We find both the continuum and the emission line fluxes of all quasars to vary during this period. Seventeen objects has adequate sampling for reverberation mapping and in all of them we find the Balmer line variations to lag those of the continuum by ~100 days. This study increases the available luminosity range for studying the size-mass-luminosity relations in active galactic nuclei (AGNs) by two orders of magnitude and doubles the number of objects suitable for such studies. Combining our results with data available for Seyfert 1 galaxies, we find the BLR size to scale with the rest-frame 5100 A luminosity as L^{0.70 +/- 0.03}. This result is different from previous studies, and suggests that the effective ionization parameter in AGNs may be a decreasing function of luminosity. We are also able to constrain, subject to the assumption that gravity domina...

  11. Clustering Analyses of 300,000 Photometrically Classified Quasars--I. Luminosity and Redshift Evolution in Quasar Bias

    CERN Document Server

    Myers, A D; Nichol, R C; Richards, G T; Schneider, D P; Bahcall, N A; Myers, Adam D.; Brunner, Robert J.; Nichol, Robert C.; Richards, Gordon T.; Schneider, Donald P.; Bahcall, Neta A.

    2006-01-01

    Using ~300,000 photometrically classified quasars, by far the largest quasar sample ever used for such analyses, we study the redshift and luminosity evolution of quasar clustering on scales of ~50 kpc/h to ~20 Mpc/h from redshifts of z~0.75 to z~2.28. We parameterize our clustering amplitudes using realistic dark matter models, and find that a LCDM power spectrum provides a superb fit to our data with a redshift-averaged quasar bias of b_Q = 2.41+/-0.08 ($P_{99.6% using our data set alone, increasing to >99.9999% if stellar contamination is not explicitly parameterized. We measure the quasar classification efficiency across our full sample as a = 95.6 +/- ^{4.4}_{1.9}%, a star-quasar separation comparable with the star-galaxy separation in many photometric studies of galaxy clustering. We derive the mean mass of the dark matter halos hosting quasars as MDMH=(5.2+/-0.6)x10^{12} M_solar/h. At z~1.9 we find a $1.5\\sigma$ deviation from luminosity-independent quasar clustering; this suggests that increasing our ...

  12. Exploring Low Luminosity Quasar Diversity at z ~ 2.5 with the Gran Telescopio Canarias

    CERN Document Server

    Sulentic, J W; Marziani, P

    2013-01-01

    We present preliminary results from a pencil-beam spectroscopic survey of low-luminosity quasars at z ~ 2.2-2.5. Our goal is to compare these sources with low redshift analogues of similar luminosity. High s/n and moderate resolution spectra were obtained for 15 sources using the faint object spectrograph Osiris on the 10m Gran Telescopio Canarias. The new data make possible an almost unprecedented comparison between sources with the same (moderate) luminosity at widely different cosmic epochs. Preliminary analysis of our spectra confirms the presence of a relatively evolved population of quasars radiating at modest Eddington ratios. A notable difference between the low and high z quasars may involve the presence of lower metallicity quasars at high redshift.

  13. Relations between integrated and monochromatic luminosities of flat-spectrum radio quasars

    Institute of Scientific and Technical Information of China (English)

    Zhi-Fu Chen; Zhao-Yu Chen; Yi-Ping Qin; Min-Feng Gu; Lian-Zhong Lü; Cheng-Yue Su; You-Bing Li; Ye Chen

    2011-01-01

    We employ a sample of 362 flat-spectrum radio quasars (FSRQs) to calculate their integrated luminosities by integrating the spectral energy distribution (SED) constructed with multi-band (radio, IR, optical, UV and X-ray) data.We compare these luminosities with those estimated from monochromatic luminosities by multiplying them by the conventional bolometric correction factors.Our analysis shows that the integrated luminosities calculated from the SED are much larger than the bolometric luminosities estimated from monochromatic luminosities.Their departing behavior tightly correlates with radio luminosities.The relations between integrated and monochromatic luminosities are explored, which are regarded as empirical relations that might be more suitable to be applied to estimate integrated luminosities of FSRQs from their monochromatic luminosities.

  14. The Radio and Optical Luminosity Evolution of Quasars II - The SDSS Sample

    Energy Technology Data Exchange (ETDEWEB)

    Singal, J.; Petrosian, V.; Stawarz, L.; Lawrence, A.

    2012-12-28

    We determine the radio and optical luminosity evolutions and the true distribution of the radio loudness parameter R, defined as the ratio of the radio to optical luminosity, for a set of more than 5000 quasars combining SDSS optical and FIRST radio data. We apply the method of Efron and Petrosian to access the intrinsic distribution parameters, taking into account the truncations and correlations inherent in the data. We find that the population exhibits strong positive evolution with redshift in both wavebands, with somewhat greater radio evolution than optical. With the luminosity evolutions accounted for, we determine the density evolutions and local radio and optical luminosity functions. The intrinsic distribution of the radio loudness parameter R is found to be quite different than the observed one, and is smooth with no evidence of a bi-modality in radio loudness. The results we find are in general agreement with the previous analysis of Singal et al., 2011 which used POSS-I optical and FIRST radio data.

  15. The Size of Narrow Line Region and [OIII] Luminosity Analyzed from SDSS DR7 Quasar Catalogue

    Indian Academy of Sciences (India)

    Zhi-Fu Chen; Y.-P. Qin; Z.-Y. Chen; L.-Z. Lü

    2011-03-01

    In this work, we constructed a sample of 4002 quasars from SDSS DR7 quasar catalogue to calculate the electron density and size of narrow line region. We find that the electron densities are ∼ 103/cm3, and the sizes are between 27 and 775 pc. We also find that, in the ionization cone, the sizes are tightly correlated with the luminosities of [OIII]5007.

  16. Casadio-Fabbri-Mazzacurati Black Strings and Braneworld-induced Quasars Luminosity Corrections

    CERN Document Server

    da Rocha, Roldao; Kuerten, A M; Coimbra-Araujo, C H

    2013-01-01

    This paper aims to evince the corrections on the black string warped horizon in the braneworld paradigm, and their drastic physical consequences, as well as to provide subsequent applications in astrophysics. Our analysis concerning black holes on the brane departs from the Schwarzschild case, where the black string is unstable to large-scale perturbation. The cognizable measurability of the black string horizon corrections due to braneworld effects is investigated, as well as their applications in the variation of quasars luminosity. We delve into the case wherein two solutions of Einstein's equations proposed by Casadio, Fabbri, and Mazzacurati, regarding black hole metrics presenting a post-Newtonian parameter measured on the brane. In this scenario, it is possible to analyze purely the braneworld corrected variation in quasars luminosity, by an appropriate choice of the post-Newtonian parameter that precludes Hawking radiation on the brane: the variation in quasars luminosity is uniquely provided by pure ...

  17. Radio Luminosity,Black Hole Mass and Eddington Ratio for Quasars from the Sloan Digital Sky Survey

    Institute of Scientific and Technical Information of China (English)

    Wei-Hao Bian; Yan-Mei Chen; Chen Hu; Kai Huang; Yan Xu

    2008-01-01

    We investigate the MBH-O'.relation for radio-loud quasars with redshift z<0.83 in Data Release 3 of the Sloan Digital Sky Survey (SDSS).The sample consists of 3772 quasars with better models of the H/~ and [O III] lines and available radio luminosity,including 306 radio-loud quasars,3466 radio-quiet quasars with measured radio luminosity or upper-limit of radio luminosity (181 radio-quiet quasars with measured radio luminosity).The virial supermassive black hole mass (MBH) is calculated from the broad H/line,and the host stellar velocity dispersion (σ*) is traced by the core [O III] gaseous velocity dispersion.The radio luminosity and radio loudness are derived from the FIRST catalog.Our results are as follows:(1) For radio-quiet quasars,we confirm that there is no obvious deviation from the MBH-O".relation defined for inactive galaxies when the uncertainties in MBH and the luminosity bias are concerned.(2) We find that the radio-loud quasars deviate more from the MBH-σ.relation than do the radio-quiet quasars.This deviation is only partly due to a possible cosmological evolution of the MBH-σ* relation and the luminosity bias.(3) The radioluminosity is proportional to M128+0.23-0.16 BH(LBol/LEdd)1.29+0.31-0.24 for radio-quiet quasars and to M3.10+0.6.-0.70(LBol.LEdd)4.18+1.40-1.10 for radio-loud quasars.The weaker dependence of the radio luminosity on the mass and the Eddington ratio for radio-loud quasars shows that other physical effects would account for their radio luminosities,such as the spin of the black hole.

  18. Functional Regression for Quasar Spectra

    CERN Document Server

    Ciollaro, Mattia; Freeman, Peter; Genovese, Christopher; Lei, Jing; O'Connell, Ross; Wasserman, Larry

    2014-01-01

    The Lyman-alpha forest is a portion of the observed light spectrum of distant galactic nuclei which allows us to probe remote regions of the Universe that are otherwise inaccessible. The observed Lyman-alpha forest of a quasar light spectrum can be modeled as a noisy realization of a smooth curve that is affected by a `damping effect' which occurs whenever the light emitted by the quasar travels through regions of the Universe with higher matter concentration. To decode the information conveyed by the Lyman-alpha forest about the matter distribution, we must be able to separate the smooth `continuum' from the noise and the contribution of the damping effect in the quasar light spectra. To predict the continuum in the Lyman-alpha forest, we use a nonparametric functional regression model in which both the response and the predictor variable (the smooth part of the damping-free portion of the spectrum) are function-valued random variables. We demonstrate that the proposed method accurately predicts the unobserv...

  19. Line and continuum variability of two intermediate-redshift, high-luminosity quasars

    Science.gov (United States)

    Trevese, D.; Paris, D.; Stirpe, G. M.; Vagnetti, F.; Zitelli, V.

    2007-08-01

    Context: It has been shown that the luminosity of active galactic nuclei and the size of their broad line region obey a simple relation of the type R_BLR=a Lγ, from faint Seyfert nuclei to bright quasars, allowing single-epoch determination of the central black hole mass M_BH= b Lγ Δ^2_Hβ from their luminosity L and width of Hβ emission line. Adopting this mass determination for cosmological studies requires the extrapolation to high redshift and luminosity of a relation whose calibration relies so far on reverberation mapping measurements performed for L ⪉ 1046 erg s-1 and redshift z ⪉ 0.4. Aims: We initiated a campaign for the spectrophotometric monitoring of a few luminous, intermediate redshift quasars whose apparent magnitude, V BH from reverberation mapping. Methods: We have repeatedly performed simultaneous spectrophotometric observations of quasars and reference stars to determine relative variability of continuum and emission lines. We describe the observations and methods of analysis. Results: For the quasars PG 1634+706 and PG 1247+268 we obtain light-curves respectively for CIII] (λλ1909 Å), MgII(λλ2798 Å) and for CIV(λλ1549 Å), CIII] (λλ1909 Å) emission lines with the relevant continua. During 3.2 years of observation, in the former case no continuum variability was detected and the evidence for line variability is marginal, while in the latter case both continuum and line variability are detected with high significance and the line variations appear correlated with continuum variations. Conclusions: The detection of the emission line variability in a quasar with L ~ 1047 erg s-1 encourages the continuation of the monitoring campaign which should provide a black hole mass estimate in another 5-6 years, constraining the mass-luminosity relation in a poorly explored range of luminosity.

  20. The 2QDES Pilot : The luminosity and redshift dependence of quasar clustering

    CERN Document Server

    Chehade, Ben; Findlay, J; Metcalfe, N; Sawangwit, U; Irwin, M; González-Solares, E; Fine, S; Drinkwater, M J; Croom, S; Jurek, R J; Parkinson, D; Bielby, R

    2016-01-01

    We present a new redshift survey, the 2dF Quasar Dark Energy Survey pilot (2QDESp), which consists of ${\\approx}10000$ quasars from ${\\approx}150$ deg$^2$ of the southern sky, based on VST-ATLAS imaging and 2dF/AAOmega spectroscopy. Combining our optical photometry with the WISE (W1,W2) bands we can select essentially contamination free quasar samples with $0.8{<}z{<}2.5$ and $g{<}20.5$. At fainter magnitudes, optical UVX selection is still required to reach our $g{\\approx}22.5$ limit. Using both these techniques we observed quasar redshifts at sky densities up to $90$ deg$^{-2}$. By comparing 2QDESp with other surveys (SDSS, 2QZ and 2SLAQ) we find that quasar clustering is approximately luminosity independent, with results for all four surveys consistent with a correlation scale of $r_{0}{=}6.1{\\pm}0.1 \\: h^{-1}$Mpc, despite their decade range in luminosity. We find a significant redshift dependence of clustering, particularly when BOSS data with $r_{0}{=}7.3{\\pm}0.1 \\: h^{-1}$Mpc are included at $z...

  1. The white dwarf luminosity function

    Science.gov (United States)

    García-Berro, Enrique; Oswalt, Terry D.

    2016-06-01

    White dwarfs are the final remnants of low- and intermediate-mass stars. Their evolution is essentially a cooling process that lasts for ∼ 10 Gyr. Their observed properties provide information about the history of the Galaxy, its dark matter content and a host of other interesting astrophysical problems. Examples of these include an independent determination of the past history of the local star formation rate, identification of the objects responsible for the reported microlensing events, constraints on the rate of change of the gravitational constant, and upper limits to the mass of weakly interacting massive particles. To carry on these tasks the essential observational tools are the luminosity and mass functions of white dwarfs, whereas the theoretical tools are the evolutionary sequences of white dwarf progenitors, and the corresponding white dwarf cooling sequences. In particular, the observed white dwarf luminosity function is the key manifestation of the white dwarf cooling theory, although other relevant ingredients are needed to compare theory and observations. In this review we summarize the recent attempts to empirically determine the white dwarf luminosity function for the different Galactic populations. We also discuss the biases that may affect its interpretation. Finally, we elaborate on the theoretical ingredients needed to model the white dwarf luminosity function, paying special attention to the remaining uncertainties, and we comment on some applications of the white dwarf cooling theory. Astrophysical problems for which white dwarf stars may provide useful leverage in the near future are also discussed.

  2. The white dwarf luminosity function

    CERN Document Server

    García-Berro, Enrique

    2016-01-01

    White dwarfs are the final remnants of low- and intermediate-mass stars. Their evolution is essentially a cooling process that lasts for $\\sim 10$ Gyr. Their observed properties provide information about the history of the Galaxy, its dark matter content and a host of other interesting astrophysical problems. Examples of these include an independent determination of the past history of the local star formation rate, identification of the objects responsible for the reported microlensing events, constraints on the rate of change of the gravitational constant, and upper limits to the mass of weakly interacting massive particles. To carry on these tasks the essential observational tools are the luminosity and mass functions of white dwarfs, whereas the theoretical tools are the evolutionary sequences of white dwarf progenitors, and the corresponding white dwarf cooling sequences. In particular, the observed white dwarf luminosity function is the key manifestation of the white dwarf cooling theory, although other...

  3. The X-Ray and Mid-infrared Luminosities in Luminous Type 1 Quasars

    Science.gov (United States)

    Chen, Chien-Ting J.; Hickox, Ryan C.; Goulding, Andrew D.; Stern, Daniel; Assef, Roberto; Kochanek, Christopher S.; Brown, Michael J. I.; Harrison, Chris M.; Hainline, Kevin N.; Alberts, Stacey; Alexander, David M.; Brodwin, Mark; Del Moro, Agnese; Forman, William R.; Gorjian, Varoujan; Jones, Christine; Murray, Stephen S.; Pope, Alexandra; Rovilos, Emmanouel

    2017-03-01

    Several recent studies have reported different intrinsic correlations between the active galactic nucleus (AGN) mid-IR luminosity ({L}{MIR}) and the rest-frame 2–10 keV luminosity (L X) for luminous quasars. To understand the origin of the difference in the observed {L}{{X}}{--}{L}{MIR} relations, we study a sample of 3247 spectroscopically confirmed type 1 AGNs collected from Boötes, XMM-COSMOS, XMM-XXL-North, and the Sloan Digital Sky Survey quasars in the Swift/XRT footprint spanning over four orders of magnitude in luminosity. We carefully examine how different observational constraints impact the observed {L}{{X}}{--}{L}{MIR} relations, including the inclusion of X-ray-nondetected objects, possible X-ray absorption in type 1 AGNs, X-ray flux limits, and star formation contamination. We find that the primary factor driving the different {L}{{X}}{--}{L}{MIR} relations reported in the literature is the X-ray flux limits for different studies. When taking these effects into account, we find that the X-ray luminosity and mid-IR luminosity (measured at rest-frame 6 μ {{m}}, or {L}6μ {{m}}) of our sample of type 1 AGNs follow a bilinear relation in the log–log plane: {log}{L}{{X}}=(0.84+/- 0.03)× {log}{L}6μ {{m}}/{10}45 erg s‑1 + (44.60 ± 0.01) for {L}6μ {{m}}< {10}44.79 erg s‑1, and {log}{L}{{X}}=(0.40+/- 0.03)× {log}{L}6μ {{m}}/{10}45 erg s‑1 + (44.51 ± 0.01) for {L}6μ {{m}} ≥slant {10}44.79 erg s‑1. This suggests that the luminous type 1 quasars have a shallower {L}{{X}}{--}{L}6μ {{m}} correlation than the approximately linear relations found in local Seyfert galaxies. This result is consistent with previous studies reporting a luminosity-dependent {L}{{X}}{--}{L}{MIR} relation and implies that assuming a linear {L}{{X}}{--}{L}6μ {{m}} relation to infer the neutral gas column density for X-ray absorption might overestimate the column densities in luminous quasars.

  4. Reverberation Measurements for 17 Quasars and the Size-Mass-Luminosity Relations in Active Galactic Nuclei

    CERN Document Server

    Kaspi, S; Netzer, H; Maoz, D; Jannuzi, B T; Giveon, U; Kaspi, Shai; Smith, Paul S.; Netzer, Hagai; Maoz, Dan; Jannuzi, Buell T.; Giveon, Uriel

    1999-01-01

    (abridged) We have spectrophotometrically monitored a well-defined sample of 28 Palomar-Green quasars in order to obtain measurements of their BLRs and to investigate the relationships between quasar luminosity, central black hole mass, and broad emission line region (BLR) size in active galactic nuclei (AGN). Spectrophotometry was obtained every 1-4 months for 7.5 years, yielding 20-70 observing epochs per object. Both the continuum and emission line fluxes of all of the quasars were observed to change during the duration of the observing program. Seventeen of the 28 objects were observed with adequate sampling to search for correlated variations between the Balmer emission lines and the continuum flux. For each of these 17 objects, a significant correlation was observed, with the Balmer line variations lagging those of the continuum by studying the size-mass-luminosity relations in AGN by two orders of magnitude and doubles the number of objects suitable for such studies. Combining our results with comparab...

  5. Line and continuum variability of two intermediate-redshift, high-luminosity quasars

    CERN Document Server

    Trevese, D; Stirpe, G M; Vagnetti, F; Zitelli, V

    2007-01-01

    It has been shown that the luminosity of AGNs and the size of their broad line region obey a simple relation of the type R=a L^g, from faint Seyfert nuclei to bright quasars, allowing single-epoch determination of the central black hole mass M=b L^g D^2 from their luminosity L and width of H_beta emission line. Adopting this mass determination for cosmological studies requires the extrapolation to high z and L of a relation whose calibration relies so far on reverberation mapping measurements performed for L10^47 erg/s, and determining eventually their M_BH from reverberation mapping. We have repeatedly performed simultaneous observations of quasars and reference stars to determine relative variability of continuum and emission lines. We describe the observations and methods of analysis. For the quasars PG1634+706 and PG1247+268 we obtain light-curves respectively for CIII], MgII and for CIV, CIII] emission lines with the relevant continua. During 3.2 years of observation, in the former case no continuum vari...

  6. THE BLACK HOLE MASS-GALAXY LUMINOSITY RELATIONSHIP FOR SLOAN DIGITAL SKY SURVEY QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Salviander, S.; Shields, G. A. [Department of Astronomy, University of Texas, Austin, TX 78712 (United States); Bonning, E. W., E-mail: triples@astro.as.utexas.edu, E-mail: shields@astro.as.utexas.edu, E-mail: erin.bonning@emory.edu [Department of Physics, Emory University, Atlanta, GA 30322 (United States)

    2015-02-01

    We investigate the relationship between the mass of the central supermassive black hole, M {sub BH}, and the host galaxy luminosity, L {sub gal}, in a sample of quasars from the Sloan Digital Sky Survey Data Release 7. We use composite quasar spectra binned by black hole mass and redshift to assess galaxy features that would otherwise be overwhelmed by noise in individual spectra. The black hole mass is calculated using the photoionization method, and the host galaxy luminosity is inferred from the depth of the Ca II H+K features in the composite spectra. We evaluate the evolution in the M {sub BH}-L {sub gal} relationship by examining the redshift dependence of Δ log M {sub BH}, the offset in M {sub BH} from the local M {sub BH}-L {sub gal} relationship. There is little systematic trend in Δ log M {sub BH} out to z = 0.8. Using the width of the [O III] emission line as a proxy for the stellar velocity dispersion, σ{sub *}, we find agreement of our derived host luminosities with the locally observed Faber-Jackson relation. This supports the utility of the width of the [O III] line as a proxy for σ{sub *} in statistical studies.

  7. GTC Spectra of z ~ 2.3 Quasars: Comparison with Local Luminosity Analogues

    CERN Document Server

    Sulentic, Jack W; del Olmo, Ascensión; Dultzin, Deborah; Perea, Jaime; Negrete, C Alenka

    2014-01-01

    [Abridged] Context: The advent of 8-10m class telescopes makes possible for the first time detailed comparison of quasars with similar luminosity and very different redshifts. Aims: A search for z-dependent gradients in line emission diagnostics and derived physical properties by comparing, in a narrow bolometric luminosity range (log L ~ 46.1 +/- 0.4 [\\ergss]), some of the most luminous local (z < 0.6) quasars with some of the lowest luminosity sources yet found at redshift z = 2.1 ~ 2.5. Method: Spectra for 22 high z sources were obtained with the 10.4m Gran Telescopio Canarias (GTC) while the HST (largely FOS) archive provides a low redshift control sample. Comparison is made in the context of the 4D Eigenvector 1 formalism meaning that we divide both source samples into high accreting Population A and low accreting Population B sources. Results: CIV 1549 shows very similar properties at both redshifts confirming at high redshift the CIV profile differences between Pop. A and B that are well established...

  8. Initial luminosity functions of starburst galaxies

    Science.gov (United States)

    Parnovsky, S.; Izotova, I.

    2016-12-01

    For the sample of about 800 starburst galaxies the initial luminosity functions which appear the distributions of galaxy luminosities at zero starburst age are considered based on the data of luminosities of galaxies in the recombination Hα emission line in the regions of ionised hydrogen and the ultraviolet continuum. We find the initial luminosity functions for the starburst galaxies with Hα emission and ultraviolet continuum are satisfactory approximated with log-normal function.

  9. MAD Adaptive Optics Imaging of High Luminosity Quasars: A Pilot Project

    CERN Document Server

    Liuzzo, E; Paiano, S; Treves, A; Uslenghi, M; Arcidiacono, C; Baruffolo, A; Diolaiti, E; Farinato, J; Lombini, M; Moretti, A; Ragazzoni, R; Brast, R; Donaldson, R; Kolb, J; Marchetti, E; Tordo, S

    2016-01-01

    We present near-IR images of five luminous quasars at z~2 and one at z~4 obtained with an experimental adaptive optics instrument at the ESO Very Large Telescope. The observations are part of a program aimed at demonstrating the capabilities of multi-conjugated adaptive optics imaging combined with the use of natural guide stars for high spatial resolution studies on large telescopes. The observations were mostly obtained under poor seeing conditions but in two cases. In spite of these non optimal conditions, the resulting images of point sources have cores of FWHM ~0.2 arcsec. We are able to characterize the host galaxy properties for 2 sources and set stringent upper limits to the galaxy luminosity for the others. We also report on the expected capabilities for investigating the host galaxies of distant quasars with adaptive optics systems coupled with future Extremely Large Telescopes. Detailed simulations show that it will be possible to characterize compact (2-3 kpc) quasar host galaxies for QSOs at z = ...

  10. MAD Adaptive Optics Imaging of High-luminosity Quasars: A Pilot Project

    Science.gov (United States)

    Liuzzo, E.; Falomo, R.; Paiano, S.; Treves, A.; Uslenghi, M.; Arcidiacono, C.; Baruffolo, A.; Diolaiti, E.; Farinato, J.; Lombini, M.; Moretti, A.; Ragazzoni, R.; Brast, R.; Donaldson, R.; Kolb, J.; Marchetti, E.; Tordo, S.

    2016-08-01

    We present near-IR images of five luminous quasars at z ˜ 2 and one at z ˜ 4 obtained with an experimental adaptive optics (AO) instrument at the European Southern Observatory Very Large Telescope. The observations are part of a program aimed at demonstrating the capabilities of multi-conjugated adaptive optics imaging combined with the use of natural guide stars for high spatial resolution studies on large telescopes. The observations were mostly obtained under poor seeing conditions but in two cases. In spite of these nonoptimal conditions, the resulting images of point sources have cores of FWHM ˜ 0.2 arcsec. We are able to characterize the host galaxy properties for two sources and set stringent upper limits to the galaxy luminosity for the others. We also report on the expected capabilities for investigating the host galaxies of distant quasars with AO systems coupled with future Extremely Large Telescopes. Detailed simulations show that it will be possible to characterize compact (2-3 kpc) quasar host galaxies for quasi-stellar objects at z = 2 with nucleus K-magnitude spanning from 15 to 20 (corresponding to absolute magnitude -31 to -26) and host galaxies that are 4 mag fainter than their nuclei.

  11. Quasar Mass Functions Across Cosmic Time

    DEFF Research Database (Denmark)

    Vestergaard, Marianne

    2010-01-01

    I present mass functions of actively accreting black holes detected in different quasar surveys which in concert cover a wide range of cosmic history. I briefly address what we learn from these mass functions. I summarize the motivation for such a study and the methods by which we determine black...

  12. Galaxy luminosity function and the morphological type

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Gonzalez, E.; Sanz, J.L.

    1988-09-01

    The morphological luminosity function is obtained assuming that galaxies form only at high-density regions with the matter distribution represented by a filtered Gaussian random field. The results obtained for cold dark matter spectra (adiabatic and isocurvature fluctuations) with Omega = 1 are compared with observations for galaxies of different Hubble types, finding that both scenarios provide distributions that are close to the observations for global thresholds between the values of 2.5 and 3 and standard mass-luminosity ratios for each type. In every case, a bell-shaped luminosity function was found, which looks similar for each morphological type but differing in the mean luminosity. 33 references.

  13. Synchrotron peak luminosity,black hole mass and Eddington ratio for SDSS flat-spectrum radio quasars

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    For a sample of 185 flat-spectrum radio quasars(FSRQs) constructed from the SDSS DR3 quasar catalog,we found a significant correlation between the synchrotron peak luminosity and both the black hole mass and Eddington ratio.This implies that the physics of its jet formation is not only tightly related with the black hole mass,but also with the accretion rate.We verify that the synchrotron peak luminosity can be a better indicator of jet emission than 5 GHz luminosity,through comparing the relationships between each of these two parameters and both black hole mass and Eddington ratio.The fundamental plane of black hole activity for our FSRQs is established as Lr ∝ L0x.80 ± 0.06 Mbh -0.04 ± 0.09 with a weak dependence on black hole mass,however,the scatter is significant.

  14. Cosmological tests with the FSRQ gamma-ray luminosity function

    Science.gov (United States)

    Zeng, Houdun; Melia, Fulvio; Zhang, Li

    2016-11-01

    The extensive catalogue of gamma-ray selected flat-spectrum radio quasars (FSRQs) produced by Fermi during a four-year survey has generated considerable interest in determining their gamma-ray luminosity function (GLF) and its evolution with cosmic time. In this paper, we introduce the novel idea of using this extensive database to test the differential volume expansion rate predicted by two specific models, the concordance Λ cold dark matter (ΛCDM) and Rh = ct cosmologies. For this purpose, we use two well-studied formulations of the GLF, one based on pure luminosity evolution (PLE) and the other on a luminosity-dependent density evolution (LDDE). Using a Kolmogorov-Smirnov test on one-parameter cumulative distributions (in luminosity, redshift, photon index and source count), we confirm the results of earlier works showing that these data somewhat favour LDDE over PLE; we show that this is the case for both ΛCDM and Rh = ct. Regardless of which GLF one chooses, however, we also show that model selection tools very strongly favour Rh = ct over ΛCDM. We suggest that such population studies, though featuring a strong evolution in redshift, may none the less be used as a valuable independent check of other model comparisons based solely on geometric considerations.

  15. Cosmological Tests with the FSRQ Gamma-ray Luminosity Function

    CERN Document Server

    Zeng, Houdun; Zhang, Li

    2016-01-01

    The extensive catalog of $\\gamma$-ray selected flat-spectrum radio quasars (FSRQs) produced by \\emph{Fermi} during a four-year survey has generated considerable interest in determining their $\\gamma$-ray luminosity function (GLF) and its evolution with cosmic time. In this paper, we introduce the novel idea of using this extensive database to test the differential volume expansion rate predicted by two specific models, the concordance $\\Lambda$CDM and $R_{\\rm h}=ct$ cosmologies. For this purpose, we use two well-studied formulations of the GLF, one based on pure luminosity evolution (PLE) and the other on a luminosity-dependent density evolution (LDDE). Using a Kolmogorov-Smirnov test on one-parameter cumulative distributions (in luminosity, redshift, photon index and source count), we confirm the results of earlier works showing that these data somewhat favour LDDE over PLE; we show that this is the case for both $\\Lambda$CDM and $R_{\\rm h}=ct$. Regardless of which GLF one chooses, however, we also show that...

  16. A Compton-thick Wind in the High Luminosity Quasar, PDS 456

    Science.gov (United States)

    Reeves, J. N.; O'Brien, P. T.; Behar, E.; Miller, L.; Turner, T. J.; Braito, V.; Fabian, A. C.; Kaspi, S.; Mushotzky, R.; Ward, M.

    2009-01-01

    PDS 456 is a nearby (z=0.184), luminous (L(sub bol) approximately equal to 10(exp 47) ergs(exp -1) type I quasar. A deep 190 ks Suzaku observation in February 2007 revealed the complex, broad band X-ray spectrum of PDS 456. The Suzaku spectrum exhibits highly statistically significant absorption features near 9 keV in the quasar rest-frame. We show that the most plausible origin of the absorption is from blue-shifted resonance (1s-2p) transitions of hydrogen-like iron (at 6.97 keV in the rest frame). This indicates that a highly ionized outflow may be present moving at near relativistic velocities (0.26-0.31c). A possible hard X-ray excess is detected above 15 keV with HXD (at 99.8% confidence), which may arise from high column density gas (N(sub H) greater than 10(exp 24)cm(exp -2) partially covering the X-ray emission, or through strong Compton reflection. Here we propose that the iron K-shell absorption in PDS 456 is associated with a thick, possibly clumpy outflow, covering about 20% of 4(pi) steradian solid angle. The outflow is likely launched from the inner accretion disk, within 15-100 gravitational radii of the black hole. The kinetic power of the outflow may be similar to the bolometric luminosity of PDS 456. Such a powerful wind could have a significant effect on the co-evolution of the host galaxy and its supermassive black hole, through feedback.

  17. Subaru high-$z$ exploration of low-luminosity quasars (SHELLQs). I. Discovery of 15 quasars and bright galaxies at $5.7 < z < 6.9$

    CERN Document Server

    Matsuoka, Yoshiki; Kashikawa, Nobunari; Iwasawa, Kazushi; Strauss, Michael A; Nagao, Tohru; Imanishi, Masatoshi; Niida, Mana; Toba, Yoshiki; Akiyama, Masayuki; Asami, Naoko; Bosch, James; Foucaud, Sébastien; Furusawa, Hisanori; Goto, Tomotsugu; Gunn, James E; Harikane, Yuichi; Ikeda, Hiroyuki; Kawaguchi, Toshihiro; Kikuta, Satoshi; Komiyama, Yutaka; Lupton, Robert H; Minezaki, Takeo; Miyazaki, Satoshi; Morokuma, Tomoki; Murayama, Hitoshi; Nishizawa, Atsushi J; Ono, Yoshiaki; Ouchi, Masami; Price, Paul A; Sameshima, Hiroaki; Silverman, John D; Sugiyama, Naoshi; Tait, Philip J; Takada, Masahiro; Takata, Tadafumi; Tanaka, Masayuki; Tang, Ji-Jia; Utsumi, Yousuke

    2016-01-01

    We report the discovery of 15 quasars and bright galaxies at $5.7 < z < 6.9$. This is the initial result from the Subaru High-$z$ Exploration of Low-Luminosity Quasars (SHELLQs) project, which exploits the exquisite multi-band imaging data produced by the Subaru Hyper Suprime-Cam (HSC) Strategic Program survey. The candidate selection is performed by combining several photometric approaches including a Bayesian probabilistic algorithm to reject stars and dwarfs. The spectroscopic identification was carried out with the Gran Telescopio Canarias and the Subaru Telescope for the first 80 deg$^2$ of the survey footprint. The success rate of our photometric selection is quite high, approaching 100 % at the brighter magnitudes ($z_{\\rm AB} < 23.5$ mag). Our selection also recovered all the known high-$z$ quasars on the HSC images. Among the 15 discovered objects, six are likely quasars, while the other six with interstellar absorption lines and in some cases narrow emission lines are likely bright Lyman-br...

  18. Stellar Velocity Dispersion Measurements in High-Luminosity Quasar Hosts and Implications for the AGN Black Hole Mass Scale

    CERN Document Server

    Grier, C J; Watson, L C; Peterson, B M; Bentz, M C; Dasyra, K M; Dietrich, M; Ferrarese, L; Pogge, R W; Zu, Y

    2013-01-01

    We present new stellar velocity dispersion measurements for four luminous quasars with the NIFS instrument and the ALTAIR laser guide star adaptive optics system on the Gemini North 8-m telescope. Stellar velocity dispersion measurements and measurements of the supermassive black hole masses in luminous quasars are necessary to investigate the coevolution of black holes and galaxies, trace the details of accretion, and probe the nature of feedback. We find that higher-luminosity quasars with higher-mass black holes are not offset with respect to the MBH-sigma relation exhibited by lower-luminosity AGNs with lower-mass black holes, nor do we see correlations with galaxy morphology. As part of this analysis, we have recalculated the virial products for the entire sample of reverberation-mapped AGNs and used these data to redetermine the mean virial factor hfi that places the reverberation data on the quiescent M_BH-sigma relation. With our updated measurements and new additions to the AGN sample, we obtain = 4...

  19. STELLAR VELOCITY DISPERSION MEASUREMENTS IN HIGH-LUMINOSITY QUASAR HOSTS AND IMPLICATIONS FOR THE AGN BLACK HOLE MASS SCALE

    Energy Technology Data Exchange (ETDEWEB)

    Grier, C. J.; Martini, P.; Peterson, B. M.; Pogge, R. W.; Zu, Y. [Department of Astronomy, Ohio State University, 140 W 18th Avenue, Columbus, OH 43210 (United States); Watson, L. C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bentz, M. C. [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States); Dasyra, K. M. [Observatoire de Paris, LERMA (CNRS:UMR8112), 61 Avenue de l' Observatoire, F-75014, Paris (France); Dietrich, M. [Department of Physics and Astronomy, Ohio University, Athens, OH 45601 (United States); Ferrarese, L. [Herzberg Institute of Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria BV V9E 2E7 (Canada)

    2013-08-20

    We present new stellar velocity dispersion measurements for four luminous quasars with the Near-Infrared Integral Field Spectrometer instrument and the ALTAIR laser guide star adaptive optics system on the Gemini North 8 m telescope. Stellar velocity dispersion measurements and measurements of the supermassive black hole (BH) masses in luminous quasars are necessary to investigate the coevolution of BHs and galaxies, trace the details of accretion, and probe the nature of feedback. We find that higher-luminosity quasars with higher-mass BHs are not offset with respect to the M{sub BH}-{sigma}{sub *} relation exhibited by lower-luminosity active galactic nuclei (AGNs) with lower-mass BHs, nor do we see correlations with galaxy morphology. As part of this analysis, we have recalculated the virial products for the entire sample of reverberation-mapped AGNs and used these data to redetermine the mean virial factor (f) that places the reverberation data on the quiescent M{sub BH}-{sigma}{sub *} relation. With our updated measurements and new additions to the AGN sample, we obtain (f) = 4.31 {+-} 1.05, which is slightly lower than, but consistent with, most previous determinations.

  20. The Local Luminosity Function at 25 Microns

    CERN Document Server

    Shupe, D L; Hacking, P B; Huchra, J P; Shupe, David L.; Fang, Fan; Hacking, Perry B.; Huchra, John P.

    1998-01-01

    The local luminosity function at 25 $\\mu$m provides the basis for interpreting the results of deep mid-infrared surveys planned or in progress with space astrophysics missions including ISO, WIRE and SIRTF. We have selected a sample of 1458 galaxies from the IRAS Faint Source Survey with a flux density limit of 250 mJy at 25 $\\mu$m. The local luminosity function is derived using both parametric and non-parametric maximum-likelihood techniques, and the classical $1/V_{max}$ estimator. Comparison of these results shows that the $1/V_{max}$ estimate of the luminosity function is significantly affected by the Local Supercluster. A maximum-likelihood fit to the radial density shows no systematic increase that would be caused by density evolution of the galaxy population. The density fit is used to correct the $1/V_{max}$ estimate. We also demonstrate the high quality and completeness of our sample by a variety of methods. The luminosity function derived from this sample is compared to previously published estimate...

  1. How covariant is the galaxy luminosity function?

    CERN Document Server

    Smith, Robert E

    2012-01-01

    We investigate the error properties of certain galaxy luminosity function (GLF) estimators. Using a cluster expansion of the density field, we show how, for both volume and flux limited samples, the GLF estimates are covariant. The covariance matrix can be decomposed into three pieces: a diagonal term arising from Poisson noise; a sample variance term arising from large-scale structure in the survey volume; an occupancy covariance term arising due to galaxies of different luminosities inhabiting the same cluster. To evaluate the theory one needs: the mass function and bias of clusters, and the conditional luminosity function (CLF). We use a semi-analytic model (SAM) galaxy catalogue from the Millennium run N-body simulation and the CLF of Yang et al. (2003) to explore these effects. The GLF estimates from the SAM and the CLF qualitatively reproduce results from the 2dFGRS. We also measure the luminosity dependence of clustering in the SAM and find reasonable agreement with 2dFGRS results for bright galaxies. ...

  2. Broad absorption line (BAL) quasars as a class of low luminosity AGNs

    CERN Document Server

    Kunert-Bajraszewska, M; Roskowinski, C; Gawronski, M

    2015-01-01

    Broad absorption lines seen in some quasars prove the existence of ionized plasma outflows from the accretion disk. Outflows together with powerful jets are important feedback processes. Understanding physics behind BAL outflows might be a key to comprehend Galaxy Evolution as a whole. First radio-loud BAL quasar was discovered in 1997 and this discovery has opened new possibilities for studies of the BAL phenomena, this time on the basis of radio emission. However, information about the radio structures, orientation and age of BAL quasars is still very limited due to weak radio emission and small sizes of these objects. Our high-resolution radio survey of a sample of BAL quasars aims to increase our knowledge about these objects. In this article, we present some conclusions arising from our research.

  3. A Direct Measurement of the Mean Occupation Function of Quasars: Breaking Degeneracies between Halo Occupation Distribution Models

    CERN Document Server

    Chatterjee, Suchetana; Myers, Adam; Zheng, Zheng

    2013-01-01

    Recent work on quasar clustering suggests a degeneracy in the halo occupation distribution constrained from two-point correlation functions. To break this degeneracy, we make the first empirical measurement of the mean occupation function (MOF) of quasars at z ~ 0.2 by matching quasar positions with groups and clusters identified in the MaxBCG sample. We fit two models to the MOF, a power law and a 4-parameter model. The number distribution of quasars in host halos is close to Poisson, and the slopes of the MOF obtained from our best-fit models (for the power law case) favor a MOF that monotonically increases with halo mass. The best-fit slopes are 0.53 +/- 0.04 and 1.03 +/- 1.12 for the power law model and the 4-parameter model, respectively. We measure the radial distribution of quasars within dark matter halos and find it to be adequately described by a power law with a slope -2.3 +/- 0.4. We measure the conditional luminosity function (CLF) of quasars and show that there is no evidence of luminosity evolu...

  4. Near-infrared spectra and intrinsic luminosities of candidate type II quasars at 2 < z < 3.4

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Jenny E.; Strauss, Michael A.; Pattarakijwanich, Petchara [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Alexandroff, Rachael; Zakamska, Nadia L.; Liu, Guilin [Center for Astrophysical Sciences, Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Lang, Dustin [McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Hamann, Frederick [Department of Astronomy, University of Florida, Gainesville, FL 32611-2055 (United States); Ross, Nicholas P. [Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Myers, Adam D. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Brandt, W. Niel; Schneider, Donald P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); York, Donald [University of Chicago Astronomy and Astrophysics Department and Enrico Fermi Institute, 5640 South Ellis Avenue, Chicago, IL 60637 (United States)

    2014-06-10

    We present JHK near-infrared (NIR) spectroscopy of 25 candidate Type II quasars selected from the Sloan Digital Sky Survey (SDSS), using Triplespec on the Apache Point Observatory 3.5 m telescope, the Folded-port InfraRed Echellette at the Magellan/Baade 6.5 m telescope, and the Gemini Near-Infrared Spectrograph on Gemini. At redshifts of 2 < z < 3.4, our NIR spectra probe the rest-frame optical region of these targets, which were initially selected to have strong lines of C IV and Ly α, with FWHM < 2000 km s{sup –1} from the SDSS pipeline. We use the [O III] λ5007 line shape as a model for the narrow-line region emission and find that Hα consistently requires a broad component with FWHMs ranging from 1000 to 7500 km s{sup –1}. Interestingly, the C IV lines also require broad bases, but with considerably narrower widths of 1000-4500 km s{sup –1}. Estimating the extinction using the Balmer decrement and also the relationship in lower-z quasars between rest equivalent width and luminosity in the [O III] line, we find typical A{sub V} values of 0-2 mag, which naturally explains the attenuated C IV lines relative to Hα. We propose that our targets are moderately obscured quasars. We also describe one unusual object with three distinct velocity peaks in its [O III] spectrum.

  5. Gamma-ray luminosity function of gamma-ray bright AGNs

    Institute of Scientific and Technical Information of China (English)

    Debbijoy Bhattacharya; P. Sreekumar; R. Mukherjee

    2009-01-01

    Detection of γ-ray emissions from a class of active galactic nuclei (viz blazars),has been one of the important findings from the Compton Gamma-Ray Observatory (CGRO). However, their-γ-ray luminosity function has not been well determined. Few at-tempts have been made in earlier works, where BL Lacs and Flat Spectrum Radio Quasars (FSRQs) have been considered as a single source class. In this paper, we investigated the evolution and γ-ray luminosity function of FSRQs and BL Lacs separately. Our investi-gation indicates no evolution for BL Lacs, however FSRQs show significant evolution. Pure luminosity evolution is assumed for FSRQs and exponential and power law evolu-tion models are examined. Due to the small number of sources, the low luminosity end index of the luminosity function for FSRQs is constrained with an upper limit. BL Lac lu-minosity function shows no signature of break. As a consistency check, the model source distributions derived from these luminosity functions show no significant departure from the observed source distributions.

  6. Axions and the white dwarf luminosity function

    CERN Document Server

    Isern, J; García-Berro, E; Torres, S

    2008-01-01

    The evolution of white dwarfs can be described as a simple cooling process. Recently, it has been possible to determine with an unprecedented precision their luminosity function, that is, the number of stars per unit volume and luminosity interval. Since the shape of the bright branch of this function is only sensitive to the average cooling rate, we use this property to check the possible existence of axions, a proposed but not yet detected weakly interacting particle. We show here that the inclusion of the axion emissivity in the evolutionary models of white dwarfs noticeably improves the agreement between the theoretical calculations and the observational white dwarf luminosity function, thus providing the first positive indication that axions could exist. Our results indicate that the best fit is obtained for m_a cos^2beta ~ 2-6 meV, where m_a is the mass of the axion and cos^2beta is a free parameter, and that values larger than 10 meV are clearly excluded.

  7. Avoiding Spurious Breaks in Binned Luminosity Functions

    Science.gov (United States)

    Cara, M.; Lister, M. L.

    2008-10-01

    We show that using either the method of Page & Carrera or the well-known 1/Va method to construct the binned luminosity function (LF) of a flux limited sample of active galactic nuclei (AGNs) can produce an artificial flattening (or steepening in the case of negative evolution) of the binned LF for bins intersected by the flux cutoff of the sample. This effect is more pronounced for samples with steep and strongly evolving parent LFs but is still present even for non-evolving LFs. As a result of this distortion of the true LF, fitting a model LF to binned data may lead to errors in the estimation of the parameters and may even prompt the erroneous use of broken power-law functions. We compute the expected positions of apparent breaks in the binned LF. We show that these spurious breaks in the binned LFs can be avoided if the binning is done in the flux-redshift plane instead of the typically used luminosity-redshift plane. Binning in the flux-redshift plane can be used in conjunction with the binning in the luminosity-redshift plane to test for real breaks in the binned LFs and to identify the features that are the result of binning biases. We illustrate this effect for most typical forms of luminosity dependence and redshift evolution and show how the proposed method helps address this problem. We also apply this method to the MOJAVE AGN sample and show that it eliminates an apparent break in the binned LF.

  8. The Luminosity Function of M3

    CERN Document Server

    Rood, R T; Paltrinieri, B; Ferraro, F R; Pecci, F F; Dorman, B; Chieffi, A; Straniero, O; Buonanno, R

    1999-01-01

    We present a high precision, large sample luminosity function (LF) for the Galactic globular cluster M3. With a combination of ground based and Hubble Space Telescope data we cover the entire radial extent of the cluster. The observed LF is well fit by canonical standard stellar models from the red giant branch (RGB) tip to below the main sequence turnoff point. Specifically, neither the RGB LF-bump nor subgiant branch LF indicate any breakdown in the standard models. On the main sequence we find evidence for a flat initial mass function and for mass segregation due to the dynamical evolution of the cluster.

  9. Avoiding spurious breaks in binned luminosity functions

    CERN Document Server

    Cara, Mihai

    2008-01-01

    We show that using either the method of Page & Carrera or the well-known $1/V_a$ method to construct the binned luminosity function (LF) of a flux limited sample of Active Galactic Nuclei (AGN) can produce an artificial flattening (or steepening in the case of negative evolution) of the binned LF for bins intersected by the flux cutoff of the sample. This effect is more pronounced for samples with steep and strongly evolving parent LFs but is still present even for non-evolving LFs. As a result of this distortion of the true LF, fitting a model LF to binned data may lead to errors in the estimation of the parameters and may even prompt the erroneous use of broken power law functions. We compute the expected positions of apparent breaks in the binned LF. We show that these spurious breaks in the binned LFs can be avoided if the binning is done in the flux--redshift plane instead of the typically used luminosity--redshift plane. Binning in the flux--redshift plane can be used in conjunction with the binning...

  10. Deriving Kinetic Luminosity Functions from the Low-Frequency Radio Luminosity Functions of FRII Sources

    Science.gov (United States)

    Kapinska, Anna D.; Uttley, P.; Kaiser, C. R.

    2010-03-01

    FRII radio galaxies are relatively simple systems which can be used to determine the influence of jets on their environments. Even simple analytical models of FRII evolution can link the observed lobe luminosities and sizes to fundamental properties such as jet power and density of the ambient medium; these are crucial for understanding AGN feedback. However, due to strong flux selection effects interpreting FRII samples is not straightforward. To overcome this problem we construct Monte Carlo simulations to create artificial samples of radio galaxies. We explore jet power and external density distributions by using them as the simulation input parameters. Further, we compute radio luminosity functions (RLF) and fit them to the observed low-frequency radio data that cover redshifts up to z 2, which gives us the most plausible distributions of FRIIs' fundamental properties. Moreover, based on these RLFs, we obtain the kinetic luminosity functions of these powerful sources.

  11. NLC Luminosity as a Function of Beam Parameters

    CERN Document Server

    Nosochkov, Yu M; Raubenheimer, T O; Seryi, Andrei

    2002-01-01

    Realistic calculation of NLC luminosity has been performed using particle tracking in DIMAD and beam-beam simulations in GUINEA-PIG code for various values of beam emittance, energy and beta functions at the Interaction Point (IP). Results of the simulations are compared with analytic luminosity calculations. The optimum range of IP beta functions for high luminosity was identified.

  12. Infrared Luminosity Function of the Coma Cluster

    CERN Document Server

    Bai, L; Rieke, M J; Hinz, J L; Kelly, D M; Blaylock, M; Bai, Lei; Rieke, George H.; Rieke, Marcia J.; Hinz, Joannah L.; Kelly, Douglas M.; Blaylock, Myra

    2006-01-01

    Using mid-IR and optical data, we deduce the total infrared (IR) luminosities of galaxies in the Coma cluster and present their infrared luminosity function (LF). The shape of the overall Coma IR LF does not show significant differences from the IR LFs of the general field, which indicates the general independence of global galaxy star formation on environment up to densities $\\sim$ 40 times greater than in the field (we cannot test such independence above $L_{ir} \\approx 10^{44} {\\rm ergs s}^{-1}$). However, a shallower faint end slope and a smaller $L_{ir}^{*}$ are found in the core region (where the densities are still higher) compared to the outskirt region of the cluster, and most of the brightest IR galaxies are found outside of the core region. The IR LF in the NGC 4839 group region does not show any unique characteristics. By integrating the IR LF, we find a total star formation rate in the cluster of about 97.0 $M_{\\sun}{\\rm yr}^{-1}$. We also studied the contributions of early- and late-type galaxie...

  13. The Evolving Luminosity Function of Red Galaxies

    CERN Document Server

    Brown, M J I; Jannuzi, B T; Brand, K; Benson, A J; Brodwin, M; Croton, D J; Eisenhardt, P R M; Brown, Michael J. I.; Dey, Arjun; Jannuzi, Buell T.; Brand, Kate; Benson, Andrew J.; Brodwin, Mark; Croton, Darren J.; Eisenhardt, Peter R.

    2006-01-01

    We trace the assembly history of red galaxies since z=1, by measuring their evolving space density with the B-band luminosity function. Our sample of 39599 red galaxies, selected from 6.96 square degrees of imaging from the NOAO Deep Wide-Field and Spitzer IRAC Shallow surveys, is an order of magnitude larger, in size and volume, than comparable samples in the literature. We measure a higher space density of z=0.9 red galaxies than some of the recent literature, in part because we account for the faint yet significant galaxy flux which falls outside of our photometric aperture. The B-band luminosity density of red galaxies, which effectively measures the evolution of ~L* galaxies, increases by only 36 percent from z=0 to z=1. If red galaxy stellar populations have faded by 1.24 B-band magnitudes since z=1, the stellar mass contained within the red galaxy population has roughly doubled over the past 8 Gyr. This is consistent with star-forming galaxies being transformed into ~L* red galaxies after a decline in ...

  14. The Demographics of Broad-Line Quasars in the Mass-Luminosity Plane. I. Testing FWHM-Based Virial Black Hole Masses

    CERN Document Server

    Shen, Yue

    2011-01-01

    (Abridged) We jointly constrain the LF and BHMF of quasars using a Bayesian approach that describes the underlying active BHMF and Eddington ratio distribution to match the observed distributions in the quasar mass-luminosity plane, based on ~58,000 uniformly selected quasars from the SDSS DR 7 at z~0.4-5. We take into account the selection effect of the sample flux limit; more importantly, we deal with the statistical scatter between true BH masses and FWHM-based single-epoch virial mass estimates, as well as potential luminosity-dependent biases of these mass estimates. The LF is tightly constrained in the regime sampled by SDSS quasars, and makes reasonable predictions when extrapolated to ~3 magnitudes fainter than the SDSS flux limit. On the other hand, we find it difficult to constrain the BHMF to within a factor of a few at z>~0.7. This is mainly driven by the unknown luminosity-dependent bias of these virial mass estimators and its degeneracy with other model parameters, and secondly driven by the fac...

  15. Mass Functions of the Active Black Holes in Distant Quasars from the Large Bright Quasar Survey, the Bright Quasar Survey, and the Color-Selected Sample of the SDSS Fall Equatorial Stripe

    DEFF Research Database (Denmark)

    Vestergaard, Marianne; Osmer, Patrick S.

    2009-01-01

    We present mass functions of distant actively accreting supermassive black holes residing in luminous quasars discovered in the Large Bright Quasar Survey, the Bright Quasar Survey, and the Fall Equatorial Stripe of the Sloan Digital Sky Survey (SDSS). The quasars cover a wide range of redshifts (0...

  16. The Luminosity Function and Mass Function in the Galactic Bulge

    CERN Document Server

    Holtzmann, J A; Baum, W A; Grillmair, C J; Groth, E J; Light, R M; Lynds, R; O'Neil, E J; Holtzman, Jon A.; Watson, Alan M.; Baum, William A.; Grillmair, Carl J.; Groth, Edward J.; Light, Robert M.; Lynds, Roger; Neil, Earl J. O'

    1998-01-01

    We present deep photometry obtained with the Hubble Space Telescope (HST) in a field in Baade's Window in the Galactic bulge. We derive a luminosity function down to I ~ 24.3, or V ~ 27.5, corresponding to M ~ 0.3 Msun. The luminosity function from the turnoff down to this level appears remarkably similar to that observed in the solar neighborhood. We derive a mass function using both an empirical local mass-luminosity relation and a mass-luminosity relation from recent stellar model calculations, allowing for the presence of binaries and photometric errors. The mass function has a power law form with dN/dM proportional to M^{-2.2} for M >~ 0.7 Msun. However, we find strong evidence for a break in the mass function slope around 0.5-0.7 Msun, with a significantly shallower slope at lower masses. The value of the slope for the low masses depends on the assumed binary fraction and the accuracy of our completeness correction. This mass function should directly reflect the initial mass function.

  17. Optical spectral index - luminosity relation for the 17 mapped Palomar-Green quasars

    CERN Document Server

    Zhang, XueGuang

    2013-01-01

    In this paper, the optical spectra index - luminosity relationship is checked for the well-known 17 individual mapped QSOs, in order to give one more clearer conclusion on the so far conflicting dependence of the spectral index on the luminosity for AGN. Different from the global relationships based on the color difference (photometry parameters) for samples of AGN, the more reliable relationship is determined for the multi-epoch observed individual mapped QSOs with no contamination from the host galaxies, the line variabilities and the much different central properties. The final confirmed results are as follows. (1): No strong dependence of the optical spectral index on the continuum luminosity can be found for all the 17 QSOs, besides two objects (PG 0026 and PG 1613) having some weak trends (with $3\\sigma$ confidence level) for the relationship. In other words, the common sense 'AGNs get bluer when they get brighter' is not so common. (2): There are much different damped intrinsic variability time scales ...

  18. The Luminosity Function of IRAS PSCz Galaxies

    CERN Document Server

    Takeuchi, T T; Ishii, T T; Takeuchi, Tsutomu T.; Yoshikawa, Kohji; Ishii, Takako T.

    2003-01-01

    We estimated the luminosity function (LF) of IRAS galaxies in the PSCz catalogue. The faint end of the PSCz LF is slightly steeper than that of the LF derived by Saunders et al. (1990; S90). Using an analytical form for the LF used by S90, we obtain the following parameters: \\alpha = 1.23 \\pm 0.04, L_*=(8.85 \\pm 1.75) \\times 10^8 h^{-2} L_\\odot, \\sigma =0.724 \\pm 0.010, and \\phi_* = (2.34 \\pm 0.30) \\times 10^{-2} h^3 Mpc^{-3}. We also examined the evolution in the sample by a simple assumption \\phi_*(z) \\propto (1+z)^P, and found P=3.40 \\pm 0.70. It does not affect the three parameters, \\alpha, L_*, and \\sigma, but \\phi_*(z=0) is overestimated up to \\sim 15% if we ignore evolution. We estimated the temperature dependence of the LF. The LFs of warm and cool galaxies are quite different: the LF of warm galaxies has a very steep faint end with \\alpha =1.37. We also discuss a lump found at the brightest end of the LF.

  19. The IR Luminosity Functions of Rich Clusters

    CERN Document Server

    Bai, Lei; Rieke, Marcia J; Christlein, Daniel; Zabludoff, Ann I

    2008-01-01

    We present MIPS observations of the cluster A3266. About 100 spectroscopic cluster members have been detected at 24 micron. The IR luminosity function in A3266 is very similar to that in the Coma cluster down to the detection limit L_IR~10^43 ergs/s, suggesting a universal form of the bright end IR LF for local rich clusters with M~10^15 M_sun. The shape of the bright end of the A3266-Coma composite IR LF is not significantly different from that of nearby field galaxies, but the fraction of IR-bright galaxies (SFR > 0.2M_sun/yr) in both clusters increases with cluster-centric radius. The decrease of the blue galaxy fraction toward the high density cores only accounts for part of the trend; the fraction of red galaxies with moderate SFRs (0.2 < SFR < 1 M_sun/yr) also decreases with increasing galaxy density. These results suggest that for the IR bright galaxies, nearby rich clusters are distinguished from the field by a lower star-forming galaxy fraction, but not by a change in L*_IR. The composite IR LF...

  20. The nuclear to host galaxy relation of high redshift quasars

    CERN Document Server

    Kotilainen, J K; Labita, M; Treves, A; Uslenghi, M

    2007-01-01

    We present near-infrared imaging with ESO VLT+ISAAC of the host galaxies of low luminosity quasars in the redshift range 1 < z < 2, aimed at investigating the relationship between the nuclear and host galaxy luminosities at high redshift. This work complements our previous study to trace the cosmological evolution of the host galaxies of high luminosity quasars (Falomo et al. 2004). The new sample includes 15 low luminosity quasars, nine radio-loud (RLQ) and six radio-quiet (RQQ). They have similar distribution of redshift and optical luminosity, and together with the high luminosity quasars they cover a large range (~4 mag) of the quasar luminosity function. The host galaxies of both types of quasars are in the range of massive inactive ellipticals between L* and 10 L*. RLQ hosts are systematically more luminous than RQQ hosts by a factor of ~2. This difference is similar to that found for the high luminosity quasars. This luminosity gap appears to be independent of the rest-frame U-band luminosity but...

  1. Quasar clustering in a galaxy and quasar formation model based on ultra high-resolution N-body simulations

    CERN Document Server

    Oogi, Taira; Ishiyama, Tomoaki; Kobayashi, Masakazu A R; Makiya, Ryu; Nagashima, Masahiro

    2015-01-01

    We investigate clustering properties of quasars using a new version of our semi-analytic model of galaxy and quasar formation with state-of-the-art cosmological N-body simulations. In this study, we assume that a major merger of galaxies triggers cold gas accretion on to a supermassive black hole and quasar activity. Our model can reproduce the downsizing trend of the evolution of quasars. We find that the median mass of quasar host dark matter haloes increases with cosmic time by an order of magnitude from z=4 (a few 1e+11 Msun) to z=1 (a few 1e+12 Msun), and depends only weakly on the quasar luminosity. Deriving the quasar bias through the quasar--galaxy cross-correlation function in the model, we find that the quasar bias does not depend on the quasar luminosity, similar to observed trends. This result reflects the fact that quasars with a fixed luminosity have various Eddington ratios and thus have various host halo masses that primarily determine the quasar bias. We also show that the quasar bias increas...

  2. The Local [CII] 158 um Emission Line Luminosity Function

    CERN Document Server

    Hemmati, Shoubaneh; Diaz-Santos, Tanio; Armus, Lee; Capak, Peter; Faisst, Andreas; Masters, Daniel

    2016-01-01

    We present, for the first time, the local [CII] 158 um emission line luminosity function measured using a sample of more than 500 galaxies from the Revised Bright Galaxy Sample (RBGS). [CII] luminosities are measured from the Herschel PACS observations of the Luminous Infrared Galaxies in the Great Observatories All-sky LIRG Survey (GOALS) and estimated for the rest of the sample based on the far-IR luminosity and color. The sample covers 91.3% of the sky and is complete at S_60 um > 5.24 Jy. We calculated the completeness as a function of [CII] line luminosity and distance, based on the far-IR color and flux densities. The [CII] luminosity function is constrained in the range ~10^(7-9) (Lo) from both the 1/V_max and a maximum likelihood methods. The shape of our derived [CII] emission line luminosity function agrees well with the IR luminosity function. For the CO(1-0) and [CII] luminosity functions to agree, we propose a varying ratio of [CII]/CO(1-0) as a function of CO luminosity, with larger ratios for f...

  3. The Morphological Type Dependence of K-band Luminosity Functions

    CERN Document Server

    Devereux, Nick; Willner, S P; Ashby, M L N; Willmer, C N A

    2009-01-01

    Differential 2.2um (K-band) luminosity functions are presented for a complete sample of 1570 nearby Vgsr < 3000 km/s, where Vgsr is the velocity measured with respect to the Galactic standard of rest), bright (K < 10 mag), galaxies segregated by visible morphology. The K-band luminosity function for late-type spirals follows a power law that rises towards low luminosities whereas the K-band luminosity functions for ellipticals, lenticulars and bulge-dominated spirals are peaked with a fall off at both high and low luminosities. However, each morphological type (E, S0, S0/a-Sab, Sb-Sbc, Sc-Scd) contributes approximately equally to the overall K-band luminosity density in the local universe, and by inference, the stellar mass density as well.

  4. On the faint end of the high redshift AGN luminosity function

    CERN Document Server

    Shankar, F; Shankar, Francesco; Mathur, Smita; Shankar, Francesco; Mathur, Smita

    2007-01-01

    Using the results of recent optical surveys we conclude that the {\\it non}-detection of quasars down to faint magnitudes implies a significant flattening of the high redshift (z~6) optical active galactic nuclei (AGN) luminosity function for M_{1450}>-26.7. We find that all the data are consistent with a faint-end slope for the optical AGN luminosity function of \\beta=-2.2 and \\beta=-2.8, at the 90% and 99% confidence level respectively, flatter than the bright-end slope of \\beta'~ -3.2. We also show that X-ray deep surveys have probed even fainter magnitudes than the optical ones yielding more significant constraints on the shallow faint-end slope of the optical luminosity function. The inclusion of Type II AGN candidates, detected in the Chandra deep fields, hints towards an higher normalization for the total AGN luminosity function, if these sources lie at 5

  5. SDSS J013127.34–032100.1: A NEWLY DISCOVERED RADIO-LOUD QUASAR AT z = 5.18 WITH EXTREMELY HIGH LUMINOSITY

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Wei-Min; Bai, Jin-Ming; Zhang, Ju-jia; Wang, Fang; Wang, Jian-Guo; Fan, Yu-Feng; Chang, Liang; Wang, Chuan-Jun; Lun, Bao-Li [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Wang, Feige; Wu, Xue-Bing; Yang, Jinyi; Ho, Luis C.; Zuo, Wenwen; Yang, Qian; Ai, Yanli [Department of Astronomy, School of Physics, Peking University, Beijing 100871 (China); Fan, Xiaohui [Steward Observatory, University of Arizona, Tucson, AZ 85721-0065 (United States); Brandt, William N. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Kim, Minjin [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Wang, Ran [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); and others

    2014-11-10

    Very few of the z > 5 quasars discovered to date have been radio-loud, with radio-to-optical flux ratios (radio-loudness parameters) higher than 10. Here we report the discovery of an optically luminous radio-loud quasar, SDSS J013127.34–032100.1 (J0131–0321 in short), at z = 5.18 ± 0.01 using the Lijiang 2.4 m and Magellan telescopes. J0131–0321 has a spectral energy distribution consistent with that of radio-loud quasars. With an i-band magnitude of 18.47 and a radio flux density of 33 mJy, its radio-loudness parameter is ∼100. The optical and near-infrared spectra taken by Magellan enable us to estimate its bolometric luminosity to be L {sub bol} ∼ 1.1 × 10{sup 48} erg s{sup –1}, approximately 4.5 times greater than that of the most distant quasar known to date. The black hole mass of J0131–0321 is estimated to be 2.7 × 10{sup 9} M {sub ☉}, with an uncertainty up to 0.4 dex. Detailed physical properties of this high-redshift, radio-loud, potentially super-Eddington quasar can be probed in the future with more dedicated and intensive follow-up observations using multi-wavelength facilities.

  6. Connections between the Radio, Optical and Soft X-ray Luminosities for Flat-Spectrum Radio Quasars

    Indian Academy of Sciences (India)

    Zhi-Fu Chen; Cai-Juan Pan; You-Bing Li; Yu-Tao Zhou

    2014-09-01

    We investigate the connections between radio, optical and soft X-ray luminosities with a sample of 538 FSRQs. We find that the radio luminosity is strongly correlated with the optical luminosity, as well as with the soft X-ray luminosity. We also find that the optical luminosity is strongly correlated with the soft X-ray luminosity.

  7. The Co-Formation of Spheroids and Quasars Traced in their Clustering

    CERN Document Server

    Hopkins, P F; Hernquist, L; Coil, A L; Myers, A D; Cox, T J; Spergel, D N; Hopkins, Philip F.; Lidz, Adam; Hernquist, Lars; Coil, Alison L.; Myers, Adam D.; Cox, Thomas J.; Spergel, David N.

    2006-01-01

    We compare observed clustering of quasars and galaxies as a function of redshift, mass, luminosity, & color/morphology, to constrain models of quasar fueling and spheroid-BH co-evolution. High redshift quasars are shown to be drawn from progenitors of local early-type galaxies, with the characteristic quasar luminosity L* reflecting a characteristic mass of 'active' BH/host populations at each redshift. Evolving observed high-z quasar clustering to z=0 predicts a trend of clustering in 'quasar remnants' as a function of stellar mass identical to that observed for early-types. However, quasar clustering does not simply reflect observed early (or late)-type populations; at each redshift, quasars cluster as an 'intermediate' population. Comparing with the age of elliptical stellar populations reveals that this 'intermediate' population represents those ellipticals undergoing or terminating their final significant star formation at each epoch. Assuming that quasar triggering is associated with the formation/t...

  8. Clustering, Cosmology and a New Era of Black Hole Demographics: The Conditional Luminosity Function of AGNs

    Science.gov (United States)

    Ballantyne, David R.

    2017-01-01

    Deep X-ray surveys have provided a comprehensive and largely unbiased view of active galactic nuclei (AGN) evolution stretching back to z~5. However, it has been challenging to use the survey results to connect this evolution to the cosmological environment that AGNs inhabit. Exploring this connection will be crucial to understanding the triggering mechanisms of AGNs and how these processes manifest in observations at all wavelengths. In anticipation of upcoming wide-field X-ray surveys that will allow quantitative analysis of AGN environments, we present a method to observationally constrain the Conditional Luminosity Function (CLF) of AGNs at a specific z. Once measured, the CLF allows the calculation of the AGN bias, mean dark matter halo mass, AGN lifetime, halo occupation number, and AGN correlation function -- all as a function of luminosity. The CLF can be constrained using a measurement of the X-ray luminosity function and the correlation length at different luminosities. The method is illustrated at z≈0 and 0.9 using the limited data that is currently available, and a clear luminosity dependence in the AGN bias and mean halo mass is predicted at both, supporting the idea that there are at least two different modes of AGN triggering. In addition, the CLF predicts that z≈0.9 quasars may be commonly hosted by haloes with Mh ~ 1014 M⊙. These `young cluster' environments may provide the necessary interactions between gas-rich galaxies to fuel luminous accretion. The results derived from this method will be useful to populate AGNs of different luminosities in cosmological simulations.

  9. Evolution of the cluster X-ray luminosity function

    DEFF Research Database (Denmark)

    Mullis, C.R.; Vikhlinin, A.; Henry, J.P.

    2004-01-01

    We report measurements of the cluster X-ray luminosity function out to z = 0.8 based on the final sample of 201 galaxy systems from the 160 Square Degree ROSAT Cluster Survey. There is little evidence for any measurable change in cluster abundance out to z similar to 0.6 at luminosities of less...... than a few times 10(44) h(50)(-2) ergs s(-1) (0.5 - 2.0 keV). However, for 0.6 cluster deficit using integrated number counts...... and a maximum likelihood analysis of the observed luminosity-redshift distribution fit with a model luminosity function. The negative evolution signal is more than 3 sigma regardless of the adopted local luminosity function or cosmological framework. Our results and those from several other surveys...

  10. Helium Reionization Simulations. I. Modeling Quasars as Radiation Sources

    CERN Document Server

    La Plante, Paul

    2015-01-01

    We introduce a new project to understand helium reionization using fully coupled $N$-body, hydrodynamics, and radiative transfer simulations. This project aims to capture correctly the thermal history of the intergalactic medium (IGM) as a result of reionization and make predictions about the Lyman-$\\alpha$ forest and baryon temperature-density relation. The dominant sources of radiation for this transition are quasars, so modeling the source population accurately is very important for making reliable predictions. In this first paper, we present a new method for populating dark matter halos with quasars. Our set of quasar models include two different light curves, a lightbulb (simple on/off) and symmetric exponential model, and luminosity-dependent quasar lifetimes. Our method self-consistently reproduces an input quasar luminosity function (QLF) given a halo catalog from an $N$-body simulation, and propagates quasars through the merger history of halo hosts. After calibrating quasar clustering using measurem...

  11. The shape of the blue\\/UV continuum of B3-VLA radio quasars Dependence on redshift, blue\\/UV luminosity and radio power

    CERN Document Server

    Carballo, R; Benn, C R; Sánchez, S F; Vigotti, M

    1999-01-01

    UBVR photometry of a sample of B3-VLA radio quasars, about 80 per cent complete, is used to analyse their spectral energy distribution (SED). The SEDs are generally well fitted with power-laws, with an average slope alpha=-0.39 (S_nu propto nu^alpha). Two quasars appear clearly differenciated, exhibiting redder colours that the rest, and they have redshifts z=0.50 and 1.12. Broad-band composite SEDs in the range 1300-4500 AA were obtained from the remaining quasars and they show the CIV1549 line and a break at around 3000 A, where the SED changes from alpha_blue=0.11+-0.16 at lambda>3000 A to alpha_UV=-0.66+-0.15 at lambda1.2 alpha_UV is more flat, -0.48+-0.12. A similar trend is found between alpha_UV and luminosity at 2400 A, L_2400, with luminous quasars exhibiting a bluer spectrum. In addition, an intrinsic correlation is found between L_2400 and radio power at 408 MHz. The correlations alpha_UV-z, alpha_UV-L_2400 and L_2400-z are consistent with accretion disc models with approximately constant black hol...

  12. The K-band luminosity functions of cluster galaxies

    CERN Document Server

    De Propris, R

    2016-01-01

    We derive the galaxy luminosity function in the $K_s$ band for galaxies in 24 clusters to provide a local reference for higher redshift studies and to analyse how and if the luminosity function varies according to environment and cluster properties. We use new, deep $K$ band imaging and match the photometry to available redshift information and to optical photometry from the SDSS or the UKST/POSS: $>80\\%$ of the galaxies to $K \\sim 14.5$ have measured redshifts. We derive composite luminosity functions, for the entire sample and for cluster subsamples . We consider the luminosity functions for red sequence and blue cloud galaxies. The full composite luminosity function has $K^*=12.79 \\pm 0.14$ ($M_K=-24.81$) and $\\alpha=-1.41 \\pm 0.10$. We find that $K^*$ is largely unaffected by the environment but that the slope $\\alpha$ increases towards lower mass clusters and clusters with Bautz-Morgan type $<$ II. The red sequence luminosity function seems to be approximately universal (within errors) in all environm...

  13. Luminosity function of optically-selected type II QSOs

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    For a sample of 411 type II QSOs with redshifts less then 0.3,we use the Balmer decrements to do the reddening correction of the [O III] luminosities and then derive the intrinsic [O III] luminosity function.We find that the host reddening correction of the [O III] 5007 luminosity for type II QSOs cannot be neglected.The median Balmer decrement of Hα/Hβ=4.0 corresponds to an extinction of 0.94 mag for the [O III] 5007 line,which is consistent with the result derived from the median Hβ/Hγ.Comparing the intrinsic luminosity function of type II QSOs with that of type I QSOs,we find that the upper limit of the type II QSO’s fraction in the total QSOs is 80% for type II QSOs with z < 0.3 and 8.6≤log(L[O III]/L)≤9.4.

  14. The luminosity function of Swift long gamma-ray bursts

    CERN Document Server

    Cao, Xiao-Feng; Cheng, K S; Zheng, Xiao-Ping

    2011-01-01

    The formation rate of long gamma-ray bursts (GRBs) could follow the cosmic star formation rate (SFR) incorporating with cosmic metallicity evolution. Therefore, the luminosity function (LF) of GRBs can in principle be explored by modeling the redshift-luminosity distributions of {\\it Swift} observed GRBs. For an assumed LF form as $\\Phi_z(L)\\propto e^{-L_p/L}\\left({L/L_p}\\right)^{-\

  15. A mixture evolution scenario of AGN radio luminosity function

    CERN Document Server

    Yuan, Zunli; Zhou, Ming; Mao, Jirong

    2016-01-01

    We propose a mixture evolution scenario to model the evolution of the steep spectrum AGN (active galactic nuclear) radio luminosity function (RLF) based on a Bayesian method. In this scenario, the shape of RLF is determined together by the density and luminosity evolution. Our models indicate that the density evolution is positive until a redshift of $\\thicksim 0.9$ and then turns to be negative, while the luminosity evolution is positive to a higher redshift ($z \\thicksim 5$ for model B and $z \\thicksim 3.5$ for model C) and then turns to be negative. Our mixture evolution model works well, and the modeled RLFs are in good agreement with previous determinations. The mixture evolution scenario can naturally explain the luminosity dependent evolution of the RLFs.

  16. The galaxy luminosity function and the Local Hole

    CERN Document Server

    Whitbourn, J R

    2016-01-01

    Whitbourn & Shanks (2014) have reported evidence for a local void underdense by ~15% extending to 150-300h-1Mpc around our position in the Southern Galactic Cap (SGC). Assuming a local luminosity function they modelled K- and r-limited number counts and redshift distributions in the 6dFGS/2MASS and SDSS redshift surveys and derived normalised n(z) ratios relative to the standard homogeneous cosmological model. Here we test further these results using maximum likelihood techniques that solve for the galaxy density distributions and the galaxy luminosity function simultaneously. We confirm the results from the previous analysis in terms of the number density distributions, indicating that our detection of the 'Local Hole' in the SGC is robust to the assumption of either our previous, or newly estimated, luminosity functions. However, there are discrepancies with previously published K and r band luminosity functions. In particular the r-band luminosity function has a steeper faint end slope than the r0.1 re...

  17. Luminosity functions for very low mass stars and brown dwarfs

    Science.gov (United States)

    Laughlin, Gregory; Bodenheimer, Peter

    1993-01-01

    A theoretical investigation of the luminosity function for low-mass objects to constrain the stellar initial mass function at the low-mass end is reported. The ways in which luminosity functions for low-mass stars are affected by star formation histories, brown dwarf and premain-sequence cooling rates and main-sequence mass luminosity relations, and the IMF are examined. Cooling rates and the mass-luminosity relation are determined through a new series of evolutionary calculations for very low mass stars and brown dwarfs in the range 0.05-0.50 solar mass. Model luminosity functions are constructed for specific comparison with the results of four recent observational surveys. The likelihood that the stellar mass function in the solar neighborhood is increasing at masses near the bottom of the main sequence and perhaps at lower masses is confirmed. In the most optimistic case, brown dwarfs contribute half of the local missing disk mass. The actual contribution is likely to be considerably less.

  18. Environmental effects on the Coma cluster luminosity function

    CERN Document Server

    Lobo, C; Durret, F; Gerbal, D; Lefèvre, O; Mazure, A; Slezak, E

    1996-01-01

    Using our catalogue of V_{26.5} isophotal magnitudes for 6756 galaxies in a region covering 60~\\times~25~arcmin^2 in the center of the Coma cluster, plus 267 galaxies in a region of 9.7~\\times~9.4~arcmin^2 around NGC~4839, we derive the luminosity function in the magnitude range 13.5\\leq V_{26.5} < 21.0 (corresponding to the absolute magnitude range -22.24 < M_{V26.5} \\leq -14.74). The luminosity function for this region is well fitted by the combination of a gaussian in its bright part and of a steep Schechter function (of index \\alpha =-1.8) in its faint part. Luminosity functions derived for individual regions surrounding the brightest galaxies show less steep slopes, strongly suggesting the existence of environmental effects. The implications of such effects and galaxy formation scenarios are discussed.

  19. The Ultraviolet Luminosity Function of the Earliest Galaxies

    CERN Document Server

    O'Shea, Brian W; Xu, Hao; Norman, Michael L

    2015-01-01

    In this paper, we present the first results from the Renaissance Simulations, a suite of extremely high-resolution and physics-rich AMR calculations of high redshift galaxy formation performed on the Blue Waters supercomputer. These simulations contain hundreds of well-resolved galaxies at $z \\sim 25-8$, and make several novel, testable predictions. Most critically, we show that the ultraviolet luminosity function of our simulated galaxies is consistent with observations of high-z galaxy populations at the bright end of the luminosity function (M$_{1600} \\leq -17$), but at lower luminosities is essentially flat rather than rising steeply, as has been inferred by Schechter function fits to high-z observations. This flattening of the luminosity function is due to two factors: (i) the strong dependence of the stellar fraction on halo virial mass in our simulated galaxy population, with lower-mass halos having systematically lower stellar fractions and thus lower luminosities at a given halo virial mass; and (ii)...

  20. Radial U-band Coma galaxy luminosity functions

    NARCIS (Netherlands)

    Beijersbergen, M; Hoekstra, H; van Dokkum, PG; van der Hulst, JM; Hibbard, JE; Rupen, MP; VanGorkom, JH

    2001-01-01

    We have mapped 1.3 degree(2) of the Coma cluster from the core to beyond the NGC4839 group. Here, we present radial U-band Coma galaxy luminosity functions (LF). The central LF can be represented by a Schechter function, but the radial LFs have very different shapes. We speculate that the derived st

  1. Mass Functions of the Active Black Holes in Distant Quasars from the Large Bright Quasar Survey, the Bright Quasar Survey, and the Color-Selected Sample of the SDSS Fall Equatorial Stripe

    DEFF Research Database (Denmark)

    Vestergaard, Marianne; Osmer, Patrick S.

    2009-01-01

    We present mass functions of distant actively accreting supermassive black holes residing in luminous quasars discovered in the Large Bright Quasar Survey, the Bright Quasar Survey, and the Fall Equatorial Stripe of the Sloan Digital Sky Survey (SDSS). The quasars cover a wide range of redshifts (0...... functions at similar redshifts based on the SDSS Data Release 3 quasar catalog presented by Vestergaard et al. We see clear evidence of cosmic downsizing in the comoving space density distribution of active black holes in the LBQS sample alone. In forthcoming papers, further analysis, comparison......, and discussion of these mass functions will be made with other existing black hole mass functions, notably that based on the SDSS DR3 quasar catalog. We present the relationships used to estimate the black hole mass based on the MgII emission line; the relations are calibrated to the Hbeta and CIV relations...

  2. The K-band luminosity functions of cluster galaxies

    Science.gov (United States)

    De Propris, Roberto

    2017-03-01

    We derive the galaxy luminosity function in the Ks band for galaxies in 24 clusters to provide a local reference for higher redshift studies and to analyse how and if the luminosity function varies according to environment and cluster properties. We use new, deep K-band imaging and match the photometry to available redshift information and to optical photometry from the SDSS or the UKST/POSS: More than 80 per cent of the galaxies to K ∼ 14.5 have measured redshifts. We derive composite luminosity functions, for the entire sample and for cluster subsamples. We consider the luminosity functions for red-sequence and blue cloud galaxies. The full composite luminosity function has K* = 12.79 ± 0.14 (MK = -24.81) and α = -1.41 ± 0.10. We find that K* is largely unaffected by the environment, but that the slope α increases towards lower mass clusters and clusters with Bautz-Morgan type function seems to be approximately universal (within errors) in all environments: It has parameters K* = 13.16 ± 0.15 (MK = -24.44) and α = -1.00 ± 0.12 (for all galaxies). Blue galaxies do not show a good fit to a Schechter function, but the best values for its parameters are K* = 13.51 ± 0.41 (MK = -24.09) and α = -1.60 ± 0.29: We do not have enough statistics to consider environmental variations for these galaxies. We find some evidence that K* in clusters is brighter than in the field and α is steeper, but note that this comparison is based (for the field) on 2MASS photometry, while our data are considerably deeper.

  3. From local active galactic nuclei to early quasars

    Energy Technology Data Exchange (ETDEWEB)

    Cavaliere, A.; Giallongo, E.; Vagnetti, F.

    1985-09-15

    To close the gap between the local luminosity function of the optically selected active galactic nuclei and the population properties of distant (z< or approx. =2) quasars, we propose a model of differential luminosity evolution which is astrophysically based and contains a minimal number of free parameters. We discuss the advantages of the model and its predictions, and indicate how to extend it for z > 2 to cover the beginning of the quasar era.

  4. The luminosity function of high-redshift QSOs

    CERN Document Server

    Fontanot, F; Monaco, P; Vanzella, E; Nonino, M; Brandt, W N; Grazian, A; Mao, J; Fontanot, Fabio; Cristiani, Stefano; Monaco, Pierluigi; Vanzella, Eros; Nonino, Mario; Grazian, Andrea; Mao, Jirong

    2006-01-01

    We measure the luminosity function of QSOs in the redshift range 3.5 < z < 5.2 for the absolute magnitude interval -21 < M_{145} < -28. Suitable criteria are defined to select faint QSOs in the GOODS fields, checking their effectiveness and completeness in detail. The confirmed sample of faint QSOs is compared with a brighter one derived from the SDSS. Using a Monte-Carlo technique we estimate the properties of the luminosity function. Our results show that models based on pure density evolution show better agreement with observation than models based on pure luminosity evolution, even if a different break magnitude with respect to z ~ 2.1 is required at 3.5 < z < 5.2. According to our modeling a faint-end slope steeper than low-redshift observations is required to reproduce the data, moreover models with a steep bright-end slope score a higher probability than models with a bright-end flattening. Determining the faint-end of the luminosity function at these redshifts provides important cons...

  5. The pulse luminosity function of Swift gamma-ray bursts

    CERN Document Server

    Amaral-Rogers, A; O'Brien, P T

    2016-01-01

    The complete Swift Burst Alert Telescope and X-Ray Telescope light curves of 118 gamma-ray bursts (GRBs) with known redshifts were fitted using the physical model of GRB pulses by Willingale et al. to produce a total of 607 pulses. We compute the pulse luminosity function utilizing three GRB formation rate models: a progenitor that traces the cosmic star formation rate density (CSFRD) with either a single population of GRBs, coupled to various evolutionary parameters, or a bimodal population of high- and low-luminosity GRBs, and a direct fit to the GRB formation rate excluding any a priori assumptions. We find that a single population of GRB pulses with an evolving luminosity function is preferred over all other univariate evolving GRB models, or bimodal luminosity functions in reproducing the observed GRB pulse L-z distribution and that the magnitude of the evolution in brightness is consistent with studies that utilize only the brightest GRB pulses. We determine that the appearance of a GRB formation rate d...

  6. The Relation Between the Globular Cluster Mass and Luminosity Functions

    CERN Document Server

    Kruijssen, J M Diederik

    2009-01-01

    The relation between the globular cluster luminosity function (GCLF, dN/dlogL) and globular cluster mass function (GCMF, dN/dlogM) is considered. Due to low-mass star depletion, dissolving GCs have mass-to-light (M/L) ratios that are lower than expected from their metallicities. This has been shown to lead to an M/L ratio that increases with GC mass and luminosity. We model the GCLF and GCMF and show that the power law slopes inherently differ (1.0 versus 0.7, respectively) when accounting for the variability of M/L. The observed GCLF is found to be consistent with a Schechter-type initial cluster mass function and a mass-dependent mass-loss rate.

  7. Quasars as Extreme Case of Galaxies

    CERN Document Server

    Nasiri, S

    1999-01-01

    We introduce a phenomenological investigation of the evolution and large scale distribution of quasars using a modified version of the Field and Colgate gravitational contraction model for proto-galaxies. By studying the distribution of about 7000 quasars in 5 luminosity classes, it seems that, such a model is capable of solving the energy problem and discussing some of the observational properties of these objects. A sketch of luminosity function of the quasars and the normal galaxies shows a unified aspect for these objects. The large scale distribution of the quasars in the galactic coordinate shows the existence of filamentary structures and voids in the same sence that have been resolved by exploring the clusters of galaxies.

  8. Clustering, Cosmology and a New Era of Black Hole Demographics - I. The Conditional Luminosity Function of Active Galactic Nuclei

    Science.gov (United States)

    Ballantyne, D. R.

    2016-09-01

    Deep X-ray surveys have provided a comprehensive and largely unbiased view of active galactic nuclei (AGN) evolution stretching back to z ˜ 5. However, it has been challenging to use the survey results to connect this evolution to the cosmological environment that AGNs inhabit. Exploring this connection will be crucial to understanding the triggering mechanisms of AGNs and how these processes manifest in observations at all wavelengths. In anticipation of upcoming wide-field X-ray surveys that will allow quantitative analysis of AGN environments, this paper presents a method to observationally constrain the Conditional Luminosity Function (CLF) of AGNs at a specific z. Once measured, the CLF allows the calculation of the AGN bias, mean dark matter halo mass, AGN lifetime, halo occupation number, and AGN correlation function - all as a function of luminosity. The CLF can be constrained using a measurement of the X-ray luminosity function and the correlation length at different luminosities. The method is illustrated at z ≈ 0 and 0.9 using the limited data that is currently available, and a clear luminosity dependence in the AGN bias and mean halo mass is predicted at both z, supporting the idea that there are at least two different modes of AGN triggering. In addition, the CLF predicts that z ≈ 0.9 quasars may be commonly hosted by haloes with Mh ˜ 1014 M⊙. These `young cluster' environments may provide the necessary interactions between gas-rich galaxies to fuel luminous accretion. The results derived from this method will be useful to populate AGNs of different luminosities in cosmological simulations.

  9. Clustering, cosmology and a new era of black hole demographics- I. The conditional luminosity function of active galactic nuclei

    Science.gov (United States)

    Ballantyne, D. R.

    2017-01-01

    Deep X-ray surveys have provided a comprehensive and largely unbiased view of active galactic nuclei (AGN) evolution stretching back to z ˜ 5. However, it has been challenging to use the survey results to connect this evolution to the cosmological environment that AGN inhabit. Exploring this connection will be crucial to understanding the triggering mechanisms of AGN and how these processes manifest in observations at all wavelengths. In anticipation of upcoming wide-field X-ray surveys that will allow quantitative analysis of AGN environments, this paper presents a method to observationally constrain the conditional luminosity function (CLF) of AGN at a specific z. Once measured, the CLF allows the calculation of the AGN bias, mean dark matter halo mass, AGN lifetime, halo occupation number, and AGN correlation function- all as a function of luminosity. The CLF can be constrained using a measurement of the X-ray luminosity function and the correlation length at different luminosities. The method is illustrated at z ≈ 0 and 0.9 using the limited data that are currently available, and a clear luminosity dependence in the AGN bias and mean halo mass is predicted at both z, supporting the idea that there are at least two different modes of AGN triggering. In addition, the CLF predicts that z ≈ 0.9 quasars may be commonly hosted by haloes with Mh ˜ 1014 M⊙. These `young cluster' environments may provide the necessary interactions between gas-rich galaxies to fuel luminous accretion. The results derived from this method will be useful to populate AGN of different luminosities in cosmological simulations.

  10. On the accuracy of the high redshift cluster luminosity function

    CERN Document Server

    Muñoz, Roberto P; Barrientos, Luis F

    2008-01-01

    We study the reliability of the statistical background subtraction method for computing the Ks-band luminosity function of cluster galaxies at z~1 using mock Red-sequence Cluster Survey cluster catalogues constructed from GALFORM semi-analytic galaxies. The underlying cluster luminosity function in the mocks are compatible with recent estimates at z~1 by several authors. We simulate different samples where the number of clusters with Ks-band photometry goes from 5 to a maximum of 50, in order to find the most suitable observational sample to carry out this study; the current observational status in the nIR wavelength range has been reached using 5 real clusters at z~1. We compute the composite luminosity function for several samples of galaxy clusters with masses 1.5x10^14 M_sun assuming a flux limited, complete sample of galaxies down to Ks=21.0 magnitudes. We find that the Schechter fit parameters Ks* and alpha for a sample of galaxies with no redshift information are rather poorly constrained if both param...

  11. The luminosity function of young star clusters: implications for the maximum mass and luminosity of clusters

    CERN Document Server

    Gieles, M; Bastian, N; Stein, I; Gieles, Mark; Larsen, Soeren; Bastian, Nate; Stein, Ilaan

    2005-01-01

    We introduce a method to relate a possible truncation of the star cluster mass function at the high mass end to the shape of the cluster luminosity function (LF). We compare the observed LFs of five galaxies containing young star clusters with synthetic cluster population models with varying initial conditions. The LF of the SMC, the LMC and NGC 5236 are characterized by a power-law behavior NdL~L^-a dL, with a mean exponent of = 2.0 +/- 0.2. This can be explained by a cluster population formeda with a constant cluster formation rate, in which the maximum cluster mass per logarithmic age bin is determined by the size-of-sample effect and therefore increases with log(age/yr). The LFs of NGC 6946 and M51 are better described by a double power-law distribution or a Schechter function. When a cluster population has a mass function that is truncated below the limit given by the size-of-sample effect, the total LF shows a bend at the magnitude of the maximum mass, with the age of the oldest cluster in the populati...

  12. Observations of the Ca ${\\rm\\tiny II}$ IR Triplet in High Luminosity Quasars: Exploring the Sample

    Indian Academy of Sciences (India)

    Mary Loli Martínez-Aldama; Paola Marziani; Deborah Dultzin; Jack W. Sulentic; Alessandro Bressan; Yang Chen; Giovanna M. Stirpe

    2015-12-01

    We present a new spectroscopic sample of 11 quasars at intermediate redshift observed with the Infrared Spectrometer and Array Camera (ISAAC) on the ESO Very Large Telescope (VLT), covering O ${\\rm\\tiny I}$ 8446 and the Ca ${\\rm\\tiny II}$ triplet 8498, 8542, 8662. The new observations – that supplement the sample presented by Martínez-Aldama et al. (2015) – allow us to confirm the constraints on physical conditions and location of the region emitting the low ionization lines, as well as the relation between Ca ${\\rm\\tiny II}$ and Fe ${\\rm\\tiny II}$.

  13. Ultra-compact structure in intermediate-luminosity radio quasars: building a sample of standard cosmological rulers and improving the dark energy constraints up to z 3

    Science.gov (United States)

    Cao, Shuo; Zheng, Xiaogang; Biesiada, Marek; Qi, Jingzhao; Chen, Yun; Zhu, Zong-Hong

    2017-09-01

    Context. Ultra-compact structure in radio sources (especially in quasars that can be observed up to very high redshifts), with milliarcsecond angular sizes measured by very-long-baseline interferometry (VLBI), is becoming an important astrophysical tool for probing both cosmology and the physical properties of AGN. Aims: We present a newly compiled data set of 120 milliarcsec. compact radio sources representing intermediate-luminosity quasars covering the redshift range 0.46 quasars observed at 2.29 GHz show negligible dependence on redshifts and intrinsic luminosity, and thus represent a fixed comoving-length of standard ruler. Methods: For a cosmological ruler with intrinsic length lm, the angular size-redshift relation can be written as θ(z) = lm/DA(z, where θ(z) is the angular size at redshift z, and DA(z) is the corresponding angular diameter distance. We use a compilation of angular size and redshift data for ultra-compact radio sources from a well-known VLBI survey, and implement a new cosmology-independent technique to calibrate the linear size of this standard ruler, which is also used to test different cosmological models with and without the flat universe assumption. Results: We determine the linear size of this standard ruler as lm = 11.03 ± 0.25 pc, which is the typical radius at which AGN jets become opaque at the observed frequency ν 2 GHz. Our measurement of this linear size is also consistent with the previous and recent radio observations at other different frequencies. In the framework of flat ΛCDM model, we find a high value of the matter density parameter, Ωm = 0.322+0.244-0.141, and a low value of the Hubble constant, H0 = 67.6+7.8-7.4 km s-1 Mpc-1, which is in excellent agreement with the cosmic microwave background (CMB) anisotropy measurements by Planck. We obtain Ωm = 0.309+0.215-0.151, w = -0.970+0.500-1.730 at 68.3% CL for the constant w of a dynamical dark-energy model, which demonstrates no significant deviation from the

  14. The pulse luminosity function of Swift gamma-ray bursts

    Science.gov (United States)

    Amaral-Rogers, A.; Willingale, R.; O'Brien, P. T.

    2017-01-01

    The complete Swift Burst Alert Telescope and X-Ray Telescope light curves of 118 gamma-ray bursts (GRBs) with known redshifts were fitted using the physical model of GRB pulses by Willingale et al. to produce a total of 607 pulses. We compute the pulse luminosity function utilizing three GRB formation rate models: a progenitor that traces the cosmic star formation rate density (CSFRD) with either a single population of GRBs, coupled to various evolutionary parameters, or a bimodal population of high- and low-luminosity GRBs; and a direct fit to the GRB formation rate excluding any a priori assumptions. We find that a single population of GRB pulses with an evolving luminosity function is preferred over all other univariate evolving GRB models, or bimodal luminosity functions in reproducing the observed GRB pulse L-z distribution and that the magnitude of the evolution in brightness is consistent with studies that utilize only the brightest GRB pulses. We determine that the appearance of a GRB formation rate density evolution component is an artefact of poor parametrization of the CSFRD at high redshifts rather than indicating evolution in the formation rate of early epoch GRBs. We conclude that the single brightest region of a GRB light curve holds no special property; by incorporating pulse data from the totality of GRB emission we boost the GRB population statistics by a factor of 5, rule out some models utilized to explain deficiencies in GRB formation rate modelling, and constrain more tightly some of the observed parameters of GRB behaviour.

  15. The Co-Formation of Spheroids and Quasars Traced in their Clustering

    Science.gov (United States)

    Hopkins, Philip F.; Lidz, Adam; Hernquist, Lars; Coil, Alison L.; Myers, Adam D.; Cox, Thomas J.; Spergel, David N.

    2007-06-01

    We compare observed clustering of quasars and galaxies as a function of redshift, mass, luminosity, and color/morphology, to constrain models of quasar fueling and the co-evolution of spheroids and supermassive black holes (BHs). High-redshift quasars are shown to be drawn from the progenitors of local early-type galaxies, with the characteristic quasar luminosity L* reflecting a characteristic mass of ``active'' BH/host populations at each epoch. Evolving observed high-z quasar clustering to z=0 predicts a trend of clustering in ``quasar remnants'' as a function of stellar mass identical to that observed for early types. However, quasar clustering does not simply reflect observed early (or late) type populations; at each redshift, quasars cluster as an ``intermediate'' population. Comparing with the age of elliptical stellar populations as a function of mass reveals that this ``intermediate'' population represents those ellipticals undergoing or terminating their final significant star formation activity at the given epoch. Assuming that quasar triggering is associated with the formation/termination epoch of ellipticals predicts quasar clustering at all observed redshifts without any model dependence or assumptions about quasar light curves, lifetimes, or accretion rates. This is not true for disks or quasar halos; i.e., quasars do not generically trace star formation or halo assembly. Quasar clustering at all redshifts is consistent with ~4×1012 h-1 Msolar, similar to group scales. This supports scenarios in which major mergers dominate the bright, high-redshift quasar populations. We show how improved clustering measurements can be used to constrain lower luminosity AGN fueling and whether or not accretion/star formation can ``shut down'' at z>3.

  16. The SDSS DR6 Luminosity Functions of Galaxies

    CERN Document Server

    Montero-Dorta, Antonio D

    2008-01-01

    We present number counts, luminosity functions (LFs) and luminosity densities of galaxies obtained using the Sloan Digital Sky Survey Sixth Data Release in all SDSS photometric bands. Thanks to the SDSS DR6, galaxy statistics have increased by a factor of ~9 in the u-band and by a factor of ~4-5 in the rest of the SDSS bands with respect to the previous work of Blanton et al. (2003b). In addition, we have achieved a high redshift completeness in our galaxy samples. Firstly, by making use of the survey masks, provided by the NYU-VAGC DR6, we have been able to define an area on the sky of high angular redshift completeness. Secondly, we guarantee that brightness-dependent redshift incompleteness is small within the magnitude ranges that define our galaxy samples. With these advances, we have estimated very accurate SDSS DR6 LFs in both the bright and the faint end. In the {0.1}^r-band, our SDSS DR6 luminosity function is well fitted by a Schechter LF with parameters Phi_{*}=0.90 +/- 0.07$, M_{*}-5log_{10}h=-20....

  17. The Final SDSS High-Redshift Quasar Sample of 52 Quasars at z>5.7

    CERN Document Server

    Jiang, Linhua; Fan, Xiaohui; Strauss, Michael A; Banados, Eduardo; Becker, Robert H; Bian, Fuyan; Farnsworth, Kara; Shen, Yue; Wang, Feige; Wang, Ran; Wang, Shu; White, Richard L; Wu, Jin; Wu, Xue-Bing; Yang, Jinyi; Yang, Qian

    2016-01-01

    We present the discovery of nine quasars at $z\\sim6$ identified in the Sloan Digital Sky Survey (SDSS) imaging data. This completes our survey of $z\\sim6$ quasars in the SDSS footprint. Our final sample consists of 52 quasars at $5.7quasars with $z_{\\rm AB}\\le20$ mag selected from 11,240 deg$^2$ of the SDSS single-epoch imaging survey (the main survey), 10 quasars with $20\\le z_{\\rm AB}\\le20.5$ selected from 4223 deg$^2$ of the SDSS overlap regions (regions with two or more imaging scans), and 13 quasars down to $z_{\\rm AB}\\approx22$ mag from the 277 deg$^2$ in Stripe 82. They span a wide luminosity range of $-29.0\\le M_{1450}\\le-24.5$. This well-defined sample is used to derive the quasar luminosity function (QLF) at $z\\sim6$. After combining our SDSS sample with two faint ($M_{1450}\\ge-23$ mag) quasars from the literature, we obtain the parameters for a double power-law fit to the QLF. The bright-end slope $\\beta$ of the QLF is well constrained to be $\\beta=-2.8\\pm0.2$. Due to the...

  18. Applying the luminosity function statistics in the fireshell model

    Science.gov (United States)

    Rangel Lemos, L. J.; Bianco, C. L.; Ruffini, R.

    2015-12-01

    The luminosity function (LF) statistics applied to the data of BATSE, GBM/Fermi and BAT/Swift is the theme approached in this work. The LF is a strong statistical tool to extract useful information from astrophysical samples, and the key point of this statistical analysis is in the detector sensitivity, where we have performed careful analysis. We applied the tool of the LF statistics to three GRB classes predicted by the Fireshell model. We produced, by LF statistics, predicted distributions of: peak ux N(Fph pk), redshift N(z) and peak luminosity N(Lpk) for the three GRB classes predicted by Fireshell model; we also used three GRB rates. We looked for differences among the distributions, and in fact we found. We performed a comparison between the distributions predicted and observed (with and without redshifts), where we had to build a list with 217 GRBs with known redshifts. Our goal is transform the GRBs in a standard candle, where a alternative is find a correlation between the isotropic luminosity and the Band peak spectral energy (Liso - Epk).

  19. A two-mode planetary nebula luminosity function

    CERN Document Server

    Rodríguez-González, A; Esquivel, A; Raga, A C; Stasińska, G; Peña, M; Mayya, D

    2014-01-01

    We propose a new Planetary Nebula Luminosity Function (PNLF) that includes two populations in the distribution. Our PNLF is a direct extension of the canonical function proposed by Jacoby et al. (1987), in order to avoid problems related with the histogram construction, it is cast in terms of cumulative functions. We are interested in recovering the shape of the faint part of the PNLF in a consistent manner, for galaxies with and without a dip in their PN luminosity functions. The parameters for the two mode PNLF are obtained with a genetic algorithm, which obtains a best fit to the PNLF varying all of the parameters simultaneously in a broad parameter space. We explore a sample of 9 galaxies with various Hubble types and construct their PNLF. All of the irregular galaxies, except one, are found to be consistent with a two-mode population, while the situation is less clear for ellipticals and spirals.For the case of NGC\\, 6822, we show that the two-mode PNLF is consistent with previous studies of the star for...

  20. Revisiting the luminosity function of single halo white dwarfs

    CERN Document Server

    Cojocaru, R; Althaus, L G; Isern, J; García-Berro, E

    2015-01-01

    White dwarfs are the fossils left by the evolution of low-and intermediate-mass stars, and have very long evolutionary timescales. This allows us to use them to explore the properties of old populations, like the Galactic halo. We present a population synthesis study of the luminosity function of halo white dwarfs, aimed at investigating which information can be derived from the currently available observed data. We employ an up-to-date population synthesis code based on Monte Carlo techniques, that incorporates the most recent and reliable cooling sequences for metal poor progenitors as well as an accurate modeling of the observational biases. We find that because the observed sample of halo white dwarfs is restricted to the brightest stars only the hot branch of the white dwarf luminosity function can be used for such purposes, and that its shape function is almost insensitive to the most relevant inputs, like the adopted cooling sequences, the initial mass function, the density profile of the stellar spher...

  1. The 60-. mu. m and far-infrared luminosity functions of IRAS galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, W.; Rowan-Robinson, M.; Lawrence, A. (Queen Mary Coll., London (UK). Astronomy Unit); Efstathiou, G. (Cambridge Univ. (UK). Inst. of Astronomy Oxford Univ. (UK). Dept. of Astrophysics); Kaiser, N. (Cambridge Univ. (UK). Inst. of Astronomy Canadian Inst. for Theoretical Astrophysics, Toronto, Ont. (Canada)); Ellis, R.S.; Frenk, C.S. (Durham Univ. (UK). Dept. of Physics)

    1990-01-15

    The 60-{mu}m luminosity function for galaxies detected by IRAS is determined from a compilation of samples with highly complete redshift information totalling 2818 galaxies, including the new QMC-Cambridge-Durham survey and samples including many nearby, low-luminosity galaxies. We use clustering-independent maximum likelihood methods throughout. A non-parametric estimator is used to determine the shape of the luminosity function, and the best parameter set found for a suitable analytic form. We find the luminosity function to be well described by a Gaussian dependence on log(luminosity), changing over to a very flat power law at low luminosities. (author).

  2. Relativistic Cosmology Number Densities and the Luminosity Function

    CERN Document Server

    Iribarrem, Alvaro S; Ribeiro, Marcelo B; Stoeger, William R

    2012-01-01

    This paper studies the connection between the relativistic number density of galaxies down the past light cone in a Friedmann-Lemaitre-Robertson-Walker spacetime with non-vanishing cosmological constant and the galaxy luminosity function (LF) data. It extends the redshift range of previous results presented in Albani et al. (2007, arXiv:astro-ph/0611032) where the galaxy distribution was studied out to z=1. Observational inhomogeneities were detected at this range. This research also searches for LF evolution in the context of the framework advanced by Ribeiro and Stoeger (2003, arXiv:astro-ph/0304094), further developing the theory linking relativistic cosmology theory and LF data. Selection functions are obtained using the Schechter parameters and redshift parametrization of the galaxy luminosity functions obtained from an I-band selected dataset of the FORS Deep Field galaxy survey in the redshift range 0.5

  3. The Luminosity Function of the Milky Way Satellites

    CERN Document Server

    Koposov, S; Evans, N W; Hewett, P C; Irwin, M J; Gilmore, G; Zucker, D B; Rix, H -W; Fellhauer, M; Bell, E F; Glushkova, E V

    2007-01-01

    We quantify the algorithmic detectability of stellar Milky Way satellites in data release 5 (DR5) of the Sloan Digital Sky Survey (SDSS), and use this to estimate the luminosity function of faint satellite galaxies in our halo. We develop a satellite detection algorithm based on the convolution of the DR5 star catalog with a kernel of zero net flux that is the difference of a narrow positive Gaussian and a much wider negative Gaussian, which removes the background star-count level. This permits us to assess the significance of any (positive) detection in terms of deviations of this map. The efficiency of this algorithm is tested by computing the recovery rate of a large set of mock objects added to SDSS DR5 as a function of their luminosity, size and distance from the Sun. Most of the recent Milky Way satellite discoveries, made by SDSS, are shown to lie very close to the survey's detection limits. Calculating the maximum accessible volume $V_{max}$ for all faint detected objects makes it possible for the fir...

  4. Luminosity Function of the Cluster of Galaxies Abell 566

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We investigate the Luminosity Function (LF) of the cluster of galaxies Abell 566. The photometric data of 15 intermediate-bands are obtained from the Beijing- Arizona-Taiwan-Connecticut (BATC) photometric sky survey. For each of the 15 wavebands, the LF of cluster galaxies is well modelled by the Schechter function, with characteristic luminosities from -18.0 to -21.9 magnitude, from the a- to the p-band. Morphological dependence of the LF is investigated by separating the cluster members into 'red' and 'blue' subsamples. It is clear that late type galaxies have a steeper shape of LF than the early type galaxies. We also divided the sample galaxies by their local environment. It was found that galaxies in the sparser region have steeper shape of LF than galaxies in the denser region. Combining the results of morphological and environmental dependence of LFs, we show that Abell 566 is a well relaxed cluster with positive evidence of galaxy interaction and merger, and excess number of bright early type galaxies located in its denser region.

  5. MEASURING THE LUMINOSITY AND VIRIAL BLACK HOLE MASS DEPENDENCE OF QUASAR–GALAXY CLUSTERING AT z ∼ 0.8

    Energy Technology Data Exchange (ETDEWEB)

    Krolewski, Alex G.; Eisenstein, Daniel J., E-mail: akrolewski@college.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2015-04-10

    We study the dependence of quasar clustering on quasar luminosity and black hole mass by measuring the angular overdensity of photometrically selected galaxies imaged by the Wide-field Infrared Survey Explorer (WISE) about z ∼ 0.8 quasars from SDSS. By measuring the quasar–galaxy cross-correlation function and using photometrically selected galaxies, we achieve a higher density of tracer objects and a more sensitive detection of clustering than measurements of the quasar autocorrelation function. We test models of quasar formation and evolution by measuring the luminosity dependence of clustering amplitude. We find a significant overdensity of WISE galaxies about z ∼ 0.8 quasars at 0.2–6.4 h{sup −1} Mpc in projected comoving separation. We find no appreciable increase in clustering amplitude with quasar luminosity across a decade in luminosity, and a power-law fit between luminosity and clustering amplitude gives an exponent of −0.01 ± 0.06 (1 σ error). We also fail to find a significant relationship between clustering amplitude and black hole mass, although our dynamic range in true mass is suppressed due to the large uncertainties in virial black hole mass estimates. Our results indicate that a small range in host dark matter halo mass maps to a large range in quasar luminosity.

  6. Helium Reionization Simulations. I. Modeling Quasars as Radiation Sources

    Science.gov (United States)

    La Plante, Paul; Trac, Hy

    2016-09-01

    We introduce a new project to understand helium reionization using fully coupled N-body, hydrodynamics, and radiative transfer simulations. This project aims to capture correctly the thermal history of the intergalactic medium as a result of reionization and make predictions about the Lyα forest and baryon temperature-density relation. The dominant sources of radiation for this transition are quasars, so modeling the source population accurately is very important for making reliable predictions. In this first paper, we present a new method for populating dark matter halos with quasars. Our set of quasar models includes two different light curves, a lightbulb (simple on/off) and symmetric exponential model, and luminosity-dependent quasar lifetimes. Our method self-consistently reproduces an input quasar luminosity function given a halo catalog from an N-body simulation, and propagates quasars through the merger history of halo hosts. After calibrating quasar clustering using measurements from the Baryon Oscillation Spectroscopic Survey, we find that the characteristic mass of quasar hosts is {M}h˜ 2.5× {10}12 {h}-1 {M}⊙ for the lightbulb model, and {M}h˜ 2.3× {10}12 {h}-1 {M}⊙ for the exponential model. In the latter model, the peak quasar luminosity for a given halo mass is larger than that in the former, typically by a factor of 1.5-2. The effective lifetime for quasars in the lightbulb model is 59 Myr, and in the exponential case, the effective time constant is about 15 Myr. We include semi-analytic calculations of helium reionization, and discuss how to include these quasars as sources of ionizing radiation for full hydrodynamics with radiative transfer simulations in order to study helium reionization.

  7. THE SUBARU HIGH-z QUASAR SURVEY: DISCOVERY OF FAINT z ∼ 6 QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Kashikawa, Nobunari; Furusawa, Hisanori; Niino, Yuu [Optical and Infrared Astronomy Division, National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Ishizaki, Yoshifumi; Onoue, Masafusa; Toshikawa, Jun; Ishikawa, Shogo [Department of Astronomy, School of Science, Graduate University for Advanced Studies, Mitaka, Tokyo 181-8588 (Japan); Willott, Chris J. [Herzberg Institute of Astrophysics, National Research Council, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Im, Myungshin [Center for the Exploration of the Origin of the Universe (CEOU), Astronomy Program, Department of Physics and Astronomy, Seoul National University, 1 Gwanak-rho, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Shimasaku, Kazuhiro [Department of Astronomy, University of Tokyo, Hongo, Tokyo 113-0033 (Japan); Ouchi, Masami [Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8582 (Japan); Hibon, Pascale, E-mail: n.kashikawa@nao.ac.jp [Gemini Observatory, La Serena (Chile)

    2015-01-01

    We present the discovery of one or two extremely faint z ∼ 6 quasars in 6.5 deg{sup 2} utilizing a unique capability of the wide-field imaging of the Subaru/Suprime-Cam. The quasar selection was made in (i'-z{sub B} ) and (z{sub B} -z{sub R} ) colors, where z{sub B} and z{sub R} are bandpasses with central wavelengths of 8842 Å and 9841 Å, respectively. The color selection can effectively isolate quasars at z ∼ 6 from M/L/T dwarfs without the J-band photometry down to z{sub R} < 24.0, which is 3.5 mag deeper than the Sloan Digital Sky Survey (SDSS). We have selected 17 promising quasar candidates. The follow-up spectroscopy for seven targets identified one apparent quasar at z = 6.156 with M {sub 1450} = –23.10. We also identified one possible quasar at z = 6.041 with a faint continuum of M {sub 1450} = –22.58 and a narrow Lyα emission with HWHM =427 km s{sup –1}, which cannot be distinguished from Lyman α emitters. We derive the quasar luminosity function at z ∼ 6 by combining our faint quasar sample with the bright quasar samples by SDSS and CFHQS. Including our data points invokes a higher number density in the faintest bin of the quasar luminosity function than the previous estimate employed. This suggests a steeper faint-end slope than lower z, though it is yet uncertain based on a small number of spectroscopically identified faint quasars, and several quasar candidates still remain to be diagnosed. The steepening of the quasar luminosity function at the faint end does increase the expected emission rate of the ionizing photon; however, it only changes by a factor of approximately two to six. This was found to still be insufficient for the required photon budget of reionization at z ∼ 6.

  8. The flat spectrum radio luminosity function, gravitational lensing, galaxy ellipticities and cosmology

    CERN Document Server

    Kochanek, C S

    1996-01-01

    The number of lenses found in the JVAS survey of flat-spectrum radio sources for gravitational lenses is consistent with statistical models of optical surveys for lensed quasars. The 90% confidence limit on Omega_0 in flat cosmological models (Omega_0+lambda_0=1) is approximately 0.15 < Omega_0 < 2. Depending on the RLF model, we predict 2.4 to 3.6 lenses in the JVAS survey and in the first part of the fainter CLASS survey, and 0.3 to 0.6 lenses in the brighter PHFS survey for an Omega_0=1 model. The uncertainties are due to the small numbers of lenses (there are only 4 compact JVAS lenses) and the uncertainties in the radio luminosity function (RLF) caused by the lack of information on the redshift distribution of 10-300 mJy radio sources. If we force the models to produce the observed number of JVAS lenses, the mean redshift of a 50 mJy source varies from z_s=0.4 for Omega_0=0, to 1.9 for Omega_0=1, to almost 4.0 for Omega_0=2 when Omega_0+lambda_0=1. The source fluxes and redshifts of the lenses in t...

  9. Lyman Break Galaxies at z~5 Luminosity Function

    CERN Document Server

    Iwata, I; Tamura, N; Ando, M; Wada, S; Watanabe, C; Akiyama, M; Aoki, K

    2003-01-01

    (abridged) We present results of a search for Lyman break galaxies (LBGs) at z ~ 5 in a 618 square-arcmin field including the HDF-N taken by Subaru Prime Focus Camera. Utilizing the published redshift data of the HDF-N and its flanking fields, the color selection criteria are chosen so that LBGs are picked out most efficiently and least contaminated by foreground objects. The numbers of LBG candidates detected are 310 in 23.0 < I_c < 25.5. The rest-frame UV luminosity function(LF) of LBGs at z ~ 5 is derived statistically. The fraction of contamination is estimated to be ~50% in the faintest magnitude range. The completeness of the survey is ~80% at the bright part of the sample, and ~20% in the faintest magnitude range (25.0 < I_c <= 25.5). The LF of LBG candidates at z ~ 5 does not show a significant difference from those at z ~ 3 and 4, though there might be a slight decrease in the fainter part. The UV luminosity density within the observational limit is 0.56 - 0.69 times smaller than that obt...

  10. The CLASS BL Lac sample: The Radio Luminosity Function

    CERN Document Server

    Marcha, M J M

    2013-01-01

    This paper presents a new sample of BL Lac objects selected from a deep (30 mJy) radio survey of flat spectrum radio sources (the CLASS blazar survey, henceforth CBS). The sample is one of the largest well defined samples in the low power regime with a total of 130 sources of which 55 satisfy the 'classical' optical BL Lac selection criteria, and the rest have indistinguishable radio properties. The primary goal of this study is to establish the Radio Luminosity Function (RLF) on firm statistical ground at low radio luminosities where previous samples have not been able to investigate. The gain of taking a peek at lower powers is the possibility to search for the flattening of the LF which is a feature predicted by the beaming model but which has remained elusive to observational confirmation. In this study we extend for the first time the BL Lac RLF down to very low radio powers ~10^22 W/Hz, ie, two orders of magnitude below the RLF currently available in the literature. In the process we confirm the importa...

  11. The Galaxy UV Luminosity Function Before the Epoch of Reionization

    CERN Document Server

    Mason, Charlotte; Treu, Tommaso

    2015-01-01

    We present a model for the evolution of the galaxy ultraviolet (UV) luminosity function (LF) across cosmic time where star formation is linked to the assembly of dark matter halos under the assumption of a halo mass dependent, but redshift independent, star formation efficiency. This model improves on previous work by introducing a new self-consistent treatment of the halo star formation history, which allows us to make predictions at redshift $z>10$ (lookback time $\\lesssim500$ Myr), when growth is rapid. With a calibration at a single redshift to set the stellar to halo mass ratio, and no further degrees of freedom, our model captures the evolution of the UV LF over all the available observations ($0\\lesssim z\\lesssim10$). The significant drop in the luminosity density of currently detectable galaxies beyond $z\\sim8$ is explained by a shift of star formation toward less massive, fainter galaxies. Assuming that star formation proceeds down to atomic cooling halos, we derive a reionization optical depth $\\tau...

  12. On the Form of the HII Region Luminosity Function

    CERN Document Server

    Oey, M S

    1997-01-01

    Observed variations in the HII region luminosity function (HII LF) seen in spiral arm vs. interarm regions, and different galactic Hubble type, can be explained simply by evolutionary effects and maximum number of ionizing stars per cluster. We present Monte Carlo simulations of the HII LF, drawing the number of ionizing stars N_* from a power-law distribution of constant slope, and the stellar masses from a Salpeter IMF with an upper-mass limit of 100 M_sol. We investigate the evolution of the HII LF, as determined by stellar main-sequence lifetimes and ionizing luminosities, for a single burst case and continuous creation of the nebular population. Shallower HII LF slopes measured for the arms of spiral galaxies can be explained as a composite slope, expected for a zero-age burst population, whereas the interarm regions tend to be dominated by evolved rich clusters described by a single, steeper slope. Steeper slopes in earlier-type galaxies can be explained simply by a lower maximum N_* cutoff found for th...

  13. Differential Density Statistics of Galaxy Distribution and the Luminosity Function

    CERN Document Server

    Albani, V V L; Ribeiro, M B; Stöger, W R; Albani, Vinicius V. L.; Iribarrem, Alvaro S.; Ribeiro, Marcelo B.; Stoeger, William R.

    2006-01-01

    This paper uses data obtained from the galaxy luminosity function (LF) to calculate two types of radial number densities statistics of the galaxy distribution as discussed in Ribeiro (2005), namely the differential density $\\gamma$ and the integral differential density $\\gamma^\\ast$. By applying the theory advanced by Ribeiro and Stoeger (2003), which connects the relativistic cosmology number counts with the astronomically derived LF, the differential number counts $dN/dz$ are extracted from the LF and used to calculate both $\\gamma$ and $\\gamma^\\ast$ with various cosmological distance definitions, namely the area distance, luminosity distance, galaxy area distance and redshift distance. LF data are taken from the CNOC2 galaxy redshift survey and $\\gamma$ and $\\gamma^\\ast$ are calculated for two cosmological models: Einstein-de Sitter and an $\\Omega_{m_0}=0.3$, $\\Omega_{\\Lambda_0}=0.7$ standard cosmology. The results confirm the strong dependency of both statistics on the distance definition, as predicted in...

  14. The Connection Between Galaxy Environment and the Luminosity Function Slopes of Star-Forming Regions

    CERN Document Server

    Cook, David O; Lee, Janice C; Thilker, David; Calzetti, Daniela; Kennicutt, Robert C

    2016-01-01

    We present the first study of GALEX far ultra-violet (FUV) luminosity functions of individual star-forming regions within a sample of 258 nearby galaxies spanning a large range in total stellar mass and star formation properties. We identify ~65,000 star-forming regions (i.e., FUV sources), measure each galaxy's luminosity function, and characterize the relationships between the luminosity function slope (alpha) and several global galaxy properties. A final sample of 82 galaxies with reliable luminosity functions are used to define these relationships and represent the largest sample of galaxies with the largest range of galaxy properties used to study the connection between luminosity function properties and galaxy environment. We find that alpha correlates with global star formation properties, where galaxies with higher star formation rates and star formation rate densities (Sigma_SFR) tend to have flatter luminosity function slopes. In addition, we find that neither stochastic sampling of the luminosity f...

  15. The galaxy luminosity function in groups and clusters: the faint-end upturn and the connection to the field luminosity function

    Science.gov (United States)

    Lan, Ting-Wen; Ménard, Brice; Mo, Houjun

    2016-07-01

    We characterize the luminosity functions of galaxies residing in z ˜ 0 groups and clusters over the broadest ranges of luminosity and mass reachable by the Sloan Digital Sky Survey. Our measurements cover four orders of magnitude in luminosity, down to about Mr = -12 mag or L = 107 L⊙, and three orders of magnitude in halo mass, from 1012 to 1015 M⊙. We find a characteristic scale, Mr ˜ -18 mag or L ˜ 109 L⊙, below which the slope of the luminosity function becomes systematically steeper. This trend is present for all halo masses and originates mostly from red satellites. This ubiquitous faint-end upturn suggests that it is formation, rather than halo-specific environmental effect, that plays a major role in regulating the stellar masses of faint satellites. We show that the satellite luminosity functions can be described in a simple manner by a double Schechter function with amplitudes scaling with halo mass over the entire range of observables. Combining these conditional luminosity functions with the dark matter halo mass function, we accurately recover the entire field luminosity function over 10 visual magnitudes and reveal that satellite galaxies dominate the field luminosity function at magnitudes fainter than -17. We find that the luminosity functions of blue and red satellite galaxies show distinct shapes and we present estimates of the stellar mass fraction as a function of halo mass and galaxy type. Finally, using a simple model, we demonstrate that the abundances and the faint-end slopes of blue and red satellite galaxies can be interpreted in terms of their formation history, with two distinct modes separated by some characteristic time.

  16. The Luminosity Function of Low-Redshift Abell Galaxy Clusters

    CERN Document Server

    Barkhouse, Wayne A; López-Cruz, Omar

    2007-01-01

    We present the results from a survey of 57 low-redshift Abell galaxy clusters to study the radial dependence of the luminosity function (LF). The dynamical radius of each cluster, r200, was estimated from the photometric measurement of cluster richness, Bgc. The shape of the LFs are found to correlate with radius such that the faint-end slope, alpha, is generally steeper on the cluster outskirts. The sum of two Schechter functions provides a more adequate fit to the composite LFs than a single Schechter function. LFs based on the selection of red and blue galaxies are bimodal in appearance. The red LFs are generally flat for -22 -18. The blue LFs contain a larger contribution from faint galaxies than the red LFs. The blue LFs have a rising faint-end component (alpha ~ -1.7) for M_Rc > -21, with a weaker dependence on radius than the red LFs. The dispersion of M* was determined to be 0.31 mag, which is comparable to the median measurement uncertainty of 0.38 mag. This suggests that the bright-end of the LF is...

  17. Isochrones and Luminosity Functions for Old White Dwarfs

    CERN Document Server

    Richer, H B; Limongi, M; Chieffi, A; Straniero, O; Fahlman, G G; Richer, Harvey B.; Hansen, Brad; Limongi, Marco; Chieffi, Alessandro; Straniero, Oscar; Fahlman, Gregory G.

    1999-01-01

    Using a new grid of models of cooling white dwarfs, we calculate isochrones and luminosity functions in the Johnson-Kron/Cousins and HST filter sets for systems containing old white dwarfs. These new models incorporate a non-grey atmosphere which is necessary to properly describe the effects of molecular opacity at the cool temperatures of old white dwarfs. The various functions calculated and extensively tabulated and plotted are meant to be as utilitarian as possible for observers so all results are listed in quantities that observers will obtain. The tables and plots developed should eventually prove critical in interpreting the results of HST's Advanced Camera observations of the oldest white dwarfs in nearby globular clusters, in understanding the results of searches for old white dwarfs in the Galactic halo, and in determining ages for star clusters of all ages using white dwarfs. As a practical application we demonstrate the use of these results by deriving the white dwarf cooling age of the old Galact...

  18. A simple model to link the properties of quasars to the properties of dark matter halos out to high redshift

    CERN Document Server

    Croton, Darren J

    2009-01-01

    We present a simple model of how quasars occupy dark matter halos from z=0 to z=5 using the observed mBH-sigma relation and quasar luminosity functions. This provides a way for observers to statistically infer host halo masses for quasar observations using luminosity and redshift alone. Our model is deliberately simple and sidesteps any need to explicitly describe the physics. In spite of its simplicity, the model reproduces many key observations and has predictive power: 1) model quasars have the correct luminosity function (by construction) and spatial clustering (by consequence); 2) we predict high redshift quasars of a given luminosity live in less massive dark matter halos than the same luminosity quasars at low redshifts; 3) we predict a factor of ~5 more 10^8.5Msun black holes at z~2 than is currently observed; 4) we predict a factor of ~20 evolution in the amplitude of the mBH-Mhalo relation between z=5 and the present day; 5) we expect luminosity dependent quasar lifetimes of between tQ~10^(7-8)yr, b...

  19. Evolution of Galaxy Luminosity Function Using Photometric Redshifts

    CERN Document Server

    Ramos, B H F; Benoist, C; da Costa, L N; Maia, M A G; Makler, M; Ogando, R L C; de Simoni, F; Mesquita, A A

    2011-01-01

    We examine the impact of using photometric redshifts for studying the evolution of both the global galaxy luminosity function (LF) and that for different galaxy types. To this end we compare LFs obtained using photometric redshifts from the CFHT Legacy Survey (CFHTLS) D1 field with those from the spectroscopic survey VIMOS VLT Deep Survey (VVDS) comprising ~4800 galaxies. We find that for z<2, in the interval of magnitudes considered by this survey, the LFs obtained using photometric and spectroscopic redshifts show a remarkable agreement. This good agreement led us to use all four Deep fields of CFHTLS comprising ~386000 galaxies to compute the LF of the combined fields and estimate directly the error in the parameters based on field-to-field variation. We find that the characteristic absolute magnitude M* of Schechter fits fades by ~0.7mag from z~1.8 to z~0.3, while the characteristic density phi* increases by a factor of ~4 in the same redshift bin. We use the galaxy classification provided by the templ...

  20. Two to Tango? Binary Quasars, their Environments, and the Merger Hypothesis

    Science.gov (United States)

    Green, Paul

    2008-09-01

    Merger/feedback scenarios linking AGN and galaxy evolution to cosmological structure formation seem wildly successful. Close quasar pairs, which are rare but show a significant excess over the extrapolated large-scale quasar correlation function, are the strongest candidates for merger triggering we have. But a competing theory posits that their excess is only due to their inhabiting locally overdense environments. To address this controversy, we propose to observe 9 close quasar pairs. Their X-ray luminosity, spectra, and broadband SEDs will be compared to hundreds of isolated SDSS quasars already imaged and analyzed. Proposed NOAO 4-meter imaging provides complementary tests for environmental overdensities.

  1. A CONSTRAINT ON QUASAR CLUSTERING AT z = 5 FROM A BINARY QUASAR

    Energy Technology Data Exchange (ETDEWEB)

    McGreer, Ian D.; Fan, Xiaohui [Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Eftekharzadeh, Sarah; Myers, Adam D., E-mail: imcgreer@as.arizona.edu [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States)

    2016-03-15

    We report the discovery of a quasar pair at z = 5 separated by 21″. Both objects were identified as quasar candidates using simple color selection techniques applied to photometric catalogs from the Canada–France–Hawaii Telescope (CFHT) Legacy Survey (CFHTLS). Spectra obtained with the MMT present no discernible offset in redshift between the two objects; on the other hand, there are clear differences in the emission line profiles and in the multiwavelength spectral energy distributions that strongly disfavor the hypothesis that they are gravitationally lensed images of a single quasar. Both quasars are surprisingly bright given their proximity (a projected separation of ∼135 kpc), with i = 19.4 and i = 21.4. Previous measurements of the luminosity function demonstrate that luminous quasars are extremely rare at z = 5; the existence of this pair suggests that quasars have strong small-scale clustering at high redshift. Assuming a real-space correlation function of the form ξ(r) ∝ (r/r{sub 0}){sup −2}, this discovery implies a correlation length of r{sub 0} ≳ 20h{sup −1} Mpc, consistent with a rapid strengthening of quasar clustering at high redshift as seen in previous observations and predicted by theoretical models where feedback effects are inefficient at shutting down black hole growth at high redshift.

  2. The Evolution of the Optical and Near-Infrared Galaxy Luminosity Functions and Luminosity Densities to z~2

    CERN Document Server

    Dahlen, T; Somerville, R S; Moustakas, L A; Dickinson, M; Ferguson, H C; Giavalisco, M; Dahlen, Tomas; Mobasher, Bahram; Somerville, Rachel S.; Moustakas, Leonidas A.; Dickinson, Mark; Ferguson, Henry C.; Giavalisco, Mauro

    2005-01-01

    Using Hubble Space Telescope and ground-based U through K- band photometry from the Great Observatories Origins Deep Survey (GOODS), we measure the evolution of the luminosity function and luminosity density in the rest-frame optical (UBR) to z ~ 2, bridging the poorly explored ``redshift desert'' between z~1 and z~2. We also use deep near-infrared observations to measure the evolution in the rest-frame J-band to z~1. Compared to local measurements from the SDSS, we find a brightening of the characteristic magnitude, (M*), by ~2.1, \\~0.8 and ~0.7 mag between z=0.1 and z=1.9, in U, B, and R bands, respectively. The evolution of M* in the J-band is in the opposite sense, showing a dimming between redshifts z=0.4 and z=0.9. This is consistent with a scenario in which the mean star formation rate in galaxies was higher in the past, while the mean stellar mass was lower, in qualitative agreement with hierarchical galaxy formation models. We find that the shape of the luminosity function is strongly dependent on sp...

  3. Modeling the Near-Infrared Luminosity Function of Young Stellar Clusters

    Science.gov (United States)

    Muench, A. A.; Lada, E. A.; Lada, C. J.

    1999-12-01

    We present the results of numerical experiments designed to evaluate the usefulness of near-infrared luminosity functions for constraining the Initial Mass Function (IMF) of young (0-10 Myr) stellar populations. Using Monte Carlo techniques, we create a suite of model luminosity functions systematically varying each of these basic underlying relations: the underlying IMF, cluster star forming history, and theoretical pre-main sequence mass-to-luminosity relations. Our modeling techniques also allow us to explore the effects of unresolved binaries, infrared excess emission from circumstellar disks, and interstellar extinction on the cluster luminosity function. From this numerical modeling, we find that the luminosity function of a young stellar population is considerably more sensitive to variations in the underlying initial mass function than to either variations in the star forming history or assumed pre-main-sequence (PMS) mass-to-luminosity relation. To illustrate the potential effectiveness of using the KLF of a young cluster to constrain its IMF, we model the observed K band luminosity function of the nearby Trapezium cluster. Our derived mass function for the Trapezium spans two orders of magnitude in stellar mass (5>Msun>0.02) and has a peak near the hydrogen burning limit. Below the hydrogen burning limit, the mass function steadily decreases with decreasing mass throughout the brown dwarf regime. We also test the hypothesis of a space varying IMF by performing model fits to the K band luminosity functions of several other young clusters.

  4. Changing Look Quasars

    Science.gov (United States)

    Green, Paul J.; MacLeod, Chelsea; Anderson, Scott F.; Eracleous, Michael; Ruan, John J.; Runnoe, Jessie C.; Graham, Matthew J.

    2017-01-01

    Accretion onto black holes (BH) illuminates fascinating physics from the stellar mass BHs in Galactic X-ray binaries (XRBs) to the supermassive black holes (SMBH) in Seyferts and quasars. Alas, BH accretion regions are too compact to be spatially resolved. Temporal changes in XRB spectral states have gone a long way to unravel the accretion physics in XRBs, and suggest powerful theoretical and observational analogies to quasars. However, simple mass scaling to SMBHs suggests impractically long timescales (millenia) for accretion state transitions in quasars. However, large spectral state changes in quasars have now been detected that both inform and invigorate debates about accretion theory and the nature of historical quasar classes (e.g., Type 1 vs Type 2). In the last couple of years, a dozen luminous "changing-look quasars" (CLQs) were discovered to exhibit strong, persistent changes in luminosity, accompanied by the dramatic emergence or disappearance of broad emission-line (BEL) components. The availability of repeat spectroscopy for large samples of quasars provided by Sloan Digital Sky Survey (SDSS) and its ongoing Time Domain Spectroscopic Survey (TDSS) now extend this rare and remarkable phenomenon to regimes of luminosity and redshift that overlap the huge cosmological samples of quasars in the SDSS. We review the current understanding of these events, and upcoming possibilities for their detection, characterization and modeling.

  5. LUMINOSITY FUNCTIONS OF SPITZER-IDENTIFIED PROTOSTARS IN NINE NEARBY MOLECULAR CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Kryukova, E.; Megeath, S. T.; Allen, T. S. [Department of Physics and Astronomy, University of Toledo, Toledo, OH (United States); Gutermuth, R. A. [Department of Astronomy, University of Massachusetts, Amherst, MA (United States); Pipher, J. [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States); Allen, L. E. [National Optical Astronomy Observatories, Tucson, AZ (United States); Myers, P. C. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Muzerolle, J. [Space Telescope Science Institute, Baltimore, MD (United States)

    2012-08-15

    We identify protostars in Spitzer surveys of nine star-forming (SF) molecular clouds within 1 kpc: Serpens, Perseus, Ophiuchus, Chamaeleon, Lupus, Taurus, Orion, Cep OB3, and Mon R2, which combined host over 700 protostar candidates. These clouds encompass a variety of SF environments, including both low-mass and high-mass SF regions, as well as dense clusters and regions of sparsely distributed star formation. Our diverse cloud sample allows us to compare protostar luminosity functions in these varied environments. We combine near- and mid-infrared photometry from the Two Micron All Sky Survey and Spitzer to create 1-24 {mu}m spectral energy distributions (SEDs). Using protostars from the c2d survey with well-determined bolometric luminosities, we derive a relationship between bolometric luminosity, mid-IR luminosity (integrated from 1-24 {mu}m), and SED slope. Estimations of the bolometric luminosities for protostar candidates are combined to create luminosity functions for each cloud. Contamination due to edge-on disks, reddened Class II sources, and galaxies is estimated and removed from the luminosity functions. We find that luminosity functions for high-mass SF clouds (Orion, Mon R2, and Cep OB3) peak near 1 L{sub Sun} and show a tail extending toward luminosities above 100 L{sub Sun }. The luminosity functions of the low-mass SF clouds (Serpens, Perseus, Ophiuchus, Taurus, Lupus, and Chamaeleon) do not exhibit a common peak, however the combined luminosity function of these regions peaks below 1 L{sub Sun }. Finally, we examine the luminosity functions as a function of the local surface density of young stellar objects. In the Orion molecular clouds, we find a significant difference between the luminosity functions of protostars in regions of high and low stellar density, the former of which is biased toward more luminous sources. This may be the result of primordial mass segregation, although this interpretation is not unique. We compare our luminosity

  6. The faint end of the 250 micron luminosity function at z < 0.5

    CERN Document Server

    Wang, L; Bethermin, M; Bourne, N; Cooray, A; Cowley, W; Dunne, L; Dye, S; Eales, S; Farrah, D; Lacey, C; Loveday, J; Maddox, S; Oliver, S; Viero, M

    2016-01-01

    Aims. We aim to study the 250 micron luminosity function (LF) down to much fainter luminosities than achieved by previous efforts. Methods. We developed a modified stacking method to reconstruct the 250 micron LF using optically selected galaxies from the SDSS survey and Herschel maps of the GAMA equatorial fields and Stripe 82. Our stacking method not only recovers the mean 250 micron luminosities of galaxies that are too faint to be individually detected, but also their underlying distribution functions. Results. We find very good agreement with previous measurements in the overlapping luminosity range. More importantly, we are able to derive the LF down to much fainter luminosities (around 25 times fainter) than achieved by previous studies. We find strong positive luminosity evolution \\propto (1 + z)^4.89\\pm1.07 and moderate negative density evolution \\propto (1 + z)^-1.02\\pm0.54 over the redshift range z=[0.02, 0.5].

  7. Surveys of Luminous Quasars in the Post-reionization Universe at z=5-6

    Science.gov (United States)

    Yang, Jinyi; Wu, Xue-Bing; Fan, Xiaohui; Wang, Feige; McGreer, Ian D.; Bian, Fuyan; Green, Richard F.; Yang, Qian; Jiang, Linhua; Wang, Ran; Yi, Weimin; UHS Team

    2017-01-01

    Quasars at z ~ 5 to 6, the post-reionization epoch, are crucial tools to explore the evolution of intergalactic medium (IGM), quasar evolution and the early super-massive black hole growth. The quasar luminosity function (QLF) and its evolution at z >~ 5 is also needed to estimate the contribution of quasars to the ionizing background during and after the reionization epoch. McGreer et al. (2013) provided the first complete measurement of the z ~ 5 QLF. However, their work focused on faint quasars over a small sky area; there were only 8 quasars with M1450 4, previous studies have concluded that the number density evolution steepens at high redshift, such that luminous quasars decline as a population more steeply at higher redshift (z ~ 5.5) than from z=4 to 5. However, quasars at redshifts 5.3 Up to date, we have constructed an uniform luminous z ~ 5.5 quasar sample with 26 new quasars. Our final completed sample of quasars at z=5-6 will be used to study QLF, evolution model and IGM evolution in the post-deionization universe.

  8. The connection between galaxy environment and the luminosity function slopes of star-forming regions

    Science.gov (United States)

    Cook, David O.; Dale, Daniel A.; Lee, Janice C.; Thilker, David; Calzetti, Daniela; Kennicutt, Robert C.

    2016-11-01

    We present the first study of GALEX far-ultraviolet (FUV) luminosity functions of individual star-forming regions within a sample of 258 nearby galaxies spanning a large range in total stellar mass and star formation properties. We identify ˜65 000 star-forming regions (i.e. FUV sources), measure each galaxy's luminosity function, and characterize the relationships between the luminosity function slope (α) and several global galaxy properties. A final sample of 82 galaxies with reliable luminosity functions are used to define these relationships and represent the largest sample of galaxies with the largest range of galaxy properties used to study the connection between luminosity function properties and galaxy environment. We find that α correlates with global star formation properties, where galaxies with higher star formation rates and star formation rate densities (ΣSFR) tend to have flatter luminosity function slopes. In addition, we find that neither stochastic sampling of the luminosity function in galaxies with low-number statistics nor the effects of blending due to distance can fully account for these trends. We hypothesize that the flatter slopes in high ΣSFR galaxies is due to higher gas densities and higher star formation efficiencies which result in proportionally greater numbers of bright star-forming regions. Finally, we create a composite luminosity function composed of star-forming regions from many galaxies and find a break in the luminosity function at brighter luminosities. However, we find that this break is an artefact of varying detection limits for galaxies at different distances.

  9. DISCOVERY OF A FAINT QUASAR AT z ∼ 6 AND IMPLICATIONS FOR COSMIC REIONIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yongjung; Im, Myungshin; Jeon, Yiseul; Choi, Changsu; Hong, Jueun; Hyun, Minhee; Jun, Hyunsung David; Kim, Dohyeong; Kim, Duho; Kim, Jae-Woo; Lee, Seong-Kook; Taak, Yoon Chan; Yoon, Yongmin [Center for the Exploration of the Origin of the Universe (CEOU), Building 45, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Kim, Minjin; Park, Won-Kee [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Karouzos, Marios [Astronomy Program, FPRD, Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Kim, Ji Hoon [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A’ohoku Place, Hilo, HI 96720 (United States); Pak, Soojong, E-mail: yjkim@astro.snu.ac.kr, E-mail: mim@astro.snu.ac.kr [School of Space Research and Institute of Natural Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of)

    2015-11-10

    Recent studies suggest that faint active galactic nuclei may be responsible for the reionization of the universe. Confirmation of this scenario requires spectroscopic identification of faint quasars (M{sub 1450} > −24 mag) at z ≳ 6, but only a very small number of such quasars have been spectroscopically identified so far. Here, we report the discovery of a faint quasar IMS J220417.92+011144.8 at z ∼ 6 in a 12.5 deg{sup 2} region of the SA22 field of the Infrared Medium-deep Survey (IMS). The spectrum of the quasar shows a sharp break at ∼8443 Å, with emission lines redshifted to z = 5.944 ± 0.002 and rest-frame ultraviolet continuum magnitude M{sub 1450} = −23.59 ± 0.10 AB mag. The discovery of IMS J220417.92+011144.8 is consistent with the expected number of quasars at z ∼ 6 estimated from quasar luminosity functions based on previous observations of spectroscopically identified low-luminosity quasars. This suggests that the number of M{sub 1450} ∼ −23 mag quasars at z ∼ 6 may not be high enough to fully account for the reionization of the universe. In addition, our study demonstrates that faint quasars in the early universe can be identified effectively with a moderately wide and deep near-infrared survey such as the IMS.

  10. The galaxy luminosity function in groups and clusters: the faint-end upturn and the connection to the field luminosity function

    CERN Document Server

    Lan, Ting-Wen; Mo, Houjun

    2015-01-01

    We characterize the luminosity functions of galaxies residing in $z\\sim0$ groups and clusters over the broadest ranges of luminosity and mass reachable by the Sloan Digital Sky Survey. Our measurements cover four orders of magnitude in luminosity, down to about $M_r=-12$ mag or $L=10^7\\,L_\\odot$, and three orders of magnitude in halo mass, from $10^{12}$ to $10^{15} \\, {\\rm M}_\\odot$. We find a characteristic scale, $M_r\\sim-18$ mag or $L\\sim10^9\\, L_\\odot$, below which the slope of the luminosity function becomes systematically steeper. This trend is present for all halo masses and originates mostly from red satellite galaxies. The ubiquitous presence of this faint-end upturn suggests that it is formation, rather than halo-specific environmental effect, that plays a major role in regulating the stellar masses of faint satellites. We show that the observed luminosity functions of satellite galaxies can be described in a simple manner by a double Schechter function with amplitudes scaling with halo mass over t...

  11. Mean Spectral Energy Distributions and Bolometric Corrections for Luminous Quasars

    CERN Document Server

    Krawczyk, Coleman M; Mehta, Sajjan S; Vogeley, Michael S; Gallagher, S C; Leighly, Karen M; Ross, Nicholas P; Schneider, Donald P; 10.1088/0067-0049/206/1/4

    2013-01-01

    We explore the mid-infrared (mid-IR) through ultraviolet (UV) spectral energy distributions (SEDs) of 119,652 luminous broad-lined quasars with 0.0641.6; the latter is a possible indicator of the strength of the accretion disk wind, which is expected to be SED dependent. Luminosity-dependent mean SEDs show that, relative to the high-luminosity SED, low-luminosity SEDs exhibit a harder (bluer) far-UV spectral slope, a redder optical continuum, and less hot dust. Mean SEDs constructed instead as a function of UV emission line properties reveal changes that are consistent with known Principal Component Analysis (PCA) trends. A potentially important contribution to the bolometric correction is the unseen extream-UV (EUV) continuum. Our work suggests that lower-luminosity quasars and/or quasars with disk-dominated broad emission lines may require an extra continuum component in the EUV that is not present (or much weaker) in high-luminosity quasars with strong accretion disk winds. As such, we consider four possib...

  12. The Luminosity Function of Fermi-Detected Flat-Spectrum Radio Quasars

    Science.gov (United States)

    2012-05-11

    other possible sources of systematic uncertainty (detection efficiency, blazar variability, and absorption by extragalactic background light, EBL ) do not...few of the Fermi spectra. The fit is performed only for E < 20 GeV to avoid possible steeping due to the absorption of γ -ray photons by the EBL (e.g...uncertainties due to different level of the energy density of the EBL which would affect mostly the high-energy part of the SED (i.e., 20 GeV). Figure 9

  13. Modeling the Near-Infrared Luminosity Functions of Young Stellar Clusters

    CERN Document Server

    Münch, A; Lada, C J; Muench, August A.; Lada, Elizabeth A.; Lada, Charles J.

    1999-01-01

    We present the results of numerical experiments designed to evaluate the usefulness of near-infrared luminosity functions for constraining the Initial Mass Function (IMF) of young stellar populations. From this numerical modeling, we find that the luminosity function of a young stellar population is considerably more sensitive to variations in the underlying initial mass function than to either variations in the star forming history or assumed pre-main-sequence (PMS) mass-to-luminosity relation. To illustrate the potential effectiveness of using the KLF of a young cluster to constrain its IMF, we model the observed K band luminosity function of the nearby Trapezium cluster. Our derived mass function for the Trapezium spans two orders of magnitude in stellar mass (5 Msun to 0.02 Msun), has a peak near the hydrogen burning limit, and has an IMF for Brown Dwarfs which steadily decreases with decreasing mass.

  14. A Close Examination of the Measurement and Parametrization of Luminosity Functions in an Expanding Universe

    CERN Document Server

    Lake, S E; Tsai, C -W; Lam, A

    2016-01-01

    The astronomy community has at its disposal a large back catalog of public spectroscopic galaxy redshift surveys that can be used for the measurement of luminosity functions. Utilizing the back catalog with new photometric surveys to maximum efficiency requires modeling the color selection bias imposed on selection of target galaxies by flux limits at multiple wavelengths. The likelihood derived herein can address, in principle, all possible color selection biases through the use of a generalization of the luminosity function, $\\Phi(L)$, over the space of all spectra: the spectro-luminosity functional, $\\Psi[L_\

  15. The truncated lognormal distribution as a luminosity function for SWIFT-BAT gamma-ray bursts

    CERN Document Server

    Zaninetti, L

    2016-01-01

    The determination of the luminosity function (LF) in gamma ray bursts (GRBs) depends on the adopted cosmology, each one characterized by its corresponding luminosity distance. Here we analyse three cosmologies: the standard cosmology, the plasma cosmology, and the pseudo-Euclidean universe. The LF of the GRBs is firstly modeled by the lognormal distribution and the four broken power law, and secondly by a truncated lognormal distribution. The truncated lognormal distribution fits acceptably the range in luminosity of GRBs as a function of the redshift.

  16. Monte Carlo simulations of the luminosity function of hot white dwarfs

    CERN Document Server

    Torres, S; Krzesinski, J; Kleinman, S J

    2012-01-01

    We present a detailed Monte Carlo simulation of the population of the hot branch of the white dwarf luminosity function. We used the most up-to-date stellar evolutionary models and we implemented a full description of the observational selection biases. Our theoretical results are compared with the luminosity function of hot white dwarfs obtained from the Sloan Digital Sky Survey (SDSS), for both DA and non-DA white dwarfs. For non-DA white dwarfs we find an excellent agreement with the observational data, while for DA white dwarfs our simulations show some discrepancies with the observations for the brightest luminosity bins, those corresponding to L>= 10 L_sun.

  17. The Truncated Lognormal Distribution as a Luminosity Function for SWIFT-BAT Gamma-Ray Bursts

    Directory of Open Access Journals (Sweden)

    Lorenzo Zaninetti

    2016-11-01

    Full Text Available The determination of the luminosity function (LF in Gamma ray bursts (GRBs depends on the adopted cosmology, each one characterized by its corresponding luminosity distance. Here, we analyze three cosmologies: the standard cosmology, the plasma cosmology and the pseudo-Euclidean universe. The LF of the GRBs is firstly modeled by the lognormal distribution and the four broken power law and, secondly, by a truncated lognormal distribution. The truncated lognormal distribution fits acceptably the range in luminosity of GRBs as a function of the redshift.

  18. Cosmic Variance and Its Effect on the Luminosity Function Determination in Deep High z Surveys

    CERN Document Server

    Trenti, M

    2007-01-01

    We study cosmic variance in deep high redshift surveys and its influence on the determination of the luminosity function for high redshift galaxies. For several survey geometries relevant for HST and JWST instruments, we characterize the distribution of the galaxy number counts. This is obtained by means of analytic estimates via the two point correlation function in extended Press-Schechter theory as well as by using synthetic catalogs extracted from N-body cosmological simulations of structure formation. We adopt a simple luminosity - dark halo mass relation to investigate the environment effects on the fitting of the luminosity function. We show that in addition to variations of the normalization of the luminosity function, a steepening of its slope is also expected in underdense fields, similarly to what is observed within voids in the local universe. Therefore, to avoid introducing artificial biases, caution must be taken when attempting to correct for field underdensity, such as in the case of HST UDF i...

  19. Clustering, cosmology and a new era of black hole demographics- II. The conditional luminosity functions of Type 2 and Type 1 active galactic nuclei

    Science.gov (United States)

    Ballantyne, D. R.

    2017-01-01

    The orientation-based unification model of active galactic nuclei (AGNs) posits that the principle difference between obscured (Type 2) and unobscured (Type 1) AGNs is the line of sight into the central engine. If this model is correct then there should be no difference in many of the properties of AGN host galaxies (e.g. the mass of the surrounding dark matter haloes). However, recent clustering analyses of Type 1 and Type 2 AGNs have provided some evidence for a difference in the halo mass, in conflict with the orientation-based unified model. In this work, a method to compute the conditional luminosity function (CLF) of Type 2 and Type 1 AGNs is presented. The CLF allows many fundamental halo properties to be computed as a function of AGN luminosity, which we apply to the question of the host halo masses of Type 1 and 2 AGNs. By making use of the total AGN CLF, the Type 1 X-ray luminosity function, and the luminosity-dependent Type 2 AGN fraction, the CLFs of Type 1 and 2 AGNs are calculated at z ≈ 0 and 0.9. At both z, there is no statistically significant difference in the mean halo mass of Type 2 and 1 AGNs at any luminosity. There is marginal evidence that Type 1 AGNs may have larger halo masses than Type 2s, which would be consistent with an evolutionary picture where quasars are initially obscured and then subsequently reveal themselves as Type 1s. As the Type 1 lifetime is longer, the host halo will increase somewhat in mass during the Type 1 phase. The CLF technique will be a powerful way to study the properties of many AGNs subsets (e.g. radio-loud, Compton-thick) as future wide-area X-ray and optical surveys substantially increase our ability to place AGNs in their cosmological context.

  20. Clustering, Cosmology and a New Era of Black Hole Demographics - II. The Conditional Luminosity Functions of Type 2 and Type 1 Active Galactic Nuclei

    Science.gov (United States)

    Ballantyne, D. R.

    2016-09-01

    The orientation-based unification model of active galactic nuclei (AGNs) posits that the principle difference between obscured (Type 2) and unobscured (Type 1) AGNs is the line-of-sight into the central engine. If this model is correct than there should be no difference in many of the properties of AGN host galaxies (e.g., the mass of the surrounding dark matter haloes). However, recent clustering analyses of Type 1 and Type 2 AGNs have provided some evidence for a difference in the halo mass, in conflict with the orientation-based unified model. In this work, a method to compute the Conditional Luminosity Function (CLF) of Type 2 and Type 1 AGNs is presented. The CLF allows many fundamental halo properties to be computed as a function of AGN luminosity, which we apply to the question of the host halo masses of Type 1 and 2 AGNs. By making use of the total AGN CLF, the Type 1 X-ray luminosity function, and the luminosity-dependent Type 2 AGN fraction, the CLFs of Type 1 and 2 AGNs are calculated at z ≈ 0 and 0.9. At both z, there is no statistically significant difference in the mean halo mass of Type 2 and 1 AGNs at any luminosity. There is marginal evidence that Type 1 AGNs may have larger halo masses than Type 2s, which would be consistent with an evolutionary picture where quasars are initially obscured and then subsequently reveal themselves as Type 1s. As the Type 1 lifetime is longer, the host halo will increase somewhat in mass during the Type 1 phase. The CLF technique will be a powerful way to study the properties of many AGNs subsets (e.g., radio-loud, Compton-thick) as future wide-area X-ray and optical surveys substantially increase our ability to place AGNs in their cosmological context.

  1. Fossil group origins V. The dependence of the luminosity function on the magnitude gap

    CERN Document Server

    Zarattini, S; Sanchez-Janssen, R; Barrena, R; Boschin, W; del Burgo, C; Castro-Rodriguez, N; Corsini, E M; D'Onghia, E; Girardi, M; Iglesias-Paramo, J; Kundert, A; Mendez-Abreu, J; Vilchez, J M

    2015-01-01

    In nature we observe galaxy aggregations that span a wide range of magnitude gaps between the two first-ranked galaxies of a system ($\\Delta m_{12}$). There are systems with gaps close to zero (e.g., the Coma cluster), and at the other extreme of the distribution, the largest gaps are found among the so-called fossil systems. Fossil and non-fossil systems could have different galaxy populations that should be reflected in their luminosity functions. In this work we study, for the first time, the dependence of the luminosity function parameters on $\\Delta m_{12}$ using data obtained by the fossil group origins (FOGO) project. We constructed a hybrid luminosity function for 102 groups and clusters at $z \\le 0.25$. We stacked all the individual luminosity functions, dividing them into bins of $\\Delta m_{12}$, and studied their best-fit Schechter parameters. We additionally computed a relative luminosity function, expressed as a function of the central galaxy luminosity, which boosts our capacity to detect differ...

  2. The Sloan Digital Sky Survey Reverberation Mapping Project: Velocity Shifts of Quasar Emission Lines

    CERN Document Server

    Shen, Yue; Denney, Kelly D; Greene, Jenny E; Grier, C J; Ho, Luis C; Peterson, Bradley M; Petitjean, Patrick; Richards, Gordon T; Schneider, Donald P; Tao, Charling; Trump, Jonathan R

    2016-01-01

    Quasar emission lines are often shifted from the systemic velocity due to various dynamical and radiative processes in the line-emitting region. The level of these velocity shifts depends both on the line species and on quasar properties. We study velocity shifts for the line peaks of various narrow and broad quasar emission lines relative to systemic using a sample of 849 quasars from the Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project. The coadded (from 32 epochs) spectra of individual quasars have sufficient signal-to-noise ratio (SNR) to measure stellar absorption lines to provide reliable systemic velocity estimates, as well as weak narrow emission lines. The sample also covers a large dynamic range in quasar luminosity (~2 dex), allowing us to explore potential luminosity dependence of the velocity shifts. We derive average line peak velocity shifts as a function of quasar luminosity for different lines, and quantify their intrinsic scatter. We further quantify how well the peak velocit...

  3. Discovery of A Faint Quasar at z~6 and Implications for Cosmic Reionization

    CERN Document Server

    Kim, Yongjung; Jeon, Yiseul; Kim, Minjin; Choi, Changsu; Hong, Jueun; Hyun, Minhee; Jun, Hyunsung David; Karouzos, Marios; Kim, Dohyeong; Kim, Duho; Kim, Jae-Woo; Kim, Ji Hoon; Lee, Seong-Kook; Pak, Soojong; Park, Won-Kee; Taak, Yoon Chan; Yoon, Yongmin

    2015-01-01

    Recent studies suggest that faint active galactic nuclei may be responsible for the reionization of the universe. Confirmation of this scenario requires spectroscopic identification of faint quasars ($M_{1450}>-24$ mag) at $z \\gtrsim6$, but only a very small number of such quasars have been spectroscopically identified so far. Here, we report the discovery of a faint quasar IMS J220417.92+011144.8 at z~6 in a 12.5 deg$^{2}$ region of the SA22 field of the Infrared Medium-deep Survey (IMS). The spectrum of the quasar shows a sharp break at $\\sim8443~\\rm{\\AA}$, with emission lines redshifted to $z=5.944 \\pm 0.002$ and rest-frame ultraviolet continuum magnitude $M_{1450}=-23.59\\pm0.10$ AB mag. The discovery of IMS J220417.92+011144.8 is consistent with the expected number of quasars at z~6 estimated from quasar luminosity functions based on previous observations of spectroscopically identified low-luminosity quasars . This suggests that the number of $M_{1450}\\sim-23$ mag quasars at z~6 may not be high enough to...

  4. Probing the Ultraviolet Luminosity Function of the Earliest Galaxies with the Renaissance Simulations

    Science.gov (United States)

    O'Shea, Brian W.; Wise, John H.; Xu, Hao; Norman, Michael L.

    2015-07-01

    In this paper, we present the first results from the Renaissance Simulations, a suite of extremely high-resolution and physics-rich AMR calculations of high-redshift galaxy formation performed on the Blue Waters supercomputer. These simulations contain hundreds of well-resolved galaxies at z˜ 25-8, and make several novel, testable predictions. Most critically, we show that the ultraviolet luminosity function of our simulated galaxies is consistent with observations of high-z galaxy populations at the bright end of the luminosity function ({M}1600≤slant -17), but at lower luminosities is essentially flat rather than rising steeply, as has been inferred by Schechter function fits to high-z observations, and has a clearly defined lower limit in UV luminosity. This behavior of the luminosity function is due to two factors: (i) the strong dependence of the star formation rate (SFR) on halo virial mass in our simulated galaxy population, with lower-mass halos having systematically lower SFRs and thus lower UV luminosities; and (ii) the fact that halos with virial masses below ≃ 2× {10}8 {M}⊙ do not universally contain stars, with the fraction of halos containing stars dropping to zero at ≃ 7× {10}6 {M}⊙ . Finally, we show that the brightest of our simulated galaxies may be visible to current and future ultra-deep space-based surveys, particularly if lensed regions are chosen for observation.

  5. Nearby Galaxies in the 2micron All Sky Survey I. K-band Luminosity Functions

    CERN Document Server

    Devereux, Nick; Ashby, M L N; Willmer, C N A; Hriljac, Paul

    2009-01-01

    Differential K-band luminosity functions (LFs) are presented for a complete sample of 1613 nearby bright galaxies segregated by visible morphology. The LF for late-type spirals follows a power law that rises towards low luminosities whereas the LFs for ellipticals, lenticulars and bulge-dominated spirals are peaked and decline toward both higher and lower luminosities. Each morphological type (E, S0, S0/a-Sab, Sb-Sbc, Sc-Scd) contributes approximately equally to the overall K-band luminosity density of galaxies in the local universe. Type averaged bulge/disk ratios are used to subtract the disk component leading to the prediction that the K-band LF for bulges is bimodal with ellipticals dominating the high luminosity peak, comprising 60% of the bulge luminosity density in the local universe with the remaining 40% contributed by lenticulars and the bulges of spirals. Overall, bulges contribute 30% of the galaxy luminosity density at K in the local universe with spiral disks making up the remainder. If bulge lu...

  6. Modeling the Near-Infrared Luminosity Functions of Young Stellar Clusters

    Science.gov (United States)

    Muench, August A.; Lada, Elizabeth A.; Lada, Charles J.

    2000-04-01

    We present the results of numerical experiments designed to evaluate the usefulness of near-infrared (NIR) luminosity functions for constraining the initial mass function (IMF) of young stellar populations. We test the sensitivity of the NIR K-band luminosity function (KLF) of a young stellar cluster to variations in the underlying IMF, star-forming history, and pre-main-sequence mass-to-luminosity relations. Using Monte Carlo techniques, we create a suite of model luminosity functions systematically varying each of these basic underlying relations. From this numerical modeling, we find that the luminosity function of a young stellar population is considerably more sensitive to variations in the underlying initial mass function than to either variations in the star-forming history or assumed pre-main-sequence (PMS) mass-to-luminosity relation. Variations in a cluster's star-forming history are also found to produce significant changes in the KLF. In particular, we find that the KLFs of young clusters evolve in a systematic manner with increasing mean age. Our experiments indicate that variations in the PMS mass-to-luminosity relation, resulting from differences in adopted PMS tracks, produce only small effects on the form of the model luminosity functions and that these effects are mostly likely not detectable observationally. To illustrate the potential effectiveness of using the KLF of a young cluster to constrain its IMF, we model the observed KLF of the nearby Trapezium cluster. With knowledge of the star-forming history of this cluster obtained from optical spectroscopic studies, we derive the simplest underlying IMF whose model luminosity function matches the observations. Our derived mass function for the Trapezium spans 2 orders of magnitude in stellar mass (5>Msolar>0.02) and has a peak near the hydrogen-burning limit. Below the hydrogen-burning limit, the mass function steadily decreases with decreasing mass throughout the brown dwarf regime. Comparison

  7. Far Infrared Luminosity Function of Local Star-forming Galaxies in the AKARI Deep Field South

    CERN Document Server

    Sedgwick, Chris; Pearson, Chris; Matsuura, Shuji; Shirahata, Mai; Oyabu, Shinki; Goto, Tomotsugu; Matsuhara, Hideo; Clements, D L; Negrello, Mattia; White, Glenn J

    2011-01-01

    We present a far-infrared galaxy luminosity function for the local universe. We have obtained 389 spectroscopic redshifts for galaxies observed at 90 microns in the AKARI Deep Field South, using the AAOmega fibre spectrograph via optical identifications in the digitized sky survey and 4m-class optical imaging. For the luminosity function presented in this paper, we have used those galaxies which have redshifts 0functions were estimated using earlier Spitzer data and APM B-band optical data respectively, and the luminosity function has been prepared using the 1/Vmax method. We also separate the luminosity function between galaxies which show evidence of predominantly star-forming activity and predominantly active galactic nucleus (AGN) activity in their optical spectra. Our luminosity function is in good agreement with the previous 90 micron lumino...

  8. The Galaxy Cluster Mid-Infrared Luminosity Function at 1.3

    CERN Document Server

    Wylezalek, Dominika; De Breuck, Carlos; Stern, Daniel; Brodwin, Mark; Galametz, Audrey; Gonzalez, Anthony H; Jarvis, Matt; Hatch, Nina; Seymour, Nick; Stanford, Spencer A

    2014-01-01

    We present 4.5 {\\mu}m luminosity functions for galaxies identified in 178 candidate galaxy clusters at 1.3 1.3. The luminosity functions are derived for different redshift and richness bins, and the IRAC imaging reaches depths of m*+2, allowing us to measure the faint end slopes of the luminosity functions. We find that {\\alpha} = -1 describes the luminosity function very well in all redshifts bins and does not evolve significantly. This provides evidence that the rate at which the low mass galaxy population grows through star formation, gets quenched and is replenished by in-falling field galaxies does not have a major net effect on the shape of the luminosity function. Our measurements for m* are consistent with passive evolution models and high formation redshifts z_f ~ 3. We find a slight trend towards fainter m* for the richest clusters, implying that the most massive clusters in our sample could contain older stellar populations, yet another example of cosmic downsizing. Modelling shows that a contribu...

  9. Luminosity Functions of Spitzer Identified Protostars in Nine Nearby Molecular Clouds

    CERN Document Server

    Kryukova, E; Gutermuth, R A; Pipher, J; Allen, T S; Allen, L E; Myers, P C; Muzerolle, J

    2012-01-01

    We identify protostars in Spitzer surveys of nine star-forming molecular clouds within 1 kpc: Serpens, Perseus, Ophiuchus, Chamaeleon, Lupus, Taurus, Orion, Cep OB3, and Mon R2, which combined host over 700 protostar candidates. Our diverse cloud sample allows us to compare protostar luminosity functions in these varied environments. We combine photometry from 2MASS J, H, and Ks bands and Spitzer IRAC and MIPS 24 micron bands to create 1 - 24 micron spectral energy distributions (SEDs). Using protostars from the c2d survey with well-determined bolometric luminosities (Lbol), we derive a relationship between Lbol, L_MIR (integrated from 1 - 24 microns), and SED slope. Estimations of Lbol for protostar candidates are combined to create luminosity functions for each cloud. Contamination due to edge-on disks, reddened Class II sources, and galaxies is estimated and removed from the luminosity functions. We find that luminosity functions for high mass star forming clouds peak near 1 Lsun and show a tail extending ...

  10. The local sub-mm luminosity functions and predictions from Spitzer to Herschel

    CERN Document Server

    Serjeant, S; Serjeant, Stephen; Harrison, Diana

    2004-01-01

    We present new determinations of the local sub-mm luminosity functions, solving the ``sub-mm Olbers' Paradox.'' We also present predictions of source counts and luminosity functions in current and future far-infrared to sub-mm surveys. Using the sub-mm colour temperature relations from the SCUBA Local Universe Galaxy Survey, and the discovery of excess 450 micron excess emission in these galaxies, we interpolate and extrapolate the IRAS detections to make predictions of the SEDs of all 15411 PSC-z galaxies from 50-1300 microns. Despite the long extrapolations we find excellent agreement with (a) the 90 micron luminosity function of Serjeant et al. (2001), (b) the 850 micron luminosity function of Dunne et al. (2000), (c) the mm-wave photometry of Andreani & Franceschini (1996); (d) the asymptotic differential and integral source count predictions at 50-1300 microns by Rowan-Robinson (2001). We find the local 850 micron sub-mm luminosity density converges to (7.3+/-0.2)x10^{19} h_{65} W/Hz/Mpc^3. Remarkabl...

  11. Re-analysis of the Radio Luminosity Function of Galactic H II Regions

    Science.gov (United States)

    Paladini, R.; De Zotti, G.; Noriega-Crespo, A.; Carey, S. J.

    2009-09-01

    We have re-analyzed continuum and recombination lines radio data available in the literature in order to derive the luminosity function (LF) of Galactic H II regions. The study is performed by considering the first and fourth Galactic quadrants independently. We estimate the completeness level of the sample in the fourth quadrant at 5 Jy, and the one in the first quadrant at 2 Jy. We show that the two samples (fourth or first quadrant) include, as well as giant and supergiant H II regions, a significant number of subgiant sources. The LF is obtained, in each Galactic quadrant, with a generalized Schmidt's estimator using an effective volume derived from the observed spatial distribution of the considered H II regions. The re-analysis also takes advantage of recently published ancillary absorption data allowing to solve the distance ambiguity for several objects. A single power-law fit to the LFs retrieves a slope equal to -2.23 ± 0.07 (fourth quadrant) and to -1.85 ± 0.11 (first quadrant). We also find marginal evidence of a luminosity break at L knee = 1023.45 erg s-1 Hz-1 for the LF in the fourth quadrant. We convert radio luminosities into equivalent Hα and Lyman continuum luminosities to facilitate comparisons with extragalactic studies. We obtain an average total H II regions Lyman continuum luminosity of 0.89 ± 0.23 × 1053 s-1, corresponding to 30% of the total ionizing luminosity of the Galaxy.

  12. The HerMES sub-millimetre local and low-redshift luminosity functions

    CERN Document Server

    Marchetti, L; Franceschini, A; Arumugam, V; Aussel, H; Bethermin, M; Bock, J; Boselli, A; Buat, V; Burgarella, D; Clements, D L; Conley, A; Conversi, L; Cooray, A; Dowell, C D; Farrah, D; Feltre, A; Glenn, J; Griffin, M; Hatziminaoglou, E; Heinis, S; Ibar, E; Ivison, R J; Nguyen, H T; O'Halloran, B; Oliver, S J; Omont, A; Page, M J; Papageorgiou, A; Pearson, C P; Perez-Fournon, I; Pohlen, M; Rigopoulou, D; Roseboom, I G; Rowan-Robinson, M; Schulz, B; Scott, Douglas; Seymour, N; Shupe, D L; Smith, A J; Symeonidis, M; Valtchanov, I; Viero, M; Wang, L; Wardlow, J; Xu, C K; Zemcov, M

    2015-01-01

    We used wide area surveys over 39 deg$^2$ by the HerMES collaboration, performed with the Herschel Observatory SPIRE multi-wavelength camera, to estimate the low-redshift, $0.02luminosity functions (LFs) of galaxies at 250, 350 and 500$\\,\\mu$m. SPIRE flux densities were also combined with Spitzer photometry and multi-wavelength archival data to perform a complete SED fitting analysis of SPIRE detected sources to calculate precise k-corrections, as well as the bolometric infrared (8-1000$\\,\\mu$m) luminosity functions and their low-$z$ evolution from a combination of statistical estimators. Integration of the latter prompted us to also compute the local luminosity density (LLD) and the comoving star formation rate density (SFRD) for our sources, and to compare them with theoretical predictions of galaxy formation models. The luminosity functions show significant and rapid luminosity evolution already at low redshifts, $0.02

  13. The VVDS type-1 AGN sample: The faint end of the luminosity function

    CERN Document Server

    Bongiorno, A; Gavignaud, I; Marano, B; Paltani, S; Mathez, G; Picat, J P; Cirasuolo, M; Lamareille, F; Bottini, D; Garilli, B; Le Brun, V; Le Fèvre, O; MacCagni, D; Scaramella, R; Scodeggio, M; Tresse, L; Vettolani, G; Zanichelli, A; Adami, C; Arnouts, S; Bardelli, S; Bolzonella, M; Cappi, A; Charlot, S; Ciliegi, P; Contini, T; Foucaud, S; Franzetti, P; Guzzo, L; Ilbert, O; Iovino, A; McCracken, H J; Marinon, C; Mazure, A; Meneux, B; Merighi, R; Pellò, R; Pollo, A; Pozzetti, L; Radovich, M; Zucca, E; Hatziminaoglou, E; Polletta, M; Bondi, M; Brinchmann, J; Cucciati, O; De la Torre, S; Gregorini, L; Mellier, Y; Merluzzi, P; Temporin, S; Vergani, D; Walcher, C J

    2007-01-01

    In a previous paper (Gavignaud et al. 2006), we presented the type-1 Active Galactic Nuclei (AGN) sample obtained from the first epoch data of the VIMOS-VLT Deep Survey (VVDS). The sample consists of 130 faint, broad-line AGN with redshift up to z=5 and 17.5< I <24.0, selected on the basis of their spectra. In this paper we present the measurement of the Optical Luminosity Function up to z=3.6 derived from this sample, we compare our results with previous results from brighter samples both at low and at high redshift. Our data, more than one magnitude fainter than previous optical surveys, allow us to constrain the faint part of the luminosity function up to high redshift. By combining our faint VVDS sample with the large sample of bright AGN extracted from the SDSS DR3 (Richards et al., 2006b) and testing a number of different evolutionary models, we find that the model which better represents the combined luminosity functions, over a wide range of redshift and luminosity, is a luminosity dependent den...

  14. Dark-ages reionization & galaxy formation simulation IV: UV luminosity functions of high-redshift galaxies

    CERN Document Server

    Liu, Chuanwu; Angel, P W; Duffy, Alan R; Geil, Paul M; Poole, Gregory B; Mesinger, Andrei; Wyithe, J Stuart B

    2015-01-01

    In this paper we present calculations of the UV luminosity function predictions from the Dark-ages Reionization And Galaxy-formation Observables from Numerical Simulations (DRAGONS) project, which combines N-body, semi-analytic and semi-numerical modeling designed to study galaxy formation during the Epoch of Reionization. Using galaxy formation physics including supernova feedback, the model naturally reproduces the UV LFs for high-redshift star-forming galaxies from $z{\\sim}5$ through to $z{\\sim}10$. We investigate the predicted luminosity-star formation rate (SFR) relation, finding that variable SFR histories of galaxies result in a scatter around the mean relation of $0.1$-$0.3$ dex depending on UV luminosity. We find close agreement between the model and observationally derived SFR functions. We use our predicted luminosities to investigate the luminosity function below current detection limits, and the ionizing photon budget for reionization. We predict that the slope of the UV LF remains steep below cu...

  15. The local sub-mm luminosity functions and predictions from ASTRO-F/SIRTF to Herschel

    CERN Document Server

    Serjeant, S; Serjeant, Stephen; Harrison, Diana

    2003-01-01

    We present new determinations of the local sub-mm luminosity functions. We find the local sub-mm luminosity density converging to 7.3+/-0.2 x 10^19 W/Hz/Mpc^3 /h_65 at 850um solving the ``sub-mm Olbers' Paradox.'' Using the sub-mm colour temperature relations from the SCUBA Local Universe Galaxy Survey, and the discovery of excess 450um excess emission in these galaxies, we interpolate and extrapolate the IRAS detections to make predictions of the SEDs of all 15411 PSC-z galaxies from 50-3000um. Despite the long extrapolations we find excellent agreement with (a) the 90um luminosity function of Serjeant et al. (2001), (b) the 850um luminosity function of Dunne et al. (2000), (c) the mm-wave photometry of Andreani & Franceschini (1996); (d) the asymptotic differential and integral source count predictions at 50-3000um by Rowan-Robinson (2001). Remarkably, the local luminosity density and the extragalactic background light together strongly constrain the cosmic star formation history for a wide class of evo...

  16. X-ray luminosity functions of different morphological and X-ray type AGN populations

    CERN Document Server

    Pović, M; Sánchez-Portal, M; Bongiovanni, A; Cepa, J; Lorenzo, M Fernández; Lara-López, M A; Gallego, J; Ederoclite, A; Márquez, I; Masegosa, J; Alfaro, E; Castañeda, H; González-Serrano, J I; González, J J; 10.1002/asna.201211840

    2013-01-01

    Luminosity functions are one of the most important observational clues when studying galaxy evolution over cosmic time. In this paper we present the X-ray luminosity functions of X-ray detected AGN in the SXDS and GWS fields. The limiting fluxes of our samples are 9.0x10^(-15) and 4.8x10^(-16) erg/cm^2/sec^(-1) in the 0.5 - 7.0 keV band in the two fields, respectively. We carried out analysis in three X-ray bands and in two redshift intervals up to z < 1.4. Moreover, we derive the luminosity functions for different optical morphologies and X-ray types. We confirm strong luminosity evolution in all three bands, finding the most luminous objects at higher redshift. However, no signs of density evolution are found in any tested X-ray band. We obtain similar results for compact and early-type objects. Finally, we observe the `Steffen effect', where X-ray type-1 sources are more numerous at higher luminosities in comparison with type-2 sources.

  17. Dusty Quasars at High Redshifts

    CERN Document Server

    Weedman, Daniel

    2016-01-01

    A population of quasars at z ~ 2 is determined based on dust luminosities vLv(7.8 um) that includes unobscured, partially obscured, and obscured quasars. Quasars are classified by the ratio vLv(0.25 um)/vLv(7.8 um) = UV/IR, assumed to measure obscuration of UV luminosity by the dust which produces IR luminosity. Quasar counts at rest frame 7.8 um are determined for quasars in the Bootes field of the NOAO Deep Wide Field Survey using 24 um sources with optical redshifts from the AGN and Galaxy Evolution Survey (AGES) or infrared redshifts from the Spitzer Infrared Spectrograph. Spectral energy distributions are extended to far infrared wavelengths using observations from the Herschel Space Observatory Spectral and Photometric Imaging Receiver (SPIRE), and new SPIRE photometry is presented for 77 high redshift quasars from the Sloan Digital Sky Survey. It is found that unobscured and obscured quasars have similar space densities at rest frame 7.8 um, but the ratio Lv(100 um)/Lv(7.8 um) is about three times high...

  18. Imprints of the super-Eddington accretion on the quasar clustering

    Science.gov (United States)

    Oogi, Taira; Enoki, Motohiro; Ishiyama, Tomoaki; Kobayashi, Masakazu A. R.; Makiya, Ryu; Nagashima, Masahiro; Okamoto, Takashi; Shirakata, Hikari

    2017-10-01

    Super-Eddington mass accretion has been suggested as an efficient mechanism to grow supermassive black holes (SMBHs). We investigate the imprint left by the radiative efficiency of the super-Eddington accretion process on the clustering of quasars using a new semi-analytic model of galaxy and quasar formation based on large-volume cosmological $N$-body simulations. Our model includes a simple model for the radiative efficiency of a quasar, which imitates the effect of photon trapping for a high mass accretion rate. We find that the model of radiative efficiency affects the relation between the quasar luminosity and the quasar host halo mass. The quasar host halo mass has only weak dependence on quasar luminosity when there is no upper limit for quasar luminosity. On the other hand, it has significant dependence on quasar luminosity when the quasar luminosity is limited by its Eddington luminosity. In the latter case, the quasar bias also depends on the quasar luminosity, and the quasar bias of bright quasars is in agreement with observations. Our results suggest that the quasar clustering studies can provide a constraint on the accretion disc model.

  19. Near-Infrared Properties of Moderate-Redshift Galaxy Clusters: Luminosity Functions and Density Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Muzzin, Adam; Yee, H.K.C.; /Toronto U., Astron. Dept.; Hall, Patrick B.; /York U., Canada; Ellingson, E.; /Colorado U., CASA; Lin, Huan; /Fermilab

    2006-12-01

    We present K-band imaging for 15 of the Canadian Network for Observational Cosmology (CNOC1) clusters. The extensive spectroscopic dataset available for these clusters allows us to determine the cluster K-band luminosity function and density profile without the need for statistical background subtraction. The luminosity density and number density profiles can be described by NFW models with concentration parameters of c{sub l} = 4.28 {+-} 0.70 and c{sub g} = 4.13 {+-} 0.57 respectively. Comparing these to the dynamical mass analysis of the same clusters shows that the galaxy luminosity and number density profiles are similar to the dark matter profile, and are not less concentrated like in local clusters. The luminosity functions show that the evolution of K. over the redshift range 0.2 < z < 0.5 is consistent with a scenario where the majority of stars in cluster galaxies form at high-redshift (z{sub f} > 1.5) and evolve passively thereafter. The best-fit for the faint-end slope of the luminosity function is {alpha} = -0.84 {+-} 0.08, which indicates that it does not evolve between z = 0 and z = 0.3. Using Principal Component Analysis of the spectra we classify cluster galaxies as either star-forming/recently-star-forming (EM+BAL) or non-star forming (ELL) and compute their respective luminosity functions. The faint-end slope of the ELL luminosity function is much shallower than for the EM+BAL galaxies at z = 0.3, and suggests the number of faint ELL galaxies in clusters decreases by a factor of {approx} 3 from z = 0 to z = 0.3. The redshift evolution of K* for both EM+BAL and ELL types is consistent with a passively evolving stellar population formed at high-redshift. Passive evolution in both classes, as well as the total cluster luminosity function, demonstrates that the bulk of the stellar population in all bright cluster galaxies is formed at high-redshift and subsequent transformations in morphology/color/spectral-type have little effect on the total stellar

  20. A New Model for Dark Matter Halos Hosting Quasars

    CERN Document Server

    Cen, Renyue

    2014-01-01

    A new model for quasar-hosting dark matter halos, meeting two physical conditions, is put forth. First, significant interactions are taken into consideration to trigger quasar activities. Second, satellites in very massive halos at low redshift are removed from consideration, due to their deficiency of cold gas. We analyze the {\\em Millennium Simulation} to find halos that meet these two conditions and simultaneously match two-point auto-correlation functions of quasars and cross-correlation functions between quasars and galaxies at $z=0.5-3.2$. %The found halos have some distinct properties worth noting. The masses of found quasar hosts decrease with decreasing redshift, with the mass thresholds being $[(2-5)\\times 10^{12}, (2-5)\\times 10^{11}, (1-3)\\times 10^{11}]\\msun$ for median luminosities of $\\sim[10^{46}, 10^{46}, 10^{45}]$erg/s at $z=(3.2, 1.4, 0.53)$, respectively, an order of magnitude lower than those inferred based on halo occupation distribution modeling. In this model quasar hosts are primarily...

  1. Galaxy UV-luminosity Function and Reionisation Constraints on Axion Dark Matter

    CERN Document Server

    Bozek, Brandon; Silk, Joseph; Wyse, Rosemary F G

    2014-01-01

    If the dark matter (DM) were composed of axions, then structure formation in the Universe would be suppressed below the axion Jeans scale. Using an analytic model for the halo mass function of a mixed dark matter model with axions and CDM, combined with the abundance-matching technique, we construct the UV luminosity function. Axions suppress high-$z$ galaxy formation and the UV-luminosity function is truncated at a faintest limiting magnitude. From the UV-luminosity function, we predict the reionisation history of the universe and find that axion dark matter causes reionisation to occur at lower redshift. We search for evidence of axions using the Hubble ultra-deep field UV-luminosity function in the redshift range $z=6$ to $10$, and the optical depth to reionisation, $\\tau$, as measured from CMB polarisation. All probes we consider consistently exclude $m_a\\lesssim 10^{-23}\\text{ eV}$ from contributing more than half of the DM, with our strongest constraint ruling this model out at more than $8\\sigma$ signi...

  2. MEAN SPECTRAL ENERGY DISTRIBUTIONS AND BOLOMETRIC CORRECTIONS FOR LUMINOUS QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Krawczyk, Coleman M.; Richards, Gordon T.; Mehta, Sajjan S.; Vogeley, Michael S. [Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Gallagher, S. C. [Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7 (Canada); Leighly, Karen M. [Homer L. Dodge Department of Physics and Astronomy, The University of Oklahoma, 440 W. Brooks Street, Norman, OK 73019 (United States); Ross, Nicholas P. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Schneider, Donald P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States)

    2013-05-01

    We explore the mid-infrared (mid-IR) through ultraviolet (UV) spectral energy distributions (SEDs) of 119,652 luminous broad-lined quasars with 0.064 < z < 5.46 using mid-IR data from Spitzer and WISE, near-infrared data from the Two Micron All Sky Survey and UKIDSS, optical data from the Sloan Digital Sky Survey, and UV data from the Galaxy Evolution Explorer. The mean SED requires a bolometric correction (relative to 2500 A) of BC{sub 2500A} =2.75 {+-} 0.40 using the integrated light from 1 {mu}m-2 keV, and we further explore the range of bolometric corrections exhibited by individual objects. In addition, we investigate the dependence of the mean SED on various parameters, particularly the UV luminosity for quasars with 0.5 {approx}< z {approx}< 3 and the properties of the UV emission lines for quasars with z {approx}> 1.6; the latter is a possible indicator of the strength of the accretion disk wind, which is expected to be SED-dependent. Luminosity-dependent mean SEDs show that, relative to the high-luminosity SED, low-luminosity SEDs exhibit a harder (bluer) far-UV spectral slope ({alpha}{sub UV}), a redder optical continuum, and less hot dust. Mean SEDs constructed instead as a function of UV emission line properties reveal changes that are consistent with known Principal Component Analysis trends. A potentially important contribution to the bolometric correction is the unseen extreme UV (EUV) continuum. Our work suggests that lower-luminosity quasars and/or quasars with disk-dominated broad emission lines may require an extra continuum component in the EUV that is not present (or much weaker) in high-luminosity quasars with strong accretion disk winds. As such, we consider four possible models and explore the resulting bolometric corrections. Understanding these various SED-dependent effects will be important for accurate determination of quasar accretion rates.

  3. The European Large Area ISO Survey - IV. The preliminary 90-mu m luminosity function

    DEFF Research Database (Denmark)

    Serjeant, S.; Efstathiou, A.; Oliver, S.;

    2001-01-01

    We present the luminosity function of 90-mum-selected galaxies from the European Large Area ISO Survey (ELAIS), extending to z = 0.3. Their luminosities are in the range 10(9)

  4. 2MASS/SDSS Close Major-Merger Galaxy Pairs: Luminosity Functions and Merger Mass Dependence

    CERN Document Server

    Domingue, Donovan L; Jarrett, T H; Cheng, Y

    2009-01-01

    We select a close "major-merger candidate" galaxy pair sample in order to calculate the K_{s} luminosity function (LF) and pair fraction representative of the merger/interaction component of galaxy evolution in the local universe. The pair sample (projected separation 5 h$^{-1}$ kpc $\\leq$ r $\\leq$ 20 h$^{-1}$ kpc, $K_{s}$-band magnitude difference $\\Delta

  5. Trends in the Globular Cluster Luminosity Function of Early-Type Galaxies

    CERN Document Server

    Jordan, A; Côté, P; Ferrarese, L; Peng, E W; Blakeslee, J P; Mei, S; Villegas, D; Merritt, D; Tonry, J L; West, M J; Jordan, Andres; Laughlin, Dean E. Mc; Cote, Patrick; Ferrarese, Laura; Peng, Eric W.; Blakeslee, John P.; Mei, Simona; Villegas, Daniela; Merritt, David; Tonry, John L.; West, Michael J.

    2006-01-01

    We present results from a study of the globular cluster luminosity function (GCLF) in a sample of 89 early-type galaxies observed as part of the ACS Virgo Cluster Survey. Using a Gaussian parametrization of the GCLF, we find a highly significant correlation between the GCLF dispersion, sigma, and the galaxy luminosity, M_B, in the sense that the GC systems in fainter galaxies have narrower luminosity functions. The GCLF dispersions in the Milky Way and M31 are fully consistent with this trend, implying that the correlation between sigma and galaxy luminosity is more fundamental than older suggestions that GCLF shape is a function of galaxy Hubble type. We show that the sigma - M_B relation results from a bonafide narrowing of the distribution of (logarithmic) cluster masses in fainter galaxies. We further show that this behavior is mirrored by a steepening of the GC mass function for relatively high masses, M >~ 3 x 10^5 M_sun, a mass regime in which the shape of the GCLF is not strongly affected by dynamical...

  6. The K Band Luminosity Functions of Galaxies in High Redshift Clusters

    CERN Document Server

    Ellis, S C

    2004-01-01

    K band luminosity functions (LFs) of three, massive, high redshift clusters of galaxies are presented. The evolution of K*, the characteristic magnitude of the LF, is consistent with purely passive evolution, and a redshift of forma tion z = 1.5-2.

  7. The XMM-Newton Serendipitous Survey. VI. The X-ray Luminosity Function

    CERN Document Server

    Ebrero, J; Page, M J; Silverman, J D; Barcons, X; Ceballos, M T; Corral, A; Della Ceca, R; Watson, M G

    2008-01-01

    We present the X-ray luminosity function of AGN in three energy bands (Soft: 0.5-2 keV, Hard: 2-10 keV and Ultrahard: 4.5-7.5 keV). We have used the XMS survey along with other highly complete flux-limited deeper and shallower surveys for a total of 1009, 435 and 119 sources in the Soft, Hard and Ultrahard bands, respectively. We have modeled the intrinsic absorption of the Hard and Ultrahard sources (NH function) and computed the intrinsic X-ray luminosity function in all bands using a Maximum Likelihood fit technique to an analytical model. We find that the X-ray luminosity function (XLF) is best described by a Luminosity-Dependent Density Evolution (LDDE) model. Our results show a good overall agreement with previous results in the Hard band, although with slightly weaker evolution. Our model in the Soft band present slight discrepancies with other works in this band, the shape of our present day XLF being significantly flatter. We find faster evolution in the AGN detected in the Ultrahard band than those ...

  8. The luminosity function and surface brightness distribution of HI selected galaxies

    NARCIS (Netherlands)

    Zwaan, MA; Briggs, FH; Sprayberry, D

    2001-01-01

    We measure the z = 0 B-band optical luminosity function (LF) for galaxies selected in a blind Hi survey. The total LF of the Hi selected sample is flat, with Schechter parameters M*= -19.38+(+1.02)(-0.62) + 5 log h(100) mag and alpha = -1.03(-0.15)(+0.25), in good agreement with LFs of optically sel

  9. Luminosity Functions and Point Source Properties from Multiple Chandra Observations of M81

    CERN Document Server

    Sell, P H; Zezas, A; Heinz, S; Homan, J; Lewin, W H G

    2011-01-01

    We present an analysis of 15 Chandra observations of the nearby spiral galaxy M81 taken over the course of six weeks in May--July 2005. Each observation reaches a sensitivity of ~10^37 erg/s. With these observations and one previous deeper Chandra observation, we compile a master source list of 265 point sources, extract and fit their spectra, and differentiate basic populations of sources through their colors. We also carry out variability analyses of individual point sources and of X-ray luminosity functions in multiple regions of M81 on timescales of days, months, and years. We find that, despite measuring significant variability in a considerable fraction of sources, snapshot observations provide a consistent determination of the X-ray luminosity function of M81. We also fit the X-ray luminosity functions for multiple regions of M81 and, using common parametrizations, compare these luminosity functions to those of two other spiral galaxies, M31 and the Milky Way.

  10. Galaxy and Mass Assembly (GAMA): maximum likelihood determination of the luminosity function and its evolution

    CERN Document Server

    Loveday, J; Baldry, I K; Bland-Hawthorn, J; Brough, S; Brown, M J I; Driver, S P; Kelvin, L S; Phillipps, S

    2015-01-01

    We describe modifications to the joint stepwise maximum likelihood method of Cole (2011) in order to simultaneously fit the GAMA-II galaxy luminosity function (LF), corrected for radial density variations, and its evolution with redshift. The whole sample is reasonably well-fit with luminosity (Qe) and density (Pe) evolution parameters Qe, Pe = 1.0, 1.0 but with significant degeneracies characterized by Qe = 1.4 - 0.4Pe. Blue galaxies exhibit larger luminosity density evolution than red galaxies, as expected. We present the evolution-corrected r-band LF for the whole sample and for blue and red sub-samples, using both Petrosian and Sersic magnitudes. Petrosian magnitudes miss a substantial fraction of the flux of de Vaucouleurs profile galaxies: the Sersic LF is substantially higher than the Petrosian LF at the bright end.

  11. The galaxy cluster mid-infrared luminosity function at 1.3 < z < 3.2

    Energy Technology Data Exchange (ETDEWEB)

    Wylezalek, Dominika; Vernet, Joël; De Breuck, Carlos [European Southern Observatory, Karl-Schwarzschildstr.2, D-85748 Garching bei München (Germany); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Brodwin, Mark [Department of Physics and Astronomy, University of Missouri, 5110 Rockhill Road, Kansas City, MO 64110 (United States); Galametz, Audrey [INAF-Osservatorio di Roma, Via Frascati 33, I-00040, Monteporzio (Italy); Gonzalez, Anthony H. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Jarvis, Matt [Astrophysics, Department of Physics, Keble Road, Oxford OX1 3RH (United Kingdom); Hatch, Nina [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); Seymour, Nick [CASS, P.O. Box 76, Epping, NSW, 1710 (Australia); Stanford, Spencer A. [Physics Department, University of California, Davis, CA 95616 (United States)

    2014-05-01

    We present 4.5 μm luminosity functions for galaxies identified in 178 candidate galaxy clusters at 1.3 < z < 3.2. The clusters were identified as Spitzer/Infrared Array Camera (IRAC) color-selected overdensities in the Clusters Around Radio-Loud AGN project, which imaged 420 powerful radio-loud active galactic nuclei (RLAGNs) at z > 1.3. The luminosity functions are derived for different redshift and richness bins, and the IRAC imaging reaches depths of m* + 2, allowing us to measure the faint end slopes of the luminosity functions. We find that α = –1 describes the luminosity function very well in all redshift bins and does not evolve significantly. This provides evidence that the rate at which the low mass galaxy population grows through star formation gets quenched and is replenished by in-falling field galaxies does not have a major net effect on the shape of the luminosity function. Our measurements for m* are consistent with passive evolution models and high formation redshifts (z{sub f} ∼ 3). We find a slight trend toward fainter m* for the richest clusters, implying that the most massive clusters in our sample could contain older stellar populations, yet another example of cosmic downsizing. Modeling shows that a contribution of a star-forming population of up to 40% cannot be ruled out. This value, found from our targeted survey, is significantly lower than the values found for slightly lower redshift, z ∼ 1, clusters found in wide-field surveys. The results are consistent with cosmic downsizing, as the clusters studied here were all found in the vicinity of RLAGNs—which have proven to be preferentially located in massive dark matter halos in the richest environments at high redshift—and they may therefore be older and more evolved systems than the general protocluster population.

  12. Basic Tools for Studies on the Formation and Disruption of Star Clusters: the Luminosity Function

    CERN Document Server

    Gieles, M

    2009-01-01

    The luminosity function (LF) of young star clusters is often approximated by a power law function. For clusters in a wide range of galactic environments this has resulted in fit indices near -2, but on average slightly steeper. A fundamental property of the -2 power law function is that the luminosity of the brightest object (L_max) scales linearly with the total number of clusters, which is close to what is observed. This suggests that the formation of Young Massive Clusters (YMCs) is a result of the size of the sample, i.e. when the SFR is high it is statistically more likely to form YMCs, but no particular physical conditions are required. In this contribution we provide evidence that the LF of young clusters is not a -2 power law, but instead is curved, showing a systematic decrease of the (logarithmic) slope from roughly -1.8 at low luminosities to roughly -2.8 at high luminosities. The empirical LFs can be reproduced by model LFs using an underlying cluster IMF with a Schechter type truncation around M*...

  13. Predicting the redshift 2 Halpha luminosity function using [OIII] emission line galaxies

    CERN Document Server

    Mehta, Vihang; Colbert, James W; Dai, Sophia; Dressler, Alan; Henry, Alaina; Malkan, Matt; Rafelski, Marc; Siana, Brian; Teplitz, Harry; Bagley, Micaela; Beck, Melanie; Ross, Nathaniel R; Rutkowski, Michael; Wang, Yun

    2015-01-01

    Upcoming space-based surveys such as Euclid and WFIRST-AFTA plan to measure Baryonic Acoustic Oscillations (BAOs) in order to study dark energy. These surveys will use IR slitless grism spectroscopy to measure redshifts of a large number of galaxies over a significant redshift range. In this paper, we use the WFC3 Infrared Spectroscopic Parallel Survey (WISP) to estimate the expected number of Halpha (Ha) emitters observable by these future surveys. WISP is an ongoing HST slitless spectroscopic survey, covering the 0.8-1.65micron wavelength range and allowing the detection of Ha emitters up to z~1.5 and [OIII] emitters to z~2.3. We derive the Ha-[OIII] bivariate line luminosity function for WISP galaxies at z~1 using a maximum likelihood estimator that properly accounts for uncertainties in line luminosity measurement, and demonstrate how it can be used to derive the Ha luminosity function from exclusively fitting [OIII] data. Using the z~2 [OIII] line luminosity function, and assuming that the relation betwe...

  14. Sub-mm Emission Line Deep Fields: CO and [CII] Luminosity Functions out to z = 6

    CERN Document Server

    Popping, Gergö; Decarli, Roberto; Spaans, Marco; Somerville, Rachel S; Trager, Scott C

    2016-01-01

    Now that ALMA is reaching its full capabilities, observations of sub-mm emission line deep fields become feasible. Deep fields are ideal to study the luminosity function of sub-mm emission lines, ultimately tracing the atomic and molecular gas properties of galaxies. We couple a semi-analytic model of galaxy formation with a radiative transfer code to make predictions for the luminosity function of CO J=1-0 up to CO J=6-5 and [CII] at redshifts z=0-6. We find that: 1) our model correctly reproduces the CO and [CII] emission of low- and high-redshift galaxies and reproduces the available constraints on the CO luminosity function at z1.5 and the CO luminosity of individual galaxies at intermediate redshifts. We argue that this is driven by a lack of cold gas in galaxies at intermediate redshifts as predicted by cosmological simulations of galaxy formation. This may lay at the root of other problems theoretical models face at the same redshifts.

  15. Evidence for Quasar Activity Triggered by Galaxy Mergers in HST Observations of Dust-reddened Quasars

    Science.gov (United States)

    Urrutia, Tanya; Lacy, Mark; Becker, Robert H.

    2008-02-01

    We present Hubble Space Telescope ACS images of 13 dust-reddened type 1 quasars selected from the FIRST/2MASS Red Quasar Survey. These quasars have high intrinsic luminosities after correction for dust obscuration (-23.5 >= MB >= - 26.2 from K-magnitude). The images show strong evidence of recent or ongoing interaction in 11 of the 13 cases, even before the quasar nucleus is subtracted. None of the host galaxies are well fit by a simple elliptical profile. The fraction of quasars showing interaction is significantly higher than the 30% seen in samples of host galaxies of normal, unobscured quasars. There is a weak correlation between the amount of dust reddening and the magnitude of interaction in the host galaxy, measured using the Gini coefficient and the concentration index. Although few host galaxy studies of normal quasars are matched to ours in intrinsic quasar luminosity, no evidence has been found for a strong dependence of merger activity on host luminosity in samples of the host galaxies of normal quasars. We thus believe that the high merger fraction in our sample is related to their obscured nature, with a significant amount of reddening occurring in the host galaxy. The red quasar phenomenon seems to have an evolutionary explanation, with the young quasar spending the early part of its lifetime enshrouded in an interacting galaxy. This might be further indication of a link between AGNs and starburst galaxies.

  16. Correlation function of quasars in real and redshift space from the Sloan Digital Sky Survey Data Release 7

    Science.gov (United States)

    Ivashchenko, G.; Zhdanov, V. I.; Tugay, A. V.

    2010-12-01

    We analyse the quasar two-point correlation function (2pCF) within the redshift interval 0.8 10 h-1 Mpc, the parameter describing the large-scale infall to density inhomogeneities is β= 0.63 ± 0.10 with the linear bias b = 1.44 ± 0.22, which marginally (within 2σ) agrees with the linear theory of cosmological perturbations. We discuss possibilities to obtain a statistical estimate of the random component of quasar velocities (different from the large-scale infall). We note a slight dependence of the quasar velocity dispersion upon the 2pCF parameters in the region r < 2 Mpc.

  17. Flamingos 2 Spectroscopy of Obscured and Unobscured Quasars

    Science.gov (United States)

    Ridgway, Susan; Lacy, Mark; Urrutia, Tanya; Petric, Andreea

    2013-08-01

    We will use Flamingos-2 to obtain spectra of luminous AGN and quasars selected in the mid-infrared. Mid-infrared selection is much less biased with respect to obscuration than optical and X-ray techniques, and hence allows for finding obscured (Type-2) quasars as well as Type-1 quasars. Our survey so far has been very successful and has provided an unique opportunity to construct luminosity functions for both Type-1 and Type-2 quasars selected in the same way and covering similar redshifts and luminosities. We have quantifed the change in the obscured fraction with luminosity and redshift for the first time, and find interesting indications that at high redshift the obscured fraction rises, consistent with models for the joint formation of the galaxy and black hole populations. Our samples are, however, still quite incomplete at low fluxes (and therefore lower luminosities at a given redshift), particularly in the southern hemisphere. Near-infrared spectroscopy, such as that we have previously obtained with NIRI at Gemini N, offers us the best possibility of bringing these southern samples to a reasonable completeness level, and will greatly increase the number of high z quasars in our sample. This will allow us to better judge our tantalizing initial results on the redshift evolution of the obscured fraction. In addition, these southern targets can be followed up with ALMA and GEMS/GSAOI to study the morphologies and star-formation properties of the hosts, allowing further exploration of the relationship between the formation of massive bulges and supermassive blackholes in the early universe.

  18. The ACS Virgo Cluster Survey. XII. The Luminosity Function of Globular Clusters in Early Type Galaxies

    CERN Document Server

    Jordan, A; Côté, P; Ferrarese, L; Peng, E W; Mei, S; Villegas, D; Merritt, D; Tonry, J L; West, M J; Jordan, Andres; Laughlin, Dean E. Mc; Cote, Patrick; Ferrarese, Laura; Peng, Eric W.; Mei, Simona; Villegas, Daniela; Merritt, David; Tonry, John L.; West, Michael J.

    2007-01-01

    We analyze the luminosity function of the globular clusters (GCs) belonging to the early-type galaxies observed in the ACS Virgo Cluster Survey. We have obtained estimates for a Gaussian representation of the GC luminosity function (GCLF) for 89 galaxies. We have also fit the GCLFs with an "evolved Schechter function", which is meant to reflect the preferential depletion of low-mass GCs, primarily by evaporation due to two-body relaxation, from an initial Schechter mass function similar to that of young massive clusters. We find a significant trend of the GCLF dispersion with galaxy luminosity, in the sense that smaller galaxies have narrower GCLFs. We show that this narrowing of the GCLF in a Gaussian description is driven by a steepening of the GC mass function above the turnover mass, as one moves to smaller host galaxies. We argue that this behavior at the high-mass end of the GC mass function is most likely a consequence of systematic variations of the initial cluster mass function. The GCLF turnover mas...

  19. The Discovery of Quasars

    CERN Document Server

    Kellermann, K I

    2013-01-01

    Although the extragalactic nature of quasars was discussed as early as 1960, it was rejected largely because of preconceived ideas about what appeared to be an unrealistically high radio and optical luminosity. Following the 1962 occultations of the strong radio source 3C 273 at Parkes, and the subsequent identification with an apparent stellar object, Maarten Schmidt recognized that the relatively simple hydrogen line Balmer series spectrum implied a redshift of 0.16 Successive radio and optical measurements quickly led to the identification of other quasars with increasingly large redshifts and the general, although for some decades not universal, acceptance of quasars as being by far the most distant and the most luminous objects in the Universe. Curiously, 3C 273, which is one of the strongest extragalactic sources in the sky, was first catalogued in 1959 and the magnitude 13 optical counterpart was observed at least as early as 1887. Since 1960, much fainter optical counterparts were being routinely iden...

  20. The Radio Luminosity Function and Galaxy Evolution in the Coma Cluster

    Science.gov (United States)

    Miller, Neal A.; Hornschemeier, Ann E.; Mabasher, Bahram; Brudgesm Terrry J.; Hudson, Michael J.; Marzke, Ronald O.; Smith, Russell J.

    2008-01-01

    We investigate the radio luminosity function and radio source population for two fields within the Coma cluster of galaxies, with the fields centered on the cluster core and southwest infall region and each covering about half a square degree. Using VLA data with a typical rms sensitivity of 28 (mu)Jy per 4.4" beam, we identify 249 radio sources with optical counterparts brighter than r = 22 (equivalent to M(sub r) = -13 for cluster member galaxies). Comprehensive optical spectroscopy identifies 38 of these as members of the Coma cluster, evenly split between sources powered by an active nucleus and sources powered by active star formation. The radio-detected star-forming galaxies are restricted to radio luminosities between about 10(exp 21) and 10(exp 22) W/Hz, an interesting result given that star formation dominates field radio luminosity functions below about 10(exp 23) W/Hz. The majority of the radio-detected star-forming galaxies have characteristics of starbursts, including high specific star formation rates and optical spectra with strong emission lines. In conjunction with prior studies on post-starburst galaxies within the Coma cluster, this is consistent with a picture in which late-type galaxies entering Coma undergo a starburst prior to a rapid cessation of star formation. Optically bright elliptical galaxies (Mr less than or equals -20.5) make the largest contribution to the radio luminosity function at both the high (> approx. 3x10(exp 22) W/Hz) and low (< approx. 10(exp 21) W/Hz) ends. Through a stacking analysis of these optically-bright ellipticals we find that they continue to harbor radio sources down to luminosities as faint as 3x10(exp 19) W/Hz. However, contrary to published results for the Virgo cluster we find no evidence for the existence of a population of optically faint (M(sub r) approx. equals -14) dwarf ellipticals hosting strong radio AGN.

  1. Predicting the Redshift 2 H-Alpha Luminosity Function Using [OIII] Emission Line Galaxies

    Science.gov (United States)

    Mehta, Vihang; Scarlata, Claudia; Colbert, James W.; Dai, Y. S.; Dressler, Alan; Henry, Alaina; Malkan, Matt; Rafelski, Marc; Siana, Brian; Teplitz, Harry I.; Bagley, Micaela; Beck, Melanie; Ross, Nathaniel R.; Rutkowski, Michael; Wang, Yun

    2015-01-01

    Upcoming space-based surveys such as Euclid and WFIRST-AFTA plan to measure Baryonic Acoustic Oscillations (BAOs) in order to study dark energy. These surveys will use IR slitless grism spectroscopy to measure redshifts of a large number of galaxies over a significant redshift range. In this paper, we use the WFC3 Infrared Spectroscopic Parallel Survey (WISP) to estimate the expected number of H-alpha emitters observable by these future surveys. WISP is an ongoing Hubble Space Telescope slitless spectroscopic survey, covering the 0.8 - 1.65 micrometers wavelength range and allowing the detection of H-alpha emitters up to z approximately equal to 1.5 and [OIII] emitters to z approximately equal to 2.3. We derive the H-alpha-[OIII] bivariate line luminosity function for WISP galaxies at z approximately equal to 1 using a maximum likelihood estimator that properly accounts for uncertainties in line luminosity measurement, and demonstrate how it can be used to derive the H-alpha luminosity function from exclusively fitting [OIII] data. Using the z approximately equal to 2 [OIII] line luminosity function, and assuming that the relation between H-alpha and [OIII] luminosity does not change significantly over the redshift range, we predict the H-alpha number counts at z approximately equal to 2 - the upper end of the redshift range of interest for the future surveys. For the redshift range 0.7 less than z less than 2, we expect approximately 3000 galaxies per sq deg for a flux limit of 3 x 10(exp -16) ergs per sec per sq cm (the proposed depth of Euclid galaxy redshift survey) and approximately 20,000 galaxies per sq deg for a flux limit of approximately 10(exp -16) ergs per sec per sq cm (the baseline depth of WFIRST galaxy redshift survey).

  2. The luminosity function for different morphological types in the CfA Redshift Survey

    Science.gov (United States)

    Marzke, Ronald O.; Geller, Margaret J.; Huchra, John P.; Corwin, Harold G., Jr.

    1994-01-01

    We derive the luminosity function for different morphological types in the original CfA Redshift Survey (CfA1) and in the first two slices of the CfA Redshift Survey Extension (CfA2). CfA1 is a complete sample containing 2397 galaxies distributed over 2.7 steradians with m(sub z) less than or equal 14.5. The first two complete slices of CfA2 contain 1862 galaxies distributed over 0.42 steradians with m(sub z)=15.5. The shapes of the E-S0 and spiral luminosity functions (LF) are indistinguishable. We do not confirm the steeply decreasing faint end in the E-S0 luminosity function found by Loveday et al. for an independent sample in the southern hemisphere. We demonstrate that incomplete classification in deep redshift surveys can lead to underestimates of the faint end of the elliptical luminosity function and could be partially responsible for the difference between the CfA survey and other local field surveys. The faint end of the LF for the Magellanic spirals and irregulars is very steep. The Sm-Im luminosity function is well fit by a Schechter function with M*=-18.79, alpha=-1.87, and phi*=0.6x10(exp -3) for M(sub z) less than or equal to -13. These galaxies are largely responsible for the excess at the faint end of the general CfA luminosity function. The abundance of intrinsically faint, blue galaxies nearby affects the interpretation of deep number counts. The dwarf population increases the expected counts at B=25 in a no-evolution, q(sub 0)=0.05 model by a factor of two over standard no-evolution estimates. These dwarfs change the expected median redshift in deep redshift surveys by less than 10 percent . Thus the steep Sm-Im LF may contribute to the reconciliation of deep number counts with deep redshift surveys.

  3. Galaxy And Mass Assembly (GAMA): The galaxy luminosity function within the cosmic web

    CERN Document Server

    Eardley, E; McNaught-Roberts, T; Heymans, C; Norberg, P; Alpaslan, M; Baldry, I; Bland-Hawthorn, J; Brough, S; Cluver, M E; Driver, S P; Farrow, D J; Liske, J; Loveday, J; Robotham, A S G

    2014-01-01

    We investigate the dependence of the galaxy luminosity function on geometric environment within the Galaxy And Mass Assembly (GAMA) survey. The tidal tensor prescription, based on the Hessian of the pseudo-gravitational potential, is used to classify the cosmic web and define the geometric environments: for a given smoothing scale, we classify every position of the surveyed region, $0.04<{z}<0.26$, as either a void, a sheet, a filament or a knot. We consider how to choose appropriate thresholds in the eigenvalues of the Hessian in order to partition the galaxies approximately evenly between environments. We find a significant variation in the luminosity function of galaxies between different geometric environments; the normalisation, characterised by $\\phi^{*}$ in a Schechter function fit, increases by an order of magnitude from voids to knots. The turnover magnitude, characterised by $M^*$, brightens by approximately $0.5$ mag from voids to knots. However, we show that the observed modulation can be en...

  4. The Bright End of the Luminosity Function of Red Sequence Galaxies

    CERN Document Server

    Loh, Y S; Loh, Yeong-Shang; Strauss, Michael A.

    2006-01-01

    We study the bright end of the luminosity distribution of galaxies in fields with Luminous Red Galaxies (LRG) from the Sloan Digital Sky Survey (SDSS). Using 2099 square degree of SDSS imaging data, we search for luminous (> L*) early-type galaxies within 1.0 Mpc/h of a volume-limited sample of 12,608 spectroscopic LRG in the redshift range 0.12 < z < 0.38. Most of these objects lie in rich environments, with the LRG being the brightest object within 1.0 Mpc/h. The luminosity gap, M12, between the first and second-rank galaxies within 1.0 Mpc/h is large (~0.8 mag), substantially larger than can be explained with an exponentially decaying luminosity function of galaxies. The brightest member is less luminous (by 0.1 to 0.2 mag), and shows a larger gap in LRG selected groups than in cluster-like environments. The large luminosity gap shows little evolution with redshift to z = 0.4, ruling out the scenario that these LRG selected brightest cluster or group galaxies grow by recent cannibalism of cluster mem...

  5. Detailed Shape and Evolutionary Behavior of the X-ray Luminosity Function of Active Galactic Nuclei

    CERN Document Server

    Miyaji, T; Salvato, M; Brusa, M; Cappelluti, N; Civano, F; Puccetti, S; Elvis, M; Brunner, H; Fotopoulou, S; Ueda, Y; Griffiths, R E; Koekemoer, A M; Akiyama, M; Comastri, A; Gilli, R; Lanzuisi, G; Merloni, A; Vignali, C

    2015-01-01

    We construct the rest-frame 2--10 keV intrinsic X-ray luminosity function of Active Galactic Nuclei (AGNs) from a combination of X-ray surveys from the all-sky Swift BAT survey to the Chandra Deep Field-South. We use ~3200 AGNs in our analysis, which covers six orders of magnitude in flux. The inclusion of the XMM and Chandra COSMOS data has allowed us to investigate the detailed behavior of the XLF and evolution. In deriving our XLF, we take into account realistic AGN spectrum templates, absorption corrections, and probability density distributions in photometric redshift. We present an analytical expression for the overall behavior of the XLF in terms of the luminosity-dependent density evolution, smoothed two power-law expressions in 11 redshift shells, three-segment power-law expression of the number density evolution in four luminosity classes, and binned XLF. We observe a sudden flattening of the low luminosity end slope of the XLF slope at z>~0.6. Detailed structures of the AGN downsizing have been als...

  6. The Evolution of the Luminosity Function in Deep Fields A Comparison with CDM Models

    CERN Document Server

    Poli, F; Giallongo, E; Fontana, A; Cristiani, S; D'Odorico, S

    2001-01-01

    The galaxy Luminosity Function (LF) has been estimated in the rest frame B luminosity at 0luminosity of the low luminosity objects. The implications of our resul...

  7. The Mid-IR luminosity function of galaxies in the ELAIS Southern fields

    CERN Document Server

    Pozzi, F; Oliver, S; Matute, I; La Franca, F; Lari, C; Zamorani, G; Franceschini, A; Rowan-Robinson, M

    2004-01-01

    We present the first determination of the 15micron luminosity functio galaxies from the European Large Area ISO survey (ELAIS) southern fields. We have adopted a new criterion to separate the quiescent, non-evolving and the starburst, evolving populations based on the ratio of mid-infrared to optical luminosities. Strong evolution is suggested by our data for the starburst galaxy population, while normal spiral galaxies are consistent with no evolution. The starburst population must evolve both in luminosity and in density with rates of the order L(z) (1+z)^(3.5) and rho(z) (1+z)^3.8 up to z~1. The evolutionary parameters of our model have been tested by comparing the model predictions with other observables, like source counts at all flux density levels (from 0.1 to 300 mJy) and redshift distributions and luminosity functions at high-z (0.7 < z < 1.0 from HDF-N data). The agreement between our model predictions and the observed data is remarkably good. We use our data to estimate the star-formation den...

  8. High-redshift quasar host galaxies with adaptive optics

    CERN Document Server

    Kuhlbrodt, B; Wisotzki, L; Jahnke, K

    2005-01-01

    We present K band adaptive optics observations of three high-redshift (z ~ 2.2) high-luminosity quasars, all of which were studied for the first time. We also bserved several point spread function (PSF) calibrators, non-simultaneously because of the small field of view. The significant temporal PSF variations on timescales of minutes inhibited a straightforward scaled PSF removal from the quasar images. Characterising the degree of PSF concentration by the radii encircling 20% and 80% of the total flux, respectively, we found that even under very different observing conditions the r20 vs. r80 relation varied coherently between individual short exposure images, delineating a well-defined relation for point sources. Placing the quasar images on this relation, we see indications that all three objects were resolved. We designed a procedure to estimate the significance of this result, and to estimate host galaxy parameters, by reproducing the statistical distribution of the individual short exposure images. We fi...

  9. Correcting the z~8 Galaxy Luminosity Function for Gravitational Lensing Magnification Bias

    CERN Document Server

    Mason, Charlotte A; Schmidt, Kasper B; Collett, Thomas E; Trenti, Michele; Marshall, Philip J; Barone-Nugent, Robert; Bradley, Larry D; Stiavelli, Massimo; Wyithe, Stuart

    2015-01-01

    We present a Bayesian framework to account for the magnification bias from both strong and weak gravitational lensing in estimates of high-redshift galaxy luminosity functions. We illustrate our method by estimating the $z\\sim8$ UV luminosity function using a sample of 97 Y-band dropouts (Lyman break galaxies) found in the Brightest of Reionizing Galaxies (BoRG) survey and from the literature. We find the luminosity function is well described by a Schechter function with characteristic magnitude of $M^\\star = -19.85^{+0.30}_{-0.35}$, faint-end slope of $\\alpha = -1.72^{+0.30}_{-0.29}$, and number density of $\\log_{10} \\Psi^\\star [\\textrm{Mpc}^{-3}] = -3.00^{+0.23}_{-0.31}$. These parameters are consistent within the uncertainties with those inferred from the same sample without accounting for the magnification bias, demonstrating that the effect is small for current surveys at $z\\sim8$, and cannot account for the apparent overdensity of bright galaxies found recently by Bowler et al. (2014a,b) and Finkelstein...

  10. A Halo Model of Local IRAS Galaxies Selected at 60 Micron Using Conditional Luminosity Functions

    CERN Document Server

    Wang, Lingyu; Oliver, Seb

    2010-01-01

    Using conditional luminosity functions (CLFs) which encode the luminosity distribution of galaxies as a function of halo mass, we construct a halo model of IRAS galaxies selected at 60 micron. An abundance matching technique is used to link galaxy luminosity to the host halo mass. The shape of the mass - light relation at 60 micron is different from those derived at r-, K- and B-band. This is because the 60 micron LF can not be fitted by a Schechter function with a sharp exponential cutoff. We then seek the parameters in the CLFs that best fit the LF and power spectrum. We find that the predicted galaxy bias as a function of L60 from the best-fit model agrees well with the clustering measurements. At the faint end of the LF where quiescent star-forming galaxies dominate, most IRAS galaxies are central galaxies in halos of M >~ 10^{10} h^{-1} M_sun but a non-negligible fraction are satellites typically hosted in more massive halos. The majority of IRAS galaxies with L60 >~ 10^{10} h^{-2} L_sun are M82 type sta...

  11. Effect of long-term intensity variations on pulsar searches and the pulsar luminosity function

    Science.gov (United States)

    Krishnamohan, S.

    1981-01-01

    Long-term intensity data for five pulsars are used to obtain the probability density distribution of intensities for each pulsar, and it is found that they are described satisfactorily by chi-squared distributions. Based on these distributions, the number of new pulsars expected to be found on repeatedly searching the same region of the sky with the same sensitivity is given. Nearly 25 percent more new pulsars are expected to be found on the first repeat search. It is also shown that the luminosity function deduced from either a single survey or surveys with very different sensitivities is not affected by the omission of flux density variations in the calculation of selection effects. Finally, a method is proposed for deriving the luminosity function by combining the different searches of a given area on the basis of a probabilistic approach to the evaluation of selection effects.

  12. Constraints on QSO models from a relation between the QSO luminosity function and the local black hole mass function

    CERN Document Server

    Yu, Q; Yu, Qingjuan; Lu, Youjun

    2004-01-01

    QSOs are believed to be powered by accretion onto massive black holes (BHs). In this paper, with assuming that each central BH in nearby galaxies has experienced the QSO phase and ignoring BH mergers, we establish a relation between the QSO luminosity function (LF) and the local BH mass function (MF). The QSOLF is jointly controlled by the luminosity evolution of individual QSOs and the triggering history of the accretion onto seed BHs. By comparing the time integral of the QSOLF with that inferred from local BHs, we separate the effect of the luminosity evolution of individual QSOs from the effect of the triggering history. With assuming that the nuclear luminosity evolution includes two phases (first increasing at the Eddington luminosity with growth of BHs and then declining), we find that observations are generally consistent with the expected relation between the QSOLF and the local BHMF, and obtain the constraints on QSO models and BH growth. We point out that the value of the QSO lifetime is hard to be...

  13. The Luminosity Function of high-redshift QSOs - A combined analysis of GOODS and SDSS

    CERN Document Server

    Fontanot, F; Monaco, P; Nonino, M; Vanzella, E; Brandt, W N; Grazian, A; Mao, J

    2006-01-01

    Aims: In this work the luminosity function of QSOs is measured in the redshift range 3.53.5. Conclusions: The estimated space density evolution of QSOs indicates a suppression of the formation and/or feeding of Supermassive Black Holes at these redshifts. The QSO contribution to the UV background is insufficient to ionize the IGM at 3.5

  14. Radial Density Statistics of the Galaxy Distribution and the Luminosity Function

    CERN Document Server

    Iribarrem, Alvaro S; Stoeger, William R

    2012-01-01

    This paper discusses a connection between the relativistic number counts of cosmological sources and the observed galaxy luminosity function (LF). Observational differential number densities are defined and obtained from published LF data using such connection. We observe a distortion in the observational quantities that increases with higher redshift values as compared to the theoretical predictions. The use of different cosmological distance measures plays a role in such a distortion

  15. The local space density of Sb-Sdm galaxies as function of their scalesize, surface brightness and luminosity

    CERN Document Server

    De Jong, R S; Jong, Roelof S. de; Lacey, Cedric

    2000-01-01

    We investigate the dependence of the local space density of spiral galaxies on luminosity, scalesize and surface brightness. We derive bivariate space density distributions in these quantities from a sample of about 1000 Sb-Sdm spiral galaxies, corrected for selection effects in luminosity and surface brightness. The structural parameters of the galaxies were corrected for internal extinction using a description depending on galaxy surface brightness. We find that the bivariate space density distribution of spiral galaxies in the (luminosity, scalesize)-plane is well described by a Schechter luminosity function in the luminosity dimension and a log-normal scale size distribution at a given luminosity. This parameterization of the scalesize distribution was motivated by a simple model for the formation of disks within dark matter halos, with halos acquiring their angular momenta through tidal torques from neighboring objects, and the disk specific angular momentum being proportional to that of the parent halo....

  16. Quasar variability in the Palomar Transient Factory Survey

    Science.gov (United States)

    Caplar, Neven; Lilly, Simon J.; Trakhtenbrot, Benny; PTF Collaboration

    2016-08-01

    We quantify the quasar variability in the Palomar Transient Factory survey. This is the data survey of unprecedented size with over 2 million observations of 30000 quasars brighter than r=19 over 6 years. Using custom recalibration we greatly improve on the photometric quality of the survey reducing the unaccounted errors to less than 1% at r=19. We split our sample in the redshift, mass and luminosity bins and using the ensemble structure function analysis we find anti-correlation of variability with luminosity, no correlation with redshift and only very weak correlation with mass. We also notice the dependence of the slope of the structure function with mass and luminosity indicating that random walk is not equally good description of QSO variability at all masses and luminosities. We extend the analysis using the power spectral density (PSD) analysis with CARMA models. We observe breaks in the PSD but after extensive simulation effort we conclude that these are artifact arising from the insufficient length of the light curves and non-uniform cadence. We observe the dependence of PSD slope with mass/luminosity further corroborating our finding in the structure function analysis that type of the process that drives variability is dependent on the physical parameters.

  17. Limits on the luminosity function of Ly-alpha emitters at z = 7.7

    CERN Document Server

    Hibon, P; Willis, J; Clément, B; Lidman, C; Arnouts, S; Kneib, J -P; Willott, C J; Marmo, C; McCracken, H

    2009-01-01

    The Ly-alpha luminosity function (LF) of high-redshift Ly-alpha emitters (LAEs) is one of the few observables of the re-ionization epoch accessible to date with 8-10 m class telescopes. The evolution with redshift allows one to constrain the evolution of LAEs and their role in re-ionizing the Universe at the end of the Dark Ages. We have performed a narrow-band imaging program at 1.06 microns at the CFHT, targeting Ly-alpha emitters at redshift z ~ 7.7 in the CFHT-LS D1 field. From these observations we have derived a photometric sample of 7 LAE candidates at z ~ 7.7. We derive luminosity functions for the full sample of seven objects and for sub-samples of four objects. If the brightest objects in our sample are real, we infer a luminosity function which would be difficult to reconcile with previous work at lower redshift. More definitive conclusions will require spectroscopic confirmation.

  18. Optical Luminosity Functions of the Abell Galaxy Cluster ABCG 209 at z=0.21

    CERN Document Server

    Mercurio, A; Merluzzi, P; Girardi, M; La Barbera, F; Busarello, G

    2003-01-01

    We derive the luminosity functions in three bands (BVR) for the rich galaxy cluster ABCG 209 at z=0.21. The data cover an area of ~78 arcmin^2 in the B and R band, while a mosaic of three pointings was obtained in the V band, covering an area of approximately 160 arcmin^2. The galaxy sample is complete to B = 22.8 (N_gal = 339), V = 22.5 (N_gal = 1078) and R = 22.0 (N_gal = 679). The luminosity functions present dips in the range V = 20.5-21.5 and R = 20.0-21.0 and therefore are better described by a sum of two Schechter functions for bright and for faint galaxies respectively. We find a marked luminosity segregation in the sense that the number ratio of bright-to-faint galaxies decreases by a factor ~4 from the center to outer regions. Our analysis supports the idea that ABCG 209 is an evolved cluster, resulting from the merger of two or more sub-clusters.

  19. A Deep Optical Luminosity Function of NGC 6712 with the VLT Evidence for Severe Tidal Disruption

    CERN Document Server

    De Marchi, G; Paresce, F; Pulonen, L E; Marchi, Guido De; Leibundgut, Bruno; Paresce, Francesco; Pulone, Luigi

    1999-01-01

    The VLT on Cerro Paranal was used to observe four fields located at 2.3' from the center of the Galactic globular cluster NGC 6712 in the V and R bands. The resulting color-magnitude diagram shows a well defined main sequence reaching down to the 5 sigma detection limit at V~25, R~23.5 or approximately 4 mag below the main sequence turn-off, the deepest obtained so far on this cluster. This yields a main sequence luminosity function that peaks at M_R~4.5 and drops down to the 50% completeness limit at M_R~8.5. Transformation to a mass function via the latest mass-luminosity relation appropriate to this object indicates that the peak of the luminosity function corresponds to ~0.75 Msolar, a value significantly higher than the ~0.25 Msolar measured for most other clusters observed so far. Since this object, in its Galactic orbit, penetrates very deeply into the Galactic bulge with perigalactic distance of ~0.3 kpc, this result is the first strong evidence that tidal forces have stripped this cluster of a substa...

  20. Disclosing the Radio Loudness Distribution Dichotomy in Quasars: An Unbiased Monte Carlo Approach Applied to the SDSS-FIRST Quasar Sample

    CERN Document Server

    Balokovic, Mislav; Ivezic, Zeljko; Zamorani, Gianni; Schinnerer, Eva; Kelly, Brandon C

    2012-01-01

    We investigate the dichotomy in the radio loudness distribution of quasars by modelling their radio emission and various selection effects using a Monte Carlo approach. The existence of two physically distinct quasar populations, the radio-loud and radio-quiet quasars, is controversial and over the last decade a bimodal distribution of radio loudness of quasars has been both affirmed and disputed. We model the quasar radio luminosity distribution with simple unimodal and bimodal distribution functions. The resulting simulated samples are compared to a fiducial sample of 8,300 quasars drawn from the SDSS DR7 Quasar Catalog and combined with radio observations from the FIRST survey. Our results indicate that the SDSS-FIRST sample is best described by a radio loudness distribution which consists of two components, with 12+/-1 % of sources in the radio-loud component. On the other hand, the evidence for a local minimum in the loudness distribution (bimodality) is not strong and we find that previous claims for it...

  1. A near infrared test for two recent luminosity functions for galaxies

    CERN Document Server

    Zaninetti, L

    2014-01-01

    Two recent luminosity function (LF) for galaxies are reviewed and the parameters which characterize the near infrared are fixed. A first LF is a modified Schechter LF with four parameters. The second LF is derived from the generalized gamma and has four parameters. The formulas which give the number of galaxies as function of the redshift are reviewed and a special attention is given to the position of the photometric maximum which is expressed as function of a critical parameter or the flux of radiation or the apparent magnitude. A simulation of the 2MASS Redshift Survey is given in the framework of the non Poissonian Voronoi Tessellation.

  2. The Hard X-ray 20-40 keV AGN Luminosity Function

    CERN Document Server

    Beckmann, V; Shrader, C R; Gehrels, N; Produit, N

    2006-01-01

    We have compiled a complete extragalactic sample based on 25,000 deg^2 to a limiting flux of 3E-11 ergs/cm**2/sec (7,000 deg^2 to a flux limit of 1E-11 ergs/cm**2/sec) in the 20 - 40 keV band with INTEGRAL. We have constructed a detailed exposure map to compensate for effects of non-uniform exposure. The flux-number relation is best described by a power-law with a slope of alpha = 1.66+-0.11. The integration of the cumulative flux per unit area leads to f = 2.6E-10 ergs/cm**2/sec/sr, which is about 1% of the known 20 - 40 keV X-ray background. We present the first luminosity function of AGNs in the 20-40 keV energy range, based on 38 extragalactic objects detected by the imager IBIS/ISGRI on-board INTEGRAL. The luminosity function shows a smoothly connected two power-law form, with an index of gamma_1 = 0.8 below, and gamma_2 = 2.1 above the turn-over luminosity of L* = 2.4E43 ergs/sec. The emissivity of all INTEGRAL AGNs per unit volume is W(> 1E41 ergs/sec) = 2.8E38 ergs/sec/Mpc**3. These results are consis...

  3. THE NEAR-ULTRAVIOLET LUMINOSITY FUNCTION OF YOUNG, EARLY M-TYPE DWARF STARS

    Energy Technology Data Exchange (ETDEWEB)

    Ansdell, Megan; Baranec, Christoph [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Gaidos, Eric [Department of Geology and Geophysics, University of Hawaii, Honolulu, HI 96822 (United States); Mann, Andrew W. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Lépine, Sebastien [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30302 (United States); James, David [Cerro Tololo Inter-American Observatory, Casilla 603 La Serena (Chile); Buccino, Andrea; Mauas, Pablo; Petrucci, Romina [Instituto de Astronomía y Física del Espacio, C1428EHA Buenos Aires (Argentina); Law, Nicholas M. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Riddle, Reed [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-01-01

    Planets orbiting within the close-in habitable zones of M dwarf stars will be exposed to elevated high-energy radiation driven by strong magnetohydrodynamic dynamos during stellar youth. Near-ultraviolet (NUV) irradiation can erode and alter the chemistry of planetary atmospheres, and a quantitative description of the evolution of NUV emission from M dwarfs is needed when modeling these effects. We investigated the NUV luminosity evolution of early M-type dwarfs by cross-correlating the Lépine and Gaidos catalog of bright M dwarfs with the Galaxy Evolution Explorer (GALEX) catalog of NUV (1771-2831 Å) sources. Of the 4805 sources with GALEX counterparts, 797 have NUV emission significantly (>2.5σ) in excess of an empirical basal level. We inspected these candidate active stars using visible-wavelength spectra, high-resolution adaptive optics imaging, time-series photometry, and literature searches to identify cases where the elevated NUV emission is due to unresolved background sources or stellar companions; we estimated the overall occurrence of these ''false positives'' (FPs) as ∼16%. We constructed an NUV luminosity function that accounted for FPs, detection biases of the source catalogs, and GALEX upper limits. We found the NUV luminosity function to be inconsistent with predictions from a constant star-formation rate and simplified age-activity relation defined by a two-parameter power law.

  4. The local stellar luminosity function and mass-to-light ratio in the NIR

    CERN Document Server

    Just, A; Jahreiss, H; Flynn, C; Dettbarn, C; Rybizki, J

    2015-01-01

    A new sample of stars, representative of the solar neighbourhood luminosity function, is constructed from the Hipparcos catalogue and the Fifth Catalogue of Nearby Stars. We have cross-matched to sources in the 2MASS catalogue so that for all stars individually determined Near Infrared photometry (NIR) is available on a homogeneous system (typically K_s). The spatial completeness of the sample has been carefully determined by statistical methods, and the NIR luminosity function of the stars has been derived by direct star counts. We find a local volume luminosity of 0.121 +/- 0.004 L_K_sun/(pc**3), corresponding to a volumetric mass-to-light ratio of M/L_K = 0.31 +/- 0.02 M_sun/L_K_sun, where giants contribute 80 per cent to the light but less than 2 per cent to the stellar mass. We derive the surface brightness of the solar cylinder with the help of a vertical disc model. We find a surface brightness of 99 L_K_sun/(pc**2) with an uncertainty of approximately 10 %. This corresponds to a mass-to-light ratio fo...

  5. A finer view of the conditional galaxy luminosity function and magnitude-gap statistics

    Science.gov (United States)

    Trevisan, M.; Mamon, G. A.

    2017-10-01

    The gap between first- and second-ranked galaxy magnitudes in groups is often considered a tracer of their merger histories, which in turn may affect galaxy properties, and also serves to test galaxy luminosity functions (LFs). We remeasure the conditional luminosity function (CLF) of the Main Galaxy Sample of the SDSS in an appropriately cleaned subsample of groups from the Yang catalogue. We find that, at low group masses, our best-fitting CLF has steeper satellite high ends, yet higher ratios of characteristic satellite to central luminosities in comparison with the CLF of Yang et al. The observed fractions of groups with large and small magnitude gaps as well as the Tremaine & Richstone statistics are not compatible with either a single Schechter LF or with a Schechter-like satellite plus lognormal central LF. These gap statistics, which naturally depend on the size of the subsamples, and also on the maximum projected radius, Rmax, for defining the second brightest galaxy, can only be reproduced with two-component CLFs if we allow small gap groups to preferentially have two central galaxies, as expected when groups merge. Finally, we find that the trend of higher gap for higher group velocity dispersion, σv, at a given richness, discovered by Hearin et al., is strongly reduced when we consider σv in bins of richness, and virtually disappears when we use group mass instead of σv. This limits the applicability of gaps in refining cosmographic studies based on cluster counts.

  6. The [OIII] emission line luminosity function of optically selected type-2 AGN from zCOSMOS

    CERN Document Server

    Bongiorno, A; Zamorani, G; Lamareille, F; Lanzuisi, G; Miyaji, T; Bolzonella, M; Carollo, C M; Contini, T; Kneib, J P; Le Fèvre, O; Lilly, S J; Mainieri, V; Renzini, A; Scodeggio, M; Bardelli, S; Brusa, M; Caputi, K; Civano, F; Coppa, G; Cucciati, O; de la Torre, S; de Ravel, L; Franzetti, P; Garilli, B; Halliday, C; Hasinger, G; Koekemoer, A M; Iovino, A; Kampczyk, P; Knobel, C; Kovac, K; Le Borgne, J F; Le Brun, V; Maier, C; Merloni, A; Nair, P; Pello, R; Peng, Y; Montero, E Perez; Ricciardelli, E; Salvato, M; Silverman, J; Tanaka, M; Tasca, L; Tresse, L; Vergani, D; Zucca, E; Abbas, U; Bottini, D; Cappi, A; Cassata, P; Cimatti, A; Guzzo, L; Leauthaud, A; Maccagni, D; Marinoni, C; McCracken, H J; Memeo, P; Meneux, B; Oesch, P; Porciani, C; Pozzetti, L; Scaramella, R

    2009-01-01

    We present a catalog of 213 type-2 AGN selected from the zCOSMOS survey. The selected sample covers a wide redshift range (0.15luminosity range 10^{5.5} < Lsun< L[OIII] < 10^{9.1} Lsun. We explore the intrinsic properties of these AGN and the relation to their X-ray emission (derived from the XMM-COSMOS observations). We study their evolution by computing the [OIII]5007A line luminosity function (LF) and we constrain the fraction of obscured AGN as a function of luminosity and redshift. The sample was selected on the basis of the optical emission line ratios, after applying a cut to the signal-to-noise ratio (S/N) of the relevant lines. We used the standard diagnostic diagrams [OIII]/Hbeta versus [NII]/Halpha and ([OIII]/Hbeta versus [SII]/Halpha) to isolate AGN in the redshift range 0.15

  7. The Luminosity Function of Long Gamma-Ray Bursts and their rate at z>6

    CERN Document Server

    Salvaterra, R; Chincarini, G; Choudhury, T R; Covino, S; Ferrara, A; Gallerani, S; Guidorzi, C; Tagliaferri, G

    2008-01-01

    We compute the luminosity function (LF) and the formation rate of long gamma ray bursts (GRBs) in three different scenarios: i) GRBs follow the cosmic star formation and their LF is constant in time; ii) GRBs follow the cosmic star formation but the LF varies with redshift; iii) GRBs form preferentially in low-metallicity environments. We then test model predictions against the Swift 3-year data, showing that scenario i) is robustly ruled out. Moreover, we show that the number of bright GRBs detected by Swift suggests that GRBs should have experienced some sort of luminosity evolution with redshift, being more luminous in the past. Finally we propose to use the observations of the afterglow spectrum of GRBs at z>5.5 to constrain the reionization history and we applied our method to the case of GRB 050904.

  8. Galaxy luminosity functions, M/L ratios, and closure of the Universe - Numbers and problems

    Science.gov (United States)

    Felten, J. E.

    1985-01-01

    Data on the luminosity function (LF) of galaxies are reviewed and compared, and the result of Kirshner et al. (1983) giving a 'standard LF' is chosen as a best guess. Departures from the 'standard LF' for specific galaxy types and environments (clusters, groups, field) are discussed briefly. A luminosity density of about 1.4 x 10 to the -2nd h 'galaxies' per cubic megaparsec is obtained. The mean M/L ratio needed to give critical cosmological density (Omega sub 0 = 1) is then 920 h in solar units on the face-on magnitude system. Comparison with measured M/L ratios for galaxies and clusters, and with constraints imposed by inflation and nucleosynthesis, poses two problems of 'invisible mass'.

  9. Four quasars above redshift 6 discovered by the Canada-France High-z Quasar Survey

    CERN Document Server

    Willott, Chris J; Omont, Alain; Bergeron, Jacqueline; Delfosse, Xavier; Forveille, Thierry; Albert, Loic; Reyle, Celine; Hill, Gary J; Gully-Santiago, Michael; Vinten, Phillip; Crampton, David; Hutchings, John B; Schade, David; Simard, Luc; Sawicki, Marcin; Beelen, Alexandre; Cox, Pierre

    2007-01-01

    The Canada-France High-z Quasar Survey (CFHQS) is an optical survey designed to locate quasars during the epoch of reionization. In this paper we present the discovery of the first four CFHQS quasars at redshift greater than 6, including the most distant known quasar, CFHQS J2329-0301 at z=6.43. We describe the observational method used to identify the quasars and present optical, infrared, and millimeter photometry and optical and near-infrared spectroscopy. We investigate the dust properties of these quasars finding an unusual dust extinction curve for one quasar and a high far-infrared luminosity due to dust emission for another. The mean millimeter continuum flux for CFHQS quasars is substantially lower than that for SDSS quasars at the same redshift, likely due to a correlation with quasar UV luminosity. For two quasars with sufficiently high signal-to-noise optical spectra, we use the spectra to investigate the ionization state of hydrogen at z>5. For CFHQS J1509-1749 at z=6.12, we find significant evol...

  10. Host galaxies of luminous z$\\sim$0.6 quasars: Major mergers are not prevalent at the highest AGN luminosities

    CERN Document Server

    Villforth, C; Pawlik, M M; Hewlett, T; Rowlands, K; Herbst, H; Shankar, F; Fontana, A; Hamann, F; Koekemoer, A; Pforr, J; Trump, J; Wuyts, S

    2016-01-01

    Galaxy interactions are thought to be one of the main triggers of Active Galactic Nuclei (AGN), especially at high luminosities, where the accreted gas mass during the AGN lifetime is substantial. Evidence for a connection between mergers and AGN, however, remains mixed. Possible triggering mechanisms remain particularly poorly understood for luminous AGN, which are thought to require triggering by major mergers, rather than secular processes. We analyse the host galaxies of a sample of 20 optically and X-ray selected luminous AGN (log($L_{bol}$ [erg/s]) $>$ 45) at z $\\sim$ 0.6 using HST WFC3 data in the F160W/H band. 15/20 sources have resolved host galaxies. We create a control sample of mock AGN by matching the AGN host galaxies to a control sample of non-AGN galaxies. Visual signs of disturbances are found in about 25% of sources in both the AGN hosts and control galaxies. Using both visual classification and quantitative morphology measures, we show that the levels of disturbance are not enhanced when co...

  11. Lyα luminosity functions at redshift z ≈ 4.5

    Science.gov (United States)

    Zheng, Zhen-Ya; Finkelstein, Steven L.; Finkelstein, Keely; Tilvi, Vithal; Rhoads, James E.; Malhotra, Sangeeta; Wang, Jun-Xian; Miller, Neal; Hibon, Pascale; Xia, Lifang

    2013-06-01

    We present a spectroscopically confirmed sample of Lyman α emitting galaxies (LAEs) at z ˜ 4.5 in the Extended Chandra Deep Field-South (ECDFS), which we combine with a sample of z ˜ 4.5 LAEs from previous narrow-band surveys from the Large Area Lyman Alpha (LALA) survey to build a unified Lyα luminosity function. We spectroscopically observed 64 candidate LAEs in the ECDFS, confirming 46 objects as z ˜ 4.5 LAEs based on single-line detections with no continuum emission bluewards of the line, resulting in a Lyα confirmation rate of ˜70 per cent. We did not detect significant flux from neither the C IV λ1549 Å emission line nor the He II λ1640 Å emission line in individual LAE spectra. These lines were also undetected in a co-added spectrum, with the co-added line ratio of He II to Lyα constraining the Population III star formation rate (SFR) to be 3. Similar luminosity function differences have been used to infer evolution in the neutral gas fraction in the intergalactic medium at z > 6, yet here the difference is likely due to cosmic variance, given that the two samples are from adjoining line-of-sight volumes. Combining our new sample of LAEs with those from previous LALA narrow-band surveys at z = 4.5, we obtain one of the best measured Lyα luminosity functions to date, with our sample of over 200 spectroscopically confirmed Lyα galaxies yielding log10(L*) = 42.83 ± 0.06 (erg s-1) and log10(Φ*) = -3.48 ± 0.09 (Mpc-3). We compare our new luminosity function to others from the literature to study the evolution of the Lyα luminosity density at 0 < z < 7. We find tentative evidence for evolution in the product L*Φ*, which approximately tracks the cosmic SFR density, but since field-to-field and survey-to-survey variations are in some cases as large as the possible evolution, some caution is needed in interpreting this trend.

  12. The LBT Bootes Field Survey: I. The Rest-frame UV and Luminosity Functions and Clustering of Bright Lyman Break Galaxies at z~3

    CERN Document Server

    Bian, Fuyan; Jiang, Linhua; McGreer, Ian; Dey, Arjun; Green, Richard; Maiolino, Roberto; Walter, Fabian; Lee, Kyoung-Soo; Dave, Romeel

    2013-01-01

    We present a deep LBT/LBC U-band imaging survey (9 deg2) covering the NOAO Bootes field. A total of 14,485 Lyman Break Galaxies (LBGs) at z~3 are selected, which are used to measure the rest-frame UV luminosity function (LF). The large sample size and survey area reduce the LF uncertainties due to Poisson statistics and cosmic variance by >3 compared to previous studies. At the bright end, the LF shows excess power compared to the best-fit Schechter function, which can be attributed to the contribution of $z\\sim3$ quasars. We compute the rest-frame near-infrared LF and stellar mass function (SMF) of z~3 LBGs based on the R-band and IRAC [4.5 micro m]-band flux relation. We investigate the evolution of the UV LFs and SMFs between z~7 and z~3, which supports a rising star formation history in the LBGs. We study the spatial correlation function of two bright LBG samples and estimate their average host halo mass. We find a tight relation between the host halo mass and the galaxy star formation rate (SFR),which fo...

  13. The luminosity function at z ∼ 8 from 97 Y-band dropouts: Inferences about reionization

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Kasper B.; Treu, Tommaso; Kelly, Brandon C. [Department of Physics, University of California, Santa Barbara, CA 93106-9530 (United States); Trenti, Michele [Kavli Institute for Cosmology and Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Bradley, Larry D.; Stiavelli, Massimo [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Oesch, Pascal A. [UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Holwerda, Benne W. [Leiden Observatory, Leiden University, NL-2300 RA Leiden (Netherlands); Shull, J. Michael, E-mail: kschmidt@physics.ucsb.edu [CASA, Department of Astrophysical and Planetary Science, University of Colorado, Center for Astrophysics and Space Astronomy, 389-UCB, Boulder, CO 80309 (United States)

    2014-05-01

    We present the largest search to date for Y-band dropout galaxies (z ∼ 8 Lyman break galaxies, LBGs) based on 350 arcmin{sup 2} of Hubble Space Telescope observations in the V, Y, J, and H bands from the Brightest of Reionizing Galaxies (BoRG) survey. In addition to previously published data, the BoRG13 data set presented here includes approximately 50 arcmin{sup 2} of new data and deeper observations of two previous BoRG pointings, from which we present 9 new z ∼ 8 LBG candidates, bringing the total number of BoRG Y-band dropouts to 38 with 25.5 ≤ m{sub J} ≤ 27.6 (AB system). We introduce a new Bayesian formalism for estimating the galaxy luminosity function, which does not require binning (and thus smearing) of the data and includes a likelihood based on the formally correct binomial distribution as opposed to the often-used approximate Poisson distribution. We demonstrate the utility of the new method on a sample of 97 Y-band dropouts that combines the bright BoRG galaxies with the fainter sources published in Bouwens et al. from the Hubble Ultra Deep Field and Early Release Science programs. We show that the z ∼ 8 luminosity function is well described by a Schechter function over its full dynamic range with a characteristic magnitude M{sup ⋆}=−20.15{sub −0.38}{sup +0.29}, a faint-end slope of α=−1.87{sub −0.26}{sup +0.26}, and a number density of log{sub 10} ϕ{sup ⋆}[Mpc{sup −3}]=−3.24{sub −0.24}{sup +0.25}. Integrated down to M = –17.7, this luminosity function yields a luminosity density log{sub 10} ϵ[erg s{sup −1} Hz{sup −1} Mpc{sup −3}]=25.52{sub −0.05}{sup +0.05}. Our luminosity function analysis is consistent with previously published determinations within 1σ. The error analysis suggests that uncertainties on the faint-end slope are still too large to draw a firm conclusion about its evolution with redshift. We use our statistical framework to discuss the implication of our study for the physics of

  14. On the local radio luminosity function of galaxies; 1, the Virgo cluster

    CERN Document Server

    Gavazzi, G

    1999-01-01

    We cross-correlate the galaxies brighter than mB=18 in the Virgo cluster with the radio sources in the NVSS survey (1.4 GHz), resulting in 180 radio-optical identifications. We determine the radio luminosity function of the Virgo galaxies, separately for the early- and late-types. Late-type galaxies develop radio sources with a probability proportional to their optical luminosity. In fact their radio/optical (RB) distribution is gaussian, centered at log RB=-0.5, i.e. the radio luminosity is 0.3 of the optical one. The probability of late-type galaxies to develop radio sources is almost independent of their detailed Hubble type, except for Sa (and S0+S0a) which are a factor of 5 less frequent than later types at any RB. Giant elliptical galaxies feed "monster" radio sources with a probability strongly increasing with mass. However the frequency of fainter radio sources is progressively less sensitive on the system mass. The faintest giant E galaxies (MB=-17) have a probability of feeding low power radio sourc...

  15. Globular Cluster Systems in Brightest Cluster Galaxies: A Near-Universal Luminosity Function?

    CERN Document Server

    Harris, William E; Gnedin, Oleg Y; O'Halloran, Heather; Blakeslee, John P; Whitmore, Bradley C; Cote, Patrick; Geisler, Douglas; Peng, Eric W; Bailin, Jeremy; Rothberg, Barry; Cockcroft, Robert; DeGraaff, Regina Barber

    2014-01-01

    We present the first results from our HST Brightest Cluster Galaxy (BCG) survey of seven central supergiant cluster galaxies and their globular cluster (GC) systems. We measure a total of 48000 GCs in all seven galaxies, representing the largest single GC database. We find that a log-normal shape accurately matches the observed luminosity function (LF) of the GCs down to the GCLF turnover point, which is near our photometric limit. In addition, the LF has a virtually identical shape in all seven galaxies. Our data underscore the similarity in the formation mechanism of massive star clusters in diverse galactic environments. At the highest luminosities (log L > 10^7 L_Sun) we find small numbers of "superluminous" objects in five of the galaxies; their luminosity and color ranges are at least partly consistent with those of UCDs (Ultra-Compact Dwarfs). Lastly, we find preliminary evidence that in the outer halo (R > 20 kpc), the LF turnover point shows a weak dependence on projected distance, scaling as L_0 ~ R...

  16. X-ray Luminosity Functions of Subgalactic Regions in the Whirlpool Galaxy (M51)

    Science.gov (United States)

    Markwardt, Larissa; Lehmer, Bret; Eufrasio, Rafael; Basu-Zych, Antara; Fragos, Tassos; Hornschemeier, Ann E.; Kalogera, Vassiliki; Ptak, Andrew; Tzanavaris, Panayiotis; Zezas, Andreas

    2017-01-01

    We present X-ray luminosity functions (XLFs) of X-ray binary (XRB) populations in subgalactic regions in M51, which were selected to have varying levels of low-mass XRBs (LMXBs) and high-mass XRBs (HMXBs). Previous studies have found that the total X-ray luminosity of a galaxy is correlated with its star formation rate (SFR) and stellar mass (M*) according to the equation Lx = αM* + βSFR, where α and β are scaling constants. This result is based on integrated galaxy-wide X-ray luminosities, SFRs, and stellar masses. Here, our goal is to determine this relationship using XLFs within multiple subregions, selected by specific star-formation rate (SFR/M*), of one galaxy (M51). This selection allows us to decompose contributions from LMXB and HMXB populations separately. From this decomposition, we find similar scaling relations to Lehmer et al. (2010), and also find XLF shapes and normalizations that are consistent with past studies of elliptical galaxies (LMXB XLF) and star-forming active galaxies (HMXB XLF). This suggests that our technique is effective and that the star formation history of M51 does not deviate significantly from the average galaxy in the local Universe.

  17. Chandra Observations of 12 Luminous Red Quasars

    Energy Technology Data Exchange (ETDEWEB)

    Urrutia, T; Lacy, M; Gregg, M D; Becker, R H

    2005-03-11

    The authors present results of a study of 12 dust-reddened quasars with 0.4 < z < 2.65 and reddenings in the range 0.15 < E(B-V) < 1.7. They obtained ACIS-S X-ray spectra of these quasars, estimated the column densities towards them, and hence obtained the gas:dust ratios in the material obscuring the quasar. They detect all but one of the red quasars in the X-rays. Even though there is no obvious correlation between the X-ray determined column densities of the sources and their optical color or reddening, all of the sources show absorbed X-ray spectra. When they correct the luminosity for absorption, they can be placed among luminous quasars; therefore their objects belong to the group of high luminosity analogues of the sources contributing to the X-ray background seen in deep X-ray observations. Such sources are also found in serendipitous shallow X-ray surveys. There is a hint that the mean spectral slope of the red quasar is higher than that of normal, unobscured quasars, which could be an indication for higher accretion rates and/or an evolutionary effect. They investigate the number density of these sources compared to type 2 AGN based on the X-ray background and estimate how many moderate luminosity red quasars may be found in deep X-ray fields.

  18. The most powerful quasar outflows as revealed by the Civ {\\lambda}1549 resonance line

    CERN Document Server

    Marziani, P; Sulentic, J W; del Olmo, A; Stirpe, G M; Dultzin, D

    2015-01-01

    While quasar outflows may be quasi-ubiquitous, there are significant differences on a source-by- source basis. These differences can be organized along the 4D Eigenvector 1 sequence: at least at low z, with only Population A sources radiating at relatively high Eddington ratio and showing prominent high-velocity outflows in Civ {\\lambda}1549 line profiles. We discuss in this paper VLT-FORS observations of Civ {\\lambda}1549 emission line profiles for a high-luminosity sample of Hamburg- ESO quasars and how they are affected by outflow motion as a function of quasar luminosity. Our high- luminosity sample has the notable advantage that the rest frame has been accurately determined from previous VLT-ISAAC observations of H{\\beta} in the J, H, and K bands. This makes measures of inter-line velocity shifts accurate and free of systemic biases. As the redshift increases and the luminosity of the brightest quasars increases, powerful, high-velocity outflows become more frequent. We discuss the outflow contextualisat...

  19. Hard X-ray Luminosity Function of Tidal Disruption Events: First Results from MAXI Extragalactic Survey

    CERN Document Server

    Kawamuro, Taiki; Shidatsu, Megumi; Hori, Takafumi; Kawai, Nobuyuki; Negoro, Hitoshi; Mihara, Tatehiro

    2016-01-01

    We derive the first hard X-ray luminosity function (XLF) of stellar tidal disruption events (TDEs) by supermassive black holes (SMBHs), which gives an occurrence rate of TDEs per unit volume as a function of peak luminosity and redshift, utilizing an unbiased sample observed by the Monitor of All-sky X-ray Image (MAXI). On the basis of the light curves characterized by a power-law decay with an index of $-5/3$, a systematic search using the MAXI data in the first 37 months detected four TDEs, all of which have been found in the literature. To formulate the TDE XLF, we consider the mass function of SMBHs, that of disrupted stars, the specific TDE rate as a function of SMBH mass, and the fraction of TDEs with relativistic jets. We perform an unbinned maximum likelihood fit to the MAXI TDE list and check the consistency with the observed TDE rate in the ROSAT all sky survey. The results suggest that the intrinsic fraction of the jet-accompanying events is $0.0007$--$34\\%$. We confirm that at $z \\lesssim 1.5$ the...

  20. Clustering, Cosmology and a New Era of Black Hole Demographics -- I. The Conditional Luminosity Function of Active Galactic Nuclei

    CERN Document Server

    Ballantyne, D R

    2016-01-01

    Deep X-ray surveys have provided a comprehensive and largely unbiased view of active galactic nuclei (AGN) evolution stretching back to $z \\sim 5$. However, it has been challenging to use the survey results to connect this evolution to the cosmological environment that AGNs inhabit. Exploring this connection will be crucial to understanding the triggering mechanisms of AGNs and how these processes manifest in observations at all wavelengths. In anticipation of upcoming wide-field X-ray surveys that will allow quantitative analysis of AGN environments, this paper presents a method to observationally constrain the Conditional Luminosity Function (CLF) of AGNs at a specific $z$. Once measured, the CLF allows the calculation of the AGN bias, mean dark matter halo mass, AGN lifetime, halo occupation number, and AGN correlation function -- all as a function of luminosity. The CLF can be constrained using a measurement of the X-ray luminosity function and the correlation length at different luminosities. The method ...

  1. Luminosity function of galaxies in groups in the SDSS DR7: the dependence on mass, environment and galaxy type

    CERN Document Server

    Zandivarez, Ariel

    2010-01-01

    We perform an analysis of the luminosities of galaxies in groups in the SDSS DR7. We analyse the luminosity function (LF) as a function of group mass for different photometric bands, galaxy populations, galaxy positions within the groups, and the group surrounding large scale density. We find that M* brightens and alpha becomes steeper as a function of mass in all SDSS photometric bands, in agreement with previous results. From the analysis of different galaxy populations, we observe that different methods to split galaxy populations, based on the concentration index or the colour-magnitude diagram, produce quite different behaviours in the luminosity trends, mainly for alpha. These discrepancies and the trends with mass mentioned above are explained when analysing the LF of galaxies classified simultaneously according to their concentrations and colours. We find that only the red spheroids have a LF that strongly depends on group mass. Late type galaxies, whether blue or red, have luminosity functions that d...

  2. A NEW MODEL FOR DARK MATTER HALOS HOSTING QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Cen, Renyue [Princeton University Observatory, Princeton, NJ 08544 (United States); Safarzadeh, Mohammadtaher, E-mail: cen@astro.princeton.edu [Johns Hopkins University, Department of Physics and Astronomy, Baltimore, MD 21218 (United States)

    2015-01-10

    A new model for quasar-hosting dark matter halos, meeting two physical conditions, is put forth. First, significant interactions are taken into consideration to trigger quasar activities. Second, satellites in very massive halos at low redshift are removed from consideration due to their deficiency in cold gas. We analyze the Millennium Simulation to find halos that meet these two conditions and simultaneously match two-point auto-correlation functions of quasars and cross-correlation functions between quasars and galaxies at z = 0.5-3.2. The masses of the quasar hosts found decrease with decreasing redshift, with the mass thresholds being [(2-5) × 10{sup 12}, (2-5) × 10{sup 11}, (1-3) × 10{sup 11}] M {sub ☉} for median luminosities of ∼[10{sup 46}, 10{sup 46}, 10{sup 45}] erg s{sup –1} at z = (3.2, 1.4, 0.53), respectively, an order of magnitude lower than those inferred based on halo occupation distribution modeling. In this model, quasar hosts are primarily massive central halos at z ≥ 2-3 but increasingly dominated by lower mass satellite halos experiencing major interactions toward lower redshift. However, below z = 1, satellite halos in groups more massive than ∼2 × 10{sup 13} M {sub ☉} do not host quasars. Whether for central or satellite halos, imposing the condition of significant interactions substantially boosts the clustering strength compared to the total population with the same mass cut. The inferred lifetimes of quasars at z = 0.5-3.2 of 3-30 Myr are in agreement with observations. Quasars at z ∼ 2 would be hosted by halos of mass ∼5 × 10{sup 11} M {sub ☉} in this model, compared to ∼3 × 10{sup 12} M {sub ☉} previously thought, which would help reconcile with the observed, otherwise puzzling high covering fractions for Lyman limit systems around quasars.

  3. The K20 survey. V The evolution of the near-IR Luminosity Function

    CERN Document Server

    Pozzetti, L; Zamorani, G; Daddi, E; Menci, N; Fontana, A; Renzini, A; Mignoli, M; Poli, F; Saracco, P; Broadhurst, T J; Cristiani, S; D'Odorico, S; Giallongo, E; Gilmozzi, R

    2003-01-01

    We present the galaxy rest-frame near-IR Luminosity Function (LF) and its cosmic evolution to z=1.5 based on a spectroscopic survey of a magnitude limited sample of galaxies with Ks=1, whereas PLE models are more consistent with the data up to z=1.5. The GIF model (Kaufmann et al. 1999) shows a clear deficiency of red luminous galaxies at z=1 compared to our observations and predicts a decrease of luminous galaxies with redshift not observed in our sample.

  4. First results from HerMES on the evolution of the submillimetre luminosity function

    CERN Document Server

    Eales, S; Roseboom, I G; Altieri, B; Amblard, A; Arumugam, V; Auld, R; Aussel, H; Babbedge, T; Blain, A; Bock, J; Boselli, A; Brisbin, D; Buat, V; Burgarella, D; Castro-Rodriguez, N; Cava, A; Chanial, P; Clements, D L; Conley, A; Conversi, L; Cooray, A; Dowell, C D; Dwek, E; Dye, S; Elbaz, D; Farrah, D; Fox, M; Franceschini, A; Gear, W; Glenn, J; Gonzalez~Solares, E A; Griffin, M; Harwit, M; Hatziminaoglou, E; Huang, J; Ibar, E; Isaak, K; Ivison, R J; Lagache, G; Levenson, L; Lonsdale, C J; Lu, N; Madden, S; Maffei, B; Mainetti, G; Marchetti, L; Morrison, G E; Mortier, A M J; Nguyen, H T; O'Halloran, B; Oliver, S J; Omont, A; Owen, F N; Page, M J; Pannella, M; Panuzzo, P; Papageorgiou, A; Pearson, C P; Perez-Fournon, I; Pohlen, M; Rawlings, J I; Rigopoulou, D; Rizzo, D; Rowan-Robinson, M; Portal, M Sanchez; Schulz, B; Scott, Douglas; Seymour, N; Shupe, D L; Smith, A J; Stevens, J A; Strazzullo, V; Symeonidis, M; Trichas, M; Tugwell, K E; Vaccari, M; Valtchanov, I; Vigroux, L; Wang, L; Ward, R; Wright, G; Xu, K; Zemcov, M

    2010-01-01

    We have carried out two extremely deep surveys with SPIRE, one of the two cameras on Herschel, at 250 microns, close to the peak of the far-infrared background. We have used the results to investigate the evolution of the rest-frame 250-micron luminosity function out to z=2. We find evidence for strong evolution out to a redshift of around 1 but evidence for at most weak evolution beyond this redshift. Our results suggest that a significant part of the stars and metals in the Universe today were formed at z<1.4 in spiral galaxies.

  5. The UV Luminosity Function at 6 < z < 10 from the Hubble Frontier Fields

    Science.gov (United States)

    Livermore, Rachael C.; Finkelstein, Steven L.; Lotz, Jennifer M.

    2017-01-01

    The Hubble Frontier Fields program has obtained deep optical and near-infrared Hubble Space Telescope imaging of six galaxy clusters and associated parallel fields. The depth of the imaging (m_AB ~ 29) means we can identify faint galaxies at z > 6, and those in the cluster fields also benefit from magnification due to strong gravitational lensing that allows us to reach intrinsic absolute magnitudes of M_UV ~ -12.5 at z ~ 6. Here, we present the UV luminosity functions at 6 Universe may have provided sufficient ionizing radiation to sustain reionization.

  6. Constraints on dark matter scenarios from measurements of the galaxy luminosity function at high redshifts

    CERN Document Server

    Corasaniti, P S; Marsh, D J E; Das, S

    2016-01-01

    We use state-of-art measurements of the galaxy luminosity function (LF) at z=6, 7 and 8 to derive constraints on warm dark matter (WDM), late-forming dark matter (LFDM) and ultra-light axion dark matter (ULADM) models alternative to the cold dark matter (CDM) paradigm. To this purpose we have run a suite of high-resolution N-body simulations to accurately characterise the low mass-end of the halo mass function and derive DM model predictions of the high-z luminosity function. In order to convert halo masses into UV-magnitudes we introduce an empirical approach based on halo abundance matching which allows us to model the LF in terms of the amplitude and scatter of the ensemble average star formation rate halo mass relation of each DM model, $\\langle {\\rm SFR}({\\rm M_{ h}},z)\\rangle$. We find that independent of the DM scenario the average SFR at fixed halo mass increases from z=6 to 8, while the scatter remains constant. At halo mass ${\\rm M_{h}}\\gtrsim 10^{12}\\,{\\rm M}_\\odot$ h$^{-1}$ the average SFR as func...

  7. The stellar population and luminosity function in M31 bulge and Inner Disk Fields

    Science.gov (United States)

    Rich, R. Michael; Mould, J. R.; Graham, James R.

    1993-01-01

    We report infrared photometry and stellar identifications for stars in five fields in the M31 bulge located from 2 to 11 arcmin from the nucleus. These fields have been chosen such that the bulge/disk star ratio predicted from Kent's (1989) small bulge model varies from 7:1 to 1:5, allowing a study of near pure disk and near pure bulge stellar populations. We reject the hypothesis of Davies et al. (1991) that luminous stars found within 500 pc of the nucleus are due to a contaminating disk population. We find that the bulge contains stars in excess of M(sub bol) = -5 mag and that the bulge luminosity function has a distinct shape different from the disk fields. We find many stars redder than (J-K) = 2 mag, and suggest that these stars may be the counterparts of the IRAS-selected Galactic bulge Miras studied by Whitelock et at. (1991). The number of bright stars (M(sub bol) is less than -5 mag) falls off more rapidly than the r band surface brightness. By building model fields out of a bulge luminosity function and artificial stars, we are able to show that the change in the luminosity function toward the center cannot be explained simply by the mismeasurement of overcrowded star images. However, these tests also raise the possibility that the asymptotic giant branch (AGB) tip may be approximately equal to 1 mag fainter than actually measured in our most crowded field, reaching only M(sub bol) = -5. We compare observed counts of AGB stars with those predicted from theoretical lifetimes using a technique of general interest for this problem, the Fuel Consumption Theorem of Renzini & Buzzoni (1986) Spectral Evolution of Galaxies (Reidel, Dordrecht). Our methodology is generally applicable to the study of other resolved extragalactic stellar populations. The number of observed stars per magnitude up to a luminosity of M(bol) = -5.5 mag is consistent with AGB evolution of the whole population of the innermost bulge field with the standard lifetime on the AGB of 1.3 Myr

  8. The space density and X-ray luminosity function of non-magnetic cataclysmic variables

    Science.gov (United States)

    Pretorius, Magaretha L.; Knigge, Christian

    2012-01-01

    We combine two complete, X-ray flux-limited surveys, the ROSAT Bright Survey (RBS) and the ROSAT North Ecliptic Pole (NEP) survey, to measure the space density (ρ) and X-ray luminosity function (Φ) of non-magnetic cataclysmic variables (CVs). The combined survey has a flux limit of FX≳ 1.1 × 10-12 erg cm-2 s-1 over most of its solid angle of just over ?, but is as deep as ≃10-14 erg cm-2 s-1 over a small area. The CV sample that we construct from these two surveys contains 20 non-magnetic systems. We carefully include all sources of statistical error in calculating ρ and Φ by using Monte Carlo simulations; the most important uncertainty proves to be the often large errors in distances estimates. If we assume that the 20 CVs in the combined RBS and NEP survey sample are representative of the intrinsic population, the space density of non-magnetic CVs is ?. We discuss the difficulty in measuring Φ in some detail - in order to account for biases in the measurement, we have to adopt a functional form for Φ. Assuming that the X-ray luminosity function of non-magnetic CVs is a truncated power law, we constrain the power-law index to -0.80 ± 0.05. It seems likely that the two surveys have failed to detect a large, faint population of short-period CVs, and that the true space density may well be a factor of 2 or 3 larger than what we have measured; this is possible, even if we only allow for undetected CVs to have X-ray luminosities in the narrow range 28.7 log(LX/erg s-1) < 29.7. However, ρ as high as 2 × 10-4 pc-3 would require that the majority of CVs has X-ray luminosities below LX= 4 × 1028 erg s-1 in the 0.5-2.0 keV band.

  9. Observational constraints on the structure and evolution of quasars

    Science.gov (United States)

    Kelly, Brandon C.

    2008-01-01

    I use X-ray and optical data to investigate the structure of quasars, and its dependence on luminosity, redshift, black hole mass, and Eddington ratio. In order to facilitate my work, I develop new statistical methods of accounting for measurement error, non-detections, and survey selection functions. The main results of this thesis follow. (1) The statistical uncertainty in the broad line mass estimates can lead to significant artificial broadening of the observed distribution of black hole mass. (2) The z = 0.2 broad line quasar black hole mass function falls off approximately as a power law with slope ~ 2 for M BH [Special characters omitted.] 10 8 [Special characters omitted.] . (3) Radio-quiet quasars become more X-ray quiet as their optical/UV luminosity, black hole mass, or Eddington ratio increase, and more X-ray loud at higher redshift. These correlations imply that quasars emit a larger fraction of their bolometric luminosity through the accretion disk component, as compared to the corona component, as black hole mass and Eddington ratio increase. (4) The X- ray spectral slopes of radio-quiet quasars display a non-monotonic trend with Eddington ratio, where the X-ray continuum softens with increasing Eddington ratio until L/L Edd ~ 0.3, and then begins to harden. This observed non- monotonic trend may be caused by a change in the structure of the disk/corona system at L/L Edd ~ 0.3, possibly due to increased radiation pressure. (5) The characteristic time scales of quasar optical flux variations increase with increasing M BH , and are consistent with disk orbital or thermal time scales. In addition the amplitude of short time scale variability decreases with increasing M BH . I interpret quasar optical light curves as being driven by thermal fluctuations, which in turn are driven by some other underlying stochastic process with characteristic time scale long compared to the disk thermal time scale. The stochastic model I use is able to explain both short

  10. Sub-mm emission line deep fields: CO and [C II] luminosity functions out to z = 6

    Science.gov (United States)

    Popping, Gergö; van Kampen, Eelco; Decarli, Roberto; Spaans, Marco; Somerville, Rachel S.; Trager, Scott C.

    2016-09-01

    Now that Atacama Large (Sub)Millimeter Array is reaching its full capabilities, observations of sub-mm emission line deep fields become feasible. We couple a semi-analytic model of galaxy formation with a radiative transfer code to make predictions for the luminosity function of CO J =1-0 out to CO J = 6-5 and [C II] at redshifts z= 0-6. We find that (1) our model correctly reproduces the CO and [C II] emission of low- and high-redshift galaxies and reproduces the available constraints on the CO luminosity function at z ≤ 2.75; (2) we find that the CO and [C II] luminosity functions of galaxies increase from z = 6 to z = 4, remain relatively constant till z = 1 and rapidly decrease towards z = 0. The galaxies that are brightest in CO and [C II] are found at z ˜ 2; (3) the CO J = 3-2 emission line is most favourable to study the CO luminosity and global H2 mass content of galaxies, because of its brightness and observability with currently available sub-mm and radio instruments; (4) the luminosity functions of high-J CO lines show stronger evolution than the luminosity functions of low-J CO lines; (5) our model barely reproduces the available constraints on the CO and [C II] luminosity function of galaxies at z ≥ 1.5 and the CO luminosity of individual galaxies at intermediate redshifts. We argue that this is driven by a lack of cold gas in galaxies at intermediate redshifts as predicted by cosmological simulations of galaxy formation.

  11. The Hard X-ray 20-40 keV AGN Luminosity Function

    Science.gov (United States)

    Beckmann, V.; Soldi, S.; Shrader, C. R.; Gehrels, N.; Produit, N.

    2006-01-01

    We have compiled a complete, significance limited extragalactic sample based on approximately 25,000 deg(sup 2) to a limiting flux of 3 x 10(exp -11) ergs per square centimeter per second. (approximately 7,000 deg(sup 2)) to a flux limit of 10(exp -11) ergs per square centimeter per second)) in the 20 - 40 keV band with INTEGRAL. We have constructed a detailed exposure map to compensate for effects of non-uniform exposure. The flux-number relation is best described by a power-law with a slope of alpha = 1.66 plus or minus 0.11. The integration of the cumulative flux per unit area leads to f(sub 20-40 keV) = 2.6 x 10(exp -10) ergs per square centimeter per second per sr(sup -1) which is about 1% of the known 20-40 keV X-ray background. We present the first luminosity function of AGN in the 20-40 keV energy range, based on 68 extragalactic objects detected by the imager IBIS/ISGRI on-board INTEGRAL. The luminosity function shows a smoothly connected two power-law form, with an index of gamma (sub 1) = 0.9 below, and gamma (sub 2) = 2.2 above the turn-over luminosity of L(sub *), = 4.6 x 10(sup 43) ergs per second. The emissivity of all INTEGRAL AGNs per unit volume is W(sub 20-40keV)(greater than 10(sup 41) ergs per second) = 2.8 x 10(sup 38) ergs per second h(sup 3)(sub 70) Mpc(sup -3). These results are consistent with those derived in the 2-20keV energy band and do not show a significant contribution by Compton-thick objects. Because the sample used in this study is truly local (z(raised bar) = 0.022)), only limited conclusions can be drawn for the evolution of AGNs in this energy band. But the objects explaining the peak in the cosmic X-ray background are likely to be either low luminosity AGN (L(sub x) less than 10(sup 41) ergs per second) or of other type, such as intermediate mass black holes, clusters, and star forming regions.

  12. The galaxy luminosity function in the cluster of galaxies Abell 496

    CERN Document Server

    Durret, F; Lobo, C; Durret, Florence; Adami, Christophe; Lobo, Catarina

    2002-01-01

    We have derived the galaxy luminosity function (GLF) in the cluster of galaxies Abell 496 from a wide field image in the I band. A single Schechter function reproduces quite well the GLF in the 17$\\leq {\\rm I_{AB}} \\leq$22 ($-19.5\\leq {\\rm M_I} \\leq -14.5$) magnitude interval, and the power law index of this function is found to be somewhat steeper in the outer regions than in the inner regions. This result agrees with the idea that faint galaxies are more abundant in the outer regions of clusters, while in the denser inner regions they have partly been accreted by larger galaxies or have been dimmed or even disrupted by tidal interactions.

  13. SPITZER observations of Abell 1763. III. The infrared luminosity function in different supercluster environments

    CERN Document Server

    Biviano, A; Durret, F; Edwards, L O V; Marleau, F

    2011-01-01

    We determine the galaxy infrared (IR) luminosity function (LF) as a function of the environment in a supercluster at z=0.23, using optical, near-IR, and mid- to far-IR photometry, as well as redshifts from optical spectroscopy. We identify 467 supercluster members in a sample of 24-micron-selected galaxies, on the basis of their spectroscopic (153) and photometric (314) redshifts. IR luminosities, stellar masses and star formation rates (SFRs) are determined for supercluster members via spectral energy distribution fitting and the Kennicutt relation. Galaxies with active galactic nuclei are excluded from the sample. We determine the IR LF of the whole supercluster as well as the IR LFs of three different regions in the supercluster: the cluster core, a large-scale filament, and the cluster outskirts (excluding the filament). The IR LF shows an environmental dependence which is not simply related to the local galaxy density. The filament, an intermediate-density region in the A1763 supercluster, contains the h...

  14. The Luminosity Function of the NoSOCS Galaxy Cluster Sample

    CERN Document Server

    De Filippis, E; Longo, G; La Barbera, F; de Carvalho, R R; Gal, R

    2011-01-01

    We present the analysis of the luminosity function of a large sample of galaxy clusters from the Northern Sky Optical Cluster Survey, using latest data from the Sloan Digital Sky Survey. Our global luminosity function (down to M_r<= -16) does not show the presence of an upturn at faint magnitudes, while we do observe a strong dependence of its shape on both richness and cluster-centric radius, with a brightening of M^* and an increase of the dwarf to giant ratio with richness, indicating that more massive systems are more efficient in creating/retaining a population of dwarf satellites. This is observed both within physical (0.5 R_200) and fixed (0.5 Mpc) apertures, suggesting that the trend is either due to a global effect, operating at all scales, or to a local one but operating on even smaller scales. We further observe a decrease of the relative number of dwarf galaxies towards the cluster center; this is most probably due to tidal collisions or collisional disruption of the dwarfs since merging proces...

  15. The faint-end of the galaxy luminosity function in groups

    CERN Document Server

    Gonzalez, R E; Lambas, D G; Valotto, C

    2005-01-01

    We compute the galaxy luminosity function in groups and clusters extracted from the Sloan Digital Sky Survey. We apply a background subtraction method to a sample of 728 spectroscopically selected groups. The sample comprises systems in the redshift range $0.03 < z < 0.06$ and the virial mass range is $10^{11}M_\\odot < M_{vir} < 2\\times 10^{14}M_\\odot$. In the $r$ band, the composite galaxy luminosity function shows a slope of $\\alpha=-1.3$ in the bright--end, and an upturn of the slope in the faint--end ranging from -1.6 to -1.9. The upturn of the slope occurs at $M_r\\sim-18+5log(h)$ depending only weakly on group properties. We find that this feature is present also in the $i,g$ and $z$ bands and for all explored group subsamples, irrespective of the group mass or the presence of a hot intra-cluster gas with associated X-ray emission.

  16. The rate, luminosity function and time delay of non-Collapsar short GRBs

    CERN Document Server

    Wanderman, David

    2014-01-01

    We estimate the rate and the luminosity function of short (hard) Gamma-Ray Bursts (sGRBs) that are non-Collapsars, using the peak fluxes and redshifts of BATSE, Swift and Fermi GRBs. Following \\cite{Bromberg2013} we select a sub-sample of \\swift bursts which are most likely non-Collapsars. We find that these sGRBs are delayed relative to the global star formation rate (SFR) with a typical delay time of a $2.9^{+0.4}_{-0.4} $~Gyr or $3.9^{+0.4}_{-0.5}$ (depending on the SFR model). The current event rate of these non-Collapsar sGRBs with $L_{iso}>5\\times 10^{49} erg/s$ is $4.1_{-1.9}^{+2.3}Gpc^{-3}yr^{-1}$. The rate was significantly larger around $z \\sim 1$ and it declines since that time. The luminosity function we find is a broken power law with a break at $2.0_{-0.4}^{+1.4} \\times 10^{52}$~erg/s and power-law indices $0.95_{-0.1 2}^{+0.12}$ and $2.0_{-0.8}^{+1.0}$. When considering the whole \\swift sGRB sample we find that it is composed of two populations: One group ($\\approx 60\\%-80\\%$ of \\swift sGRBs) o...

  17. A population synthesis study of the luminosity function of hot white dwarfs

    CERN Document Server

    Torres, S; Krzesinski, J; Kleinman, S J

    2014-01-01

    We present a coherent and detailed Monte Carlo simulation of the population of hot white dwarfs. We assess the statistical significance of the hot end of the white dwarf luminosity function and the role played by the bolometric corrections of hydrogen-rich white dwarfs at high effective temperatures. We use the most up-to-date stellar evolutionary models and implement a full description of the observational selection biases to obtain realistic simulations of the observed white dwarf population. Our theoretical results are compared with the luminosity function of hot white dwarfs obtained from the Sloan Digital Sky Survey (SDSS), for both DA and non-DA white dwarfs. We find that the theoretical results are in excellent agreement with the observational data for the population of white dwarfs with hydrogen deficient atmospheres (non-DA white dwarfs). For the population of white dwarfs with hydrogen-rich atmospheres (white dwarfs of the DA class), our simulations show some discrepancies with the observations for ...

  18. The Pa{\\alpha} Luminosity Function of HII Regions in Nearby Galaxies from HST/NICMOS

    CERN Document Server

    Liu, Guilin; Kennicutt, Robert C; Schinnerer, Eva; Sofue, Yoshiaki; Komugi, Shinya; Egusa, Fumi; Scoville, Nicholas Z

    2013-01-01

    The HII region luminosity function (LF) is an important tool for deriving the birthrates and mass distribution of OB associations, and is an excellent tracer of the newly formed massive stars and associations. To date, extensive work (predominantly in H{\\alpha}) has been done from the ground, which is hindered by dust extinction and the severe blending of adjacent (spatially or in projection) HII regions. Reliably measuring the properties of HII regions requires a linear resolution <40 pc, but analyses satisfying this requirement have been done only in a handful of galaxies, so far. As the first space-based work using a galaxy sample, we have selected 12 galaxies from our HST NICMOS Pa{\\alpha} survey and studied the luminosity function and size distribution of HII regions both in individual galaxies and cumulatively, using a virtually extinction-free tracer of the ionizing photon rate. The high angular resolution and low sensitivity to diffuse emission of NICMOS also offer an advantage over ground-based im...

  19. AN EXPONENTIAL DECLINE AT THE BRIGHT END OF THE z = 6 GALAXY LUMINOSITY FUNCTION

    Energy Technology Data Exchange (ETDEWEB)

    Willott, Chris J. [Herzberg Institute of Astrophysics, National Research Council, 5071 West Saanich Rd, Victoria, BC V9E 2E7 (Canada); McLure, Ross J.; Bruce, Victoria A. [SUPA Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom); Hibon, Pascale [Gemini Observatory, Gemini South, AURA/Chile, P.O. Box 26732, Tucson, AZ 85726 (United States); Bielby, Richard [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); McCracken, Henry J. [Institut d' Astrophysique de Paris, UMR7095 CNRS, Universite Pierre et Marie Curie, 98 bis Boulevard Arago, F-75014 Paris (France); Kneib, Jean-Paul; Ilbert, Olivier [Laboratoire d' Astrophysique de Marseille, Universite Aix-Marseille, 38 Rue Frederic Joliot-Curie, F-13388 Marseille (France); Bonfield, David G.; Jarvis, Matt J., E-mail: chris.willott@nrc.ca [Centre for Astrophysics, Science and Technology Research Institute, University of Hertfordshire, Hatfield, Herts AL10 9AB (United Kingdom)

    2013-01-01

    We present the results of a search for the most luminous star-forming galaxies at redshifts z Almost-Equal-To 6 based on Canada-France-Hawaii Telescope Legacy Survey data. We identify a sample of 40 Lyman break galaxies (LBGs) brighter than magnitude z' = 25.3 across an area of almost 4 deg{sup 2}. Sensitive spectroscopic observations of seven galaxies provide redshifts for four, of which only two have moderate to strong Ly{alpha} emission lines. All four have clear continuum breaks in their spectra. Approximately half of the LBGs are spatially resolved in 0.7 arcsec seeing images, indicating larger sizes than lower luminosity galaxies discovered with the Hubble Space Telescope, possibly due to ongoing mergers. The stacked optical and infrared photometry is consistent with a galaxy model with stellar mass {approx}10{sup 10} M{sub Sun }. There is strong evidence for substantial dust reddening with a best-fit A{sub V} = 0.75 and A{sub V} > 0.48 at 2{sigma} confidence, in contrast to the typical dust-free galaxies of lower luminosity at this epoch. The spatial extent and spectral energy distribution suggest that the most luminous z Almost-Equal-To 6 galaxies are undergoing merger-induced starbursts. The luminosity function of z = 5.9 star-forming galaxies is derived. This agrees well with previous work and shows strong evidence for an exponential decline at the bright end, indicating that the feedback processes that govern the shape of the bright end are occurring effectively at this epoch.

  20. The luminosity function of cluster galaxies relations among M$_{1}$, M* and the morphological type

    CERN Document Server

    Trevese, D; Appodia, B

    1996-01-01

    A study of the luminosity function of 36 Abell clusters of galaxies has been carried out using photographic plates obtained with the Palomar 1.2 m Schmidt telescope. The relation between the magnitude M_1 of the brightest cluster member and the Schechter function parameter M* has been analyzed. A positive correlation between M* and M_1 is found. However clusters appear segregated in the M_1-M* plane according to their Rood & Sastry class in such a way that on average M_1 becomes brighter while M* becomes fainter going from late to early Rood & Sastry and also Bautz & Morgan classes. Also a partial correlation analysis involving the magnitude M_10 of the 10th brightest galaxy, shows a negative intrinsic correlation between M_1 and M*. These results agree with the cannibalism model for the formation of brightest cluster members, and provide new constraints for theories of cluster formation and evolution.

  1. Effect of spectral index distribution on estimating the AGN radio luminosity function

    CERN Document Server

    Yuan, Zunli; Zhou, Ming; Mao, Jirong

    2016-01-01

    In this paper, we scrutinize the effect of spectral index distribution on estimating the AGN (active galactic nucleus) radio luminosity function (RLF) by a Monte Carlo method. We find that the traditional bivariate RLF estimators can cause bias in varying degree. The bias is especially pronounced for the flat-spectrum radio sources whose spectral index distribution is more scattered. We believe that the bias is caused because the $K$-corrections complicate the truncation boundary on the $L-z$ plane of the sample, but the traditional bivariate RLF estimators have difficulty in dealing with this boundary condition properly. We suggest that the spectral index distribution should be incorporated into the RLF analysis process to obtain a robust estimation. This drives the need for a trivariate function of the form $\\Phi(\\alpha,z,L)$ which we show provides an accurate basis for measuring the RLF.

  2. Effect of Spectral Index Distribution on Estimating the AGN Radio Luminosity Function

    Science.gov (United States)

    Yuan, Zunli; Wang, Jiancheng; Zhou, Ming; Mao, Jirong

    2016-10-01

    In this paper, we scrutinize the effect of spectral index distribution on estimating the active galactic nucleus radio luminosity function (RLF) by a Monte Carlo method. We find that the traditional bivariate RLF estimators can cause bias in varying degrees. The bias is especially pronounced for the flat-spectrum radio sources whose spectral index distribution is more scattered. We believe that the bias is caused because the K-corrections complicate the truncation boundary on the L-z plane of the sample, but the traditional bivariate RLF estimators have difficulty dealing with this boundary condition properly. We suggest that the spectral index distribution should be incorporated into the RLF analysis process to obtain a robust estimation. This drives the need for a trivariate function of the form Φ(α, z, L), which we show provides an accurate basis for measuring the RLF.

  3. Luminosity function of [OII] emission-line galaxies in the MassiveBlack-II simulation

    CERN Document Server

    Park, KwangHo; Ho, Shirley; Croft, Rupert; Wilkins, Stephen M; Feng, Yu; Khandai, Nishikanta

    2015-01-01

    We examine the luminosity function (LF) of [OII] emission-line galaxies in the high-resolution cosmological simulation MassiveBlack-II (MBII). From the spectral energy distribution of each galaxy, we select a sub-sample of star-forming galaxies at $0.06 \\le z \\le 3.0$ using the [OII] emission line luminosity L([OII]). We confirm that the specific star formation rate matches that in the GAMA survey. We show that the [OII] LF at z=1.0 from the MBII shows a good agreement with the LFs from several surveys below L([OII])=$10^{43.0}$ erg/s while the low redshifts ($z \\le 0.3$) show an excess in the prediction of bright [OII] galaxies, but still displaying a good match with observations below L([OII])=$10^{41.6}$ erg/s. Based on the validity in reproducing the properties of [OII] galaxies at low redshift ($z \\le 1$), we forecast the evolution of the [OII] LF at high redshift ($z \\le 3$), which can be tested by upcoming surveys such as the HETDEX and DESI. The slopes of the LFs at bright and faint ends range from -3...

  4. The WARPS Survey. VIII. Evolution of the Galaxy Cluster X-ray Luminosity Function

    CERN Document Server

    Koens, L A; Jones, L R; Ebeling, H; Horner, D J; Perlman, E S; Phillipps, S; Scharf, C A

    2012-01-01

    We present measurements of the galaxy cluster X-ray Luminosity Function (XLF) from the Wide Angle ROSAT Pointed Survey (WARPS) and quantify its evolution. WARPS is a serendipitous survey of the central region of ROSAT pointed observations and was carried out in two phases (WARPS-I and WARPS-II). The results here are based on a final sample of 124 clusters, complete above a flux limit of 6.5 10E-15 erg/s/cm2, with members out to redshift z ~ 1.05, and a sky coverage of 70.9 deg2. We find significant evidence for negative evolution of the XLF, which complements the majority of X-ray cluster surveys. To quantify the suggested evolution, we perform a maximum likelihood analysis and conclude that the evolution is driven by a decreasing number density of high luminosity clusters with redshift, while the bulk of the cluster population remains nearly unchanged out to redshift z ~ 1.1, as expected in a low density Universe. The results are found to be insensitive to a variety of sources of systematic uncertainty that ...

  5. A new [Oiii] \\lamda5007 {\\AA} Galactic Bulge Planetary Nebula Luminosity Function

    CERN Document Server

    Kovacevic, A V; Jacoby, G H; Miszalski, B

    2010-01-01

    The Planetary Nebulae Luminosity Function (PNLF) describes the collective luminosity evolution for a given population of Planetary Nebulae (PN). A major paradox in current PNLF studies is in the universality of the absolute magnitude of the brightest PNe with galaxy type and age. The progenitor central-star mass required to produce such bright PNe should have evolved beyond the PNe phase in old, red elliptical galaxies whose stellar populations are ~10~Gyr. Only by dissecting this resolved population in detail can we attempt to address this conundrum. The Bulge of our Galaxy is predominantly old \\citep{Z03} and can therefore be used as a proxy for an elliptical galaxy, but with the significant advantage that the population is resolvable from ground based telescopes. We have used the MOSAIC-II camera on the Blanco 4-m at CTIO to carefully target ~80 square degrees of the Galactic Bulge and establish accurate [Oiii] fluxes for 80% of Bulge PNe currently known from the Acker and MASH catalogues. Construction of ...

  6. The evolution of the [OII], H{\\beta} and [OIII] emission-line luminosity functions

    CERN Document Server

    Comparat, Johan; Perez-Gonzalez, Violeta; Norberg, Peder; Newman, Jeffrey; Tresse, Laurence; Richard, Johan; Yepes, Gustavo; Kneib, Jean-Paul; Raichoor, Anand; Prada, Francisco; Maraston, Claudia; Yèche, Christophe; Delubac, Timothée; Jullo, Eric

    2016-01-01

    Emission-line galaxies (ELGs) are one of the main tracers of the large-scale structure to be targeted by the next-generation dark energy surveys. To provide a better understanding of the properties and statistics of these galaxies, we have collected spectroscopic data from the VVDS and DEEP2 deep surveys and estimated the galaxy luminosity functions (LFs) of three distinct emission lines, [OII], H$\\beta$ and [OIII] at redshifts ($0.2 < z < 1.3$). Our measurements are based on the largest sample so far. We present the first measurement of the \\Hb LF at these redshifts. We have also compiled LFs from the literature that were based on independent data or covered different redshift ranges, and we fit the entire set over the whole redshift range with analytic Schechter and Saunders models, assuming a natural redshift dependence of the parameters. We find that the characteristic luminosity ($L_*$) and density ($\\phi_*$) of all LFs increase with redshift. Using the Schechter model, we find that $L^*$ of [OII] ...

  7. A Multivariate Fit Luminosity Function and World Model for Long GRBs

    CERN Document Server

    Shahmoradi, Amir

    2012-01-01

    It is proposed that the luminosity function, the comoving-frame spectral correlations and distributions of cosmological Long-duration Gamma-Ray Bursts (LGRBs) may be very well described as multivariate log-normal distribution. This result is based on careful selection, analysis and modeling of the spectral parameters of LGRBs in the largest catalog of Gamma-Ray Bursts available to date: 2130 BATSE GRBs, while taking into account the detection threshold and possible selection effects on observational data. Constraints on the joint quadru-variate distribution of the isotropic peak luminosity, the total isotropic emission, the comoving-frame time-integrated spectral peak energy and the comoving-frame duration of LGRBs are derived. Extensive goodness-of-fit tests are performed. The presented analysis provides evidence for a relatively large fraction of LGRBs that have been missed by BATSE detector with total isotropic emissions extending down to 10^49 [erg] and observed spectral peak energies as low as 5 [KeV]. T...

  8. Revisiting the axion bounds from the Galactic white dwarf luminosity function

    CERN Document Server

    Bertolami, Marcelo M Miller; Althaus, Leandro G; Isern, Jordi

    2014-01-01

    It has been shown that the shape of the luminosity function of white dwarfs (WDLF) is a powerful tool to check for the possible existence of DFSZ-axions, a proposed but not yet detected type of weakly interacting particles. With the aim of deriving new constraints on the axion mass, we compute in this paper new theoretical WDLFs on the basis of WD evolving models that incorporate for the feedback of axions on the thermal structure of the white dwarf. We find that the impact of the axion emission into the neutrino emission can not be neglected at high luminosities ($M_{\\rm Bol}\\lesssim 8$) and that the axion emission needs to be incorporated self-consistently into the evolution of the white dwarfs when dealing with axion masses larger than $m_a\\cos^2\\beta\\gtrsim 5$ meV (i.e. axion-electron coupling constant $g_{ae}\\gtrsim 1.4\\times 10^{-13}$). We went beyond previous works by including 5 different derivations of the WDLF in our analysis. Then we have performed $\\chi^2$-tests to have a quantitative measure of t...

  9. Effects of variability of X-ray binaries on the X-ray luminosity functions of Milky Way

    Science.gov (United States)

    Islam, Nazma; Paul, Biswajit

    2016-08-01

    The X-ray luminosity functions of galaxies have become a useful tool for population studies of X-ray binaries in them. The availability of long term light-curves of X-ray binaries with the All Sky X-ray Monitors opens up the possibility of constructing X-ray luminosity functions, by also including the intensity variation effects of the galactic X-ray binaries. We have constructed multiple realizations of the X-ray luminosity functions (XLFs) of Milky Way, using the long term light-curves of sources obtained in the 2-10 keV energy band with the RXTE-ASM. The observed spread seen in the value of slope of both HMXB and LMXB XLFs are due to inclusion of variable luminosities of X-ray binaries in construction of these XLFs as well as finite sample effects. XLFs constructed for galactic HMXBs in the luminosity range 1036-1039 erg/sec is described by a power-law model with a mean power-law index of -0.48 and a spread due to variability of HMXBs as 0.19. XLFs constructed for galactic LMXBs in the luminosity range 1036-1039 erg/sec has a shape of cut-off power-law with mean power-law index of -0.31 and a spread due to variability of LMXBs as 0.07.

  10. Effects of variability of X-ray binaries on the X-ray luminosity functions of Milky Way

    CERN Document Server

    Islam, Nazma

    2016-01-01

    The X-ray luminosity functions of galaxies have become a useful tool for population studies of X-ray binaries in them. The availability of long term light-curves of X-ray binaries with the All Sky X-ray Monitors opens up the possibility of constructing X-ray luminosity functions, by also including the intensity variation effects of the galactic X-ray binaries. We have constructed multiple realizations of the X-ray luminosity functions (XLFs) of Milky Way, using the long term light-curves of sources obtained in the 2-10 keV energy band with the RXTE-ASM. The observed spread seen in the value of slope of both HMXB and LMXB XLFs are due to inclusion of variable luminosities of X-ray binaries in construction of these XLFs as well as finite sample effects. XLFs constructed for galactic HMXBs in the luminosity range 10^{36} - 10^{39} erg/sec is described by a power-law model with a mean power-law index of -0.48 and a spread due to variability of HMXBs as 0.19. XLFs constructed for galactic LMXBs in the luminosity r...

  11. Dusty Quasars

    CERN Document Server

    Krawczyk, Coleman M; Gallagher, S C; Leighly, Karen M; Hewett, Paul C; Ross, Nicholas P; Hall, P B

    2014-01-01

    We explore the extinction/reddening of ~35,000 uniformly-selected quasars with 00.1 and 0.1% (1.3%) with E(B-V)>0.2. Simulations show both populations of quasars are intrinsically bluer than the mean composite, with a mean spectral index (${\\alpha}_{\\lambda}$) of -1.79 (-1.83). The emission and absorption-line properties of both samples reveal that quasars with intrinsically red continua have narrower Balmer lines and stronger ionizing spectral lines, the latter indicating a harder continuum in the extreme-UV and the former indicating either smaller BH mass or more face-on orientation.

  12. The galaxy UV luminosity function at z ≃ 2-4; new results on faint-end slope and the evolution of luminosity density

    Science.gov (United States)

    Parsa, Shaghayegh; Dunlop, James S.; McLure, Ross J.; Mortlock, Alice

    2016-03-01

    We present a new, robust measurement of the evolving rest-frame ultraviolet (UV) galaxy luminosity function (LF) over the key redshift range from z ≃ 2 to z ≃ 4. Our results are based on the high dynamic range provided by combining the Hubble Ultra Deep Field (HUDF), CANDELS/GOODS-South, and UltraVISTA/COSMOS surveys. We utilize the unparalleled multifrequency photometry available in this survey `wedding cake' to compile complete galaxy samples at z ≃ 2, 3, 4 via photometric redshifts (calibrated against the latest spectroscopy) rather than colour-colour selection, and to determine accurate rest-frame UV absolute magnitudes (M1500) from spectral energy distribution (SED) fitting. Our new determinations of the UV LF extend from M1500 ≃ -22 (AB mag) down to M1500 = -14.5, -15.5 and -16 at z ≃ 2, 3 and 4, respectively (thus, reaching ≃ 3-4 mag fainter than previous blank-field studies at z ≃ 2,3). At z ≃ 2, 3, we find a much shallower faint-end slope (α = -1.32 ± 0.03) than reported in some previous studies (α ≃ -1.7), and demonstrate that this new measurement is robust. By z ≃ 4, the faint-end slope has steepened slightly, to α = -1.43 ± 0.04, and we show that these measurements are consistent with the overall evolutionary trend from z = 0 to 8. Finally, we find that while characteristic number density (φ*) drops from z ≃ 2 to z ≃ 4, characteristic luminosity (M*) brightens by ≃ 1 mag. This, combined with the new flatter faint-end slopes, has the consequence that UV luminosity density (and hence unobscured star formation density) peaks at z ≃ 2.5-3, when the Universe was ≃ 2.5 Gyr old.

  13. A Luminosity Function of Lyα-emitting Galaxies at z ~ 4.5

    Science.gov (United States)

    Dawson, Steve; Rhoads, James E.; Malhotra, Sangeeta; Stern, Daniel; Wang, JunXian; Dey, Arjun; Spinrad, Hyron; Jannuzi, Buell T.

    2007-12-01

    We present a catalog of 59 z~4.5 Lyα-emitting galaxies spectroscopically confirmed in a campaign of Keck DEIMOS follow-up observations to candidates selected in the Large Area Lyα (LALA) narrowband imaging survey. We targeted 97 candidates for spectroscopic follow-up by accounting for the variety of conditions under which we performed spectroscopy, we estimate a selection reliability of ~76%. Together with our previous sample of Keck LRIS confirmations, the 59 sources confirmed herein bring the total catalog to 73 spectroscopically confirmed z~4.5 Lyα-emitting galaxies in the ~0.7 deg2 covered by the LALA imaging. As with the Keck LRIS sample, we find that a nonnegligible fraction of the confirmed Lyα lines have rest-frame equivalent widths (Wrestλ) that exceed the maximum predicted for normal stellar populations: 17%-31% (93% confidence) of the detected galaxies show Wrestλ>190 Å, and 12%-27% (90% confidence) show Wrestλ>240 Å. We construct a luminosity function of z~4.5 Lyα emission lines for comparison to Lyα luminosity functions spanning 3.1luminosity function evolution from z~3 to z~6. This result supports the conclusion that the intergalactic medium remains largely reionized from the local universe out to z~6.5. It is somewhat at odds with the pronounced drop in the cosmic star formation rate density recently measured between z~3 and z~6 in continuum-selected Lyman-break galaxies, and therefore potentially sheds light on the relationship between the two populations. Based in part on observations made at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Our data were obtained using community access telescope time made available under the National

  14. Quasar evolution and gravitational collapse

    Energy Technology Data Exchange (ETDEWEB)

    Cavaliere, A.; Giallongo, E.; Vagnetti, F.; Messina, A.

    1983-06-01

    The paper presents three convergent results concerning the sources in theactive nuclei of quasars and radio galaxies that derive their power fromconversion of gravitational energy. We first derive, for several leading modelsbased on liberation of gravitational energy from mass in a compact supply, thelaws governing the secular change L of the primary power driving the individual sources, and identify their common and key property: L increases, and eventually decreases, linearly or faster with the power itself, so that the associated time scales t/sub s/ = L/Vertical BarLVertical Bar obey dt/sub s/, (L)/dL<0. We then describe a general statistical framework to populate with sources the (luminosity, cosmic time)-plane, based on a continuity equation that embodies a given L. We show how the main features of the populations depend primarily on L, while the memory of the initial details is easily erased. With L as derived above, we obtain basic evolutions of the density (L>0) and of the luminosity (L<0) type, with a global differential character. Finally we compute the full evolution functions, comprising a brightening (L>0) and a dimming (L<0) phase, corresponding to three such models. Sub-Eddington accretion onto a massive black hole from a star cluster that self-destroys by collisions is close to reproduce the general course of the empirical models for the optical QSO population.

  15. High redshift quasars monitoring campaign

    Science.gov (United States)

    Botti, Ismael; Lira, Paulina; Martinez, Jorge; Netzer, Hagai; Kaspi, Shai

    2014-07-01

    We present an update of the monitoring campaign we have undertaken to probe the most massive black holes in powerful quasars at high redshift through the reverberation mapping technique. Once this campaign has finished, we will be able to directly measure broad line region (BLR) sizes of quasars at z ~ 2-3, improving dramatically the BLR size-luminosity relation, and therefore, black hole mass estimates based on this relationship. So far, we have identified a dozen highly variable sources suitable for future cross-correlation analysis and reverberation measurements.

  16. Characterizing the Properties of Clusters of Galaxies As a Function of Luminosity and Redshift

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, K.; /MIT /Stockholm U. /SLAC; Peterson, J.R.; /Purdue U.; Madejski, G.; /SLAC /KIPAC, Menlo Park; Goobar, A.; /Stockholm U. /Stockholm U., OKC

    2009-02-24

    We report the application of the new Monte Carlo method, Smoothed Particle Inference (SPI, described in a pair of companion papers), towards analysis and interpretation of X-ray observations of clusters of galaxies with the XMM-Newton satellite. Our sample consists of publicly available well-exposed observations of clusters at redshifts z > 0.069, totaling 101 objects. We determine the luminosity and temperature structure of the X-ray emitting gas, with the goal to quantify the scatter and the evolution of the L{sub X} - T relation, as well as to investigate the dependence on cluster substructure with redshift. This work is important for the establishment of the potential robustness of mass estimates from X-ray data which in turn is essential towards the use of clusters for measurements of cosmological parameters. We use the luminosity and temperature maps derived via the SPI technique to determine the presence of cooling cores, via measurements of luminosity and temperature contrast. The L{sub X}-T relation is investigated, and we confirm that L{sub X} {proportional_to} T{sup 3}. We find a weak redshift dependence ({proportional_to} (1 + z){sup {beta}{sub LT}}, {beta}{sub LT} = 0.50 {+-} 0.34), in contrast to some Chandra results. The level of dynamical activity is established using the 'power ratios' method, and we compare our results to previous application of this method to Chandra data for clusters. We find signs of evolution in the P{sub 3}/P{sub 0} power ratio. A new method, the 'temperature two-point correlation function', is proposed. This method is used to determine the 'power spectrum' of temperature fluctuations in the X-ray emitting gas as a function of spatial scale. We show how this method can be fruitfully used to identify cooling core clusters as well as those with disturbed structures, presumably due to on-going or recent merger activity.

  17. The Global 21-cm Signal in the Context of the High-z Galaxy Luminosity Function

    CERN Document Server

    Mirocha, Jordan; Sun, G

    2016-01-01

    Motivated by recent progress in studies of the high-$z$ Universe, we build a new model for the global 21-cm signal that is explicitly calibrated to measurements of the galaxy luminosity function (LF) and further tuned to match the Thomson scattering optical depth of the cosmic microwave background, $\\tau_e$. Assuming that the $z \\lesssim 8$ galaxy population can be smoothly extrapolated to higher redshifts, the recent decline in best-fit values of $\\tau_e$ and the inefficient heating induced by X-ray binaries (HMXBs; the presumptive sources of the X-ray background at high-$z$) imply that the entirety of cosmic reionization and reheating occurs at redshifts $z \\lesssim 12$. In contrast to past global 21-cm models, whose $z \\sim 20$ ($\

  18. Binary Aggregations in Hierarchical Galaxy Formation The Evolution of the Galaxy Luminosity Function

    CERN Document Server

    Menci, N; Fontana, A; Giallongo, E; Poli, F

    2002-01-01

    We develop a semi-analytic model of hierarchical galaxy formation with an improved treatment of the evolution of galaxies inside dark matter haloes. We take into account not only dynamical friction processes building up the central dominant galaxy, but also binary aggregations of satellite galaxies inside a common halo described using the kinetic Smoluchowski equation. The description of gas cooling, star formation and evolution, and Supernova feedback follows the standard prescriptions widely used in semi-analytic modelling. We find that binary aggregations are effective in depleting the number of small/intermediate mass galaxies over the redshift range 1-16. We compare our predicted luminosity functions with those obtained from deep multicolor surveys in the rest-frame B and UV bands for the redshift ranges 01 and even more at z ~ 3 by the effect of binary aggregations. The predictions from our dynamical model are discussed and compared with the effects of complementary processes which may conspire in affec...

  19. Deep HST-WFPC2 photometry of NGC 288. II. The Main Sequence Luminosity Function

    CERN Document Server

    Bellazzini, M; Montegriffo, P; Messineo, M; Monaco, L; Rood, R T; Pecci, Flavio Fusi; Montegriffo, Paolo; Messineo, Maria

    2002-01-01

    The Main Sequence Luminosity Function (LF) of the Galactic globular cluster NGC 288 has been obtained using deep WFPC2 photometry. We have employed a new method to correct for completeness and fully account for bin-to-bin migration due to blending and/or observational scatter. The effect of the presence of binary systems in the final LF is quantified and is found to be negligible. There is a strong indication of the mass segregation of unevolved single stars and clear signs of a depletion of low mass stars in NGC 288 with respect to other clusters. The results are in good agreement with the prediction of theoretical models of the dynamical evolution of NGC 288 that take into account the extreme orbital properties of this cluster.

  20. Star Cluster Luminosity Functions and Cluster Formation Efficiencies in LEGUS Dwarf Galaxies

    Science.gov (United States)

    Cook, David O.; Lee, Janice C.; Adamo, Angela; Kim, Hwiyun; Ryon, Jenna E.; LEGUS Team

    2017-01-01

    We present preliminary results of star cluster luminosity functions (LFs) and cluster formation efficiencies (Γ) in the LEGUS dwarf galaxy sub-sample. We have used a combination of automated and visual identification techniques to allow us to construct a more complete sample of clusters in these low-mass, low-SFR environments compared to previous studies of dwarf galaxies. Cluster properties are derived from fitting UV and optical (NUV-I) HST photometry to both deterministic and stochastic single-aged stellar populations models. We compare the cluster formation efficiencies and LF slopes to those of previous studies in both dwarf and massive spiral galaxy environments. Recent studies have found that both the LF slope and Γ form trends with galaxy environment. Our LF slope and Γ measurements in the LEGUS dwarfs will allow us to test these trends in the extreme, low-SFR regime and provide a better understanding of the star formation process.

  1. Linking the fate of massive black hole binaries to the active galactic nuclei luminosity function

    CERN Document Server

    Dotti, Massimo; Montuori, Carmen

    2015-01-01

    Massive black hole binaries are naturally predicted in the context of the hierarchical model of structure formation. The binaries that manage to lose most of their angular momentum can coalesce to form a single remnant. In the last stages of this process, the holes undergo an extremely loud phase of gravitational wave emission, possibly detectable by current and future probes. The theoretical effort towards obtaining a coherent physical picture of the binary path down to coalescence is still underway. In this paper, for the first time, we take advantage of observational studies of active galactic nuclei evolution to constrain the efficiency of gas-driven binary decay. Under conservative assumptions we find that gas accretion toward the nuclear black holes can efficiently lead binaries of any mass forming at high redshift (> 2) to coalescence within the current time. The observed "downsizing" trend of the accreting black hole luminosity function further implies that the gas inflow is sufficient to drive light ...

  2. A Complete K-band Luminosity Function of the Central 30 PC

    Science.gov (United States)

    Philipp, S.; Mezger, P. G.; Zylka, R.

    1999-06-01

    We have obtained a K band mosaic image of an area Δα times Δ δ ~650'' times 710'' centered approximately on Sgr A*. With a detection limit of SK' ~100 μ Jy and a completeness limit of ~2000 μ Jy our source counts will only be complete for early O-stars, Supergiants and the most luminous red Giants; less luminous stars will merge into an unresolved background continuum. Special care was taken in our observing procedure to recover all of this continuum emission. 6.1 times 104 individual sources were separated from the background continuum by fitting them with modified Lorentzian distributions. For the low-luminosity sources we construct a model K-band luminosity function (KLF) based on a Salpeter IMF, which is compared with the KLF of Baade's Window after readjustment to match the stellar surface density in the mosaic. We obtain the following results: The emission of both point like sources (interpreted as luminous stars) and an unresolved continuum (interpreted as low-mass main sequence (MS) stars) can be fitted by a KLF ~ SK'α consisting of four power-law approximations with different exponents α: The modeled sectors which relate to MS stars have the functional dependences ~ SK'-0.6 and SK' -0.8; the observed KLF, which relates to Giants and Supergiants becomes gradually steeper. Compared to the KLF of Baades Window (Tiede et al., 1995) the KLF of the mosaic shows a clear overabundance of stars with high K band flux densities which is strongest within the central 24'' (~1 pc).

  3. The mass function of primordial rogue planet MACHOs in quasar nano-lensing

    NARCIS (Netherlands)

    Schild, R.E; Nieuwenhuizen, T.M.; Gibson, C.H.

    2012-01-01

    The recent Sumi et al (2010 Astrophys. J. 710 1641; 2011 Nature 473 349) detection of free roaming planet mass MACHOs in cosmologically significant numbers recalls their original detection in quasar microlening studies (Colley and Schild 2003 Astrophys. J. 594 97; Schild R E 1996 Astrophys. J. 464

  4. A new psychophysical method for determining the photopic spectral-luminosity function of the human eye.

    Science.gov (United States)

    Rovamo, J; Koljonen, T; Näsänen, R

    1996-09-01

    Using an 8 mm pupil, 2AFC-method, and 2 x 2 deg2 grating at 2 c/deg we measured contrast sensitivity as a function of integrated radiance for a series of interference filters with peak wavelengths at 400-700 nm. Irrespective of the radiance level, contrast sensitivity was highest when wavelength was at and around 550 nm. It decreased towards longer and shorter wavelengths, reflecting the variation of the probability of quantal catch with light wavelength. When contrast sensitivity functions plotted in double logarithmic coordinates were shifted horizontally by multiplying the integrated radiances of each filter by an appropriate scaling factor, the functions superimposed onto a single curve. Contrast sensitivity at lower levels of relative radiance (R) increased in proportion to square root of R, obeying DeVries-Rose law, but at higher levels contrast sensitivity was constant, obeying Weber's law. Scaling factors plotted as a function of wavelength provided an estimate of V(lambda) quite similar to the standard 2 deg photopic spectral-luminosity function of CIE 1924.

  5. Eddington-limited accretion and the black hole mass function at redshift 6

    CERN Document Server

    Willott, Chris J; Arzoumanian, Doris; Bergeron, Jacqueline; Crampton, David; Delorme, Philippe; Hutchings, John B; Omont, Alain; Reyle, Celine; Schade, David

    2010-01-01

    We present discovery observations of a quasar in the Canada-France High-z Quasar Survey (CFHQS) at redshift z=6.44. We also use near-IR spectroscopy of nine CFHQS quasars at z~6 to determine black hole masses. These are compared with similar estimates for more luminous Sloan Digital Sky Survey (SDSS) quasars to investigate the relationship between black hole mass and quasar luminosity. We find a strong correlation between MgII FWHM and UV luminosity and that most quasars at this early epoch are accreting close to the Eddington limit. Thus these quasars appear to be in an early stage of their life cycle where they are building up their black hole mass exponentially. Combining these results with the quasar luminosity function, we derive the black hole mass function at z=6. Our black hole mass function is ~10^4 times lower than at z=0 and substantially below estimates from previous studies. The main uncertainties which could increase the black hole mass function are a larger population of obscured quasars at hig...

  6. The evolution of the luminosity functions in the FORS Deep Field from low to high redshift: I. The blue bands

    CERN Document Server

    Gabasch, A; Seitz, S; Hopp, U; Saglia, Roberto P; Feulner, G; Snigula, J; Drory, N; Appenzeller, I; Heidt, J; Mehlert, D; Noll, S; Böhm, A; Jäger, K; Ziegler, B L; Fricke, K J

    2004-01-01

    We use the very deep and homogeneous I-band selected dataset of the FORS Deep Field (FDF) to trace the evolution of the luminosity function over the redshift range 0.5 < z < 5.0. We show that the FDF I-band selection down to I(AB)=26.8 misses of the order of 10 % of the galaxies that would be detected in a K-band selected survey with magnitude limit K(AB)=26.3 (like FIRES). Photometric redshifts for 5558 galaxies are estimated based on the photometry in 9 filters (U, B, Gunn g, R, I, SDSS z, J, K and a special filter centered at 834 nm). A comparison with 362 spectroscopic redshifts shows that the achieved accuracy of the photometric redshifts is (Delta z / (z_spec+1)) < 0.03 with only ~ 1 % outliers. This allows us to derive luminosity functions with a reliability similar to spectroscopic surveys. In addition, the luminosity functions can be traced to objects of lower luminosity which generally are not accessible to spectroscopy. We investigate the evolution of the luminosity functions evaluated in ...

  7. The local stellar luminosity function and mass-to-light ratio in the near-infrared

    Science.gov (United States)

    Just, A.; Fuchs, B.; Jahreiß, H.; Flynn, C.; Dettbarn, C.; Rybizki, J.

    2015-07-01

    A new sample of stars, representative of the solar neighbourhood luminosity function (LF), is constructed from the Hipparcos catalogue and the Fifth Catalogue of Nearby Stars. We have cross-matched to sources in the Two Micron All Sky Survey catalogue so that for all stars individually determined near-infrared (NIR) photometry is available on a homogeneous system (typically Ks). The spatial completeness of the sample has been carefully determined by statistical methods, and the NIR LF of the stars has been derived by direct star counts. We find a local volume luminosity of 0.121 ± 0.004 LK⊙ pc-3, corresponding to a volumetric mass-to-light ratio (M/L) of M/L_K = 0.31 ± 0.02 {M}_{⊙}/L_{K⊙}, where giants contribute 80 per cent to the light but less than 2 per cent to the stellar mass. We derive the surface brightness of the solar cylinder with the help of a vertical disc model. We find a surface brightness of 99 LK⊙ pc-2 with an uncertainty of approximately 10 per cent. This corresponds to an M/L for the solar cylinder of M/L_K = 0.34 {M}_{⊙}/L_{K⊙}. The M/L for the solar cylinder is only 10 per cent larger than the local value despite the fact that the local population has a much larger contribution of young stars. It turns out that the effective scaleheights of the lower main sequence carrying most of the mass is similar to that of the giants, which are dominating the NIR light. The corresponding colour for the solar cylinder is V - K = 2.89 mag compared to the local value of V - K = 2.46 mag. An extrapolation of the local surface brightness to the whole Milky Way yields a total luminosity of MK = -24.2 mag. The Milky Way falls in the range of K band Tully-Fisher relations from the literature.

  8. A MULTIVARIATE FIT LUMINOSITY FUNCTION AND WORLD MODEL FOR LONG GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Shahmoradi, Amir, E-mail: amir@physics.utexas.edu [Institute for Fusion Studies, The University of Texas at Austin, TX 78712 (United States)

    2013-04-01

    It is proposed that the luminosity function, the rest-frame spectral correlations, and distributions of cosmological long-duration (Type-II) gamma-ray bursts (LGRBs) may be very well described as a multivariate log-normal distribution. This result is based on careful selection, analysis, and modeling of LGRBs' temporal and spectral variables in the largest catalog of GRBs available to date: 2130 BATSE GRBs, while taking into account the detection threshold and possible selection effects. Constraints on the joint rest-frame distribution of the isotropic peak luminosity (L{sub iso}), total isotropic emission (E{sub iso}), the time-integrated spectral peak energy (E{sub p,z}), and duration (T{sub 90,z}) of LGRBs are derived. The presented analysis provides evidence for a relatively large fraction of LGRBs that have been missed by the BATSE detector with E{sub iso} extending down to {approx}10{sup 49} erg and observed spectral peak energies (E{sub p} ) as low as {approx}5 keV. LGRBs with rest-frame duration T{sub 90,z} {approx}< 1 s or observer-frame duration T{sub 90} {approx}< 2 s appear to be rare events ({approx}< 0.1% chance of occurrence). The model predicts a fairly strong but highly significant correlation ({rho} = 0.58 {+-} 0.04) between E{sub iso} and E{sub p,z} of LGRBs. Also predicted are strong correlations of L{sub iso} and E{sub iso} with T{sub 90,z} and moderate correlation between L{sub iso} and E{sub p,z}. The strength and significance of the correlations found encourage the search for underlying mechanisms, though undermine their capabilities as probes of dark energy's equation of state at high redshifts. The presented analysis favors-but does not necessitate-a cosmic rate for BATSE LGRBs tracing metallicity evolution consistent with a cutoff Z/Z{sub Sun} {approx} 0.2-0.5, assuming no luminosity-redshift evolution.

  9. Local Ultraluminous Infrared Galaxies and Quasars

    CERN Document Server

    Veilleux, S

    2006-01-01

    This paper reviews the recent results from a comprehensive investigation of the most luminous mergers in the local universe, the ultraluminous infrared galaxies (ULIRGs) and the quasars. First, the frequency of occurrence and importance of black hole driven nuclear activity in ULIRGs are discussed using the latest sets of optical, near-infrared, mid-infrared, and X-ray spectra on these objects. Obvious trends with luminosity, infrared color, and morphology are pointed out. Next, the host galaxy properties of ULIRGs are described in detail and then compared with local quasar hosts and inactive spheroids. By and large, these data are consistent with the scenario where ULIRGs are intermediate-mass elliptical galaxies in formation and in the process of becoming moderate-luminosity optical quasars. The powerful galactic winds detected in many ULIRGs may help shed any excess gas during this transformation. However, this evolutionary scenario does not seem to apply to all ULIRGs and quasars: Ultraluminous infrared m...

  10. Constraining the cosmic evolution of supermassive black holes with statistical quasar samples

    Science.gov (United States)

    Shen, Yue

    N-body simulations, this simple model can reproduce the observed luminosity function, clustering, Eddington ratio distributions of quasars, and make predictions for future observations. iv

  11. An Empirical Model for the Galaxy Luminosity and Star-Formation Rate Function at High Redshift

    CERN Document Server

    Mashian, Natalie; Loeb, Abraham

    2015-01-01

    Using the most recent measurements of the ultraviolet (UV) luminosity functions (LFs) and dust estimates of early galaxies, we derive updated dust-corrected star-formation rate functions (SFRFs) at z~4-8, which we model to predict the evolution to higher redshifts, z>8. We employ abundance matching techniques to calibrate a relation between galaxy star formation rate (SFR) and host halo mass M{_h} by mapping the shape of the observed SFRFs at z~4-8 to that of the halo mass function. The resulting scaling law remains roughly constant over this redshift range. We apply the average SFR-M{_h} relation to reproduce the observed SFR functions at 4 10 indicate that JWST will be able to detect galaxies out to z~15 with an extensive treasury sized program. We also derive the redshift evolution of the star formation rate density and associated reionization history by galaxies for which we find that the inclusion of galaxies with SFRs well below the current detection limit leads to a fully reionized universe by z~6.5 an...

  12. Spatial dependence of 2MASS luminosity and mass functions in the old open cluster NGC 188

    CERN Document Server

    Bonatto, C; Santos, J F C

    2005-01-01

    Luminosity and mass functions in the old open cluster NGC 188 are analysed by means of J and H 2MASS photometry. Within the uncertainties, the observed projected radial density profile of NGC 188 departs from the two-parameter King model in two inner regions, which reflects the non-virialized dynamical state and possibly, some degree of non-sphericity in the spatial shape of this old open cluster. Fits with two and three-parameter King models to the radial distribution of stars resulted in a core radius of 1.3 pc and a tidal radius of 21 pc. The present 2MASS analysis resulted in significant slope variations with distance in the mass function $\\phi(m)\\propto m^{-(1+\\chi)}$, being flat in the central parts ($\\chi=0.6\\pm0.7$) and steep in the cluster outskirts ($\\chi=7.2\\pm0.6$). The overall mass function has a slope $\\chi=1.9\\pm0.7$, slightly steeper than a standard Salpeter mass function. Solar metallicity Padova isochrone fits to the near-infrared colour-magnitude diagram of NGC 188 resulted in an age of $7....

  13. First discoveries of z~6 quasars with the Kilo Degree Survey and VISTA Kilo-Degree Infrared Galaxy survey

    CERN Document Server

    Venemans, B P; Mwebaze, J; Valentijn, E A; Bañados, E; Decarli, R; de Jong, J T A; Findlay, J R; Kuijken, K H; La Barbera, F; McFarland, J P; McMahon, R G; Napolitano, N; Sikkema, G; Sutherland, W J

    2015-01-01

    We present the results of our first year of quasar search in the on-going ESO public Kilo Degree Survey (KiDS) and VISTA Kilo-Degree Infrared Galaxy (VIKING) surveys. These surveys go up to 2 magnitudes fainter than other wide-field imaging surveys that uncovered predominantly very luminous quasars at z~6. This allows us to probe a more common, fainter population of z~6 quasars. From this first set of combined survey catalogues covering ~250 deg^2 we selected point sources down to Z_AB=22 that had a very red i-Z (i-Z>2.2) colour. After follow-up imaging and spectroscopy, we discovered four new quasars in the redshift range 5.8quasars fainter than M^*, which at z=6 has been estimated to be between M^*=-25.1 and M^*=-27.6. The discovery of 4 quasars in 250 deg^2 of survey data is consistent with predictions based on the z~6 quasar luminosity function. We discuss variou...

  14. Hard X-ray luminosity function and absorption distribution of nearby AGN: INTEGRAL all-sky survey

    CERN Document Server

    Sazonov, S; Krivonos, R; Churazov, E; Sunyaev, R A

    2006-01-01

    Using the INTEGRAL all-sky hard X-ray survey, we study the hard X-ray luminosity function and absorption distribution of local (z5 sigma) on the average IBIS/ISGRI map and 32 are detected only during single observations. Among the former there are 66 non-blazar AGN located at |b|>5 deg, which we use for the calculation of the AGN luminosity function and X-ray absorption distribution. In broad agreement with previous studies, we find that the fraction of obscured (logNH>22) objects is much higher (~70%) among the low-luminosity AGN (Lx10^43.6 erg/s), ~25%, where Lx is the luminosity in the 17-60 keV band. We also find that locally the fraction of Compton-thick AGN is less than 20%. The constructed hard X-ray luminosity function has a canonical smoothly connected two power-law shape in the range 4040 is (1.4+/-0.3) 10^39 erg/s/Mpc^3 (17-60 keV). We show that the spectral shape and amplitude of the CXB can be explained in the simple scenario in which at all redshifts for a given Lx/L*(z) the NH distribution of A...

  15. Sensitive Radio Survey of Obscured Quasar Candidates

    CERN Document Server

    Alexandroff, Rachael M; van Velzen, Sjoert; Greene, Jenny E; Strauss, Michael A

    2016-01-01

    We study the radio properties of moderately obscured quasars over a range of redshifts to understand the role of radio activity in accretion using the Jansky Very Large Array (JVLA) at 6.0GHz and 1.4GHz. Our z~2.5 sample consists of optically-selected obscured quasar candidates, all of which are radio-quiet, with typical radio luminosities of $\

  16. Characterizing the evolving K -band luminosity function using the UltraVISTA, CANDELS and HUDF surveys

    Science.gov (United States)

    Mortlock, Alice; McLure, Ross J.; Bowler, Rebecca A. A.; McLeod, Derek J.; Mármol-Queraltó, Esther; Parsa, Shaghayegh; Dunlop, James S.; Bruce, Victoria A.

    2017-02-01

    We present the results of a new study of the K-band galaxy luminosity function (KLF) at redshifts z ≤ 3.75, based on a nested combination of the UltraVISTA, Cosmic Assembly Near-infrared Deep Legacy Extragalactic Survey and HUDF surveys. The large dynamic range in luminosity spanned by this new data set (3-4 dex over the full redshift range) is sufficient to clearly demonstrate for the first time that the faint-end slope of the KLF at z ≥ 0.25 is relatively steep (-1.3 ≤ α ≤ -1.5 for a single Schechter function), in good agreement with recent theoretical and phenomenological models. Moreover, based on our new data set, we find that a double Schechter function provides a significantly improved description of the KLF at z ≤ 2. At redshifts z ≥ 0.25, the evolution of the KLF is remarkably smooth, with little or no evolution evident at faint (MK ≥ -20.5) or bright magnitudes (MK ≤ -24.5). Instead, the KLF is seen to evolve rapidly at intermediate magnitudes, with the number density of galaxies at MK ≃-23 dropping by a factor of ≃5 over the redshift interval 0.25 ≤ z ≤ 3.75. Motivated by this, we explore a simple description of the evolving KLF based on a double Schechter function with fixed faint-end slopes (α1 = -0.5, α2 = -1.5) and a shared characteristic magnitude (MK^{star }). According to this parametrization, the normalization of the component which dominates the faint end of the KLF remains approximately constant, with φ ^{star }2 decreasing by only a factor of ≃2 between z ≃0 and 3.25. In contrast, the component which dominates the bright end of the KLF at low redshifts evolves dramatically, becoming essentially negligible by z ≃3. Finally, we note that within this parametrization, the observed evolution of MK^{star } between z ≃0 and 3.25 is entirely consistent with MK^{star } corresponding to a constant stellar mass of M⋆ ≃5 × 1010 M⊙ at all redshifts.

  17. The initial luminosity and mass functions of the Galactic open clusters

    CERN Document Server

    Piskunov, A E; Schilbach, E; Röser, S; Scholz, R -D; Zinnecker, H

    2008-01-01

    (... abridged) The observed luminosity function can be constructed in a range of absolute integrated magnitudes $I_{M_V}= [-10, -0.5]$ mag, i.e. about 5 magnitudes deeper than in the most nearby galaxies. It increases linearly from the brightest limit to a turnover at about $I_{M_V}\\approx-2.5$. The slope of this linear portion is $a=0.41\\pm0.01$, which agrees perfectly with the slope deduced for star cluster observations in nearby galaxies. (...) We find that the initial mass function of open clusters (CIMF) has a two-segment structure with the slopes $\\alpha=1.66\\pm0.14$ in the range $\\log M_c/M_\\odot=3.37...4.93$ and $\\alpha=0.82\\pm0.14$ in the range $\\log M_c/M_\\odot=1.7...3.37$. The average mass of open clusters at birth is $4.5\\cdot 10^3 M_\\odot$, which should be compared to the average observed mass of about $700 M_\\odot$. The average cluster formation rate derived from the comparison of initial and observed mass functions is $\\bar{\\upsilon}=0.4 \\mathrm{kpc}^{-2}\\mathrm{Myr}^{-1}$. Multiplying by the a...

  18. Investigating the Structure of the Windy Torus in Quasars

    CERN Document Server

    Gallagher, S C; Abado, M M; Keating, S K

    2015-01-01

    Thermal mid-infrared emission of quasars requires an obscuring structure that can be modeled as a magneto-hydrodynamic wind in which radiation pressure on dust shapes the outflow. We have taken the dusty wind models presented by Keating and collaborators that generated quasar mid-infrared spectral energy distributions (SEDs), and explored their properties (such as geometry, opening angle, and ionic column densities) as a function of Eddington ratio and X-ray weakness. In addition, we present new models with a range of magnetic field strengths and column densities of the dust-free shielding gas interior to the dusty wind. We find this family of models -- with input parameters tuned to accurately match the observed mid-IR power in quasar SEDs -- provides reasonable values of the Type 1 fraction of quasars and the column densities of warm absorber gas, though it does not explain a purely luminosity-dependent covering fraction for either. Furthermore, we provide predictions of the cumulative distribution of E(B-V...

  19. The XXL Survey. II. The bright cluster sample: catalogue and luminosity function

    Science.gov (United States)

    Pacaud, F.; Clerc, N.; Giles, P. A.; Adami, C.; Sadibekova, T.; Pierre, M.; Maughan, B. J.; Lieu, M.; Le Fèvre, J. P.; Alis, S.; Altieri, B.; Ardila, F.; Baldry, I.; Benoist, C.; Birkinshaw, M.; Chiappetti, L.; Démoclès, J.; Eckert, D.; Evrard, A. E.; Faccioli, L.; Gastaldello, F.; Guennou, L.; Horellou, C.; Iovino, A.; Koulouridis, E.; Le Brun, V.; Lidman, C.; Liske, J.; Maurogordato, S.; Menanteau, F.; Owers, M.; Poggianti, B.; Pomarède, D.; Pompei, E.; Ponman, T. J.; Rapetti, D.; Reiprich, T. H.; Smith, G. P.; Tuffs, R.; Valageas, P.; Valtchanov, I.; Willis, J. P.; Ziparo, F.

    2016-06-01

    Context. The XXL Survey is the largest survey carried out by the XMM-Newton satellite and covers a total area of 50 square degrees distributed over two fields. It primarily aims at investigating the large-scale structures of the Universe using the distribution of galaxy clusters and active galactic nuclei as tracers of the matter distribution. The survey will ultimately uncover several hundreds of galaxy clusters out to a redshift of ~2 at a sensitivity of ~10-14 erg s-1 cm-2 in the [0.5-2] keV band. Aims: This article presents the XXL bright cluster sample, a subsample of 100 galaxy clusters selected from the full XXL catalogue by setting a lower limit of 3 × 10-14 erg s-1 cm-2 on the source flux within a 1' aperture. Methods: The selection function was estimated using a mixture of Monte Carlo simulations and analytical recipes that closely reproduce the source selection process. An extensive spectroscopic follow-up provided redshifts for 97 of the 100 clusters. We derived accurate X-ray parameters for all the sources. Scaling relations were self-consistently derived from the same sample in other publications of the series. On this basis, we study the number density, luminosity function, and spatial distribution of the sample. Results: The bright cluster sample consists of systems with masses between M500 = 7 × 1013 and 3 × 1014 M⊙, mostly located between z = 0.1 and 0.5. The observed sky density of clusters is slightly below the predictions from the WMAP9 model, and significantly below the prediction from the Planck 2015 cosmology. In general, within the current uncertainties of the cluster mass calibration, models with higher values of σ8 and/or ΩM appear more difficult to accommodate. We provide tight constraints on the cluster differential luminosity function and find no hint of evolution out to z ~ 1. We also find strong evidence for the presence of large-scale structures in the XXL bright cluster sample and identify five new superclusters. Based on

  20. Mid- and Far-infrared Luminosity Functions and Galaxy Evolution from Multiwavelength Spitzer Observations up to z~2.5

    CERN Document Server

    Rodighiero, G; Franceschini, A; Tresse, L; Le Fèvre, O; Le Brun, V; Mancini, C; Matute, I; Cimatti, A; Marchetti, L; Ilbert, O; Arnouts, S; Bolzonella, M; Zucca, E; Bardelli, S; Lonsdale, C J; Shupe, D; Surace, J; Rowan-Robinson, M; Garilli, B; Zamorani, G; Pozzetti, L; Bondi, M; De la Torre, S; Vergani, D; Santini, P; Grazian, A; Fontana, A

    2009-01-01

    [Abridged]We exploit a large homogeneous dataset to derive a self-consistent picture of IR emission based on the time-dependent 24, 15, 12 and 8micron monochromatic and bolometric IR luminosity functions (LF) over the 01. The mean redshift of the peak in the source number density shifts with luminosity: the brighest IR galaxies appear to be forming stars earlier in cosmic time (z>1.5), while the less luminous ones keep doing it at more recent epochs (z~1 for L (IR)1. We also seem to find a difference in the evolution rate of the source number densities as a function of luminosity, a downsizing evolutionary pattern similar to that reported from other samples of cosmic sources.

  1. Blue outliers among intermediate redshift quasars

    CERN Document Server

    Marziani, P; Stirpe, G M; Dultzin, D; Del Olmo, A; Martínez-Carballo, M A

    2015-01-01

    [Oiii]{\\lambda}{\\lambda}4959,5007 "blue outliers" -- that are suggestive of outflows in the narrow line region of quasars -- appear to be much more common at intermediate z (high luminosity) than at low z. About 40% of quasars in a Hamburg ESO intermediate-z sample of 52 sources qualify as blue outliers (i.e., quasars with [OIII] {\\lambda}{\\lambda}4959,5007 lines showing large systematic blueshifts with respect to rest frame). We discuss major findings on what has become an intriguing field in active galactic nuclei research and stress the relevance of blue outliers to feedback and host galaxy evolution.

  2. Moderate resolution spectrophotometry of high redshift quasars

    Science.gov (United States)

    Schneider, Donald P.; Schmidt, Maarten; Gunn, James E.

    1991-01-01

    A uniform set of photometry and high signal-to-noise moderate resolution spectroscopy of 33 quasars with redshifts larger than 3.1 is presented. The sample consists of 17 newly discovered quasars (two with redshifts in excess of 4.4) and 16 sources drawn from the literature. The objects in this sample have r magnitudes between 17.4 and 21.4; their luminosities range from -28.8 to -24.9. Three of the 33 objects are broad absorption line quasars. A number of possible high redshift damped Ly-alpha systems were found.

  3. The local luminosity function of star-forming galaxies derived from the Planck Early Release Compact Source Catalogue

    Science.gov (United States)

    Negrello, M.; Clemens, M.; Gonzalez-Nuevo, J.; De Zotti, G.; Bonavera, L.; Cosco, G.; Guarese, G.; Boaretto, L.; Serjeant, S.; Toffolatti, L.; Lapi, A.; Bethermin, M.; Castex, G.; Clements, D. L.; Delabrouille, J.; Dole, H.; Franceschini, A.; Mandolesi, N.; Marchetti, L.; Partridge, B.; Sajina, A.

    2013-02-01

    The Planck Early Release Compact Source Catalogue (ERCSC) has offered the first opportunity to accurately determine the luminosity function of dusty galaxies in the very local Universe (i.e. distances ≲100 Mpc), at several (sub-)millimetre wavelengths, using blindly selected samples of low-redshift sources, unaffected by cosmological evolution. This project, however, requires careful consideration of a variety of issues including the choice of the appropriate flux density measurement, the separation of dusty galaxies from radio sources and from Galactic sources, the correction for the CO emission, the effect of density inhomogeneities and more. We present estimates of the local luminosity functions at 857 GHz (350 μm), 545 GHz (550 μm) and 353 GHz (850 μm) extending across the characteristic luminosity L⋆, and a preliminary estimate over a limited luminosity range at 217 GHz (1382 μm). At 850 μm and for luminosities L ≳ L⋆ our results agree with previous estimates, derived from the Submillimeter Common-User Bolometer Array (SCUBA) Local Universe Galaxy Survey, but are higher than the latter at L ≲ L⋆. We also find good agreement with estimates at 350 and 500 μm based on preliminary Herschel survey data.

  4. Astrometric Redshifts for Quasars

    CERN Document Server

    Kaczmarczik, Michael C; Mehta, Sajjan S; Schlegel, David J

    2009-01-01

    The wavelength dependence of atmospheric refraction causes differential chromatic refraction (DCR), whereby objects imaged at different optical/UV wavelengths are observed at slightly different positions in the plane of the detector. Strong spectral features induce changes in the effective wavelengths of broad-band filters that are capable of producing significant positional offsets with respect to standard DCR corrections. We examine such offsets for broad-emission-line (type 1) quasars from the Sloan Digital Sky Survey (SDSS) spanning 0quasar spectrum with the SDSS bandpasses as a function of redshift and airmass. This astrometric information can be used to break degeneracies in photometric redshifts of quasars (or other emission-line sources) and, for extreme cases, may be suitable for determining "astrometric redshifts". On the SDSS's southern equatorial stripe, where it is pos...

  5. Extremely red quasars in BOSS

    Science.gov (United States)

    Hamann, Fred; Zakamska, Nadia L.; Ross, Nicholas; Paris, Isabelle; Alexandroff, Rachael M.; Villforth, Carolin; Richards, Gordon T.; Herbst, Hanna; Brandt, W. Niel; Cook, Ben; Denney, Kelly D.; Greene, Jenny E.; Schneider, Donald P.; Strauss, Michael A.

    2017-01-01

    Red quasars are candidate young objects in an early transition stage of massive galaxy evolution. Our team recently discovered a population of extremely red quasars (ERQs) in the Baryon Oscillation Spectroscopic Survey (BOSS) that has a suite of peculiar emission-line properties including large rest equivalent widths (REWs), unusual `wingless' line profiles, large N V/Lyα, N V/C IV, Si IV/C IV and other flux ratios, and very broad and blueshifted [O III] λ5007. Here we present a new catalogue of C IV and N V emission-line data for 216 188 BOSS quasars to characterize the ERQ line properties further. We show that they depend sharply on UV-to-mid-IR colour, secondarily on REW(C IV), and not at all on luminosity or the Baldwin Effect. We identify a `core' sample of 97 ERQs with nearly uniform peculiar properties selected via i-W3 ≥ 4.6 (AB) and REW(C IV) ≥ 100 Å at redshifts 2.0-3.4. A broader search finds 235 more red quasars with similar unusual characteristics. The core ERQs have median luminosity ˜ 47.1, sky density 0.010 deg-2, surprisingly flat/blue UV spectra given their red UV-to-mid-IR colours, and common outflow signatures including BALs or BAL-like features and large C IV emission-line blueshifts. Their SEDs and line properties are inconsistent with normal quasars behind a dust reddening screen. We argue that the core ERQs are a unique obscured quasar population with extreme physical conditions related to powerful outflows across the line-forming regions. Patchy obscuration by small dusty clouds could produce the observed UV extinctions without substantial UV reddening.

  6. Galaxy Luminosity Function of Dynamically Young Abell 119 Cluster: Probing the Cluster Assembly

    CERN Document Server

    Lee, Youngdae; Hilker, Michael; Sheen, Yun-Kyeong; Yi, Sukyoung K

    2016-01-01

    We present the galaxy luminosity function (LF) of the Abell 119 cluster down to $M_r\\sim-14$ mag based on deep images in the $u$-, $g$-, and $r$-bands taken by using MOSAIC II CCD mounted on the Blanco 4m telescope at the CTIO. The cluster membership was accurately determined based on the radial velocity information as well as on the color-magnitude relation for bright galaxies and the scaling relation for faint galaxies. The overall LF exhibits a bimodal behavior with a distinct dip at $r\\sim18.5$ mag ($M_r\\sim-17.8$ mag), which is more appropriately described by a two-component function. The shape of the LF strongly depends on the cluster-centric distance and on the local galaxy density. The LF of galaxies in the outer, low-density region exhibits a steeper slope and more prominent dip compared with that of counterparts in the inner, high-density region. We found evidence for a substructure in the projected galaxy distribution in which several overdense regions in the Abell 119 cluster appear to be closely ...

  7. Occurence and Luminosity Functions of Giant Radio Halos from Magneto-Turbulent Model

    CERN Document Server

    Cassano, R; Setti, G; Cassano, Rossella; Brunetti, Gianfranco; Setti, Giancarlo

    2004-01-01

    We calculate the probability to form giant radio halos (~ 1 Mpc size) as a function of the mass of the host clusters by using a Statistical Magneto-Turbulent Model (Cassano & Brunetti, these proceedings). We show that the expectations of this model are in good agreement with the observations for viable values of the parameters. In particular, the abrupt increase of the probability to find radio halos in the more massive galaxy clusters (M > 2x10^{15} solar masses) can be well reproduced. We calculate the evolution with redshift of such a probability and find that giant radio halos can be powered by particle acceleration due to MHD turbulence up to z~0.5 in a LCDM cosmology. Finally, we calculate the expected Luminosity Functions of radio halos (RHLFs). At variance with previous studies, the shape of our RHLFs is characterized by the presence of a cut-off at low synchrotron powers which reflects the inefficiency of particle acceleration in the case of less massive galaxy clusters.

  8. Autofib Redshift Survey; 2, The Evolution of the Galaxy Luminosity Function by Spectral Type

    CERN Document Server

    Heyl, J S; Ellis, Richard S; Broadhurst, T J; Heyl, Jeremy; Colless, Matthew; Ellis, Richard S.; Broadhurst, Tom

    1996-01-01

    We determine the evolution of the galaxy luminosity function (LF) as a function of spectral type using the Autofib redshift survey, a compendium of over 1700 galaxy redshifts in various magnitude-limited samples spanning b_J=11.5-24.0. To carry out this analysis we have developed a cross-correlation technique which classifies faint galaxy spectra into one of six types based on local galaxy templates. Tests and simulations show that this technique yields classifications correct to within one type for more than 90% of the galaxies in our sample. We have also developed extensions of the step-wise maximum likelihood method and the STY parametric method for estimating LFs which are applicable to recovering an evolving LF from multiple samples. We find that: (i) The spectra and LF of E/S0 galaxies show no appreciable evolution out to at least z ~ 0.5. (ii) Early-type spirals show modest evolution, characterised by a gradual steepening of the faint end of their LF with redshift. (iii) Out to z ~ 0.5, the overall evo...

  9. The optical luminosity function of gamma-ray bursts deduced from ROTSE-III observations

    Energy Technology Data Exchange (ETDEWEB)

    Cui, X. H.; Wu, X. F.; Wei, J. J. [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Yuan, F. [Research School of Astronomy and Astrophysics, The Australian National University, Weston Creek, ACT 2611 (Australia); Zheng, W. K. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Liang, E. W. [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Akerlof, C. W.; McKay, T. A. [Department of Physics, University of Michigan, Ann Arbor, MI 48109 (United States); Ashley, M. C. B. [School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia); Flewelling, H. A. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Göǧüş, E. [Sabancı University, Orhanlı-Tuzla, 34956 İstanbul (Turkey); Güver, T. [Department of Astronomy and Space Sciences, Istanbul University Science Faculty, 34119 Istanbul (Turkey); Kızıloǧlu, Ü. [Middle East Technical University, 06531 Ankara (Turkey); Pandey, S. B. [ARIES, Manora Peak, Nainital 263129, Uttarakhand (India); Rykoff, E. S. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Rujopakarn, W. [Department of Physics, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330 (Thailand); Schaefer, B. E. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Wheeler, J. C. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Yost, S. A., E-mail: xhcui@bao.ac.cn, E-mail: xfwu@pmo.ac.cn, E-mail: jjwei@pmo.ac.cn, E-mail: fang.yuan@anu.edu.au, E-mail: zwk@astro.berkeley.edu, E-mail: lew@gxu.edu.cn [Department of Physics, College of St. Benedict, St. John' s University, Collegeville, MN 56321 (United States)

    2014-11-10

    We present the optical luminosity function (LF) of gamma-ray bursts (GRBs) estimated from a uniform sample of 58 GRBs from observations with the Robotic Optical Transient Search Experiment III (ROTSE-III). Our GRB sample is divided into two sub-samples: detected afterglows (18 GRBs) and those with upper limits (40 GRBs). We derive R-band fluxes for these two sub-samples 100 s after the onset of the burst. The optical LFs at 100 s are fitted by assuming that the co-moving GRB rate traces the star formation rate. While fitting the optical LFs using Monte Carlo simulations, we take into account the detection function of ROTSE-III. We find that the cumulative distribution of optical emission at 100 s is well described by an exponential rise and power-law decay, a broken power law,and Schechter LFs. A single power-law (SPL) LF, on the other hand, is ruled out with high confidence.

  10. The Optical Luminosity Function of Gamma-ray Bursts deduced from ROTSE-III Observations

    CERN Document Server

    Cui, X H; Wei, J J; Yuan, F; Zheng, W K; Liang, E W; Akerlof, C W; Ashley, M C B; Flewelling, H A; Gogus, E; Guver, T; Kiziloglu, U; McKay, T A; Pandey, S B; Rykoff, E S; Rujopakarn, W; Schaefer, B E; Wheeler, J C; Yost, S A

    2014-01-01

    We present the optical luminosity function (LF) of gamma-ray bursts (GRBs) estimated from a uniform sample of 58 GRBs from observations with the Robotic Optical Transient Search Experiment III (ROTSE-III). Our GRB sample is divided into two sub-samples: detected afterglows (18 GRBs), and those with upper limits (40 GRBs). The $R$ band fluxes 100s after the onset of the burst for these two sub-samples are derived. The optical LFs at 100s are fitted by assuming that the co-moving GRB rate traces the star-formation rate. The detection function of ROTSE-III is taken into account during the fitting of the optical LFs by using Monte Carlo simulations. We find that the cumulative distribution of optical emission at 100s is well-described with an exponential rise and power-law decay (ERPLD), broken power-law (BPL), and Schechter LFs. A single power-law (SPL) LF, on the other hand, is ruled out with high confidence.

  11. The Norma cluster (ACO3627): II. The near infrared K_s-band luminosity function

    CERN Document Server

    Skelton, R E; Kraan-Korteweg, R C

    2009-01-01

    A deep K_s-band photometric catalogue of galaxies at the core of the rich, nearby Norma cluster (ACO3627) is presented. The survey covers about 45 by 45 square arcmin (slightly less than 1/3 Abell radius), which corresponds to approx. 0.8 Mpc^2 at the adopted distance (v_cmb/H0) of 70 Mpc of this cluster. The survey is estimated to be complete to a magnitude of M_Ks <~ -19.5 mag. This extends into the dwarf regime, 6 magnitudes below M_Ks*. The catalogue contains 390 objects, 235 of which are classified as likely or definite galaxies and 155 as candidate galaxies. The Ks-band luminosity function (LF) is constructed from the photometric sample, using a spectroscopic subsample to correct for fore- and background contamination. We fit a Schechter function with a characteristic magnitude of M_Ks* = -25.39 \\pm 0.80 mag and faint-end slope of alpha = -1.26 \\pm 0.10 to the data. The shape of the LF is similar to those found in previous determinations of the cluster LF, in both optical and near infrared. The Schec...

  12. The Luminosity and Stellar Mass Functions of Red W1-W2 Galaxies

    CERN Document Server

    O'Connor, Jessica A; Satyapal, Shobita; Secrest, Nathan J

    2016-01-01

    We present a study of nearby galaxies as a function of their [3.4]-[4.6] colour. Galaxies that are red in their [3.4]-[4.6] colour contain heated dust and the reddest systems ([3.4]-[4.6] > 0.5) are classified as AGN by some selection criteria. The sample discussed here includes nearby galaxies selected from the Sloan Digital Sky Survey (SDSS) that are also in the Wide-field Infrared Survey Explorer (WISE) catalogue. We calculate the number density of galaxies, in the form of the luminosity and mass functions, using the V/Vmax method and a Stepwise Maximum Likelihood method that has been modified to account for the additional colour selection. The reddest galaxies which have [3.4]-[4.6] > 0.8 and are sometimes classified as AGN by their colour, make up 0.2% of nearby galaxies. However, the reddest galaxies are a rising fraction of the low mass galaxy population. Identifying the lowest mass (M 0.8) galaxies as AGN is surprising given that none are optical AGN or composites, in contrast with their more massive...

  13. Extremely Red Quasars in BOSS

    CERN Document Server

    Hamann, Fred; Ross, Nicholas; Paris, Isabelle; Alexandroff, Rachael M; Villforth, Carolin; Richards, Gordon T; Herbst, Hanna; Brandt, W Niel; Cook, Ben; Denney, Kelly D; Greene, Jenny E; Schneider, Donald P; Strauss, Michael A

    2016-01-01

    Red quasars are candidate young objects in an early transition stage of massive galaxy evolution. Our team recently discovered a population of extremely red quasars (ERQs) in the Baryon Oscillation Spectroscopic Survey (BOSS) that has a suite of peculiar emission-line properties including large rest equivalent widths (REWs), unusual "wingless" line profiles, large NV/Lya, NV/CIV, SiIV/CIV and other flux ratios, and very broad and blueshifted [OIII] 5007. Here we present a new catalog of CIV and NV emission-line data for 216,188 BOSS quasars to characterize the ERQ line properties further. We show that they depend sharply on UV-to-mid-IR color, secondarily on REW(CIV), and not at all on luminosity or the Baldwin Effect. We identify a "core" sample of 97 ERQs with nearly uniform peculiar properties selected via i-W3 > 4.6 (AB) and REW(CIV) > 100 A at redshifts 2.0-3.4. A broader search finds 235 more red quasars with similar unusual characteristics. The core ERQs have median luminosity log L (ergs/s) ~ 47.1, sk...

  14. Hubble Space Telescope Ultraviolet spectroscopy of 14 low-redshift quasars

    NARCIS (Netherlands)

    Ganguly, R.; Kaastra, J.S.

    2007-01-01

    We present low-resolution ultraviolet spectra of 14 low-redshift quasars observed with the Hubble Space Telescope STIS as part of a Snapshot project to understand the relationship between quasar outflows and luminosity. The quasar is radio-loud but has a steep spectral index and a lobe-dominated

  15. An Apparent Redshift Dependence of Quasar Continuum: Implication for Cosmic Dust Extinction?

    CERN Document Server

    Xie, Xiaoyi; Shao, Zhengyi; Yin, Jun

    2015-01-01

    We investigate the luminosity and redshift dependence of the quasar continuum by means of composite spectrum using a large non-BAL radio-quiet quasar sample drawn from the Sloan Digital Sky Survey. Quasar continuum slopes in the UV-Opt band are measured at two different wavelength ranges, i.e., $\\alpha_{\

  16. Quasars Probing Quasars VI. Excess HI Absorption Within One Proper Mpc of z~2 Quasars

    CERN Document Server

    Prochaska, J Xavier; Lee, Khee-Gan; Cantalupo, Sebastiano; Bovy, Jo; Djorgovski, S G; Ellison, Sara L; Lau, Marie Wingyee; Martin, Crystal L; Myers, Adam; Rubin, Kate H R; Simcoe, Robert A

    2013-01-01

    With close pairs of quasars at different redshifts, a background quasar sightline can be used to study a foreground quasar's environment in absorption. We use a sample of 650 projected quasar pairs to study the HI Lya absorption transverse to luminous, z~2 quasars at proper separations of 30kpc 17.3) at separations R<200kpc, which decreases to ~20% at R~1Mpc, but still represents a significant excess over the cosmic average. This excess of optically thick absorption can be described by a quasar-absorber cross-correlation function xi_QA(r) = (r/r_0)^gamma with a large correlation length r_0 = 12.5+2.7-1.4 Mpc/h (comoving) and gamma = 1.68+0.14-0.30. The HI absorption measured around quasars exceeds that of any previously studied population, consistent with quasars being hosted by massive dark matter halos Mhalo~10^12.5 Msun at z~2.5. The environments of these massive halos are highly biased towards producing optically thick gas, and may even dominate the cosmic abundance of Lyman limit systems and hence th...

  17. Subaru Telescope adaptive optics observations of gravitationally lensed quasars in the Sloan Digital Sky Survey

    CERN Document Server

    Rusu, Cristian E; Minowa, Yosuke; Iye, Masanori; Inada, Naohisa; Oya, Shin; Kayo, Issha; Hayano, Yutaka; Hattori, Masayuki; Saito, Yoshihiko; Ito, Meguru; Pyo, Tae-Soo; Terada, Hiroshi; Takami, Hideki; Watanabe, Makoto

    2015-01-01

    We present the results of an imaging observation campaign conducted with the Subaru Telescope adaptive optics system (IRCS+AO188) on 26 gravitationally lensed quasars (24 doubles, 1 quad, and 1 possible triple) from the SDSS Quasar Lens Search. We develop a novel modelling technique that fits analytical and hybrid point spread functions (PSFs), while simultaneously measuring the relative astrometry, photometry, as well as the lens galaxy morphology. We account for systematics by simulating the observed systems using separately observed PSF stars. The measured relative astrometry is comparable with that typically achieved with the Hubble Space Telescope, even after marginalizing over the PSF uncertainty. We model for the first time the quasar host galaxies in 5 systems, without a-priory knowledge of the PSF, and show that their luminosities follow the known correlation with the mass of the supermassive black hole. For each system, we obtain mass models far more accurate than those previously published from low...

  18. Tracing dark energy with quasars

    CERN Document Server

    Średzińska, J; Bilicki, M; Hryniewicz, K; Krupa, M; Kurcz, A; Marziani, P; Pollo, A; Pych, W; Udalski, A

    2016-01-01

    The nature of dark energy, driving the accelerated expansion of the Universe, is one of the most important issues in modern astrophysics. In order to understand this phenomenon, we need precise astrophysical probes of the universal expansion spanning wide redshift ranges. Quasars have recently emerged as such a probe, thanks to their high intrinsic luminosities and, most importantly, our ability to measure their luminosity distances independently of redshifts. Here we report our ongoing work on observational reverberation mapping using the time delay of the Mg II line, performed with the South African Large Telescope (SALT).

  19. Deep Luminosity Functions and Colour-Magnitude Relations for Cluster Galaxies at 0.2 < z < 0.6

    CERN Document Server

    De Propris, R; Bremer, M

    2013-01-01

    We derive deep $I$ band luminosity functions and colour-magnitude diagrams from HST imaging for eleven $0.2 0.4$ that are not encountered locally. Surface brightness selection effects preferentially influence the detectability of faint red galaxies, accounting for claims of evolution at the faint end.

  20. The European Large Area ISO Survey - IX. The 90-mu m luminosity function from the Final Analysis sample

    NARCIS (Netherlands)

    Serjeant, S; Carraminana, A; Gonzales-Solares, E; Heraudeau, P; Mujica, R; Perez-Fournon, [No Value; Sedgwick, N; Rowan-Robinson, M; Franceschini, A; Babbedge, T; del Burgo, C; Ciliegi, P; Efstathiou, A; La Franca, F; Gruppioni, C; Hughes, D; Lari, C; Oliver, S; Pozzi, F; Stickel, M; Vaccari, M

    2004-01-01

    We present the 90-mum luminosity function of the Final Analysis of the European Large Area ISO Survey (ELAIS), extending the sample size of our previous analysis (Paper IV) by about a factor of 4. Our sample extends to z = 1.1, similar to50 times the comoving volume of Paper IV, and 10(7.7)

  1. Revisiting the axion bounds from the Galactic white dwarf luminosity function

    Energy Technology Data Exchange (ETDEWEB)

    Bertolami, M.M. Miller [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85748, Garching (Germany); Melendez, B.E.; Althaus, L.G. [Instituto de Astrofísica de La Plata, UNLP-CONICET, Paseo del Bosque s/n, 1900 La Plata (Argentina); Isern, J., E-mail: marcelo@MPA-Garching.MPG.DE, E-mail: brenmele@gmail.com, E-mail: althaus@fcaglp.fcaglp.unlp.edu.ar, E-mail: isern@ieec.cat [Institut de Ciéncies de l' Espai (CSIC), Facultat de Ciéncies, Campus UAB, Torre C5-parell, 08193 Bellaterra (Spain)

    2014-10-01

    It has been shown that the shape of the luminosity function of white dwarfs (WDLF) is a powerful tool to check for the possible existence of DFSZ-axions, a proposed but not yet detected type of weakly interacting particles. With the aim of deriving new constraints on the axion mass, we compute in this paper new theoretical WDLFs on the basis of WD evolving models that incorporate the feedback of axions on the thermal structure of the white dwarf. We find that the impact of the axion emission into the neutrino emission can not be neglected at high luminosities M{sub  Bol}∼< 8) and that the axion emission needs to be incorporated self-consistently into the evolution of the white dwarfs when dealing with axion masses larger than m{sub a} cos {sup 2}β∼> 5 meV (i.e. axion-electron coupling constant g{sub ae}∼> 1.4× 10{sup -13}). We went beyond previous works by including 5 different derivations of the WDLF in our analysis. Then we have performed χ{sup 2}-tests to have a quantitative measure of the agreement between the theoretical WDLFs — computed under the assumptions of different axion masses and normalization methods --- and the observed WDLFs of the Galactic disk. While all the WDLF studied in this work disfavour axion masses in the range suggested by asteroseismology m{sub a} cos {sup 2}β∼> 10 meV; g{sub ae}∼> 2.8× 10{sup -13}) lower axion masses can not be discarded from our current knowledge of the WDLF of the Galactic Disk. A larger set of completely independent derivations of the WDLF of the galactic disk as well as a detailed study of the uncertainties of the theoretical WDLFs is needed before quantitative constraints on the axion-electron coupling constant can be made.

  2. Effect of primordial non-Gaussianities on the far-UV luminosity function of high-redshift galaxies: implications for cosmic reionization

    Science.gov (United States)

    Chevallard, Jacopo; Silk, Joseph; Nishimichi, Takahiro; Habouzit, Melanie; Mamon, Gary A.; Peirani, Sébastien

    2015-01-01

    Understanding how the intergalactic medium (IGM) was reionized at z ≳ 6 is one of the big challenges of current high-redshift astronomy. It requires modelling the collapse of the first astrophysical objects (Pop III stars, first galaxies) and their interaction with the IGM, while at the same time pushing current observational facilities to their limits. The observational and theoretical progress of the last few years have led to the emergence of a coherent picture in which the budget of hydrogen-ionizing photons is dominated by low-mass star-forming galaxies, with little contribution from Pop III stars and quasars. The reionization history of the Universe therefore critically depends on the number density of low-mass galaxies at high redshift. In this work, we explore how changes in the cosmological model, and in particular in the statistical properties of initial density fluctuations, affect the formation of early galaxies. Following Habouzit et al. (2014), we run five different N-body simulations with Gaussian and (scale-dependent) non-Gaussian initial conditions, all consistent with Planck constraints. By appealing to a phenomenological galaxy formation model and to a population synthesis code, we compute the far-UV galaxy luminosity function down to MFUV = -14 at redshift 7 ≤ z ≤ 15. We find that models with strong primordial non-Gaussianities on ≲ Mpc scales show a far-UV luminosity function significantly enhanced (up to a factor of 3 at z = 14) in low-mass galaxies. We adopt a reionization model calibrated from state-of-the-art hydrodynamical simulations and show that such scale-dependent non-Gaussianities leave a clear imprint on the Universe reionization history and electron Thomson scattering optical depth τe. Although current uncertainties in the physics of reionization and on the determination of τe still dominate the signatures of non-Gaussianities, our results suggest that τe could ultimately be used to constrain the statistical properties

  3. A turn-over in the galaxy luminosity function of the coma cluster core?

    CERN Document Server

    Adami, C; Durret, F; Nichol, R C; Mazure, A; Holden, B P; Romer, A K; Savine, C

    2000-01-01

    Our previous study of the faint end (R$\\leq$21.5) of the galaxy luminosity function (GLF) was based on spectroscopic data in a small region near the Coma cluster center. In this previous study Adami et al. (1998) suggested, with moderate statistical significance, that the number of galaxies actually belonging to the cluster was much smaller than expected. This led us to increase our spectroscopic sample. Here, we have improved the statistical significance of the results of the Coma GLF faint end study (R$\\leq$22.5) by using a sample of 85 redshifts. This includes both new spectroscopic data and a literature compilation. The relatively small number of faint galaxies belonging to Coma that was suggested by Adami et al. (1998) and Secker et al. (1998) has been confirmed with these new observations. We also confirm that the color-magnitude relation is not well suited for finding the galaxies inside the Coma cluster core, close to the center at magnitudes fainter than R$\\sim$19. We show that there is an enhancemen...

  4. The Bright End of the UV Luminosity Function at z~8: New Constraints from CANDELS Data

    CERN Document Server

    Oesch, P A; Illingworth, G D; Gonzalez, V; Trenti, M; van Dokkum, P G; Franx, M; Labbe, I; Carollo, C M; Magee, D

    2012-01-01

    We present new z~8 galaxy candidates from a search over ~95 arcmin^2 of WFC3/IR data. These are used to determine the bright end of the UV luminosity function (LF) of star-forming galaxies at z~8. Our analysis is based on newly acquired WFC3/IR imaging data obtained as part of the CANDELS Multi-Cycle Treasury program over the GOODS South field, which allows us to triple the search area for bright z~8 galaxies in the GOODS South. These new data are combined with existing deep optical ACS imaging to search for relatively bright (M_UV<-19.5 mag) z~8 galaxy candidates using the Lyman Break technique. To minimize contamination from lower redshift galaxies, we make full use of all optical data and impose strict non-detection criteria based on an optical chi^2_opt flux measurement. In the whole search area we identify 11 candidate z~8 galaxies, spanning a magnitude range H_160,AB =25.8-27.5 mag. The new data show that the UV LF is a factor ~2 lower at M_UV < -19.5 mag than previously determined. Combining this...

  5. Complete Hard X-Ray Surveys, AGN Luminosity Functions and the X-Ray Background

    Science.gov (United States)

    Tueller, Jack

    2011-01-01

    AGN are believed to make up most of the Cosmic X-Ray Background (CXB) above a few keV, but this background cannot be fully resolved at energies less than 10 keV due to absorption. The Swift/BAT and INTEGRAL missions are performing the first complete hard x-ray surveys with minimal bias due to absorption. The most recent results for both missions will be presented. Although the fraction of the CXB resolved by these surveys is small, it is possible to derive unbiased number counts and luminosity functions for AGN in the local universe. The survey energy range from 15-150 keV contains the important reflection and cutoff spectral features dominate the shape of the AGN contribution to the CXB. Average spectral characteristics of survey detected AGN will be presented and compared with model distributions. The numbers of hard x-ray blazars detected in these surveys are finally sufficient to estimate this important component's contribution the cosmic background. Constraints on CXB models and their significance will be discussed.

  6. High Frequency Cluster Radio Galaxies: Luminosity Functions and Implications for SZE Selected Cluster Samples

    CERN Document Server

    Gupta, N; Mohr, J J; Benson, B A; Bocquet, S; Carlstrom, J E; Capasso, R; Chiu, I; Crawford, T M; de Haan, T; Dietrich, J P; Gangkofner, C; Holzapfel, W L; McDonald, M; Rapetti, D; Reichardt, C L

    2016-01-01

    We study the overdensity of point sources in the direction of X-ray-selected galaxy clusters from the Meta-Catalog of X-ray detected Clusters of galaxies (MCXC; $\\langle z \\rangle = 0.14$) at South Pole Telescope (SPT) and Sydney University Molonglo Sky Survey (SUMSS) frequencies. Flux densities at 95, 150 and 220 GHz are extracted from the 2500 deg$^2$ SPT-SZ survey maps at the locations of SUMSS sources, producing a multi-frequency catalog of radio galaxies. In the direction of massive galaxy clusters, the radio galaxy flux densities at 95 and 150 GHz are biased low by the cluster Sunyaev-Zel'dovich Effect (SZE) signal, which is negative at these frequencies. We employ a cluster SZE model to remove the expected flux bias and then study these corrected source catalogs. We find that the high frequency radio galaxies are centrally concentrated within the clusters and that their luminosity functions (LFs) exhibit amplitudes that are characteristically an order of magnitude lower than the cluster LF at 843 MHz. ...

  7. A critical analysis of the UV Luminosity Function at redshift~7 from deep WFC3 data

    CERN Document Server

    Grazian, A; Koekemoer, A M; Fontana, A; Pentericci, L; Testa, V; Boutsia, K; Giallongo, E; Giavalisco, M; Santini, P

    2010-01-01

    The study of the Luminosity Function (LF) of Lyman Break Galaxies (LBGs) at z=7 is important for ascertaining their role in the reionization of the Universe. We perform a detailed and critical analysis of the statistical and systematic errors in the z~7 LF determination: we have assembled a large sample of candidate LBGs at z~7 from different surveys, spanning a large variety of areas and depths. In particular, we have combined data from the deep (J<27.4) and ultradeep (J<29.2) surveys recently acquired with the new WFC3 NIR camera on HST, over the GOODS-ERS and the HUDF fields, with ground based surveys in wide and shallow areas from VLT and Subaru. We have used public ACS images in the z-band to select z-dropout galaxies, and other public data both in the blue (BVI) and in the red bands to reject possible low-redshift interlopers. We have compared our results with extensive simulations to quantify the observational effects of our selection criteria as well as the effects of photometric scatter, color ...

  8. A revised planetary nebula luminosity function distance to NGC 628 using MUSE

    CERN Document Server

    Kreckel, K; Bigiel, F; Blanc, G; Kruijssen, J M D; Hughes, A; Schruba, A; Schinnerer, E

    2016-01-01

    Distance uncertainties plague our understanding of the physical scales relevant to the physics of star formation in extragalactic studies. The planetary nebulae luminosity function (PNLF) is one of very few techniques that can provide distance estimates to within ~10%, however it requires a planetary nebula (PN) sample that is uncontaminated by other ionizing sources. We employ optical IFU spectroscopy using MUSE on the VLT to measure [OIII] line fluxes for sources unresolved on 50 pc scales within the central star-forming galaxy disk of NGC 628. We use diagnostic line ratios to identify 62 PNe, 30 supernova remnants and 87 HII regions within our fields. Using the 36 brightest PNe we determine a new PNLF distance modulus of 29.91^{+0.08}_{-0.13} mag (9.59^{+0.35}_{-0.57} Mpc), in good agreement with literature values but significantly larger than the previously reported PNLF distance. We are able to explain the discrepancy and recover the previous result when we reintroduce SNR contaminants to our sample. Thi...

  9. The Cosmic Rate, Luminosity Function and Intrinsic Correlations of Long GRBs

    CERN Document Server

    Butler, Nathaniel R; Poznanski, Dovi

    2009-01-01

    We calculate durations and spectral parameters for 207 Swift bursts detected by the BAT instrument from April 2007 to August 2009, including 67 events with measured redshifts. This is the first supplement to our catalog of 425 Swift GRBs (147 with redshifts) starting from GRB041220. This complete and extensive data set, analyzed with a unified methodology, allows us to conduct an accurate census of intrinsic GRB energetics, hardnesses, durations, and redshifts. The GRB world model we derive reproduces well the observables from both Swift and pre-Swift satellites. Comparing to the cosmic star formation rate, we estimate that only about 0.1% of massive stars explode as bright GRBs. There is strong evidence for evolution in the Swift population at intermediate and high-z, and we can rule out (at the 5-sigma level) that this is due to evolution in the luminosity function of GRBs. Instead, the Swift sample suggests a modest propensity for low-metallicity, evidenced by an increase in the rate density with redshift....

  10. Semi-transparent Perovskite Solar Cells Developed by Considering Human Luminosity Function.

    Science.gov (United States)

    Kim, Gyu Min; Tatsuma, Tetsu

    2017-09-06

    Semi-transparent solar cells draw a great deal of attention because their applications include, for instance, photovoltaic windows. General approach to semi-transparent cells is using thin active layers or island-type structures. Here we take human luminosity function into account, and develop solar cells that harvest photons in the wavelength regions in which human eyes are less sensitive to light. We used an organic-inorganic hybrid perovskite, which is sensitive to light particularly in the blue and deep-blue regions, and plasmonic silver nanocubes that enhance light harvesting in the red and deep-red ranges. In order to tune the plasmonic wavelength to that range, we took advantage of electrode-coupled plasmons (ECPs). We prepared non-plasmonic semi-transparent solar cells, and reduced the active layer thickness and introduced ECPs, so that the visual transparency index and power conversion efficiency of the cell were improved by 28% and 6%, respectively, of the initial values.

  11. A Revised Planetary Nebula Luminosity Function Distance to NGC 628 Using MUSE

    Science.gov (United States)

    Kreckel, K.; Groves, B.; Bigiel, F.; Blanc, G. A.; Kruijssen, J. M. D.; Hughes, A.; Schruba, A.; Schinnerer, E.

    2017-01-01

    Distance uncertainties plague our understanding of the physical scales relevant to the physics of star formation in extragalactic studies. The planetary nebulae luminosity function (PNLF) is one of very few techniques that can provide distance estimates to within ∼10% however, it requires a planetary nebula (PN) sample that is uncontaminated by other ionizing sources. We employ optical integral field unit spectroscopy using the Multi-Unit Spectroscopic Explorer on the Very Large Telescope to measure [O iii] line fluxes for sources unresolved on 50 pc scales within the central star-forming galaxy disk of NGC 628. We use diagnostic line ratios to identify 62 PNe, 30 supernova remnants, and 87 H ii regions within our fields. Using the 36 brightest PNe, we determine a new PNLF distance modulus of {29.91}-0.13+0.08 mag (9.59{}-0.57+0.35 Mpc), which is in good agreement with literature values, but significantly larger than the previously reported PNLF distance. We are able to explain the discrepancy and recover the previous result when we reintroduce SNR contaminants to our sample. This demonstrates the power of full spectral information over narrowband imaging in isolating PNe. Given our limited spatial coverage within the Galaxy, we show that this technique can be used to refine distance estimates, even when IFU observations cover only a fraction of a galaxy disk.

  12. The Faint End Slopes Of Galaxy Luminosity Functions In The COSMOS 2-Square Degree Field

    CERN Document Server

    Liu, Charles T; Mobasher, Bahram; Paglione, Timothy A D; Rich, R Michael; Scoville, Nicholas Z; Tribiano, Shana M; Tyson, Neil D

    2007-01-01

    We examine the faint-end slope of the rest-frame V-band luminosity function (LF), with respect to galaxy spectral type, of field galaxies with redshift z<0.5, using a sample of 80,820 galaxies with photometric redshifts in the Cosmic Evolution Survey (COSMOS) field. For all galaxy spectral types combined, the LF slope, alpha, ranges from -1.24 to -1.12, from the lowest redshift bin to the highest. In the lowest redshift bin (0.02

  13. Hidden Photon Compton and Bremsstrahlung in White Dwarf Anomalous Cooling and Luminosity Functions

    CERN Document Server

    Chang, Chia-Feng

    2016-01-01

    We computed the contribution of the Compton and Bremsstrahlung processes with a hidden light $U(1)_D$ neutral boson $\\gamma_D$ to the white dwarf G117-B15A anomalous cooling rate, as well as the white dwarf luminosity functions (WDLF). We demonstrated that for a light mass of hidden photon ($m_{\\gamma_D} \\ll$ a few keV), compatible results are obtained for the recent Sloan Digital Sky Survey and the SuperCOSMOS Sky Survey observation, but the stringent limits would be imposed on the kinetic mixing $\\epsilon$. We performed $\\chi^2$-tests to acquire a quantitative assessment on the WDLF data in the context of our model, computed under the assumption of different kinetic mixing $\\epsilon$, the age of the oldest computed stars $T_D$, and a constant star formation rate $\\psi$. Then taken together, the WDLF analysis of 2$\\sigma$ confidence interval $\\epsilon = \\left( 0.37^{+0.35}_{-0.37}\\right) \\times 10^{-14}$ is barely consistent with the cooling rate analysis at 2$\\sigma$ regime $\\epsilon = \\left( 0.97^{+0.35}_{...

  14. The Luminosity Function of the Host Galaxies of QSOs and BL Lac Objects

    CERN Document Server

    Carangelo, N; Treves, A

    2001-01-01

    A clear insight of the galaxies hosting active galactic nuclei is of fundamental importance for understanding the processes of galaxies and nuclei formation and their cosmic evolution. A good characterization of the host galaxies properties requires images of excellent quality in order to disentangle the light of the galaxy from that of the bright nucleus. To this aim HST has provided a major improvement of data on QSOs (Disney et al. 1995; Bahcall et al. 1996, 1997; Boyce et al. 1998; McLure et al. 1999; Hamilton et al. 2000; Kukula et al. 2001) and BL Lacs (Scarpa et al. 2000, Urry et al. 2000). We present a comparative study of low redshift QSO and BL Lac host galaxy luminosity function (HGLF). To this aim we have considered samples of BL Lacs (Urry et al. 2000) and QSOs (Bahcall et al. 1997; Boyce et al. 1998; McLure et al. 1999) that have been well resolved by images obtained with WFPC2 on board of HST.

  15. The Luminosity Function at z~8 from 97 Y-band dropouts: Inferences About Reionization

    CERN Document Server

    Schmidt, Kasper B; Trenti, Michele; Bradley, Larry D; Kelly, Brandon C; Oesch, Pascal A; Holwerda, Benne W; Shull, J Michael; Stiavelli, Massimo

    2014-01-01

    [Abbreviated] We present the largest search to date for $z\\sim8$ Lyman break galaxies (LBGs) based on 350 arcmin$^2$ of HST observations in the V-, Y-, J- and H-bands from the Brightest of Reionizing Galaxies (BoRG) survey. The BoRG dataset includes $\\sim$50 arcmin$^2$ of new data and deeper observations of two previous BoRG pointings, from which we present 9 new $z\\sim8$ LBG candidates, bringing the total number of BoRG LBGs to 38 with $25.5\\leqslant m_{J} \\leqslant 27.6$ (AB system). We introduce a new Bayesian formalism for estimating the galaxy luminosity function (LF), which does not require binning (and thus smearing) of the data and includes a likelihood based on the correct binomial distribution as opposed to the often used approximate Poisson distribution. We demonstrate the utility of the new method on a sample of $97$ LBGs that combines the bright BoRG galaxies with the fainter sources published in Bouwens et al. (2012) from the HUDF and ERS programs. We show that the $z\\sim8$ LF is well described ...

  16. Evolution of the Mass and Luminosity Functions of Globular Star Clusters

    Science.gov (United States)

    Goudfrooij, Paul; Fall, S. Michael

    2016-12-01

    We reexamine the dynamical evolution of the mass and luminosity functions of globular star clusters (GCMF and GCLF). Fall & Zhang (2001, FZ01) showed that a power-law MF, as commonly seen among young cluster systems, would evolve by dynamical processes over a Hubble time into a peaked MF with a shape very similar to the observed GCMF in the Milky Way and other galaxies. To simplify the calculations, the semi-analytical FZ01 model adopted the “classical” theory of stellar escape from clusters, and neglected variations in the M/L ratios of clusters. Kruijssen & Portegies Zwart (2009, KPZ09) modified the FZ01 model to include “retarded” and mass-dependent stellar escape, the latter causing significant M/L variations. KPZ09 asserted that their model was compatible with observations, whereas the FZ01 model was not. We show here that this claim is not correct; the FZ01 and KPZ09 models fit the observed Galactic GCLF equally well. We also show that there is no detectable correlation between M/L and L for GCs in the Milky Way and Andromeda galaxies, in contradiction with the KPZ09 model. Our comparisons of the FZ01 and KPZ09 models with observations can be explained most simply if stars escape at rates approaching the classical limit for high-mass clusters, as expected on theoretical grounds.

  17. The Optical Luminosity Function of Void Galaxies in the SDSS and ALFALFA Surveys

    CERN Document Server

    Moorman, Crystal M; Hoyle, Fiona; Pan, Danny C; Haynes, Martha P; Giovanelli, Riccardo

    2015-01-01

    We measure the r-band galaxy luminosity function (LF) across environments over the redshift range 0<$z$<0.107 using the SDSS. We divide our sample into galaxies residing in large scale voids (void galaxies) and those residing in denser regions (wall galaxies). The best fitting Schechter parameters for void galaxies are: log$\\Phi^*$= -3.40$\\pm$0.03 log(Mpc$^{-3}$), $M^*$= -19.88$\\pm$0.05, and $\\alpha$=-1.20$\\pm$0.02. For wall galaxies, the best fitting parameters are: log$\\Phi^*$=-2.86$\\pm$0.02 log(Mpc$^{-3}$), $M^*$=-20.80$\\pm$0.03, and $\\alpha$=-1.16$\\pm$0.01. We find a shift in the characteristic magnitude, $M^*$, towards fainter magnitudes for void galaxies and find no significant difference between the faint-end slopes of the void and wall galaxy LFs. We investigate how low surface brightness selections effects can affect the galaxy LF. To attempt to examine a sample of galaxies that is relatively free of surface brightness selection effects, we compute the optical galaxy LF of galaxies detected by ...

  18. The space density and X-ray luminosity function of non-magnetic cataclysmic variables

    CERN Document Server

    Pretorius, Magaretha L

    2011-01-01

    We combine two complete, X-ray flux-limited surveys, the ROSAT Bright Survey (RBS) and the ROSAT North Ecliptic Pole (NEP) survey, to measure the space density (\\rho) and X-ray luminosity function (\\Phi) of non-magnetic CVs. The combined survey has a flux limit of F_X \\ga 1.1 \\times 10^{-12} erg cm^{-2}s^{-1} over most of its solid angle of just over 2\\pi, but is as deep as \\simeq 10^{-14} erg cm^{-2}s^{-1} over a small area. The CV sample that we construct from these two surveys contains 20 non-magnetic systems. We carefully include all sources of statistical error in calculating \\rho and \\Phi by using Monte Carlo simulations; the most important uncertainty proves to be the often large errors in distances estimates. If we assume that the 20 CVs in the combined RBS and NEP survey sample are representative of the intrinsic population, the space density of non-magnetic CVs is 4^{+6}_{-2} \\times 10^{-6} pc^{-3}. We discuss the difficulty in measuring \\Phi in some detail---in order to account for biases in the me...

  19. Re-analysis of the radio luminosity function of Galactic HII regions

    CERN Document Server

    Paladini, R; Noriega-Crespo, A; Carey, S J

    2009-01-01

    We have re-analyzed continuum and recombination lines radio data available in the literature in order to derive the luminosity function (LF) of Galactic HII regions. The study is performed by considering the first and fourth Galactic quadrants independently. We estimate the completeness level of the sample in the fourth quadrant at 5 Jy, and the one in the first quadrant at 2 Jy. We show that the two samples (fourth or first quadrant) include, as well as giant and super-giant HII regions, a significant number of sub-giant sources. The LF is obtained, in each Galactic quadrant, with a generalized Schmidt's estimator using an effective volume derived from the observed spatial distribution of the considered HII regions. The re-analysis also takes advantage of recently published ancillary absorption data allowing to solve the distance ambiguity for several objects. A single power-law fit to the LFs retrieves a slope equal to -2.23+/-0.07 (fourth quadrant) and to -1.85+/-0.11 (first quadrant). We also find margina...

  20. The Luminosity Function of Lyman alpha Emitters at Redshift z=7.7

    CERN Document Server

    Tilvi, Vithal; Hibon, Pascale; Malhotra, Sangeeta; Wang, Junxian; Veilleux, Sylvain; Swaters, Rob; Probst, Ron; Krug, Hannah; Finkelstein, Steven L; Dickinson, Mark

    2010-01-01

    Lyman alpha (Lya) emission lines should be attenuated in a neutral intergalactic medium (IGM). Therefore the visibility of Lya emitters at high redshifts can serve as a valuable probe of reionization at about the 50% level. We present an imaging search for z=7.7 Lya emitting galaxies using an ultra-narrowband filter (filter width= 9A) on the NEWFIRM imager at the Kitt Peak National Observatory. We found four candidate Lya emitters in a survey volume of 1.4 x 10^4 Mpc^3, with a line flux brighter than 6x10^-18 erg/cm^2/s (5 sigma in 2" aperture). We also performed a detailed Monte-Carlo simulation incorporating the instrumental effects to estimate the expected number of Lya emitters in our survey, and found that we should expect to detect one Lya emitter, assuming a non-evolving Lya luminosity function (LF) between z=6.5 and z=7.7. Even if one of the present candidates is spectroscopically confirmed as a z~8 Lya emitter, it would indicate that there is no significant evolution of the Lya LF from z=3.1 to z~8. ...

  1. Evolution of the Mass and Luminosity Functions of Globular Star Clusters

    CERN Document Server

    Goudfrooij, Paul

    2016-01-01

    We reexamine the dynamical evolution of the mass and luminosity functions of globular star clusters (GCMF and GCLF). Fall & Zhang (2001, hereafter FZ01) showed that a power-law MF, as commonly seen among young cluster systems, would evolve by dynamical processes over a Hubble time into a peaked MF with a shape very similar to the observed GCMF in the Milky Way and other galaxies. To simplify the calculations, the semi-analytical FZ01 model adopted the "classical" theory of stellar escape from clusters, and neglected variations in the $M/L$ ratios of clusters. Kruijssen & Portegies Zwart (2009, hereafter KPZ09) modified the FZ01 model to include "retarded" and mass-dependent stellar escape, the latter causing significant $M/L$ variations. KPZ09 asserted that their model was compatible with observations whereas the FZ01 model was not. We show here that this claim is not correct; the FZ01 and KPZ09 models fit the observed Galactic GCLF equally well. We also show that there is no detectable correlation be...

  2. The SDSS-III BOSS quasar lens survey: discovery of 13 gravitationally lensed quasars

    Science.gov (United States)

    More, Anupreeta; Oguri, Masamune; Kayo, Issha; Zinn, Joel; Strauss, Michael A.; Santiago, Basilio X.; Mosquera, Ana M.; Inada, Naohisa; Kochanek, Christopher S.; Rusu, Cristian E.; Brownstein, Joel R.; da Costa, Luiz N.; Kneib, Jean-Paul; Maia, Marcio A. G.; Quimby, Robert M.; Schneider, Donald P.; Streblyanska, Alina; York, Donald G.

    2016-02-01

    We report the discovery of 13 confirmed two-image quasar lenses from a systematic search for gravitationally lensed quasars in the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). We adopted a methodology similar to that used in the SDSS Quasar Lens Search (SQLS). In addition to the confirmed lenses, we report 11 quasar pairs with small angular separations ( ≲ 2 arcsec) confirmed from our spectroscopy, which are either projected pairs, physical binaries, or possibly quasar lens systems whose lens galaxies have not yet been detected. The newly discovered quasar lens system, SDSS J1452+4224 at zs ≈ 4.8 is one of the highest redshift multiply imaged quasars found to date. Furthermore, we have over 50 good lens candidates yet to be followed up. Owing to the heterogeneous selection of BOSS quasars, the lens sample presented here does not have a well-defined selection function.

  3. The SDSS-III BOSS quasar lens survey: discovery of thirteen gravitationally lensed quasars

    CERN Document Server

    More, Anupreeta; Kayo, Issha; Zinn, Joel; Strauss, Michael A; Santiago, Basilio X; Mosquera, Ana M; Inada, Naohisa; Kochanek, Christopher S; Rusu, Cristian E; Brownstein, Joel R; da Costa, Luiz N; Kneib, Jean-Paul; Maia, Marcio A G; Quimby, Robert M; Schneider, Donald P; Streblyanska, Alina; York, Donald G

    2015-01-01

    We report the discovery of 13 confirmed two-image quasar lenses from a systematic search for gravitationally lensed quasars in the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). We adopted a methodology similar to that used in the SDSS Quasar Lens Search (SQLS). In addition to the confirmed lenses, we report 11 quasar pairs with small angular separations ($\\lesssim$2") confirmed from our spectroscopy, which are either projected pairs, physical binaries, or possibly quasar lens systems whose lens galaxies have not yet been detected. The newly discovered quasar lens system, SDSS J1452+4224 at zs$\\approx$4.8 is one of the highest redshift multiply imaged quasars found to date. Furthermore, we have over 50 good lens candidates yet to be followed up. Owing to the heterogeneous selection of BOSS quasars, the lens sample presented here does not have a well-defined selection function.

  4. Dark-ages reionization and galaxy formation simulation - IV. UV luminosity functions of high-redshift galaxies

    Science.gov (United States)

    Liu, Chuanwu; Mutch, Simon J.; Angel, P. W.; Duffy, Alan R.; Geil, Paul M.; Poole, Gregory B.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2016-10-01

    In this paper, we present calculations of the UV luminosity function (LF) from the Dark-ages Reionization And Galaxy-formation Observables from Numerical Simulations project, which combines N-body, semi-analytic and seminumerical modelling designed to study galaxy formation during the Epoch of Reionization. Using galaxy formation physics including supernova feedback, the model naturally reproduces the UV LFs for high-redshift star-forming galaxies from z ˜ 5 through to z ˜ 10. We investigate the luminosity-star formation rate (SFR) relation, finding that variable SFR histories of galaxies result in a scatter around the median relation of 0.1-0.3 dex depending on UV luminosity. We find close agreement between the model and observationally derived SFR functions. We use our calculated luminosities to investigate the LF below current detection limits, and the ionizing photon budget for reionization. We predict that the slope of the UV LF remains steep below current detection limits and becomes flat at MUV ≳ -14. We find that 48 (17) per cent of the total UV flux at z ˜ 6 (10) has been detected above an observational limit of MUV ˜ -17, and that galaxies fainter than MUV ˜ -17 are the main source of ionizing photons for reionization. We investigate the luminosity-stellar mass relation, and find a correlation for galaxies with MUV luminosity-halo mass relation to be M_vir ∝ 10^{-0.35M_UV}, finding that galaxies with MUV = -20 reside in host dark matter haloes of 1011.0±0.1 M⊙ at z ˜ 6, and that this mass decreases towards high redshift.

  5. The galaxy UV luminosity function at z ~ 2 - 4; new results on faint-end slope and the evolution of luminosity density

    CERN Document Server

    Parsa, Shaghayegh; McLure, Ross J; Mortlock, Alice

    2015-01-01

    We present a new, robust measurement of the evolving rest-frame UV galaxy luminosity function (LF) over the key redshift range z = 2 - 4. Our results are based on the high dynamic range provided by combining the HUDF, CANDELS/GOODS-South, and UltraVISTA/COSMOS surveys. We utilise the unparalleled multi-frequency photometry available in this survey `wedding cake' to compile complete galaxy samples at z ~ 2,3,4 via photometric redshifts (calibrated against the latest spectroscopy) rather than colour-colour selection, and to determine accurate rest-frame UV absolute magnitudes from SED fitting. Our new determinations of the UV LF extend from M_{1500} ~ -22 down to M_{1500} = -14.5, -15.5 and -16 at z ~ 2, 3 and 4 respectively (thus reaching ~ 3 - 4 magnitudes fainter than previous blank-field studies at z ~ 2 - 3). At z ~ 2 - 3 we find a much shallower faint-end slope (alpha = -1.32 +- 0.03) than the steeper values (alpha ~ -1.7) reported by Reddy & Steidel (2009) or by Alavi et al. (2014), and show that thi...

  6. A physical model for the evolving UV luminosity function of high redshift galaxies and their contribution to the cosmic reionization

    CERN Document Server

    Cai, Zhen-Yi; Bressan, Alessandro; De Zotti, Gianfranco; Negrello, Mattia; Danese, Luigi

    2014-01-01

    [Abridged] We present a physical model for the evolution of the ultraviolet (UV) luminosity function (LF) of high-z galaxies taking into account in a self-consistent way their chemical evolution and the associated evolution of dust extinction. The model yields good fits of the UV and Lyman-alpha LFs at z>~2. The weak evolution of both LFs between z=2 and z=6 is explained as the combined effect of the negative evolution of the halo mass function, of the increase with redshift of the star formation efficiency, and of dust extinction. The slope of the faint end of the UV LF is found to steepen with increasing redshift, implying that low luminosity galaxies increasingly dominate the contribution to the UV background at higher and higher redshifts. The observed range of UV luminosities at high-z implies a minimum halo mass capable of hosting active star formation M_crit <~ 10^9.8 M_odot, consistent with the constraints from hydrodynamical simulations. From fits of Lyman-alpha LFs plus data on the luminosity dep...

  7. Deep UV Luminosity Functions at the Infall Region of the Coma Cluster

    Science.gov (United States)

    Hammer, D. M.; Hornschemeier, A. E.; Salim, S.; Smith, R.; Jenkins, L.; Mobasher, B.; Miller, N.; Ferguson, H.

    2011-01-01

    We have used deep GALEX observations at the infall region of the Coma cluster to measure the faintest UV luminosity functions (LFs) presented for a rich galaxy cluster thus far. The Coma UV LFs are measured to M(sub uv) = -10.5 in the GALEX FUV and NUV bands, or 3.5 mag fainter than previous studies, and reach the dwarf early-type galaxy population in Coma for the first time. The Schechter faint-end slopes (alpha approximately equal to -1.39 in both GALEX bands) are shallower than reported in previous Coma UV LF studies owing to a flatter LF at faint magnitudes. A Gaussian-plus-Schechter model provides a slightly better parametrization of the UV LFs resulting in a faint-end slope of alpha approximately equal to -1.15 in both GALEX bands. The two-component model gives faint-end slopes shallower than alpha = -1 (a turnover) for the LFs constructed separately for passive and star forming galaxies. The UV LFs for star forming galaxies show a turnover at M(sub UV) approximately equal to -14 owing to a deficit of dwarf star forming galaxies in Coma with stellar masses below M(sub *) = 10(sup 8) solar mass. A similar turnover is identified in recent UV LFs measured for the Virgo cluster suggesting this may be a common feature of local galaxy clusters, whereas the field UV LFs continue to rise at faint magnitudes. We did not identify an excess of passive galaxies as would be expected if the missing dwarf star forming galaxies were quenched inside the cluster. In fact, the LFs for both dwarf passive and star forming galaxies show the same turnover at faint magnitudes. We discuss the possible origin of the missing dwarf star forming galaxies in Coma and their expected properties based on comparisons to local field galaxies.

  8. High Frequency Cluster Radio Galaxies: Luminosity Functions and Implications for SZE Selected Cluster Samples

    Science.gov (United States)

    Gupta, N.; Saro, A.; Mohr, J. J.; Benson, B. A.; Bocquet, S.; Capasso, R.; Carlstrom, J. E.; Chiu, I.; Crawford, T. M.; de Haan, T.; Dietrich, J. P.; Gangkofner, C.; Holzapfel, W. L.; McDonald, M.; Rapetti, D.; Reichardt, C. L.

    2017-01-01

    We study the overdensity of point sources in the direction of X-ray-selected galaxy clusters from the Meta-Catalog of X-ray detected Clusters of galaxies (MCXC; = 0.14) at South Pole Telescope (SPT) and Sydney University Molonglo Sky Survey (SUMSS) frequencies. Flux densities at 95, 150 and 220 GHz are extracted from the 2500 deg2 SPT-SZ survey maps at the locations of SUMSS sources, producing a multi-frequency catalog of radio galaxies. In the direction of massive galaxy clusters, the radio galaxy flux densities at 95 and 150 GHz are biased low by the cluster Sunyaev-Zel'dovich Effect (SZE) signal, which is negative at these frequencies. We employ a cluster SZE model to remove the expected flux bias and then study these corrected source catalogs. We find that the high frequency radio galaxies are centrally concentrated within the clusters and that their luminosity functions (LFs) exhibit amplitudes that are characteristically an order of magnitude lower than the cluster LF at 843 MHz. We use the 150 GHz LF to estimate the impact of cluster radio galaxies on an SPT-SZ like survey. The radio galaxy flux typically produces a small bias on the SZE signal and has negligible impact on the observed scatter in the SZE mass-observable relation. If we assume there is no redshift evolution in the radio galaxy LF then 1.8 ± 0.7 percent of the clusters with detection significance ξ ≥ 4.5 would be lost from the sample. Allowing for redshift evolution of the form (1 + z)2.5 increases the incompleteness to 5.6 ± 1.0 percent. Improved constraints on the evolution of the cluster radio galaxy LF require a larger cluster sample extending to higher redshift.

  9. The global 21-cm signal in the context of the high- z galaxy luminosity function

    Science.gov (United States)

    Mirocha, Jordan; Furlanetto, Steven R.; Sun, Guochao

    2017-01-01

    We build a new model for the global 21-cm signal that is calibrated to measurements of the high-z galaxy luminosity function (LF) and further tuned to match the Thomson scattering optical depth of the cosmic microwave background, τe. Assuming that the z ≲ 8 galaxy population can be smoothly extrapolated to higher redshifts, the recent decline in best-fitting values of τe and the inefficient heating induced by X-ray binaries (the presumptive sources of the high-z X-ray background) imply that the entirety of cosmic reionization and reheating occurs at z ≲ 12. In contrast to past global 21-cm models, whose z ˜ 20 (ν ˜ 70 MHz) absorption features and strong ˜25 mK emission features were driven largely by the assumption of efficient early star formation and X-ray heating, our new models peak in absorption at ν ˜ 110 MHz at depths ˜-160 mK and have negligible emission components. Current uncertainties in the faint-end of the LF, binary populations in star-forming galaxies, and UV and X-ray escape fractions introduce ˜20 MHz (˜50 mK) deviations in the trough's frequency (amplitude), while emission signals remain weak (≲10 mK) and are confined to ν ≳ 140 MHz. These predictions, which are intentionally conservative, suggest that the detection of a 21-cm absorption minimum at frequencies below ˜90 MHz and/or emission signals stronger than ˜10mK at ν ≲ 140 MHz would provide strong evidence for `new' sources at high redshifts, such as Population III stars and their remnants.

  10. Mean and extreme radio properties of quasars and the origin of radio emission

    Energy Technology Data Exchange (ETDEWEB)

    Kratzer, Rachael M.; Richards, Gordon T. [Department of Physics, Drexel University, Philadelphia, PA (United States)

    2015-02-01

    We investigate the evolution of both the radio-loud fraction (RLF) and (using stacking analysis) the mean radio loudness of quasars. We consider how these properties evolve as a function of redshift and luminosity, black hole (BH) mass and accretion rate, and parameters related to the dominance of a wind in the broad emission-line region. We match the FIRST source catalog to samples of luminous quasars (both spectroscopic and photometric), primarily from the Sloan Digital Sky Survey. After accounting for catastrophic errors in BH mass estimates at high redshift, we find that both the RLF and the mean radio luminosity increase for increasing BH mass and decreasing accretion rate. Similarly, both the RLF and mean radio loudness increase for quasars that are argued to have weaker radiation line driven wind components of the broad emission-line region. In agreement with past work, we find that the RLF increases with increasing optical/UV luminosity and decreasing redshift, while the mean radio loudness evolves in the exact opposite manner. This difference in behavior between the mean radio loudness and the RLF in L−z may indicate selection effects that bias our understanding of the evolution of the RLF; deeper surveys in the optical and radio are needed to resolve this discrepancy. Finally, we argue that radio-loud (RL) and radio-quiet (RQ) quasars may be parallel sequences, but where only RQ quasars at one extreme of the distribution are likely to become RL, possibly through slight differences in spin and/or merger history.

  11. HST images of FeLoBAL quasars: Testing quasar-galaxy evolution models

    Science.gov (United States)

    Herbst, Hanna; Hamann, Fred; Villforth, Carolin; Caselli, Paola; Koekemoer, Anton M.; Veilleux, Sylvain

    2016-01-01

    We present preliminary results from an HST imaging study of FeLoBAL quasars, which have extremely low-ionization Broad Absorption Line (BAL) outflows and might be a young quasar population based on their red colors, large far-IR luminosities (suggesting high star formation rates), and powerful outflows. Some models of quasar - host galaxy evolution propose a triggering event, such as a merger, to fuel both a burst of star formation and the quasar/AGN activity. These models suggest young quasars are initially obscured inside the dusty starburst until a "blowout" phase, driven by the starburst or quasar outflows like FeLoBALs, ends the star formation and reveals the visibly luminous quasar. Despite the popularity of this evolution scheme, there is little observational evidence to support the role of mergers in triggering AGN or the youth of dust-reddened quasars (such as FeLoBALs) compared to normal blue quasars.Our Cycle 22 HST program is designed to test the youth of FeLoBAL quasars and the connection of FeLoBALs to mergers. We obtain WFC3/IR F160W images of 10 FeLoBAL quasars at redshift z~0.9 (covering ~8500A in the quasar rest frame). We will compare the host galaxy morphologies and merger signatures of FeLoBALs with normal blue quasars (which are older according to the evolution model) and non-AGN galaxies matched in redshift and stellar mass. If FeLoBAL quasars are indeed in a young evolutionary state, close in time to the initial merging event, they should have stronger merger features compared to blue quasars and non-AGN galaxies. Preliminary results suggest that this is not the case - FeLoBAL quasars appear to reside in faint, compact hosts with weak or absent merger signatures. We discuss the implications of these results for galaxy evolution models and other studies of dust-reddened quasar populations.

  12. Hard X-ray luminosity function of tidal disruption events: First results from the MAXI extragalactic survey

    Science.gov (United States)

    Kawamuro, Taiki; Ueda, Yoshihiro; Shidatsu, Megumi; Hori, Takafumi; Kawai, Nobuyuki; Negoro, Hitoshi; Mihara, Tatehiro

    2016-08-01

    We derive the first hard X-ray luminosity function (XLF) of stellar tidal disruption events (TDEs) by supermassive black holes (SMBHs), which gives an occurrence rate of TDEs per unit volume as a function of peak luminosity and redshift, utilizing an unbiased sample observed by the Monitor of All-sky X-ray Image (MAXI). On the basis of the light curves characterized by a power-law decay with an index of -5/3, a systematic search using the MAXI data detected four TDEs in the first 37 months of observations, all of which have been found in the literature. To formulate the TDE XLF, we consider the mass function of SMBHs, that of disrupted stars, the specific TDE rate as a function of SMBH mass, and the fraction of TDEs with relativistic jets. We perform an unbinned maximum likelihood fit to the MAXI TDE list and check the consistency with the observed TDE rate in the ROSAT all-sky survey. The results suggest that the intrinsic fraction of the jet-accompanying events is 0.0007%-34%. We confirm that at z ≲ 1.5 the contamination of the hard X-ray luminosity functions of active galactic nuclei by TDEs is not significant and hence that their contribution to the growth of SMBHs is negligible at the redshifts.

  13. LAMOST Quasar Survey

    CERN Document Server

    Wu, Xue-Bing

    2011-01-01

    The main objective of the Chinese LAMOST spectroscopic quasar survey is to discover 0.4 million new quasars from 1 million quasar candidates brighter than the magnitude limit i=20.5 in the next 5 years. This will hopefully provide the largest quasar sample for the further studies of AGN physics and cosmology. The improved quasar selection criteria based on the UKIDSS near-IR and SDSS optical colors are presented, and their advantages in uncovering the missing quasars in the quasar 'redshift desert' are demonstrated. In addition, some recent discoveries of new quasars during the LAMOST commissioning phase are presented.

  14. THE FAINT-END SLOPE OF THE REDSHIFT 5.7 Ly{alpha} LUMINOSITY FUNCTION

    Energy Technology Data Exchange (ETDEWEB)

    Henry, Alaina L.; Martin, Crystal L. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Dressler, Alan; McCarthy, Patrick [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Sawicki, Marcin, E-mail: ahenry@physics.ucsb.edu [Department of Astronomy and Physics, Saint Mary' s University, Halifax, NS B3H 3C3 (Canada)

    2012-01-10

    Using new Keck DEIMOS spectroscopy, we examine the origin of the steep number counts of ultra-faint emission-line galaxies recently reported by Dressler et al. We confirm six Ly{alpha} emitters (LAEs), three of which have significant asymmetric line profiles with prominent wings extending 300-400 km s{sup -1} redward of the peak emission. With these six LAEs, we revise our previous estimate of the number of faint LAEs in the Dressler et al. survey. Combining these data with the density of bright LAEs in the Cosmic Evolution Survey and Subaru Deep Field provides the best constraints to date on the redshift 5.7 LAE luminosity function (LF). Schechter function parameters, {phi}* = 4.5 Multiplication-Sign 10{sup -4} Mpc{sup -3}, L* = 9.1 Multiplication-Sign 10{sup 42} erg s{sup -1}, and {alpha} = -1.70, are estimated using a maximum likelihood technique with a model for slit-losses. To place this result in the context of the UV-selected galaxy population, we investigate how various parameterizations of the Ly{alpha} equivalent width distribution, along with the measured UV-continuum LF, affect shape and normalization of the Ly{alpha} LF. The nominal model, which uses z {approx} 6 equivalent widths from the literature, falls short of the observed space density of LAEs at the bright end, possibly indicating a need for higher equivalent widths. This parameterization of the equivalent width distribution implies that as many as 50% of our faintest LAEs should have M{sub UV} > -18.0, rendering them undetectable in even the deepest Hubble Space Telescope surveys at this redshift. Hence, ultra-deep emission-line surveys find some of the faintest galaxies ever observed at the end of the reionization epoch. Such faint galaxies likely enrich the intergalactic medium with metals and maintain its ionized state in the post-reionization era. Observations of these objects provide a glimpse of the building blocks of present-day galaxies at an early time.

  15. The Evolution of the Galaxy Rest-Frame Ultraviolet Luminosity Function Over the First Two Billion Years

    Science.gov (United States)

    Finkelstein, Steven L.; Ryan, Russell E., Jr.; Papovich, Casey; Dickinson, Mark; Song, Mimi; Somerville, Rachel; Ferguson, Henry C.; Salmon, Brett; Giavalisco, Mauro; Koekomoer, Anton M.; hide

    2014-01-01

    We present a robust measurement and analysis of the rest-frame ultraviolet (UV) luminosity function at z = 4 to 8. We use deep Hubble Space Telescope imaging over the CANDELS/GOODS fields, the Hubble Ultra Deep Field and the Hubble Frontier Field deep parallel observations near the Abell 2744 and MACS J0416.1- 2403 clusters. The combination of these surveys provides an effective volume of 0.6-1.2 ×10(exp 6) Mpc(exp 3) over this epoch, allowing us to perform a robust search for bright (M(sub UV) less than -21) and faint (M(sub UV) = -18) galaxies. We select galaxies using a well-tested photometric redshift technique with careful screening of contaminants, finding a sample of 7446 galaxies at 3.5 less than z less than 8.5, with more than 1000 galaxies at z of approximately 6 - 8. We measure both a stepwise luminosity function for galaxies in our redshift samples, as well as a Schechter function, using a Markov Chain Monte Carlo analysis to measure robust uncertainties. At the faint end our UV luminosity functions agree with previous studies, yet we find a higher abundance of UV-bright galaxies at z of greater than or equal to 6. Our bestfit value of the characteristic magnitude M* is consistent with -21 at z of greater than or equal to 5, different than that inferred based on previous trends at lower redshift. At z = 8, a single power-law provides an equally good fit to the UV luminosity function, while at z = 6 and 7, an exponential cutoff at the bright-end is moderately preferred. We compare our luminosity functions to semi-analytical models, and find that the lack of evolution in M* is consistent with models where the impact of dust attenuation on the bright-end of the luminosity function decreases at higher redshift, though a decreasing impact of feedback may also be possible. We measure the evolution of the cosmic star-formation rate (SFR) density by integrating our observed luminosity functions to M(sub UV) = -17, correcting for dust attenuation, and find that

  16. The Evolution of the Galaxy Rest-frame Ultraviolet Luminosity Function over the First Two Billion Years

    Science.gov (United States)

    Finkelstein, Steven L.; Ryan, Russell E., Jr.; Papovich, Casey; Dickinson, Mark; Song, Mimi; Somerville, Rachel S.; Ferguson, Henry C.; Salmon, Brett; Giavalisco, Mauro; Koekemoer, Anton M.; Ashby, Matthew L. N.; Behroozi, Peter; Castellano, Marco; Dunlop, James S.; Faber, Sandy M.; Fazio, Giovanni G.; Fontana, Adriano; Grogin, Norman A.; Hathi, Nimish; Jaacks, Jason; Kocevski, Dale D.; Livermore, Rachael; McLure, Ross J.; Merlin, Emiliano; Mobasher, Bahram; Newman, Jeffrey A.; Rafelski, Marc; Tilvi, Vithal; Willner, S. P.

    2015-09-01

    We present a robust measurement and analysis of the rest-frame ultraviolet (UV) luminosity functions at z = 4-8. We use deep Hubble Space Telescope imaging over the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey/GOODS fields, the Hubble Ultra Deep Field, and the Hubble Frontier Field deep parallel observations near the Abell 2744 and MACS J0416.1-2403 clusters. The combination of these surveys provides an effective volume of 0.6-1.2 × 106 Mpc3 over this epoch, allowing us to perform a robust search for faint ({M}{UV}=-18) and bright (M{}{UV}\\lt -21) high-redshift galaxies. We select candidate galaxies using a well-tested photometric redshift technique with careful screening of contaminants, finding a sample of 7446 candidate galaxies at 3.5 \\lt z \\lt 8.5, with >1000 galaxies at z ≈ 6-8. We measure both a stepwise luminosity function for candidate galaxies in our redshift samples, and a Schechter function, using a Markov Chain Monte Carlo analysis to measure robust uncertainties. At the faint end, our UV luminosity functions agree with previous studies, yet we find a higher abundance of UV-bright candidate galaxies at z ≥slant 6. Our best-fit value of the characteristic magnitude {M}{UV}* is consistent with -21 at z ≥slant 5, which is different than that inferred based on previous trends at lower redshift, and brighter at ˜2σ significance than previous measures at z = 6 and 7. At z = 8, a single power law provides an equally good fit to the UV luminosity function, while at z = 6 and 7 an exponential cutoff at the bright end is moderately preferred. We compare our luminosity functions to semi-analytical models, and find that the lack of evolution in {M}{UV}* is consistent with models where the impact of dust attenuation on the bright end of the luminosity function decreases at higher redshift, although a decreasing impact of feedback may also be possible. We measure the evolution of the cosmic star-formation rate (SFR) density by

  17. Infrared observations of the X-ray quasars 0241+622 and MR2251-178

    Science.gov (United States)

    Soifer, B. T.; Neugebauer, G.; Matthews, K.

    1979-01-01

    Infrared observations of the recently discovered X-ray quasars 0241+622 and MR2251-178 are reported. Broadband photometry of both quasars was conducted in the 1.25 to 20 micron range and spectrophotometry of 0241+622 was carried out from 1.5 to 2.5 microns. The IR energy distributions of 0241+622, MR2251-178 and the X-ray quasar 3C273 are presented, noting that for wavelengths less than 10 microns, the energy distributions of all three quasars are similar and cannot be distinguished from those of other low redshift quasars. The observed IR, visual and X-ray luminosities of the three quasars are compared and are found not to be strongly correlated. It is remarked, however, that the three X-ray quasars are the brightest known quasars at IR and visual wavelengths, which supports the suggestion that all quasars are bright X-ray emitters.

  18. A Comprehensive Study of Gamma-Ray Burst Optical Emission: III. Brightness Distributions and Luminosity Functions of Optical Afterglows

    CERN Document Server

    Wang, Xiang-Gao; Li, Liang; Lu, Rui-Jing; Wei, Jian-Yan; Zhang, Bing

    2013-01-01

    We continue our systematic statistical study on optical afterglow data of gamma-ray bursts (GRBs). We present the apparent magnitude distributions of early optical afterglows at different epochs (t= 10^2 s, t = 10^3 s, and 1 hour) for the optical lightcurves of a sample of 93 GRBs (the global sample), and for sub-samples with an afterglow onset bump or a shallow decay segment. For the onset sample and shallow decay sample we also present the brightness distribution at the peak time t_{p} and break time t_{b}, respectively. All the distributions can be fit with Gaussian functions. We further perform Monte Carlo simulations to infer the luminosity function of GRB optical emission at the rest-frame time 10^3 seconds, t_{p}, and t_{b}, respectively. Our results show that a single power-law luminosity function is adequate to model the data, with indices -1.40+/-0.10, -1.06+/- 0.16, and -1.54\\+/- 0.22, respectively. Based on the derived rest-frame 10^3 s luminosity function, we generate the intrinsic distribution o...

  19. The 2-10 keV unabsorbed luminosity function of AGN from the LSS, CDFS, and COSMOS surveys

    Science.gov (United States)

    Ranalli, P.; Koulouridis, E.; Georgantopoulos, I.; Fotopoulou, S.; Hsu, L.-T.; Salvato, M.; Comastri, A.; Pierre, M.; Cappelluti, N.; Carrera, F. J.; Chiappetti, L.; Clerc, N.; Gilli, R.; Iwasawa, K.; Pacaud, F.; Paltani, S.; Plionis, E.; Vignali, C.

    2016-05-01

    The XMM-Large scale structure (XMM-LSS), XMM-Cosmological evolution survey (XMM-COSMOS), and XMM-Chandra deep field south (XMM-CDFS) surveys are complementary in terms of sky coverage and depth. Together, they form a clean sample with the least possible variance in instrument effective areas and point spread function. Therefore this is one of the best samples available to determine the 2-10 keV luminosity function of active galactic nuclei (AGN) and their evolution. The samples and the relevant corrections for incompleteness are described. A total of 2887 AGN is used to build the LF in the luminosity interval 1042-1046 erg s-1 and in the redshift interval 0.001-4. A new method to correct for absorption by considering the probability distribution for the column density conditioned on the hardness ratio is presented. The binned luminosity function and its evolution is determined with a variant of the Page-Carrera method, which is improved to include corrections for absorption and to account for the full probability distribution of photometric redshifts. Parametric models, namely a double power law with luminosity and density evolution (LADE) or luminosity-dependent density evolution (LDDE), are explored using Bayesian inference. We introduce the Watanabe-Akaike information criterion (WAIC) to compare the models and estimate their predictive power. Our data are best described by the LADE model, as hinted by the WAIC indicator. We also explore the recently proposed 15-parameter extended LDDE model and find that this extension is not supported by our data. The strength of our method is that it provides unabsorbed, non-parametric estimates, credible intervals for luminosity function parameters, and a model choice based on predictive power for future data. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA member states and NASA.Tables with the samples of the posterior probability distributions

  20. THE LARGE SKY AREA MULTI-OBJECT FIBER SPECTROSCOPIC TELESCOPE QUASAR SURVEY: QUASAR PROPERTIES FROM THE FIRST DATA RELEASE

    Energy Technology Data Exchange (ETDEWEB)

    Ai, Y. L.; Wu, Xue-Bing; Yang, Jinyi; Yang, Qian; Wang, Feige; Guo, Rui; Dong, Xiaoyi [Department of Astronomy, School of Physics, Peking University, Beijing 100871 (China); Zuo, Wenwen; Shen, S.-Y. [Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030 (China); Zhang, Y.-X.; Yuan, H.-L.; Song, Y.-H.; Yang, M.; Wu, H.; Shi, J.-R.; He, B.-L.; Lei, Y.-J.; Li, Y.-B. [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences 100012, Beijing (China); Wang, Jianguo; Dong, Xiaobo, E-mail: aiyl@pku.edu.cn [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); and others

    2016-02-15

    We present preliminary results of the quasar survey in the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) first data release (DR1), which includes the pilot survey and the first year of the regular survey. There are 3921 quasars reliably identified, among which 1180 are new quasars discovered in the survey. These quasars are at low to median redshifts, with a highest z of 4.83. We compile emission line measurements around the Hα, Hβ, Mg ii, and C iv regions for the new quasars. The continuum luminosities are inferred from SDSS photometric data with model fitting, as the spectra in DR1 are non-flux-calibrated. We also compile the virial black hole mass estimates, with flags indicating the selection methods, and broad absorption line quasars. The catalog and spectra for these quasars are also available. Of the 3921 quasars, 28% are independently selected with optical–infrared colors, indicating that the method is quite promising for the completeness of the quasar survey. LAMOST DR1 and the ongoing quasar survey will provide valuable data for studies of quasars.

  1. Quasars as tracers of cosmic flows

    CERN Document Server

    Modzelewska, J; Bilicki, M; Hryniewicz, K; Krupa, M; Petrogalli, F; Pych, W; Kurcz, A; Udalski, A

    2014-01-01

    Quasars, as the most luminous persistent sources in the Universe, have broad applications for cosmological studies. In particular, they can be employed to directly measure the expansion history of the Universe, similarly to SNe Ia. The advantage of quasars is that they are numerous, cover a broad range of redshifts, up to $z = 7$, and do not show significant evolution of metallicity with redshift. The idea is based on the relation between the time delay of an emission line and the continuum, and the absolute monochromatic luminosity of a quasar. For intermediate redshift quasars, the suitable line is Mg II. Between December 2012 and March 2014, we performed five spectroscopic observations of the QSO CTS C30.10 ($z = 0.900$) using the South African Large Telesope (SALT), supplemented with photometric monitoring, with the aim of determining the variability of the line shape, changes in the total line intensity and in the continuum. We show that the method is very promising.

  2. Confirmation of a Steep Luminosity Function for Ly alpha Emitters at z 5.7: a Major Component of Reionization

    Science.gov (United States)

    Dressler, Alan; Henry, Alaina L.; Martin, Crystal L.; Sawicki, Marcin; McCarthy, Patrick; Villaneuva, Edward

    2014-01-01

    We report the first direct and robust measurement of the faint-end slope of the Ly-alpha emitter (LAE) luminosity function at z = 5.7. Candidate LAEs from a low-spectral-resolution blind search with IMACS on Magellan- Baade were targeted at higher resolution to distinguish high redshift LAEs from foreground galaxies. All but 2 of our 42 single-emission-line systems are fainter than F = 2.0×10(exp-17) ergs s(exp-1) cm(exp-2), making these the faintest emission-lines observed for a z = 5.7 sample with known completeness, an essential property for determining the faint end slope of the LAE luminosity function. We find 13 LAEs as compared to 29 foreground galaxies, in very good agreement with the modeled foreground counts predicted in Dressler et al. (2011a) that had been used to estimate a faint-end slope of alpha = -2.0 for the LAE luminosity function. A 32% LAE fraction, LAE/(LAE+foreground) within the flux interval F = 2-20 × 10(exp-18) ergs s(exp-1) cm(exp-2) constrains the faint end slope of the luminosity function to -1.95 greater than alpha greater than -2.35 (1 delta). We show how this steep LF should provide, to the limit of our observations, more than 20% of the flux necessary to maintain ionization at z = 5.7, with a factor-of-ten extrapolation in flux reaching more than 55%. We suggest that this bodes well for a comparable contribution by similar, low-mass star forming galaxies at higher-redshift - within the reionization epoch at z greater than approximately 7, only 250 Myr earlier - and that such systems provide a substantial, if not dominant, contribution to the late-stage reionization of the IGM.

  3. The local luminosity function of star-forming galaxies derived from the Planck Early Release Compact Source Catalogue

    CERN Document Server

    Negrello, Mattia; Gonzalez-Nuevo, Joaquin; De Zotti, Gianfranco; Bonavera, Laura; Cosco, Giorgio; Guarese, Gianpaolo; Boaretto, Luca; Serjeant, Stephen; Toffolatti, Luigi; Lapi, Andrea; Bethermin, Matthieu; Castex, Guillaume; Clements, Dave L; Delabrouille, Jacques; Dole, Herve'; Franceschini, Alberto; Mandolesi, Reno; Marchetti, Lucia; Partridge, Bruce; Sajina, Anna

    2012-01-01

    The Planck Early Release Compact Source Catalog (ERCSC) has offered the first opportunity to accurately determine the luminosity function of dusty galaxies in the very local Universe (i.e. distances ~ L_star our results agree with previous estimates, derived from the SCUBA Local Universe Galaxy Survey (SLUGS), but are higher than the latter at L <~ L_star. We also find good agreement with estimates at 350 and 500 microns based on preliminary Herschel survey data.

  4. The Road to Quasars

    CERN Document Server

    Kellermann, K I

    2014-01-01

    Although the extragalactic nature of 3C 48 and other quasi stellar radio sources was discussed as early as 1960 by John Bolton and others, it was rejected largely because of preconceived ideas about what appeared to be unrealistically high radio and optical luminosities. Not until the 1962 occultations of the strong radio source 3C 273 at Parkes, which led Maarten Schmidt to identify 3C 273 with an apparent stellar object at a redshift of 0.16, was the true nature understood. Successive radio and optical measurements quickly led to the identification of other quasars with increasingly large redshifts and the general, although for some decades not universal, acceptance of quasars as the very luminous nuclei of galaxies. Curiously, 3C 273, which is one of the strongest extragalactic sources in the sky, was first cataloged in 1959 and the magnitude 13 optical counterpart was observed at least as early as 1887. Since 1960, much fainter optical counterparts were being routinely identified using accurate radio inte...

  5. Mean and Extreme Radio Properties of Quasars and the Origin of Radio Emission

    CERN Document Server

    Kratzer, Rachael M

    2014-01-01

    We investigate the evolution of both the radio-loud fraction (RLF) and (using stacking analysis) the mean radio-loudness of quasars. We consider how these values evolve as a function of redshift and luminosity, black hole (BH) mass and accretion rate, and parameters related to the dominance of a wind in the broad emission line region. We match the FIRST source catalog to samples of luminous quasars (both spectroscopic and photometric), primarily from the Sloan Digital Sky Survey. After accounting for catastrophic errors in BH mass estimates at high-redshift, we find that both the RLF and the mean radio luminosity increase for increasing BH mass and decreasing accretion rate. Similarly both the RLF and mean radio loudness increase for quasars which are argued to have weaker radiation line driven wind components of the broad emission line region. In agreement with past work, we find that the RLF increases with increasing luminosity and decreasing redshift while the mean radio-loudness evolves in the exact oppos...

  6. Mid-Infrared Luminosity Function of Local Star-Forming Galaxies in the NEP-Wide Survey Field of AKARI

    CERN Document Server

    Kim, Seong Jin; Jeong, Woong-Seob; Goto, Tomotsugu; Matsuhara, Hideo; Im, Myungshin; Shim, Hyunjin; Kim, Min Gyu; Lee, Myung Gyoon

    2015-01-01

    We present mid-infrared (MIR) luminosity functions (LFs) of local star-forming (SF) galaxies in the AKARI NEP-Wide Survey field. In order to derive more accurate luminosity function, we used spectroscopic sample only. Based on the NEP-Wide point source catalogue containing a large number of infrared (IR) sources distributed over the wide (5.4 sq. deg.) field, we incorporated the spectroscopic redshift data for about 1790 selected targets obtained by optical follow-up surveys with MMT/Hectospec and WIYN/Hydra. The AKARI continuous 2 to 24 micron wavelength coverage as well as photometric data from optical u band to NIR H-band with the spectroscopic redshifts for our sample galaxies enable us to derive accurate spectral energy distributions (SEDs) in the mid-infrared. We carried out SED fit analysis and employed 1/Vmax method to derive the MIR (8, 12, and 15 micron rest-frame) luminosity functions. We fit our 8 micron LFs to the double power-law with the power index of alpha= 1.53 and beta= 2.85 at the break lu...

  7. Galaxy And Mass Assembly (GAMA): The 325 MHz Radio Luminosity Function of AGN and Star Forming Galaxies

    CERN Document Server

    Prescott, Matthew; Jarvis, M J; McAlpine, K; Smith, D J B; Fine, S; Johnston, R; Hardcastle, M J; Baldry, I K; Brough, S; Brown, M J I; Bremer, M N; Driver, S P; Hopkins, A M; Kelvin, L S; Loveday, J; Norberg, P; Obreschkow, D; Sadler, E M

    2016-01-01

    Measurement of the evolution of both active galactic nuclei (AGN) and star-formation in galaxies underpins our understanding of galaxy evolution over cosmic time. Radio continuum observations can provide key information on these two processes, in particular via the mechanical feedback produced by radio jets in AGN, and via an unbiased dust-independent measurement of star-formation rates. In this paper we determine radio luminosity functions at 325 MHz for a sample of AGN and star-forming galaxies by matching a 138 deg sq. radio survey conducted with the Giant Metrewave Radio Telescope (GMRT), with optical imaging and redshifts from the Galaxy And Mass Assembly (GAMA) survey. We find that the radio luminosity function at 325 MHz for star-forming galaxies closely follows that measured at 1.4 GHz. By fitting the AGN radio luminosity function out to $z = 0.5$ as a double power law, and parametrizing the evolution as ${\\Phi} \\propto (1 + z)^{k}$ , we find evolution parameters of $k = 0.92 \\pm 0.95$ assuming pure d...

  8. Herschel-ATLAS/GAMA:How does the far-IR luminosity function depend on galaxy group properties?

    CERN Document Server

    Guo, Qi; Norberg, Peder; Cole, Shaun; Baugh, Carlton; Frenk, Carlos; Cooray, Asantha; Dye, Simon; Bourne, N; Dunne, L; Eales, S; Ivison, R J; Maddox, S J; Alpasan, M; Baldry, I; Driver, S P; Robotham, A

    2014-01-01

    We use the Herschel ATLAS (H-ATLAS) Phase I data to study the conditional luminosity function of far-IR (250 um) selected galaxies in optically-selected galaxy groups from the GAMA spectroscopic survey, as well as environmental effects on the far-IR-to-optical colour. We applied two methods, which gave consistent results for the far-IR conditional luminosity functions. The direct matching method matches H-ATLAS sources to GAMA/SDSS galaxies, then links the optical counterparts to GAMA groups. The stacking method counts the number of far-IR sources within the projected radii of GAMA groups, subtracting the local background. We investigated the dependence of the far-IR (250 um) luminosity function on group mass in the range 10d12 10d12Msun/h. We also find that the far-IR-to-optical colours of H-ATLAS galaxies are independent of group mass over the range 10d12 < M_h <10d14Msun/h in the local universe. We also compare our observational results with recent semi-analytical models, and find that none of these...

  9. Luminosity Functions of Lyman-Break Galaxies at z~4 and 5 in the Subaru Deep Field

    CERN Document Server

    Yoshida, M; Kashikawa, N; Ouchi, M; Okamura, S; Yoshida, Makiko; Shimasaku, Kazuhiro; Kashikawa, Nobunari; Ouchi, Masami; Okamura, Sadanori

    2006-01-01

    We investigate the luminosity functions of Lyman-break galaxies (LBG) at z~4 and 5 based on the optical imaging data obtained in the Subaru Deep Field Project. Three samples of LBGs in a contiguous 875 arcmin^2 area are constructed. One consists of 3,808 LBGs at z~4 down to i'=26.85 selected with the B-R vs R-i' diagram. The other two consist of 539 and 240 LBGs at z~5 down to z'=26.05 selected with two kinds of two-color diagrams: V-i' vs i'-z' and R-i' vs i'-z'. The adopted selection criteria are proved to be fairly reliable by spectroscopic observation. We derive the luminosity functions of the LBGs at rest-frame ultraviolet wavelengths down to M_{UV}=-19.2 at z~4 and M_{UV}=-20.3 at z~5. We find clear evolution of the luminosity function over the redshift range of 04.

  10. The 0.1luminosity function

    CERN Document Server

    Comparat, Johan; Kneib, Jean-Paul; Ilbert, Olivier; Gonzalez-Perez, V; Tresse, Laurence; Zoubian, Julien; Arnouts, Stephane; Bacon, Roland; Brownstein, Joel R; Baugh, Carlton; Delubac, Timothee; Ealet, Anne; Escoffier, Stephanie; Ge, Jian; Jullo, Eric; Lacey, Cedric; Ross, Nicholas P; Schlegel, David; Schneider, Donald P; Steele, Oliver; Tasca, Lidia; Yeche, Christophe; Lesser, Michael; Jiang, Zhaoji; Jing, Yipeng; Fan, Zhou; Fan, Xiaohui; Ma, Jun; Nie, Jundan; Wang, Jiali; Wu, Zhenyu; Zhang, Tianmeng; Zhou, Xu; Zhou, Zhimin; Zou, Hu

    2014-01-01

    We present the [OII] luminosity function measured in the redshift range 0.1luminosity function. The measured luminosity function is in good agreement with previous independent estimates. The comparison with two state-of-the-art semi-analytical models is very good up to z= 1.1, which is encouraging for the production of mock catalogs of [OII] flux limited surveys. We observe the bright end evolution over 8.5 Gyr: we measure the decrease of log L* from 42.4 erg/s at redshift...

  11. Deep VLT search for globular clusters in NGC 5128 color-magnitude diagrams and globular cluster luminosity function

    CERN Document Server

    Rejkuba, M

    2001-01-01

    At the distance of NGC 5128 (3.6 \\pm 0.2 Mpc) it is possible to resolve globular clusters with high resolution imaging from the ground, thus allowing the globular cluster candidate selection primarily through their morphological properties. I report the discovery of 71 globular clusters in NGC 5128 on VLT UT1+FORS1 images, including the faintest members (Mv ~ -5) known to date in this galaxy as well as 5 previously known clusters. U- and V-band photometry has been measured for all the candidates and the luminosity function, spanning -10.1luminosity functions in an elliptical galaxy determined so far. The Kolmogorov-Smirnov statistics show that the difference between the globular cluster luminosity functions of NGC 5128 and the MW is not larger than the difference between the ones of M31 and the MW. The (U-V)o color histogram shows a bimodal distribution. For 23 globular clusters I obtained K-band images with SOFI at the...

  12. The Evolution of the Galaxy Rest-Frame Ultraviolet Luminosity Function Over the First Two Billion Years

    CERN Document Server

    Finkelstein, Steven L; Papovich, Casey; Dickinson, Mark; Song, Mimi; Somerville, Rachel; Ferguson, Henry C; Salmon, Brett; Giavalisco, Mauro; Koekemoer, Anton M; Ashby, Matthew L N; Behroozi, Peter; Castellano, Marco; Dunlop, James S; Faber, Sandy M; Fazio, Giovanni G; Fontana, Adriano; Grogin, Norman A; Hathi, Nimish; Jaacks, Jason; Kocevski, Dale D; Livermore, Rachael; McLure, Ross J; Merlin, Emiliano; Mobasher, Bahram; Newman, Jeffrey A; Rafelski, Marc; Tilvi, Vithal; Willner, S P

    2014-01-01

    We present a robust measurement and analysis of the rest-frame ultraviolet (UV) luminosity function at z=4-8. We use deep Hubble Space Telescope imaging over the CANDELS/GOODS fields, the Hubble Ultra Deep Field and the Year 1 Hubble Frontier Field deep parallel observations. These surveys provides an effective volume of 0.6-1.2 x 10^6 Mpc^3 over this epoch, allowing us to perform a robust search for bright (M_UV 1000 galaxies at z~6-8. We measure the luminosity function using a Markov Chain Monte Carlo analysis to measure robust uncertainties. At the faint end our results agree with previous studies, yet we find a higher abundance of UV-bright galaxies at z>6, with M* ~ -21 at z>5, different than that inferred based on previous trends at lower redshift. At z=8, a single power-law provides an equally good fit to the UV luminosity function, while at z=6 and 7, an exponential cutoff at the bright-end is moderately preferred. We compare to semi-analytical models, and find that the lack of evolution in M* is cons...

  13. The WiggleZ Dark Energy Survey: Star-formation in UV-luminous galaxies from their luminosity functions

    CERN Document Server

    Jurek, Russell J; Pimbblet, Kevin; Glazebrook, Karl; Blake, Chris; Brough, Sarah; Colless, Matthew; Contreras, Carlos; Couch, Warrick; Croom, Scott; Croton, Darren; Davis, Tamara M; Forster, Karl; Gilbank, David; Gladders, Mike; Jelliffe, Ben; Li, I-hui; Madore, Barry; Martin, D Christopher; Poole, Gregory B; Pracy, Michael; Sharp, Rob; Wisnioski, Emily; Woods, David; Wyder, Ted K; Yee, H K C

    2013-01-01

    We present the ultraviolet (UV) luminosity function of galaxies from the GALEX Medium Imaging Survey with measured spectroscopic redshifts from the first data release of the WiggleZ Dark Energy Survey. This sample selects galaxies with high star formation rates: at 0.6 M_NUV>-22.5) evolve very rapidly with a number density declining as (1+z)^{5\\pm 1} from redshift z = 0.9 to z = 0.6. These starburst galaxies (M_NUV<-21 is approximately a star formation rate of 30 \\msuny) contribute about 1 per cent of cosmic star formation over the redshift range z=0.6 to z=0.9. The star formation rate density of these very luminous galaxies evolves rapidly, as (1+z)^{4\\pm 1}. Such a rapid evolution implies the majority of star formation in these large galaxies must have occurred before z = 0.9. We measure the UV luminosity function in 0.05 redshift intervals spanning 0.1luminosity function is not...

  14. The 5 - 10 keV AGN luminosity function at 0.01

    CERN Document Server

    Fotopoulou, S; Georgantopoulos, I; Hasinger, G; Salvato, M; Georgakakis, A; Cappelluti, N; Ranalli, P; Hsu, L T; Brusa, M; Comastri, A; Miyaji, T; Nandra, K; Aird, J; Paltani, S

    2016-01-01

    The active galactic nuclei X-ray luminosity function traces actively accreting supermassive black holes and is essential for the study of the properties of the active galactic nuclei (AGN) population, black hole evolution, and galaxy-black hole coevolution. Up to now, the AGN luminosity function has been estimated several times in soft (0.5-2 keV) and hard X-rays (2-10 keV). AGN selection in these energy ranges often suffers from identification and redshift incompleteness and, at the same time, photoelectric absorption can obscure a significant amount of the X-ray radiation. We estimate the evolution of the luminosity function in the 5-10 keV band, where we effectively avoid the absorbed part of the spectrum, rendering absorption corrections unnecessary up to NH=10^23 cm^-2. Our dataset is a compilation of six wide, and deep fields: MAXI, HBSS, XMM-COSMOS, Lockman Hole, XMM-CDFS, AEGIS-XD, Chandra-COSMOS, and Chandra-CDFS. This extensive sample of ~1110 AGN (0.01

  15. The characteristic halo masses of half-a-million WISE-selected quasars

    Science.gov (United States)

    DiPompeo, M. A.; Hickox, R. C.; Eftekharzadeh, S.; Myers, A. D.

    2017-08-01

    Recent work has found evidence for a difference in the bias and dark matter halo masses of WISE (Wide-field Infrared Survey Explorer)-selected obscured and unobscured quasars, implying a distinction between these populations beyond random line-of-sight effects. However, the significance of this difference in the most up-to-date measurements is relatively weak, at ˜2σ for individual measurements, but bolstered by agreement from different techniques, including angular clustering and cross-correlations with cosmic microwave background lensing maps. Here, we expand the footprint of previous work, aiming to improve the precision of both methods. In this larger area, we correct for position-dependent selection effects, in particular fluctuations of the WISE-selected quasar density as a function of Galactic latitude. We also measure the cross-correlation of the obscured and unobscured samples and confirm that they are well matched in redshift, both centred at z = 1. Combined with very similar detection fractions and magnitude distributions in the long-wavelength WISE bands, this redshift match strongly supports the fact that infrared selection identifies obscured and unobscured quasars of similar bolometric luminosity. Finally, we perform cross-correlations with confirmed spectroscopic quasars, again confirming the results from other methods - obscured quasars reside in haloes a factor of 3 times more massive than unobscured quasars. This difference is significant at the ˜5σ level when the measurements are combined, providing strong support for the idea that obscuration in at least some quasars is tied to the larger environment, and may have an evolutionary component.

  16. The luminosity and stellar mass functions of GRB host galaxies: Insight into the metallicity bias

    CERN Document Server

    Trenti, Michele; Jimenez, Raul

    2014-01-01

    [Abridged] Long-Duration Gamma-Ray Bursts (GRBs) are powerful probes of the star formation history of the Universe, but the correlation between the two depends on the highly debated presence and strength of a metallicity bias. To investigate this correlation, we use a phenomenological model that successfully describes star formation rates, luminosities and stellar masses of star forming galaxies, and apply it to GRB production. We predict the comoving GRB rate and luminosities/stellar masses of host galaxies depending on the presence (or absence) of a metallicity bias, highlighting that apparent conflicts among previous studies might disappear following a comprehensive data-model comparison. We conclude that: (1) Our best fitting model includes a moderate metallicity bias, broadly consistent with the large majority of the long-duration GRBs in metal-poor environments originating from a collapsar (~83%), but with a secondary contribution from a metal-independent production channel, such as binary evolution; (2...

  17. Star formation in quasar hosts and the origin of radio emission in radio-quiet quasars

    CERN Document Server

    Zakamska, Nadia L; Petric, Andreea; Dicken, Daniel; Greene, Jenny E; Heckman, Timothy M; Hickox, Ryan C; Ho, Luis C; Krolik, Julian H; Nesvadba, Nicole P H; Strauss, Michael A; Geach, James E; Oguri, Masamune; Strateva, Iskra V

    2015-01-01

    Radio emission from radio-quiet quasars may be due to star formation in the quasar host galaxy, to a jet launched by the supermassive black hole, or to relativistic particles accelerated in a wide-angle radiatively-driven outflow. In this paper we examine whether radio emission from radio-quiet quasars is a byproduct of star formation in their hosts. To this end we use infrared spectroscopy and photometry from Spitzer and Herschel to estimate or place upper limits on star formation rates in hosts of ~300 obscured and unobscured quasars at z<1. We find that low-ionization forbidden emission lines such as [NeII] and [NeIII] are likely dominated by quasar ionization and do not provide reliable star formation diagnostics in quasar hosts, while PAH emission features may be suppressed due to the destruction of PAH molecules by the quasar radiation field. While the bolometric luminosities of our sources are dominated by the quasars, the 160 micron fluxes are likely dominated by star formation, but they too should...

  18. The Effect of Variability on X-Ray Binary Luminosity Functions

    Science.gov (United States)

    Binder, Breanna A.; Gross, Jacob; Williams, Benjamin F.; Eracleous, Michael; Gaetz, Terrance J.; Plucinsky, Paul P.; Skillman, Evan D.

    2017-08-01

    X-ray binaries are inherently variable X-ray sources, particularly at low luminosities (factor of ~2). The power-law index of ~1.2 and high fluxes suggest that the persistent sources intrinsic to NGC 300 are dominated by Roche-lobe-overflowing low-mass X-ray binaries. The variable X-ray sources are described by a broken power law, with a faint-end power-law index of ~1.7, a bright-end index of ~2.8-4.9, and a break luminosity of ~4 × 1036 erg s-1. This suggests that these variable sources are mostly outbursting, wind-fed high-mass X-ray binaries, although the logN-logS distribution of variable sources likely also contains low-mass X-ray binaries. We generate model logN-logS distributions for synthetic X-ray binaries and constrain the distribution of maximum X-ray fluxes attained during outburst. Our observations suggest that the majority of X-ray binaries outburst at sub-Eddington luminosities, where mass transfer likely occurs through direct wind accretion at ~1%-3% of the Eddington rate.

  19. Properties of galaxies at the faint end of the Hα luminosity function at z ~ 0.62

    Science.gov (United States)

    Gómez-Guijarro, Carlos; Gallego, Jesús; Villar, Víctor; Rodríguez-Muñoz, Lucía; Clément, Benjamin; Cuby, Jean-Gabriel

    2016-07-01

    Context. Studies measuring the star formation rate density, luminosity function, and properties of star-forming galaxies are numerous. However, it exists a gap at 0.5 basic photometric and spectroscopic properties. Methods: We use a narrow-band technique in the near-infrared, with a filter centred at 1.06 μm. The data come from ultra-deep VLT/HAWK-I observations in the GOODS-S field with a total of 31.9 h in the narrow-band filter. In addition to our survey, we mainly make use of ancillary data coming from the CANDELS and Rainbow Cosmological Surveys Database, from the 3D-HST for comparison, and also spectra from the literature. We perform a visual classification of the sample and study their morphologies from structural parameters available in CANDELS. In order to obtain the luminosity function, we apply a traditional V/Vmax method and perform individual extinction corrections for each object to accurately trace the shape of the function. Results: Our 28 Hα-selected sample of faint star-forming galaxies reveals a robust faint-end slope of the luminosity function α = - 1.46-0.08+0.16 . The derived star formation rate density at z ~ 0.62 is ρSFR = 0.036-0.008+0.012 M⊙ yr-1 Mpc-3 . The sample is mainly composed of disks, but an important contribution of compact galaxies with Sérsic indexes n ~ 2 display the highest specific star formation rates. Conclusions: The luminosity function at z ~ 0.62 from our ultra-deep data points towards a steeper α when an individual extinction correction for each object is applied. Compact galaxies are low-mass, low-luminosity, and starburst-dominated objects with a light profile in an intermediate stage from early to late types. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere (ESO), Chile, Prog-Id 181.A-0485(A).

  20. Photometric H alpha and [O II] Luminosity Function of SDF and SXDF Galaxies: Implications for Future Baryon Oscillation Surveys

    CERN Document Server

    Sumiyoshi, Masanao; Oshige, Shunsuke; Glazebrook, Karl; Akiyama, Masayuki; Morokuma, Tomoki; Motohara, Kentaro; Shimasaku, Kazuhiro; Hayashi, Masao; Yoshida, Makiko; Kashikawa, Nobunari; Kodama, Tadayuki

    2009-01-01

    Efficient selection of emission line galaxies at z > 1 by photometric information in wide field surveys is one of the keys for future spectroscopic surveys to constrain dark energy using the baryon acoustic oscillation (BAO) signature. Here we estimate the H alpha and [O II] line luminosity functions of galaxies at z = 0.5-1.7 using a novel approach where multi-wavelength imaging data is used to jointly estimate both photometric redshifts and star-formation rates. These photometric estimates of line luminosities at high-redshift use the large data sets of the Subaru Deep Field and Subaru XMM-Newton Deep Field (covering \\sim 1 deg^2) and are calibrated with the spectroscopic data of the local Sloan Digital Sky Survey galaxies. The derived luminosity functions (especially H alpha) are in reasonable agreement with the past estimates based on spectroscopic or narrow-band-filter surveys. This dataset is useful for examining the photometric selection of target galaxies for BAO surveys because of the large cosmologi...

  1. A Deep Proper Motion Catalog Within the Sloan Digital Sky Survey Footprint. II. The White Dwarf Luminosity Function

    CERN Document Server

    Munn, Jeffrey A; von Hippel, Ted; Kilic, Mukremin; Liebert, James W; Williams, Kurtis A; DeGennaro, Steven; Jeffery, Elizabeth; Dame, Kyra; Gianninas, A; Brown, Warren R

    2016-01-01

    A catalog of 8472 white dwarf (WD) candidates is presented, selected using reduced proper motions from the deep proper motion catalog of Munn et al. 2014. Candidates are selected in the magnitude range 16 < r < 21.5 over 980 square degrees, and 16 < r < 21.3 over an additional 1276 square degrees, within the Sloan Digital Sky Survey (SDSS) imaging footprint. Distances, bolometric luminosities, and atmospheric compositions are derived by fitting SDSS ugriz photometry to pure hydrogen and helium model atmospheres (assuming surface gravities log g = 8). The disk white dwarf luminosity function (WDLF) is constructed using a sample of 2839 stars with 5.5 < M_bol < 17, with statistically significant numbers of stars cooler than the turnover in the luminosity function. The WDLF for the halo is also constructed, using a sample of 135 halo WDs with 5 < M_bol < 16. We find space densities of disk and halo WDs in the solar neighborhood of 5.5 +- 0.1 x 10^-3 pc^-3 and 3.5 +- 0.7 x 10^-5 pc^-3, res...

  2. Does the evolution of the radio luminosity function of star-forming galaxies match that of the star formation rate function?

    Science.gov (United States)

    Bonato, Matteo; Negrello, Mattia; Mancuso, Claudia; De Zotti, Gianfranco; Ciliegi, Paolo; Cai, Zhen-Yi; Lapi, Andrea; Massardi, Marcella; Bonaldi, Anna; Sajina, Anna; Smolc̆ić, Vernesa; Schinnerer, Eva

    2017-08-01

    The assessment of the relationship between radio continuum luminosity and star formation rate (SFR) is of crucial importance to make reliable predictions for the forthcoming ultra-deep radio surveys and to allow a full exploitation of their results to measure the cosmic star formation history. We have addressed this issue by matching recent accurate determinations of the SFR function up to high redshifts with literature estimates of the 1.4 GHz luminosity functions of star-forming galaxies (SFGs). This was done considering two options, proposed in the literature, for the relationship between the synchrotron emission (Lsynch), that dominates at 1.4 GHz, and the SFR: a linear relation with a decline of the Lsynch/SFR ratio at low luminosities or a mildly non-linear relation at all luminosities. In both cases, we get good agreement with the observed radio luminosity functions but, in the non-linear case, the deviation from linearity must be small. The luminosity function data are consistent with a moderate increase of the Lsynch/SFR ratio with increasing redshift, indicated by other data sets, although a constant ratio cannot be ruled out. A stronger indication of such increase is provided by recent deep 1.4-GHz counts, down to μJy levels. This is in contradiction with models predicting a decrease of that ratio due to inverse Compton cooling of relativistic electrons at high redshifts. Synchrotron losses appear to dominate up to z ≃ 5. We have also updated the Massardi et al. evolutionary model for radio loud AGNs.

  3. Environments of Nearby Quasars in Sloan Digital Sky Survey

    CERN Document Server

    Lietzen, H; Nurmi, P; Tago, E; Saar, E; Liivamagi, J; Tempel, E; Einasto, M; Einasto, J; Gramann, M; Takalo, L O

    2009-01-01

    For the first time spectroscopic galaxy redshift surveys are reaching the scales where galaxies can be studied together with the nearest quasars. This gives an opportunity to study the dependence between the activity of a quasar and its environment in a more extensive way than before. We study the spatial distribution of galaxies and groups of galaxies in the environments of low redshift quasars in the Sloan Digital Sky Survey (SDSS). Our aim is to understand how the nearby quasars are embedded in the local and global density field of galaxies and how the environment affects quasar activity. We analyse the environments of nearby quasars using number counts of galaxies. We also study the dependence of group properties to their distance to the nearest quasar. The large scale environments are studied by analysing the locations of quasars in the luminosity density field. Our study of the number counts of galaxies in quasar environments shows an underdensity of bright galaxies at a few Mpc from quasars. Also, the ...

  4. The X-ray luminosity function of M37 and the evolution of coronal activity in low-mass stars

    CERN Document Server

    Núñez, Alejandro

    2016-01-01

    We use a 440.5 ks Chandra observation of the $\\approx$500-Myr-old open cluster M37 to derive the X-ray luminosity functions of its $\\leq1.2$ $M_{\\odot}$ stars. Combining detections of 162 M37 members with upper limits for 160 non-detections, we find that its G, K, and M stars have a similar median (0.5$-$7 keV) X-ray luminosity L$_X =10^{29.0}$ erg/s, whereas the L$_X$-to-bolometric-luminosity ratio (L$_X$/L$_{bol}$) indicates that M stars are more active than G and K stars by $\\approx$1 order of magnitude at 500 Myr. To characterize the evolution of magnetic activity in low-mass stars over their first $\\approx$600 Myr, we consolidate X-ray and optical data from the literature for stars in six other open clusters: from youngest to oldest, the Orion Nebula Cluster (ONC), NGC 2547, NGC 2516, the Pleiades, NGC 6475, and the Hyades. For these, we homogenize the conversion of instrumental count rates to L$_X$ by applying the same one-temperature emission model as for M37, and obtain masses using the same empirical...

  5. Early Growth of Massive Black Holes in Quasars

    CERN Document Server

    Wang, J M; Yan, C S; Hu, C

    2007-01-01

    Episodic activity of quasars is driving growth of supermassive black holes (SMBHs) via accretion of baryon gas. In this Letter, we develop a simple method to analyse the duty cycle of quasars up to redshift $z\\sim 6$ universe from luminosity functions (LFs). We find that the duty cycle below redshift $z\\sim 2$ follows the cosmic history of star formation rate (SFR) density. Beyond $z\\sim 2$, the evolutionary trends of the duty cycle are just opposite to that of the cosmic SFR density history, implying the role of feedback from black hole activity. With the duty cycle, we get the net lifetime of quasars ($z\\le 5$) about $\\sim 10^9$yrs. Based on the local SMBHs, the mean mass of SMBHs is obtained at any redshifts and their seeds are of $10^5\\sunm$ at the reionization epoch ($z_{\\rm re}$) of the universe through the conservation of the black hole number density in comoving frame. We find that primordial black holes ($\\sim 10^3\\sunm$) are able to grow up to the seeds via a moderate super-Eddington accretion of $\\...

  6. QUASARS PROBING QUASARS. IV. JOINT CONSTRAINTS ON THE CIRCUMGALACTIC MEDIUM FROM ABSORPTION AND EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Hennawi, Joseph F.; Prochaska, J. Xavier, E-mail: xavier@ucolick.org [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany)

    2013-03-20

    We have constructed a sample of 29 close projected quasar pairs where the background quasar spectrum reveals absorption from optically thick H I gas associated with the foreground quasar. These unique sightlines allow us to study the quasar circumgalactic medium (CGM) in absorption and emission simultaneously, because the background quasar pinpoints large concentrations of gas where Ly{alpha} emission, resulting from quasar-powered fluorescence, resonant Ly{alpha} scattering, and/or cooling radiation, is expected. A sensitive search (1{sigma} surface-brightness limits of SB{sub Ly{alpha}}{approx_equal}3 Multiplication-Sign 10{sup -18} erg s{sup -1} cm{sup -2} arcsec{sup -2}) for diffuse Ly{alpha} emission in the environments of the foreground (predominantly radio-quiet) quasars is conducted using Gemini/GMOS and Keck/LRIS slit spectroscopy. We fail to detect large-scale {approx}100 kpc Ly{alpha} emission, either at the location of the optically thick absorbers or in the foreground quasar halos, in all cases except a single system. We interpret these non-detections as evidence that the gas detected in absorption is shadowed from the quasar UV radiation due to obscuration effects, which are frequently invoked in unified models of active galactic nuclei. Small-scale R {approx}< 50 kpc extended Ly{alpha} nebulosities are detected in 34% of our sample, which are likely the high-redshift analogs of the extended emission-line regions (EELRs) commonly observed around low-redshift (z < 0.5) quasars. This may be fluorescent recombination radiation from a population of very dense clouds with a low covering fraction illuminated by the quasar. We also detect a compact high rest-frame equivalent width (W{sub Ly{alpha}} > 50 A) Ly{alpha}-emitter with luminosity L{sub Ly{alpha}} = 2.1 {+-} 0.32 Multiplication-Sign 10{sup 41} erg s{sup -1} at small impact parameter R = 134 kpc from one foreground quasar, and argue that it is more likely to result from quasar-powered fluorescence

  7. THE INFLUENCE OF RED SPIRAL GALAXIES ON THE SHAPE OF THE LOCAL K-BAND LUMINOSITY FUNCTION

    Energy Technology Data Exchange (ETDEWEB)

    Bonne, Nicolas J.; Brown, Michael J. I.; Jones, Heath; Pimbblet, Kevin A., E-mail: nicolas.bonne@monash.edu [School of Physics, Monash University, P.O. Box 27, Clayton, Victoria 3800 (Australia)

    2015-02-01

    We have determined K-band luminosity functions for 13,325 local universe galaxies as a function of morphology and color (for K {sub tot} ≤ 10.75). Our sample is drawn from the Two Micron All Sky Survey Extended Source Catalog, with all sample galaxies having measured morphologies and distances (including 4219 archival redshift-independent distances). The luminosity function for our total sample is in good agreement with previous works, but is relatively smooth at faint magnitudes (due to bulk flow distance corrections). We investigated the differences due to morphological and color selection using 5417 sample galaxies with NASA Sloan Atlas optical colors and find that red spirals comprise 20%-50% of all spirals with –25 ≤ M{sub K}  < –20. Fainter than M{sub K} = –24, red spirals are as common as early types, explaining the different faint end slopes (α = –0.87 and –1.00 for red and early-types, respectively). While we find red spirals comprise more than 50% of all M{sub K}  < –25 spiral galaxies, they do not dominate the bright end of the overall red galaxy luminosity function, which is dominated by early-type galaxies. The brightest red spirals have ongoing star formation and those without are frequently misclassified as early-types. The faintest ones have an appearance and Sérsic indices consistent with faded disks, rather than true bulge-dominated galaxies.

  8. Quasar Clustering in the Sloan Digital Sky Survey

    Science.gov (United States)

    Vanden Berk, D. E.; SDSS Collaboration

    2001-05-01

    We present initial results on quasar clustering in the Sloan Digital Sky Survey. The data set consists of over 9000 quasars spanning a redshift range from near 0 to well-over 5. The two-point correlation function for the entire sample is well-fit on scales from ~ 1 to over 100h-1Mpc by a power-law with an index of -1.4 and a scale length of 6h-1Mpc -- similar to the parameterization for galaxies in the local universe. There is no evidence for evolution in either the power-law index or scale length with redshift, for an Ω m=1, Ω Λ =0 cosmology. We also examine the quasar clustering as a function of luminosity, and cosmological model. We discuss the scientific potential of the final SDSS sample of 105 quasars for large-scale structure studies. The Sloan Digital Sky Survey (SDSS) is a joint project of The University of Chicago, Fermilab, the Institute for Advanced Study, the Japan Participation Group, The Johns Hopkins University, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Princeton University, the United States Naval Observatory, and the University of Washington. Apache Point Observatory, site of the SDSS telescopes, is operated by the Astrophysical Research Consortium (ARC). Funding for the project has been provided by the Alfred P. Sloan Foundation, the SDSS member institutions, the National Aeronautics and Space Administration, the National Science Foundation, the U.S. Department of Energy, Monbusho, and the Max Planck Society. The SDSS Web site is http://www.sdss.org/.

  9. Constraining the Warm Dark Matter Particle Mass through Ultra-Deep UV Luminosity Functions at z=2

    CERN Document Server

    Menci, N; Castellano, M; Grazian, A

    2016-01-01

    We compute the mass function of galactic dark matter halos for different values of the Warm Dark Matter (WDM) particle mass m_X and compare it with the abundance of ultra-faint galaxies derived from the deepest UV luminosity function available so far at redshift z~2. The magnitude limit M_UV=-13 reached by such observations allows us to probe the WDM mass functions down to scales close to or smaller than the half-mass mode mass scale ~10^9 M_sun. This allowed for an efficient discrimination among predictions for different m_X which turn out to be independent of the star formation efficiency adopted to associate the observed UV luminosities of galaxies to the corresponding dark matter masses. Adopting a conservative approach to take into account the existing theoretical uncertainties in the galaxy halo mass function, we derive a robust limit m_X>1.8 keV for the mass of thermal relic WDM particles when comparing with the measured abundance of the faintest galaxies, while m_X>1.5 keV is obtained when we compare ...

  10. The Luminosity Functions of the Galaxy Cluster MS1054-0321 at z=0.83 based on ACS Photometry

    OpenAIRE

    Goto, Tomotsugu; Postman, Marc; Cross, Nicholas J. G.; Illingworth, G. D.; Tran, K.; Magee, D.; Franx, M.; Benitez, N.; Bouwens, R J; Demarco, R.; Ford, H.C.; Homeier, N. L.; Martel, A. R.; Menanteau, F.; Clampin, M.

    2004-01-01

    We present new measurements of the galaxy luminosity function (LF) and its dependence on local galaxy density, color, morphology, and clustocentric radius for the massive z=0.83 cluster MS1054-0321. Our analyses are based on imaging performed with the ACS onboard the HST in the F606W, F775W and F850LP passbands and extensive spectroscopic data obtained with the Keck LRIS. Our main results are based on a spectroscopically selected sample of 143 cluster members with morphological classification...

  11. The environment of low redshift quasar pairs

    CERN Document Server

    Sandrinelli, Angela; Treves, Aldo; Farina, Emanuele Paolo; Uslenghi, Michela

    2014-01-01

    We investigate the properties of the galaxy environment of a sample of 14 low redshift (z $<$ 0.85) quasar physical pairs extracted from SDSS DR10 archives. The pairs have a systemic radial velocity difference $\\Delta V_\\parallel \\leqslant$ 600 $km \\ s^{-1}$ (based on [OIII]5007 \\AA \\ line) and projected distance $ R_\\bot \\leqslant$ 600 kpc. The physical association of the pairs is statistically confirmed at a level of $\\sim$ 90 %. For most of the images of these quasars we are able to resolve their host galaxies that turn out to be on average similar to those of quasars not in pairs. We also found that quasars in a pair are on average in region of modest galaxy overdensity extending up 0.5 Mpc from the QSO. This galaxy overdensity is indistinguishable from that of a homogeneous sample of isolated quasars at the same redshift and with similar host galaxy luminosity. These results, albeit derived from a small (but homogeneous) sample of objects, suggest that the rare activation of two quasars with small phy...

  12. The Luminosity and Mass Functions of Low-Mass Stars in the Galactic Disk: I. The Calibration Region

    CERN Document Server

    Covey, Kevin R; Bochanski, John J; West, Andrew A; Reid, I Neill; Golimowski, David A; Davenport, James R A; Henry, Todd; Uomoto, Alan

    2008-01-01

    We present measurements of the luminosity and mass functions of low-mass stars constructed from a catalog of matched Sloan Digital Sky Survey (SDSS) and 2 Micron All Sky Survey (2MASS) detections. This photometric catalog contains more than 25,000 matched SDSS and 2MASS point sources spanning ~30 square degrees on the sky. We have obtained follow-up spectroscopy, complete to J=16, of more than 500 low mass dwarf candidates within a 1 square degree sub-sample, and thousands of additional dwarf candidates in the remaining 29 square degrees. This spectroscopic sample verifies that the photometric sample is complete, uncontaminated, and unbiased at the 99% level globally, and at the 95% level in each color range. We use this sample to derive the luminosity and mass functions of low-mass stars over nearly a decade in mass (0.7 M_sun > M_* > 0.1 M_sun). We find that the logarithmically binned mass function is best fit with an M_c=0.29 log-normal distribution, with a 90% confidence interval of M_c=0.20--0.50. These ...

  13. The $H\\alpha$ Luminosity Function and Global Star Formation Rate From Redshifts of One to Two

    CERN Document Server

    Yan, L; Freudling, W; Teplitz, H I; Malumuth, E M; Weymann, R J; Malkan, M A; Yan, Lin; Carthy, Patrick J. Mc; Freudling, Wolfram; Teplitz, Harry I.; Malumuth, Eliot M.; Weymann, Ray J.; Malkan, Matthew A.

    1999-01-01

    We present a luminosity function for H$\\alpha$ emission from galaxies at redshifts between 0.7 and 1.9 based on slitless spectroscopy with NICMOS on HST. The luminosity function is well fit by a Schechter function over the range $6 \\times 10^{41} < L(H\\alpha) < 2 \\times 10^{43} erg/sec$ with $L^* = 7 \\times 10^{42} erg/sec$ and $\\phi^* = 1.7 \\times 10^{-3} Mpc^{-3}$ for $H_0=50 km/s Mpc^{-1}$ and $q_0=0.5$. We derive a volume averaged star formation rate at $z = 1.3 \\pm 0.5$ of 0.13 M_{ødot} yr^{-1} Mpc^{-3} without correction for extinction. The SFR that we derive at $\\sim 6500 \\AA is a factor of 3 higher than that deduced from 2800 \\AA continua. If this difference is due entirely to reddening, the extinction correction at 2800 \\AA is quite significant. The precise magnitude of the total extinction correction at rest-frame UV wavelengths (e.g. 2800 \\AA and 1500 \\AA) is sensitive to the relative spatial distribution of the stars, gas and dust, as well as on the extinction law. In the extreme case of a ...

  14. Cosmic downsizing of powerful radio galaxies to low radio luminosities

    CERN Document Server

    Rigby, E E; Best, P N; Rosario, D; Röttgering, H J A

    2015-01-01

    At bright radio powers ($P_{\\rm 1.4 GHz} > 10^{25}$ W/Hz) the space density of the most powerful sources peaks at higher redshift than that of their weaker counterparts. This paper establishes whether this luminosity-dependent evolution persists for sources an order of magnitude fainter than those previously studied, by measuring the steep--spectrum radio luminosity function (RLF) across the range $10^{24} 10^{26}$ W/Hz the redshift of the peak space density increases with luminosity, whilst at lower radio luminosities the position of the peak remains constant within the uncertainties. This `cosmic downsizing' behaviour is found to be similar to that seen at optical wavelengths for quasars, and is interpreted as representing the transition from radiatively efficient to inefficient accretion modes in the steep-spectrum population. This conclusion is supported by constructing simple models for the space density evolution of these two different radio galaxy classes; these are able to successfully reproduce the ...

  15. THE VERY FAINT END OF THE UV LUMINOSITY FUNCTION OVER COSMIC TIME: CONSTRAINTS FROM THE LOCAL GROUP FOSSIL RECORD

    Energy Technology Data Exchange (ETDEWEB)

    Weisz, Daniel R.; Johnson, Benjamin D.; Conroy, Charlie, E-mail: drw@ucsc.edu [Department of Astronomy, University of California at Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States)

    2014-10-10

    We present a new technique to estimate the evolution of the very faint end of the UV luminosity function (LF) out to z ∼ 5. Measured star formation histories (SFHs) from the fossil record of Local Group (LG) galaxies are used to reconstruct the LF down to M {sub UV} ∼–5 at z ∼ 5 and M {sub UV} ∼–1.5 at z < 1. Such faint limits are well beyond the current observational limits and are likely to remain beyond the limits of next-generation facilities. The reconstructed LFs, when combined with direct measurements of the LFs at higher luminosity, are well-fit by a standard Schechter function with no evidence of a break to the faintest limits probed by this technique. The derived faint-end slope, α, steepens from ≈ – 1.2 at z < 1 to ≈ – 1.6 at 4 < z < 5. We test the effects of burstiness in the SFHs and find the recovered LFs to be only modestly affected. Incompleteness corrections for the faintest LG galaxies and the (unlikely) possibility of significant luminosity-dependent destruction of dwarf galaxies between high redshift and the present epoch are important uncertainties. These and other uncertainties can be mitigated with more detailed modeling and future observations. The reconstructed faint end LF from the fossil record can therefore be a powerful and complementary probe of the high-redshift faint galaxies believed to play a key role in the reionization of the universe.

  16. Binary black hole merger rates inferred from luminosity function of ultra-luminous X-ray sources

    Science.gov (United States)

    Inoue, Yoshiyuki; Tanaka, Yasuyuki T.; Isobe, Naoki

    2016-10-01

    The Advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO) has detected direct signals of gravitational waves (GWs) from GW150914. The event was a merger of binary black holes whose masses are 36^{+5}_{-4} M_{{⊙}} and 29^{+4}_{-4} M_{{⊙}}. Such binary systems are expected to be directly evolved from stellar binary systems or formed by dynamical interactions of black holes in dense stellar environments. Here we derive the binary black hole merger rate based on the nearby ultra-luminous X-ray source (ULX) luminosity function (LF) under the assumption that binary black holes evolve through X-ray emitting phases. We obtain the binary black hole merger rate as 5.8(tULX/0.1 Myr)- 1λ- 0.6exp ( - 0.30λ) Gpc- 3 yr- 1, where tULX is the typical duration of the ULX phase and λ is the Eddington ratio in luminosity. This is coincident with the event rate inferred from the detection of GW150914 as well as the predictions based on binary population synthesis models. Although we are currently unable to constrain the Eddington ratio of ULXs in luminosity due to the uncertainties of our models and measured binary black hole merger event rates, further X-ray and GW data will allow us to narrow down the range of the Eddington ratios of ULXs. We also find the cumulative merger rate for the mass range of 5 M⊙ ≤ MBH ≤ 100 M⊙ inferred from the ULX LF is consistent with that estimated by the aLIGO collaboration considering various astrophysical conditions such as the mass function of black holes.

  17. On the radiative efficiencies, Eddington ratios, and duty cycles of luminous high-redshift quasars

    CERN Document Server

    Shankar, Francesco; Miralda-Escude', Jordi; Fosalba, Pablo; Weinberg, David H

    2008-01-01

    We investigate the characteristic radiative efficiency \\epsilon, Eddington ratio \\lambda, and duty cycle P_0 of high-redshift active galactic nuclei (AGN), drawing on measurements of the AGN luminosity function at z=3-6 and, especially, on recent measurements of quasar clustering at z=3-4.5 from the Sloan Digital Sky Survey. The free parameters of our models are \\epsilon, \\lambda, and the normalization, scatter, and redshift evolution of the relation between black hole mass \\mbh and halo virial velocity V_vir. We compute the luminosity function from the implied growth of the black hole mass function and the quasar correlation length from the bias of the host halos. We test our adopted formulae for the halo mass function and halo bias against measurements from the large N-body simulation developed by the MICE collaboration. The strong clustering of AGNs observed at z=3 and, especially, at z=4 implies that massive black holes reside in rare, massive dark matter halos. Reproducing the observed luminosity functio...

  18. The Rise of Dwarfs and the Fall of Giants: Galaxy Formation Feedback Signatures in the Halo Satellite Luminosity Function

    CERN Document Server

    Cooray, A R; Cooray, Asantha; Cen, Renyue

    2005-01-01

    The observed luminosity function (LF) of satellite galaxies shows several interesting features that require a better understanding of gas-thermodynamic processes and feedback effects related to reionization and galaxy formation. In galaxy clusters, the abundance of dwarf galaxies is in good agreement with the expectation based on the subhalo mass function, whereas in galaxy groups, the relatively small abundance of dwarfs conflicts with theoretical expectations. In all halo systems, there is a dip in the abundance of galaxies with luminosities in the range ~ 2x10^8 L_sun to 10^10 L_sun, corresponding to subhalo mass scales between ~ 5x10^10 M_sun to few times 10^11 M_sun. Photoionization from reionization has been used to explain statistics of the dwarf population, with larger systems forming prior to, and smaller systems forming subsequent to, reionization. The observed dip in the LF is an imprint of small dwarf galaxies ( 3.4-4.4, their gas content, hence star formation, is greatly suppressed on average and...

  19. The Rise of Dwarfs and the Fall of Giants: Galaxy Formation Feedback Signatures in the Halo Satellite Luminosity Function

    Science.gov (United States)

    Cooray, Asantha; Cen, Renyue

    2005-11-01

    The observed luminosity function (LF) of satellite galaxies shows several interesting features that require a better understanding of gas-thermodynamic processes and feedback effects related to reionization and galaxy formation. In galaxy clusters, the abundance of dwarf galaxies is consistent with the expectation based on the subhalo mass function, whereas in galaxy groups, a relatively small abundance of dwarfs is expected based on models of photoionization. In all halo systems, however, there is a dip in the abundance of galaxies with luminosities in the range ~2×108 Lsolar to 1010 Lsolar, corresponding to subhalo mass scales between ~5×1010 Msolar and a few times 1011 Msolar. Photoionization from reionization has been used to explain statistics of the dwarf population, with larger systems forming prior to, and smaller systems forming subsequent to, reionization. The observed dip in the LF is an imprint of small dwarf galaxies (powered by supernovae in these dwarf galaxies propagate energy and metals to large distances such that the intergalactic medium is uniformly enriched to a level of 10-3 Zsolar. The associated energy raises the intergalactic medium temperature and the Jeans mass to a range 1010-1011 Msolar at z~3.4-6.0. Because the epoch of nonlinearity for halos in this mass range is at z>=3.4-4.4, their gas content, hence star formation, is greatly suppressed on average and leads to the observed dip in the observed LF at z=0.

  20. The B-Band Luminosity Function of Red and Blue Galaxies up to z=3.5

    CERN Document Server

    Giallongo, E; Menci, N; Zamorani, G; Fontana, A; Dickinson, M; Cristiani, S; Pozzetti, L

    2004-01-01

    We have explored the redshift evolution of the luminosity function of red and blue galaxies up to $z=3.5$. This was possible joining a deep I band composite galaxy sample, which includes the spectroscopic K20 sample and the HDFs samples, with the deep $H_{AB}=26$ and $K_{AB}=25$ samples derived from the deep NIR images of the Hubble Deep Fields North and South, respectively. About 30% of the sample has spectroscopic redshifts and the remaining fraction well-calibrated photometric redshifts. This allowed to select and measure galaxies in the rest-frame blue magnitude up to $z\\sim 3$ and to derive the redshift evolution of the B-band luminosity function of galaxies separated by their rest-frame $U-V$ color or specific (i.e. per unit mass) star-formation rate. The class separation was derived from passive evolutionary tracks or from their observed bimodal distributions. Both distributions appear bimodal at least up to $z\\sim 2$ and the locus of red/early galaxies is clearly identified up to these high redshifts....

  1. The Origin of Dwarf Galaxies in Clusters: The Faint-End Slope of Abell 85 Galaxy Luminosity Function

    Science.gov (United States)

    Agulli, I.; Aguerri, J. A. L.; Barrena, R.; Diaferio, A.; Sánchez-Janssen, R.

    2016-10-01

    Dwarf galaxies (Mb>-18) are important because of their cosmological interest as tests of hierarchical theories. The formation of these galaxies is still an open question but red dwarf galaxies are preferentially located in high density environments, indicating that they are end-products of galaxy transformations in clusters. Deep spectroscopic studies of galaxy clusters are needed to put some constraints on dwarf galaxy formation and evolution. We have observed and analyzed Abell 85, a nearby (z = 0.055) and massive cluster down to M*+6, using the MOS instruments VIMOS@VLT and AF2@WHT. The first and powerful tool to study the characteristics of galaxies and compare with different density environments is the galaxy luminosity function. The comparison of the results for Abell 85 with literature outcomes for clusters and field, allows us to conclude that, at least for this cluster, the environment plays a major role in the nature of the faint-end galaxies, transforming blue dwarfs in the field into red ones in the cluster, but not in the formation of the luminosity function slope.

  2. The CALYMHA survey: Lya luminosity function and global escape fraction of Lya photons at z=2.23

    CERN Document Server

    Sobral, David; Best, Philip; Stroe, Andra; Röttgering, Huub; Oteo, Iván; Smail, Ian; Morabito, Leah; Paulino-Afonso, Ana

    2016-01-01

    We present the CAlibrating LYMan-$\\alpha$ with H$\\alpha$ (CALYMHA) pilot survey and new results on Lyman-$\\alpha$ (Lya) selected galaxies at z~2. We use a custom-built Lya narrow-band filter at the Isaac Newton Telescope, designed to provide a matched volume coverage to the z=2.23 Ha HiZELS survey. Here we present the first results for the COSMOS and UDS fields. Our survey currently reaches a 3$\\sigma$ line flux limit of ~4x10$^{-17}$ erg/s/cm$^{2}$, and a Lya luminosity limit of ~10$^{42.3}$ erg/s. We find 188 Lya emitters over 7.3x10$^5$ Mpc$^{3}$, but also find significant numbers of other line emitting sources corresponding to HeII, CIII] and CIV emission lines. These sources are important contaminants, and we carefully remove them, unlike most previous studies. We find that the Lya luminosity function at z=2.23 is very well described by a Schechter function up to L~10$^{43}$ erg/s with L$^*=10^{42.59+-0.05}$ erg/s, $\\phi^*=10^{-3.09+-0.08}$ Mpc$^{-3}$ and $\\alpha$=-1.75+-0.15. Above L~10$^{43}$ erg/s the...

  3. The $z < 1.2$ optical luminosity function from a sample of $\\sim410 \\, 000$ galaxies in bootes

    CERN Document Server

    Beare, Richard A; Pimbblet, Kevin A; Bian, Fuyan; Lin, Yen-Ting

    2015-01-01

    Using a sample of ~410 000 galaxies to depth I_AB = 24 over 8.26 deg^2 in the Bootes field (~10 times larger than z~1 luminosity function studies in the prior literature), we have accurately measured the evolving B-band luminosity function of red galaxies at z<1.2 and blue galaxies at z<1.0. In addition to the large sample size, we utilise photometry that accounts for the varying angular sizes of galaxies, photometric redshifts verified with spectroscopy, and absolute magnitudes that should have very small random and systematic errors. Our results are consistent with the migration of galaxies from the blue cloud to the red sequence as they cease to form stars, and with downsizing in which more massive and luminous blue galaxies cease star formation earlier than fainter less massive ones. Comparing the observed fading of red galaxies with that to be expected from passive evolution alone, we find that the stellar mass contained within the red galaxy population has increased by a factor of ~3.6 from z~1.1 ...

  4. HST Luminosity Functions of the Globular Clusters M10, M22, and M55. A comparison with other clusters

    CERN Document Server

    Piotto, G

    1999-01-01

    From a combination of deep Hubble Space Telescope V and I images with groundbased images in the same bands, we have obtained color-magnitude diagrams of M10, M22, and M55, extending from just above the hydrogen burning limit to the tip of the red giant branch, down to the white dwarf cooling sequence. We have used the color-magnitude arrays to extract main sequence luminosity functions (LFs) from the turnoff to about 0.13 solar masses. The LFs of M10 is significantly steeper than that for the other two clusters. The difference cannot be due to a difference in metallicity. A comparison with the LFs from Piotto, Cool, and King (1997), shows a large spread in the LF slopes. This spread is also present in the local mass functions (MFs) obtained from the observed LFs using different theoretical mass--luminosity relations. The dispersion in the MF slopes remains also after removing the mass segregation effects by using multimass King-Michie models. The globular cluster MF slopes are also flatter than the MF slope o...

  5. Improvements in the X-ray luminosity function and constraints on the Cosmological parameters from X-ray luminous clusters

    CERN Document Server

    Del Popolo, A; Lanzafame, G

    2010-01-01

    We show how to improve constraints on \\Omega_m, \\sigma_8, and the dark-energy equation-of-state parameter, w, obtained by Mantz et al. (2008) from measurements of the X-ray luminosity function of galaxy clusters, namely MACS, the local BCS and the REFLEX galaxy cluster samples with luminosities L> 3 \\times 10^{44} erg/s in the 0.1--2.4 keV band. To this aim, we use Tinker et al. (2008) mass function instead of Jenkins et al. (2001) and the M-L relationship obtained from Del Popolo (2002) and Del Popolo et al. (2005). Using the same methods and priors of Mantz et al. (2008), we find, for a \\Lambda$CDM universe, \\Omega_m=0.28^{+0.05}_{-0.04} and \\sigma_8=0.78^{+0.04}_{-0.05}$ while the result of Mantz et al. (2008) gives less tight constraints $\\Omega_m=0.28^{+0.11}_{-0.07}$ and \\sigma_8=0.78^{+0.11}_{-0.13}. In the case of a wCDM model, we find \\Omega_m=0.27^{+0.07}_{-0.06}, $\\sigma_8=0.81^{+0.05}_{-0.06}$ and $w=-1.3^{+0.3}_{-0.4}$, while in Mantz et al. (2008) they are again less tight \\Omega_m=0.24^{+0.15}_...

  6. C IV emission-line properties and systematic trends in quasar black hole mass estimates

    Science.gov (United States)

    Coatman, Liam; Hewett, Paul C.; Banerji, Manda; Richards, Gordon T.

    2016-09-01

    Black hole masses are crucial to understanding the physics of the connection between quasars and their host galaxies and measuring cosmic black hole-growth. At high redshift, z ≳ 2.1, black hole masses are normally derived using the velocity width of the C IV λ λ1548, 1550 broad emission line, based on the assumption that the observed velocity widths arise from virial-induced motions. In many quasars, the C IV emission line exhibits significant blue asymmetries (`blueshifts') with the line centroid displaced by up to thousands of km s-1 to the blue. These blueshifts almost certainly signal the presence of strong outflows, most likely originating in a disc wind. We have obtained near-infrared spectra, including the Hα λ6565 emission line, for 19 luminous (LBol = 46.5-47.5 erg s-1) Sloan Digital Sky Survey quasars, at redshifts 2 blueshifts present in the population. A strong correlation between C IV velocity width and blueshift is found and, at large blueshifts, >2000 km s-1, the velocity widths appear to be dominated by non-virial motions. Black hole masses, based on the full width at half-maximum of the C IV emission line, can be overestimated by a factor of 5 at large blueshifts. A larger sample of quasar spectra with both C IV and H β, or Hα, emission lines will allow quantitative corrections to C IV-based black hole masses as a function of blueshift to be derived. We find that quasars with large C IV blueshifts possess high Eddington luminosity ratios and that the fraction of high-blueshift quasars in a flux-limited sample is enhanced by a factor of approximately 4 relative to a sample limited by black hole mass.

  7. The Sloan Digital Sky Survey Quasar Catalog. 4. Fifth Data Release

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Donald P.; Hall, Patrick B.; Richards, Gordon T.; Strauss, Michael A.; Vanden Berk, Daniel E.; Anderson, Scott F.; Brandt, W.N.; Fan, Xiao-Hui; Jester,; Gray, Jim; Gunn, James E.; /Penn State U., Astron. Astrophys. /York U., Canada /Johns Hopkins U. /Princeton U. Observ. /Washington U., Seattle, Astron. Dept. /Arizona

    2007-04-01

    We present the fourth edition of the Sloan Digital Sky Survey (SDSS) Quasar Catalog. The catalog contains 77,429 objects; this is an increase of over 30,000 entries since the previous edition. The catalog consists of the objects in the SDSS Fifth Data Release that have luminosities larger than M{sub i} = -22.0 (in a cosmology with H{sub 0} = 70 km s{sup -1} Mpc{sup -1}, {Omega}{sub M} = 0.3, and {Omega}{sub {Lambda}} = 0.7), have at least one emission line with FWHM larger than 1000 km s{sup -1} or have interesting/complex absorption features, are fainter than i {approx} 15.0, and have highly reliable redshifts. The area covered by the catalog is {approx} 5740 deg{sup 2}. The quasar redshifts range from 0.08 to 5.41, with a median value of 1.48; the catalog includes 891 quasars at redshifts greater than four, of which 36 are at redshifts greater than five. Approximately half of the catalog quasars have i < 19; nearly all have i < 21. For each object the catalog presents positions accurate to better than 0.2-minutes rms per coordinate, five-band (ugriz) CCD-based photometry with typical accuracy of 0.03 mag, and information on the morphology and selection method. The catalog also contains basic radio, near-infrared, and X-ray emission properties of the quasars, when available, from other large-area surveys. The calibrated digital spectra cover the wavelength region 3800-9200 {angstrom} at a spectral resolution of {approx_equal} 2000; the spectra can be retrieved from the public database using the information provided in the catalog. The average SDSS colors of quasars as a function of redshift, derived from the catalog entries, are presented in tabular form. Approximately 96% of the objects in the catalog were discovered by the SDSS.

  8. Comparing different indicators of quasar orientation

    CERN Document Server

    Van Gorkom, Kyle J; Rauch, Andreas P; Gobeille, Doug B

    2015-01-01

    Radio core dominance, the rest-frame ratio of core to lobe luminosity, has been widely used as a measure of Doppler boosting of a quasar's radio jets and hence of the inclination of the central engine's spin axis to the line of sight. However, the use of the radio lobe luminosity in the denominator (essentially to try and factor out the intrinsic power of the central engine) has been criticized and other proxies for the intrinsic engine power have been proposed. These include the optical continuum luminosity, and the luminosity of the narrow-line region. Each is plausible, but so far none has been shown to be clearly better than the others. In this paper we evaluate four different measures of core dominance using a new sample of 126 radio loud quasars, carefully selected to be as free as possible of orientation bias, together with high quality VLA images and optical spectra from the SDSS. We find that normalizing the radio core luminosity by the optical continuum luminosity yields a demonstrably superior orie...

  9. The Near-Ultraviolet Luminosity Function of Young, Early M-Type Dwarf Stars

    CERN Document Server

    Ansdell, Megan; Mann, Andrew W; Lepine, Sebastien; James, David; Buccino, Andrea; Baranec, Christoph; Law, Nicholas M; Riddle, Reed; Mauas, Pablo; Petrucci, Romina

    2014-01-01

    Planets orbiting within the close-in habitable zones of M dwarf stars will be exposed to elevated high-energy radiation driven by strong magneto-hydrodynamic dynamos during stellar youth. Near-ultraviolet (NUV) irradiation can erode and alter the chemistry of planetary atmospheres, and a quantitative description of the evolution of NUV emission from M dwarfs is needed when modeling these effects. We investigated the NUV luminosity evolution of early M-type dwarfs by cross-correlating the Lepine & Gaidos (2011) catalog of bright M dwarfs with the GALEX catalog of NUV (1771-2831A) sources. Of the 4805 sources with GALEX counterparts, 797 have NUV emission significantly (> 2.5 sigma) in excess of an empirical basal level. We inspected these candidate active stars using visible-wavelength spectra, high-resolution adaptive optics imaging, time-series photometry, and literature searches to identify cases where the elevated NUV emission is due to unresolved background sources or stellar companions; we estimated ...

  10. How many radio-loud quasars can be detected by the Gamma-Ray Large Area Space Telescope?

    CERN Document Server

    Cao, Xinwu

    2007-01-01

    In the unification scheme, radio quasars and FR II radio galaxies come from the same parent population, but viewed at different angles. Based on the Comptonization models for the gamma-ray emission from active galactic nuclei (AGNs), we estimate the number of radio quasars and FR II radio galaxies to be detected by the Gamma-Ray Large Area Space Telescope (GLAST) using the luminosity function (LF) of their parent population derived from the flat-spectrum radio quasar (FSRQ) LF. We find that ~1200 radio quasars will be detected by GLAST, if the soft seed photons for Comptonization come from the regions outside the jets. We also consider the synchrotron self-Comptonization (SSC) model, and find it unlikely to be responsible for gamma-ray emission from radio quasars. We find that no FR II radio galaxies will be detected by GLAST. Our results show that most radio AGNs to be detected by GLAST will be FSRQs (~99 % for the external Comptonization model, EC model), while the remainder (~1 %) will be steep-spectrum ra...

  11. The Large Sky Area Multi-Object Fiber Spectroscopic Telescope Quasar Survey: Quasar Properties from First Data Release

    CERN Document Server

    Ai, Y L; Yang, Jinyi; Yang, Qian; Wang, Feige; Guo, Rui; Zuo, Wenwen; Dong, Xiaoyi; Zhang, Y -X; Yuan, H -L; Song, Y -H; Wang, Jianguo; Dong, Xiaobo; Yang, M; Wu, H; Shen, S -Y; Shi, J -R; He, B -L; Lei, Y -J; Li, Y -B; Luo, A -L; Zhao, Y -H; Zhang, Hao-Tong

    2015-01-01

    We present preliminary results of the quasar survey in Large Sky Area Multi- Object Fiber Spectroscopic Telescope (LAMOST) first data release (DR1), which includes pilot survey and the first year regular survey. There are 3921 quasars identified with reliability, among which 1180 are new quasars discovered in the survey. These quasars are at low to median redshifts, with highest z of 4.83. We compile emission line measurements around the H{\\alpha}, H{\\beta}, Mg II, and C IV regions for the new quasars. The continuum luminosities are inferred from SDSS photo- metric data with model fitting as the spectra in DR1 are non-flux-calibrated. We also compile the virial black hole mass estimates, and flags indicating the selec- tion methods, broad absorption line quasars. The catalog and spectra for these quasars are available online. 28% of the 3921 quasars are selected with optical- infrared colours independently, indicating that the method is quite promising in completeness of quasar survey. LAMOST DR1 and the on-g...

  12. Luminous, High-z, Type-2 Quasars are Still Missing

    Science.gov (United States)

    Richards, Gordon T.; Hennawi, Joseph F.; Rivera, Angelica

    2017-01-01

    A simple unified model suggests that there should be roughly equal numbers of type-1 (unobscured) and type 2 (obscured) quasars. However, we argue that the expected population of luminous, high-z, type-2 quasars are still missing. While large numbers of type-2 AGNs have now been identified (both via spectroscopy and through color-based arguments in the optical, IR, and X-ray), the vast majority of these are low-luminosity objects at zmodel" predict similar numbers of type-1 and type-2 quasars, this conspicuous lack of luminous type-2 quasars at high-redshift constitutes a major unsolved problem. To uncover these missing type-2 quasars, we explore a candidate selection algorithm that utilizes the sky area of AllWISE, the depth/resolution of large-area Spitzer-IRAC surveys, and optical data from the SDSS.

  13. Galaxy And Mass Assembly (GAMA): The dependence of the galaxy luminosity function on environment, redshift and colour

    CERN Document Server

    McNaught-Roberts, Tamsyn; Baugh, Carlton; Lacey, Cedric; Loveday, J; Peacock, J; Baldry, I; Bland-Hawthorn, J; Brough, S; Driver, Simon P; Robotham, A S G; Vazquez-Mata, J A

    2014-01-01

    We use 80922 galaxies in the Galaxy And Mass Assembly (GAMA) survey to measure the galaxy luminosity function (LF) in different environments over the redshift range 0.04luminosities at which such galaxies dominate. Discrepancies between the model and the data seen in the faint end of the LF suggest too many faint red galaxies are predicted, which is likely to be due to the over-quenching of satellite galaxies. The excess of bright blue...

  14. An Empirically Based Model for Predicting Infrared Luminosity Functions, Deep Infrared Galaxy Counts and the Diffuse Infrared Background

    CERN Document Server

    Malkan, M A

    2001-01-01

    We predict luminosity functions and number counts for extragalactic infrared sources at various wavelengths using our empirically based model. This is the same model which we used successfully to predict the spectral energy distribution of the diffuse infrared background. Comparisons of galaxy count results with existing data indicate that either galaxy luminosity evolution is not stronger that Q=3.1 (where L is proportional to (1+z)^{Q}) or that this evolution does not continue beyond a redshift of 2. However, measurements of the far infrared background from COBE-DIRBE seem to suggest a stronger evolution for far infrared emission with Q > 4 in the redshift range beteen 0 and 1. We discuss several interpretations of these results and also discuss how future observations can reconcile this apparent conflict. We also make predictions of the redshift distributions of extragalactic infrared sources at selected flux levels which can be tested by planned detectors. Finally, we predict the fluxes at which various f...

  15. The OPTX Project II: Hard X-ray Luminosity Functions of Active Galactic Nuclei for z<5

    CERN Document Server

    Yencho, B; Trouille, L; Winter, L M

    2009-01-01

    We use the largest, most uniform, and most spectroscopically complete to faint X-ray flux limits Chandra sample to date to construct hard 2-8 keV rest-frame X-ray luminosity functions (HXLFs) of spectroscopically identified active galactic nuclei (AGNs) to z~5. In addition, we use a new 2-8 keV local sample selected by the very hard (14-195 keV) SWIFT 9-month Burst Alert Telescope (BAT) survey to construct the local 2-8 keV HXLF. We do maximum likelihood fits of the combined distant plus local sample (as well as of the distant sample alone) over the redshift intervals 0luminosity dependent density evolution (LDDE) model fits of the combined distant plus local sample over 0

  16. A complete sample of bright Swift Long Gamma-Ray Bursts: Sample presentation, Luminosity Function and evolution

    CERN Document Server

    Salvaterra, R; Vergani, S D; Covino, S; D'Avanzo, P; Fugazza, D; Ghirlanda, G; Ghisellini, G; Melandri, A; Nava, L; Sbarufatti, B; Flores, H; Piranomonte, S; Tagliaferri, G

    2011-01-01

    We present a carefully selected sub-sample of Swift Long Gamma-ray Bursts (GRBs), that is complete in redshift. The sample is constructed by considering only bursts with favorable observing conditions for ground-based follow-up searches, that are bright in the 15-150 keV Swift/BAT band, i.e. with 1-s peak photon fluxes in excess to 2.6 ph s^-1 cm^-2. The sample is composed by 58 bursts, 53 of them with redshift for a completeness level of 91%, while another two have a redshift constraint, reaching a completeness level of 95%. For only three bursts we have no constraint on the redshift. The high level of redshift completeness allows us for the first time to constrain the GRB luminosity function and its evolution with cosmic times in a unbiased way. We find that strong evolution in luminosity (d_l=2.3\\pm 0.6) or in density (d_d=1.7\\pm 0.5) is required in order to account for the observations. The derived redshift distribution in the two scenarios are consistent with each other, in spite of their different intri...

  17. DISSECTING THE QUASAR MAIN SEQUENCE: INSIGHT FROM HOST GALAXY PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jiayi [Tsinghua Center for Astrophysics, Department of Physics, Tsinghua University, Beijing 100084 (China); Shen, Yue [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States)

    2015-05-01

    The diverse properties of broad-line quasars appear to follow a well-defined main sequence along which the optical Fe ii strength increases. It has been suggested that this sequence is mainly driven by the Eddington ratio (L/L{sub Edd}) of the black hole (BH) accretion. Shen and Ho demonstrated with quasar clustering analysis that the average BH mass decreases with increasing Fe ii strength when quasar luminosity is fixed, consistent with this suggestion. Here we perform an independent test by measuring the stellar velocity dispersion σ{sub *} (hence, the BH mass via the M–σ{sub *} relation) from decomposed host spectra in low-redshift Sloan Digital Sky Survey quasars. We found that at fixed quasar luminosity, σ{sub *} systematically decreases with increasing Fe ii strength, confirming that the Eddington ratio increases with Fe ii strength. We also found that at fixed luminosity and Fe ii strength, there is little dependence of σ{sub *} on the broad Hβ FWHM. These new results reinforce the framework that the Eddington ratio and orientation govern most of the diversity seen in broad-line quasar properties.

  18. Dissecting the Quasar Main Sequence: Insight from Host Galaxy Properties

    Science.gov (United States)

    Sun, Jiayi; Shen, Yue

    2015-05-01

    The diverse properties of broad-line quasars appear to follow a well-defined main sequence along which the optical Fe ii strength increases. It has been suggested that this sequence is mainly driven by the Eddington ratio (L/LEdd) of the black hole (BH) accretion. Shen & Ho demonstrated with quasar clustering analysis that the average BH mass decreases with increasing Fe ii strength when quasar luminosity is fixed, consistent with this suggestion. Here we perform an independent test by measuring the stellar velocity dispersion σ* (hence, the BH mass via the M-σ* relation) from decomposed host spectra in low-redshift Sloan Digital Sky Survey quasars. We found that at fixed quasar luminosity, σ* systematically decreases with increasing Fe ii strength, confirming that the Eddington ratio increases with Fe ii strength. We also found that at fixed luminosity and Fe ii strength, there is little dependence of σ* on the broad Hβ FWHM. These new results reinforce the framework that the Eddington ratio and orientation govern most of the diversity seen in broad-line quasar properties.

  19. M dwarfs in the Local Milky Way: The Field Low-Mass Stellar Luminosity and Mass Functions

    Energy Technology Data Exchange (ETDEWEB)

    Bochanski, Jr, John J. [Univ. of Washington, Seattle, WA (United States)

    2008-01-01

    Modern sky surveys, such as the Sloan Digital Sky Survey (SDSS) and the Two-Micron All Sky Survey, have revolutionized how Astronomy is done. With millions of photometric and spectroscopic observations, global observational properties can be studied with unprecedented statistical significance. Low-mass stars dominate the local Milky Way, with tens of millions observed by SDSS within a few kpc. Thus, they make ideal tracers of the Galactic potential, and the thin and thick disks. In this thesis dissertation, I present my efforts to characterize the local low-mass stellar population, using a collection of observations from the Sloan Digital Sky Survey (SDSS). First, low-mass stellar template spectra were constructed from the co-addition of thousands of SDSS spectroscopic observations. These template spectra were used to quantify the observable changes introduced by chromospheric activity and metallicity. Furthermore, the average ugriz colors were measured as a function of spectral type. Next, the local kinematic structure of the Milky Way was quantified, using a special set of SDSS spectroscopic observations. Combining proper motions and radial velocities (measured using the spectral templates), along with distances, the full UVW space motions of over 7000 low-mass stars along one line of sight were computed. These stars were also separated kinematically to investigate other observational differences between the thin and thick disks. Finally, this dissertation details a project designed to measure the luminosity and mass functions of low-mass stars. Using a new technique optimized for large surveys, the field luminosity function (LF) and local stellar density profile are measured simultaneously. The sample size used to estimate the LF is nearly three orders of magnitude larger than any previous study, offering a definitive measurement of this quantity. The observed LF is transformed into a mass function (MF) and compared to previous studies.

  20. The LBT/WISSH quasar survey: revealing powerful winds in the most luminous AGN

    Science.gov (United States)

    Vietri, Giustina

    2017-01-01

    The systematic, multi-frequency investigation of hyper-luminous quasars shining at the golden epoch of AGN activity offers the unique opportunity of studying the power and the effect of AGN feedback at its extreme.The WISE/SDSS selected hyper-luminous (WISSH) quasar survey is an extensive multi-band observing program (from millimeter wavelengths to hard X rays) designed to accurately probe the role of nuclear activity in SMBH-galaxy self-regulated growth via extended outflows.Our on-going project aims at constraining both AGN and host galaxy ISM and star-formation properties in a large sample of ~ 90 broad-line quasars at the brightest end of the AGN luminosity function (L_bol > 1e14 L_sun), and at the peak of their number density (z ~ 2.5 - 3.5).I will review the most important results of the near-IR spectroscopic follow-up of WISSH quasars (available for ~40% of the total sample) performed with the LUCI at LBT. These observations were carried out to obtain a reliable Hbeta-based estimate of the SMBH masses and a census of the ionized outflows in these hyper-luminous quasars.We found that WISSH AGN are typically powered by highly accreting (0.3-3 Ledd), ten billion solar masses SMBHs, demonstrating that WISSH provides a simple and valuable tool to complete the census of the extreme SMBH population in the universe.We also succeeded in discovering [OIII] emission lines with a broad, skewed profile and exceptional luminosities (> 6e44 erg/s), tracing very powerful ionized outflows (up to ~4% of L_bol) in ~30% of the sample.Remarkably, the remaining 70% of quasars lacks [OIII] emission but shows strong winds traced by 3,000-8,000 km/s blueshifts of the high-ionization (CIV) with respect to low-ionization (Hbeta) broad emission lines, revealing strong radiatively driven winds that dominate the BLR kinematics.I will discuss the possible origins of this intriguing dichotomy which involves fundamental parameters such as bolometric luminosity, SMBH mass, Eddington ratio

  1. Black Hole Mass Estimates of Radio Selected Quasars

    OpenAIRE

    Oshlack, Alicia; Webster, Rachel; Whiting, Matthew

    2002-01-01

    The black hole (BH) mass in the centre of AGN has been estimated for a sample of radio-selected flat-spectrum quasars to investigate the relationship between BH mass and radio properties of quasars. We have used the virial assumption with measurements of the H$\\beta$ FWHM and luminosity to estimate the central BH mass. In contrast to previous studies we find no correlation between BH mass and radio power in these AGN. We find a range in BH mass similar to that seen in radio-quiet quasars from...

  2. Light, Luminosity and the High Luminosity LHC

    CERN Multimedia

    2015-01-01

    Short interview to Lucio Rossi, project leader of the High Luminosity LHC, about the concept of light in physics, light and luminosity in particle accelerators and the High Luminosity LHC project. On the occasion of International Year of Light 2015.

  3. Bayesian High-Redshift Quasar Classification from Optical and Mid-IR Photometry

    CERN Document Server

    Richards, Gordon T; Peters, Christina M; Krawczyk, Coleman M; Chase, Greg; Ross, Nicholas P; Fan, Xiaohui; Jiang, Linhua; Lacy, Mark; McGreer, Ian D; Trump, Jonathan R; Riegel, Ryan N

    2015-01-01

    We identify 885,503 type 1 quasar candidates to i3.5 than the traditional mid-IR selection "wedges" and to 2.23. This catalog paves the way for luminosity-dependent clustering investigations of large numbers of faint, high-redshift quasars and for further machine learning quasar selection using Spitzer and WISE data combined with other large-area optical imaging surveys.

  4. Power spectrum, correlation function, and tests for luminosity bias in the CfA redshift survey

    Science.gov (United States)

    Park, Changbom; Vogeley, Michael S.; Geller, Margaret J.; Huchra, John P.

    1994-01-01

    We describe and apply a method for directly computing the power spectrum for the galaxy distribution in the extension of the Center for Astrophysics Redshift Survey. Tests show that our technique accurately reproduces the true power spectrum for k greater than 0.03 h Mpc(exp -1). The dense sampling and large spatial coverage of this survey allow accurate measurement of the redshift-space power spectrum on scales from 5 to approximately 200 h(exp -1) Mpc. The power spectrum has slope n approximately equal -2.1 on small scales (lambda less than or equal 25 h(exp -1) Mpc) and n approximately -1.1 on scales 30 less than lambda less than 120 h(exp -1) Mpc. On larger scales the power spectrum flattens somewhat, but we do not detect a turnover. Comparison with N-body simulations of cosmological models shows that an unbiased, open universe CDM model (OMEGA h = 0.2) and a nonzero cosmological constant (CDM) model (OMEGA h = 0.24, lambda(sub zero) = 0.6, b = 1.3) match the CfA power spectrum over the wavelength range we explore. The standard biased CDM model (OMEGA h = 0.5, b = 1.5) fails (99% significance level) because it has insufficient power on scales lambda greater than 30 h(exp -1) Mpc. Biased CDM with a normalization that matches the Cosmic Microwave Background (CMB) anisotropy (OMEGA h = 0.5, b = 1.4, sigma(sub 8) (mass) = 1) has too much power on small scales to match the observed galaxy power spectrum. This model with b = 1 matches both Cosmic Background Explorer Satellite (COBE) and the small-scale power spect rum but has insufficient power on scales lambda approximately 100 h(exp -1) Mpc. We derive a formula for the effect of small-scale peculiar velocities on the power spectrum and combine this formula with the linear-regime amplification described by Kaiser to compute an estimate of the real-space power spectrum. Two tests reveal luminosity bias in the galaxy distribution: First, the amplitude of the pwer spectrum is approximately 40% larger for the brightest

  5. Optical Monitoring of Quasars; 1, Variability

    CERN Document Server

    García, A; Jablonski, F J; Terlevich, R J

    1999-01-01

    We present an analysis of quasar variability from data collected during a photometric monitoring of 50 objects carried out at CNPq/Laboratorio Nacional de Astrofisica, Brazil, between March 1993 and July 1996. A distinctive feature of this survey is its photometric accuracy, ~ 0.02 V mag, achieved through differential photometry with CCD detectors, what allows the detection of faint levels of variability. We find that the relative variability, delta = sigma / L, observed in the V band is anti-correlated with both luminosity and redshift, although we have no means of discovering the dominant relation, given the strong coupling between luminosity and redshift for the objects in our sample.We introduce a model for the dependence of quasar variability on frequency that is consistent with multi-wavelength observations of the nuclear variability of the Seyfert galaxy NGC 4151. We show that correcting the observed variability for this effect slightly increases the significance of the trends of variability with lumin...

  6. Hubble Space Telescope Ultraviolet Spectroscopy of Fourteen Low-Redshift Quasars

    DEFF Research Database (Denmark)

    Ganguly, Rajib; Brotherton, Michael S.; Arav, Nahum;

    2007-01-01

    We present low-resolution ultraviolet spectra of 14 low redshift (z zz 1.4 Large Bright Quasar samples. By design, our objects sample luminosities in between these two surveys, and our four absorbed objects are consistent with the v ~ L^0.62 relation derived by Laor & Brandt (2002). Another quasar...

  7. A Deep Proper Motion Catalog Within the Sloan Digital Sky Survey Footprint. II. The White Dwarf Luminosity Function

    Science.gov (United States)

    Munn, Jeffrey A.; Harris, Hugh C.; von Hippel, Ted; Kilic, Mukremin; Liebert, James W.; Williams, Kurtis A.; DeGennaro, Steven; Jeffery, Elizabeth; Dame, Kyra; Gianninas, A.; Brown, Warren R.

    2017-01-01

    A catalog of 8472 white dwarf (WD) candidates is presented, selected using reduced proper motions from the deep proper motion catalog of Munn et al. Candidates are selected in the magnitude range 16text{}}g=8). The disk white dwarf luminosity function (WDLF) is constructed using a sample of 2839 stars with 5.5space densities of disk and halo WDs in the solar neighborhood of 5.5+/- 0.1× {10}-3 {{pc}}-3 and 3.5+/- 0.7× {10}-5 {{pc}}-3, respectively. We resolve the bump in the disk WDLF due to the onset of fully convective envelopes in WDs, and see indications of it in the halo WDLF as well.

  8. A Model for Intrinsic Redshifts of Quasars

    CERN Document Server

    Hansen, Peter M

    2015-01-01

    The large observed redshift of quasars has suggested large cosmological distances and a corresponding enormous energy output to explain the brightness or luminosity as seen at earth. Alternative or complementary sources of redshift have not been identified by the astronomical community. This study examines one possible source of additional redshift: an intrinsic component based on the plasma characteristics of high temperature and high electron density which are believed to be present.

  9. Gamma-Ray Burst Luminosity Functions Based On a Newly Discovered Correlation Between Peak Spectral Energy and V/V_max

    CERN Document Server

    Schmidt, Maarten

    2009-01-01

    We have discovered a correlation between the observed peak spectral energy E_pk,obs and the average Euclidean value of V/V_max of gamma-ray bursts (GRBs). We present the evidence for the correlation in the GUSBAD catalog and use it to derive the luminosity function of GRBs without using any redshifts. The procedure involves dividing GUSBAD GRBs in five spectral classes based on their E_pk,obs. The overall luminosity function is derived assuming that each of the spectral classes contributes a gaussian luminosity function. Their central luminosity is derived from the average observed Euclidean V/V_max. We explore various forms for the GRB rate function GR(z) in predicting redshift distributions of GRBs detected by Swift. We find that GR(z) peaks at a higher redshift than the typical star formation history currently favored in the literature. We consider two examples of GR(z) that successfully predict the observed redshift distribution of Swift GRBs. With the luminosity functions in hand, we convert the E_pk,obs...

  10. HST luminosity functions of the globular clusters M10, M22, and M55. A comparison with other clusters

    Science.gov (United States)

    Piotto, G.; Zoccali, M.

    1999-05-01

    From a combination of deep Hubble Space Telescope V and I images with groundbased images in the same bands, we have obtained color-magnitude diagrams of M10, M22, and M55, extending from just above the hydrogen burning limit to the tip of the red giant branch, down to the white dwarf cooling sequence. We have used the color-magnitude arrays to extract main sequence luminosity functions (LFs) from the turnoff to m ~ 0.13m_sun. The LFs of M10 is significantly steeper than that for the other two clusters. The difference cannot be due to a difference in metallicity. A comparison with the LFs from Piotto et al. (1997), shows a large spread in the LF slopes. This spread is also present in the local mass functions (MFs) obtained from the observed LFs using different theoretical mass-luminosity relations. The dispersion in the MF slopes remains also after removing the mass segregation effects by using multimass King-Michie models. The globular cluster MF slopes are also flatter than the MF slope of the field stars and of the Galactic clusters in the same mass interval. We interpret the MF slope dispersion and the MF flatness as an evidence of dynamical evolution which makes the present day globular cluster stellar MFs different from the initial MFs. The slopes of the present day MFs exclude that the low mass star can be dynamically relevant for the Galactic globular clusters. Based on HST observations retrieved from the ESO ST-ECF Archive, and on observations made at the European Southern Observatory, La Silla, Chile, and at the JKT telescope at La Palma, Islas Canarias.

  11. On the Search for Quasar Light Echoes

    CERN Document Server

    Visbal, Eli

    2007-01-01

    The UV radiation from a quasar leaves a characteristic pattern in the distribution of ionized hydrogen throughout the surrounding space. This pattern or light echo propagates through the intergalactic medium at the speed of light, and can be observed by its imprint on the Ly-alpha forest spectra of background sources. As the echo persists after the quasar has switched off, it offers the possibility of searching for dead quasars, and constraining their luminosities and lifetimes. We outline a technique to search for and characterize these light echoes. To test the method, we create artificial Ly-alpha forest spectra from cosmological simulations at z=3, apply light echoes and search for them. We show how the simulations can also be used to quantify the significance level of any detection. We find that light echoes from the brightest quasars could be found in observational data. With absorption line spectra of 100 redshift z~3-3.5 quasars or galaxies in a 1 square degree area, we expect that ~10 echoes from qua...

  12. B1524-136 A CSS quasar with two-sided radio jets

    CERN Document Server

    Mantovani, F; Bondi, M; Junor, W; Salter, C J; Ricci, R

    2002-01-01

    We present MERLIN, global VLBI and VLBA observations of the high-luminosity, compact steep-spectrum quasar B1524$-$136 at cm wavelengths. These observations reveal well-defined radio jets on both sides of the active nucleus, a situation which is almost unique amongst high-luminosity radio quasars. However, the radio jets on opposite sides are very dissimilar, and the overall radio structure appears highly distorted. We discuss possible implications of these observations.

  13. Ionization state of cosmic hydrogen by early stars and quasars

    Institute of Scientific and Technical Information of China (English)

    Xiao-Chun Mao

    2009-01-01

    Cosmic hydrogen is reionized and maintained in its highly ionized state by the ultraviolet emission attributed to an early generation of stars and quasars. The Lyα opacity observed in absorption spectra of high-redshift quasars permits more stringent constraints on the ionization state of cosmic hydrogen. Based on density perturbation and structure formation theory, we develop an analytic model to trace the evolution of the ionization state in the post-overlap epoch of reionization, in which the bias factor is taken into ac-count. For quasars, we represent an improved luminosity function by utilizing a hybrid approach for the halo formation rate that is in reasonable agreement with the published measurements at 2 z 6. Comparison with the classic Press-Schechter mass function of dark matter halos, we demonstrate that the biased mass distribution indeed enhances star formation efficiency in the overdense environment by more than 25 per cent following the overlap of ionized bubbles. In addition, an alternative way is introduced to derive robust estimates of the mean free path for ionizing photons. In our model, star-forming galax-ies are likely to dominate the ionizing background radiation beyond z = 3, and quasars contribute equally above a redshift of z ~ 2.5. From 5 ≤ z ≤ 6, the lack of evolution in photoionization rate can thus be explained by the relatively flat evolution in star formation efficiency, although the mean free path of ionizing photons increases rapidly. Moreover, in the redshift interval z ~ 2 - 6, the expected mean free path and Gunn-Peterson optical depth obviously evolve by a factor of ~ 500 and ~ 50 respectively. We find that the rel-ative values of critical overdensities for hydrogen ionization and collapse could be 430% at z ≈ 2 and 2% at z ≈ 6, suggesting a rapid overlap process in the overdense regions around instant quasars following reionization. We further illustrate that the absolute esti-mates of the fraction of neutral

  14. The X-Ray Luminosity Function of M37 and the Evolution of Coronal Activity in Low-mass Stars

    Science.gov (United States)

    Núñez, Alejandro; Agüeros, Marcel A.

    2016-10-01

    We use a 440.5 ks Chandra observation of the ≈500 Myr old open cluster M37 to derive the X-ray luminosity functions of its ≤1.2 {M}ȯ stars. Combining detections of 162 M37 members with upper limits for 160 non-detections, we find that its G, K, and M stars have a similar median (0.5–7 keV) X-ray luminosity {L}{{X}}={10}29.0 {erg} {{{s}}}-1, whereas the {L}{{X}}-to-bolometric-luminosity ratio ({L}{{X}}/{L}{bol}) indicates that M stars are more active than G and K stars by ≈ 1 order of magnitude at 500 Myr. To characterize the evolution of magnetic activity in low-mass stars over their first ≈ 600 {{Myr}}, we consolidate X-ray and optical data from the literature for stars in six other open clusters: from youngest to oldest they are, the Orion Nebula Cluster (ONC), NGC 2547, NGC 2516, the Pleiades, NGC 6475, and the Hyades. For these, we homogenize the conversion of instrumental count rates to {L}{{X}} by applying the same one-temperature emission model as for M37, and obtain masses using the same empirical mass-absolute magnitude relation (except for the ONC). We find that for G and K stars X-ray activity decreases ≈ 2 orders of magnitude over their first 600 Myr, and for M stars, ≈1.5. The decay rate of the median {L}{{X}} follows the relation {L}{{X}}\\propto {t}b, where b=-0.61+/- 0.12 for G stars, ‑0.82 ± 0.16 for K stars, and ‑0.40 ± 0.17 for M stars. In {L}{{X}}/{L}{bol} space, the slopes are ‑0.68 ± 0.12, ‑0.81 ± 0.19, and ‑0.61 ± 0.12, respectively. These results suggest that for low-mass stars the age-activity relation steepens after ≈ 625 {{Myr}}, consistent with the faster decay in activity observed in solar analogs at t\\gt 1 {{Gyr}}.

  15. The Bright End of the z ˜ 9 and z ˜ 10 UV Luminosity Functions Using All Five CANDELS Fields*

    Science.gov (United States)

    Bouwens, R. J.; Oesch, P. A.; Labbé, I.; Illingworth, G. D.; Fazio, G. G.; Coe, D.; Holwerda, B.; Smit, R.; Stefanon, M.; van Dokkum, P. G.; Trenti, M.; Ashby, M. L. N.; Huang, J.-S.; Spitler, L.; Straatman, C.; Bradley, L.; Magee, D.

    2016-10-01

    The deep, wide-area (˜800-900 arcmin2) near-infrared/WFC3/IR + Spitzer/IRAC observations over the CANDELS fields have been a remarkable resource for constraining the bright end of high-redshift UV luminosity functions. However, the lack of Hubble Space Telescope (HST) 1.05 μm observations over the CANDELS fields has made it difficult to identify z ˜ 9-10 sources robustly, since such data are needed to confirm the presence of an abrupt Lyman break at 1.2 μm. Here, we report on the successful identification of many such z ˜ 9-10 sources from a new HST program (z9-CANDELS) that targets the highest-probability z ˜ 9-10 galaxy candidates with observations at 1.05 μm, to search for a robust Lyman-break at 1.2 μm. The potential z ˜ 9-10 candidates were preselected from the full HST, Spitzer/IRAC S-CANDELS observations, and the deepest-available ground-based optical+near-infrared observations (CFHTLS-DEEP+HUGS+UltraVISTA+ZFOURGE). We identified 15 credible z ˜ 9-10 galaxies over the CANDELS fields. Nine of these galaxies lie at z ˜ 9 and five are new identifications. Our targeted follow-up strategy has proven to be very efficient in making use of scarce HST time to secure a reliable sample of z ˜ 9-10 galaxies. Through extensive simulations, we replicate the selection process for our sample (both the preselection and follow-up) and use it to improve current estimates for the volume density of bright z ˜ 9 and z ˜ 10 galaxies. The volume densities we find are 5{}-2+3× and {8}-3+9× lower, respectively, than those found at z ˜ 8. When compared with the best-fit evolution (i.e., d {{log}}10 {ρ }{UV}/{dz}=-0.29+/- 0.02) in the UV luminosity densities from z ˜ 8 to z ˜ 4 integrated to 0.3{L}z=3* (-20 mag), these luminosity densities are {2.6}-0.9+1.5× and {2.2}-1.1+2.0× lower, respectively, than the extrapolated trends. Our new results are broadly consistent with the “accelerated evolution” scenario at z > 8, consistent with that seen in many models

  16. Bayesian inference of galaxy formation from the K-band luminosity function of galaxies: tensions between theory and observation

    CERN Document Server

    Lu, Yu; Katz, Neal; Weinberg, Martin D

    2011-01-01

    We conduct Bayesian model inferences from the observed K-band luminosity function of galaxies in the local Universe, using the semi-analytic model (SAM) of galaxy formation introduced in Lu et al (2011). The prior distributions for the 14 free parameters include a large range of possible models. We find that some of the free parameters, e.g. the characteristic scales for quenching star formation in both high-mass and low-mass halos, are already tightly constrained by the single data set. The posterior distribution includes the model parameters adopted in other SAMs. By marginalising over the posterior distribution, we make predictions that include the full inferential uncertainties for the colour-magnitude relation, the Tully-Fisher relation, the conditional stellar mass function of galaxies in halos of different masses, the HI mass function, the redshift evolution of the stellar mass function of galaxies, and the global star formation history. Using posterior predictive checking with the available observatio...

  17. Luminosity functions in the CLASH-VLT cluster MACS J1206.2-0847: the importance of tidal interactions

    CERN Document Server

    Mercurio, A; Biviano, A; Nonino, M; Rosati, P; Balestra, I; Brescia, M; Girardi, M; Gobat, R; Grillo, C; Lombardi, M; Sartoris, B

    2015-01-01

    We present the optical luminosity functions (LFs) of galaxies for the CLASH-VLT cluster MACS J1206.2-0847 at z=0.439, based on HST and SUBARU data, including ~600 spectroscopically confirmed member galaxies. The LFs on the wide SUBARU FoV are well described by a single Schechter function down to M~M*+3, whereas this fit is poor for HST data, due to a faint-end upturn visible down M~M*+7, suggesting a bimodal behaviour. We also investigate the effect of local environment by deriving the LFs in four different regions, according to the distance from the centre, finding an increase in the faint-end slope going from the core to the outer rings. Our results confirm and extend our previous findings on the analysis of mass functions, which showed that the galaxies with stellar mass below 10^10.5, M_sun have been significantly affected by tidal interaction effects, thus contributing to the intra cluster light.

  18. Herschel-ATLAS Galaxy Counts and High Redshift Luminosity Functions: The Formation of Massive Early Type Galaxies

    CERN Document Server

    Lapi, A; Fan, L; Bressan, A; De Zotti, G; Danese, L; Negrello, M; Dunne, L; Eales, S; Maddox, S; Auld, R; Baes, M; Bonfield, D G; Buttiglione, S; Cava, A; Clements, D L; Cooray, A; Dariush, A; Dye, S; Fritz, J; Herranz, D; Hopwood, R; Ibar, E; Ivison, R; Jarvis, M J; Kaviraj, S; Lopez-Caniego, M; Massardi, M; Michalowski, M J; Pascale, E; Pohlen, M; Rigby, E; Rodighiero, G; Serjeant, S; Smith, D J B; Temi, P; Wardlow, J; van der Werf, P

    2011-01-01

    Exploiting the Herschel-ATLAS Science Demonstration Phase (SDP) survey data, we have determined the luminosity functions (LFs) at rest-frame wavelengths of 100 and 250 micron and at several redshifts z>1, for bright sub-mm galaxies with star formation rates (SFR) >100 M_sun/yr. We find that the evolution of the comoving LF is strong up to z~2.5, and slows down at higher redshifts. From the LFs and the information on halo masses inferred from clustering analysis, we derived an average relation between SFR and halo mass (and its scatter). We also infer that the timescale of the main episode of dust-enshrouded star formation in massive halos (M_H>3*10^12 M_sun) amounts to ~7*10^8 yr. Given the SFRs, which are in the range 10^2-10^3 M_sun/yr, this timescale implies final stellar masses of order of 10^11-10^12 M_sun. The corresponding stellar mass function matches the observed mass function of passively evolving galaxies at z>1. The comparison of the statistics for sub-mm and UV selected galaxies suggests that the...

  19. The luminosity function at the end of the main sequence: Results of a deep, large-area, CCD survey for cool dwarfs

    Science.gov (United States)

    Kirkpatrick, J. Davy; Mcgraw, John T.; Hess, Thomas R.; Liebert, James; Mccarthy, Donald W., Jr.

    1994-01-01

    The luminosity function at the end of the main sequence is determined from V, R, and I data taken by the charge coupled devices (CCD)/Transit Instrument, a dedicated telescope surveying an 8.25 min wide strip of sky centered at delta = +28 deg, thus sampling Galactic latitudes of +90 deg down to -35 deg. A selection of 133 objects chosen via R - I and V - I colors has been observed spectroscopically at the 4.5 m Multiple Mirror Telescope to assess contributions by giants and subdwarfs and to verify that the reddest targets are objects of extremely late spectral class. Eighteen dwarfs of type M6 or later have been discovered, with the latest being of type M8.5. Data used for the determination of the luminosity function cover 27.3 sq. deg down to a completeness limit of R = 19.0. This luminosity function, computed at V, I, and bolometric magnitudes, shows an increase at the lowest luminosities, corresponding to spectral types later than M6- an effect suggested in earlier work by Reid & Gilmore and Legget & Hawkins. When the luminosity function is segregated into north Galactic and south Galactic portions, it is found that the upturn at faint magnitudes exists only in the southern sample. In fact, no dwarfs with M(sub I) is greater than or equal to 12.0 are found within the limiting volume of the 19.4 sq deg northern sample, in stark contrast to the smaller 7.9 sq deg area at southerly latitudes where seven such dwarfs are found. This fact, combined with the fact that the Sun is located approximately 10-40 pc north of the midplane, suggests that the latest dwarfs are part of a young population with a scale height much smaller than the 350 pc value generally adopted for other M dwarfs. These objects comprise a young population either because the lower metallicities prevelant at earlier epochs inhibited the formation of late M dwarfs or because the older counterparts of this population have cooled beyond current detection limits. The latter scenario would hold if these

  20. The LBT Boötes Field Survey. I. The Rest-frame Ultraviolet and Near-infrared Luminosity Functions and Clustering of Bright Lyman Break Galaxies at Z ~ 3

    Science.gov (United States)

    Bian, Fuyan; Fan, Xiaohui; Jiang, Linhua; McGreer, Ian; Dey, Arjun; Green, Richard F.; Maiolino, Roberto; Walter, Fabian; Lee, Kyoung-Soo; Davé, Romeel

    2013-09-01

    We present a deep LBT/LBC U spec-band imaging survey (9 deg2) covering the NOAO Boötes field. A total of 14,485 Lyman break galaxies (LBGs) at z ~ 3 are selected, which are used to measure the rest-frame UV luminosity function (LF). The large sample size and survey area reduce the LF uncertainties due to Poisson statistics and cosmic variance by >=3 compared to previous studies. At the bright end, the LF shows excess power compared to the best-fit Schechter function, which can be attributed to the contribution of z ~ 3 quasars. We compute the rest-frame near-infrared LF and stellar mass function (SMF) of z ~ 3 LBGs based on the R-band and [4.5 μm]-band flux relation. We investigate the evolution of the UV LFs and SMFs between z ~ 7 and z ~ 3, which supports a rising star formation history in the LBGs. We study the spatial correlation function of two bright LBG samples and estimate their average host halo mass. We find a tight relation between the host halo mass and the galaxy star formation rate (SFR), which follows the trend predicted by the baryonic accretion rate onto the halo, suggesting that the star formation in LBGs is fueled by baryonic accretion through the cosmic web. By comparing the SFRs with the total baryonic accretion rates, we find that cosmic star formation efficiency is about 5%-20% and it does not evolve significantly with redshift, halo mass, or galaxy luminosity. Based on data acquired using the Large Binocular Telescope (LBT). The LBT is an international collaboration among institutions in the United States, Italy, and Germany. LBT Corporation partners are: The University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; The Ohio State University, and The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota, and University

  1. Halo Occupation Distribution of Infrared Selected Quasars

    CERN Document Server

    Mitra, Kaustav

    2016-01-01

    We perform a Halo Occupation Distribution (HOD) modeling of the projected two-point correlation function (2PCF) of quasars that are observed in the Wide-field Infrared Survey Explorer (WISE) telescope with counter-parts in the Sloan Digital Sky Survey (SDSS) Data Release (DR)-8 quasar catalog at a median redshift of $z\\sim 1.04 (\\pm 0.58)$. Using a four parameter HOD model we derive the host mass scales of WISE selected quasars. Our results show that the median halo masses of central and satellite quasars lie in the range $M_{\\mathrm{cen}} = (5 \\pm 1.0) \\times 10^{12} M_{\\odot}$ and $M_{\\mathrm{sat}} = 8 (^{+7.8} _{-4.8}) \\times 10^{13} M_{\\odot}$, respectively. The derived satellite fraction is $f_{\\mathrm{sat}}= 5.5 (^{+35} _{-5.0})\\times 10^{-3}$. Previously Richardson et al.\\ used the SDSS DR7 quasar clustering data to obtain the halo mass distributions of $z\\sim 1.4$ quasars. Our results on the HOD of central quasars are in excellent agreement with Richardson et al.\\ but the host mass scale of satellite ...

  2. The XXL Survey. II. The bright cluster sample: catalogue and luminosity function

    CERN Document Server

    Pacaud, F; Giles, P A; Adami, C; Sadibekova, T; Pierre, M; Maughan, B J; Lieu, M; Fèvre, J -P Le; Alis, S; Altieri, B; Ardila, F; Baldry, I; Benoist, C; Birkinshaw, M; Chiappetti, L; Démoclès, J; Eckert, D; Evrard, A E; Faccioli, L; Gastaldello, F; Guennou, L; Horellou, C; Iovino, A; Koulouridis, E; Brun, V Le; Lidman, C; Liske, J; Maurogordato, S; Menanteau, F; Owers, M; Poggianti, B; Pomarède, D; Pompei, E; Ponman, T J; Rapetti, D; Reiprich, T H; Smith, G P; Tuffs, R; Valageas, P; Valtchanov, I; Willis, J P; Ziparo, F

    2015-01-01

    Context. The XXL Survey is the largest survey carried out by the XMM-Newton satellite and covers a total area of 50 square degrees distributed over two fields. It primarily aims at investigating the large-scale structures of the Universe using the distribution of galaxy clusters and active galactic nuclei as tracers of the matter distribution. Aims. This article presents the XXL bright cluster sample, a subsample of 100 galaxy clusters selected from the full XXL catalogue by setting a lower limit of $3\\times 10^{-14}\\,\\mathrm{erg \\,s^{-1}cm^{-2}}$ on the source flux within a 1$^{\\prime}$ aperture. Methods. The selection function was estimated using a mixture of Monte Carlo simulations and analytical recipes that closely reproduce the source selection process. An extensive spectroscopic follow-up provided redshifts for 97 of the 100 clusters. We derived accurate X-ray parameters for all the sources. Scaling relations were self-consistently derived from the same sample in other publications of the series. On th...

  3. The Luminosity Function of Lyman Alpha Emitting Galaxies and Cosmic Reionisation of Hydrogen

    CERN Document Server

    Dijkstra, M; Haiman, Z; Dijkstra, Mark; Wyithe, Stuart; Haiman, Zoltan

    2006-01-01

    Recent observations imply that the observed number counts of Lyman Alpha (Lya) emitters evolved significantly between z=5.7 and z=6.5. It has been suggested that this evolution was due to a rapid evolution in the ionisation state, and hence transmission of the IGM which caused Lya flux from z=6.5 galaxies to be more strongly suppressed. In this paper we show that the observed evolution can be attributed entirely to the evolution in the mass function of dark matter halos housing the Lya emitters. We place constraints on the evolution of transmission in the IGM between z=6.5 and z=5.7, finding a ratio of ~1.2, which may be accounted for by the evolution of the mean IGM density through cosmic expansion. Using a model for IGM transmission, we demonstrate that Lya emitting galaxies at z=6.5 must be embedded in HII bubbles greater than 35x_HI comoving Mpc in size, where x_HI is the neutral fraction of hydrogen outside the ionised bubbles. The model of Furlanetto et al (2006) may be used to translate this into a low...

  4. The massive end of the luminosity and stellar mass functions: Dependence on the fit to the light profile

    CERN Document Server

    Bernardi, M; Sheth, R K; Vikram, V; Huertas-Company, M; Mei, S; Shankar, F

    2013-01-01

    In addition to the large systematic differences arising from assumptions about the stellar mass-to-light ratio, the massive end of the stellar mass function is rather sensitive to how one fits the light profiles of the most luminous galaxies. We quantify this by comparing the luminosity and stellar mass functions based on SDSS cmodel magnitudes, and PyMorph single-Sersic and Sersic-Exponential fits to the surface brightness profiles of galaxies in the SDSS. The PyMorph fits return more light, so that the predicted masses are larger than when cmodel magnitudes are used. As a result, the total stellar mass density at z~0.1 is about 1.2x larger than in our previous analysis of the SDSS. The differences are most pronounced at the massive end, where the measured number density of objects having M* > 6 x 10^{11} Msun is ~5x larger. Alternatively, at number densities of 10^{-6} Mpc^{-3}, the limiting stellar mass is 2x larger. The differences with respect to fits by other authors, typically based on Petrosian-like m...

  5. Characterising the evolving $K$-band luminosity function using the UltraVISTA, CANDELS and HUDF surveys

    CERN Document Server

    Mortlock, Alice; Bowler, Rebecca A A; McLeod, Derek J; Marmol-Queralto, Esther; Parsa, Shaghayegh; Dunlop, James S; Bruce, Victoria A

    2016-01-01

    We present the results of a new study of the K-band galaxy luminosity function (KLF) at redshifts z0.25 is relatively steep (-1.30.25 the evolution of the KLF is remarkably smooth, with little or no evolution evident at faint (M_K>-20.5) or bright magnitudes (M_K<-24.5). Instead, the KLF is seen to evolve rapidly at intermediate magnitudes, with the number density of galaxies at M_K~-23 dropping by a factor of ~5 over the redshift interval 0.25function with fixed faint-end slopes (alpha_1=-0.5, alpha_2=-1.5) and a shared characteristic magnitude (M_K*). According to this parameterisation, the normalisation of the component which dominates the faint-end of the KLF remains approximately constant, with phi*_2 decreasing by only a factor of ~2 between z~0 and z~3.25. In contrast, the component which dominates the bright end of the KLF at low redshifts evolves dramatically, becoming essentially negl...

  6. The H-alpha luminosity function at redshift 2.2: A new determination using VLT/HAWK-I

    CERN Document Server

    Hayes, Matthew; Ostlin, Goran

    2009-01-01

    We aim to place new, strengthened constraints on the luminosity function (LF) of H-alpha emitting galaxies at redshift z=2.2, and to further constrain the instantaneous star-formation rate density of the universe (rho*). We have used the new HAWK-I instrument at ESO-VLT to obtain extremely deep narrow-band (line; NB2090) and broad-band (continuum; Ks) imaging observations. The target field is in the GOODS-South, providing us with a rich multi-wavelength auxiliary data set, which we utilise for redshift confirmation and to estimate dust content. We use this new data to measure the faint-end slope (alpha) of LF(H-alpha) with unprecedented precision. The data are well fit by a Schechter function and also a single power-law, yielding alpha=(-1.72 +/- 0.20) and (-1.77 +/- 0.21), respectively. Thus we are able to confirm the steepening of alpha from low- to high-z predicted by a number of authors and observed at other wavelengths. We combine our LF data-points with those from a much shallower but wider survey at z=...

  7. Dissecting the quasar main sequence: insight from host galaxy properties

    CERN Document Server

    Sun, Jiayi

    2015-01-01

    The diverse properties of broad-line quasars appear to follow a well-defined main sequence along which the optical FeII strength increases. It has been suggested that this sequence is mainly driven by the Eddington ratio (L/L_Edd) of the black hole (BH) accretion. Shen & Ho demonstrated with quasar clustering analysis that the average BH mass decreases with increasing FeII strength when quasar luminosity is fixed, consistent with this suggestion. Here we perform an independent test by measuring the stellar velocity dispersion sigma* (hence the BH mass via the M-sigma* relation) from decomposed host spectra in low-redshift Sloan Digital Sky Survey quasars. We found that at fixed quasar luminosity, sigma* systematically decreases with increasing FeII strength, confirming that Eddington ratio increases with FeII strength. We also found that at fixed luminosity and FeII strength, there is little dependence of sigma* on the broad Hbeta FWHM. These new results reinforce the framework put forward by Shen & H...

  8. The extended ROSAT-ESO Flux Limited X-ray Galaxy Cluster Survey (REFLEX II) IV. X-ray Luminosity Function and First Constraints on Cosmological Parameters

    CERN Document Server

    Böhringer, H; Collins, C A

    2014-01-01

    The X-ray luminosity function is an important statistic of the census of galaxy clusters and an important means to probe the cosmological model of our Universe. Based on our recently completed REFLEX II cluster sample we construct the X-ray luminosity function of galaxy clusters for several redshift slices from $z = 0$ to $z = 0.4$ and discuss its implications. We find no significant signature of redshift evolution of the luminosity function in the redshift interval. We provide the results of fits of a parameterized Schechter function and extensions of it which provide a reasonable characterization of the data. Using a model for structure formation and galaxy cluster evolution we compare the observed X-ray luminosity function with predictions for different cosmological models. For the most interesting constraints for the cosmological parameters $\\Omega_m$ and $\\sigma_8$ we obatain $\\Omega_m \\sim 0.27 \\pm 0.03$ and $\\sigma_8 \\sim 0.80 \\pm 0.03$ based on the statistical uncertainty alone. Marginalizing over the...

  9. Galaxy And Mass Assembly (GAMA): ugrizYJHK S\\'ersic luminosity functions and the cosmic spectral energy distribution by Hubble type

    CERN Document Server

    Kelvin, Lee S; Robotham, Aaron S G; Graham, Alister W; Phillipps, Steven; Agius, Nicola K; Alpaslan, Mehmet; Baldry, Ivan; Bamford, Steven P; Bland-Hawthorn, Joss; Brough, Sarah; Brown, Michael J I; Colless, Matthew; Conselice, Christopher J; Hopkins, Andrew M; Liske, Jochen; Loveday, Jon; Norberg, Peder; Pimbblet, Kevin A; Popescu, Cristina C; Prescott, Matthew; Taylor, Edward N; Tuffs, Richard J

    2014-01-01

    We report the morphological classification of 3727 galaxies from the Galaxy and Mass Assembly survey with M_r < -17.4 mag and in the redshift range 0.025 < z < 0.06 (2.1 x 10^5 Mpc^3 ) into E, S0-Sa, SB0-SBa, Sab-Scd, SBab-SBcd, Sd-Irr and little blue spheroid classes. Approximately 70% of galaxies in our sample are disk dominated systems, with the remaining ~30% spheroid dominated. We establish the robustness of our classifications, and use them to derive morphological-type luminosity functions and luminosity densities in the ugrizYJHK passbands, improving on prior studies that split by global colour or light profile shape alone. We find that the total galaxy luminosity function is best described by a double-Schechter function while the constituent morphological-type luminosity functions are well described by a single-Schechter function. These data are also used to derive the star-formation rate densities for each Hubble class, and the attenuated and unattenuated (corrected for dust) cosmic spectral...

  10. The Next Generation Virgo Cluster Survey (NGVS). XIII. The Luminosity and Mass Function of Galaxies in the Core of the Virgo Cluster and the Contribution from Disrupted Satellites

    CERN Document Server

    Ferrarese, Laura; Sanchez-Janssen, Ruben; Roediger, Joel; McConnachie, Alan W; Durrell, Patrick R; MacArthur, Lauren A; Blakeslee, John P; Duc, Pierre-Alain; Boissier, S; Boselli, Alessandro; Courteau, Stephane; Cuillandre, Jean-Charles; Emsellem, Eric; Gwyn, S D J; Guhathakurta, Puragra; Jordan, Andres; Lancon, Ariane; Liu, Chengze; Mei, Simona; Mihos, J Christopher; Puzia, Thomas H; Taylor, James E; Zhang, Hongxin

    2016-01-01

    We present measurements of the galaxy luminosity and stellar mass function in a 3.71 deg$^2$ (0.3 Mpc$^2$) area in the core of the Virgo cluster, based on $ugriz$ data from the Next Generation Virgo Cluster Survey (NGVS). The galaxy sample consists of 352 objects brighter than $M_g=-9.13$ mag, the 50% completeness limit of the survey. Using a Bayesian analysis, we find a best-fit faint end slope of $\\alpha=-1.33 \\pm 0.02$ for the g-band luminosity function; consistent results are found for the stellar mass function as well as the luminosity function in the other four NGVS bandpasses. We discuss the implications for the faint-end slope of adding 92 ultra compact dwarfs galaxies (UCDs) -- previously compiled by the NGVS in this region -- to the galaxy sample, assuming that UCDs are the stripped remnants of nucleated dwarf galaxies. Under this assumption, the slope of the luminosity function (down to the UCD faint magnitude limit, $M_g = -9.6$ mag) increases dramatically, up to $\\alpha = -1.60 \\pm 0.06$ when cor...

  11. Ultra-faint ultraviolet galaxies at z ∼ 2 behind the lensing cluster A1689: The luminosity function, dust extinction, and star formation rate density

    Energy Technology Data Exchange (ETDEWEB)

    Alavi, Anahita; Siana, Brian; Freeman, William R.; Dominguez, Alberto [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Richard, Johan [Centre de Recherche Astrophysique de Lyon, Université Lyon 1, 9 Avenue Charles André, F-69561 Saint Genis Laval Cedex (France); Stark, Daniel P.; Robertson, Brant [Department of Astronomy, Steward Observatory, University of Arizona, 933 North Cherry Avenue, Rm N204, Tucson, AZ 85721 (United States); Scarlata, Claudia [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55455 (United States); Teplitz, Harry I.; Rafelski, Marc [Infrared Processing and Analysis Center, Caltech, Pasadena, CA 91125 (United States); Kewley, Lisa, E-mail: anahita.alavi@email.ucr.edu [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia)

    2014-01-10

    We have obtained deep ultraviolet imaging of the lensing cluster A1689 with the WFC3/UVIS camera onboard the Hubble Space Telescope in the F275W (30 orbits) and F336W (4 orbits) filters. These images are used to identify z ∼ 2 star-forming galaxies via their Lyman break, in the same manner that galaxies are typically selected at z ≥ 3. Because of the unprecedented depth of the images and the large magnification provided by the lensing cluster, we detect galaxies 100× fainter than previous surveys at this redshift. After removing all multiple images, we have 58 galaxies in our sample in the range –19.5 < M {sub 1500} < –13 AB mag. Because the mass distribution of A1689 is well constrained, we are able to calculate the intrinsic sensitivity of the observations as a function of source plane position, allowing for accurate determinations of effective volume as a function of luminosity. We fit the faint-end slope of the luminosity function to be α = –1.74 ± 0.08, which is consistent with the values obtained for 2.5 < z < 6. Notably, there is no turnover in the luminosity function down to M {sub 1500} = –13 AB mag. We fit the UV spectral slopes with photometry from existing Hubble optical imaging. The observed trend of increasingly redder slopes with luminosity at higher redshifts is observed in our sample, but with redder slopes at all luminosities and average reddening of (E(B – V)) = 0.15 mag. We assume the stars in these galaxies are metal poor (0.2 Z {sub ☉}) compared to their brighter counterparts (Z {sub ☉}), resulting in bluer assumed intrinsic UV slopes and larger derived values for dust extinction. The total UV luminosity density at z ∼ 2 is 4.31{sub −0.60}{sup +0.68}×10{sup 26} erg s{sup –1} Hz{sup –1} Mpc{sup –3}, more than 70% of which is emitted by galaxies in the luminosity range of our sample. Finally, we determine the global star formation rate density from UV-selected galaxies at z ∼ 2 (assuming a constant dust

  12. The jet-disk symbiosis; 2, interpreting the radio/uv correlations in quasars

    CERN Document Server

    Falcke, H; Biermann, P L; Falcke, Heino; Malkan, Matthew A; Biermann, Peter L

    1994-01-01

    We investigate the correlation between the accretion disk (UV) luminosity and the radio core emission of a quasar sample. In a radio/L_{\\rm disk} plot we find the quasars to be separated into four classes: core dominated quasars (CDQ), lobe dominated quasars (LDQ), radio-intermediate quasars (RIQ) and radio weak quasars. In general the radio core emission scales with the disk luminosity, especially in the radio weak quasars. This shows that radio and UV emission have a common energy source and that the difference between radio loud and radio weak is established already on the parsec scale. We investigate the possibility that radio jets are responsible for the radio core emission in radio loud and radio weak quasars. Comparing our data with a simple jet emission model that takes the limits imposed by energy and mass conservation in a coupled jet-disk system into account, we find that radio loud jets carry a total power Q_{\\rm jet} that is at least 1/3 of the observed disk luminosity L_{\\rm disk}. For the elect...

  13. A unifying evolutionary framework for infrared-selected obscured and unobscured quasar host haloes

    Science.gov (United States)

    DiPompeo, M. A.; Hickox, R. C.; Myers, A. D.; Geach, J. E.

    2017-01-01

    Recent measurements of the dark matter halo masses of infrared-selected obscured quasars are in tension - some indicate that obscured quasars have a higher halo mass compared to their unobscured counterparts, while others find no difference. The former result is inconsistent with the simplest models of quasar unification which rely solely on the viewing angle, while the latter may support such models. Here, using empirical relationships between dark matter halo and supermassive black hole (BH) masses, we provide a simple evolutionary picture which naturally explains these findings and is motivated by more sophisticated merger-driven quasar-fuelling models. The model tracks the growth rate of haloes, with the BH growing in spurts of quasar activity in order to `catch up' with the Mbh-Mstellar-Mhalo relationship. The first part of the quasar phase is obscured and is followed by an unobscured phase. Depending on the luminosity limit of the sample, driven by observational selection effects, a difference in halo masses may or may not be significant. For high-luminosity samples, the difference can be large (a few to 10 times higher masses in obscured quasars), while for lower luminosity samples, the halo mass difference is very small, much smaller than current observational constraints. Such a simple model provides a qualitative explanation for the higher mass haloes of obscured quasars, as well as a rough quantitative agreement with seemingly disparate results.

  14. Discovery of a very Lyman-α-luminous quasar at z = 6.62.

    Science.gov (United States)

    Koptelova, Ekaterina; Hwang, Chorng-Yuan; Yu, Po-Chieh; Chen, Wen-Ping; Guo, Jhen-Kuei

    2017-02-02

    Distant luminous quasars provide important information on the growth of the first supermassive black holes, their host galaxies and the epoch of reionization. The identification of quasars is usually performed through detection of their Lyman-α line redshifted to 0.9 microns at z > 6.5. Here, we report the discovery of a very Lyman-α luminous quasar, PSO J006.1240 + 39.2219 at redshift z = 6.618, selected based on its red colour and multi-epoch detection of the Lyman-α emission in a single near-infrared band. The Lyman-α line luminosity of PSO J006.1240 + 39.2219 is unusually high and estimated to be 0.8 × 10(12) Solar luminosities (about 3% of the total quasar luminosity). The Lyman-α emission of PSO J006.1240 + 39.2219 shows fast variability on timescales of days in the quasar rest frame, which has never been detected in any of the known high-redshift quasars. The high luminosity of the Lyman-α line, its narrow width and fast variability resemble properties of local Narrow-Line Seyfert 1 galaxies which suggests that the quasar is likely at the active phase of the black hole growth accreting close or even beyond the Eddington limit.

  15. Discovery of a very Lyman-α-luminous quasar at z = 6.62

    Science.gov (United States)

    Koptelova, Ekaterina; Hwang, Chorng-Yuan; Yu, Po-Chieh; Chen, Wen-Ping; Guo, Jhen-Kuei

    2017-01-01

    Distant luminous quasars provide important information on the growth of the first supermassive black holes, their host galaxies and the epoch of reionization. The identification of quasars is usually performed through detection of their Lyman-α line redshifted to 0.9 microns at z > 6.5. Here, we report the discovery of a very Lyman-α luminous quasar, PSO J006.1240 + 39.2219 at redshift z = 6.618, selected based on its red colour and multi-epoch detection of the Lyman-α emission in a single near-infrared band. The Lyman-α line luminosity of PSO J006.1240 + 39.2219 is unusually high and estimated to be 0.8 × 1012 Solar luminosities (about 3% of the total quasar luminosity). The Lyman-α emission of PSO J006.1240 + 39.2219 shows fast variability on timescales of days in the quasar rest frame, which has never been detected in any of the known high-redshift quasars. The high luminosity of the Lyman-α line, its narrow width and fast variability resemble properties of local Narrow-Line Seyfert 1 galaxies which suggests that the quasar is likely at the active phase of the black hole growth accreting close or even beyond the Eddington limit. PMID:28150701

  16. How Similar are the Properties of Quasars with Nearly Identical Ultraviolet Spectra?

    CERN Document Server

    Rochais, Thomas; Chick, William; Maithil, Jaya; Sutter, Jessica; Brotherton, Michael; Shang, Zhouhui

    2016-01-01

    The spectrum of a quasar contains important information about its properties. Thus, it can be expected that two quasars with similar spectra will have similar properties, but just how similar has not before been quantified. Here we compare the ultraviolet spectra of a sample of 5553 quasars from Data Release 7 of the Sloan Digital Sky Survey, focusing on the $1350$ \\AA \\ $\\leq \\lambda \\leq 2900$ \\AA \\ rest-frame region which contains prominent emission lines from \\SiIV, O IV], \\CIV, \\CIII, and \\MgII\\ species. We use principal component analysis to determine the dominant components of spectral variation, as well as to quantitatively measure spectral similarity. As suggested by both the Baldwin effect and modified Baldwin effect, quasars with similar spectra have similar properties: bolometric luminosity, Eddington fraction, and black hole mass. The latter two quantities are calculated from the luminosity in conjunction with spectral features, and the variation between quasars with virtually identical spectra (...

  17. The Extreme Ultraviolet Variability of Quasars

    Science.gov (United States)

    Punsly, Brian; Marziani, Paola; Zhang, Shaohua; Muzahid, Sowgat; O’Dea, Christopher P.

    2016-10-01

    We study the extreme ultraviolet (EUV) variability (rest frame wavelengths 500–920 Å) of high-luminosity quasars using Hubble Space Telescope (HST) (low to intermediate redshift sample) and Sloan Digital sky Survey (SDSS) (high redshift sample) archives. The combined HST and SDSS data indicates a much more pronounced variability when the sampling time between observations in the quasar rest frame is \\gt 2× {10}7 {{s}} compared to \\lt 1.5× {10}7 s. Based on an excess variance analysis, for time intervals \\lt 2× {10}7 {{s}} in the quasar rest frame, 10% of the quasars (4/40) show evidence of EUV variability. Similarly, for time intervals \\gt 2× {10}7 {{s}} in the quasar rest frame, 55% of the quasars (21/38) show evidence of EUV variability. The propensity for variability does not show any statistically significant change between 2.5× {10}7 {{s}} and 3.16× {10}7 {{s}} (1 year). The temporal behavior is one of a threshold time interval for significant variability as opposed to a gradual increase on these timescales. A threshold timescale can indicate a characteristic spatial dimension of the EUV region. We explore this concept in the context of the slim disk models of accretion. We find that for rapidly spinning black holes, the radial infall time to the plunge region of the optically thin surface layer of the slim disk that is responsible for the preponderance of the EUV flux emission (primarily within 0–7 black hole radii from the inner edge of the disk) is consistent with the empirically determined variability timescale.

  18. The role of cluster mergers and travelling shocks in shaping the H$\\alpha$ luminosity function at $\\bf z\\sim0.2$: `sausage' and `toothbrush' clusters

    CERN Document Server

    Stroe, Andra; Röttgering, Huub J A; van Weeren, Reinout J

    2013-01-01

    The most extreme cluster mergers can lead to massive cluster-wide travelling shock waves. The CIZA J2242.8+5301 ('sausage') and 1RXS J0603.3+4213 (`toothbrush') clusters ($z\\sim0.2$) host enormous radio-emitting shocks with simple geometry. We investigate the role of mergers and shocks in shaping the H$\\alpha$ luminosity function, using custom-made narrow-band filters matching the cluster redshifts mounted on the INT. We surveyed $\\sim0.28$ deg$^2$ for each cluster and found $181$ line emitters in the `sausage' (volume of $3.371\\times10^3$ Mpc$^3$ for H$\\alpha$ at $z=0.1945$) and $141$ in the `toothbrush' ($4.546\\times10^3$ Mpc$^3$ for H$\\alpha$ at $z=0.225$), out of which $49$ (`sausage') and $30$ (`toothbrush') are expected to be H$\\alpha$. We build luminosity functions for the field-of-view down to an average limiting star formation rate of $0.14$ M$_{\\odot}$ yr$^{-1}$, find good agreement with field luminosity functions at $z=0.2$, but significant differences between the shapes of the luminosity functions...

  19. The zCOSMOS survey : the role of the environment in the evolution of the luminosity function of different galaxy types

    NARCIS (Netherlands)

    Zucca, E.; Bardelli, S.; Bolzonella, M.; Zamorani, G.; Ilbert, O.; Pozzetti, L.; Mignoli, M.; Kovac, K.; Lilly, S.; Tresse, L.; Tasca, L.; Cassata, P.; Halliday, C.; Vergani, D.; Caputi, K.; Carollo, C. M.; Contini, T.; Kneib, J-P.; Le Fevre, O.; Mainieri, V.; Renzini, A.; Scodeggio, M.; Bongiorno, A.; Coppa, G.; Cucciati, O.; de la Torre, S.; de Ravel, L.; Franzetti, P.; Garilli, B.; Iovino, A.; Kampczyk, P.; Knobel, C.; Lamareille, F.; Le Borgne, J-F.; Le Brun, V.; Maier, C.; Pello, R.; Peng, Y.; Perez-Montero, E.; Ricciardelli, E.; Silverman, J. D.; Tanaka, M.; Abbas, U.; Bottini, D.; Cappi, A.; Cimatti, A.; Guzzo, L.; Koekemoer, A. M.; Leauthaud, A.; Maccagni, D.; Marinoni, C.; McCracken, H. J.; Memeo, P.; Meneux, B.; Moresco, M.; Oesch, P.; Porciani, C.; Scaramella, R.; Arnouts, S.; Aussel, H.; Capak, P.; Kartaltepe, J.; Salvato, M.; Sanders, D.; Scoville, N.; Taniguchi, Y.; Thompson, D.

    2009-01-01

    Aims. An unbiased and detailed characterization of the galaxy luminosity function (LF) is a basic requirement in many astrophysical issues: it is of particular interest in assessing the role of the environment in the evolution of the LF of different galaxy types. Methods. We studied the evolution in

  20. Possible evolution of supermassive black holes from FRI quasars

    Science.gov (United States)

    Kim, Matthew I.; Christian, Damian J.; Garofalo, David; D'Avanzo, Jaclyn

    2016-08-01

    We explore the question of the rapid buildup of black hole mass in the early universe employing a growing black hole mass-based determination of both jet and disc powers predicted in recent theoretical work on black hole accretion and jet formation. Despite simplified, even artificial assumptions about accretion and mergers, we identify an interesting low probability channel for the growth of one billion solar mass black holes within hundreds of millions of years of the big bang without appealing to super Eddington accretion. This result is made more compelling by the recognition of a connection between this channel and an end product involving active galaxies with FRI radio morphology but weaker jet powers in mildly sub-Eddington accretion regimes. While FRI quasars have already been shown to occupy a small region of the available parameter space for black hole feedback in the paradigm, we further suggest that the observational dearth of FRI quasars is also related to their connection to the most massive black hole growth due to both these FRIs high redshifts and relative weakness. Our results also allow us to construct the AGN (active galactic nucleus) luminosity function at high redshift, that agree with recent studies. In short, we produce a connection between the unexplained paucity of a given family of AGNs and the rapid growth of supermassive black holes, two heretofore seemingly unrelated aspects of the physics of AGNs.

  1. NUMERICAL SIMULATIONS OF THE EMISSION-LINE REGIONS OF QUASARS

    Institute of Scientific and Technical Information of China (English)

    Gary J.Ferland

    2001-01-01

    The luninous quasars are the most distant objects we can directly observe. Once understood, their emission lines will measure the quasar's luminosity and the composition of the interstellar medium of the host galaxy. Unfortunately the emitting plasma is far from equilibrium, and its conditions are set by a host of microphysical processes. The equations of statistical and thermal equilibrium must be solved to determine the ionization distribution, level populations, and kinetic temperature as a function of depth. Simultaneously the line and continuum radiative transfer problems are solved to predict the observed spectrum.A complete simulation involves many hundreds of stages of ionization, many thousands of levels, with populations determined by a vast sea of atomic and molecular processes, many with accurate cross sections and rate coefficients only now becoming available. This is a problem at the very forefront of atomic and computational physics. Once complete, we will be able to map out the first generations of stellar processing in the cores of massive galaxies, and directly chart the expansion of the universe when it had an age under a billion years.

  2. Supernova Remnants in the Local Group I: A model for the radio luminosity function and visibility times of supernova remnants

    CERN Document Server

    Sarbadhicary, Sumit K; Chomiuk, Laura; Caprioli, Damiano; Huizenga, Daniel

    2016-01-01

    Supernova remnants (SNRs) in Local Group galaxies offer unique insights into the origin of different types of supernovae. In order to take full advantage of these insights, one must understand the intrinsic and environmental diversity of SNRs in the context of their host galaxies. We introduce a semi-analytic model that reproduces the statistical properties of a radio continuum-selected SNR population, taking into account the detection limits of radio surveys, the range of SN kinetic energies, the measured ISM and stellar mass distribution in the host galaxy from multi-wavelength images and the current understanding of electron acceleration and field amplification in SNR shocks from first-principle kinetic simulations. Applying our model to the SNR population in M33, we reproduce the SNR radio luminosity function with a median SN rate of $\\sim 3.1 \\times 10^{-3}$ per year and an electron acceleration efficiency, $\\epsilon_{\\rm{e}} \\sim 4.2 \\times 10^{-3}$. We predict that the radio visibility times of $\\sim 7...

  3. Cosmological model dependence of the galaxy luminosity function: far-infrared results in the Lemaitre-Tolman-Bondi model

    CERN Document Server

    Iribarrem, A; Gruppioni, C; February, S; Ribeiro, M B; Berta, S; Floc'h, E Le; Magnelli, B; Nordon, R; Popesso, P; Pozzi, F; Riguccini, L

    2013-01-01

    This is the first paper of a series aiming at investigating galaxy formation and evolution in the giant-void class of the Lemaitre-Tolman-Bondi (LTB) models that best fits current cosmological observations. Here we investigate the Luminosity Function (LF) methodology, and how its estimates would be affected by a change on the cosmological model assumed in its computation. Are the current observational constraints on the allowed Cosmology enough to yield robust LF results? We use the far-infrared source catalogues built on the observations performed with the Herschel/PACS instrument, and selected as part of the PACS evolutionary probe (PEP) survey. Schechter profiles are obtained in redshift bins up to z approximately 4, assuming comoving volumes in both the standard model, that is, Friedmann-Lemaitre-Robertson-Walker metric with a perfect fluid energy-momentum tensor, and non-homogeneous LTB dust models, parametrized to fit the current combination of results stemming from the observations of supernovae Ia, th...

  4. The evolution of the galaxy luminosity function in the rest frame blue band up to z=3.5

    CERN Document Server

    Poli, F; Fontana, A; Menci, N; Zamorani, G; Nonino, M; Saracco, P; Vanzella, E; Donnarumma, I; Salimbeni, S; Cimatti, A; Cristiani, S; Daddi, E; D'Odorico, S; Mignoli, M; Pozzetti, L; Renzini, A

    2003-01-01

    We present an estimate of the cosmological evolution of the field galaxy luminosity function (LF) in the rest frame 4400 Angstrom B -band up to redshift z=3.5. To this purpose, we use a composite sample of 1541 I--selected galaxies selected down to I_(AB)=27.2 and 138 galaxies selected down to K_(AB)=25 from ground-based and HST multicolor surveys, most notably the new deep JHK images in the Hubble Deep Field South (HDF-S) taken with the ISAAC instrument at the ESO-VLT telescope. About 21% of the sample has spectroscopic redshifts, and the remaining fraction well calibrated photometric redshifts. The resulting blue LF shows little density evolution at the faint end with respect to the local values, while at the bright end (M_B(AB)<-20) a brightening increasing with redshift is apparent with respect to the local LF. Hierarchical CDM models overpredict the number of faint galaxies by about a factor 3 at z=1. At the bright end the predicted LFs are in reasonable agreement only at low and intermediate redshift...

  5. GALAXIES IN FILAMENTS HAVE MORE SATELLITES: THE INFLUENCE OF THE COSMIC WEB ON THE SATELLITE LUMINOSITY FUNCTION IN THE SDSS

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Quan; Libeskind, N. I. [Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam (Germany); Tempel, E., E-mail: qguo@aip.de [Tartu Observatory, Observatooriumi 1, 61602 Tõravere (Estonia)

    2015-02-20

    We investigate whether the satellite luminosity function (LF) of primary galaxies identified in the Sloan Digital Sky Survey (SDSS) depends on whether the host galaxy is in a filament or not. Isolated primary galaxies are identified in the SDSS spectroscopic sample, and potential satellites (that are up to four magnitudes fainter than their hosts) are searched for in the much deeper photometric sample. Filaments are constructed from the galaxy distribution by the Bisous process. Isolated primary galaxies are divided into two subsamples: those in filaments and those not in filaments. We examine the stacked mean satellite LF of both the filament and nonfilament samples and find that, on average, the satellite LF of galaxies in filaments is significantly higher than those of galaxies not in filaments. The filamentary environment can increase the abundance of the brightest satellites (M {sub sat.} < M {sub prim.} + 2.0) by a factor of ∼2 compared with nonfilament isolated galaxies. This result is independent of the primary galaxy magnitude, although the satellite LF of galaxies in the faintest magnitude bin is too noisy to determine if such a dependence exists. Because our filaments are extracted from a spectroscopic flux-limited sample, we consider the possibility that the difference in satellite LF is due to a redshift, color, or environmental bias, finding these to be insufficient to explain our result. The dependence of the satellite LF on the cosmic web suggests that the filamentary environment may have a strong effect on the efficiency of galaxy formation.

  6. The Luminosity Functions of the Galaxy Cluster MS1054-0321 at z=0.83 based on ACS Photometry

    CERN Document Server

    Goto, T; Cross, N J G; Illingworth, G D; Tran, K; Magee, D; Franx, M; Benítez, N; Bouwens, R J; Demarco, R; Ford, H C; Homeier, N L; Martel, A R; Menanteau, F; Clampin, M; Hartig, G F; Ardila, D R; Bartko, F; Blakeslee, J P; Bradley, L D; Broadhurst, T J; Brown, R A; Burrows, C J; Cheng, E S; Feldman, P D; Golimowski, D A; Gronwall, C; Holden, B; Infante, L; Jee, M J; Krist, J E; Lesser, M P; Mei, S; Meurer, G R; Miley, G K; Motta, V; Overzier, R; Rosati, P; Sirianni, M; Sparks, W B; Tran, H D; Tsvetanov, Z I; White, R L; Zheng, W; Zirm, A W; Goto, Tomotsugu; Postman, Marc; Cross, Nicholas J.G.

    2004-01-01

    We present new measurements of the galaxy luminosity function (LF) and its dependence on local galaxy density, color, morphology, and clustocentric radius for the massive $z=0.83$ cluster MS1054-0321. Our analyses are based on imaging performed with the ACS onboard the HST in the F606W, F775W and F850LP passbands and extensive spectroscopic data obtained with the Keck LRIS. Our main results are based on a spectroscopically selected sample of 143 cluster members with morphological classifications derived from the ACS observations. Our three primary findings are (1) the faint-end slope of the LF is steepest in the bluest filter, (2) the LF in the inner part of the cluster (or highest density regions) has a flatter faint-end slope, and (3) the fraction of early-type galaxies is higher at the bright end of the LF, and gradually decreases toward fainter magnitudes. These characteristics are consistent with those in local galaxy clusters, indicating that, at least in massive clusters, the common characteristics of ...

  7. DA white dwarfs from the LSS-GAC survey DR1: the preliminary luminosity and mass functions and formation rate

    CERN Document Server

    Rebassa-Mansergas, A; Cojocaru, R; Yuan, H -B; Torres, S; Garcia-Berro, E; Xiang, M -X; Huang, Y; Koester, D; Hou, Y; Li, G; Zhang, Y

    2015-01-01

    Modern large-scale surveys have allowed the identification of large numbers of white dwarfs. However, these surveys are subject to complicated target selection algorithms, which make it almost impossible to quantify to what extent the observational biases affect the observed populations. The LAMOST (Large Sky Area Multi-Object Fiber Spectroscopic Telescope) Spectroscopic Survey of the Galactic anti-center (LSS-GAC) follows a well-defined set of criteria for selecting targets for observations. This advantage over previous surveys has been fully exploited here to identify a small yet well-characterised magnitude-limited sample of hydrogen-rich (DA) white dwarfs. We derive preliminary LSS-GAC DA white dwarf luminosity and mass functions. The space density and average formation rate of DA white dwarfs we derive are 0.83+/-0.16 x 10^{-3} pc^{-3} and 5.42 +/- 0.08 x 10^{-13} pc^{-3} yr^{-1}, respectively. Additionally, using an existing Monte Carlo population synthesis code we simulate the population of single DA w...

  8. Galaxies in filaments have more satellites: the influence of the cosmic web on the satellite luminosity function in the SDSS

    CERN Document Server

    Guo, Quan; Libeskind, Noam I

    2014-01-01

    We investigate if the satellite luminosity function (LFs) of primary galaxies identified in the Sloan Digital Sky Survey (SDSS DR8) depends on whether the host galaxy is in a filament or not. Isolated primary galaxies are identified in the SDSS spectroscopic sample while potential satellites are searched for in the much deeper photometric sample. Filaments are constructed from the galaxy distribution by the "Bisous" process. Isolated primary galaxies are divided into two subsamples: those in filaments and those not in filaments. We examine the stacked mean LF of each sample and found that, in the mean, the satellite LFs of primary galaxies (extending to at least 4 magnitude fainter than the primary galaxies) in filaments is significantly higher than those of primary galaxies not in filaments. The filamentary environment can increases the abundance of the brightest satellites ($M_\\mathrm{sat.} < M_\\mathrm{prim.}+ 2.0$), by a factor of $\\sim 2$ compared with non-filament galaxies. This result is independent ...

  9. The Millennium Galaxy Catalogue 16 < B_MGC < 24 galaxy counts and the calibration of the local galaxy luminosity function

    CERN Document Server

    Liske, J; Driver, S P; Cross, N J G; Couch, W J

    2003-01-01

    The Millennium Galaxy Catalogue (MGC) is a 37.5 deg^2, medium-deep, B-band imaging survey along the celestial equator, taken with the Wide Field Camera on the Isaac Newton Telescope. The survey region is contained within the regions of both the Two Degree Field Galaxy Redshift Survey (2dFGRS) and the Sloan Digital Sky Survey Early Data Release (SDSS-EDR). The survey has a uniform isophotal detection limit of 26 mag arcsec^-2 and it provides a robust, well-defined catalogue of stars and galaxies in the range 16 < B_MGC < 24 mag. Here we describe the survey strategy, the photometric and astrometric calibration, source detection and analysis, and present the galaxy number counts which connect the bright and faint galaxy populations within a single survey. We argue that these counts represent the state of the art and use them to constrain the normalisations (phi*) of a number of recent estimates of the local galaxy luminosity function. We find that the 2dFGRS, SDSS-EDR, SSRS2, Durham/UKST, ESO Slice Project...

  10. LOW-MASS SUPPRESSION OF THE SATELLITE LUMINOSITY FUNCTION DUE TO THE SUPERSONIC BARYON-COLD-DARK-MATTER RELATIVE VELOCITY

    Energy Technology Data Exchange (ETDEWEB)

    Bovy, Jo; Dvorkin, Cora [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States)

    2013-05-01

    We study the effect of the supersonic baryon-cold-dark-matter (CDM) flow, which has recently been shown to have a large effect on structure formation during the dark ages 10 {approx}< z {approx}< 1000, on the abundance of luminous, low-mass satellite galaxies around galaxies like the Milky Way. As the supersonic baryon-CDM flow significantly suppresses both the number of halos formed and the amount of baryons accreted onto such halos of masses 10{sup 6} < M{sub halo}/M{sub Sun} < 10{sup 8} at z {approx}> 10, a large effect results on the stellar luminosity function before reionization. As halos of these masses are believed to have very little star formation after reionization due to the effects of photoheating by the ultraviolet background, this effect persists to the present day. We calculate that the number of low-mass 10{sup 6} < M{sub halo}/M{sub Sun} < 5 Multiplication-Sign 10{sup 7} halos that host luminous satellite galaxies today is typically suppressed by 50%, with values ranging up to 90% in regions where the initial supersonic velocity is high. We show that this previously ignored cosmological effect resolves some of the tension between the observed and predicted number of low-mass satellites in the Milky Way, reducing the need for other mass-dependent star-formation suppression before reionization.

  11. Galaxies in Filaments have More Satellites: The Influence of the Cosmic Web on the Satellite Luminosity Function in the SDSS

    Science.gov (United States)

    Guo, Quan; Tempel, E.; Libeskind, N. I.

    2015-02-01

    We investigate whether the satellite luminosity function (LF) of primary galaxies identified in the Sloan Digital Sky Survey (SDSS) depends on whether the host galaxy is in a filament or not. Isolated primary galaxies are identified in the SDSS spectroscopic sample, and potential satellites (that are up to four magnitudes fainter than their hosts) are searched for in the much deeper photometric sample. Filaments are constructed from the galaxy distribution by the Bisous process. Isolated primary galaxies are divided into two subsamples: those in filaments and those not in filaments. We examine the stacked mean satellite LF of both the filament and nonfilament samples and find that, on average, the satellite LF of galaxies in filaments is significantly higher than those of galaxies not in filaments. The filamentary environment can increase the abundance of the brightest satellites (M sat. 2.0) by a factor of ~2 compared with nonfilament isolated galaxies. This result is independent of the primary galaxy magnitude, although the satellite LF of galaxies in the faintest magnitude bin is too noisy to determine if such a dependence exists. Because our filaments are extracted from a spectroscopic flux-limited sample, we consider the possibility that the difference in satellite LF is due to a redshift, color, or environmental bias, finding these to be insufficient to explain our result. The dependence of the satellite LF on the cosmic web suggests that the filamentary environment may have a strong effect on the efficiency of galaxy formation.

  12. The First High Redshift Quasar from Pan-STARRS

    CERN Document Server

    Morganson, Eric; Decarli, Roberto; Walter, Fabian; Chambers, Ken; McGreer, Ian; Fan, Xiaohui; Burgett, William; Flewelling, Heather; Hodapp, Klaus; Kaiser, Nick; Magnier, Eugene; Price, Paul; Rix, Hans-Walter; Sweeney, Bill; Waters, Christopher

    2011-01-01

    We present the discovery of the first high redshift (z > 5.7) quasar from the Panoramic Survey Telescope and Rapid Response System 1 (Pan-STARRS1 or PS1). This quasar was initially detected as an i dropoutout in PS1, confirmed photometrically with the SAO Widefield InfraRed Camera (SWIRC) at Arizona's Multiple Mirror Telescope (MMT) and the Gamma-Ray Burst Optical/Near-Infrared Detector (GROND) at the MPG 2.2 m telescope in La Silla. The quasar was verified spectroscopically with the the MMT Spectrograph, Red Channel and the Cassegrain Twin Spectrograph (TWIN) at the Calar Alto 3.5 m telescope. It has a redshift of 5.73, an AB z magnitude of 19.4, a luminosity of 3.8 x 10^47 erg/s and a black hole mass of 6.9 x 10^9 solar masses. It is a Broad Absorption Line quasar with a prominent Ly-beta peak and a very blue continuum spectrum. This quasar is the first result from the PS1 high redshift quasar search that is projected to discover more than a hundred i dropout quasars, and could potentially find more than 10...

  13. Similarity of ionized gas nebulae around unobscured and obscured quasars

    CERN Document Server

    Liu, Guilin; Greene, Jenny E

    2014-01-01

    Quasar feedback is suspected to play a key role in the evolution of massive galaxies, by removing or reheating gas in quasar host galaxies and thus limiting the amount of star formation. In this paper we continue our investigation of quasar-driven winds on galaxy-wide scales. We conduct Gemini Integral Field Unit spectroscopy of a sample of luminous unobscured (type 1) quasars, to determine the morphology and kinematics of ionized gas around these objects, predominantly via observations of the [O III]5007 emission line. We find that ionized gas nebulae extend out to ~13 kpc from the quasar, that they are smooth and round, and that their kinematics are inconsistent with gas in dynamical equilibrium with the host galaxy. The observed morphological and kinematic properties are strikingly similar to those of ionized gas around obscured (type 2) quasars with matched [O III] luminosity, with marginal evidence that nebulae around unobscured quasars are slightly more compact. Therefore in samples of obscured and unob...

  14. Distributions of Quasar Hosts on the Galaxy Main Sequence Plane

    Science.gov (United States)

    Zhang, Zhoujian; Shi, Yong; Rieke, George H.; Xia, Xiaoyang; Wang, Yikang; Sun, Bingqing; Wan, Linfeng

    2016-03-01

    The relation between star formation rates (SFRs) and stellar masses, i.e., the galaxy main sequence, is a useful diagnostic of galaxy evolution. We present the distributions relative to the main sequence of 55 optically selected PG and 12 near-IR-selected Two Micron All Sky Survey (2MASS) quasars at z ≤ 0.5. We estimate the quasar host stellar masses from Hubble Space Telescope or ground-based AO photometry, and the SFRs through the mid-infrared aromatic features and far-IR photometry. We find that PG quasar hosts more or less follow the main sequence defined by normal star-forming galaxies while 2MASS quasar hosts lie systematically above the main sequence. PG and 2MASS quasars with higher nuclear luminosities seem to have higher specific SFRs (sSFRs), although there is a large scatter. No trends are seen between sSFRs and SMBH masses, Eddington ratios, or even morphology types (ellipticals, spirals, and mergers). Our results could be placed in an evolutionary scenario with quasars emerging during the transition from ULIRGs/mergers to ellipticals. However, combined with results at higher redshift, they suggest that quasars can be widely triggered in normal galaxies as long as they contain abundant gas and have ongoing star formation.

  15. Exploratory Chandra observation of the ultraluminous quasar SDSS J010013.02+280225.8 at redshift 6.30

    CERN Document Server

    Ai, Yanli; Fan, Xiaohui; Wang, Feige; Wu, Xue-Bing; Bian, Fuyan

    2016-01-01

    We report exploratory \\chandra\\ observation of the ultraluminous quasar SDSS J010013.02+280225.8 at redshift 6.30. The quasar is clearly detected by \\chandra\\ with a possible component of extended emission. The rest-frame 2-10 keV luminosity is 9.0$^{+9.1}_{-4.5}$ $\\times$ 10$^{45}$ erg s$^{-1}$ with inferred photon index of $\\Gamma$ = 3.03$^{+0.78}_{-0.70}$. This quasar is X-ray bright, with inferred X-ray-to-optical flux ratio \\aox\\ $=-1.22^{+0.07}_{-0.05}$, higher than the values found in other quasars of comparable ultraviolet luminosity. The properties inferred from this exploratory observation indicate that this ultraluminous quasar might be growing with super-Eddington accretion and probably viewed with small inclination angle. Deep X-ray observation will help to probe the plausible extended emission and better constraint the spectral features for this ultraluminous quasar.

  16. The role of cluster mergers and travelling shocks in shaping the Hα luminosity function at z ˜ 0.2: `sausage' and `toothbrush' clusters

    Science.gov (United States)

    Stroe, Andra; Sobral, David; Röttgering, Huub J. A.; van Weeren, Reinout J.

    2014-02-01

    The most extreme cluster mergers can lead to massive cluster-wide travelling shock waves. The CIZA J2242.8+5301 (`sausage') and 1RXS J0603.3+4213 (`toothbrush') clusters (z ˜ 0.2) host enormous radio-emitting shocks with simple geometry. We investigate the role of mergers and shocks in shaping the Hα luminosity function, using custom-made narrow-band filters matching the cluster redshifts mounted on the Isaac Newton Telescope. We surveyed ˜0.28 deg2 for each cluster and found 181 line emitters in the `sausage' (volume of 3.371 × 103 Mpc3 for Hα at z = 0.1945) and 141 in the `toothbrush' (4.546 × 103 Mpc3 for Hα at z = 0.225), out of which 49 (`sausage') and 30 (`toothbrush') are expected to be Hα. We build luminosity functions for the field-of-view down to an average limiting star formation rate of 0.14 M⊙ yr-1, find good agreement with field luminosity functions at z = 0.2, but significant differences between the shapes of the luminosity functions for the two clusters. We discover extended, tens-of-kpc-wide Hα haloes in galaxies neighbouring relics, which were possibly disrupted by the passage of the shock wave. By comparing the `sausage' cluster with blank fields and other clusters, we also uncover an order of magnitude boost (at 9σ level) in the normalization φ* of the luminosity function in the relic areas. Our results suggest that cluster mergers may play an important role in the evolution of cluster galaxies through shock-induced star formation.

  17. DES J0454-4448: discovery of the first luminous z ≥ 6 quasar from the Dark Energy Survey

    Energy Technology Data Exchange (ETDEWEB)

    Reed, S. L.; McMahon, R. G.; Banerji, M.; Becker, G. D.; Gonzalez-Solares, E.; Martini, P.; Ostrovski, F.; Rauch, M.; Abbott, T.; Abdalla, F. B.; Allam, S.; Benoit-Levy, A.; Bertin, E.; Buckley-Geer, E.; Burke, D.; Carnero Rosell, A.; da Costa, L. N.; D' Andrea, C.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Cunha, C. E.; Estrada, J.; Evrard, A. E.; Fausti Neto, A.; Finley, D. A.; Fosalba, P.; Frieman, J.; Gruen, D.; Honscheid, K.; James, D.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Maia, M. A. G.; Makler, M.; Marshall, J.; Merritt, K.; Miquel, R.; Mohr, J.; Nord, B.; Ogando, R.; Plazas, A.; Romer, K.; Roodman, A.; Rykoff, E.; Sako, M.; Sanchez, E.; Santiago, B.; Schubnell, M.; Sevilla, I.; Smith, C.; Soares-Santos, M.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Tucker, D.; Walker, A.; Wechsler, R. H.

    2015-10-28

    We present the first results of a survey for high-redshift, z ≥ 6, quasars using izY multicolour photometric observations from the Dark Energy Survey (DES). Here we report the discovery and spectroscopic confirmation of the zAB, YAB = 20.2, 20.2 (M1450 = -26.5) quasar DES J0454-4448 with a redshift of z = 6.09±0.02 based on the onset of the Ly α forest and an H I near zone size of 4.1+1.1-1.2 proper Mpc. The quasar was selected as an i-band drop out with i-z = 2.46 and zAB < 21.5 from an area of ~300 deg2. It is the brightest of our 43 candidates and was identified for spectroscopic follow-up solely based on the DES i-z and z-Y colours. The quasar is detected by WISE and has W1AB = 19.68. The discovery of one spectroscopically confirmed quasar with 5.7 < z < 6.5 and zAB ≤ 20.2 is consistent with recent determinations of the luminosity function at z ~ 6. DES when completed will have imaged ~5000 deg2 to YAB = 23.0 (5σ point source) and we expect to discover 50–100 new quasars with z > 6 including 3–10 with z > 7 dramatically increasing the numbers of quasars currently known that are suitable for detailed studies.

  18. MUSE Deep-Fields: The Lya Luminosity Function in the Hubble Deep Field South at 2.91 < z < 6.64

    CERN Document Server

    Drake, Alyssa B; Blaizot, Jeremy; Wisotzki, Lutz; Herenz, Edmund Christian; Garel, Thibault; Richard, Johan; Bacon, Roland; Bina, David; Cantalupo, Sebastiano; Contini, Thierry; Brock, Mark den; Hashimoto, Takuya; Marino, Raffaella Anna; Pello, Roser; Schaye, Joop; Schmidt, Kasper B

    2016-01-01

    We present the first estimate of the Ly{\\alpha} luminosity function using blind spectroscopy from the Multi Unit Spectroscopic Explorer, MUSE, in the Hubble Deep Field South. Using automatic source-detection software, we assemble a homogeneously-detected sample of 59 Ly{\\alpha} emitters covering a flux range of -18.0 < log10 (F) < -16.3 (erg s^-1 cm^-2), corresponding to luminosities of 41.4 < log10 (L) < 42.8 (erg s^-1). As recent studies have shown, Ly{\\alpha} fluxes can be underestimated by a factor of two or more via traditional methods, and so we undertake a careful assessment of each object's Ly{\\alpha} flux using a curve-of-growth analysis to account for extended emission. We describe our self-consistent method for determining the completeness of the sample, and present an estimate of the global Ly{\\alpha} luminosity function between redshifts 2.91 < z < 6.64 using the 1/Vmax estimator. We find the luminosity function is higher than many number densities reported in the literature by ...

  19. The 2dF-SDSS LRG and QSO Survey: the QSO luminosity function at 0.4

    CERN Document Server

    Croom, Scott M; Shanks, Tom; Boyle, Brian J; Strauss, Michael A; Myers, Adam D; Nichol, Robert C; Pimbblet, Kevin A; Ross, Nicholas P; Schneider, Donald P; Sharp, Robert G; Wake, David A

    2009-01-01

    We present the QSO luminosity function of the completed 2dF-SDSS LRG and QSO (2SLAQ) survey, based on QSOs photometrically selected from Sloan Digital Sky Survey imaging data and then observed spectroscopically using the 2dF instrument on the Anglo-Australian Telescope. We analyse 10637 QSOs in the redshift range 0.420.0, as found previously by Richards et al. (2005). The luminosity function is consistent with other previous, much smaller, samples produced to the depth of 2SLAQ. By combining the 2SLAQ and SDSS QSO samples we produce a QSO luminosity function with an unprecedented combination of precision and dynamic range. With this we are able to accurately constrain both the bright and faint ends of the QSO LF. While the overall trends seen in the evolution of the QSO LF appear similar to pure luminosity evolution, the data show very significant departures from such a model. Most notably we see clear evidence that the number density of faint QSOs peaks at lower redshift than bright QSOs : QSOs with Mg>-23 h...

  20. Clustering, Cosmology and a New Era of Black Hole Demographics -- II. The Conditional Luminosity Functions of Type 2 and Type 1 Active Galactic Nuclei

    CERN Document Server

    Ballantyne, D R

    2016-01-01

    The orientation-based unification model of active galactic nuclei (AGNs) posits that the principle difference between obscured (Type 2) and unobscured (Type 1) AGNs is the line-of-sight into the central engine. If this model is correct than there should be no difference in many of the properties of AGN host galaxies (e.g., the mass of the surrounding dark matter haloes). However, recent clustering analyses of Type 1 and Type 2 AGNs have provided some evidence for a difference in the halo mass, in conflict with the orientation-based unified model. In this work, a method to compute the Conditional Luminosity Function (CLF) of Type 2 and Type 1 AGNs is presented. The CLF allows many fundamental halo properties to be computed as a function of AGN luminosity, which we apply to the question of the host halo masses of Type 1 and 2 AGNs. By making use of the total AGN CLF, the Type 1 X-ray luminosity function, and the luminosity-dependent Type 2 AGN fraction, the CLFs of Type 1 and 2 AGNs are calculated at $z\\approx ...

  1. Wide Field Multiband Imaging of Low Redshift Quasar Environments

    CERN Document Server

    Scott, Jennifer E; Bechtold, Jill; Ellingson, Erica; Thibodeau, Christopher; Richmond, Michael

    2015-01-01

    We present photometry of the large scale environments of a sample of twelve broad line AGN with $0.06 < z < 0.37$ from deep images in the SDSS $u$, $g$, $r$, and $i$ filters taken with the 90Prime prime focus camera on the Steward Observatory Bok Telescope. We measure galaxy clustering around these AGN using two standard techniques: correlation amplitude (B$_{gq}$) and the two point correlation function. We find average correlation amplitudes for the 10 radio quiet objects in the sample equal to (9$\\pm$18, 144$\\pm$114, -39$\\pm$56, 295$\\pm$260) Mpc$^{1.77}$ in ($u$, $g$, $r$, $i$), all consistent with the expectation from galaxy clustering. Using a ratio of the galaxy-quasar cross-correlation function to the galaxy autocorrelation function, we calculate the relative bias of galaxies and AGN, $b_{gq}$. The bias in the $u$ band, $b_{gq}=3.08\\pm0.51$ is larger compared to that calculated in the other bands, but it does not correlate with AGN luminosity, black hole mass, or AGN activity via the luminosity of...

  2. The Extreme Ultraviolet Variability of Quasars

    CERN Document Server

    Punsly, Brian; Zhang, Shaohua; Muzahid, Sowgat; O'Dea, Christopher P

    2016-01-01

    We study the extreme ultraviolet (EUV) variability (rest frame wavelengths 500 - 920 $\\AA$) of high luminosity quasars using HST (low to intermediate redshift sample) and SDSS (high redshift sample) archives. The combined HST and SDSS data indicates a much more pronounced variability when the sampling time between observations in the quasar rest frame is $> 2\\times 10^{7}$ sec compared to $2\\times 10^{7}$ sec in the quasar rest frame, $55\\%$ of the quasars (21/38) show evidence of EUV variability. The propensity for variability does not show any statistically significant change between $2.5\\times 10^{7}$ sec and $3.16\\times 10^{7}$ sec (1 yr). The temporal behavior is one of a threshold time interval for significant variability as opposed to a gradual increase on these time scales. A threshold time scale can indicate a characteristic spatial dimension of the EUV region. We explore this concept in the context of the slim disk models of accretion. We find that for rapidly spinning black holes, the radial infall...

  3. Gravitational lensing of quasars

    CERN Document Server

    Eigenbrod, Alexander

    2013-01-01

    The universe, in all its richness, diversity and complexity, is populated by a myriad of intriguing celestial objects. Among the most exotic of them are gravitationally lensed quasars. A quasar is an extremely bright nucleus of a galaxy, and when such an object is gravitationally lensed, multiple images of the quasar are produced – this phenomenon of cosmic mirage can provide invaluable insights on burning questions, such as the nature of dark matter and dark energy. After presenting the basics of modern cosmology, the book describes active galactic nuclei, the theory of gravitational lensing, and presents a particular numerical technique to improve the resolution of astronomical data. The book then enters the heart of the subject with the description of important applications of gravitational lensing of quasars, such as the measurement of the famous Hubble constant, the determination of the dark matter distribution in galaxies, and the observation of the mysterious inner parts of quasars with much higher r...

  4. A long-term study of AGN X-ray variability . Structure function analysis on a ROSAT-XMM quasar sample

    Science.gov (United States)

    Middei, R.; Vagnetti, F.; Bianchi, S.; La Franca, F.; Paolillo, M.; Ursini, F.

    2017-03-01

    Context. Variability in the X-rays is a key ingredient in understanding and unveiling active galactic nuclei (AGN) properties. In this band, flux variations occur on short timescales (hours) as well as on larger timescales. While short timescale variability is often investigated in single source studies, only a few works are able to explore flux variation on very long timescales. Aims: This work aims to provide a statistical analysis of the AGN long term X-ray variability. We study variability on the largest time interval ever investigated for the 0.2-2 keV band, up to approximately 20 yr rest-frame for a sample of 220 sources. Moreover, we study variability for 2700 quasars up to approximatley eight years rest-frame in the same (soft) band. Methods: We built our source sample using the 3XMM serendipitous source catalogue data release 5, and data from ROSAT All Sky Survey Bright and Faint source catalogues. To ensure that we selected AGN only, we used the Sloan Digital Sky Survey quasar catalogues data releases 7 and 12. Combining ROSAT and XMM-Newton observations, we investigated variability using the structure function analysis which describes the amount of variability as a function of the lag between the observations. Results: Our work shows an increase of the structure function up to 20 yr. We find no evidence of a plateau in the structure function on these long timescales. Conclusions: The increase of the structure function at long time lags suggests that variability in the soft X-rays can be influenced by flux variations originated in the accretion disk or that they take place in a region large enough to justify variation on such long timescales.

  5. VLTI/AMBER differential interferometry of the broad-line region of the quasar 3C273

    CERN Document Server

    Petrov, Romain G; Lagarde, Stéphane; Vannier, Martin; Rakshit, Suvendu; Marconi, Alessandro; Weigelt, Gerd

    2014-01-01

    Unveiling the structure of the Broad Line Region (BLR) of AGNs is critical to understand the quasar phenomenon. Resolving a few BLRs by optical interferometry will bring decisive information to confront, complement and calibrate the reverberation mapping technique, basis of the mass-luminosity relation in quasars. BLRs are much smaller than the angular resolution of the VLT and Keck interferometers and they can be resolved only by differential interferometry very accurate measurements of differential visibility and phase as a function of wavelength. The latter yields the photocenter variation with wavelength, and constrains the size, position and velocity law of various regions of the BLR. AGNs are below the magnitude limit for spectrally resolved interferometry set by currently available fringe trackers. A new "blind" observation method and a data processing based on the accumulation of 2D Fourier power and cross spectra permitted us to obtain the first spectrally resolved interferometric observation of a BL...

  6. 星系团Abell 85的光度函数%Luminosity Functions of Galaxy Cluster Abell 85

    Institute of Scientific and Technical Information of China (English)

    李峰; 闫鹏飞; 袁启荣

    2014-01-01

    基于NASA/IPAC河外星系数据库(NASA/IPAC Extragalactic Database,NED)和Sloan数字巡天(Sloan Digital Sky Survey,SDSS)第8次释放的数据(The Eighth Data Release,DR8),对星系团Abell 85(以下简称A85)的2倍动力学特征半径2r200内的光度函数(Luminosity Function,LF)进行了研究.研究表明,A85的光度函数在Sloan巡天5个波段用Schechter函数均能拟合得很好.在u、g和z波段光度函数都显示出1个下凹.早型星系r波段的两个最佳拟合参数(r波段特征绝对星等和暗端的陡度)分别为Mr*=-21.14+0.17-0.17mag,α=-0.83+0.12-0.14,晚型星系为Mr*=-21.98+0.84-0.98mag,α=-1.5+0.24-0.35.早型星系的特征星等暗于晚型星系,而暗端比晚型星系要平坦得多.早型星系的光度函数在-20.5~-20.0 mag下凹.将1.5T200范围内的星系按距离团中心的远近划分为3个环状区域,发现距离团中心越近,光度函数的暗端越陡,特征星等越亮.

  7. A large sample of binary quasars: Does quasar bias tracks from Mpc scale to kpc scales?

    Science.gov (United States)

    Eftekharzadeh, Sarah; Myers, Adam D.; Djorgovski, Stanislav G.; Graham, Matthew J.

    2017-01-01

    We present the most precise estimate to date of the bias of quasars on very small scales, based on a measurement of the clustering of 47 spectroscopically confirmed binary quasars with proper transverse separations of ~25 h^{-1} kpc. The quasars in our sample, which is an order-of-magnitude larger than previous samples, are targeted using a Kernel Density Estimation technique (KDE) applied to Sloan Digital Sky Survey (SDSS) imaging over most of the SDSS area. Our sample is "complete," in that all possible pairs of binary quasars across our area of interest have been spectroscopically confirmed from a combination of previous surveys and our own long-slit observational campaign. We determine the projected correlation function of quasars (\\bar W_p) in four bins of proper transverse scale over the range 17.0 \\lesssim R_{prop} \\lesssim 36.2 h^{-1} kpc. Due to our large sample size, our measured projected correlation function in each of these four bins of scale is more than twice as precise as any previous measurement made over our {\\em full} range of scales. We also measure the bias of our quasar sample in four slices of redshift across the range 0.43 \\le z \\le 2.26 and compare our results to similar measurements of how quasar bias evolves on Mpc-scales. This measurement addresses the question of whether it is reasonable to assume that quasar bias evolves with redshift in a similar fashion on both Mpc and kpc scales. Our results can meaningfully constrain the one-halo term of the Halo Occupation Distribution (HOD) of quasars and how it evolves with redshift. This work was partially supported by NSF grant 1515404.

  8. A molecular line scan in the Hubble deep field north: Constraints on the co luminosity function and the cosmic H{sub 2} density

    Energy Technology Data Exchange (ETDEWEB)

    Walter, F.; Decarli, R.; Da Cunha, E. [Max-Planck Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Sargent, M. [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, Irfu/Service d' Astrophysique, CEA Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette cedex (France); Carilli, C. [NRAO, Pete V. Domenici Array Science Center, P.O. Box O, Socorro, NM 87801 (United States); Dickinson, M.; Daddi, E. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Riechers, D. [Cornell University, 220 Space Sciences Building, Ithaca, NY 14853 (United States); Ellis, R. [Astronomy Department, California Institute of Technology, MC105-24, Pasadena, CA 91125 (United States); Stark, D.; Weiner, B. [Steward Observatory, University of Arizona, 933 North Cherry Street, Tucson, AZ 85721 (United States); Aravena, M. [European Southern Observatory, Alonso de Cordova 3107, Casilla 19001, Vitacura, Santiago (Chile); Bell, E. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Bertoldi, F. [Argelander Institute for Astronomy, University of Bonn, Auf dem Hügel 71, D-53121 Bonn (Germany); Cox, P.; Downes, D.; Neri, R. [IRAM, 300 rue de la piscine, F-38406 Saint-Martin d' Hères (France); Lentati, L.; Maiolino, R. [Cavendish Laboratory, University of Cambridge, 19 J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Menten, K. M., E-mail: walter@mpia.de [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); and others

    2014-02-20

    We present direct constraints on the CO luminosity function at high redshift and the resulting cosmic evolution of the molecular gas density, ρ{sub H{sub 2}}(z), based on a blind molecular line scan in the Hubble Deep Field North (HDF-N) using the IRAM Plateau de Bure Interferometer. Our line scan of the entire 3 mm window (79-115 GHz) covers a cosmic volume of ∼7000 Mpc{sup 3}, and redshift ranges z < 0.45, 1.01 < z < 1.89 and z > 2. We use the rich multiwavelength and spectroscopic database of the HDF-N to derive some of the best constraints on CO luminosities in high redshift galaxies to date. We combine the blind CO detections in our molecular line scan (presented in a companion paper) with stacked CO limits from galaxies with available spectroscopic redshifts (slit or mask spectroscopy from Keck and grism spectroscopy from the Hubble Space Telescope) to give first blind constraints on high-z CO luminosity functions and the cosmic evolution of the H{sub 2} mass density ρ{sub H{sub 2}}(z) out to redshifts z ∼ 3. A comparison to empirical predictions of ρ{sub H{sub 2}}(z) shows that the securely detected sources in our molecular line scan already provide significant contributions to the predicted ρ{sub H{sub 2}}(z) in the redshift bins (z) ∼ 1.5 and (z) ∼ 2.7. Accounting for galaxies with CO luminosities that are not probed by our observations results in cosmic molecular gas densities ρ{sub H{sub 2}}(z) that are higher than current predictions. We note, however, that the current uncertainties (in particular the luminosity limits, number of detections, as well as cosmic volume probed) are significant, a situation that is about to change with the emerging ALMA observatory.

  9. Subaru Telescope adaptive optics observations of gravitationally lensed quasars in the Sloan Digital Sky Survey

    Science.gov (United States)

    Rusu, Cristian E.; Oguri, Masamune; Minowa, Yosuke; Iye, Masanori; Inada, Naohisa; Oya, Shin; Kayo, Issha; Hayano, Yutaka; Hattori, Masayuki; Saito, Yoshihiko; Ito, Meguru; Pyo, Tae-Soo; Terada, Hiroshi; Takami, Hideki; Watanabe, Makoto

    2016-05-01

    We present the results of an imaging observation campaign conducted with the Subaru Telescope adaptive optics system (IRCS+AO188) on 28 gravitationally lensed quasars and candidates (23 doubles, 1 quad, 1 possible triple, and 3 candidates) from the SDSS Quasar Lens Search. We develop a novel modelling technique that fits analytical and hybrid point spread functions (PSFs), while simultaneously measuring the relative astrometry, photometry, as well as the lens galaxy morphology. We account for systematics by simulating the observed systems using separately observed PSF stars. The measured relative astrometry is comparable with that typically achieved with the Hubble Space Telescope, even after marginalizing over the PSF uncertainty. We model for the first time the quasar host galaxies in five systems, without a priori knowledge of the PSF, and show that their luminosities follow the known correlation with the mass of the supermassive black hole. For each system, we obtain mass models far more accurate than those previously published from low-resolution data, and we show that in our sample of lensing galaxies the observed light profile is more elliptical than the mass, for ellipticity ≳0.25. We also identify eight doubles for which the sources of external and internal shear are more reliably separated, and should therefore be prioritized in monitoring campaigns aimed at measuring time delays in order to infer the Hubble constant.

  10. Clustering of Lyman Break Galaxies at z=4 and 5 in The Subaru Deep Field: Luminosity Dependence of The Correlation Function Slope

    CERN Document Server

    Kashikawa, N; Shimasaku, K; Nagashima, M; Yahagi, H; Ouchi, M; Matsuda, Y; Malkan, M A; Doi, M; Iye, M; Kashikawa, Nobunari; Yoshida, Makiko; Shimasaku, Kazuhiro; Nagashima, Masahiro; Yahagi, Hideki; Ouchi, Masami; Matsuda, Yuichi; Malkan, Matthew A.; Doi, Mamoru; Iye, Masanori; SDF team

    2006-01-01

    We explored the clustering properties of Lyman Break Galaxies (LBGs) at z=4 and 5 by angular two-point correlation function on the basis of the very deep and wide Subaru Deep Field data. We found an apparent dependence of the correlation function slope on UV luminosity for LBGs at both z=4 and 5. More luminous LBGs have a steeper correlation function. To compare these observational results, we constructed numerical mock LBG catalogs based on a semi-analytic model of hierarchical clustering combined with high-resolution N-body simulation, carefully mimicking the observational selection effects. The luminosity functions for LBGs predicted by this mock catalog were found to be almost consistent with the observation. Moreover, the overall correlation functions of LBGs were reproduced reasonably well. The observed dependence of the clustering on UV luminosity was not reproduced by the model, unless subsamples of distinct halo mass were considered. That is, LBGs belonging to more massive dark haloes had steeper and...

  11. ALMA spectroscopic survey in the Hubble Ultra Deep Field: CO luminosity functions and the evolution of the cosmic density of molecular gas

    CERN Document Server

    Decarli, Roberto; Aravena, Manuel; Carilli, Chris; Bouwens, Rychard; da Cunha, Elisabete; Daddi, Emanuele; Ivison, R J; Popping, Gergö; Riechers, Dominik; Smail, Ian; Swinbank, Mark; Weiss, Axel; Anguita, Timo; Assef, Roberto; Bauer, Franz; Bell, Eric F; Bertoldi, Frank; Chapman, Scott; Colina, Luis; Cortes, Paulo C; Cox, Pierre; Dickinson, Mark; Elbaz, David; Gónzalez-López, Jorge; Ibar, Edo; Infante, Leopoldo; Hodge, Jacqueline; Karim, Alex; Fevre, Olivier Le; Magnelli, Benjamin; Neri, Roberto; Oesch, Pascal; Ota, Kazuaki; Rix, Hans-Walter; Sargent, Mark; Sheth, Kartik; van der Wel, Arjen; van der Werf, Paul; Wagg, Jeff

    2016-01-01

    In this paper we use ASPECS, the ALMA Spectroscopic Survey in the {\\em Hubble} Ultra Deep Field (UDF) in band 3 and band 6, to place blind constraints on the CO luminosity function and the evolution of the cosmic molecular gas density as a function of redshift up to $z\\sim 4.5$. This study is based on galaxies that have been solely selected through their CO emission and not through any other property. In all of the redshift bins the ASPECS measurements reach the predicted `knee' of the CO luminosity function (around $5\\times10^{9}$ K km/s pc$^2$). We find clear evidence of an evolution in the CO luminosity function with respect to $z\\sim 0$, with more CO luminous galaxies present at $z\\sim 2$. The observed galaxies at $z\\sim 2$ also appear more gas-rich than predicted by recent semi-analytical models. The comoving cosmic molecular gas density within galaxies as a function of redshift shows a factor 3-10 drop from $z \\sim 2$ to $z \\sim 0$ (with significant error bars), and possibly a decline at $z>3$. This tre...

  12. X-Ray Observations of Optically Selected, Radio-quiet Quasars. I. The ASCA Results

    Science.gov (United States)

    George, I. M.; Turner, T. J.; Yaqoob, T.; Netzer, H.; Laor, A.; Mushotzky, R. F.; Nandra, K.; Takahashi, T.

    2000-03-01

    We present the result of 27 ASCA observations of 26 radio-quiet quasars (RQQs) from the Palomar-Green (PG) survey. The sample is not statistically complete, but it is reasonably representative of RQQs in the PG survey. For many of the sources, the ASCA data are presented here for the first time. All the RQQs were detected except for two objects, both of which contain broad absorption lines in the optical band. We find the variability characteristics of the sources to be consistent with Seyfert 1 galaxies. A power law offers an acceptable description of the time-averaged spectra in the 2-10 keV (quasar frame) band for all but one data set. The best-fitting values of the photon index vary from object to object over the range 1.5~=2 and dispersion σ(Γ2-10)~=0.25. The distribution of Γ2-10 is therefore similar to that observed in other RQ active galactic nuclei (AGNs) and seems to be unrelated to X-ray luminosity. No single model adequately describes the full 0.6-10 keV (observed frame) continuum of all the RQQs. Approximately 50% of the sources can be adequately described by a single power law or by a power law with only very subtle deviations. All but one of the remaining data sets were found to have convex spectra (flattening as one moves to higher energies). The exception is PG 1411+442, in which a substantial column density (NH,z~2x1023 cm-2) obscures ~98% of the continuum. We find only five (maybe six) of 14 objects with z<~0.25 to have ``soft excesses'' at energies <~1 keV, but we find no universal shape for these spectral components. The spectrum of PG 1244+026 contains a rather narrow emission feature centered at an energy ~1 keV (quasar frame). The detection rate of absorption due to ionized material in these RQQs is lower than that seen in Seyfert 1 galaxies. In part, this may be due to selection effects. However, when detected, the absorbers in the RQQs exhibit a similar range of column density and ionization parameter as Seyfert 1 galaxies. We find

  13. How Similar are the Properties of Quasars with Nearly Identical Ultraviolet Spectra?

    Science.gov (United States)

    Rochais, Thomas; Singh, Vikram; Chick, William; Maithil, Jaya; Sutter, Jessica; Brotherton, Michael S.; Shang, Zhaohui

    2016-09-01

    The spectrum of a quasar contains important information about its properties. Thus, it can be expected that two quasars with similar spectra will have similar properties, but just how similar has not before been quantified. Here we compare the ultraviolet spectra of a sample of 5553 quasars from Data Release 7 of the Sloan Digital Sky Survey, focusing on the 1350 Å ≤λ ≤ 2900 Å rest-frame region which contains prominent emission lines from Si IV, O IV], C IV, C III], and Mg II species. We use principal component analysis to determine the dominant components of spectral variation, as well as to quantitatively measure spectral similarity. As suggested by both the Baldwin effect and modified Baldwin effect, quasars with similar spectra have similar properties: bolometric luminosity, Eddington fraction, and black hole mass. The latter two quantities are calculated from the luminosity in conjunction with spectral features, and the variation between quasars with virtually identical spectra (which we call doppelgangers) is driven by the variance in the luminosity plus measurement uncertainties. In the doppelgangers the luminosity differences show 1σ uncertainties of 57% (or 0.63 magnitudes) and ˜70% 1σ uncertainties for mass and Eddington fraction. Much of the difference in luminosities may be attributable to time lags between the spectral lines and the continuum. Furthermore, we find that suggestions that the mostly highly accreting quasars should be better standard candles than other quasars are not bourne out for doppelgangers. Finally, we discuss the implications for using quasars as cosmological probes and the nature of the first two spectral principal components.

  14. The near-to-mid infrared spectrum of quasars

    CERN Document Server

    Hernán-Caballero, Antonio; Alonso-Herrero, Almudena; Mateos, Silvia

    2016-01-01

    We analyse a sample of 85 luminous L3um > 10^45.5 erg/s quasars with restframe ~2-11um spectroscopy from AKARI and Spitzer. Their high luminosity allows a direct determination of the near-infrared quasar spectrum free from host galaxy emission. A semi-empirical model consisting of a single template for the accretion disk and two blackbodies for the dust emission successfully reproduces the 0.1-10um spectral energy distributions (SEDs). Excess emission at 1-2um over the best-fitting model suggests that hotter dust is necessary in addition to the ~1200K blackbody and the disk to reproduce the entire near-infrared spectrum. Variation in the extinction affecting the disk and in the relative strength of the disk and dust components accounts for the diversity of individual SEDs. Quasars with higher dust-to-disk luminosity ratios show slightly redder infrared continua and less prominent silicate emission. We find no luminosity dependence in the shape of the average infrared quasar spectrum. The equivalent width of P...

  15. QUASARS PROBING QUASARS. VI. EXCESS H I ABSORPTION WITHIN ONE PROPER Mpc OF z ∼ 2 QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Prochaska, J. Xavier; Cantalupo, Sebastiano; Lau, Marie Wingyee [Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Hennawi, Joseph F.; Lee, Khee-Gan; Myers, Adam; Rubin, Kate H. R. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69115 Heidelberg (Germany); Bovy, Jo [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States); Djorgovski, S. G. [California Institute of Technology, Pasadena, CA 91125 (United States); Ellison, Sara L. [Department of Physics and Astronomy, University of Victoria, Finnerty Road, Victoria, British Columbia V8P 1A1 (Canada); Martin, Crystal L. [Department of Physics, University of California, Santa Barbara, Santa Barbara, CA 93106 (United States); Simcoe, Robert A. [MIT-Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2013-10-20

    With close pairs of quasars at different redshifts, a background quasar sightline can be used to study a foreground quasar's environment in absorption. We use a sample of 650 projected quasar pairs to study the H I Lyα absorption transverse to luminous, z ∼ 2 quasars at proper separations of 30 kpc < R < 1 Mpc. In contrast to measurements along the line-of-sight, regions transverse to quasars exhibit enhanced H I Lyα absorption and a larger variance t