WorldWideScience

Sample records for quarkonium mass splittings

  1. Quark mass dependence of quarkonium properties at finite temperature

    CERN Document Server

    Ohno, H; Kaczmarek, O

    2014-01-01

    Quarkonium properties at finite temperature have been studied with quark masses of the charm and bottom quarks. Our simulations have been performed in quenched QCD with the $O(a)$-improved Wilson quarks on large and fine isotropic lattices with the spatial lattice extents $N_\\sigma =$ 96, 192 and the corresponding lattice spacings $a =$ 0.0190, 0.00967 fm, respectively, at temperatures in a range between about 0.7$T_c$ and 1.4$T_c$. We show temperature and quark mass dependence of quarkonium correlation functions and related physical quantities: the quark number susceptibility and the heavy quark diffusion constant.

  2. Strong IR Cancellation in Heavy Quarkonium and Precise Top Mass Determination

    CERN Document Server

    Kiyo, Y; Sumino, Y

    2015-01-01

    Combining recent perturbative analyses on the static QCD potential and the quark pole mass, we find that, for the heavy quarkonium states $c\\bar{c}$, $b\\bar{b}$ and $t\\bar{t}$, (1) ultra-soft (US) corrections in the binding energies are small, and (2) there is a stronger cancellation of IR contributions than what has been predicted by renormalon dominance hypothesis. By contrast, for a hypothetical heavy quarkonium system with a small number of active quark flavors ($n_l\\approx 0$), we observe evidence that renormalon dominance holds accurately and that non-negligible contributions from US corrections exist. As an important consequence, we improve on a previous prediction for possible achievable accuracy of top quark $\\overline{\\rm MS}$--mass measurement at a future linear collider and estimate that in principle about 20 MeV accuracy is reachable.

  3. Quarkonium suppression

    Indian Academy of Sciences (India)

    P Petreczky

    2003-04-01

    I discuss quarkonium suppression in equilibrated strongly interacting matter. After a brief review of basic features of quarkonium production I discuss the application of recent lattice data on the heavy quark potential to the problem of quarkonium dissociation as well as the problem of direct lattice determination of quarkonium properties in finite temperature lattice QCD.

  4. Quarkonium fine-hyperfine splittings and the Lorentz structure of the confining potential with vacuum-polarization corrections

    Energy Technology Data Exchange (ETDEWEB)

    Barik, N.; Jena, S.N.

    1980-06-01

    Within the framework of the Poggio-Schnitzer flavor-independent static-potential model with long-distance vacuum-polarization correction, we analyze the Lorentz-Dirac structure of the confinement potential with reference to the charmonium hyperfine splittings. In view of the questionable existence and/or doubtful identity of the X(2830) and chi(3455) states, we give preference to the Lorentz-Dirac character of the confinement potential in the form of an approximately equal admixture of scalar and vector components with no anomalous moment. This in turn predicts the /sup 1/S/sub 0/ partners of psi and psi' to be near the 3.0- and 3.6-GeV mass regions, respectively. This also suggests the /sup 1/P/sub 1/ state of charmonium is to be found above the /sup 3/P/sub 0/ state near the mass region of 3.48 GeV.

  5. Splitting neutrino masses and showering into Sky

    CERN Document Server

    Fargion, D; Iacovelli, M; Lanciano, O; Oliva, P; De Lucentini, P G S; Grossi, M; De Santis, M

    2006-01-01

    Neutrino masses might be as light as a few time the atmospheric neutrino mass splitting. High Energy ZeV cosmic neutrinos (in Z-Showering model) might hit relic ones at each mass in different resonance energies in our nearby Universe. This non-degenerated density and energy must split UHE Z-boson secondaries (in Z-Burst model) leading to multi injection of UHECR nucleons within future extreme AUGER energy. Secondaries of Z-Burst as neutral gamma, below a few tens EeV are better surviving local GZK cut-off and they might explain recent Hires BL-Lac UHECR correlations at small angles. A different high energy resonance must lead to Glashow's anti-neutrino showers while hitting electrons in matter. In air, Glashow's anti-neutrino showers lead to collimated and directional air-showers offering a new Neutrino Astronomy. At greater energy around PeV, Tau escaping mountains and Earth and decaying in flight are effectively showering in air sky. These Horizontal showering is splitting by geomagnetic field in forked sha...

  6. Splitting Neutrino masses and Showering into Sky

    Science.gov (United States)

    Fargion, D.; D'Armiento, D.; Lanciano, O.; Oliva, P.; Iacobelli, M.; de Sanctis Lucentini, P. G.; Grossi, M.; de Santis, M.

    2007-06-01

    Neutrino masses might be as light as a few time the atmospheric neutrino mass splitting. The relic cosmic neutrinos may cluster in wide Dark Hot Local Group Halo. High Energy ZeV cosmic neutrinos (in Z-Showering model) might hit relic ones at each mass in different resonance energies in our nearby Universe. This non-degenerated density and energy must split UHE Z-boson secondaries (in Z-Burst model) leading to multi injection of UHECR nucleons within future extreme AUGER energy. Secondaries of Z-Burst as neutral gamma, below a few tens EeV are better surviving local GZK cut-off and they might explain recent Hires BL-Lac UHECR correlations at small angles. A different high energy resonance must lead to Glashow's anti-neutrino showers while hitting electrons in matter. In water and ice it leads to isotropic light explosions. In air, Glashow's anti-neutrino showers lead to collimated and directional air-showers offering a new Neutrino Astronomy. Because of neutrino flavor mixing, astrophysical energetic tau neutrino above tens GeV must arise over atmospheric background. At TeV range is difficult to disentangle tau neutrinos from other atmospheric flavors. At greater energy around PeV, Tau escaping mountains and Earth and decaying in flight are effectively showering in air sky. These Horizontal showering is splitting by geomagnetic field in forked shapes. Such air-showers secondaries release amplified and beamed gamma bursts (like observed TGF), made also by muon and electron pair bundles, with their accompanying rich Cherenkov flashes. Also planet's largest (Saturn, Jupiter) atmosphere limbs offer an ideal screen for UHE GZK and Z-burst tau neutrino, because their largest sizes. Titan thick atmosphere and small radius are optimal for discovering up-going resonant Glashow resonant anti-neutrino electron showers. Detection from Earth of Tau, anti-Tau, anti-electron neutrino induced Air-showers by twin Magic Telescopes on top mountains, or space based detection on

  7. Quarkonium Production in an Improved Color Evaporation Model

    CERN Document Server

    Ma, Yan-Qing

    2016-01-01

    We propose an improved version of the color evaporation model to describe heavy quarkonium production. In contrast to the traditional color evaporation model, we impose the constraint that the invariant mass of the intermediate heavy quark-antiquark pair to be larger than the mass of produced quarkonium. We also introduce a momentum shift between heavy quark-antiquark pair and the quarkonium. Numerical calculations show that our model can describe the charmonium yields as well as ratio of $\\psi^\\prime$ over $J/\\psi$ better than the traditional color evaporation model.

  8. Quarkonium at non-zero isospin density

    CERN Document Server

    Detmold, William; Shi, Zhifeng

    2014-01-01

    We calculate the energies of quarkonium bound states in the presence of a medium of nonzero isospin density using lattice QCD. The medium, created using a canonical (fixed isospin charge) approach, induces a reduction of the quarkonium energies. As the isospin density increases, the energy shifts first increase linearly and then saturate at an isospin density where a qualitative change in the behaviour of the energy density of the medium has been previously observed. This provides further support to the conjecture that the medium undergoes a transition from a pion gas to a Bose-Einstein condensed phase at this point. The reduction of the quarkonium energies becomes more pronounced as the heavy-quark mass is decreased, similar to the behaviour seen in two-colour QCD at non-zero quark chemical potential. In the process of our analysis, the Upsilon-pi and eta_b-pi scattering phase shifts are determined at low momentum and found to be small.

  9. Measurement of Quarkonium Polarization to Probe QCD at the LHC

    CERN Document Server

    Knunz, Valentin Karl; Strauss, Josef

    2015-01-01

    With the first proton-proton collisions in the Large Hadron Collider (LHC) at CERNin 2010, a new era in high energy physics has been initiated. The data collected bythe various experiments open up the possibility to study standard model processes withhigh precision, in new areas of phase space. The LHC provides excellent conditions forstudies of quarkonium production, due to the high quarkonium production rates giventhe high center-of-mass energy and high instantaneous luminosity of the colliding protonbeams. Studies of the production of heavy quarkonium mesons – bound states of a heavyquark and its respective antiquark – are very important to improve our understanding ofhadron formation. Until quite recently, experimental and phenomenological efforts havenot resulted in a satisfactory overall picture of quarkonium production cross sections andquarkonium polarizations.The Compact Muon Solenoid (CMS) detector is ideally suited to study quarkoniumproduction in the experimentally very clean dimuon decay ch...

  10. Quarkonium Spectral Functions

    Energy Technology Data Exchange (ETDEWEB)

    Mocsy, Agnes [Department of Mathematics and Science, Pratt Institute, Brooklyn, NY 11205 (United States)

    2009-11-01

    In this talk I summarize the progress achieved in recent years on the understanding of quarkonium properties at finite temperature. Theoretical studies from potential models, lattice QCD, and effective field theories are discussed. I also highlight a bridge from spectral functions to experiment.

  11. Jost functions for quarkonium

    Science.gov (United States)

    Pikh, S. S.; Lis, O. M.

    1986-05-01

    We examine the interaction in quarkonium by means of the potential V(r)=-α/r+ βr+Vo. Within the framework of the Fuda generalization of the van Leeuwen-Reiner approach, the off-shell Jost functions and the off-shell and half-off-shell T-matrices are derived.

  12. Isoscalar-isovector mass splittings in excited mesons

    CERN Document Server

    Geiger, P

    1994-01-01

    Mass splittings between the isovector and isoscalar members of meson nonets arise in part from hadronic loop diagrams which violate the Okubo-Zweig-Iizuka rule. Using a model for these loop processes which works qualitatively well in the established nonets, I tabulate predictions for the splittings and associated isoscalar mixing angles in the remaining nonets below about 2.5 GeV, and explain some of their systematic features. The results for excited vector mesons compare favorably with experiment.

  13. Model for mass splitting inside Goldstone supermultiplets

    Energy Technology Data Exchange (ETDEWEB)

    Girardi, G.; Sorba, P.; Hoegaasen, H.

    1985-12-05

    From a model where supermultiplets of particles which we call urons are confined to the inside of a bag, we obtain relations between the uron mass and the mass of the pseudo Goldstone particles due to the breaking of chiral symmetry on the boundary of the bag. By the same token supersymmetry is also broken and it appears that for small bags the Goldstone bosons are much heavier than their fermion partners. (orig.).

  14. A note on the mass splitting of K*(892)

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Belle Collaboration reported a new observed value of K*-(892) mass by studying τ- → Ksπ-γτ decay, which is significantly different from the current world average value given by Particle Data Group 2006.Motivated by this new data, we revisit the issue on the K*0(892)-K*±(892) mass splitting. Our theoreticalestimation favors the new measurement by Belle Collaboration. Therefore further experimental efforts are urgently needed to improve our understanding of these issues.

  15. Heavy quarkonium hybrids: Spectrum, decay, and mixing

    Science.gov (United States)

    Oncala, Ruben; Soto, Joan

    2017-07-01

    We present a largely model-independent analysis of the lighter heavy quarkonium hybrids based on the strong coupling regime of potential nonrelativistic QCD. We calculate the spectrum at leading order, including the mixing of static hybrid states. We use potentials that fulfill the required short and long distance theoretical constraints and fit well the available lattice data. We argue that the decay width to the lower lying heavy quarkonia can be reliably estimated in some cases and provide results for a selected set of decays. We also consider the mixing with heavy quarkonium states. We establish the form of the mixing potential at O (1 /mQ) , mQ being the mass of the heavy quarks, and work out its short and long distance constraints. The weak coupling regime of potential nonrelativistic QCD and the effective string theory of QCD are used for that goal. We show that the mixing effects may indeed be important and produce large spin symmetry violations. Most of the isospin zero XYZ states fit well in our spectrum, either as a hybrid or standard quarkonium candidate.

  16. Hadro-quarkonium from Lattice QCD

    CERN Document Server

    Alberti, Maurizio; Collins, Sara; Knechtli, Francesco; Moir, Graham; Söldner, Wolfgang

    2016-01-01

    The hadro-quarkonium picture provides one possible interpretation for the pentaquark candidates with hidden charm, recently reported by the LHCb Collaboration, as well as for some of the charmonium-like X,Y,Z states. In this model, a heavy quarkonium core resides within a light hadron giving rise to four- and five-quark/antiquark bound states. We test this scenario in the heavy quark limit by investigating the modification of the potential between a static quark-antiquark pair induced by the presence of a hadron. Our lattice QCD simulations are performed on a CLS ensemble with $N_f=2+1$ flavours of non-perturbatively improved Wilson quarks at a pion mass of about 223 MeV and a lattice spacing of about $a=0.0854$ fm. We study the static potential in the presence of a variety of light mesons as well as of octet and decuplet baryons. In all these cases, the resulting configurations are favoured energetically, however, the associated binding energies between the quarkonium in the heavy quark limit and the light h...

  17. Entropic destruction of a moving heavy quarkonium

    CERN Document Server

    Fadafan, Kazem Bitaghsir

    2015-01-01

    Recently it has been shown that the peak of the quarkonium entropy at the deconfinement transition is related to the emergent entropic force which destructs the quarkonium. Using the AdS/CFT correspondence, we consider dissociation of a moving heavy quarkonium by entropic force. We find that the entropic force destructs the moving quarkonium easier than the static case which is expected from perturbative weakly coupled plasma. By considering the Maxwell charge, we study the effect of medium on the destruction of heavy quarkonium. It is shown that the quarkonium dissociates easier in the medium.

  18. Realizing the potential of quarkonium

    Energy Technology Data Exchange (ETDEWEB)

    Quigg, C.

    1997-07-01

    I recall the development of quarkonium quantum mechanics after the discovery of {Upsilon}. I emphasize the empirical approach to determining the force between quarks from the properties of c{anti c} and b{anti b} bound states. I review the application of scaling laws, semiclassical methods, theorems and near-theorems, and inverse- scattering techniques. I look forward to the next quarkonium spectroscopy in the B{sub c} system.

  19. Quarkonium correlation functions at finite temperature in the charm to bottom region

    CERN Document Server

    Ohno, Hiroshi

    2013-01-01

    Quarkonium correlation functions at finite temperature were studied in a region of the quark mass for charmonia to bottomonia in quenched lattice QCD with $O(a)$-improved Wilson quarks. Our simulations were performed on large isotropic lattices at temperatures in the range from about 0.80$T_c$ to 1.61$T_c$. We investigated quarkonium behavior in terms of temperature dependence as well as quark mass dependence of the quarkonium correlation functions and related quantities at both vanishing and finite momenta.

  20. Charmed baryon isodoublet mass splitting in quantum chromodynamics revitalized

    Science.gov (United States)

    Sinha, S. N.; Sinha, S. M.; Rahman, M.; Kim, D. Y.

    1989-02-01

    We calculate the isodoublet mass splitting of charmed baryons in the quark model in QCD, which includes the relativistic correction and the explicit use of running QCD coupling constants with flavors. The model was applied and tested in the past for the calculations of isodoublet mass splittings of several hadrons. Our theoretical result ( Δmth( Σc++- Σc0)≅1.5±0.2 MeV) is in agteement with the recent experimental result ( Δmex( Σc++- Σc0)=1.2±0.7±0.3 MeV) by the ARGUS Collaboration at the DORIS II storage ring.

  1. Heavy Quarkonium Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Faccini, Riccardo; /Rome U. /INFN, Rome

    2008-02-22

    Although the Standard Model of elementary particles is well established, strong interactions are not yet fully under control. We believe QCD is the field theory capable of describing them, but we are not yet capable, in most of the cases, to make exact predictions. Systems that include heavy quark-antiquark pairs (quarkonia) are ideal and unique laboratories to probe both the high energy regimes of QCD, where an expansion in terms of the coupling constant is possible, and the low energy regimes, where non-perturbative effects dominate. In the last years this field is experiencing a rapid expansion with a wealth of new data coming in from diverse sources: data on quarkonium formation from dedicated experiments (BES at BEPC, KEDR at VEPP-4M CLEO-c at CESR), clear samples produced by high luminosity B-factories (PEP and KEKB), and very large samples produced from gluon-gluon fusion in p{bar p} annihilations at Tevatron (CDF and D0 experiments). In this review I will first summarize recent developments in the understanding of heavy quarkonium states which have a well established quark content. Next, the core of the paper will be spent to review the experimental evidences of new states that might be aggregations of more than just a quark-antiquark pair. Although the possibility to have bound states of two quarks and two antiquarks or of quark-antiquark pairs and gluons has been predicted since the very start of the quark model [2], no observed state has yet been attributed to one of them: achieving such an attribution would be a major step in the understanding of the strong interactions.

  2. Octet baryon mass splittings from up-down quark mass differences

    CERN Document Server

    Horsley, R; Nakamura, Y; Pleiter, D; Rakow, P E L; Schierholz, G; Zanotti, J M

    2012-01-01

    Using an SU(3) flavour symmetry breaking expansion in the quark mass, we determine the QCD component of the neutron-proton, Sigma and Xi mass splittings of the baryon octet due to up-down (and strange) quark mass differences. Provided the average quark mass is kept constant, the expansion coefficients in our procedure can be determined from computationally cheaper simulations with mass degenerate sea quarks and partially quenched valence quarks. Full details and numerical results are given in ref 1.

  3. Heavy quarkonium in a holographic basis

    Directory of Open Access Journals (Sweden)

    Yang Li

    2016-07-01

    Full Text Available We study the heavy quarkonium within the basis light-front quantization approach. We implement the one-gluon exchange interaction and a confining potential inspired by light-front holography. We adopt the holographic light-front wavefunction (LFWF as our basis function and solve the non-perturbative dynamics by diagonalizing the Hamiltonian matrix. We obtain the mass spectrum for charmonium and bottomonium. With the obtained LFWFs, we also compute the decay constants and the charge form factors for selected eigenstates. The results are compared with the experimental measurements and with other established methods.

  4. Last hurrah for quarkonium physics: the top system

    Energy Technology Data Exchange (ETDEWEB)

    Eichten, E.

    1985-02-01

    The present knowledge about heavy quark systems is applied to the top system - both toponium and open top. Properties of these systems are predicted. What can be learned from toponium about quarkonium physics under realistic experimental conditions is also discussed. The spectrum of toponium states is discussed: the expected excitation spectrum, the implications for probing the heavy quark potential, and an estimate of the fine and hyperfine splittings. Production and decay properties are discussed, particularly emphasizing the growing importance of electroweak effects on the decays of toponium states. The properties of low-lying open top mesons are also dicussed. Some more exotic possibilities are considered, particularly: (1) the influence of light charged or neutral Higgs-like scalars on toponium decays, (2) possible direct production of J = 1 (t anti t) P-states via the axial vector coupling of the Z/sup 0/ to (t anti t), and (3) toponium - Z/sup 0/ interference effects which would result if the mass difference between some toponium resonance and the Z/sup 0/ were less than the width of the Z/sup 0/. The present situation of the nonrelativistic potential between heavy quarks is discussed. 53 refs., 29 figs., (LEW)

  5. Photoproduction of heavy quarkonium at the ILC

    Science.gov (United States)

    Chen, Gu; Wu, Xing-Gang; Fu, Hai-Bing; Han, Hua-Yong; Sun, Zhan

    2014-08-01

    We study the photoproduction of the heavy quarkonium at the future International Linear Collider (ILC) within the nonrelativistic QCD theory. We focus on the production channel via the subprocess γγ→|[Q1(n)⟩+Q'+Q¯, where Q and Q' stand for the heavy c or b quark, respectively. |[Q Q1(n)⟩ stands for the color-singlet S-wave quarkonium, i.e., ηc(|[c1(S10)⟩), J/ψ(|[cc¯]1(S31)⟩), Bc(|[c1(S10)⟩), Bc*(|[cb¯]1(S31)⟩), ηb(|[b1(1S0)⟩), and Υ(|[bb¯]1(S31)⟩), respectively. To improve the calculation efficiency, we adopt the improved helicity amplitude approach to deal with the difficulty of calculating the expressions for the yields when the quark masses cannot be neglected. Total and differential photoproduction cross sections, together with their uncertainties, have been presented. It is noted that a sizable number of |cc¯⟩-charmonium and |cb¯⟩-quarkonium events can be generated at the ILC. More specifically, we predict (2.4-0.6+0.8)×106 ηc, (4.7-1.1+1.6)×106 J/ψ, (8.6-1.9+2.3)×103 Bc, (4.6-0.9+1.3)×104 Bc*, (6.6±1.2)×103 ηb, and (1.2±0.2)×103 ϒ events to be generated in one operation year at the ILC under the condition of √S =500 GeV and L ≃1036 cm-2s-1.

  6. LHCb: Quarkonium Production at LHCb

    CERN Multimedia

    Frosini, M

    2011-01-01

    Despite large experimental and theoretical efforts, quarkonium production in hadronic collisions is not yet satisfactorily understood. Due to its forward geometry, LHCb has the unique opportunity to explore the field of quarkonium production at high rapidity, thus exploring new and unknown territory. We report he measurement of the double differential $J/\\psi, \\psi (2S)$ and $\\Upsilon$ cross section at LHCb with the data sample recorded by the LHCb experiment during the 2010 data taking. The $J/\\psi$ and $\\psi (2S)$ prompt components are separated from the products of b-hadrons decays using topological information. The results are compared with several theoretical models and other experiments. Preliminary results and prospects for the other quarkonium states will also be given.

  7. Experimental overview on quarkonium production

    Science.gov (United States)

    Arnaldi, R.

    2016-12-01

    Quarkonium production in heavy-ion collisions is a well-known signature of the formation of a plasma of quarks and gluons (QGP). After thirty years from the first measurements at SPS energies, a large wealth of results is now accessible from high-energy experiments at RHIC and LHC, and these new data are contributing to sharpen the picture of the quarkonium behaviour in A-A collisions. In this paper, an overview of the main results on both charmonium and bottomonium production in p-A and A-A collisions is presented, focussing on the most recent achievements from the RHIC and LHC experiments.

  8. Experimental overview on quarkonium production

    Energy Technology Data Exchange (ETDEWEB)

    Arnaldi, R.

    2016-12-15

    Quarkonium production in heavy-ion collisions is a well-known signature of the formation of a plasma of quarks and gluons (QGP). After thirty years from the first measurements at SPS energies, a large wealth of results is now accessible from high-energy experiments at RHIC and LHC, and these new data are contributing to sharpen the picture of the quarkonium behaviour in A-A collisions. In this paper, an overview of the main results on both charmonium and bottomonium production in p-A and A-A collisions is presented, focussing on the most recent achievements from the RHIC and LHC experiments.

  9. Quarkonium results from LHCb

    CERN Document Server

    Sabatino, Giovanni

    2012-01-01

    The mechanism for the production of quarkonia in hadronic collisions is not yet completely understood. It is well kown that the LO Colour Singlet Model (CSM) leads to predictions of the cross-sections which are in disagreement with the osbervations at High $P_T$. New theoretical approaches have been proposed in recent years. For example, the Non-Relativistic QCD factorisation formalism, in which Colour Octet diagrams are introduced. Another approach consists in extending the computation of the cross-sections in Colour Singlet Model up to the NNLO. In the Colour Evaporation Model (CEM) instead, the probability of forming a specific quarkonium state is assumed to be independent of the color of the $Q\\bar{Q}$ pair. The debate is still open and experimental confirmations from the LHC experiments are needed to determine the reliability of the proposed models. Open charm can be produced in p-p collisions in association to a $J/\\psi$ meson or in association to another open charm hadron. Predictions for the productio...

  10. Quarkonium production in hadronic collisions

    Energy Technology Data Exchange (ETDEWEB)

    Gavai, R. [Tata Institute for Fundamental Research, Bombay (India); Schuler, G.A.; Sridhar, K. [CERN, Geneva (Switzerland)] [and others

    1995-07-01

    We summarize the theoretical description of charmonium and bottonium production in hadronic collisions and compare it to the available data from hadron-nucleon interactions. With the parameters of the theory established by these data, we obtain predictions for quarkonium production at RHIC and LHC energies.

  11. Quarkonium production in the LHC

    CERN Document Server

    Araujo, Mariana

    2016-01-01

    During my time in the CERN Summer Student Programme I worked on the topic of quarkonium production, focusing especially on the production cross section and polarization of these states. I relied on several tools for this work, namely the LXPLUS service, the C++ programming language and the ROOT data analysis framework.

  12. Isospin mass splittings and the m$_{s}$ corrections in the semibosonized SU(3)-NJL model

    CERN Document Server

    Blotz, A; Praszalowicz, M; Blotz, Andree; Goeke, K; Praszalowicz, M

    1994-01-01

    The mass splittings of hyperons including the isospin splittings are calculated with O(\\ms^2) and O(\\ms \\dm) accuracy respectively within the semibosonized SU(3)-NJL model. The pattern of the isospin splittings is not spoiled by the terms of the order O(\\ms \\dm), and both splittings between the different isospin multiplets and within the same multiplet are well reproduced for acceptable values of \\ms and \\dm.

  13. Quark-antiquark potentials from QCD and quarkonium spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Laschka, Alexander

    2012-12-11

    This work examines the interaction between a heavy quark and its antiquark. By combining perturbative and non-perturbative methods, interaction potentials with an extended range of validity are derived from quantum chromodynamics. Using these potentials the spectra of the quarkonium bound states are calculated and compared with experimental results. This provides a new approach for determining the masses of the charm and bottom quark.

  14. Lepton flavor violating quarkonium decays

    CERN Document Server

    Hazard, Derek E

    2016-01-01

    We argue that lepton flavor violating (LFV) decays $M \\to \\ell_1 \\overline \\ell_2$ of quarkonium states $M$ with different quantum numbers could be used to put constraints on the Wilson coefficients of effective operators describing LFV interactions at low energy scales. We note that restricted kinematics of the two-body quarkonium decays allows us to select operators with particular quantum numbers, significantly reducing the reliance on the single operator dominance assumption that is prevalent in constraining parameters of the effective LFV Lagrangian. We shall also argue that studies of radiative lepton flavor violating $M \\to \\gamma \\ell_1 \\overline \\ell_2$ decays could provide important complementary access to those effective operators.

  15. Heavy Quarkonium Production at LHC through W Boson Decays

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Qi-Li; /Chongqing U.; Wu, Xing-Gang; /Chongqing U. /SLAC; Jiang, Jun; Yang, Zhi; Fang, Zhen-Yun; /Chongqing U.

    2012-05-22

    The production of the heavy (c{bar c})-quarkonium, (c{bar b})-quarkonium, and (b{bar b})-quarkonium states [({bar Q}') quarkonium for short], via the W{sup +} semi-inclusive decays, has been systematically studied within the framework of the nonrelativistic QCD. In addition to the two color-singlet S-wave states, we also discuss the production of the four color-singlet P-wave states |(Q{bar Q}')({sup 1}P{sub 1}){sub 1}> and |(Q{bar Q}')({sup 3}P{sub J}){sub 1}> [with J = (0,1,2)] together with the two color-octet components |(Q{bar Q}')({sup 1}S{sub 0}){sub 8}> and |(Q{bar Q}')({sup 3}S{sub 1}){sub 8}>. Improved trace technology is adopted to derive the simplified analytic expressions at the amplitude level, which shall be useful for dealing with the following cascade decay channels. At the LHC with the luminosity L {proportional_to} 10{sup 34} cm{sup -2} s{sup -1} and the center-of-mass energy {radical}S = 14 TeV, sizable heavy-quarkonium events can be produced through the W{sup +} boson decays; i.e., 2.57 x 10{sup 6} {eta}{sub c}, 2.65 x 10{sup 6} J/{Psi}, and 2.40 x 10{sup 6} P-wave charmonium events per year can be obtained, and 1.01 x 10{sup 5} B{sub c}, 9.11 x 10{sup 4} B*{sub c}, and 3.16 x 10{sup 4} P-wave (c{bar b})-quarkonium events per year can be obtained. Main theoretical uncertainties have also been discussed. By adding the uncertainties caused by the quark masses in quadrature, we obtain {Lambda}{sub W{sup +}{yields}(c{bar c})+c{bar s}} = 524.8{sub -258.4}{sup +396.3} KeV, {Lambda}{sub W{sup +}{yields}(c{bar b})+b{bar s}} = 13.5{sub -3.29}{sup +4.73} KeV, {Lambda}{sub W{sup +}{yields}(c{bar b})+c{bar c}} = 1.74{sub -0.73}{sup +1.98} KeV, and {Lambda}{sub W{sup +}{yields}(c{bar b})+c{bar b}} = 38.6{sub -9.69}{sup +13.4} eV.

  16. The quarkonium saga in heavy ion collisions

    CERN Document Server

    Tserruya, Itzhak

    2013-01-01

    J/psi suppression was proposed more than 25 years ago as an unambiguous signature for the formation of the Quark Gluon Plasma in relativistic heavy ion collisions. After intensive efforts, both experimental and theoretical, the quarkonium saga remains exciting, producing surprising results and not fully understood. This talk focuses on recent results on quarkonium production at RHIC and the LHC.

  17. Entropic destruction of a rotating heavy quarkonium

    OpenAIRE

    Zhang, Zi-qiang; Ma, Chong; Hou, De-fu; Chen, Gang

    2016-01-01

    Using the AdS/CFT duality, we study the destruction of a rotating heavy quarkonium due to the entropice force in $\\mathcal{N}=4$ SYM theory and a confining YM theory. It is shown that in both theories increasing the angular velocity leads to decreasing the entropic force. This result implies that the rotating quarkonium dissociates harder than the static case.

  18. Heavy-quarkonium potential with input from lattice gauge theory

    CERN Document Server

    Serenone, Willian Matioli

    2014-01-01

    In this dissertation we study potential models incorporating a nonperturbative propagator obtained from lattice simulations of a pure gauge theory. Initially we review general aspects of gauge theories, the principles of the lattice formulation of quantum chromodynamics (QCD) and some properties of heavy quarkonia, i.e. bound states of a heavy quark and its antiquark. As an illustration of Monte Carlo simulations of lattice models, we present applications in the case of the harmonic oscillator and SU(2) gauge theory. We then study the effect of using a gluon propagator from lattice simulations of pure SU(2) theory as an input in a potential model for the description of quarkonium, in the case of bottomonium and charmonium. We use, in both cases, a numerical approach to evaluate masses of quarkonium states. The resulting spectra are compared to calculations using the Coulomb plus linear (or Cornell) potential.

  19. QCD Sum Rule Studies of Heavy Quarkonium-like States

    CERN Document Server

    Kleiv, Robin

    2014-01-01

    The research presented here uses QCD sum rules (QSR) to study exotic hadrons. There are several themes in this work. First is the use of QSR to predict the masses of exotic hadrons that may exist among the heavy quarkonium-like states. The second theme is the application of sophisticated loop integration methods in order to obtain more complete theoretical results. These in turn can be extended to higher orders in the perturbative expansion in order to predict the properties of exotic hadrons more accurately. The third theme involves developing a renormalization methodology for these higher order calculations. This research has implications for the $Y(3940)$, $X(3872)$, $Z_c^\\pm\\left(3895\\right)$, $Y_b\\left(10890\\right)$, $Z_b^{\\pm}(10610)$ and $Z_b^{\\pm}(10650)$ particles, thereby contributing to the ongoing effort to understand these and other heavy quarkonium-like states.

  20. Hyperfine meson splittings: chiral symmetry versus transverse gluon exchange

    CERN Document Server

    Llanes-Estrada, Felipe J; Swanson, Eric S; Szczepaniak, Adam P; Llanes-Estrada, Felipe J.; Cotanch, Stephen R.; Szczepaniak, Adam P.; Swanson, Eric S.

    2004-01-01

    Meson spin splittings are examined within an effective Coulomb gauge QCD Hamiltonian incorporating chiral symmetry and a transverse hyperfine interaction necessary for heavy quarks. For light and heavy quarkonium systems the pseudoscalar-vector meson spectrum is generated by approximate BCS-RPA diagonalizations. This relativistic formulation includes both $S$ and $D$ waves for the vector mesons which generates a set of coupled integral equations. A smooth transition from the heavy to the light quark regime is found with chiral symmetry dominating the $\\pi$-$\\rho$ mass difference. A good, consistent description of the observed meson spin splittings and chiral quantities, such as the quark condensate and the $\\pi$ mass, is obtained. Similar comparisons with TDA diagonalizations, which violate chiral symmetry, are deficient for light pseudoscalar mesons indicating the need to simultaneously include both chiral symmetry and a hyperfine interaction. The $\\eta_b$ mass is predicted to be around 9400 MeV consistent w...

  1. Pion Cloud Effects on △-N Mass Splitting from Quark Models

    Institute of Scientific and Technical Information of China (English)

    DONG Yu-Bing; FENG Qing-Guo

    2002-01-01

    Pion cloud effects on △-N mass splitting are studied based on quark models. Pseudo-scalar pion-quarkcoupling is discussed in the relativistic and nonrelativistic frameworks. We separately calculate the pion cloud effects bythe one-pion exchange potential and by another method which is consistent with the baryon chiral perturbation theory.Remark able discrepancy in the mass splitting between the two methods is shown.

  2. Pion and η -meson mass splitting at the two-flavor chiral crossover

    Science.gov (United States)

    Heller, Markus; Mitter, Mario

    2016-10-01

    We study the splitting in the screening mass of pions and the η -meson across the chiral crossover. This splitting is determined by the 't Hooft determinant. We use results for the renormalization group scale dependence of the 't Hooft determinant obtained within the functional renormalization group in quenched QCD with two flavors. The scale dependence of the 't Hooft determinant is mapped to its temperature dependence with the help of a Polyakov-quark-meson model. As a result we obtain the temperature dependence of the splitting in the screening mass of pions and the η -meson.

  3. Heavy quarkonium: progress, puzzles, and opportunities

    CERN Document Server

    Brambilla, N; Heltsley, B K; Vogt, R; Bodwin, G T; Eichten, E; Frawley, A D; Meyer, A B; Mitchell, R E; Papadimitriou, V; Petreczky, P; Petrov, A A; Robbe, P; Vairo, A; Andronic, A; Arnaldi, R; Artoisenet, P; Bali, G; Bertolin, A; Bettoni, D; Brodzicka, J; Bruno, G E; Caldwell, A; Catmore, J; Chang, C H; Chao, K T; Chudakov, E; Cortese, P; Crochet, P; Drutskoy, A; Ellwanger, U; Faccioli, P; Gabareen Mokhtar, A; Garcia i Tormo, X; Hanhart, C; Harris, F A; Kaplan, D M; Klein, S R; Kowalski, H; Lansberg, J P; Levichev, E; Lombardo, V; Lourenco, C; Maltoni, F; Mocsy, A; Mussa, R; Navarra, F S; Negrini, M; Nielsen, M; Olsen, S L; Pakhlov, P; Pakhlova, G; Peters, K; Polosa, A D; Qian, W; Qiu, J W; Rong, G; Sanchis-Lozano, M A; Scomparin, E; Senger, P; Simon, F; Stracka, S; Sumino, Y; Voloshin, M; Weiss, C; Wohri, H K; Yuan, C Z

    2011-01-01

    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the $B$-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA, JLab, and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing ...

  4. Heavy quarkonium: progress, puzzles, and opportunities

    CERN Document Server

    Brambilla, N; Heltsley, B K; Vogt, R; Bodwin, G T; Eichten, E; Frawley, A D; Meyer, A B; Mitchell, R E; Papadimitriou, V; Petreczky, P; Petrov, A A; Robbe, P; Vairo, A; Andronic, A; Arnaldi, R; Artoisenet, P; Bali, G; Bertolin, A; Bettoni, D; Brodzicka, J; Bruno, G E; Caldwell, A; Catmore, J; Chang, C H; Chao, K T; Chudakov, E; Cortese, P; Crochet, P; Drutskoy, A; Ellwanger, U; Faccioli, P; Gabareen Mokhtar, A; Garcia i Tormo, X; Hanhart, C; Harris, F A; Kaplan, D M; Klein, S R; Kowalski, H; Lansberg, J P; Levichev, E; Lombardo, V; Lourenco, C; Maltoni, F; Mocsy, A; Mussa, R; Navarra, F S; Negrini, M; Nielsen, M; Olsen, S L; Pakhlov, P; Pakhlova, G; Peters, K; Polosa, A D; Qian, W; Qiu, J W; Rong, G; Sanchis-Lozano, M A; Scomparin, E; Senger, P; Simon, F; Stracka, S; Sumino, Y; Voloshin, M; Weiss, C; Wohri, H K; Yuan, C Z

    2011-01-01

    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the $B$-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA, JLab, and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing ...

  5. Puzzles in quarkonium hadronic transitions with two pion emission

    CERN Document Server

    Fernández, F.; Ortega, P.G.; Entem, D.R.

    2016-01-01

    The anomalously large rates of some hadronic transitions from quarkonium are studied using QCD multipole expansion (QCDME) in the framework of a constituent quark model which has been successful in describing hadronic phenomenology. The hybrid intermediate states needed in the QCDME method are calculated in a natural extension of our constituent quark model based on the Quark Confining String (QCS) scheme. Some of the anomalies are explained due to the presence of an hybrid state with a mass near the mass of the decaying resonance whereas other are justified by the presence of molecular components in the wave function. Some unexpected results are pointed out.

  6. Puzzles in quarkonium hadronic transitions with two pion emission

    Energy Technology Data Exchange (ETDEWEB)

    Fernández, F.; Segovia, J.; Entem, D. R. [Grupo de Física Nuclear and IUFFyM, Universidad de Salamanca, E-37008 Salamanca (Spain); Ortega, P. G. [CERN, CH-1211 Geneva (Switzerland)

    2016-01-22

    The anomalously large rates of some hadronic transitions from quarkonium are studied using QCD multipole expansion (QCDME) in the framework of a constituent quark model which has been successful in describing hadronic phenomenology. The hybrid intermediate states needed in the QCDME method are calculated in a natural extension of our constituent quark model based on the Quark Confining String (QCS) scheme. Some of the anomalies are explained due to the presence of an hybrid state with a mass near the mass of the decaying resonance whereas other are justified by the presence of molecular components in the wave function. Some unexpected results are pointed out.

  7. Quarkonium-nucleus bound states from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Beane, S.  R. [Univ. of Washington, Seattle, WA (United States); Chang, E. [Univ. of Washington, Seattle, WA (United States); Cohen, S.  D. [Univ. of Washington, Seattle, WA (United States); Detmold, W. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lin, H. -W. [Univ. of Washington, Seattle, WA (United States); Orginos, K. [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Parreño, A. [Univ., de Barcelona, Marti Franques (Spain); Savage, M.  J. [Univ. of Washington, Seattle, WA (United States)

    2015-06-11

    Quarkonium-nucleus systems are composed of two interacting hadronic states without common valence quarks, which interact primarily through multi-gluon exchanges, realizing a color van der Waals force. We present lattice QCD calculations of the interactions of strange and charm quarkonia with light nuclei. Both the strangeonium-nucleus and charmonium-nucleus systems are found to be relatively deeply bound when the masses of the three light quarks are set equal to that of the physical strange quark. Extrapolation of these results to the physical light-quark masses suggests that the binding energy of charmonium to nuclear matter is B < 40 MeV.

  8. b-quark and quarkonium production and polarisation

    Directory of Open Access Journals (Sweden)

    Kartvelishvili V.

    2013-05-01

    Full Text Available An overview is given of recent measurements of open beauty and heavy quarkonium production and quarkonium polarisation, made by the ATLAS, CMS and LHCb collaborations at the Large Hadron Collider.

  9. Quarkonium spectroscopy in a potential model with vacuum-polarization corrections

    Energy Technology Data Exchange (ETDEWEB)

    Barik, N.; Jena, S.N.

    1980-05-01

    We consider a potential model taking long-distance vacuum-polarization corrections as suggested by Poggio and Schnitzer, which enables one to interpolate between cc-bar, bb-bar, and tt-bar systems. Taking special care for the accuracy of the numerical integration near the origin, we have developed a numerical method to obtain the heavy-quark--antiquark bound states along with their leptonic widths. We obtain the above flavor-independent potential giving good agreement with the so-called experimental mass splitting of the 1S-2S states of the psi and UPSILON family with reasonable values of the quark-gluon coupling constant ..cap alpha../sub s/, which do not deviate very much from the quantum-chromodynamics value. We obtain some of the bound states of the hypothetical tt-bar family and observe that the effect of screening of the potential due to the vacuum-polarization cloud decreases with increase of the mass of the heavy quark forming the quarkonium.

  10. Gluon TMDs in Quarkonium Production

    Science.gov (United States)

    Boer, Daniël

    2017-03-01

    Quarkonium production offers good possibilities to study gluon TMDs. In this proceedings contribution this topic is explored for the linearly polarized gluons inside unpolarized hadrons and unpolarized gluons inside transversely polarized hadrons. It is argued that χ _{b0/2} and η _b production at LHC are best to study the effects of linearly polarized gluons in hadronic collisions, by means of angular independent ratios of ratios of cross sections. This can be directly compared to cos 2φ asymmetries in heavy quark pair and dijet production in DIS at a future high-energy Electron-Ion Collider (EIC), which probe the same TMDs. In the small- x limit this corresponds to the Weizsäcker-Williams (WW) gluon distributions, which should show a change in behavior for transverse momenta around the saturation scale. Together with investigations of the dipole (DP) gluon distributions, this can provide valuable information about the polarization of the Color Glass Condensate if sufficiently small x-values are reached. Quarkonia can also be useful in the study of single transverse spin asymmetries. For transversely polarized hadrons the gluon distribution can be asymmetric, which is referred to as the Sivers effect. It leads to single spin asymmetries in for instance J{/}ψ (pair) production at AFTER@LHC, which probe the WW or f-type gluon Sivers TMD. It allows for a test of a sign-change relation w.r.t. the gluon Sivers TMD probed at an EIC in open heavy quark pair production. Single spin asymmetries in backward inclusive C-odd quarkonium production, such as J{/}ψ production, may offer probes of the DP or d-type gluon Sivers TMD at small x-values in the polarized proton, which in that limit corresponds to a correlator of a single Wilson loop, describing the spin-dependent odderon.

  11. Quarkonium production in pp collisions with the CMS detector

    Directory of Open Access Journals (Sweden)

    Pompili Alexis

    2014-01-01

    Full Text Available The studies of the inclusive production of heavy quarkonium states at LHC are very important to improve our understanding of QCD and hadron formation, given that the heavy-quark masses allow the application of theoretical tools less sensitive to nonperturbative effects. The prompt cross sections and polarizations measured by CMS and the other LHC experiments are presented for the five S-wave states J/ψ, ψ(2S and ϒ(nS (n = 1, 2, 3 and discussed especially in comparison to the theoretical predictions provided by Non Relativistic QCD.

  12. Neutron-proton effective mass splitting in terms of symmetry energy and its density slope

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, S. [M. M. M. College, Department of Physics (India); Sahoo, B. [DIATM, Department of Applied Sciences (India); Sahoo, S., E-mail: sukadevsahoo@yahoo.com [National Institute of Technology, Department of Physics (India)

    2015-01-15

    Using a simple density-dependent finite-range effective interaction having Yukawa form, the density dependence of isoscalar and isovector effective masses is studied. The isovector effective mass is found to be different for different pairs of like and unlike nucleons. Using HVH theorem, the neutron-proton effective mass splitting is represented in terms of symmetry energy and its density slope. It is again observed that the neutron-proton effective mass splitting has got a positive value when isoscalar effective mass is greater than the isovector effective mass and has a negative value for the opposite case. Furthermore, the neutron-proton effective mass splitting is found to have a linear dependence on asymmetry β. The second-order symmetry potential has a vital role in the determination of density slope of symmetry energy but it does not have any contribution on neutron-proton effective mass splitting. The finite-range effective interaction is compared with the SLy2, SKM, f{sub −}, f{sub 0}, and f{sub +} forms of interactions.

  13. Signatures of color-octet quarkonium production

    Energy Technology Data Exchange (ETDEWEB)

    Beneke, M.

    1996-05-01

    Quarkonium spectroscopy, decay and production has provided scientists with an interesting place to test their ideas on QCD ever since charmonium was discovered in 1974. Yet, the potential of perturbative QCD (PQCD) to treat production and decay has been fully exploited only recently in a development comparable to that of Heavy Quark Effective Theory for heavy-light mesons. About the same time, experiments measuring quarkonium production at large transverse momentum have confronted theorists with surprisingly large cross sections. These observations have led to the understanding that fragmentation and hadronization of color-octet quark-antiquark (Q{anti Q}) pairs are essential in the production process. Color-octet mechanisms were considered in quarkonium decays already a while ago. They were found to solve the problem of infrared divergences in P-wave decays in a systematic way. Taking them into account also in S-wave production, where they are not required by perturbative consistency in leading order of a nonrelativistic expansion, opens the promise of a quantitative description of quarkonium production. The author briefly reviews the nonrelativistic QCD picture of quarkonium production and its confrontation with experiment in various production processes.

  14. Mass splittings in $\\Sigma_b$ and $\\Sigma_b^*$

    OpenAIRE

    Rosner, Jonathan L.

    2006-01-01

    The charged $\\Sigma_b$ and $\\Sigma^*_b$ states have recently been reported by the CDF Collaboration. The relation of their reported charge-averaged masses to expectations based on the quark model is reviewed briefly. A relation is proved among the $\\Delta I = 1$ electromagnetic mass differences $\\Sigma_1 \\equiv M(\\Sigma^+) - M(\\Sigma^-)$, $\\Sigma^*_1 \\equiv M(\\Sigma^{*+})- M(\\Sigma^{*-})$, $\\Sigma_{b1} \\equiv M(\\Sigma_b^+) - M(\\Sigma_b^-)$, and $\\Sigma^*_{b1} \\equiv M(\\Sigma_b^{*+}) - M(\\Sigm...

  15. The HIGGS Boson Mass at 2 Loops in the Finely Tuned Split Supersymmetric Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Binger, M

    2004-09-08

    The mass of the Higgs boson in the finely tuned Split Supersymmetric Standard Model is calculated. All 1 loop threshold effects are included, in addition to the full RG running of the Higgs quartic coupling through 2 loops. The 2 loop corrections are very small, typically less than 1GeV. The 1 loop threshold corrections to the top yukawa coupling and the Higgs mass generally push the Higgs mass down a few GeV.

  16. Quarkonium states in an anisotropic quark-gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Guo Yun

    2009-09-10

    In this work we study the properties of quarkonium states in a quark-gluon plasma which, due to expansion and non-zero viscosity, exhibits a local anisotropy in momentum space. We determine the hard-loop resummed gluon propagator in an anisotropic QCD plasma in general linear gauges and define a potential between heavy quarks from the Fourier transform of its static limit. This potential which arises due to one-gluon exchange describes the force between a quark and anti-quark at short distances. It is closer to the vacuum potential as compared to the isotropic Debye screened potential which indicates the reduced screening in an anisotropic QCD plasma. In addition, angular dependence appears in the potential; we find that there is stronger attraction on distance scales on the order of the inverse Debye mass for quark pairs aligned along the direction of anisotropy than for transverse alignment. The potential at long distances, however, is non-perturbative and modeled as a QCD string which is screened at the same scale as the Coulomb field. At asymptotic separation the potential energy is non-zero and inversely proportional to the temperature. With a phenomenological potential model which incorporates the different behaviors at short and long distances, we solve the three-dimensional Schroedinger equation. Our numerical results show that quarkonium binding is stronger at non-vanishing viscosity and expansion rate, and that the anisotropy leads to polarization of the P-wave states. Furthermore, we determine viscosity corrections to the imaginary part of the heavy-quark potential in the weak-coupling hard-loop approximation. The imaginary part is found to be smaller (in magnitude) than at vanishing viscosity. This implies a smaller decay width of quarkonium bound states in an anisotropic plasma. (orig.)

  17. A note on the determination of light quark mass splitting

    CERN Document Server

    Deandrea, A; Talavera, P

    2008-01-01

    We provide a model-independent determination of the quantity B_0(m_d-m_u). Our approach rests only on chiral symmetry and data from the decay of the eta into three neutral pions. Since the low-energy prediction at next-to-leading order fails to reproduce the experimental results, we keep the strong interaction correction as an unknown parameter. As a first step, we relate this parameter to the quark mass difference using data from the Dalitz plot. A similar relation is obtained using data from the decay width. Combining both relations we obtain B_0(m_d-m_u)=(4495 +/- 440) MeV^2. We use the preceding value to estimate the size of the violation of Dashen's theorem and the quark mass ratio m_u/m_d.

  18. Temperature and density effects on the nucleon mass splitting

    CERN Document Server

    Christiansen, H R; Fanchiotti, H; Garc, C A

    1996-01-01

    The finite temperature and finite density dependence of the neu\\-tron-proton mass difference is analysed in a purely hadronic framework where the \\rho-\\omega mixing is crucial for this isospin symmetry breakdown. The problem is handled within Thermo Field Dynamics. The present results, consistent with partial chiral and charge symmetry restoration, improve the experimental data fit for the energy difference between mirror nuclei.

  19. Temperature and density effects on the nucleon mass splitting

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, H.R.; Epele, L.N.; Fanchiotti, H.; Garcia Canal, C.A. [Departamento de Fisica, Universidad Nacional de La Plata C.C. 67, (1900) La Plata (Argentina)

    1996-04-01

    The finite temperature and finite density dependence of the neutron-proton mass difference is analyzed in a purely hadronic framework where the {rho}-{omega} mixing is crucial for this isospin symmetry breakdown. The problem is handled within thermofield dynamics. The present results, consistent with partial chiral and charge symmetry restoration, improve the experimental data fit for the energy difference between mirror nuclei. {copyright} {ital 1996 The American Physical Society.}

  20. Is the size of 13 related to the smallness of the solar mass splitting?

    Indian Academy of Sciences (India)

    Soumita Pramanick; Amitava Raychaudhuri

    2016-02-01

    13 is small compared to the other neutrino mixing angles. The solar mass splitting is about two orders smaller than the atmospheric splitting. We indicate how both could arise from a perturbation of a more symmetric structure. The perturbation also affects the solar mixing angle and can tweak alternate mixing patterns such as tribimaximal, bimaximal, or other variants to viability. For real perturbations only normal mass ordering with the lightest neutrino mass less than 10−2 eV can accomplish this goal. Both mass orderings can be accommodated by going over to complex perturbations if the lightest neutrino is heavier. The CP-phase in the lepton sector, fixed by 13 and the lightest neutrino mass, distinguishes different options.

  1. Heavy quarkonium: progress, puzzles, and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Brambilla, N; Heltsley, B K; Vogt, R; Bodwin, G T; Eichten, E; Frawley, A D; Meyer, A B; Mitchell, R E; Papdimitriou, V; Petreczky, P; Petrov, A A; Robbe, P; Vairo, A; Andronic, A; Arnaldi, R; Artoisenet, P; Bali, G; Bertolin, A; Bettoni, D; Brodzicka, J; Bruno, G E; Caldwell, A; Catmore, J; Chang, C -H; Chao, K -T; Chudakov, E; Cortese, P; Crochet, P; Drutskoy, A; Ellwanger, U; Faccioli, P; Gabareen Mokhtar, A; Garcia i Tormo, X; Hanhart, C; Harris, F A; Kaplan, D M; Klein, S R; Kowalski, H; Lansberg, J -P; Levichev, E; Lombardo, V; Loureno, C; Maltoni, F; Mocsy, A; Mussa, R; Navarra, F S; Negrini, M; Nielsen, M; Olsen, S L; Pakhlov, P; Pakhlova, G; Peters, K; Polosa, A D; Qian, W; Qiu, J -W; Rong, G; Sanchis-Lozano, M A; Scomparin, E; Senger, P; Simon, F; Stracka, S; Sumino, Y; Voloshin, M; Weiss, C; Wohri, H K; Yuan, C -Z

    2011-02-01

    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the $B$-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA, JLab, and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\\bar{c}, b\\bar{b}, and b\\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.

  2. Neutrino–antineutrino mass splitting in the Standard Model and baryogenesis

    Directory of Open Access Journals (Sweden)

    Kazuo Fujikawa

    2015-04-01

    Full Text Available On the basis of a previously proposed mechanism of neutrino–antineutrino mass splitting in the Standard Model, which is Lorentz and SU(2×U(1 invariant but non-local to evade the CPT theorem, we discuss the possible implications of neutrino–antineutrino mass splitting on neutrino physics and baryogenesis. It is shown that non-locality within a distance scale of the Planck length, that may not be fatal to unitarity in a generic effective theory, can generate the neutrino–antineutrino mass splitting of the order of the observed neutrino mass differences, which is tested in oscillation experiments, and a non-negligible baryon asymmetry depending on the estimate of sphaleron dynamics. The one-loop order induced electron–positron mass splitting in the Standard Model is shown to be finite and estimated at ∼10−20 eV, well below the experimental bound <10−2 eV. The induced CPT violation in the K-meson in the Standard Model is expected to be even smaller and well below the experimental bound |mK−mK¯|<0.44×10−18 GeV.

  3. Quarkonium production and polarization in pp collisions with the CMS detector

    Science.gov (United States)

    Degano, Alessandro

    2014-11-01

    Studies of the production of heavy quarkonium states are very important to improve our understanding of QCD and hadron formation, given that the heavy quark masses allow the application of theoretical tools less sensitive to nonperturbative effects. Thanks to a dedicated dimuon trigger strategy, combined with the record-level energy and luminosity provided by the LHC, the CMS experiment could collect large samples of pp collisions at 7 and 8 TeV, including quarkonium states decaying in the dimuon channel. This allowed the CMS collaboration to perform a series of systematic measurements in quarkonium production physics, including double-differential cross sections and polarizations, as a function of rapidity and pT, for five S-wave quarkonia: J/ψ, ψ (2S), ϒ(1S), ϒ(2S), and ϒ(3S). Some of these measurements extend well above pT ≃ 100 GeV, probing regions of very high pT/mass, where the theory calculations are supposed to be the most reliable. Thanks to its high-granularity silicon tracker, CMS can reconstruct lowenergy photons through their conversions to e+e- pairs, thereby accessing the radiative decays of the P-wave quarkonium states, with an extremely good mass resolution, so that the J=1 and J=2 1P states can be resolved. This allows CMS to determine cross-section ratios and feed-down decay fractions involving the χ states, in both the charmonium and bottomonium families. This talk presents some of the most recent CMS quarkonium production results, in pp collisions, in particular the production of ϒ(1S,2S,3S), the cross-section ratio of charmonium and bottomonium P-wave states and the polarization of S-wave cc¯ and bb¯ states.

  4. Factorization for radiative heavy quarkonium decays into scalar Glueball

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ruilin [INPAC, Shanghai Key Laboratory for Particle Physics and Cosmology,Department of Physics and Astronomy, Shanghai Jiao Tong University,Dongchuan RD 800, Shanghai 200240 (China); State Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Zhongguancun E. St. 55, Beijing 100190 (China); CAS Center for Excellence in Particle Physics,Institute of High Energy Physics, Chinese Academy of Sciences,Yuquan RD 19B, Beijing 100049 (China)

    2015-09-24

    We establish the factorization formula for scalar Glueball production through radiative decays of vector states of heavy quarkonia, e.g. J/ψ, ψ(2S) and Υ(nS), where the Glueball mass is much less than the parent heavy quarkonium mass. The factorization is demonstrated explicitly at one-loop level through the next-to-leading order (NLO) corrections to the hard kernel, the non-relativistic QCD (NRQCD) long-distance matrix elements (LDMEs) of the heavy quarkonium, and the light-cone distribution amplitude (LCDA) of scalar Glueball. The factorization provides a comprehensive theoretical approach to investigate Glueball production in the radiative decays of vector states of heavy quarkonia and determine the physic nature of Glueball. We discuss the scale evolution equation of LCDA for scalar Glueball. In the end, we extract the value of the decay constant of Scalar Glueball from Lattice QCD calculation and analyze the mixing effect among f{sub 0}(1370), f{sub 0}(1500) and f{sub 0}(1710).

  5. Quarkonium at finite temperature: towards realistic phenomenology from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Burnier, Yannis [Institute of Theoretical Physics, EPFL,CH-1015 Lausanne (Switzerland); Kaczmarek, Olaf [Fakultät für Physik, Universität Bielefeld,D-33615 Bielefeld (Germany); Rothkopf, Alexander [Institute for Theoretical Physics, Heidelberg University,Philosophenweg 16, 69120 Heidelberg (Germany)

    2015-12-16

    We present the finite temperature spectra of both bottomonium and charmonium, obtained from a consistent lattice QCD based potential picture. Starting point is the complex in-medium potential extracted on full QCD lattices with dynamical u,d and s quarks, generated by the HotQCD collaboration. Using the generalized Gauss law approach, vetted in a previous study on quenched QCD, we fit Re[V] with a single temperature dependent parameter m{sub D}, the Debye screening mass, and confirm the up to now tentative values of Im[V]. The obtained analytic expression for the complex potential allows us to compute quarkonium spectral functions by solving an appropriate Schrödinger equation. These spectra exhibit thermal widths, which are free from the resolution artifacts that plague direct reconstructions from Euclidean correlators using Bayesian methods. In the present adiabatic setting, we find clear evidence for sequential melting and derive melting temperatures for the different bound states. Quarkonium is gradually weakened by both screening (Re[V]) and scattering (Im[V]) effects that in combination lead to a shift of their in-medium spectral features to smaller frequencies, contrary to the mass gain of elementary particles at finite temperature.

  6. Gluon TMDs in quarkonium production

    CERN Document Server

    Boer, Daniël

    2016-01-01

    Quarkonium production offers good possibilities to study gluon TMDs. In this proceedings contribution this topic is explored for the linearly polarized gluons inside unpolarized hadrons and unpolarized gluons inside transversely polarized hadrons. It is argued that $\\chi_{b0/2}$ and $\\eta_b$ production at LHC are best to study the effects of linearly polarized gluons in hadronic collisions, by means of angular independent ratios of ratios of cross sections. This can be directly compared to $\\cos 2\\phi$ asymmetries in heavy quark pair and dijet production in DIS at a future high-energy Electron-Ion Collider (EIC), which probe the same TMDs. In the small-$x$ limit this corresponds to the Weizs\\"acker-Williams (WW) gluon distributions, which should show a change in behavior for transverse momenta around the saturation scale. Together with investigations of the dipole (DP) gluon distributions, this can provide valuable information about the polarization of the Color Glass Condensate if sufficiently small $x$ are ...

  7. Origin of the mass splitting of azimuthal anisotropies in a multi-phase transport model

    CERN Document Server

    Li, Hanlin; Lin, Zi-Wei; Molnar, Denes; Wang, Fuqiang; Xie, Wei

    2016-01-01

    The mass splitting of azimuthal anisotropy ($v_n$) at low transverse momentum ($p_{\\perp}$) is considered as a hallmark of hydrodynamic collective flow. We investigate a multi-phase transport (AMPT) model where the $v_n$ is mainly generated by the escape mechanism, not of the hydrodynamic flow nature, and where the mass splitting is also observed. This paper provides extensive details to our published work on Au+Au and d+Au collisions at the Relativistic Heavy Ion Collider (arXiv:1601.05390); it also includes new results on p+Pb collisions at the Large Hadron Collider. We demonstrate that the mass splitting of $v_n$ in AMPT partly arises from kinematics in the quark coalescence hadronization process but more dominantly from hadronic rescatterings, even though the contribution from the latter to the overall charged hadron $v_n$ is small. It is also found that hadronic decays reduce the degree of mass splitting. These findings are qualitatively the same as those from hybrid models that combine hydrodynamics wit...

  8. Mass transfer characteristics in a rotating packed bed with split packing

    Institute of Scientific and Technical Information of China (English)

    Youzhi Liu; Deyin Gu; Chengcheng Xu; Guisheng Qi; Weizhou Jiao

    2015-01-01

    The rotating packed bed (RPB) with split packing is a novel gas–liquid contactor, which intensifies the mass transfer processes controlled by gas-side resistance. To assess its efficacy, the mass transfer characteristics with adjacent rings in counter-rotation and co-rotation modes in a split packing RPB were studied experimentally. The physical absorption system NH3–H2O was used for characterizing the gas volumetric mass transfer coeffi-cient (kyae) and the effective interfacial area (ae) was determined by chemical absorption in the CO2–NaOH sys-tem. The variation in kyae and ae with the operating conditions is also investigated. The experimental results indicated that kyae and ae for counter-rotation of the adjacent packing rings in the split packing RPB were higher than those for co-rotation, and both counter-rotation and co-rotation of the split packing RPB were superior over conventional RPBs under the similar operating conditions.

  9. Quarkonium production in heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    Arnaldi Roberta

    2014-03-01

    Full Text Available The production of quarkonium states plays a crucial role among the probes to investigate the formation of the plasma of quarks and gluons (QGP in heavy-ion collisions. A review of the charmonium and bottomonium production, mainly focussing on the latest results from the LHC experiments, is presented.

  10. Splitting Mass Spectra and Muon g-2 in Higgs-Anomaly Mediation

    CERN Document Server

    Yin, Wen

    2016-01-01

    We propose a scenario where only the Higgs multiplets have direct couplings to a supersymmetry (SUSY) breaking sector. The standard model matter multiplets as well as the gauge multiples are sequestered from the SUSY breaking sector; therefore, their masses arise via anomaly mediation at the high energy scale with a gravitino mass of $\\sim$100 TeV. Due to renormalization group running effects from the Higgs soft masses, the masses of the third generation sfermions become O(10) TeV at the low energy scale, while the first and second generation sfermion masses are O(0.1-1) TeV, avoiding the tachyonic slepton problem and flavor changing neutral current problem. With the splitting mass spectrum, the muon g-2 anomaly is explained consistently with the observed Higgs boson mass of 125 GeV. Moreover, the third generation Yukawa couplings are expected to be unified in some regions.

  11. Splitting mass spectra and muon g - 2 in Higgs-anomaly mediation

    Science.gov (United States)

    Yin, Wen; Yokozaki, Norimi

    2016-11-01

    We propose a scenario where only the Higgs multiplets have direct couplings to a supersymmetry (SUSY) breaking sector. The standard model matter multiplets as well as the gauge multiples are sequestered from the SUSY breaking sector; therefore, their masses arise via anomaly mediation at the high energy scale with a gravitino mass of ∼ 100TeV. Due to renormalization group running effects from the Higgs soft masses, the masses of the third generation sfermions become O (10)TeV at the low energy scale, while the first and second generation sfermion masses are O (0.1- 1)TeV, avoiding the tachyonic slepton problem and flavor changing neutral current problem. With the splitting mass spectrum, the muon g - 2 anomaly is explained consistently with the observed Higgs boson mass of 125 GeV. Moreover, the third generation Yukawa couplings are expected to be unified in some regions.

  12. Analysis of $X$ Particle Spectra in Quarkonium Model

    CERN Document Server

    Yang, Jeong Hun; Kim, Eun-Joo; Choi, Jong Bum

    2015-01-01

    Three more $X$ particles are established in the 2014 Particle Data compared with the 2012 ones. There are now five established $X$ particles named as $X(3872)$, $X(3900)$, $X(4260)$, $X(4360)$, and $X(4660)$. Since the first $X$ particle $X(3872)$ was discovered during the search for the remaining P charmonium states, it is valuable to check whether the established $X$ particles can be explained by quarkonium model. In this paper, we try to calculate the mass spectra of charmonium system by considering spin-dependent forces deduced from one gluon exchange diagrams. The confining potential form is taken to be linear and the free parameters are determined by least squares method comparing the theoretical and the observed masses of charmonium states.

  13. Isospin splittings of meson and baryon masses from three-flavor lattice QCD + QED

    Science.gov (United States)

    Horsley, R.; Nakamura, Y.; Perlt, H.; Pleiter, D.; Rakow, P. E. L.; Schierholz, G.; Schiller, A.; Stokes, R.; Stüben, H.; Young, R. D.; Zanotti, J. M.

    2016-10-01

    Lattice QCD simulations are now reaching a precision where isospin breaking effects become important. Previously, we have developed a program to systematically investigate the pattern of flavor symmetry beaking within QCD and successfully applied it to meson and baryon masses involving up, down and strange quarks. In this Letter we extend the calculations to QCD + QED and present our first results on isospin splittings in the pseudoscalar meson and baryon octets. In particular, we obtain the nucleon mass difference of {M}n-{M}p=1.35(18)(8){{MeV}} and the electromagnetic contribution to the pion splitting {M}{π +}-{M}{π 0}=4.60(20){{MeV}}. Further we report first determination of the separation between strong and electromagnetic contributions in the \\overline{{MS}} scheme.

  14. Measurements of the $\\Sigma_{c}^{0}$ and $\\Sigma_{c}^{++}$ Mass Splittings

    CERN Document Server

    Link, J M; Reyes, M; Yager, P M; Anjos, J C; Bediaga, I; Göbel, C; Magnin, J; De Miranda, J M; Pepe, I M; Dos Reis, A C; Simão, F R A; Carrillo, S; Casimiro, E; Méndez, H; Sánchez-Hernández, A; Uribe, C; Vázquez, F; Cinquini, L; Cumalat, J P; Ramírez, J E; O'Reilly, B; Vaandering, E W; Butler, J N; Cheung, H W K; Gaines, I; Garbincius, P H; Garren, L A; Gottschalk, E E; Gourlay, S A; Kasper, P H; Kreymer, A E; Kutschke, R; Bianco, S; Fabbri, Franco Luigi; Sarwar, S; Zallo, A; Cawlfield, C; Kim, D Y; Park, K S; Rahimi, A; Wiss, J; Gardner, R; Chung, Y S; Kang, J S; Ko, B R; Kwak, J W; Lee, K B; Myung, S S; Park, H; Alimonti, G; Boschini, M; Brambilla, D; Caccianiga, B; Calandrino, A; D'Angelo, P; Di Corato, M; Dini, P; Giammarchi, M G; Inzani, P; Leveraro, F; Malvezzi, S; Menasce, D; Mezzadri, M; Milazzo, L; Moroni, L; Pedrini, D; Prelz, F; Rovere, M; Sala, A; Sala, S; Davenport, T F; Arena, V; Boca, G; Bonomi, G; Gianini, G; Liguori, G; Merlo, M; Pantea, D; Ratti, S P; Riccardi, C; Torre, P; Viola, L; Vitulo, P; Hernández, H; López, A M; Méndez, L; Mirles, M A; Montiel, E; Olaya, D; Quinones, J; Rivera, C; Zhang, Y; Copty, N K; Purohit, M; Wilson, J R; Cho, K; Handler, T; Engh, D; Johns, W E; Hosack, M; Nehring, M S; Sales, M; Sheldon, P D; Stenson, K; Webster, M S; Sheaff, M; Kwon, Y J

    2000-01-01

    Using a high statistics sample of photoproduced charmed particles from the FOCUS experiment at Fermilab (FNAL-E831), we measure the mass splittings of the charmed baryons Sigma_c^0 and Sigma_c^{++}. We find M(Sigma_c^0 - Lambda_c^+) = 167.38 +/- 0.21 +/- 0.13 MeV/c^2 and M(Sigma_c^++ - Lambda_c^+) = 167.35 +/- 0.19 +/- 0.12 MeV/c^2 with samples of 362 +/- 36 and 461 +/- 39 events, respectively. We measure the isospin mass splitting M(Sigma_c^++ - Sigma_c^0) to be -0.03 +/- 0.28 +/- 0.11 Mev/c^2. The first errors are statistical and the second are systematic.

  15. Isospin splitting of nucleon effective mass and symmetry energy in isotopic nuclear reactions

    CERN Document Server

    Guo, Ya-Fei; Niu, Fei; Zhang, Hong-Fei; Jin, Gen-Ming; Feng, Zhao-Qing

    2016-01-01

    Within an isospin and momentum dependent transport model, the dynamics of isospin particles (nucleons and light clusters) in Fermi-energy heavy-ion collisions are investigated for constraining the isospin splitting of nucleon effective mass and the symmetry energy at subsaturation densities. The mass splitting of $m^{*}_{n}>m^{*}_{p}$ and $m^{*}_{n}mass splitting and symmetry energy impact the kinetic energy spectra of the single ratios, in particular at the high energy tail (larger than 20 MeV). Specific constraints are obtained from the double ratio spectra, which are evaluated from the ratios of isospin observab...

  16. Decoding Split and Pool Combinatorial Libraries with Electron-Transfer Dissociation Tandem Mass Spectrometry

    Science.gov (United States)

    Sarkar, Mohosin; Pascal, Bruce D.; Steckler, Caitlin; Aquino, Claudio; Micalizio, Glenn C.; Kodadek, Thomas; Chalmers, Michael J.

    2013-07-01

    Screening of bead-based split and pool combinatorial chemistry libraries is a powerful approach to aid the discovery of new chemical compounds able to interact with, and modulate the activities of, protein targets of interest. Split and pool synthesis provides for large and well diversified chemical libraries, in this case comprised of oligomers generated from a well-defined starting set. At the end of the synthesis, each bead in the library displays many copies of a unique oligomer sequence. Because the sequence of the oligomer is not known at the time of screening, methods for decoding of the sequence of each screening "hit" are essential. Here we describe an electron-transfer dissociation (ETD) based tandem mass spectrometry approach for the decoding of mass-encoded split and pool libraries. We demonstrate that the newly described "chiral oligomers of pentenoic amides (COPAs)" yield non-sequence-specific product ions upon collisional activated dissociation; however, complete sequence information can be obtained with ETD. To aid in the decoding of libraries from MS and MS/MS data, we have incorporated 79Br/81Br isotope "tags" to differentiate N- and C-terminal product ions. In addition, we have created "Hit-Find," a software program that allows users to generate libraries in silico . The user can then search all possible members of the chemical library for those that fall within a user-defined mass error.

  17. In-medium P-wave quarkonium from the complex lattice QCD potential

    Science.gov (United States)

    Burnier, Yannis; Kaczmarek, Olaf; Rothkopf, Alexander

    2016-10-01

    We extend our lattice QCD potential based study [1] of the in-medium properties of heavy quark bound states to P-wave bottomonium and charmonium. Similar to the behavior found in the S-wave channel their spectra show a characteristic broadening, as well as mass shifts to lower energy with increasing temperature. In contrast to the S-wave states, finite angular momentum leads to the survival of spectral peaks even at temperatures, where the continuum threshold reaches below the bound state remnant mass. We elaborate on the ensuing challenges in defining quarkonium dissolution and present estimates of melting temperatures for the spin averaged χ b and χ c states. As an application to heavy-ion collisions we further estimate the contribution of feed down to S-wave quarkonium through the P-wave states after freezeout.

  18. Mass splitting of train wheels in the numerical analysis of high speed train-track interactions

    Science.gov (United States)

    Dyniewicz, Bartłomiej; Bajer, Czesław I.; Matej, Jan

    2015-01-01

    We demonstrate that the dynamic simulation of a vehicle moving on a track requires the correct mass distribution in the wheel-rail system. A wheel travelling on a rail should be modelled as a pair of masses coupled as a double mass oscillator. One of the masses is attached to the rail and carries the moving inertial load, while the second one is treated classically, being connected to the rail only through an elastic spring. This model is called the 'mass splitting model'. The classical approach overestimates the accelerations by a factor of 10. The presented method produces displacements and velocities which agree well with the results of a precise finite element method and with measurements. Some real-life problems of a vehicle moving on a track at high speed are solved numerically by own computer program and the results are compared with measurements and with the solutions obtained using other codes.

  19. Heavy quarkonium suppression in a fireball

    Energy Technology Data Exchange (ETDEWEB)

    Escobedo, Miguel Ángel [Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany Institut de Physique Théorique, CEA Saclay, F-91191 Gif-sur-Yvette (France)

    2016-01-22

    The dissociation of heavy quarkonium seen in heavy-ion collisions is a phenomena that allows to extract information of the produced thermal medium. This was believed to be due to the screening of the static potential but recently perturbative computations and some lattice studies have pointed out the possibility of having an imaginary part of the potential that would also contribute to dissociation. In recent years a program to study heavy quarkonium with the use of non-relativistic effective field theories (EFTs) has been started, this allows to make the computations in a more systematic way by defining a more suitable power counting and making it more difficult to miss necessary resummations. However until now these studies have been done assuming thermal equilibrium. In this work we will discuss what happens in the EFT formalism when heavy quarkonium is in a medium that is not in thermal equilibrium and what is the expected suppression when a medium with a time dependent effective temperature that follows Bjorken evolution is considered. This will be done adapting previous results from different temperature regimes.

  20. A Test of Color-Octet Heavy Quarkonium Production Mechanism

    Institute of Scientific and Technical Information of China (English)

    DUAN Chun-Gui; YAN Zhan-Yuan; HE Zhen-Min

    2001-01-01

    Using the scale evolution of nuclear parton distributions,the contribution of color-octet heavy quarkonium production mechanism to the P + Fe → J/ψ + γ + X process in calculated and discussed.Comparing our theoretical results with the future experimental data,the color-octet heavy quarkonium production mechanism can be examined.``

  1. The B-meson mass splitting from non-perturbative quenched lattice QCD

    CERN Document Server

    Grozin, A G; Marquard, P; Meyer, H B; Piclum, J H; Sommer, R; Steinhauser, M

    2007-01-01

    We perform the non-perturbative (quenched) renormalization of the chromo-magnetic operator in Heavy Quark Effective Theory and its three-loop matching to QCD. At order 1/m of the expansion, the operator is responsible for the mass splitting between the pseudoscalar and vector B-mesons. These new computed factors are affected by an uncertainty negligible in comparison to the known bare matrix element of the operator between B-states. Furthermore, they push the quenched determination of the spin splitting for the Bs-meson much closer to its experimental value than the previous perturbatively renormalized computations. The renormalization factor for three commonly used heavy quark actions and the Wilson gauge action and useful parametrizations of the matching coefficient are provided.

  2. Neutrino-antineutrino Mass Splitting in the Standard Model: Neutrino Oscillation and Baryogenesis

    CERN Document Server

    Fujikawa, Kazuo

    2015-01-01

    By adding a neutrino mass term to the Standard Model, which is Lorentz and $SU(2)\\times U(1)$ invariant but non-local to evade $CPT$ theorem, it is shown that non-locality within a distance scale of the Planck length, that may not be fatal to unitarity in generic effective theory, can generate the neutrino-antineutrino mass splitting of the order of observed neutrino mass differences, which is tested in oscillation experiments, and non-negligible baryon asymmetry depending on the estimate of sphaleron dynamics. The one-loop order induced electron-positron mass splitting in the Standard Model is shown to be finite and estimated at $\\sim 10^{-20}$ eV, well below the experimental bound $< 10^{-2}$ eV. The induced $CPT$ violation in the $K$-meson in the Standard Model is expected to be even smaller and well below the experimental bound $|m_{K}-m_{\\bar{K}}|<0.44\\times 10^{-18}$ GeV.

  3. Proceedings of RIKEN BNL Research Center Workshop: Brookhaven Summer Program on Quarkonium Production in Elementary and Heavy Ion Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Dumitru, A.; Lourenco, C.; Petreczky, P.; Qiu, J., Ruan, L.

    2011-08-03

    Understanding the structure of the hadron is of fundamental importance in subatomic physics. Production of heavy quarkonia is arguably one of the most fascinating subjects in strong interaction physics. It offers unique perspectives into the formation of QCD bound states. Heavy quarkonia are among the most studied particles both theoretically and experimentally. They have been, and continue to be, the focus of measurements in all high energy colliders around the world. Because of their distinct multiple mass scales, heavy quarkonia were suggested as a probe of the hot quark-gluon matter produced in heavy-ion collisions; and their production has been one of the main subjects of the experimental heavy-ion programs at the SPS and RHIC. However, since the discovery of J/psi at Brookhaven National Laboratory and SLAC National Accelerator Laboratory over 36 years ago, theorists still have not been able to fully understand the production mechanism of heavy quarkonia, although major progresses have been made in recent years. With this in mind, a two-week program on quarkonium production was organized at BNL on June 6-17, 2011. Many new experimental data from LHC and from RHIC were presented during the program, including results from the LHC heavy ion run. To analyze and correctly interpret these measurements, and in order to quantify properties of the hot matter produced in heavy-ion collisions, it is necessary to improve our theoretical understanding of quarkonium production. Therefore, a wide range of theoretical aspects on the production mechanism in the vacuum as well as in cold nuclear and hot quark-gluon medium were discussed during the program from the controlled calculations in QCD and its effective theories such as NRQCD to various models, and to the first principle lattice calculation. The scientific program was divided into three major scientific parts: basic production mechanism for heavy quarkonium in vacuum or in high energy elementary collisions; the

  4. Constraints on Light Dark Matter from Single-Photon Decays of Heavy Quarkonium

    CERN Document Server

    Fernandez, Nicolas; Stengel, Patrick

    2015-01-01

    We investigate constraints on the interactions of light dark matter with Standard Model quarks in a framework with effective contact operators mediating the decay of heavy flavor bound state quarkonium to dark matter and a photon. When considered in combination with decays to purely invisible final states, constraints from heavy quarkonium decays at high intensity electron-positron colliders can complement missing energy searches at high energy colliders and provide sensitivity to dark matter masses difficult to probe at direct and indirect detection experiments. We calculate the approximate limits on the branching fraction for $\\Upsilon (1 S)$ decays to dark matter and a photon. Given the approximate limits on the branching fractions for all dimension 6 or lower contact operators, we present the corresponding limits on the interaction strength for each operator and the inferred limits on dark matter-nucleon scattering. Complementary constraints on dark matter annihilation from gamma-ray searches from dwarf s...

  5. Quarkonium suppression in heavy-ion collisions: An open quantum system approach

    Science.gov (United States)

    Brambilla, Nora; Escobedo, Miguel A.; Soto, Joan; Vairo, Antonio

    2017-08-01

    We address the evolution of heavy-quarkonium states in an expanding quark-gluon plasma by implementing effective field theory techniques in the framework of open quantum systems. In this setting we compute the nuclear modification factors for quarkonia that are S -wave Coulombic bound states in a strongly coupled quark-gluon plasma. The calculation is performed at an accuracy that is leading order in the heavy-quark density expansion and next-to-leading order in the multipole expansion. The quarkonium density-matrix evolution equations can be written in the Lindblad form, and, hence, they account for both dissociation and recombination. Thermal mass shifts, thermal widths and the Lindblad equation itself depend on only two nonperturbative parameters: the heavy-quark momentum diffusion coefficient and its dispersive counterpart. Finally, by numerically solving the Lindblad equation, we provide results for the ϒ (1 S ) and ϒ (2 S ) suppression.

  6. Dark matter production associated with a heavy quarkonium at B factories

    Directory of Open Access Journals (Sweden)

    Chaehyun Yu

    2016-04-01

    Full Text Available We investigate light dark matter production associated with a heavy quarkonium at B factories in a model-independent way by adopting the effective field theory approach for the interaction of dark matter with standard model particles. We consider the effective operators for the dark matter–heavy quark interaction, which are relevant to the production of dark matter associated with a heavy quarkonium. We calculate the cross sections for dark matter production associated with a J/ψ or ηc to compare with the standard model backgrounds. We set bounds on the energy scale of new physics for various effective operators and also obtain the corresponding limits for the dark matter–nucleon scattering cross sections for light dark matter with mass of the order of a few GeV.

  7. Quarkonium production and polarization in pp collisions with the CMS detector

    CERN Document Server

    Argiro, Stefano

    2014-01-01

    Studies of the production of heavy quarkonium states are very important to improve our understanding of QCD and hadron formation, given that the heavy quark masses allow the application of theoretical tools less sensitive to nonperturbative effects.Thanks to a dedicated dimuon trigger strategy, combined with the record-level energy and luminosity provided by the LHC, the CMS experiment could collect large samples of pp collisions at 7 and 8 TeV, including quarkonium states decaying in the dimuon channel. This allowed the CMS collaboration to perform a series of systematic measurements in quarkonium production physics, including double-differential cross sections and polarizations, as a function of rapidity and pT, for five S-wave quarkonia J/psi, psi(2S), Y(1S), Y(2S), and Y(3S). Some of these measurements extend well above pT ~ 50 GeV, probing regions of very high pT/mass, where the theory calculations are supposed to be the most reliable. Thanks to its high-granularity silicon tracker, CMS can reconstruct...

  8. Isospin splittings of meson and baryon masses from three-flavor lattice QCD + QED

    CERN Document Server

    Horsley, R; Perlt, H; Pleiter, D; Rakow, P E L; Schierholz, G; Schiller, A; Stokes, R; Stüben, H; Young, R D; Zanotti, J M

    2015-01-01

    Lattice QCD simulations are now reaching a precision where isospin breaking effects become important. Previously, we have developed a program to systematically investigate the pattern of flavor symmetry beaking within QCD and successfully applied it to meson and baryon masses involving up, down and strange quarks. In this Letter we extend the calculations to QCD + QED and present our first results on isospin splittings in the pseudoscalar meson and baryon octets. In particular, we obtain $M_{\\pi^+}-M_{\\pi^0}=4.60(20)\\,\\mbox{MeV}$ and $M_n-M_p=1.35(18)\\,\\mbox{MeV}$.

  9. Hole effective masses and subband splitting in type-II superlattice infrared detectors

    Science.gov (United States)

    Ting, David Z.; Soibel, Alexander; Gunapala, Sarath D.

    2016-05-01

    We explore band structure effects to help determine the suitability of n-type type-II superlattice (T2SL) absorbers for infrared detectors. It is often assumed that the exceedingly large growth-direction band-edge curvature hole effective mass in n-type long wavelength infrared (LWIR) T2SL would lead to low hole mobility and therefore low detector collection quantum efficiency. We computed the thermally averaged conductivity effective mass and show that the LWIR T2SL hole conductivity effective mass along the growth direction can be orders of magnitude smaller than the corresponding band-edge effective mass. LWIR InAs/GaSb T2SL can have significantly smaller growth-direction hole conductivity effective mass than its InAs/InAsSb counterpart. For the InAs/InAsSb T2SL, higher Sb fraction is more favorable for hole transport. Achieving long hole diffusion length becomes progressively more difficult for the InAs/InAsSb T2SL as the cutoff wavelength increases, since its growth-direction hole conductivity effective mass increases significantly with decreasing band gap. However, this is mitigated by the fact that the splitting between the top valence subbands also increases with the cutoff wavelength, leading to reduced inter-subband scattering and increased relaxation time.

  10. On the doublet/triplet splitting and intermediate mass scales in locally supersymmetric SO(10)

    Science.gov (United States)

    Pulido, João

    1985-01-01

    In the light of the doublet/triplet splitting, the possibilities for an intermediate mass scale in locally supersymmetric SO(10) are analysed. It is found that the subgroup SU(4)c × SU(2)L × SU(2)R and more generally left-right symmetric models are unlikely to survive as intermediate symmetries since they imply too large values of the weak mixing angle. An alternative model using the subgroup SU(3)c × U(1)L × U(1)R is discussed. Requirements from global SUSY preservation impose an extra constraint and predictions for the grand unification and the intermediate masses are obtained at MX ~ 6 × 1015 GeV and MI ~ 1012 GeV. Address after March 1984: Centro de Fisica da Materia Condensada, Av. Prof. Gama Pinto, 2, 1699 Lisbon Codex, Portugal.

  11. Recent Belle results in quarkonium physics

    CERN Document Server

    ,

    2013-01-01

    We review selected recent Belle results in quarkonium physics, that include precision measurement of the eta_b(1S) parameters, evidence for the eta_b(2S); evidence for the psi_2(1D); observation of the psi(4040) and psi(4160) transitions to J/psi eta with anomalously high rates; observation of the Upsilon(5S) transitions to Upsilon(1D)pi+pi- and Upsilon(1S,2S)eta. The low excitations of charmonium and bottomonium are in agreement with the Lattice QCD and effective theories calculations, while high excitations show unexpected properties.

  12. The Quarkonium Analysis of the QGP

    Directory of Open Access Journals (Sweden)

    Satz Helmut

    2014-04-01

    Full Text Available Quarkonium production has been considered as a tool to study the medium formed in high energy nuclear collisions, assuming that the formation of a hot and dense environment modifies the production pattern observed in elementary collisions. The basic features measured there are the relative fractions of hidden to open heavy flavor and the relative fractions of the different hidden heavy flavor states. Hence the essential question is if and how these quantities are modified in nuclear collisions. We show how the relevant data must be calibrated, i.e., what reference has to be used, in order to determine this in a model-independent way.

  13. Quarkonium production in ALICE at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Hadjidakis, Cynthia

    2014-12-15

    In heavy-ion collisions at the LHC, the ALICE Collaboration is studying Quantum Chromodynamics (QCD) matter at very high energy density where the formation of a Quark Gluon Plasma (QGP) is expected. Quarkonium production is an important probe to characterize the QGP properties. High precision data in pp collisions provide the baseline of the Pb–Pb measurements and data in p–Pb collisions serve to quantify the contribution of initial and/or final state effects, related to cold nuclear matter. Since 2010, the LHC provided Pb–Pb collisions at √(s{sub NN})=2.76 TeV, pp collisions at various energies and in 2013 p–Pb collisions at √(s{sub NN})=5.02 TeV. ALICE measures quarkonium production from zero transverse momentum in the dimuon channel at forward rapidity and in the dielectron channel at mid-rapidity. This proceedings presents the new results on inclusive production of J/ψ, ψ(2S) and ϒ performed in p–Pb collisions and on the p{sub T} dependence of inclusive J/ψ in Pb–Pb collisions. The contribution of J/ψ from B hadrons to the inclusive production in Pb–Pb is also discussed. Finally, the p–Pb measurements allow an estimation of the contribution of the cold nuclear matter effect to the Pb–Pb measurements and this is also reported.

  14. Quarkonium measurements in the STAR experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bielcik, Jaroslav

    2014-12-15

    Calculations of Quantum Chromodynamics on lattice showed that under conditions of high energy density or high temperature nuclear matter undergoes a phase transition from a state of quarks and gluons confined in hadrons to a deconfined state, the Quark–Gluon Plasma (QGP). Such conditions were present in first moments after the Big Bang and can be created in laboratory by colliding of heavy ions with sufficient energy. One of the most prominent signatures of QGP formation is the quarkonium suppression in central heavy-ion collisions arising from the Debye screening of the quark–antiquark potential in hot and dense nuclear matter. However, cold nuclear matter effects and heavy quark recombination could influence the measured quarkonium yields. Measurements of J/ψ at different collision energies can shed new light on understanding the interplay of these mechanisms for J/ψ production. The production mechanism of J/ψ is not well understood yet and the simultaneous measurement of J/ψ transverse momentum spectra and polarization in p+p collisions can significantly constrain possible production scenarios. In this proceedings, we report the recent STAR measurements of J/ψ production at mid-rapidity in p+p, d+Au, Au+Au at √(s{sub NN})=200 GeV and in Au+Au collisions at √(s{sub NN})=39 GeV and √(s{sub NN})=62 GeV.

  15. Quarkonium cross sections and polarizations in pp collisions with CMS

    CERN Document Server

    Ferraioli, Charles

    2015-01-01

    According to NRQCD, quarkonium production starts with the (short-distance) production of a pre-resonant quark-antiquark pair, QQbar, that then binds into the observed quarkonium state, changing (octet) or not (singlet) its angular momentum and spin, with probabilities (long-distance matrix elements, LDMEs) conjectured to be constant and universal identical LDMEs should be extracted from, e.g., proton-(anti)proton and e+e- data. The non-perturbative bound state formation described by the octet LDMEs involves the interaction with the surrounding medium in the event, since the initial QQbar must neutralize its colour by absorbing or emitting soft gluons the LDMEs could be different between proton-proton and nucleus-nucleus collisions. Such a difference, besides calling to question the universality hypothesis of NRQCD, would play a crucial role in the interpretation of the quarkonium suppression patterns as signatures of quark-gluon plasma formation. Unlike the measurements of quarkonium differential cross se...

  16. Measurement of the neutrino mass splitting and flavor mixing by MINOS

    CERN Document Server

    Adamson, P; Armstrong, R; Auty, D J; Ayres, D S; Backhouse, C; Barr, G; Bishai, M; Blake, A; Bock, G J; Boehnlein, D J; Bogert, D; Cavanaugh, S; Cherdack, D; Childress, S; Choudhary, B C; Coelho, J A B; Coleman, S J; Corwin, L; Cronin-Hennessy, D; Danko, I Z; de Jong, J K; Devenish, N E; Diwan, M V; Dorman, M; Escobar, C O; Evans, J J; Falk, E; Feldman, G J; Frohne, M V; Gallagher, H R; Gomes, R A; Goodman, M C; Gouffon, P; Graf, N; Gran, R; Grant, N; Grzelak, K; Habig, A; Harris, D; Hartnell, J; Hatcher, R; Himmel, A; Holin, A; Huang, X; Hylen, J; Ilic, J; Irwin, G M; Isvan, Z; Jaffe, D E; James, C; Jensen, D; Kafka, T; Kasahara, S M S; Koizumi, G; Kopp, S; Kordosky, M; Kreymer, A; Lang, K; Lefeuvre, G; Ling, J; Litchfield, P J; Litchfield, R P; Loiacono, L; Lucas, P; Mann, W A; Marshak, M L; Mayer, N; McGowan, A M; Mehdiyev, R; Meier, J R; Messier, M D; Michael, D G; Miller, W H; Mishra, S R; Mitchell, J; Moore, C D; Morfín, J; Mualem, L; Mufson, S; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nowak, J A; Oliver, W P; Orchanian, M; Ospanov, R; Paley, J; Patterson, R B; Pawloski, G; Pearce, G F; Petyt, D A; Phan-Budd, S; Plunkett, R K; Qiu, X; Ratchford, J; Raufer, T M; Rebel, B; Rodrigues, P A; Rosenfeld, C; Rubin, H A; Sanchez, M C; Schneps, J; Schreiner, P; Shanahan, P; Smith, C; Sousa, A; Stamoulis, P; Strait, M; Tagg, N; Talaga, R L; Thomas, J; Thomson, M A; Tinti, G; Toner, R; Tzanakos, G; Urheim, J; Vahle, P; Viren, B; Weber, A; Webb, R C; White, C; Whitehead, L; Wojcicki, S G; Yang, T; Zwaska, R

    2011-01-01

    Measurements of neutrino oscillations using the disappearance of muon neutrinos from the Fermilab NuMI neutrino beam as observed by the two MINOS detectors are reported. New analysis methods have been applied to an enlarged data sample from an exposure of $7.25 \\times 10^{20}$ protons on target. A fit to neutrino oscillations yields values of $|\\Delta m^2| = (2.32^{+0.12}_{-0.08})\\times10^{-3}$\\,eV$^2$ for the atmospheric mass splitting and $\\rm \\sin^2\\!(2\\theta) > 0.90$ (90%\\,C.L.) for the mixing angle. Pure neutrino decay and quantum decoherence hypotheses are excluded at 7 and 9 standard deviations, respectively.

  17. Measurement of the neutrino mass splitting and flavor mixing by MINOS.

    Science.gov (United States)

    Adamson, P; Andreopoulos, C; Armstrong, R; Auty, D J; Ayres, D S; Backhouse, C; Barr, G; Bishai, M; Blake, A; Bock, G J; Boehnlein, D J; Bogert, D; Cavanaugh, S; Cherdack, D; Childress, S; Choudhary, B C; Coelho, J A B; Coleman, S J; Corwin, L; Cronin-Hennessy, D; Danko, I Z; de Jong, J K; Devenish, N E; Diwan, M V; Dorman, M; Escobar, C O; Evans, J J; Falk, E; Feldman, G J; Frohne, M V; Gallagher, H R; Gomes, R A; Goodman, M C; Gouffon, P; Graf, N; Gran, R; Grant, N; Grzelak, K; Habig, A; Harris, D; Hartnell, J; Hatcher, R; Himmel, A; Holin, A; Huang, X; Hylen, J; Ilic, J; Irwin, G M; Isvan, Z; Jaffe, D E; James, C; Jensen, D; Kafka, T; Kasahara, S M S; Koizumi, G; Kopp, S; Kordosky, M; Kreymer, A; Lang, K; Lefeuvre, G; Ling, J; Litchfield, P J; Litchfield, R P; Loiacono, L; Lucas, P; Mann, W A; Marshak, M L; Mayer, N; McGowan, A M; Mehdiyev, R; Meier, J R; Messier, M D; Michael, D G; Miller, W H; Mishra, S R; Mitchell, J; Moore, C D; Morfín, J; Mualem, L; Mufson, S; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nowak, J A; Oliver, W P; Orchanian, M; Ospanov, R; Paley, J; Patterson, R B; Pawloski, G; Pearce, G F; Petyt, D A; Phan-Budd, S; Plunkett, R K; Qiu, X; Ratchford, J; Raufer, T M; Rebel, B; Rodrigues, P A; Rosenfeld, C; Rubin, H A; Sanchez, M C; Schneps, J; Schreiner, P; Shanahan, P; Smith, C; Sousa, A; Stamoulis, P; Strait, M; Tagg, N; Talaga, R L; Thomas, J; Thomson, M A; Tinti, G; Toner, R; Tzanakos, G; Urheim, J; Vahle, P; Viren, B; Weber, A; Webb, R C; White, C; Whitehead, L; Wojcicki, S G; Yang, T; Zwaska, R

    2011-05-01

    Measurements of neutrino oscillations using the disappearance of muon neutrinos from the Fermilab NuMI neutrino beam as observed by the two MINOS detectors are reported. New analysis methods have been applied to an enlarged data sample from an exposure of 7.25×10(20) protons on target. A fit to neutrino oscillations yields values of |Δm(2)|=(2.32(-0.08)(+0.12))×10(-3) eV(2) for the atmospheric mass splitting and sin(2)(2θ)>0.90 (90% C.L.) for the mixing angle. Pure neutrino decay and quantum decoherence hypotheses are excluded at 7 and 9 standard deviations, respectively.

  18. Heavy Hybrids: decay to and mixing with Heavy Quarkonium

    CERN Document Server

    Oncala, Rubén

    2016-01-01

    We report on a recent QCD based research on hybrid mesons containing $c\\bar c$ or $b\\bar b$ quarks. We present results for the spectrum, the decay widths to heavy quarkonium, and the role of mixing with the latter. We point out that mixing with heavy quarkonium provides a potentially large source of spin symmetry breaking. We identify candidates to hybrid mesons among the so called XYZ states in the charmonium and bottomonium spectrum.

  19. Born-Oppenheimer approximation in EFT and quarkonium hybrids

    Directory of Open Access Journals (Sweden)

    Castellà Jaume Tarrús

    2017-01-01

    Full Text Available We report on the results of [1] for the calculations of quarkonium hybrids. We have developed and Effective Field Theory (EFT for quarkonium hybrids that systematically incorporates an expansion with respect to the adiabatic limit. We matched the potentials in our EFT to the static energies computed on the lattice. We discuss our results and compare them with direct lattice calculations and possible experimental candidates.

  20. Heavy quarkonium production and polarization

    CERN Document Server

    Kang, Zhong-Bo; Sterman, George

    2011-01-01

    We present a perturbative QCD factorization formalism for the production of heavy quarkonia of large transverse momentum $p_T$ at collider energies, which includes both the leading power (LP) and next-to-leading power (NLP) contributions to the cross section in the $m_Q^2/p_T^2$ expansion for heavy quark mass $m_Q$. We estimate fragmentation functions in the non-relativistic QCD formalism, and reproduce the bulk of the large enhancement found in explicit NLO calculations in the color singlet model. Heavy quarkonia produced from NLP channels prefer longitudinal polarization.

  1. Gluon TMDs in quarkonium production

    CERN Document Server

    Signori, Andrea

    2016-01-01

    I report on our investigations into the impact of (un)polarized transverse momentum dependent parton distribution functions (TMD PDFs or TMDs) for gluons at hadron colliders, especially at A Fixed Target Experiment at the LHC (AFTER@LHC). In the context of high energy proton-proton collisions, we look at final states with low mass (e.g. $\\eta_b$) in order to investigate the nonperturbative part of TMD PDFs. We study the factorization theorem for the $q_T$ spectrum of $\\eta_b$ produced in proton-proton collisions relying on the effective field theory approach, defining the tools to perform phenomenological investigations at next-to-next-to-leading log (NNLL) and next-to-leading order (NLO) accuracy in the perturbation theory. We provide predictions for the unpolarized cross section and comment on the possibility of extracting nonperturbative information about the gluon content of the proton once data at low transverse momentum are available.

  2. Gluon TMDs in Quarkonium Production

    Science.gov (United States)

    Signori, Andrea

    2016-08-01

    I report on our investigations into the impact of (un)polarized transverse momentum dependent parton distribution functions (TMD PDFs or TMDs) for gluons at hadron colliders, especially at A Fixed Target Experiment at the LHC (AFTER@LHC). In the context of high energy proton-proton collisions, we look at final states with low mass (e.g. η _b) in order to investigate the nonperturbative part of TMD PDFs. We study the factorization theorem for the q_T spectrum of η _b produced in proton-proton collisions relying on the effective field theory approach, defining the tools to perform phenomenological investigations at next-to-next-to-leading log and next-to-leading order accuracy in the perturbation theory. We provide predictions for the unpolarized cross section and comment on the possibility of extracting nonperturbative information about the gluon content of the proton once data at low transverse momentum are available.

  3. Heavy Quarkonium Production in Z Decays

    CERN Document Server

    Acciarri, M; Adriani, O; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Balandras, A; Ball, R C; Banerjee, S; Banerjee, Sw; Banicz, K; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brigljevic, V; Brochu, F; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Button, A M; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chéreau, X J; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Coignet, G; Colijn, A P; Colino, N; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Dai, T S; van Dalen, J A; D'Alessandro, R; De Asmundis, R; Déglon, P L; Degré, A; Deiters, K; Della Volpe, D; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Duchesneau, D; Dufournaud, D; Duinker, P; Durán, I; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Extermann, Pierre; Fabre, M; Faccini, R; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gau, S S; Gentile, S; Gheordanescu, N; Giagu, S; Goldfarb, S; Gong, Z F; Grünewald, M W; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hidas, P; Hirschfelder, J; Hofer, H; Holzner, G; Hoorani, H; Hou, S R; Iashvili, I; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Khan, R A; Kamrad, D; Kapustinsky, J S; Kasser, A; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, D H; Kim, J K; Kim, S C; Kinnison, W W; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopp, A; Korolko, I; Koutsenko, V F; Krämer, R W; Krenz, W; Kunin, A; Lacentre, P E; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lapoint, C; Lassila-Perini, K M; Laurikainen, P; Lavorato, A; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee, H J; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Marchesini, P A; Marian, G; Martin, J P; Marzano, F; Massaro, G G G; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mi, Y; Migani, D; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Molnár, P; Monteleoni, B; Moulik, T; Muanza, G S; Muheim, F; Muijs, A J M; Nahn, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nippe, A; Nisati, A; Nowak, H; Oh, Yu D; Organtini, G; Ostonen, R; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Park, I H; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pedace, M; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petersen, B; Petrak, S; Piccolo, D; Pieri, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Pothier, J; Produit, N; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Raja, N; Rancoita, P G; Raven, G; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosier-Lees, S; Rosselet, P; Rubio, Juan Antonio; Ruschmeier, D; Rykaczewski, H; Sakar, S; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schwenke, J; Schwering, G; Sciacca, C; Sciarrino, D; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, A; Stone, H; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tauscher, Ludwig; Taylor, L; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Uchida, Y; Ulbricht, J; Valente, E; Vesztergombi, G; Vetlitskii, I; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, J C; Wang, X L; Wang, Z M; Weber, A; Weber, M; Wienemann, P; Wilkens, H; Wu, S X; Wynhoff, S; Xia, L; Xu, Z Z; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zemp, P; Zhang, Z P; Zhu, G Y; Zhu, R Y; Zichichi, Antonino; Ziegler, F; Zilizi, G; Zöller, M

    1999-01-01

    We report measurements of the inclusive production of heavy quarkonium states in $\\mathrm {Z}$ decays based on the analysis of 3.6 million hadronic events collected by the L3 detector at LEP. The measurement of inclusive J production and an improved $95\\%$ confidence level upper limit on $\\Upsilon$ production are presented. In addition, two independent measurements of the ratio, $f_{\\mathrm{p}}$, of prompt J mesons to those from B decay are made using two different isolation cuts to separate prompt J mesons from J mesons produced in the decays of b hadrons. The results are: % \\begin{eqnarray} \\mathrm{Br}(\\mathrm{Z} \\rightarrow \\mathrm{J} + \\mathrm{X}) & = & (3.21 \\pm 0.21 \\; \\mathrm{(stat.)} \\; ^{+ 0.19}_{- 0.28} \\; \\mathrm{(sys.)} ) \\times 10^{-3} \\; , \

  4. Exotic quarkonium states at CMS

    CERN Document Server

    Cristella, Leonardo

    2016-01-01

    Using large data samples of di-muon events, CMS has performed detailed measurements and searches for new states in the field of exotic quarkonia. We report on measurements of the charmonium X(3872), and search for its counterpart in the bottomonium sector. The investigation of the B+ to J/psi phi K+ decay reveals two structures in the J/psi phi mass spectrum. For the one closest to the kinematical threshold, and compatible with the Y(4140) state by CDF, a few explanations have been suggested such as a tetraquark partner of the X(3872), a molecular partner of the Y(3940) or a charmonium hybrid. Charged Z charmonium-like states are particularly interesting as candidates for tetra-quark states. Results from CMS are foreseen to be provided by applying a full amplitude analysis method to the neutral B meson 3-body decays into J/psi(or psi(2S)) Kaon Pion. Searches for tetraquarks are also performed in CMS in the multi-lepton final states including J/psi and Y.

  5. Quarkonium Contribution to Meson Molecules

    CERN Document Server

    Cincioglu, E; Ozpineci, A; Yilmazer, A U

    2016-01-01

    Starting from a molecular picture for the X(3872) resonance, this state and its J^{PC}=2++ HQSS partner [X2(4012)] are analyzed within a model which incorporates possible mixings with 2P charmonium states. Since it is reasonable to expect the bare chi_{c1}(2P) to be located above the D\\bar D* threshold, but relatively close to it, the presence of the charmonium state provides an effective attraction that will contribute to bind the X(3872), but it will not appear in the 2++ sector. Indeed in this latter sector, the chi_{c2}(2P) should provide an effective small repulsion, because it is placed well below the D*\\bar D* threshold. We show how the 1++ and 2++ bare charmonium poles are modified due to the D(*)\\bar D(*) loop effects, and the first one is moved to the complex plane. The meson loops produce, besides some shifts in the masses of the charmonia, a finite width for the 1++ dressed charmonium state. On the other hand, the X(3872) and X2(4012) start developing some charmonium content, which is estimated by...

  6. Quarkonium Contribution to Meson Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Cincioglu, E.; Yilmazer, A.U. [Ankara University, Department of Physics Engineering, Ankara (Turkey); Nieves, J. [Instituto de Fisica Corpuscular (IFIC) Centro Mixto CSIC-Universidad de Valencia, Institutos de Investigacion de Paterna, Valencia (Spain); Ozpineci, A. [Middle East Technical University, Department of Physics, Ankara (Turkey)

    2016-10-15

    Starting from a molecular picture for the X(3872) resonance, this state and its J{sup PC} = 2{sup ++} heavy-quark spin symmetry partner [X{sub 2}(4012)] are analyzed within a model which incorporates possible mixings with 2P charmonium (c anti c) states. Since it is reasonable to expect the bare χ{sub c1}(2P) to be located above the D anti D{sup *} threshold, but relatively close to it, the presence of the charmonium state provides an effective attraction that will contribute to binding the X(3872), but it will not appear in the 2{sup ++} sector. Indeed in the latter sector, the χ{sub c2}(2P) should provide an effective small repulsion, because it is placed well below the D{sup *} anti D{sup *} threshold. We show how the 1{sup ++} and 2{sup ++} bare charmonium poles are modified due to the D{sup (*)} anti D{sup (*)} loop effects, and the first one is moved to the complex plane. The meson loops produce, besides some shifts in the masses of the charmonia, a finite width for the 1{sup ++} dressed charmonium state. On the other hand, X(3872) and X{sub 2}(4012) start developing some charmonium content, which is estimated by means of the compositeness Weinberg sum rule. It turns out that in the heavy-quark limit, there is only one coupling between the 2P charmonia and the D{sup (*)} anti D{sup (*)} pairs. We also show that, for reasonable values of this coupling, leading to X(3872) molecular probabilities of around 70-90 %, the X{sub 2} resonance destabilizes and disappears from the spectrum, becoming either a virtual state or one being located deep into the complex plane, with decreasing influence in the D{sup *} anti D{sup *} scattering line. Moreover, we also discuss how around 10-30 % charmonium probability in the X(3872) might explain the ratio of radiative decays of this resonance into ψ(2S)γ and J/ψγ. Finally, we qualitatively discuss within this scheme, the hidden bottom flavor sector, paying a special attention to the implications for the X{sub b} and X

  7. Eight-Shaped Hatching Increases the Risk of Inner Cell Mass Splitting in Extended Mouse Embryo Culture.

    Science.gov (United States)

    Yan, Zheng; Liang, Hongxing; Deng, Li; Long, Hui; Chen, Hong; Chai, Weiran; Suo, Lun; Xu, Chen; Kuang, Yanping; Wu, Lingqian; Lu, Shengsheng; Lyu, Qifeng

    2015-01-01

    Increased risk of monozygotic twinning (MZT) has been shown to be associated with assisted reproduction techniques, particularly blastocyst culture. Interestingly, inner cell mass (ICM) splitting in human '8'-shaped hatching blastocysts that resulted in MZT was reported. However, the underlying cause of MZT is not known. In this study, we investigated in a mouse model whether in vitro culture leads to ICM splitting and its association with hatching types. Blastocyst hatching was observed in: (i) in vivo developed blastocysts and (ii-iii) in vitro cultured blastocysts following in vivo or in vitro fertilization. We found that '8'-shaped hatching occurred with significantly higher frequency in the two groups of in vitro cultured blastocysts than in the group of in vivo developed blastocysts (24.4% and 20.4% versus 0.8%, respectively; n = 805, P split distribution of ICM cells was observed around the small zona opening of '8'-shaped hatching blastocysts. This occurred at a high frequency in the in vitro cultured groups. Furthermore, we found more double OCT4-positive masses, suggestive of increased ICM splitting in '8'-shaped hatching and hatched blastocysts than in 'U'-shaped hatching and hatched blastocysts (12.5% versus 1.9%, respectively; n = 838, P splitting in mouse blastocysts. These results may provide insights into the increased risk of human MZT after in vitro fertilization and blastocyst transfer.

  8. Gluon fragmentation into {sup 3} P{sub J} quarkonium

    Energy Technology Data Exchange (ETDEWEB)

    Ma, J.P.

    1995-10-01

    The functions of the gluon fragmentation into {sup 3}P{sub j} quarkonium are calculated to order {alpha}{sup 2}{sub s}. With the recent progress in analysing quarkonium systems in QCD it is possible show how the so called divergence in the limit of the zero-binding energy, which is related to P-wave quarkonia, is treated correctly in the case of fragmentation functions. The obtained fragmentation functions satisfy explicitly at the order of {alpha} {sup 2}{sub s} the Altarelli-Parisi equation and when z {yields} 0 they behave as z{sup -1} as expected. 19 refs., 7 figs.

  9. Heavy flavour and quarkonium production at the LHC

    CERN Document Server

    Bona, M

    2015-01-01

    This document presents a review of recent results for quarkonium production at the LHC from ATLAS, CMS, and LHCb. Production cross sections for J/ψ, ψ(2S), and Υ(mS), and production ratios for χc,bJ are found to be in good agreement with predictions from non-relativistic QCD. In contrast, spin-alignment (polarisation) measurements seem to disagree with all theoretical predictions. Some other production channels useful for investigating quarkonium hadroproduction mechanisms are also considered

  10. Non-renormalizable Operators for Solar Mass Generation in Split SuSy with Bilinear R-parity Violation

    CERN Document Server

    Diaz, Marco Aurelio; Rojas, Nicolas

    2016-01-01

    The Minimal Supersymmetric Extension of the Standard Model (MSSM) is able to explain the current data from neutrino physics. Unfortunately Split Supersymmetry as low energy approximation of this theory fails to generate a solar square mass difference, including after the addition of bilinear R-Parity Violation. In this work, it is shown how one can derive an effective low energy theory from the MSSM in the spirit of Split Supersymmetry, which has the potential of explaining the neutrino phenomenology. This is achieved by going beyond leading order in the process of integrating out heavy scalars from the original theory, which results in non-renormalizable operators in the effective low energy theory. It is found that in particular a $d=8$ operator is crucial for the generation of the neutrino mass differences.

  11. Non-renormalizable operators for solar neutrino mass generation in Split SuSy with bilinear R-parity violation

    Science.gov (United States)

    Díaz, Marco Aurelio; Koch, Benjamin; Rojas, Nicolás

    2017-03-01

    The Minimal Supersymmetric Extension of the Standard Model (MSSM) is able to explain the current data from neutrino physics. Unfortunately Split Supersymmetry as low energy approximation of this theory fails to generate a solar square mass difference, including after the addition of bilinear R-Parity Violation. In this work, it is shown how one can derive an effective low energy theory from the MSSM in the spirit of Split Supersymmetry, which has the potential of explaining the neutrino phenomenology. This is achieved by going beyond leading order in the process of integrating out heavy scalars from the original theory, which results in non-renormalizable operators in the effective low energy theory. It is found that in particular a d = 8 operator is crucial for the generation of the neutrino mass differences.

  12. Quarkonium production in ALICE at the LHC

    CERN Document Server

    Hadjidakis, Cynthia

    2014-01-01

    In heavy-ion collisions at the LHC, the ALICE Collaboration is studying Quantum Chromodynamics (QCD) matter at very high energy density where the formation of a Quark Gluon Plasma (QGP) is expected. Quarkonium production is an important probe to characterize the QGP properties. High precision data in pp collisions provide the baseline of Pb-Pb measurements and p-Pb collisions serve to quantify the amount of initial and/or final state effects, related to cold nuclear matter, that are largely unknown at the LHC energy. Since 2010, the LHC provided Pb-Pb collisions at sqrt{s_{NN}} = 2.76 TeV, pp collisions at various energies and in 2013 p-Pb collisions at sqrt{s_{NN}} = 5.02 TeV. In ALICE, quarkonia can be reconstructed at forward rapidity in the dimuon channel and at mid-rapidity in the dielectron channel, and, for both channels, down to zero transverse momentum. New measurements on inclusive production of J/psi, psi (2S) and Upsilon performed in p-Pb collisions and on the p_T dependence of inclusive J/psi in ...

  13. Splitting of ISGMR strength in the light-mass nucleus $^{24}$Mg due to ground-state deformation

    CERN Document Server

    Gupta, Y K; Matta, J T; Patel, D; Peach, T; Hoffman, J; Yoshida, K; Itoh, M; Fujiwara, M; Hara, K; Hashimoto, H; Nakanishi, K; Yosoi, M; Sakaguchi, H; Terashima, S; Kishi, S; Murakami, T; Uchida, M; Yasuda, Y; Akimune, H; Kawabata, T; Harakeh, M N

    2015-01-01

    The isoscalar giant monopole resonance (ISGMR) strength distribution in $^{24}$Mg has been determined from background-free inelastic scattering of 386-MeV $\\alpha$ particles at extreme forward angles, including 0$^{\\circ}$. The ISGMR strength distribution has been observed for the first time to have a two-peak structure in a light-mass nucleus. This splitting of ISGMR strength is explained well by microscopic theory in terms of the prolate deformation of the ground state of $^{24}$Mg.

  14. Eight-Shaped Hatching Increases the Risk of Inner Cell Mass Splitting in Extended Mouse Embryo Culture.

    Directory of Open Access Journals (Sweden)

    Zheng Yan

    Full Text Available Increased risk of monozygotic twinning (MZT has been shown to be associated with assisted reproduction techniques, particularly blastocyst culture. Interestingly, inner cell mass (ICM splitting in human '8'-shaped hatching blastocysts that resulted in MZT was reported. However, the underlying cause of MZT is not known. In this study, we investigated in a mouse model whether in vitro culture leads to ICM splitting and its association with hatching types. Blastocyst hatching was observed in: (i in vivo developed blastocysts and (ii-iii in vitro cultured blastocysts following in vivo or in vitro fertilization. We found that '8'-shaped hatching occurred with significantly higher frequency in the two groups of in vitro cultured blastocysts than in the group of in vivo developed blastocysts (24.4% and 20.4% versus 0.8%, respectively; n = 805, P < 0.01. Moreover, Oct4 immunofluorescence staining was performed to identify the ICM in the hatching and hatched blastocysts. Scattered and split distribution of ICM cells was observed around the small zona opening of '8'-shaped hatching blastocysts. This occurred at a high frequency in the in vitro cultured groups. Furthermore, we found more double OCT4-positive masses, suggestive of increased ICM splitting in '8'-shaped hatching and hatched blastocysts than in 'U'-shaped hatching and hatched blastocysts (12.5% versus 1.9%, respectively; n = 838, P < 0.01. Therefore, our results demonstrate that extended in vitro culture can cause high frequencies of '8'-shaped hatching, and '8'-shaped hatching that may disturb ICM herniation leading to increased risk of ICM splitting in mouse blastocysts. These results may provide insights into the increased risk of human MZT after in vitro fertilization and blastocyst transfer.

  15. Perspectives on heavy-quarkonium production at the LHC

    CERN Document Server

    Lansberg, J P; Artoisenet, P; Blaschke, D; Cugnon, J; d'Enterria, D; Kraan, A C; Maltoni, F; Prorok, D; Satz, H

    2008-01-01

    We summarise the perspectives on heavy-quarkonium production at the LHC, both for proton-proton and heavy-ion runs, as emanating from the round table held at the HLPW 2008 Conference. The main topics are: present experimental and theoretical knowledge, experimental capabilities, open questions, recent theoretical advances and potentialities linked to some new observables.

  16. Breakdown of QCD factorization for P-wave quarkonium production at low transverse momentum

    Directory of Open Access Journals (Sweden)

    J.P. Ma

    2014-10-01

    Full Text Available Quarkonium production at low transverse momentum in hadron collisions can be used to extract Transverse-Momentum-Dependent (TMD gluon distribution functions, if TMD factorization holds there. We show that TMD factorization for the case of P-wave quarkonium with JPC=0++,2++ holds at one-loop level, but is violated beyond one-loop level. TMD factorization for other P-wave quarkonium is also violated already at one-loop level.

  17. Breakdown of QCD factorization for P-wave quarkonium production at low transverse momentum

    Science.gov (United States)

    Ma, J. P.; Wang, J. X.; Zhao, S.

    2014-10-01

    Quarkonium production at low transverse momentum in hadron collisions can be used to extract Transverse-Momentum-Dependent (TMD) gluon distribution functions, if TMD factorization holds there. We show that TMD factorization for the case of P-wave quarkonium with JPC =0++ ,2++ holds at one-loop level, but is violated beyond one-loop level. TMD factorization for other P-wave quarkonium is also violated already at one-loop level.

  18. Intervalley splitting and intersubband transitions in n -type Si/SiGe quantum wells: Pseudopotential vs. effective mass calculation

    Science.gov (United States)

    Valavanis, A.; Ikonić, Z.; Kelsall, R. W.

    2007-05-01

    Intervalley mixing between conduction-band states in low-dimensional Si/SiGe heterostructures induces splitting between nominally degenerate energy levels. The symmetric double-valley effective mass approximation and the empirical pseudopotential method are used to find the electronic states in different types of quantum wells. A reasonably good agreement between the two methods is found, with the former being much faster computationally. Aside from being an oscillatory function of well width, the splitting is found to be almost independent of in-plane wave vector, and an increasing function of the magnitude of interface gradient. While the model is defined for symmetric envelope potentials, it is shown to remain reasonably accurate for slightly asymmetric structures such as a double quantum well, making it acceptable for simulation of multilayer intersubband optical devices. Intersubband optical transitions are investigated under both approximations and it is shown that in most cases valley splitting causes linewidth broadening, although under extreme conditions, transition line doublets may result.

  19. Splitting of ISGMR strength in the light-mass nucleus 24Mg due to ground-state deformation

    Directory of Open Access Journals (Sweden)

    Y.K. Gupta

    2015-09-01

    Full Text Available The isoscalar giant monopole resonance (ISGMR strength distribution in 24Mg has been determined from background-free inelastic scattering of 386-MeV α particles at extreme forward angles, including 0∘. The ISGMR strength distribution has been observed for the first time to have a two-peak structure in a light-mass nucleus. This splitting of ISGMR strength is explained well by microscopic theory in terms of the prolate deformation of the ground state of 24Mg.

  20. A Simple Approach to Study the Isospin Effect in Mass Splitting of Three-Nucleon Systems by Using Hyperspherical Functions

    Science.gov (United States)

    Feizi, H.; A. A., Rajabi; M. R., Shojaei

    2012-07-01

    In this work, the binding energy and wavefunctions of three-nucleon systems are obtained by using hyperspherical harmonic approach. We have used a mathematical modification method to obtain the eigenvalues and eigenfunctions of Schrödinger equation for three-nucleon systems in calculation. Next, we have used a simple approach to obtain the difference between binding energy of 3H and 3He where gives us mass splitting of three-nucleon systems. We have compared our results with the other works and experimental values.

  1. QCD Sum Rules: Intercrossed Relations for the Sigma^0-Lambda Mass Splitting

    CERN Document Server

    Zamiralov, V S

    2003-01-01

    New relations between QCD Borel sum rules for masses of Sigma^0 and Lambda hyperons are constructed. It is shown that starting from the sum rule for the Sigma^0 hyperon mass it is straightforward to obtain the corresponding sum rule for the Lambda hyperon mass and vice versa.

  2. Glueball-Quarkonium Mixing in the Quark and Chromon Model

    CERN Document Server

    Zhang, Pengming; Xie, Ju-Jun; Yoon, J H; Cho, Y M

    2016-01-01

    The Abelian decomposition of QCD which decomposes the gluons to the color neutral binding gluons (the neurons) and the colored valence gluons (the chromons) gauge independently naturally generalizes the quark model to the quark and chromon model which can play the central role in hadron spectroscopy. We discuss how the quark and chromon model describes the glueballs and the glueball-quarkonium mixing in QCD. We present the numerical analysis of glueball-quarkonium mixing in $0^{++}$, $2^{++}$, and $0^{-+}$ sectors below 2 GeV, and show that in the $0^{++}$ sector $f_0(500)$ and $f_0(1500)$, in the $2^{++}$ sector $f_2(1950)$, and in the $0^{-+}$ sector $\\eta(1405)$ and $\\eta(1475)$ could be identified as predominantly the glueball states. We discuss the physical implications of our result.

  3. Heavy quarkonium photoproduction in ultrarelativistic heavy ion collisions

    Science.gov (United States)

    Yu, Gong-Ming; Cai, Yang-Bing; Li, Yun-De; Wang, Jian-Song

    2017-01-01

    Based on the factorization formalism of nonrelativistic quantum chromodynamics (NRQCD), we calculate the production cross section for the charmonium [J /ψ , ψ (2 S ) , χc J, ηc, and hc] and the bottomonium [Υ (n S ) , χb J, ηb, and hb] produced by the hard photoproduction processes and fragmentation processes in relativistic heavy ion collisions. It is shown that the existing experimental data on heavy quarkonium production at the Large Hadron Collider (LHC) can be described in the framework of the NRQCD formalism, and the phenomenological values of matrix elements for color-singlet and color-octet components give the main contribution. The numerical results of photoproduction processes and fragmentation processes for the heavy quarkonium production become prominent in p -p collisions and Pb-Pb collisions at LHC energies.

  4. Quarkonium production in the LHC era: A polarized perspective

    Directory of Open Access Journals (Sweden)

    Pietro Faccioli

    2014-09-01

    Considering ψ(2S and ϒ(3S measurements from LHC experiments and state-of-the-art next-to-leading order cross sections for the short-distance production of heavy quark–antiquark pairs of relevant colour and angular momentum configurations, we perform a search for a kinematic domain where quarkonium polarizations can be correctly reproduced together with the respective cross sections, by systematically scanning the phase space and accurately treating the experimental uncertainties. This strategy provides a straightforward solution to the “quarkonium polarization puzzle” and reassuring signs that the factorization of short- and long-distance effects works, at least in the high-transverse-momentum region, least affected by limitations in the current fixed-order calculations. The results expose unexpected hierarchies in the phenomenological long-distance parameters that open new paths towards the understanding of bound-state formation in QCD.

  5. Lattice NRQCD study of quarkonium at non-zero temperature

    CERN Document Server

    Kim, Seyong; Rothkopf, Alexander

    2015-01-01

    To study the in-medium modification of quarkonium properties, charmonium correlators at $140.4 (\\beta =6.664) \\le T \\le 221 (\\beta = 7.280)$ (MeV) are calculated using the NRQCD formalism on $48^3 \\times 12$ gauge configurations with dynamical $N_f = 2 + 1$ flavors of Highly Improved Staggered Quarks (HISQ). To determine the "zero energy shift" for these lattices, we perform a fine zero temperature scan ($\\beta =6.664, 6.740, 6.800, 6.880, 6.950, 7.030, 7.150$ and $7.280$). We find that the temperature dependence of charmonium correlators is stronger than the temperature dependence of bottomonium correlators in a given channel. This fits into the expected pattern of sequential quarkonium melting.

  6. Quarkonium +{gamma} production in coherent interactions at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, V. P. [Instituto de Fisica e Matematica, Universidade Federal de Pelotas Caixa Postal 354, CEP 96010-900, Pelotas, RS (Brazil); Machado, M. M. [Instituto Federal de Educacao, Ciencia e Tecnologia, IF - Farroupilha, Campus Sao Borja Rua Otaviano Castilho Mendes, 355, CEP 97670-000 - Sao Borja, RS (Brazil)

    2013-04-15

    The quarkonium plus photon production in coherent hadron - hadron interactions at LHC is studied using the non-relativistic QCD (NRQCD) factorization formalism. Considering different sets of NRQCD matrix elements we estimate the rapidity distribution and total cross section for H+{gamma} (H=J/{Psi} and {gamma}) production. Our results demonstrate that the experimental analysis of this process is feasible and that it can be used to constrain the matrix elements.

  7. Double quarkonium production at high Feynman-$x$

    CERN Document Server

    Koshkarev, Sergey

    2016-01-01

    In this paper we give estimates for the proton--proton cross sections into pairs of quarkonium states $J/\\psi$, $\\psi(2S)$, $\\Upsilon(1S)$ and $\\Upsilon(2S)$ at the scheduled AFTER@LHC energy of $115$GeV. The estimates are based on the intrinsic heavy flavor mechanism which is observable for high values of $x_F$, a range outside the dominance of single parton and double parton scattering.

  8. Double quarkonium production at high Feynman-x

    Directory of Open Access Journals (Sweden)

    Sergey Koshkarev

    2017-02-01

    Full Text Available In this paper we give estimates for the proton–proton cross sections into pairs of quarkonium states J/ψ, ψ(2S, ϒ(1S and ϒ(2S at the scheduled AFTER@LHC energy of 115 GeV. The estimates are based on the intrinsic heavy quark mechanism which is observable for high values of xF, a range outside the dominance of single parton and double parton scattering.

  9. Quarkonium production and suppression with CMS detector at LHC

    CERN Document Server

    Kumar, Vineet

    2017-01-01

    Quarkonia are most important probes of the quark-gluon plasma since they are produced at early times and propagate through the medium, mapping its evolution. The Compact Muon Solenoid (CMS) detector is well suited to measure quarkonia via their decays to dimuon channel. This writeup summarizes quarkonium measurements in pp and PbPb collisions by CMS detector at $\\sqrt{s_{NN}} = 2.76~\\mathrm{TeV}$ and $\\sqrt{s_{NN}} = 5.02~\\mathrm{TeV}$.

  10. Double quarkonium production at high Feynman-x

    Science.gov (United States)

    Koshkarev, Sergey; Groote, Stefan

    2017-02-01

    In this paper we give estimates for the proton-proton cross sections into pairs of quarkonium states J / ψ, ψ (2 S), ϒ (1 S) and ϒ (2 S) at the scheduled AFTER@LHC energy of 115 GeV. The estimates are based on the intrinsic heavy quark mechanism which is observable for high values of xF, a range outside the dominance of single parton and double parton scattering.

  11. Computation of Heavy Quarkonium Spectrum in Perturbative QCD

    CERN Document Server

    Sumino, Yukinari

    2016-01-01

    Non-relativistic bound state theories for QED and QCD have become fairly mature and amenable to a textbook-level understanding and computation. In this talk we give an introductory review of the following subjects related to the recent computation of the heavy quarkonium spectrum using perturbative QCD: (1) Technological developments in higher-order computation, (2) Physics predictions, (3) Challenge towards analytic evaluation of the 3-loop static QCD potential.

  12. Probing TMDs in heavy quarkonium production in $pp$ collision

    CERN Document Server

    Mukherjee, Asmita

    2016-01-01

    We present a recent calculation of $J/\\psi$ and $\\Upsilon$ production in unpolarized $pp$ collision and show that this can be used to probe the unpolarized gluon as well as the linearly polarized gluon transverse momentum dependent parton distributions (TMDs). We use the color evaporation model for the heavy quarkonium production and use a generalized factorized form of the cross section. We compare the results with experimental data.

  13. Quarkonium production at the LHC: A data-driven analysis of remarkably simple experimental patterns

    Science.gov (United States)

    Faccioli, Pietro; Lourenço, Carlos; Araújo, Mariana; Knünz, Valentin; Krätschmer, Ilse; Seixas, João

    2017-10-01

    The LHC quarkonium production data reveal a startling observation: the J / ψ, ψ (2S), χc1, χc2 and ϒ (nS)pT-differential cross sections in the central rapidity region are compatible with one universal momentum scaling pattern. Considering also the absence of strong polarizations of directly and indirectly produced S-wave mesons, we conclude that there is currently no evidence of a dependence of the partonic production mechanisms on the quantum numbers and mass of the final state. The experimental observations supporting this universal production scenario are remarkably significant, as shown by a new analysis approach, unbiased by specific theoretical calculations of partonic cross sections, which are only considered a posteriori, in comparisons with the data-driven results.

  14. A Modern View of Perturbative QCD and Application to Heavy Quarkonium Systems

    CERN Document Server

    Sumino, Y

    2014-01-01

    Perturbative QCD has made significant progress over the last few decades. In the first part, we present an introductory overview of perturbative QCD as seen from a modern viewpoint. We explain the relation between purely perturbative predictions and predictions based on Wilsonian effective field theories. We also review progress of modern computational technologies and discuss intersection with frontiers of mathematics. Analyses of singularities in Feynman diagrams play key roles towards developing a unified view. In the second part, we discuss application of perturbative QCD, based on the formulation given in the first part, to heavy quarkonium systems and the interquark force between static color charges. We elucidate impacts on order Lambda_QCD physics in the quark mass and interquark force, which used to be considered inaccessible by perturbative QCD.

  15. Analysis of selected volatile organic compounds in split and nonsplit swiss cheese samples using selected-ion flow tube mass spectrometry (SIFT-MS).

    Science.gov (United States)

    Castada, Hardy Z; Wick, Cheryl; Taylor, Kaitlyn; Harper, W James

    2014-04-01

    Splits/cracks are recurring product defects that negatively affect the Swiss cheese industry. Investigations to understand the biophysicochemical aspects of these defects, and thus determine preventive measures against their occurrence, are underway. In this study, selected-ion, flow tube mass spectrometry was employed to determine the volatile organic compound (VOC) profiles present in the headspace of split compared with nonsplit cheeses. Two sampling methodologies were employed: split compared with nonsplit cheese vat pair blocks; and comparison of blind, eye, and split segments within cheese blocks. The variability in VOC profiles was examined to evaluate the potential biochemical pathway chemistry differences within and between cheese samples. VOC profile inhomogeneity was most evident in cheeses between factories. Evaluation of biochemical pathways leading to the formation of key VOCs differentiating the split from the blind and eye segments within factories indicated release of additional carbon dioxide by-product. These results suggest a factory-dependent cause of split formation that could develop from varied fermentation pathways in the blind, eye, and split areas within a cheese block. The variability of VOC profiles within and between factories exhibit varied biochemical fermentation pathways that could conceivably be traced back in the making process to identify parameters responsible for split defect.

  16. First ALICE results on quarkonium production at Run 2 energies

    CERN Document Server

    CERN. Geneva

    2016-01-01

    Quarkonium production in hadronic collisions (either proton-proton or heavy ions) has been extensively studied in both fixed target and collider experiments. It is understood as the production of a heavy quark pair (ccbar or bbar depending on the quarkonium state) in a hard scattering process which occurs early in the collision, followed by the evolution of this quark pair into a colorless bound state. While the production of the quark pair is reasonably well described by perturbative QCD calculations, its evolution into the bound state is inherently non-perturbative and is studied experimentally in pp collisions. In heavy ion collisions on the other hand, quarkonia are used to probe the properties of the medium formed in the collision and in particular that of the quark-gluon plasma, via competing mechanisms such as color screening, thermal dissociation or recombination, as well as so-called cold nuclear matter effects such as shadowing, gluon saturation or energy loss. The first ALICE results on quarkonium...

  17. Quarkonium production in the LHC era: A polarized perspective

    Science.gov (United States)

    Faccioli, Pietro; Knünz, Valentin; Lourenço, Carlos; Seixas, João; Wöhri, Hermine K.

    2014-09-01

    Polarization measurements are usually considered as the most difficult challenge for the QCD description of quarkonium production. In fact, global data fits for the determination of the non-perturbative parameters of bound-state formation traditionally exclude polarization observables and use them as a posteriori verifications of the predictions, with perplexing results. With a change of perspective, we move polarization data to the centre of the study, advocating that they actually provide the strongest fundamental indications about the production mechanisms, even before we explicitly consider perturbative calculations. Considering ψ(2S) and ϒ(3S) measurements from LHC experiments and state-of-the-art next-to-leading order cross sections for the short-distance production of heavy quark-antiquark pairs of relevant colour and angular momentum configurations, we perform a search for a kinematic domain where quarkonium polarizations can be correctly reproduced together with the respective cross sections, by systematically scanning the phase space and accurately treating the experimental uncertainties. This strategy provides a straightforward solution to the “quarkonium polarization puzzle” and reassuring signs that the factorization of short- and long-distance effects works, at least in the high-transverse-momentum region, least affected by limitations in the current fixed-order calculations. The results expose unexpected hierarchies in the phenomenological long-distance parameters that open new paths towards the understanding of bound-state formation in QCD.

  18. Perspectives for inclusive quarkonium production in photon-photon collisions at the LHC

    CERN Document Server

    Klasen, M

    2008-01-01

    We report on the current status of knowledge on inclusive quarkonium production in high-energy photon-photon collisions. As a perspective for the LHC, we compute various production cross sections via direct photon-photon fusion in ultra-peripheral pp, pA and AA collisions at the LHC using the tree-level quarkonium amplitude generator MadOnia.

  19. Perspectives for inclusive quarkonium production in photon-photon collisions at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Klasen, M. [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier/CNRS-IN2P3 / INPG, 53 Avenue des Martyrs, F-38026 Grenoble (France); Lansberg, J.P. [Institut fuer Theoretische Physik, Universitaet Heidelberg, Philosophenweg 19, D-69120 Heidelberg (Germany)

    2008-08-15

    We report on the current status of knowledge on inclusive quarkonium production in high-energy photon-photon collisions. As a perspective for the LHC, we compute various production cross sections via direct photon-photon fusion in ultra-peripheral pp, pA and AA collisions at the LHC using the tree-level quarkonium amplitude generator MadOnia.

  20. Perspectives for inclusive quarkonium production in photon-photon collisions at the LHC

    Science.gov (United States)

    Klasen, M.; Lansberg, J. P.

    2008-08-01

    We report on the current status of knowledge on inclusive quarkonium production in high-energy photon-photon collisions. As a perspective for the LHC, we compute various production cross sections via direct photon-photon fusion in ultra-peripheral pp, pA and AA collisions at the LHC using the tree-level quarkonium amplitude generator MadOnia.

  1. Coulomb Artifacts and Bottomonium Hyperfine Splitting in Lattice NRQCD

    CERN Document Server

    Liu, Tao; Rayyan, Ahmed

    2016-01-01

    We study the role of the lattice artifacts associated with the Coulomb binding effects in the analysis of the heavy quarkonium within lattice NRQCD. We find that a "na\\"ive" perturbative matching generates spurious linear Coulomb artifacts, which result in a large systematic error in the lattice predictions for the heavy quarkonium spectrum. This effect is responsible, in particular, for the discrepancy between the recent determinations of the bottomonium hyperfine splitting in the radiatively improved lattice NRQCD [1, 2]. We show that the correct matching procedure which provides full control over discretization errors is based on the asymptotic expansion of the lattice theory about the continuum limit, which gives $M_{\\Upsilon(1S)}-M_{\\eta_b(1S)}=52.9\\pm 5.5~{\\rm MeV}$ [1].

  2. Effects of symmetry energy and effective k -mass splitting on central 96Ru(96Zr)+96Zr(96Ru) collisions at 50 to 400 MeV/nucleon

    Science.gov (United States)

    Su, Jun; Zhu, Long; Huang, Ching-Yuan; Xie, Wen-Jie; Zhang, Feng-Shou

    2017-08-01

    The isospin mixing between projectile and target in central 96Ru(96Zr)+96Zr(96Ru) collisions at 50 to 400 MeV/nucleon is investigated within the isospin-dependent quantum molecular dynamics model in combination with the statistical decay code gemini. Four groups of parameters, which provide different density dependences of symmetry energy and effective k -mass splitting, are applied in the model. Calculations within the same effective k -mass splittings show that the isospin mixing is more likely to take place for soft symmetry energy than hard symmetry energy. Calculations within similar symmetry energies show that the isospin mixing is more likely to take place for mn*mp* . Significantly, the effects of effective k -mass splitting on the isospin mixing become stronger with increasing incident energies, while those of symmetry energy are similar at different incident energies.

  3. Weak Interactions Effect on the P-N Mass Splitting and the Principle of Equivalence

    CERN Document Server

    Chamoun, N

    2002-01-01

    We estimate the difference of nucleon matrix elements for the product of two weak currents operator in order to evaluate and include weak interactions effect on the individual nucleons contribution to the nucleus mass when analysing Eotvos experimental results. For this we use the Bag model and the constituent quark model as two extreme relativistic and non-relativistic representations of the quarks inside the nucleon. When compared to estimates considering only the binding energy contribution, we find both models agree on lowering the bound of a possible weak interactions violation to the equivalence principle by one order of magnitude from 1e-2 to 1e-3.

  4. Phenomenology of heavy quarkonium radiative E1 transitions

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Hector E. [Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching (Germany)

    2016-01-22

    We present preliminary results of the evaluation of the next-to-leading-order (NLO) relativistic corrections to the heavy quarkonium electric dipole transition (E1) rate. In our evaluation we use the quark-antiquark potential up to 1/m{sup 2} corrections that includes the effective string theory expression for the long range, a review on the method to construct this potential is given. Our results compare favorable with the experiments and may provide predictions for the rates for which no experimental data is yet available.

  5. Heavy Quark and Quarkonium Transport in High Energy Nuclear Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Kai [Physics Department, Tsinghua University and Collaborative Innovation Center of Quantum Matter, Beijing 100084 (China); Institute for Theoretical Physics, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main (Germany); Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, D-60438 Frankfurt am Main (Germany); Dai, Wei [Physics Department, Tsinghua University and Collaborative Innovation Center of Quantum Matter, Beijing 100084 (China); Xu, Nu [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Zhuang, Pengfei [Physics Department, Tsinghua University and Collaborative Innovation Center of Quantum Matter, Beijing 100084 (China)

    2016-12-15

    The strong interaction between heavy quarks and the quark gluon plasma makes the open and hidden charm hadrons be sensitive probes of the deconfinement phase transition in high energy nuclear collisions. Both the cold and hot nuclear matter effects change with the colliding energy and significantly influence the heavy quark and charmonium yield and their transverse momentum distributions. The ratio of averaged quarkonium transverse momentum square and the elliptic flow reveal the nature of the QCD medium created in heavy ion collisions at SPS, RHIC and LHC energies.

  6. FDCHQHP: A Fortran package for heavy quarkonium hadroproduction

    Science.gov (United States)

    Wan, Lu-Ping; Wang, Jian-Xiong

    2014-11-01

    FDCHQHP is a Fortran package to calculate the transverse momentum (pt) distribution of yield and polarization for heavy quarkonium hadroproduction at next-to-leading-order (NLO) based on non-relativistic QCD(NRQCD) framework. It contains the complete color-singlet and color-octet intermediate states in present theoretical level, and is available to calculate different polarization parameters in different frames. As the LHC running now and in the future, it supplies a very useful tool to obtain theoretical prediction on the heavy quarkonium hadroproduction. Catalogue identifier: AETT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETT_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 12020165 No. of bytes in distributed program, including test data, etc.: 103178384 Distribution format: tar.gz Programming language: Fortran 77. Computer: Any computer with Linux operating system, Intel Fortran Compiler and MPI library. Operating system: Linux. Has the code been vectorized or parallelized?: Parallelized with MPI. Classification: 11.1. External routines: MPI Library Nature of problem: This package is for the calculation of the heavy quarkonium hadroproduction at NRQCD NLO. Solution method: The Fortran codes of this package are generated by the FDC system [1] automatically. Additional comments: It is better to run the package on supercomputers or multi-core computers. !!!!! The distribution file for this program is over 100 MB and therefore is not delivered directly when download or Email is requested. Instead a html file giving details of how the program can be obtained is sent. !!!!! Running time: For an independent sub-process, it may take several seconds to several hours depending on the number of sample points if one CPU core is used. For a complete prompt

  7. QCD factorization for high $p_T$ heavy quarkonium production

    CERN Document Server

    Ma, Yan-Qing; Sterman, George; Zhang, Hong

    2015-01-01

    In this talk, we present the QCD factorization formula for heavy quarkonium production at large $p_T$ with factorized leading-power and next-to-leading power contributions in the $1/p_T$ expansion. We show that the leading order analytical calculations in this QCD factorization approach can reproduce effectively the full next-to-leading order numerical results derived using non-relativistic QCD (NRQCD) factorization formalism. We demonstrate that the next-to-leading power contributions are crucial to the description of the channels that are the most relevant for the rate as well as polarization of $J/\\psi$ production at current collider energies.

  8. Quarkonium spectroscopy by Klein-Gordon equation

    CERN Document Server

    Haghighat, M; Dadkhah, A

    2000-01-01

    A model is proposed to obtain the q q spectra by using a generalized Klein-Gordon equation for a two-body system. A variety of different potentials are coupled to the mass term of the generalized equation. The eigenvalues and the corresponding mass spectra are evaluated by using numerical and analytical methods. The resulting spectra match dosely with experimental data. The obtained values are also compared with those of models such as quasipotential equation (Q PE).

  9. Embryo splitting

    Directory of Open Access Journals (Sweden)

    Karl Illmensee

    2010-04-01

    Full Text Available Mammalian embryo splitting has successfully been established in farm animals. Embryo splitting is safely and efficiently used for assisted reproduction in several livestock species. In the mouse, efficient embryo splitting as well as single blastomere cloning have been developed in this animal system. In nonhuman primates embryo splitting has resulted in several pregnancies. Human embryo splitting has been reported recently. Microsurgical embryo splitting under Institutional Review Board approval has been carried out to determine its efficiency for blastocyst development. Embryo splitting at the 6–8 cell stage provided a much higher developmental efficiency compared to splitting at the 2–5 cell stage. Embryo splitting may be advantageous for providing additional embryos to be cryopreserved and for patients with low response to hormonal stimulation in assisted reproduction programs. Social and ethical issues concerning embryo splitting are included regarding ethics committee guidelines. Prognostic perspectives are presented for human embryo splitting in reproductive medicine.

  10. Quarkonium momentum distributions in photoproduction and B decay

    CERN Document Server

    Beneke, Martin; Wolf, S

    2000-01-01

    According to our present understanding many $J/\\psi$ production processes proceed through a coloured $c\\bar{c}$ state followed by the emission of soft particles in the quarkonium rest frame. The kinematic effect of soft particle emission is usually a higher-order effect in the non-relativistic expansion, but becomes important near the kinematic endpoint of quarkonium energy (momentum) distributions. In an intermediate region a systematic resummation of the non-relativistic expansion leads to the introduction of so-called `shape functions'. In this paper we provide an implementation of the kinematic effect of soft gluon emission which is consistent with the non-relativistic shape function formalism in the region where it is applicable and which models the extreme endpoint region. We then apply the model to photoproduction of $J/\\psi$ and $J/\\psi$ production in $B$ meson decay. A satisfactory description of $B$ decay data is obtained. For inelastic charmonium photoproduction we conclude that a sensible comparis...

  11. Fast gas chromatographic residue analysis in animal feed using split injection and atmospheric pressure chemical ionisation tandem mass spectrometry.

    Science.gov (United States)

    Tienstra, M; Portolés, T; Hernández, F; Mol, J G J

    2015-11-27

    Significant speed improvement for instrumental runtime would make GC–MS much more attractive for determination of pesticides and contaminants and as complementary technique to LC–MS. This was the trigger to develop a fast method (time between injections less than 10 min) for the determination of pesticides and PCBs that are not (or less) amenable to LC–MS. A key factor in achieving shorter analysis time was the use of split injection (1:10) which allowed the use of a much higher initial GC oven temperature. A shorter column (15 m), higher temperature ramp, and higher carrier gas flow rate (6 mL/min) further contributed to analysis-time reduction. Chromatographic resolution was slightly compromised but still well fit-for-purpose. Due to the high sensitivity of the technique used (GC–APCI-triple quadrupole MS/MS), quantification and identification were still possible down to the 10 μg/kg level, which was demonstrated by successful validation of the method for complex feed matrices according to EU guidelines. Other advantages of the method included a better compatibility of acetonitrile extracts (e.g. QuEChERS) with GC, and a reduced transfer of co-extractants into the GC column and mass spectrometer.

  12. Quarkonium at the Frontiers of High Energy Physics: A Snowmass White Paper

    Energy Technology Data Exchange (ETDEWEB)

    Bodwin, Geoffrey T. [Argonne; Braaten, Eric [Ohio State U.; Eichten, Estia [Fermilab; Olsen, Stephen Lars [Seoul Natl. U.; Pedlar, Todd K. [Luther Coll.; Russ, James [Carnegie Mellon U.

    2013-07-28

    In this Snowmass White Paper, we discuss physics opportunities involving heavy quarkonia at the intensity and energy frontiers of high energy physics. We focus primarily on two specific aspects of quarkonium physics for which significant advances can be expected from experiments at both frontiers. The first aspect is the spectroscopy of charmonium and bottomonium states above the open-heavy-flavor thresholds. Experiments at e^+ e^- colliders and at hadron colliders have discovered many new, unexpected quarkonium states in the last 10 years. Many of these states are surprisingly narrow, and some have electric charge. The observations of these charged quarkonium states are the first definitive discoveries of manifestly exotic hadrons. These results challenge our understanding of the QCD spectrum. The second aspect is the production of heavy quarkonium states with large transverse momentum. Experiments at the LHC are measuring quarkonium production with high statistics at unprecedented values of p_T. Recent theoretical developments may provide a rigorous theoretical framework for inclusive production of quarkonia at large p_T. Experiments at the energy frontier will provide definitive tests of this framework. Experiments at the intensity frontier also provide an opportunity to understand the exclusive production of quarkonium states.

  13. Quarkonium Spectroscopy And Search for New States at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Cibinetto, G.

    2011-11-04

    The BaBar experiment at the PEP-II B-factory gives excellent opportunities for the quarkonium spectroscopy. Investigation of the properties of new states like the X(3872), Y(3940) and Y(4260) are performed aiming to understand their nature. Recent BaBar results will be presented in this paper. At the B-factories charmonium and charmonium-like states are copiously produced via several mechanisms: in B decay (color suppressed b {yields} c transition), double charmonium production (e{sup +}e{sup -} {yields} c{bar c} + c{bar c}), two photons production ({gamma}*{gamma}* {yields} c{bar c}, where the c{bar c} state has positive C-parity) and in initial state radiation (ISR) when the e{sup {+-}} in its initial state emits a photon lowering the effective center of mass energy of the e{sup +}e{sup -} interaction (e{sup +}e{sup -} {yields} {gamma}{sub ISR} + c{bar c}, where the charmonium state has the quantum numbers J{sup PC} = 1{sup -2}). Many new states have been recently discovered at the B-factories, BaBar and Belle, above the D{bar D} threshold in the charmonium energy region. While some of them appear to be consistent with conventional c{sub c} states others do not fit with any expectation. Several interpretations for these states have been proposed: for some of them the mass values suggest that they could be conventional charmonia, but also other interpretations like D{sup 0}{bar D}*{sup 0} molecule or diquark-antidiquark states among many other models have been advanced. Reviews can be found in Refs. [1][2]. In all cases the picture is not completely clear. This situation could be remedied by a coherent search of the decay pattern to D{bar D}, search for production in two-photon fusion and ISR, and of course improving the statistical precision upon the current measurements. The BaBar experiment at the PEP-II asymmetric collider, designed to perform precision measurement of CP violation in the B meson system, has an extensive quarkonium spectroscopy program. Recent

  14. Dissociation of heavy quarkonium in hot QCD medium in a quasi-particle model

    CERN Document Server

    Agotiya, Vineet K; Jamal, M Yousuf; Nilima, Indrani

    2016-01-01

    Following a recent work on the effective description of the equations of state for hot QCD obtained from a Hard thermal loop expression for the gluon self-energy, in terms of the quasi-gluons and quasi- quark/anti-quarks with respective effective fugacities, the dissociation process of heavy quarkonium in hot QCD medium has been investigated. This has been done by investigating the medium modification to a heavy quark potential. The medium modified potential has a quite different form (a long range Coulomb tail in addition to the usual Yukawa term) in contrast to the usual picture of Debye screening. The flavor dependence of the binding energies of the heavy quarkonia states and the dissociation temperature have been obtained by employing the debye mass for pure gluonic and full QCD case computed employing the quasi-particle picture. Thus estimated dissociation patterns of the charmonium and bottomonium states, considering Debye mass from different approaches in pure gluonic case and full QCD, have shown good...

  15. Heavy Quarkonium Production at Collider Energies (I): Factorization and Evolution

    CERN Document Server

    Kang, Zhong-Bo; Qiu, Jian-Wei; Sterman, George

    2014-01-01

    We present a factorization formalism for inclusive production of heavy quarkonia of large transverse momentum, $p_T$ at collider energies, including both leading power (LP) and next-to-leading power (NLP) behavior in $p_T$. We demonstrate that both LP and NLP contributions can be factorized in terms of perturbatively calculable short-distance partonic coefficient functions and universal non-perturbative fragmentation functions, and derive the evolution equations that are implied by the factorization. We identify projection operators for all channels of the factorized LP and NLP infrared safe short-distance partonic hard parts, and corresponding operator definitions of fragmentation functions. For the NLP, we focus on the contributions involving the production of a heavy quark pair, a necessary condition for producing a heavy quarkonium. We evaluate the first non-trivial order of evolution kernels for all relevant fragmentation functions, and discuss the role of NLP contributions.

  16. Quarkonium production in p–Pb collisions with ALICE

    CERN Document Server

    Lakomov, Igor

    2016-01-01

    The production of quarkonia, bound states of quark and anti-quark pairs, is intensively studied both experimentally and theoretically. They are ideal probes of the Quark-Gluon Plasma (QGP) formed in heavy-ion collisions. At the beginning of 2013, data from p–Pb collisions at sNN=5.02 TeV have been collected by ALICE, which can be exploited to measure cold nuclear matter (CNM) effects on quarkonium production. These measurements are important in order to disentangle, in Pb–Pb collisions, hot and CNM effects. In this paper final ALICE results on the charmonium and bottomonium production in p–Pb collisions from Run I of the LHC are presented. ALICE measurements are compared to various models of CNM effects and to PHENIX measurements.

  17. Quarkonium production in the LHC era: a polarized perspective

    CERN Document Server

    Faccioli, Pietro; Lourenco, Carlos; Seixas, Joao; Woehri, Hermine K

    2014-01-01

    Polarization measurements are usually considered as the most difficult challenge for the QCD description of quarkonium production. In fact, global data fits for the determination of the non-perturbative parameters of bound-state formation traditionally exclude polarization observables and use them as a posteriori verifications of the predictions, with perplexing results. With a change of perspective, we move polarization data to the centre of the study, advocating that they actually provide the strongest fundamental indications about the production mechanisms, even before we explicitly consider perturbative calculations. Considering psi(2S) and Y(3S) measurements from LHC experiments and state-of-the-art NLO short-distance calculations in the framework of non-relativistic QCD factorization (NRQCD), we perform a search for a kinematic domain where the polarizations can be correctly reproduced together with the cross sections, by systematically scanning the phase space and accurately treating the experimental u...

  18. Open heavy flavour and quarkonium production as a function of the multiplicity in pp and p-Pb collisions with ALICE at the LHC arXiv

    CERN Document Server

    Valencia Palomo, Lizardo

    Due to the large masses of beauty and charm quarks, their production cross sections can be computed in the framework of perturbative Quantum Chromodynamics. The correlation of quarkonium and open heavy-flavour hadron yields with charged particles produced in proton-proton (pp) and proton-lead (p-Pb) collisions can shed light on the interplay between hard and soft mechanisms in particle production. In this proceeding the results from D-meson and J/$\\psi$ yields as a function of the charged-particle multiplicity in pp and p-Pb collisions are presented. Comparisons to theoretical models are also discussed.

  19. [Tablet splitting].

    Science.gov (United States)

    Quinzler, R; Haefeli, W E

    2006-06-01

    The splitting of scored tablets provides many advantages. One benefit is to achieve dose flexibility to account for the huge interindividual differences in dose requirements for instance in paediatric and geriatric patients, which are often not covered by the available strengths in the market. Moreover, large-sized tablets can easier be swallowed if broken before swallowing and medication costs can often be reduced by splitting brands with higher strength. But not all tablets, mostly unscored tablets, are suitable for splitting. Splitting of extended release formulations can result in an overdose by uncontrolled release of the active component and degradation of the compound can occur if an enteric coating is destroyed by the splitting process. Whether tablets are suitable for splitting depends on the properties of the active component (e.g. light sensitivity), the galenics, the shape of the tablet, and the shape of the scoreline. Moreover, not all patients are informed, able, or willing to split tablets and the majority of the elderly population is not capable to break tablets. When split tablets are prescribed it is therefore important to view the shape of the tablet, to assess the patients ability and willingness to break tablets, to properly inform the patient about the appropriate way of splitting, and if necessary to suggest (and instruct) the use of a tablet splitting device.

  20. A Sacral Mass in a Newborn: A Variant of Type II Diastematomyelia with Triple Splitting of the Cord

    Directory of Open Access Journals (Sweden)

    Emad Sadek Shatla

    2013-01-01

    Full Text Available Ultrasonographic (US evaluation of spinal anomalies is limited. MRI is increasingly being used in the diagnosis of spinal anomalies. MRI has been able to show clearly the detailed anatomy of this rare case of type II diastematomyelia with triple splitting of the cord.

  1. Quarkonium production in high energy proton-proton and proton-nucleus collisions

    CERN Document Server

    Conesa del Valle, Z; Fleuret, F; Ferreiro, E G; Kartvelishvili, V; Kopeliovich, B Z; Lansberg, J P; Lourenço, C; Martinez, G; Papadimitriou, V; Satz, H; Scomparin, E; Ullrich, T; Teryaev, O; Vogt, R; Wang, J X

    2011-01-01

    We present a brief overview of the most relevant current issues related to quarkonium production in high energy proton-proton and proton-nucleus collisions along with some perspectives. After reviewing recent experimental and theoretical results on quarkonium production in pp and pA collisions, we discuss the emerging field of polarisation studies. Thereafter, we report on issues related to heavy-quark production, both in pp and pA collisions, complemented by AA collisions. To put the work in a broader perspective, we emphasize the need for new observables to investigate quarkonium production mechanisms and reiterate the qualities that make quarkonia a unique tool for many investigations in particle and nuclear physics.

  2. Quarkonium production in high energyproton-proton and proton-nucleus collisions

    Energy Technology Data Exchange (ETDEWEB)

    del Valle, Z C; Corcella, G; Fleuret, F; Ferreiro, E G; Kartvelishvili, V; Kopeliovich, B; Lansberg, J P; Lourenco, C; Martinez, G; Papadimitriou, V; Satz, H; Scomparin, E; Ullrich, T; Teryaev, O; Vogt, R; Wang, J X

    2011-03-14

    We present a brief overview of the most relevant current issues related to quarkonium production in high energy proton-proton and proton-nucleus collisions along with some perspectives. After reviewing recent experimental and theoretical results on quarkonium production in pp and pA collisions, we discuss the emerging field of polarization studies. Afterwards, we report on issues related to heavy-quark production, both in pp and pA collisions, complemented by AA collisions. To put the work in broader perpectives, we emphasize the need for new observables to investigate the quarkonium production mechanisms and reiterate the qualities that make quarkonia a unique tool for many investigations in particle and nuclear physics.

  3. HELAC-Onia: an automatic matrix element generator for heavy quarkonium physics

    CERN Document Server

    Shao, Hua-Sheng

    2013-01-01

    By the virtues of the Dyson-Schwinger equations, we upgrade the published code \\mtt{HELAC} to be capable to calculate the heavy quarkonium helicity amplitudes in the framework of NRQCD factorization, which we dub \\mtt{HELAC-Onia}. We rewrote the original \\mtt{HELAC} to make the new program be able to calculate helicity amplitudes of multi P-wave quarkonium states production at hadron colliders and electron-positron colliders by including new P-wave off-shell currents. Therefore, besides the high efficiencies in computation of multi-leg processes within the Standard Model, \\mtt{HELAC-Onia} is also sufficiently numerical stable in dealing with P-wave quarkonia (e.g. $h_{c,b},\\chi_{c,b}$) and P-wave color-octet intermediate states. To the best of our knowledge, it is a first general-purpose automatic quarkonium matrix elements generator based on recursion relations on the market.

  4. Noncommutative correction to the Cornell potential in heavy-quarkonium atoms

    Science.gov (United States)

    Mirjalili, A.; Taki, M.

    2016-02-01

    We investigate the effect of space-time noncommutativity on the Cornell potential in heavy-quarkonium systems. It is known that the space-time noncommutativity can create bound states, and we therefore consider the noncommutative geometry of the space-time as a correction in quarkonium models. Furthermore, we take the experimental hyperfine measurements of the bottomium ground state as an upper limit on the noncommutative energy correction and derive the maximum possible value of the noncommutative parameter θ, obtaining θ ≤ 37.94 · 10-34 m2. Finally, we use our model to calculate the maximum value of the noncommutative energy correction for energy levels of charmonium and bottomium in 1S and 2S levels. The energy correction as a binding effect in quarkonium system is smaller for charmonium than for bottomium, as expected.

  5. Quarkonium production in high energy proton-proton and proton-nucleus collisions

    Energy Technology Data Exchange (ETDEWEB)

    Conesa del Valle, Z. [Institut Pluridisciplinaire Hubert Curien (IPHC), Universite de Strasbourg, CNRS-IN2P3, Strasbourg (France); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Corcella, G. [INFN, Laboratori Nazionali di Frascati, Via E.Fermi 40, I-00044, Frascati (Italy); Fleuret, F. [LLR, Ecole polytechnique, CNRS/IN2P3, Palaiseau (France); Ferreiro, E.G. [Departamento de Fisica de Particulas and IGFAE, Universidad de Santiago de Compostela, Santiago de Compostela (Spain); Kartvelishvili, V. [Lancaster University, Lancaster LA1 4YB,United Kingdom (United Kingdom); Kopeliovich, B. [Departamento de Fisica Universidad Tecnica Federico Santa Maria, Instituto de Estudios Avanzados en Ciencias e Ingenieria and Centro, Cientifico-Tecnologico de Valparaiso, Casilla 110-V, Valparaiso (Chile); Lansberg, J.P. [IPNO, Universite Paris-Sud 11, CNRS/IN2P3, F-91406 Orsay (France); Lourenco, C. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Martinez, G. [SUBATECH, Ecole des Mines de Nantes, Universite de Nantes, CNRS-IN2P3, Nantes (France); Papadimitriou, V. [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, Illinois, 60510, U.S.A (United States); Satz, H. [Fakultaet fuer Physik, Universitaet Bielefeld (Germany); Scomparin, E. [INFN Torino, Via P. Giuria 1, Torino, I-10125 (Italy); Ullrich, T. [Brookhaven National Laboratory, Upton, New York 11973 (United States); Teryaev, O. [Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna 141980 (Russian Federation); Vogt, R. [Physics Divsion, Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Physics Department, University of California at Davis, Davis, CA 95616 (United States); Wang, J.X. [Institute of High Energy Physics, Chinese Academy of Sciences, P.O. Box 918(4), Beijing, 100049 (China)

    2011-05-15

    We present a brief overview of the most relevant current issues related to quarkonium production in high energy proton-proton and proton-nucleus collisions along with some perspectives. After reviewing recent experimental and theoretical results on quarkonium production in pp and pA collisions, we discuss the emerging field of polarisation studies. Afterwards, we report on issues related to heavy-quark production, both in pp and pA collisions, complemented by AA collisions. To put the work in broader perpectives, we emphasize the need for new observables to investigate the quarkonium production mechanisms and reiterate the qualities that make quarkonia a unique tool for many investigations in particle and nuclear physics.

  6. Inelastic quarkonium photoproduction in hadron-hadron interactions at LHC energies

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, V.P. [Universidade Federal de Pelotas, Instituto de Fisica e Matematica, Pelotas, RS (Brazil); Machado, M.M. [Ciencia e Tecnologia, IF - Farroupilha, Instituto Federal de Educacao, Sao Borja, RS (Brazil)

    2014-04-15

    In this paper we study the inelastic quarkonium photoproduction in coherent pp/p Pb/PbPb interactions. Considering the ultra-relativistic hadrons as a source of photons, we estimate the total h{sub 1}+h{sub 2} → h x V+X (V=J/Ψ and Υ) cross sections and rapidity distributions at LHC energies. Our results demonstrate that the experimental analysis of this process can be used to understand the underlying mechanism governing heavy quarkonium production. (orig.)

  7. Universal Suppression of Heavy Quarkonium Production in pA Collisions at Low Transverse Momentum

    CERN Document Server

    Qiu, Jian-Wei; Xiao, Bo-Wen; Yuan, Feng

    2014-01-01

    The nuclear suppression of heavy quarkonium production at low transverse momentum in pA collisions in high energy scatterings is investigated in the small-x factorization formalism. A universal suppression is found in the large Nc limit between the two formalisms to describe the heavy quarkonium production: the non-relativistic QCD (NRQCD) and the color-evaporation model (CEM). This provides an important probe to the saturation momentum at small-x in big nucleus. We also comment on the phenomenological applications of our results.

  8. Inclusive Decays of Heavy Quarkonium to Light Particles

    CERN Document Server

    Brambilla, Nora; Pineda-Ruiz, A; Soto, J; Vairo, Antonio; Brambilla, Nora; Eiras, Dolors; Pineda, Antonio; Soto, Joan; Vairo, Antonio

    2003-01-01

    We derive the imaginary part of the potential NRQCD Hamiltonian up to order 1/m^4, when the typical momentum transfer between the heavy quarks is of the order of Lambda_{QCD} or greater, and the binding energy E much smaller than Lambda_{QCD}. We use this result to calculate the inclusive decay widths into light hadrons, photons and lepton pairs, up to O(mv^3 x (Lambda_{QCD}^2/m^2,E/m)) and O(mv^5) times a short-distance coefficient, for S- and P-wave heavy quarkonium states, respectively. We achieve a large reduction in the number of unknown non-perturbative parameters and, therefore, we obtain new model-independent QCD predictions. All the NRQCD matrix elements relevant to that order are expressed in terms of the wave functions at the origin and six universal non-perturbative parameters. The wave-function dependence factorizes and drops out in the ratio of hadronic and electromagnetic decay widths. The universal non-perturbative parameters are expressed in terms of gluonic field-strength correlators, which ...

  9. Non-perturbative renormalization of the chromo-magnetic operator in Heavy Quark Effective Theory and the B* - B mass splitting

    CERN Document Server

    Guazzini, Damiano; Meyer, Harvey B

    2007-01-01

    We carry out the non-perturbative renormalization of the chromo-magnetic operator in Heavy Quark Effective Theory. At order 1/m of the expansion, the operator is responsible for the mass splitting between the pseudoscalar and vector B mesons. We obtain its two-loop anomalous dimension in a Schr"odinger functional scheme by successive one-loop conversions to the lattice MS scheme and the MS-bar scheme. We then compute the scale evolution of the operator non-perturbatively in the N_f=0 theory between $\\mu \\approx 0.3$ GeV and $\\mu \\approx 100$ GeV, where contact is made with perturbation theory. The overall renormalization factor that converts the bare lattice operator to its renormalization group invariant form is given for the Wilson gauge action and two standard discretizations of the heavy-quark action. As an application, we find that this factor brings the previous quenched predictions of the B* - B mass splitting closer to the experimental value than found with a perturbative renormalization. The same ren...

  10. ALICE results on quarkonium production in pp, p-Pb and Pb-Pb collisions

    CERN Document Server

    Bruno, Giuseppe Eugenio

    2013-01-01

    The study of quarkonia, bound states of heavy (charm or bottom) quark-antiquark pairs such as the J/psi or the Upsilon?, provides insight into the earliest and hottest stages of high-energy nucleus-nucleus collisions where the formation of a Quark-Gluon Plasma is expected. High-precision data from proton-proton collisions represent an essential baseline for the measurement of nuclear modi?cations in nucleus-nucleus collisions and serve also as a crucial test for models of quarkonium hadroproduction. Another fundamental tool to understand the quarkonium production in nucleus-nucleus collisions is the the study of proton-nucleus interactions, which allows one to investigate cold nuclear matter e?ects, such as parton shadowing or gluon saturation. The ALICE detector provides excellent capabilities to study quarkonium production at the Large Hadron Collider at both central and forward rapidity. An overview on ALICE results on quarkonium production in pp, p-Pb and Pb-Pb collisions is presented. Results are compare...

  11. QUARKONIUM PRODUCTION IN RELATIVISTIC NUCLEAR COLLISIONS. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, VOLUME 12

    Energy Technology Data Exchange (ETDEWEB)

    KHARZEEV,D.

    1999-04-20

    The RIKEN-BNL Workshop on Quarkonium Production in Relativistic Nuclear Collisions was held September 28--October 2, 1998, at Brookhaven National Laboratory. The Workshop brought together about 50 invited participants from around the world and a number of Brookhaven physicists from both particle and nuclear physics communities.

  12. Quarkonium and heavy flavour meson production at 13 TeV at ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00173602; The ATLAS collaboration

    2016-01-01

    First results of the ATLAS experiment at LHC on quarkonium and heavy flavour meson production in proton-proton collisions at 13 TeV are presented. A brief summary of the results obtained at 7-8 TeV is also reported. Comparison of the data cross sections with various theoretical predictions is discussed.

  13. Beauty quark and quarkonium production at LHC: kt-factorization and CASCADE versus data

    CERN Document Server

    Jung, H; Lipatov, A V; Zotov, N P

    2011-01-01

    We present hadron-level predictions from the Monte-Carlo generator CASCADE and numerical calculations of beauty quark and quarkonium production in the framework of the kt-factorization approach for LHC energies. Our predictions are compared with the CMS experimental data.

  14. Measurement of quarkonium production in proton--lead and proton--proton collisions at $5.02$ $\\mathrm{TeV}$ with the ATLAS detector

    CERN Document Server

    ATLAS Collaboration

    2017-01-01

    The modification of the production of $J/\\psi$, $\\psi(\\mathrm{2S})$, and $\\mit{\\Upsilon}(n\\mathrm{S})$ ($n = 1, 2, 3$) in $p$+Pb collisions with respect to their production in $pp$ collisions has been studied. The $p$+Pb and $pp$ datasets used in this paper correspond to integrated luminosities of $28$ $\\mathrm{nb}^{-1}$ and $25$ $\\mathrm{pb}^{-1}$ respectively, collected in 2013 and 2015 by the ATLAS detector at the LHC, both at a centre-of-mass energy per nucleon pair of 5.02 TeV. The quarkonium states are reconstructed in the dimuon decay channel. The yields of $J/\\psi$ and $\\psi(\\mathrm{2S})$ are separated into prompt and non-prompt sources. The measured quarkonium differential cross sections are presented as a function of rapidity and transverse momentum, as is the nuclear modification factor, $R_{p\\mathrm{Pb}}$ for $J/\\psi$ and $\\mit{\\Upsilon}(\\mathrm{1S})$. No significant modification of the $J/\\psi$ production is observed while $\\mit{\\Upsilon}(\\mathrm{1S})$ production is found to be suppressed at low ...

  15. Measurement of quarkonium production in proton--lead and proton--proton collisions at $5.02$ $\\mathrm{TeV}$ with the ATLAS detector arXiv

    CERN Document Server

    Aaboud, Morad; Abbott, Brad; Abdallah, Jalal; Abdinov, Ovsat; Abeloos, Baptiste; Abidi, Syed Haider; AbouZeid, Ossama; Abraham, Nicola; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adachi, Shunsuke; Adamczyk, Leszek; Adelman, Jahred; Adersberger, Michael; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agheorghiesei, Catalin; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akatsuka, Shunichi; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Ali, Babar; Aliev, Malik; Alimonti, Gianluca; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allen, Benjamin William; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Alshehri, Azzah Aziz; Alstaty, Mahmoud; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Angerami, Aaron; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antel, Claire; Antonelli, Mario; Antonov, Alexey; Antrim, Daniel Joseph; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Araujo Ferraz, Victor; Arce, Ayana; Ardell, Rose Elisabeth; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Armitage, Lewis James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baas, Alessandra; Baca, Matthew John; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagnaia, Paolo; Bahrasemani, Sina; Baines, John; Bajic, Milena; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisits, Martin-Stefan; Barkeloo, Jason Tyler Colt; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska-Blenessy, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barranco Navarro, Laura; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Hans~Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bedognetti, Matteo; Bee, Christopher; Beermann, Thomas; Begalli, Marcia; Begel, Michael; Behr, Janna Katharina; Bell, Andrew Stuart; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Belyaev, Nikita; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez, Jose; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Beringer, Jürg; Berlendis, Simon; Bernard, Nathan Rogers; Bernardi, Gregorio; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertram, Iain Alexander; Bertsche, Carolyn; Bertsche, David; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethani, Agni; Bethke, Siegfried; Bevan, Adrian John; Bianchi, Riccardo-Maria; Biebel, Otmar; Biedermann, Dustin; Bielski, Rafal; Biesuz, Nicolo Vladi; Biglietti, Michela; Bilbao De Mendizabal, Javier; Billoud, Thomas Remy Victor; Bilokon, Halina; Bindi, Marcello; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bisanz, Tobias; Bittrich, Carsten; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blue, Andrew; Blum, Walter; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Boerner, Daniela; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bokan, Petar; Bold, Tomasz; Boldyrev, Alexey; Bolz, Arthur Eugen; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Bortfeldt, Jonathan; Bortoletto, Daniela; Bortolotto, Valerio; Boscherini, Davide; Bosman, Martine; Bossio Sola, Jonathan David; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Briglin, Daniel Lawrence; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Broughton, James; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruni, Alessia; Bruni, Graziano; Bruni, Lucrezia Stella; Brunt, Benjamin; Bruschi, Marco; Bruscino, Nello; Bryant, Patrick; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Buehrer, Felix; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burger, Angela Maria; Burghgrave, Blake; Burka, Klaudia; Burke, Stephen; Burmeister, Ingo; Burr, Jonathan Thomas Peter; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Callea, Giuseppe; Caloba, Luiz; Calvente Lopez, Sergio; Calvet, David; Calvet, Samuel; Calvet, Thomas Philippe; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Camincher, Clement; Campana, Simone; Campanelli, Mario; Camplani, Alessandra; Campoverde, Angel; Canale, Vincenzo; Cano Bret, Marc; Cantero, Josu; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Ina; Carli, Tancredi; Carlino, Gianpaolo; Carlson, Benjamin Taylor; Carminati, Leonardo; Carney, Rebecca; Caron, Sascha; Carquin, Edson; Carrá, Sonia; Carrillo-Montoya, German D; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Casper, David William; Castelijn, Remco; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavallaro, Emanuele; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Celebi, Emre; Ceradini, Filippo; Cerda Alberich, Leonor; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Stephen Kam-wah; Chan, Wing Sheung; Chan, Yat Long; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Che, Siinn; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Huajie; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chitan, Adrian; Chiu, Yu Him Justin; Chizhov, Mihail; Choi, Kyungeon; Chomont, Arthur Rene; Chouridou, Sofia; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chu, Ming Chung; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocca, Claudia; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Michael; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Colasurdo, Luca; Cole, Brian; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Constantinescu, Serban; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper-Sarkar, Amanda; Cormier, Felix; Cormier, Kyle James Read; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Crawley, Samuel Joseph; Creager, Rachael; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cueto, Ana; Cuhadar Donszelmann, Tulay; Cukierman, Aviv Ruben; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Czirr, Hendrik; Czodrowski, Patrick; D'amen, Gabriele; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dado, Tomas; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Dann, Nicholas Stuart; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Daubney, Thomas; Davey, Will; David, Claire; Davidek, Tomas; Davies, Merlin; Davison, Peter; Dawe, Edmund; Dawson, Ian; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Maria, Antonio; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vasconcelos Corga, Kevin; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Dehghanian, Nooshin; Deigaard, Ingrid; Del Gaudio, Michela; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delporte, Charles; Delsart, Pierre-Antoine; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Denysiuk, Denys; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Devesa, Maria Roberta; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Bello, Francesco Armando; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Clemente, William Kennedy; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Micco, Biagio; Di Nardo, Roberto; Di Petrillo, Karri Folan; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Díez Cornell, Sergio; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dolejsi, Jiri; Dolezal, Zdenek; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Du, Yanyan; Duarte-Campderros, Jorge; Duchovni, Ehud; Duckeck, Guenter; Ducourthial, Audrey; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudder, Andreas Christian; Duffield, Emily Marie; Duflot, Laurent; Dührssen, Michael; Dumancic, Mirta; Dumitriu, Ana Elena; Duncan, Anna Kathryn; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; El Kosseifi, Rima; Ellajosyula, Venugopal; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Ennis, Joseph Stanford; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Esposito, Bellisario; Estrada Pastor, Oscar; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Ezzi, Mohammed; Fabbri, Federica; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farina, Christian; Farina, Edoardo Maria; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fawcett, William James; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenton, Michael James; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Rob Roy MacGregor; Flick, Tobias; Flierl, Bernhard Matthias; Flores Castillo, Luis; Flowerdew, Michael; Forcolin, Giulio Tiziano; Formica, Andrea; Förster, Fabian Alexander; Forti, Alessandra; Foster, Andrew Geoffrey; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; Fressard-Batraneanu, Silvia; Freund, Benjamin; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Louis Guillaume; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Ganguly, Sanmay; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gascon Bravo, Alberto; Gasnikova, Ksenia; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Gee, Norman; Geisen, Jannik; Geisen, Marc; Geisler, Manuel Patrice; Gellerstedt, Karl; Gemme, Claudia; Genest, Marie-Hélène; Geng, Cong; Gentile, Simonetta; Gentsos, Christos; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghneimat, Mazuza; Giacobbe, Benedetto; Giagu, Stefano; Giannetti, Paola; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuli, Francesco; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Gama, Rafael; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Giulia; Gonella, Laura; Gongadze, Alexi; González de la Hoz, Santiago; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goudet, Christophe Raymond; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gravila, Paul Mircea; Gray, Chloe; Gray, Heather; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Grevtsov, Kirill; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Groh, Sabrina; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Grummer, Aidan; Guan, Liang; Guan, Wen; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Gui, Bin; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Wen; Guo, Yicheng; Gupta, Ruchi; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Guzik, Marcin Pawel; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Hadef, Asma; Hageböck, Stephan; Hagihara, Mutsuto; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Han, Shuo; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartmann, Nikolai Marcel; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, Ahmed; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havener, Laura Brittany; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hayakawa, Daiki; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heidegger, Kim Katrin; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Jochen Jens; Heinrich, Lukas; Heinz, Christian; Hejbal, Jiri; Helary, Louis; Held, Alexander; Hellman, Sten; Helsens, Clement; Henderson, Robert; Heng, Yang; Henkelmann, Steffen; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Herde, Hannah; Herget, Verena; Hernández Jiménez, Yesenia; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Herwig, Theodor Christian; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Higashino, Satoshi; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hirose, Minoru; Hirschbuehl, Dominic; Hiti, Bojan; Hladik, Ondrej; Hoad, Xanthe; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohn, David; Holmes, Tova Ray; Homann, Michael; Honda, Shunsuke; Honda, Takuya; Hong, Tae Min; Hooberman, Benjamin Henry; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howarth, James; Hoya, Joaquin; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Qipeng; Hu, Shuyang; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Huo, Peng; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuriy; Iliadis, Dimitrios; Ilic, Nikolina; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Isacson, Max Fredrik; Ishijima, Naoki; Ishino, Masaya; Ishitsuka, Masaki; Issever, Cigdem; Istin, Serhat; Ito, Fumiaki; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Paul; Jacobs, Ruth Magdalena; Jain, Vivek; Jakobi, Katharina Bianca; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jamin, David Olivier; Jana, Dilip; Jansky, Roland; Janssen, Jens; Janus, Michel; Janus, Piotr Andrzej; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Javurkova, Martina; Jeanneau, Fabien; Jeanty, Laura; Jejelava, Juansher; Jelinskas, Adomas; Jenni, Peter; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Hai; Jiang, Yi; Jiang, Zihao; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Jivan, Harshna; Johansson, Per; Johns, Kenneth; Johnson, Christian; Johnson, William Joseph; Jon-And, Kerstin; Jones, Roger; Jones, Samuel David; Jones, Sarah; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Jovicevic, Jelena; Ju, Xiangyang; Juste Rozas, Aurelio; Köhler, Markus Konrad; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kaji, Toshiaki; Kajomovitz, Enrique; Kalderon, Charles William; Kaluza, Adam; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kanjir, Luka; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawade, Kentaro; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kay, Ellis; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khader, Mazin; Khalil-zada, Farkhad; Khanov, Alexander; Kharlamov, Alexey; Kharlamova, Tatyana; Khodinov, Alexander; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kilby, Callum; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; Kirchmeier, David; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klapdor-Kleingrothaus, Thorwald; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klingl, Tobias; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Köhler, Nicolas Maximilian; Koi, Tatsumi; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotwal, Ashutosh; Koulouris, Aimilianos; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kourlitis, Evangelos; Kouskoura, Vasiliki; Kowalewska, Anna Bozena; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozakai, Chihiro; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitrii; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Krauss, Dominik; Kremer, Jakub Andrzej; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Jiri; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Mark; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuechler, Jan Thomas; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kulinich, Yakov Petrovich; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kuprash, Oleg; Kurashige, Hisaya; Kurchaninov, Leonid; Kurochkin, Yurii; Kurth, Matthew Glenn; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lammers, Sabine; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lanfermann, Marie Christine; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Lapertosa, Alessandro; Laplace, Sandrine; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Lazzaroni, Massimo; Le, Brian; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Quilleuc, Eloi; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne; Lee, Claire Alexandra; Lee, Graham Richard; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Benoit; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Lerner, Giuseppe; Leroy, Claude; Lesage, Arthur; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Dave; Li, Bing; Li, Changqiao; Li, Haifeng; Li, Liang; Li, Qi; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liberti, Barbara; Liblong, Aaron; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Lindquist, Brian Edward; Lionti, Anthony Eric; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Hao; Liu, Hongbin; Liu, Jesse; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Minghui; Liu, Yanlin; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo, Cheuk Yee; Lo Sterzo, Francesco; Lobodzinska, Ewelina Maria; Loch, Peter; Loebinger, Fred; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Longo, Luigi; Looper, Kristina Anne; Lopez, Jorge; Lopez Mateos, David; Lopez Paz, Ivan; Lopez Solis, Alvaro; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Haonan; Lu, Nan; Lu, Yun-Ju; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Luzi, Pierre Marc; Lynn, David; Lysak, Roman; Lytken, Else; Lyubushkin, Vladimir; Ma, Hong; Ma, Lian Liang; Ma, Yanhui; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Claire; Maltezos, Stavros; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Luciano; Mandić, Igor; Maneira, José; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousos, Athanasios; Mansoulie, Bruno; Mansour, Jason Dhia; Mantifel, Rodger; Mantoani, Matteo; Manzoni, Stefano; Mapelli, Livio; Marceca, Gino; March, Luis; Marchese, Luigi; Marchiori, Giovanni; Marcisovsky, Michal; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Martensson, Mikael; Marti-Garcia, Salvador; Martin, Christopher Blake; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martinez Outschoorn, Verena; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Maznas, Ioannis; Mazza, Simone Michele; Mc Fadden, Neil Christopher; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McClymont, Laurie; McDonald, Emily; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McNamara, Peter Charles; McPherson, Robert; Meehan, Samuel; Megy, Theo Jean; Mehlhase, Sascha; Mehta, Andrew; Meideck, Thomas; Meier, Karlheinz; Meirose, Bernhard; Melini, Davide; Mellado Garcia, Bruce Rafael; Mellenthin, Johannes Donatus; Melo, Matej; Meloni, Federico; Menary, Stephen Burns; Meng, Lingxin; Meng, Xiangting; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Miano, Fabrizio; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Minegishi, Yuji; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mizukami, Atsushi; Mjörnmark, Jan-Ulf; Mkrtchyan, Tigran; Mlynarikova, Michaela; Moa, Torbjoern; Mochizuki, Kazuya; Mogg, Philipp; Mohapatra, Soumya; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mondragon, Matthew Craig; Mönig, Klaus; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Stefanie; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moschovakos, Paris; Mosidze, Maia; Moss, Harry James; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Munoz Sanchez, Francisca Javiela; Murray, Bill; Musheghyan, Haykuhi; Muškinja, Miha; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naryshkin, Iouri; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nelson, Michael Edward; Nemecek, Stanislav; Nemethy, Peter; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Newman, Paul; Ng, Tsz Yu; Nguyen Manh, Tuan; Nickerson, Richard; Nicolaidou, Rosy; Nielsen, Jason; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishu, Nishu; Nisius, Richard; Nobe, Takuya; Noguchi, Yohei; Nomachi, Masaharu; Nomidis, Ioannis; Nomura, Marcelo Ayumu; Nooney, Tamsin; Nordberg, Markus; Norjoharuddeen, Nurfikri; Novgorodova, Olga; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nurse, Emily; Nuti, Francesco; O'connor, Kelsey; O'Neil, Dugan; O'Rourke, Abigail Alexandra; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Oleiro Seabra, Luis Filipe; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Pacheco Rodriguez, Laura; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganini, Michela; Paige, Frank; Palacino, Gabriel; Palazzo, Serena; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Panagiotopoulou, Evgenia; Panagoulias, Ilias; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Adam Jackson; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pascuzzi, Vincent; Pasner, Jacob Martin; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Francesca; Pataraia, Sophio; Pater, Joleen; Pauly, Thilo; Pearson, Benjamin; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penwell, John; Peralva, Bernardo; Perego, Marta Maria; Perepelitsa, Dennis; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrov, Mariyan; Petrucci, Fabrizio; Pettersson, Nora Emilia; Peyaud, Alan; Pezoa, Raquel; Phillips, Forrest Hays; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Pickering, Mark Andrew; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pin, Arnaud Willy J; Pinamonti, Michele; Pinfold, James; Pirumov, Hayk; Pitt, Michael; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Pluth, Daniel; Podberezko, Pavel; Poettgen, Ruth; Poggi, Riccardo; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Ponomarenko, Daniil; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Poulard, Gilbert; Poulsen, Trine; Poveda, Joaquin; Pozo Astigarraga, Mikel Eukeni; Pralavorio, Pascal; Pranko, Aliaksandr; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proklova, Nadezda; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Puri, Akshat; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Raine, John Andrew; Rajagopalan, Srinivasan; Rangel-Smith, Camila; Rashid, Tasneem; Ratti, Maria Giulia; Rauch, Daniel; Rauscher, Felix; Rave, Stefan; Ravinovich, Ilia; Rawling, Jacob Henry; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Reale, Marilea; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reed, Robert; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reiss, Andreas; Rembser, Christoph; Ren, Huan; Rescigno, Marco; Resconi, Silvia; Resseguie, Elodie Deborah; Rettie, Sebastien; Reynolds, Elliot; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rimoldi, Marco; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Rizzi, Chiara; Roberts, Rhys Thomas; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocco, Elena; Roda, Chiara; Rodina, Yulia; Rodriguez Bosca, Sergi; Rodriguez Perez, Andrea; Rodriguez Rodriguez, Daniel; Roe, Shaun; Rogan, Christopher Sean; Røhne, Ole; Roloff, Jennifer; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosien, Nils-Arne; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryu, Soo; Ryzhov, Andrey; Rzehorz, Gerhard Ferdinand; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Masahiko; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salazar Loyola, Javier Esteban; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sampsonidou, Despoina; Sánchez, Javier; Sanchez Martinez, Victoria; Sanchez Pineda, Arturo Rodolfo; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Christian Oliver; Sandhoff, Marisa; Sandoval, Carlos; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sato, Koji; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Savic, Natascha; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schachtner, Balthasar Maria; Schaefer, Douglas; Schaefer, Leigh; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schier, Sheena; Schildgen, Lara Katharina; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt-Sommerfeld, Korbinian Ralf; Schmieden, Kristof; Schmitt, Christian; Schmitt, Stefan; Schmitz, Simon; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schott, Matthias; Schouwenberg, Jeroen; Schovancova, Jaroslava; Schramm, Steven; Schuh, Natascha; Schulte, Alexandra; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Sciandra, Andrea; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Semprini-Cesari, Nicola; Senkin, Sergey; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shaikh, Nabila Wahab; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Shen, Yu-Ting; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shipsey, Ian Peter Joseph; Shirabe, Shohei; Shiyakova, Mariya; Shlomi, Jonathan; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyed Ruhollah; Shope, David Richard; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sickles, Anne Marie; Sidebo, Per Edvin; Sideras Haddad, Elias; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silverstein, Samuel; Simak, Vladislav; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Manuel; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Siral, Ismet; Sivoklokov, Serguei; Sjölin, Jörgen; Skinner, Malcolm Bruce; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Slovak, Radim; Smakhtin, Vladimir; Smart, Ben; Smiesko, Juraj; Smirnov, Nikita; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Joshua Wyatt; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snyder, Ian Michael; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans Sanchez, Carlos; Solar, Michael; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Son, Hyungsuk; Song, Hong Ye; Sopczak, Andre; Sosa, David; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Sperlich, Dennis; Spettel, Fabian; Spieker, Thomas Malte; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; St Denis, Richard Dante; Stabile, Alberto; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Giordon; Stark, Jan; Stark, Simon Holm; Staroba, Pavel; Starovoitov, Pavel; Stärz, Steffen; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Suruliz, Kerim; Suster, Carl; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Swift, Stewart Patrick; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tanaka, Junichi; Tanaka, Masahiro; Tanaka, Reisaburo; Tanaka, Shuji; Tanioka, Ryo; Tannenwald, Benjamin Bordy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarem, Shlomit; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Aaron; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teixeira-Dias, Pedro; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Paul; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Baojia(Tony); Tornambe, Peter; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Treado, Colleen Jennifer; Trefzger, Thomas; Tresoldi, Fabio; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Trofymov, Artur; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tsang, Ka Wa; Tseng, Jeffrey; Tsiareshka, Pavel; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsui, Ka Ming; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tu, Yanjun; Tudorache, Alexandra; Tudorache, Valentina; Tulbure, Traian Tiberiu; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turgeman, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Ucchielli, Giulia; Ueda, Ikuo; Ughetto, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usui, Junya; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valdes Santurio, Eduardo; Valentinetti, Sara; Valero, Alberto; Valéry, Lo\\"ic; Valkar, Stefan; Vallier, Alexis; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; van der Graaf, Harry; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vaniachine, Alexandre; Vankov, Peter; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varni, Carlo; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vasquez, Jared Gregory; Vasquez, Gerardo; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veeraraghavan, Venkatesh; Veloce, Laurelle Maria; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vetterli, Michel; Viaux Maira, Nicolas; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigani, Luigi; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vishwakarma, Akanksha; Vittori, Camilla; Vivarelli, Iacopo; Vlachos, Sotirios; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; von der Schmitt, Hans; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Peter; Wagner, Wolfgang; Wagner-Kuhr, Jeannine; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wallangen, Veronica; Wang, Chao; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Qing; Wang, Rui; Wang, Song-Ming; Wang, Tingting; Wang, Wei; Wang, Wenxiao; Wang, Zirui; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Aaron Foley; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Weber, Stephen; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Michael David; Werner, Per; Wessels, Martin; Whalen, Kathleen; Whallon, Nikola Lazar; Wharton, Andrew Mark; White, Aaron; White, Andrew; White, Martin; White, Ryan; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilk, Fabian; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, John; Wingerter-Seez, Isabelle; Winkels, Emma; Winklmeier, Frank; Winston, Oliver James; Winter, Benedict Tobias; Wittgen, Matthias; Wobisch, Markus; Wolf, Tim Michael Heinz; Wolff, Robert; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Vincent Wai Sum; Worm, Steven; Wosiek, Barbara; Wotschack, Jorg; Wozniak, Krzysztof; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xi, Zhaoxu; Xia, Ligang; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yang, Zongchang; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yigitbasi, Efe; Yildirim, Eda; Yorita, Kohei; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jie; Yuen, Stephanie P; Yusuff, Imran; Zabinski, Bartlomiej; Zacharis, Georgios; Zaidan, Remi; Zaitsev, Alexander; Zakharchuk, Nataliia; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanzi, Daniele; Zeitnitz, Christian; Zemla, Andrzej; Zeng, Jian Cong; Zeng, Qi; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Liqing; Zhang, Matt; Zhang, Peng; Zhang, Rui; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Yu; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhou, Bing; Zhou, Chen; Zhou, Li; Zhou, Maosen; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; Zou, Rui; zur Nedden, Martin; Zwalinski, Lukasz

    The modification of the production of $J/\\psi$, $\\psi(\\mathrm{2S})$, and $\\mit{\\Upsilon}(n\\mathrm{S})$ ($n = 1, 2, 3$) in $p$+Pb collisions with respect to their production in $pp$ collisions has been studied. The $p$+Pb and $pp$ datasets used in this paper correspond to integrated luminosities of $28$ $\\mathrm{nb}^{-1}$ and $25$ $\\mathrm{pb}^{-1}$ respectively, collected in 2013 and 2015 by the ATLAS detector at the LHC, both at a centre-of-mass energy per nucleon pair of 5.02 TeV. The quarkonium states are reconstructed in the dimuon decay channel. The yields of $J/\\psi$ and $\\psi(\\mathrm{2S})$ are separated into prompt and non-prompt sources. The measured quarkonium differential cross sections are presented as a function of rapidity and transverse momentum, as is the nuclear modification factor, $R_{p\\mathrm{Pb}}$ for $J/\\psi$ and $\\mit{\\Upsilon}(\\mathrm{1S})$. No significant modification of the $J/\\psi$ production is observed while $\\mit{\\Upsilon}(\\mathrm{1S})$ production is found to be suppressed at low ...

  16. (O)Mega Split

    CERN Document Server

    Benakli, Karim; Goodsell, Mark

    2015-01-01

    We study two realisations of the Fake Split Supersymmetry Model (FSSM), the simplest model that can easily reproduce the experimental value of the Higgs mass for an arbitrarily high supersymmetry scale, as a consequence of swapping higgsinos for equivalent states, fake higgsinos, with suppressed Yukawa couplings. If the LSP is identified as the main Dark matter component, then a standard thermal history of the Universe implies upper bounds on the supersymmetry scale, which we derive. On the other hand, we show that renormalisation group running of soft masses above the supersymmetry scale barely constrains the model - in stark contrast to Split Supersymmetry - and hence we can have a "Mega Split" spectrum even with all of these assumptions and constraints, which include the requirements of a correct relic abundance, a gluino life-time compatible with Big Bang Nucleosynthesis and absence of signals in present direct detection experiments of inelastic dark matter. In an appendix we describe a related scenario, ...

  17. Quarkonium Physics at a Fixed-Target Experiment Using the LHC Beams

    Energy Technology Data Exchange (ETDEWEB)

    Lansberg, J.P.; /Orsay, IPN; Brodsky, S.J.; /SLAC; Fleuret, F.; /Ecole Polytechnique; Hadjidakis, C.; /Orsay, IPN

    2012-04-09

    We outline the many quarkonium-physics opportunities offered by a multi-purpose fixed-target experiment using the p and Pb LHC beams extracted by a bent crystal. This provides an integrated luminosity of 0.5 fb{sup -1} per year on a typical 1cm-long target. Such an extraction mode does not alter the performance of the collider experiments at the LHC. With such a high luminosity, one can analyse quarkonium production in great details in pp, pd and pA collisions at {radical}s{sub NN} {approx_equal} 115 GeV and at {radical}s{sub NN} {approx_equal} 72 GeV in PbA collisions. In a typical pp (pA) run, the obtained quarkonium yields per unit of rapidity are 2-3 orders of magnitude larger than those expected at RHIC and about respectively 10 (70) times larger than for ALICE. In PbA, they are comparable. By instrumenting the target-rapidity region, the large negative-x{sub F} domain can be accessed for the first time, greatly extending previous measurements by Hera-B and E866. Such analyses should help resolving the quarkonium-production controversies and clear the way for gluon PDF extraction via quarkonium studies. The nuclear target-species versatility provides a unique opportunity to study nuclear matter and the features of the hot and dense matter formed in PbA collisions. A polarised proton target allows the study of transverse-spin asymmetries in J/{Psi} and {Upsilon} production, providing access to the gluon and charm Sivers functions.

  18. Atomic structure under external confinement: effect of plasma on the spin orbit splitting, relativistic mass correction and Darwin term for hydrogen-like ions

    Science.gov (United States)

    Chaudhuri, Supriya K.; Mukherjee, Prasanta K.; Fricke, Burkhard

    2017-03-01

    The effect of Debye and quantum plasma environment on the structural properties such as spin orbit splitting, relativistic mass correction and Darwin term for a few iso-electronic members of hydrogen viz. C5 +, O7 +, Ne9 +, Mg11 +, Si13 +, S15 +, Ar17 +, Ca19 + and Ti21 + has been analysed systematically for the first time for a range of coupling strengths of the plasma. The Debye plasma environment has been treated under a standard screened Coulomb potential (SCP) while the quantum plasma has been treated under an exponential cosine screened Coulomb potential (ECSCP). Estimation of the spin orbit splitting under SCP and ECSCP plasma is restricted to the lowest two dipole allowed states while for the other two properties, the ground state as well as the first two excited states have been chosen. Calculations have been extended to nuclear charges for which appreciable relativistic corrections are noted. In all cases calculations have been extended up to such screening parameters for which the respective excitation energies tend towards their stability limit determined by the ionisation potential at that screening parameter. Interesting behavior of the respective properties with respect to the plasma coupling strength has been noted.

  19. Towards Large Volume Big Divisor D3-D7 "mu-Split Supersymmetry" and Ricci-Flat Swiss-Cheese Metrics, and Dimension-Six Neutrino Mass Operators

    CERN Document Server

    Dhuria, Mansi

    2012-01-01

    We show that it is possible to realize a "mu-split SUSY" scenario [1] in the context of large volume limit of type IIB compactifications on Swiss-Cheese Calabi-Yau's in the presence of a mobile space-time filling D3-brane and a (stack of) D7-brane(s) wrapping the "big" divisor Sigma_B. For this, we investigate the possibility of getting one Higgs to be light while other to be heavy in addition to a heavy Higgsino mass parameter. Further, we examine the existence of long lived gluino that manifests one of the major consequences of mu-split SUSY scenario, by computing its decay width as well as lifetime corresponding to the 3-body decays of the gluino into a quark, a squark and a neutralino or Goldstino, as well as 2-body decays of the gluino into either a neutralino or a Goldstino and a gluon. Guided by the geometric Kaehler potential for Sigma_B obtained in [2] based on GLSM techniques, and the Donaldson's algorithm [3] for obtaining numerically a Ricci-flat metric, we give details of our calculation in [4] p...

  20. Factorized power expansion for high-$p_T$ heavy quarkonium production

    CERN Document Server

    Ma, Yan-Qing; Sterman, George; Zhang, Hong

    2014-01-01

    We show that when the factorized cross section for heavy quarkonium production includes next-to-leading power (NLP) contributions associated with the production of the heavy quark pair at short distances, it naturally reproduces all high $p_T$ results calculated in non-relativistic QCD (NRQCD) factorization. This extended formalism requires fragmentation functions for heavy quark pairs, as well as for light partons. When these fragmentation functions are themselves calculated using NRQCD, we find that two of the four leading NRQCD production channels, ${^3\\hspace{-0.6mm}S_{1}^{[1]}}$ and ${^1\\hspace{-0.6mm}S_{0}^{[8]}}$, are dominated by the NLP contributions for a very wide $p_T$ range. The large next-to-leading order corrections of NRQCD are absorbed into the leading order of the first power correction. The impact of this finding on the heavy quarkonium production and its polarization is discussed.

  1. Heavy quark pair production in high energy pA collisions: Quarkonium

    CERN Document Server

    Fujii, Hirotsugu

    2013-01-01

    Quarkonium production in high-energy proton (deuteron)-nucleus collisions is investigated in the color glass condensate framework. We employ the color evaporation model assuming that the quark pair produced from dense small-x gluons in the nuclear target bounds into a quarkonium outside the target. The unintegrated gluon distribution at small Bjorken x in the nuclear target is treated with the Balitsky-Kovchegov equation with running coupling corrections. For the gluons in the proton, we examine two possible descriptions, unintegrated gluon distribution and ordinary collinear gluon distribution. We present the transverse momentum spectrum and nuclear modification factor for J/psi production at RHIC and LHC energies, and those for Upsilon(1S) at LHC energy, and discuss the nuclear modification factor and the momentum broadening by changing the rapidity and the initial saturation scale.

  2. Factorized Power Expansion for High-pT Heavy Quarkonium Production

    Science.gov (United States)

    Ma, Yan-Qing; Qiu, Jian-Wei; Sterman, George; Zhang, Hong

    2014-10-01

    We show that when the factorized cross section for heavy quarkonium production includes next-to-leading power contributions associated with the production of the heavy quark pair at short distances, it naturally reproduces all high pT results calculated in nonrelativistic QCD (NRQCD) factorization. This extended formalism requires fragmentation functions for heavy quark pairs, as well as for light partons. When these fragmentation functions are themselves calculated using NRQCD, we find that two of the four leading NRQCD production channels, S31[1] and S10[8], are dominated by the next-to-leading power contributions for a very wide pT range. The large next-to-leading order corrections of NRQCD are absorbed into the leading order of the first power correction. The impact of this finding on heavy quarkonium production and its polarization is discussed.

  3. Questions and prospects in quarkonium polarization measurements from proton-proton to nucleus-nucleus collisions

    CERN Document Server

    Faccioli, Pietro

    2012-01-01

    Polarization measurements are the best instrument to understand how quark and antiquark combine into the different quarkonium states, but no model has so far succeeded in explaining the measured J/psi and Upsilon polarizations. On the other hand, the experimental data in proton-antiproton and proton-nucleus collisions are inconsistent, incomplete and ambiguous. New analyses will have to properly address often underestimated issues: the existence of azimuthal anisotropies, the dependence on the reference frame, the influence of the experimental acceptance on the comparison with other measurements and with theory. Additionally, a recently developed frame-invariant formalism will provide an alternative and often more immediate physical viewpoint and, at the same time, will help probing systematic effects due to experimental biases. The role of feed-down decays from heavier states, a crucial missing piece in the current experimental knowledge, will have to be investigated. Ultimately, quarkonium polarization meas...

  4. On enhanced corrections from quasi-degenerate states to heavy quarkonium observables

    CERN Document Server

    Kiyo, Yuichiro; Sumino, Yukinari

    2016-01-01

    It is well known that in perturbation theory existence of quasi-degenerate states can rearrange the order counting. For a heavy quarkonium system, naively, enhanced effects ($l$-changing mixing effects) could contribute already to the first-order and third-order corrections to the wave function and the energy level, respectively, in expansion in $\\alpha_s$. We present a formulation and note that the corresponding (lowest-order) corrections vanish due to absence of the relevant off-diagonal matrix elements. As a result, in the quarkonium energy level and leptonic decay width, the enhanced effects are expected to appear, respectively, in the fifth- and fourth-order corrections and beyond.

  5. Proof of NRQCD factorization at all orders in the coupling constant in heavy quarkonium production

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, Gouranga C.

    2016-08-15

    Recently the proof of the factorization in heavy quarkonium production in the NRQCD color octet mechanism is given at next-to-next-to-leading order (NNLO) in the coupling constant by using diagrammatic method of QCD. In this paper we prove factorization in heavy quarkonium production in the NRQCD color octet mechanism at all orders in the coupling constant by using the path integral method of QCD. Our proof is valid to all powers in the relative velocity of the heavy quark. We find that the gauge invariance and the factorization at all orders in the coupling constant require gauge-completed non-perturbative NRQCD matrix elements that were introduced previously to prove factorization at NNLO. (orig.)

  6. Heavy Quarkonium Dissociation Cross Sections in Relativistic Heavy-Ion Collisions

    Energy Technology Data Exchange (ETDEWEB)

    C.-Y. Wong; Eric Swanson; Ted Barnes

    2001-12-01

    Many of the hadron-hadron cross sections required for the study of the dynamics of matter produced in relativistic heavy-ion collisions can be calculated using the quark-interchange model. Here we evaluate the low-energy dissociation cross sections of J/{psi}, {psi}', {chi}, {Upsilon}, and {Upsilon}' in collision with {pi}, {rho}, and K, which are important for the interpretation of heavy-quarkonium suppression as a signature for the quark gluon plasma. These comover dissociation processes also contribute to heavy-quarkonium suppression, and must be understood and incorporated in simulations of heavy-ion collisions before QGP formation can be established through this signature.

  7. What lattice QCD spectral functions can tell us about heavy quarkonium in the QGP

    CERN Document Server

    Rothkopf, Alexander

    2016-01-01

    The bound states of a heavy quark and antiquark ($c\\bar{c}, b\\bar{b}$) are ideal probes to explore the quark-gluon plasma created in relativistic heavy-ion collisions at the RHIC and LHC. Not only have they become experimentally accessible with high precision but also efficient tools, so called effective field theories (EFT) have been developed to treat them theoretically. Here we present recent progress in understanding the in-medium behavior of heavy-quarkonium with the help of EFT's combined with non-perturbative and first principles simulations in lattice QCD. In particular we discuss computations of heavy quarkonium spectral functions with the help of Bayesian unfolding methods and the physics we can extract from them. Limitations and the underlying assumptions of the used approaches are pointed out.

  8. In-medium quarkonium properties from a lattice QCD based effective field theory

    Science.gov (United States)

    Kim, Seyong; Petreczky, Peter; Rothkopf, Alexander

    2016-12-01

    In order to understand the experimental data on heavy quarkonium production in heavy ion collisions at RHIC and LHC it is necessary (though not sufficient) to pinpoint the properties of heavy Q Q ‾ bound states in the deconfined quark-gluon plasma, including their dissolution. Here we present recent results on the temperature dependence of bottomonium and charmonium correlators, as well as their spectral functions in a lattice QCD based effective field theory called NRQCD, surveying temperatures close to the crossover transition 140MeV < T < 249MeV. The spectra are reconstructed based on a novel Bayesian prescription, whose systematic uncertainties are assessed. We present indications for sequential melting of different quarkonium species with respect to their vacuum binding energies and give estimates on the survival of S-wave and P-wave ground states.

  9. In-medium quarkonium properties from a lattice QCD based effective field theory

    CERN Document Server

    Kim, Seyong; Rothkopf, Alexander

    2015-01-01

    In order to understand the experimental data on heavy quarkonium production in heavy ion collisions at RHIC and LHC it is necessary (though not sufficient) to pinpoint the properties of heavy $Q\\bar{Q}$ bound states in the deconfined quark-gluon plasma, including their dissolution. Here we present recent results on the temperature dependence of bottomonium and charmonium correlators, as well as their spectral functions in a lattice QCD based effective field theory called NRQCD, surveying temperatures close to the crossover transition $140 {\\rm MeV} < T< 249 {\\rm MeV}$. The spectra are reconstructed based on a novel Bayesian prescription, whose systematic uncertainties are assessed. We present indications for sequential melting of different quarkonium species with respect to their vacuum binding energies and give estimates on the survival of S-wave and P-wave ground states.

  10. Hydrodynamics and oxygen mass transfer characteristics of petroleum based micro-emulsions in a packed bed split-cylinder airlift reactor

    Directory of Open Access Journals (Sweden)

    M. Keshavarz Moraveji

    2013-09-01

    Full Text Available The effects of aeration velocity and liquid properties on the pertinent hydrodynamic and mass transfer parameters in a split-cylinder airlift reactor (with and without packing were examined. Four different oil-in-water micro-emulsion systems containing kerosene, heavy naphtha, light naphtha and diesel as the oil at the concentration of 7% (v/v were used in the experiments and the results were compared with pure water. The experimental results showed that the gas (air hold-up and the volumetric gas-liquid oxygen transfer coefficient values for the micro-emulsion systems were usually greater than those of pure water. The packing installation increased the overall gas-liquid volumetric mass transfer coefficient by increasing the flow turbulence and Reynolds number, compared to the unpacked column. The packing increased the gas hold-up and decreased the bubble size and liquid circulation velocity. Furthermore, two empirical correlations were developed to predict the overall gas hold-up and volumetric oxygen transfer coefficient. A good agreement was observed between the experimental and correlated data.

  11. Splitting Descartes

    DEFF Research Database (Denmark)

    Schilhab, Theresa

    2007-01-01

    Kognition og Pædagogik vol. 48:10-18. 2003 Short description : The cognitivistic paradigm and Descartes' view of embodied knowledge. Abstract: That the philosopher Descartes separated the mind from the body is hardly news: He did it so effectively that his name is forever tied to that division....... But what exactly is Descartes' point? How does the Kartesian split hold up to recent biologically based learning theories?...

  12. Prospects for Quarkonium Measurements in p-A and A-A Collisions at the LHC

    Science.gov (United States)

    Winn, Michael

    2017-03-01

    The potential of the ALICE, ATLAS, CMS and LHCb detectors for the measurement of quarkonium in heavy-ion collisions, both in nucleus-nucleus (A-A) and in proton-nucleus (p-A) interactions, in the years 2015 until about 2030 in the LHC Runs 2, 3 and 4 with larger statistics and detector upgrades is described. A selection of newly available observables is discussed.

  13. Quarkonium and hydrogen spectra with spin-dependent relativistic wave equation

    Indian Academy of Sciences (India)

    V H Zaveri

    2010-10-01

    The non-linear non-perturbative relativistic atomic theory introduces spin in the dynamics of particle motion. The resulting energy levels of hydrogen atom are exactly the same as that of Dirac theory. The theory accounts for the energy due to spin-orbit interaction and for the additional potential energy due to spin and spin-orbit coupling. Spin angular momentum operator is integrated into the equation of motion. This requires modification to classical Laplacian operator. Consequently, the Dirac matrices and the k operator of Dirac’s theory are dispensed with. The theory points out that the curvature of the orbit draws on certain amount of kinetic and potential energies affecting the momentum of electron and the spin-orbit interaction energy constitutes a part of this energy. The theory is developed for spin-1/2 bound state single electron in Coulomb potential and then extended further to quarkonium physics by introducing the linear confining potential. The unique feature of this quarkonium model is that the radial distance can be exactly determined and does not have a statistical interpretation. The established radial distance is then used to determine the wave function. The observed energy levels are used as the input parameters and the radial distance and the string tension are predicted. This ensures 100% conformance to all observed energy levels for the heavy quarkonium.

  14. Overview of quarkonium production in heavy-ion collisions at LHC

    Directory of Open Access Journals (Sweden)

    Hong Byungsik

    2016-01-01

    Full Text Available Quarkonium has been regarded as one of the golden probes to identify the phase transition from confined hadronic matter to the deconfined quark-gluon plasma (QGP in heavy-ion collisions. Recent data on the yields and momentum distributions of J/ψ and ϒ families in pp, pPb, and PbPb collisions at the Large Hadron Collider (LHC are reviewed. The possible implications related to the propagation of quarkonia in the deconfined hot, dense matter and the modified parton distribution function (PDF in cold nuclei are also discussed.

  15. Overview of quarkonium production in heavy-ion collisions at LHC

    Science.gov (United States)

    Hong, Byungsik

    2016-07-01

    Quarkonium has been regarded as one of the golden probes to identify the phase transition from confined hadronic matter to the deconfined quark-gluon plasma (QGP) in heavy-ion collisions. Recent data on the yields and momentum distributions of J/ψ and ϒ families in pp, pPb, and PbPb collisions at the Large Hadron Collider (LHC) are reviewed. The possible implications related to the propagation of quarkonia in the deconfined hot, dense matter and the modified parton distribution function (PDF) in cold nuclei are also discussed.

  16. Thermal single-gluon exchange potential for heavy quarkonium in the static limit

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jia-Qing; Ma, Zhi-Lei; Shi, Chao-Yi; Li, Yun-De, E-mail: yndxlyd@163.com

    2015-10-15

    The calculations of thermal single-gluon exchange potential for heavy quarkonium in Feynman and Coulomb gauges are presented, and the comparisons between them and the hard thermal loop approximation ones which were first calculated by Laine et al. are illustrated. The numerical results show that the hard thermal loop thermal single-gluon exchange potential (especially its imaginary part) which used in many researches make some errors in the practical calculations at the temperature range accessible in the present experiment, and the problem of gauge dependent cannot be avoided when the complete self energy is used in the derivation of potential.

  17. Quarkonium production in proton-proton collisions with ALICE at the LHC arXiv

    CERN Document Server

    INSPIRE-00121285

    ALICE at the LHC has a unique potential to study proton-proton collisions with the goal to probe Quantum ChromoDynamics (QCD). The apparatus was designed to reconstruct particles over a large range in transverse momentum and rapidity. In particular, quarkonia are very interesting probes of QCD, because their production mechanisms are governed by both perturbative and non-perturbative QCD processes. In ALICE, quarkonia are reconstructed via their dilepton decay channel down to zero transverse momentum. This contribution gives a short overview of quarkonium production results in proton-proton collisions with ALICE and a comparison to other experimental results and to theoretical models.

  18. New predictions for inclusive heavy-quarkonium P-wave decays

    CERN Document Server

    Brambilla, Nora; Pineda-Ruiz, A; Soto, J; Vairo, Antonio

    2002-01-01

    We show that some NRQCD colour-octet matrix elements can be written in terms of (derivatives of) wave functions at the origin and non-perturbative universal constants once the factorization between the soft and ultrasoft scale is achieved by using an effective field theory where only ultrasoft degrees of freedom are kept as dynamical entities. This allows us to derive a new set of relations between inclusive heavy-quarkonium P-wave decays into light hadrons with different principal quantum number and with different heavy flavour. In particular, we can estimate the branching ratios of bottomonium P-wave states by using charmonium data.

  19. Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions

    CERN Document Server

    Andronic, A; Arnaldi, R.; Beraudo, A.; Bruna, E.; Caffarri, D.; del Valle, Z.Conesa; Contreras, J.G.; Dahms, T.; Dainese, A.; Djordjevic, M.; Ferreiro, E.G.; Fujii, H.; Gossiaux, P.B.; de Cassagnac, R.Granier; Hadjidakis, C.; He, M.; van Hees, H.; Horowitz, W.A.; Kolevatov, R.; Kopeliovich, B.Z.; Lansberg, J.P.; Lombardo, M.P.; Lourenço, C.; Martinez-Garcia, G.; Massacrier, L.; Mironov, C.; Mischke, A.; Nahrgang, M.; Nguyen, M.; Nystrand, J.; Peigné, S.; Porteboeuf-Houssais, S.; Potashnikova, I.K.; Rakotozafindrabe, A.; Rapp, R.; Robbe, P.; Rosati, M.; Rosnet, P.; Satz, H.; Schicker, R.; Schienbein, I.; Schmidt, I.; Scomparin, E.; Sharma, R.; Stachel, J.; Stocco, D.; Strickland, M.; Tieulent, R.; Trzeciak, B.A.; Uphoff, J.; Vitev, I.; Vogt, R.; Watanabe, K.; Woehri, H.; Zhuang, P.

    2016-01-01

    This report reviews the study of open heavy-flavour and quarkonium production in high-energy hadronic collisions, as tools to investigate fundamental aspects of Quantum Chromodynamics, from the proton and nucleus structure at high energy to deconfinement and the properties of the Quark-Gluon Plasma. Emphasis is given to the lessons learnt from LHC Run 1 results, which are reviewed in a global picture with the results from SPS and RHIC at lower energies, as well as to the questions to be addressed in the future. The report covers heavy flavour and quarkonium production in proton-proton, proton-nucleus and nucleus-nucleus collisions. This includes discussion of the effects of hot and cold strongly interacting matter, quarkonium photo-production in nucleus-nucleus collisions and perspectives on the study of heavy flavour and quarkonium with upgrades of existing experiments and new experiments. The report results from the activity of the SaporeGravis network of the I3 Hadron Physics programme of the European Unio...

  20. Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Andronic, A. [GSI Helmholzzentrum fuer Schwerionenforschung, Research Division, ExtreMe Matter Institute (EMMI), Darmstadt (Germany); Arleo, F. [Ecole Polytechnique, CNRS/IN2P3, Universite Paris-Saclay, Laboratoire Leprince-Ringuet, Palaiseau (France); Universite de Savoie, CNRS, Laboratoire d' Annecy-le-Vieux de Physique Theorique (LAPTh), Annecy-le-Vieux (France); Arnaldi, R.; Beraudo, A.; Bruna, E.; Scomparin, E. [INFN, Sezione di Torino, Turin (Italy); Caffarri, D.; Lourenco, C.; Woehri, H. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Del Valle, Z.C.; Hadjidakis, C.; Lansberg, J.P. [CNRS/IN2P3, Universite Paris-Saclay, IPNO, Univ. Paris-Sud, Orsay Cedex (France); Contreras, J.G.; Trzeciak, B.A. [Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Prague (Czech Republic); Dahms, T. [Technische Universitaet Muenchen, Excellence Cluster Universe, Munich (Germany); Dainese, A. [INFN, Sezione di Padova, Padua (Italy); Djordjevic, M. [University of Belgrade, Institute of Physics Belgrade (Serbia); Ferreiro, E.G. [Universidad de Santiago de Compostela, Departamento de Fisica de Particulas, IGFAE, Santiago de Compostela (Spain); Fujii, H. [University of Tokyo, Institute of Physics, Tokyo (Japan); Gossiaux, P.B.; Martinez-Garcia, G.; Peigne, S.; Stocco, D. [Ecole des Mines de Nantes, Universite de Nantes, CNRS-IN2P3, SUBATECH, Nantes (France); Cassagnac, R.G. de; Mironov, C.; Nguyen, M. [Ecole Polytechnique, CNRS/IN2P3, Universite Paris-Saclay, Laboratoire Leprince-Ringuet, Palaiseau (France); He, M. [Nanjing University of Science and Technology, Department of Applied Physics, Nanjing (China); Hees, H. van [FIAS, Institute for Theoretical Physics, Frankfurt (Germany); Horowitz, W.A. [University of Cape Town, Department of Physics, Cape Town (South Africa); Kolevatov, R. [Ecole des Mines de Nantes, Universite de Nantes, CNRS-IN2P3, SUBATECH, Nantes (France); Saint-Petersburg State University, Department of High Energy Physics, Saint Petersburg (Russian Federation); Kopeliovich, B.Z.; Potashnikova, I.K.; Schmidt, I. [Centro Cientifico-Tecnologico de Valparaiso, Universidad Tecnica Federico Santa Maria, Departamento de Fisica, Valparaiso (Chile); Lombardo, M.P. [INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Massacrier, L. [CNRS/IN2P3, Universite Paris-Saclay, IPNO, Univ. Paris-Sud, Orsay Cedex (France); Ecole des Mines de Nantes, Universite de Nantes, CNRS-IN2P3, SUBATECH, Nantes (France); Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, LAL, Orsay (France); Mischke, A. [Utrecht University, Faculty of Science, Institute for Subatomic Physics, Utrecht (Netherlands); National Institute for Subatomic Physics, Amsterdam (Netherlands); Nahrgang, M. [Duke University, Department of Physics, Durham (United States); Nystrand, J. [University of Bergen, Department of Physics and Technology, Bergen (Norway); Porteboeuf-Houssais, S.; Rosnet, P. [Universite Clermont Auvergne, Universite Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire (LPC), Clermont-Ferrand (France); Rakotozafindrabe, A. [IRFU/SPhN, CEA Saclay, Gif-sur-Yvette Cedex (France); Rapp, R. [Texas A and M University, Department of Physics and Astronomy, Cyclotron Institute, College Station (United States); Robbe, P. [Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, LAL, Orsay (France); Rosati, M. [Iowa State University, Ames (United States); Satz, H. [Universitaet Bielefeld, Fakultaet fuer Physik, Bielefeld (Germany); Schicker, R.; Stachel, J. [Ruprecht-Karls-Universitaet Heidelberg, Physikalisches Institut, Heidelberg (Germany); Schienbein, I. [Universite Grenoble-Alpes, CNRS/IN2P3, Laboratoire de Physique Subatomique et de Cosmologie, Grenoble (France); Sharma, R. [Tata Institute of Fundamental Research, Department of Theoretical Physics, Mumbai (India); Strickland, M. [Kent State University, Department of Physics, Kent (United States); Tieulent, R. [IPN-Lyon, Universite de Lyon, Universite Lyon 1, CNRS/IN2P3, Villeurbanne (France); Uphoff, J. [Johann Wolfgang Goethe-Universitaet, Institut fuer Theoretische Physik, Frankfurt am Main (Germany); Vitev, I. [Los Alamos National Laboratory, Theoretical Division, Los Alamos (United States); Vogt, R. [Lawrence Livermore National Laboratory, Physics Division, Livermore (United States); University of California, Physics Department, Davis (United States); Watanabe, K. [University of Tokyo, Institute of Physics, Tokyo (Japan); Central China Normal University, Key Laboratory of Quark and Lepton Physics (MOE), Institute of Particle Physics, Wuhan (China); Zhuang, P. [Collaborative Innovation Center of Quantum Matter, Tsinghua University, Physics Department, Beijing (China)

    2016-03-15

    This report reviews the study of open heavy-flavour and quarkonium production in high-energy hadronic collisions, as tools to investigate fundamental aspects of Quantum Chromodynamics, from the proton and nucleus structure at high energy to deconfinement and the properties of the Quark-Gluon Plasma. Emphasis is given to the lessons learnt from LHC Run 1 results, which are reviewed in a global picture with the results from SPS and RHIC at lower energies, as well as to the questions to be addressed in the future. The report covers heavy flavour and quarkonium production in proton-proton, proton-nucleus and nucleus-nucleus collisions. This includes discussion of the effects of hot and cold strongly interacting matter, quarkonium photoproduction in nucleus-nucleus collisions and perspectives on the study of heavy flavour and quarkonium with upgrades of existing experiments and new experiments. The report results from the activity of the SaporeGravis network of the I3 Hadron Physics programme of the European Union 7th Framework Programme. (orig.)

  1. Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions.

    Science.gov (United States)

    Andronic, A; Arleo, F; Arnaldi, R; Beraudo, A; Bruna, E; Caffarri, D; Del Valle, Z Conesa; Contreras, J G; Dahms, T; Dainese, A; Djordjevic, M; Ferreiro, E G; Fujii, H; Gossiaux, P-B; de Cassagnac, R Granier; Hadjidakis, C; He, M; van Hees, H; Horowitz, W A; Kolevatov, R; Kopeliovich, B Z; Lansberg, J-P; Lombardo, M P; Lourenço, C; Martinez-Garcia, G; Massacrier, L; Mironov, C; Mischke, A; Nahrgang, M; Nguyen, M; Nystrand, J; Peigné, S; Porteboeuf-Houssais, S; Potashnikova, I K; Rakotozafindrabe, A; Rapp, R; Robbe, P; Rosati, M; Rosnet, P; Satz, H; Schicker, R; Schienbein, I; Schmidt, I; Scomparin, E; Sharma, R; Stachel, J; Stocco, D; Strickland, M; Tieulent, R; Trzeciak, B A; Uphoff, J; Vitev, I; Vogt, R; Watanabe, K; Woehri, H; Zhuang, P

    This report reviews the study of open heavy-flavour and quarkonium production in high-energy hadronic collisions, as tools to investigate fundamental aspects of Quantum Chromodynamics, from the proton and nucleus structure at high energy to deconfinement and the properties of the Quark-Gluon Plasma. Emphasis is given to the lessons learnt from LHC Run 1 results, which are reviewed in a global picture with the results from SPS and RHIC at lower energies, as well as to the questions to be addressed in the future. The report covers heavy flavour and quarkonium production in proton-proton, proton-nucleus and nucleus-nucleus collisions. This includes discussion of the effects of hot and cold strongly interacting matter, quarkonium photoproduction in nucleus-nucleus collisions and perspectives on the study of heavy flavour and quarkonium with upgrades of existing experiments and new experiments. The report results from the activity of the SaporeGravis network of the I3 Hadron Physics programme of the European Union 7[Formula: see text] Framework Programme.

  2. Suppression of ϒ(1S), ϒ(2S), and ϒ(3S) quarkonium states in PbPb collisions at √{sNN} = 2.76TeV

    Science.gov (United States)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; König, A.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Strauss, J.; Waltenberger, W.; Wulz, C.-E.; Dvornikov, O.; Makarenko, V.; Zykunov, V.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; De Wolf, E. A.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Khvastunov, I.; Poyraz, D.; Salva, S.; Schöfbeck, R.; Sharma, A.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Bakhshiansohi, H.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Jafari, A.; Jez, P.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Nuttens, C.; Piotrzkowski, K.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Cheng, T.; Jiang, C. H.; Leggat, D.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Micanovic, S.; Sudic, L.; Susa, T.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Tsiakkouri, D.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Abdelalim, A. A.; Mohammed, Y.; Salama, E.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Abdulsalam, A.; Antropov, I.; Arleo, F.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Miné, P.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Le Bihan, A.-C.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sabes, D.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schomakers, C.; Schulz, J.; Verlage, T.; Weber, H.; Zhukov, V.; Albert, A.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bin Anuar, A. A.; Borras, K.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Gunnellini, P.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Seitz, C.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hoffmann, M.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Poehlsen, J.; Sander, C.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baur, S.; Baus, C.; Berger, J.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Fink, S.; Freund, B.; Friese, R.; Giffels, M.; Gilbert, A.; Goldenzweig, P.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Filipovic, N.; Bencze, G.; Hajdu, C.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Bahinipati, S.; Choudhury, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Kumari, P.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Kole, G.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhowmik, S.; Dewanjee, R. K.; Ganguly, S.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Fahim, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; De Nardo, G.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Zanetti, M.; Zotto, P.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Del Re, D.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Moon, D. H.; Brochero Cifuentes, J. A.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Lee, H.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Magaña Villalba, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Calpas, B.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Chtchipounov, L.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Murzin, V.; Oreshkin, V.; Sulimov, V.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Bylinkin, A.; Chistov, R.; Danilov, M.; Polikarpov, S.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Demiyanov, A.; Ershov, A.; Gribushin, A.; Kodolova, O.; Korotkikh, V.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Vardanyan, I.; Blinov, V.; Skovpen, Y.; Shtol, D.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Barrio Luna, M.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Suárez Andrés, I.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras De Saa, J. R.; Curras, E.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Di Marco, E.; Dobson, M.; Dorney, B.; du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Fartoukh, S.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Gulhan, D.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kieseler, J.; Kirschenmann, H.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Kousouris, K.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Sauvan, J. B.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Verweij, M.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lecomte, P.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Yang, Y.; Zucchetta, A.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Paganis, E.; Psallidas, A.; Tsai, J. f.; Tzeng, Y. M.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Sunar Cerci, D.; Tali, B.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Berry, E.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Jesus, O.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Spencer, E.; Syarif, R.; Breedon, R.; Breto, G.; Burns, D.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Everaerts, P.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Saltzberg, D.; Schnaible, C.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Shrinivas, A.; Si, W.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Holzner, A.; Klein, D.; Krutelyov, V.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mullin, S. D.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Apresyan, A.; Bendavid, J.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Lawhorn, J. M.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Winn, D.; Abdullin, S.; Albrow, M.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cremonesi, M.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Wu, Y.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Rank, D.; Shchutska, L.; Sperka, D.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bein, S.; Diamond, B.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Santra, A.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Jung, K.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Turner, P.; Varelas, N.; Wang, H.; Wu, Z.; Zakaria, M.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Osherson, M.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Bruner, C.; Castle, J.; Forthomme, L.; Kenny, R. P.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Apyan, A.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Tatar, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bartek, R.; Bloom, K.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Malta Rodrigues, A.; Meier, F.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Kubik, A.; Kumar, A.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Lange, D.; Luo, J.; Marlow, D.; Mc Donald, J.; Medvedeva, T.; Mei, K.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Svyatkovskiy, A.; Tully, C.; Zuranski, A.; Malik, S.; Barker, A.; Barnes, V. E.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Miller, D. H.; Neumeister, N.; Schulte, J. F.; Shi, X.; Sun, J.; Wang, F.; Xie, W.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Agapitos, A.; Chou, J. P.; Contreras-Campana, E.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Nash, K.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Juska, E.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; De Guio, F.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Sturdy, J.; Belknap, D. A.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.

    2017-07-01

    The production yields of ϒ(1S), ϒ(2S), and ϒ(3S) quarkonium states are measured through their decays into muon pairs in the CMS detector, in PbPb and pp collisions at the centre-of-mass energy per nucleon pair of 2.76 TeV. The data correspond to integrated luminosities of 166μb-1 and 5.4pb-1 for PbPb and pp collisions, respectively. Differential production cross sections are reported as functions of ϒ rapidity y up to 2.4, and transverse momentum pT up to 20GeV / c. A strong centrality-dependent suppression is observed in PbPb relative to pp collisions, by factors of up to ≈2 and 8, for the ϒ(1S) and ϒ(2S) states, respectively. No significant dependence of this suppression is observed as a function of y or pT. The ϒ(3S) state is not observed in PbPb collisions, which corresponds to a suppression for the centrality-integrated data by at least a factor of ≈7 at a 95% confidence level. The observed suppression is in agreement with theoretical scenarios modeling the sequential melting of quarkonium states in a quark gluon plasma.

  3. A QCD space-time analysis of quarkonium formation and evolution in hadronic collisions

    CERN Document Server

    Kinder-Geiger, Klaus

    1998-01-01

    The production of heavy quarkonium as QQbar bound-states in hadron-hadron collisions is considered within the framework of a space-time description, combining parton-cascade evolution with a coalescence model for bound-state formation. The `hard' production of the initial QQbar, directly or via gluon fragmentation and including both color-singlet and color-octet contributions, is calculated from the PQCD cross-sections. The subsequent development of the QQbar system is described within a space-time generalization of the DGLAP parton-evolution formalism in position- and momentum-space. The actual formation of the bound-states is accomplished through overlap of the QQbar pair and a spectrum of quarkonium wave-functions. This coalescence can only occur after sufficent gluon radiation reduces the QQbar relative velocity to a value commensurate with the non-relativistic kinematics of these bound systems. The presence of gluon participants in the cascade then is both necessary and leads to the natural inclusion of ...

  4. Heavy quark and quarkonium production at CERN LEP2: k_T-factorization versus data

    CERN Document Server

    Lipatov, A V

    2004-01-01

    We present calculations of heavy quark and quarkonium production at CERN LEP2 in the k_T-factorization QCD approach. Both direct and resolved photon contribution are taken into account. The conservative error analisys is performed. The unintegrated gluon distribution in the photon is taken from the full CCFM evolution equation. The traditional color-singlet mechanism to describe non-perturbative transition of heavy quark pair into a final quarkonium is used. Our analisys covers polarization properties of heavy quarkonia at moderate and large transverse momenta. We find that the total and differential open charm production cross sections are consistent with the recent experimental data taken by the L3, OPAL and ALEPH collaborations. At the same time the DELPHI data for the inclusive J/Psi production exceed our predictions but experimental uncertainties are too large to claim a significant inconsistency. The bottom production in photon-photon collisions at CERN LEP2 is hard to explain within the k_T-factorizati...

  5. Investigating the role of partonic and hadronic dynamics in mass splitting of elliptic anisotropy in p -Pb collisions at √{sN N}=5.02 TeV

    Science.gov (United States)

    Sarkar, Debojit; Choudhury, Subikash; Chattopadhyay, Subhasis

    2016-10-01

    The mass ordering of v2hadron is regarded as one of the key signatures of collective behavior in ultrarelativistic heavy ion collisions. This observation has been found to be in compliance with the hydrodynamical response of a strongly interacting system to the initial spatial anisotropy. Flow coefficients measured with identified particles in p -Pb/d -Au collisions have shown similar mass-splitting of v2hadron indicating towards the presence of collective dynamics in small collision systems. Arguably, the small size in the overlap geometry of such colliding systems may not be suitable for hydrodynamical treatment that demands an early thermalization. Studies based on a multiphase transport model (AMPT) suggest that elliptic or triangular anisotropy is primarily due to the escape mechanism of partons rather than hydro-like collectivity and mass ordering of v2hadron can be generated from coalescence dynamics as implemented in string melting version of AMPT even when parton azimuthal directions are randomized. In this work, studies have been performed on p -Pb collisions at √{sN N}=5.02 TeV using AMPT model which has been found to explain the elliptic and triangular flow in such a system where the escape mechanism is the dominant source of flow generation. We report that the mass splitting of v2hadron can originate independently both at the partonic and hadronic level in the string melting version of the AMPT model.

  6. Split supersymmetry in brane models

    Indian Academy of Sciences (India)

    Ignatios Antoniadis

    2006-11-01

    Type-I string theory in the presence of internal magnetic fields provides a concrete realization of split supersymmetry. To lowest order, gauginos are massless while squarks and sleptons are superheavy. For weak magnetic fields, the correct Standard Model spectrum guarantees gauge coupling unification with sin2 W = 3/8 at the com-pactification scale of GUT ≃ 2 × 1016 GeV. I discuss mechanisms for generating gaugino and higgsino masses at the TeV scale, as well as generalizations to models with split extended supersymmetry in the gauge sector.

  7. Split Supersymmetry in String Theory

    CERN Document Server

    Antoniadis, Ignatios

    2006-01-01

    Type I string theory in the presence of internal magnetic fields provides a concrete realization of split supersymmetry. To lowest order, gauginos are massless while squarks and sleptons are superheavy. For weak magnetic fields, the correct Standard Model spectrum guarantees gauge coupling unification with \\sin^2{\\theta_W}=3/8 at the compactification scale of M_{\\rm GUT}\\simeq 2 \\times 10^{16} GeV. I discuss mechanisms for generating gaugino and higgsino masses at the TeV scale, as well as generalizations to models with split extended supersymmetry in the gauge sector.

  8. Event Patterns Extracted from Transverse Momentum and Rapidity Spectra of Z Bosons and Quarkonium States Produced in pp and Pb-Pb Collisions at LHC

    Directory of Open Access Journals (Sweden)

    Ya-Hui Chen

    2016-01-01

    Full Text Available Transverse momentum (pT and rapidity (y spectra of Z bosons and quarkonium states (some charmonium cc¯ mesons such as J/ψ and ψ(2S and some bottomonium bb¯ mesons such as Υ(1S, Υ(2S, and Υ(3S produced in proton-proton (pp and lead-lead (Pb-Pb collisions at the large hadron collider (LHC are uniformly described by a hybrid model of two-component Erlang distribution for pT spectrum and two-component Gaussian distribution for y spectrum. The former distribution results from a multisource thermal model, and the latter one results from the revised Landau hydrodynamic model. The modelling results are in agreement with the experimental data measured in pp collisions at center-of-mass energies s=2.76 and 7 TeV and in Pb-Pb collisions at center-of-mass energy per nucleon pair sNN=2.76 TeV. Based on the parameter values extracted from pT and y spectra, the event patterns (particle scatter plots in two-dimensional pT-y space and in three-dimensional velocity space are obtained.

  9. Open heavy–flavour and quarkonium measurements with ALICE at the LHC

    CERN Document Server

    INSPIRE-00249244

    2013-01-01

    The ALICE detector provides excellent capabilities to study heavy quark (i.e. charm and beauty) production in proton{proton (pp) and heavy{ion collisions (AA) at the Large Hadron Collider (LHC). In ALICE, open heavy{ avour hadron production is studied through the hadronic decays of D mesons at central rapidity ( j y j < 0 : 9), and in the semi{leptonic decays of charm and beauty hadrons both at mid{rapidity and at forward rapidity (2 : 5 < y < 4). Quarkonia are measured in their di{electron and di{muon decay channels in the central barrel and in the muon spectrometer respectively, reaching in both cases zero transverse momentum. The latest results on open heavy{ avour and quarkonium production in pp ( p s = 2.76 TeV and p s = 7 TeV) and PbPb ( p s NN = 2.76 TeV) collisions are presented

  10. Quark confinement due to creation of micro AdS black holes in quarkonium model

    CERN Document Server

    Taki, Mehran

    2016-01-01

    We use the solution of the Dirac equation for quarkonium atom in the 4D Anti de sitter (AdS$_{4}$) space to investigate the effect of the large negative cosmological constant on the phenomenon of quark confinement. We do the required calculations in the AdS$_{4}$ space to indicate that large cosmological constant can describe the quark confinement. In fact using the coulomb potential in Dirac equation while we employ the AdS metric will additionally lead us to a linear potential in the quark-antiquark interaction which can be considered to explain the quark confinement. This confining term is arising essentially from the geometrical features of the space. On the other hand the origin of the large cosmological constant can be justified by assuming the appearance of micro black holes in the recent hadronic collision process which is now current, for instance, at the LHC project.

  11. Heavy Quarkonium Production at Collider Energies: Partonic Cross Section and Polarization

    CERN Document Server

    Kang, Zhong-Bo; Qiu, Jian-Wei; Sterman, George

    2014-01-01

    We calculate the ${\\cal O}(\\alpha_s^3)$ short-distance, QCD collinear-factorized coefficient functions for all partonic channels that include the production of a heavy quark pair at short distances. This provides the first power correction to the collinear-factorized inclusive hadronic production of heavy quarkonia at large transverse momentum, $p_T$, including the full leading-order perturbative contributions to the production of heavy quark pairs in all color and spin states employed in NRQCD treatments of this process. We discuss the role of the first power correction in the production rates and the polarizations of heavy quarkonia in high energy hadronic collisions. The consistency of QCD collinear factorization and non-relativistic QCD factorization applied to heavy quarkonium production is also discussed.

  12. Search for narrow vector resonances in the Z mass range

    Science.gov (United States)

    Adriani, O.; Aguilar-Benitez, M.; Ahlen, S.; Alcaraz, J.; Aloisio, A.; Alverson, G.; Alviggi, M. G.; Ambrosi, G.; An, Q.; Anderhub, H.; Anderson, A. L.; Andreev, V. P.; Antonov, L.; Antreasyan, D.; Arce, P.; Arefiev, A.; Atamanchuk, A.; Azemoon, T.; Aziz, T.; Baba, P. V. K. S.; Bachmann, S.; Bagnaia, P.; Bakken, J. A.; Baksay, L.; Ball, R. C.; Banerjee, S.; Bao, J.; Barillère, R.; Barone, L.; Baschirotto, A.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Behrens, J.; Bencze, Gy. L.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B. L.; Biasini, M.; Biland, A.; Bilei, G. M.; Bizzarri, R.; Blaising, J. J.; Bobbink, G. J.; Bock, R.; Böhm, A.; Borgia, B.; Bosetti, M.; Bourilkov, D.; Bourquin, M.; Boutigny, D.; Bouwens, B.; Brambilla, E.; Branson, J. G.; Brock, I. C.; Brooks, M.; Bujak, A.; Burger, J. D.; Burger, W. J.; Busenitz, J.; Buytenhuijs, A.; Cai, X. D.; Capell, M.; Caria, M.; Carlino, G.; Cartacci, A. M.; Castello, R.; Cerrada, M.; Cesaroni, F.; Chang, Y. H.; Chaturvedi, U. K.; Chemarin, M.; Chen, A.; Chen, C.; Chen, G. M.; Chen, H. F.; Chen, H. S.; Chen, M.; Chen, W. Y.; Chiefari, G.; Chien, C. Y.; Choi, M. T.; Chung, S.; Civinini, C.; Clare, I.; Clare, R.; Coan, T. E.; Cohn, H. O.; Coignet, G.; Colino, N.; Contin, A.; Cui, X. T.; Cui, X. Y.; Dai, T. S.; D'Alessandro, R.; de Asmundis, R.; Degré, A.; Deiters, K.; Dénes, E.; Denes, P.; DeNotaristefani, F.; Dhina, M.; DiBitonto, D.; Diemoz, M.; Dimitrov, H. R.; Dionisi, C.; Djambazov, L.; Dova, M. T.; Drago, E.; Duchesneau, D.; Duinker, P.; Duran, I.; Easo, S.; El Mamouni, H.; Engler, A.; Eppling, F. J.; Erné, F. C.; Extermann, P.; Fabbretti, R.; Fabre, M.; Falciano, S.; Fan, S. J.; Fackler, O.; Fay, J.; Felcini, M.; Ferguson, T.; Fernandez, D.; Fernandez, G.; Ferroni, F.; Fesefeldt, H.; Fiandrini, E.; Field, J.; Filthaut, F.; Finocchiaro, G.; Fisher, P. H.; Forconi, G.; Foreman, T.; Freudenreich, K.; Friebel, W.; Fukushima, M.; Gailloud, M.; Galaktionov, Yu.; Gallo, E.; Ganguli, S. N.; Garcia-Abia, P.; Gele, D.; Gentile, S.; Goldfarb, S.; Gong, Z. F.; Gonzalez, E.; Gougas, A.; Goujon, D.; Gratta, G.; Gruenewald, M.; Gu, C.; Guanziroli, M.; Guo, J. K.; Gupta, V. K.; Gurtu, A.; Gustafson, H. R.; Gutay, L. J.; Hangarter, K.; Hasan, A.; Hauschildt, D.; He, C. F.; He, J. T.; Hebbeker, T.; Hebert, M.; Herten, G.; Hervé, A.; Hilgers, K.; Hofer, H.; Hoorani, H.; Hu, G.; Hu, G. Q.; Ille, B.; Ilyas, M. M.; Innocente, V.; Janssen, H.; Jezequel, S.; Jin, B. N.; Jones, L. W.; Kasser, A.; Khan, R. A.; Kamyshkov, Yu.; Kapinos, P.; Kapustinsky, J. S.; Karyotakis, Y.; Kaur, M.; Khokhar, S.; Kienzle-Focacci, M. N.; Kim, J. K.; Kim, S. C.; Kim, Y. G.; Kinnison, W. W.; Kirkby, D.; Kirsch, S.; Kittel, W.; Klimentov, A.; König, A. C.; Koffeman, E.; Kornadt, O.; Koutsenko, V.; Koulbardis, A.; Kraemer, R. W.; Kramer, T.; Krastev, V. R.; Krenz, W.; Krivshich, A.; Kuijten, H.; Kumar, K. S.; Kunin, A.; Landi, G.; Lanske, D.; Lanzano, S.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Lee, D. M.; Leedom, I.; Leggett, C.; Le Goff, J. M.; Leiste, R.; Lenti, M.; Leonardi, E.; Leytens, X.; Li, C.; Li, H. T.; Li, P. J.; Liao, J. Y.; Lin, W. T.; Lin, Z. Y.; Linde, F. L.; Lindemann, B.; Lista, L.; Liu, Y.; Lohmann, W.; Longo, E.; Lu, Y. S.; Lubbers, J. M.; Lübelsmeyer, K.; Luci, C.; Luckey, D.; Ludovici, L.; Luminari, L.; Lustermann, W.; Ma, J. M.; Ma, W. G.; MacDermott, M.; Malhotra, P. K.; Malik, R.; Malinin, A.; Maña, C.; Maolinbay, M.; Marchesini, P.; Marion, F.; Marin, A.; Martin, J. P.; Martinez-Laso, L.; Marzano, F.; Massaro, G. G. G.; Mazumdar, K.; McBride, P.; McMahon, T.; McNally, D.; Merk, M.; Merola, L.; Meschini, M.; Metzger, W. J.; Mi, Y.; Mills, G. B.; Mir, Y.; Mirabelli, G.; Mnich, J.; Möller, M.; Monteleoni, B.; Morand, R.; Morganti, S.; Moulai, N. E.; Mount, R.; Müller, S.; Nadtochy, A.; Nagy, E.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Neyer, C.; Niaz, M. A.; Nippe, A.; Nowak, H.; Organtini, G.; Pandoulas, D.; Paoletti, S.; Paolucci, P.; Pascala, G.; Passaleva, G.; Patricelli, S.; Paul, T.; Pauluzzi, M.; Paus, C.; Pauss, F.; Pei, Y. J.; Pensotti, S.; Perret-Gallix, D.; Perrier, J.; Pevsner, A.; Piccolo, D.; Pieri, M.; Piroué, P. A.; Plasil, F.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Postema, H.; Qi, Z. D.; Qian, J. M.; Qureshi, K. N.; Raghavan, R.; Rahal-Callot, G.; Rancoita, P. G.; Rattaggi, M.; Raven, G.; Razis, P.; Read, K.; Ren, D.; Ren, Z.; Rescigno, M.; Reucroft, S.; Ricker, A.; Riemann, S.; Riemers, B. C.; Riles, K.; Rind, O.; Rizvi, H. A.; Rodriguez, F. J.; Roe, B. P.; Röhner, M.; Röhner, S.; Romero, L.; Rose, J.; Rosier-Lees, S.; Rosmalen, R.; Rosselet, Ph.; van Rossum, W.; Roth, S.; Rubbia, A.; Rubio, J. A.; Rykaczewski, H.; Sachwitz, M.; Salicio, J.; Salicio, J. M.; Sanders, G. S.; Santocchia, A.; Sarakinos, M. S.; Sartorelli, G.; Sassowsky, M.; Sauvage, G.; Schäfer, C.; Schegelsky, V.; Schmitz, D.; Schmitz, P.; Schneegans, M.; Schopper, H.; Schotanus, D. J.; Shotkin, S.; Schreiber, H. J.; Shukla, J.; Schulte, R.; Schulte, S.; Schultze, K.; Schwenke, J.; Schwering, G.; Sciacca, C.; Scott, I.; Sehgal, R.; Seiler, P. G.; Sens, J. C.; Servoli, L.; Sheer, I.; Shen, D. Z.; Shevchenko, S.; Shi, X. R.; Shumilov, E.; Shoutko, V.; Son, D.; Sopczak, A.; Spartiotis, C.; Spickermann, T.; Spillantini, P.; Starosta, R.; Steuer, M.; Stickland, D. P.; Sticozzi, F.; Stone, H.; Strauch, K.; Stringfellow, B. C.; Sudhakar, K.; Sultanov, G.; Sun, L. Z.; Suter, H.; Swain, J. D.; Syed, A. A.; Tang, X. W.; Taylor, L.; Terzi, G.; Ting, Samuel C. C.; Ting, S. M.; Tonutti, M.; Tonwar, S. C.; Tóth, J.; Tsaregorodtsev, A.; Tsipolitis, G.; Tully, C.; Tung, K. L.; Ulbricht, J.; Urbán, L.; Uwer, U.; Valente, E.; Van de Walle, R. T.; Vetlitsky, I.; Viertel, G.; Vikas, P.; Vikas, U.; Vivargent, M.; Vogel, H.; Vogt, H.; Vorobiev, I.; Vorobyov, A. A.; Vuilleumier, L.; Wadhwa, M.; Wallraff, W.; Wang, C.; Wang, C. R.; Wang, G. H.; Wang, X. L.; Wang, Y. F.; Wang, Z. M.; Weber, A.; Weber, J.; Weill, R.; Wenaus, T. J.; Wenninger, J.; White, M.; Willmott, C.; Wittgenstein, F.; Wright, D.; Wu, S. X.; Wynhoff, S.; Wysłouch, B.; Xie, Y. Y.; Xu, J. G.; Xu, Z. Z.; Xue, Z. L.; Yan, D. S.; Yang, B. Z.; Yang, C. G.; Yang, G.; Ye, C. H.; Ye, J. B.; Ye, Q.; Yeh, S. C.; Yin, Z. W.; You, J. M.; Yunus, N.; Yzerman, M.; Zaccardelli, C.; Zemp, P.; Zeng, M.; Zeng, Y.; Zhang, D. H.; Zhang, Z. P.; Zhou, B.; Zhou, G. J.; Zhou, J. F.; Zhu, R. Y.; Zichichi, A.; van der Zwaan, B. C. C.; L3 Collaboration

    1993-08-01

    The hadronic lineshape of the Z has been analyzed for evidence of signals of new, narrow vector resonances in the Z-mass range. The production rate of such resonances would be enhanced due to mixing with the Z. No evidence for new states is found, and it is thus possible to exclude, at the 95% confidence level, a quarkonium state in the mass range from 87.7 to 94.7 GeV.

  13. Split liver transplantation.

    Science.gov (United States)

    Yersiz, H; Cameron, A M; Carmody, I; Zimmerman, M A; Kelly, B S; Ghobrial, R M; Farmer, D G; Busuttil, R W

    2006-03-01

    Seventy-five thousand Americans develop organ failure each year. Fifteen percent of those on the list for transplantation die while waiting. Several possible mechanisms to expand the organ pool are being pursued including the use of extended criteria donors, living donation, and split deceased donor transplants. Cadaveric organ splitting results from improved understanding of the surgical anatomy of the liver derived from Couinaud. Early efforts focused on reduced-liver transplantation (RLT) reported by both Bismuth and Broelsch in the mid-1980s. These techniques were soon modified to create both a left lateral segment graft appropriate for a pediatric recipient and a right trisegment for an appropriately sized adult. Techniques of split liver transplantation (SLT) were also modified to create living donor liver transplantation. Pichlmayr and Bismuth reported successful split liver transplantation in 1989 and Emond reported a larger series of nine split procedures in 1990. Broelsch and Busuttil described a technical modification in which the split was performed in situ at the donor institution with surgical division completed in the heart beating cadaveric donor. In situ splitting reduces cold ischemia, simplifies identification of biliary and vascular structures, and reduces reperfusion hemorrhage. However, in situ splits require specialized skills, prolonged operating room time, and increased logistical coordination at the donor institution. At UCLA over 120 in situ splits have been performed and this technique is the default when an optimal donor is available. Split liver transplantation now accounts for 10% of adult transplantations at UCLA and 40% of pediatric transplantations.

  14. Double-quarkonium production at a fixed-target experiment at the LHC (AFTER@LHC

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Lansberg

    2015-11-01

    Full Text Available We present predictions for double-quarkonium production in the kinematical region relevant for the proposed fixed-target experiment using the LHC beams (dubbed as AFTER@LHC. These include all spin-triplet S-wave charmonium and bottomonium pairs, i.e. ψ(n1S+ψ(n2S, ψ(n1S+ϒ(m1S and ϒ(m1S+ϒ(m2S with n1,n2=1,2 and m1,m2=1,2,3. We calculate the contributions from double-parton scatterings and single-parton scatterings. With an integrated luminosity of 20 fb−1 to be collected at AFTER@LHC, we find that the yields for double-charmonium production are large enough for differential distribution measurements. We discuss some differential distributions for J/ψ+J/ψ production, which can help to study the physics of double-parton and single-parton scatterings in a new energy range and which might also be sensitive to double intrinsic cc¯ coalescence at large negative Feynman x.

  15. Split Cord Malformations

    Directory of Open Access Journals (Sweden)

    Yurdal Gezercan

    2015-06-01

    Full Text Available Split cord malformations are rare form of occult spinal dysraphism in children. Split cord malformations are characterized by septum that cleaves the spinal canal in sagittal plane within the single or duplicated thecal sac. Although their precise incidence is unknown, split cord malformations are exceedingly rare and represent %3.8-5 of all congenital spinal anomalies. Characteristic neurological, urological, orthopedic clinical manifestations are variable and asymptomatic course is possible. Earlier diagnosis and surgical intervention for split cord malformations is associated with better long-term fuctional outcome. For this reason, diagnostic imaging is indicated for children with associated cutaneous and orthopedic signs. Additional congenital anomalies usually to accompany the split cord malformations. Earlier diagnosis, meticuolus surgical therapy and interdisciplinary careful evaluation and follow-up should be made for good prognosis. [Cukurova Med J 2015; 40(2.000: 199-207

  16. Accuracy of tablet splitting.

    Science.gov (United States)

    McDevitt, J T; Gurst, A H; Chen, Y

    1998-01-01

    We attempted to determine the accuracy of manually splitting hydrochlorothiazide tablets. Ninety-four healthy volunteers each split ten 25-mg hydrochlorothiazide tablets, which were then weighed using an analytical balance. Demographics, grip and pinch strength, digit circumference, and tablet-splitting experience were documented. Subjects were also surveyed regarding their willingness to pay a premium for commercially available, lower-dose tablets. Of 1752 manually split tablet portions, 41.3% deviated from ideal weight by more than 10% and 12.4% deviated by more than 20%. Gender, age, education, and tablet-splitting experience were not predictive of variability. Most subjects (96.8%) stated a preference for commercially produced, lower-dose tablets, and 77.2% were willing to pay more for them. For drugs with steep dose-response curves or narrow therapeutic windows, the differences we recorded could be clinically relevant.

  17. Coded Splitting Tree Protocols

    DEFF Research Database (Denmark)

    Sørensen, Jesper Hemming; Stefanovic, Cedomir; Popovski, Petar

    2013-01-01

    This paper presents a novel approach to multiple access control called coded splitting tree protocol. The approach builds on the known tree splitting protocols, code structure and successive interference cancellation (SIC). Several instances of the tree splitting protocol are initiated, each...... instance is terminated prematurely and subsequently iterated. The combined set of leaves from all the tree instances can then be viewed as a graph code, which is decodable using belief propagation. The main design problem is determining the order of splitting, which enables successful decoding as early...... as possible. Evaluations show that the proposed protocol provides considerable gains over the standard tree splitting protocol applying SIC. The improvement comes at the expense of an increased feedback and receiver complexity....

  18. Geometrical Applications of Split Octonions

    Directory of Open Access Journals (Sweden)

    Merab Gogberashvili

    2015-01-01

    Full Text Available It is shown that physical signals and space-time intervals modeled on split-octonion geometry naturally exhibit properties from conventional (3 + 1-theory (e.g., number of dimensions, existence of maximal velocities, Heisenberg uncertainty, and particle generations. This paper demonstrates these properties using an explicit representation of the automorphisms on split-octonions, the noncompact form of the exceptional Lie group G2. This group generates specific rotations of (3 + 4-vector parts of split octonions with three extra time-like coordinates and in infinitesimal limit imitates standard Poincare transformations. In this picture translations are represented by noncompact Lorentz-type rotations towards the extra time-like coordinates. It is shown how the G2 algebra’s chirality yields an intrinsic left-right asymmetry of a certain 3-vector (spin, as well as a parity violating effect on light emitted by a moving quantum system. Elementary particles are connected with the special elements of the algebra which nullify octonionic intervals. Then the zero-norm conditions lead to free particle Lagrangians, which allow virtual trajectories also and exhibit the appearance of spatial horizons governing by mass parameters.

  19. Testing split supersymmetry with inflation

    Science.gov (United States)

    Craig, Nathaniel; Green, Daniel

    2014-07-01

    Split supersymmetry (SUSY) — in which SUSY is relevant to our universe but largely inaccessible at current accelerators — has become increasingly plausible given the absence of new physics at the LHC, the success of gauge coupling unification, and the observed Higgs mass. Indirect probes of split SUSY such as electric dipole moments (EDMs) and flavor violation offer hope for further evidence but are ultimately limited in their reach. Inflation offers an alternate window into SUSY through the direct production of superpartners during inflation. These particles are capable of leaving imprints in future cosmological probes of primordial non-gaussianity. Given the recent observations of BICEP2, the scale of inflation is likely high enough to probe the full range of split SUSY scenarios and therefore offers a unique advantage over low energy probes. The key observable for future experiments is equilateral non-gaussianity, which will be probed by both cosmic microwave background (CMB) and large scale structure (LSS) surveys. In the event of a detection, we forecast our ability to find evidence for superpartners through the scaling behavior in the squeezed limit of the bispectrum.

  20. Concentric Split Flow Filter

    Science.gov (United States)

    Stapleton, Thomas J. (Inventor)

    2015-01-01

    A concentric split flow filter may be configured to remove odor and/or bacteria from pumped air used to collect urine and fecal waste products. For instance, filter may be designed to effectively fill the volume that was previously considered wasted surrounding the transport tube of a waste management system. The concentric split flow filter may be configured to split the air flow, with substantially half of the air flow to be treated traveling through a first bed of filter media and substantially the other half of the air flow to be treated traveling through the second bed of filter media. This split flow design reduces the air velocity by 50%. In this way, the pressure drop of filter may be reduced by as much as a factor of 4 as compare to the conventional design.

  1. Polarized Antenna Splitting Functions

    Energy Technology Data Exchange (ETDEWEB)

    Larkoski, Andrew J.; Peskin, Michael E.; /SLAC

    2009-10-17

    We consider parton showers based on radiation from QCD dipoles or 'antennae'. These showers are built from 2 {yields} 3 parton splitting processes. The question then arises of what functions replace the Altarelli-Parisi splitting functions in this approach. We give a detailed answer to this question, applicable to antenna showers in which partons carry definite helicity, and to both initial- and final-state emissions.

  2. HELAC-Onia 2.0: An upgraded matrix-element and event generator for heavy quarkonium physics

    Science.gov (United States)

    Shao, Hua-Sheng

    2016-01-01

    We present an upgraded version (denoted as version 2.0) of the program HELAC-ONIA for the automated computation of heavy-quarkonium helicity amplitudes within non-relativistic QCD framework. The new code has been designed to include many new and useful features for practical phenomenological simulations. It is designed for job submissions under cluster environment for parallel computations via PYTHON scripts. We have interfaced HELAC-ONIA to the parton shower Monte Carlo programs PYTHIA 8 and QEDPS to take into account the parton-shower effects. Moreover, the decay module guarantees that the program can perform the spin-entangled (cascade-)decay of heavy quarkonium after its generation. We have also implemented a reweighting method to automatically estimate the uncertainties from renormalization and/or factorization scales as well as parton-distribution functions to weighted or unweighted events. A further update is the possibility to generate one-dimensional or two-dimensional plots encoded in the analysis files on the fly. Some dedicated examples are given at the end of the writeup.

  3. Heavy quark and quarkonium production at CERN LEP2. k{sub T}-factorization versus data

    Energy Technology Data Exchange (ETDEWEB)

    Lipatov, A.V.; Zotov, N.P. [Moskovskij Gosudarstvennyj Univ., Moscow (Russian Federation). Nauchno-Issledovatel' skij Inst. Yadernoj Fiziki

    2005-02-01

    We present calculations of heavy quark and quarkonium production at CERN LEP2 in the {kappa}{sub T}-factorization QCD approach. Both direct and resolved photon contribution are taken into account. The conservative error analysis is performed. The unintegrated gluon distribution in the photon is obtained from the full CCFM evolution equation. The traditional color-singlet mechanism to describe non-perturbative transition of QQ-pair into a final quarkonium is used. Our analysis covers polarization properties of heavy quarkonia at moderate and large transverse momenta. We find that the total and differential open charm production cross sections are consistent with the recent experimental data taken by the L3, OPAL and ALEPH collaborations. At the same time the DELPHI data for the inclusive J/{psi} production exceed our predictions but experimental uncertainties are too large to claim a significant inconsistency. The bottom production in photon-photon collisions at CERN LEP2 is hard to explain within the {kappa}{sub T}-factorization formalism. (orig.)

  4. Heavy quark and quarkonium production at CERN LEP2: k{sub T}-factorization versus data

    Energy Technology Data Exchange (ETDEWEB)

    Lipatov, A.V.; Zotov, N.P. [M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation)

    2005-05-01

    We present calculations of heavy quark and quarkonium production at CERN LEP2 in the k{sub T}-factorization QCD approach. Both direct and resolved photon contributions are taken into account. A conservative error analysis is performed. The unintegrated gluon distribution in the photon is obtained from the full CCFM evolution equation. The traditional color-singlet mechanism to describe the non-perturbative transition of a Q anti Q -pair into a final quarkonium is used. Our analysis covers the polarization properties of heavy quarkonia at moderate and large transverse momenta. We find that the total and differential open charm production cross sections are consistent with the recent experimental data taken by the L3, OPAL and ALEPH collaborations. At the same time the DELPHI data for the inclusive J/{psi} production exceed our predictions, but experimental uncertainties are too large to claim a significant inconsistency. The bottom production in photon-photon collisions at CERN LEP2 is hard to explain within the k{sub T}-factorization formalism. (orig.)

  5. Production of a heavy quarkonium with a photon or via ISR at Z peak in e~+e~- collider

    Institute of Scientific and Technical Information of China (English)

    CHANG; ChaoHsi

    2010-01-01

    Considering the possibility to build an e + e-collider at the energies around Z-boson resonance with a luminosity so high as L ∝ 10 34 cm-2 s-1 (even higher) and the abilities of a modern synthesis detector,we systematically calculate the exclusive two body processes of the heavy quarkonium production: e + eannihilates into a heavy quarkonium and a photon,involving the initial state radiation (i.e.ISR) cases,at the energies around the Z-boson resonance.Since the couplings of Z-boson to quarks contain an axial vector term as well as a vector one,a charmonium such as J/ψ or η c or h c or χ cJ ···,or a bottomonium such as Υ or η b or h b or χ bJ ···,associating with a photon,may be produced respectively via Z-boson annihilation.If we call such a collider with so high luminosity and running around the Z-boson resonance as a Z-factory,then our results obtained here indicate that experimental studies of the various heavy quarkona (their ground and excited states) via the two-body processes at a Z-factory have outstanding advantages,especially,the production of the possible states with quantum numbers J PC = 1-via ISR.

  6. HELAC-Onia 2.0: an upgraded matrix-element and event generator for heavy quarkonium physics

    CERN Document Server

    Shao, Hua-Sheng

    2015-01-01

    We present an upgraded version (denoted as version 2.0) of the program HELAC-Onia for the automated computation of heavy-quarkonium helicity amplitudes within non-relativistic QCD framework. The new code has been designed to include many new and useful features for practical phenomenological simulations. It is designed for job submissions under cluster enviroment for parallel computations via Python scripts. We have interfaced HELAC-Onia to the parton shower Monte Carlo programs Pythia 8 and QEDPS to take into account the parton-shower effects. Moreover, the decay module guarantees that the program can perform the spin-entangled (cascade-)decay of heavy quarkonium after its generation. We have also implemented a reweighting method to automatically estimate the uncertainties from renormalization and/or factorization scales as well as parton-distribution functions to weighted or unweighted events. A futher update is the possiblity to generate one-dimensional or two-dimensional plots encoded in the analysis file...

  7. Geometrical splitting and reduction of Feynman diagrams

    Science.gov (United States)

    Davydychev, Andrei I.

    2016-10-01

    A geometrical approach to the calculation of N-point Feynman diagrams is reviewed. It is shown that the geometrical splitting yields useful connections between Feynman integrals with different momenta and masses. It is demonstrated how these results can be used to reduce the number of variables in the occurring functions.

  8. Splitting Ward identity

    Energy Technology Data Exchange (ETDEWEB)

    Safari, Mahmoud [Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2016-04-15

    Within the background-field framework we present a path integral derivation of the splitting Ward identity for the one-particle irreducible effective action in the presence of an infrared regulator, and make connection with earlier works on the subject. The approach is general in the sense that it does not rely on how the splitting is performed. This identity is then used to address the problem of background dependence of the effective action at an arbitrary energy scale. We next introduce the modified master equation and emphasize its role in constraining the effective action. Finally, application to general gauge theories within the geometric approach is discussed. (orig.)

  9. Split Malcev Algebras

    Indian Academy of Sciences (India)

    Antonio J Calderón Martín; Manuel Forero Piulestán; José M Sánchez Delgado

    2012-05-01

    We study the structure of split Malcev algebras of arbitrary dimension over an algebraically closed field of characteristic zero. We show that any such algebras is of the form $M=\\mathcal{U}+\\sum_jI_j$ with $\\mathcal{U}$ a subspace of the abelian Malcev subalgebra and any $I_j$ a well described ideal of satisfying $[I_j, I_k]=0$ if ≠ . Under certain conditions, the simplicity of is characterized and it is shown that is the direct sum of a semisimple split Lie algebra and a direct sum of simple non-Lie Malcev algebras.

  10. The Splitting Loope

    Science.gov (United States)

    Wilkins, Jesse L. M.; Norton, Anderson

    2011-01-01

    Teaching experiments have generated several hypotheses concerning the construction of fraction schemes and operations and relationships among them. In particular, researchers have hypothesized that children's construction of splitting operations is crucial to their construction of more advanced fractions concepts (Steffe, 2002). The authors…

  11. Pendulum separatrix splitting

    CERN Document Server

    Gallavotti, G; Mastropietro, V

    1997-01-01

    An exact expression for the determinant of the splitting matrix is derived: it allows us to analyze the asympotic behaviour needed to amend the large angles theorem proposed in Ann. Inst. H. Poincaré, B-60, 1, 1994. The asymptotic validity of Melnokov's formulae is proved for the class of models considered, which include polynomial perturbations.

  12. Multiple spectral splits of supernova neutrinos.

    Science.gov (United States)

    Dasgupta, Basudeb; Dighe, Amol; Raffelt, Georg G; Smirnov, Alexei Yu

    2009-07-31

    Collective oscillations of supernova neutrinos swap the spectra f(nu(e))(E) and f(nu[over ](e))(E) with those of another flavor in certain energy intervals bounded by sharp spectral splits. This phenomenon is far more general than previously appreciated: typically one finds one or more swaps and accompanying splits in the nu and nu[over ] channels for both inverted and normal neutrino mass hierarchies. Depending on an instability condition, swaps develop around spectral crossings (energies where f(nu(e))=f(nu(x)), f(nu[over ](e))=f(nu[over ](x)) as well as E-->infinity where all fluxes vanish), and the widths of swaps are determined by the spectra and fluxes. Washout by multiangle decoherence varies across the spectrum and splits can survive as sharp spectral features.

  13. Fee splitting in ophthalmology.

    Science.gov (United States)

    Levin, Alex V; Ganesh, Anuradha; Al-Busaidi, Ahmed

    2011-02-01

    Fee splitting and co-management are common practices in ophthalmology. These arrangements may conflict with the ethical principles governing the doctor-patient relationship, may constitute professional misconduct, and at times, may be illegal. Implications and perceptions of these practices may vary between different cultures. Full disclosure to the patient may minimize the adverse effects of conflicts of interest that arise from these practices, and may thereby allow these practices to be deemed acceptable by some cultural morays, professional guidelines, or by law. Disclosure does not necessarily relieve the physician from a potential ethical compromise. This review examines the practice of fee splitting in ophthalmology, its legal implications, the policies or guidelines governing such arrangements, and the possible ethical ramifications. A comparative view between 3 countries, Canada, the United States, and Oman, was conducted; illustrating that even in disparate cultures, there may be some universality to the application of ethical principles.

  14. Syntax for Split Preorders

    CERN Document Server

    Dosen, K

    2009-01-01

    A split preorder is a preordering relation on the disjoint union of two sets, which function as source and target when one composes split preorders. The paper presents by generators and equations the category SplPre, whose arrows are the split preorders on the disjoint union of two finite ordinals. The same is done for the subcategory Gen of SplPre, whose arrows are equivalence relations, and for the category Rel, whose arrows are the binary relations between finite ordinals, and which has an isomorphic image within SplPre by a map that preserves composition, but not identity arrows. It was shown previously that SplPre and Gen have an isomorphic representation in Rel in the style of Brauer. The syntactical presentation of Gen and Rel in this paper exhibits the particular Frobenius algebra structure of Gen and the particular bialgebraic structure of Rel, the latter structure being built upon the former structure in SplPre. This points towards algebraic modelling of various categories motivated by logic, and re...

  15. Higgs, Binos and Gluinos: Split Susy Within Reach

    CERN Document Server

    Alves, Daniele S M; Wacker, Jay G

    2011-01-01

    Recent evidence from the LHC for the Higgs boson with mass between 142 GeV < m_h < 147GeV points to PeV-scale Split Supersymmetry. This article explores the consequences of a Higgs mass in this range and possible discovery modes for Split Susy. Moderate lifetime gluinos, with decay lengths in the 25 microns to 10 years range, are its imminent smoking gun signature. The 7 TeV LHC will be sensitive to the moderately lived gluinos and trilepton signatures from direct electroweakino production. Moreover, the dark matter abundance may be obtained from annihilation through an s-channel Higgs resonance, with the LSP almost purely bino and mass m_chi = 70 GeV. The Higgs resonance region of Split Susy has visible signatures in dark matter direct and indirect detection and electric dipole moment experiments. If the anomalies go away, the majority of Split Susy parameter space will be excluded.

  16. Suppression of $\\Upsilon$(1S), $\\Upsilon$(2S), and $\\Upsilon$(3S) quarkonium states in PbPb collisions at ${\\sqrt{{s_{_{\\mathrm{NN}}}}}} = $ 2.76 TeV

    CERN Document Server

    CMS Collaboration

    2016-01-01

    The production yields of $\\Upsilon$(1S), $\\Upsilon$(2S), and $\\Upsilon$(3S) quarkonium states are measured through their decays into muon pairs in the CMS detector, in PbPb and pp collisions at the centre-of-mass energy per nucleon pair of 2.76 TeV. The data correspond to integrated luminosities of 166 $\\mu$b$^{-1}$ and 5.4 pb$^{-1}$ for PbPb and pp collisions, respectively. Differential production cross sections are reported as functions of $\\Upsilon$ rapidity $y$ up to 2.4, and transverse momentum $p_{\\mathrm{T}}$ up to 20 GeV/$c$. A strong centrality-dependent suppression is observed in PbPb relative to pp collisions, by factors of up to ${\\approx} 2$ and 8, for the $\\Upsilon$(1S) and $\\Upsilon$(2S) states, respectively. No significant dependence of this suppression is observed as a function of $y$ or $p_{\\mathrm{T}}$. The $\\Upsilon$(3S) state is not observed in PbPb collisions, which corresponds to a suppression for the centrality-integrated data by at least a factor of ${\\approx} 7$ at a 95% confidence l...

  17. Split Q-balls

    Science.gov (United States)

    Bazeia, D.; Losano, L.; Marques, M. A.; Menezes, R.

    2017-02-01

    We investigate the presence of non-topological solutions of the Q-ball type in (1 , 1) spacetime dimensions. The model engenders the global U (1) symmetry and is of the k-field type, since it contains a new term, of the fourth-order power in the derivative of the complex scalar field. It supports analytical solution of the Q-ball type which is stable quantum mechanically. The new solution engenders an interesting behavior, with the charge and energy densities unveiling a splitting profile.

  18. Fat Branes, Orbifolds and Doublet-Triplet Splitting

    CERN Document Server

    Haba, N; Haba, Naoyuki; Maru, Nobuhito

    2003-01-01

    A simple higher dimensional mechanism of the doublet-triplet splitting is presented in a five dimensional supersymmetric SU(5) GUT on S^1/Z_2. The splitting of multiplets is realized by a VEV of the adjoint chiral superfield which breaks SU(5) gauge symmetry. Depending on the sign of the VEV, zero mode Higgs doublets and triplets are localized on the either side of the fixed points. The mass splitting is realized due to the difference of magnitudes of the overlap with a brane localized or a bulk singlet field. No unnatural fine-tuning of parameters is needed. The proton stability is ensured by locality {em without symmetries}. As well as a conventional mass splitting solution, it is shown that the weak scale Higgs triplet is consistent with the proton stability. This result might provide an alternative signature of GUT in future collider experiments.

  19. Do the changes in muscle mass, muscle direction, and rotations of the condyles that occur after sagittal split advancement osteotomies play a role in the aetiology of progressive condylar resorption?

    NARCIS (Netherlands)

    Dicker, G.J.; Castelijns, J.A.; Tuinzing, D.B.; Stoelinga, P.J.W.

    2015-01-01

    Changes in cross-sectional area (CSA), volume (indicating muscle strength), and direction of the masseter and medial pterygoid muscles after surgical mandibular advancement were measured, along with the rotation of the condyles after bilateral sagittal split osteotomies (BSSOs) to advance the mandib

  20. Solar water splitting: efficiency discussion

    OpenAIRE

    Juodkazyte, Jurga; Seniutinas, Gediminas; Sebeka, Benjaminas; Savickaja, Irena; Malinauskas, Tadas; Badokas, Kazimieras; Juodkazis, Kestutis; Juodkazis, Saulius

    2016-01-01

    The current state of the art in direct water splitting in photo-electrochemical cells (PECs) is presented together with: (i) a case study of water splitting using a simple solar cell with the most efficient water splitting electrodes and (ii) a detailed mechanism analysis. Detailed analysis of the energy balance and efficiency of solar hydrogen production are presented. The role of hydrogen peroxide formation as an intermediate in oxygen evolution reaction is newly revealed and explains why a...

  1. Split Quasi-adequate Semigroups

    Institute of Scientific and Technical Information of China (English)

    Xiao Jiang GUO; Ting Ting PENG

    2012-01-01

    The so-called split IC quasi-adequate semigroups are in the class of idempotent-connected quasi-adequate semigroups.It is proved that an IC quasi-adequate semigroup is split if and only if it has an adequate transversal.The structure of such semigroup whose band of idempotents is regular will be particularly investigated.Our obtained results enrich those results given by McAlister and Blyth on split orthodox semigroups.

  2. Comet LINEAR Splits Further

    Science.gov (United States)

    2001-05-01

    Third Nucleus Observed with the VLT Summary New images from the VLT show that one of the two nuclei of Comet LINEAR (C/2001 A2), now about 100 million km from the Earth, has just split into at least two pieces . The three fragments are now moving through space in nearly parallel orbits while they slowly drift apart. This comet will pass through its perihelion (nearest point to the Sun) on May 25, 2001, at a distance of about 116 million kilometres. It has brightened considerably due to the splitting of its "dirty snowball" nucleus and can now be seen with the unaided eye by observers in the southern hemisphere as a faint object in the southern constellation of Lepus (The Hare). PR Photo 18a/01 : Three nuclei of Comet LINEAR . PR Photo 18b/01 : The break-up of Comet LINEAR (false-colour). Comet LINEAR splits and brightens ESO PR Photo 18a/01 ESO PR Photo 18a/01 [Preview - JPEG: 400 x 438 pix - 55k] [Normal - JPEG: 800 x 875 pix - 136k] ESO PR Photo 18b/01 ESO PR Photo 18b/01 [Preview - JPEG: 367 x 400 pix - 112k] [Normal - JPEG: 734 x 800 pix - 272k] Caption : ESO PR Photo 18a/01 shows the three nuclei of Comet LINEAR (C/2001 A2). It is a reproduction of a 1-min exposure in red light, obtained in the early evening of May 16, 2001, with the 8.2-m VLT YEPUN (UT4) telescope at Paranal. ESO PR Photo 18b/01 shows the same image, but in a false-colour rendering for more clarity. The cometary fragment "B" (right) has split into "B1" and "B2" (separation about 1 arcsec, or 500 km) while fragment "A" (upper left) is considerably fainter. Technical information about these photos is available below. Comet LINEAR was discovered on January 3, 2001, and designated by the International Astronomical Union (IAU) as C/2001 A2 (see IAU Circular 7564 [1]). Six weeks ago, it was suddenly observed to brighten (IAUC 7605 [1]). Amateurs all over the world saw the comparatively faint comet reaching naked-eye magnitude and soon thereafter, observations with professional telescopes indicated

  3. Thermally induced photon splitting

    CERN Document Server

    Elmfors, P; Elmfors, Per; Skagerstam, Bo-Sture

    1998-01-01

    We calculate thermal corrections to the non-linear QED effective action for low-energy photon interactions in a background electromagnetic field. The high-temperature expansion shows that at $T \\gg m$ the vacuum contribution is exactly cancelled to all orders in the external field except for a non-trivial two-point function contribution. The high-temperature expansion derived reveals a remarkable cancellation of infrared sensitive contributions. As a result photon-splitting in the presence of a magnetic field is suppressed in the presence of an electron-positron QED-plasma at very high temperatures. In a cold and dense plasma a similar suppression takes place. At the same time Compton scattering dominates for weak fields and the suppression is rarely important in physical situations.

  4. Leptogenesis from split fermions

    Energy Technology Data Exchange (ETDEWEB)

    Nagatani, Yukinori; Perez, Gilad

    2004-01-11

    We present a new type of leptogenesis mechanism based on a two-scalar split-fermions framework. At high temperatures the bulk scalar vacuum expectation values (VEVs) vanish and lepton number is strongly violated. Below some temperature, T{sub c}, the scalars develop extra dimension dependent VEVs. This transition is assumed to proceed via a first order phase transition. In the broken phase the fermions are localized and lepton number violation is negligible. The lepton-bulk scalar Yukawa couplings contain sizable CP phases which induce lepton production near the interface between the two phases. We provide a qualitative estimation of the resultant baryon asymmetry which agrees with current observation. The neutrino flavor parameters are accounted for by the above model with an additional approximate U(1) symmetry.

  5. O(alpha(3) lnalpha) corrections to muonium and positronium hyperfine splitting.

    Science.gov (United States)

    Melnikov, K; Yelkhovsky, A

    2001-02-19

    We compute O(alpha(3)lnalpha) relative corrections to the ground-state hyperfine splitting of a QED two-body bound state with different masses of constituents. The general result is then applied to muonium and positronium. In particular, a new value of the muon-to-electron mass ratio is derived from the muonium ground-state hyperfine splitting.

  6. The Relationship between Anthropometry and Split Performance in Recreational Male Ironman Triathletes

    Directory of Open Access Journals (Sweden)

    Knechtle

    2011-03-01

    Full Text Available Purpose The aim of this study was to investigate the relation between anthropometric variables and total race time including split times in 184 recreational male Ironman triathletes. Methods Body mass, body height, body mass index, lengths and circumferences of imbs, thicknesses of skin-folds, sum of skin-fold thicknesses, and percent body fat were related to total race time including split times using correlation analysis and effect size. Results A large effect size (r>0.37 was found for the association between body mass index and time in the run split and between both the sum of skin-folds and percent body fat with total race time. A medium effect size (r=0.24–0.36 was observed in the association between body mass and both the split time in running and total race time, between body mass index and total race time, between both the circumferences of upper arm and thigh with split time in the run and between both the sum of skin-folds and percent body fat with split times in swimming, cycling and running. Conclusions The results of this study showed that lower body mass, lower body mass index and lower body fat were associated with both a faster Ironman race and a faster run split; lower circumferences of upper arm and thigh were also related with a faster run split.

  7. Split-ball resonator

    CERN Document Server

    Kuznetsov, Arseniy I; Fu, Yuan Hsing; Viswanathan, Vignesh; Rahmani, Mohsen; Valuckas, Vytautas; Kivshar, Yuri; Pickard, Daniel S; Lukiyanchuk, Boris

    2014-01-01

    We introduce a new concept of split-ball resonator and demonstrate a strong omnidirectional magnetic dipole response for both gold and silver spherical plasmonic nanoparticles with nanometer-scale cuts. Tunability of the magnetic dipole resonance throughout the visible spectral range is demonstrated by a change of the depth and width of the nanoscale cut. We realize this novel concept experimentally by employing the laser-induced transfer method to produce near-perfect spheres and helium ion beam milling to make cuts with the nanometer resolution. Due to high quality of the spherical particle shape, governed by strong surface tension forces during the laser transfer process, and the clean, straight side walls of the cut made by helium ion milling, magnetic resonance is observed at 600 nm in gold and at 565 nm in silver nanoparticles. Structuring arbitrary features on the surface of ideal spherical resonators with nanoscale dimensions provides new ways of engineering hybrid resonant modes and ultra-high near-f...

  8. Mild-split SUSY with flavor

    CERN Document Server

    Eliaz, Latif; Gudnason, Sven Bjarke; Tsuk, Eitan

    2013-01-01

    In the framework of a gauge mediated quiver-like model, the standard model flavor texture can be naturally generated. The model - like the MSSM - has furthermore a region in parameter space where the lightest Higgs mass is fed by heavy stop loops, which in turn sets the average squark mass scale near 10-20 TeV. We perform a careful flavor analysis to check whether this type of mild-split SUSY passes all flavor constraints as easily as envisioned in the original type of split SUSY. Interestingly, it turns out to be on the border of several constraints, in particular, the branching ratio of mu -> e gamma and, if order one complex phases are assumed, also epsilon_K neutron and electron EDM. Furthermore, we consider unification as well as dark matter candidates, especially the gravitino. Finally, we provide a closed-form formula for the soft masses of matter in arbitrary representations of any of the gauge groups in a generic quiver-like model with a general messenger sector.

  9. Semantic Parameters of Split Intransitivity.

    Science.gov (United States)

    Van Valin, Jr., Robert D.

    1990-01-01

    This paper argues that split-intransitive phenomena are better explained in semantic terms. A semantic analysis is carried out in Role and Reference Grammar, which assumes the theory of verb classification proposed in Dowty 1979. (49 references) (JL)

  10. ISR split-field magnet

    CERN Multimedia

    1975-01-01

    The experimental apparatus used at intersection 4 around the Split-Field Magnet by the CERN-Bologna Collaboration (experiment R406). The plastic scintillator telescopes are used for precise pulse-height and time-of-flight measurements.

  11. Split Dirac Supersymmetry: An Ultraviolet Completion of Higgsino Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Patrick J. [Fermilab; Kribs, Graham D. [Oregon U.; Martin, Adam [Notre Dame U.

    2014-10-07

    Motivated by the observation that the Higgs quartic coupling runs to zero at an intermediate scale, we propose a new framework for models of split supersymmetry, in which gauginos acquire intermediate scale Dirac masses of $\\sim 10^{8-11}$ GeV. Scalar masses arise from one-loop finite contributions as well as direct gravity-mediated contributions. Like split supersymmetry, one Higgs doublet is fine-tuned to be light. The scale at which the Dirac gauginos are introduced to make the Higgs quartic zero is the same as is necessary for gauge coupling unification. Thus, gauge coupling unification persists (nontrivially, due to adjoint multiplets), though with a somewhat higher unification scale $\\gtrsim 10^{17}$ GeV. The $\\mu$-term is naturally at the weak scale, and provides an opportunity for experimental verification. We present two manifestations of Split Dirac Supersymmetry. In the "Pure Dirac" model, the lightest Higgsino must decay through R-parity violating couplings, leading to an array of interesting signals in colliders. In the "Hypercharge Impure" model, the bino acquires a Majorana mass that is one-loop suppressed compared with the Dirac gluino and wino. This leads to weak scale Higgsino dark matter whose overall mass scale, as well as the mass splitting between the neutral components, is naturally generated from the same UV dynamics. We outline the challenges to discovering pseudo-Dirac Higgsino dark matter in collider and dark matter detection experiments.

  12. Split NMSSM with electroweak baryogenesis

    OpenAIRE

    Demidov, S.; Gorbunov, D; Kirpichnikov, D.

    2016-01-01

    In light of the Higgs boson discovery and other results of the LHC we re-consider generation of the baryon asymmetry in the split Supersymmetry model with an additional singlet superfield in the Higgs sector (non-minimal split SUSY). We find that successful baryogenesis during the first order electroweak phase transition is possible within a phenomenologically viable part of the model parameter space. We discuss several phenomenological consequences of this scenario, namely, predictions for t...

  13. Quantum mechanics with applications to quarkonium. [Review, WKB approximation, scale invariance

    Energy Technology Data Exchange (ETDEWEB)

    Quigg, C.; Rosner, J.L.

    1979-02-01

    Some methods of nonrelativistic quantum mechanics which are particularly useful for studying the variation of bound-state parameters with constituent mass and excitation energy are reviewed. These techniques rely upon elementary scaling arguments and on the semiclassical (WKB) approximation. They are of general interest, but are applied here to the study of bound systems of a heavy quark and antiquark. Properties of the interquark interaction are extracted from information about masses and leptonic widths of the Psi and T families. It is shown how general methods can be applied to the determination of the electric charge of quarks and to the prediction of properties of new families. 113 references.

  14. Heavy quarkonium potential from Bethe-Salpeter wave function on the lattice

    CERN Document Server

    Kawanai, Taichi

    2013-01-01

    We propose a novel method for the determination of the interquark potential together with quark "kinetic mass'' $m_Q$ from the equal-time $Q\\bar{Q}$ Bethe-Salpeter (BS) amplitude in lattice QCD. Our approach allows us to calculate spin-dependent $Q\\bar{Q}$ potentials, e.g. the spin-spin potential, as well. In order to investigate several systematic uncertainties on such $Q\\bar{Q}$ potentials, we carry out lattice QCD simulations using quenched gauge configurations generated with the single plaquette gauge action with three different lattice spacings, $a \\approx$ 0.093, 0.068 and 0.047 fm, and two different physical volumes, $L \\approx$ 2.2 and 3.0 fm. For heavy quarks, we employ the relativistic heavy quark (RHQ) action which can control large discretization errors introduced by large quark mass $m_Q$. The spin-independent central $Q\\bar{Q}$ potential for the charmonium system yields the "Coulomb plus linear'' behavior with good scaling and small volume dependence. We explore the quark mass dependence over th...

  15. Solar water splitting: efficiency discussion

    CERN Document Server

    Juodkazyte, Jurga; Sebeka, Benjaminas; Savickaja, Irena; Malinauskas, Tadas; Badokas, Kazimieras; Juodkazis, Kestutis; Juodkazis, Saulius

    2016-01-01

    The current state of the art in direct water splitting in photo-electrochemical cells (PECs) is presented together with: (i) a case study of water splitting using a simple solar cell with the most efficient water splitting electrodes and (ii) a detailed mechanism analysis. Detailed analysis of the energy balance and efficiency of solar hydrogen production are presented. The role of hydrogen peroxide formation as an intermediate in oxygen evolution reaction is newly revealed and explains why an oxygen evolution is not taking place at the thermodynamically expected 1.23 V potential. Solar hydrogen production with electrical-to-hydrogen conversion efficiency of 52% is demonstrated using a simple ~0.7%-efficient n-Si/Ni Schottky solar cell connected to a water electrolysis cell. This case study shows that separation of the processes of solar harvesting and electrolysis avoids photo-electrode corrosion and utilizes optimal electrodes for hydrogen and oxygen evolution reactions and achieves ~10% efficiency in light...

  16. Lattice splitting under intermittent flows

    CERN Document Server

    Schläpfer, Markus

    2010-01-01

    We study the splitting of regular square lattices subject to stochastic intermittent flows. By extensive Monte Carlo simulations we reveal how the time span until the occurence of a splitting depends on various flow patterns imposed on the lattices. Increasing the flow fluctuation frequencies shortens this time span which reaches a minimum before rising again due to inertia effects incorporated in the model. The size of the largest connected component after the splitting is rather independent of the flow fluctuations but sligthly decreases with the link capacities. Our results are relevant for assessing the robustness of real-life systems, such as electric power grids with a large share of renewable energy sources including wind turbines and photovoltaic systems.

  17. On Split Lie Triple Systems

    Indian Academy of Sciences (India)

    Antonio J Calderón Martín

    2009-04-01

    We begin the study of arbitrary split Lie triple systems by focussing on those with a coherent 0-root space. We show that any such triple systems with a symmetric root system is of the form $T=\\mathcal{U}+\\sum_j I_j$ with $\\mathcal{U}$ a subspace of the 0-root space $T_0$ and any $I_j$ a well described ideal of , satisfying $[I_j,T,I_k]=0$ if $j≠ k$. Under certain conditions, it is shown that is the direct sum of the family of its minimal ideals, each one being a simple split Lie triple system, and the simplicity of is characterized. The key tool in this job is the notion of connection of roots in the framework of split Lie triple systems.

  18. How to compute the thermal quarkonium spectral function from first principles?

    OpenAIRE

    M. Laine

    2008-01-01

    In the limit of a high temperature T and a large quark-mass M, implying a small gauge coupling g, the heavy quark contribution to the spectral function of the electromagnetic current can be computed systematically in the weak-coupling expansion. We argue that the scale hierarchy relevant for addressing the disappearance ("melting") of the resonance peak from the spectral function reads M >> T > g^2 M > gT >> g^4 M, and review how the heavy scales can be integrated out one-by-one, to construct...

  19. Split NMSSM with electroweak baryogenesis

    Science.gov (United States)

    Demidov, S. V.; Gorbunov, D. S.; Kirpichnikov, D. V.

    2016-11-01

    In light of the Higgs boson discovery and other results of the LHC we re-consider generation of the baryon asymmetry in the split Supersymmetry model with an additional singlet superfield in the Higgs sector (non-minimal split SUSY). We find that successful baryogenesis during the first order electroweak phase transition is possible within a phenomenologically viable part of the model parameter space. We discuss several phenomenological consequences of this scenario, namely, predictions for the electric dipole moments of electron and neutron and collider signatures of light charginos and neutralinos.

  20. Splitting strings on integrable backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Vicedo, Benoit

    2011-05-15

    We use integrability to construct the general classical splitting string solution on R x S{sup 3}. Namely, given any incoming string solution satisfying a necessary self-intersection property at some given instant in time, we use the integrability of the worldsheet {sigma}-model to construct the pair of outgoing strings resulting from a split. The solution for each outgoing string is expressed recursively through a sequence of dressing transformations, the parameters of which are determined by the solutions to Birkhoff factorization problems in an appropriate real form of the loop group of SL{sub 2}(C). (orig.)

  1. Do the changes in muscle mass, muscle direction, and rotations of the condyles that occur after sagittal split advancement osteotomies play a role in the aetiology of progressive condylar resorption?

    Science.gov (United States)

    Dicker, G J; Castelijns, J A; Tuinzing, D B; Stoelinga, P J W

    2015-05-01

    Changes in cross-sectional area (CSA), volume (indicating muscle strength), and direction of the masseter and medial pterygoid muscles after surgical mandibular advancement were measured, along with the rotation of the condyles after bilateral sagittal split osteotomies (BSSOs) to advance the mandible. Measurements were done on magnetic resonance images obtained before and 2 years after surgery. CSA and volume were measured in five short-face and seven long-face patients (five males, seven females). Muscle direction was calculated in eight short-face and eight long-face patients (eight males, eight females). Short-face patients underwent BSSO only; long-face patients underwent combined BSSO and Le Fort I osteotomies. The CSA and volume decreased significantly (mean 18%) in all patients after surgery. The postoperative muscle direction was significantly more vertical (9°) in long-face patients. Rotations of the proximal segments (condyles) were minimal after 2 years. The results of this study showed that, after BSSO advancement surgery, changes in the masseter and medial pterygoid muscles are not likely to cause increased pressure on the condyles and nor are the minimal rotations of the condyles. It is concluded that neither increased muscle traction nor condylar rotations can be held responsible for progressive condylar resorption after advancement BSSO.

  2. How to compute the thermal quarkonium spectral function from first principles?

    CERN Document Server

    Laine, M

    2008-01-01

    In the limit of a high temperature T and a large quark-mass M, implying a small gauge coupling g, the heavy quark contribution to the spectral function of the electromagnetic current can be computed systematically in the weak-coupling expansion. We argue that the scale hierarchy relevant for addressing the disappearance ("melting") of the resonance peak from the spectral function reads M >> T > g^2 M > gT >> g^4 M, and review how the heavy scales can be integrated out one-by-one, to construct a set of effective field theories describing the low-energy dynamics. The parametric behaviour of the melting temperature in the weak-coupling limit is specified.

  3. Nonplanar 4-jets in quarkonium decays as a probe for 3-gluon coupling

    Energy Technology Data Exchange (ETDEWEB)

    Muta, Taizo; Niuya, Takayuki

    1982-11-01

    We calculate the acoplanarity (a la Fox-Wolfram) distribution of 4 jets generated by orthoquarkonium decays: /sup 3/S/sub 1/(Q anti Q) yields GGGG. GGq anti q. The result shows that the deviation from planar event due to 4 jets is significantly large showing the importance of the effect of 3-gluon couplings in quantum chromodynamics. The average acoplanarity lt D gt is calculated to be lt D gt = (4.45 + 0.153Nsub(f)) alpha sub(s)/ pi with Nsub(f) the number of flavors of produced quarks and alpha sub(s) the QCD coupling strength. As a by-product we calculated the decay rate of the parapositronium into 4 photons which results in GAMMA sub(4 gamma ) = (0.0139 +- 0.0001) alpha/sup 7/msub(e) with msub(e) the electron mass.

  4. Nonplanar 4-Jets in Quarkonium Decays as a Probe for 3-Gluon Coupling

    Science.gov (United States)

    Muta, T.; Niuya, T.

    1982-11-01

    We calculate the acoplanarity (à la Fox-Wolfram) distribution of 4 jets generated by orthoquarkonium decays: 3S1(Qbar{Q})→ GGGG, GGqbar{q}. The result shows that the deviation from planar event due to 4 jets is significantly large showing the importance of the effect of 3-gluon couplings in quantum chromodynamics. The average acoplanarity is calculated to be =(0.45+0.153Nf)αs/π with Nf the number of flavors of produced quarks and αs the QCD coupling strength. As a by-product we calculated the decay rate of the parapositronium into 4 photons which results in Γ4γ=(0.0139±0.0001)α7 me with me the electron mass.

  5. Higgs, Binos and Gluinos: Split Susy within Reach

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Daniele S.M.; Izaguirre, Eder; /SLAC /Stanford U., Phys. Dept.; Wacker, Jay G.; /SLAC /Stanford U., ITP

    2012-09-14

    Recent results from the LHC for the Higgs boson with mass between 142 GeV {approx}< m{sub h{sup 0}} {approx}< 147 GeV points to PeV-scale Split Supersymmetry. This article explores the consequences of a Higgs mass in this range and possible discovery modes for Split Susy. Moderate lifetime gluinos, with decay lengths in the 25 {micro}m to 10 yr range, are its imminent smoking gun signature. The 7TeV LHC will be sensitive to the moderately lived gluinos and trilepton signatures from direct electroweakino production. Moreover, the dark matter abundance may be obtained from annihilation through an s-channel Higgs resonance, with the LSP almost purely bino and mass m{sub {chi}{sub 1}{sup 0}} {approx_equal} 70 GeV. The Higgs resonance region of Split Susy has visible signatures in dark matter direct and indirect detection and electric dipole moment experiments. If the anomalies go away, the majority of Split Susy parameter space will be excluded.

  6. Beam splitting on weak illumination.

    Science.gov (United States)

    Snyder, A W; Buryak, A V; Mitchell, D J

    1998-01-01

    We demonstrate, in both two and three dimensions, how a self-guided beam in a non-Kerr medium is split into two beams on weak illumination. We also provide an elegant physical explanation that predicts the universal character of the observed phenomenon. Possible applications of our findings to guiding light with light are also discussed.

  7. Torque-Splitting Gear Drive

    Science.gov (United States)

    Kish, J.

    1991-01-01

    Geared drive train transmits torque from input shaft in equal parts along two paths in parallel, then combines torques in single output shaft. Scheme reduces load on teeth of meshing gears while furnishing redundancy to protect against failures. Such splitting and recombination of torques common in design of turbine engines.

  8. Water splitting by cooperative catalysis

    NARCIS (Netherlands)

    D.G.H. Hetterscheid; J.I. van der Vlugt; B. de Bruin; J.N.H. Reek

    2009-01-01

    A mononuclear Ru complex is shown to efficiently split water into H2 and O2 in consecutive steps through a heat- and light-driven process (see picture). Thermally driven H2 formation involves the aid of a non-innocent ligand scaffold, while dioxygen is generated by initial photochemically induced re

  9. Tantalum nitride for photocatalytic water splitting: concept and applications

    KAUST Repository

    Nurlaela, Ela

    2016-10-12

    Along with many other solar energy conversion processes, research on photocatalytic water splitting to generate hydrogen and oxygen has experienced rapid major development over the past years. Developing an efficient visible-light-responsive photocatalyst has been one of the targets of such research efforts. In this regard, nitride materials, particularly Ta3N5, have been the subject of investigation due to their promising properties. This review focuses on the fundamental parameters involved in the photocatalytic processes targeting overall water splitting using Ta3N5 as a model photocatalyst. The discussion primarily focuses on relevant parameters that are involved in photon absorption, exciton separation, carrier diffusion, carrier transport, catalytic efficiency, and mass transfer of the reactants. An overview of collaborative experimental and theoretical approaches to achieve efficient photocatalytic water splitting using Ta3N5 is discussed.

  10. Inclusive quarkonium production at forward rapidity in pp collisions at [Formula: see text]TeV.

    Science.gov (United States)

    Adam, J; Adamová, D; Aggarwal, M M; Aglieri Rinella, G; Agnello, M; Agrawal, N; Ahammed, Z; Ahn, S U; Aiola, S; Akindinov, A; Alam, S N; Aleksandrov, D; Alessandro, B; Alexandre, D; Alfaro Molina, R; Alici, A; Alkin, A; Almaraz, J R M; Alme, J; Alt, T; Altinpinar, S; Altsybeev, I; Alves Garcia Prado, C; Andrei, C; Andronic, A; Anguelov, V; Anielski, J; Antičić, T; Antinori, F; Antonioli, P; Aphecetche, L; Appelshäuser, H; Arcelli, S; Arnaldi, R; Arnold, O W; Arsene, I C; Arslandok, M; Audurier, B; Augustinus, A; Averbeck, R; Azmi, M D; Badalà, A; Baek, Y W; Bagnasco, S; Bailhache, R; Bala, R; Baldisseri, A; Baral, R C; Barbano, A M; Barbera, R; Barile, F; Barnaföldi, G G; Barnby, L S; Barret, V; Bartalini, P; Barth, K; Bartke, J; Bartsch, E; Basile, M; Bastid, N; Basu, S; Bathen, B; Batigne, G; Batista Camejo, A; Batyunya, B; Batzing, P C; Bearden, I G; Beck, H; Bedda, C; Behera, N K; Belikov, I; Bellini, F; Bello Martinez, H; Bellwied, R; Belmont, R; Belmont-Moreno, E; Belyaev, V; Bencedi, G; Beole, S; Berceanu, I; Bercuci, A; Berdnikov, Y; Berenyi, D; Bertens, R A; Berzano, D; Betev, L; Bhasin, A; Bhat, I R; Bhati, A K; Bhattacharjee, B; Bhom, J; Bianchi, L; Bianchi, N; Bianchin, C; Bielčík, J; Bielčíková, J; Bilandzic, A; Biswas, R; Biswas, S; Bjelogrlic, S; Blair, J T; Blau, D; Blume, C; Bock, F; Bogdanov, A; Bøggild, H; Boldizsár, L; Bombara, M; Book, J; Borel, H; Borissov, A; Borri, M; Bossú, F; Botta, E; Böttger, S; Bourjau, C; Braun-Munzinger, P; Bregant, M; Breitner, T; Broker, T A; Browning, T A; Broz, M; Brucken, E J; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Buncic, P; Busch, O; Buthelezi, Z; Butt, J B; Buxton, J T; Caffarri, D; Cai, X; Caines, H; Calero Diaz, L; Caliva, A; Calvo Villar, E; Camerini, P; Carena, F; Carena, W; Carnesecchi, F; Castillo Castellanos, J; Castro, A J; Casula, E A R; Ceballos Sanchez, C; Cepila, J; Cerello, P; Cerkala, J; Chang, B; Chapeland, S; Chartier, M; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Chelnokov, V; Cherney, M; Cheshkov, C; Cheynis, B; Chibante Barroso, V; Chinellato, D D; Cho, S; Chochula, P; Choi, K; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Colamaria, F; Colella, D; Collu, A; Colocci, M; Conesa Balbastre, G; Conesa Del Valle, Z; Connors, M E; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortés Maldonado, I; Cortese, P; Cosentino, M R; Costa, F; Crochet, P; Cruz Albino, R; Cuautle, E; Cunqueiro, L; Dahms, T; Dainese, A; Danu, A; Das, D; Das, I; Das, S; Dash, A; Dash, S; De, S; De Caro, A; de Cataldo, G; de Conti, C; de Cuveland, J; De Falco, A; De Gruttola, D; De Marco, N; De Pasquale, S; Deisting, A; Deloff, A; Dénes, E; Deplano, C; Dhankher, P; Di Bari, D; Di Mauro, A; Di Nezza, P; Diaz Corchero, M A; Dietel, T; Dillenseger, P; Divià, R; Djuvsland, Ø; Dobrin, A; Domenicis Gimenez, D; Dönigus, B; Dordic, O; Drozhzhova, T; Dubey, A K; Dubla, A; Ducroux, L; Dupieux, P; Ehlers, R J; Elia, D; Engel, H; Epple, E; Erazmus, B; Erdemir, I; Erhardt, F; Espagnon, B; Estienne, M; Esumi, S; Eum, J; Evans, D; Evdokimov, S; Eyyubova, G; Fabbietti, L; Fabris, D; Faivre, J; Fantoni, A; Fasel, M; Feldkamp, L; Feliciello, A; Feofilov, G; Ferencei, J; Fernández Téllez, A; Ferreiro, E G; Ferretti, A; Festanti, A; Feuillard, V J G; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Fleck, M G; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Francescon, A; Frankenfeld, U; Fuchs, U; Furget, C; Furs, A; Fusco Girard, M; Gaardhøje, J J; Gagliardi, M; Gago, A M; Gallio, M; Gangadharan, D R; Ganoti, P; Gao, C; Garabatos, C; Garcia-Solis, E; Gargiulo, C; Gasik, P; Gauger, E F; Germain, M; Gheata, A; Gheata, M; Ghosh, P; Ghosh, S K; Gianotti, P; Giubellino, P; Giubilato, P; Gladysz-Dziadus, E; Glässel, P; Goméz Coral, D M; Gomez Ramirez, A; Gonzalez, V; González-Zamora, P; Gorbunov, S; Görlich, L; Gotovac, S; Grabski, V; Grachov, O A; Graczykowski, L K; Graham, K L; Grelli, A; Grigoras, A; Grigoras, C; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grinyov, B; Grion, N; Gronefeld, J M; Grosse-Oetringhaus, J F; Grossiord, J-Y; Grosso, R; Guber, F; Guernane, R; Guerzoni, B; Gulbrandsen, K; Gunji, T; Gupta, A; Gupta, R; Haake, R; Haaland, Ø; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Harris, J W; Harton, A; Hatzifotiadou, D; Hayashi, S; Heckel, S T; Heide, M; Helstrup, H; Herghelegiu, A; Herrera Corral, G; Hess, B A; Hetland, K F; Hillemanns, H; Hippolyte, B; Hosokawa, R; Hristov, P; Huang, M; Humanic, T J; Hussain, N; Hussain, T; Hutter, D; Hwang, D S; Ilkaev, R; Inaba, M; Ippolitov, M; Irfan, M; Ivanov, M; Ivanov, V; Izucheev, V; Jacobs, P M; Jadhav, M B; Jadlovska, S; Jadlovsky, J; Jahnke, C; Jakubowska, M J; Jang, H J; Janik, M A; Jayarathna, P H S Y; Jena, C; Jena, S; Jimenez Bustamante, R T; Jones, P G; Jung, H; Jusko, A; Kalinak, P; Kalweit, A; Kamin, J; Kang, J H; Kaplin, V; Kar, S; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karayan, L; Karpechev, E; Kebschull, U; Keidel, R; Keijdener, D L D; Keil, M; Mohisin Khan, M; Khan, P; Khan, S A; Khanzadeev, A; Kharlov, Y; Kileng, B; Kim, D W; Kim, D J; Kim, D; Kim, H; Kim, J S; Kim, M; Kim, M; Kim, S; Kim, T; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Kiss, G; Klay, J L; Klein, C; Klein, J; Klein-Bösing, C; Klewin, S; Kluge, A; Knichel, M L; Knospe, A G; Kobayashi, T; Kobdaj, C; Kofarago, M; Kollegger, T; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Kondratyuk, E; Konevskikh, A; Kopcik, M; Kour, M; Kouzinopoulos, C; Kovalenko, O; Kovalenko, V; Kowalski, M; Koyithatta Meethaleveedu, G; Králik, I; Kravčáková, A; Kretz, M; Krivda, M; Krizek, F; Kryshen, E; Krzewicki, M; Kubera, A M; Kučera, V; Kuhn, C; Kuijer, P G; Kumar, A; Kumar, J; Kumar, L; Kumar, S; Kurashvili, P; Kurepin, A; Kurepin, A B; Kuryakin, A; Kweon, M J; Kwon, Y; La Pointe, S L; La Rocca, P; Ladron de Guevara, P; Lagana Fernandes, C; Lakomov, I; Langoy, R; Lara, C; Lardeux, A; Lattuca, A; Laudi, E; Lea, R; Leardini, L; Lee, G R; Lee, S; Lehas, F; Lemmon, R C; Lenti, V; Leogrande, E; León Monzón, I; León Vargas, H; Leoncino, M; Lévai, P; Li, S; Li, X; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Ljunggren, H M; Lodato, D F; Loenne, P I; Loginov, V; Loizides, C; Lopez, X; López Torres, E; Lowe, A; Luettig, P; Lunardon, M; Luparello, G; Maevskaya, A; Mager, M; Mahajan, S; Mahmood, S M; Maire, A; Majka, R D; Malaev, M; Maldonado Cervantes, I; Malinina, L; Mal'Kevich, D; Malzacher, P; Mamonov, A; Manko, V; Manso, F; Manzari, V; Marchisone, M; Mareš, J; Margagliotti, G V; Margotti, A; Margutti, J; Marín, A; Markert, C; Marquard, M; Martin, N A; Martin Blanco, J; Martinengo, P; Martínez, M I; Martínez García, G; Martinez Pedreira, M; Mas, A; Masciocchi, S; Masera, M; Masoni, A; Massacrier, L; Mastroserio, A; Matyja, A; Mayer, C; Mazer, J; Mazzoni, M A; Mcdonald, D; Meddi, F; Melikyan, Y; Menchaca-Rocha, A; Meninno, E; Mercado Pérez, J; Meres, M; Miake, Y; Mieskolainen, M M; Mikhaylov, K; Milano, L; Milosevic, J; Minervini, L M; Mischke, A; Mishra, A N; Miśkowiec, D; Mitra, J; Mitu, C M; Mohammadi, N; Mohanty, B; Molnar, L; Montaño Zetina, L; Montes, E; Moreira De Godoy, D A; Moreno, L A P; Moretto, S; Morreale, A; Morsch, A; Muccifora, V; Mudnic, E; Mühlheim, D; Muhuri, S; Mukherjee, M; Mulligan, J D; Munhoz, M G; Munzer, R H; Murray, S; Musa, L; Musinsky, J; Naik, B; Nair, R; Nandi, B K; Nania, R; Nappi, E; Naru, M U; Natal da Luz, H; Nattrass, C; Nayak, K; Nayak, T K; Nazarenko, S; Nedosekin, A; Nellen, L; Ng, F; Nicassio, M; Niculescu, M; Niedziela, J; Nielsen, B S; Nikolaev, S; Nikulin, S; Nikulin, V; Noferini, F; Nomokonov, P; Nooren, G; Noris, J C C; Norman, J; Nyanin, A; Nystrand, J; Oeschler, H; Oh, S; Oh, S K; Ohlson, A; Okatan, A; Okubo, T; Olah, L; Oleniacz, J; Oliveira Da Silva, A C; Oliver, M H; Onderwaater, J; Oppedisano, C; Orava, R; Ortiz Velasquez, A; Oskarsson, A; Otwinowski, J; Oyama, K; Ozdemir, M; Pachmayer, Y; Pagano, P; Paić, G; Pal, S K; Pan, J; Pandey, A K; Papcun, P; Papikyan, V; Pappalardo, G S; Pareek, P; Park, W J; Parmar, S; Passfeld, A; Paticchio, V; Patra, R N; Paul, B; Pei, H; Peitzmann, T; Pereira Da Costa, H; Pereira De Oliveira Filho, E; Peresunko, D; Pérez Lara, C E; Perez Lezama, E; Peskov, V; Pestov, Y; Petráček, V; Petrov, V; Petrovici, M; Petta, C; Piano, S; Pikna, M; Pillot, P; Pinazza, O; Pinsky, L; Piyarathna, D B; Płoskoń, M; Planinic, M; Pluta, J; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polichtchouk, B; Poljak, N; Poonsawat, W; Pop, A; Porteboeuf-Houssais, S; Porter, J; Pospisil, J; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puccio, M; Puddu, G; Pujahari, P; Punin, V; Putschke, J; Qvigstad, H; Rachevski, A; Raha, S; Rajput, S; Rak, J; Rakotozafindrabe, A; Ramello, L; Rami, F; Raniwala, R; Raniwala, S; Räsänen, S S; Rascanu, B T; Rathee, D; Read, K F; Redlich, K; Reed, R J; Rehman, A; Reichelt, P; Reidt, F; Ren, X; Renfordt, R; Reolon, A R; Reshetin, A; Revol, J-P; Reygers, K; Riabov, V; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Ristea, C; Rocco, E; Rodríguez Cahuantzi, M; Rodriguez Manso, A; Røed, K; Rogochaya, E; Rohr, D; Röhrich, D; Romita, R; Ronchetti, F; Ronflette, L; Rosnet, P; Rossi, A; Roukoutakis, F; Roy, A; Roy, C; Roy, P; Rubio Montero, A J; Rui, R; Russo, R; Ryabinkin, E; Ryabov, Y; Rybicki, A; Sadovsky, S; Šafařík, K; Sahlmuller, B; Sahoo, P; Sahoo, R; Sahoo, S; Sahu, P K; Saini, J; Sakai, S; Saleh, M A; Salzwedel, J; Sambyal, S; Samsonov, V; Šándor, L; Sandoval, A; Sano, M; Sarkar, D; Scapparone, E; Scarlassara, F; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schuchmann, S; Schukraft, J; Schulc, M; Schuster, T; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, R; Šefčík, M; Seger, J E; Sekiguchi, Y; Sekihata, D; Selyuzhenkov, I; Senosi, K; Senyukov, S; Serradilla, E; Sevcenco, A; Shabanov, A; Shabetai, A; Shadura, O; Shahoyan, R; Shangaraev, A; Sharma, A; Sharma, M; Sharma, M; Sharma, N; Shigaki, K; Shtejer, K; Sibiriak, Y; Siddhanta, S; Sielewicz, K M; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simatovic, G; Simonetti, G; Singaraju, R; Singh, R; Singha, S; Singhal, V; Sinha, B C; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Slupecki, M; Smirnov, N; Snellings, R J M; Snellman, T W; Søgaard, C; Song, J; Song, M; Song, Z; Soramel, F; Sorensen, S; Sozzi, F; Spacek, M; Spiriti, E; Sputowska, I; Spyropoulou-Stassinaki, M; Stachel, J; Stan, I; Stefanek, G; Stenlund, E; Steyn, G; Stiller, J H; Stocco, D; Strmen, P; Suaide, A A P; Sugitate, T; Suire, C; Suleymanov, M; Suljic, M; Sultanov, R; Šumbera, M; Szabo, A; Szanto de Toledo, A; Szarka, I; Szczepankiewicz, A; Szymanski, M; Tabassam, U; Takahashi, J; Tambave, G J; Tanaka, N; Tangaro, M A; Tarhini, M; Tariq, M; Tarzila, M G; Tauro, A; Tejeda Muñoz, G; Telesca, A; Terasaki, K; Terrevoli, C; Teyssier, B; Thäder, J; Thomas, D; Tieulent, R; Timmins, A R; Toia, A; Trogolo, S; Trombetta, G; Trubnikov, V; Trzaska, W H; Tsuji, T; Tumkin, A; Turrisi, R; Tveter, T S; Ullaland, K; Uras, A; Usai, G L; Utrobicic, A; Vajzer, M; Vala, M; Valencia Palomo, L; Vallero, S; Van Der Maarel, J; Van Hoorne, J W; van Leeuwen, M; Vanat, T; Vande Vyvre, P; Varga, D; Vargas, A; Vargyas, M; Varma, R; Vasileiou, M; Vasiliev, A; Vauthier, A; Vechernin, V; Veen, A M; Veldhoen, M; Velure, A; Venaruzzo, M; Vercellin, E; Vergara Limón, S; Vernet, R; Verweij, M; Vickovic, L; Viesti, G; Viinikainen, J; Vilakazi, Z; Villalobos Baillie, O; Villatoro Tello, A; Vinogradov, A; Vinogradov, L; Vinogradov, Y; Virgili, T; Vislavicius, V; Viyogi, Y P; Vodopyanov, A; Völkl, M A; Voloshin, K; Voloshin, S A; Volpe, G; von Haller, B; Vorobyev, I; Vranic, D; Vrláková, J; Vulpescu, B; Vyushin, A; Wagner, B; Wagner, J; Wang, H; Wang, M; Watanabe, D; Watanabe, Y; Weber, M; Weber, S G; Weiser, D F; Wessels, J P; Westerhoff, U; Whitehead, A M; Wiechula, J; Wikne, J; Wilde, M; Wilk, G; Wilkinson, J; Williams, M C S; Windelband, B; Winn, M; Yaldo, C G; Yang, H; Yang, P; Yano, S; Yasar, C; Yin, Z; Yokoyama, H; Yoo, I-K; Yoon, J H; Yurchenko, V; Yushmanov, I; Zaborowska, A; Zaccolo, V; Zaman, A; Zampolli, C; Zanoli, H J C; Zaporozhets, S; Zardoshti, N; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zgura, I S; Zhalov, M; Zhang, H; Zhang, X; Zhang, Y; Zhang, C; Zhang, Z; Zhao, C; Zhigareva, N; Zhou, D; Zhou, Y; Zhou, Z; Zhu, H; Zhu, J; Zichichi, A; Zimmermann, A; Zimmermann, M B; Zinovjev, G; Zyzak, M

    2016-01-01

    We report on the inclusive production cross sections of [Formula: see text], [Formula: see text], [Formula: see text](1S), [Formula: see text](2S) and [Formula: see text](3S), measured at forward rapidity with the ALICE detector in [Formula: see text] collisions at a center-of-mass energy [Formula: see text] TeV. The analysis is based on data collected at the LHC and corresponds to an integrated luminosity of 1.23 pb[Formula: see text]. Quarkonia are reconstructed in the dimuon-decay channel. The differential production cross sections are measured as a function of the transverse momentum [Formula: see text] and rapidity y, over the [Formula: see text] ranges [Formula: see text] GeV/c for [Formula: see text], [Formula: see text] GeV/c for all other resonances, and for [Formula: see text]. The cross sections, integrated over [Formula: see text] and y, and assuming unpolarized quarkonia, are [Formula: see text] [Formula: see text]b, [Formula: see text] [Formula: see text]b, [Formula: see text] nb, [Formula: see text] nb and [Formula: see text] nb, where the first uncertainty is statistical and the second one is systematic. These values agree, within at most [Formula: see text], with measurements performed by the LHCb collaboration in the same rapidity range.

  11. Spectroscopy of mesons and proton binding energy in the statistical model with three-quarkonium potentials

    Energy Technology Data Exchange (ETDEWEB)

    Ikhdair, S.M.; Sever, R.; Magdy, M.A. [Middle East Technical Univ., Ankara (Turkey)

    1994-04-01

    The mass spectra of the lowest S, P and D levels of the self-conjugate (Q{bar Q}) and the non-self-conjugate (Q{bar q}) mesons are studied with the three flavour-dependent static quark-antiquark potentials, belong to the class U(r)=a{sub 1}r{sup {gamma}}{minus}a{sub 2}r{sup {minus}{gamma}}+a{sub 3}, for {gamma}=1, 1/2, 3/4 cases. The non-relativistic form of statistical model is used in the calculations. The leptonic decay widths and decay constants of the vector Q{bar Q} and the psuedoscalar Q{bar q} mesons are estimated by considering the improved version of the Van Royen-Weisskopf formula. Moreover, the binding energy, the form factor and the charge radius of the proton have also been calculated. These results are in reasonably good agreement with experimental and theoretical findings. 21 refs., 6 tabs.

  12. Models of 750 GeV quarkonium and the LHC excesses

    CERN Document Server

    Hamaguchi, Koichi

    2016-01-01

    We investigate models involving a vector-like quark X, which forms a 750 GeV bound state and reproduces the observed diphoton signals at the LHC, in connection with other excesses in the LHC data. An exotic hypercharge of -4/3 is required to fit the signal cross section, which indicates that there is additional particle(s) that mediates the decay of X in the full theory. We find that, introducing an SU(2) doublet vector-like quark of mass around 600 GeV in our UV-complete framework can accommodate not only the diphoton but also the on-Z excess (and potentially a slight excess in the monojet events). Our models also include a dark matter candidate. The most useful way to probe the models at the LHC is via monojet searches. The relic dark matter density is largely determined by coannihilation effects, and indirect detection of dark matter annihilation signals is the alternative and complementary probe of our models.

  13. Cool covered sky-splitting spectrum-splitting FK

    Energy Technology Data Exchange (ETDEWEB)

    Mohedano, Rubén; Chaves, Julio; Falicoff, Waqidi; Hernandez, Maikel; Sorgato, Simone [LPI, Altadena, CA, USA and Madrid (Spain); Miñano, Juan C.; Benitez, Pablo [LPI, Altadena, CA, USA and Madrid, Spain and Universidad Politécnica de Madrid (UPM), Madrid (Spain); Buljan, Marina [Universidad Politécnica de Madrid (UPM), Madrid (Spain)

    2014-09-26

    Placing a plane mirror between the primary lens and the receiver in a Fresnel Köhler (FK) concentrator gives birth to a quite different CPV system where all the high-tech components sit on a common plane, that of the primary lens panels. The idea enables not only a thinner device (a half of the original) but also a low cost 1-step manufacturing process for the optics, automatic alignment of primary and secondary lenses, and cell/wiring protection. The concept is also compatible with two different techniques to increase the module efficiency: spectrum splitting between a 3J and a BPC Silicon cell for better usage of Direct Normal Irradiance DNI, and sky splitting to harvest the energy of the diffuse radiation and higher energy production throughout the year. Simple calculations forecast the module would convert 45% of the DNI into electricity.

  14. Dirac and Maxwell equations in Split Octonions

    CERN Document Server

    Beradze, Revaz

    2016-01-01

    The split octonionic form of Dirac and Maxwell equations are found. In contrast with the previous attempts these equations are derived from the octonionic analyticity condition and also we use different basis of the 8-dimensional space of split octonions.

  15. Split Left GC-Lpp Semigroups

    Institute of Scientific and Technical Information of China (English)

    Zhen Zhen LI; Xiao Jiang GUO; Zhi Qing FU

    2012-01-01

    A left GC-lpp semigroup S is called split if the natural homomorphism γb of S onto S/γ induced by γ is split.It is proved that a left GC-lpp semigroup is split if and only if it has a left adequate transversal.In particular,a construction theorem for split left GC-lpp semigroups is established.

  16. 7 CFR 51.2002 - Split shell.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Split shell. 51.2002 Section 51.2002 Agriculture... Standards for Grades of Filberts in the Shell 1 Definitions § 51.2002 Split shell. Split shell means a shell... of the shell, measured in the direction of the crack....

  17. Split NMSSM with electroweak baryogenesis

    CERN Document Server

    Demidov, S V; Kirpichnikov, D V

    2016-01-01

    In light of the Higgs boson discovery we reconsider generation of the baryon asymmetry in the non-minimal split Supersymmetry model with an additional singlet superfield in the Higgs sector. We find that successful baryogenesis during the first order electroweak phase transition is possible within phenomenologically viable part of the model parameter space. We discuss several phenomenological consequences of this scenario, namely, predictions for the electric dipole moments of electron and neutron and collider signatures of light charginos and neutralinos.

  18. The Split Variational Inequality Problem

    CERN Document Server

    Censor, Yair; Reich, Simeon

    2010-01-01

    We propose a new variational problem which we call the Split Variational Inequality Problem (SVIP). It entails finding a solution of one Variational Inequality Problem (VIP), the image of which under a given bounded linear transformation is a solution of another VIP. We construct iterative algorithms that solve such problems, under reasonable conditions, in Hilbert space and then discuss special cases, some of which are new even in Euclidean space.

  19. Torsional Split Hopkinson Bar Optimization

    Science.gov (United States)

    2012-04-10

    pillow blocks used to mount the incident and transmitter bars are cast iron based- mounted Babbitt -lined bearing split, for 1 in. shaft diameter...Total 1 McMaster-CARR 5911k16 1" Dia, 6" long anodized aluminum shaft $15.38 8 $123.04 2 McMaster-CARR 6359k37 Cast iron base-mounted babbitt

  20. Alternating tip splitting in directional solidification.

    Science.gov (United States)

    Utter, B; Ragnarsson, R; Bodenschatz, E

    2001-05-14

    We report experimental results on the tip splitting dynamics of seaweed growth in directional solidification of succinonitrile alloys. Despite the random appearance of the growth, a tip splitting morphology was observed in which the tip alternately splits to the left and to the right. The tip splitting frequency f was found to be related to the growth velocity V as a power law f~V1.5. This finding is consistent with the predictions of a tip splitting model that is also presented. Small anisotropies are shown to lead to different kinds of seaweed morphologies.

  1. Electrocatalytic water splitting to produce fuel hydrogen

    Science.gov (United States)

    Yuan, Hao

    into TiO2 to build a composite photoanode. Results show that the composite photoanode has good activity under ultraviolet (UV) illumination, and that its catalytic performance can be significantly improved by enabling light collection over a wider range of wavelengths. We have also proposed a scheme for a solar-driven water splitting device that integrates both electrocatalysts with solar energy collection and intensification, and is capable of minimizing mass transfer resistance. The dissertation concludes with suggested future work to further explore the MnOx and Ni/Ni(OH) 2 electrocatalysts.

  2. Heavy quarkonium effective theory

    CERN Document Server

    Mannel, T

    1995-01-01

    We formulate a QCD-based effective theory approach to heavy quarkonia-like systems as \\bar{c} c and \\bar{b} b resonances and B_c states. We apply the method to inclusive decays, working out a few examples in detail.

  3. Experimental review on quarkonium

    Energy Technology Data Exchange (ETDEWEB)

    Papadimitriou, Vaia; /Fermilab

    2004-10-01

    The authors discuss current issues and present the latest measurements on quarkonia production and spectroscopy from experiments monitoring hadron-hadron, lepton-hadron and lepton-lepton collisions. These measurements include cross section and polarization results for charmonium and bottomonium states. They also discuss the discovery and properties of the yet unexplained narrow state X(3872).

  4. CBM split title in Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, L.M. [EnCana Corp., Calgary, AB (Canada); Laurin, W.

    2006-07-01

    Coalbed methane (CBM) coal underlies most of central and southern Alberta. This article discussed disputes surrounding CBM ownership and split-titles. Historically, ownership of lands in Alberta implied possession and rights of all under- and overground substances. Surface estates are now typically separated from the subsurface estate, and subsurface estates are further divided either on the basis of substances or stratigraphically to create a split-title. Mineral severances are used to separate respective mineral rights among owners. While there is a relative certainty that under provincial Crown tenure CBM is included in natural gas tenure, there is currently no Canadian jurisprudence in respect of CBM entitlement on split-title private lands. Where compressed natural gas (CNG) and coal are separately held, and CBM ownership is not specifically addressed in the mineral severance, there is no Canadian law respecting CBM ownership. Resolution of ownership issues has proceeded on a case by case basis. Coal owners argue that there is a distinct interrelationship between CBM and its host coal strata. Gas owners argue that the chemical composition of CBM is identical to CNG, and that the recovery method is similar to that of CNG. Courts have historically applied the vernacular test to resolve mineral substance ownership disputes, which considers the meanings of the word coal and coalbed methane as defined by industry. The most recent and relevant application of the vernacular test were the Borys/Anderson, which effectively implemented a gas-oil interface ownership determination, which if applied to a coal grant or reservation, may lead to the conclusion that the coal strata includes CBM. It was concluded that there are 26,000 individual mineral owners in Alberta that may become involved in CBM litigation. and could become parties to litigation. refs., tabs., figs.

  5. Partitions of generalized split graphs

    OpenAIRE

    Shklarsky, Oren

    2012-01-01

    We discuss matrix partition problems for graphs that admit a partition into k independent sets and ` cliques. We show that when k + ` 6 2, any matrix M has finitely many (k; `) minimal obstructions and hence all of these problems are polynomial time solvable. We provide upper bounds for the size of any (k; `) minimal obstruction when k = ` = 1 (split graphs), when k = 2; ` = 0 (bipartite graphs), and when k = 0; ` = 2 (co-bipartite graphs). When k = ` = 1, we construct an exponential size spl...

  6. Generalized Forward-Backward Splitting

    OpenAIRE

    2011-01-01

    International audience; This paper introduces a generalized forward-backward splitting algorithm for finding a zero of a sum of maximal monotone operators $B + \\sum_{i=1}^{n} A_i$, where $B$ is cocoercive. It involves the computation of $B$ in an explicit (forward) step and of the parallel computation of the resolvents of the $A_i$'s in a subsequent implicit (backward) step. We prove its convergence in infinite dimension, and robustness to summable errors on the computed operators in the expl...

  7. Descent Assisted Split Habitat Lunar Lander Concept

    Science.gov (United States)

    Mazanek, Daniel D.; Goodliff, Kandyce; Cornelius, David M.

    2008-01-01

    The Descent Assisted Split Habitat (DASH) lunar lander concept utilizes a disposable braking stage for descent and a minimally sized pressurized volume for crew transport to and from the lunar surface. The lander can also be configured to perform autonomous cargo missions. Although a braking-stage approach represents a significantly different operational concept compared with a traditional two-stage lander, the DASH lander offers many important benefits. These benefits include improved crew egress/ingress and large-cargo unloading; excellent surface visibility during landing; elimination of the need for deep-throttling descent engines; potentially reduced plume-surface interactions and lower vertical touchdown velocity; and reduced lander gross mass through efficient mass staging and volume segmentation. This paper documents the conceptual study on various aspects of the design, including development of sortie and outpost lander configurations and a mission concept of operations; the initial descent trajectory design; the initial spacecraft sizing estimates and subsystem design; and the identification of technology needs

  8. Rectangular split-ring resonators with single-split and two-splits under different excitations at microwave frequencies

    Directory of Open Access Journals (Sweden)

    S. Zahertar

    2015-11-01

    Full Text Available In this work, transmission characteristics of rectangular split-ring resonators with single-split and two-splits are analyzed at microwave frequencies. The resonators are coupled with monopole antennas for excitation. The scattering parameters of the devices are investigated under different polarizations of E and H fields. The magnetic resonances induced by E and H fields are identified and the differences in the behavior of the resonators due to orientations of the fields are explained based on simulation and experimental results. The addition of the second split of the device is investigated considering different configurations of the excitation vectors. It is demonstrated that the single-split and the two-splits resonators exhibit identical transmission characteristics for a certain excitation configuration as verified with simulations and experiments. The presented resonators can effectively function as frequency selective media for varying excitation conditions.

  9. Development of new flux splitting schemes. [computational fluid dynamics algorithms

    Science.gov (United States)

    Liou, Meng-Sing; Steffen, Christopher J., Jr.

    1992-01-01

    Maximizing both accuracy and efficiency has been the primary objective in designing a numerical algorithm for computational fluid dynamics (CFD). This is especially important for solutions of complex three dimensional systems of Navier-Stokes equations which often include turbulence modeling and chemistry effects. Recently, upwind schemes have been well received for their capability in resolving discontinuities. With this in mind, presented are two new flux splitting techniques for upwind differencing. The first method is based on High-Order Polynomial Expansions (HOPE) of the mass flux vector. The second new flux splitting is based on the Advection Upwind Splitting Method (AUSM). The calculation of the hypersonic conical flow demonstrates the accuracy of the splitting in resolving the flow in the presence of strong gradients. A second series of tests involving the two dimensional inviscid flow over a NACA 0012 airfoil demonstrates the ability of the AUSM to resolve the shock discontinuity at transonic speed. A third case calculates a series of supersonic flows over a circular cylinder. Finally, the fourth case deals with tests of a two dimensional shock wave/boundary layer interaction.

  10. Generalized Forward-Backward Splitting

    CERN Document Server

    Raguet, Hugo; Peyré, Gabriel

    2011-01-01

    This paper introduces the generalized forward-backward splitting algorithm for minimizing convex functions of the form $F + \\sum_{i=1}^n G_i$, where $F$ has a Lipschitz-continuous gradient and the $G_i$'s are simple in the sense that their Moreau proximity operators are easy to compute. While the forward-backward algorithm cannot deal with more than $n = 1$ non-smooth function, our method generalizes it to the case of arbitrary $n$. Our method makes an explicit use of the regularity of $F$ in the forward step, and the proximity operators of the $G_i$'s are applied in parallel in the backward step. This allows the generalized forward backward to efficiently address an important class of convex problems. We prove its convergence in infinite dimension, and its robustness to errors on the computation of the proximity operators and of the gradient of $F$. Examples on inverse problems in imaging demonstrate the advantage of the proposed methods in comparison to other splitting algorithms.

  11. THE SPLITTING OF COMET HALLEY

    Institute of Scientific and Technical Information of China (English)

    Chen Daohan; Liu Linzhong; Alan Gilmore

    2000-01-01

    In combination with the authors previous obsewation about the splitting of Comet Halley in March 1986, the events involving the sharp, straight feature in the antisolar direction observed in the head of Comet Halley in 1910 (such as those occurring on May 14, 25 and 31, and June 2) are rediscussed The analysis leads to the following scenario: When Comet Halley explodes and splits, a fragment jettisoned or thrown off from the nucleus will, after moving in the direction of its tail, develop into a mini-comet. Although not well developed or permanent, it has its own plasma tail and, sometimes, a dust tail. If Bobrovnikoffs definition of a secondary nucleus is assumed, then the fragment should be considered as a real secondary nucleus. It seems that the current idea of a tailward jet suggested by Sekanina and Larson is a wrong explanation for the plasma tail of a mini-comet and hence the rotation period of 52-53h for Comet Halley is doubtful

  12. The splitting of Comet Halley

    Institute of Scientific and Technical Information of China (English)

    陈道汉; 刘麟仲; Alan Gilmore

    1995-01-01

    In combination with the authors’ previous observation about the splitting of Comet Halley in March 1986, the events involving the sharp, straight feature in the antisolar direction observed in the bead of Comet Halley in 1910 (such as those occurring on May 14, 25 and 31, and June 2) are rediscussed. The analysis leads to the following scenario: When Comet Halley explodes and splits, a fragment jettisoned or thrown off from the nucleus will, after moving in the direction of its tail, develop into a mini-comet. Although not well developed or permanent, it has its own plasma tail and, sometimes, a dust tail. If Bobrovnikoff’s definition of a secondary nucleus is assumed, then the fragment should be considered as a real secondary nucleus. It seems that the current idea of a tailward jet suggested by Sekanina and Larson is a wrong explanation for the plasma tail of a mini-comet and hence the rotation period of 52- 53 h for Comet Halley is doubtful.

  13. Algebraic techniques for diagonalization of a split quaternion matrix in split quaternionic mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Tongsong, E-mail: jiangtongsong@sina.com [Department of Mathematics, Linyi University, Linyi, Shandong 276005 (China); Department of Mathematics, Heze University, Heze, Shandong 274015 (China); Jiang, Ziwu; Zhang, Zhaozhong [Department of Mathematics, Linyi University, Linyi, Shandong 276005 (China)

    2015-08-15

    In the study of the relation between complexified classical and non-Hermitian quantum mechanics, physicists found that there are links to quaternionic and split quaternionic mechanics, and this leads to the possibility of employing algebraic techniques of split quaternions to tackle some problems in complexified classical and quantum mechanics. This paper, by means of real representation of a split quaternion matrix, studies the problem of diagonalization of a split quaternion matrix and gives algebraic techniques for diagonalization of split quaternion matrices in split quaternionic mechanics.

  14. Telugu Bigram Splitting using Consonant-based and Phrase-based Splitting

    Directory of Open Access Journals (Sweden)

    T. Kameswara Rao

    2014-06-01

    Full Text Available Splitting is a conventional process in most of Indian languages according to their grammar rules. It is called ‘pada vicchEdanam’ (a Sanskrit term for word splitting and is widely used by most of the Indian languages. Splitting plays a key role in Machine Translation (MT particularly when the source language (SL is an Indian language. Though this splitting may not succeed completely in extracting the root words of which the compound is formed, but it shows considerable impact in Natural Language Processing (NLP as an important phase. Though there are many types of splitting, this paper considers only consonant based and phrase based splitting.

  15. Medial Elbow Exposure for Coronoid Fractures: FCU-Split Versus Over-the-Top

    Science.gov (United States)

    2013-12-01

    margin of the mass anteriorly) was split and the pronator teres was released from the medial epicondyle and reflected off the anterior elbow capsule and...ORIGINAL ARTICLE Medial Elbow Exposure for Coronoid Fractures: FCU-Split Versus Over-the-Top Jeannie Huh, MD,* Chad A. Krueger, MD,* Michael J...fractures is unknown. The purpose of this study was to quantitatively compare the osseous and ligamentous exposure of the medial elbow using the flexor

  16. Simulation Study on the Splitting Effect of Transverse Mass Spectra in p+p Collisions at √S= 200GeV Using PYTHIA%√S=200GeV质子对撞中横质量谱劈裂效应的PYTHIA模拟研究

    Institute of Scientific and Technical Information of China (English)

    许依春; 邵明; 张子平

    2007-01-01

    In proton-proton (p+p) collisions at √S=200GeV, it is found that the previously observed universal shape of transverse mass spectra of hadron production seems to break down into two species of baryons and mesons at higher transverse mass region. In order to understand the underlying physics mechanism, a Monte Carlo study is done using the PYTHIA event generator. The simulation results demonstrate that this difference exists not only within string fragmentation scheme but also within independent fragmentation scheme, and comes primarily from gluon jets within string fragmentation scheme at RHIC energy. The new introduced physics mechanisms in PYTHIA version6.3 indicate that the complicated string junction may contribute to this splitting effect between mesons and baryons.%在质心系能量为200GeV的质子-质子对撞中,高横质量区域产生的强子横质量谱分裂成两类--重子和介子.应用PYTHIA产生器进行Monte Carlo分析其内在的物理机制.模拟结果表明,这种劈裂效应不仅在弦碎裂模型中出现,而且独立碎裂模型中也有,并且在RHIC能区(200GeV)下主要来源于胶子的贡献.在PYTHIA6.3版本中引入的新的物理机制表明复杂的弦纠缠(stringjunction)形式可能是这种重子介子差异的主要原因.

  17. Radiative improvement of the lattice NRQCD action using the background field method with applications to quarkonium spectroscopy

    CERN Document Server

    Hammant, T C; von Hippel, G M; Horgan, R R; Monahan, C J

    2013-01-01

    We apply the background field (BF) method to Non-Relativistic QCD (NRQCD) on the lattice in order to determine the one-loop radiative corrections to the coefficients of the NRQCD action in a manifestly gauge-covariant manner by matching the NRQCD prediction for particular on-shell processes with those of relativistic continuum QCD. We explain how the BF method is implemented in automated perturbation theory and discuss the technique for matching the relativistic and non-relativistic theories. We compute the one-loop radiative corrections to the sigma.B and Darwin terms for the NRQCD action currently used in simulations, as well as the one-loop coefficients of the spin-dependent O(alpha^2) four-fermion contact terms. The effect of the corrections on the hyperfine splitting of bottomonium is estimated using earlier simulation results; the corrected lattice prediction is found to be in agreement with experiment. Agreement of the hyperfine splitting of bottomonium and the B-meson system is confirmed by recent sim...

  18. Salt splitting with ceramic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kurath, D. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-10-01

    The purpose of this task is to develop ceramic membrane technologies for salt splitting of radioactively contaminated sodium salt solutions. This technology has the potential to reduce the low-level waste (LLW) disposal volume, the pH and sodium hydroxide content for subsequent processing steps, the sodium content of interstitial liquid in high-level waste (HLW) sludges, and provide sodium hydroxide free of aluminum for recycle within processing plants at the DOE complex. Potential deployment sites include Hanford, Savannah River, and Idaho National Engineering Laboratory (INEL). The technical approach consists of electrochemical separation of sodium ions from the salt solution using sodium (Na) Super Ion Conductors (NaSICON). As the name implies, sodium ions are transported rapidly through these ceramic crystals even at room temperatures.

  19. Signature splitting in 129Ce

    Institute of Scientific and Technical Information of China (English)

    LIU Ying; WU Xiao-Guang; ZHU Li-Hua; LI Guang-Sheng; HE Chuang-Ye; LI Xue-Qin; PAN Bo; HAO Xin; LI Li-Hua; WANG Zhi-Min; LI Zhong-Yu; XU Qiang

    2009-01-01

    The high spin states of 129Ce have been populated via heavy-ion fusion evaporation reaction 96Mo (37C1, 1p3n) 129Ce. The γ-γ coincidence and intensity balance used to measure the B(M1; I→I-1)/B(E2; I→I-2) (the probability ratio of the dipole and quadrupole transition) in v7/2[523] rotational band of 129Ce. And the energy splitting (Δe') has been got through the experimental Routhians. The lifetimes and quadrupole moments Qt have been extracted from the lineshape analyses using DSAM. The deformation of the v7/2[523] rotational band of 129Ce was extracted from the Qt and moment of inertia JRR.

  20. Method for carbon dioxide splitting

    Energy Technology Data Exchange (ETDEWEB)

    Miller, James E.; Diver, Jr., Richard B.; Siegel, Nathan P.

    2017-02-28

    A method for splitting carbon dioxide via a two-step metal oxide thermochemical cycle by heating a metal oxide compound selected from an iron oxide material of the general formula A.sub.xFe.sub.3-xO.sub.4, where 0.ltoreq.x.ltoreq.1 and A is a metal selected from Mg, Cu, Zn, Ni, Co, and Mn, or a ceria oxide compound of the general formula M.sub.aCe.sub.bO.sub.c, where 0

  1. Salt splitting using ceramic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kurath, D.E. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-10-01

    Many radioactive aqueous wastes in the DOE complex have high concentrations of sodium that can negatively affect waste treatment and disposal operations. Sodium can decrease the durability of waste forms such as glass and is the primary contributor to large disposal volumes. Waste treatment processes such as cesium ion exchange, sludge washing, and calcination are made less efficient and more expensive because of the high sodium concentrations. Pacific Northwest National Laboratory (PNNL) and Ceramatec Inc. (Salt Lake City UT) are developing an electrochemical salt splitting process based on inorganic ceramic sodium (Na), super-ionic conductor (NaSICON) membranes that shows promise for mitigating the impact of sodium. In this process, the waste is added to the anode compartment, and an electrical potential is applied to the cell. This drives sodium ions through the membrane, but the membrane rejects most other cations (e.g., Sr{sup +2}, Cs{sup +}). The charge balance in the anode compartment is maintained by generating H{sup +} from the electrolysis of water. The charge balance in the cathode is maintained by generating OH{sup {minus}}, either from the electrolysis of water or from oxygen and water using an oxygen cathode. The normal gaseous products of the electrolysis of water are oxygen at the anode and hydrogen at the cathode. Potentially flammable gas mixtures can be prevented by providing adequate volumes of a sweep gas, using an alternative reductant or destruction of the hydrogen as it is generated. As H{sup +} is generated in the anode compartment, the pH drops. The process may be operated with either an alkaline (pH>12) or an acidic anolyte (pH <1). The benefits of salt splitting using ceramic membranes are (1) waste volume reduction and reduced chemical procurement costs by recycling of NaOH; and (2) direct reduction of sodium in process streams, which enhances subsequent operations such as cesium ion exchange, calcination, and vitrification.

  2. First and second order numerical methods based on a new convex splitting for phase-field crystal equation

    Science.gov (United States)

    Shin, Jaemin; Lee, Hyun Geun; Lee, June-Yub

    2016-12-01

    The phase-field crystal equation derived from the Swift-Hohenberg energy functional is a sixth order nonlinear equation. We propose numerical methods based on a new convex splitting for the phase-field crystal equation. The first order convex splitting method based on the proposed splitting is unconditionally gradient stable, which means that the discrete energy is non-increasing for any time step. The second order scheme is unconditionally weakly energy stable, which means that the discrete energy is bounded by its initial value for any time step. We prove mass conservation, unique solvability, energy stability, and the order of truncation error for the proposed methods. Numerical experiments are presented to show the accuracy and stability of the proposed splitting methods compared to the existing other splitting methods. Numerical tests indicate that the proposed convex splitting is a good choice for numerical methods of the phase-field crystal equation.

  3. Towards an automated tool to evaluate the impact of the nuclear modification of the gluon density on quarkonium, D and B meson production in proton-nucleus collisions

    CERN Document Server

    Lansberg, Jean-Philippe

    2017-01-01

    We propose a simple and model-independent procedure to account for the impact of the nuclear modification of the gluon density as encoded in nuclear collinear PDF sets on two-to-two partonic hard processes in proton-nucleus collisions. This applies to a good approximation to quarkonium, D and B meson production, generically referred to H. Our procedure consists in parametrising the square of the parton scattering amplitude, A_{gg -> H X} and constraining it from the proton-proton data. Doing so, we have been able to compute the corresponding nuclear modification factors for J/psi, Upsilon and D^0 as a function of y and P_T at sqrt(s_NN)=5 and 8 TeV in the kinematics of the various LHC experiments in a model independent way. It is of course justified since the most important ingredient in such evaluations is the probability of each kinematical configuration. Our computations for D mesons can also be extended to B meson production. To further illustrate the potentiality of the tool, we provide --for the first t...

  4. Towards an automated tool to evaluate the impact of the nuclear modification of the gluon density on quarkonium, D and B meson production in proton-nucleus collisions

    CERN Document Server

    Lansberg, Jean-Philippe

    2016-12-27

    We propose a simple and model-independent procedure to account for the impact of the nuclear modification of the gluon density as encoded in nuclear collinear PDF sets on two-to-two partonic hard processes in proton-nucleus collisions. This applies to a good approximation to quarkonium, D and B meson production, generically referred to H. Our procedure consists in parametrising the square of the parton scattering amplitude, A_{gg -> H X} and constraining it from the proton-proton data. Doing so, we have been able to compute the corresponding nuclear modification factors for J/psi, Upsilon and D^0 as a function of y and P_T at sqrt(s_NN)=5 and 8 TeV in the kinematics of the various LHC experiments in a model independent way. It is of course justified since the most important ingredient in such evaluations is the probability of each kinematical configuration. Our computations for D mesons can also be extended to B meson production. To further illustrate the potentiality of the tool, we provide --for the first t...

  5. Towards an automated tool to evaluate the impact of the nuclear modification of the gluon density on quarkonium, D and B meson production in proton-nucleus collisions

    CERN Document Server

    Lansberg, Jean-Philippe

    2016-01-01

    We propose a simple and model-independent procedure to account for the impact of the nuclear modification of the gluon density as encoded in nuclear collinear PDF sets on two-to-two partonic hard processes in proton-nucleus collisions. This applies to a good approximation to quarkonium, D and B meson production, generically referred to H. Our procedure consists in parametrising the square of the parton scattering amplitude, A_{gg -> H X} and constraining it from the proton-proton data. Doing so, we have been able to compute the corresponding nuclear modification factors for J/psi, Upsilon and D^0 as a function of y and P_T at sqrt(s_NN)=5 and 8 TeV in the kinematics of the various LHC experiments in a model independent way. It is of course justified since the most important ingredient in such evaluations is the probability of each kinematical configuration. Our computations for D mesons can also be extended to B meson production. To further illustrate the potentiality of the tool, we provide --for the first t...

  6. Towards an automated tool to evaluate the impact of the nuclear modification of the gluon density on quarkonium, D and B meson production in proton-nucleus collisions

    Science.gov (United States)

    Lansberg, Jean-Philippe; Shao, Hua-Sheng

    2017-01-01

    We propose a simple and model-independent procedure to account for the impact of the nuclear modification of the gluon density as encoded in nuclear collinear PDF sets on two-to-two partonic hard processes in proton-nucleus collisions. This applies to a good approximation to quarkonium, D and B meson production, generically referred to H. Our procedure consists in parametrising the square of the parton scattering amplitude, A_{gg → HX} and constraining it from the proton-proton data. Doing so, we have been able to compute the corresponding nuclear modification factors for J/ψ , Υ and D^0 as a function of y and P_T at √{s_NN}=5 and 8 TeV in the kinematics of the various LHC experiments in a model independent way. It is of course justified since the most important ingredient in such evaluations is the probability of each kinematical configuration. Our computations for D mesons can also be extended to B meson production. To further illustrate the potentiality of the tool, we provide - for the first time - predictions for the nuclear modification factor for η _c production in pPb collisions at the LHC.

  7. Splitting of IVP bovine blastocyst affects morphology and gene expression of resulting demi-embryos during in vitro culture and in vivo elongation.

    Science.gov (United States)

    Velasquez, Alejandra E; Castro, Fidel O; Veraguas, Daniel; Cox, Jose F; Lara, Evelyn; Briones, Mario; Rodriguez-Alvarez, Lleretny

    2016-02-01

    Embryo splitting might be used to increase offspring yield and for molecular analysis of embryo competence. How splitting affects developmental potential of embryos is unknown. This research aimed to study the effect of bovine blastocyst splitting on morphological and gene expression homogeneity of demi-embryos and on embryo competence during elongation. Grade I bovine blastocyst produced in vitro were split into halves and distributed in nine groups (3 × 3 setting according to age and stage before splitting; age: days 7-9; stage: early, expanded and hatched blastocysts). Homogeneity and survival rate in vitro after splitting (12 h, days 10 and 13) and the effect of splitting on embryo development at elongation after embryo transfer (day 17) were assessed morphologically and by RT-qPCR. The genes analysed were OCT4, SOX2, NANOG, CDX2, TP1, TKDP1, EOMES, and BAX. Approximately 90% of split embryos had a well conserved defined inner cell mass (ICM), 70% of the halves had similar size with no differences in gene expression 12 h after splitting. Split embryos cultured further conserved normal and comparable morphology at day 10 of development; this situation changes at day 13 when embryo morphology and gene expression differed markedly among demi-embryos. Split and non-split blastocysts were transferred to recipient cows and were recovered at day 17. Fifty per cent of non-split embryos were larger than 100 mm (33% for split embryos). OCT4, SOX2, TP1 and EOMES levels were down-regulated in elongated embryos derived from split blastocysts. In conclusion, splitting day-8 blastocysts yields homogenous demi-embryos in terms of developmental capability and gene expression, but the initiation of the filamentous stage seems to be affected by the splitting.

  8. Standard Model Particles from Split Octonions

    Directory of Open Access Journals (Sweden)

    Gogberashvili M.

    2016-01-01

    Full Text Available We model physical signals using elements of the algebra of split octonions over the field of real numbers. Elementary particles are corresponded to the special elements of the algebra that nullify octonionic norms (zero divisors. It is shown that the standard model particle spectrum naturally follows from the classification of the independent primitive zero divisors of split octonions.

  9. Standard Model Particles from Split Octonions

    CERN Document Server

    Gogberashvili, Merab

    2016-01-01

    We model physical signals using elements of the algebra of split octonions over the field of real numbers. Elementary particles are corresponded to the special elements of the algebra that nullify octonionic norms (zero divisors). It is shown that the standard model particle spectrum naturally follows from the classification of the independent primitive zero divisors of split octonions.

  10. Distinguishing division algebras by finite splitting fields

    CERN Document Server

    Krashen, Daniel

    2010-01-01

    This paper is concerned with the problem of determining the number of division algebras which share the same collection of finite splitting fields. As a corollary we are able to determine when two central division algebras may be distinguished by their finite splitting fields over certain fields.

  11. Transferring Goods or Splitting a Resource Pool

    Science.gov (United States)

    Dijkstra, Jacob; Van Assen, Marcel A. L. M.

    2008-01-01

    We investigated the consequences for exchange outcomes of the violation of an assumption underlying most social psychological research on exchange. This assumption is that the negotiated direct exchange of commodities between two actors (pure exchange) can be validly represented as two actors splitting a fixed pool of resources (split pool…

  12. 2-Photon tandem device for water splitting

    DEFF Research Database (Denmark)

    Seger, Brian; Castelli, Ivano Eligio; Vesborg, Peter Christian Kjærgaard;

    2014-01-01

    Within the field Of photocatalytic water splitting there are several strategies to achieve the goal of efficient and cheap photocatalytic water splitting. This work examines one particular strategy by focusing on monolithically stacked, two-photon photoelectrochemical cells. The overall aim of th...

  13. Cheating More when the Spoils Are Split

    Science.gov (United States)

    Wiltermuth, Scott S.

    2011-01-01

    Four experiments demonstrated that people are more likely to cheat when the benefits of doing so are split with another person, even an anonymous stranger, than when the actor alone captures all of the benefits. In three of the studies, splitting the benefits of over-reporting one's performance on a task made such over-reporting seem less…

  14. Split scheduling with uniform setup times.

    NARCIS (Netherlands)

    F. Schalekamp; R.A. Sitters (René); S.L. van der Ster; L. Stougie (Leen); V. Verdugo; A. van Zuylen

    2015-01-01

    htmlabstractWe study a scheduling problem in which jobs may be split into parts, where the parts of a split job may be processed simultaneously on more than one machine. Each part of a job requires a setup time, however, on the machine where the job part is processed. During setup, a

  15. Cheating More when the Spoils Are Split

    Science.gov (United States)

    Wiltermuth, Scott S.

    2011-01-01

    Four experiments demonstrated that people are more likely to cheat when the benefits of doing so are split with another person, even an anonymous stranger, than when the actor alone captures all of the benefits. In three of the studies, splitting the benefits of over-reporting one's performance on a task made such over-reporting seem less…

  16. Anisotropic Spin Splitting in Step Quantum Wells

    Institute of Scientific and Technical Information of China (English)

    HAO Ya-Fei; CHEN Yong-Hai; HAO Guo-Dong; WANG Zhan-Guo

    2009-01-01

    By the method of finite difference,the anisotropic spin splitting of the Alx Ga1-x As/GaAs/Aly Ga1-y As/Alx Ga1-x As step quantum wells (QWs) are theoretically investigated considering the interplay of the bulk inversion asymmetry and structure inversion asymmetry induced by step quantum well structure and external electric field.We demonstrate that the anisotropy of the total spin splitting can be controlled by the shape of the QWs and the external electric field.The interface related Rashba effect plays an important effect on the anisotropic spin splitting by influencing the magnitude of the spin splitting and the direction of electron spin.The Rashba spin splitting presents in the step quantum wells due to the interface related Rashba effect even without external electric field or magnetic field.

  17. Crushing or splitting medications: unrecognized hazards.

    Science.gov (United States)

    Gill, Donna; Spain, Margaret; Edlund, Barbara J

    2012-01-01

    Given the high use and the cost of medications in the current economy, one way older adults may save money on prescription costs is to split some of their medications in half. However, not all oral medications can be split. Splitting inappropriate medications such as extended-release tablets can be harmful and in some instances very dangerous. In addition to splitting medications, older adults who have difficulty swallowing pills may resort to crushing the medication for ease of administration. This option is also problematic and potentially harmful if the medication is not intended to be crushed. Clinicians managing the care of older adults need to discuss medication administration, clarify the dosing schedule, and clearly indicate the route of administration. Patients should be cautioned not to split or crush a medication without checking with the health care provider or pharmacist.

  18. Light splitting with imperfect wave plates.

    Science.gov (United States)

    Jackson, Jarom S; Archibald, James L; Durfee, Dallin S

    2017-02-01

    We discuss the use of wave plates with arbitrary retardances, in conjunction with a linear polarizer, to split linearly polarized light into two linearly polarized beams with an arbitrary splitting fraction. We show that for non-ideal wave plates, a much broader range of splitting ratios is typically possible when a pair of wave plates, rather than a single wave plate, is used. We discuss the maximum range of splitting fractions possible with one or two wave plates as a function of the wave plate retardances, and how to align the wave plates to achieve the maximum splitting range possible when simply rotating one of the wave plates while keeping the other one fixed. We also briefly discuss an alignment-free polarization rotator constructed from a pair of half-wave plates.

  19. Muon g-2 and 125 GeV Higgs in Split-Family Supersymmetry

    CERN Document Server

    Ibe, Masahiro; Yokozaki, Norimi

    2013-01-01

    We discuss the minimal supersymmetric standard model with "split-family" spectrum where the sfermions in the first two generations are in the hundreds GeV to a TeV range while the sfermions in the third generation are in the range of tens TeV. With the split-family spectrum, the deviation of the muon g-2 and the observed Higgs boson mass are explained simultaneously. It is predicted that the gluino and the squarks in the first two generations are within the reach of the LHC experiments in most favored parameter space for the universal gaugino mass, which can be tested by searching for events with missing transverse energy or events with stable charged massive particles. We also point out that the split-family scenario can be consistent with the focus point scenario for the non-universal gaugino masses where the required mu-term is in the hundreds GeV range.

  20. Determination of $m_c$ and $m_b$ from quarkonium 1S energy levels in perturbative QCD

    CERN Document Server

    Kiyo, Yuichiro; Sumino, Yukinari

    2015-01-01

    We update determination of the $\\overline{\\rm MS}$ masses of the charm and bottom quarks, from comparisons of the masses of the charmonium and bottomonium $1S$ states with their perturbative predictions up to next-to-next-to-next-to-leading order in $\\varepsilon$ expansion and using the $\\overline{\\rm MS}$ masses. Effects of non-zero charm-quark mass in the bottomonium masses are incorporated up to next-to-next-to-leading order. We obtain $\\overline m_c=1246\\pm 2 (d_3) \\pm 4 (\\alpha_s) \\pm 23 (\\text{h.o.} )~{\\rm MeV} $ and $\\overline m_b=4197\\pm 2 (d_3) \\pm 6 (\\alpha_s) \\pm 20 (\\text{h.o.} )\\pm 5 (m_c)~ {\\rm MeV} $, which agree with the current Particle Data Group values.

  1. Bad splits in bilateral sagittal split osteotomy: systematic review of fracture patterns.

    Science.gov (United States)

    Steenen, S A; Becking, A G

    2016-07-01

    An unfavourable and unanticipated pattern of the mandibular sagittal split osteotomy is generally referred to as a 'bad split'. Few restorative techniques to manage the situation have been described. In this article, a classification of reported bad split pattern types is proposed and appropriate salvage procedures to manage the different types of undesired fracture are presented. A systematic review was undertaken, yielding a total of 33 studies published between 1971 and 2015. These reported a total of 458 cases of bad splits among 19,527 sagittal ramus osteotomies in 10,271 patients. The total reported incidence of bad split was 2.3% of sagittal splits. The most frequently encountered were buccal plate fractures of the proximal segment (types 1A-F) and lingual fractures of the distal segment (types 2A and 2B). Coronoid fractures (type 3) and condylar neck fractures (type 4) have seldom been reported. The various types of bad split may require different salvage approaches.

  2. Segmented holographic spectrum splitting concentrator

    Science.gov (United States)

    Ayala, Silvana P.; Vorndran, Shelby; Wu, Yuechen; Chrysler, Benjamin; Kostuk, Raymond K.

    2016-09-01

    This paper presents a segmented parabolic concentrator employing holographic spectral filters that provide focusing and spectral bandwidth separation capability to the system. Strips of low band gap silicon photovoltaic (PV) cells are formed into a parabolic surface as shown by Holman et. al. [1]. The surface of the PV segments is covered with holographic elements formed in dichromated gelatin. The holographic elements are designed to transmit longer wavelengths to silicon cells, and to reflect short wavelength light towards a secondary collector where high-bandgap PV cells are mounted. The system can be optimized for different combinations of diffuse and direct solar illumination conditions for particular geographical locations by controlling the concentration ratio and filtering properties of the holographic elements. In addition, the reflectivity of the back contact of the silicon cells is used to increase the optical path length and light trapping. This potentially allows the use of thin film silicon for the low bandgap PV cell material. The optical design combines the focusing properties of the parabolic concentrator and the holographic element to control the concentration ratio and uniformity of the spectral distribution at the high bandgap cell location. The presentation concludes with a comparison of different spectrum splitting holographic filter materials for this application.

  3. Innovative solar thermochemical water splitting.

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Roy E. Jr.; Siegel, Nathan P.; Evans, Lindsey R.; Moss, Timothy A.; Stuecker, John Nicholas (Robocasting Enterprises, Albuquerque, NM); Diver, Richard B., Jr.; Miller, James Edward; Allendorf, Mark D. (Sandia National Laboratories, Livermore, CA); James, Darryl L. (Texas Tech University, Lubbock, TX)

    2008-02-01

    Sandia National Laboratories (SNL) is evaluating the potential of an innovative approach for splitting water into hydrogen and oxygen using two-step thermochemical cycles. Thermochemical cycles are heat engines that utilize high-temperature heat to produce chemical work. Like their mechanical work-producing counterparts, their efficiency depends on operating temperature and on the irreversibility of their internal processes. With this in mind, we have invented innovative design concepts for two-step solar-driven thermochemical heat engines based on iron oxide and iron oxide mixed with other metal oxides (ferrites). The design concepts utilize two sets of moving beds of ferrite reactant material in close proximity and moving in opposite directions to overcome a major impediment to achieving high efficiency--thermal recuperation between solids in efficient counter-current arrangements. They also provide inherent separation of the product hydrogen and oxygen and are an excellent match with high-concentration solar flux. However, they also impose unique requirements on the ferrite reactants and materials of construction as well as an understanding of the chemical and cycle thermodynamics. In this report the Counter-Rotating-Ring Receiver/Reactor/Recuperator (CR5) solar thermochemical heat engine and its basic operating principals are described. Preliminary thermal efficiency estimates are presented and discussed. Our ferrite reactant material development activities, thermodynamic studies, test results, and prototype hardware development are also presented.

  4. Numerical modeling of isothermal compositional grading by convex splitting methods

    KAUST Repository

    Li, Yiteng

    2017-04-09

    In this paper, an isothermal compositional grading process is simulated based on convex splitting methods with the Peng-Robinson equation of state. We first present a new form of gravity/chemical equilibrium condition by minimizing the total energy which consists of Helmholtz free energy and gravitational potential energy, and incorporating Lagrange multipliers for mass conservation. The time-independent equilibrium equations are transformed into a system of transient equations as our solution strategy. It is proved our time-marching scheme is unconditionally energy stable by the semi-implicit convex splitting method in which the convex part of Helmholtz free energy and its derivative are treated implicitly and the concave parts are treated explicitly. With relaxation factor controlling Newton iteration, our method is able to converge to a solution with satisfactory accuracy if a good initial estimate of mole compositions is provided. More importantly, it helps us automatically split the unstable single phase into two phases, determine the existence of gas-oil contact (GOC) and locate its position if GOC does exist. A number of numerical examples are presented to show the performance of our method.

  5. Canola response to nitrogen sources and split application

    Directory of Open Access Journals (Sweden)

    João E. Kaefer

    2015-11-01

    Full Text Available ABSTRACTThe aim of this study was to evaluate the response of the canola crop to nitrogen (N sources and split application. The experiment was carried out in two agricultural years (2009 and 2010, at the experimental unit of the Pontifical Catholic University of Paraná - PUCPR, Campus of Toledo. A completely randomized design in 5 x 2 factorial scheme was adopted in the experiment. The treatments consisted of five split applications of N at sowing and/or as top dressing (0 and 0, 120 and 0, 0 and 120, 40 and 80, 80 and 40 kg of N ha-1 and two N sources (ammonium sulfate and urea, with four replicates. The canola genotype Hyola 61 was used in the experiment, which was evaluated for plant height, number of plants m-2, shoot dry matter, leaf area, mass of seedpods plant-1, thousand-grain weight, yield and the contents of protein and oil in the grains. The results show that the variables were not influenced by the evaluated sources of N fertilization, but were significantly influenced by the split application of N, with the highest results obtained for the application of 1/3 at sowing and 2/3 as top-dressing (40 and 80 kg ha-1 of N.

  6. Valley splitting in a silicon quantum device platform.

    Science.gov (United States)

    Miwa, Jill A; Warschkow, Oliver; Carter, Damien J; Marks, Nigel A; Mazzola, Federico; Simmons, Michelle Y; Wells, Justin W

    2014-03-12

    By suppressing an undesirable surface Umklapp process, it is possible to resolve the two most occupied states (1Γ and 2Γ) in a buried two-dimensional electron gas (2DEG) in silicon. The 2DEG exists because of an atomically sharp profile of phosphorus dopants which have been formed beneath the Si(001) surface (a δ-layer). The energy separation, or valley splitting, of the two most occupied bands has critical implications for the properties of δ-layer derived devices, yet until now, has not been directly measurable. Density functional theory (DFT) allows the 2DEG band structure to be calculated, but without experimental verification the size of the valley splitting has been unclear. Using a combination of direct spectroscopic measurements and DFT we show that the measured band structure is in good qualitative agreement with calculations and reveal a valley splitting of 132 ± 5 meV. We also report the effective mass and occupation of the 2DEG states and compare the dispersions and Fermi surface with DFT.

  7. Semi-strong split domination in graphs

    Directory of Open Access Journals (Sweden)

    Anwar Alwardi

    2014-06-01

    Full Text Available Given a graph $G = (V,E$, a dominating set $D subseteq V$ is called a semi-strong split dominating set of $G$ if $|V setminus D| geq 1$ and the maximum degree of the subgraph induced by $V setminus D$ is 1. The minimum cardinality of a semi-strong split dominating set (SSSDS of G is the semi-strong split domination number of G, denoted $gamma_{sss}(G$. In this work, we introduce the concept and prove several results regarding it.

  8. Rotations in the Space of Split Octonions

    Directory of Open Access Journals (Sweden)

    Merab Gogberashvili

    2009-01-01

    Full Text Available The geometrical application of split octonions is considered. The new representation of products of the basis units of split octonionic having David's star shape (instead of the Fano triangle is presented. It is shown that active and passive transformations of coordinates in octonionic “eight-space” are not equivalent. The group of passive transformations that leave invariant the pseudonorm of split octonions is SO(4,4, while active rotations are done by the direct product of O(3,4-boosts and real noncompact form of the exceptional group G2. In classical limit, these transformations reduce to the standard Lorentz group.

  9. Communication: Tunnelling splitting in the phosphine molecule

    Science.gov (United States)

    Sousa-Silva, Clara; Tennyson, Jonathan; Yurchenko, Sergey N.

    2016-09-01

    Splitting due to tunnelling via the potential energy barrier has played a significant role in the study of molecular spectra since the early days of spectroscopy. The observation of the ammonia doublet led to attempts to find a phosphine analogous, but these have so far failed due to its considerably higher barrier. Full dimensional, variational nuclear motion calculations are used to predict splittings as a function of excitation energy. Simulated spectra suggest that such splittings should be observable in the near infrared via overtones of the ν2 bending mode starting with 4ν2.

  10. Level of copper in human split ejaculate.

    Science.gov (United States)

    Skandhan, Kalanghot; Valsa, James; Sumangala, Balakrishnan; Jaya, Vasudevan

    2017-02-03

    The purpose of this study was to understand the details of splits of an ejaculate and to locate the origin of release of copper into semen. Laboratory methods routinely followed for semen analysis were carried out. Copper was estimated by employing atomic absorption spectrophotometry. First split of ejaculate showed the highest number of motile sperm, the quality of which decreased from first to third. Copper level in splits 1, 2 and 3 was 29, 23 and 22 µg%, respectively. This study concluded that copper was released from throughout the genital tract.

  11. Splitting Functions at High Transverse Momentum

    CERN Document Server

    Moutafis, Rhea Penelope; CERN. Geneva. TH Department

    2017-01-01

    Among the production channels of the Higgs boson one contribution could become significant at high transverse momentum which is the radiation of a Higgs boson from another particle. This note focuses on the calculation of splitting functions and cross sections of such processes. The calculation is first carried out on the example $e\\rightarrow e\\gamma$ to illustrate the way splitting functions are calculated. Then the splitting function of $e\\rightarrow eh$ is calculated in similar fashion. This procedure can easily be generalized to processes such as $q\\rightarrow qh$ or $g\\rightarrow gh$.

  12. 2S Hyperfine splitting of muonic hydrogen

    CERN Document Server

    Martynenko, A P

    2004-01-01

    Corrections of orders alpha^5, alpha^6 are calculated in the hyperfine splitting of the 2S state in the muonic hydrogen. The nuclear structure effects are taken into account in the one- and two-loop Feynman amplitudes by means of the proton electromagnetic form factors. Total numerical value of the 2S state hyperfine splitting 22.8148 meV in the (\\mu p) can be considered as reliable estimation for the corresponding experiment with the accuracy 10^{-5}. The value of the Sternheim's hyperfine splitting interval [8\\Delta E^{HFS}(2S)-\\Delta E^{HFS}(1S)] is obtained with the accuracy 10^{-6}.

  13. Tunnelling splitting in the phosphine molecule

    CERN Document Server

    Sousa-Silva, Clara; Yurchenko, Sergey N

    2016-01-01

    Splitting due to tunnelling via the potential energy barrier has played a significant role in the study of molecular spectra since the early days of spectroscopy. The observation of the ammonia doublet led to attempts to find a phosphine analogous, but these have so far failed due to its considerably higher barrier. Full dimensional, variational nuclear motion calculations are used to predict splittings as a function of excitation energy. Simulated spectra suggest that such splittings should be observable in the near infrared via overtones of the $\

  14. MASS DEFLECTOR APPLICATION FOR CERN’s ON-LINE ISOTOPE SEPARATOR FACILITY 073

    CERN Document Server

    Sánchez-Conejo, J

    2004-01-01

    The mass deflector application for the General Purpose Separator GPS allows splitting a beam of particles, characterized by a central mass, into two particle beams, which are sent to a high-mass and low-mass beam lines.

  15. MASS DEFLECTOR APPLICATION FOR CERN’s ON-LINE ISOTOPE SEPARATOR FACILITY 077

    CERN Document Server

    Sánchez-Conejo, J

    2004-01-01

    The mass deflector application for the General Purpose Separator GPS allows splitting a beam of particles, characterized by a central mass, into two particle beams, which are sent to a high-mass and low-mass beam lines.

  16. A light WR in SO(10) with split fermion representations

    Science.gov (United States)

    Maalampi, J.; Pulido, J.

    1985-01-01

    It has been previously shown that in SO(10) one can have a light right-handed vector boson WR (and ZR) provided the weak mixing angle is in the range sin2θw = (0.26-0.31. The recent UA1 results, however, indicate sin2θw = 0.226. We show that under these new circumstances a light WR (and ZR) is still possible, if mass split fermion multiplets (10, 16 and 16) are added to the model. Present address: Centro de Fisica da Matéria Condensada, Av. Prof. Gama Pinto, 2, 1699 Lisboa Codex, Portugal.

  17. Electroweak Splitting Functions and High Energy Showering

    CERN Document Server

    Chen, Junmou; Tweedie, Brock

    2016-01-01

    We derive the electroweak (EW) collinear splitting functions for the Standard Model, including the massive fermions, gauge bosons and the Higgs boson. We first present the splitting functions in the limit of unbroken SU(2)xU(1) and discuss their general features in the collinear and soft-collinear regimes. We then systematically incorporate EW symmetry breaking (EWSB), which leads to the emergence of additional "ultra-collinear" splitting phenomena and naive violations of the Goldstone-boson Equivalence Theorem. We suggest a particularly convenient choice of non-covariant gauge (dubbed "Goldstone Equivalence Gauge") that disentangles the effects of Goldstone bosons and gauge fields in the presence of EWSB, and allows trivial book-keeping of leading power corrections in the VEV. We implement a comprehensive, practical EW showering scheme based on these splitting functions using a Sudakov evolution formalism. Novel features in the implementation include a complete accounting of ultra-collinear effects, matching...

  18. Supramolecular Control over Split-Luciferase Complementation.

    Science.gov (United States)

    Bosmans, Ralph P G; Briels, Jeroen M; Milroy, Lech-Gustav; de Greef, Tom F A; Merkx, Maarten; Brunsveld, Luc

    2016-07-25

    Supramolecular split-enzyme complementation restores enzymatic activity and allows for on-off switching. Split-luciferase fragment pairs were provided with an N-terminal FGG sequence and screened for complementation through host-guest binding to cucurbit[8]uril (Q8). Split-luciferase heterocomplex formation was induced in a Q8 concentration dependent manner, resulting in a 20-fold upregulation of luciferase activity. Supramolecular split-luciferase complementation was fully reversible, as revealed by using two types of Q8 inhibitors. Competition studies with the weak-binding FGG peptide revealed a 300-fold enhanced stability for the formation of the ternary heterocomplex compared to binding of two of the same fragments to Q8. Stochiometric binding by the potent inhibitor memantine could be used for repeated cycling of luciferase activation and deactivation in conjunction with Q8, providing a versatile module for in vitro supramolecular signaling networks.

  19. Irrational beliefs, attitudes about competition, and splitting.

    Science.gov (United States)

    Watson, P J; Morris, R J; Miller, L

    2001-03-01

    Rational-Emotive Behavior Therapy (REBT) theoretically promotes actualization of both individualistic and social-oriented potentials. In a test of this assumption, the Belief Scale and subscales from the Survey of Personal Beliefs served as measures of what REBT presumes to be pathogenic irrationalities. These measures were correlated with the Hypercompetitive Attitude Scale (HCAS), the Personal Development Competitive Attitude Scale (PDCAS), factors from the Splitting Index, and self-esteem. Results for the HCAS and Self-Splitting supported the REBT claim about individualistic self-actualization. Mostly nonsignificant and a few counterintuitive linkages were observed for irrational beliefs with the PDCAS, Family-Splitting, and Other-Splitting, and these data suggested that REBT may be less successful in capturing the "rationality" of a social-oriented self-actualization.

  20. Split Brain Theory: Implications for Nurse Educators.

    Science.gov (United States)

    de Meneses, Mary

    1980-01-01

    Discusses incorporating nontraditional concepts of learning in nursing education. Elements explored include the split brain theory, school design, teaching styles, teacher's role, teaching strategies, adding variety to the curriculum, and modular learning. (CT)

  1. Ray splitting in paraxial optical cavities

    CERN Document Server

    Puentes, G; Woerdman, J P

    2003-01-01

    We present a numerical investigation of the ray dynamics in a paraxial optical cavity when a ray splitting mechanism is present. The cavity is a conventional two-mirror stable resonator and the ray splitting is achieved by inserting an optical beam splitter perpendicular to the cavity axis. We show that depending on the position of the beam splitter the optical resonator can become unstable and the ray dynamics displays a positive Lyapunov exponent.

  2. Antenna Splitting Functions for Massive Particles

    Energy Technology Data Exchange (ETDEWEB)

    Larkoski, Andrew J.; Peskin, Michael E.; /SLAC

    2011-06-22

    An antenna shower is a parton shower in which the basic move is a color-coherent 2 {yields} 3 parton splitting process. In this paper, we give compact forms for the spin-dependent antenna splitting functions involving massive partons of spin 0 and spin 1/2. We hope that this formalism we have presented will be useful in describing the QCD dynamics of the top quark and other heavy particles at LHC.

  3. Split-plot designs for multistage experimentation

    DEFF Research Database (Denmark)

    Kulahci, Murat; Tyssedal, John

    2016-01-01

    at the same time will be more efficient. However, there have been only a few attempts in the literature to provide an adequate and easy-to-use approach for this problem. In this paper, we present a novel methodology for constructing two-level split-plot and multistage experiments. The methodology is based...... be accommodated in each stage. Furthermore, split-plot designs for multistage experiments with good projective properties are also provided....

  4. Laser beam splitting by polarization encoding.

    Science.gov (United States)

    Wan, Chenhao

    2015-03-20

    A scheme is proposed to design a polarization grating that splits an incident linearly polarized beam to an array of linearly polarized beams of identical intensity distribution and various azimuth angles of linear polarization. The grating is equivalent to a wave plate with space-variant azimuth angle and space-variant phase retardation. The linear polarization states of all split beams make the grating suitable for coherent beam combining architectures based on Dammann gratings.

  5. Split School of High Energy Physics 2015

    CERN Document Server

    2015-01-01

    Split School of High Energy Physics 2015 (SSHEP 2015) was held at the Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture (FESB), University of Split, from September 14 to September 18, 2015. SSHEP 2015 aimed at master and PhD students who were interested in topics pertaining to High Energy Physics. SSHEP 2015 is the sixth edition of the High Energy Physics School. Previous five editions were held at the Department of Physics, University of Sarajevo, Bosnia and Herzegovina.

  6. First measurement of the W boson mass with CDF in Run 2

    Energy Technology Data Exchange (ETDEWEB)

    Stelzer-Chilton, Oliver [Univ. of Toronto, ON (Canada)

    2006-01-01

    This thesis describes a first measurement of the W Boson mass through the decay into a muon and a neutrino in Run 2 of the Tevatron. The W Bosons are produced in proton-antiproton collisions at a center of mass energy of 1.96 TeV. The data sample used for this analysis corresponds to 200 pb-1 recorded by the upgraded Collider Detector at Fermilab. The most important quantity in this measurement is the momentum of the muon measured in a magnetic spectrometer which is calibrated using the two quarkonium resonances J/Ψ and Y(1S). Systematic uncertainties arise from the modeling of the recoil when the W Boson is produced, the momentum calibration, the modeling of W Boson production and decay dynamics and backgrounds. The result is: MW = 80408 ± 50(stat.) ± 57(syst.) MeV/c2.

  7. Urban pattern: Layout design by hierarchical domain splitting

    KAUST Repository

    Yang, Yongliang

    2013-11-01

    We present a framework for generating street networks and parcel layouts. Our goal is the generation of high-quality layouts that can be used for urban planning and virtual environments. We propose a solution based on hierarchical domain splitting using two splitting types: streamline-based splitting, which splits a region along one or multiple streamlines of a cross field, and template-based splitting, which warps pre-designed templates to a region and uses the interior geometry of the template as the splitting lines. We combine these two splitting approaches into a hierarchical framework, providing automatic and interactive tools to explore the design space.

  8. Gravitino dark matter in split supersymmetry with bilinear R-parity violation

    Energy Technology Data Exchange (ETDEWEB)

    Cottin, Giovanna [University of Cambridge, Cavendish Laboratory, Cambridge (United Kingdom); Diaz, Marco A. [Universidad Catolica de Chile, Instituto de Fisica, Santiago (Chile); Guzman, Maria Jose [Instituto de Astronomia y Fisica del Espacio, Buenos Aires (Argentina); Panes, Boris [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo, SP (Brazil)

    2014-11-15

    In Split-SUSY with BRpV we show that the Gravitino DM solution is consistent with experimental evidence as regards its relic density and life time. We arrive at this conclusion by performing a complete numerical and algebraic study of the parameter space, including constraints from the recently determined Higgs mass, updated neutrino physics, and BBN constraints on NLSP decays. The Higgs mass requires a relatively low Split-SUSY mass scale, which is naturally smaller than usual values for reheating temperature, allowing the use of the standard expression for the relic density. We include restrictions from neutrino physics with three generations, and we notice that the gravitino decay width depends on the atmospheric neutrino mass scale. We calculate the neutralino decay rate and find it consistent with BBN. We mention some implications on indirect DM searches. (orig.)

  9. Controllable valley splitting in silicon quantum devices

    Science.gov (United States)

    Goswami, Srijit; Slinker, K. A.; Friesen, Mark; McGuire, L. M.; Truitt, J. L.; Tahan, Charles; Klein, L. J.; Chu, J. O.; Mooney, P. M.; van der Weide, D. W.; Joynt, Robert; Coppersmith, S. N.; Eriksson, Mark A.

    2007-01-01

    Silicon has many attractive properties for quantum computing, and the quantum-dot architecture is appealing because of its controllability and scalability. However, the multiple valleys in the silicon conduction band are potentially a serious source of decoherence for spin-based quantum-dot qubits. Only when a large energy splits these valleys do we obtain well-defined and long-lived spin states appropriate for quantum computing. Here, we show that the small valley splittings observed in previous experiments on Si-SiGe heterostructures result from atomic steps at the quantum-well interface. Lateral confinement in a quantum point contact limits the electron wavefunctions to several steps, and enhances the valley splitting substantially, up to 1.5meV. The combination of electrostatic and magnetic confinement produces a valley splitting larger than the spin splitting, which is controllable over a wide range. These results improve the outlook for realizing spin qubits with long coherence times in silicon-based devices.

  10. Technical Skills Required in Split Liver Transplantation.

    Science.gov (United States)

    Liu, Huanqiu; Li, Ruijun; Fu, Jinling; He, Qianyan; Li, Ji

    2016-07-01

    The number of liver grafts obtained from a cadaver can be greatly increased with the application of split liver transplantation. In the last 10 years, pediatric waiting list mortality has been reduced significantly with the use of this form of liver transplantation, which has 2 major forms. In its most commonly used form, the liver can be transplanted into 1 adult and 1 child by splitting it into a right extended and a left lateral graft. For adult and pediatric recipients, the results of this procedure are comparable to those of whole-organ techniques. In another form, 2 hemi-grafts are obtained by splitting the liver, which can be transplanted into a medium-sized adult (the right side) and a large child/small adult (the left side). The adult liver graft pool is expanded through the process of full right/full left splitting; but it is also a critical technique when one considers the knowledge required of the potential anatomic variations and the high technical skill level needed. In this review, we provide some basic insights into the technical and anatomical aspects of these 2 forms of split liver transplantation and present an updated summary of both forms.

  11. Spin splitting in 2D monochalcogenide semiconductors

    Science.gov (United States)

    Do, Dat T.; Mahanti, Subhendra D.; Lai, Chih Wei

    2015-11-01

    We report ab initio calculations of the spin splitting of the uppermost valence band (UVB) and the lowermost conduction band (LCB) in bulk and atomically thin GaS, GaSe, GaTe, and InSe. These layered monochalcogenides appear in four major polytypes depending on the stacking order, except for the monoclinic GaTe. Bulk and few-layer ε-and γ -type, and odd-number β-type GaS, GaSe, and InSe crystals are noncentrosymmetric. The spin splittings of the UVB and the LCB near the Γ-point in the Brillouin zone are finite, but still smaller than those in a zinc-blende semiconductor such as GaAs. On the other hand, the spin splitting is zero in centrosymmetric bulk and even-number few-layer β-type GaS, GaSe, and InSe, owing to the constraint of spatial inversion symmetry. By contrast, GaTe exhibits zero spin splitting because it is centrosymmetric down to a single layer. In these monochalcogenide semiconductors, the separation of the non-degenerate conduction and valence bands from adjacent bands results in the suppression of Elliot-Yafet spin relaxation mechanism. Therefore, the electron- and hole-spin relaxation times in these systems with zero or minimal spin splittings are expected to exceed those in GaAs when the D’yakonov-Perel’ spin relaxation mechanism is also suppressed.

  12. Fano resonance Rabi splitting of surface plasmons.

    Science.gov (United States)

    Liu, Zhiguang; Li, Jiafang; Liu, Zhe; Li, Wuxia; Li, Junjie; Gu, Changzhi; Li, Zhi-Yuan

    2017-08-14

    Rabi splitting and Fano resonance are well-known physical phenomena in conventional quantum systems as atoms and quantum dots, arising from strong interaction between two quantum states. In recent years similar features have been observed in various nanophotonic and nanoplasmonic systems. Yet, realization of strong interaction between two or more Fano resonance states has not been accomplished either in quantum or in optical systems. Here we report the observation of Rabi splitting of two strongly coupled surface plasmon Fano resonance states in a three-dimensional plasmonic nanostructure consisting of vertical asymmetric split-ring resonators. The plasmonic system stably supports triple Fano resonance states and double Rabi splittings can occur between lower and upper pairs of the Fano resonance states. The experimental discovery agrees excellently with rigorous numerical simulations, and is well explained by an analytical three-oscillator model. The discovery of Fano resonance Rabi splitting could provide a stimulating insight to explore new fundamental physics in analogous atomic systems and could be used to significantly enhance light-matter interaction for optical sensing and detecting applications.

  13. Inorganic photocatalysts for overall water splitting.

    Science.gov (United States)

    Xing, Jun; Fang, Wen Qi; Zhao, Hui Jun; Yang, Hua Gui

    2012-04-01

    Photocatalytic water splitting using semiconductor photocatalysts has been considered as a "green" process for converting solar energy into hydrogen. The pioneering work on electrochemical photolysis of water at TiO(2) electrode, reported by Fujishima and Honda in 1972, ushered in the area of solar fuel. As the real ultimate solution for solar fuel-generation, overall water splitting has attracted interest from researchers for some time, and a variety of inorganic photocatalysts have been developed to meet the challenge of this dream reaction. To date, high-efficiency hydrogen production from pure water without the assistance of sacrificial reagents remains an open challenge. In this Focus Review, we aim to provide a whole picture of overall water splitting and give an outlook for future research.

  14. Harvesting split thickness costal cartilage graft

    Directory of Open Access Journals (Sweden)

    Sunil Gaba

    2017-01-01

    Full Text Available Aim: There are few complications associated with harvesting of full thickness coastal cartilage grafts i.e., pneumothorax (0.9%, contour deformities and prolonged post-operative pain. To address these issues, authors devised special scalpel to harvest split-thickness costal cartilage grafts. Materials and Methods: Standard inframammary incision was used for harvesting rib. Incision was made directly over the desired rib. Specially designed scalpel was used to cut through the rib cartilage to the half of the thickness. The study was conducted in two parts – cadaveric and clinical. Results: There was significantly less pain and no pneumothorax in the patients in whom the split thickness graft was harvested. Wounds healed without any complication. Discussion: Thus, newly devised angulated scalpel used in the current study, showed the potential to supply the reconstructive surgeon with split thickness rib graft without risk of complications such as pneumothorax or warping contour deformities and post-operative pain.

  15. Trap split with Laguerre-Gaussian beams

    CERN Document Server

    Kazemi, Seyedeh Hamideh; Mahmoud, Mohammad

    2016-01-01

    The optical trapping techniques have been extensively used in physics, biophysics, micro-chemistry, and micro-mechanics to allow trapping and manipulation of materials ranging from particles, cells, biological substances, and polymers to DNA and RNA molecules. In this Letter, we present a convenient and effective way to generate a novel phenomenon of trapping, named trap split, in a conventional four-level double-$\\Lambda$ atomic system driven by four femtosecond Laguerre-Gaussian laser pulses. We find that trap split can be always achieved when atoms are trapped by such laser pulses, as compared to Gaussian ones. This work would greatly facilitate the trapping and manipulating the particles and generation of trap split. It may also suggest the possibility of extension into new research fields, such as micro-machining and biophysics.

  16. Classroom Modified Split-Root Technique and Its Application in a Plant Habitat Selection Experiment at the College Level

    Science.gov (United States)

    Elliott, Shannon S.; Winter, Peggy A.

    2011-01-01

    The split-root technique produces a plant with two equal root masses. Traditionally, the two root masses of the single plant are cultivated in adjacent pots with or without roots from competitors for the purpose of elucidating habitat preferences. We have tailored this technology for the classroom, adjusting protocols to match resources and time…

  17. Split-octonion Lie 3-algebra

    CERN Document Server

    Jardino, Sergio

    2010-01-01

    We extend the concept of a generalized Lie 3-algebra, known to octonions $\\mathbb{O}$, to split-octonions $\\mathbb{SO}$. In order to do that, we introduce a notational device that unifies the two elements product of both of the algebras. We have also proved that $\\mathbb{SO}$ is a Malcev algebra and have recalculated known relations for the structure constants in terms of the introduced structure tensor. An application of the split Lie $3-$algebra to a Bagger and Lambert gauge theory is also discussed.

  18. Recognition of Unipolar and Generalised Split Graphs

    Directory of Open Access Journals (Sweden)

    Colin McDiarmid

    2015-02-01

    Full Text Available A graph is unipolar if it can be partitioned into a clique and a disjoint union of cliques, and a graph is a generalised split graph if it or its complement is unipolar. A unipolar partition of a graph can be used to find efficiently the clique number, the stability number, the chromatic number, and to solve other problems that are hard for general graphs. We present an O(n2-time algorithm for recognition of n-vertex generalised split graphs, improving on previous O(n3-time algorithms.

  19. Splitting Strategy for Simulating Genetic Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Xiong You

    2014-01-01

    Full Text Available The splitting approach is developed for the numerical simulation of genetic regulatory networks with a stable steady-state structure. The numerical results of the simulation of a one-gene network, a two-gene network, and a p53-mdm2 network show that the new splitting methods constructed in this paper are remarkably more effective and more suitable for long-term computation with large steps than the traditional general-purpose Runge-Kutta methods. The new methods have no restriction on the choice of stepsize due to their infinitely large stability regions.

  20. Hyperfine splitting in lithium-like bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Lochmann, Matthias; Froemmgen, Nadja; Hammen, Michael; Will, Elisa [Universitaet Mainz (Germany); Andelkovic, Zoran; Kuehl, Thomas; Litvinov, Yuri; Winters, Danyal; Sanchez, Rodolfo [GSI Helmholtzzentrum, Darmstadt (Germany); Botermann, Benjamin; Noertershaeuser, Wilfried [Technische Universitaet Darmstadt (Germany); Bussmann, Michael [Helmholtzzentrum Dresden-Rossendorf (Germany); Dax, Andreas [CERN, Genf (Switzerland); Hannen, Volker; Joehren, Raphael; Vollbrecht, Jonas; Weinheimer, Christian [Universitaet Muenster (Germany); Geppert, Christopher [Universitaet Mainz (Germany); GSI Helmholtzzentrum, Darmstadt (Germany); Stoehlker, Thomas [GSI Helmholtzzentrum, Darmstadt (Germany); Universitaet Heidelberg (Germany); Thompson, Richard [Imperial College, London (United Kingdom); Volotka, Andrey [Technische Universitaet Dresden (Germany); Wen, Weiqiang [IMP Lanzhou (China)

    2013-07-01

    High-precision measurements of the hyperfine splitting values on Li- and H-like bismuth ions, combined with precise atomic structure calculations allow us to test QED-effects in the regime of the strongest magnetic fields that are available in the laboratory. Performing laser spectroscopy at the experimental storage ring (ESR) at GSI Darmstadt, we have now succeeded in measuring the hyperfine splitting in Li-like bismuth. Probing this transition has not been easy because of its extremely low fluorescence rate. Details about this challenging experiment will be given and the achieved experimental accuracy are presented.

  1. The transversely split gracilis twin free flaps

    Directory of Open Access Journals (Sweden)

    Upadhyaya Divya

    2010-01-01

    Full Text Available The gracilis muscle is a Class II muscle that is often used in free tissue transfer. The muscle has multiple secondary pedicles, of which the first one is the most consistent in terms of position and calibre. Each pedicle can support a segment of the muscle thus yielding multiple small flaps from a single, long muscle. Although it has often been split longitudinally along the fascicles of its nerve for functional transfer, it has rarely been split transversely to yield multiple muscle flaps that can be used to cover multiple wounds in one patient without subjecting him/her to the morbidity of multiple donor areas .

  2. CO2 splitting by DBD: understanding the influence of electrical parameters and regimes

    CERN Document Server

    Ozkan, Alp; Silva, Tiago; Britun, Nikolay; Snyders, Rony; Bogaerts, Annemie; Reniers, François

    2016-01-01

    Plasma processes are an innovative approach for the decomposition of CO2 in O radicals and CO as a valuable carbon source. In this experimental work, a tubular dielectric barrier discharge operating at atmospheric pressure has been used to split CO2 and study its conversion considering the influence of frequency and power, as well as the influence of various electrical regimes (AC, AC pulsed regimes). The CO2 conversion has been measured by mass spectrometry and gas chromatography while gas and walls temperatures have been determined and correlated to evaluate their influence of the CO2 splitting.

  3. Development of metal tungstate alloys for photoelectrochemical water splitting

    Science.gov (United States)

    Prasher, D.; Chong, M.; Chang, Y.; Sarker, P.; Huda, M. N.; Gaillard, N.

    2013-09-01

    In the present paper, we report our efforts on the development of metal tungstate alloys for efficient and economical photoelectrochemical water splitting. As suggested by density functional theory (DFT), the addition of copper to the host tungsten trioxide improves the visible light absorption. Past studies at the Hawaii Natural Energy Institute have demonstrated that water splitting with co-sputtered and spray-deposited CuWO4 with 2.2 eV band gap was feasible, although the efficiency of the process was severely limited by charge carrier recombination. Density functional theory calculation showed that CuWO4 contains unfilled mid-gap states and high electron effective mass. To improve transport properties of CuWO4, we hypothesized that copper tungstate (CuWO4) hollow nanospheres could improve holes transfer to the electrolyte and reduce recombination, improving the water splitting efficiency. Nanospheres were synthesized by sonochemical technique in which the precursors used were copper acetate, ammonium meta-tungstate and thiourea (used as a fuel to complete the reaction). All chemicals undergo a high-energy sonication by using ethylene glycol as a solvent. Preliminary linear scan voltammetry (LSV) performed for annealed CuWO4 under front side and back side simulated AM-1.5 illumination demonstrated that the CuWO4 hollow nanospheres were photoactive. Subsequent scanning (SEM) and transmission (TEM) electron microscopy studies revealed the clear formation of nano sized hollow spherical shaped CuWO4 particles. X-ray diffraction analysis showed a clear formation of triclinic CuWO4 structure during the sonochemical process.

  4. Potential NRQCD for unequal masses and the Bc spectrum at NNNLO

    CERN Document Server

    Peset, Clara; Stahlhofen, Maximilian

    2015-01-01

    We determine the $1/m$ and $1/m^2$ spin-independent heavy quarkonium potentials in the unequal mass case with $\\mathcal O(\\alpha^3)$ and $\\mathcal O(\\alpha^2)$ accuracy, respectively. We discuss in detail different methods to calculate the potentials, and show the equivalence among them. In particular we obtain, for the first time, the manifestly gauge invariant $1/m$ and $1/m^2$ potentials in terms of Wilson loops with next-to-leading order (NLO) precision. As an application of our results we derive the theoretical expression for the $B_c$ spectrum in the weak-coupling limit through next-to-next-to-next-to-leading order (N$^3$LO).

  5. Doublet-Triplet Splitting and Fat Branes

    CERN Document Server

    Maru, N

    2001-01-01

    We consider the doublet-triplet splitting problem in supersymmetric SU(5) grand unified theory in five dimensions where the fifth dimension is non-compact. We point out that an unnatural fine-tuning of parameters in order to obtain the light Higgs doublets is not required due to the exponential suppression of the overlap of the wave functions.

  6. Czech, Slovak science ten years after split

    CERN Document Server

    2003-01-01

    Ten years after the split of Czechoslovakia Czech and Slovak science are facing the same difficulties: shortage of money for research, poor salaries, obsolete equipment and brain drain, especially of the young, according to a feature in the Daily Lidove Noviny (1 page).

  7. Splitting up Beta’s change

    OpenAIRE

    Suarez, Ronny

    2014-01-01

    In this paper we estimated IBM beta from 2000 to 2013, then using differential equation mathematical formula we split up the annual beta’s change attributed to the volatility market effect, the stock volatility effect, the correlation effect and the jointly effect of these variables.

  8. Comparing Electrochemical and Biological Water Splitting

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Dimitrievski, Kristian; Siegbahn, P.

    2007-01-01

    On the basis of density functional theory calculations, we compare the free energies of key intermediates in the water splitting reaction over transition metal oxide surfaces to those of the Mn cluster in photo system II. In spite of the very different environments in the enzyme system...

  9. Three-Rainbow Coloring of Split Graphs

    Institute of Scientific and Technical Information of China (English)

    胡玉梅; 刘婷婷

    2015-01-01

    After a necessary condition is given, 3-rainbow coloring of split graphs with time complexity O(m) is obtained by constructive method. The number of corresponding colors is at most 2 or 3 more than the minimum num-ber of colors needed in a 3-rainbow coloring.

  10. Split brain: divided perception but undivided consciousness.

    Science.gov (United States)

    Pinto, Yair; Neville, David A; Otten, Marte; Corballis, Paul M; Lamme, Victor A F; de Haan, Edward H F; Foschi, Nicoletta; Fabri, Mara

    2017-01-24

    In extensive studies with two split-brain patients we replicate the standard finding that stimuli cannot be compared across visual half-fields, indicating that each hemisphere processes information independently of the other. Yet, crucially, we show that the canonical textbook findings that a split-brain patient can only respond to stimuli in the left visual half-field with the left hand, and to stimuli in the right visual half-field with the right hand and verbally, are not universally true. Across a wide variety of tasks, split-brain patients with a complete and radiologically confirmed transection of the corpus callosum showed full awareness of presence, and well above chance-level recognition of location, orientation and identity of stimuli throughout the entire visual field, irrespective of response type (left hand, right hand, or verbally). Crucially, we used confidence ratings to assess conscious awareness. This revealed that also on high confidence trials, indicative of conscious perception, response type did not affect performance. These findings suggest that severing the cortical connections between hemispheres splits visual perception, but does not create two independent conscious perceivers within one brain.

  11. Helioseismic Solar Cycle Changes and Splitting Coefficients

    Indian Academy of Sciences (India)

    S. C. Tripathy; Kiran Jain; A. Bhatnagar

    2000-09-01

    Using the GONG data for a period over four years, we have studied the variation of frequencies and splitting coefficients with solar cycle. Frequencies and even-order coefficients are found to change significantly with rising phase of the solar cycle. We also find temporal variations in the rotation rate near the solar surface.

  12. On Split Lie Triple Systems II

    Indian Academy of Sciences (India)

    Antonio J Calderón Martín; M Forero Piulestán

    2010-04-01

    In [4] it is studied that the structure of split Lie triple systems with a coherent 0-root space, that is, satisfying $[T_0,T_0,T]=0$ and $[T_0,T_,T_0]≠ 0$ for any nonzero root and where $T_0$ denotes the 0-root space and $T_$ the -root space, by showing that any of such triple systems with a symmetric root system is of the form $T=\\mathcal{U}+\\sum_j I_j$ with $\\mathcal{U}$ a subspace of the 0-root space $T_0$ and any $I_j$ a well described ideal of , satisfying $[I_j,T,I_k]=0$ if $j≠ k$. It is also shown in [4] that under certain conditions, a split Lie triple system with a coherent 0-root space is the direct sum of the family of its minimal ideals, each one being a simple split Lie triple system, and the simplicity of is characterized. In the present paper we extend these results to arbitrary split Lie triple systems with no restrictions on their 0-root spaces.

  13. Heavy-Ion Physics at a Fixed-Target Experiment Using the LHC Proton and Lead Beams (AFTER@LHC): Feasibility Studies for Quarkonium and Drell-Yan Production

    Science.gov (United States)

    Trzeciak, B.; Da Silva, C.; Ferreiro, E. G.; Hadjidakis, C.; Kikola, D.; Lansberg, J. P.; Massacrier, L.; Seixas, J.; Uras, A.; Yang, Z.

    2017-09-01

    We outline the case for heavy-ion-physics studies using the multi-TeV lead LHC beams in the fixed-target mode. After a brief contextual reminder, we detail the possible contributions of AFTER@LHC to heavy-ion physics with a specific emphasis on quarkonia. We then present performance simulations for a selection of observables. These show that Υ (nS), J/ψ and ψ (2S) production in heavy-ion collisions can be studied in new energy and rapidity domains with the LHCb and ALICE detectors. We also discuss the relevance to analyse the Drell-Yan pair production in asymmetric nucleus-nucleus collisions to study the factorisation of the nuclear modification of partonic densities and of further quarkonium states to restore their status of golden probes of the quark-gluon plasma formation.

  14. Towards versatile and sustainable hydrogen production via electrocatalytic water splitting: Electrolyte engineering

    KAUST Repository

    Shinagawa, Tatsuya

    2016-12-17

    Recent advances in power generation from renewable resources necessitate conversion of electricity to chemicals and fuels in an efficient manner. The electrocatalytic water splitting is one of the most powerful and widespread technologies. The development of highly efficient, inexpensive, flexible and versatile water electrolysis devices is desired. This review discusses the significance and impact of the electrolyte on electrocatalytic performance. Depending on the circumstances where water splitting reaction is conducted, required solution conditions such as the identity and molarity of ions may significantly differ. Quantitative understanding of such electrolyte properties on electrolysis performance is effective to facilitate developing efficient electrocatalytic systems. The electrolyte can directly participate in reaction schemes (kinetics), electrode stability, and/or indirectly impacts the performance by influencing concentration overpotential (mass transport). This review aims to guide fine-tuning of the electrolyte properties, or electrolyte engineering, for (photo)electrochemical water splitting reactions.

  15. Inclusive quarkonium production at forward rapidity in pp collisions at $\\sqrt{s}= 8$ TeV

    CERN Document Server

    Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahn, Sang Un; Aiola, Salvatore; Akindinov, Alexander; Alam, Sk Noor; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Millan Almaraz, Jesus Roberto; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Arnaldi, Roberta; Arnold, Oliver Werner; Arsene, Ionut Cristian; Arslandok, Mesut; Audurier, Benjamin; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Barth, Klaus; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biswas, Rathijit; Biswas, Saikat; Bjelogrlic, Sandro; Blair, Justin Thomas; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botta, Elena; Boettger, Stefan; Bourjau, Christian; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Bashir Butt, Jamila; Buxton, Jesse Thomas; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Carnesecchi, Francesca; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Cerkala, Jakub; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Cho, Soyeon; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Conti, Camila; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; Deplano, Caterina; Dhankher, Preeti; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Drozhzhova, Tatiana; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Epple, Eliane; Erazmus, Barbara Ewa; Erdemir, Irem; Erhardt, Filip; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Eum, Jongsik; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Feuillard, Victor Jose Gaston; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Fleck, Martin Gabriel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Gasik, Piotr Jan; Gauger, Erin Frances; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Coral, Diego Mauricio; Gomez Ramirez, Andres; Gonzalez, Victor; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Grachov, Oleg Anatolievich; Graczykowski, Lukasz Kamil; Graham, Katie Leanne; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Gronefeld, Julius Maximilian; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Harris, John William; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hillemanns, Hartmut; Hippolyte, Boris; Hosokawa, Ritsuya; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Inaba, Motoi; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacobs, Peter Martin; Jadhav, Manoj Bhanudas; Jadlovska, Slavka; Jadlovsky, Jan; Jahnke, Cristiane; Jakubowska, Monika Joanna; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karayan, Lilit; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Do Won; Kim, Dong Jo; Kim, Daehyeok; Kim, Hyeonjoong; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Klewin, Sebastian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobayashi, Taiyo; Kobdaj, Chinorat; Kofarago, Monika; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kopcik, Michal; Kour, Mandeep; Kouzinopoulos, Charalampos; Kovalenko, Oleksandr; Kovalenko, Vladimir; Kowalski, Marek; Koyithatta Meethaleveedu, Greeshma; Kralik, Ivan; Kravcakova, Adela; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kumar, Ajay; Kumar, Jitendra; Lokesh, Kumar; Kumar, Shyam; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Ladron De Guevara, Pedro; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Lee, Seongjoo; Lehas, Fatiha; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leon Vargas, Hermes; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Melikyan, Yuri; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Minervini, Lazzaro Manlio; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Moreira De Godoy, Denise Aparecida; Perez Moreno, Luis Alberto; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Munzer, Robert Helmut; Murray, Sean; Musa, Luciano; Musinsky, Jan; Naik, Bharati; Nair, Rahul; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Ferreira Natal Da Luz, Pedro Hugo; Nattrass, Christine; Nayak, Kishora; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Cabanillas Noris, Juan Carlos; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Orava, Risto; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Paola; Paic, Guy; Pal, Susanta Kumar; Pan, Jinjin; Pandey, Ashutosh Kumar; Papcun, Peter; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Patra, Rajendra Nath; Paul, Biswarup; Pei, Hua; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Perez Lezama, Edgar; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Rami, Fouad; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Read, Kenneth Francis; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Sefcik, Michal; Seger, Janet Elizabeth; Sekiguchi, Yuko; Sekihata, Daiki; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Senyukov, Serhiy; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Mona; Sharma, Monika; Sharma, Natasha; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Soegaard, Carsten; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Sozzi, Federica; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Suljic, Miljenko; Sultanov, Rishat; Sumbera, Michal; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Tabassam, Uzma; Takahashi, Jun; Tambave, Ganesh Jagannath; Tanaka, Naoto; Tangaro, Marco-Antonio; Tarhini, Mohamad; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trombetta, Giuseppe; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Vargas Trevino, Aurora Diozcora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vechernin, Vladimir; Veen, Annelies Marianne; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Villatoro Tello, Abraham; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Watanabe, Daisuke; Watanabe, Yosuke; Weber, Michael; Weber, Steffen Georg; Weiser, Dennis Franz; Wessels, Johannes Peter; Westerhoff, Uwe; Whitehead, Andile Mothegi; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yaldo, Chris G; Yang, Hongyan; Yang, Ping; Yano, Satoshi; Yasar, Cigdem; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yoon, Jin Hee; Yurchenko, Volodymyr; Yushmanov, Igor; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zardoshti, Nima; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Chunhui, Zhang; Zhang, Zuman; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym

    2016-01-01

    We report on the inclusive production cross sections of J/$\\psi$, $\\psi$(2S), $\\Upsilon$(1S), $\\Upsilon$(2S) and $\\Upsilon$(3S), measured at forward rapidity with the ALICE detector in pp collisions at a center-of-mass energy $\\sqrt{s}= 8$ TeV. The analysis is based on data collected at the LHC and corresponds to an integrated luminosity of 1.28 pb$^{-1}$. Quarkonia are reconstructed in the dimuon-decay channel. The differential production cross sections are measured as a function of the transverse momentum $p_{\\rm T}$ and rapidity $y$, over the $p_{\\rm T}$ ranges $0 < p_{\\rm T} < 20$ GeV/$c$ for J/$\\psi$, $0 < p_{\\rm T} < 12$ GeV/$c$ for all other resonances, and for $2.5 < y < 4$. The cross sections, integrated over $p_{\\rm T}$ and $y$, and assuming unpolarized quarkonia, are $\\sigma_{\\rm J/\\psi} = 8.63\\pm 0.04\\pm 0.79$ mb, $\\sigma_{\\psi(2S)}= 1.18\\pm 0.08\\pm 0.21$ mb, $\\sigma_{\\Upsilon(1S)} = 68\\pm 6\\pm 7$ nb, $\\sigma_{\\Upsilon(2S)} = 25\\pm 5\\pm 4$ nb and $\\sigma_{\\Upsilon(3S)} = 9\\pm 4\\p...

  16. Measurement of quarkonium production at forward rapidity in pp collisions at $\\sqrt{s}$ = 7 TeV

    CERN Document Server

    Abelev, Betty Bezverkhny; Adam, Jaroslav; Adamova, Dagmar; Aggarwal, Madan Mohan; Agnello, Michelangelo; Agostinelli, Andrea; Agrawal, Neelima; Ahammed, Zubayer; Ahmad, Nazeer; Ahmad, Arshad; Ahmed, Ijaz; Ahn, Sang Un; Ahn, Sul-Ah; Aimo, Ilaria; Aiola, Salvatore; Ajaz, Muhammad; Akindinov, Alexander; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altini, Valerio; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arbor, Nicolas; Arcelli, Silvia; Armesto Perez, Nestor; Arnaldi, Roberta; Aronsson, Tomas; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Ball, Markus; Baltasar Dos Santos Pedrosa, Fernando; Baral, Rama Chandra; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batyunya, Boris; Batzing, Paul Christoph; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bellwied, Rene; Belmont Moreno, Ernesto; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Berger, Martin Emanuel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Bjelogrlic, Sandro; Blanco, Fernando; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Bogolyubskiy, Mikhail; Boehmer, Felix Valentin; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Bossu, Francesco; Botje, Michiel; Botta, Elena; Boettger, Stefan; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Canoa Roman, Veronica; Carena, Francesco; Carena, Wisla; Castillo Castellanos, Javier Ernesto; Casula, Ester Anna Rita; Catanescu, Vasile Ioan; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortese, Pietro; Cortes Maldonado, Ismael; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dainese, Andrea; Dang, Ruina; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Kushal; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; Delagrange, Hugues; Deloff, Andrzej; Denes, Ervin Sandor; D'Erasmo, Ginevra; De Caro, Annalisa; De Cataldo, Giacinto; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; De Rooij, Raoul Stefan; Diaz Corchero, Miguel Angel; Dietel, Thomas; Divia, Roberto; Di Bari, Domenico; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Dorheim, Sverre; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Dutt Mazumder, Abhee Kanti; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Erazmus, Barbara Ewa; Erdal, Hege Austrheim; Eschweiler, Dominic; Espagnon, Bruno; Esposito, Marco; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Evdokimov, Sergey; Fabris, Daniela; Faivre, Julien; Falchieri, Davide; Fantoni, Alessandra; Fasel, Markus; Fehlker, Dominik; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Feofilov, Grigory; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floratos, Emmanouil; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Garishvili, Irakli; Gerhard, Jochen; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghidini, Bruno; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Ramirez, Andres; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Graczykowski, Lukasz Kamil; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Guilbaud, Maxime Rene Joseph; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Khan, Kamal; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harris, John William; Hartmann, Helvi; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hicks, Bernard Richard; Hippolyte, Boris; Hladky, Jan; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Innocenti, Gian Michele; Ionita, Costin; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Ivanytskyi, Oleksii; Jacholkowski, Adam Wlodzimierz; Jacobs, Peter Martin; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalcher, Sebastian; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Ketzer, Bernhard Franz; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Do Won; Kim, Dong Jo; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Jochen; Klein-Boesing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobdaj, Chinorat; Kofarago, Monika; Kohler, Markus Konrad; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Konevskikh, Artem; Kovalenko, Vladimir; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kramer, Frederick; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Krus, Miroslav; Kryshen, Evgeny; Krzewicki, Mikolaj; Kucera, Vit; Kucheryaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kulakov, Igor; Kumar, Jitendra; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; Ladron De Guevara, Pedro; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; La Pointe, Sarah Louise; La Rocca, Paola; Lea, Ramona; Lee, Graham Richard; Legrand, Iosif; Lehnert, Joerg Walter; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leoncino, Marco; Leon Monzon, Ildefonso; Levai, Peter; Li, Shuang; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loggins, Vera Renee; Loginov, Vitaly; Lohner, Daniel; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lu, Xianguo; Luettig, Philipp Johannes; Lunardon, Marcello; Luo, Jiebin; Luparello, Grazia; Luzzi, Cinzia; Ma, Rongrong; Maevskaya, Alla; Mager, Magnus; Mahapatra, Durga Prasad; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martashvili, Irakli; Martin, Nicole Alice; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martin Blanco, Javier; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitu, Ciprian Mihai; Mlynarz, Jocelyn; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Gameiro Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Musinsky, Jan; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Nattrass, Christine; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nicassio, Maria; Niculescu, Mihai; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Nilsen, Bjorn Steven; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Okatan, Ali; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Onderwaater, Jacobus; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Sahoo, Pragati; Pachmayer, Yvonne Chiara; Pachr, Milos; Pagano, Paola; Paic, Guy; Painke, Florian; Pajares Vales, Carlos; Pal, Susanta Kumar; Palmeri, Armando; Pant, Divyash; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Patalakha, Dmitry; Paticchio, Vincenzo; Paul, Biswarup; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Pesci, Alessandro; Pestov, Yury; Petracek, Vojtech; Petran, Michal; Petris, Mariana; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Pohjoisaho, Esko Heikki Oskari; Polishchuk, Boris; Poljak, Nikola; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Vladimir; Potukuchi, Baba; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Rauf, Aamer Wali; Razazi, Vahedeh; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reicher, Martijn; Reidt, Felix; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Rivetti, Angelo; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Sharma, Rohni; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossegger, Stefan; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Raghunath; Sahu, Pradip Kumar; Saini, Jogender; Salgado Lopez, Carlos Alberto; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sanchez Rodriguez, Fernando Javier; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Santagati, Gianluca; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Segato, Gianfranco; Seger, Janet Elizabeth; Selyuzhenkov, Ilya; Seo, Jeewon; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabetai, Alexandre; Shabratova, Galina; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Natasha; Sharma, Satish; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Skjerdal, Kyrre; Smakal, Radek; Smirnov, Nikolai; Snellings, Raimond; Soegaard, Carsten; Soltz, Ron Ariel; Song, Jihye; Song, Myunggeun; Soramel, Francesca; Sorensen, Soren Pontoppidan; Spacek, Michal; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew Donald; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Stolpovskiy, Mikhail; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Sultanov, Rishat; Sumbera, Michal; Susa, Tatjana; Symons, Timothy; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Takahashi, Jun; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tarazona Martinez, Alfonso; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terrevoli, Cristina; Ter-Minasyan, Astkhik; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Torii, Hisayuki; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ulery, Jason Glyndwr; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Vande Vyvre, Pierre; Vannucci, Luigi; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Diozcora Vargas Trevino, Aurora; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vechernin, Vladimir; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wagner, Vladimir; Wang, Mengliang; Wang, Yifei; Watanabe, Daisuke; Weber, Michael; Weber, Steffen Georg; Wessels, Johannes Peter; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Xiang, Changzhou; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Ping; Yang, Shiming; Yano, Satoshi; Yasnopolskiy, Stanislav; Yi, Jungyu; Yin, Zhongbao; Yoo, In-Kwon; Yushmanov, Igor; Zaccolo, Valentina; Zach, Cenek; Zaman, Ali; Zampolli, Chiara; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, Fengchu; Zhou, You; Zhu, Hongsheng; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zoccarato, Yannick Denis; Zynovyev, Mykhaylo; Zyzak, Maksym

    2014-08-13

    The inclusive production cross sections at forward rapidity of J/$\\psi$, $\\psi$(2S), $\\Upsilon$(1S) and $\\Upsilon$(2S) are measured in pp collisions at $\\sqrt{s}$ = 7 TeV with the ALICE detector at the LHC. The analysis is based on a data sample corresponding to an integrated luminosity of 1.35 pb$^{-1}$. Quarkonia are reconstructed in the dimuon-decay channel and the signal yields are evaluated by fitting the $\\mu^+\\mu^-$ invariant mass distributions. The differential production cross sections are measured as a function of the transverse momentum $p_T$ and rapidity y, over the transverse momentum range 0 < $p_T$ < 20 GeV/c for J/$\\psi$ and 0 < $p_T$ < 12 GeV/c for all other resonances and for 2.5 < y < 4. The measured cross sections integrated over $p_T$ and y, and assuming unpolarized quarkonia, are: $\\sigma_{J/\\psi}$=6.69 $\\pm$ 0.04 $\\pm$ 0.61 $\\mu$ b, $\\sigma_{\\psi(2S)}$ = 1.13 $\\pm$ 0.07 $\\pm$ 0.14 $\\mu$b, $\\sigma_{\\Upsilon(1S)}$ = 54.2 $\\pm$ 5.0 $\\pm$ 6.7 nb and $\\sigma_{\\Upsilon(2S)}...

  17. SPLITTING MODULUS FINITE ELEMENT METHOD FOR ORTHOGONAL ANISOTROPIC PLATE BENGING

    Institute of Scientific and Technical Information of China (English)

    党发宁; 荣廷玉; 孙训方

    2001-01-01

    Splitting modulus variational principle in linear theory of solid mechanics was introduced, the principle for thin plate was derived, and splitting modulus finite element method of thin plate was established too. The distinctive feature of the splitting model is that its functional contains one or more arbitrary additional parameters, called splitting factors,so stiffness of the model can be adjusted by properly selecting the splitting factors. Examples show that splitting modulus method has high precision and the ability to conquer some illconditioned problems in usual finite elements. The cause why the new method could transform the ill-conditioned problems into well-conditioned problem, is analyzed finally.

  18. Magnetic impurities in spin-split superconductors

    Science.gov (United States)

    van Gerven Oei, W.-V.; Tanasković, D.; Žitko, R.

    2017-02-01

    Hybrid semiconductor-superconductor quantum dot devices are tunable physical realizations of quantum impurity models for a magnetic impurity in a superconducting host. The binding energy of the localized subgap Shiba states is set by the gate voltages and external magnetic field. In this work we discuss the effects of the Zeeman spin splitting, which is generically present both in the quantum dot and in the (thin-film) superconductor. The unequal g factors in semiconductor and superconductor materials result in respective Zeeman splittings of different magnitude. We consider both classical and quantum impurities. In the first case we analytically study the spectral function and the subgap states. The energy of bound states depends on the spin-splitting of the Bogoliubov quasiparticle bands as a simple rigid shift. For the case of collinear magnetization of impurity and host, the Shiba resonance of a given spin polarization remains unperturbed when it overlaps with the branch of the quasiparticle excitations of the opposite spin polarization. In the quantum case, we employ numerical renormalization group calculations to study the effect of the Zeeman field for different values of the g factors of the impurity and of the superconductor. We find that in general the critical magnetic field for the singlet-doublet transition changes nonmonotonically as a function of the superconducting gap, demonstrating the existence of two different transition mechanisms: Zeeman splitting of Shiba states or gap closure due to Zeeman splitting of Bogoliubov states. We also study how in the presence of spin-orbit coupling, modeled as an additional noncollinear component of the magnetic field at the impurity site, the Shiba resonance overlapping with the quasiparticle continuum of the opposite spin gradually broadens and then merges with the continuum.

  19. Investigation on the safety of mass vaccination influenza A H1N1 inactivated split influenza vaccine in Handan%邯郸市大规模接种甲型H1N1流行性感冒病毒裂解疫苗的安全性观察

    Institute of Scientific and Technical Information of China (English)

    李瑞芳; 李建坡; 马玉忠; 张振国; 李琦

    2012-01-01

    Objective To evaluation the safety of mass vaccination influenza A H1N1 inactivated split influenza vaccine. Method According to national adverse events following immunization ( AEFI) surveillance system and vaccination information management system, collecting the information of inoculation individual case and AEFI individual case form October 29, 2009 to May 4, 2010 and the information were analyzed by descriptive method. Results Total of 717 288 persons inoculated vaccine and 105 AEFI cases were reported with the incidence rate of 14.64/105, among them, 102 cases were adverse reactions (93 were general reactions and 9 were paradoxical reaction), 2 coupling diseases and one psychogenic reaction, no serious adverse reactions and inoculation accidents occurred. Fever was the main general reaction symptoms, most of the patients were below 38.5℃ (44 cases, 70.97%) . Reported AEFI had regional disparity without age and sex differences. Most reported AEFI occurred within 24 hours after inoculation. The vaccine qualities of different manufacturers were different (χ2 =85.6, Punilateral <0.01) . Conclusions The influenza A H1N1 vaccine was safe and the incidence rate of AEFI was low, without serious adverse reaction. AEFI incidence rate had no statistically significant differences on ages and sex. The vaccines qualities of different manufacturers were not same.%目的 评价甲型H1N1流行性感冒裂解疫苗(简称甲流疫苗)大规模接种的安全性.方法 通过儿童预防接种信息管理系统和全国疑似预防接种异常反应(Adverse Events Following Immunization,AEFI)信息管理系统,收集邯郸市2009年10月29日~2010年5月4日接种甲流疫苗个案信息和接种后AEFI个案信息,采用描述性方法对相关指标进行流行病学分析.结果 邯郸市共接种甲流疫苗717288人,发生AEFI 105 例,发生率14.64/10万,其中不良反应102例(含一般反应93例、异常反应9例),偶合症2例,心因性反应1例,无严重不

  20. Splitting, splitting and splitting again: A brief history of the development of regional government in Indonesia since independence

    Directory of Open Access Journals (Sweden)

    Anne Booth

    2011-04-01

    Full Text Available The paper reviews the changes in the structure and role of provincial and sub-provincial governments in Indonesia since independence. Particular attention is paid to the process of splitting both provinces and districts (kabupaten and kota into smaller units. The paper points out that this process has been going on since the 1950s, but has accelerated in the post-Soeharto era. The paper examines why the splitting of government units has occurred in some parts of the Outer Islands to a much greater extent than in Java, and also examines the implications of developments since 1999 for the capacity of local government units to deliver basic services such as health and education.

  1. Split Bregman method for large scale fused Lasso

    CERN Document Server

    Ye, Gui-Bo

    2010-01-01

    rdering of regression or classification coefficients occurs in many real-world applications. Fused Lasso exploits this ordering by explicitly regularizing the differences between neighboring coefficients through an $\\ell_1$ norm regularizer. However, due to nonseparability and nonsmoothness of the regularization term, solving the fused Lasso problem is computationally demanding. Existing solvers can only deal with problems of small or medium size, or a special case of the fused Lasso problem in which the predictor matrix is identity matrix. In this paper, we propose an iterative algorithm based on split Bregman method to solve a class of large-scale fused Lasso problems, including a generalized fused Lasso and a fused Lasso support vector classifier. We derive our algorithm using augmented Lagrangian method and prove its convergence properties. The performance of our method is tested on both artificial data and real-world applications including proteomic data from mass spectrometry and genomic data from array...

  2. Black Phosphorus: Critical Review and Potential for Water Splitting Photocatalyst

    Directory of Open Access Journals (Sweden)

    Tae Hyung Lee

    2016-10-01

    Full Text Available A century after its first synthesis in 1914, black phosphorus has been attracting significant attention as a promising two-dimensional material in recent years due to its unique properties. Nowadays, with the development of its exfoliation method, there are extensive applications of black phosphorus in transistors, batteries and optoelectronics. Though, because of its hardship in mass production and stability problems, the potential of the black phosphorus in various fields is left unexplored. Here, we provide a comprehensive review of crystal structure, electronic, optical properties and synthesis of black phosphorus. Recent research works about the applications of black phosphorus is summarized. Among them, the possibility of black phosphorous as a solar water splitting photocatalyst is mainly discussed and the feasible novel structure of photocatalysts based on black phosphorous is proposed.

  3. A Regularized Algorithm for the Proximal Split Feasibility Problem

    Directory of Open Access Journals (Sweden)

    Zhangsong Yao

    2014-01-01

    Full Text Available The proximal split feasibility problem has been studied. A regularized method has been presented for solving the proximal split feasibility problem. Strong convergence theorem is given.

  4. Photoelectrochemical water splitting: optimizing interfaces and light absorption

    NARCIS (Netherlands)

    Park, S.

    2015-01-01

    In this thesis several photoelectrochemical water splitting devices based on semiconductor materials were investigated. The aim was the design, characterization, and fabrication of solar-to-fuel devices which can absorb solar light and split water to produce hydrogen.

  5. Evaluation of Certain Pharmaceutical Quality Attributes of Lisinopril Split Tablets

    OpenAIRE

    Khairi M.S. Fahelelbom; Moawia M. M. Al-Tabakha; Nermin A. M. Eissa; Jeevani Javadi

    2016-01-01

    Tablet splitting is an accepted practice for the administration of drugs for a variety of reasons, including dose adjustment, ease of swallowing and cost savings. The purpose of this study was to evaluate the physical properties of lisinopril tablets as a result of splitting the tablets either by hand or with a splitting device. The impact of the splitting technique of lisinopril (Zestril® tablets, 20 mg) on certain physical parameters such as weight variation, friability, disintegration, dis...

  6. Solitary waves of the splitted RLW equation

    Science.gov (United States)

    Zaki, S. I.

    2001-07-01

    A combination of the splitting method and the cubic B-spline finite elements is used to solve the non-linear regularized long wave (RLW) equation. This approach involves a Bubnov-Galerkin method with cubic B-spline finite elements so that there is continuity of the dependent variable and its first derivative throughout the solution region. Time integration of the resulting systems is effected using a Crank-Nicholson approximation. In simulations of the migration of a single solitary wave this algorithm is shown to have higher accuracy and better conservation than a recent splitting difference scheme based on cubic spline interpolation functions, for different amplitudes ranging from a very small ( ⩾0.03) to a considerably high amplitudes ( ⩽0.3). The development of an undular bore is modeled.

  7. Meshed split skin graft for extensive vitiligo

    Directory of Open Access Journals (Sweden)

    Srinivas C

    2004-05-01

    Full Text Available A 30 year old female presented with generalized stable vitiligo involving large areas of the body. Since large areas were to be treated it was decided to do meshed split skin graft. A phototoxic blister over recipient site was induced by applying 8 MOP solution followed by exposure to UVA. The split skin graft was harvested from donor area by Padgett dermatome which was meshed by an ampligreffe to increase the size of the graft by 4 times. Significant pigmentation of the depigmented skin was seen after 5 months. This procedure helps to cover large recipient areas, when pigmented donor skin is limited with minimal risk of scarring. Phototoxic blister enables easy separation of epidermis thus saving time required for dermabrasion from recipient site.

  8. Functional Analysis of Split Airport Business Processes

    Directory of Open Access Journals (Sweden)

    Slavko Roguljić

    2005-01-01

    Full Text Available Optimisation of business processes represents the basis ofimproving the competitiveness of the Ailport as a service pro·vider. This directly implies not only the analysis and creation ofthe model of current organisation and technological processesbut also the necessity to measure these processes in order to reorganiseand improve them. Consequently, the Split AitportAuthority considers the functional analysis of its business processesas one of the major issues. Since in April2002 the analysisand modelling were completed in all the organisational unitsof handling setvice and cargo department organisational structures,both of the organisational structure of these services, aswell as of processes of aircraft, passenger, baggage and cargohandling, this paper will analyse the implementation of ARISComputer System at Split Airport Ground Handling Process.

  9. Artificial photosynthesis for solar water-splitting

    Science.gov (United States)

    Tachibana, Yasuhiro; Vayssieres, Lionel; Durrant, James R.

    2012-08-01

    Hydrogen generated from solar-driven water-splitting has the potential to be a clean, sustainable and abundant energy source. Inspired by natural photosynthesis, artificial solar water-splitting devices are now being designed and tested. Recent developments based on molecular and/or nanostructure designs have led to advances in our understanding of light-induced charge separation and subsequent catalytic water oxidation and reduction reactions. Here we review some of the recent progress towards developing artificial photosynthetic devices, together with their analogies to biological photosynthesis, including technologies that focus on the development of visible-light active hetero-nanostructures and require an understanding of the underlying interfacial carrier dynamics. Finally, we propose a vision for a future sustainable hydrogen fuel community based on artificial photosynthesis.

  10. Timelike single-logarithm-resummed splitting functions

    Energy Technology Data Exchange (ETDEWEB)

    Albino, S.; Bolzoni, P.; Kniehl, B.A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Kotikov, A.V. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Joint Inst. of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics

    2011-08-15

    We calculate the single logarithmic contributions to the quark singlet and gluon matrix of timelike splitting functions at all orders in the modified minimal-subtraction (MS) scheme. We fix two of the degrees of freedom of this matrix from the analogous results in the massive-gluon regularization scheme by using the relation between that scheme and the MS scheme. We determine this scheme transformation from the double logarithmic contributions to the timelike splitting functions and the coefficient functions of inclusive particle production in e{sup +}e{sup -} annihilation now available in both schemes. The remaining two degrees of freedom are fixed by reasonable physical assumptions. The results agree with the fixed-order results at next-to-next-to-leading order in the literature. (orig.)

  11. Solar Water Splitting Using Semiconductor Photocatalyst Powders

    KAUST Repository

    Takanabe, Kazuhiro

    2015-07-01

    Solar energy conversion is essential to address the gap between energy production and increasing demand. Large scale energy generation from solar energy can only be achieved through equally large scale collection of the solar spectrum. Overall water splitting using heterogeneous photocatalysts with a single semiconductor enables the direct generation of H from photoreactors and is one of the most economical technologies for large-scale production of solar fuels. Efficient photocatalyst materials are essential to make this process feasible for future technologies. To achieve efficient photocatalysis for overall water splitting, all of the parameters involved at different time scales should be improved because the overall efficiency is obtained by the multiplication of all these fundamental efficiencies. Accumulation of knowledge ranging from solid-state physics to electrochemistry and a multidisciplinary approach to conduct various measurements are inevitable to be able to understand photocatalysis fully and to improve its efficiency.

  12. Splitting of high power, cw proton beams

    CERN Document Server

    Facco, Alberto; Berkovits, Dan; Yamane, Isao

    2007-01-01

    A simple method for splitting a high power, continuous wave (cw) proton beam in two or more branches with low losses has been developed in the framework of the EURISOL (European Isotope Separation On-Line adioactive Ion Beam Facility) design study. The aim of the system is to deliver up to 4 MW of H beam to the main radioactive ion beam production target, and up to 100 kWof proton beams to three more targets, simultaneously. A three-step method is used, which includes magnetic neutralization of a fractionof the main H- beam, magnetic splitting of H- and H0, and stripping of H0 to H+. The method allowsslow raising and individual fine adjustment of the beam intensity in each branch.

  13. Modelling heterogeneous interfaces for solar water splitting

    Science.gov (United States)

    Pham, Tuan Anh; Ping, Yuan; Galli, Giulia

    2017-04-01

    The generation of hydrogen from water and sunlight offers a promising approach for producing scalable and sustainable carbon-free energy. The key of a successful solar-to-fuel technology is the design of efficient, long-lasting and low-cost photoelectrochemical cells, which are responsible for absorbing sunlight and driving water splitting reactions. To this end, a detailed understanding and control of heterogeneous interfaces between photoabsorbers, electrolytes and catalysts present in photoelectrochemical cells is essential. Here we review recent progress and open challenges in predicting physicochemical properties of heterogeneous interfaces for solar water splitting applications using first-principles-based approaches, and highlights the key role of these calculations in interpreting increasingly complex experiments.

  14. Modelling heterogeneous interfaces for solar water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Tuan Anh; Ping, Yuan; Galli, Giulia

    2017-01-09

    The generation of hydrogen from water and sunlight others a promising approach for producing scalable and sustainable carbon-free energy. The key of a successful solar-to-fuel technology is the design of efficient, long-lasting and low-cost photoelectrochemical cells, which are responsible for absorbing sunlight and driving water splitting reactions. To this end, a detailed understanding and control of heterogeneous interfaces between photoabsorbers, electrolytes and catalysts present in photoelectrochemical cells is essential. Here we review recent progress and open challenges in predicting physicochemical properties of heterogeneous interfaces for solar water splitting applications using first-principles-based approaches, and highlights the key role of these calculations in interpreting increasingly complex experiments.

  15. Embryo splitting: a role in infertility?

    Science.gov (United States)

    Wood, C

    2001-01-01

    Embryo splitting may be used to increase the potential fertility of couples requiring IVF. Using cattle as a model, it is possible to increase pregnancy rates from 70% per transfer of good quality in-vivo-produced embryos, to 110% by transferring the two demi-embryos resulting from the bisection of one embryo. The 30-40% greater chance of conception would reduce costs for the government, health authorities and patients, and reduce stress, time and complications for women having IVF treatment. Embryo splitting may also provide donor embryos for infertile couples that cannot conceive naturally or with IVF. The shortage of children for adoption and donor embryos may be overcome by the production of demi-embryos.

  16. Bunch Splitting Simulations for the JLEIC Ion Collider Ring

    Energy Technology Data Exchange (ETDEWEB)

    Satogata, Todd J. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Gamage, Randika [Old Dominion Univ., Norfolk, VA (United States)

    2016-05-01

    We describe the bunch splitting strategies for the proposed JLEIC ion collider ring at Jefferson Lab. This complex requires an unprecedented 9:6832 bunch splitting, performed in several stages. We outline the problem and current results, optimized with ESME including general parameterization of 1:2 bunch splitting for JLEIC parameters.

  17. 16 CFR 802.10 - Stock dividends and splits; reorganizations.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Stock dividends and splits; reorganizations... INTERPRETATIONS UNDER THE HART-SCOTT-RODINO ANTITRUST IMPROVEMENTS ACT OF 1976 EXEMPTION RULES § 802.10 Stock dividends and splits; reorganizations. (a) The acquisition of voting securities pursuant to a stock split...

  18. 7 CFR 51.2731 - U.S. Spanish Splits.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false U.S. Spanish Splits. 51.2731 Section 51.2731... STANDARDS) United States Standards for Grades of Shelled Spanish Type Peanuts Grades § 51.2731 U.S. Spanish Splits. “U.S. Spanish Splits” consists of shelled Spanish type peanut kernels which are split or...

  19. Ispra Mark-10 water splitting process

    Science.gov (United States)

    1975-01-01

    A thermochemical water splitting process, the Ispra Mark-10 chemical reaction cycle, was chosen for examining the possibility of using water to produce hydrogen on a large scale for fuel and major industrial chemical uses. The assumed energy source for the process is an HTGR (helium cooled). A process flow diagram, a material balance, and an energy balance were developed for the thermochemical reaction cycle. Principal reactions which constitute the cycle are included.

  20. Height in Splittings of Hyperbolic Groups

    Indian Academy of Sciences (India)

    Mahan Mitra

    2004-02-01

    Suppose is a hyperbolic subgroup of a hyperbolic group . Assume there exists > 0 such that the intersection of essentially distinct conjugates of is always finite. Further assume splits over with hyperbolic vertex and edge groups and the two inclusions of are quasi-isometric embeddings. Then is quasiconvex in . This answers a question of Swarup and provides a partial converse to the main theorem of [23].

  1. Continuously tunable, split-cavity gyrotrons

    Science.gov (United States)

    Brand, G. F.; Gross, M.

    1985-12-01

    Attention is given to a gyrotron cavity configuration which is split in halves longitudinally, to allow any frequency lying between the fixed cavity resonance to be assessed by mechanically changing the separation of the two halves. Experimental results are presented which demonstrate that the rate-of-change in resonant frequency with separation is greatest if the minor axis of the cavity cross section is the one undergoing change. Excellent agreement with theory is noted for these results.

  2. P-wave Cooper pair splitting

    Directory of Open Access Journals (Sweden)

    Henning Soller

    2012-07-01

    Full Text Available Background: Splitting of Cooper pairs has recently been realized experimentally for s-wave Cooper pairs. A split Cooper pair represents an entangled two-electron pair state, which has possible application in on-chip quantum computation. Likewise the spin-activity of interfaces in nanoscale tunnel junctions has been investigated theoretically and experimentally in recent years. However, the possible implications of spin-active interfaces in Cooper pair splitters so far have not been investigated.Results: We analyze the current and the cross correlation of currents in a superconductor–ferromagnet beam splitter, including spin-active scattering. Using the Hamiltonian formalism, we calculate the cumulant-generating function of charge transfer. As a first step, we discuss characteristics of the conductance for crossed Andreev reflection in superconductor–ferromagnet beam splitters with s-wave and p-wave superconductors and no spin-active scattering. In a second step, we consider spin-active scattering and show how to realize p-wave splitting using only an s-wave superconductor, through the process of spin-flipped crossed Andreev reflection. We present results for the conductance and cross correlations.Conclusion: Spin-activity of interfaces in Cooper pair splitters allows for new features in ordinary s-wave Cooper pair splitters, that can otherwise only be realized by using p-wave superconductors. In particular, it provides access to Bell states that are different from the typical spin singlet state.

  3. Dynamics of a split torque helicopter transmission

    Science.gov (United States)

    Rashidi, Majid; Krantz, Timothy

    A high reduction ratio split torque gear train has been proposed as an alternative to a planetary configuration for the final stage of a helicopter transmission. A split torque design allows a high ratio of power-to-weight for the transmission. The design studied in this work includes a pivoting beam that acts to balance thrust loads produced by the helical gear meshes in each of two parallel power paths. When the thrust loads are balanced, the torque is split evenly. A mathematical model was developed to study the dynamics of the system. The effects of time varying gear mesh stiffness, static transmission errors, and flexible bearing supports are included in the model. The model was demonstrated with a test case. Results show that although the gearbox has a symmetric configuration, the simulated dynamic behavior of the first and second compound gears are not the same. Also, results show that shaft location and mesh stiffness tuning are significant design parameters that influence the motions of the system.

  4. Transonymization as Revitalization: Old Toponyms of Split

    Directory of Open Access Journals (Sweden)

    Katarina Lozić Knezović

    2017-07-01

    Full Text Available The paper deals with ancient toponyms of Split, a city in the centre of the Croatian region of Dalmatia. Along with numerous monuments of spiritual and material culture, toponyms are part of the two-thousand-year-old city’s historical heritage. Split in particular abounds with sources that provide valuable information concerning ancient toponyms. In terms of the study and preservation of toponymy, three basic sources are crucial: the living oral tradition, written records, and old charts — mostly cadastral plans. In addition to researching, recording, documenting, and publishing Split’s ancient place names through toponomastic, geographical, and town planning studies, toponymic heritage preservation is also implemented through the direct use of the names in everyday life. One of the ways of such revitalization of Split’s ancient place names is their transonymization into the category of chrematonyms, i.e. their secondary use as names of institutions, shops, restaurants, schools, sports associations and facilities, bars and coffee shops, cemeteries, and so on. The present paper provides a classification and etymological analysis of detoponymic chrematonyms of Split. The authors propose measures to raise public awareness of the historical information conveyed by the names and raise some issues for consideration regarding further study of transonymization as a means of revitalizing local toponymic tradition.

  5. Streamlined expressed protein ligation using split inteins.

    Science.gov (United States)

    Vila-Perelló, Miquel; Liu, Zhihua; Shah, Neel H; Willis, John A; Idoyaga, Juliana; Muir, Tom W

    2013-01-09

    Chemically modified proteins are invaluable tools for studying the molecular details of biological processes, and they also hold great potential as new therapeutic agents. Several methods have been developed for the site-specific modification of proteins, one of the most widely used being expressed protein ligation (EPL) in which a recombinant α-thioester is ligated to an N-terminal Cys-containing peptide. Despite the widespread use of EPL, the generation and isolation of the required recombinant protein α-thioesters remain challenging. We describe here a new method for the preparation and purification of recombinant protein α-thioesters using engineered versions of naturally split DnaE inteins. This family of autoprocessing enzymes is closely related to the inteins currently used for protein α-thioester generation, but they feature faster kinetics and are split into two inactive polypeptides that need to associate to become active. Taking advantage of the strong affinity between the two split intein fragments, we devised a streamlined procedure for the purification and generation of protein α-thioesters from cell lysates and applied this strategy for the semisynthesis of a variety of proteins including an acetylated histone and a site-specifically modified monoclonal antibody.

  6. The structure of split regular BiHom-Lie algebras

    Science.gov (United States)

    Calderón, Antonio J.; Sánchez, José M.

    2016-12-01

    We introduce the class of split regular BiHom-Lie algebras as the natural extension of the one of split Hom-Lie algebras and so of split Lie algebras. We show that an arbitrary split regular BiHom-Lie algebra L is of the form L = U +∑jIj with U a linear subspace of a fixed maximal abelian subalgebra H and any Ij a well described (split) ideal of L, satisfying [Ij ,Ik ] = 0 if j ≠ k. Under certain conditions, the simplicity of L is characterized and it is shown that L is the direct sum of the family of its simple ideals.

  7. Multiple beam splitting in elastic phononic crystal plates.

    Science.gov (United States)

    Lee, Hyuk; Oh, Joo Hwan; Kim, Yoon Young

    2015-02-01

    This work presents an experimental evidence for triple beam splitting in an elastic plate with an embedded elastic phononic crystal (PC) prism and elaborates on its working mechanism. While there were reports on negative refraction and double beam splitting with PCs, no experimental evidence on the splitting of triple or more ultrasonic elastic beams through PCs has been shown yet. After the experimental results are presented in case of triple beam splitting, further analysis is carried out to explain how triple or more beams can be split depending on elastic PC prism angles. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Operator Splitting Method for Simulation of Dynamic Flows in Natural Gas Pipeline Networks

    CERN Document Server

    Dyachenko, Sergey A; Chertkov, Michael

    2016-01-01

    We develop an operator splitting method to simulate flows of isothermal compressible natural gas over transmission pipelines. The method solves a system of nonlinear hyperbolic partial differential equations (PDEs) of hydrodynamic type for mass flow and pressure on a metric graph, where turbulent losses of momentum are modeled by phenomenological Darcy-Weisbach friction. Mass flow balance is maintained through the boundary conditions at the network nodes, where natural gas is injected or withdrawn from the system. Gas flow through the network is controlled by compressors boosting pressure at the inlet of the adjoint pipe. Our operator splitting numerical scheme is unconditionally stable and it is second order accurate in space and time. The scheme is explicit, and it is formulated to work with general networks with loops. We test the scheme over range of regimes and network configurations, also comparing its performance with performance of two other state of the art implicit schemes.

  9. THE YIELD AND COMPOSITION OF ESSENTIAL OIL FROM SPLIT CORIANDER FRUITS

    Directory of Open Access Journals (Sweden)

    Mustafayev S. K.

    2016-04-01

    Full Text Available The article studies dynamics of losses and the change of composition of essential oil from split coriander fruits. It is found, that in the fractions of split fruits, extracted from long-stored commercial lots of raw materials, mass fraction of essential oil is two or three times lower than in whole fruits. In the composition of essential oil from split fruits the content of valuable components - linalool, geraniol, geranyl acetate is slightly higher, and the content of undesirable hydrocarbons and camphor is lower. It is shown that from freshly split fruits, which were stored in a thin layer in the open air, the oil was intensively lost in the first three days, the losses reached 86 %. At the same time, the composition of the oil changed: the content of most volatile components - hydrocarbons decreased several times and the content of high-boiling linalool, geraniol, geranyl acetate significantly increased, which increased the quality of the oil smell. The change of composition is determined not only by the ratio of components volatility. The content of relatively high boiling camphor almost half decreased. This could be associated with less ability of fruit tissue to sorb and the ability of camphor to be easily sublimated. The content of volatile n-cymene over time increased with a simultaneous decrease in the content of γ– terpinene, which confirmed predominantly chemical way of n-cymene accumulation in coriander essential oil in conditions conducive to oxidation. It is recommended to separate the split fruits as soon as the raw materials come to the plant and to process immediately. Essential oil from split fruits can be used to adjust the composition of individual lots of oil in order to improve their quality, and to provide extraction of valuable components – linalool and geraniol by vacuum rectification method

  10. SplitRFLab: A MATLAB GUI toolbox for receiver function analysis based on SplitLab

    Science.gov (United States)

    Xu, Mijian; Huang, Hui; Huang, Zhouchuan; Wang, Liangshu

    2016-02-01

    We add new modules for receiver function (RF) analysis in SplitLab toolbox, which includes the manual RF analysis module, automatic RF analysis and related quality control modules, and H- k stacking module. The updated toolbox (named SplitRFLab toolbox), especially its automatic RF analysis module, could calculate the RFs quickly and efficiently, which is very useful in RF analysis with huge amount of seismic data. China is now conducting the ChinArray project that plans to deploy thousands of portable stations across Chinese mainland. Our SplitRFLab toolbox may obtain reliable RF results quickly at the first time, which provide essentially new constraint to the crustal and mantle structures.

  11. Mean link versus average plaquette tadpoles in lattice NRQCD

    CERN Document Server

    Shakespeare, N H; Shakespeare, Norman H.; Trottier, Howard D.

    1999-01-01

    We compare mean-link and average plaquette tadpole renormalization schemes in the context of the quarkonium hyperfine splittings in lattice NRQCD. Simulations are done for the three quarkonium systems $c\\bar c$, $b\\bar c$, and $b\\bar b$. The hyperfine splittings are computed both at leading and at next-to-leading order in the relativistic expansion. Results are obtained at a large number of lattice spacings. A number of features emerge, all of which favor tadpole renormalization using mean links. This includes much better scaling of the hyperfine splittings in the three quarkonium systems. We also find that relativistic corrections to the spin splittings are smaller with mean-link tadpoles, particularly for the $c\\bar c$ and $b\\bar c$ systems. We also see signs of a breakdown in the NRQCD expansion when the bare quark mass falls below about one in lattice units (with the bare quark masses turning out to be much larger with mean-link tadpoles).

  12. M-Split: A Graphical User Interface to Analyze Multilayered Anisotropy from Shear Wave Splitting

    Science.gov (United States)

    Abgarmi, Bizhan; Ozacar, A. Arda

    2017-04-01

    Shear wave splitting analysis are commonly used to infer deep anisotropic structure. For simple cases, obtained delay times and fast-axis orientations are averaged from reliable results to define anisotropy beneath recording seismic stations. However, splitting parameters show systematic variations with back azimuth in the presence of complex anisotropy and cannot be represented by average time delay and fast axis orientation. Previous researchers had identified anisotropic complexities at different tectonic settings and applied various approaches to model them. Most commonly, such complexities are modeled by using multiple anisotropic layers with priori constraints from geologic data. In this study, a graphical user interface called M-Split is developed to easily process and model multilayered anisotropy with capabilities to properly address the inherited non-uniqueness. M-Split program runs user defined grid searches through the model parameter space for two-layer anisotropy using formulation of Silver and Savage (1994) and creates sensitivity contour plots to locate local maximas and analyze all possible models with parameter tradeoffs. In order to minimize model ambiguity and identify the robust model parameters, various misfit calculation procedures are also developed and embedded to M-Split which can be used depending on the quality of the observations and their back-azimuthal coverage. Case studies carried out to evaluate the reliability of the program using real noisy data and for this purpose stations from two different networks are utilized. First seismic network is the Kandilli Observatory and Earthquake research institute (KOERI) which includes long term running permanent stations and second network comprises seismic stations deployed temporary as part of the "Continental Dynamics-Central Anatolian Tectonics (CD-CAT)" project funded by NSF. It is also worth to note that M-Split is designed as open source program which can be modified by users for

  13. Exotic quarkonium states in CMS

    CERN Document Server

    Cristella, Leonardo

    2016-01-01

    For the first time, the prompt production cross section for the $X(3872)$ times the unknown branching fraction for the decay of $X(3872) \\rightarrow J/\\psi\\pi^{+}\\pi^{-}$ is extracted differentially in $p\\mathrm{_T}$ and compared to theoretical predictions based on the Non-R...

  14. Transverse momentum dependent splitting functions at work: quark-to-gluon splitting

    CERN Document Server

    Hentschinski, M; Kutak, K

    2016-01-01

    Using the recently obtained Pgq splitting function we extend the low x evolution equation for gluons to account for contributions originating from quark-to-gluon splitting. In order to write down a consistent equation we resum virtual corrections coming from the gluon channel and demonstrate that this implies a suitable regularization of the Pgq singularity, corresponding to a soft emitted quark. We also note that the obtained equation is in a straightforward manner generalized to a nonlinear evolution equation which takes into account effects due to the presence of high gluon densities.

  15. Glueball Masses in Relativistic Potential Model

    CERN Document Server

    Shpenik, A; Kis, J; Fekete, Yu

    2000-01-01

    The problem of glueball mass spectra using the relativistic Dirac equation is studied. Also the Breit-Fermi approach used to obtaining hyperfine splitting in glueballs. Our approach is based on the assumption, that the nature and the forces between two gluons are the short-range. We were to calculate the glueball masses with used screened potential.

  16. Split ring resonator resonance assisted terahertz antennas

    CERN Document Server

    Galal, Hossam; Vitiello, Miriam S

    2016-01-01

    We report on the computational development of novel architectures of low impedance broadband antennas, for efficient detection of Terahertz (THz) frequency beams. The conceived Split Ring Resonator Resonance Assisted (SRR RA) antennas are based on both a capacitive and inductive scheme, exploiting a 200 Ohm and 400 Ohm impedance, respectively. Moreover, the impedance is tunable by varying the coupling parameters in the exploited geometry, allowing for better matching with the detector circuit for maximum power extraction. Our simulation results have been obtained by assuming a 1.5 THz operation frequency.

  17. Basic dynamics of split Stirling refrigerators

    Science.gov (United States)

    de Waele, A. T. A. M.; Liang, W.

    2008-09-01

    The basic features of the split Stirling refrigerator, driven by a linear compressor, are described. Friction of the compressor piston and of the regenerator, and the viscous losses due to the gas flow through the regenerator matrix are taken into account. The temperature at the cold end is an input parameter. The general equations are derived which are subsequently treated in the harmonic approximation. Examples are given of application of the relations for describing optimum-performance conditions as well as the interrelationship between cooler and heat-engine operation.

  18. Hyperfine splitting in hydrogen with form factors

    CERN Document Server

    Daza, F Garcia; Nowakowski, M

    2010-01-01

    Proton structure corrections to the hyperfine splittings in hydrogen are evaluated using the Breit potential with electromagnetic form factors. In contrast to other methods, several new features emerge: the Breit potential with $q^2$-dependent form factors is just an extension of the standard Breit equation which gives the hyperfine Hamiltonian. Order $\\alpha^5$ corrections are obtained from a one-photon exchange amplitude and time-independent perturbation theory. Structure corrections to $D_{21} = 8 E^{2S}_{hfs} - E^{1S}_{hfs}$ start at order $\\alpha^6$. QED corrections are comparable to structure corrections which must be evaluated ab initio.

  19. A splitting-free vorticity redistribution method

    Science.gov (United States)

    Kirchhart, M.; Obi, S.

    2017-02-01

    We present a splitting-free variant of the vorticity redistribution method. Spatial consistency and stability when combined with a time-stepping scheme are proven. We propose a new strategy preventing excessive growth in the number of particles while retaining the order of consistency. The novel concept of small neighbourhoods significantly reduces the method's computational cost. In numerical experiments the method showed second order convergence, one order higher than predicted by the analysis. Compared to the fast multipole code used in the velocity computation, the method is about three times faster.

  20. Streamers in air splitting into three branches

    CERN Document Server

    Heijmans, L C J; van Veldhuizen, E M; Ebert, U

    2013-01-01

    We investigate the branching of positive streamers in air and present the first systematic investigation of splitting into more than two branches. We study discharges in 100 mbar artificial air that is exposed to voltage pulses of 10 kV applied to a needle electrode 160 mm above a grounded plate. By imaging the discharge with two cameras from three angles, we establish that about every 200th branching event is a branching into three. Branching into three occurs more frequently for the relatively thicker streamers. In fact, we find that the surface of the total streamer cross-sections before and after a branching event is roughly the same.

  1. Large Bandgap Semiconductors for Solar Water Splitting

    DEFF Research Database (Denmark)

    Malizia, Mauro

    water splitting devices having tandem design. The increase of the photovoltage produced by GaP under illumination was the main goal of this work. GaP has a bandgap of 2.25 eV and could in theory produce a photovoltage of approximately 1.7 V. Instead, the photovoltage produced by the semiconductor...... density generated by GaP was increased by more than 60% by electrochemical etching of the surface. The etching process produces a rough microstructured surface that increases the optical path length of the incident photons and the collection of photogenerated electrons.Furthermore, the synthesis of BiVO4...

  2. Viability of bovine demi embryo after splitting of fresh and frozen thawed embryo derived from in vitro embryo production

    Directory of Open Access Journals (Sweden)

    M Imron

    2007-06-01

    Full Text Available In vivo embryo production was limited by number of donor, wide variability respond due to superovulation program and also immunoactifity of superovulation hormone (FSH. Splitting technology could be an alternative to increase the number of transferrable embryos into recipien cows. Splitting is done with cutting embryo becoming two equal pieces (called demi embrio base on ICM orientation. The objective of this research was to determine the viability of demi embryo obtained from embryo splitting of fresh and frozen thawed embryo. The results showed that demi embryos which performed blastocoel reexpansion 3 hours after embryo splitting using fresh and frozen thawed embryos were 76.9 and 76.2% respectively. Base on existention of inner cell mass (ICM, the number of demi embryos developed with ICM from fresh and frozen thawed embryos were not significantly different (90.6 and 85.7% respectively. The cell number of demi embryo from fresh embryos splitting was not different compared with those from frozen thawed embryos (36.1 and 35.9 respectively. These finding indicated that embryo splitting can be applied to frozen thawed embryos with certain condition as well as fresh embryos.

  3. Modification of Leather Split by In Situ Polymerization of Acrylates

    Directory of Open Access Journals (Sweden)

    Weixing Xu

    2016-01-01

    Full Text Available Leather split, the byproduct of leather manufacture, possesses low utility value because it has loose weave of collagen fibers and weak mechanical strengths. Herein, a practical and convenient method for increasing strengths of leather split was developed by one-step in situ polymerization. The structures and properties of polyacrylate/leather split composites were systematically investigated. The results suggested the monomers with an α-methyl and a proper straight-chain ester group, such as nBMA, can effectively modify the leather split. For leather split with a thickness of 1.6 mm, the rational processes for preparation of polyacrylate/leather split composite are that monomer and split were stirred in a drum for 4 hours for full permeation and then the split was heated in anaerobic condition at 45°C for 30 min. The tensile strength, tear strength, and elongation at break of the optimized PnBMA/split composite were 18.72 MPa, 62.73 N/mm, and 46.02%, respectively. With these mechanical properties, the split after modification can be well used as leather for making shoes, bags, gloves, and clothing.

  4. Auxiliary Gauge Mediation: A New Route to Mini-Split Supersymmetry

    CERN Document Server

    Kahn, Yonatan; Thaler, Jesse

    2013-01-01

    The discovery of a standard-model-like Higgs at 126 GeV and the absence of squark signals thus far at the LHC both point towards a mini-split spectrum for supersymmetry. Within standard paradigms, it is non-trivial to realize a mini-split spectrum with heavier sfermions but lighter gauginos while simultaneously generating Higgs sector soft terms of the correct magnitude, suggesting the need for new models of supersymmetry breaking and mediation. In this paper, we present a new approach to mini-split model building based on gauge mediation by "auxiliary groups", which are the anomaly-free continuous symmetries of the standard model in the limit of vanishing Yukawa couplings. In addition to the well-known flavor SU(3)_F and baryon-minus-lepton U(1)_{B-L} groups, we find that an additional U(1)_H acting on the Higgs doublets alone can be used to generate Higgs soft masses and B-terms necessary for a complete model of mini-split. Auxiliary gauge mediation is a special case of Higgsed gauge mediation, and we revie...

  5. Measurement of $k_T$ splitting scales in $W \\to l\

    CERN Document Server

    Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amelung, Christoph; Ammosov, Vladimir; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Astbury, Alan; Atkinson, Markus; Auerbach, Benjamin; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, David; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagnaia, Paolo; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Sarah; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behar Harpaz, Silvia; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bittner, Bernhard; Black, Curtis; Black, James; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blocki, Jacek; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boek, Thorsten Tobias; Boelaert, Nele; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Branchini, Paolo; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Bremer, Johan; Brendlinger, Kurt; Brenner, Richard; Bressler, Shikma; Bristow, Timothy Michael; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brown, Gareth; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Bugge, Lars; Bulekov, Oleg; Bundock, Aaron Colin; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Kevin; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christidi, Ilektra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Cirilli, Manuela; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Colas, Jacques; Cole, Stephen; Colijn, Auke-Pieter; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Courneyea, Lorraine; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Damiani, Daniel; Danielsson, Hans Olof; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Darmora, Smita; Dassoulas, James; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; De Zorzi, Guido; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Degenhardt, James; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dinut, Florin; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Dohmae, Takeshi; Doi, Yoshikuni; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dotti, Andrea; Dova, Maria-Teresa; Doyle, Tony; Dressnandt, Nandor; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Duxfield, Robert; Dwuznik, Michal; Ebenstein, William; Ebke, Johannes; Eckweiler, Sebastian; Edson, William; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Julia; Fisher, Matthew; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Florez Bustos, Andres Carlos; Flowerdew, Michael; Fonseca Martin, Teresa; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fowler, Andrew; Fox, Harald; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadatsch, Stefan; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gandrajula, Reddy Pratap; Gao, Yongsheng; Gaponenko, Andrei; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glonti, George; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Goeringer, Christian; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Göpfert, Thomas; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramstad, Eirik; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guest, Daniel; Gueta, Orel; Guicheney, Christophe; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Halladjian, Garabed; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Medina Hernandez, Carlos; Hernández Jiménez, Yesenia; Herrberg, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Hong, Tae Min; Hooft van Huysduynen, Loek; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Jantsch, Andreas; Janus, Michel; Jared, Richard; Jarlskog, Göran; Jeanty, Laura; Jeng, Geng-yuan; Jen-La Plante, Imai; Jennens, David; Jenni, Peter; Jeske, Carl; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Joram, Christian; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalinin, Sergey; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karagounis, Michael; Karakostas, Konstantinos; Karnevskiy, Mikhail; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Keener, Paul; Kehoe, Robert; Keil, Markus; Keller, John; Kenyon, Mike; Keoshkerian, Houry; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kitamura, Takumi; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koenig, Sebastian; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Köneke, Karsten; König, Adriaan; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Krejci, Frantisek; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Mark; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lambourne, Luke; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larner, Aimee; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Laycock, Paul; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Lepold, Florian; Leroy, Claude; Lessard, Jean-Raphael; Lester, Christopher; Lester, Christopher Michael; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Dong; Liu, Jianbei; Liu, Lulu; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Losty, Michael; Lou, XinChou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lund, Esben; Lundberg, Björn; Lundberg, Johan; Lundberg, Olof; Lund-Jensen, Bengt; Lundquist, Johan; Lungwitz, Matthias; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Mackeprang, Rasmus; Madar, Romain; Madaras, Ronald; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeno, Mayuko; Maeno, Tadashi; Magnoni, Luca; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marroquim, Fernando; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Jean-Pierre; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Homero; Martinez, Mario; Martinez Outschoorn, Verena; Martin-Haugh, Stewart; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Matsunaga, Hiroyuki; Matsushita, Takashi; Mättig, Peter; Mättig, Stefan; Mattravers, Carly; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazur, Michael; Mazzaferro, Luca; Mazzanti, Marcello; Mc Donald, Jeffrey; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meehan, Samuel; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Meric, Nicolas; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Moeller, Victoria; Mohapatra, Soumya; Mohr, Wolfgang; Moles-Valls, Regina; Molfetas, Angelos; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Möser, Nicolas; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Timo; Muenstermann, Daniel; Müller, Thomas; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newcomer, Mitchel; Newman, Paul; Nguyen, Duong Hai; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Brien, Brendan Joseph; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Paredes Hernandez, Daniela; Park, Woochun; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pashapour, Shabnaz; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pearce, James; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penson, Alexander; Penwell, John; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pizio, Caterina; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Quadt, Arnulf; Quarrie, David; Quayle, William; Quilty, Donnchadha; Raas, Marcel; Radeka, Veljko; Radescu, Voica; Radloff, Peter; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Rangel-Smith, Camila; Rao, Kanury; Rauscher, Felix; Rave, Tobias Christian; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reinsch, Andreas; Reisinger, Ingo; Relich, Matthew; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rieck, Patrick; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Ritsch, Elmar; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Roe, Adam; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romeo, Gaston; Romero Adam, Elena; Rompotis, Nikolaos; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rumyantsev, Leonid; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Rutherfoord, John; Ruthmann, Nils; Ruzicka, Pavel; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarrazin, Bjorn; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaelicke, Andreas; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Christopher; Schmitt, Sebastian; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schultens, Martin Johannes; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Seuster, Rolf; Severini, Horst; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Sherwood, Peter; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Mariya; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snow, Steve; Snow, Joel; Snyder, Scott; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Solovyev, Victor; Soni, Nitesh; Sood, Alexander; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Staude, Arnold; Stavina, Pavel; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Su, Dong; Subramania, Halasya Siva; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tamsett, Matthew; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Tran, Huong Lan; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Berg, Richard; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vazquez Schroeder, Tamara; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wahrmund, Sebastian; Wakabayashi, Jun; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watanabe, Ippei; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Michele; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Wetter, Jeffrey; Weydert, Carole; Whalen, Kathleen; White, Andrew; White, Martin; White, Sebastian; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Williams, Sarah; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wittig, Tobias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xu, Chao; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Un-Ki; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Liwen; Yasu, Yoshiji; Yatsenko, Elena; Ye, Jingbo; Ye, Shuwei; Yen, Andy L; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, Dantong; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zaytsev, Alexander; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Lei; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zibell, Andre; Zieminska, Daria; Zimin, Nikolai; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Zinonos, Zinonas; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2013-01-01

    A measurement of splitting scales, as defined by the $k_T$ clustering algorithm, is presented for final states containing a W boson produced in proton--proton collisions at a centre-of-mass energy of 7 TeV. The measurement is based on the full 2010 data sample corresponding to an integrated luminosity of 36 pb$^{-1}$ which was collected using the ATLAS detector at the CERN Large Hadron Collider. Cluster splitting scales are measured in events containing W bosons decaying to electrons or muons. The measurement comprises the four hardest splitting scales in a $k_T$ cluster sequence of the hadronic activity accompanying the W boson, and ratios of these splitting scales. Backgrounds such as multi-jet and top-quark-pair production are subtracted and the results are corrected for detector effects. Predictions from various Monte Carlo event generators at particle level are compared to the data. Overall, reasonable agreement is found with all generators, but larger deviations between the predictions and the data are ...

  6. Design of a Cocoa Pod Splitting Machine

    Directory of Open Access Journals (Sweden)

    Adetunde, I.A

    2010-10-01

    Full Text Available This study outlines the design of a very efficient, highly productive, cost- effective, ergonomic and environmentally friendly cocoa splitting machine that will be used by cocoa Farmers world - wide to increase and boost productivity and enhance the quality of coca products to the highest possible level devoid of any hazards, dangers or perils. This machine can be manufactured from locally available scraps and assembled and maintained at a relatively low cost. The knives which do the splitting are actuated by simple hydraulic mechanisms devoid any major stresses, forces or moments acting on them. These mechanisms are powered by simple low - powered lobe positive displacement or hydrostatic hydraulic pumps of power rating of 87.5 kW (65.625 Hp. The machine can be assembled and/or disassembled easily and quickly, and, therefore can be owned patronized by a group of cocoa farmers who can easily bear the low cost of maintenance of the already relative cheap machine.

  7. Dynamics of a split torque helicopter transmission

    Science.gov (United States)

    Krantz, Timothy L.

    1994-06-01

    Split torque designs, proposed as alternatives to traditional planetary designs for helicopter main rotor transmissions, can save weight and be more reliable than traditional designs. This report presents the results of an analytical study of the system dynamics and performance of a split torque gearbox that uses a balance beam mechanism for load sharing. The Lagrange method was applied to develop a system of equations of motion. The mathematical model includes time-varying gear mesh stiffness, friction, and manufacturing errors. Cornell's method for calculating the stiffness of spur gear teeth was extended and applied to helical gears. The phenomenon of sidebands spaced at shaft frequencies about gear mesh fundamental frequencies was simulated by modeling total composite gear errors as sinusoid functions. Although the gearbox has symmetric geometry, the loads and motions of the two power paths differ. Friction must be considered to properly evaluate the balance beam mechanism. For the design studied, the balance beam is not an effective device for load sharing unless the coefficient of friction is less than 0.003. The complete system stiffness as represented by the stiffness matrix used in this analysis must be considered to precisely determine the optimal tooth indexing position.

  8. Trap split with Laguerre-Gaussian beams

    Science.gov (United States)

    Hamideh Kazemi, Seyedeh; Ghanbari, Saeed; Mahmoudi, Mohammad

    2017-08-01

    We present a convenient and effective way to generate a novel phenomenon of trapping, named ‘trap split’, in a conventional four-level double-Λ atomic system, driven by four femtosecond Laguerre-Gaussian laser pulses. We find that trap split can always be achieved when atoms are trapped by such laser pulses, as compared to Gaussian ones. This feature is enabled by the interaction of the atomic system and the Laguerre-Gaussian laser pulses with zero intensity in the center. A further advantage of using Laguerre-Gaussian laser pulses is the insensitivity to fluctuation in the intensity of the lasers in such a way that the separation between the traps remains constant. Moreover, it is demonstrated that the suggested scheme with Laguerre-Gaussian laser pulses can form optical traps with spatial sizes that are not limited by the wavelength of the laser, and can, in principle, become smaller than the wavelength of light. This work would greatly facilitate the trapping and manipulating of particles and the generation of trap split. It may also suggest the possibility of extension into new research fields, such as micro-machining and biophysics.

  9. An Iterative Algorithm for the Split Equality and Multiple-Sets Split Equality Problem

    Directory of Open Access Journals (Sweden)

    Luoyi Shi

    2014-01-01

    Full Text Available The multiple-sets split equality problem (MSSEP requires finding a point x∈∩i=1NCi, y∈∩j=1MQj such that Ax=By, where N and M are positive integers, {C1,C2,…,CN} and {Q1,Q2,…,QM} are closed convex subsets of Hilbert spaces H1, H2, respectively, and A:H1→H3, B:H2→H3 are two bounded linear operators. When N=M=1, the MSSEP is called the split equality problem (SEP. If  B=I, then the MSSEP and SEP reduce to the well-known multiple-sets split feasibility problem (MSSFP and split feasibility problem (SFP, respectively. One of the purposes of this paper is to introduce an iterative algorithm to solve the SEP and MSSEP in the framework of infinite-dimensional Hilbert spaces under some more mild conditions for the iterative coefficient.

  10. Non-split and split deformations of AdS_5

    CERN Document Server

    Hoare, Ben

    2016-01-01

    The eta-deformation of the AdS_5 x S^5 superstring depends on a non-split r matrix for the superalgebra psu(2,2|4). Much of the investigation into this model has considered one particular choice, however there are a number of inequivalent alternatives. This is also true for the bosonic sector of the theory with su(2,2), the isometry algebra of AdS_5, admitting one split and three non-split r matrices. In this article we explore these r matrices and the corresponding geometries. We investigate their contraction limits, comment on supergravity backgrounds and demonstrate their relation to gauged-WZW deformations. We then extend the three non-split cases to AdS_5 x S^5 and compute four separate bosonic two-particle tree-level S-matrices based on inequivalent BMN-type light-cone gauges. The resulting S-matrices, while different, are related by momentum-dependent one-particle changes of basis.

  11. Solar hydrogen production on some water splitting photocatalysts

    Science.gov (United States)

    Takata, Tsuyoshi; Hisatomi, Takashi; Domen, Kazunari

    2016-09-01

    Photocatalytic overall water splitting into H2 and O2 is expected to be a promising method for the efficient utilization of solar energy. The design of optimal photocatalyst structures is a key to efficient overall water splitting, and the development of photocatalysts which can efficiently convert large portion of visible light spectrum has been required. Recently, a series of complex perovskite type transition metal oxynitrides, LaMgxT 1-xO1+3xN2-3x, was developed as photocatalysts for direct water splitting operable at wide wavelength of visible light. In addition two-step excitation water splitting via a novel photocatalytic device termed as photocatalyst sheet was developed. This consists of two types of semiconductors (hydrogen evolution photocatalyst and oxygen evolution photocatalyst) particles embedded in a conductive layer, and showed high efficiency for overall water splitting. These recent advances in photocatalytic water splitting were introduced.

  12. Split renal function measured by triphasic helical CT

    Energy Technology Data Exchange (ETDEWEB)

    Hackstein, Nils [Radiologische Gemeinschaftspraxis am Evangelischen Krankenhaus, Paul-Zipp-Str. 171, 35398 Giessen (Germany)]. E-mail: nils.hackstein@radiol.med.uni-giessen.de; Buch, Thomas [Department of Diagnostic Radiology, Klinikstr. 36, Justus-Liebig University Giessen, 35385 Giessen (Germany)]. E-mail: thomas.buch@radiol.med.uni-giessen.de; Rau, Wigbert S. [Department of Diagnostic Radiology, Klinikstr. 36, Justus-Liebig University Giessen, 35385 Giessen (Germany)]. E-mail: wigbert.rau@uniklinikum-giessen.de; Weimer, Rolf [Department of Internal Medicine, Klinikstr. 36, Justus-Liebig University Giessen, 35385 Giessen (Germany)]. E-mail: Rolf.Weimer@innere.med.uni-giessen.de; Klett, Rigobert [Clinic of Nuclear Medicine, Friedrichstr. 25, Justus-Liebig University Giessen, 35385 Giessen (Germany)]. E-mail: rigobert.klett@radiol.med.uni-giessen.de

    2007-02-15

    Purpose: To present a method for calculating split renal function solely from routine triphasic helical computed tomography (CT). Subjects and methods: We retrospectively included 26 adult patients who received renal scintigraphy and triphasic CT within 4 weeks in the years 2003 and 2004. All scans were performed using a standard abdominal protocol. Split renal function was calculated as relative single-kidney glomerular filtration rate (GFR) using a simplified 'two-point Patlak plot' technique. As a reference method, split renal function was determined from renal scintigraphy using the standard technique. Results: Linear correlation between the two methods was r = 0.91, split renal function (CT) = 0.0266 + 0.9573 x split renal function (scintigraphy). Conclusion: Split renal function can be measured accurately by minimally extended triphasic CT.

  13. The Practice of Splitting Tablets: Cost and Therapeutic Aspects

    OpenAIRE

    John Bachynsky; Cheryl Wiens; Krystal Melnychuk

    2002-01-01

    Background: Tablet splitting is used in pharmacy practice to adjust the dose to be administered. It is also being advocated as a method of reducing prescription drug costs. Methods: The potential for using this practice as a cost-saving method was examined. The top 200 prescription products in Canada were evaluated for their potential for tablet splitting to reduce costs. The assessment was based on the dosage form (only tablets could be split), availability of dosages in multiples, whether t...

  14. Photon splitting in a strongly magnetized, charge-asymmetric plasma

    Directory of Open Access Journals (Sweden)

    Chistyakov M.V.

    2016-01-01

    Full Text Available The process of the photon splitting, γ → γγ, is investigated in the presence of strongly magnetized charge-asymmetric cold plasma. The dispersion properties of photons and the new polarization selection rules are obtained in such plasma. The absorption rate of the leading photon splitting channel are calculated with taking account of the photon dispersion and wave function renormalization. In addition, a comparison of the photon splitting and the Compton scattering processes is performed.

  15. Double-peak Splitting in High-order Harmonics Generation

    Institute of Scientific and Technical Information of China (English)

    WANG Yingsong; LIU Yaqing; YANG Xiaodong; XU Zhizhan

    2000-01-01

    When the intensity of the driving pulse is much higher than the saturation intensity of the media involved, the double-peak splitting in frequency domain emerges in the generated high-order harmonic spectra. The possible origins of this splitting are carefully investigated. The ionization of the gas media and the propagation effect of harmonic field are the main reason for the double-peak splitting observed.

  16. Quantum tunneling splittings from path-integral molecular dynamics

    Science.gov (United States)

    Mátyus, Edit; Wales, David J.; Althorpe, Stuart C.

    2016-03-01

    We illustrate how path-integral molecular dynamics can be used to calculate ground-state tunnelling splittings in molecules or clusters. The method obtains the splittings from ratios of density matrix elements between the degenerate wells connected by the tunnelling. We propose a simple thermodynamic integration scheme for evaluating these elements. Numerical tests on fully dimensional malonaldehyde yield tunnelling splittings in good overall agreement with the results of diffusion Monte Carlo calculations.

  17. Split Treatment: A Measurement of Coordination Between Psychiatrists

    OpenAIRE

    LoPiccolo, Charles J.; Eldon Taylor, C.; Clemence, Cheryl; Eisdorfer, Carl

    2005-01-01

    The objective of this study was to examine the adherence rates of psychiatrists with APA standards for coordination of care in split treatment. Coordination of care in split treatment is monitored from claims paid data in an academic MBHO as an ongoing quality improvement activity. For an 18-month period, 93 psychiatrists were identified with 559 patients in split treatment and were mailed a survey. Surveys were controlled for change of providers. Self-report survey results were obtained from...

  18. Conditional beam splitting attack on quantum key distribution

    OpenAIRE

    Calsamiglia, John; Barnett, Stephen M.; Lütkenhaus, Norbert

    2001-01-01

    We present a novel attack on quantum key distribution based on the idea of adaptive absorption [calsam01]. The conditional beam splitting attack is shown to be much more efficient than the conventional beam spitting attack, achieving a performance similar to the, powerful but currently unfeasible, photon number splitting attack. The implementation of the conditional beam splitting attack, based solely on linear optical elements, is well within reach of current technology.

  19. Splitting methods in communication, imaging, science, and engineering

    CERN Document Server

    Osher, Stanley; Yin, Wotao

    2016-01-01

    This book is about computational methods based on operator splitting. It consists of twenty-three chapters written by recognized splitting method contributors and practitioners, and covers a vast spectrum of topics and application areas, including computational mechanics, computational physics, image processing, wireless communication, nonlinear optics, and finance. Therefore, the book presents very versatile aspects of splitting methods and their applications, motivating the cross-fertilization of ideas. .

  20. Optimized design of parallel beam-splitting prism

    Institute of Scientific and Technical Information of China (English)

    Peitao Zhao(赵培涛); Guohua Li(李国华)

    2004-01-01

    A large lateral shearing distance of parallel beam-splitting prism is often needed in laser modulation and polarization interference. In this letter, we present an optimized design of parallel beam-splitting prism and list some different cases in detail. The optimized design widens the use range of parallel beam-splitting prism. At the wavelength of 632.8 nm, the law that the enlargement ratio changes with the refractive index and the apex angle is verified.

  1. One-loop triple collinear splitting amplitudes in QCD

    CERN Document Server

    Badger, Simon; Peraro, Tiziano

    2015-01-01

    We study the factorisation properties of one-loop scattering amplitudes in the triple collinear limit and extract the universal splitting amplitudes for processes initiated by a gluon. The splitting amplitudes are derived from the analytic Higgs plus four partons amplitudes. We present compact results for primitive helicity splitting amplitudes making use of super-symmetric decompositions. The universality of the collinear factorisation is checked numerically against the full colour six parton squared matrix elements.

  2. Shear wave splitting and subcontinental mantle deformation

    Science.gov (United States)

    Silver, Paul G.; Chan, W. Winston

    1991-09-01

    We have made measurements of shear wave splitting in the phases SKS and SKKS at 21 broadband stations in North America, South America, Europe, Asia, and Africa. Measurements are made using a retrieval scheme that yields the azimuth of the fast polarization direction ϕ and delay time δt of the split shear wave plus uncertainties. Detectable anisotropy was found at most stations, suggesting that it is a general feature of the subcontinental mantle. Delay times range from 0.65 s to 1.70 s and average about 1 s. Somewhat surprisingly, the largest delay time is found in the 2.7 b.y.-old Western Superior Province of the Canadian Shield. The splitting observations are interpreted in terms of the strain-induced lattice preferred orientation of mantle minerals, especially olivine. We consider three hypotheses concerning the origin of the continental anisotropy: (1) strain associated with absolute plate motion, as in the oceanic upper mantle, (2) crustal stress, and (3) the past and present internal deformation of the subcontinental upper mantle by tectonic episodes. It is found that the last hypothesis is the most successful, namely that the most recent significant episode of internal deformation appears to be the best predictor of ϕ. For stable continental regions, this is interpreted as "fossil" anisotropy, whereas for presently active regions, such as Alaska, the anisotropy reflects present-day tectonic activity. In the stable portion of North America there is a good correlation between delay time and lithospheric thickness; this is consistent with the anisotropy being localized in the subcontinental lithosphere and suggests that intrinsic anisotropy is approximately constant. The acceptance of this hypothesis has several implications for subcontinental mantle deformation. First, it argues for coherent deformation of the continental lithosphere (crust and mantle) during orogenies. This implies that the anisotropic portion of the lithosphere was present since the

  3. On Integrable Roots in Split Lie Triple Systems

    Institute of Scientific and Technical Information of China (English)

    A.J.CALDER(O)N MART(I)N

    2009-01-01

    We focus on the notion of an integrable root in the framework of split Lie triple systems T with a coherent 0-root space. As a main result, it is shown that if T has all its nonzero roots integrable, then its standard embedding is a split Lie algebra having all its nonzero roots integrable. As a consequence, a local finiteness theorem for split Lie triple systems, saying that whenever all nonzero roots of T are integrable then T is locally finite, is stated. Finally, a classification theorem for split simple Lie triple systems having all its nonzero roots integrable is given.

  4. A Frequency Splitting Method For CFM Imaging

    DEFF Research Database (Denmark)

    Udesen, Jesper; Gran, Fredrik; Jensen, Jørgen Arendt

    2006-01-01

    of narrow band pulses as in conventional CFM imaging. By appropriate filtration, the returned signals are divided into a number of narrow band signals which are approximately disjoint. After clutter filtering the velocities are found from each frequency band using a conventional autocorrelation estimator......The performance of conventional CFM imaging will often be degraded due to the relatively low number of pulses (4-10) used for each velocity estimate. To circumvent this problem we propose a new method using frequency splitting (FS). The FS method uses broad band chirps as excitation pulses instead...... estimator. In the simulation, the relative mean standard deviation of the velocity estimates over the vessel was 2.43% when using the FD method and the relative mean absolute bias was 1.84%. For the reference 8 oscillation pulse, the relative mean standard deviation over the vessel was 4...

  5. [Splitting of tablets: small pieces a risk].

    Science.gov (United States)

    Picksak, Gesine; Stichtenoth, Dirk O

    2007-09-01

    For economic reasons physicians prescribe more and more multiunit tablets. Splitting of multiunit tablets depends on the physical-chemical properties of the agents, the galenic of the dosage form, the size and contour of the tablet and the shape of the score. Tablets with one or more scores are prepared to be divided for a single/multiple dose. How easily and exact a tablet can be divided depends heavily on the physical shape, its size and the outfit of the score. The fragments have to fulfil the requirements according to the European Pharmacopoeia: Uniformity of multiunit tablets. Since exact dosing is guaranteed only if tablets are divided properly, information and guidance of the patients by the physician and pharmacist is of critical importance.

  6. A SPLITTING METHOD FOR QUADRATIC PROGRAMMING PROBLEM

    Institute of Scientific and Technical Information of China (English)

    魏紫銮

    2001-01-01

    A matrix splitting method is presented for minimizing a quadratic programming (QP)problem, and a general algorithm is designed to solve the QP problem and generates a sequence of iterative points. We prove that the sequence generated by the algorithm converges to the optimal solution and has an R-linear rate of convergence if the QP problem is strictly convex and nondegenerate, and that every accumulation point of the sequence generated by the general algorithm is a KKT point of the original problem under the hypothesis that the value of the objective function is bounded below on the constrained region, and that the sequence converges to a KKT point if the problem is nondegenerate and the constrained region is bounded.

  7. Gauge Unification from Split Supersymmetric String Models

    CERN Document Server

    Kokorelis, Christos

    2016-01-01

    We discuss the unification of gauge coupling constants in non-supersymmetric open string vacua that possess the properties of Split Supersymmetry, namely the Standard Model with Higgsinos at low energies and where the Standard model spectrum is always accompanied by right handed neutrinos. These vacua achieve partial unification of two out of three (namely SU(3)$_c$, SU(2), U(1)) running gauge couplings, possess massive gauginos and light Higgsinos at low energies and also satisfy $sin^2\\theta_w (M_s) = 3/8$. These vacua are based on four dimensional orbifold $Z_3 \\times Z_3$ compactifications of string IIA orientifolds with D6-branes intersecting at angles, where the (four dimensional) chiral fermions of the Standard Model appear as opens strings streching between the intersections of seven dimensional objects the so called D6-branes.

  8. AP stars with resolved Zeeman split lines

    Science.gov (United States)

    Mathys, G.

    1990-06-01

    High-resolution, high SNR observations of a sample of sharp-lined A stars and of Ap stars showing resolved Zeeman split lines are presented. The Fe II lines 6147.7 A and 6149.2 A unexpectedly appear to be asymmetric in all stars where they are resolved. The blue component of the 6149.2 line, which is a Zeeman doublet, is deeper and narrower than its red component. For line 6147.7, whose Zeeman pattern does not differ much from a quadruplet, the red components are deeper than the blue ones. It is shown that a partial Paschen-Back effect can account for these properties. The potential implications of this finding for studies of magnetic Ap stars are discussed.

  9. Non-Uniformity and Generalised Sacks Splitting

    Institute of Scientific and Technical Information of China (English)

    COOPER S.Barry; LI Ang Sheng

    2002-01-01

    We show that there do not exist computable functions f1(e, i), f2 (e, i), g1(e, i), g2(e, i) such that for all e, i ∈ω,(1) (Wf1(e,i) - Wf2(e,i)) ≤T (We - Wi);(2) (Wg1(e,i) - Wg2(e,i))≤T (We - Wi);(3) (We - Wi) ≤T (Wf1(e,i) - Wf2(e,i)) (Wg1(e,i) - Wg2(e,i));(4) (We - Wi) T (Wf1(e,i) - Wf2(e,i)) unless (We - Wi) ≤T ; and (5) (We - Wi) T (Wg1(e,i) - Wg2(e,i)) unless (We - Wi) ≤T .It follows that the splitting theorems of Sacks and Cooper cannot be combined uniformly.

  10. Miniaturized Planar Split-Ring Resonator Antenna

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav

    2009-01-01

    A miniaturized planar antenna based on a broadside-coupled split ring resonator excited by an arc-shaped dipole is presented. The excitation dipole acts as a small tuning capacitor in series with a parallel RLC circuit represented by the SRR. The antenna resonance frequency and dimensions...... a essentially determined by the SRR, while by varying the dipole arm length the input resistance is changed in a wide range, thus matching the antenna to a feed line and compensating for simulation and manufacturing inaccuracies. No additional matching network is required. Theoretically, there is no limit...... on how small this antenna can be. In practice, the lower bound is set by losses in utilized materials and manufacturing inaccuracies. As an example, an antenna of ka=0.09 was designed, fabricated and tested. Although the initially fabricated antenna prototype had the input impedance of 43 ohms...

  11. Purification and Characterization of a Lectin from Green Split Peas (Pisum sativum).

    Science.gov (United States)

    Ng, Tzi Bun; Chan, Yau Sang; Ng, Charlene Cheuk Wing; Wong, Jack Ho

    2015-11-01

    Lectins have captured the attention of a large number of researchers on account of their various exploitable activities, including antitumor, immunomodulatory, antifungal, as well as HIV reverse transcriptase inhibitory activities. A mannose/glucose-specific lectin was isolated from green split peas (a variety of Pisum sativum) and characterized. The purification step involved anion-exchange chromatography on a DEAE-cellulose column, cation-exchange chromatography on an SP-Sepharose column, and gel filtration by fast protein liquid chromatography (FPLC) on Superdex 200. The purified lectin had a native molecular mass of around 50 kDa as determined by size exclusion chromatography. It appeared as a heterotetramer, composed of two distinct polypeptide bands with a molecular mass of 6 and 19 kDa, respectively, in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The N-terminal sequence of green split pea lectin shows some degree of homology compared to lectins from other legume species. Its hemagglutinating activity was inhibited by glucose, mannose, and sucrose, and attenuated at pH values higher than 12 or lower than 3. Hemagglutinating activity was preserved at temperatures lower than 80 °C. The lectin did not show antifungal activity toward fungi including Fusarium oxysporum, Botrytis cinerea, and Mycosphaerella arachidicola. Green split pea lectin showed a mitogenic effect toward murine splenocytes and could inhibit the activity of HIV-1 reverse transcriptase.

  12. Bad splits in bilateral sagittal split osteotomy: systematic review and meta-analysis of reported risk factors.

    Science.gov (United States)

    Steenen, S A; van Wijk, A J; Becking, A G

    2016-08-01

    An unfavourable and unanticipated pattern of the bilateral sagittal split osteotomy (BSSO) is generally referred to as a 'bad split'. Patient factors predictive of a bad split reported in the literature are controversial. Suggested risk factors are reviewed in this article. A systematic review was undertaken, yielding a total of 30 studies published between 1971 and 2015 reporting the incidence of bad split and patient age, and/or surgical technique employed, and/or the presence of third molars. These included 22 retrospective cohort studies, six prospective cohort studies, one matched-pair analysis, and one case series. Spearman's rank correlation showed a statistically significant but weak correlation between increasing average age and increasing occurrence of bad splits in 18 studies (ρ=0.229; Pbad split among the different splitting techniques. A meta-analysis pooling the effect sizes of seven cohort studies showed no significant difference in the incidence of bad split between cohorts of patients with third molars present and concomitantly removed during surgery, and patients in whom third molars were removed at least 6 months preoperatively (odds ratio 1.16, 95% confidence interval 0.73-1.85, Z=0.64, P=0.52). In summary, there is no robust evidence to date to show that any risk factor influences the incidence of bad split.

  13. Bad split during bilateral sagittal split osteotomy of the mandible with separators: a retrospective study of 427 patients.

    Science.gov (United States)

    Mensink, Gertjan; Verweij, Jop P; Frank, Michael D; Eelco Bergsma, J; Richard van Merkesteyn, J P

    2013-09-01

    An unfavourable fracture, known as a bad split, is a common operative complication in bilateral sagittal split osteotomy (BSSO). The reported incidence ranges from 0.5 to 5.5%/site. Since 1994 we have used sagittal splitters and separators instead of chisels for BSSO in our clinic in an attempt to prevent postoperative hypoaesthesia. Theoretically an increased percentage of bad splits could be expected with this technique. In this retrospective study we aimed to find out the incidence of bad splits associated with BSSO done with splitters and separators. We also assessed the risk factors for bad splits. The study group comprised 427 consecutive patients among whom the incidence of bad splits was 2.0%/site, which is well within the reported range. The only predictive factor for a bad split was the removal of third molars at the same time as BSSO. There was no significant association between bad splits and age, sex, class of occlusion, or the experience of the surgeon. We think that doing a BSSO with splitters and separators instead of chisels does not increase the risk of a bad split, and is therefore safe with predictable results.

  14. Circular permutation prediction reveals a viable backbone disconnection for split proteins: an approach in identifying a new functional split intein.

    Directory of Open Access Journals (Sweden)

    Yun-Tzai Lee

    Full Text Available Split-protein systems have emerged as a powerful tool for detecting biomolecular interactions and reporting biological reactions. However, reliable methods for identifying viable split sites are still unavailable. In this study, we demonstrated the feasibility that valid circular permutation (CP sites in proteins have the potential to act as split sites and that CP prediction can be used to search for internal permissive sites for creating new split proteins. Using a protein ligase, intein, as a model, CP predictor facilitated the creation of circular permutants in which backbone opening imposes the least detrimental effects on intein folding. We screened a series of predicted intein CPs and identified stable and native-fold CPs. When the valid CP sites were introduced as split sites, there was a reduction in folding enthalpy caused by the new backbone opening; however, the coincident loss in entropy was sufficient to be compensated, yielding a favorable free energy for self-association. Since split intein is exploited in protein semi-synthesis, we tested the related protein trans-splicing (PTS activities of the corresponding split inteins. Notably, a novel functional split intein composed of the N-terminal 36 residues combined with the remaining C-terminal fragment was identified. Its PTS activity was shown to be better than current reported two-piece intein with a short N-terminal segment. Thus, the incorporation of in silico CP prediction facilitated the design of split intein as well as circular permutants.

  15. Phenomenological implications of 3/7 (reversed) -split-like supersymmetry scenario

    Indian Academy of Sciences (India)

    Mansi Dhuria

    2016-02-01

    A phenomenological model is presented which can be obtained as a local Swiss-Cheese Calabi–Yau string-theoretic compactification with a mobile 3- and fluxed stacks of wrapped 7-branes. It provides a natural realization of (reversed) -split-like supersymmetry wherein the squarks, sleptons, gauginos, higgsino and one of the Higgs doublets are very heavy while with some fine tuning, it is possible to obtain another light Higgs of mass 125 GeV. We discuss the role of the heavy quarks/sleptons and the light Higgs inobtaining long-lived gluinos (a natural consequence of split SUSY),verifying that the NLSP decays to the gravitino LSP respects the BBN constraints with the lifetime of the LSP (gravitino) coming out to be of the order or larger than the age of the Universe,getting gravitino relic abundance of around 0.1 andobtaining electronic EDM close to the experimental upper bounds.

  16. A Multiscale Time-Splitting Discrete Fracture Model of Nanoparticles Transport in Fractured Porous Media

    KAUST Repository

    El-Amin, Mohamed F.

    2017-06-06

    Recently, applications of nanoparticles have been considered in many branches of petroleum engineering, especially, enhanced oil recovery. The current paper is devoted to investigate the problem of nanoparticles transport in fractured porous media, numerically. We employed the discrete-fracture model (DFM) to represent the flow and transport in the fractured formations. The system of the governing equations consists of the mass conservation law, Darcy\\'s law, nanoparticles concentration in water, deposited nanoparticles concentration on the pore-wall, and entrapped nanoparticles concentration in the pore-throat. The variation of porosity and permeability due to the nanoparticles deposition/entrapment on/in the pores is also considered. We employ the multiscale time-splitting strategy to control different time-step sizes for different physics, such as pressure and concentration. The cell-centered finite difference (CCFD) method is used for the spatial discretization. Numerical examples are provided to demonstrate the efficiency of the proposed multiscale time splitting approach.

  17. Production of black holes and their angular momentum distribution in models with split fermions

    CERN Document Server

    Dai, D C; Stojkovic, D; Dai, De-Chang; Starkman, Glenn D.; Stojkovic, Dejan

    2006-01-01

    In models with TeV-scale gravity it is expected that mini black holes will be produced in near-future accelerators. On the other hand, TeV-scale gravity is plagued with many problems like fast proton decay, unacceptably large neutron-antineutron oscillations, flavor changing neutral currents, large mixing between leptons, etc. Most of these problems can be solved if different fermions are localized at different points in the extra dimensions. We study the cross-section for the production of black holes and their angular momentum distribution in these models with "split" fermions. We find that, for a fixed value of the fundamental mass scale, the total production cross section is reduced compared with models where all the fermions are localized at the same point in the extra dimensions. Fermion splitting also implies that the bulk component of the black hole angular momentum must be taken into account in studies of the black hole decay via Hawking radiation.

  18. Thermochemical processes for water splitting - status and outlook

    Energy Technology Data Exchange (ETDEWEB)

    Weirich, W.; Behr, F. (Technische Hochschule Aachen (Germany, F.R.). Lehrstuhl fuer Reaktortechnik); Knoche, K.F. (Technische Hochschule Aachen (Germany, F.R.). Lehrstuhl fuer Technische Thermodynamik und Inst. fuer Thermodynamik); Barnert, H. (Kernforschungsanlage Juelich G.m.b.H. (Germany, F.R.). Inst. fuer Reaktorentwicklung)

    1984-04-01

    In this paper we discuss the proposals for processes which have already been realised in form of bench scale units or which have been planned, as well as those which have a high degree of development potential. A part of these cycles have in common the splitting of sulfuric acids which causes corrosion problems unsolved up to now. The essential part of the metal/metal hydride-processes is a hydrogen permeable membrane which separates the hydrogen acceptor from the water containing electrolyte melt. Actually we are intending to build up a lab cycle using a TiNi-basis membrane. The metal membranes offer a number of further interesting applications, such as (1) hydrogen production from gas mixtures at high temperatures, and (2) tritium separation from the helium of the HTR primary cooling circuit. A further promising process is the hydrocarbon hybrid cycle, in which the reduction of methanol to methane and oxygen is the key reaction. Till now we can detect a methane yield of up to 50%. An interesting combined procedure for the production of hydrogen and electricity is proposed, where sulphuric acid is decomposed by means of coal. The detailed mass and energy balance shows an efficiency of up to 57%. Thermodynamic analysis for the watersplitting cycles indicates efficiencies up to 50%. Further research and development work is necessary in order to solve material problems and to demonstrate the suitability and availability of the techniques using larger scale laboratory and prototype units.

  19. Signatures of long-lived gluinos in split supersymmetry

    CERN Document Server

    Hewett, J L; Masip, M; Rizzo, T G; Hewett, JoAnne L.; Lillie, Ben; Masip, Manuel; Rizzo, Thomas G.

    2004-01-01

    We examine the experimental signatures for the production of gluinos at colliders and in cosmic rays within the split supersymmetry scenario. Unlike in the MSSM, the gluinos in this model are relatively long-lived due to the large value of the squark masses which mediate their decay. Searches at colliders are found to be sensitive to the nature of gluino fragmentation as well as the gluino-hadron interactions with nuclei and energy deposition as it traverses the detector. We find that the worst-case scenario, where a neutral gluino-hadron passes through the detector with little energy deposition, is well described by a monojet signature. For this case, using Run I data we obtain a bound of $m_{\\tilde g} > 170$ GeV; this will increase to 210(1100) GeV at Run II(LHC) if no excess events are observed. In the opposite case, where a charged gluino-hadron travels through the detector, a significantly greater reach is obtained via stable charged particle search techniques. We also examine the production of gluino pa...

  20. Maverick Comet Splits during Dramatic Outburst

    Science.gov (United States)

    1996-01-01

    New ESO Observations of P/Schwassmann-Wachmann 3 A few months ago, Periodic Comet Schwassmann-Wachmann 3 underwent a dramatic and completely unexpected, thousand-fold brightening. At that time, the cause for this interesting event was unknown. However, observations with the two largest ESO telescopes have now shown that the ``dirty snowball'' nucleus of this comet has recently split into at least four individual pieces [1]. There is little doubt that the outburst and the splitting event(s) are closely related and that the greatly increased dust and gas production is due to ``fresh'' material of the icy cometary nucleus becoming exposed to the surrounding space for the first time. A Comet with a Troubled History Comet Schwassmann-Wachmann 3 was discovered on May 2, 1930, on a photographic plate obtained at the Hamburg Observatory (Germany) by two astronomers at this institution, Arnold Schwassmann and Arthur Arno Wachmann. The subsequent observations showed that the comet moved in an elliptical orbit with a revolution period of somewhat more than 5 years. Great efforts were expended to observe the comet during the next returns, but it was not recovered until nearly 50 years and eight revolutions later, when its faint image was found of a plate obtained in August 1979 with a telescope at the Perth Observatory in Western Australia. It was missed in 1984, but was sighted again in 1989 and most recently in 1994. Thus this comet has only been observed during four out of thirteen approaches since 1930. While this may be partly due to a less advantageous location in the sky at some returns, it is also a strong indication that the comet behaves unpredictably and must have a quite variable brightness. For the sake of convenience this comet is often referred to as ``SW-3'' by professional astronomers. Recent orbital calculations have shown that it was inserted into the present, short-period orbit by the strong gravitational pull of Jupiter during several, relatively close

  1. Operator splitting for two-dimensional incompressible fluid equations

    CERN Document Server

    Holden, Helge; Karper, Trygve K

    2011-01-01

    We analyze splitting algorithms for a class of two-dimensional fluid equations, which includes the incompressible Navier-Stokes equations and the surface quasi-geostrophic equation. Our main result is that the Godunov and Strang splitting methods converge with the expected rates provided the initial data are sufficiently regular.

  2. Pulse splitting in nonlinear media with anisotropic dispersion properties

    DEFF Research Database (Denmark)

    Bergé, L.; Juul Rasmussen, J.; Schmidt, M.R.

    1998-01-01

    to a singularity in the transverse plane. Instead, the pulse spreads out along the direction of negative dispersion and splits up into small-scale cells, which may undergo further splitting events. The analytical results are supported by direct numerical solutions of the three dimensional cubic Schrodinger...

  3. Towards Highly Efficient Bias-Free Solar Water Splitting

    NARCIS (Netherlands)

    Abdi, F.F.

    2013-01-01

    Solar water splitting has attracted significant attention due to its potential of converting solar to chemical energy. It uses semiconductor to convert sunlight into electron-hole pairs, which then split water into hydrogen and oxygen. The hydrogen can be used as a renewable fuel, or it can serve as

  4. 26 CFR 1.482-6 - Profit split method.

    Science.gov (United States)

    2010-04-01

    ...) of this section. (B) Comparability. The first step of the residual profit split relies on market... market returns for the routine contributions. The second step of the residual profit split, however, may... reduced to the extent that the allocation of profits in the second step does not rely on market benchmarks...

  5. Towards Highly Efficient Bias-Free Solar Water Splitting

    NARCIS (Netherlands)

    Abdi, F.F.

    2013-01-01

    Solar water splitting has attracted significant attention due to its potential of converting solar to chemical energy. It uses semiconductor to convert sunlight into electron-hole pairs, which then split water into hydrogen and oxygen. The hydrogen can be used as a renewable fuel, or it can serve as

  6. The Almost Split Sequences for Trivial Extensions of Hereditary Algebras

    Institute of Scientific and Technical Information of China (English)

    Zhang Yu-lin; Yao Hai-lou

    2014-01-01

    Let A be a basic hereditary artin algebra and R=AnQ be the trivial extension of A by its minimal injective cogenerator Q. We construct some right (left) almost split morphisms and irreducible morphisms in modR through the correspond-ing morphisms in modA. Furthermore, we can determine its almost split sequences in modR.

  7. Time bucket length and lot-splitting approach

    NARCIS (Netherlands)

    Riezebos, J

    2004-01-01

    The effect of time bucket length on the choice of a lot-splitting approach is studied. Due to the continuing pressure to reduce throughput times and increase efficiency, managers apply various measures, such as lot splitting and cycle time reduction programmes, that change the length of the time buc

  8. Split-liver transplantation : An underused resource in liver transplantation

    NARCIS (Netherlands)

    Rogiers, Xavier; Sieders, Egbert

    2008-01-01

    Split-liver transplantation is an efficient tool to increase the number of liver grafts available for transplantation. More than 15 years after its introduction only the classical splitting technique has reached broad application. Consequently children are benefiting most from this possibility. Full

  9. Photocatalytic Water-Splitting Reaction from Catalytic and Kinetic Perspectives

    KAUST Repository

    Hisatomi, Takashi

    2014-10-16

    Abstract: Some particulate semiconductors loaded with nanoparticulate catalysts exhibit photocatalytic activity for the water-splitting reaction. The photocatalysis is distinct from the thermal catalysis because photocatalysis involves photophysical processes in particulate semiconductors. This review article presents a brief introduction to photocatalysis, followed by kinetic aspects of the photocatalytic water-splitting reaction.Graphical Abstract: [Figure not available: see fulltext.

  10. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting.

    Science.gov (United States)

    Hisatomi, Takashi; Kubota, Jun; Domen, Kazunari

    2014-11-21

    Photocatalytic and photoelectrochemical water splitting under irradiation by sunlight has received much attention for production of renewable hydrogen from water on a large scale. Many challenges still remain in improving energy conversion efficiency, such as utilizing longer-wavelength photons for hydrogen production, enhancing the reaction efficiency at any given wavelength, and increasing the lifetime of the semiconductor materials. This introductory review covers the fundamental aspects of photocatalytic and photoelectrochemical water splitting. Controlling the semiconducting properties of photocatalysts and photoelectrode materials is the primary concern in developing materials for solar water splitting, because they determine how much photoexcitation occurs in a semiconductor under solar illumination and how many photoexcited carriers reach the surface where water splitting takes place. Given a specific semiconductor material, surface modifications are important not only to activate the semiconductor for water splitting but also to facilitate charge separation and to upgrade the stability of the material under photoexcitation. In addition, reducing resistance loss and forming p-n junction have a significant impact on the efficiency of photoelectrochemical water splitting. Correct evaluation of the photocatalytic and photoelectrochemical activity for water splitting is becoming more important in enabling an accurate comparison of a number of studies based on different systems. In the latter part, recent advances in the water splitting reaction under visible light will be presented with a focus on non-oxide semiconductor materials to give an overview of the various problems and solutions.

  11. Evaluation of Certain Pharmaceutical Quality Attributes of Lisinopril Split Tablets

    Directory of Open Access Journals (Sweden)

    Khairi M. S. Fahelelbom

    2016-10-01

    Full Text Available Tablet splitting is an accepted practice for the administration of drugs for a variety of reasons, including dose adjustment, ease of swallowing and cost savings. The purpose of this study was to evaluate the physical properties of lisinopril tablets as a result of splitting the tablets either by hand or with a splitting device. The impact of the splitting technique of lisinopril (Zestril® tablets, 20 mg on certain physical parameters such as weight variation, friability, disintegration, dissolution and drug content were studied. Splitting the tablets either by hand or with a splitter resulted in a minute but statistically significant average weight loss of <0.25% of the tablet to the surrounding environment. The variability in the weight of the hand-split tablet halves was more pronounced (37 out of 40 tablet halves varied by more than 10% from the mean weight than when using the tablet splitter (3 out of 40 tablet halves. The dissolution and drug content of the hand-split tablets were therefore affected because of weight differences. However, the pharmacopoeia requirements for friability and disintegration time were met. Hand splitting of tablets can result in an inaccurate dose and may present clinical safety issues, especially for drugs with a narrow therapeutic window in which large fluctuations in drug concentrations are undesirable. It is recommended to use tablets with the exact desired dose, but if this is not an option, then a tablet splitter could be used.

  12. Split-plot fractional designs: Is minimum aberration enough?

    DEFF Research Database (Denmark)

    Kulahci, Murat; Ramirez, Jose; Tobias, Randy

    2006-01-01

    Split-plot experiments are commonly used in industry for product and process improvement. Recent articles on designing split-plot experiments concentrate on minimum aberration as the design criterion. Minimum aberration has been criticized as a design criterion for completely randomized fractional...... factorial design and alternative criteria, such as the maximum number of clear two-factor interactions, are suggested (Wu and Hamada (2000)). The need for alternatives to minimum aberration is even more acute for split-plot designs. In a standard split-plot design, there are several types of two...... for completely randomized designs. Consequently, we provide a modified version of the maximum number of clear two-factor interactions design criterion to be used for split-plot designs....

  13. Efficient numerical simulation of ocean hydrodynamics by a splitting procedure

    Directory of Open Access Journals (Sweden)

    Hans Berntsen

    1981-10-01

    Full Text Available A splitting algorithm for fast and slow modes of ocean hydrodynamics is presented. The purpose of the splitting is to reduce the large amount of computational work needed for simulating long real-time periods. The essential point of the splitting is that the external gravity wave terms are extracted from the fully three-dimensional equations of horizontal motion, allowing the reduced equations to be integrated with a larger time step than the original model. The fast external gravity waves are traced by a depth integrated system which is weakly coupled to the reduced three-dimensional momentum equations. The split model shows a radical decrease in computational time and the accuracy is of the same order as in the non-split case.

  14. A study on springback of bending linear flow split profiles

    Science.gov (United States)

    Mahajan, P.; Taplick, C.; Özel, M.; Groche, P.

    2016-11-01

    The bending of linear flow split profiles made up of high strength materials involves high bending loads leading to high springback and geometrical defects. In addition, the linear flow split profiles are made stronger due to the high plastic deformation applied by the process itself. The bending method proposed in this paper combines the linear flow splitting process with a movable bending tool. The aim of the research was to investigate the effect of superimposed stresses exerted by the linear flow splitting process on bending load and springback of the profile by using a finite element model. The latter was validated by means of experimental results. The results show that the bending loads and the springback were reduced by increasing the superposition of stress applied by the linear flow splitting process. The reduction in the bending loads leads to a reduction in the cross-sectional distortion. Furthermore, the springback was compensated by controlling the amount of superimposed stress.

  15. Split-plot designs for robotic serial dilution assays.

    Science.gov (United States)

    Buzas, Jeffrey S; Wager, Carrie G; Lansky, David M

    2011-12-01

    This article explores effective implementation of split-plot designs in serial dilution bioassay using robots. We show that the shortest path for a robot to fill plate wells for a split-plot design is equivalent to the shortest common supersequence problem in combinatorics. We develop an algorithm for finding the shortest common supersequence, provide an R implementation, and explore the distribution of the number of steps required to implement split-plot designs for bioassay through simulation. We also show how to construct collections of split plots that can be filled in a minimal number of steps, thereby demonstrating that split-plot designs can be implemented with nearly the same effort as strip-plot designs. Finally, we provide guidelines for modeling data that result from these designs.

  16. Split-plot fractional designs: Is minimum aberration enough?

    DEFF Research Database (Denmark)

    Kulahci, Murat; Ramirez, Jose; Tobias, Randy

    2006-01-01

    Split-plot experiments are commonly used in industry for product and process improvement. Recent articles on designing split-plot experiments concentrate on minimum aberration as the design criterion. Minimum aberration has been criticized as a design criterion for completely randomized fractional...... factorial design and alternative criteria, such as the maximum number of clear two-factor interactions, are suggested (Wu and Hamada (2000)). The need for alternatives to minimum aberration is even more acute for split-plot designs. In a standard split-plot design, there are several types of two...... for completely randomized designs. Consequently, we provide a modified version of the maximum number of clear two-factor interactions design criterion to be used for split-plot designs....

  17. Operator splitting methods for degenerate convection-diffusion equations II: Numerical examples with emphasis on reservoir simulation and sedimentation

    Energy Technology Data Exchange (ETDEWEB)

    Holden, Helge; Karlsen, Kenneth Hvistendal; Lie, Knut Andreas

    1999-12-01

    We present an accurate numerical method for a large class of scalar, strongly degenerate convection-diffusion equations. Important subclasses are hyperbolic conservation laws, porous medium type equations, two-phase reservoir flow equations, and strongly degenerate equations coming from the recent theory of sedimentation-consolidation processes. The method is based on splitting the convective and the diffusive terms. The nonlinear, convective part is solved using front tracking and dimensional splitting, while the nonlinear diffusion part is solved by an implicit-explicit finite difference scheme. In addition, one version of the implemented operator splitting method has a mechanism built in for detecting and correcting unphysical entropy loss, which may occur when the time step is large. This mechanism helps us gain a large time step ability for practical computations. A detailed convergence analysis of the operator splitting method was given in Part I. Here we present numerical experiments with the method for examples modelling secondary oil recovery and sedimentation-consolidation processes. We demonstrate that the splitting method resolves sharp gradients accurately, may use large time steps, has first order convergence, exhibits small grid orientation effects, has small mass balance errors, and is rather efficient. (author)

  18. Markov branching in the vertex splitting model

    CERN Document Server

    Stefansson, Sigurdur Orn

    2011-01-01

    We study a special case of the vertex splitting model which is a recent model of randomly growing trees. For any finite maximum vertex degree $D$, we find a one parameter model, with parameter $\\alpha \\in [0,1]$ which has a so--called Markov branching property. When $D=\\infty$ we find a two parameter model with an additional parameter $\\gamma \\in [0,1]$ which also has this feature. In the case $D = 3$, the model bears resemblance to Ford's $\\alpha$--model of phylogenetic trees and when $D=\\infty$ it is similar to its generalization, the $\\alpha\\gamma$--model. For $\\alpha = 0$, the model reduces to the well known model of preferential attachment. In the case $\\alpha > 0$, we prove convergence of the finite volume probability measures, generated by the growth rules, to a measure on infinite trees which is concentrated on the set of trees with a single spine. We show that the annealed Hausdorff dimension with respect to the infinite volume measure is $1/\\alpha$. When $\\gamma = 0$ the model reduces to a model of ...

  19. Field-Split Preconditioned Inexact Newton Algorithms

    KAUST Repository

    Liu, Lulu

    2015-06-02

    The multiplicative Schwarz preconditioned inexact Newton (MSPIN) algorithm is presented as a complement to additive Schwarz preconditioned inexact Newton (ASPIN). At an algebraic level, ASPIN and MSPIN are variants of the same strategy to improve the convergence of systems with unbalanced nonlinearities; however, they have natural complementarity in practice. MSPIN is naturally based on partitioning of degrees of freedom in a nonlinear PDE system by field type rather than by subdomain, where a modest factor of concurrency can be sacrificed for physically motivated convergence robustness. ASPIN, originally introduced for decompositions into subdomains, is natural for high concurrency and reduction of global synchronization. We consider both types of inexact Newton algorithms in the field-split context, and we augment the classical convergence theory of ASPIN for the multiplicative case. Numerical experiments show that MSPIN can be significantly more robust than Newton methods based on global linearizations, and that MSPIN can be more robust than ASPIN and maintain fast convergence even for challenging problems, such as high Reynolds number Navier--Stokes equations.

  20. Image Segmentation Using Two Step Splitting Function

    Directory of Open Access Journals (Sweden)

    Gopal Kumar Jha

    2013-12-01

    Full Text Available Image processing and computer vision is widely using Level Set Method (LSM. In conventional level set formulation, irregularities are developed during evolution of level set function, which cause numerical errors and eventually destroy the stability of the evolution. Therefore a numerical remedy called re-initialization is typically applied periodically to replace the degraded level set function. However re –initialization raises serious problem that is when and how it should be performed and also affects numerical accuracy in an undesirable way. To overcome this drawback of re-initialization process, a new variation level set formulation called Distance regularization level set evolution (DRLSE is introduced in which the regularity of the level set function is internally maintained during the level set evolution. DRLSE allows more general and effective initialization of the level set function. But DRLSE uses relatively large number of steps to ensure efficient numerical accuracy. Here in this thesis we are implementing faster and equally efficient computation technique called two step splitting method (TSSM. TSSM is physio-chemical reaction diffusion equation in which firstly LSE equation get iterated and then regularize the level set function from the first step to ensure the stability and hence re-initialization is completely eliminated from LSE which also satisfy DRLSE.

  1. Split-Field Magnet facility upgraded

    CERN Multimedia

    1977-01-01

    The Split Field Magnet (SFM) was the largest spectrometer for particles from beam-beam collisions in the ISR. It could determine particle momenta in a large solid angle, but was designed mainly for the analysis of forward travelling particles.As the magnet was working on the ISR circulating beams, its magnetic field had to be such as to restore the correct proton orbit.The SFM, therefore, produced zero field at the crossing point and fields of opposite signs upstream and downstream of it and was completed by 2 large and 2 small compensator magnets. The gradient effects were corrected by magnetic channels equipped with movable flaps. The useful magnetic field volume was 28 m3, the induction in the median plane 1.14 T, the gap heigth 1.1 m, the length 10.5 m, the weight about 1000 ton. Concerning the detectors, the SFM was the first massive application of multiwire proportional chambers (about 70000 wires) which filled the main and the large compensator magnets. In 1976 an improved programme was started with tw...

  2. Touching Syllable Segmentation using Split Profile Algorithm

    Directory of Open Access Journals (Sweden)

    L.Pratap Reddy

    2010-05-01

    Full Text Available The most challenging task of a character recognition system is associated with segmentation of individual components of the script with maximum efficiency. This process is relatively easy with regard to stroke based and standard scripts. Cursive scripts are more complex possessing a large number of overlapping and touching objects, where in the statistical behavior of the topological properties are to be studied extensively for achieving highest accuracy. Certain amount of similarity exists between unconstrained hand written text as well as South Indian scripts in terms of topology, component combinations, overlapping and merging characteristics. The concept of syllables and their formulations is an additive complexity with regard to Indian scripts. In this paper the statistical behavior of the cursive script, Telugu, is presented. The topological properties in terms of zones, component combinations, behavioural aspects of syllables are studied and adopted in the segmentation process. The statistical behaviour of cursive components are evaluated. Split Profile Algorithm is proposed while handling touching components. The proposed algorithm is evaluated on different fonts and sizes. The performance of the proposed algorithm is compared with two approaches methods viz aspect ratio and syllable width approaches.

  3. Magnetic Splitting of Molecular Lines in Sunspot

    Science.gov (United States)

    Berdyugina, S. V.; Frutiger, C.; Solanki, S. K.

    A study of molecular lines in sunspots is of particular interest because of their high temperature and pressure sensitivity. Many of them are also magnetically sensitive, but this was not yet widely investigated. With high-resolution, high signal-to-noise Fourier spectroscopy in four Stokes parameters now available, the use of molecular lines for studying the structure of sunspots brings real gains. One is the extension of spot models, including magnetic field, up to layers, where atomic lines suffer from NLTE effects but molecules can still be treated in the LTE approximation. Equally important is the fact that since molecular lines are extremely temperature sensitive they can be used to probe the thermal and magnetic structure of the coolest parts of sunspots. We present calculations of splitting and the Stokes parameters for a number of molecular lines in the visible and near-infrared regions. Our first selections are the green system of MgH A2Π-X2σ and the TiO triplet α, γ' and γ systems as the most studied band systems in the sunspot spectrum. The calculations involve different regimes of the molecular Zeeman effect, up to the complete Paschen-Back effect for individual lines. We look for molecular lines which can be used along with atomic lines to derive magnetic, thermal and dynamic properties of the umbra.

  4. Total Variation Deconvolution using Split Bregman

    Directory of Open Access Journals (Sweden)

    Pascal Getreuer

    2012-07-01

    Full Text Available Deblurring is the inverse problem of restoring an image that has been blurred and possibly corrupted with noise. Deconvolution refers to the case where the blur to be removed is linear and shift-invariant so it may be expressed as a convolution of the image with a point spread function. Convolution corresponds in the Fourier domain to multiplication, and deconvolution is essentially Fourier division. The challenge is that since the multipliers are often small for high frequencies, direct division is unstable and plagued by noise present in the input image. Effective deconvolution requires a balance between frequency recovery and noise suppression. Total variation (TV regularization is a successful technique for achieving this balance in deblurring problems. It was originally developed for image denoising by Rudin, Osher, and Fatemi and then applied to deconvolution by Rudin and Osher. In this article, we discuss TV-regularized deconvolution with Gaussian noise and its efficient solution using the split Bregman algorithm of Goldstein and Osher. We show a straightforward extension for Laplace or Poisson noise and develop empirical estimates for the optimal value of the regularization parameter λ.

  5. Enhanced Valley Splitting for Quantum Electronics in Silicon

    Science.gov (United States)

    Saraiva, Andre

    2014-03-01

    Silicon is a placid environment for quantum degrees of freedom with long spin and valley coherence times. A natural drawback is that the same features that protect the quantum state from its environment also hamper its control with external fields. Indeed, engineered nanostructures typically lead to sub-meV splittings between valley states, hindering the implementation of both spin and valley based quantum devices. We will discuss the microscopic theory of valley splitting, presenting three schemes to control valleys on a scale higher than 1 meV: a) in a quantum well, the adoption of a barrier constituted of a layered heterostructure might lead to constructive reflection if the layer thicknesses match the electron wavelength, in analogy with a Bragg mirror; b) the disparity between the high valley splitting in a impurity donor potential and the low splitting in a Si/Insulator interface may be harnessed controlling the tunneling between these two states, so that the valley splitting may be controlled digitally; c) intrinsic Tamm/Shockley interface states might strongly hybridize with conduction states, leading to a much enhanced valley splitting, and its contribution to the 2DEG ground state may be experimentally identified. We argue that this effect is responsible for the enhanced splitting in Si/BOX interfaces.

  6. 7 keV sterile neutrino dark matter from split flavor mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Hiroyuki [Tohoku Univ., Sendai (Japan). Dept. of Physics; Jeong, Kwang Sik [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Takahashi, Fuminobu [Tohoku Univ., Sendai (Japan). Dept. of Physics; Tokyo Univ., Kashiwa (Japan). Kavli IPMU, TODIAS

    2014-02-15

    The recently discovered X-ray line at about 3.5 keV can be explained by sterile neutrino dark matter with mass, m{sub s}≅ 7 keV, and the mixing, sin{sup 2}2θ∝10{sup -10}. Such sterile neutrino is more long-lived than estimated based on the seesaw formula, which strongly suggests an extra flavor structure in the seesaw sector. We show that one can explain both the small mass and the longevity based on the split flavor mechanism where the breaking of flavor symmetry is tied to the breaking of the B-L symmetry. In a supersymmetric case we find that the 7 keV sterile neutrino implies the gravitino mass about 100 TeV.

  7. GY SAMPLING THEORY IN ENVIRONMENTAL STUDIES 1: ASSESSING SOIL SPLITTING PROTOCOLS

    Science.gov (United States)

    Five soil sample splitting methods (riffle splitting, paper cone riffle splitting, fractional shoveling, coning and quartering, and grab sampling) were evaluated with synthetic samples to verify Pierre Gy sampling theory expectations. Individually prepared samples consisting of l...

  8. To Split or Not to Split, That Is the Question in Some Shallow Water Equations

    CERN Document Server

    Martínez, Vicente

    2012-01-01

    In this paper we analyze the use of time splitting techniques for solving shallow water equation. We discuss some properties that these schemes should satisfy so that interactions between the source term and the shock waves are controlled. This paper shows that these schemes must be well balanced in the meaning expressed by Greenberg and Leroux [5]. More speci?cally, we analyze in what cases it is enough to verify an Approximate C-property and in which cases it is required to verify an Exact C-property (see [1], [2]). We also include some numerical tests in order to justify our reasoning.

  9. Towards Versatile and Sustainable Hydrogen Production through Electrocatalytic Water Splitting: Electrolyte Engineering.

    Science.gov (United States)

    Shinagawa, Tatsuya; Takanabe, Kazuhiro

    2017-04-10

    Recent advances in power generation from renewable resources necessitate conversion of electricity to chemicals and fuels in an efficient manner. Electrocatalytic water splitting is one of the most powerful and widespread technologies. The development of highly efficient, inexpensive, flexible, and versatile water electrolysis devices is desired. This review discusses the significance and impact of the electrolyte on electrocatalytic performance. Depending on the circumstances under which the water splitting reaction is conducted, the required solution conditions, such as the identity and molarity of ions, may significantly differ. Quantitative understanding of such electrolyte properties on electrolysis performance is effective to facilitate the development of efficient electrocatalytic systems. The electrolyte can directly participate in reaction schemes (kinetics), affect electrode stability, and/or indirectly impact the performance by influencing the concentration overpotential (mass transport). This review aims to guide fine-tuning of the electrolyte properties, or electrolyte engineering, for (photo)electrochemical water splitting reactions. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  10. Photophysics and electrochemistry relevant to photocatalytic water splitting involved at solid–electrolyte interfaces

    KAUST Repository

    Shinagawa, Tatsuya

    2016-08-04

    Direct photon to chemical energy conversion using semiconductor-electrocatalyst-electrolyte interfaces has been extensively investigated for more than a half century. Many studies have focused on screening materials for efficient photocatalysis. Photocatalytic efficiency has been improved during this period but is not sufficient for industrial commercialization. Detailed elucidation on the photocatalytic water splitting process leads to consecutive six reaction steps with the fundamental parameters involved: The photocatalysis is initiated involving photophysics derived from various semiconductor properties (1: photon absorption, 2: exciton separation). The generated charge carriers need to be transferred to surfaces effectively utilizing the interfaces (3: carrier diffusion, 4: carrier transport). Consequently, electrocatalysis finishes the process by producing products on the surface (5: catalytic efficiency, 6: mass transfer of reactants and products). Successful photocatalytic water splitting requires the enhancement of efficiency at each stage. Most critically, a fundamental understanding of the interfacial phenomena is highly desired for establishing "photocatalysis by design" concepts, where the kinetic bottleneck within a process is identified by further improving the specific properties of photocatalytic materials as opposed to blind material screening. Theoretical modeling using the identified quantitative parameters can effectively predict the theoretically attainable photon-conversion yields. This article provides an overview of the state-of-the-art theoretical understanding of interfacial problems mainly developed in our laboratory. Photocatalytic water splitting (especially hydrogen evolution on metal surfaces) was selected as a topic, and the photophysical and electrochemical processes that occur at semiconductor-metal, semiconductor-electrolyte and metal-electrolyte interfaces are discussed.

  11. A new splitting method for both analytical and preparative LC/MS.

    Science.gov (United States)

    Cai, Yi; Adams, Daniel; Chen, Hao

    2014-02-01

    This paper presents a novel splitting method for liquid chromatography/mass spectrometry (LC/MS) application, which allows fast MS detection of LC-separated analytes and subsequent online analyte collection. In this approach, a PEEK capillary tube with a micro-orifice drilled on the tube side wall is used to connect with LC column. A small portion of LC eluent emerging from the orifice can be directly ionized by desorption electrospray ionization (DESI) with negligible time delay (6~10 ms) while the remaining analytes exiting the tube outlet can be collected. The DESI-MS analysis of eluted compounds shows narrow peaks and high sensitivity because of the extremely small dead volume of the orifice used for LC eluent splitting (as low as 4 nL) and the freedom to choose favorable DESI spray solvent. In addition, online derivatization using reactive DESI is possible for supercharging proteins and for enhancing their signals without introducing extra dead volume. Unlike UV detector used in traditional preparative LC experiments, this method is applicable to compounds without chromophores (e.g., saccharides) due to the use of MS detector. Furthermore, this splitting method well suits monolithic column-based ultra-fast LC separation at a high elution flow rate of 4 mL/min. Figure ᅟ

  12. Viable and testable SUSY GUTs with Yukawa unification the case of split trilinears

    CERN Document Server

    Guadagnoli, Diego; Straub, David M

    2009-01-01

    We explore general SUSY GUT models with exact third-generation Yukawa unification, but where the requirement of universal soft terms at the GUT scale is relaxed. We consider the scenario in which the breaking of universality inherits from the Yukawa couplings, i.e. is of minimal flavor violating (MFV) type. In particular, the MFV principle allows for a splitting between the up-type and the down-type soft trilinear couplings. We explore the viability of this trilinear splitting scenario by means of a fitting procedure to electroweak observables, quark masses as well as flavor-changing neutral current processes. Phenomenological viability singles out one main scenario. This scenario is characterized by a sizable splitting between the trilinear soft terms and a large mu term. Remarkably, this scenario does not invoke a partial decoupling of the sparticle spectrum, as in the case of universal soft terms, but instead it requires part of the spectrum, notably the lightest stop, the gluino and the lightest charginos...

  13. Nano-architecture and material designs for water splitting photoelectrodes.

    Science.gov (United States)

    Chen, Hao Ming; Chen, Chih Kai; Liu, Ru-Shi; Zhang, Lei; Zhang, Jiujun; Wilkinson, David P

    2012-09-07

    This review concerns the efficient conversion of sunlight into chemical fuels through the photoelectrochemical splitting of water, which has the potential to generate sustainable hydrogen fuel. In this review, we discuss various photoelectrode materials and relative design strategies with their associated fabrication for solar water splitting. Factors affecting photoelectrochemical performance of these materials and designs are also described. The most recent progress in the research and development of new materials as well as their corresponding photoelectrodes is also summarized in this review. Finally, the research strategies and future directions for water splitting are discussed with recommendations to facilitate the further exploration of new photoelectrode materials and their associated technologies.

  14. Nonlinear Fracture Mechanics and Plasticity of the Split Cylinder Test

    DEFF Research Database (Denmark)

    Olesen, John Forbes; Østergaard, Lennart; Stang, Henrik

    2006-01-01

    demonstrates the influence of varying geometry or constitutive properties. For a split cylinder test in load control it is shown how the ultimate load is either plasticity dominated or fracture mechanics dominated. The transition between the two modes is related to changes in geometry or constitutive......The split cylinder testis subjected to an analysis combining nonlinear fracture mechanics and plasticity. The fictitious crack model is applied for the analysis of splitting tensile fracture, and the Mohr-Coulomb yield criterion is adopted for modelling the compressive crushing/sliding failure. Two...

  15. Information Theoretic Authentication and Secrecy Codes in the Splitting Model

    CERN Document Server

    Huber, Michael

    2011-01-01

    In the splitting model, information theoretic authentication codes allow non-deterministic encoding, that is, several messages can be used to communicate a particular plaintext. Certain applications require that the aspect of secrecy should hold simultaneously. Ogata-Kurosawa-Stinson-Saido (2004) have constructed optimal splitting authentication codes achieving perfect secrecy for the special case when the number of keys equals the number of messages. In this paper, we establish a construction method for optimal splitting authentication codes with perfect secrecy in the more general case when the number of keys may differ from the number of messages. To the best knowledge, this is the first result of this type.

  16. Degeneracy and Split of Defect States in Photonic Crystals

    Institute of Scientific and Technical Information of China (English)

    黄晓琴; 崔一平

    2003-01-01

    One-dimensional photonic crystals with two or more structural defects are studied. We observed an interesting characteristic of transmission band structure of photonic crystals with defects using the transmission-matrixmethod simulation. The transmission states in the wide photonic band gap caused by defects revealdegeneracy and split in certain conditions. Every split state is contributed by coupling of all defects in a photonic crystal.Using the tight-binding method, we obtain an approximate analytic expression for the split frequency of photonic crystals with two structural defects.

  17. Split-Plot Designs with Mirror Image Pairs as Subplots

    DEFF Research Database (Denmark)

    Tyssedal, John; Kulahci, Murat; Bisgaard, Soren

    2011-01-01

    In this article we investigate two-level split-plot designs where the sub-plots consist of only two mirror image trials. Assuming third and higher order interactions negligible, we show that these designs divide the estimated effects into two orthogonal sub-spaces, separating sub-plot main effects...... and sub-plot by whole-plot interactions from the rest. Further we show how to construct split-plot designs of projectivity P≥3. We also introduce a new class of split-plot designs with mirror image pairs constructed from non-geometric Plackett–Burman designs. The design properties of such designs are very...

  18. SiC MOSFETs based split output half bridge inverter

    DEFF Research Database (Denmark)

    Li, Helong; Munk-Nielsen, Stig; Beczkowski, Szymon

    2014-01-01

    Body diode of SiC MOSFETs has a relatively high forward voltage drop and still experiences reverse recovery phenomenon. Half bridge with split output aims to decouple both the body diode and junction capacitance of SiC MOSFETs, therefore achieving a reduced switching loss in a bridge configuration....... This paper makes the current commutation mechanism and efficiency analysis of half bridge with split output based on SiC MOSFETs. Current commutation process analysis is illustrated together with LTspice simulation and afterwards, verified by the experimental results of a double pulse test circuit with split...

  19. Thermoelectric-induced unitary Cooper pair splitting efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Zhan; Fang, Tie-Feng [Center for Interdisciplinary Studies and Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Li, Lin [Department of Physics, Southern University of Science and Technology of China, Shenzhen 518005 (China); Luo, Hong-Gang [Center for Interdisciplinary Studies and Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Beijing Computational Science Research Center, Beijing 100084 (China)

    2015-11-23

    Thermoelectric effect is exploited to optimize the Cooper pair splitting efficiency in a Y-shaped junction, which consists of two normal leads coupled to an s-wave superconductor via double noninteracting quantum dots. Here, utilizing temperature difference rather than bias voltage between the two normal leads, and tuning the two dot levels such that the transmittance of elastic cotunneling process is particle-hole symmetric, we find current flowing through the normal leads are totally contributed from the splitting of Cooper pairs emitted from the superconductor. Such a unitary splitting efficiency is significantly better than the efficiencies obtained in experiments so far.

  20. Hollow core anti-resonant fibres with split cladding

    Science.gov (United States)

    Huang, Xiaosheng; Qi, Wenliang; Ho, Daryl; Luan, Feng; Yong, Ken-Tye; Yoo, Seongwoo

    2016-03-01

    A split cladding fibers (SCF) is proposed as an additional design to the anti-resonant type fiber. The introduced split cladding helps to reduce the fabrication distortion. We use numerical simulations to compare the Kagome fibers (KFs) and the proposed split cladding fibers (SCFs) over two normalized transmission bands. It reveals that SCFs are able to maintain the desired round shape of silica cladding walls, hence improving the confinement loss (CL) compared to the KF. Fabrication of the SCF is demonstrated by the stack-and-draw technique. The near filed mode patterns are measured to prove the feasibility of this fiber design.