Energy Technology Data Exchange (ETDEWEB)
Shekhter, V [AN SSSR, Leningrad. Inst. Yadernoj Fiziki
1981-04-01
The history is described of the concept of quarks, ie., hypothetical particles of which,hadrons (strongly interacting particles) are believed to consist. The quark properties differ from those of known elementary particles. The electric charge of quarks is 1/3 and 2/3 of the electron charge and they obviously only exist inside hadrons. Quark existence is generally recognized because it has been confirmed by experimental verification of predictions made using a quark model.
International Nuclear Information System (INIS)
Jacob, M.
1982-01-01
This chapter discusses interactions only at the constituent level, as observed in hadron-hadron collisions. It defines quarks and gluons as constituents of the colliding hadrons, reviews some applications of perturbative OCD, discussing in turn lepton pair production, which in lowest order approximation corresponds to the Drell-Yan process. It investigates whether quark-quark interactions could not lead to some new color structure different from those prevalent for known baryons and mesons, which could be created in hadron interactions, and whether color objects (not specifically quarks or gluons) could not appear as free particles. Discussed is perturbative QCD in hadron collisions; the quark approach to soft processes; and new color structures. It points out that perturbative QCD has been at the origin of much progress in the understanding of hadron interactions at the constituent level
International Nuclear Information System (INIS)
Joos, H.
1976-07-01
The main topics of these lectures are: phenomenological approach to quark confinement, standard Lagrangian of hadrondynamics, Lagrangian field theory and quark confinement, classical soliton solutions in a simple model, quantization of extended systems, colour charge screening and quantization on a lattice and remarks on applications. A survey of the scientific publications listed according to the topics until 26 March 1976 is supplemented. (BJ) [de
International Nuclear Information System (INIS)
Khoze, V.A.
1983-10-01
We discuss the results accumulated during the last five years in heavy quark physics and try to draw a simple general picture of the present situation. The survey is based on a unified point of view resulting from quantum chromodynamics. (orig.)
International Nuclear Information System (INIS)
Kerman, A.K.
1981-01-01
This short talk gives some very general comments on what I see as the impact on nuclear physics of the last ten years' developments in the picture of the nucleon and the hadron. On the other hand there may also be some nuclear physics lessons - lessons we've learned by trying to deal with the multi-fermion system over a long period - and I will discuss what those lessons might be for the problem at hand, hadron phy-physics up to 31 GeV. After that I will discuss a number of implications of quarks for low energy physics
International Nuclear Information System (INIS)
Nambu, J.
1978-01-01
Three quark models of hadron structure, which suggest an explanation of quarks confinement mechanism in hadrons are considered. Quark classifications, quark flawors and colours, symmetry model of hadron structure based on the colour theory of strong interaction are discussed. Diagrams of colour combinations of quarks and antiquarks, exchange of gluons, binding quarks in hadron. Quark confinement models based on the field theory, string model rotating and bag model are discussed. Diagrams of the colour charge distribution explaining the phenomena of infrared ''slavery'' and ultraviolet ''freedom'' are given. The models considered explain but some quark properties, creating prerequisites for the development of the consequent theory of hadron structure
Quark mass effects in quark number susceptibilities
International Nuclear Information System (INIS)
Graf, Thorben; Petreczky, Peter
2017-01-01
The quark degrees of freedom of the QGP with special focus on mass effects are investigated. A next-to-leading-order perturbation theory approach with quark mass dependence is applied and compared to lattice QCD results. (paper)
Two-Quark Condensate Changes with Quark Current Mass
International Nuclear Information System (INIS)
Lu Changfang; Lue Xiaofu; Wu Xiaohua; Zhan Yongxin
2009-01-01
Using the Schwinger-Dyson equation and perturbation theory, we calculate the two-quark condensates for the light quarks u, d, strange quark s and a heavy quark c with their current masses respectively. The results show that the two-quark condensate will decrease when the quark mass increases, which hints the chiral symmetry may be restored for the heavy quarks.
Quark confinement in a constituent quark model
International Nuclear Information System (INIS)
Langfeld, K.; Rho, M.
1995-01-01
On the level of an effective quark theory, we define confinement by the absence of quark anti-quark thresholds in correlation function. We then propose a confining Nambu-Jona-Lasinio-type model. The confinement is implemented in analogy to Anderson localization in condensed matter systems. We study the model's phase structure as well as its behavior under extreme conditions, i.e. high temperature and/or high density
International Nuclear Information System (INIS)
Bjorken, J.D.
1985-12-01
Even if stable hadrons with fractional charge do not exist, most of the criteria of observability used for ordinary elementary particles apply in principle to quarks as well. This is especially true in a simplified world containing only hadrons made of top quarks and gluons. In the real world containing light quarks, essential complications do occur, but most of the conclusions survive
International Nuclear Information System (INIS)
Jacob, Maurice
1988-01-01
The 'Quark Matter' Conference caters for physicists studying nuclear matter under extreme conditions. The hope is that relativistic (high energy) heavy ion collisions allow formation of the long-awaited quark-gluon plasma, where the inter-quark 'colour' force is no longer confined inside nucleon-like dimensions
International Nuclear Information System (INIS)
Gasiorowicz, S.; Rosner, J.L.
1982-01-01
The quark model began as little more than a quantum-number counting device. After a brief period during which quarks only played a symmetry role, serious interest in quark dynamics developed. The marriage of the principle of local gauge invariance and quarks has been astonishingly productive. Although many questions still need to be be answered, there is little doubt that the strong, weak and electroweak interactions of matter are described by gauge theories of interactions of the quarks. This review is focussed on the successes
Space-Time Geometry of Quark and Strange Quark Matter
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
We study quark and strange quark matter in the context of general relativity. For this purpose, we solve Einstein's field equations for quark and strange quark matter in spherical symmetric space-times. We analyze strange quark matter for the different equations of state (EOS) in the spherical symmetric space-times, thus we are able to obtain the space-time geometries of quark and strange quark matter. Also, we discuss die features of the obtained solutions. The obtained solutions are consistent with the results of Brookhaven Laboratory, i.e. the quark-gluon plasma has a vanishing shear (i.e. quark-gluon plasma is perfect).
International Nuclear Information System (INIS)
Volkov, D.V.; Zheltukhin, A.A.; Pashnev, A.I.
1975-01-01
As it has shown, the study of vacuum transitions in dual models makes it possible to establish certain relations between duality, on the one hand, and the quark structure of resonances and the internal symmetries, on the other. In the case of Veneziano model the corresponding quark structure of resonances is determined by the infinity number of quarks of increasing mass. The intercents of the main trajectory and all adopted trajectories are additive with respect to squares of mass-forming quarks. The latter circumstance results in a number of important consequences: the presence of quadratic mass formulas for resonance states; the exact SU(infinity)-symmetry for the three-resonance coupling constants; the validity of Adler's self-consistency principle for external particles composed of different quarks and anti-quarks, etc
Testa, Massimo
1990-01-01
In the large quark mass limit, an argument which identifies the mass of the heavy-light pseudoscalar or scalar bound state with the renormalized mass of the heavy quark is given. The following equation is discussed: m(sub Q) = m(sub B), where m(sub Q) and m(sub B) are respectively the mass of the heavy quark and the mass of the pseudoscalar bound state.
Quark diquark symmetry breaking
International Nuclear Information System (INIS)
Souza, M.M. de
1980-01-01
Assuming the baryons are made of quark-diquark pairs, the wave functions for the 126 allowed ground states are written. The quark creation and annihilations operators are generalized to describe the quark-diquark structure in terms of a parameter σ. Assuming that all quark-quark interactions are mediated by gluons transforming like an octet of vector mesons, the effective Hamiltonian and the baryon masses as constraint equations for the elements of the mass matrix is written. The symmetry is the SU(6) sub(quark)x SU(21) sub(diquark) broken by quark-quark interactions respectively invariant under U(6), U(2) sub(spin), U(3) and also interactions transforming like the eighth and the third components of SU(3). In the limit of no quark-diquark structure (σ = 0), the ground state masses is titted to within 1% of the experimental data, except for the Δ(1232), where the error is almost 2%. Expanding the decuplet mass equations in terms of σ and keeping terms only up to the second order, this error is reduced to 67%. (Author) [pt
Dakin, James T.
1974-01-01
Reviews theoretical principles underlying the quark model. Indicates that the agreement with experimental results and the understanding of the quark-quark force are two hurdles for the model to survive in the future. (CC)
Frixione, Stefano; Nason, Paolo; Ridolfi, Giovanni
1997-01-01
We review the present theoretical and experimental status of heavy quark production in high-energy collisions. In particular, we cover hadro- and photoproduction at fixed target experiments, at HERA and at the hadron colliders, as well as aspects of heavy quark production in e+e- collisions at the Z0 peak.
International Nuclear Information System (INIS)
Frampton, P.H.; Jarlskog, C.
1985-01-01
It is shown that the quark mass matrices in the Standard Electroweak Model satisfy the empirical relation M = M 1 + Ψ(Λ 2 ), where M(M sp (')) refers to the mass matrix of the charge 2/3(-1/3) quarks normalized to the largest eigenvalue, m sub (t)(m sub (b)), and Λ = V sub (us) = 0.22
Colourless confinement for quarks
International Nuclear Information System (INIS)
Anon.
1994-01-01
The enigma of quarks is that they are there, hidden deep inside nucleons and other strongly interacting particles, but refuse to come out. The tighter the quark bonds are stretched, the more difficult they are to break. This dogma has been accepted for some thirty years but has never been mathematically proved
International Nuclear Information System (INIS)
Cartwright, Susan
1992-01-01
Like any other electrically charged particles, quarks should give out electromagnetic radiation (photons) when they vibrate. One of the physics results from CERN's LEP collider is the first clear observation of this quark radiation from electron-positron collisions. At lower energies this radiation could only be inferred
Energy Technology Data Exchange (ETDEWEB)
Cartwright, Susan
1992-04-15
Like any other electrically charged particles, quarks should give out electromagnetic radiation (photons) when they vibrate. One of the physics results from CERN's LEP collider is the first clear observation of this quark radiation from electron-positron collisions. At lower energies this radiation could only be inferred.
International Nuclear Information System (INIS)
Larios, F.
2006-01-01
We give an overview of the physics of the Top quark, from the experimental discovery to the studies of its properties. We review some of the work done on the Electroweak and Flavor Changing couplings associated with the Top quark in the Standard Model and beyond. We will focus on the specific contribution of phycisits working in Mexico and Mexican physicists working abroad
Laenen, E.
2012-01-01
The theoretical aspects of a number of top quark properties such as its mass and its couplings are reviewed. Essential aspects in the theoretical description of top quark production, singly, in pairs and in association, as well as its decay related to spin and angular correlations are discussed.
International Nuclear Information System (INIS)
Azimov, Ya.I.; Khoze, V.A.
1979-01-01
Experimental results which proved the reality of quarks are reviewed along with further experiments broadening the representation of quarks and leptons and providing the basis to develop the theory of elementary particles. The discovery of the J/psi particle is noted to give rise to the discovery of c-quark, the existance of which is confirmed by the discovery of charmed hadrons. The main aspects of quantum chromodynamics explaining the mechanism of strong interaction of quarks are considered along with those of the Weinberg-Salam theory proposed to describe weak and electromagnetic interactions of quarks and leptons. Experimental data testifying to the existance of heavy tausup(+-) leptons are presented. The history of discovery of γ mesons and of a new heavier b-quark is described. Perspectives for studying elementary particles are discussed. Further studies of γ mesons, discovery and investigation of charmed particles are noted to be immediate tasks along with the search for manifestation of t-quark considered to be a partner of b-quark from the viewpoint of the Weinberg-Salam model
Quark confinement and the quark model
International Nuclear Information System (INIS)
Kuti, J.
1977-01-01
The CERN-JINR School of Physics is meant to give young experimental physicists and introduction to the theoretical aspects of recent advances in elementary particle physics. The purpose of the lectures contained in this paper is to discuss recent work on the quark model and its applications to hadron spectroscopy and some high-energy phenomena. (Auth.)
Fritzsch, Harald
1983-01-01
Quark rossi, verdi e blu ; quark dotati di stranezza e di incanto ; quark 'su' e 'giù' : sembra che i fisici delle particelle giochino a confondere la curiosità del profano, con queste denominazioni fantasiose. Che cosa significano ? e, soprattutto, i quark sono i costituenti davvero elementari della materia ?
Top Quark Properties at Tevatron
Energy Technology Data Exchange (ETDEWEB)
Lysák, Roman [Prague, Inst. Phys.
2017-11-27
The latest CDF and D0 experiment measurements of the top quark properties except the top quark mass are presented. The final combination of the CDF and D0 forward-backward asymmetry measurements is shown together with the D0 measurements of the inclusive top quark pair cross-section as well as the top quark polarization.
International Nuclear Information System (INIS)
Anisovich, V.V.
1989-06-01
Using the language of the quarks and gluons for description of the soft hadron physics it is necessary to take into account two characteristic phenomena which prevent one from usage of QCD Lagrangian in the straightforward way, chiral symmetry breaking, and confinement of colour particles. The topics discussed in this context are: QCD in the domain of soft processes, phenomenological Lagrangian for soft processes and exotic mesons, spectroscopy of low-lying hadrons (mesons, baryons and mesons with heavy quarks - c,b -), confinement forces, spectral integration over quark masses. (author) 3 refs.; 19 figs.; 3 tabs
Energy Technology Data Exchange (ETDEWEB)
Goldhaber, J.
1986-11-13
The paper concerns the experimental search for quark-gluon plasma. The theory of a quark-gluon plasma is first given. Then the method which researchers hope will create the quark-gluon plasma is described; the idea is to use heavy ion beams in, the CERN SPS. The CERN 'heavy-ion programme' involves research groups mainly from CERN, Lawrence Berkeley Laboratory and Gellsellschaft fuer Schwerionenforschung. The experiments in the research programme are outlined, together with the detector equipment employed in the experiments.
Top quark measurements at ATLAS
Grancagnolo, Sergio; The ATLAS collaboration
2017-01-01
The top quark is the heaviest known fundamental particle. As it is the only quark that decays before it hadronizes, this gives us the unique opportunity to probe the properties of bare quarks at the Large Hadron Collider. This talk will present highlights of a few recent precision measurements by the ATLAS Collaboration of the top quark using 13 TeV and 8 TeV collision data: top-quark pair and single top production cross sections including differential distributions will be presented alongside top quark properties measurements. These measurements, including results using boosted top quarks, probe our understanding of top quark production in the TeV regime. Measurements of the top quark mass and searches for rare top quark decays are also presented.
Top quark measurements at ATLAS
AUTHOR|(INSPIRE)INSPIRE-00041686; The ATLAS collaboration
2017-01-01
The top quark is the heaviest known fundamental particle. As it is the only quark that decays before it hadronizes, it allows us to probe the properties of bare quarks at the Large Hadron Collider. Highlights of a few recent precision measurements by the ATLAS Collaboration of the top quark using 13 TeV and 8 TeV collision data will be presented: top-quark pair and single top production cross sections including differential distributions will be presented alongside measurements of top-quark properties, including results using boosted top quarks, probe our understanding of top-quark production in the TeV regime. Measurements of the top-quark mass and searches for rare top quark decays are also presented.
Institute of Scientific and Technical Information of China (English)
ZONG Hong-Shi; PING Jia-Lun; SUN Wei-Min; CHANG Chao-Hsi; WANG Fan
2002-01-01
We exhibit a method for obtaining the low chemical potential dependence of the dressed quark propagatorfrom an effective quark-quark interaction model. Within this approach we explore the chemical potential dependenceof the dressed-quark propagator, which provides a means of determining the behavior of the chiral and deconfinementorder parameters. A comparison with the results of previous researches is given.
Strong interactions - quark models
International Nuclear Information System (INIS)
Goto, M.; Ferreira, P.L.
1979-01-01
The variational method is used for the PSI and upsilon family spectra reproduction from the quark model, through several phenomenological potentials, viz.: linear, linear plus coulomb term and logarithmic. (L.C.) [pt
Multileptons from heavy quarks
International Nuclear Information System (INIS)
Phillips, R.J.N.
1984-03-01
The paper is concerned with a brief look at the various multilepton signals that are expected at p-barp colliders from the production and cascade decay of top quarks, plus the backgrounds from b and c production. (author)
International Nuclear Information System (INIS)
Roberts, R.G.
1984-11-01
The paper concerns the behaviour of quarks in nuclei. Confinement size changes and dynamical rescaling; A dependence; low-x region; gluons and confinement size; and nucleons in a nucleus; are all discussed. (U.K.)
International Nuclear Information System (INIS)
Hasenfratz, P.; Kuti, J.
1978-01-01
The quark bag model is reviewed here with particular emphasis on spectroscopic applications and the discussion of exotic objects as baryonium, gluonium, and the quark phase of matter. The physical vacuum is pictured in the model as a two-phase medium. In normal phase of the vacuum, outside hadrons, the propagation of quark and gluon fields is forbidden. When small bubbles in a second phase are created in the medium of the normal phase with a characteristic size of one fermi, the hadron constituent fields may propagate inside the bubbles in normal manner. The bubble (bag) is stabilized against the pressure of the confined hadron constituent fields by vacuum pressure and surface tension. Inside the bag the colored quarks and gluons are governed by the equations of quantum chromodynamics. (Auth.)
International Nuclear Information System (INIS)
Anon.
1987-01-01
Quarks are understood to interact through the 'colour' force, carried by gluons. Under normal conditions these quarks are confined - frozen together in 'colourless' states such as protons, neutrons and other strongly interacting particles. However if the quarks are compressed tightly together and/or are 'heated' by increasing their energy, they should eventually break loose from their colour bonds to form a new kind of matter – the so-called quark-gluon plasma. Although QGP has not yet been synthesized in the Laboratory, it was most likely the stuff of the Universe 10 -5 second after the Big Bang. Thus the search for this 'new' matter is attracting a growing number of physicists, theorists and experimenters from both the particle physics and nuclear physics fields
International Nuclear Information System (INIS)
Guersey, F.
1974-01-01
A mathematical framework based on octonions is developed for the description of the color quark scheme in which quarks are unobservable, the color SU(3) is exact, and only color singlets correspond to observable hadrons. The fictitious Hilbert space in which quarks operate is taken to be a space of vectors with octonion components. This space admits as a gauge group an exact SU(3) identified with the color SU/sub C/(3). Because of the nonassociativity of the underlying algebra, nonsinglet representations of SU/sub C/(3) are unobservable, while the subspace of color singlets satisfies associativity along with conditions for observability. Octonion quark fields satisfy the commutation relations of parafermions of order 3, leading to the correct SU(6) multiplets for hadrons. (U.S.)
International Nuclear Information System (INIS)
Anon.
1995-01-01
Nine months after a careful announcement of tentative evidence for the long-awaited sixth 'top' quark, physicists from the CDF and DO experiments at Fermilab's Tevatron proton-antiproton collider declared on 2 March that they had finally discovered the top quark. Last year (June 1994, page 1), the CDF experiment at the Tevatron reported a dozen candidate top events. These, said CDF, had all the characteristics expected of top, but the difficulties of extracting the tiny signal from a trillion proton-antiproton collisions made them shy of claiming a discovery. For its part, the companion DO Tevatron experiment reported a few similar events but were even more guarded about their interpretation as top quarks. Just after these hesitant announcements, performance at the Tevatron improved dramatically last summer. After the commissioning of a new linear accelerator and a magnet realignment, the machine reached a new world record proton-antiproton collision luminosity of 1.28 x 10 31 per sq cm per s, ten times that originally planned. Data began to pour in at an unprecedented rate and the data sample grew to six trillion collisions. Luminosity has subsequently climbed to 1.7 x 10 31 . The top quark is the final letter in the alphabet of Standard Model particles. According to this picture, all matter is composed of six stronglyinteracting subnuclear particles, the quarks, and six weakly interacting particles, the leptons. Both sextets are neatly arranged as three pairs in order of increasing mass. The fifth quark, the 'beauty' or 'b' quark, was also discovered at Fermilab, back in 1977. Since then physicists have been eagerly waiting for the top to turn up, but have been frustrated by its heaviness - the top is some 40 times the mass of its 'beautiful' partner. Not only is the top quark the heaviest by far, but it is the only quark which has been actively hunted. After the quarry was glimpsed last year, the net has now been
DEFF Research Database (Denmark)
Sørensen, Paul Haase; Taylor, John C.
1984-01-01
Processes with coloured particles in the initial state are generally infrared divergent. We investigate the effect of this on processes with colourless particles in the initial state, when the amplitude is near an intermediate quark pole. The result is a characteristic logarithmic depedence...... on the 'binding energy'(even though spectator interactions are taken into account), and the result is gauge-invariant. Summed to all orders the logarithms could perhaps suppress the quark pole....
Prediction of new Quarks, Generations and Quark Masses
Lach, Thedore
2002-04-01
The Standard model currently suggests no relationship between the quark and lepton masses. The CBM (model) of the nucleus has resulted in the prediction of two new quarks, an up quark mass of 237.31 MeV/c2 and a dn quark mass of 42.392 MeV/c2. These two new quarks help explain the numerical relationship between all the quark and lepton masses in a single function. The mass of each SNU-P (quark or lepton) is just the geometric mean of two related SNU-Ps, either in the same generation or in the same family. This numerology predicts the following masses for the electron family: 0.511000 (electron), 7.743828 (predicted), 117.3520, 1778.38, 26950.08 MeV. The resulting slope of these masses when plotted on semi log paper is "e" to 5 significant figures using the currently accepted mass for Tau. This theory suggests that all the "dn like" quarks have a mass of just 10X multiples of 4.24 MeV (the mass of the "d" quark). The first 3 "up like" quark masses are 38, 237 and 1500 MeV. This theory also predicts a new heavy generation with a lepton mass of 27 GeV, a "dn like" quark of 42.4 GeV, and an "up like" quark of 65 GeV. Significant evidence already exists for the existence of these quarks, and lepton.
Bootstrapping quarks and gluons
Energy Technology Data Exchange (ETDEWEB)
Chew, G.F.
1979-04-01
Dual topological unitarization (DTU) - the approach to S-matrix causality and unitarity through combinatorial topology - is reviewed. Amplitudes associated with triangulated spheres are shown to constitute the core of particle physics. Each sphere is covered by triangulated disc faces corresponding to hadrons. The leading current candidate for the hadron-face triangulation pattern employs 3-triangle basic subdiscs whose orientations correspond to baryon number and topological color. Additional peripheral triangles lie along the hadron-face perimeter. Certain combinations of peripheral triangles with a basic-disc triangle can be identified as quarks, the flavor of a quark corresponding to the orientation of its edges that lie on the hadron-face perimeter. Both baryon number and flavor are additively conserved. Quark helicity, which can be associated with triangle-interior orientation, is not uniformly conserved and interacts with particle momentum, whereas flavor does not. Three different colors attach to the 3 quarks associated with a single basic subdisc, but there is no additive physical conservation law associated with color. There is interplay between color and quark helicity. In hadron faces with more than one basic subdisc, there may occur pairs of adjacent flavorless but colored triangles with net helicity +-1 that are identifiable as gluons. Broken symmetry is an automatic feature of the bootstrap. T, C and P symmetries, as well as up-down flavor symmetry, persist on all orientable surfaces.
International Nuclear Information System (INIS)
Rho, Mannque.
1980-04-01
The present status of our understanding of the physics of hadronic (nuclear or neutron) matter under extreme conditions, in particular at high densities is discussed. This is a problem which challenges three disciplines of physics: nuclear physics, astrophysics and particle physics. It is generally believed that we now have a correct and perhaps ultimate theory of the strong interactions, namely quantum chromodynamics (QCD). The constituents of this theory are quarks and gluons, so highly dense matters should be describable in terms of these constituents alone. This is a question that addresses directly to the phenomenon of quark confinement, one of the least understood aspects in particle physics. For nuclear physics, the possibility of a phase change between nuclear matter and quark matter introduces entirely new degrees of freedom in the description of nuclei and will bring perhaps a deeper understanding of nuclear dynamics. In astrophysics, the properties of neutron stars will be properly understood only when the equation of state of 'neutron' matter at densities exceeding that of nuclear matter can be realiably calculated. Most fascinating is the possibility of quark stars existing in nature, not entirely an absurd idea. Finally the quark matter - nuclear matter phase transition must have occured in the early stage of universe when matter expanded from high temperature and density; this could be an essential ingredient in the big-bang cosmology
Bootstrapping quarks and gluons
International Nuclear Information System (INIS)
Chew, G.F.
1979-04-01
Dual topological unitarization (DTU) - the approach to S-matrix causality and unitarity through combinatorial topology - is reviewed. Amplitudes associated with triangulated spheres are shown to constitute the core of particle physics. Each sphere is covered by triangulated disc faces corresponding to hadrons. The leading current candidate for the hadron-face triangulation pattern employs 3-triangle basic subdiscs whose orientations correspond to baryon number and topological color. Additional peripheral triangles lie along the hadron-face perimeter. Certain combinations of peripheral triangles with a basic-disc triangle can be identified as quarks, the flavor of a quark corresponding to the orientation of its edges that lie on the hadron-face perimeter. Both baryon number and flavor are additively conserved. Quark helicity, which can be associated with triangle-interior orientation, is not uniformly conserved and interacts with particle momentum, whereas flavor does not. Three different colors attach to the 3 quarks associated with a single basic subdisc, but there is no additive physical conservation law associated with color. There is interplay between color and quark helicity. In hadron faces with more than one basic subdisc, there may occur pairs of adjacent flavorless but colored triangles with net helicity +-1 that are identifiable as gluons. Broken symmetry is an automatic feature of the bootstrap. T, C and P symmetries, as well as up-down flavor symmetry, persist on all orientable surfaces
Heavy quark fragmentation functions in the heavy quark effective theory
International Nuclear Information System (INIS)
Martynenko, A.P.; Saleev, V.A.
1996-01-01
The fragmentation of b-bar-antiquark into polarized B c * -mesons and b-quark into P-wave (c-bar b) states in the Heavy Quark Effective Theory. The heavy quark fragmentation functions in longitudinally and transversely polarized S-wave b-bar c-states and P-wave mesons containing b-, c-quarks also, with the exact account of corrections of first order in 1/m b . 20 refs., 2 figs
International Nuclear Information System (INIS)
Benenson, G.; Chau, L.L.; Ludlam, T.; Paige, F.E.; Platner, E.D.; Protopopescu, S.D.; Rehak, P.
1983-01-01
In this exercise we examine the performance of a detector specifically configured to tag heavy quark (HQ) jets through direct observations of D-meson decays with a high resolution vertex detector. To optimize the performance of such a detector, we assume the small diamond beam crossing configuration as described in the 1978 ISABELLE proposal, giving a luminosity of 10 32 cm -2 sec -1 . Because of the very large backgrounds from light quark (LQ) jets, most triggering schemes at this luminosity require high P/sub perpendicular to/ leptons and inevitably give missing neutrinos. If alternative triggering schemes could be found, then one can hope to find and calculate the mass of objects decaying to heavy quarks. A scheme using the high resolution detector will also be discussed in detail. The study was carried out with events generated by the ISAJET Monte Carlo and a computer simulation of the described detector system
Mulders, Martijn
2016-01-01
Ever since the discovery of the top quark at the Tevatron collider in 1995 the measurement of its mass has been a high priority. As one of the fundamental parameters of the Standard Theory of particle physics, the precise value of the top quark mass together with other inputs provides a test for the self-consistency of the theory, and has consequences for the stability of the Higgs field that permeates the Universe. In this review I will briefly summarize the experimental techniques used at the Tevatron and the LHC experiments throughout the years to measure the top quark mass with ever improving accuracy, and highlight the recent progress in combining all measurements in a single world average combination. As experimental measurements became more precise, the question of their theoretical interpretation has become important. The difficulty of relating the measured quantity to the fundamental top mass parameter has inspired alternative measurement methods that extract the top mass in complementary ways. I wil...
The Quark's Model and Confinement
Novozhilov, Yuri V.
1977-01-01
Quarks are elementary particles considered to be components of the proton, the neutron, and others. This article presents the quark model as a mathematical concept. Also discussed are gluons and bag models. A bibliography is included. (MA)
Heavy quarks at hadron colliders
International Nuclear Information System (INIS)
Paige, F.E.
1989-01-01
This paper discusses a conference at which the standard model requiring the existence of a top quark + to form a weak isospin doublet with the b quark is explored. Collaboration suggestions are offered. Results are explored
International Nuclear Information System (INIS)
Welke, G.M.; Heiss, W.D.
1986-01-01
In an infinite one-dimensional quark gas it is shown that a static color force, which increases at large distance, leads to a density fluctuation in the ground state. A self-consistent mean field can only be found for an effectively attractive quark-quark interaction that increases less than linearly at large distances. For a fixed coupling constant, the clustering disappears at high quark density
Quark chemistry: charmonium molecules
International Nuclear Information System (INIS)
De Rujula, A.; Jaffe, R.L.
1977-01-01
The theoretical and experimental evidence for two quark-two antiquark hadrons is reviewed. Concentration is placed on predictions for S-wave ''charmonium molecules,'' built of a c anti c charmonium pair and a light quark-antiquark pair. Their spectrum and quantum numbers are predicted and an estimate of their decay couplings and their prediction in monochromatic pion decays from charmonium resonances produced in e + e - -annihilation is given. Some S-wave charmonium resonances should be detectable in these decays, but typical branching ratios are only at the 1% level. 19 references
Energy Technology Data Exchange (ETDEWEB)
Biswas, S. N.
1980-07-01
The application of quantum statistical mechanics to a system of particles consisting of quarks is considered. Realistic theoretical investigations have been underway to understand highly dense objects such as white dwarfs and neutron stars. The various possibilities in the case of very high densities such as 10/sup 15/ or 10/sup 16/ g/cm/sup 3/ are enumerated. The thermodynamics of a phase transition from neutron matter phase to quark matter phase is analysed. Preliminary results based on quantum chromodynamics and other phenomenological models are reported.
International Nuclear Information System (INIS)
Rho, M.; CEA Centre d'Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette
1983-01-01
Some features of quark degrees of freedom in nuclei are discussed in the light of recent developments in QCD. The principal aim of this talk is to propose, and give a tentative support to, the motion that one can study through nuclear matter different facets of the vacuum structure implied by quantum chromodynamics (QCD). This will be done using the recent (exciting) results obtained in particle physics, in particular lattice gauge calculations. Relevance of this aspect of problem to quark degrees of freedom as well as meson degrees of freedom in nuclei will be discussed. (orig.)
Quark Orbital Angular Momentum
Directory of Open Access Journals (Sweden)
Burkardt Matthias
2015-01-01
Full Text Available Definitions of orbital angular momentum based on Wigner distributions are used as a framework to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. We find that the difference between these two definitions can be interpreted as the change in the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism responsible for that change is similar to the mechanism that causes transverse single-spin asymmetries in semi-inclusive deep-inelastic scattering.
International Nuclear Information System (INIS)
Anon.
1981-01-01
In spite of (or perhaps because of) the present doctrine of total quark confinement held by the majority of particle theorists, experimental searches for free fractional charge and other anomalous stable particles in ordinary matter have been increasing in number during recent years, using a range of techniques of increasing sophistication and sensitivity. As a result, researchers in this area had a conference to themselves in June. About 40 participants and 150 observers gathered at San Francisco State University to report progress and discuss future plans, with representatives present from almost every group involved in quark searches
Possibility of stable quark stars
International Nuclear Information System (INIS)
Bowers, R.L.; Gleeson, A.M.; Pedigo, R.D.
1976-08-01
A recent zero temperature equation of state which contains quark-partons separated from conventional baryons by a phase transition is used to investigate the stability of quark stars. The sensitivity to the input physics is also considered. The conclusions, which are found to be relatively model independent, indicate that a separately identifiable class of stable objects called quark stars does not exist
International Nuclear Information System (INIS)
Rosner, J.L.
1985-10-01
New experimental and theoretical developments in heavy quark spectroscopy are reviewed. From studies of J/psi decays, the eta' is found to have some ''glue'' or other inert component, while the iota (a glueball candidate) probably contains some quarks as well. The xi(2.2) persists in new Mark III data, but is not seen by the DM2 collaboration. The production of charmonium states by anti pp reactions is reviewed. First evidence for a P- wave charmed meson, D(2420), has been presented by the ARGUS group. Radiative UPSILON decay studies fail to confirm the zeta(8.3) and begin to place useful limits on Higgs bosons. First results from an experiment at Fermilab on low-background hadronic production of UPSILON states are shown. Accurate measurements of chi/sub b/(1P) masses by the ARGUS collaboration are noted, and interpreted as favoring scalar quark confinement. Studies of t and other heavy quarks will probe the q anti q interaction below 0.05 fm, are likely to be strongly affected by t anti t-Z interference, and can provide varied information on Higgs bosons. 144 refs., 21 figs
Indian Academy of Sciences (India)
2012-10-04
Oct 4, 2012 ... The theoretical aspects of a number of top quark properties such as ... to the quadratic divergences of the Higgs self-energy, while yet, ..... given in the literature, each with the aim of recovering a well-behaved expansion in αs.
Indian Academy of Sciences (India)
eter for the tests of the electroweak theory, since radiative corrections to many ... The uncertainty due to jet energy scale (JES) is the dominating systematic .... In the Standard Model, the charge of the top quark is predicted to be that of a normal up- ..... non-negative and f+ + f0 < 1, and the star marks the expectation from the ...
International Nuclear Information System (INIS)
Cacciari, M.
1996-08-01
The state of the art of the theoretical calculations for heavy quarks photoproduction is reviewed. The full next-to-leading order calculation and two possible resummations, the high energy one for total cross sections and the large p T one for differential cross sections, are described. (orig.)
International Nuclear Information System (INIS)
Maki, Tuula; Helsinki Inst. of Phys.; Helsinki U. of Tech.
2008-01-01
The top quark is the heaviest elementary particle. Its mass is one of the fundamental parameters of the standard model of particle physics, and an important input to precision electroweak tests. This thesis describes three measurements of the top-quark mass in the dilepton decay channel. The dilepton events have two neutrinos in the final state; neutrinos are weakly interacting particles that cannot be detected with a multipurpose experiment. Therefore, the signal of dilepton events consists of a large amount of missing energy and momentum carried off by the neutrinos. The top-quark mass is reconstructed for each event by assuming an additional constraint from a top mass independent distribution. Template distributions are constructed from simulated samples of signal and background events, and parameterized to form continuous probability density functions. The final top-quark mass is derived using a likelihood fit to compare the reconstructed top mass distribution from data to the parameterized templates. One of the analyses uses a novel technique to add top mass information from the observed number of events by including a cross-section-constraint in the likelihood function. All measurements use data samples collected by the CDF II detector
International Nuclear Information System (INIS)
Deligeorges, S.
1985-01-01
After a brief recall on the classification of subatomic particles, this paper deals with quark nuggets, particle with more than three quarks, a big bag, which is called ''nuclearite''. Neutron stars, in fact, are big sacks of quarks, gigantic nuggets. Now, physicists try to calculate which type of nuggets of strange quark matter is stable, what has been the influence of quark nuggets on the primordial nucleosynthesis. At the present time, one says that if these ''nuggets'' exist, and in a large proportion, they may be candidates for the missing mass [fr
International Nuclear Information System (INIS)
Hollebeek, R.
1990-01-01
The purpose of these lectures, given at the 1989 SLAC Summer School, was to discuss the experimental aspects of heavy quark production. A companion set of lectures on the theoretical point of view were to be given by Keith Ellis. An experimentalist should gather together the measurements which have been made by various groups, compare, contrast and tabulate them, and if possible point out the ways in which these measurements confirm or contradict current theories. Here the authors has tried to do this, although the reader who expects to find here the latest of all experimental measurements should probably be forewarned that the field is moving extremely rapidly. In some cases, he has added and updated materials where crucial new information became available after or during the summer of 1989, but not in all cases. He has concentrated on trying to select those measurements which are at the moment most crucial in refining our understanding of heavy quarks as opposed to those which merely measure things which are perhaps too complicated to be enlightening at the moment. While theorists worry primarily about production mechanisms, cross sections, QCD corrections, and to some extent about signatures, the experimentalist must determine which measurements he is interested in making, and which signatures for heavy quark production are realistic and likely to produce results which will shed some new light on the underlying production model without undo theoretical complications. Experimentalists also need to evaluate the available experimental equipment, both machines and detectors to find the best way to investigate the properties of heavy quarks. In many cases, the things which we would like to measure are severely restricted by what we can measure. Nevertheless, many properties of heavy quark production and decay can be measured, and the results have already taught us much about the weak interactions and QCD
Quark effects in nuclear physics
International Nuclear Information System (INIS)
Miller, G.A.
1983-01-01
A phenomenological approach which enables the size of quark effects in various nuclear processes is discussed. The principle of conservation of probability provides significant constraints on six quark wave functions. Using this approach, it is found that the low-energy proton-proton weak interaction can be explained in terms of W and Z boson exchanges between quarks. That the value of the asymptotic ratio of D to S state wave functions is influenced (at the 5% level) by quark effects, is another result of our approach. We have not discovered a nuclear effect that can be uniquely explained by quark-quark interactions. However it does seem that quark physics is very relevant for nuclear physics. 52 references
International Nuclear Information System (INIS)
Jackson, T.L.
1976-01-01
The infrared limit in asymptotically free non-abelian gauge theories using recently developed non-perturbative methods which allow derivation of zero momentum theorems for Green's functions and vertices is described. These low-energy theorems are compared to the infrared behavior predicted from the renormalization group equation when the existence of an infrared fixed point is assumed. A set of objects is exhibited whose low energy theorems violate the scaling behavior predicted by the renormalization group. This shows that the assumed fixed point cannot exist and that in the Landau gauge the effective charge becomes infinite in the infrared. Qualitatively this implies that as an attempt is made to separate elementary quanta the interaction between the quanta becomes arbitrarily strong. This indicates at least that the theories studied are capable of color confinement. Results are true only for theories with large numbers of quarks. This opens the possibility that large numbers of quarks are actually necessary for confinement
Nucleon quark distributions in a covariant quark-diquark model
Energy Technology Data Exchange (ETDEWEB)
Cloet, I.C. [Special Research Centre for the Subatomic Structure of Matter and Department of Physics and Mathematical Physics, University of Adelaide, SA 5005 (Australia) and Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606 (United States)]. E-mail: icloet@physics.adelaide.edu.au; Bentz, W. [Department of Physics, School of Science, Tokai University, Hiratsuka-shi, Kanagawa 259-1292 (Japan)]. E-mail: bentz@keyaki.cc.u-tokai.ac.jp; Thomas, A.W. [Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606 (United States)]. E-mail: awthomas@jlab.org
2005-08-18
Spin-dependent and spin-independent quark light-cone momentum distributions and structure functions are calculated for the nucleon. We utilize a modified Nambu-Jona-Lasinio model in which confinement is simulated by eliminating unphysical thresholds for nucleon decay into quarks. The nucleon bound state is obtained by solving the Faddeev equation in the quark-diquark approximation, where both scalar and axial-vector diquark channels are included. We find excellent agreement between our model results and empirical data.
Prediction of new Quarks, Generations & low Mass Quarks
Lach, Theodore
2003-04-01
The CBM (model) of the nucleus has resulted in the prediction of two new quarks, an "up" quark of mass 237.31 MeV/c2 and a "dn" quark of mass 42.392 MeV/c2. These two new predicted quarks helped to determine that the masses of the quarks and leptons are all related by a geometric progression relationship. The mass of each quark or lepton is just the "geometric mean" of two related elementary particles, either in the same generation or in the same family. This numerology predicts the following masses for the electron family: 0.511000 (electron), 7.74 (predicted), 117.3, 1778.4 (tau), 26950.1 MeV. The geometric ratio of this progression is 15.154 (e to the power e). The mass of the tau in this theory agrees very well with accepted values. This theory suggests that all the "dn like" quarks have a mass of just 10X multiples of 4.24 MeV (the mass of the "d" quark). The first 3 "up like" quark masses are 38, 237.31 and 1500 MeV. This theory also predicts a new heavy generation with a lepton mass of 27 GeV, a "dn like" quark of 42.4 GeV, and an "up like" quark of 65 GeV. Significant evidence already exists for the existence of these new quarks, and lepton. Ref. Masses of the Sub-Nuclear Particles, nucl-th/ 0008026, @ http://xxx.lanl.gov. Infinite Energy, Vol 5, issue 30.
1990-01-01
This volume contains 14 review articles on the theory and phenomenology of the creation and diagnosis of quark-gluon plasma. They are written by active investigators of in the various research topics, which range from the QCD foundation through transport theory and thermalization models to the examination of possible signatures. The monograph should be useful not only to the experienced researchers in the subject but also to newcomers.
Wood, Barry
2018-01-01
The value of Tyler Volk’s Quarks to Culture is evident when the book is placed against popular histories of the universe, dozens of which have provided evidence for an immense cosmic past. But such histories are often anecdotal, like early British histories of the kings of England. Unlike these works, Volk artfully presents the case for structural continuity and systematic creativity across 13.8 billion years of cosmic history.
International Nuclear Information System (INIS)
Paschos, E.A.
1976-08-01
The quark parton model describes the inclusive electro- and neutrino production data if a clear distinction is made between reactions which take place at high and at low energies. For the low energy region the classical view of six structure functions of the proton is still adequate. For the high energy region models can be constructed which are consistent with the experimental data. (BJ) [de
The conventional quark picture
International Nuclear Information System (INIS)
Dalitz, R.H.
1976-01-01
For baryons, mesons and deep inelastic phenomena the ideas and the problems of the conventional quark picture are pointed out. All observed baryons fit in three SU(3)-multiplets which cluster into larger SU(6)-multiplets. No mesons are known which have quantum numbers inconsistent with belonging to a SU(3) nonet or octet. The deep inelastic phenomena are described in terms of six structure functions of the proton. (BJ) [de
Nayak, Tapan; Sarkar, Sourav
2014-01-01
At extremely high temperatures and densities, protons and neutrons may dissolve into a "soup" of quarks and gluons, called the Quark-Gluon Plasma (QGP). For a few microseconds, shortly after the Big Bang, the Universe was filled with the QGP matter. The search and study of Quark-Gluon Plasma (QGP) is one of the most fundamental research topics of our times. The QGP matter has been probed by colliding heavy ions at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory, New York and the Large Hadron Collider at CERN, Geneva. By colliding heavy-ions at a speed close to that of light, scientists aim to obtain - albeit over a tiny volume of the size of a nucleus and for an infinitesimally short instant - a QGP state. This QGP state can be observed by dedicated experiments, as it reverts to hadronic matter through expansion and cooling. This volume presents some of the current theoretical and experimental understandings in the field of QGP.
International Nuclear Information System (INIS)
Granier de Cassagnac, R.
2010-01-01
The quark-gluon plasma (QGP) is a state of matter in which the universe was expected to be a few micro-seconds after the big-bang. Violent collisions of heavy ions are supposed to re-create this state in particle accelerators. Numerous signatures of this fugacious state have already been observed at the RHIC (relativistic heavy ion collider). The first evidence of the violence of collisions is the number of generated particles: about 6000 per collision, mostly hadrons. This figure seems high but in fact is less than theoretically expected and is the first sign of the formation of a QGP that saturates the density of gluons. Another sign, observed at the RHIC is the damping of the particle jets that are produced in the collision. This damping is consistent with the crossing of a medium whose density is so high that it can not be made of hadrons but of partons. In the RHIC experiments the collective behaviour of quarks and gluons shows that they are strongly interacting with one another. This fact supports the idea that the QGP is more a perfect liquid rather than an ideal gas in which quarks and gluons move freely. (A.C.)
Fields, symmetries, and quarks
International Nuclear Information System (INIS)
Mosel, U.
1989-01-01
'Fields, symmetries, and quarks' covers elements of quantum field theory, symmetries, gauge field theories and phenomenological descriptions of hadrons, with special emphasis on topics relevant to nuclear physics. It is aimed at nuclear physicists in general and at scientists who need a working knowledge of field theory, symmetry principles of elementary particles and their interactions and the quark structure of hadrons. The book starts out with an elementary introduction into classical field theory and its quantization. As gauge field theories require a working knowledge of global symmetries in field theories this topic is then discussed in detail. The following part is concerned with the general structure of gauge field theories and contains a thorough discussion of the still less widely known features of Non-Abelian gauge field theories. Quantum Chromodynamics (QCD), which is important for the understanding of hadronic matter, is discussed in the next section together with the quark compositions of hadrons. The last two chapters give a detailed discussion of phenomenological bag-models. The MIT bag is discussed, so that all theoretical calculations can be followed step by step. Since in all other bag-models the calculational methods and steps are essentially identical, this chapter should enable the reader to actually perform such calculations unaided. A last chapter finally discusses the topological bag-models which have become quite popular over the last few years. (orig.)
Transversity quark distributions in a covariant quark-diquark model
Energy Technology Data Exchange (ETDEWEB)
Cloet, I.C. [Physics Division, Argonne National Laboratory, Argonne, IL 60439-4843 (United States)], E-mail: icloet@anl.gov; Bentz, W. [Department of Physics, School of Science, Tokai University, Hiratsuka-shi, Kanagawa 259-1292 (Japan)], E-mail: bentz@keyaki.cc.u-tokai.ac.jp; Thomas, A.W. [Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); College of William and Mary, Williamsburg, VA 23187 (United States)], E-mail: awthomas@jlab.org
2008-01-17
Transversity quark light-cone momentum distributions are calculated for the nucleon. We utilize a modified Nambu-Jona-Lasinio model in which confinement is simulated by eliminating unphysical thresholds for nucleon decay into quarks. The nucleon bound state is obtained by solving the relativistic Faddeev equation in the quark-diquark approximation, where both scalar and axial-vector diquark channels are included. Particular attention is paid to comparing our results with the recent experimental extraction of the transversity distributions by Anselmino et al. We also compare our transversity results with earlier spin-independent and helicity quark distributions calculated in the same approach.
Quark core stars, quark stars and strange stars
International Nuclear Information System (INIS)
Grassi, F.
1988-01-01
A recent one flavor quark matter equation of state is generalized to several flavors. It is shown that quarks undergo a first order phase transition. In addition, this equation of state depends on just one parameter in the two flavor case, two parameters in the three flavor case, and these parameters are constrained by phenomenology. This equation of state is then applied to the hadron-quark transition in neutron stars and the determination of quark star stability, the investigation of strange matter stability and possible strange star existence. 43 refs., 6 figs
Top quark pair production and top quark properties at CDF
Energy Technology Data Exchange (ETDEWEB)
Moon, Chang-Seong [INFN, Pisa
2016-06-02
We present the most recent measurements of top quark pairs production and top quark properties in proton-antiproton collisions with center-of-mass energy of 1.96 TeV using CDF II detector at the Tevatron. The combination of top pair production cross section measurements and the direct measurement of top quark width are reported. The test of Standard Model predictions for top quark decaying into $b$-quarks, performed by measuring the ratio $R$ between the top quark branching fraction to $b$-quark and the branching fraction to any type of down quark is shown. The extraction of the CKM matrix element $|V_{tb}|$ from the ratio $R$ is discussed. We also present the latest measurements on the forward-backward asymmetry ($A_{FB}$) in top anti-top quark production. With the full CDF Run II data set, the measurements are performed in top anti-top decaying to final states that contain one or two charged leptons (electrons or muons). In addition, we combine the results of the leptonic forward-backward asymmetry in $t\\bar t$ system between the two final states. All the results show deviations from the next-to-leading order (NLO) standard model (SM) calculation.
Quarks for hadrons and leptons
International Nuclear Information System (INIS)
Lopes, J.L.
1975-01-01
The simplest, naive, model for a unified description of leptons and hadrons consists in postulating, besides the usual quarks p, n, lambda a fourth quark, with very heavy mass and very high binding to pairs like anti p n and anti p lambda. In a SU(4) scheme the fourth quark has a quantum number charm which may be taken as proportional to the lepton number. Muons would be distinguished from electrons by the occurence of a lambda-quark instead of a n-quark in their structure. The forces among these quarks would have to be such as to give leptons an almost point-like structure at the experimentally known energies as well as absence of strong interactions at these energies. However, one would expect the display of strong interactions by leptons at extremely high energies [pt
Static quark-antiquark potential
International Nuclear Information System (INIS)
Deo, B.B.; Barik, B.K.
1983-01-01
A heavy-quark--antiquark potential is suggested which connects asymptotic freedom and quark confinement in a unified manner by formal methods of field theory using some plausible assumptions. The potential has only one additional adjustable parameter B which is proportional to (M/sub q//m/sub q/), where M/sub q/ and m/sub q/ are the constituent and current quark masses, respectively
Infrared slavery and quark confinement
Alabiso, C
1976-01-01
The question is considered of whether the so-called infrared slavery mechanism as, e.g., being manifest in non-Abelian gauge theories, necessarily confines quarks. Making a specific ansatz for the long- range forces, the Schwinger-Dyson equation is solved for the quark Green function. Besides having a confining solution, it appears that quarks may by-pass the long-range forces and be produced. (20 refs).
Infrared slavery and quark confinement
International Nuclear Information System (INIS)
Alabiso, C.; Schierholz, G.
1976-01-01
The question of whether the so-called infrared slavery mechanism as, e.g., being manifest in non-Abelian gauge theories, necessarily confines quarks is posed. Making a specific ansatz for the long-range forces, the Schwinger-Dyson equation is solved for the quark Green function. Besides having a confining solution, it appears that quarks may by-pass the long-range forces and be produced. (Auth.)
Exotic Signals of Vectorlike Quarks
Energy Technology Data Exchange (ETDEWEB)
Dobrescu, Bogdan A. [Fermilab; Yu, Felix [U. Mainz, PRISMA
2016-12-06
Vectorlike fermions are an important target for hadron collider searches. We show that the vectorlike quarks may predominantly decay via higher-dimensional operators into a quark plus a couple of other Standard Model fermions. Pair production of vectorlike quarks of charge 2/3 at the LHC would then lead to a variety of possible final states, including $t\\bar t + 4\\tau$, $t\\bar b\
Phenomenology of heavy quark systems
International Nuclear Information System (INIS)
Gilman, F.J.
1987-03-01
The spectroscopy of heavy quark systems is examined with regards to spin independent and spin dependent potentials. It is shown that a qualitative picture exists of the spin-independent forces, and that a semi-quantitative understanding exists for the spin-dependent effects. A brief review is then given of the subject of the decays of hadrons containing heavy quarks, including weak decays at the quark level, and describing corrections to the spectator model
Quark matter or new particles?
Michel, F. Curtis
1988-01-01
It has been argued that compression of nuclear matter to somewhat higher densities may lead to the formation of stable quark matter. A plausible alternative, which leads to radically new astrophysical scenarios, is that the stability of quark matter simply represents the stability of new particles compounded of quarks. A specific example is the SU(3)-symmetric version of the alpha particle, composed of spin-zero pairs of each of the baryon octet (an 'octet' particle).
International Nuclear Information System (INIS)
Zouzou, S.
1986-01-01
In the framework of simple non-relativistic potential models, we examine the system consisting of two quarks and two antiquarks with equal or unequal masses. We search for possible bound states below the threshold for the spontaneous dissociation into two mesons. We solve the four body problem by empirical or systematic variational methods and we include the virtual meson-meson components of the wave function. With standard two-body potentials, there is no proliferation of multiquarks. With unequal quark masses, we obtain however exotic (anti Qanti Qqq) bound states with a baryonic antidiquark-quark-quark structure very analogous to the heavy flavoured (Q'qq) baryons. (orig.)
Hadron production at RHIC: recombination of quarks
Energy Technology Data Exchange (ETDEWEB)
Fries, Rainer J [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)
2005-01-01
We discuss quark recombination applied to the hadronization of a quark gluon plasma. It has been shown that the quark recombination model can explain essential features of hadron production measured in high energy heavy ion collisions.
Cold quark matter in compact stars
Energy Technology Data Exchange (ETDEWEB)
Franzon, B.; Fogaca, D. A.; Navarra, F. S. [Instituto de Fisica, Universidade de Sao Paulo Rua do Matao, Travessa R, 187, 05508-090 Sao Paulo, SP (Brazil); Horvath, J. E. [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao, 1226, 05508-090, Sao Paulo, SP (Brazil)
2013-03-25
We used an equation of state for the cold quark matter to the study of properties of quark stars. We also discuss the absolute stability of quark matter and compute the mass-radius relation for self-bound stars.
Models of quark bags and their consequences
International Nuclear Information System (INIS)
Bogolubov, P.N.
1977-01-01
The development of the first Dubna Quark Bag and the results obtained in this way are considered. The idea of the first Dubna Quark Bag is as follows: baryons are constructed of three quarks measons are constructed of two quarks, and each quark is interpreted as the Dirac particle which moves in a scalar square well. The so-called quasiindependent quark model is considered too. It is a simple quark model based on an analogy with the shell model for nuclei. The quarks are considered as moving in an arbitrary radially-symmetric field, and their one-particle wave function satisfies the usual Dirac equation. Such quark model can give at least the same results as the relativistic bag model. A possibility exists to improve the results of the relativistic quark model with the oscillator interaction between quarks. The results of the MIT-Bag model and the quasiindependent quark model coincide
Quark and Gluon Relaxation in Quark-Gluon Plasmas
Heiselberg, H.; Pethick, C. J.
1993-01-01
The quasiparticle decay rates for quarks and gluons in quark-gluon plasmas are calculated by solving the kinetic equation. Introducing an infrared cutoff to allow for nonperturbative effects, we evaluate the quasiparticle lifetime at momenta greater than the inverse Debye screening length to leading order in the coupling constant.
The discovery of the top quark
International Nuclear Information System (INIS)
Sinervo, P.K.
1995-12-01
The top quark and the Higgs boson are the heaviest elementary particles predicted by the standard model. The four lightest quark flavours, the up, down, strange and charm quarks, were well-established by the mid-1970's. The discovery in 1977 of the Τ resonances, a new family of massive hadrons, required the introduction of the fifth quark flavour. Experimental and theoretical studies have indicated that this quark also has a heavier partner, the top quark
The Discovery of the Top Quark
Sinervo, P.K.
1995-12-01
The top quark and the Higgs boson are the heaviest elementary particles predicted by the standard model. The four lightest quark flavours, the up, down, strange and charm quarks, were well-established by the mid-1970's. The discovery in 1977 of the {Tau} resonances, a new family of massive hadrons, required the introduction of the fifth quark flavour. Experimental and theoretical studies have indicated that this quark also has a heavier partner, the top quark.
Energy Technology Data Exchange (ETDEWEB)
Otterlund, Ingvar; Ruuskanen, Vesa
1993-12-15
In his welcome address to the 10th International Conference on Ultra- Relativistic Nucleus-Nucleus Collisions (Quark Matter '93), held in Borlange, Sweden, from 20-24 June, Hans-Ake Gustafsson was puzzled why this year's conference was billed as the tenth in the series. He had tried to count but could only find eight forerunners - Bielefeld (1982), Brookhaven (1983), Helsinki (1984), Asilomar (1986), Nordkirchen (1987), Lenox (1988), Menton (1990), Gatlinburg (1991), making this year's meeting at Borlange the ninth. The answer was given by Helmut Satz in his introductory talk, pointing out that at the time of the Bielefeld meeting, a few conferences dealing with similar topics had already been held. The Bielefeld organizers thus did not consider their conference the first. Whatever its pedigree, the Borlange meeting covered particle production in highly excited and compressed nuclear matter, fluctuations and correlations, quark phenomena (quantum chromodynamics - QCD) in nuclear collisions, probes and signatures of Quark-Gluon Plasma (QGP), future collider experiments and instrumentation. The theoretical talks were split between the fundamental properties of the hot and dense matter at or near equilibrium, and the interface between theory and experiment. The phenomenological modelling of heavy ion collisions seems to reproduce at least all the main features of the data with hadrons, resonances and strings as the degrees of freedom. However secondary interactions among the produced hadrons or strings need to be added. Hydrodynamic calculations lead to results which reproduce the main features of the collisions. With increasing collision energy, the parton degrees of freedom become more important. Klaus Geiger described an ambitious scheme treating the whole nucleus-nucleus collision in terms of a kinetic parton (quark/gluon) cascade. The initial parton distribution at the beginning of the collision is determined from the quark-gluon nuclear structure and the
International Nuclear Information System (INIS)
Otterlund, Ingvar; Ruuskanen, Vesa
1993-01-01
In his welcome address to the 10th International Conference on Ultra- Relativistic Nucleus-Nucleus Collisions (Quark Matter '93), held in Borlange, Sweden, from 20-24 June, Hans-Ake Gustafsson was puzzled why this year's conference was billed as the tenth in the series. He had tried to count but could only find eight forerunners - Bielefeld (1982), Brookhaven (1983), Helsinki (1984), Asilomar (1986), Nordkirchen (1987), Lenox (1988), Menton (1990), Gatlinburg (1991), making this year's meeting at Borlange the ninth. The answer was given by Helmut Satz in his introductory talk, pointing out that at the time of the Bielefeld meeting, a few conferences dealing with similar topics had already been held. The Bielefeld organizers thus did not consider their conference the first. Whatever its pedigree, the Borlange meeting covered particle production in highly excited and compressed nuclear matter, fluctuations and correlations, quark phenomena (quantum chromodynamics - QCD) in nuclear collisions, probes and signatures of Quark-Gluon Plasma (QGP), future collider experiments and instrumentation. The theoretical talks were split between the fundamental properties of the hot and dense matter at or near equilibrium, and the interface between theory and experiment. The phenomenological modelling of heavy ion collisions seems to reproduce at least all the main features of the data with hadrons, resonances and strings as the degrees of freedom. However secondary interactions among the produced hadrons or strings need to be added. Hydrodynamic calculations lead to results which reproduce the main features of the collisions. With increasing collision energy, the parton degrees of freedom become more important. Klaus Geiger described an ambitious scheme treating the whole nucleus-nucleus collision in terms of a kinetic parton (quark/gluon) cascade. The initial parton distribution at the beginning of the collision is determined from the quark-gluon nuclear structure
Hot nuclear matter in the modified quark-meson coupling model with quark-quark correlations
International Nuclear Information System (INIS)
Zakout, I.; Jaqaman, H.R.
2000-01-01
Short-range quark-quark correlations in hot nuclear matter are examined within the modified quark-meson coupling (MQMC) model by adding repulsive scalar and vector quark-quark interactions. Without these correlations, the bag radius increases with the baryon density. However, when the correlations are introduced the bag size shrinks as the bags overlap. Also as the strength of the scalar quark-quark correlation is increased, the decrease of the effective nucleon mass M* N with the baryonic density is slowed down and tends to saturate at high densities. Within this model we study the phase transition from the baryon-meson phase to the quark-gluon plasma (QGP) phase with the latter modelled as an ideal gas of quarks and gluons inside a bag. Two models for the QGP bag parameter are considered. In one case, the bag is taken to be medium-independent and the phase transition from the hadron phase to QGP is found to occur at five to eight times ordinary nuclear matter density for temperatures less than 60 MeV. For lower densities, the transition takes place at a higher temperature, reaching up to 130 MeV at zero density. In the second case, the QGP bag parameter is considered to be medium-dependent as in the MQMC model for the hadronic phase. In this case, it is found that the phase transition occurs at much lower densities. (author)
Quark fragmentation function and the nonlinear chiral quark model
International Nuclear Information System (INIS)
Zhu, Z.K.
1993-01-01
The scaling law of the fragmentation function has been proved in this paper. With that, we show that low-P T quark fragmentation function can be studied as a low energy physocs in the light-cone coordinate frame. We therefore use the nonlinear chiral quark model which is able to study the low energy physics under scale Λ CSB to study such a function. Meanwhile the formalism for studying the quark fragmentation function has been established. The nonlinear chiral quark model is quantized on the light-front. We then use old-fashioned perturbation theory to study the quark fragmentation function. Our first order result for such a function shows in agreement with the phenomenological model study of e + e - jet. The probability for u,d pair formation in the e + e - jet from our calculation is also in agreement with the phenomenological model results
Kurkela, Aleksi
2016-07-20
We generalize the state-of-the-art perturbative Equation of State of cold quark matter to nonzero temperatures, needed in the description of neutron star mergers and core collapse processes. The new result is accurate to order g^5 in the gauge coupling, and is based on a novel framework for dealing with the infrared sensitive soft field modes of the theory. The zero Matsubara mode sector is treated using a dimensionally reduced effective theory, while the soft non-zero modes are resummed using the Hard Thermal Loop approximation. This combination of known effective descriptions offers unprecedented access to small but nonzero temperatures, both in and out of beta equilibrium.
Manohar, A. V.
2003-02-01
These lecture notes present some of the basic ideas of heavy quark effective theory. The topics covered include the classification of states, the derivation of the HQET Lagrangian at tree level, hadron masses, meson form factors, Luke's theorem, reparameterization invariance and inclusive decays. Radiative corrections are discussed in some detail, including an explicit computation of a matching correction for HQET. Borel summability, renormalons, and their connection with the QCD perturbation series is covered, as well as the use of the upsilon expansion to improve the convergence of the perturbation series.
Study of quark structure functions
International Nuclear Information System (INIS)
Dao, F.T.; Flaminio, E.; Lai, K.; Metcalf, M.; Wang, L.
1977-01-01
The quark structure functions of the proton are determined through a combined analysis of the reactions pN → ll-barX and eN → eX. The valence-quark structure function of the pion is also given by analyzing the πN → μμ-barX data measured by the Branson et al
Hadron interactions in quark models
International Nuclear Information System (INIS)
Narodetskij, I.M.
1987-01-01
Some recent developments on the study of quark degrees of freedom in hadron scattering at intermediate energy are reviewed. Physical foundations of the P-matrix approach and the Quark Compound Bag method are discussed including applications to pion-pion, pion-nucleon, nucleon-nucleon and three-nucleon systems
Quark models in hadron physics
International Nuclear Information System (INIS)
Phatak, Shashikant C.
2007-01-01
In this talk, we review the role played by the quark models in the study of interaction of strong, weak and electromagnetic probes with hadrons at intermediate and high momentum transfers. By hadrons, we mean individual nucleons as well as nuclei. We argue that at these momentum transfers, the structure of hadrons plays an important role. The hadron structure of the hadrons is because of the underlying quark structure of hadrons and therefore the quark models play an important role in determining the hadron structure. Further, the properties of hadrons are likely to change when these are placed in nuclear medium and this change should arise from the underlying quark structure. We shall consider some quark models to look into these aspects. (author)
International Nuclear Information System (INIS)
Anderson, J.T.
1994-01-01
Without the spin interactions the hardron masses within a multiplet are degenerate. The light quark hadron degenerate mulitplet mass spectrum is extended from the 3 quark ground state multiplets at J P =0 - , 1/2 + , 1 - to include the excited states which follow the spinorial decomposition of SU(2)xSU(2). The mass scales for the 4, 5, 6, .. quark hadrons are obtained from the degenerate multiplet mass m 0 /M=n 2 /α with n=4, 5, 6, .. The 4, 5, 6, .. quark hadron degenerate multiplet masses follow by splitting of the heavy quark mass scales according to the spinorial decomposition of SU(2)xSU(2). (orig.)
International Nuclear Information System (INIS)
Schramm, D.N.; Fields, B.; Thomas, D.
1992-01-01
The possible implications of the quark-hadron transition for cosmology are explored. Possible surviving signatures are discussed. In particular, the possibility of generating a dark matter candidate such as strange nuggets or planetary mass black holes is noted. Much discussion is devoted to the possible role of the transition for cosmological nucleosynthesis. It is emphasized that even an optimized first order phase transition will not significantly alter the nucleosynthesis constraints on the cosmological baryon density nor on neutrino counting. However, it is noted that Be and B observations in old stars may eventually be able to be a signature of a cosmologically significant quark-hadron transition. It is pointed out that the critical point in this regard is whether the observed B/Be ratio can be produced by spallation processes or requires cosmological input. Spallation cannot produce a B/Be ratio below 7.6. A supporting signature would be Be and B ratios to oxygen that greatly exceed galactic values. At present, all data is still consistent with a spallagenic origin
Jan-e~Alam; Subhasis~Chattopadhyay; Tapan~Nayak
2008-10-01
Quark Matter 2008—the 20th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions was held in Jaipur, the Pink City of India, from 4-10 February, 2008. Organizing Quark Matter 2008 in India itself indicates the international recognition of the Indian contribution to the field of heavy-ion physics, which was initiated and nurtured by Bikash Sinha, Chair of the conference. The conference was inaugurated by the Honourable Chief Minister of Rajasthan, Smt. Vasundhara Raje followed by the key note address by Professor Carlo Rubbia. The scientific programme started with the theoretical overview, `SPS to RHIC and onwards to LHC' by Larry McLerran followed by several theoretical and experimental overview talks on the ongoing experiments at SPS and RHIC. The future experiments at the LHC, FAIR and J-PARC, along with the theoretical predictions, were discussed in great depth. Lattice QCD predictions on the nature of the phase transition and critical point were vigorously debated during several plenary and parallel session presentations. The conference was enriched by the presence of an unprecedented number of participants; about 600 participants representing 31 countries across the globe. This issue contains papers based on plenary talks and oral presentations presented at the conference. Besides invited and contributed talks, there were also a large number of poster presentations. Members of the International Advisory Committee played a pivotal role in the selection of speakers, both for plenary and parallel session talks. The contributions of the Organizing Committee in all aspects, from helping to prepare the academic programme down to arranging local hospitality, were much appreciated. We thank the members of both the committees for making Quark Matter 2008 a very effective and interesting platform for scientific deliberations. Quark Matter 2008 was financially supported by: Air Liquide (New Delhi) Board of Research Nuclear Sciences (Mumbai) Bose
Light-quark, heavy-quark systems: An update
Grinstein, B.
1993-06-01
We review many of the recently developed applications of Heavy Quark Effective Theory techniques. After a brief update on Luke's theorem, we describe striking relations between heavy baryon form factors, and how to use them to estimate the accuracy of the extraction of (vert bar)V(sub cb)(vert bar). We discuss factorization and compare with experiment. An elementary presentation, with sample applications, of reparametrization invariance comes next. The final and most extensive chapter in this review deals with phenomenological lagrangians that incorporate heavy-quark spin-flavor as well as light quark chiral symmetries. We compile many interesting results and discuss the validity of the calculations.
Light-quark, heavy-quark systems: An update
International Nuclear Information System (INIS)
Grinstein, B.
1993-01-01
The author reviews many of the recently developed applications of Heavy Quark Effective Theory techniques. After a brief update on Luke's theorm, he describes striking relations between heavy baryon form factors, and how to use them to estimate the accuracy of the extraction of |B cb |. He discusses factorization and compares with experiment. An elementary presentation, with sample applications, of reparametrization invariance comes next. The final and most extensive chapter in this review deals with phenomenological lagrangians that incorporate heavy-quark spin-flavor as well as light quark chiral symmetries. He compiles many interesting results and discuss the validity of the calculations
International Nuclear Information System (INIS)
Xu Shu-Sheng; Shi Chao; Cui Zhu-Fang; Zong Hong-Shi; Jiang Yu
2015-01-01
Generally speaking, the quark propagator is dependent on the quark chemical potential in the dense quantum chromodynamics (QCD). By means of the generating functional method, we prove that the quark propagator actually depends on p_4 + iμ from the first principle of QCD. The relation between quark number density and quark condensate is discussed by analyzing their singularities. It is concluded that the quark number density has some singularities at certain μ when T = 0, and the variations of the quark number density as well as the quark condensate are located at the same point. In other words, at a certain μ the quark number density turns to nonzero, while the quark condensate begins to decrease from its vacuum value. (paper)
How the physicists nailed the quarks
International Nuclear Information System (INIS)
Anon.
1985-01-01
The paper reviews quarks, from its prediction in 1962, to the experiments confirming its existence in the 1970's and 1980's. The elementary particles of matter; building particles from quarks; why quarks can never be isolated; and the six quarks; are all discussed. (U.K.)
Baryons in the unquenched quark model
Energy Technology Data Exchange (ETDEWEB)
Bijker, R.; Díaz-Gómez, S. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, AP 70-543, 04510 Mexico DF (Mexico); Lopez-Ruiz, M. A. [Physics Department and Center for Exploration of Energy and Matter, Indiana University, Bloomington, IN 47408 (United States); Santopinto, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Genova, via Dodecaneso 33, I-16146 Italy (Italy)
2016-07-07
In this contribution, we present the unquenched quark model as an extension of the constituent quark model that includes the effects of sea quarks via a {sup 3}P{sub 0} quark-antiquark pair-creation mechanism. Particular attention is paid to the spin and flavor content of the proton, magnetic moments and β decays of octet baryons.
Heavy baryons in the relativistic quark model
International Nuclear Information System (INIS)
Ebert, D.; Faustov, R.N.; Galkin, V.O.; Martynenko, A.P.; Saleev, V.A.
1996-07-01
In the framework of the relativistic quasipotential quark model the mass spectrum of baryons with two heavy quarks is calculated. The quasipotentials for interactions of two quarks and of a quark with a scalar and axial vector diquark are evaluated. The bound state masses of baryons with J P =1/2 + , 3/2 + are computed. (orig.)
International Nuclear Information System (INIS)
Menzione, A.
1995-10-01
Most of the material presented in this report, comes from contributions to the parallel session PL20 of this conference. We summarise the experimental results of direct production of Top quarks, coming from the CDF and C0 Collaborations at Fermilab, and compare these results to what one expects within current theoretical understanding. Particular attention is given to new results such as all hadronic modes of t bar t decay. As far as the mass is concerned, a comparison is made with precision measurements of related quantities, coming from LEP and other experiments. An attempt is made to look at the medium-term future and understand which variables and with what accuracy one can measure them with increased integrated luminosity
International Nuclear Information System (INIS)
Close, F.E.
1976-01-01
The studies of inelastic electron scattering at SLAC and of neutrino scattering at CERN have been widely interpreted as giving support to the idea that the nucleon is built from elementary constituents, called partons, and that these partons have the same quantum numbers as the quarks that are familiar in spectroscopy. In particular, a very simple regularity in the data, known as scale invariance or just 'scaling' was seen at least at moderate energies (2 2 > approximately 1 GeV) which is natural in the parton model. The data on e + e - annihilation also appear to be consistent with scaling when Esub(cm) approximately 5 GeV. These lectures are concerned with the scaling phenomena. One may expect the new hadronic degree of freedom to generate scaling violations in inelastic electron and neutrino scattering. These are mentioned briefly in these lectures. (Auth.)
Quarks and numerical simulation
International Nuclear Information System (INIS)
Weingarten, D.
1996-01-01
This work deals with the quantum chromodynamics and the theory of quarks's behaviour. The experimentation supports this theory but until now no computation have prove it. The resolution of the mathematic equations were far beyond the capability of human or the quickest computer of the seventies. A dedicated computer was built: the GF11. The mass of eight hadrons was computed in 91. In 95, a new particle was found by computation. The author explains the mathematical modeling of chromodynamics and the methods to solve it. It requires 10 17 arithmetic operations. So specific computer is needed. GF11 uses 566 processors in parallel. New machines hundred of times more efficient will be needed to go further. That will be a new tool for theorician physicists. (O.M.). 9 refs., 2 figs., 1 tab
International Nuclear Information System (INIS)
Greenberg, O.W.
1982-01-01
Quarks as fundamental constituents of hadrons play a central role in elementary particle physics. We give an annotated bibliography of references to quarks and related topics in elementary particle physics, as well as to the role of quarks in areas outside elementary particle physics, such as nuclear physics, and astrophysics and cosmology. We label references E (elementary), I (intermediate), and A (advanced) to guide the reader. Articles selected for incorporation in a reprint volume (to be published separately by the American Association of Physics Teachers) are indicated by an an asterisk. A short list of particularly helpful elementary and intermediate references is indicated by a star
International Nuclear Information System (INIS)
Gaillard, M.K.
1978-08-01
The properties that may help to identify the two additional quark flavors that are expected to be discovered. These properties are lifetime, branching ratios, selection rules, and lepton decay spectra. It is also noted that CP violation may manifest itself more strongly in heavy particle decays than elsewhere providing a new probe of its origin. The theoretical progress in the understanding of nonleptonic transitions among lighter quarks, nonleptonic K and hyperon decay amplitudes, omega minus and charmed particle decay predictions, and lastly the Kobayashi--Maskawa model for the weak coupling of heavy quarks together with the details of its implications for topology and bottomology are treated. 48 references
Holographic lessons for quark dynamics
Chernicoff, Mariano; García, J. Antonio; Güijosa, Alberto; Pedraza, Juan F.
2012-05-01
We give a brief overview of recent results obtained through the gauge/gravity correspondence, concerning the propagation of a heavy quark in strongly coupled conformal field theories (such as {N}=4 super-Yang-Mills), both at zero and finite temperature. In the vacuum, we discuss energy loss, radiation damping, signal propagation and radiation-induced fluctuations. In the presence of a thermal plasma, our emphasis is on early-time energy loss, screening and quark-antiquark evolution after pair creation. Throughout, quark dynamics is seen to be efficiently encapsulated in the usual string worldsheet dynamics.
Energy Technology Data Exchange (ETDEWEB)
Harari, H
1976-01-01
The experimental information which was accumulated in the last 18 months in e/sup +/e/sup -/ collisions and ..nu..N scattering indicates that more than four kinds of quarks are already present. Six different pieces of evidence for the existence of six quarks: the triangle anomalies, the value of R, psi-spectroscopy, neutrino processes, CP-violation and the possible existence of V+A currents are discussed. It is concluded that there is strong (but not yet conclusive) evidence for the existence of six quarks and six leptons.
International Nuclear Information System (INIS)
Harari, Haim
The experimental information which was accumulated in the last 18 months in e + e - collisions and neutrino+N scattering indicates that more than four kinds of quarks are already present. Six different pieces of evidence for the existence of six quarks are discussed: the triangle anomalies, the value of R, psi-spectroscopy, neutrino processes, CP-violation and the possible existence of V+A currents. It is concluded that there is strong (but not yet conclusive) evidence for the existence of six quarks and six leptons
International Nuclear Information System (INIS)
Thorndike, E.H.; Poling, R.A.
1988-01-01
Recent experimental results on the decay of b-flavored hadrons are reviewed. Substantial progress has been made in the study of exclusive and inclusive B-meson decays, as well as in the theoretical understanding of these processes. The two most prominent developments are the continuing failure to observe evidence of decays of the b quark to a u quark rather than a c quark, and the surprisingly high level of B 0 -anti B 0 mixing which has recently been reported by the ARGUS collaboration. Notwithstanding these results, we conclude that the health of the Standard Model is excellent. (orig.)
Quark chiral condensate from the overlap quark propagator
Wang, Chao; Bi, Yujiang; Cai, Hao; Chen, Ying; Gong, Ming; Liu, Zhaofeng
2017-05-01
From the overlap lattice quark propagator calculated in the Landau gauge, we determine the quark chiral condensate by fitting operator product expansion formulas to the lattice data. The quark propagators are computed on domain wall fermion configurations generated by the RBC-UKQCD Collaborations with N f = 2+1 flavors. Three ensembles with different light sea quark masses are used at one lattice spacing 1/a = 1.75(4) GeV. We obtain in the SU(2) chiral limit. Supported by National Natural Science Foundation of China (11575197, 11575196, 11335001, 11405178), joint funds of NSFC (U1632104, U1232109), YC and ZL acknowledge the support of NSFC and DFG (CRC110)
Diquark condensation and the quark-quark interaction
International Nuclear Information System (INIS)
Bloch, J. C. R.; Roberts, C. D.; Schmidt, S. M.
1999-01-01
We employ a bispinor gap equation to study superfluidity at nonzero chemical potential, μ≠0, in two- and three-color QCD, exploring the gap's sensitivity to the nature of the quark-quark interaction. The two-color theory, QC 2 D, is an excellent exemplar; the order of truncation of the quark-quark scattering kernel K has no qualitative impact, which allows a straightforward elucidation of the effects of μ when the coupling is strong. In the three-color theory the rainbow-ladder truncation admits diquark bound states, a defect that is eliminated by an improvement of K. The corrected gap equation describes a superfluid phase that is semiquantitatively similar to that obtained using the rainbow truncation. A model study suggests that the width of the superfluid gap and the transition point in QC 2 D provide reliable quantitative estimates of those quantities in QCD. (c) 1999 The American Physical Society
Quark-anti-quark potential in N=4 SYM
Energy Technology Data Exchange (ETDEWEB)
Gromov, Nikolay [Mathematics Department, King’s College London,The Strand, London WC2R 2LS (United Kingdom); St. Petersburg INP,Gatchina, 188 300, St.Petersburg (Russian Federation); Levkovich-Maslyuk, Fedor [Mathematics Department, King’s College London,The Strand, London WC2R 2LS (United Kingdom); Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden)
2016-12-22
We construct a closed system of equations describing the quark-anti-quark potential at any coupling in planar N=4 supersymmetric Yang-Mills theory. It is based on the Quantum Spectral Curve method supplemented with a novel type of asymptotics. We present a high precision numerical solution reproducing the classical and one-loop string predictions very accurately. We also analytically compute the first 7 nontrivial orders of the weak coupling expansion. Moreover, we study analytically the generalized quark-anti-quark potential in the limit of large imaginary twist to all orders in perturbation theory. We demonstrate how the QSC reduces in this case to a one-dimensional Schrodinger equation. In the process we establish a link between the Q-functions and the solution of the Bethe-Salpeter equation.
Top quark studies at hadron colliders
Energy Technology Data Exchange (ETDEWEB)
Sinervo, P.K. [Univ. of Toronto, Ontario (Canada)
1997-01-01
The techniques used to study top quarks at hadron colliders are presented. The analyses that discovered the top quark are described, with emphasis on the techniques used to tag b quark jets in candidate events. The most recent measurements of top quark properties by the CDF and DO Collaborations are reviewed, including the top quark cross section, mass, branching fractions, and production properties. Future top quark studies at hadron colliders are discussed, and predictions for event yields and uncertainties in the measurements of top quark properties are presented.
Quark virtuality and QCD vacuum condensates
International Nuclear Information System (INIS)
Zhou Lijuan; Ma Weixing
2004-01-01
Based on the Dyson-Schwinger equations (DSEs) in the 'rainbow' approximation, the authors investigate the quark virtuality in the vacuum state and quantum-chromodynamics (QCD) vacuum condensates. In particular, authors calculate the local quark vacuum condensate and quark-gluon mixed condensates, and then the virtuality of quark. The calculated quark virtualities are λ u,d 2 =0.7 GeV 2 for u, d quarks, and λ s 2 =1.6 GeV 2 for s quark. The theoretical predictions are consistent with empirical values used in QCD sum rules, and also fit to lattice QCD predictions
Top quark studies at hadron colliders
International Nuclear Information System (INIS)
Sinervo, P.K.
1997-01-01
The techniques used to study top quarks at hadron colliders are presented. The analyses that discovered the top quark are described, with emphasis on the techniques used to tag b quark jets in candidate events. The most recent measurements of top quark properties by the CDF and DO Collaborations are reviewed, including the top quark cross section, mass, branching fractions, and production properties. Future top quark studies at hadron colliders are discussed, and predictions for event yields and uncertainties in the measurements of top quark properties are presented
Top quark studies at hadron colliders
International Nuclear Information System (INIS)
Sinervo, P.K.
1996-08-01
The techniques used to study top quarks at hadron colliders are presented. The analyses that discovered the top quark are described, with emphasis on the techniques used to tag b quark jets in candidate events. The most recent measurements of top quark properties by the CDF and D null collaborations are reviewed, including the top quark cross section, mass, branching fractions and production properties. Future top quark studies at hadron colliders are discussed, and predictions for event yields and uncertainties in the measurements of top quark properties are presented
Energy Technology Data Exchange (ETDEWEB)
Wicke, Daniel; /Wuppertal U., Dept. Math.
2009-08-01
The aim of particle physics is the understanding of elementary particles and their interactions. The current theory of elementary particle physics, the Standard Model, contains twelve different types of fermions which (neglecting gravity) interact through the gauge bosons of three forces. In addition a scalar particle, the Higgs boson, is needed for theoretical consistency. These few building blocks explain all experimental results found in the context of particle physics, so far. Nevertheless, it is believed that the Standard Model is only an approximation to a more complete theory. First of all the fourth known force, gravity, has withstood all attempts to be included until now. Furthermore, the Standard Model describes several features of the elementary particles like the existence of three families of fermions or the quantisation of charges, but does not explain these properties from underlying principles. Finally, the lightness of the Higgs boson needed to explain the symmetry breaking is difficult to maintain in the presence of expected corrections from gravity at high scales. This is the so called hierarchy problem. In addition astrophysical results indicate that the universe consists only to a very small fraction of matter described by the Standard Model. Large fractions of dark energy and dark matter are needed to describe the observations. Both do not have any correspondence in the Standard Model. Also the very small asymmetry between matter and anti-matter that results in the observed universe built of matter (and not of anti-matter) cannot be explained until now. It is thus an important task of experimental particle physics to test the predictions of the Standard Model to the best possible accuracy and to search for deviations pointing to necessary extensions or modifications of our current theoretical understanding. The top quark was predicted to exist by the Standard Model as the partner of the bottom quark. It was first observed in 1995 by the
International Nuclear Information System (INIS)
Wicke, Daniel
2009-01-01
The aim of particle physics is the understanding of elementary particles and their interactions. The current theory of elementary particle physics, the Standard Model, contains twelve different types of fermions which (neglecting gravity) interact through the gauge bosons of three forces. In addition a scalar particle, the Higgs boson, is needed for theoretical consistency. These few building blocks explain all experimental results found in the context of particle physics, so far. Nevertheless, it is believed that the Standard Model is only an approximation to a more complete theory. First of all the fourth known force, gravity, has withstood all attempts to be included until now. Furthermore, the Standard Model describes several features of the elementary particles like the existence of three families of fermions or the quantisation of charges, but does not explain these properties from underlying principles. Finally, the lightness of the Higgs boson needed to explain the symmetry breaking is difficult to maintain in the presence of expected corrections from gravity at high scales. This is the so called hierarchy problem. In addition astrophysical results indicate that the universe consists only to a very small fraction of matter described by the Standard Model. Large fractions of dark energy and dark matter are needed to describe the observations. Both do not have any correspondence in the Standard Model. Also the very small asymmetry between matter and anti-matter that results in the observed universe built of matter (and not of anti-matter) cannot be explained until now. It is thus an important task of experimental particle physics to test the predictions of the Standard Model to the best possible accuracy and to search for deviations pointing to necessary extensions or modifications of our current theoretical understanding. The top quark was predicted to exist by the Standard Model as the partner of the bottom quark. It was first observed in 1995 by the
Effects of dynamical quarks in UKQCD simulations
International Nuclear Information System (INIS)
Allton, Chris
2002-01-01
Recent results from the UKQCD Collaboration's dynamical simulations are presented. The main feature of these ensembles is that they have a fixed lattice spacing and volume, but varying sea quark mass from infinite (corresponding to the quenched simulation) down to roughly that of the strange quark mass. The main aim of this work is to uncover dynamical quark effects from these 'matched' ensembles. We obtain some evidence of dynamical quark effects in the static quark potential with less effects in the hadronic spectrum
Heavy quarks and CP: Moriond 1985
International Nuclear Information System (INIS)
Bjorken, J.D.
1985-03-01
The presentations at the Fifth Moriond Workshop on Heavy Quarks, Flavor Mixing, and CP Violation (La Plagne, France, January 13-19, 1985) are summarized. The following topics are reviewed. What's New (beyond the top, top quarks, bottom quarks, charm quarks, strange quarks, and others); why is all this being done (strong interactions and hadron structure, and electroweak properties); and what next (facilities and can one see CP violation in the B-anti B system). 64 refs., 10 figs
Quark effects in nuclear physics
International Nuclear Information System (INIS)
Scholten, O.
1990-01-01
The magnitude of the quark effect for low-energy nuclear physics is investigated. Coulomb energy is studied in the A=3 system in order to determine the effect of the composite structure of the nucleon. In the actual calculations a non-relativistic quark-cluster model description has been used. A nucleon size b=0.617 fm, the width of the relative wave function Φ of the quarks in the nucleon, has been assumed. It is concluded that the contribution to Coulomb energies due to quark effects are significant compared to the observed Nolen-Schiffer anomaly. However these do not provide the long searched for 'smoking gun'. When the free parameters that appear in the calculation are adjusted to reproduce the same charge form factor, the calculated anomalies are not significantly different. 2 figs., 2 tabs., 8 refs.2
Heavy quark and magnetic moment
International Nuclear Information System (INIS)
Mubarak, Ahmad; Jallu, M.S.
1979-01-01
The magnetic moments and transition moments of heavy hadrons including the conventional particles are obtained under the SU(5) truth symmetry scheme. To this end state vectors are defined and the quark additivity principle is taken into account. (author)
Quark potential of spontaneous strings
International Nuclear Information System (INIS)
German, G.; Kleinert, H.
1989-01-01
The authors present some recent developments in string models with an extrinsic curvature term in action. Particular emphasis is placed upon the static quark potential and on the thermal deconfinement properties of spontaneous strings
Dilip, Jana
2008-01-01
The ATLAS potential for the study of the top quark properties and physics beyond the Standard Model in the top quark sector, is described. The measurements of the top quark charge, the spin and spin correlations, the Standard Model decay (t-> bW), rare top quark decays associated to flavour changing neutral currents (t-> qX with X = gluon, Z, photon) and ttbar resonances are discussed. The sensitivity of the ATLAS experiment is estimated for an expected luminosity of 1fb-1 at the LHC. The full simulation of the ATLAS detector is used. For the Standard Model measurements the expected precision is presented. For the tests of physics beyond the Standard Model, the 5 sigma discovery potential (in the presence of a signal) and the 95% Confidence Level (CL) limit (in the absence of a signal) are given.
CERN. Geneva
2011-01-01
Higgs mechanism. There are various hints at deviations from the Standard Model expectation which have been observed recently by Tevatron experiments in top final states. Several signatures of new physics accessible at the LHC either suffer from top-quark production as a significant background or contain top quarks themselves. In this talk, we present results on top quark physics obtained from the first LHC data collected by the CMS experiment.They include measurements of the top pair production cross section in various channels and their combination, measurements of the top quark mass, the single top cross section, a search for new particles decaying into top pairs, and a first look at the charge asymmetry.
Dumé, Belle
2003-01-01
"Physicists working at the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National Laboratory in the US say that they have come closer than ever before to creating a quark-gluon plasma" (0.5 page)
Colour screening and quark confinement
International Nuclear Information System (INIS)
Mack, G.
1978-03-01
It is proposed that in Quantum Chromodynamics the colour charge of gluons and of anything with zero triality is screened by a dynamical Higgs mechanism with Higgs scalars made out of gluons. The center Z 3 of the gauge group SU(3) is left unbroken in this way, and single quarks, which have nonzero triality, cannot be screened. Long range forces between them persist therefore. Given that the Higgs mechanism produces a mass gap, the most favorable configuration of field lines between e.g. quark and antiquark will be in strings analogous to magnetic field lines in a superconductor. The strings confine the quarks. The screening mechanism, on the other hand, produces not only the mass gap (which leads to string formation) but is also responsible for saturation of forces, i.e. absence of bound states of six quarks etc. (orig.) [de
Colour screening and quark confinement
International Nuclear Information System (INIS)
Mack, G.
1978-01-01
It is proposed that in quantum chromodynamics the colour charge of gluons and of anything with zero triality is screened by a dynamic Higgs mechanism with Higgs scalars made out of gluons, but the center Z 3 of the gauge group SU(3) is left unbroken, and single quarks, which have nonzero triality, are not screened. Long range forces between them persist therefore. Given that the Higgs mechanism produces a mass gap, the most favourable configuration of field lines between e.g., quark and antiquark will be in strings analogous to magnetic field lines in a superconductor. The string confine the quarks. The screening mechanism, on the other hand, produces not only the mass gap (which leads to string formation) but is also responsible for saturation of forces, i.e. absence of bound states of six quarks, etc. (Auth.)
International Nuclear Information System (INIS)
Toki, H.
2000-01-01
We discuss the research fields to be studied by the Japan Hadron Facility being planned in the site of JAERI as a joint project with Neutron Science Project. We would expect to reveal the most microscopic structure of matter using the intensity frontier proton machine. In particular, we would like to develop Quark Nuclear Physics to describe hadrons and nuclei in terms of quarks and gluons. (author)
Heavy quark production and spectroscopy
International Nuclear Information System (INIS)
Appel, J.A.
1993-11-01
This review covers many new experimental results on heavy flavor production and spectroscopy. It also shows some of the increasingly improved theoretical understanding of results in light of basic perturbative QCD and heavy quark symmetry. At the same time, there are some remaining discrepancies among experiments as well as significant missing information on some of the anticipated lowest lying heavy quark states. Most interesting, perhaps, are some clearly measured production effects awaiting full explanation
Quark effects in nuclear structure
International Nuclear Information System (INIS)
Watt, A.
1987-01-01
Some experimental data in nuclear structure physics cannot be explained on the assumption that nuclei consist of inert protons and neutrons. The quark model attributes a definite internal structure to nucleons and implies that their properties should change when embedded in a nucleus. This article reviews some of the experimental evidence for these effects and discusses some new aspects of nuclear structure predicted by the quark model
Sextet quarks and light pseudoscalars
International Nuclear Information System (INIS)
Clark, T.E.; Leung, C.N.; Love, S.T.; Rosner, J.L.; Chicago Univ., IL
1986-01-01
Light pseudoscalar bosons are a very general consequence of the existence of higher-color representations (such as sextets) of quarks. It is shown that if the condensate vertical stroke vertical stroke=F 3 defines a scale F>>Λ QCD , as has been expected on the basis of perturbative and lattice calculations, then present limits on axions exclude a wide range of values of F. Such limits therefore serve as complements to direct accelerator searches for higher-color quarks. (orig.)
Polarization in heavy quark decays
Energy Technology Data Exchange (ETDEWEB)
Alimujiang, K.
2006-07-01
In this thesis I concentrate on the angular correlations in top quark decays and their next.to.leading order (NLO) QCD corrections. I also discuss the leading.order (LO) angular correlations in unpolarized and polarized hyperon decays. In the first part of the thesis I calculate the angular correlation between the top quark spin and the momentum of decay products in the rest frame decay of a polarized top quark into a charged Higgs boson and a bottom quark in Two-Higgs-Doublet-Models: t({up_arrow}) {yields} b + H{sup +}. I provide closed form formulae for the O({alpha}{sub s}) radiative corrections to the unpolarized and the polar correlation functions for m{sub b}{ne}0 and m{sub b}=0. In the second part I concentrate on the semileptonic rest frame decay of a polarized top quark into a bottom quark and a lepton pair: t({up_arrow}){yields}X{sub b}+l{sup +}+{nu}{sub l}. I present closed form expressions for the O({alpha}{sub s}) radiative corrections to the unpolarized part and the polar and azimuthal correlations for m{sub b}{ne}0 and m{sub b}=0. In the last part I turn to the angular distribution in semileptonic hyperon decays. Using the helicity method I derive complete formulas for the leading order joint angular decay distributions occurring in semileptonic hyperon decays including lepton mass and polarization effects. (orig.)
Quark-diquark approximation of the three-quark structure of baryons in the quark confinement model
International Nuclear Information System (INIS)
Efimov, G.V.; Ivanov, M.A.; Lyubovitskij, V.E.
1990-01-01
Octet (1 + /2) and decuplet (3 + /2) of baryons as relativistic three-quark states are investigated in the quark confinement model (QCM), the relativistic quark model, based on some assumptions about hadronization and quark confinement. The quark-diquark approximation of the three-quark structure of baryons is proposed. In the framework of this approach the description of the main low-energy characteristics of baryons as magnetic moments, electromagnetic radii and form factors, ratio of axial and vector constants in semileptonic baryon octet decays, strong form factors and decay widths is given. The obtained results are in agreement with experimental data. 31 refs.; 4 figs.; 5 tabs
Composite quarks and their magnetic moments
International Nuclear Information System (INIS)
Parthasarathy, R.
1980-08-01
A composite quark model based on the symmetry group SU(10)sub(flavour) x SU(10)sub(colour) with the assumption of mass non-degenerate sub-quarks is considered. Magnetic moments of quarks and sub-quarks are obtained from the observed nucleon magnetic moments. Using these quark and sub-quark magnetic moments, a satisfactory agreement for the radiative decays of vector mesons (rho,ω) is obtained. The ratio of the masses of the sub-quarks constituting the u,d,s quarks are found to be Msub(p)/Msub(n) = 0.3953 and Msub(p)/Msub(lambda) = 0.596, indicating a mass hierarchy Msub(p) < Msub(n) < Msub(lambda) for the sub-quarks. (author)
Top quark production at the LHC
Gilles, Geoffrey; The ATLAS collaboration
2018-01-01
The top quark is the heaviest known fundamental particle. As it is the only quark that decays before it hadronizes, it gives us the unique opportunity to probe the properties of bare quarks at the Large Hadron Collider. This talk will present highlights of a few recent precision measurements of the top quark using 13 TeV and 8 TeV collision data: top-quark pair and single top production cross sections, including differential distributions and production in association with bosons, will be presented alongside top quark properties measurements. These measurements, including results using boosted top quarks, probe our understanding of top quark production in the TeV regime. Measurements of the top quark mass are also presented.
International Nuclear Information System (INIS)
Harari, H.
1977-01-01
The physics of quarks and leptons within the framework of gauge theories for the weak and electromagnetic interactions is reviewed. The Weinberg-Salam SU(2)xU(1) theory is used as a ''reference point'' but models based on larger gauge groups, especially SU(2)sub(L)xSU(2)sub(R)xU(1), are discussed. We distinguish among three ''Generations'' of fundamental fermions: The first generation (e - , νsub(e), u, d), the second generation (μ - , νsub(μ), c, s) and the third generation (tau - , νsub(tau), t, b). For each generation are discussed the classification of all fermions, the charged and neutral weak currents, possible right-handed currents, parity and CP-violation, fermion masses and Cabibbo-like angles and related problems. Theoretical ideas as well as experimental evidence, emphasizing open theoretical problems and possible experimental tests are reviewed, as well as the possibility of unifying the weak, electromagnetic and strong interactions in a grand unification scheme. The problems and their possible solutions are presented, generation by generation, but a brief subject-index (following the table of contents) enbales the interested reader to follow any specific topic throughout the three generations. (author)
AUTHOR|(SzGeCERN)655637
The measurement of prompt photon associated with a b jet in proton-proton interactions can provide us insight into the inner structure of proton. This is because precision of determination of parton distribution functions of b quark and gluon can be increased by such a measurement. The measurement of cross-section of prompt photon associated with a b jet (process $pp\\longrightarrow \\gamma + b + X$) at $\\sqrt{s}$= 8 TeV with the ATLAS detector is presented. Full 8 TeV dataset collected by ATLAS during the year 2012 was used in this analysis. Corresponding integrated luminosity is 20.3 $fb^{-1}$. Fiducial differential cross-section as a function of photon transverse momentum at particle level was extracted from data and compared with the prediction of leading order event generator Pythia 8. Cross-section extracted from data is normalised independently on the Monte Carlo prediction. Values of data distribution lie above Monte Carlo values. The difference can be explained by presence of higher order effects not ...
Inclusive production of large-p/sub T/ protons and quark-quark elastic scattering
International Nuclear Information System (INIS)
Chen, C.K.
1978-01-01
A proton-formation process in combination with hard quark-quark scattering is capable of explaining the observed large-p/sub T/ single-proton inclusive production data. This model implies that the inclusive production of two large-p/sub T/ protons at opposite directions is dominated by large-angle elastic scattering of two up quarks, and becomes an ideal place to study elastic quark-quark scattering. This two-proton inclusive production process is also ideal for the study of the spin structure of quark-quark elastic scattering, so the assumptions of pure vector-type quark-quark interaction and of colored quarks can be checked empirically. The consistency of applying the quark-elastic-scattering idea to large-angle elastic proton-proton scattering and to the inclusive production of large-p/sub T/ protons is also demonstrated
Heavy quark energy loss in nuclear medium
International Nuclear Information System (INIS)
Zhang, Benr-Wei; Wang, Enke; Wang, Xin-Nian
2003-01-01
Multiple scattering, modified fragmentation functions and radiative energy loss of a heavy quark propagating in a nuclear medium are investigated in perturbative QCD. Because of the quark mass dependence of the gluon formation time, the medium size dependence of heavy quark energy loss is found to change from a linear to a quadratic form when the initial energy and momentum scale are increased relative to the quark mass. The radiative energy loss is also significantly suppressed relative to a light quark due to the suppression of collinear gluon emission by a heavy quark
Strange Quark Matter Status and Prospects
Sandweiss, J.
2004-01-01
The existence of quark states with more than three quarks is allowed in QCD. The stability of such quark matter states has been studied with lattice QCD and phenomenological bag models, but is not well constrained by theory. The addition of strange quarks to the system allows the quarks to be in lower energy states despite the additional mass penalty. There is additional stability from reduced Coulomb repulsion. SQM is expected to have a low Z/A. Stable or metastable massive multiquark states contain u, d, and s quarks.
Searches for new heavy quarks in ATLAS
Nikiforou, Nikiforos; The ATLAS collaboration
2018-01-01
A search for new heavy quarks focusing on recent vector-like quark searches with the ATLAS detector at the CERN Large Hadron Collider is presented. Two recent searches targeting the pair production of type vector-like quarks are described. The first search is sensitive to vector-like up-type quark (T ) decays to a t quark and either a Standard Model Higgs boson or a Z boson. The second search is primarily sensitive to T decays to W boson and a b quark. Additionally, the results can be interpreted for alternative VLQ decays.
Nuclear matter from effective quark-quark interaction.
Baldo, M; Fukukawa, K
2014-12-12
We study neutron matter and symmetric nuclear matter with the quark-meson model for the two-nucleon interaction. The Bethe-Bruckner-Goldstone many-body theory is used to describe the correlations up to the three hole-line approximation with no extra parameters. At variance with other nonrelativistic realistic interactions, the three hole-line contribution turns out to be non-negligible and to have a substantial saturation effect. The saturation point of nuclear matter, the compressibility, the symmetry energy, and its slope are within the phenomenological constraints. Since the interaction also reproduces fairly well the properties of the three-nucleon system, these results indicate that the explicit introduction of the quark degrees of freedom within the considered constituent quark model is expected to reduce the role of three-body forces.
Kaon quark distribution functions in the chiral constituent quark model
Watanabe, Akira; Sawada, Takahiro; Kao, Chung Wen
2018-04-01
We investigate the valence u and s ¯ quark distribution functions of the K+ meson, vK (u )(x ,Q2) and vK (s ¯)(x ,Q2), in the framework of the chiral constituent quark model. We judiciously choose the bare distributions at the initial scale to generate the dressed distributions at the higher scale, considering the meson cloud effects and the QCD evolution, which agree with the phenomenologically satisfactory valence quark distribution of the pion and the experimental data of the ratio vK (u )(x ,Q2)/vπ (u )(x ,Q2) . We show how the meson cloud effects affect the bare distribution functions in detail. We find that a smaller S U (3 ) flavor symmetry breaking effect is observed, compared with results of the preceding studies based on other approaches.
Spin effects in high energy quark-quark scattering
International Nuclear Information System (INIS)
Goloskokov, S.V.; Selyugin, O.V.
1993-01-01
The spin amplitudes in high-energy quark-quark scattering at /t/>1 GeV 2 are analyzed. It is shown that the gluon contributions in the QCDα s 3 order lead to the spin-flip amplitude growing as s. This means the existence of the spin-flip part in pomeron exchange. The resulting T f is about few per cent of the spin-non-flip contribution. The factorization of the large-distance and high-energy effects in the spin-flip amplitude is obtained. 13 refs.; 2 figs.; 1 tab
Quark exchange and nuclear dynamics
International Nuclear Information System (INIS)
Moniz, E.J.
1985-01-01
This paper gives a qualitative understanding of hadronic phenomena in terms of quark degrees of freedom. The basic model which incorporates saturating confining interactions and the study of hadron-hadron scattering has been carried through in collaboration with F. Lenz, J.T. Londergan, R. Rosenfelder, M. Stingl and K. Yazaki. It is shown that minimal confining dynamics together with exchange symmetry indeed leads to a remarkable range of phenomena at both the nuclear and particle energy scales. Most observables are well described by an effective hadron theory, the quark momentum distribution being the major exception. These features emerge even in the simplest model, namely, U(1) color and hadrons composed of two quarks (anti qq or qq). The author concentrates here on this model. In the concluding section, he remarks on the SU(N) results, particularly on the extent to which the color-hidden dynamics are constrained by examining the systematics of nuclear and hadronic phenomena. (Auth.)
Compositeness of quarks and leptons
International Nuclear Information System (INIS)
Peskin, M.E.
1981-01-01
I review along grand lines the theoretical ideas associated with the notion that quarks and leptons are composite. I first discuss various constituent pictures which have been proposed to account for the quantum numbers of the observed quarks and leptons, a study I call the Quantum Numerology. I then discuss some new theoretical developments of the past two years which bear on the subject of composite fermions and which make plausible (or rule out) some of the major dynamical assumptions of these constituent models. Finally, I discuss the consequences of the compositeness of quarks and leptons by setting up a series of scenarios for this compositeness and exploring, for each scenario, its experimental implications. (orig./HSI)
Measuring the sea quark polarization
International Nuclear Information System (INIS)
Makdisi, Y.
1993-01-01
Spin is a fundamental degree of freedom and measuring the spin structure functions of the nucleon should be a basic endeavor for hadron physics. Polarization experiments have been the domain of fixed target experiments. Over the years large transverse asymmetries have been observed where the prevailing QCD theories predicted little or no asymmetries, and conversely the latest deep inelastic scattering experiments of polarized leptons from polarized targets point to the possibility that little of the nucleon spin is carried by the valence quarks. The possibility of colliding high luminosity polarized proton beams in the Brookhaven Relativistic Heavy Ion Collider (RHIC) provides a great opportunity to extend these studies and systematically probe the spin dependent parton distributions specially to those reactions that are inaccessible to current experiments. This presentation focuses on the measurement of sea quark and possibly the strange quark polarization utilizing the approved RHIC detectors
Waves in magnetized quark matter
Fogaça, D. A.; Sanches, S. M.; Navarra, F. S.
2018-05-01
We study wave propagation in a non-relativistic cold quark-gluon plasma immersed in a constant magnetic field. Starting from the Euler equation we derive linear wave equations and investigate their stability and causality. We use a generic form for the equation of state, the EOS derived from the MIT bag model and also a variant of the this model which includes gluon degrees of freedom. The results of this analysis may be relevant for perturbations propagating through the quark matter phase in the core of compact stars and also for perturbations propagating in the low temperature quark-gluon plasma formed in low energy heavy ion collisions, to be carried out at FAIR and NICA.
Heavy quark spectroscopy and decay
International Nuclear Information System (INIS)
Schindler, R.H.
1987-01-01
The understanding of q anti q systems containing heavy, charmed, and bottom quarks has progressed rapidly in recent years, through steady improvements in experimental techniques for production and detection of their decays. These lectures are meant to be an experimentalist's review of the subject. In the first of two lectures, the existing data on the spectroscopy of the bound c anti c and b anti b systems will be discussed. Emphasis is placed on comparisons with the theoretical models. The second lecture covers the rapidly changing subject of the decays of heavy mesons (c anti q and b anti q), and their excited states. In combination, the spectroscopy and decays of heavy quarks are shown to provide interesting insights into both the strong and electroweak interactions of the heavy quarks. 103 refs., 39 figs
Quark matter brings heavy ions to Oakland
International Nuclear Information System (INIS)
Klein, Spencer; Nystrand, Joakim
2004-01-01
The Quark Matter 2004 conference, held in Oakland, California, in January, provided participants with evidence for the elusive quark-gluon plasma. Spencer Klein and Joakim Nystrand describe the highlights of the meeting
On the Coulomb gauge quark propagator
International Nuclear Information System (INIS)
Kloker, M.; Alkofer, R.; Krassnigg, A.; Krenn, R.
2006-01-01
Full text: A solution of the quark Dyson-Schwinger equation including transverse gluons is presented. The corresponding retardation effects in the quark propagator are discussed. Especially, their effects on confinement properties and dynamical mass generation are described. (author)
International Nuclear Information System (INIS)
Rho, M.
1981-01-01
Quantum chromodynamics is believed to be candidate theory for the strong interactions and contains as its ingredients spinor quark fields and vector gluons, none of which can perhaps be ever liberated and detected in laboratories. A nucleus consists of nucleons bound by nuclear force which are however separately observable and which seem to preserve their identities even under extreme conditions. An intriguing question is: when compressed to high densities or heated to high temperature, at what point does a nuclear matter cease to be describable in terms of nucleon and meson degrees of freedom, but become a plasma of quarks and gluons; and how does this transition occur. This is not an idle question. If quarks and gluons are never to be observed isolated, then it may be that at low energies (or at low densities) they are not the right variables to do physics with. Instead hadrons must be. On the other hand, asymptotic freedom - the unique property of non-abelian gauge theories to which QCD belongs that quark-gluon and gluon-gluon interactions get weaker at short distances - tells us that at some large matter density the matter must necessarily be in the form of quark gas interacting only weakly. This means that a change in degrees of freedom must take place. We would like to know where this occurs and how. In this talk, I would like to address to this question by discussing first the large success we have had in understanding the role that mesons play in finite nuclei and nuclear matter and then attempting to correlate nucleon and meson degrees of freedom to quark-gluon degrees of freedom. In my opinion we are now at a stage where we feel fairly confident in our understanding of nucleon-meson structure of nuclei and nuclear matter and any further progress in deeper understanding of nuclear dynamics - and strong interactions - must come from QCD or its effective version, bags or strings. (orig.)
Quark degrees of freedom in compact stars
Energy Technology Data Exchange (ETDEWEB)
Marranghello, G.F.; Vasconcellos, C.A.Z. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica. Dept. de Fisica; Hadjimichef, D. [Pelotas Univ., RS (Brazil). Inst. de Fisica e Matematica. Dept. de Fisica
2001-07-01
Nuclear matter may show a phase transition at high densities, where quarks and gluons are set free, forming a so called quark-gluon plasma. At the same range of densities, neutron stars are formed. In this work we have grouped both ideas in the study of the quark-gluon plasma formation inside compact stars, here treated as pure neutron star, hybrid star and pure quark matter star. (author)
Quark degrees of freedom in compact stars
International Nuclear Information System (INIS)
Marranghello, G.F.; Vasconcellos, C.A.Z.; Hadjimichef, D.
2001-01-01
Nuclear matter may show a phase transition at high densities, where quarks and gluons are set free, forming a so called quark-gluon plasma. At the same range of densities, neutron stars are formed. In this work we have grouped both ideas in the study of the quark-gluon plasma formation inside compact stars, here treated as pure neutron star, hybrid star and pure quark matter star. (author)
The weak conversion rate in quark matter
International Nuclear Information System (INIS)
Heiselberg, H.
1992-01-01
The weak conversion rate of strange to down quarks, s + u ↔ u + d, is calculated analytically for degenerate u, d and s quark matter to leading orders in temperature and deviations from chemical equilibrium. The rate is applied to burning of neutron matter into quark matter, to evaporation from quark nuggets in the early universe, for estimating the lifetime of strangelets, and to pulsar glitches
Top quark production at the Tevatron
Energy Technology Data Exchange (ETDEWEB)
Varnes, Erich W.; /Arizona U.
2010-09-01
The Fermilab Tevatron has, until recently, been the only accelerator with sufficient energy to produce top quarks. The CDF and D0 experiments have collected large samples of top quarks. We report on recent top quark production measurements of the single top and t{bar t} production cross sections, as well as studies of the t{bar t} invariant mass distribution and a search for highly boosted top quarks.
Free-quark phases in dense stars
Energy Technology Data Exchange (ETDEWEB)
Keister, B D; Kisslinger, L S [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA). Dept. of Physics
1976-08-30
The possibility is examined that superdense matter can undergo a transition to a phase of free quarks within models which assume that the quark confinement potential is screened at high densities. The results imply that a phase of pure quarks of this type is unlikely to be found in stable stellar systems although they do not preclude the possible existence of a transition region which contains quarks and neutrons in equilibrium at the center of neutron stars.
Triplicity of hadrons, quarks and subquarks
International Nuclear Information System (INIS)
Terazawa, Hidezumi.
1989-11-01
Triplicity of hadrons, quarks and subquarks asserting that a certain physical quantity such as the weak current is taken equally well as either one of a composite operator of hadrons, that of quarks and that of subquarks is proposed. Among other things, the weak mixing angle, the quark mixing matrix and the mass sum rules for quarks and leptons are revisited, reinterpreted and discussed in detail in triplicity. (author)
An alternative approach to heavy quark bags
International Nuclear Information System (INIS)
Baacke, J.; Kasperidus, G.
1980-01-01
We discuss a formulation of quark bags where the quark wave function depends only on the relative coordinate and the bag boundary is fixed with respect to the center of mass of the quark system. For technical reasons we have to restrict ourselves to a heavy quark-antiquark system in an s-wave with spherical boundary. A phenomenological application to quarkonium states encourages further investigation of the approach. (orig.)
Pion electromagnetic polarizabilities and quarks
International Nuclear Information System (INIS)
Llanta, E.; Tarrach, R.
1980-01-01
The electric and magnetic polarizabilities of the neutral and charged pion are calculated in a coloured quark field theory at the one-loop level. The theory has as free parameter the quark mass but our results do not depend on it. We have found that the electric polarizabilities are αsub(π+-) = -0.04 α/m 3 sub(π), αsub(π 0 ) = -0.4 α/m 3 sub(π). These values are compared with calculations in other models and some comments are made about the polarizability sum rules. (orig.)
International Nuclear Information System (INIS)
Rho, M.
1983-11-01
The issue as to whether or not quarks will manifest themselves explicitly in nuclear processes is discussed in the light of the recently discovered topological structure of the baryon. Due to the leakage of the baryon charge from a confinement region (bag) into a meson-cloud region, there emerges a sort of topological equivalence principle which renders physically equivalent the description in terms of Goldstone meson fields alone (the Skyrmion) and the description in terms of a bag (confining quarks) surrounded by a meson cloud (the chiral bag model). How this new structure will modify our understanding of the nucleon and the nucleus is examined
The unconfined quarks and gluons
International Nuclear Information System (INIS)
Abdus Salam
1977-01-01
The consequences of the lepton-hadron gauge unification hypothesis with unconfined quarks and gluons being the hall-mark are discussed. Quark and gluon decays into leptons are shown to provide a new source of multileptonic production in NN, νN and μN collisions. A theorem is stated and proved which highlights the differences between the dynamics of gauge versus non-gauge 1 - particles. Empirical manifestations of gauge coloured mesons are discussed. The question of exact confinement or not is concluded to be in the end an empirical one and must be settled in the laboratory
Simulating at realistic quark masses. Light quark masses
International Nuclear Information System (INIS)
Goeckeler, M.; Streuer, T.
2006-11-01
We present new results for light quark masses. The calculations are performed using two flavours of O(a) improved Wilson fermions. We have reached lattice spacings as small as a ∝0.07 fm and pion masses down to m π ∝340 MeV in our simulations. This gives us significantly better control on the chiral and continuum extrapolations. (orig.)
New theoretical results in heavy quark hadroproduction
International Nuclear Information System (INIS)
Nason, P.
1992-01-01
We describe the status of the heavy quark hadroproduction theory. In particular, we discuss recent developments on production of heavy quarks in the high energy limit, and the results of a new calculation to next-to-leading accuracy of the fully exclusive parton cross section for heavy quark production. (orig.)
''Follow that quark!'' (and other exclusive stories)
International Nuclear Information System (INIS)
Carroll, A.S.
1987-01-01
Quarks are considered to be the basic constituents of matter. In a series of recent experiments, Carroll studied exclusive reactions as a means of determining the interactions between quarks. Quantum Chromo-dynamics (QCD) is the modern theory of the interaction of quarks. This theory explains how quarks are held together via the strong interaction in particles known as hadrons. Hadrons consisting of three quarks are called baryons. Hadrons made up of a quark and an antiquark are called mesons. In his lecture, Carroll describes what happens when two hadrons collide and scatter to large angles. The violence of the collision causes the gluons that bind the quarks in a particular hadron to temporarily lose their grip on particular quarks. Quarks scramble toward renewed unity with other quarks, and they undergo rearrangement, which generally results in additional new particles. A two-body exclusive reaction has occurred when the same number of particles exist before and after the collisions. At large angles these exclusive reactions are very rare. The labels on the quarks known as flavor enable the experimenter to follow the history of individual quarks in detail during these exclusive reactions. Carroll describes the equipment used in the experiment to measure short distance, hard collisions at large angles. The collisions he discusses occur when a known beam of mesons or protons collide with a stationary proton target. Finally, Carroll summarizes what the experiments have shown from the study of exclusive reactions and what light some of their results shed on the theory of QCD
Quark fragmentation in e+e- collisions
International Nuclear Information System (INIS)
Oddone, P.
1984-12-01
This brief review of new results in quark and gluon fragmentation observed in e + e - collisions concentrates mostly on PEP results and, within PEP, mostly on TPC results. The new PETRA results have been reported at this conference by M. Davier. It is restricted to results on light quark fragmentation since the results on heavy quark fragmentation have been reported by J. Chapman
Planar quark diagrams and binary spin processes
International Nuclear Information System (INIS)
Grigoryan, A.A.; Ivanov, N.Ya.
1986-01-01
Contributions of planar diagrams to the binary scattering processes are analyzed. The analysis is based on the predictions of quark-gluon picture of strong interactions for the coupling of reggeons with quarks as well as on the SU(6)-classification of hadrons. The dependence of contributions of nonplanar corrections on spins and quark composition of interacting particles is discussed
Charm-quarks and new elementary particles
International Nuclear Information System (INIS)
Petersen, J.L.
1978-01-01
This is the first part of an extensive paper which discusses: the Nobel prize in physics 1976; discovery of the J/psi-particle; elementary particles and elementary building blocks; the four reciprocal effects; gauge theories; quark-antiquark reciprocal effects; the high-energy approximation; a simple quark-antiquark potential; and quark diagrams and the Zweig rule. (Auth.)
Variational approach to chiral quark models
Energy Technology Data Exchange (ETDEWEB)
Futami, Yasuhiko; Odajima, Yasuhiko; Suzuki, Akira
1987-03-01
A variational approach is applied to a chiral quark model to test the validity of the perturbative treatment of the pion-quark interaction based on the chiral symmetry principle. It is indispensably related to the chiral symmetry breaking radius if the pion-quark interaction can be regarded as a perturbation.
A variational approach to chiral quark models
International Nuclear Information System (INIS)
Futami, Yasuhiko; Odajima, Yasuhiko; Suzuki, Akira.
1987-01-01
A variational approach is applied to a chiral quark model to test the validity of the perturbative treatment of the pion-quark interaction based on the chiral symmetry principle. It is indispensably related to the chiral symmetry breaking radius if the pion-quark interaction can be regarded as a perturbation. (author)
Pole masses of quarks in dimensional reduction
International Nuclear Information System (INIS)
Avdeev, L.V.; Kalmykov, M.Yu.
1997-01-01
Pole masses of quarks in quantum chromodynamics are calculated to the two-loop order in the framework of the regularization by dimensional reduction. For the diagram with a light quark loop, the non-Euclidean asymptotic expansion is constructed with the external momentum on the mass shell of a heavy quark
Fragmentation of quarks and gluons
International Nuclear Information System (INIS)
Soeding, P.
1983-10-01
The author presents a review about quark and gluon jets. He describes the particle contents of the different types of jets. Finally he considers the hadronization mechanism with special regards to three-jet events in e + e - annihilation and hadronization in nuclear matter. (HSI)
Quarks, history of a discovery
International Nuclear Information System (INIS)
Husson, D.
2000-01-01
This book gives a presentation of quarks and stresses on the historical aspects of the studies that led to their discovery. The 'aesthetical' motivations of the scientists in their research are explained with only a minimum of mathematical concepts. (J.S.)
Phase space quark counting rule
International Nuclear Information System (INIS)
Wei-gin, C.; Lo, S.
1980-01-01
A simple quark counting rule based on phase space consideration suggested before is used to fit all 39 recent experimental data points on inclusive reactions. Parameter free relations are found to agree with experiments. Excellent detail fits are obtained for 11 inclusive reactions
Correlations among static quark masses
International Nuclear Information System (INIS)
Lewin, K.; Motz, G.B.
1987-01-01
Nonrelativistic heavy quarkonia potentials with Coulomb and linearly rising limiting behaviour are correlated additively by Taylor expansion extracting the limiting structure and a constant term. Relations between fit parameters of different potentials including the quark masses m b and m c , are obtained. The known stability of the difference m b -m c , appears as direct consequence of flavour invariance of the potentials
1995-01-01
This is a sequel to the review volume Quark-Gluon Plasma. There are 13 articles contributed by leading investigators in the field, covering a wide range of topics about the theoretical approach to the subject. These contributions are timely reviews of nearly all the actively pursued problems, written in a pedagogical style suitable for beginners as well as experienced researchers.
Quark Matter '87: Concluding remarks
International Nuclear Information System (INIS)
Gyulassy, M.
1988-03-01
This year marked the beginning of the experimental program at BNL and CERN to probe the properties of ultra dense hadronic matter and to search for the quark-gluon plasma phase of matter. Possible implications of the preliminary findings are discussed. Problems needing further theoretical and experimental study are pointed out. 50 refs
Kim, S. B.
1995-08-01
Top quark production is observed in{bar p}p collisions at{radical}s= 1.8 TeV at the Fermilab Tevatron. The Collider Detector at Fermilab (CDF) and D{O} observe signals consistent with t{bar t} to WWb{bar b}, but inconsistent with the background prediction by 4.8{sigma} (CDF), 4.6a (D{O}). Additional evidence for the top quark Is provided by a peak in the reconstructed mass distribution. The kinematic properties of the excess events are consistent with the top quark decay. They measure the top quark mass to be 176{plus_minus}8(stat.){plus_minus}10(sys.) GeV/c{sup 2} (CDF), 199{sub -21}{sup+19}(stat.){plus_minus}22(sys.) GeV/c{sup 2} (D{O}), and the t{bar t} production cross section to be 6.8{sub -2.4}{sup+3.6}pb (CDF), 6.4{plus_minus}2.2 pb (D{O}).
Hydrodynamics of a quark droplet
DEFF Research Database (Denmark)
Bjerrum-Bohr, Johan J.; Mishustin, Igor N.; Døssing, Thomas
2012-01-01
We present a simple model of a multi-quark droplet evolution based on the hydrodynamical description. This model includes collective expansion of the droplet, effects of the vacuum pressure and surface tension. The hadron emission from the droplet is described following Weisskopf's statistical...
Young, Robert D.
1973-01-01
Discusses the charge independence, wavefunctions, magnetic moments, and high-energy scattering of hadrons on the basis of group theory and nonrelativistic quark model with mass spectrum calculated by first-order perturbation theory. The presentation is explainable to advanced undergraduate students. (CC)
2003-01-01
Fitted with new state-of-the-art silicon detectors, NA60 is prepared to study the phase transition from confined hadronic matter to a deconfined (free) quark-gluon plasma, a state of matter which probably existed an instant after the Big Bang.
Vogt, Ramona
1998-01-01
Aspects of quark-gluon plasma signatures that can be measured by CMS are discussed. First the initial conditions of the system from minijet production are introduced, including shadowing effects. Color screening of the Upsilon family is then presented, followed by energy loss effects on charm and bottom hadrons, high Pt jets and global observables.
Brown, Laurie Mark; Dresden, Max; Hoddeson, Lillian
2009-01-01
Part I. Introduction; 1. Pions to quarks: particle physics in the 1950s Laurie M Brown, Max Dresden and Lillian Hoddeson; 2. Particle physics in the early 1950s Chen Ning Yang; 3. An historian's interest in particle physics J. L. Heilbron; Part II. Particle discoveries in cosmic rays; 4. Cosmic-ray cloud-chamber contributions to the discovery of the strange particles in the decade 1947-1957 George D. Rochester; 5. Cosmic-ray work with emulsions in the 1940s and 1950s Donald H. Perkins; Part III. High-energy nuclear physics; Learning about nucleon resonances with pion photoproduction Robert L. Walker; 7. A personal view of nucleon structure as revealed by electron scattering Robert Hofstadter; 8. Comments on electromagnetic form factors of the nucleon Robert G. Sachs and Kameshwar C. Wali; Part IV. The new laboratory; 9. The making of an accelerator physicist Matthew Sands; 10. Accelerator design and construction in the 1950s John P. Blewett; 11. Early history of the Cosmotron and AGS Ernest D. Courant; 12. Panel on accelerators and detectors in the 1950s Lawrence W. Jones, Luis W. Alvarez, Ugo Amaldi, Robert Hofstadter, Donald W. Kerst, Robert R. Wilson; 13. Accelerators and the Midwestern Universities Research Association in the 1950s Donald W. Kerst; 14. Bubbles, sparks and the postwar laboratory Peter Galison; 15. Development of the discharge (spark) chamber in Japan in the 1950s Shuji Fukui; 16. Early work at the Bevatron: a personal account Gerson Goldhaber; 17. The discovery of the antiproton Owen Chamberlain; 18. On the antiproton discovery Oreste Piccioni; Part V. The Strange Particles; 19. The hydrogen bubble chamber and the strange resonances Luis W. Alvarez; 20. A particular view of particle physics in the fifties Jack Steinberger; 21. Strange particles William Chinowsky; 22. Strange particles: production by Cosmotron beams as observed in diffusion cloud chambers William B. Fowler; 23. From the 1940s into the 1950s Abraham Pais; Part VI. Detection of the
Directory of Open Access Journals (Sweden)
Jeong Kim Tae
2014-04-01
Full Text Available In 2011, an integrated luminosity of more than 5 fb−1 at 7 TeV has been delivered by the LHC. The measurement of the cross section in top quark pair production and in single top quark production, top quark mass, top quark properties and new physics searches in top quark decays have been performed at the CMS experiment with various integrated luminosities. An overview of the latest results of these measurements and searches by the time of ICFP 2012 conference will be presented.
The effect of dynamical quark mass on the calculation of a strange quark star's structure
Institute of Scientific and Technical Information of China (English)
Gholam Hossein Bordbar; Babak Ziaei
2012-01-01
We discuss the dynamical behavior of strange quark matter components,in particular the effects of density dependent quark mass on the equation of state of strange quark matter.The dynamical masses of quarks are computed within the Nambu-Jona-Lasinio model,then we perform strange quark matter calculations employing the MIT bag model with these dynamical masses.For the sake of comparing dynamical mass interaction with QCD quark-quark interaction,we consider the one-gluon-exchange term as the effective interaction between quarks for the MIT bag model.Our dynamical approach illustrates an improvement in the obtained equation of state values.We also investigate the structure of the strange quark star using TolmanOppenheimer-Volkoff equations for all applied models.Our results show that dynamical mass interaction leads to lower values for gravitational mass.
Simulating at realistic quark masses. Light quark masses
Energy Technology Data Exchange (ETDEWEB)
Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik; Horsley, R.; Zanotti, J.M. [Edinburgh Univ. (United Kingdom). School of Physics; Nakamura, Y.; Pleiter, D. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Dept. of Mathematical Sciences; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC]|[Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Streuer, T. [Kentucky Univ., Lexington, KY (United States). Dept. of Physics and Astronomy; Stueben, H. [Konrad-Zuse-Zentrum fuer Informationstechnik Berlin (ZIB) (Germany)
2006-11-15
We present new results for light quark masses. The calculations are performed using two flavours of O(a) improved Wilson fermions. We have reached lattice spacings as small as a {proportional_to}0.07 fm and pion masses down to m{sub {pi}} {proportional_to}340 MeV in our simulations. This gives us significantly better control on the chiral and continuum extrapolations. (orig.)
QCD phase transition with chiral quarks and physical quark masses.
Bhattacharya, Tanmoy; Buchoff, Michael I; Christ, Norman H; Ding, H-T; Gupta, Rajan; Jung, Chulwoo; Karsch, F; Lin, Zhongjie; Mawhinney, R D; McGlynn, Greg; Mukherjee, Swagato; Murphy, David; Petreczky, P; Renfrew, Dwight; Schroeder, Chris; Soltz, R A; Vranas, P M; Yin, Hantao
2014-08-22
We report on the first lattice calculation of the QCD phase transition using chiral fermions with physical quark masses. This calculation uses 2+1 quark flavors, spatial volumes between (4 fm)(3) and (11 fm)(3) and temperatures between 139 and 196 MeV. Each temperature is calculated at a single lattice spacing corresponding to a temporal Euclidean extent of N(t) = 8. The disconnected chiral susceptibility, χ(disc) shows a pronounced peak whose position and height depend sensitively on the quark mass. We find no metastability near the peak and a peak height which does not change when a 5 fm spatial extent is increased to 10 fm. Each result is strong evidence that the QCD "phase transition" is not first order but a continuous crossover for m(π) = 135 MeV. The peak location determines a pseudocritical temperature T(c) = 155(1)(8) MeV, in agreement with earlier staggered fermion results. However, the peak height is 50% greater than that suggested by previous staggered results. Chiral SU(2)(L) × SU(2)(R) symmetry is fully restored above 164 MeV, but anomalous U(1)(A) symmetry breaking is nonzero above T(c) and vanishes as T is increased to 196 MeV.
Results on top-quark physics and top-quark-like signatures by CMS
Chabert, Eric; CMS Collaboration
2017-07-01
This report reviews the results obtained by the CMS Collaboration on top quark physics, focusing on the latest ones based on p-p collisions provided by the LHC at \\sqrt{s}=13{{TeV}} during Run II. It covers measurements of single-top, top quark pairs and associated productions as well as measurements of top quark properties. Finally several beyond the standard model searches involving top quark in the final states are presented, such as searches for supersymmetry in the third generation, heavy resonances decaying into a top quark pair, or dark matter produced in association to a single-top or a top quark pair.
Hadron matrix elements of quark operators in the relativistic quark model, 2. Model calculation
Energy Technology Data Exchange (ETDEWEB)
Arisue, H; Bando, M; Toya, M [Kyoto Univ. (Japan). Dept. of Physics; Sugimoto, H
1979-11-01
Phenomenological studies of the matrix elements of two- and four-quark operators are made on the basis of relativistic independent quark model for typical three cases of the potentials: rigid wall, linearly rising and Coulomb-like potentials. The values of the matrix elements of two-quark operators are relatively well reproduced in each case, but those of four-quark operators prove to be too small in the independent particle treatment. It is suggested that the short-range two-quark correlations must be taken into account in order to improve the values of the matrix elements of the four-quark operators.
Quark interactions and colour chemistry
International Nuclear Information System (INIS)
Hong-Mo, C.
1982-01-01
The interaction between quarks, according to the current theory of quantum chromodynamics, is similar to the electromagnetic interaction between electrons and nucleons, both being governed by locally gauge-invariant field theories. It is tempting therefore to discuss the spectroscopy of hadrons, which are quark composites bound by colour forces, in the same language as the spectroscopy of atoms and molecules which are bound states of electrons and nucleons held together by e.m. forces. Because of the difference in gauge groups, however, the dynamics are very different. Nonetheless, it appears likely that metastable multiquark hadron states can exist which are analogous to atoms and molecules in QED. In these lectures, tentative steps are taken in developing the rudiments of a new colour chemistry' of these 'atoms' and 'molecules'. (author)
International Nuclear Information System (INIS)
Oset, E.
1980-01-01
A short review of the topic of mesons in nuclei is exposed paying particular attention to the relationship between several mesonic processes. Special emphasis is put into the microscopic pictures that can ultimately relate all these processes with the elementary coupling of mesons to the nuclear hadronic components. The importance of the short range part of the nuclear interaction opens the doors to a more basic understanding in terms of the quark components of nucleons and isobars. (orig.)
Walsh, Karen McNulty
2011-03-28
Near-light-speed collisions of gold ions provide a recipe for in-depth explorations of matter and fundamental forces. The Relativistic Heavy Ion Collider (RHIC) has produced the most massive antimatter nucleus ever discovered?and the first containing an anti-strange quark. The presence of strange antimatter makes this antinucleus the first to be entered below the plane of the classic Periodic Table of Elements, marking a new frontier in physics.
Spin interactions of light quarks
International Nuclear Information System (INIS)
Simonov, Yu.A.
1989-01-01
Spin-spin and spin-orbit interactions of light quarks is calculated exactly, i.e. without use of perturbation expansion in (mass) -1 . Vacuum gluonic fields are represented by bilocal correlators and higher order correlators are neglected. Perturbative contribution is reproduced in lowest order by a simple modification of the bilocal correlator, and the smearing of the function in the hyperfine term is discussed. 12 refs
Directory of Open Access Journals (Sweden)
Reimer Paul E
2016-01-01
Full Text Available The proton is a composite particle in which the binding force is responsible for the majority of its mass. To understand this structure, the distributions and origins of the quark-antiquark pairs produced by the strong force must be measured. The SeaQuest collaboration is using the Drell-Yan process to elucidate antiquark distributions in the proton and to study their modification when the proton is held within a nucleus.
Quarks in high energy interactions
International Nuclear Information System (INIS)
Landshoff, P.V.
1978-01-01
The great interest of the quark parton model is that is seems to provide a successful way of relating together a variety of apparently very different reactions. In these lectures the author reviews the principal applications of the model. The following reactions are discussed: 1) Deep inelastic scattering of electrons, muons and neutrinos, 2) Production of lepton pairs, J/psi and W in hadronic collisions, 3) Electron-positron annihilation, 4) Large transverse momentum hadronic processes. (Auth.)
Heavy quark and sparticle phenomenology
International Nuclear Information System (INIS)
Barger, V.
1985-01-01
Data from the CERN p anti p collider provide a new avenue for the study of heavy-quark production and possibly also provide the first indication for the sparticles of supersymmetry. This discussion of the associated phenomenology begins with charm and bottom quarks, proceeds to the strategies that lead to top quark identification, and concludes with possible supersymmetry scenarios to explain the events observed by the UA1 collaboration with large missing transverse momentum. The fusion predictions of single muon and dimuon rates are in the ballpark of UA1 observations. The discovery of isolated like-sign dimuons is at present an anomaly. The p anti p collider is a good place to do B physics, and answer the question of whether B 0 - anti B 0 mixing occurs. Also, it should soon be possible to identify a few dimuon events of W → t anti b and t anti t origins. Finally, enhanced charm in jets, if established, would have to be ascribed to non-perturbative QCD effects. In conclusion, if the UA1 monojets are of supersymmetry origin, then squark and gluino masses are already tightly constrained and dijet events with large missing transverse momentum should help distinguish between the two most promising scenarios. The top signal is not being faked by sparticles. (Nogami, K.)
PEP quark search proportional chambers
Energy Technology Data Exchange (ETDEWEB)
Parker, S I; Harris, F; Karliner, I; Yount, D [Hawaii Univ., Honolulu (USA); Ely, R; Hamilton, R; Pun, T [California Univ., Berkeley (USA). Lawrence Berkeley Lab.; Guryn, W; Miller, D; Fries, R [Northwestern Univ., Evanston, IL (USA)
1981-04-01
Proportional chambers are used in the PEP Free Quark Search to identify and remove possible background sources such as particles traversing the edges of counters, to permit geometric corrections to the dE/dx and TOF information from the scintillator and Cerenkov counters, and to look for possible high cross section quarks. The present beam pipe has a thickness of 0.007 interaction lengths (lambdasub(i)) and is followed in both arms each with 45/sup 0/ <= theta <= 135/sup 0/, ..delta..phi=90/sup 0/ by 5 proportional chambers, each 0.0008 lambdasub(i) thick with 32 channels of pulse height readout, and by 3 thin scintillator planes, each 0.003 lambdasub(i) thick. Following this thin front end, each arm of the detector has 8 layers of scintillator (one with scintillating light pipes) interspersed with 4 proportional chambers and a layer of lucite Cerenkov counters. Both the calculated ion statistics and measurements using He-CH/sub 4/ gas in a test chamber indicate that the chamber efficiencies should be >98% for q=1/3. The Landau spread measured in the test was equal to that observed for normal q=1 traversals. One scintillator plane and thin chamber in each arm will have an extra set of ADC's with a wide gate bracketing the normal one so timing errors and tails of earlier pulses should not produce fake quarks.
Quark cluster model and confinement
International Nuclear Information System (INIS)
Koike, Yuji; Yazaki, Koichi
2000-01-01
How confinement of quarks is implemented for multi-hadron systems in the quark cluster model is reviewed. In order to learn the nature of the confining interaction for fermions we first study 1+1 dimensional QED and QCD, in which the gauge field can be eliminated exactly and generates linear interaction of fermions. Then, we compare the two-body potential model, the flip-flop model and the Born-Oppenheimer approach in the strong coupling lattice QCD for the meson-meson system. Having shown how the long-range attraction between hadrons, van der Waals interaction, shows up in the two-body potential model, we discuss two distinct attempts beyond the two-body potential model: one is a many-body potential model, the flip-flop model, and the other is the Born-Oppenheimer approach in the strong coupling lattice QCD. We explain how the emergence of the long-range attraction is avoided in these attempts. Finally, we present the results of the application of the flip-flop model to the baryon-baryon scattering in the quark cluster model. (author)
Do bound color octet states of liberated quarks exist
International Nuclear Information System (INIS)
Lipkin, H.J.
1979-01-01
In models where quarks are liberated and color can be excited, the three-quark color-octet state is shown to be unbound and unstable against breakup into free quarks and diquarks. The signature for color excitation in deep inelastic processes will not be a bound three-quark state which decays electromagnetically but a final state containing free quarks. (author)
Vector Susceptibility of QCD Vacuum from an Effective Quark-Quark Interaction
Institute of Scientific and Technical Information of China (English)
ZONG Hong-Shi; QI Shi; CHEN Wei; WU Xiao-Hua
2003-01-01
.A new approach for calculating vacuum susceptibilities from an effective quark-quark interaction model is derived. As a special case, the vector vacuum susceptibility is calculated. A comparison with the results of the previous approaches is given.
Comment on ``Brown dwarfs, quark stars, and quark-hadron phase transition``
Energy Technology Data Exchange (ETDEWEB)
Kubis, S.; Kutschera, M. [Institute of Nuclear Physics, Cracow (Poland)
1995-12-01
It is shown that the cosmological quark-hadron phase transition within the Lee-Wick model with a high degree of supercooling cannot be completed. No quark stars could be produced in this scenario. (author). 2 refs.
Comment on ''Brown dwarfs, quark stars, and quark-hadron phase transition''
International Nuclear Information System (INIS)
Kubis, S.; Kutschera, M.
1995-12-01
It is shown that the cosmological quark-hadron phase transition within the Lee-Wick model with a high degree of supercooling cannot be completed. No quark stars could be produced in this scenario. (author). 2 refs
The significance of the heavy top quark
International Nuclear Information System (INIS)
Simmons, Elizabeth H.
1997-01-01
Experiment shows that the top quark is far heavier than the other elementary fermions. This finding has stimulated research on theories of electroweak and flavor symmetry breaking that include physics beyond the standard model. Efforts to accommodate a heavy top quark within existing frameworks have revealed constraints on model-building. Other investigations have started from the premise that a large top quark mass could signal a qualitative difference between the top quark and other fermions, perhaps in the form of new interactions peculiar to the top quark. Such new dynamics may also help answer existing questions about electroweak and flavor physics. This talk explores the implications of the heavy top quark in the context of weakly-coupled (e.g., SUSY) and strongly-coupled (e.g., technicolor) theories of electroweak symmetry breaking
Top quark physics in ATLAS (CORFU 2014)
Moreno Llácer, M; The ATLAS collaboration
2014-01-01
The top quark is the heaviest elementary particle observed to date. Being heavier than a W boson, it is the only quark that decays weakly, i.e. into a real W boson and a b quark, before hadronization can occur. In addition, it is the only quark whose Yukawa coupling to the Higgs boson is order of unity. For these reasons the top quark plays a special role in the Standard Model of Particle Physics and in many of its extensions. An accurate knowledge of its properties (mass, couplings, production cross section, decay branching ratios, etc.) can bring key information on fundamental interactions at the electroweak breaking scale and beyond. In this talk the latest measurements of the characteristics of the top quark carried out in the ATLAS experiment at the Large Hadron Collider are presented.
Quark matter in a chiral chromodielectric model
International Nuclear Information System (INIS)
Broniowski, W.; Kutschera, M.; Cibej, M.; Rosina, M.
1989-03-01
Zero and finite temperature quark matter is studied in a chiral chromodielectric model with quark, meson and chromodielectric degrees of freedom. Mean field approximation is used. Two cases are considered: two-flavor and three-flavor quark matter. It is found that at sufficiently low densities and temperatures the system is in a chirally broken phase, with quarks acquiring effective masses of the order of 100 MeV. At higher densities and temperatures a chiral phase transition occurs and the quarks become massless. A comparison to traditional nuclear physics suggests that the chirally broken phase with massive quark gas may be the ground state of matter at densities of the order of a few nuclear saturation densities. 24 refs., 5 figs. (author)
Top Quark Production at Hadron Colliders
Energy Technology Data Exchange (ETDEWEB)
Phaf, Lukas Kaj [Univ. of Amsterdam (Netherlands)
2004-03-01
This thesis describes both theoretical and experimental research into top quark production. The theoretical part contains a calculation of the single-top quark production cross section at hadron colliders, at Next to Leading Order (NLO) accuracy. The experimental part describes a measurement of the top quark pair production cross section in proton-antiproton collisions, at a center of mass energy of 1.96 TeV.
Phenomenology of heavy leptons and heavy quarks
International Nuclear Information System (INIS)
Gilman, F.J.
1978-11-01
The review of the quark and lepton family includes properties of the tau, SU(2) x U(1) classification of the tau and its decays, heavier leptons, the spectroscopy of heavy hadrons composed of quarks, their strong and electromagnetic decays, the weak interaction properties of the c, b, and t quarks, and the decays of hadrons containing them expected within the context of the standard SU(2) x U(1) model. 76 references
Heavy quarks and their experimental consequences
International Nuclear Information System (INIS)
Appelquist, T.
1975-09-01
Recent theoretical work on heavy quark dynamics is reviewed. In the context of a color gauge theory of strong interactions, the structure of heavy quark-antiquark bound states and their decay properties is discussed. The emphasis is on the dynamical differences between heavy and light quark bound states. It is suggested that the former will more directly reflect the structure of the underlying field theory
QCD thermodynamics with two flavors of quarks
International Nuclear Information System (INIS)
Bernard, C.; Ogilvie, M.C.; DeGrand, T.A.; DeTar, C.; Gottlieb, S.; Krasnitz, A.; Sugar, R.L.; Toussaint, D.
1992-01-01
We present results of numerical simulations of quantum chromo-dynamics at finite temperature on the Intel iPSC/860 parallel processor. We performed calculations with two flavors of Kogut-Susskind quarks and of Wilson quarks on 6 x 12 3 lattices in order to study the crossover from the low temperature hadronic regime to the high temperature regime. We investigate the properties of the objects whose exchange gives static screening lengths by reconstructing their correlated quark-antiquark structure. (orig.)
The Skyrmions and quarks in nuclei
International Nuclear Information System (INIS)
Rho, M.
1984-08-01
It is proposed that the quark-bag description and the Skyrmion description of baryons are related to each other by quantized parameters. Topology (through a chiral anomaly) plays an important role in bridging the fundamental theory of the strong interactions (QCD) to effective theories. Some consequences on the efforts to see quark degrees of freedom in nuclear matter are discussed. It is suggested that at low energies there will be no ''smoking gun'' evidences for quark presence in nuclei
The proton's spin: A quark model perspective
International Nuclear Information System (INIS)
Close, F.E.
1989-01-01
Magnetic moments and g A /g V provide information on the correlations among quark spins and flavors in the proton. I compare this information with the deep inelastic polarized data from EMC which has been claimed to show that very little of the proton's spin is due to the quarks. The possibility that there is significant polarization of strange quarks within protons is discussed. 38 refs
A single quark effective potential model
International Nuclear Information System (INIS)
Bodmann, B.E.J.; Vasconcellos, C.A.Z.
1994-01-01
In the present work we construct a radial spherical symmetric single quark potential model for the nucleon, consistent with asymptotic freedom and confinement. The quark mass enters as potential parameter and that way induces indirectly an isospin dependence in the interaction. As a consequence, a contribution to the negative charge square radius of the neutron arises an an effect of the quark core, which simulates an isospin symmetry breaking effect in the nucleon due to strong interaction. (author)
Test of quark fragmentation in the quark-parton model framework
International Nuclear Information System (INIS)
Derrick, M.; Barish, S.J.; Barnes, V.E.
1979-08-01
The hadronic system produced in charged-current antineutrino interactions is used to study fragmentation of the d-quark. Some problems encountered in separating the current quark-fragments are discussed. The fragmentation function for the current quark is in good agreement with the expectations of the naive quark-parton model and, in particular, there is no evidence of either a Q 2 - or x/sub BJ/-dependence. 10 references
Single top quark production with CMS
Directory of Open Access Journals (Sweden)
Piccolo Davide
2013-11-01
Full Text Available Measurements of single top quark production performed using the CMS experiment [1] data collected in 2011 at centre-of-mass energies of 7 TeV and in 2012 at 8 TeV, are presented. The cross sections for the electroweak production of single top quarks in the t-channel and in association with W-bosons is measured and the results are used to place constraints on the CKM matrix element Vtb. Measurements of top quark properties in single top quark production are also presented. The results include the measurement of the charge ratio in the single top t-channel.
Thermal recombination: Beyond the valence quark approximation
Energy Technology Data Exchange (ETDEWEB)
Mueller, B. [Department of Physics, Duke University, Durham, NC 27708 (United States); Fries, R.J. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)]. E-mail: fries@physics.umn.edu; Bass, S.A. [Department of Physics, Duke University, Durham, NC 27708 (United States); RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973 (United States)
2005-07-07
Quark counting rules derived from recombination models agree well with data on hadron production at intermediate transverse momenta in relativistic heavy-ion collisions. They convey a simple picture of hadrons consisting only of valence quarks. We discuss the inclusion of higher Fock states that add sea quarks and gluons to the hadron structure. We show that, when recombination occurs from a thermal medium, hadron spectra remain unaffected by the inclusion of higher Fock states. However, the quark number scaling for elliptic flow is somewhat affected. We discuss the implications for our understanding of data from the Relativistic Heavy Ion Collider.
Heavy quark production in quantum chromodynamics
International Nuclear Information System (INIS)
Brodsky, S.J.
1986-09-01
For very heavy quark masses, the inclusive hadronic production of hadron pairs containing heavy quarks is predicted to be governed by QCD fusion subprocesses. For intermediate mass scales other QCD mechanisms can be important including higher-twist intrinsic contributions and low relative velocity enchancements, possibly accounting for the anomalies observed in charm hadroproduction, such as the nuclear number dependence, the longitudinal momentum distributions, and beam flavor dependence. We also discuss scaling laws for exclusive processes involving heavy quarks and diffractive excitation into heavy quark systems
The quark model and asymptotic freedom
International Nuclear Information System (INIS)
Anon.
1986-01-01
The authors stress that it is not their task to provide a detailed account of the quark model (this is given in many monographs and reviews). This chapter is merely a prolog to the complex contemporary problems of high-energy physics which form the main subject of the present monograph. The quark model is based on the idea that there exist hypothetical fundamental particles - quarks, which they shall denote by q-bar/sub i/ (the index i characterizes the type of quark). From these particles and their antiparticles one constructs bound states, which are identified with the known hadrons. It turns out that all the observed mesons can be constructed from a quark q/sub i/ and an antiquark q-bar/sub i/, while the baryons (antibaryons) can be constructed from three quarks (antiquarks). To make it possible to build up all the observed hadrons and their characteristics, the authors must postulate that the quarks (antiquarks) possess the following properties: 1) spin 1/2; 2) isospin. It is necessary to introduce isospin 1/2 for the construction of the nonstrange hadrons. It has been proposed to denote the quark with isospin projection tau/sub 3/ = 1/2 by the symbol u (from the English ''up'') and the quark with isospin projection tau/sub 3/ = -1/2 by the symbol d (from the English ''down'')
CP Violation in Single Top Quark Production
Energy Technology Data Exchange (ETDEWEB)
Geng, Weigang [Michigan State Univ., East Lansing, MI (United States)
2012-01-01
We present a search for CP violation in single top quark production with the DØ experiment at the Tevatron proton-antiproton collider. CP violation in the top electroweak interaction results in different single top quark production cross sections for top and antitop quarks. We perform the search in the single top quark final state using 5.4 fb^{-1} of data, in the s-channel, t-channel, and for both combined. At this time, we do not see an observable CP asymmetry.
Quarks as quasiparticles of bound states
International Nuclear Information System (INIS)
Tyapkin, A.A.
1977-01-01
Interpretation of quarks as strongly bound subsystems of the baryon structure, being in various states with integer the quantum numbers Q and B, is considered. Three original quark states, distinguished by Q, B, and J, are unambiguously determined from the condition that the quarks have the corresponding fractional quantum numbers while the integer quantum numbers for the whole system are known. With this in view the new quantum number ''colour'' is interpreted as a quantity, specifying the appearance of the subsystems in various eigen-states. Basing on the generalized Sakata model, the self-consistency of change of the colour states in the three-quark system is explained
Measurements and searches with top quarks
International Nuclear Information System (INIS)
Peters, Reinhild Yvonne
2008-01-01
In 1995 the last missing member of the known families of quarks, the top quark, was discovered by the CDF and D0 experiments at the Tevatron, a proton-antiproton collider at Fermilab near Chicago. Until today, the Tevatron is the only place where top quarks can be produced. The determination of top quark production and properties is crucial to understand the Standard Model of particle physics and beyond. The most striking property of the top quark is its mass--of the order of the mass of a gold atom and close to the electroweak scale--making the top quark not only interesting in itself but also as a window to new physics. Due to the high mass, much higher than of any other known fermion, it is expected that the top quark plays an important role in electroweak symmetry breaking, which is the most prominent candidate to explain the mass of particles. In the Standard Model, electroweak symmetry breaking is induced by one Higgs field, producing one additional physical particle, the Higgs boson. Although various searches have been performed, for example at the Large Electron Positron Collider (LEP), no evidence for the Higgs boson could yet be found in any experiment. At the Tevatron, multiple searches for the last missing particle of the Standard Model are ongoing with ever higher statistics and improved analysis techniques. The exclusion or verification of the Higgs boson can only be achieved by combining many techniques and many final states and production mechanisms. As part of this thesis, the search for Higgs bosons produced in association with a top quark pair (t(bar t)H) has been performed. This channel is especially interesting for the understanding of the coupling between Higgs and the top quark. Even though the Standard Model Higgs boson is an attractive candidate, there is no reason to believe that the electroweak symmetry breaking is induced by only one Higgs field. In many models more than one Higgs boson are expected to exist, opening even more channels
The quark revolution and the ZGS - new quarks physics since the ZGS
International Nuclear Information System (INIS)
Lipkin, H.J.
1994-01-01
Overwhelming experimental evidence for quarks as real physical constituents of hadrons along with the QCD analogs of the Balmer Formula, Bohr Atom and Schroedinger Equation already existed in 1966 but was dismissed as heresy. ZGS experiments played an important role in the quark revolution. This role is briefly reviewed and subsequent progress in quark physics is described
Quark Physics without Quarks: A Review of Recent Developments in S-Matrix Theory.
Capra, Fritjof
1979-01-01
Reviews the developments in S-matrix theory over the past five years which have made it possible to derive results characteristic of quark models without any need to postulate the existence of physical quarks. In the new approach, the quark patterns emerge as a consequence of combining the general S-matrix principles with the concept of order.…
Non-diagonal processes of singlet and ordinary quark production
International Nuclear Information System (INIS)
Bejlin, V.A.; Vereshkov, G.M.; Kuksa, V.I.
1995-01-01
Non-diagonal processes of singlet and ordinary quark production are analyzed in the model where the down singlet quark mixes with the ordinary ones. The possibility of experimental selection of h-quark effects is demonstrated
A higher twist correction to heavy quark production
International Nuclear Information System (INIS)
Brodsky, S.J.; Gunion, J.F.; Soper, D.E.
1987-06-01
The leading twist prediction for heavy quark production and a model for a higher twist correction that may be important for charm production was discussed. The correction arises from the interaction of the charm quark with spectator quarks
Large Psub(tr) and quark-quark cross section in the dynamical model of factorizing quarks
International Nuclear Information System (INIS)
Kapshay, V.N.; Sidorov, A.V.; Skachkov, N.B.
1978-01-01
Dynamical model of factorizing quarks containing the quark mass as free model parameter was described. Model calculations were compared with the experimental data on the cross section of the inclusive πsup(o) meson production in the proton-proton interaction. It is shown that the results of the paper are in good agreement with experiments
Highlights of top quark properties measurements at ATLAS
Barranco Navarro, Laura; The ATLAS collaboration
2017-01-01
The top quark is the heaviest known fundamental particle. As it is the only quark that decays before it hadronizes, this gives the unique opportunity to probe the properties of bare quarks. This talk focuses on a few recent precision measurements of top quark properties in production and decay by the ATLAS Collaboration. Measurements of the top quark mass and searches for rare top quark decays are also presented.
Highlights of top quark properties measurements at ATLAS
Barranco Navarro, Laura; The ATLAS collaboration
2017-01-01
The top quark is the heaviest known fundamental particle. As it is the only quark that decays before it hadronizes, this gives the unique opportunity to probe the properties of bare quarks. This talk will focus on a few recent precision measurements of top quark properties in production and decay by the ATLAS Collaboration. Measurements of the top quark mass and searches for rare top quark decays are also presented.
International Nuclear Information System (INIS)
Veltman, M.
1979-01-01
The theory of strong interactions is supposedly quantum chromodynamics, an unbroken gauge theory based on the group SU(3). The theory of weak and e.m. interactions is believed to be described by the Weinberg-GIM model, based on the spontaneously broken symmetry SU(2) x U(1). There are many uncertainties around these theories. Quantum chromodynamics has met with many successes, but the most important feature, quark confinement, has not been proven. Also other things, such as PCAC, have not yet been understood. And we have no reasonable calculation of particle masses (pion, proton, etc.). Nevertheless we consider quantum chromodynamics a reasonably respectable theory, and in this talk we will take that theory for granted. The situation with respect to the SU(2) x U(1) theory is much more difficult. No vector bosons have yet been observed, and the Higgs system is more obscure than ever. Glashow's model has been turned into a renormalizable model by Weinberg through the use of the Higgs system, but up to now no radiative corrections of the appropriate type have been measured. The only thing we know is that at low energies this Glashow model reduces to a four-fermion theory involving certain currents, and this has been checked reasonably well. Also, the discovery of charm (and hopefully the discovery of a top quark) fits beautifully into the picture along the lines of the GIM mechanism. CP violation could be due to complex quark masses according to the Kobayashi-Maskawa scheme. The point of view is taken that the existence of vector bosons is not evident, and the Higgs mechanism is a possibility at best. It is the purpose of this talk to outline and clarify this view
Hadronic physics of q anti q light quark mesons, quark molecules and glueballs
International Nuclear Information System (INIS)
Lindenbaum, S.J.
1980-10-01
A brief introduction reviews the development of QCD and defines quark molecules and glueballs. This review is concerned primarily with u, d, and s quarks, which provide practically all of the cross section connected with hadronic interactions. The following topics form the bulk of the paper: status of quark model classification for conventional u, d, s quark meson states; status of multiquark or quark molecule state predictions and experiments; glueballs and how to find them; and the OZI rule in decay and production and how glueballs might affect it. 17 figures, 1 table
Are quarks and leptons composite
International Nuclear Information System (INIS)
Harari, H.
1982-01-01
The possibility that quarks and leptons are composite was studied. A line of reasoning was pursued which followed several steps. The standard model was assumed and the need to go beyond it was demonstrated. Different classes of ideas were considered. The notion of compositeness and its general difficulties, mainly the scale problem, were studied. A connection between composite massless fermions and an unbroken chiral symmetry was assumed. A general framework based on hypercolor and a chiral symmetry was established. The general requirements for a candidate model were established. A minimal scheme was found and its successes and failures were studied. (HK)
International Nuclear Information System (INIS)
Anon.
1995-01-01
High energy heavy ion collisions have become one of the major growth areas of modern physics. Providing common ground between particle and nuclear physics, it has produced a wave of new interest and a series of major projects to provide beams of higher energies and increasing nuclear complexity. Reflecting this interest, and despite record rainstorms, over 450 enthusiastic high energy heavy ion followers met in Monterey, California, at the 11th International Conference on Ultra-relativistic Nucleus-Nucleus Collisions. Named Quark Matter '95, the meeting was characterized by its own flood of new results from experiments studying collisions of gold nuclei at the Brookhaven Alternating Gradient Synchrotron (AGS) and with silicon beams at the CERN SPS synchrotron, as well as preliminary results from the first run with lead beams at CERN late last year (December 1994, page 15). A striking aspect of the Conference was the growth in attendance and, in particular, the large number of young physicists who attended the meeting, underlining the vitality and appeal of this important field. The new preliminary data from CERN experiments NA44, NA49, NA52, WA97, and WA98, made available with remarkable speed following the initial lead beam run in November and December 1994, represent a significant step in the study of heavy ion collisions. Physicists have finally come close to conditions where it is possible to consider event-by-event analysis of these very complex final states. The importance of this emerging approach to relativistic heavy ion collisions was emphasized by Reinhard Stock (Frankfurt) and other speakers in a pre-conference workshop devoted to physics with the collider detectors at big new projects now in the pipeline - RHIC at Brookhaven and LHC at CERN. The study of collisions of heavy nuclei at relativistic energies is dominated by the search for the Quark-Gluon Plasma, the 'soup' of free quarks and gluons expected to have played an important role
Diffractive dissociation and new quarks
International Nuclear Information System (INIS)
White, A.R.
1983-04-01
We argue that the chiral limit of QCD can be identified with the strong (diffractive dissociation) coupling limit of reggeon field theory. Critical Pomeron scaling at high energy must then be directly related to an infra-red fixed-point of massless QCD and so requires a large number of flavors. This gives a direct argument that the emergence of diffraction-peak scaling, KNO scaling etc. at anti p-p colliders are evidence of a substantial quark structure still to be discovered
International Nuclear Information System (INIS)
Shirkov, D.V.
1982-01-01
In this paper recent studies of invariant QCD coupling anti asub(s)(Qsup(2)) in the 2-loop approximation with account of fermionic mass effects are summarized. The main results are: An explicit expression for anti asub(s)(Qsup(2)) in the 2-loop approximation with accurate account of heavy quark masses. A quantitative analysis on the basis of the above-mentioned expression for anti asub(s)(Qsup(2)) of the energy dependence of the scale QCD parameter ν and the conclusion about its inadequacy in the modern energy range
Chiral quarks and proton decay
International Nuclear Information System (INIS)
Chadha, S.; Daniel, M.; Gounaris, G.J.; Murphy, A.J.
1984-04-01
The authors calculate the hadronic matrix elements of baryon decay operators using a chiral effective Lagrangian with quarks, gluons and Goldstone boson fields. The cases where the ΔB=1 operators arise from supersymmetric SU(5) GUT as well as the minimal SU(5) GUT model are studied. In each model the results depend on two parameters. In particular there is a range of values for the two parameters, where the dominant decay modes in the minimal SU(5) GUT are: p→etae + and n→π - e + . (author)
Colour isomers in quark material
International Nuclear Information System (INIS)
Hoegaasen, H.
1981-01-01
Quantum chromodynamics is stated to be analogous to quantum electrodynamics and colour to electric charge. However since there are eight gluon fields and only one photon field, and gluons have colour while photons are electrically neutral, QCD is much more complicated than QED. The concept of colour confine confinement is introduced and the addition rules for colour multiplets are discussed. It is shown that quark colour leads to isomeric meson states. Bubble chamber films from CERN groups have been examined and hyperons and (sup a)Y* resonance particles have been found, which appears to confirm the theory. (JIW)
Quark matter and quark stars at finite temperature in Nambu-Jona-Lasinio model
Energy Technology Data Exchange (ETDEWEB)
Chu, Peng-Cheng; Wang, Bin; Dong, Yu-Min; Jia, Yu-Yue; Wang, Shu-Mei; Ma, Hong-Yang [Qingdao Technological University, School of Science, Qingdao (China); Li, Xiao-Hua [University of South China, School of Nuclear Science and Technology, Hengyang (China); University of South China, Cooperative Innovation Center for Nuclear Fuel Cycle Technology and Equipment, Hengyang (China)
2017-08-15
We extend the SU(3) Nambu-Jona-Lasinio (NJL) model to include two types of vector interaction. Using these two types of vector interaction in NJL model, we study the quark symmetry free energy in asymmetric quark matter, the constituent quark mass, the quark fraction, the equation of state (EOS) for β-equilibrium quark matter, the maximum mass of QSs at finite temperature, the maximum mass of proto-quark stars (PQSs) along the star evolution, and the effects of the vector interaction on the QCD phase diagram. We find that comparing zero temperature case, the values of quark matter symmetry free energy get larger with temperature increasing, which will reduce the difference between the fraction of u, d and s quarks and stiffen the EoS for β-equilibrium quark matter. In particular, our results indicate that the maximum masses of the quark stars increase with temperature because of the effects of the quark matter symmetry free energy, and we find that the heating(cooling) process for PQSs will increase (decrease) the maximum mass within NJL model. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Kanki, T [Osaka Univ., Toyonaka (Japan). Coll. of General Education
1976-12-01
We present a quark-gluon-parton model in which quark-partons and gluons make clusters corresponding to two or three constituent quarks (or anti-quarks) in the meson or in the baryon, respectively. We explicitly construct the constituent quark state (cluster), by employing the Kuti-Weisskopf theory and by requiring the scaling. The quark additivity of the hadronic total cross sections and the quark counting rules on the threshold powers of various distributions are satisfied. For small x (Feynman fraction), it is shown that the constituent quarks and quark-partons have quite different probability distributions. We apply our model to hadron-hadron inclusive reactions, and clarify that the fragmentation and the diffractive processes relate to the constituent quark distributions, while the processes in or near the central region are controlled by the quark-partons. Our model gives the reasonable interpretation for the experimental data and much improves the usual ''constituent interchange model'' result near and in the central region (x asymptotically equals x sub(T) asymptotically equals 0).
Heavy quark correlations in hadronic collisions
International Nuclear Information System (INIS)
Mangano, M.L.; Ridolfi, G.
1992-01-01
The study of heavy quark production at hadron colliders will provide important tests and measurements within and possibly beyond the Standard Model. The results of a recent calculation of heavy quark hadronic production correlation properties at the full next-to-leading order (NLO) in perturbative QCD are presented. These properties are important for several applications. (R.P.) 8 refs.; 3 figs
Top quark distributions in hadronic collisions
Frixione, Stefano; Nason, P; Ridolfi, G; Frixione, S; Mangano, M L; Nason, P; Ridolfi, G
1995-01-01
We present kinematical distributions for top quark pairs produced at the Tevatron \\ppbar\\ Collider, as predicted within Next-to-Leading-Order QCD. We consider single and double-inclusive distributions, and compare our results to those obtained with the shower Monte Carlo HERWIG. We discuss the implications of our findings for experimental issues such as the measurement of the top quark mass.
Quark degrees of freedom in nuclei
International Nuclear Information System (INIS)
Lovas, I.
1986-03-01
Experimental facts which can not be interpreted in terms of nucleonic degrees of freedom are reviewed. Attempts to explain these observations by the help of the notions of quark physics are indicated. Some predicted exotic states are enumerated. The most promising models of the nucleon-nucleon interactions in terms of quarks are briefly discussed. (author)
Jets. The materialisation of quarks and gluons
International Nuclear Information System (INIS)
Marshall, R.
1985-09-01
The paper, which is aimed at scientists outside the immediate field of particle physics, describes some of the properties of jets and how the jet observables can be related to quark parameters. The similarity of quark and leptons is underlined. (author)
Electromagnetic signals of quark gluon plasma
Indian Academy of Sciences (India)
Successive equilibration of quark degrees of freedom and its effects on electromagnetic signals of quark gluon plasma are discussed. The effects of the variation of vector meson masses and decay widths on photon production from hot strongly interacting matter formed after Pb + Pb and S + Au collisions at CERN SPS ...
Wigner Functions and Quark Orbital Angular Momentum
Directory of Open Access Journals (Sweden)
Mukherjee Asmita
2015-01-01
Full Text Available Wigner distributions contain combined position and momentum space information of the quark distributions and are related to both generalized parton distributions (GPDs and transverse momentum dependent parton distributions (TMDs. We report on a recent model calculation of the Wigner distributions for the quark and their relation to the orbital angular momentum.
Wigner Functions and Quark Orbital Angular Momentum
Mukherjee, Asmita; Nair, Sreeraj; Ojha, Vikash Kumar
2014-01-01
Wigner distributions contain combined position and momentum space information of the quark distributions and are related to both generalized parton distributions (GPDs) and transverse momentum dependent parton distributions (TMDs). We report on a recent model calculation of the Wigner distributions for the quark and their relation to the orbital angular momentum.
Goldstone-Boson Dynamics for Constituent Quarks
Plessas, W.
2003-07-01
We address some essential features of the Goldstone-boson-exchange constituent quark model. Starting from its background we discuss the motivation for its construction and show its performance in light and strange baryon spectroscopy. Then we quote results from first applications of this type of constituent quark model in covariant calculations of electroweak nucleon form factors.
Recent advances in heavy quark theory
Energy Technology Data Exchange (ETDEWEB)
Wise, M. [California Institute of Technology, Pasadena, CA (United States)
1997-01-01
Some recent developments in heavy quark theory are reviewed. Particular emphasis is given to inclusive weak decays of hadrons containing a b quark. The isospin violating hadronic decay D{sub s}* {yields} D{sub s}{sup pi}{sup 0} is also discussed.
The heavy quark expansion of QCD
International Nuclear Information System (INIS)
Falk, A.F.
1997-01-01
These lectures contain an elementary introduction to heavy quark symmetry and the heavy quark expansion. Applications such as the expansion of heavy meson decay constants and the treatment of inclusive and exclusive semileptonic B decays are included. Heavy hadron production via nonperturbative fragmentation processes is also discussed. 54 refs., 7 figs
Who needs more than four quarks
International Nuclear Information System (INIS)
Montonen, C.; Roos, M.
1976-09-01
The authors argue that there are no compelling reasons, experimental or theoretical, for an enlarged quark sector. They show that there is a large number of acceptable anomaly-free models with the usual four-quark-sector and one or two heavy charged leptons. (L.M.K.)
Dual chiral density wave in quark matter
International Nuclear Information System (INIS)
Tatsumi, Toshitaka
2002-01-01
We prove that quark matter is unstable for forming a dual chiral density wave above a critical density, within the Nambu-Jona-Lasinio model. Presence of a dual chiral density wave leads to a uniform ferromagnetism in quark matter. A similarity with the spin density wave theory in electron gas and the pion condensation theory is also pointed out. (author)
Quark distribution distortion in heavy nuclei
International Nuclear Information System (INIS)
Chela-Flores, J.
1984-10-01
Further consequences of sea-quark pairing are studied by looking at the underlying collective phenomena. We are led to variations of the quark distribution of single protons due to nuclear binding. A new prediction, subject to experimental verification, is discussed. (author)
Polarized photons from quark-gluon plasma
International Nuclear Information System (INIS)
Goloviznin, V.V.; Snigirev, A.M.; Zinov'ev, G.M.
1988-01-01
The degree of polarization of magnetic bremsstrahlung radiation resulting from the interaction of escaping quarks with a collective confining color field is calculated. For a wide rapidity interval the angle at which the photon is registered and constitutes about 25%. This could signal about quark-gluon plasma formation
The heavy quark expansion of QCD
Energy Technology Data Exchange (ETDEWEB)
Falk, A.F. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Physics and Astronomy
1997-06-01
These lectures contain an elementary introduction to heavy quark symmetry and the heavy quark expansion. Applications such as the expansion of heavy meson decay constants and the treatment of inclusive and exclusive semileptonic B decays are included. Heavy hadron production via nonperturbative fragmentation processes is also discussed. 54 refs., 7 figs.
6-quark contribution to nuclear magnetic moments
International Nuclear Information System (INIS)
Ito, H.
1985-01-01
The magnetic moments of nuclei with LS closed shell +/-1 particle are calculated. Core polarization and meson exchange current are treated realistically in order to single out the 6-quark contribution. Overall agreement with experimental values is quite good. It is shown that the 6-quark system contributes to the respective iso-vector and iso-scalar moments with reasonable magnitudes
Quark interchange model of baryon interactions
Energy Technology Data Exchange (ETDEWEB)
Maslow, J.N.
1983-01-01
The strong interactions at low energy are traditionally described by meson field theories treating hadrons as point-like particles. Here a mesonic quark interchange model (QIM) is presented which takes into account the finite size of the baryons and the internal quark structure of hadrons. The model incorporates the basic quark-gluon coupling of quantum chromodynamics (QCD) and the MIT bag model for color confinement. Because the quark-gluon coupling constant is large and it is assumed that confinement excludes overlap of hadronic quark bags except at high momenta, a non-perturbative method of nuclear interactions is presented. The QIM allows for exchange of quark quantum numbers at the bag boundary between colliding hadrons mediated at short distances by a gluon exchange between two quarks within the hadronic interior. This generates, via a Fierz transformation, an effective space-like t channel exchange of color singlet (q anti-q) states that can be identified with the low lying meson multiplets. Thus, a one boson exchange (OBE) model is obtained that allows for comparison with traditional phenomenological models of nuclear scattering. Inclusion of strange quarks enables calculation of YN scattering. The NN and YN coupling constants and the nucleon form factors show good agreement with experimental values as do the deuteron low energy data and the NN low energy phase shifts. Thus, the QIM provides a simple model of strong interactions that is chirally invariant, includes confinement and allows for an OBE form of hadronic interaction at low energies and momentum transfers.
Possibility for lepton and quark structure
International Nuclear Information System (INIS)
Martins Simoes, J.A.
1981-01-01
A model is discussed which describe a composite structure of leptons which implies new lepton interactions. As a result of this model the phenomenology of possible spin 3/2 quarks and leptons is examined. Calculations are presented on new quarks [fr
Additivity of quark masses in gauge theories
International Nuclear Information System (INIS)
Scadron, M.D.
1987-01-01
It is shown that, in spite of the confinement of quarks in (color-singlet) hadrons, effective quark masses of all types (dynamically generated, constituent and current masses), naturally form hadron masses in an additivity fashion. For the purposes of brevity, the discussion is limited primarily to the nonstrange flavor sector
Quark Model in the Quantum Mechanics Curriculum.
Hussar, P. E.; And Others
1980-01-01
This article discusses in detail the totally symmetric three-quark karyonic wave functions. The two-body mesonic states are also discussed. A brief review of the experimental efforts to identify the quark model multiplets is given. (Author/SK)
The Top Quark, QCD, And New Physics.
Dawson, S.
2002-06-01
The role of the top quark in completing the Standard Model quark sector is reviewed, along with a discussion of production, decay, and theoretical restrictions on the top quark properties. Particular attention is paid to the top quark as a laboratory for perturbative QCD. As examples of the relevance of QCD corrections in the top quark sector, the calculation of e{sup+}e{sup -}+ t{bar t} at next-to-leading-order QCD using the phase space slicing algorithm and the implications of a precision measurement of the top quark mass are discussed in detail. The associated production of a t{bar t} pair and a Higgs boson in either e{sup+}e{sup -} or hadronic collisions is presented at next-to-leading-order QCD and its importance for a measurement of the top quark Yulrawa coupling emphasized. Implications of the heavy top quark mass for model builders are briefly examined, with the minimal supersymmetric Standard Model and topcolor discussed as specific examples.
Light hardon properties with improved staggered quarks
International Nuclear Information System (INIS)
Bernard, C.; Burch, T.; DeGrand, T.; DeTar, C.; Gottlieb, Steven; Gregory, E.B.; Heller, U.M.; Osborn, J.; Sugar, R.; Toussain, D.
2003-01-01
Preliminary results from simulations with 2+1 dynamical quark flavors at a lattice spacing of 0.09 fm are combined with earlier results at a = 0.13 fm. We examine the approach to the continuum limit and investigate the dependence of the pseudoscalar masses and decay constants as the sea and valence quark masses are separately varied
Diagrammatic group theory in quark models
International Nuclear Information System (INIS)
Canning, G.P.
1977-05-01
A simple and systematic diagrammatic method is presented for calculating the numerical factors arising from group theory in quark models: dimensions, casimir invariants, vector coupling coefficients and especially recoupling coefficients. Some coefficients for the coupling of 3 quark objects are listed for SU(n) and SU(2n). (orig.) [de
Generalization of the quark rearrangement model
International Nuclear Information System (INIS)
Fields, T.; Chen, C.K.
1976-01-01
An extension and generalization of the quark rearrangement model of baryon annihilation is described which can be applied to all annihilation reactions and which incorporates some of the features of the highly successful quark parton model. Some p anti-p interactions are discussed
Massless quark wavefunction in the deformed bag
International Nuclear Information System (INIS)
Min, D.P.; Park, B.Y.; Koh, Y.S.
1984-01-01
The quark wavefunctions inside the deformed bag are obtained using a modified linear boundary condition stemming from the MIT bag Lagrangian with an additional term. We propose an exact method to obtain the quark wavefunction even for a spheroidally deformed bag. (Author)
Searching for the quarks and gluons plasma
International Nuclear Information System (INIS)
Gerschel, C.; Kluberg, L.
1989-01-01
Some investigations involving quark matter, at CERN, are discussed. The CERN available oxygen and sulfur beams, with energy about 200 GeV/nuclei, allow the obtention of high energy densities, never reached before. The possibilities of investigating (at CERN) the quarks and gluons plasma are considered. The first and unexpected results obtained from the NA38 experiment are overviewed [fr
Quark interchange model of baryon interactions
International Nuclear Information System (INIS)
Maslow, J.N.
1983-01-01
The strong interactions at low energy are traditionally described by meson field theories treating hadrons as point-like particles. Here a mesonic quark interchange model (QIM) is presented which takes into account the finite size of the baryons and the internal quark structure of hadrons. The model incorporates the basic quark-gluon coupling of quantum chromodynamics (QCD) and the MIT bag model for color confinement. Because the quark-gluon coupling constant is large and it is assumed that confinement excludes overlap of hadronic quark bags except at high momenta, a non-perturbative method of nuclear interactions is presented. The QIM allows for exchange of quark quantum numbers at the bag boundary between colliding hadrons mediated at short distances by a gluon exchange between two quarks within the hadronic interior. This generates, via a Fierz transformation, an effective space-like t channel exchange of color singlet (q anti-q) states that can be identified with the low lying meson multiplets. Thus, a one boson exchange (OBE) model is obtained that allows for comparison with traditional phenomenological models of nuclear scattering. Inclusion of strange quarks enables calculation of YN scattering. The NN and YN coupling constants and the nucleon form factors show good agreement with experimental values as do the deuteron low energy data and the NN low energy phase shifts. Thus, the QIM provides a simple model of strong interactions that is chirally invariant, includes confinement and allows for an OBE form of hadronic interaction at low energies and momentum transfers
On the properties of strange quark matter
International Nuclear Information System (INIS)
Zhou Leming; Peng Guangxiong; Ning Pingzhi
1999-01-01
According to authors' recent studies, the authors derive a new mass formula for strange quarks at zero temperature. The authors apply it to investigating the properties of strange quark matter and obtain similar results to those in the MIT bag model. A different point in authors' results is that the variation of sound velocity with energy density becomes a little slower
Top quark property measurements in single top
AUTHOR|(INSPIRE)INSPIRE-00386283; The ATLAS collaboration
2016-01-01
A review of the recent results on measurements of top quark properties in single top quark processes, performed at the LHC by ATLAS and CMS is presented. The measurements are in good agreement with predictions and no deviations from Standard Model expectations have been observed.
Quarks and gluons in hadrons and nuclei
International Nuclear Information System (INIS)
Close, F.E.
1989-12-01
These lectures discuss the particle-nuclear interface -- a general introduction to the ideas and application of colored quarks in nuclear physics, color, the Pauli principle, and spin flavor correlations -- this lecture shows how the magnetic moments of hadrons relate to the underlying color degree of freedom, and the proton's spin -- a quark model perspective. This lecture reviews recent excitement which has led some to claim that in deep inelastic polarized lepton scattering very little of the spin of a polarized proton is due to its quarks. This lecture discusses the distribution functions of quarks and gluons in nucleons and nuclei, and how knowledge of these is necessary before some quark-gluon plasma searches can be analyzed. 56 refs., 2 figs
Quark Matter May Not Be Strange.
Holdom, Bob; Ren, Jing; Zhang, Chen
2018-06-01
If quark matter is energetically favored over nuclear matter at zero temperature and pressure, then it has long been expected to take the form of strange quark matter (SQM), with comparable amounts of u, d, and s quarks. The possibility of quark matter with only u and d quarks (udQM) is usually dismissed because of the observed stability of ordinary nuclei. However, we find that udQM generally has lower bulk energy per baryon than normal nuclei and SQM. This emerges in a phenomenological model that describes the spectra of the lightest pseudoscalar and scalar meson nonets. Taking into account the finite size effects, udQM can be the ground state of baryonic matter only for baryon number A>A_{min} with A_{min}≳300. This ensures the stability of ordinary nuclei and points to a new form of stable matter just beyond the periodic table.
Top quark production at the LHC
Ferreira da Silva, Pedro
2016-01-01
Twenty years past its discovery, the top quark continues attracting great interest as experiments keep unveiling its properties. An overview of the latest measurements in the domain of top quark production, performed by the ATLAS and CMS experiments at the CERN LHC, is given. The latest measurements of top quark production rates via strong and electroweak processes are reported and compared to different perturbative QCD predictions. Fundamental properties, such as the mass or the couplings of the top quark, as well as re-interpretations seeking for beyond the standard model contributions in the top quark sector, are extracted from these measurements. In each case an attempt to highlight the first results and main prospects for the on-going Run 2 of the LHC is made.
Gapless Color-Flavor-Locked Quark Matter
DEFF Research Database (Denmark)
Alford, Mark; Kouvaris, Christoforos; Rajagopal, Krishna
2004-01-01
In neutral cold quark matter that is sufficiently dense that the strange quark mass M_s is unimportant, all nine quarks (three colors; three flavors) pair in a color-flavor locked (CFL) pattern, and all fermionic quasiparticles have a gap. We argue that as a function of decreasing quark chemical...... potential mu or increasing M_s, there is a quantum phase transition from the CFL phase to a new ``gapless CFL phase'' in which only seven quasiparticles have a gap. The transition occurs where M_s^2/mu is approximately equal to 2*Delta, with Delta the gap parameter. Gapless CFL, like CFL, leaves unbroken...... a linear combination Qtilde of electric and color charges, but it is a Qtilde-conductor with a nonzero electron density. These electrons and the gapless quark quasiparticles make the low energy effective theory of the gapless CFL phase and, consequently, its astrophysical properties are qualitatively...
PREFACE: Quark Matter 2006 Conference
Ma, Yu-Gang; Wang, En-Ke; Cai, Xu; Huang, Huan-Zhong; Wang, Xin-Nian; Zhu, Zhi-Yuan
2007-07-01
The Quark Matter 2006 conference was held on 14 20 November 2006 at the Shanghai Science Hall of the Shanghai Association of Sciences and Technology in Shanghai, China. It was the 19th International Conference on Ultra-Relativistic Nucleus Nucleus Collisions. The conference was organized jointly by SINAP (Shanghai Institute of Applied Physics, Chinese Academy of Sciences (CAS)) and CCNU (Central China Normal University, Wuhan). Over 600 scientists from 32 countries in five continents attended the conference. This is the first time that China has hosted such a premier conference in the field of relativistic heavy-ion collisions, an important event for the Chinese high energy nuclear physics community. About one half of the conference participants are junior scientists—a clear indication of the vigor and momentum for this field, in search of the fundamental nature of the nuclear matter at extreme conditions. Professor T D Lee, honorary chair of the conference and one of the founders of the quark matter research, delivered an opening address with his profound and philosophical remarks on the recent discovery of the nature of strongly-interacting quark-gluon-plasma (sQGP). Professor Hongjie Xu, director of SINAP, gave a welcome address to all participants on behalf of the two hosting institutions. Dr Peiwen Ji, deputy director of the Mathematics and Physics Division of the Natural Science Foundation of China (NSFC), also addressed the conference participants and congratulated them on the opening of the conference. Professor Mianheng Jiang, vice president of the Chinese Academy of Sciences (CAS), gave a concise introduction about the CAS as the premier research institution in China. He highlighted continued efforts at CAS to foster international collaborations between China and other nations. The Quark Matter 2006 conference is an example of such a successful collaboration between high energy nuclear physicists in China and other nations all over the world. The
International Nuclear Information System (INIS)
Chizhov, M.V.
1995-07-01
An extended electroweak model with second rank antisymmetric tensor field is proposed. The effective interactions resulting from the exchange of these fields have specific dependence on the transfer momentum. This leads to the introduction of new model-independent muon decay parameters (Mod. Phys. Lett. A9 (1994) 2979), which can be measured experimentally in SLAC and TRIUMF. The new tensor interactions can effect the three-particles semileptonic meson decays (Mod. Phys. Lett. A8 (1993) 2753). In this connection it will be interesting to propose new experiments on K + → l + νγ, K + → π 0 l + ν decays in DAΦNE. The K L -K s mass difference sets constraints on the tensor particles masses. The mass of the lightest tensor particle could be less than the t-quark mass. Therefore the lightest tensor particle may give an additional to the W-boson contribution into the t- quark decay with the same signature. (author). 10 refs, 2 figs
HUNTING THE QUARK GLUON PLASMA.
Energy Technology Data Exchange (ETDEWEB)
LUDLAM, T.; ARONSON, S.
2005-04-11
The U.S. Department of Energy's Relativistic Heavy Ion Collider (RHIC) construction project was completed at BNL in 1999, with the first data-taking runs in the summer of 2000. Since then the early measurements at RHIC have yielded a wealth of data, from four independent detectors, each with its international collaboration of scientists: BRAHMS, PHENIX, PHOBOS, and STAR [1]. For the first time, collisions of heavy nuclei have been carried out at colliding-beam energies that have previously been accessible only for high-energy physics experiments with collisions of ''elementary'' particles such as protons and electrons. It is at these high energies that the predictions of quantum chromodynamics (QCD), the fundamental theory that describes the role of quarks and gluons in nuclear matter, come into play, and new phenomena are sought that may illuminate our view of the basic structure of matter on the sub-atomic scale, with important implications for the origins of matter on the cosmic scale. The RHIC experiments have recorded data from collisions of gold nuclei at the highest energies ever achieved in man-made particle accelerators. These collisions, of which hundreds of millions have now been examined, result in final states of unprecedented complexity, with thousands of produced particles radiating from the nuclear collision. All four of the RHIC experiments have moved quickly to analyze these data, and have begun to understand the phenomena that unfold from the moment of collision as these particles are produced. In order to provide benchmarks of simpler interactions against which to compare the gold-gold collisions, the experiments have gathered comparable samples of data from collisions of a very light nucleus (deuterium) with gold nuclei, as well as proton-proton collisions, all with identical beam energies and experimental apparatus. The early measurements have revealed compelling evidence for the existence of a new form of nuclear
HUNTING THE QUARK GLUON PLASMA
International Nuclear Information System (INIS)
LUDLAM, T.; ARONSON, S.
2005-01-01
The U.S. Department of Energy's Relativistic Heavy Ion Collider (RHIC) construction project was completed at BNL in 1999, with the first data-taking runs in the summer of 2000. Since then the early measurements at RHIC have yielded a wealth of data, from four independent detectors, each with its international collaboration of scientists: BRAHMS, PHENIX, PHOBOS, and STAR [1]. For the first time, collisions of heavy nuclei have been carried out at colliding-beam energies that have previously been accessible only for high-energy physics experiments with collisions of ''elementary'' particles such as protons and electrons. It is at these high energies that the predictions of quantum chromodynamics (QCD), the fundamental theory that describes the role of quarks and gluons in nuclear matter, come into play, and new phenomena are sought that may illuminate our view of the basic structure of matter on the sub-atomic scale, with important implications for the origins of matter on the cosmic scale. The RHIC experiments have recorded data from collisions of gold nuclei at the highest energies ever achieved in man-made particle accelerators. These collisions, of which hundreds of millions have now been examined, result in final states of unprecedented complexity, with thousands of produced particles radiating from the nuclear collision. All four of the RHIC experiments have moved quickly to analyze these data, and have begun to understand the phenomena that unfold from the moment of collision as these particles are produced. In order to provide benchmarks of simpler interactions against which to compare the gold-gold collisions, the experiments have gathered comparable samples of data from collisions of a very light nucleus (deuterium) with gold nuclei, as well as proton-proton collisions, all with identical beam energies and experimental apparatus. The early measurements have revealed compelling evidence for the existence of a new form of nuclear matter at extremely high
Vector-like quarks: t’ and partners
International Nuclear Information System (INIS)
PANIZZI, L.
2014-01-01
Vector-like quarks are predicted in various scenarios of new physics, and their peculiar signatures from both pair and single production have been already investigated in detail. However no signals of vector-like quarks have been detected so far, pushing limits on their masses above 600–700GeV, depending on assumptions on their couplings. Experimental searches consider specific final states to pose bounds on the mass of a vector-like quark, usually assuming it is the only particle that contributes to the signal of new physics in that specific final state. However, realistic scenarios predict the existence of multiple vector-like quarks, possibly with similar masses. The reinterpretation of mass bounds from experimental searches is therefore not always straightforward. In this analysis I briefly summarise the constraints on vector-like quarks and their possible signatures at the LHC, focusing in particular on a model-independent description of single production processes for vector-like quark that mix with all generations and on the development of a framework to study scenarios with multiple vector-like quarks.
Bulk viscosity in 2SC quark matter
International Nuclear Information System (INIS)
Alford, Mark G; Schmitt, Andreas
2007-01-01
The bulk viscosity of three-flavour colour-superconducting quark matter originating from the nonleptonic process u + s ↔ u + d is computed. It is assumed that up and down quarks form Cooper pairs while the strange quark remains unpaired (2SC phase). A general derivation of the rate of strangeness production is presented, involving contributions from a multitude of different subprocesses, including subprocesses that involve different numbers of gapped quarks as well as creation and annihilation of particles in the condensate. The rate is then used to compute the bulk viscosity as a function of the temperature, for an external oscillation frequency typical of a compact star r-mode. We find that, for temperatures far below the critical temperature T c for 2SC pairing, the bulk viscosity of colour-superconducting quark matter is suppressed relative to that of unpaired quark matter, but for T ∼> T c /30 the colour-superconducting quark matter has a higher bulk viscosity. This is potentially relevant for the suppression of r-mode instabilities early in the life of a compact star
Latest ATLAS measurements on top quark properties
Derue, Frederic; The ATLAS collaboration
2017-01-01
The top quark is unique among the known quarks in that it decays before it has an opportunity to form hadronic bound states. This makes measurements of its properties particularly interesting as one can access directly the properties of a bare quark. The latest measurements of these properties with the ATLAS detector at the LHC are presented using 8 TeV and 13 TeV data, excluding results from single top production. Measurements of top quark spin observables in top-antitop events, each sensitive to a different coefficient of the spin density matrix, are presented and compared to the Standard Model predictions. The helicity of the W boson from the top decays and the production angles of the top quark are further discussed. New results on the measurment of color flow effects in $t{\\bar t}$ events are presented. Limits on the rate of flavour changing neutral currents in the production or decay of the top quark are reported. The cross-section measurement of photons produced in association with top-quark pairs is a...
Measurement of the top quark mass
International Nuclear Information System (INIS)
Blusk, Steven R.
1998-01-01
The first evidence and subsequent discovery of the top quark was reported nearly 4 years ago. Since then, CDF and D0 have analyzed their full Run 1 data samples, and analysis techniques have been refined to make optimal use of the information. In this paper, we report on the most recent measurements of the top quark mass, performed by the CDF and D0 collaborations at the Fermilab Tevatron. The CDF collaboration has performed measurements of the top quark mass in three decay channels from which the top quark mass is measured to be 175.5 ± 6.9 GeV=c 2 . The D0 collaboration combines measurements from two decay channels to obtain a top quark mass of 172.1 ± 7.1 GeV/c 2 . Combining the measurements from the two experiments, assuming a 2 GeV GeV/c 2 correlated systematic uncertainty, the measurement of the top quark mass at the Tevatron is 173.9 ± 5.2 GeV/c 2 . This report presents the measurements of the top quark mass from each of the decay channels which contribute to this measurement
Double logarithmic asymptotics of quark scattering amplitudes with flavour exchange
International Nuclear Information System (INIS)
Kirschner , R.; Lipatov, L.N.
1982-02-01
We propose simple equations in terms of the definite signature partial waves of the quark scattering and annihilation amplitudes with quark-quark and quark-antiquark states in the exchange channel. We discuss the singularities in the complex angular momentum plane generated by the double logarithmic contributions and point out their relation to the particle Regge trajectories. (author)
Heavy-quark physics in quantum chromodynamics
International Nuclear Information System (INIS)
Brodsky, S.J.
1991-04-01
Heavy quarks can expose new symmetries and novel phenomena in QCD not apparent in ordinary hadronic systems. In these lectures I discuss the use of effective-Lagrangian and light-cone Fock methods to analyze exclusive heavy hadron decays such as Υ → p bar p and B → ππ, and also to derive effective Schroedinger and Dirac equations for heavy quark systems. Two contributions to the heavy quark structure functions of the proton and other light hadrons are identified: an ''extrinsic'' contribution associated with leading twist QCD evolution of the gluon distribution, and a higher twist ''intrinsic'' contribution due to the hardness of high-mass fluctuations of multi-gluon correlations in hadronic wavefunctions. A non-perturbative calculation of the heavy quark distribution of a meson in QCD in one space and one time is presented. The intrinsic higher twist contributions to the pion and proton structure functions can dominate the hadronic production of heavy quark systems at large longitudinal momentum fraction x F and give anomalous contributions to the quark structure functions of ordinary hadrons at large x bj . I also discuss a number of ways in which heavy quark production in nuclear targets can test fundamental QCD phenomena and provide constraints on hadronic wavefunctions. The topics include color transparency, finite formation time, and predictions for charm production at threshold, including nuclear-bound quarkonium. I also discuss a number of QCD mechanisms for the suppression of J/ψ and Υ production in nuclear collisions, including gluon shadowing, the peripheral excitation of intrinsic heavy quark components at large x F , and the coalescence of heavy quarks with co-moving spectators at low x F
Energy Technology Data Exchange (ETDEWEB)
Messner, R. [Stanford Univ., CA (United States)
1997-01-01
This report covers preliminary measurements from SLD on heavy quark production at the Z{sup 0}, using 150,000 hadronic Z{sup 0} decays accumulated during the 1993-1995 runs. A measurement of R{sub b} with a lifetime double tag is presented. The high electron beam polarization of the SLC is employed in the direct measurement of the parity-violating parameters A{sub b} and A{sub c} by use of the left-right forward-backward asymmetry. The lifetimes of B{sup +} and B{sup 0} mesons have been measured by two analyses. The first identifies semileptonic decays of B mesons with high (p,p{sub t}) leptons; the second analysis isolates a sample of B meson decays with a two-dimensional impact parameter tag and reconstructs the decay length and charge using a topological vertex reconstruction method.
International Nuclear Information System (INIS)
Messner, R.
1997-01-01
This report covers preliminary measurements from SLD on heavy quark production at the Z 0 , using 150,000 hadronic Z 0 decays accumulated during the 1993-1995 runs. A measurement of R b with a lifetime double tag is presented. The high electron beam polarization of the SLC is employed in the direct measurement of the parity-violating parameters A b and A c by use of the left-right forward-backward asymmetry. The lifetimes of B + and B 0 mesons have been measured by two analyses. The first identifies semileptonic decays of B mesons with high (p,p t ) leptons; the second analysis isolates a sample of B meson decays with a two-dimensional impact parameter tag and reconstructs the decay length and charge using a topological vertex reconstruction method
Quark-lepton unification and proton decay
International Nuclear Information System (INIS)
Pati, J.C.; Salam, A.
1980-05-01
Complexions for proton decay arising within a maximal symmetry for quark-lepton unification, which leads to spontaneous rather than intrinsic violations of B, L and F are considered. Four major modes satisfying δB=-1 and δF=0, -2, -4 and -6 are noted. It is stressed that some of these modes can coexist in accord with allowed solutions for renormalization group equations for coupling constants for a class of unifying symmetries. None of these remarks is dependent on the nature of quark charges. It is noted that if quarks and leptons are made of constituent preons, the preon binding is likely to be magnetic. (author)
Signatures for quark clustering in nuclei
Energy Technology Data Exchange (ETDEWEB)
Carlson, C.E. [College of William and Mary, Williamsburg, VA (United States); Lassila, K.E. [Iowa State Univ., Ames, IA (United States)
1994-04-01
As a signature for the presence of quark clusters in nuclei, the authors suggest studying backward protons produced by electron scattering off deuterons and suggest a ratio that cancels out much of the detailed properties of deuterons or 6-quark clusters. The test may be viewed as a test that the short range part of the deuteron is still a 2-nucleon system. They make estimates to show how it fails in characteristic and significant ways if the two nucleons at short range coalesce into a kneaded 6-quark cluster.
Quark masses: An environmental impact statement
International Nuclear Information System (INIS)
Jaffe, Robert L.; Jenkins, Alejandro; Kimchi, Itamar
2009-01-01
We investigate worlds that lie on a slice through the parameter space of the standard model over which quark masses vary. We allow as many as three quarks to participate in nuclei, while fixing the mass of the electron and the average mass of the lightest baryon flavor multiplet. We classify as congenial worlds that satisfy the environmental constraint that the quark masses allow for stable nuclei with charge one, six, and eight, making organic chemistry possible. Whether a congenial world actually produces observers capable of measuring those quark masses depends on a multitude of historical contingencies, beginning with primordial nucleosynthesis and including other astrophysical processes, which we do not explore. Such constraints may be independently superimposed on our results. Environmental constraints such as the ones we study may be combined with information about the a priori distribution of quark masses over the landscape of possible universes to determine whether the measured values of the quark masses are determined environmentally, but our analysis is independent of such an anthropic approach. We estimate baryon masses as functions of quark masses via first-order perturbation theory in flavor SU(3) breaking. We estimate nuclear masses as functions of the baryon masses using two separate tools: for a nucleus made of two baryon species, when possible we consider its analog in our world, a nucleus with a similar binding energy, up to Coulomb contributions. For heavy nuclei or nuclei made of more than two baryons, we develop a generalized Weizsaecker semiempirical mass formula, in which strong kinematic flavor symmetry violation is modeled by a degenerate Fermi gas . We check for the stability of nuclei against fission, strong particle emission (analogous to α decay), and weak nucleon emission. For two light quarks with charges 2/3 and -1/3 , we find a band of congeniality roughly 29 MeV wide in their mass difference, with our own world lying comfortably
Confinement and quark structure of light hadrons
International Nuclear Information System (INIS)
Efimov, G.V.; Ivanov, M.A.
1988-01-01
We present a quark confinement model (QCM) for the description of the low-energy physics of light hadrons (mesons and baryons). The model is based on two hypotheses. First, the quark confinement is realized as averaging over vacuum gluon fields which are believed to provide the confinement of any colour objects. Second, hadrons are treated as collective colourless excitations of quark-gluon interactions. The description of strong, electromagnetic and weak interactions of mesons and baryons at the low energy is given from a unique point of view
Signatures for quark clustering in nuclei
International Nuclear Information System (INIS)
Carlson, C.E.; Lassila, K.E.
1994-01-01
As a signature for the presence of quark clusters in nuclei, the authors suggest studying backward protons produced by electron scattering off deuterons and suggest a ratio that cancels out much of the detailed properties of deuterons or 6-quark clusters. The test may be viewed as a test that the short range part of the deuteron is still a 2-nucleon system. They make estimates to show how it fails in characteristic and significant ways if the two nucleons at short range coalesce into a kneaded 6-quark cluster
Hadron structure with light dynamical quarks
International Nuclear Information System (INIS)
Edwards, R.G.; Richards, D.G.; Fleming, G.T.; Haegler, P.; Negele, J.W.; Orginos, K.; Pochinsky, A.; Renner, D.B.; Schroers, W.
2005-09-01
Generalized parton distributions encompass a wealth of information concerning the three-dimensional quark and gluon structure of the nucleon, and thus provide an ideal focus for the study of hadron structure using lattice QCD. The special limits corresponding to form factors and parton distributions are well explored experimentally, providing clear tests of lattice calculations, and the lack of experimental data for more general cases provides opportunities for genuine predictions and for guiding experiment. We present results from hybrid calculations with improved staggered (Asqtad) sea quarks and domain wall valence quarks at pion masses down to 350 MeV. (orig.)
A critical analysis of the quark status
Basile, M; Giusti, P; Massam, Thomas; Palmonari, F; Romeo, G C; Valenti, G; Zichichi, A
1977-01-01
A world analysis of the experiments to search for quarks shows that the general belief that quarks do not exist is not based on such good experimental grounds. For example, the extensive searches so far performed in strong interactions are limited to small p/sub T/ values; the electromagnetic case is even worse, while quark production in weak interactions is at present an unexplored field. Intuitive arguments on a plausible proton-breaking mechanism are presented in order to emphasize the serious limitations of the experiments performed so far, and to stimulate further searches in the right direction. (15 refs).
Quark matter in astrophysics and cosmology
International Nuclear Information System (INIS)
Olinto, A.V.
1987-10-01
We dicuss the role of quark matter in astrophysics and cosmology. The implications of the dynamics of the quark-hadron phase transition in the early universe for the element abundances from big bang nucleosynthesis and the composition of the dark matter in the universe are addressed. We discuss the possibility of deciding on an equation of state for high density matter by observing the cooling of a neutron star remnant of SN1987A. Quark matter models for the Centauros events, Cygnus X-3 cosmic ray events, high energy gamma-ray bursts and the solar neutrino problem are described. 25 refs., 3 figs
Global constraints on top quark anomalous couplings
Déliot, Frédéric; Faria, Ricardo; Fiolhais, Miguel C. N.; Lagarelhos, Pedro; Onofre, António; Pease, Christopher M.; Vasconcelos, Ana
2018-01-01
The latest results on top quark physics, namely single top quark production cross sections, W -boson helicity and asymmetry measurements are used to probe the Lorentz structure of the W t b vertex. The increase of sensitivity to new anomalous physics contributions to the top quark sector of the standard model is quantified by combining the relevant results from Tevatron and the Large Hadron Collider. The results show that combining an increasing set of available precision measurements in the search for new physics phenomena beyond the standard model leads to significant sensitivity improvements, especially when compared with the current expectation for the High Luminosity run at the LHC.
New quark model with weak triplet
International Nuclear Information System (INIS)
Suzuki, T.; Hori, S.; Yamada, E.; Yamanashi, K.; Abe, Y.
1976-01-01
We propose a new anomaly-free quark model with weak isotriplets for quarks. The ΔI=1/2 enhancement may be accounted for, the requirement of Golowich and Holstein being satisfied. There arises a mixing of left-handed charmed quarks with left-handed nucleonic ones - such mixing essentially gives an overall explanation of neutral-current effects, inclusive y distribution, the ratio sigma/sup T/(anti νd)/sigma/sup T/(νd), and copious dilepton events in ν and anti ν reactions
QCD thermodynamics with two flavors of quarks
Energy Technology Data Exchange (ETDEWEB)
Bernard, C.; Ogilvie, M.C. (Washington Univ., Saint Louis, MO (United States). Dept. of Physics); DeGrand, T.A. (Colorado Univ., Boulder, CO (United States). Physics Dept.); DeTar, C. (Utah Univ., Salt Lake City, UT (United States). Physics Dept.); Gottlieb, S.; Krasnitz, A. (Indiana Univ., Bloomington, IN (United States). Dept. of Physics); Sugar, R.L. (California Univ., Santa Barbara, CA (United States). Dept. of Physics); Toussaint, D. (Arizona Univ., Tucson, AZ (United States). Dept. of Physics); MIMD Lattice Computations (MILC) Collaboration
1992-05-01
We present results of numerical simulations of quantum chromo-dynamics at finite temperature on the Intel iPSC/860 parallel processor. We performed calculations with two flavors of Kogut-Susskind quarks and of Wilson quarks on 6 x 12[sup 3] lattices in order to study the crossover from the low temperature hadronic regime to the high temperature regime. We investigate the properties of the objects whose exchange gives static screening lengths by reconstructing their correlated quark-antiquark structure. (orig.).
Color oscillations and measuring the quark charge
International Nuclear Information System (INIS)
Lipkin, H.J.
1979-01-01
Color oscillations analogous to neutrino oscillations but with very high frequency are shown to be present in hadron states below color threshold. Experiments to distinguish between fractionally charged and integrally charged quark models both below and above color threshold are discussed. The instantaneous quark charge is shown to be measurable only in very fast processes determined by the high energy behavior of transition amplitudes well above color threshold. Results from the naive parton model for deep inelastic processes which indicate that real charges of quarks and gluons can be measured are shown to be in error because of neglect of color oscillations and interference terms. (author)
Heavy mesons in the bootstrap quark model
International Nuclear Information System (INIS)
Gerasyuta, S.M.; Sarantsev, A.V.
1990-01-01
In the frame of an approach developed for light quarks the scattering amplitudes of heavy quarks qQ-bar→qQ-bar→,QQ-bar→QQ-bar (q=u,d,s; Q=c,b,t) are calculated. The obtained mass values of the lowest c,b-mesons multiplets (J P =0 - ,1 - ,0 + ) are in a good agreement with the experimental ones. The masses of the new heavy particles with the t-quark are predicted. 46 refs.; 4 figs.; 5 tabs
Discovery of single top quark production
Energy Technology Data Exchange (ETDEWEB)
Gillberg, Dag [Simon Fraser Univ., Burnaby, BC (Canada)
2009-04-01
The top quark is by far the heaviest known fundamental particle with a mass nearing that of a gold atom. Because of this strikingly high mass, the top quark has several unique properties and might play an important role in electroweak symmetry breaking - the mechanism that gives all elementary particles mass. Creating top quarks requires access to very high energy collisions, and at present only the Tevatron collider at Fermilab is capable of reaching these energies. Until now, top quarks have only been observed produced in pairs via the strong interaction. At hadron colliders, it should also be possible to produce single top quarks via the electroweak interaction. Studies of single top quark production provide opportunities to measure the top quark spin, how top quarks mix with other quarks, and to look for new physics beyond the standard model. Because of these interesting properties, scientists have been looking for single top quarks for more than 15 years. This thesis presents the first discovery of single top quark production. An analysis is performed using 2.3 fb^{-1} of data recorded by the D0 detector at the Fermilab Tevatron Collider at centre-of-mass energy √s = 1.96 TeV. Boosted decision trees are used to isolate the single top signal from background, and the single top cross section is measured to be σ(p$\\bar{p}$ → tb + X, tqb + X) = 3.74_{-0.74}^{+0.95} pb. Using the same analysis, a measurement of the amplitude of the CKM matrix element V_{tb}, governing how top and b quarks mix, is also performed. The measurement yields: |V{sub tb}|f_{1}^{L}| = 1.05 -_{0.12}^{+0.13}, where f_{1}^{L} is the left-handed Wtb coupling. The separation of signal from background is improved by combining the boosted decision trees with two other multivariate techniques. A new cross section measurement is performed, and the significance for the excess over the predicted background exceeds 5
The bound state problem and quark confinement
International Nuclear Information System (INIS)
Chaichian, M.; Demichev, A.P.; Nelipa, N.F.
1980-01-01
A quantum field-theoretic model in which quark is confined is considered. System of equations for the Green functions of colour singlet and octet bound states is obtained. The method is based on the nonperturbative Schwinger-Dyson equations with the use of Slavnov-Taylor identities. It is shown that in the framework of the model if there exist singlet, then also exist octet bound states of the quark-antiquark system. Thus in general, confinement of free quarks does not mean absence of their coloured bound states. (author)
Quarks and gluons in hadrons and nuclei
International Nuclear Information System (INIS)
Close, F.E.
1989-01-01
These lectures discuss the particle-nuclear interface -- a general introduction to the ideas and application of colored quarks in nuclear physics, color, the Pauli principle, and spin flavor correlations -- this lecture shows how the magnetic moments of hadrons relate to the underlying color degree of freedom, and the proton's spin -- a quark model perspective. This lecture reviews recent excitement which has led some to claim that in deep inelastic polarized lepton scattering very little of the spin of a polarized proton is due to its quarks. 38 refs
Perturbative current quark masses in QCD
International Nuclear Information System (INIS)
Scadron, M.D.
1982-01-01
Neutral PCAC current quark masses follow from the covariant light plane of QCD requirement that α-m-circumflex(M), which is not inconsistent with the spontaneous breakdown of chiral symmetry. The resulting current quark mass ratio (m sub(s)/m-circumflex) sub(curr)=5 and scale m-circumflex sub(curr)=62 MeV at M=2 Gev are compatible with the observed πNσ - term, the Goldberger-Treiman discrepancy, the low-lying 0 - , 1/2 + , 1 - , 3/2 + hadron mass spectrum, the flavor independence of the dynamically generated quark mass and the perturbative weak binding limit. (author)
Heavy hybrid stars from multi-quark interactions
International Nuclear Information System (INIS)
Benic, Sanjin
2014-01-01
We explore the possibility of obtaining heavy hybrid stars within the framework of the two flavor Nambu-Jona-Lasinio model that includes 8-quark interactions in the scalar and in the vector channel. The main impact of the 8-quark scalar channel is to reduce the onset of quark matter, while the 8-quark vector channel acts to stiffen the equation of state at high densities. Within the parameter space where the 4-quark vector channel is small, and the 8-quark vector channel sizeable, stable stars with masses of 2 M âŠ™ and above are found to hold quark matter in their cores. (orig.)
Soft Gluon Radiation off Heavy Quarks beyond Eikonal Approximation
International Nuclear Information System (INIS)
Mazumder, Surasree; Bhattacharyya, Trambak; Abir, Raktim
2016-01-01
We calculate the soft gluon radiation spectrum off heavy quarks (HQs) interacting with light quarks (LQs) beyond small angle scattering (eikonality) approximation and thus generalize the dead-cone formula of heavy quarks extensively used in the literatures of Quark-Gluon Plasma (QGP) phenomenology to the large scattering angle regime which may be important in the energy loss of energetic heavy quarks in the deconfined Quark-Gluon Plasma medium. In the proper limits, we reproduce all the relevant existing formulae for the gluon radiation distribution off energetic quarks, heavy or light, used in the QGP phenomenology.
Flavour symmetry breaking and tuning the strange quark mass for 2+1 quark flavours
Energy Technology Data Exchange (ETDEWEB)
Bietenholz, W. [Universidad Autonoma de Mexico (Mexico). Inst. de Ciencias Nucleares; Bornyakov, V. [Institute for High Energy Physics, Protovino (Russian Federation); Institute of Theoretical and Experimental Physics, Moscow (Russian Federation); Goeckeler, M. [Regensburg Univ. (DE). Inst. fuer Theoretische Physik] (and others)
2010-12-15
QCD lattice simulations with 2+1 flavours typically start at rather large up-down and strange quark masses and extrapolate first the strange quark mass to its physical value and then the updown quark mass. An alternative method of tuning the quark masses is discussed here in which the singlet quark mass is kept fixed, which ensures that the kaon always has mass less than the physical kaon mass. Using group theory the possible quark mass polynomials for a Taylor expansion about the flavour symmetric line are found, which enables highly constrained fits to be used in the extrapolation of hadrons to the physical pion mass. Numerical results confirm the usefulness of this expansion and an extrapolation to the physical pion mass gives hadron mass values to within a few percent of their experimental values. (orig.)
Net charge of quark jets in (anti)neutrino interactions
International Nuclear Information System (INIS)
Teper, M.
1981-01-01
We analyse recent measurements of the net charges of quark jets in neutrino and antineutrino interactions. The data indicates that (i) the two quarks in the nucleon fragmentation region prefer to behave as a diquark rather than as a pair of independent quarks, and (ii) the struck quark does not appear to suffer any soft charge exchange of the kind that occurs when a valence quark inside a nucleon is slowed to x approx. O. (orig.)
A diquark model for baryons containing one heavy quark
International Nuclear Information System (INIS)
Ebert, D.; Feldmann, T.; Kettner, C.; Reinhardt, H.
1995-06-01
We present a phenomenological ansatz for coupling a heavy quark with two light quarks to form a heavy baryon. The heavy quark is treated in the heavy mass limit, and the light quark dynamics is approximated by propagating scalar and axial vector 'diquarks'. The resulting effective lagrangian, which incorporates heavy quark and chiral symmetry, describes interactions of heavy baryons with Goldstone bosons in the low energy region. As an application, the Isgur-Wise formfactors are estimated. (orig.)
Heavy quark production form jet conversions in a quark-gluon plasma
Energy Technology Data Exchange (ETDEWEB)
Liu , W.; Fries, R.
2008-05-22
Recently, it has been demonstrated that the chemical composition of jets in heavy ion collisions is significantly altered compared to the jets in the vacuum. This signal can be used to probe the medium formed in nuclear collisions. In this study we investigate the possibility that fast light quarks and gluons can convert to heavy quarks when passing through a quark-gluon plasma. We study the rate of light to heavy jet conversions in a consistent Fokker-Planck framework and investigate their impact on the production of high-p{sub T} charm and bottom quarks at the Relativistic Heavy Ion Collider and the Large Hadron Collider.
Heavy-quark fragmentation functions in the effective theory of heavy quarks
International Nuclear Information System (INIS)
Martynenko, A.P.; Saleev, V.A.
1996-01-01
The effective theory of heavy quarks is used to study b-bar-antiquark fragmentation in polarized Bc* mesons and b-quark fragmentation into P-wave (c-barb) states. The functions of heavy-quark fragmentation into longitudinally and transversely polarized S-wave (b-barc) states and into P-wave mesons containing b and c quarks are calculated. First-order corrections in 1/mb are taken into account exactly in these calculations. The results are shown to be consistent with the corresponding QCD calculations
Parity doublers in chiral potential quark models
International Nuclear Information System (INIS)
Kalashnikova, Yu. S.; Nefediev, A. V.; Ribeiro, J. E. F. T.
2007-01-01
The effect of spontaneous breaking of chiral symmetry over the spectrum of highly excited hadrons is addressed in the framework of a microscopic chiral potential quark model (Generalised Nambu-Jona-Lasinio model) with a vectorial instantaneous quark kernel of a generic form. A heavy-light quark-antiquark bound system is considered, as an example, and the Lorentz nature of the effective light-quark potential is identified to be a pure Lorentz-scalar, for low-lying states in the spectrum, and to become a pure spatial Lorentz vector, for highly excited states. Consequently, the splitting between the partners in chiral doublets is demonstrated to decrease fast in the upper part of the spectrum so that neighboring states of an opposite parity become almost degenerate. A detailed microscopic picture of such a 'chiral symmetry restoration' in the spectrum of highly excited hadrons is drawn and the corresponding scale of restoration is estimated
Quark ensembles with the infinite correlation length
Zinov'ev, G. M.; Molodtsov, S. V.
2015-01-01
A number of exactly integrable (quark) models of quantum field theory with the infinite correlation length have been considered. It has been shown that the standard vacuum quark ensemble—Dirac sea (in the case of the space-time dimension higher than three)—is unstable because of the strong degeneracy of a state, which is due to the character of the energy distribution. When the momentum cutoff parameter tends to infinity, the distribution becomes infinitely narrow, leading to large (unlimited) fluctuations. Various vacuum ensembles—Dirac sea, neutral ensemble, color superconductor, and BCS state—have been compared. In the case of the color interaction between quarks, the BCS state has been certainly chosen as the ground state of the quark ensemble.
Quark ensembles with the infinite correlation length
International Nuclear Information System (INIS)
Zinov’ev, G. M.; Molodtsov, S. V.
2015-01-01
A number of exactly integrable (quark) models of quantum field theory with the infinite correlation length have been considered. It has been shown that the standard vacuum quark ensemble—Dirac sea (in the case of the space-time dimension higher than three)—is unstable because of the strong degeneracy of a state, which is due to the character of the energy distribution. When the momentum cutoff parameter tends to infinity, the distribution becomes infinitely narrow, leading to large (unlimited) fluctuations. Various vacuum ensembles—Dirac sea, neutral ensemble, color superconductor, and BCS state—have been compared. In the case of the color interaction between quarks, the BCS state has been certainly chosen as the ground state of the quark ensemble
Quark ensembles with the infinite correlation length
Energy Technology Data Exchange (ETDEWEB)
Zinov’ev, G. M. [National Academy of Sciences of Ukraine, Bogoliubov Institute for Theoretical Physics (Ukraine); Molodtsov, S. V., E-mail: molodtsov@itep.ru [Joint Institute for Nuclear Research (Russian Federation)
2015-01-15
A number of exactly integrable (quark) models of quantum field theory with the infinite correlation length have been considered. It has been shown that the standard vacuum quark ensemble—Dirac sea (in the case of the space-time dimension higher than three)—is unstable because of the strong degeneracy of a state, which is due to the character of the energy distribution. When the momentum cutoff parameter tends to infinity, the distribution becomes infinitely narrow, leading to large (unlimited) fluctuations. Various vacuum ensembles—Dirac sea, neutral ensemble, color superconductor, and BCS state—have been compared. In the case of the color interaction between quarks, the BCS state has been certainly chosen as the ground state of the quark ensemble.
String description of quarks degrees of freedom
International Nuclear Information System (INIS)
Hadasz, L.
1994-01-01
This work presents a simple way of incorporating quark degrees of freedom (spin, charge and colour) into the classical string model. We introduce the model and derive from it the classical equations of motion. (author)
String description of quarks degrees of freedom
Energy Technology Data Exchange (ETDEWEB)
Hadasz, L. [Jagiellonian Univ., Inst. of Physics, Cracow (Poland)
1994-10-01
This work presents a simple way of incorporating quark degrees of freedom (spin, charge and colour) into the classical string model. We introduce the model and derive from it the classical equations of motion. (author). 7 refs.
Rotating Quark Stars in General Relativity
Directory of Open Access Journals (Sweden)
Enping Zhou
2018-03-01
Full Text Available We have built quasi-equilibrium models for uniformly rotating quark stars in general relativity. The conformal flatness approximation is employed and the Compact Object CALculator (cocal code is extended to treat rotating stars with surface density discontinuity. In addition to the widely used MIT bag model, we have considered a strangeon star equation of state (EoS, suggested by Lai and Xu, that is based on quark clustering and results in a stiff EoS. We have investigated the maximum mass of uniformly rotating axisymmetric quark stars. We have also built triaxially deformed solutions for extremely fast rotating quark stars and studied the possible gravitational wave emission from such configurations.
Constraints from jet calculus on quark recombination
International Nuclear Information System (INIS)
Jones, L.M.; Lassila, K.E.; Willen, D.
1979-01-01
Within the QCD jet calculus formalism, we deduce an equation describing recombination of quarks and antiquarks into mesons within a quark or gluon jet. This equation relates the recombination function R(x 1 ,x 2 ,x) used in current literature to the fragmentation function for producing that same meson out of the parton initiating the jet. We submit currently used recombination functions to our consistency test, taking as input mainly the u-quark fragmentation data into π + mesons, but also s-quark fragmentation into K - mesons. The constraint is well satisfied at large Q 2 for large moments. Our results depend on one parameter, Q 0 2 , the constraint equation being satisfied for small values of this parameter
Baryons in the heavy quark effective theory
International Nuclear Information System (INIS)
Mannel, T.; Roberts, W.; Ryzak, Z.
1990-08-01
We show how to incorporate baryons in the heavy quark effective theory. A convenient formalism is exhibited and applied to semileptonic weak decays of heavy baryons and to exclusive production of heavy baryons in e + e - annihilation. (orig.)
Top quark mass measurements with CMS
Kovalchuk, Nataliia
2017-01-01
Measurements of the top quark mass are presented, obtained from CMS data collected in proton-proton collisions at the LHC at centre-of-mass energies of 7 TeV and 8 TeV. The mass of the top quark is measured using several methods and channels, including the reconstructed invariant mass distribution of the top quark, an analysis of endpoint spectra as well as measurements from shapes of top quark decay distributions. The dependence of the mass measurement on the kinematic phase space is investigated. The results of the various channels are combined and compared to the world average. The top mass and also $\\alpha_{\\textnormal S}$ are extracted from the top pair cross section measured at CMS.
Integrability in heavy quark effective theory
Braun, Vladimir M.; Ji, Yao; Manashov, Alexander N.
2018-06-01
It was found that renormalization group equations in the heavy-quark effective theory (HQET) for the operators involving one effective heavy quark and light degrees of freedom are completely integrable in some cases and are related to spin chain models with the Hamiltonian commuting with the nondiagonal entry C( u) of the monodromy matrix. In this work we provide a more complete mathematical treatment of such spin chains in the QISM framework. We also discuss the relation of integrable models that appear in the HQET context with the large-spin limit of integrable models in QCD with light quarks. We find that the conserved charges and the "ground state" wave functions in HQET models can be obtained from the light-quark counterparts in a certain scaling limit.
International Nuclear Information System (INIS)
Gibson, B.F.
1985-01-01
Nuclear physics has dealt with nuclei and their interactions at interparticle distances which correspond to conditions that might be described as two bags of quarks barely overlapping. Here, where the asymptotically free theories of QCD have yet to provide a calculable picture of observed phenomena, the nuclear physicist has found a modicum of success and simplification in terms of a picture based upon the physically observable baryons and mesons. However, our understanding is far from complete. Because of this and our desire to learn where the transition to the quark-gluon matter picture occurs, we seek measurable effects due to the quark substructure. To that end, we must first define the limits of validity for describing nuclear phenomena in terms of the observed hadrons before evidence for quark-gluon degrees of freedom can be critically evaluated
Heavy quark threshold dynamics in higher order
Energy Technology Data Exchange (ETDEWEB)
Piclum, J.H.
2007-05-15
In this work we discuss an important building block for the next-to-next-to-next-to leading order corrections to the pair production of top quarks at threshold. Specifically, we explain the calculation of the third order strong corrections to the matching coefficient of the vector current in non-relativistic Quantum Chromodynamics and provide the result for the fermionic part, containing at least one loop of massless quarks. As a byproduct, we obtain the matching coefficients of the axial-vector, pseudo-scalar and scalar current at the same order. Furthermore, we calculate the three-loop corrections to the quark renormalisation constants in the on-shell scheme in the framework of dimensional regularisation and dimensional reduction. Finally, we compute the third order strong corrections to the chromomagnetic interaction in Heavy Quark Effective Theory. The calculational methods are discussed in detail and results for the master integrals are given. (orig.)
Subquark model of leptons and quarks
International Nuclear Information System (INIS)
Terazawa, Hidezumi.
1979-09-01
1) First, various subquark models so far proposed are briefly reviewed. Classifications of leptons and quarks in the models and their comparison are made. Our spinor-subquark model of leptons and quarks in which leptons and quarks are made of three subquarks of spin 1/2 is discussed in detail. 2) The possibility that guage bosons and Higgs scalars are also made of a subquark-antisubquark pair is discussed. 3) Exotic states of subquarks such as leptons and quarks of spin 3/2, exotic fermions, and exotic bosons are predicted in our model. 4) Subquark currents and their algebra are proposed. 5) Two unified subquark models of strong and electroweak interactions are discussed. The one is a gauge model and the other is a model of the Nambu-Jona-Lasinio type. 6) A subquark model of gravity and its supergrand unification is proposed. 7) An finally, a speculation is made on ''color-space correspondence''. (author)
Quark shell model using projection operators
International Nuclear Information System (INIS)
Ullah, N.
1988-01-01
Using the projection operators in the quark shell model, the wave functions for proton are calculated and expressions for calculating the wave function of neutron and also magnetic moment of proton and neutron are derived. (M.G.B.)
Heavy quark production by neutrinos and antineutrinos
International Nuclear Information System (INIS)
Scott, D.M.; Tanaka, K.
1979-01-01
The rate for producing t- and b-quarks in, respectively, neutrino and antineutrino interactions with nucleons are estimated. Experimental quark parton distribution functions, SU(2) x SU(2) x U(1) gauge group mixing angles, and threshold suppression through rescaling are used in the calculation. The ratios to total cross sections of b-quark production by anti nu, R/sub b//sup anti nu/, and t-quark production by ν, R/sub t//sup nu/, are, respectively, R/sub b//sup anti nu/ approximately equal to 10 -4 and R/sub t//sup nu/ approximately equal to 10 -5 for an incident energy of 200 GeV. 13 references
Charges on Strange Quark Nuggets in Space
Teplitz, V.; Bhatia, A.; Abers, E.; Dicus, D.; Repko, W.; Rosenbaum, D.
2008-01-01
This viewgraph presentation reviews the work done in calculations to find ZN such that the rate of ambient photons ionize the strange quark nuggets (SQNs) Electrons are equal to the rate of ambient e's to replace them.
Quark bag coupling to finite size pions
International Nuclear Information System (INIS)
De Kam, J.; Pirner, H.J.
1982-01-01
A standard approximation in theories of quark bags coupled to a pion field is to treat the pion as an elementary field ignoring its substructure and finite size. A difficulty associated with these treatments in the lack of stability of the quark bag due to the rapid increase of the pion pressure on the bad as the bag size diminishes. We investigate the effects of the finite size of the qanti q pion on the pion quark bag coupling by means of a simple nonlocal pion quark interaction. With this amendment the pion pressure on the bag vanishes if the bag size goes to zero. No stability problems are encountered in this description. Furthermore, for extended pions, no longer a maximum is set to the bag parameter B. Therefore 'little bag' solutions may be found provided that B is large enough. We also discuss the possibility of a second minimum in the bag energy function. (orig.)
A potential model for quark confinement
International Nuclear Information System (INIS)
Thaler, J.; Iqbal, M.J.
1985-02-01
A static quark potential model obtained from a relativistic wave-equation is considered. The long-part of the quadratic terms is suppressed by a glueball exchange mechanism and compatibility with the meson spectra is shown
Inverted radiative hierarchy of quark masses
International Nuclear Information System (INIS)
Berezhiani, Z.G.; Rattazzi, R.
1992-01-01
Inverted radiative hierarchy of quark masses is investigated. The authors suggest that the mass hierarchy is first generated in a sector of heavy isosinglet fermions due to radiative effects and then projected in the inverted way to the usual quarks by means of a universal seesaw. The simple left-right symmetric gauge model is presented with the P- and CP-parities and the exact isotopical symmetry which are softly (or spontaneously) broken in the Higgs potential. This approach naturally explains the observed pattern of quark masses and mixing, providing the quantitatively correct formula for the Cabibbo angle. Top quark is predicted to be in the 90-150 GeV range
Charmed quark production as a gluon probe
International Nuclear Information System (INIS)
Phillips, R.J.N.
1980-09-01
The lowest-order QCD mechanisms for producing cc or other heavy quarks depend on the gluon distributions in hadrons; hence the latter can be extracted directly from experiment. Recent results are described. (author)
Top quark mass measurement in dilepton channel
International Nuclear Information System (INIS)
Lysak, R.
2007-01-01
In this work, we measured the top quark mass in tt'-' events produced in pp'-' interactions at the center-of-mass energy 1.96 TeV using CDF detector. We used dilepton in tt'-' events where both W bosons from top quarks are decaying into leptons. The data sample corresponds to 340 pb -1 . We found there 33 tt'-' candidates while expecting 10.5 ± 1.9 background events. In the measurement, we reconstruct one, representative mass for each event using the assumption about longitudinal momentum of in tt'-' system, in order to be able to kinematically solve the under-constrained system. The mass distributions (templates) are created for simulated signal and background events. Templates are parametrized in order to obtain smooth probability density functions. Likelihood maximization which includes these parametrized templates is then performed on reconstructed masses obtained from data sample in order to obtain final top quark mass estimate. The result of applying this procedure on data events is top quark mass estimate 169.5 +7. 7 - 7.2 (stat.) ± 4.0(syst.) GeV/c 2 for 30 out of 33 candidates, where the solution for top quark mass was found. This measurement was a part of first top quark mass measurement in dilepton channel at CDF in Run II. The top quark mass measured here is consistent with the CDF measurement in dilepton channel from Run I M top = 167.4 ± 10.3(stat.) ± 4.8(syst.) GeV/c 2 . Moreover, the combined result of four top quark mass measurements in dilepton channel from Run II (one of these four measurements is our measurement) M top = 167.9 ± 5.2(stat.) ± 3.7(syst.) GeV/c 2 significantly (by ∼ 40%) improved the precision of top quark mass determination from Run I. It should be also noted, that this combined result is consistent with measurement obtained in 'lepton+jets' channel at CDF in Run II (M top = 173.5 +3.9 -3.8 GeV/c 2 ). So, we don't have yet any indication about new physics beyond the Standard Model. My main contribution in this analysis was
Varnes, Erich; The ATLAS collaboration
2017-01-01
Vector like quarks appear in many theories beyond the Standard Model as a way to cancel the mass divergence for the Higgs boson. The current status of the ATLAS searches for the production of vector like quarks will be reviewed for proton-proton collisions at 13 TeV. This presentation will address the analysis techniques, in particular the selection criteria, the background modeling and the related experimental uncertainties. The phenomenological implications of the obtained results will also be discussed.
Non-perturbative quark mass renormalization
Capitani, S.; Luescher, M.; Sint, S.; Sommer, R.; Weisz, P.; Wittig, H.
1998-01-01
We show that the renormalization factor relating the renormalization group invariant quark masses to the bare quark masses computed in lattice QCD can be determined non-perturbatively. The calculation is based on an extension of a finite-size technique previously employed to compute the running coupling in quenched QCD. As a by-product we obtain the $\\Lambda$--parameter in this theory with completely controlled errors.
Quark fragmentation into 3PJ quarkonium
International Nuclear Information System (INIS)
Ma, J.P.
1996-01-01
The functions of parton fragmentation into 3 P J quarkonium at order α 2 s are calculated, where the parton can be a heavy or a light quark. The obtained functions explicitly satisfy the Altarelli-Parisi equation and they are divergent, behaving as z -1 near z = O. However, if one choses the renormalization scale as twice of the heavy quark mass, the fragmentation functions are regular over the whole range of z. 15 refs., 2 figs
Physics of the quark-gluon plasma
International Nuclear Information System (INIS)
Polonyi, J.; Institut National de Physique Nucleaire et de Physique des Particules; Lorand Eoetvoes Univ., Budapest
1995-01-01
Some features of the high temperature gluonic matter, such as the breakdown of the fundamental group symmetry by the kinetic energy, the screening of test quarks by some unusual gluon states and the explanation of the absence of isolated quarks in the vacuum without the help of infinities are presented in this talk. Special attention is paid to separate the dynamical input inferred from the numerical results of lattice gauge theory from the kinematics. (author)
Predictions of a theory of quark confinement
International Nuclear Information System (INIS)
Mack, G.
1980-03-01
We propose a theory of quark confinement which uses only the simplest of approximations. It explains persistence of quark confinement in Yang Mills theories with gauge group SU(2) or SU(3) as a consequence of asymptotic freedom in perturbation theory and of the known phase structure of Z(2) resp. Z(3) lattice gauge theory. Predictions are derived which can in principle be tested by computer simulation. Some are already tested by results of Creutz. They are in good agreement. (orig.)
Running heavy-quark masses in DIS
International Nuclear Information System (INIS)
Alekhin, S.; Moch, S.
2011-07-01
We report on determinations of the running mass for charm quarks from deep-inelastic scattering reactions. The method provides complementary information on this fundamental parameter from hadronic processes with space-like kinematics. The obtained values are consistent with but systematically lower than the world average as published by the PDG. We also address the consequences of the running mass scheme for heavy-quark parton distributions in global fits to deep-inelastic scattering data. (orig.)
Chiral Lagrangians and quark condensate in nuclei
International Nuclear Information System (INIS)
Delorme, J.; Chanfray, G.; Ericson, M.
1996-03-01
The evolution of density of quark condensate in nuclear medium with interacting nucleons, including the short range correlations is examined. Two chiral models are used, the linear sigma model and the non-linear one. It is shown that the quark condensate, as other observables, is independent on the variant selected. The application to physical pions excludes the linear sigma model as a credible one. The non-linear models restricted to pure s-wave pion-nucleon scattering are examined. (author)
The Model of Complex Structure of Quark
Liu, Rongwu
2017-09-01
In Quantum Chromodynamics, quark is known as a kind of point-like fundamental particle which carries mass, charge, color, and flavor, strong interaction takes place between quarks by means of exchanging intermediate particles-gluons. An important consequence of this theory is that, strong interaction is a kind of short-range force, and it has the features of ``asymptotic freedom'' and ``quark confinement''. In order to reveal the nature of strong interaction, the ``bag'' model of vacuum and the ``string'' model of string theory were proposed in the context of quantum mechanics, but neither of them can provide a clear interaction mechanism. This article formulates a new mechanism by proposing a model of complex structure of quark, it can be outlined as follows: (1) Quark (as well as electron, etc) is a kind of complex structure, it is composed of fundamental particle (fundamental matter mass and electricity) and fundamental volume field (fundamental matter flavor and color) which exists in the form of limited volume; fundamental particle lies in the center of fundamental volume field, forms the ``nucleus'' of quark. (2) As static electric force, the color field force between quarks has classical form, it is proportional to the square of the color quantity carried by each color field, and inversely proportional to the area of cross section of overlapping color fields which is along force direction, it has the properties of overlap, saturation, non-central, and constant. (3) Any volume field undergoes deformation when interacting with other volume field, the deformation force follows Hooke's law. (4) The phenomena of ``asymptotic freedom'' and ``quark confinement'' are the result of color field force and deformation force.
Broken colour symmetry and liberated quarks
International Nuclear Information System (INIS)
Ma, E.
1976-01-01
A quark model of hadrons is presented and discussed, in which local SU(3) gauge symmetry is completely broken and yet asymptotic freedom is preserved. There is no infrared slavery in this model, and isolated quarks are free to exist. Colour becomes a global symmetry which is only approximate under SU(3) but nearly exact under SU(2) x U(1), as far as the usual hadron spectroscopy is concerned. (Auth.)
Hadronization of the quark-gluon plasma
International Nuclear Information System (INIS)
Mueller, B.; Sano, M.; Sato, H.; Schaefer, A.
1986-11-01
We construct a model for hadronization of the quark-gluon plasma, based on the relativistic coalescence model. We relate the coalescence amplitude to the one-particle Wigner function for quarks in the plasma. The relation between the Wigner function and the nucleon structure function is pointed out. We derive explicit expressions for the production of mesons and baryons in the framework of the relativistic harmonic oscillator model of hadronic structure. (author)
Predictions of a theory of quark confinement
International Nuclear Information System (INIS)
Mack, G.
1980-01-01
A theory of quark confinement is proposed which uses only the simplest of approximations. It explains persistence of quark confinement in Yang-Mills theories with gauge group SU(2) or SU(3) as a consequence of asymptotic freedom in perturbation theory and of the known phase structure of Z(2) and Z(3) lattice gauge theory. Predictions are derived which can in principle be tested by computer simulation. Some are are already tested by results of Creutz. They are in good agreement
Excited quark production at hadron colliders
International Nuclear Information System (INIS)
Baur, U.; Hinchliffe, I.; Zeppenfeld, D.
1987-06-01
Composite models generally predict the existence of excited quark and lepton states. We consider the production and experimental signatures of excited quarks Q* of spin and isospin 1/2 at hadron colliders and estimate the background for those channels which are most promising for Q* identification. Multi-TeV pp-colliders will give access to such particles with masses up to several TeV
Hadron production from a boiling quark soup
International Nuclear Information System (INIS)
Bohr, H.; Nielsen, H.B.
1977-01-01
A thermodynamical quark model is presented which can predict cross sections for particle production in hadronic interactions at high energies. In this model a hadronic collision gives rise to a soup of quarks and antiquarks at some temperature kT approximately 170 MeV. Results for inclusive meson production cross sections look promising in comparison with experiments. A formula for the inclusive cross section is given. (Auth.)
Quasinuclear colored quark model for hadrons
International Nuclear Information System (INIS)
Lipkin, H.J.
1978-09-01
Lectures are presented in which a quasinuclear constituent quark model in which constituent quarks are assumed to be made of constituent interacting with a two-body color-exchange logarithmic potential is considered. The color degree of freedom is discussed in detail. Some properties of the logarithmic potential and the definition of the quasinuclear model and its validity, and a comparison of some of its predictions with experiment are described. 31 references
Ellipsoidal bag model for heavy quark system
International Nuclear Information System (INIS)
Bi Pinzhen; Fudan Univ., Shanghai
1991-01-01
The ellipsoidal bag model is used to describe heavy quark systems such as Qanti Q, Qanti Qg and Q 2 anti Q 2 . Instead of two step model, these states are described by an uniform picture. The potential derived from the ellipsoidal bag for Qanti Q is almost equivalent to the Cornell potential. For a Q 2 anti Q 2 system with large quark pair separation, an improvement of 70 MeV is obtained comparing with the spherical bag. (orig.)
Transverse Momentum Distributions for Heavy Quark Pairs
Berger, Edmond L.; Meng, Ruibin
1993-01-01
We study the transverse momentum distribution for a $pair$ of heavy quarks produced in hadron-hadron interactions. Predictions for the large transverse momentum region are based on exact order $\\alpha_s^3$ QCD perturbation theory. For the small transverse momentum region, we use techniques for all orders resummation of leading logarithmic contributions associated with initial state soft gluon radiation. The combination provides the transverse momentum distribution of heavy quark pairs for all...
Quark-hadron duality in meson physics
International Nuclear Information System (INIS)
Anisovich, V.V.
1994-01-01
Quark hadron dualism is discussed, based on observing the changes in the quark model characteristics after the inclusion into hadron degrees of freedom. A standard version of the potential model is presented. The potential which is responsible for the formation of mesons may be divided into two pieces: a short-range part for distances about 0.3 - 0.5 fm and a long-range part at distances more than 1 fm. (R.P.). 5 refs., 2 figs
Quark-hadron duality in meson physics
Energy Technology Data Exchange (ETDEWEB)
Anisovich, V.V. [Petersburg Nuclear Physics Inst., Gatchina (Russian Federation)
1994-12-31
Quark hadron dualism is discussed, based on observing the changes in the quark model characteristics after the inclusion into hadron degrees of freedom. A standard version of the potential model is presented. The potential which is responsible for the formation of mesons may be divided into two pieces: a short-range part for distances about 0.3 - 0.5 fm and a long-range part at distances more than 1 fm. (R.P.). 5 refs., 2 figs.
Gauging Non-local Quark Models
International Nuclear Information System (INIS)
Broniowski, W.
1999-09-01
The gauge effective quark model with non-local interactions is considered. It is shown how this approach regularize the theory in such a way that the anomalies are preserved and charges are properly quantized. With non-local interactions the effective action is finite to all orders in the loop expansion and there is no need to introduce the quark momentum cut-off parameter
Quark model and high energy collisions
International Nuclear Information System (INIS)
Nyiri, J.; Kobrinsky, M.N.
1982-06-01
The aim of the present review is to show that the additive quark model describes well not only the static features of hadrons but also the interaction processes at high energies. Considerations of the hadron-hadron and hadron-nucleus interactions and of the hadron production in multiparticle production processes suggest serious arguments in favour of the nucleus-like hadron structure and show the possibility to apply the rules of quark statistics to the description of the secondary particle production. (author)
Identified particles in quark and gluon jets
Abreu, P; Adye, T; Ajinenko, I; Alekseev, G D; Alemany, R; Allport, P P; Almehed, S; Amaldi, Ugo; Amato, S; Andreazza, A; Andrieux, M L; Antilogus, P; Apel, W D; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barbi, M S; Barbiellini, Guido; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Bärring, O; Barrio, J A; Bartl, Walter; Bates, M J; Battaglia, Marco; Baubillier, M; Baudot, J; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Benvenuti, Alberto C; Berggren, M; Bertini, D; Bertrand, D; Besançon, M; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bizouard, M A; Bloch, D; Blume, M; Bolognese, T; Bonesini, M; Bonivento, W; Booth, P S L; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozzo, M; Branchini, P; Brand, K D; Brenke, T; Brenner, R A; Bricman, C; Brown, R C A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschmann, P; Cabrera, S; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Cankocak, K; Cao, F; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Chabaud, V; Charpentier, P; Chaussard, L; Checchia, P; Chelkov, G A; Chen, M; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Chudoba, J; Cindro, V; Collins, P; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Cowell, J H; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; Dahl-Jensen, Erik; Dahm, J; D'Almagne, B; Dam, M; Damgaard, G; Dauncey, P D; Davenport, Martyn; Da Silva, W; Defoix, C; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Brabandere, S; De Clercq, C; La Vaissière, C de; De Lotto, B; De Min, A; De Paula, L S; De Saint-Jean, C; Dijkstra, H; Di Ciaccio, Lucia; Di Diodato, A; Djama, F; Djannati, A; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Durand, J D; Edsall, D M; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Elsing, M; Engel, J P; Erzen, B; Espirito-Santo, M C; Falk, E; Fassouliotis, D; Feindt, Michael; Ferrer, A; Fichet, S; Filippas-Tassos, A; Firestone, A; Fischer, P A; Föth, H; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frenkiel, P; Fries, D E C; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gerdyukov, L N; Gokieli, R; Golob, B; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Graziani, E; Green, C; Grefrath, A; Gris, P; Grosdidier, G; Grzelak, K; Gumenyuk, S A; Gunnarsson, P; Günther, M; Guy, J; Hahn, F; Hahn, S; Hajduk, Z; Hallgren, A; Hamacher, K; Harris, F J; Hedberg, V; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Heuser, J M; Higón, E; Hilke, Hans Jürgen; Hill, T S; Holmgren, S O; Holt, P J; Holthuizen, D J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, L B; Jönsson, P E; Joram, Christian; Juillot, P; Kaiser, M; Kapusta, F; Karafasoulis, K; Karlsson, M; Karvelas, E; Katargin, A; Katsanevas, S; Katsoufis, E C; Keränen, R; Khokhlov, Yu A; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klapp, O; Klein, H; Klovning, A; Kluit, P M; Köne, B; Kokkinias, P; Koratzinos, M; Korcyl, K; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Krammer, Manfred; Kreuter, C; Kronkvist, I J; Krumshtein, Z; Krupinski, W; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lacasta, C; Laktineh, I; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Lapin, V; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Legan, C K; Leitner, R; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Libby, J; Liko, D; Lindner, R; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Maehlum, G; Mahon, J R; Malmgren, T G M; Malychev, V; Mandl, F; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Masik, J; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; Medbo, J; Merk, M; Meroni, C; Meyer, S; Meyer, W T; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Morettini, P; Müller, H; Münich, K; Mulders, M; Mundim, L M; Murray, W J; Muryn, B; Myatt, Gerald; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Niss, P; Nomerotski, A; Normand, Ainsley; Novák, M; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Österberg, K; Ouraou, A; Paganini, P; Paganoni, M; Pagès, P; Pain, R; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Passeri, A; Pegoraro, M; Peralta, L; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Petrovykh, M; Phillips, H T; Piana, G; Pierre, F; Pimenta, M; Podobnik, T; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Rames, J; Ratoff, P N; Read, A L; Reale, M; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Reinhardt, R; Renton, P B; Resvanis, L K; Richard, F; Richardson, J; Rídky, J; Rinaudo, G; Ripp, I; Romero, A; Roncagliolo, I; Ronchese, P; Roos, L; Rosenberg, E I; Roudeau, Patrick; Rovelli, T; Rückstuhl, W; Ruhlmann-Kleider, V; Ruiz, A; Rybicki, K; Rybin, A; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sahr, O; Sajot, G; Salt, J; Sánchez, J; Sannino, M; Schimmelpfennig, M; Schneider, H; Schwickerath, U; Schyns, M A E; Sciolla, G; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Seitz, A; Sekulin, R L; Serbelloni, L; Shellard, R C; Siegrist, P; Silvestre, R; Simonetti, S; Simonetto, F; Sissakian, A N; Sitár, B; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Sosnowski, R; Souza-Santos, D; Spassoff, Tz; Spiriti, E; Sponholz, P; Squarcia, S; Stampfer, D; Stanescu, C; Stanic, S; Stapnes, Steinar; Stavitski, I; Stevenson, K; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Tavernet, J P; Chikilev, O G; Thomas, J; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Todorova, S; Toet, D Z; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortora, L; Tranströmer, G; Treille, D; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tyndel, M; Tzamarias, S; Überschär, B; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; Van der Velde, C; van Apeldoorn, G W; van Dam, P; Van Doninck, W K; Van Eldik, J; Van Lysebetten, A; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Vilanova, D; Vincent, P; Vitale, L; Vlasov, E; Vodopyanov, A S; Vrba, V; Wahlen, H; Walck, C; Weierstall, M; Weilhammer, Peter; Weiser, C; Wetherell, Alan M; Wicke, D; Wickens, J H; Wielers, M; Wilkinson, G R; Williams, W S C; Winter, M; Witek, M; Wlodek, T; Woschnagg, K; Yip, K; Yushchenko, O P; Zach, F; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zito, M; Zontar, D; Zucchelli, G C; Zumerle, G
1997-01-01
A sample of about 1.4 million hadronic \\z decays, selected among the data recorded by the DELPHI detector at LEP during 1994, was used to measure for the first time the momentum spectra of \\kp, \\ko, \\p, \\l and their antiparticles in gluon and quark jets. As observed for inclusive charged particles, the production spectra of identified particles were found to be softer in gluon jets than in quark jets, with a higher total multiplicity.
A chiral quark model of the nucleon
International Nuclear Information System (INIS)
Wakamatsu, M.; Yoshiki, H.
1991-01-01
The baryon-number-one extended solution of a chiral quark lagrangian is obtained in the stationary-phase approximation with full inclusion of the sea-quark degrees of freedom. The collective quantization method is then applied to this static solution to obtain the nucleon (and Δ) state with the definite spin and isospin. A fundamental quantity appearing in this quantization procedure is the moment of inertia of the soliton system. We evaluate this quantity without recourse to the derivative expansion, by performing the necessary double sum over all the positive- and negative-energy quark orbitals in the mean field potential. Closed formulas are-derived for the nucleon (and Δ) matrix elements of arbitrary quark bilinear operators. These formulas are then used for calculating various nucleon observables in a nonperturbative manner with inclusion of the sea-quark effects. An especially interesting observable is the spin expectation value of the proton related to the recent EMC experiment. We derive the proton spin sum rule, and then explicitly evaluate the detailed contents of this sum rule. The proton spin analysis is shown to be particularly useful for clarifying the underlying dynamical content of the Skyrme model at quark level, thereby providing us with valuable information about its utility and limitation. (orig.)
Quark ACM with topologically generated gluon mass
Choudhury, Ishita Dutta; Lahiri, Amitabha
2016-03-01
We investigate the effect of a small, gauge-invariant mass of the gluon on the anomalous chromomagnetic moment (ACM) of quarks by perturbative calculations at one-loop level. The mass of the gluon is taken to have been generated via a topological mass generation mechanism, in which the gluon acquires a mass through its interaction with an antisymmetric tensor field Bμν. For a small gluon mass ( ACM at momentum transfer q2 = -M Z2. We compare those with the ACM calculated for the gluon mass arising from a Proca mass term. We find that the ACM of up, down, strange and charm quarks vary significantly with the gluon mass, while the ACM of top and bottom quarks show negligible gluon mass dependence. The mechanism of gluon mass generation is most important for the strange quarks ACM, but not so much for the other quarks. We also show the results at q2 = -m t2. We find that the dependence on gluon mass at q2 = -m t2 is much less than at q2 = -M Z2 for all quarks.
Top Quark Mass Measurement in Dilepton Channel
Energy Technology Data Exchange (ETDEWEB)
Lysak, Roman [Inst. of Experimental Physics, Kosice (Slovak Republic)
2007-06-01
We present a measurement of the top quark mass from events produced in p$\\bar{p}$ collisions at a center-of-mass energy of 1.96 TeV, using the Collider Detector at Fermilab. We identify t$\\bar{t}$ candidates where both W bosons from the top quarks decay into leptons (eν, µν, τν) from a data sample of 340 pb^{-1}. The top quark mass is reconstructed in each event separately by the method which draw upon simulated distribution of t$\\bar{t}$ longitudinal momentum in order to extract probability distribution for the top quark mass. Representative distributions, or templates, are constructed from simulated samples of signal and background events, and parametrized to form continuous probability density functions. A likelihood fit incorporating these parametrized templates is then performed on the data sample masses in order to derive a final top quark mass. Measured top quark mass is M_{top} = 169.5$+7.7\\atop{-7.2}$(stat.) ± 4.0(syst.) GeV/c^{2}.
Experimental constraint on quark electric dipole moments
Liu, Tianbo; Zhao, Zhiwen; Gao, Haiyan
2018-04-01
The electric dipole moments (EDMs) of nucleons are sensitive probes of additional C P violation sources beyond the standard model to account for the baryon number asymmetry of the universe. As a fundamental quantity of the nucleon structure, tensor charge is also a bridge that relates nucleon EDMs to quark EDMs. With a combination of nucleon EDM measurements and tensor charge extractions, we investigate the experimental constraint on quark EDMs, and its sensitivity to C P violation sources from new physics beyond the electroweak scale. We obtain the current limits on quark EDMs as 1.27 ×10-24 e .cm for the up quark and 1.17 ×10-24 e .cm for the down quark at the scale of 4 GeV2 . We also study the impact of future nucleon EDM and tensor charge measurements, and show that upcoming new experiments will improve the constraint on quark EDMs by about 3 orders of magnitude leading to a much more sensitive probe of new physics models.
Strange sea quark effects for low lying baryons
International Nuclear Information System (INIS)
Upadhyay, A.; Batra, Meenakshi
2013-01-01
Assuming hadrons as an ensemble of quark-gluon Fock states, contributions from sea quarks and gluons can be studied in detail for ground state baryons. Spin crisis of nucleons say that only a small fraction of proton spin is carried by valence quarks. Rest part is distributed among gluons and sea which includes both strange and non-strange quark-anti-quark pairs. This necessitates the study of strange sea quark contribution for other baryons too due to higher mass and presence of strange quark in valence part. Recent studies have also studied strange sea contribution for baryons using different models. We implement the statistical modeling techniques to compute strange sea quark content for baryon octet. Statistical model has already been applied to study sea quark content for nucleons in the form of scalar, vector and tensor sea. In our present work the same idea has been extended for strange sea to probe the structure in more detail. (author)
Quark cluster model in the three-nucleon system
International Nuclear Information System (INIS)
Osman, A.
1986-11-01
The quark cluster model is used to investigate the structure of the three-nucleon systems. The nucleon-nucleon interaction is proposed considering the colour-nucleon clusters and incorporating the quark degrees of freedom. The quark-quark potential in the quark compound bag model agrees with the central force potentials. The confinement potential reduces the short-range repulsion. The colour van der Waals force is determined. Then, the probability of quark clusters in the three-nucleon bound state systems are numerically calculated using realistic nuclear wave functions. The results of the present calculations show that quarks cluster themselves in three-quark systems building the quark cluster model for the trinucleon system. (author)
Properties of Doubly Heavy Baryons in the Relativistic Quark Model
International Nuclear Information System (INIS)
Ebert, D.; Faustov, R.N.; Galkin, V.O.; Martynenko, A.P.
2005-01-01
Mass spectra and semileptonic decay rates of baryons consisting of two heavy (b or c) and one light quark are calculated in the framework of the relativistic quark model. The doubly heavy baryons are treated in the quark-diquark approximation. The ground and excited states of both the diquark and quark-diquark bound systems are considered. The quark-diquark potential is constructed. The light quark is treated completely relativistically, while the expansion in the inverse heavy-quark mass is used. The weak transition amplitudes of heavy diquarks bb and bc going, respectively, to bc and cc are explicitly expressed through the overlap integrals of the diquark wave functions in the whole accessible kinematic range. The relativistic baryon wave functions of the quark-diquark bound system are used for the calculation of the decay matrix elements, the Isgur-Wise function, and decay rates in the heavy-quark limit
International Nuclear Information System (INIS)
Paschos, E.A.
1992-01-01
These lectures present a pedagogical introduction to the topics quark mixing and CP violation. They explain how the mixing matrix comes about and reviews the values of constraints for its elements. The second chapter reviews the CP transformation properties of amplitudes and defines the quantities which are measured in the experiments. Then it reviews the theory of CP violation in the standard model. In addition to the phase and the angles introduced through the flavor matrix, numerical predictions also depend (a) on hadronic matrix elements of weak current operators and (b) the short distance expansion of effective Hamiltonians computed by methods of Quantum Chromodynamics (QCD). I also review these topics and present predictions for (ε'/ε) which are shown to be consistent with the experiments. Last but not least, the article is divided into sections which are as self-contained as possible. The article assumes a general knowledge of the electroweak theory. For guidance, the interested reader will find a table of contents at the end of the text. (author). 29 refs, 5 figs, 1 tab
International Nuclear Information System (INIS)
Glendenning, N.K.
1989-11-01
We investigate the implications of rapid rotation corresponding to the frequency of the new pulsar reported in the supernovae remnant SN1987A. It places very stringent conditions on the equation of state if the star is assumed to be bound by gravity alone. We find that the central energy density of the star must be greater than 13 times that of nuclear density to be stable against the most optimistic estimate of general relativistic instabilities. This is too high for the matter to consist of individual hadrons. We conclude that it is implausible that the newly discovered pulsar, if its half-millisecond signals are attributable to rotation, is a neutron star. We show that it can be a strange quark star, and that the entire family of strange stars can sustain high rotation if strange matter is stable at an energy density exceeding about 5.4 times that of nuclear matter. We discuss the conversion of a neutron star to strange star, the possible existence of a crust of heavy ions held in suspension by centrifugal and electric forces, the cooling and other features. 34 refs., 10 figs., 1 tab
Renormalisation constants of quark bilinears in lattice QCD with four dynamical Wilson quarks
Blossier, B.; Brinet, M.; Carrasco, N.; Dimopoulos, P.; Du, X.; Frezzotti, R.; Gimenez, V.; Herdoiza, G.; Jansen, K.; Lubicz, V.; Palao, D.; Pallante, E.; Pene, O.; Petrov, K.; Reker, S.; Rossi, G. C.; Sanfilippo, F.; Scorzato, L.; Simula, S.; Urbach, C.
2011-01-01
We present preliminary results of the non-perturbative computation of the RI-MOM renormalisation constants in a mass-independent scheme for the action with Iwasaki glue and four dynamical Wilson quarks employed by ETMC. Our project requires dedicated gauge ensembles with four degenerate sea quark
The Quark Puzzle: A Novel Approach to Visualizing the Color Symmetries of Quarks
Gettrust, Eric
2010-01-01
This paper describes a simple hands-on and visual-method designed to introduce physics students of many age groups to the topic of quarks and their role in forming composite particles (baryons and mesons). A set of puzzle pieces representing individual quarks that fit together in ways consistent with known restrictions of flavor, color, and charge…
Vector-like quarks at the origin of light quark masses and mixing
Energy Technology Data Exchange (ETDEWEB)
Botella, Francisco J. [Universitat de Valencia-CSIC, Departament de Fisica Teorica and IFIC, Burjassot (Spain); Branco, G.C.; Nebot, Miguel; Rebelo, M.N.; Silva-Marcos, J.I. [Universidade de Lisboa, Departamento de Fisica and Centro de Fisica Teorica de Particulas (CFTP), Instituto Superior Tecnico (IST), Lisbon (Portugal)
2017-06-15
We show how a novel fine-tuning problem present in the Standard Model can be solved through the introduction of a Z{sub 6} flavour symmetry, together with three Q = -1/3 quarks, three Q = 2/3 quarks, as well as a complex singlet scalar. The Z{sub 6} symmetry is extended to the additional fields and it is an exact symmetry of the Lagrangian, only softly broken in the scalar potential, in order to avoid the domain-wall problem. Specific examples are given and a phenomenological analysis of the main features of the model is presented. It is shown that even for vector-like quarks with masses accessible at the LHC, one can have realistic quark masses and mixing, while respecting the strict constraints on processes arising from flavour changing neutral currents. The vector-like quark decay channels are also described. (orig.)
Quark self-energy in an ellipsoidally anisotropic quark-gluon plasma
Kasmaei, Babak S.; Nopoush, Mohammad; Strickland, Michael
2016-12-01
We calculate the quark self-energy in a quark-gluon plasma that possesses an ellipsoidal momentum-space anisotropy in the local rest frame. By introducing additional transverse-momentum anisotropy parameters into the parton distribution functions, we generalize previous results which were obtained for the case of a spheroidal anisotropy. Our results demonstrate that the presence of anisotropies in the transverse directions affects the real and imaginary parts of quark self-energy and, consequently, the self-energy depends on both the polar and azimuthal angles in the local rest frame of the matter. Our results for the quark self-energy set the stage for the calculation of the effects of ellipsoidal momentum-space anisotropy on quark-gluon plasma photon spectra and collective flow.
Highlights of top quark cross-section measurements at ATLAS
Bielski, Rafal; The ATLAS collaboration
2017-01-01
Measurements of inclusive and differential top-quark production cross sections in proton-proton collisions with the ATLAS detector at the Large Hadron Collider are presented at a center of mass energy of 8 TeV and 13 TeV. The inclusive measurements of top quark pair and single top quark production reach high precision and are compared to the best available theoretical calculations. Differential measurements of the kinematic properties of top quark events are also discussed. These measurements, including results using boosted top quarks, probe our understanding of top quark production in the TeV regime.
Second quantization approach to composite hadron interactions in quark models
International Nuclear Information System (INIS)
Hadjimichef, D.; Krein, G.; Veiga, J.S. da; Szpigel, S.
1995-11-01
Starting from the Fock space representation of hadron bound states in a quark model, a change of representation is implemented by a unitary transformation such that the composite hadrons are redescribed by elementary-particle field operators. Application of the unitary transformation to the microscopic quark Hamiltonian gives rise to effective hadron-hadron, hadron-quark, and quark-quark Hamiltonians. An effective baryon Hamiltonian is derived using a simple quark model. The baryon Hamiltonian is free of the post-prior discrepancy which usually plagues composite-particle effective interactions. (author). 13 refs., 1 fig
Instanton vacuum at finite density of quark matter
International Nuclear Information System (INIS)
Molodtsov, S.V.; Zinovjev, G.M.
2002-01-01
We study light quark interactions in the instanton liquid at finite quark/baryon number density analyzing chiral and diquark condensates and investigate the behaviors of quark dynamical mass and both condensates together with instanton liquid density as a function of quark chemical potential. We conclude the quark impact (estimated in the tadpole approximation) on the instanton liquid could shift color superconducting phase transition to higher values of the chemical potential bringing critical quark matter density to the values essentially higher than conventional nuclear one
Meson Spectroscopy in the Light Quark Sector
De Vita, R.
2014-03-01
Understanding the hadron spectrum is one of the fundamental issues in modern particle physics. We know that existing hadron configurations include baryons, made of three quarks, and mesons, made of quark-antiquark pairs. However most of the mass of the hadrons is not due to the mass of these elementary constituents but to their binding force. Studying the hadron spectrum is therefore a tool to understand one of the fundamental forces in nature, the strong force, and Quantum Chromo Dynamics (QCD), the theory that describes it. This investigation can provide an answer to fundamental questions as what is the origin of the mass of hadrons, what is the origin of quark confinement, what are the relevant degrees of freedom to describe these complex systems and how the transition between the elementary constituents, quarks and gluons, and baryons and mesons occurs. In this field a key tool is given by meson spectroscopy. Mesons, being made by a quark and an anti-quark, are the simplest quark bound system and therefore the ideal benchmark to study the interaction between quarks and understand what the role of gluons is. In this investigation, it is fundamental to precisely determine the spectrum and properties of mesons but also to search for possible unconventional states beyond the qbar q configuration as tetraquarks (qqoverline{qq}), hybrids (qbar qg) and glueballs. These states can be distinguished unambiguously from regular mesons when they have exotic quantum numbers, i.e. combinations of total angular momentum, spin and parity that are not allowed for qbar q states. These are called exotic quantum numbers and the corresponding states are referred to as exotics. The study of the meson spectrum and the search for exotics is among the goals of several experiments in the world that exploit different reaction processes, as e+e- annihilation, pbar p annihilation, pion scattering, proton-proton scattering and photo-production, to produce meson states. This intense effort is
X(3872): an exotic combination of quarks?
Antonella Del Rosso
2013-01-01
According to the Standard Model of particles, quarks are the smallest building blocks of matter. So far, only quark-antiquark pairs (mesons) and quark triplets (baryons) have been observed. However, over the last few decades, some not-yet-understood states have started to appear in the particle zoo. Their nature is still unclear but the LHCb experiment has now made a big step towards understanding one of them: the X(3872). A proton-lead ion collision, as observed by the LHCb detector during the 2013 data-taking period. The X(3872) has not yet made headlines, but its existence is an intriguing mystery that scientists have been trying to elucidate over the past ten years since the particle was first observed by the Belle experiment. So far, its inner nature has remained unknown because of theoretical difficulties in cataloguing it as a quark-antiquark state in the so-called "charmonium" spectrum (as charm quarks are involved) and because of the experimental difficulties inv...
Quark and gluon condensate in vacuum
International Nuclear Information System (INIS)
Vajnshtejn, A.I.; Zakharov, V.I.; Shifman, M.A.
1979-01-01
The mechanism of quark confinement has been reviewed. The fact that coloured particles in a free state cannot be observed is connected with specific properties of vacuum in quantum chromodynamics. The basic hypothesis consists in the existence of vacuum fields, quark and gluon condensates, which affect the coloured objects. The vacuum transparent relative to noncharged ''white'' states serves as a source of the force acting upon the coloured particles. It has been a sucess to examine strictly the action of the vacuum fields on quarks when the distance between them is relatively small and the force of the vacuum fields on quarks is relatively small too. It is shown that the interaction with the vacuum fields manifests itself earlier than the forces connected with the gluon exchange do. It is assumed that the vacuum condensate of quarks and gluons and its relation to properties of resonances and to the bag model exist in reality. The dispersion sum rules are used for calculating masses and lepton widths of resonances
In search of the quark-gluon plasma
International Nuclear Information System (INIS)
Schutz, Y.; Delagrange, H.
2002-01-01
This article describes in a very pedagogical manner the ultimate state of matter when quarks are no longer confined in hadrons. This state is called quark and gluon plasma, its existence is suspected through 4 facts: 1) a quark and gluon plasma that has just been created from a high energy ion-collision is mainly made up of light quarks (up and down), then this plasma should evolve towards other quarks (particularly strange quarks) because of the Pauli exclusion principle. This fact has been experimentally confirmed: at the CERN accelerator physicists have detected a higher production of strange hadrons when the energy of the collision increases; 2) some particles like ρ 0 mesons, that are made up of 2 quarks, are massively produced in ion collisions, their mass has been measured at the moment of the collision and later in the quark and gluon plasma, 2 different values have been found so it confirms the theory that predicts that free quarks have a mass that decreases as energy increases; 3) J/Ψ mesons are made up of a charmed quark combined with its anti-quark, physicists have noticed that less J/Ψ mesons are detected when the energy of the collision rises, this result agrees with the fact that in quark gluon plasma where quarks are free and of different colours and flavors, it is highly unlikely that a charmed quark combines with its anti-quark to form a J/Ψ meson; and 4) the theory of the formation of quark gluon plasma predicts that its electromagnetic radiation has a thermal radiation specificity, physicists have studied the radiation spectra emitted in the core of a ion collision, they have shown that it is a thermal radiation and that the temperature of the emitter corresponds to the temperature of a quark gluon plasma. (A.C.)
Quark and pion effective couplings from polarization effects
Energy Technology Data Exchange (ETDEWEB)
Braghin, Fabio L. [Federal University of Goias, Instituto de Fisica, Goiania, GO (Brazil)
2016-05-15
A flavor SU(2) effective model for pions and quarks is derived by considering polarization effects departing from the usual quark-quark effective interaction induced by dressed gluon exchange, i.e. a global color model for QCD. For that, the quark field is decomposed into a component that yields light mesons and the quark-antiquark condensate, being integrated out by means of the auxiliary field method, and another component which yields constituent quarks, which is basically a background quark field. Within a long-wavelength and weak quark field expansion (or large quark effective mass expansion) of a quark determinant, the leading terms are found up to the second order in a zero-order derivative expansion, by neglecting vector mesons that are considerably heavier than the pion. Pions are considered in the structureless limit and, besides the chiral invariant terms that reproduce previously derived expressions, symmetry breaking terms are also presented. The leading chiral quark-quark effective couplings are also found corresponding to a NJL and a vector-NJL couplings. All the resulting effective coupling constants and parameters are expressed in terms of the current and constituent quark masses and of the coupling g. (orig.)
Critical parameters of Quark-Hadron phase transition with interacting and massive quarks
International Nuclear Information System (INIS)
Singh, C.P.; Patra, B.K.
1994-06-01
Current techniques to simulate the dynamical behaviour of Quark-Gluon Plasma (QGP) reveal that the order of the phase transition as well as the values of the critical parameters depend on the number of quark flavours as well as on the quark-masses included in the simulation. We attempt to show here the effects of the number of quark flavours and quark-masses on critical parameters by using the perturbative, finite temperature field theory to g 3 s order in the strong coupling g s . We treat the hadrons as particles with finite size and its implications on the equation of state for hadron gas are studied. We find that the critical temperature T c is lowered by 9 MeV as we move from two to three quark flavours. The nature of the phase transition always remains as first order. However, the inclusion of quark-masses in our calculation does not affect the result much. (author). 14 refs, 3 figs
International Nuclear Information System (INIS)
Chaichian, M.; Hayashi, M.; Honkaranta, T.
1980-01-01
We consider in QCD the second order, in gluon-quark coupling constant, contribution of the quark-quark scatte-ring (bremsstrahlung) to the transverse momentum distribution of muon pairs produced in proton-proton collisions. In certain kinematical regions accesible to experimental tests, this contribution is quite large in comparison with the first order calculations. This happens for a specific choice of scale violating structure functions which fit the deep inelastic data. Thus the first order QCD calcula-tion alone is not conclusive in trying to fit the data -one must necessarily check the effect of the second order quark-quark scattering as compared with the first order quark-gluon and the quark-antiquark scattering. This remark concerns also the case when in the first order diagrams the effect of primordial transverse momentum of partons is included as well as the case when the first order is replaced by DDT type of formulae. Mass regularization and different prescriptions for the constant term in q → g + q vertex are considered. Results are presented for the energies √s=6.5, 27, 63, 800 GeV and are compared with experiment. Implications of these results for the detection of W +- -mesons via psub(T) distribution of their decay products μ +- in proton-proton collisions are mentioned. (author)
Top quark kinematics and mass determination
International Nuclear Information System (INIS)
Williams, H.H.
1994-10-01
An analysis is presented of 10 W + ≥ 3 jet events, each with evidence for the presence of a b quark, that were recently observed by the CDF collaboration. Seven of these events include a fourth jet and can be explicitly reconstructed as t bar t production. The best estimate of the top quark mass is M t = 174 ± 10 -12 +13 GeV/c 2 . A study has also been performed to see if the kinematical properties of events with W + ≥ 3 jets gives evidence for top production. An excess of events with large jet energies, compared to that expected from direct production of W + ≥ 3 jets, is observed. A large fraction of these events also contain a b-quark and a fourth jet
Quark disconnected diagrams in chiral perturbation theory
Della Morte, Michele
2010-01-01
We show how quark-disconnected and quark-connected contributions to hadronic n-point functions can be written as independent correlators for which one can derive expressions in partially quenched chiral effective theory. As an example we apply the idea to the case of the hadronic vacuum polarisation. In particular, we consider the cases of the Nf = 2 theory without and with a partially quenched strange quark and also the Nf = 2 + 1 theory. In the latter two cases a parameter-free prediction for the disconnected contribution at NLO in the effective theory is given. Finally we show how twisted boundary conditions can then be used in lattice QCD to improve the q^2 resolution in the connected contributions even when flavour singlet operators are considered.
Masses of light quarks in quantum chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Hubschmid, W; Mallik, S [Bern Univ. (Switzerland). Inst. fuer Theoretische Physik
1982-12-28
We try to determine light quark masses by considering sum rules for the vacuum expectation value of the time-ordered correlation function of two divergences of the axial vector current. The evaluation is carried out at momenta high enough for the non-perturbative contributions to be negligible. We find that the average mass of the up and down quark at a momentum of 1 GeV lies between 3.3 and 7.9 MeV while that for the strange quark lies between 84 and 212 MeV. The ranges of values reflect predominantly the uncertainty in the absorptive part in the low energy region (approx. <= 1.7 GeV).
A semiclassical model for quark jet fragmentation
International Nuclear Information System (INIS)
Andersson, B.; Gustafson, G.; Peterson, C.
1979-01-01
A semiclassical model is presented for the way the energy of a fast quark is transformed into observable hadrons. It reproduces the features of 1+1 dimensional QED (the Schwinger model) concerning a flat rapidity distribution in the central region. It also reproduces results from phenomenological considerations, which, based upon scaling, predict that meson formation in the fragmentation region can be described by an iterative scheme, implying a set of coupled integral equations. In particular the model predicts that the probability to find a meson containing the leading quark is independent of the Feynman scaling variable z. The iterative structure corresponds to a Brownian motion with relevance both to the cofinement problems and to the distribution of mass in the quark jet. (orig.) [de
The heavy top quark and supersymmetry
Energy Technology Data Exchange (ETDEWEB)
Hall, L.J. [Lawrence Berkeley Lab., CA (United States)]|[Univ. of California, Berkeley, CA (United States)
1997-01-01
Three aspects of supersymmetric theories are discussed: electroweak symmetry breaking, the issues of flavor, and gauge unification. The heavy top quark plays an important, sometimes dominant, role in each case. Additional symmetries lead to extensions of the Standard Model which can provide an understanding for many of the outstanding problems of particle physics. A broken supersymmetric extension of spacetime allows electroweak symmetry breaking to follow from the dynamics of the heavy top quark; an extension of isospin provides a constrained framework for understanding the pattern of quark and lepton masses; and a grand unified extension of the Standard Model gauge group provides an elegant understanding of the gauge quantum numbers of the components of a generation. Experimental signatures for each of these additional symmetries are discussed.
Quark Matter 2017: Young Scientist Support
Energy Technology Data Exchange (ETDEWEB)
Evdokimov, Olga [University of Illinois at Chicago
2017-07-31
Quark Matter conference series are amongst the major scientific events for the Relativistic Heavy Ion community. With over 30 year long history, the meetings are held about every 1½ years to showcase the progress made in theoretical and experimental studies of nuclear matter under extreme conditions. The 26th International Conference on Ultra-relativistic Nucleus-Nucleus Collisions (Quark Matter 2017) was held at the Hyatt Regency Hotel in downtown Chicago from Sunday, February 5th through Saturday, February 11th, 2017. The conference featured about 180 plenary and parallel presentations of the most significant recent results in the field, a poster session for additional presentations, and an evening public lecture. Following the tradition of previous Quark Matter meetings, the first day of the conference was dedicated entirely to a special program for young scientists (graduate students and postdoctoral researchers). This grant will provided financial support for 235 young physicists facilitating their attendance of the conference.
Pseudoscaler meson masses in the quark model
International Nuclear Information System (INIS)
Karl, G.
1976-10-01
Pseudoscaler meson masses and sum rules are compared in two different limits of a quark model with 4 quarks. The conventional limit corresponds to a heavy c anti c state and generalizes ideal mixing in a nonet. The second limit corresponds to a missing SU 4 unitary singlet and appears more relevant to the masses of π, K, eta, eta'. If SU 3 is broken only by the mass difference between the strange and nonstrange quarks, the physical masses imply that the u anti u, d anti d and s anti s pairs account only for 33% of the composition of the eta'(960), while for the eta(548) this fraction is 86%. If some of the remaining matter is in the form of the constituents of J/psi, the relative proportion of the relative decays J/psi → eta γ vs J/psi → etaγ is accounted for in satisfactory agreement with experiment. (author)
Top quark pair production at the LHC
Energy Technology Data Exchange (ETDEWEB)
Baernreuther, Peter
2012-06-28
One of the most interesting and manifold processes in the Standard Model of elementary particle physics is the top quark pair production. It enabled the discovery of the top quark at the Tevatron in 1995 and the determination of many of its properties. By means of a precise measurement and calculation of the cross section of top quark pair production it is possible to extract the top quark mass. Improvements in the gluon parton distribution functions (important for the Higgs boson production) or improvements in the prediction of the Higgs mass are also closely linked with the top quark pair production. Furthermore, the production process plays an important role in the discovery of new physics. On the one hand the top quark pair decays form the largest part of the background in many BSM models, on the other hand BSM physics can be detected directly in the decay process by investigating the charge symmetry or the invariant mass spectrum. At the LHC it will be possible for the first time to produce a large amount of top quarks; thereby the statistical errors of the observables will be strongly reduced. The enormous increase in the production rate has two reasons. On the one hand, the acceleration energy of the LHC (14 TeV and 7 TeV) is significantly greater than that of the Tevatron (1.96 Tev). This leads to an increase of the cross section by a factor of 100 ({proportional_to}7.3 pb at the Tevatron to {proportional_to}800 pb at 14 TeV LHC). On the other hand, the luminosity of the LHC outperforms the Tevatron by a factor of 10-100. The reduced experimental errors for the observables demand an improvement of the theoretical error. The experimental accuracy of the LHC and the great relevance of the process led to an intensive activity of different research groups in order to improve the calculation of the cross section of top quark pair production. This work presents for the first time a complete numerical result for the full NNLO correction for the top quark pair
Top quark pair production at the LHC
International Nuclear Information System (INIS)
Baernreuther, Peter
2012-01-01
One of the most interesting and manifold processes in the Standard Model of elementary particle physics is the top quark pair production. It enabled the discovery of the top quark at the Tevatron in 1995 and the determination of many of its properties. By means of a precise measurement and calculation of the cross section of top quark pair production it is possible to extract the top quark mass. Improvements in the gluon parton distribution functions (important for the Higgs boson production) or improvements in the prediction of the Higgs mass are also closely linked with the top quark pair production. Furthermore, the production process plays an important role in the discovery of new physics. On the one hand the top quark pair decays form the largest part of the background in many BSM models, on the other hand BSM physics can be detected directly in the decay process by investigating the charge symmetry or the invariant mass spectrum. At the LHC it will be possible for the first time to produce a large amount of top quarks; thereby the statistical errors of the observables will be strongly reduced. The enormous increase in the production rate has two reasons. On the one hand, the acceleration energy of the LHC (14 TeV and 7 TeV) is significantly greater than that of the Tevatron (1.96 Tev). This leads to an increase of the cross section by a factor of 100 (∝7.3 pb at the Tevatron to ∝800 pb at 14 TeV LHC). On the other hand, the luminosity of the LHC outperforms the Tevatron by a factor of 10-100. The reduced experimental errors for the observables demand an improvement of the theoretical error. The experimental accuracy of the LHC and the great relevance of the process led to an intensive activity of different research groups in order to improve the calculation of the cross section of top quark pair production. This work presents for the first time a complete numerical result for the full NNLO correction for the top quark pair production in quark anti-quark
Perspectives in hadron and quark dynamics
International Nuclear Information System (INIS)
Amsler, C.; Bressani, T.; Close, F.E.; De Sanctis, E.; Frois, B.; Kunne, F.; Laget, J.M.; von Harrach, D.; Metag, V.; Mulders, P.J.; Riska, D.O.
1997-01-01
In the past two decades, quantum chromodynamics (QCD) has emerged as the theory for the strong force with quarks and gluons as the building blocks of nuclear matter at large densities and high temperatures. One of the most exciting challenges for nuclear physics is the study of the non-perturbative regime of QCD. It is this regime which is relevant for understanding how the elementary fields of QCD - quarks and gluons - build up particles such as protons and neutrons. A basic theoretical difficulty is the non-existence of asymptotic, isolated, colored objects. This is a feature of the richness of the vacuum structure of QCD. Understanding the different QCD phases and the transitions among them is the challenge of the modern study of strong interactions. At low energy, chiral symmetry can be used to build aneffective theory of hadron interactions. At higher energies, the parton model uses non-perturbative quark and gluon distributions to describe hadronic scattering processes. (orig)
Segregation of quarks within the neutron
International Nuclear Information System (INIS)
Dziembowski, Z.
1991-01-01
Measurements of the nucleon form factor and structure function seem to indicate an inhomogeneous distribution of flavor, charge and spin within the nucleon. It is argued that the ordinary three-quark model with a spin-spin force of the type suggested by QCD can explain the inhomogeneity as seen at different resolutions. This agreement suggests a specific bound quark picture of the nucleon structure with a positive core of u and d quarks in a spin-O state of ms radius 0.17 ± 0.01 fm 2 and an outer layer of a linear size ∼ 1 fm where the polarized u (in the proton) or d (in the neutron) is orbiting. 21 refs., 3 figs
The heavy quark search at the LHC
International Nuclear Information System (INIS)
Holdom, Bob
2007-01-01
We explore further the discovery potential for heavy quarks at the LHC, with emphasis on the t' and b' of a sequential fourth family associated with electroweak symmetry breaking. We consider QCD multijets, t t-bar + jets, W + jets and single t backgrounds using event generation based on improved matrix elements and low sensitivity to the modeling of initial state radiation. We exploit a jet mass technique for the identification of hadronically decaying W's and t's, to be used in the reconstruction of the t' or b' mass. This along with other aspects of event selection can reduce backgrounds to very manageable levels. It even allows a search for both t' and b' in the absence of b-tagging, of interest for the early running of the LHC. A heavy quark mass of order 600 GeV is motivated by the connection to electroweak symmetry breaking, but our analysis is relevant for any new heavy quarks with weak decay modes
Meson spectroscopy, quark mixing and quantum chromodynamics
International Nuclear Information System (INIS)
Filippov, A.T.
1979-01-01
A semiphenomenological theory of mass spectrum for mesons, consisting of a quark-antiquark pair, is presented. Relativistic kinematical effects of the quark mass differences, the SU(3)-symmetry breaking in slopes of the Regge trajectories and in radially excited states are taken into account. The OZI-rule breaking is taken into account by means of the mixing matrix for the quark wave functions, whose form is suggested by the quantum chromodynamics. A simple extrapolation of expression, given by the quantum chromodynamics from the ''asymptotic freedom'' region to the ''infrared slavery'' region is proposed to describe the dependence of the mixing parameters on the meson masses. To calculate masses and mixing angles for pseudoscalar mesons a condition is proposed that the pion mass is minimal. In this situation the eta-meson mass is near the maximal value. The predictions of the theory for masses and mixing angles of the mesons are in good agreement with the experiment
Penguin loops with confined quark propagators
International Nuclear Information System (INIS)
Eeg, J.O.
1984-12-01
The ΔS = 1 penguin diagram is calculated by representing the internal quark lines in the loop by bag model wave functions. Because of the involved GIM-mecanism, only the lowest internal quark modes are kept in the loop. The result depends cruically on the values of the strong coupling constant and the quark energy of the bag model wave functions. With reasonable values of parameters, contributions corresponding to effective penguin coeffisient values of approximately two to five times the standard pertubative ones, have been found. Thus the theoretical value for the ratio between ΔI = 1/2 and ΔI = 3/2 amplitudes seems to be improved
Essence of the Vacuum Quark Condensate
International Nuclear Information System (INIS)
Brodsky, Stanley
2010-01-01
We show that the chiral-limit vacuum quark condensate is qualitatively equivalent to the pseudoscalar meson leptonic decay constant in the sense that they are both obtained as the chiral-limit value of well-defined gauge-invariant hadron-to-vacuum transition amplitudes that possess a spectral representation in terms of the current-quark mass. Thus, whereas it might sometimes be convenient to imagine otherwise, neither is essentially a constant mass-scale that fills all spacetime. This means, in particular, that the quark condensate can be understood as a property of hadrons themselves, which is expressed, for example, in their Bethe-Salpeter or light-front wavefunctions.
Workshop: Waiting for the top quark
International Nuclear Information System (INIS)
Anon.
1991-01-01
The world of elementary particle physics is eagerly waiting for the top quark, probably the final element of the 'periodic table' of elementary particle constituents. This table consists of two families of weakly interacting particles (leptons) - one series carrying electric charge; the other being electrically neutral - together with a family of quarks carrying electric charge 2/3 (up, charm, top) and a family of charge -1/3 quarks (down, strange, beauty). It was then not surprising that the 1990 Theory Workshop at the DESY Laboratory in Hamburg in October, devoted this time to 'top physics', attracted some 200 physicists, substantially more than previous workshops in the series
Quark vs Gluon Jet Tagging at ATLAS
Rubbo, Francesco; The ATLAS collaboration
2017-01-01
Distinguishing quark-initiated from gluon-initiated jets is useful for many measurements and searches at the LHC. We present a quark-initiated versus gluon-initiated jet tagger from the ATLAS experiment using the number of reconstructed charged particles inside the jet. The measurement of the charged-particle multiplicity inside jets from Run 1 is used to derive uncertainties on the tagger performance for Run 2. With an efficiency of 60% to select quark-initiated jets, the efficiency to select gluon-initiated jets is between 10 and 20% across a wide range in jet pT up to 1.5 TeV with about an absolute 5% systematic uncertainty on the efficiencies. In addition, we also present preliminary studies on a tagger for the ATLAS experiment using the full radiation pattern inside a jet processed as images in deep neural network classifiers.
Cheshire cat phenomena and quarks in nuclei
International Nuclear Information System (INIS)
Rho, M.
1986-11-01
The notion of the ''Cheshire Cat'' principle in hadron structure is developed rigorously in (1+1) dimensions and approximately in (3+1) dimensions for up- and down-quark flavor systems. This phenomenon is invoked to address the issue as to whether or not direct quark-gluon signatures can be ''seen'' in low-energy nuclear phenomena. How addition of the third flavor -strangeness- can modify the Cheshire Cat property is discussed. It is proposed that one of the primary objectives of nuclear physics be to probe -and disturb- the ''vacuum'' of the strong interactions (QCD) and that for this purpose the chiral symmetry SU(3)xSU(3) can play a crucial role in normal and extreme conditions. As an illustration, kaon condensation at a density ρ>∼ 3ρ 0 is discussed in terms of a toy model and is related to ''cleansing'' of the quark condensates from the vacuum
The heavy top quark and supersymmetry
International Nuclear Information System (INIS)
Hall, L.J.; Univ. of California, Berkeley, CA
1996-01-01
Three aspects of supersymmetric theories are discussed: electroweak symmetry breaking, the issues of flavor, and gauge unification. The heavy top quark plays an important, sometimes dominant, role in each case. Additional symmetries lead to extensions of the standard model which can provide an understanding for many of the outstanding problems of particle physics. A broken supersymmetric extension of spacetime allows electroweak symmetry breaking to follow from the dynamics of the heavy top quark; an extension of isospin provides a constrained framework for understanding the pattern of quark and lepton masses; and a grand unified extension of the standard model gauge group provides an elegant understanding of the gauge quantum numbers of the components of a generation. Experimental signatures for each of these additional symmetries are discussed
The heavy top quark and supersymmetry
International Nuclear Information System (INIS)
Hall, L.J.
1997-01-01
Three aspects of supersymmetric theories are discussed: electroweak symmetry breaking, the issues of flavor, and gauge unification. The heavy top quark plays an important, sometimes dominant, role in each case. Additional symmetries lead to extensions of the Standard Model which can provide an understanding for many of the outstanding problems of particle physics. A broken supersymmetric extension of spacetime allows electroweak symmetry breaking to follow from the dynamics of the heavy top quark; an extension of isospin provides a constrained framework for understanding the pattern of quark and lepton masses; and a grand unified extension of the Standard Model gauge group provides an elegant understanding of the gauge quantum numbers of the components of a generation. Experimental signatures for each of these additional symmetries are discussed
Chromostatics of two-quark systems
International Nuclear Information System (INIS)
Milton, K.A.; Palmer, W.F.; Pinsky, S.S.
1981-01-01
An estimate for the mean-field potential between two heavy quarks (qq) is studied using Adler's chromostatics. To do so, the pseudocolor charge algebra is worked out for the qq system in SU(n) of color, which had not been correctly presented previously. Using the leading-logarithm, renormalization group improved Euclidean action for the gluon fields, it is found the mean-field potential depends crucially on the algebraic properties of the sources, and that while the quark-anti-quark (q anti q) system possesses an at-least-linear potential, as Adler showed, the qq system has infinite energy, and hence is decoupled from the physical spectrum. The physical states exhibit color screening
Dynamical symmetry breaking: Exotic quarks and the strong CP problem
International Nuclear Information System (INIS)
Furlong, R.C.
1988-10-01
Decuplet quarks (quens) transforming as 10's under SU(3)/sub C/ are shown to be superior to sextet quarks (quixes) in their ability to resolve the Strong CP problem, resulting in composite invisible axions (CIAs). 8 refs
Symmetries and aggregates of quarks as constituents of hadrons
International Nuclear Information System (INIS)
Kibler, M.
1982-07-01
The interest of the Lie algebra of the group SU(n) for the classification of hadrons and the description of some of their static properties is emphasized for n=3, 4, 6, 8. The cases n=3 and 4 allow to introduce the quark flavors (u,d,s,) and (u,d,c,s), respectively, and the consideration of the spin of hadrons leads to the chain SU(2m) contains SU(m) x SU(2). The hadrons are described as bound states or aggregates of quarks of type quark-quark-quark for baryons and quark-antiquark for mesons. The Pauli exclusion principle applied to the three-quark baryons requires the introduction of a new quantum number, the color: each flavor of quark then comes in three colors
Search for anomalous Wtb couplings in single top quark production ...
Indian Academy of Sciences (India)
2012-11-08
Nov 8, 2012 ... Single top quark production provides a unique probe ... our search is improved by dividing our data into six independent analysis ... After the event selection, the expected single top quark contribution is smaller than the.
Asymptotic behavior of quark masses induced by instantons
International Nuclear Information System (INIS)
Carneiro, C.E.I.; Frenkel, J.
1984-02-01
A simple argument which shows that the dynamical mass induced by interactions of massless quarks with pseudo-particle configurations, behaves like p -6 for asymptotically large quark momenta is presented. (Author) [pt
Quark motional effects on the interquark potential in baryons
International Nuclear Information System (INIS)
Yamamoto, Arata; Suganuma, Hideo
2008-01-01
We study the heavy-heavy-light quark (QQq) system in a nonrelativistic potential model, and investigate the quark motional effect on the inter-two-quark potential in baryons. We adopt the Hamiltonian with the static three-quark potential which is obtained by the first-principle calculation of lattice QCD, rather than the two-body force in ordinary quark models. Using the renormalization-group inspired variational method in discretized space, we calculate the ground-state energy of QQq systems and the light-quark spatial distribution. We find that the effective string tension between the two heavy quarks is reduced compared to the static three-quark case. This reduction of the effective string tension originates from the geometrical difference between the interquark distance and the flux-tube length, and is conjectured to be a general property for baryons
Do quarks play an explicit role as nuclear constituents ?
International Nuclear Information System (INIS)
Yamazaki, Toshimitsu.
1986-10-01
Experimental signatures for explicit roles of quarks as nuclear constituents are looked for. It is stressed that hyperons in nuclei may reveal unique information on nuclear interior and possible quark deconfinement. Future directions of hypernuclear spectroscopy are discussed. (author)
The fast charmed quark and leading D- mesons in π-p collisions
International Nuclear Information System (INIS)
Bednyakov, V.A.
1986-01-01
It is shown on the basis of the quark-quark recombination model that only the D meson, whose light quark is the pion valence quark and whose charmed quark is produced in annihilation of valence quarks and has a large momentum, is a leading meson in reactions like π - p → DX
The quark propagator in a covariant gauge
International Nuclear Information System (INIS)
Bonnet, F.D.R.; Leinweber, D.B.; Williams, A.G.; Zanotti, J.M.
2000-01-01
Full text: The quark propagator is one of the fundamental building blocks of QCD. Results strongly depend on the ansatz for the propagator. Direct simulations of QCD on a space time lattice can provide guidance and constraints on the analytic structure of the quark propagator. On the lattice the infrared and asymptotic behaviour of the quark propagator is of particular interest since it is a reflection of the accuracy of the discretised quark action. In the deep infrared region, artefacts associated with the finite size of the lattice spacing become small. This is the most interesting region as nonperturbative physics lies here. However, the ultraviolet behaviour at large momentum of the propagator will in general strongly deviate from the correct continuum behaviour. This behaviour will be action dependent. Some interesting progress has been made in improving the ultraviolet behaviour of the propagator. A method, recently developed and referred to as tree-level correction, consists of using the knowledge of the tree-level behaviour to eliminate the obvious lattice artefacts. Tree-level correction represents a crucial step in extracting meaningful results for the mass function and the renormalisation function outside of the deep infrared region. The mass function is particularly interesting as it provides insights into the constituent quark mass as a measure of the nonperturbative physics. In this poster I will present results from the analytic structure of the propagator in recent lattice studies for a variety of fermion actions in lattice QCD. I will also present the new ratio method used to tree-level correct these quark propagators
Measurement of top quark polarisation in t-channel single top quark production
CMS Collaboration
2015-01-01
Journal of High Energy Physics 2016.4 (2016): 073 reproduced by permission of Scuola Internazionale Superiore di Studi Avanzati (SISSA) Artículo escrito por un elevado número de autores, sólo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiera, y los autores pertenecientes a la UAM A first measurement of the top quark spin asymmetry, sensitive to the top quark polarisation, in t-channel single top quark production is presented. It is based o...
Renormalisation constants of quark bilinears in lattice QCD with four dynamical Wilson quarks
International Nuclear Information System (INIS)
Blossier, Benoit; Brinet, Mariane; Carrasco, Nuria
2011-12-01
We present preliminary results of the non-perturbative computation of the RI-MOM renormalization constants in a mass-independent scheme for the action with Iwasaki glue and four dynamical Wilson quarks employed by ETMC. Our project requires dedicated gauge ensembles with four degenerate sea quark flavours at three lattice spacings and at several values of the standard and twisted quark mass parameters. The RI-MOM renormalization constants are obtained from appropriate O(a) improved estimators extrapolated to the chiral limit. (orig.)
Renormalisation constants of quark bilinears in lattice QCD with four dynamical Wilson quarks
Energy Technology Data Exchange (ETDEWEB)
Blossier, Benoit [CNRS et Paris-Sud 11 Univ., Orsay (France). Lab. de Physique Theorique; Brinet, Mariane [CNRS/IN2P3/UJF, Grenoble (France). Lab. de Physique Subatomique et de Cosmologie; Carrasco, Nuria [Valencia Univ., Burjassot (ES). Dept. de Fisica Teorica and IFC] (and others)
2011-12-15
We present preliminary results of the non-perturbative computation of the RI-MOM renormalization constants in a mass-independent scheme for the action with Iwasaki glue and four dynamical Wilson quarks employed by ETMC. Our project requires dedicated gauge ensembles with four degenerate sea quark flavours at three lattice spacings and at several values of the standard and twisted quark mass parameters. The RI-MOM renormalization constants are obtained from appropriate O(a) improved estimators extrapolated to the chiral limit. (orig.)
Hadron matrix elements of quark operators in the relativistic quark model
Energy Technology Data Exchange (ETDEWEB)
Bando, Masako; Toya, Mihoko [Kyoto Univ. (Japan). Dept. of Physics; Sugimoto, Hiroshi
1979-07-01
General formulae for evaluating matrix elements of two- and four-quark operators sandwiched by one-hadron states are presented on the basis of the relativistic quark model. Observed hadronic quantities are expressed in terms of those matrix elements of two- and four-quark operators. One observes various type of relativistic expression for the matrix elements which in the non-relativistic case reduce to simple expression of the so-called ''the wave function at the origin /sup +/psi(0)/sup +/''.
Bounds on the mixing of the down-type quarks with vector-like singlet quarks
International Nuclear Information System (INIS)
Lavoura, L.; Silva, J.P.
1992-01-01
We derive bounds on the mixing of the standard charge -1/3 quarks with vector-like isosinglet quarks, as they exist in some extensions of the standard model. We make no assumptions about the unitarity or any other features of the mixing matrix. We find that the mixing is quite constrained: we are able to set bounds on all the extra parameters which arise in the mixing matrix (CKM matrix), except on two phases. The assumption that there exists only one exotic quark leads to some extra relationships among the parameters of the mixing matrix
Some Recent Progress on Quark Pairings in Dense Quark and Nuclear Matter
International Nuclear Information System (INIS)
Pang Jinyi; Wang Jincheng; Wang Qun
2012-01-01
In this review article we give a brief overview on some recent progress in quark pairings in dense quark/nuclear matter mostly developed in the past five years. We focus on following aspects in particular: the BCS-BEC crossover in the CSC phase, the baryon formation and dissociation in dense quark/nuclear matter, the Ginzburg-Landau theory for three-flavor dense matter with U A (1) anomaly, and the collective and Nambu-Goldstone modes for the spin-one CSC. (physics of elementary particles and fields)
Review of recent top-quark LHC combinations
Cortiana, Giorgio
2014-01-01
A review of recent combinations of top-quark measurements performed at the LHC, by the ATLAS and CMS collaborations, is provided. The typical uncertainty categorisations, and their assumed correlation patterns are presented, together with the results of the combinations of the top-quark pair and single top-quark production cross sections, the top-quark mass, as well as of the $W$ boson polarisation and the charge asymmetry in $t\\bar t$ events.
Diquark condensate and quark interaction with instanton liquid
International Nuclear Information System (INIS)
Zinov'ev, G.M.; Molodtsov, S.V.
2003-01-01
The interaction of light quarks and instanton liquid is analyzed at finite density of quark/baryon matter and in the phase of nonzero values of diquark (color) condensate. It is shown that instanton liquid perturbation produced by such an interaction results in an essential increase of the critical value of quark chemical potential μ c which provokes the perceptible increase of quark matter density around the expected onset of the color superconductivity phase [ru
Quark antisymmetrization and deep-inelastic scattering. Pt. 2
International Nuclear Information System (INIS)
Meyer, H.; Mulders, P.J.; Spit, W.F.M.
1994-01-01
We consider the effects of quark antisymmetrization for nuclear structure functions. Antisymmetrizing the naive folding of nuclear wave functions in terms of nucleons and the nucleon wave function in terms of quarks, introduces additional contributions. Using the calculated results on quark three-momentum distributions, we calculate the effects on the deep-inelastic structure functions for s- and p-wave nuclei. The effects of quark antisymmetrization turn out to be small. (orig.)
Phase transition from nuclear matter to color superconducting quark matter
Energy Technology Data Exchange (ETDEWEB)
Bentz, W. E-mail: bentz@keyaki.cc.u-tokai.ac.jp; Horikawa, T.; Ishii, N.; Thomas, A.W
2003-06-02
We construct the nuclear and quark matter equations of state at zero temperature in an effective quark theory (the Nambu-Jona-Lasinio model), and discuss the phase transition between them. The nuclear matter equation of state is based on the quark-diquark description of the single nucleon, while the quark matter equation of state includes the effects of scalar diquark condensation (color superconductivity). The effect of diquark condensation on the phase transition is discussed in detail.
Toponium Tests Of Top-Quark Higgs Bags
Macpherson, Alick L.; Campbell, Bruce A.
1993-01-01
Recently it has been suggested that top quarks, or very massive fourth generation quarks, might surround themselves with a Higgs "bag" of deformation of the Higgs expectation value from its vacuum magnitude. In this paper we address the question of whether such nonlinear Higgs-top interaction effects are subject to experimental test. We first note that if top quarks were necessarily accompanied by Higgs "bags", then top quark weak decay would involve the sudden disruption of the Higgs "bag", ...
Neutron Electric Dipole Moment from quark Chromoelectric Dipole Moment
Bhattacharya, Tanmoy; Cirigliano, Vincenzo; Gupta, Rajan; Mereghetti, Emanuele; Yoon, Boram
2016-01-01
The connection between a regularization-independent symmetric momentum substraction (RI-$\\tilde{\\rm S}$MOM) and the $\\overline{\\rm MS}$ scheme for the quark chromo EDM operators is discussed. A method for evaluating the neutron EDM from quark chromoEDM is described. A preliminary study of the signal in the matrix element using clover quarks on a highly improved staggered quark (HISQ) ensemble is shown.
The Theory of Quark and Gluon Interactions
Ynduráin, Francisco J
2006-01-01
F. J. Ynduráin's book on Quantum Chromodynamics has become a classic among advanced textbooks. First published in 1983, and translated into Russian in 1986, it now sees its fourth edition. It addresses readers with basic knowledge of field theory and particle phenomenology. The author presents the basic facts of quark and gluon physics in pedagogical form. Theory is always confronted with experimental findings. The reader will learn enough to be able to follow modern research articles. This fourth edition presents a new section on heavy quark effective theories, more material on lattice QCD and on chiral perturbation theory.
Quark model and high energy collisions
Anisovich, V V; Nyíri, J; Shabelski, Yu M
2004-01-01
This is an updated version of the book published in 1985. QCD-motivated, it gives a detailed description of hadron structure and soft interactions in the additive quark model, where hadrons are regarded as composite systems of dressed quarks. In the past decade it has become clear that nonperturbative QCD, responsible for soft hadronic processes, may differ rather drastically from perturbative QCD. The understanding of nonperturbative QCD requires a detailed investigation of the experiments and the theoretical approaches. Bearing this in mind, the book has been rewritten paying special attenti
Are quarks and leptons composite or elementary
International Nuclear Information System (INIS)
Peccei, R.D.
1986-01-01
In these lectures I discuss the issue of the origin of the quark and lepton masses, both in the case in which these objects are elementary and in the case they are composite. Some of the generic predictions and dynamical assumptions of GUTS, family symmetry models and superstrings are detailed. They are contrasted to the dynamics required for composite models of quarks and leptons. In this latter case, the difficulties of protecting dynamically fermion masses and yet still generating intra and interfamily hierarchies is emphasized. (orig.)
Precision Determination of the Top Quark Mass
Energy Technology Data Exchange (ETDEWEB)
Movilla Fernandez, Pedro A.; /LBL, Berkeley
2007-05-01
The CDF and D0 collaborations have updated their measurements of the mass of the top quark using proton-antiproton collisions at {radical}s = 1.96 TeV produced at the Tevatron. The uncertainties in each of the top-antitop decay channels have been reduced. The new Tevatron average for the mass of the top quark based on about 1 fb{sup -1} of data per experiment is 170.9 {+-} 1.8 GeV/c{sup 2}.
Modern status of quark bag model
International Nuclear Information System (INIS)
Bogolyubov, P.N.; Dorokhov, A.E.
1987-01-01
A review contains a modern status of the bag model - a composite quark model of hadrons. The idea of quasi-independent quarks moving in a finite closed region of space is a basic feature of the model. Dubna's formulation of the model and its different versions (MIT, chiral model and others) are given in detail. The role of symmetric and physical principles of the model is underlined, a critical review of mass formulas is given, the relation of the bag model and the soliton-like models (in particular with the Skyrme model) is considered
Determination of electrodebiles parameters of quark b
International Nuclear Information System (INIS)
Chamizo Llatas, M.
1995-01-01
In the present work we analyze the process e e→ bb with the data collected during 1991 and 1992 by the Z,3 detector situated in the LEP e es torage-ring (CERN). From the measurements of the cross-sections and the charge asymmetry we determine the parameters of the b quark in the framework of the Standard Model. Finally, we parametrize the possible deviations from the model an obtain upper and lower. limits for the mass of the t quark. (Author) 23 refs
Faddeev approach in three-quark systems
International Nuclear Information System (INIS)
Kuperin, Yu.A.; Kvintsinskij, A.A.; Merkur'ev, S.P.; Novozhilov, V.Yu.
1985-01-01
Calculations of baryon static properties represent a noval field where the Faddeev differential equations are applied. The mass spectra and were functions of baryons from multiplets of spin-partity Jsup(P)=1/2 + , 3/2 + are investigated in non-relativistic quark model. The structure parameters characterizing the ''quality'' of the baryon wave functions, i.e. charge radii, electromagnetic form factors quark distribution functions, are calculated. It is shown that the majority of the popular qq-potentials do not give ''high quality'' wave functions in spite of the good fit for the hadron masses
Quark mobility in extended nuclear matter
International Nuclear Information System (INIS)
Sivers, D.
1988-01-01
The propagation of an energetic quark through extended nuclear matter is analyzed in terms of a simple model in which localization of color is imposed through chromoelectric flux tubes. A mobile quark in the nuclear medium creates a disturbance which affects neighboring nucleons. The model suggests that the spatial properties of the disturbance involve a competition among different dynamical mechanisms. Experimental measurements involving the target fragmentation region in deep-inelastic leptoproduction on large nuclei may help specify some of the important features of nuclear dynamics. copyright 1988 Academic Press, Inc
A quark interpretation of the combinatorial hierarchy
International Nuclear Information System (INIS)
Enqvist, Kari.
1979-01-01
We propose a physical interpretation of the second level of the combinatorial hierarchy in terms of three quarks, three antiquarks and the vacuum. This interpretation allows us to introduce a new quantum number, which measures electromagnetic mass splitting of the quarks. We extend our argument by analogue to baryons, and find some SU(3) and some new mass formulas for baryons. The generalization of our approach to other hierarchy levels is discussed. We present also an empirical mass formula for baryons, which seems to be loosely connected with the combinatorial hierarchy. (author)
Four families of composite quarks and leptons
International Nuclear Information System (INIS)
Albright, C.H.; Northern Illinois Univ., De Kalb; Schrempp, B.; Schrempp, F.
1982-03-01
Four families of composite quarks and leptons, two standard and two non-standard, are found in a unique solution SU(3)sub(H)sub(C) x SU(6)sub(R) of a restricted 't Hooft anomaly-matching program. Testable predictions emerge, such as prohibition of μ → eγ, zero charge asymmetry in e + e - → tau + tau - in contrast to e + e - → μ + μ - , and a rich new hadron spectrum with masses around Msub(W). A minimal set of spectator fermions contains color-singlet objects with fractional quark-like charges. (orig.)
Universal parametrization for quark and lepton substructure
International Nuclear Information System (INIS)
Akama, Keiichi; Terazawa, Hidezumi.
1994-01-01
A universal parametrization for possible quark and lepton substructure is advocated in terms of quark and lepton form factors. It is emphasized that the lower bounds on compositeness scale, Λ c , to be determined experimentally strongly depend on their definitions in composite models. From the recent HERA data, it is estimated to be Λ c > 50 GeV, 0.4 TeV and 10 TeV, depending on the parametrizations with a single-pole form factor, a contact interaction and a logarithmic form factor, respectively. (author)
Quark matter droplets in neutron stars
Heiselberg, H.; Pethick, C. J.; Staubo, E. F.
1993-01-01
We show that, for physically reasonable bulk and surface properties, the lowest energy state of dense matter consists of quark matter coexisting with nuclear matter in the presence of an essentially uniform background of electrons. We estimate the size and nature of spatial structure in this phase, and show that at the lowest densities the quark matter forms droplets embedded in nuclear matter, whereas at higher densities it can exhibit a variety of different topologies. A finite fraction of the interior of neutron stars could consist of matter in this new phase, which would provide new mechanisms for glitches and cooling.
Four-quark states in potential model
International Nuclear Information System (INIS)
Badalyan, A.M.; Kitoroage, D.I.
1987-01-01
The mass spectrum of S-wave q 2 q -2 mesons of u, d, s quarks is calculated in the framework of the nonrelativistic potential model and compared with the bag model predictions. The spin-spin splittings of almost all four-quark mesons with J PC = 0 ++ , 2 ++ , 1 +- are shown to coincide with an accuracy of ∼ 50 MeV in both approaches. Two exceptions are O S (9), C π S (9) mesons for which the discrepancy is ∼ 300 MeV. Calculated centers of gravity of the multiplets are systematically ∼ 120 MeV higher than the MIT bag predictions
Bootstrap procedure in the quasinuclear quark model
International Nuclear Information System (INIS)
Anisovich, V.V.; Gerasyuta, S.M.; Keltuyala, I.V.
1983-01-01
The scattering amplitude for quarks (dressed quarks of a single flavour, and three colours) is obtained by means of a bootstrap procedure with introdUction of an initial paint-wise interaction due to a heavy gluon exchange. The obtained quasi-nuclear model (effective short-range interaction in the S-wave states) has reasonable properties: there exist colourless meson states Jsup(p)=0sup(-), 1 - ; there are no bound states in coloured channels, a virtual diquark level Jsup(p)=1sup(+) appears in the coloured state anti 3sub(c)
Single top quark production at LEP200?
International Nuclear Information System (INIS)
Boos, E.; Ishikawa, T.; Kaneko, T.; Kawabata, S.; Kurihara, Y.; Shimizu, Y.; Tanaka, H.
1994-01-01
A complete tree-level calculation of the reaction e + e - → e + ν e anti tb (e - anti ν e t anti b) in the electroweak standard theory in the LEP200 energy range is presented. For top quark masses in the range 130 to 190 GeV the cross sections are found to be in the order of 10 -5 to 10 -6 pb. Therefore, the number of single top quark events is expected to be negligible even with an integrated luminosity of L = 500 pb -1 . It is further demonstrated that the Weizsaecker-Williams approximation is approaching the accurate cross section calculations resonably well. (orig.)
Scalar resonances as two-quark states
International Nuclear Information System (INIS)
Shabalin, E.P.
1984-01-01
On the base of the theory with U(3)xU(3) symmetric chiral Lagrangian the properties of the two-quark scalar mesons are considered. It is shown, that the scalar resonances delta (980) and K(1240) may be treated as the p-wave states of anti qq system. The properties of the isovector and strange scalar mesons, obtained as a propetrties of the two-quark states, turn out to be very close to the properties of the isovector scalar resonance delta (980) and strange resonance K(1240)
Kinetic coefficients for quark-antiquark plasma
International Nuclear Information System (INIS)
Czyz, W.; Florkowski, W.
1986-03-01
The quark-antiquark plasma near equilibrium is studied. The results are based on the Heinz kinetic equations with the Boltzmann collision operator approximated by a relaxation term with the relaxation time, τ, treated as a small parameter. Linear in τ solutions of these equations are used to calculate the transport coefficients: the non-abelian version of Ohm's law, and the shear and volume viscosities. We introduce new chemical potentials which determine the color density matrix of quarks (antiquarks). Gradients of these potentials generate color currents. 12 refs. (author)
Weak interactions, quark masses and spontaneous violation of parity
International Nuclear Information System (INIS)
Kingsley, R.L.
1976-09-01
A six quark model is discussed for the weak interactions of hadrons in which parity is violated spontaneously in an SU(2) x U(1) gauge theory. Quarks with very small masses are required and their weak interactions approximate those of the Weinberg-Salam model. Suppression of strangeness-changing neutral currents requires at least seven quarks. (author)
Chiral symmetry-breaking and the quark mass
International Nuclear Information System (INIS)
Gautam, V.P.; Kar, S.C.
1988-01-01
The generation of mass for light and heavy-quark sectors in the case of chiral symmetry-breaking is studied and an attempt is made to find the origin of quark mass and renormalization point corresponding to current-quark mass. (M.G.B.). 12 refs
Mass-shell properties of the dynamical quark mass
International Nuclear Information System (INIS)
Reinders, L.J.; Stam, K.
1986-07-01
We discuss the running dynamical quark mass in the framework of the operator product expansion. It is shown that for vertical strokep 2 vertical stroke>m 2 the quark-condensate part of the quark self energy has no contributions of order m 2 or higher, and is frozen to its mass-shell value for smaller vertical strokep 2 vertical stroke. (orig.)
Diquark structure in heavy quark baryons in a geometric model
International Nuclear Information System (INIS)
Paria, Lina; Abbas, Afsar
1996-01-01
Using a geometric model to study the structure of hadrons, baryons having one, two and three heavy quarks have been studied here. The study reveals diquark structure in baryons with one and two heavy quarks but not with three heavy identical quarks. (author). 15 refs., 2 figs., 2 tabs
Search for scalar top and scalar bottom quarks at LEP
Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Bloodworth, I.J.; Boeriu, O.; Bock, P.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Caron, B.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Csilling, A.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Dallison, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Elfgren, E.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauschild, M.; Hauschildt, J.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Homer, R.J.; Horvath, D.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kormos, Laura L.; Kowalewski, Robert V.; Kramer, T.; Kress, T.; Krieger, P.; von Krogh, J.; Krop, D.; Kruger, K.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Leins, A.; Lellouch, D.; Letts, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, J.; Macpherson, A.; Mader, W.; Marcellini, S.; Marchant, T.E.; Martin, A.J.; Martin, J.P.; Masetti, G.; Mashimo, T.; Mattig, Peter; McDonald, W.J.; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Mendez-Lorenzo, P.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Rick, H.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sahr, O.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schoerner-Sadenius, Thomas; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Spano, F.; Stahl, A.; Stephens, K.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Taylor, R.J.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trefzger, T.; Tricoli, A.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vachon, B.; Vollmer, C.F.; Vannerem, P.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija
2002-01-01
Searches for a scalar top quark and a scalar bottom quark have been performed using a data sample of 438 pb-1 at centre-of-mass energies of sqrt(s) = 192 - 209 GeV collected with the OPAL detector at LEP. No evidence for a signal was found. The 95% confidence level lower limit on the scalar top quark mass is 97.6 GeV if the mixing angle between the supersymmetric partners of the left- and right-handed states of the top quark is zero. When the scalar top quark decouples from the Z0 boson, the lower limit is 95.7 GeV. These limits were obtained assuming that the scalar top quark decays into a charm quark and the lightest neutralino, and that the mass difference between the scalar top quark and the lightest neutralino is larger than 10 GeV. The complementary decay mode of the scalar top quark decaying into a bottom quark, a charged lepton and a scalar neutrino has also been studied. The lower limit on the scalar top quark mass is 93.0 GeV for this decay mode, if the mass difference between the scalar top quark a...
Spontaneous magnetization in high-density quark matter
DEFF Research Database (Denmark)
Tsue, Yasuhiko; da Providência, João; Providência, Constanca
2015-01-01
It is shown that spontaneous magnetization occurs due to the anomalous magnetic moments of quarks in high-density quark matter under the tensor-type four-point interaction. The spin polarized condensate for each flavor of quark appears at high baryon density, which leads to the spontaneous magnet...
Heavy quark free energies for three quark systems at finite temperature
International Nuclear Information System (INIS)
Huebner, Kay; Karsch, Frithjof; Kaczmarek, Olaf; Vogt, Oliver
2008-01-01
We study the free energy of static three quark systems in singlet, octet, decuplet, and average color channels in the quenched approximation and in 2-flavor QCD at finite temperature. We show that in the high temperature phase singlet and decuplet free energies of three quark systems are well described by the sum of the free energies of three diquark systems plus self-energy contributions of the three quarks. In the confining low temperature phase we find evidence for a Y-shaped flux tube in SU(3) pure gauge theory, which is less evident in 2-flavor QCD due to the onset of string breaking. We also compare the short distance behavior of octet and decuplet free energies to the free energies of single static quarks in the corresponding color representations.
Important configurations in six-quark N-N states. II. Current quark model
International Nuclear Information System (INIS)
Stancu, F.; Wilets, L.
1989-01-01
Quark basis states constructed from molecular-type orbitals were shown previously to be more convenient to use than cluster model states for N-N processes. The usual cluster model representation omits configurations which emerge naturally in a molecular basis which contains the same number of spatial functions. The importance of the omitted states was demonstrated for a constituent quark model. The present work extends the study to the prototypical current quark model, namely the MIT bag. In order to test the expansion for short-range N-N interactions, the eigenstates and eigenenergies of six quarks in a spherical bag, including one-gluon exchange, are calculated. The lowest eigenenergies are lowered significantly with respect to the usual cluster model. This reaffirms the importance of dynamics for obtaining the needed short-range repulsion
Search for vector like quarks and heavy resonances decaying to top quarks
Camincher, Clement; The ATLAS collaboration
2017-01-01
Vector like quarks appear in many theories beyond the Standard Model as a way to cancel the mass divergence for the Higgs boson. The current status of the ATLAS searches for the production of vector like quarks will be reviewed for proton-proton collisions at 13 TeV. This presentation will address the analysis techniques, in particular the selection criteria, the background modeling and the related experimental uncertainties. The phenomenological implications of the obtained results will also be discussed. Searches for new resonances that decay either to pairs of top quarks or a top and a b-quark will be presented. The searches are performed with the ATLAS experiment at the LHC using proton-proton collision data collected in 2015 and 2016 with a centre-of-mass energy of 13 TeV. The invariant mass spectrum of hypothetical resonances are examined for local excesses or deficits that are inconsistent with the Standard Model prediction.
Determination of the top-quark mass from hadro-production of single top-quarks
International Nuclear Information System (INIS)
Alekhin, S.; Moch, S.; Thier, S.
2016-08-01
We present a new determination of the top-quark mass m_t based on the experimental data from the Tevatron and the LHC for single-top hadro-production. We use the inclusive cross sections of s- and t-channel top-quark production to extract m_t and to minimize the dependence on the strong coupling constant and the gluon distribution in the proton compared to the hadro-production of top-quark pairs. As part of our analysis we compute the next-to-next-to-leading order approximation for the s-channel cross section in perturbative QCD based on the known soft-gluon corrections and implement it in the program HatHor for the numerical evaluation of the hadronic cross section. Results for the top-quark mass are reported in the MS and in the on-shell renormalization scheme.
Towards the dynamical study of heavy-flavor quarks in the Quark-Gluon-Plasma
International Nuclear Information System (INIS)
Berrehrah, H; Bratkovskaya, E; Cassing, W; Gossiaux, P B; Aichelin, J
2014-01-01
Within the aim of a dynamical study of on- and off-shell heavy quarks Q in the quark gluon plasma (QGP) – as produced in relativistic nucleus-nucleus collisions – we study the heavy quark collisional scattering on partons of the QGP. The elastic cross sections σ q,g−Q are evaluated for perturbative partons (massless on-shell particles) and for dynamical quasi-particles (massive off-shell particles as described by the dynamical quasi-particles model D QPM ) using the leading order Born diagrams. We demonstrate that the finite width of the quasi-particles in the DQPM has little influence on the cross sections σ q,g−Q except close to thresholds. We, furthermore, calculate the heavy quark relaxation time as a function of temperature T within the different approaches using these cross sections
Latest Results on Top Quark Properties: \\\\ Deciphering the DNA of the heaviest quark
Gallinaro, Michele
2017-01-01
The top quark, the heaviest known elementary particle discovered at the Fermilab Tevatron more than twenty years ago, has taken a central role in the study of fundamental interactions. Due to its large mass, the top quark provides a unique environment for tests of the standard model. With a cumulative luminosity of more than 100~fb$^{-1}$ collected at $\\sqrt{s}=7,8,13$~TeV by each of the ATLAS and CMS experiments at the Large Hadron Collider in the first ten years of operation, top quark physics is probing uncharted territories in precision and rare measurements with sensitivity to New Physics processes. This document summarizes the latest experimental measurements and studies of top quark properties.
Charmonia enhancement in quark-gluon plasma with improved description of c-quarks phase distribution
International Nuclear Information System (INIS)
Gossiaux, Pol Bernard; Guiho, Vincent; Aichelin, Joerg
2005-01-01
We present a dynamical model of heavy quark evolution in the quark-gluon plasma (QGP) based on the Fokker-Planck equation. We then apply this model to the case of central ultra-relativistic nucleus-nucleus collisions performed at RHIC and estimate the component of J/ψ production (integrated and differential) stemming from c-c-bar pairs that are initially uncorrelated
About the damping of quark-hadron form factors in relative quark momentum
International Nuclear Information System (INIS)
Lewin, K.; Kallies, W.
1979-01-01
A problem of sufficient damping of hadron bound states at nonasymptotic relative quark momenta is discussed. This phenomenon is considered in the connection with the power scaling beginning at momentum transfer | t | >= 2-3 GeV 2 . Damping of hadron bound states is obtained on the basis of a behaviour of four-quark Green's functions in the momentum transfer which is required by diffraction scattering
Model uncertainties in top-quark physics
Seidel, Markus
2014-01-01
The ATLAS and CMS collaborations at the Large Hadron Collider (LHC) are studying the top quark in pp collisions at 7 and 8 TeV. Due to the large integrated luminosity, precision measurements of production cross-sections and properties are often limited by systematic uncertainties. An overview of the modeling uncertainties for simulated events is given in this report.
Top quark property measurements at the LHC
Hawkings, Richard; The ATLAS collaboration
2014-01-01
Measurements of top quark properties performed at the Large Hadron Collider are reviewed, with a particular emphasis on top-pair charge asymmetries, spin correlations and polarization measurements performed by the ATLAS and CMS collaborations. The measurements are generally in good agreement with predictions from next-to-leading-order QCD calculations, and no deviations from Standard Model expectations have been seen.
Pion polarizability in a chiral quark model
International Nuclear Information System (INIS)
Ebert, D.; Volkov, M.K.
1981-01-01
The pion polarizability is calculated in a chiral meson-quark model at the one-loop level. The results are in complete agreement with earlier ones obtained within a chiral meson-baryon theory. A critical discussion of a recent paper by Llanta and Tarrach is given. (orig.)
Pion polarizability in a chiral quark model
International Nuclear Information System (INIS)
Volkov, M.K.; Ehbert, D.
1980-01-01
The pion polarizability is calculated in a chiral meson-quark model at the one-loop level. The results are in complete agreement with earlier ones obtained within a chiral meson-baryon theory. A critical discussion of a recent paper by Lanta and Tarrach is given. The results of the paper give evidence to the nonlinear chiral Lagrangian favour
Pion polarizability in a chiral quark model
International Nuclear Information System (INIS)
Volkov, M.K.; Ehbert, D.
1981-01-01
The pion polarizability is calculated in a chiral meson- quark model at the one-loop level. The results are in complete agreement with earlier ones obtained within a chiral meson-baryon theory. A critical discussion of a recent paper by Llanta and Tarrach is given [ru
Pion polarizability in a chiral quark model
International Nuclear Information System (INIS)
Volkov, M.K.; Ebert, D.
1981-01-01
It is shown that the pion polarizability calculated in a chiral model with quark loops agrees exactly with the analogous quantity found in a chiral meson-baryon model. The results of a paper by Llanta and Tarrach are discussed critically
Quark model and equivalent local potential
International Nuclear Information System (INIS)
Takeuchi, Sachiko; Shimizu, Kiyotaka
2002-01-01
In this paper, we investigate the short-range repulsion given by the quark cluster model employing an inverse scattering problem. We find that the local potential which reproduces the same phase shifts as those given by the quark cluster model has a strong repulsion at short distances in the NN 1 S 0 channel. There, however, appears an attractive pocket at very short distances due to a rather weak repulsive behavior at very high energy. This repulsion-attractive-pocket structure becomes more manifest in the channel which has an almost forbidden state, ΣN(T=3/2) 3 S 1 . In order to see what kinds of effects are important to reproduce the short-range repulsion in the quark cluster model, we investigate the contribution coming from the one-gluon-exchange potential and the normalization separately. It is clarified that the gluon exchange constructs the short-range repulsion in the NN 1 S 0 while the quark Pauli-blocking effect governs the feature of the repulsive behavior in the ΣN(T=3/2) 3 S 1 channel
Taking a gamble on the top quark
International Nuclear Information System (INIS)
Flam, F.
1994-01-01
This article describes the possible discovery of the top quark at Fermilab. Evidence for its existence is now at the level of two standard deviations above background, but a solid claim for discovery will not be made until the probability is five standard deviations. That should require one more year of experimentation
Searches for Heavy Quark States at ATLAS
AUTHOR|(INSPIRE)INSPIRE-00357007; The ATLAS collaboration
2016-01-01
This talk highlights the latest results of heavy quark searches from the ATLAS collaboration, mainly on resonance searches and vector-like quarks (VLQs) searches. Searches for $t\\bar{t}$ resonances using lepton-plus-jets events in proton-proton collisions at center-of-mass energy at 8 and 13 TeV are presented. Limits are set for BSM particles such as topcolor-assisted technicolor $Z'$ , Kaluza-Klein (K-K) gluons $g_{KK}$ and K-K excitations of graviton $G_{KK}$ in the TC Randall-Sundrum (R-S) model of extra dimensions. VLQs arise naturally in many models such as Little Higgs and Composite Higgs and typically couple preferably to the third generation SM quarks and weak bosons. Limits are set for vector-like bottom (B) and top (T) quarks decay to lepton-plus-jets final states via Hb+X and Ht+X channels in two analyses using 8 and 13 TeV datasets from ATLAS.
Searches for Heavy Quark States at ATLAS
Cheng, Hok Chuen; The ATLAS collaboration
2016-01-01
This talk highlights the latest results of heavy quark searches from the ATLAS collaboration, mainly on resonance searches and vector-like quarks (VLQs) searches. Searches for t\\bar{t} resonances using lepton-plus-jets events in proton-proton collisions at center-of-mass energy at 8 and 13 TeV are presented. Limits are set for BSM particles such as topcolor-assisted technicolor Z'_{TC} , Kaluza-Klein(K-K) gluons g_{KK} and K-K excitations of graviton G_{KK} in the Randall-Sundrum model of extra dimensions. VLQs arise naturally in many models such as Little Higgs and Composite Higgs and typically couple preferably to the third generation SM quarks and weak bosons. Limits are set for vector-like bottom (B) and top (T) quarks decay to lepton-plus-jets final states via Hb+X and Ht+X channels in two analyses using 8 and 13 TeV datasets from ATLAS.
Theoretical origin of quark mass matrices
International Nuclear Information System (INIS)
Mohapatra, R.N.
1987-01-01
This paper presents the theoretical origin of specific quark mass matrices in the grand unified theories. The author discusses the first natural derivation of the Stech-type mass matrix in unified gauge theories. A solution to the strong CP-problem is provided
New Physics with Energetic Top Quarks
Andeen, Timothy; The ATLAS collaboration
2018-01-01
Many theories beyond the Standard Model predict new phenomena which decay to energetic top quarks. Searches for such new physics models are performed using the ATLAS experiment at the LHC using proton-proton collision data collected in 2015 and 2016 with a center-of-mass energy of 13 TeV. Selected recent results will be discussed.
Heavy quark production processes in QCD
International Nuclear Information System (INIS)
Brodsky, S.J.; Gunion, J.F.
1984-12-01
We have identified two novel effects in QCD, each of which acts to enhance the production of heavy quark and supersymmetric particles beyond what is conventionally expected from gluon fusion. Both effects are present in QED, but are compounded in QCD because of the increased number of diagrams and the much larger coupling constant. The intrinsic charm quark distribution in the nucleon could account for the observed enhancements of the charm structure function at large x and features of the charm production data but this mechanism is relatively suppressed for heavier systems. Prebinding distortion of the fusion cross section is, however, likely to be significant for the production at low p/sub T/ of all particles containing heavy colored constituents. At this stage the QCD calculations are highly model dependent although they agree with the general properties which can be inferred from the operator product expansion in the heavy quark mass. Much more theoretical analysis of these effects is clearly needed. It is also clear that much more experimental work is necessary to extend and confirm the reported anomalous heavy quark signals. 22 references
Decoupling of heavy quarks in quantum chromodynamics
International Nuclear Information System (INIS)
Bernreuther, W.
1983-01-01
Decoupling of heavy quarks in quantum chromodynamics (QCD) defined by mass-independent renormalization is investigated. The structure of the relations between the parameters of f flavour QCD below a heavy-quark threshold is discussed to all orders in the loop expansion, and the relations are computed to two-loop approximation for the minimal subtraction schemes (MS) and to one-loop approximation for some Weinberg schemes. These matching relations can be used to systematically determine the renormalization group (RG)-invariant parameters of the effective theory in terms of the RG-invariant parameters of the theory which includes the heavy quark, or vice versa. For MS scheme the connection between Λ/sub f/-1 and Λ/sub f/ to two and three loops is given as well as the two-loop connection between the RG-invariant mass parameters of the f-1 and f flavour theory. The effect of heavy quarks on the evolution of the QCQ coupling is of significance for present QCD phenomenology based on next-to-leading-order perturbation theory. This is illustrated with a few examples within the MS scheme
Phase-space quark counting rule
Energy Technology Data Exchange (ETDEWEB)
Wei-Gin, Chao; Lo, Shui-Yin [Academia Sinica, Beijing (China). Inst. of High Energy Physics
1981-05-21
A simple quark counting rule based on the phase-space consideration suggested before is used to fit all 39 recent experimental data points on inclusive reactions. Parameter-free relations are found to agree with experiments. Excellent detail fits are obtained for 11 inclusive reactions.
Inflating metastable quark-gluon plasma universe
International Nuclear Information System (INIS)
Jenkovszky, L.L.; Kaempfer, B.; Sysoev, V.M.
1990-01-01
We show within the Friedmann model with the equation of state p(T)=aT 4 -AT that our universe has expanded exponentially when it was in a metastable quark-gluon plasma state. The scale factor during that epoch increased by many orders of magnitude. 13 refs.; 5 figs
Nuclear and quark matter at high temperature
Energy Technology Data Exchange (ETDEWEB)
Biro, Tamas S. [H.A.S. Wigner Research Centre for Physics, Budapest (Hungary); Jakovac, Antal [Roland Eotvos University, Budapest (Hungary); Schram, Zsolt [University of Debrecen, Institute for Theoretical Physics, Debrecen (Hungary)
2017-03-15
We review important ideas on nuclear and quark matter description on the basis of high-temperature field theory concepts, like resummation, dimensional reduction, interaction scale separation and spectral function modification in media. Statistical and thermodynamical concepts are spotted in the light of these methods concentrating on the -partially still open- problems of the hadronization process. (orig.)
Quark matter formation in dense stellar objects
Indian Academy of Sciences (India)
Although not much is known about the density at which the phase transition takes place at small temperatures, it is expected to occur around the nuclear densities of few times nuclear matter density. Also, there is a strong reason to believe that the quark matter formed after the phase transition is in colour superconducting ...
Influence of quark nuggets on primordial nucleosynthesis
International Nuclear Information System (INIS)
Schaeffer, R.; Delbourgo-Salvador, P.; Audouze, J.
1985-03-01
There are many indications that the baryonic content of the universe is rather low. This has been suggested that small droplets, ''nuggets'', of quark matter could exist and be stable or at least metastable with respect to their decay into ordinary nucleons or nuclei. This hypothesis is discussed here
Space station as quark matter factory
International Nuclear Information System (INIS)
Gyulassy, M.
1984-11-01
We review the theoretical arguments indicating that hadronic matter dissolves into a quark gluon plasma at energy densities only one order of magnitude above the energy density in nuclei and point out that such energy densities can be achieved in nuclear collisions at 10 to 1000 AGeV. 17 references
Vectorlike interactions of leptons and quarks
International Nuclear Information System (INIS)
Fritzsch, H.
1976-07-01
A vectorlike theory of hadronic weak interactions can only be constructed if there exist more than 4 quark flavours and more than 4 leptons. Any vectorlike theory implies the existence of right-handed weak currents. Typically those currents are relevant for the weak interactions of heavy leptons. The experimental consequences of some typical vectorlike models are discussed. (BJ) [de
Measuring the running top-quark mass
International Nuclear Information System (INIS)
Langenfeld, Ulrich; Uwer, Peter
2010-06-01
In this contribution we discuss conceptual issues of current mass measurements performed at the Tevatron. In addition we propose an alternative method which is theoretically much cleaner and to a large extend free from the problems encountered in current measurements. In detail we discuss the direct determination of the top-quark's running mass from the cross section measurements performed at the Tevatron. (orig.)
International Nuclear Information System (INIS)
Barbaro-Galtieri, A.
1989-03-01
This paper discusses the following topics: top search in the near future, general remarks, top search at HERA, searching for the top quarks at the Z 0 machines, finding the top at Lep II, top search in UA2, top search in UA1, and top search at CDF. 58 refs., 38 figs
Quark matter formation in dense stellar objects
Indian Academy of Sciences (India)
On the other hand, the strangeness fraction is expected to be close to zero in the hadronic phase [4a]. Thus, the chemical equilibration of the quark matter will be associated with the generation of strangeness. In addition to the production of strangeness the equilibration process will liberate con- siderable amount of energy ...
Light quarks and small X physics
International Nuclear Information System (INIS)
White, A.R.
1992-01-01
The significance of the low k perpendicular part of the Lipatov equation for the QCD soft Pomeron is discussed. It is then argued that light quarks are essential for the emergence of confinement and a Pomeron with the right physical properties. The implications for small x parton distributions are considered
Quark solitons as constituents of hadrons
International Nuclear Information System (INIS)
Ellis, J.; Frishman, Y.; Hanany, A.; Karlinev, M.
1992-01-01
We exhibit static solutions of multi-flavour QCD in two dimensions that have the quantum numbers of baryons and mesons, constructed out of quark and anti-quark solitons. In isolation the latter solitons have infinite energy, corresponding to the presence of a string carrying the non-singlet colour flux off to spatial infinity. When N c solitons of this type are combined, a static, finite-energy, colour singlet solution is formed, corresponding to a baryon. Similarly, static meson solutions are formed out of a soliton and an anti-soliton of different flavours. The stability of the mesons against annihilation is ensured by flavour conservation. The static solutions exist only when the fundamental fields of the bosonized lagrangian belong to U(N c xN f ) rather than to SU(N c )xU(N f ). Discussion of flavour-symmetry breaking requires a careful treatment of the normal-ordering ambiguity. Our results can be viewed as a derivation of the constituent quark model in QCD 2 , allowing a detailed study of constituent mass generation and of the heavy-quark symmetry. (orig.)
Quark-gluon plasma (Selected Topics)
International Nuclear Information System (INIS)
Zakharov, V. I.
2012-01-01
Introductory lectures to the theory of (strongly interacting) quark-gluon plasma given at the Winter School of Physics of ITEP (Moscow, February 2010). We emphasize theoretical issues highlighted by the discovery of the low viscosity of the plasma. The topics include relativistic hydrodynamics, manifestations of chiral anomaly in hydrodynamics, superfluidity, relativistic superfluid hydrodynamics, effective stringy scalars, holographic models of Yang-Mills theories.
and density-dependent quark mass model
Indian Academy of Sciences (India)
Since a fair proportion of such dense proto stars are likely to be ... the temperature- and density-dependent quark mass (TDDQM) model which we had em- ployed in .... instead of Tc ~170 MeV which is a favoured value for the ud matter [26].
Electromagnetic signals of quark gluon plasma
Indian Academy of Sciences (India)
dsm@vecaxp2.veccal.ernet.in (D.S.Mukherjee)
tate our understanding of the quark-hadron phase transition although, I do not think I ... Our energetic friends [7] who deal with Parton cascade model (PCM) seem to have ..... in QHD is untenable, these are solved in mean field approximation.
Top quark production cross-section measurements
Chen, Ye; The ATLAS collaboration
2017-01-01
Measurements of the inclusive and differential cross-sections for top-quark pair and single top production cross sections in proton-proton collisions with the ATLAS detector at the Large Hadron Collider are presented at center-of-mass energies of 8 TeV and 13 TeV. The inclusive measurements reach high precision and are compared to the best available theoretical calculations. These measurements, including results using boosted tops, probe our understanding of top-pair production in the TeV regime. The results are compared to Monte Carlo generators implementing LO and NLO matrix elements matched with parton showers and NLO QCD calculations. For the t-channel single top measurement, the single top-quark and anti-top-quark total production cross-sections, their ratio, as well as differential cross sections are also presented. A measurement of the production cross-section of a single top quark in association with a W boson, the second largest single-top production mode, is also presented. Finally, measurements of ...
Critical parameters for degenerate quark stars
International Nuclear Information System (INIS)
Patel, Divyesh J.; Vinodkumar, P.C.; Ray, Asim K.
1999-01-01
The possibility of a phase transition between nuclear matter and quark matter has been of recent interest from the point of view of experimental as well as theoretical consideration. Astrophysical implications of such stars in the evolution of heavy neutron stars to black holes are also discussed
Seismic Search for Strange Quark Matter
Teplitz, Vigdor
2004-01-01
Two decades ago, Witten suggested that the ground state of matter might be material of nuclear density made from up, down and strange quarks. Since then, much effort has gone into exploring astrophysical and other implications of this possibility. For example, neutron stars would almost certainly be strange quark stars; dark matter might be strange quark matter. Searches for stable strange quark matter have been made in various mass ranges, with negative, but not conclusive results. Recently, we [D. Anderson, E. Herrin, V. Teplitz, and I. Tibuleac, Bull. Seis. Soc. of Am. 93, 2363 (2003)] reported a positive result for passage through the Earth of a multi-ton "nugget" of nuclear density in a search of about a million seismic reports, to the U.S. Geological Survey for the years 1990-93, not associated with known Earthquakes. I will present the evidence (timing of first signals to the 9 stations involved, first signal directions, and unique waveform characteristics) for our conclusion and discuss potential improvements that could be obtained from exploiting the seismologically quieter environments of the moon and Mars.
Quarked!--Adventures in Particle Physics Education
MacDonald, Teresa; Bean, Alice
2009-01-01
Particle physics is a subject that can send shivers down the spines of students and educators alike--with visions of long mathematical equations and inscrutable ideas. This perception, along with a full curriculum, often leaves this topic the road less traveled until the latter years of school. Particle physics, including quarks, is typically not…
Single top quarks and dark matter
Pinna, Deborah; Zucchetta, Alberto; Buckley, Matthew R.; Canelli, Florencia
2017-08-01
Processes with dark matter interacting with the standard model fermions through new scalars or pseudoscalars with flavor-diagonal couplings proportional to fermion mass are well motivated theoretically, and provide a useful phenomenological model with which to interpret experimental results. Two modes of dark matter production from these models have been considered in the existing literature: pairs of dark matter produced through top quark loops with an associated monojet in the event, and pair production of dark matter with pairs of heavy flavored quarks (tops or bottoms). In this paper, we demonstrate that a third, previously overlooked channel yields a non-negligible contribution to LHC dark matter searches in these models. In spite of a generally lower production cross section at LHC when compared to the associated top-pair channel, non-flavor violating single top quark processes are kinematically favored and can significantly increase the sensitivity to these models. Including dark matter production in association with a single top quark through scalar or pseudoscalar mediators, the exclusion limit set by the LHC searches for dark matter can be improved by 30% up to a factor of two, depending on the mass assumed for the mediator particle.
Exploring Quarks, Gluons and the Higgs Boson
Johansson, K. Erik
2013-01-01
With real particle collision data available on the web, the amazing dynamics of the fundamental particles of the standard model can be explored in classrooms. Complementing the events from the ATLAS experiment with animations of the fundamental processes on the quark and gluon level makes it possible to better understand the invisible world of…
Large N baryons, strong coupling theory, quarks
International Nuclear Information System (INIS)
Sakita, B.
1984-01-01
It is shown that in QCD the large N limit is the same as the static strong coupling limit. By using the static strong coupling techniques some of the results of large N baryons are derived. The results are consistent with the large N SU(6) static quark model. (author)
Quark Deconfinement in Rotating Neutron Stars
Directory of Open Access Journals (Sweden)
Richard D. Mellinger
2017-01-01
Full Text Available In this paper, we use a three flavor non-local Nambu–Jona-Lasinio (NJL model, an improved effective model of Quantum Chromodynamics (QCD at low energies, to investigate the existence of deconfined quarks in the cores of neutron stars. Particular emphasis is put on the possible existence of quark matter in the cores of rotating neutron stars (pulsars. In contrast to non-rotating neutron stars, whose particle compositions do not change with time (are frozen in, the type and structure of the matter in the cores of rotating neutron stars depends on the spin frequencies of these stars, which opens up a possible new window on the nature of matter deep in the cores of neutron stars. Our study shows that, depending on mass and rotational frequency, up to around 8% of the mass of a massive neutron star may be in the mixed quark-hadron phase, if the phase transition is treated as a Gibbs transition. We also find that the gravitational mass at which quark deconfinement occurs in rotating neutron stars varies quadratically with spin frequency, which can be fitted by a simple formula.
Quarks and leptons: the generation puzzle
International Nuclear Information System (INIS)
Harari, H.
1979-07-01
Some crucial questions with regards to the physics of the world beyond the standard view of quarks and leptons are investigated. The standard view is set forth, its problems noted, and its possibilities considered, particularly that of the grand unification scheme. Some open questions are listed. 29 references
Heavy mesons spectroscopy and new quarks
International Nuclear Information System (INIS)
Carvalho, H.F. de.
1977-12-01
The spectroscopy of new heavy mesons with masses above 2.8 GeV in the context of the asymptoticallty free gauge theories is analysed. To this end a power -law confinement potential is chosen. It is shown that the charmonium spectroscopy is best described by a potential where the exponent is around 0.5. It is observed that the spin-spin interaction is problematic. A possible interpretation of the γ resonances in the neighbourhood of 10 GeV is also discussed. The possible consequences of the existence of heavy quarks beyond charm with special reference to the processes initiated by neutral currents is also discussed. The present results on processes initiated by neutral current effects does not require introduction of right-handed heavy quarks beyond charm. Inclusion of the sea-quark contribution improves the agreements of the results of the Salam-Weinberg model with the recently observed results from CERN where 'ν anomaly' was not seen. The recently discovered γ resonances probably indicate the existence of heavy quarks probably with left handed coupling. Some preliminary study of this possibility was also carried out. (Author) [pt
The catamorphy of quark-lepton families
International Nuclear Information System (INIS)
Wilkinson, D.H.
1988-11-01
Quark-lepton families appear to be limited in number. This can be understood if they are catamorphically related. This is illustrated by a simple geometrical Ansatz that gives the correct number of fermion fields per family and limits the number of families to three
The fourth family of quarks and leptons
International Nuclear Information System (INIS)
Cline, D.B.; Soni, A.
1987-01-01
This book presents the proceedings of The Fourth Family of Quarks and Leptons. Topics covered include: Missing Transverse Energy Events and a Search for Additional Neutrino Families and a Fourth-Generation Lepton; Cosmological Limit on the Number of Families; and Charmed Baryon Decay
Hyperon-nucleon interaction in the quark cluster model
International Nuclear Information System (INIS)
Straub, U.; Zhang Zongye; Braeuer, K.; Faessler, A.; Khadkikar, S.B.; Luebeck, G.
1988-01-01
The lambda-nucleon and sigma-nucleon interaction is described in the nonrelativistic quark cluster model. The SU(3) flavor symmetry breaking due to the different quark masses is taken into account, i.e. different wavefunctions for the light (up, down) and heavy (strange) quarks are used in flavor and orbital space. The six-quark wavefunction is fully antisymmetrized. The model hamiltonian contains gluon exchange, pseudoscalar meson exchange and a phenomenological σ-meson exchange. The six-quark scattering problem is solved within the resonating group method. The experimental lambda-nucleon and sigma-nucleon cross sections are well reproduced. (orig.)
Soap opera: the sad tale of the quark
International Nuclear Information System (INIS)
Lipkin, H.
1984-01-01
The history of quark physics is briefly reviewed, followed by an introduction to quantum chromodynamics, leading terms, and the OZI rule. The basic physics of hadron structure as revealed by experiment is then discussed, followed by the models used to treat it. The two complementary models are the quasinuclear colored quark model and the quark-parton model. Another model for orthogonal physical properties is the bag model. Several applications of the constituent quark model are considered, including hadron masses, spin physics, and multiquark physics. The theoretical basis and phenomenology of the OZI rule forbids processes described by disconnected quark line diagrams
Search for Single Top Quark Production at HERA
Aaron, F D; Alexa, C; Alimujiang, K; Andreev, V; Antunovic, B; Asmone, A; Backovic, S; Baghdasaryan, A; Barrelet, E; Bartel, W; Begzsuren, K; Belousov, A; Bizot, J C; Boudry, V; Bozovic-Jelisavcic, I; Bracinik, J; Brandt, G; Brinkmann, M; Brisson, V; Bruncko, D; Bunyatyan, A; Buschhorn, G; Bystritskaya, L; Campbell, A J; Cantun Avila, K B; Cassol-Brunner, F; Cerny, K; Cerny, V; Chekelian, V; Cholewa, A; Contreras, J G; Coughlan, J A; Cozzika, G; Cvach, J; Dainton, J B; Daum, K; Deak, M; de Boer, Y; Delcourt, B; Del Degan, M; Delvax, J; De Roeck, A; De Wolf, E A; Diaconu, C; Dodonov, V; Dossanov, A; Dubak, A; Eckerlin, G; Efremenko, V; Egli, S; Eliseev, A; Elsen, E; Falkiewicz, A; Favart, L; Fedotov, A; Felst, R; Feltesse, J; Ferencei, J; Fischer, D J; Fleischer, M; Fomenko, A; Gabathuler, E; Gayler, J; Ghazaryan, S; Glazov, A; Glushkov, I; Goerlich, L; Gogitidze, N; Gouzevitch, M; Grab, C; Greenshaw, T; Grell, B R; Grindhammer, G; Habib, S; Haidt, D; Helebrant, C; Henderson, R C W; Hennekemper, E; Henschel, H; Herbst, M; Herrera, G; Hildebrandt, M; Hiller, K H; Hoffmann, D; Horisberger, R; Hreus, T; Jacquet, M; Janssen, M E; Janssen, X; Jonsson, L; Jung, Andreas Werner; Jung, H; Kapichine, M; Katzy, J; Kenyon, I R; Kiesling, C; Klein, M; Kleinwort, C; Kluge, T; Knutsson, A; Kogler, R; Kostka, P; Kraemer, M; Krastev, K; Kretzschmar, J; Kropivnitskaya, A; Kruger, K; Kutak, K; Landon, M P J; Lange, W; Lastovicka-Medin, G; Laycock, P; Lebedev, A; Leibenguth, G; Lendermann, V; Levonian, S; Li, G; Lipka, K; Liptaj, A; List, B; List, J; Loktionova, N; Lopez-Fernandez, R; Lubimov, V; Lytkin, L; Makankine, A; Malinovski, E; Marage, P; Marti, Ll; Martyn, H U.; Maxfield, S J; Mehta, A; Meyer, A B; Meyer, H; Meyer, H; Meyer, J; Michels, V; Mikocki, S; Milcewicz-Mika, I; Moreau, F; Morozov, A; Morris, J V; Mozer, Matthias Ulrich; Mudrinic, M; Muller, K; Murin, P; Naumann, Th; Newman, P R; Niebuhr, C; Nikiforov, A; Nowak, G; Nowak, K; Nozicka, M; Olivier, B; Olsson, J E; Osman, S; Ozerov, D; Palichik, V; Panagoulias, I; Pandurovic, M; Papadopoulou, Th; Pascaud, C; Patel, G D; Pejchal, O; Perez, E; Petrukhin, A; Picuric, I; Piec, S; Pitzl, D; Placakyte, R; Pokorny, B; Polifka, R; Povh, B; Preda, T; Radescu, V; Rahmat, A J; Raicevic, N; Raspiareza, A; Ravdandorj, T; Reimer, P; Rizvi, E; Robmann, P; Roland, B; Roosen, R; Rostovtsev, A; Rotaru, M; Ruiz Tabasco, J E; Rurikova, Z; Rusakov, S; Salek, D; Sankey, D P C; Sauter, M; Sauvan, E; Schmitt, S; Schmitz, C; Schoeffel, L; Schoning, A; Schultz-Coulon, H C; Sefkow, F; Shaw-West, R N; Shtarkov, L N; Shushkevich, S; Sloan, T; Smiljanic, Ivan; Soloviev, Y; Sopicki, P; South, D; Spaskov, V; Specka, Arnd E; Staykova, Z; Steder, M; Stella, B; Stoicea, G; Straumann, U.; Sunar, D; Sykora, T; Tchoulakov, V; Thompson, G; Thompson, P D; Toll, T; Tomasz, F; Tran, T H; Traynor, D; Trinh, T N; Truol, P; Tsakov, I; Tseepeldorj, B; Turnau, J; Urban, K; Valkarova, A; Vallee, C; Van Mechelen, P; Vargas Trevino, A; Vazdik, Y; Vinokurova, S; Volchinski, V; von den Driesch, M; Wegener, D; Wissing, Ch; Wunsch, E; Zacek, J; Zalesak, J; Zhang, Z; Zhokin, A; Zimmermann, T; Zohrabyan, H; Zomer, F; Zus, R
2009-01-01
A search for single top quark production is performed in the full ep data sample collected by the H1 experiment at HERA, corresponding to an integrated luminosity of 474 pb^-1. Decays of top quarks into a b quark and a W boson with subsequent leptonic or hadronic decay of the W are investigated. A multivariate analysis is performed to discriminate top quark production from Standard Model background processes. An upper limit on the top quark production cross section via flavour changing neutral current processes sigma (ep -> etX) < 0.25 pb is established at 95% CL. Limits on the anomalous coupling kappa_{tu gamma} are derived.
Beyond Standard Model searches with top quarks at ATLAS
International Nuclear Information System (INIS)
Chevalier, F.
2008-01-01
At the Lhc, the top quark is expected to provide a huge and clean signal. With about eight millions of expected top pairs and three millions of single top events produced per year in the low luminosity runs, and with a low level of backgrounds, the Lhc will open a new opportunity for precision measurements of the top quark properties and for exotic topology searches involving top quarks. As the ATLAS discovery potential on new physics with top quarks is being assessed with many analyses, this paper focuses on two particular topics: heavy neutral resonance and charged Higgs boson searches with top quarks. The analyses and the ATLAS expectations are described.