WorldWideScience

Sample records for quark effective theory

  1. Heavy Quark Effective Theory

    Science.gov (United States)

    Manohar, A. V.

    2003-02-01

    These lecture notes present some of the basic ideas of heavy quark effective theory. The topics covered include the classification of states, the derivation of the HQET Lagrangian at tree level, hadron masses, meson form factors, Luke's theorem, reparameterization invariance and inclusive decays. Radiative corrections are discussed in some detail, including an explicit computation of a matching correction for HQET. Borel summability, renormalons, and their connection with the QCD perturbation series is covered, as well as the use of the upsilon expansion to improve the convergence of the perturbation series.

  2. Heavy quark fragmentation functions in the heavy quark effective theory

    International Nuclear Information System (INIS)

    Martynenko, A.P.; Saleev, V.A.

    1996-01-01

    The fragmentation of b-bar-antiquark into polarized B c * -mesons and b-quark into P-wave (c-bar b) states in the Heavy Quark Effective Theory. The heavy quark fragmentation functions in longitudinally and transversely polarized S-wave b-bar c-states and P-wave mesons containing b-, c-quarks also, with the exact account of corrections of first order in 1/m b . 20 refs., 2 figs

  3. Baryons in the heavy quark effective theory

    International Nuclear Information System (INIS)

    Mannel, T.; Roberts, W.; Ryzak, Z.

    1990-08-01

    We show how to incorporate baryons in the heavy quark effective theory. A convenient formalism is exhibited and applied to semileptonic weak decays of heavy baryons and to exclusive production of heavy baryons in e + e - annihilation. (orig.)

  4. Integrability in heavy quark effective theory

    Science.gov (United States)

    Braun, Vladimir M.; Ji, Yao; Manashov, Alexander N.

    2018-06-01

    It was found that renormalization group equations in the heavy-quark effective theory (HQET) for the operators involving one effective heavy quark and light degrees of freedom are completely integrable in some cases and are related to spin chain models with the Hamiltonian commuting with the nondiagonal entry C( u) of the monodromy matrix. In this work we provide a more complete mathematical treatment of such spin chains in the QISM framework. We also discuss the relation of integrable models that appear in the HQET context with the large-spin limit of integrable models in QCD with light quarks. We find that the conserved charges and the "ground state" wave functions in HQET models can be obtained from the light-quark counterparts in a certain scaling limit.

  5. Effective field theory and the quark model

    International Nuclear Information System (INIS)

    Durand, Loyal; Ha, Phuoc; Jaczko, Gregory

    2001-01-01

    We analyze the connections between the quark model (QM) and the description of hadrons in the low-momentum limit of heavy-baryon effective field theory in QCD. By using a three-flavor-index representation for the effective baryon fields, we show that the 'nonrelativistic' constituent QM for baryon masses and moments is completely equivalent through O(m s ) to a parametrization of the relativistic field theory in a general spin-flavor basis. The flavor and spin variables can be identified with those of effective valence quarks. Conversely, the spin-flavor description clarifies the structure and dynamical interpretation of the chiral expansion in effective field theory, and provides a direct connection between the field theory and the semirelativistic models for hadrons used in successful dynamical calculations. This allows dynamical information to be incorporated directly into the chiral expansion. We find, for example, that the striking success of the additive QM for baryon magnetic moments is a consequence of the relative smallness of the non-additive spin-dependent corrections

  6. Renormalons and the heavy quark effective theory

    CERN Document Server

    Martinelli, G; Martinelli, G; Sachrajda, C T

    1995-01-01

    We propose a non-perturbative method for defining the higher dimensional operators which appear in the Heavy Quark Effective Theory (HQET), such that their matrix elements are free of renormalon singularities, and diverge at most logarithmically with the ultra-violet cut-off. Matrix elements of these operators can be computed numerically in lattice simulations of the HQET. We illustrate our procedures by presenting physical definitions of the binding energy (\\lb) and of the kinetic energy (-\\lambda_1/2m_Q) of the heavy quark in a hadron. This allows us to define a ``subtracted pole mass", whose inverse can be used as the expansion parameter in applications of the HQET.

  7. Quantum chromodynamics as effective theory of quarks and composite gluons

    International Nuclear Information System (INIS)

    Fuss, T.

    2004-01-01

    The dynamics of quarks is described by a nonperturbatively regularized NJL model which is canonically quantized and fulfil a probability interpretation. The quantum field theory of this model is formulated in a functional space. The wave functions of the quarks and gluons are calculated as eigenstates of Hard-Core equations and the gluons are considered as relativistic bound states of colored quark-antiquark pairs. The effective dynamics of the quarks and gluons is derived from weak mapping in functional space. This leads to the functional formulation of the phenomenological SU(3) local gauge invariant quark-gluon equations in temporal gauge. This means that the local gauge symmetry is a dynamical effect resulting from the quark model

  8. Heavy quark effective theory and heavy baryon transitions

    International Nuclear Information System (INIS)

    Hussain, F.

    1992-01-01

    The heavy quark effective theory (HQET) is applied to study the weak decay of heavy mesons and heavy baryons and to predict the form factors for heavy to heavy and heavy to light transitions. 28 refs, 10 figs, 2 tabs

  9. Heavy-quark fragmentation functions in the effective theory of heavy quarks

    International Nuclear Information System (INIS)

    Martynenko, A.P.; Saleev, V.A.

    1996-01-01

    The effective theory of heavy quarks is used to study b-bar-antiquark fragmentation in polarized Bc* mesons and b-quark fragmentation into P-wave (c-barb) states. The functions of heavy-quark fragmentation into longitudinally and transversely polarized S-wave (b-barc) states and into P-wave mesons containing b and c quarks are calculated. First-order corrections in 1/mb are taken into account exactly in these calculations. The results are shown to be consistent with the corresponding QCD calculations

  10. Cancellation of renormalon ambiguities in the heavy quark effective theory

    International Nuclear Information System (INIS)

    Neubert, M.; Sachrajda, C.T.

    1995-01-01

    Recently, it has been shown that the concept of the pole mass of a heavy quark becomes ambiguous beyond perturbation theory, because of the presence of infrared renormalons. We argue that the predictions of the heavy quark effective theory, whose construction is based on the pole mass, are free of such ambiguities. In the 1/m Q expansion of physical quantities, infrared and ultraviolet renormalons compensate each other between coefficient functions and matrix elements. We trace the appearance of these compensations for current-induced exclusive heavy-to-heavy and heavy-to-light transitions, and for inclusive decays of heavy hadrons. In particular, we show that the structure of the heavy quark expansion is not obscured by renormalons, and none of the predictions of the heavy quark effective theory are invalidated. ((orig.))

  11. Comparison of potential models through heavy quark effective theory

    International Nuclear Information System (INIS)

    Amundson, J.F.

    1995-01-01

    I calculate heavy-light decay constants in a nonrelativistic potential model. The resulting estimate of heavy quark symmetry breaking conflicts with similar estimates from lattice QCD. I show that a semirelativistic potential model eliminates the conflict. Using the results of heavy quark effective theory allows me to identify and compensate for shortcomings in the model calculations in addition to isolating the source of the differences in the two models. The results lead to a rule as to where the nonrelativistic quark model gives misleading predictions

  12. Heavy quark effective theory and study of heavy hadron spectra

    International Nuclear Information System (INIS)

    Dong Yubing

    1995-01-01

    By employing the heavy quark effective theory, the spectra of heavy hadrons, such as heavy mesons (Q-barq), heavy baryons (QQq and Qqq) and heavy multiquark systems (Q-barQ-barqq) are studied systemically. The results are compared with the predictions for Q-barQ-barqq in potential model

  13. Heavy baryon transitions and the heavy quark effective theory

    International Nuclear Information System (INIS)

    Hussain, F.

    1992-01-01

    Heavy baryon decays are studied in the context of the Bethe-Salpeter approach to the heavy quark effective theory. A drastic reduction, in the number of independent form factors, is found. Results are presented both for heavy to heavy and heavy to light baryon decays. (orig.)

  14. Two different formulations of the heavy quark effective theory

    International Nuclear Information System (INIS)

    Balk, S.; Ilakovac, A.; Koerner, J.G.; Pirjol, D.

    1994-01-01

    We point out that there exist two different formulations of the Heavy Quark Effective Theory (HQET). The one formulation of HQET was mostly developed at Harvard and involves the use of the equation of motion to eliminate the small components of the heavy quark field. The second formulation, developed in Mainz, involves a series of Foldy-Wouthuysen-type field transformations which diagonalizes the heavy quark Lagrangian in terms of an effective quark and antiquark sector. Starting at O(1/m Q 2 ) the two formulations are different in that their effective Lagrangians, their effective currents, and their effective wave functions differ. However, when these three differences are properly taken into account, the two alternative formulations lead to identical transition or S-matrix elements. This is demonstrated in an explicit example at O(1/m Q 2 ). We point to an essential difficulty of the Harvard HQET in that the Harvard effective fields are not properly normalized starting at order O(1/m Q 2 ). We provide explicit higher order expressions for the effective fields and the Lagrangian in the Mainz approach, and write down an O(1/m Q 2 ) nonabelian version of the Pauli equation for the heavy quark effective field. (orig.)

  15. Non-perturbative heavy quark effective theory. Introduction and status

    International Nuclear Information System (INIS)

    Sommer, Rainer; Humboldt-Universitaet, Berlin

    2015-01-01

    We give an introduction to Heavy Quark Effective Theory (HQET). Our emphasis is on its formulation non-perturbative in the strong coupling, including the non-perturbative determination of the parameters in the HQET Lagrangian. In a second part we review the present status of HQET on the lattice, largely based on work of the ALPHA collaboration in the last few years. We finally discuss opportunities and challenges.

  16. Heavy baryons in the heavy quark effective theory

    International Nuclear Information System (INIS)

    Koerner, J.G.; Thompson, G.

    1991-10-01

    We give a mini-review of recent results on current-induced transitions between heavy baryons (and between heavy and light baryons) in the light of the new spin and flavour symmetries of the Heavy Quark Effective Theory (HQET). We discuss the structure of the 1/m corrections to the heavy mass limit and outline a diagrammatic proof that there are no 0(1/m) correction to the Voloshin-Shifman normalization condition at zero recoil. (orig.)

  17. Heavy quark fragmentation into polarized quarkonium in the heavy quark effective theory

    International Nuclear Information System (INIS)

    Martynenko, A.P.; Saleev, V.A.

    1996-01-01

    Fragmentation of b-antiquark into polarized B* c -mesons is investigated within the framework of effective theory of heavy quarks. Functions of b fragmentation into longitudinally polarized and transversely polarized S-wave states of b c are calculated with an exact regard tot he first order corrections by 1/m b . Agreement of the results obtained with the corresponding calculations, performed in the quantum chromodynamics, is shown. 17 refs.; 2 figs

  18. Introduction to non-perturbative heavy quark effective theory

    International Nuclear Information System (INIS)

    Sommer, R.

    2010-08-01

    My lectures on the effective field theory for heavy quarks, an expansion around the static limit, concentrate on the motivation and formulation of HQET, its renormalization and discretization. This provides the basis for understanding that and how this effective theory can be formulated fully non-perturbatively in the QCD coupling, while by the very nature of an effective field theory, it is perturbative in the expansion parameter 1/m. After the couplings in the effective theory have been determined, the result at a certain order in 1/m is unique up to higher order terms in 1/m. In particular the continuum limit of the lattice regularized theory exists and leaves no trace of how it was regularized. In other words, the theory yields an asymptotic expansion of the QCD observables in 1/m - as usual in a quantum field theory modified by powers of logarithms. None of these properties has been shown rigorously (e.g. to all orders in perturbation theory) but perturbative computations and recently also non-perturbative lattice results give strong support to this ''standard wisdom''. A subtle issue is that a theoretically consistent formulation of the theory is only possible through a non-perturbative matching of its parameters with QCD at finite values of 1/m. As a consequence one finds immediately that the splitting of a result for a certain observable into, for example, lowest order and first order is ambiguous. Depending on how the matching between effective theory and QCD is done, a first order contribution may vanish and appear instead in the lowest order. For example, the often cited phenomenological HQET parameters anti Λ and λ 1 lack a unique non-perturbative definition. But this does not affect the precision of the asymptotic expansion in 1/m. The final result for an observable is correct up to order (1/m) n+1 if the theory was treated including (1/m) n terms. Clearly, the weakest point of HQET is that it intrinsically is an expansion. In practise, carrying it

  19. Introduction to non-perturbative heavy quark effective theory

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, R. [DESY, Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2010-08-15

    My lectures on the effective field theory for heavy quarks, an expansion around the static limit, concentrate on the motivation and formulation of HQET, its renormalization and discretization. This provides the basis for understanding that and how this effective theory can be formulated fully non-perturbatively in the QCD coupling, while by the very nature of an effective field theory, it is perturbative in the expansion parameter 1/m. After the couplings in the effective theory have been determined, the result at a certain order in 1/m is unique up to higher order terms in 1/m. In particular the continuum limit of the lattice regularized theory exists and leaves no trace of how it was regularized. In other words, the theory yields an asymptotic expansion of the QCD observables in 1/m - as usual in a quantum field theory modified by powers of logarithms. None of these properties has been shown rigorously (e.g. to all orders in perturbation theory) but perturbative computations and recently also non-perturbative lattice results give strong support to this ''standard wisdom''. A subtle issue is that a theoretically consistent formulation of the theory is only possible through a non-perturbative matching of its parameters with QCD at finite values of 1/m. As a consequence one finds immediately that the splitting of a result for a certain observable into, for example, lowest order and first order is ambiguous. Depending on how the matching between effective theory and QCD is done, a first order contribution may vanish and appear instead in the lowest order. For example, the often cited phenomenological HQET parameters anti {lambda} and {lambda}{sub 1} lack a unique non-perturbative definition. But this does not affect the precision of the asymptotic expansion in 1/m. The final result for an observable is correct up to order (1/m){sup n+1} if the theory was treated including (1/m){sup n} terms. Clearly, the weakest point of HQET is that it

  20. Quark mass effects in quark number susceptibilities

    International Nuclear Information System (INIS)

    Graf, Thorben; Petreczky, Peter

    2017-01-01

    The quark degrees of freedom of the QGP with special focus on mass effects are investigated. A next-to-leading-order perturbation theory approach with quark mass dependence is applied and compared to lattice QCD results. (paper)

  1. Effective theory analysis for vector-like quark model

    Science.gov (United States)

    Morozumi, Takuya; Shimizu, Yusuke; Takahashi, Shunya; Umeeda, Hiroyuki

    2018-04-01

    We study a model with a down-type SU(2) singlet vector-like quark (VLQ) as a minimal extension of the standard model (SM). In this model, flavor-changing neutral currents (FCNCs) arise at tree level and the unitarity of the 3× 3 Cabibbo-Kobayashi-Maskawa (CKM) matrix does not hold. In this paper, we constrain the FCNC coupling from b\\rArr s transitions, especially B_s\\rArr μ^+μ^- and \\bar{B}\\rArr X_sγ processes. In order to analyze these processes we derive an effective Lagrangian that is valid below the electroweak symmetry breaking scale. For this purpose, we first integrate out the VLQ field and derive an effective theory by matching Wilson coefficients up to one-loop level. Using the effective theory, we construct the effective Lagrangian for b\\rArr sγ^{(*)}. It includes the effects of the SM quarks and the violation of CKM unitarity. We show the constraints on the magnitude of the FCNC coupling and its phase by taking account of the current experimental data on Δ M_{B_s}, Br[B_s\\rArrμ^+μ^-], Br[\\bar{B}\\rArr X_sγ], and CKM matrix elements, as well as theoretical uncertainties. We find that the constraint from Br[B_s\\rArrμ^+μ^-] is more stringent than that from Br[\\bar{B}\\rArr X_sγ]. We also obtain a bound for the mass of the VLQ and the strength of the Yukawa couplings related to the FCNC coupling of the b\\rArr s transition. Using the CKM elements that satisfy the above constraints, we show how the unitarity is violated on the complex plane.

  2. Quark Fragmentation to Pions in an Effective Chiral Theory

    Directory of Open Access Journals (Sweden)

    Yazaki K.

    2010-04-01

    Full Text Available A description of fragmentation functions which satisfy the momentum and isospin sum rules is presented in an effective chiral quark theory of QCD. We concentrate on the pion fragmentation function, taking into account cascade-like processes in a generalized jet-model approach. Numerical results obtained in this NJL-jet model are presented and compared to empirical parametrizations.

  3. Effective field theories of baryons and mesons, or, what do quarks do?

    International Nuclear Information System (INIS)

    Keaton, G.L.

    1995-01-01

    This thesis is an attempt to understand the properties of the protons, pions and other hadrons in terms of their fundamental building blocks. In the first chapter the author reviews several of the approaches that have already been developed. The Nambu-Jona-Lasinio model offers the classic example of a derivation of meson properties from a quark Lagrangian. The chiral quark model encodes much of the intuition acquired in recent decades. The author also discusses the non-linear sigma model, the Skyrme model, and the constituent quark model, which is one of the oldest and most successful models. In the constituent quark model, the constituent quark appears to be different from the current quark that appears in the fundamental QCD Lagrangian. Recently it was proposed that the constituent quark is a topological soliton. In chapter 2 the author investigates this soliton, calculating its mass, radius, magnetic moment, color magnetic moment, and spin structure function. Within the approximations used, the magnetic moments and spin structure function cannot simultaneously be made to agree with the constituent quark model. In chapter 3 the author uses a different plan of attack. Rather than trying to model the constituents of the baryon, he begins with an effective field theory of baryons and mesons, with couplings and masses that are simply determined phenomenologically. Meson loop corrections to baryon axial currents are then computed in the 1/N expansion. It is already known that the one-loop corrections are suppressed by a factor 1/N; here it is shown that the two-loop corrections are suppressed by 1/N 2 . To leading order, these corrections are exactly the same as would be calculated in the constituent quark model. This method therefore offers a different approach to the constituent quark

  4. The b-quark mass from non-perturbative $N_f=2$ Heavy Quark Effective Theory at $O(1/m_h)$

    DEFF Research Database (Denmark)

    Bernardoni, F.; Blossier, B.; Bulava, J.

    2014-01-01

    We report our final estimate of the b-quark mass from $N_f=2$ lattice QCD simulations using Heavy Quark Effective Theory non-perturbatively matched to QCD at $O(1/m_h)$. Treating systematic and statistical errors in a conservative manner, we obtain $\\overline{m}_{\\rm b}^{\\overline{\\rm MS}}(2 {\\rm...

  5. Heavy quark effective theory, interpolating fields and Bethe-Salpeter amplitudes

    International Nuclear Information System (INIS)

    Hussain, F.; Thomspon, G.

    1994-07-01

    We use the LSZ reduction theorem and interpolating fields, along with the heavy quark effective theory, to investigate the structure of the Bethe-Salpeter amplitude for heavy hadrons. We show how a simple form of this amplitude, used extensively in heavy hadron decay calculations, follows naturally up to O(1/M) from these field theoretic considerations. (author). 13 refs, 1 tab

  6. Mass terms in effective theories of high density quark matter

    Science.gov (United States)

    Schäfer, T.

    2002-04-01

    We study the structure of mass terms in the effective theory for quasiparticles in QCD at high baryon density. To next-to-leading order in the 1/pF expansion we find two types of mass terms: chirality conserving two-fermion operators and chirality violating four-fermion operators. In the effective chiral theory for Goldstone modes in the color-flavor-locked (CFL) phase the former terms correspond to effective chemical potentials, while the latter lead to Lorentz invariant mass terms. We compute the masses of Goldstone bosons in the CFL phase, confirming earlier results by Son and Stephanov as well as Bedaque and Schäfer. We show that to leading order in the coupling constant g there is no antiparticle gap contribution to the mass of Goldstone modes, and that our results are independent of the choice of gauge.

  7. Parameters of heavy quark effective theory from N{sub f}=2 lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Blossier, Benoit [CNRS, Orsay (France). LPT; Paris-11 Univ., 91 - Orsay (France); Della Morte, Michele [Mainz Univ. (Germany). Inst. fuer Kernphysik; Fritzsch, Patrick [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Garron, Nicolas [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Heitger, Jochen [Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1; Simma, Hubert; Sommer, Rainer [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Tantalo, Nazario [Rome-3 Univ. (Italy). Dipt. di Fisica; INFN, Sezione di Roma (Italy)

    2012-07-15

    We report on a non-perturbative determination of the parameters of the lattice Heavy Quark Effective Theory (HQET) Lagrangian and of the time component of the heavy-light axial-vector current with N{sub f} = 2 flavors of massless dynamical quarks. The effective theory is considered at the 1/m{sub h} order, and the heavy mass m{sub h} covers a range from slightly above the charm to beyond the beauty region. These HQET parameters are needed to compute, for example, the b-quark mass, the heavy-light spectrum and decay constants in the static approximation and to order 1/m{sub h} in HQET. The determination of the parameters is done non-perturbatively. The computation reported in this paper uses the plaquette gauge action and two different static actions for the heavy quark described by HQET. For the light-quark action we choose non-perturbatively O(a)-improved Wilson fermions.

  8. Heavy quark effective theory computation of the mass of the bottom quark

    International Nuclear Information System (INIS)

    Della Morte, M.; Papinutto, M.

    2006-10-01

    We present a fully non-perturbative computation of the mass of the b-quark in the quenched approximation. Our strategy starts from the matching of HQET to QCD in a finite volume and finally relates the quark mass to the spin averaged mass of the B s meson in HQET. All steps include the terms of order Λ 2 /m b . We discuss the computation and renormalization of correlation functions at order 1/m b . With the strange quark mass fixed from the Kaon mass and the QCD scale set through r 0 =0.5 fm, we obtain a renormalization group invariant mass M b =6.758(86) GeV or anti m b (anti m b )=4.347(48) GeV in the MS scheme. The uncertainty in the computed Λ 2 /m b terms contributes little to the total error and Λ 3 /m 2 b terms are negligible. The strategy is promising for full QCD as well as for other B-physics observables. (orig.)

  9. Heavy quark effective theory computation of the mass of the bottom quark

    Energy Technology Data Exchange (ETDEWEB)

    Della Morte, M. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Garron, N.; Sommer, R. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Papinutto, M. [INFN Sezione di Roma Tre, Rome (Italy)

    2006-10-15

    We present a fully non-perturbative computation of the mass of the b-quark in the quenched approximation. Our strategy starts from the matching of HQET to QCD in a finite volume and finally relates the quark mass to the spin averaged mass of the B{sub s} meson in HQET. All steps include the terms of order {lambda}{sup 2}/m{sub b}. We discuss the computation and renormalization of correlation functions at order 1/m{sub b}. With the strange quark mass fixed from the Kaon mass and the QCD scale set through r{sub 0}=0.5 fm, we obtain a renormalization group invariant mass M{sub b}=6.758(86) GeV or anti m{sub b}(anti m{sub b})=4.347(48) GeV in the MS scheme. The uncertainty in the computed {lambda}{sup 2}/m{sub b} terms contributes little to the total error and {lambda}{sup 3}/m{sup 2}{sub b} terms are negligible. The strategy is promising for full QCD as well as for other B-physics observables. (orig.)

  10. Constraining top quark effective theory in the LHC Run II era

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, Andy; Englert, Christoph; Ferrando, James; Miller, David J.; Moore, Liam; Russell, Michael; White, Chris D. [School of Physics and Astronomy, Scottish Universities Physics Alliance, University of Glasgow,Glasgow G12 8QQ, Scotland (United Kingdom); Collaboration: The TopFitter collaboration

    2016-04-04

    We perform an up-to-date global fit of top quark effective theory to experimental data from the Tevatron, and from LHC Runs I and II. Experimental data includes total cross-sections up to 13 TeV, as well as differential distributions, for both single top and pair production. We also include the top quark width, charge asymmetries, and polarisation information from top decay products. We present bounds on the coefficients of dimension six operators, and examine the interplay between inclusive and differential measurements, and Tevatron/LHC data. All results are currently in good agreement with the Standard Model.

  11. Non-perturbative QCD. Renormalization, O(a)-improvement and matching to heavy quark effective theory

    International Nuclear Information System (INIS)

    Sommer, R.

    2006-11-01

    We give an introduction to three topics in lattice gauge theory: I. The Schroedinger Functional and O(a) improvement. O(a) improvement has been reviewed several times. Here we focus on explaining the basic ideas in detail and then proceed directly to an overview of the literature and our personal assessment of what has been achieved and what is missing. II. The computation of the running coupling, running quark masses and the extraction of the renormalization group invariants. We focus on the basic strategy and on the large effort that has been invested in understanding the continuum limit. We point out what remains to be done. III. Non-perturbative Heavy Quark Effective Theory. Since the literature on this subject is still rather sparse, we go beyond the basic ideas and discuss in some detail how the theory works in principle and in practice. (orig.)

  12. Non-perturbative QCD. Renormalization, O(a)-improvement and matching to heavy quark effective theory

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, R.

    2006-11-15

    We give an introduction to three topics in lattice gauge theory: I. The Schroedinger Functional and O(a) improvement. O(a) improvement has been reviewed several times. Here we focus on explaining the basic ideas in detail and then proceed directly to an overview of the literature and our personal assessment of what has been achieved and what is missing. II. The computation of the running coupling, running quark masses and the extraction of the renormalization group invariants. We focus on the basic strategy and on the large effort that has been invested in understanding the continuum limit. We point out what remains to be done. III. Non-perturbative Heavy Quark Effective Theory. Since the literature on this subject is still rather sparse, we go beyond the basic ideas and discuss in some detail how the theory works in principle and in practice. (orig.)

  13. Heavy-Quark Effective Theory and Weak Matrix Elements

    CERN Document Server

    Neubert, Matthias

    1999-01-01

    Recent developments in the theory of weak decays of heavy flavours are reviewed. Applications to exclusive semileptonic B decays, the semileptonic branching ratio and charm counting, beauty lifetimes, and hadronic B decays are discussed.

  14. Top quark theory

    NARCIS (Netherlands)

    Laenen, E.

    2012-01-01

    The theoretical aspects of a number of top quark properties such as its mass and its couplings are reviewed. Essential aspects in the theoretical description of top quark production, singly, in pairs and in association, as well as its decay related to spin and angular correlations are discussed.

  15. Precision constraints on the top-quark effective field theory at future lepton colliders

    Energy Technology Data Exchange (ETDEWEB)

    Durieux, Gauthier

    2017-08-15

    We examine the constraints that future lepton colliders would impose on the effective field theory describing modifications of top-quark interactions beyond the standard model, through measurements of the e{sup +}e{sup -}→bW{sup +} anti bW{sup -} process. Statistically optimal observables are exploited to constrain simultaneously and efficiently all relevant operators. Their constraining power is sufficient for quadratic effective-field-theory contributions to have negligible impact on limits which are therefore basis independent. This is contrasted with the measurements of cross sections and forward-backward asymmetries. An overall measure of constraints strength, the global determinant parameter, is used to determine which run parameters impose the strongest restriction on the multidimensional effective-field-theory parameter space.

  16. Precision constraints on the top-quark effective field theory at future lepton colliders

    International Nuclear Information System (INIS)

    Durieux, Gauthier

    2017-08-01

    We examine the constraints that future lepton colliders would impose on the effective field theory describing modifications of top-quark interactions beyond the standard model, through measurements of the e + e - →bW + anti bW - process. Statistically optimal observables are exploited to constrain simultaneously and efficiently all relevant operators. Their constraining power is sufficient for quadratic effective-field-theory contributions to have negligible impact on limits which are therefore basis independent. This is contrasted with the measurements of cross sections and forward-backward asymmetries. An overall measure of constraints strength, the global determinant parameter, is used to determine which run parameters impose the strongest restriction on the multidimensional effective-field-theory parameter space.

  17. Semileptonic decays of atomlike hadrons in the heavy quark effective theory

    International Nuclear Information System (INIS)

    Ito, Toshiaki; Morii, Toshiyuki; Tanimoto, Morimitsu.

    1992-01-01

    Semileptonic decays of heavy flavored hadrons are analyzed in the heavy quark effective theory (HQET) with leading 1/m Q corrections. All existing date for B-bar→D (*) lν-bar and D-bar→K (*) lν-bar are reproduced well in virtue of 1/m Q corrections, while the value of |V cb | derived by the HQET is almost independent of those corrections. In particular, 1/m s corrections are remarkable for D-bar→K (*) l ν -bar. Semiloptonic decays of Λ c and Λ b are also discussed including the 1/m Q corrections. (author)

  18. Quasilocal quark models as effective theory of non-perturbative QCD

    International Nuclear Information System (INIS)

    Andrianov, A.A.

    2006-01-01

    We consider the Quasilocal Quark Model of NJL type (QNJLM) as effective theory of non-perturbative QCD including scalar (S), pseudo-scalar (P), vector (V) and axial-vector (A) four-fermion interaction with derivatives. In the presence of a strong attraction in the scalar channel the chiral symmetry is spontaneously broken and as a consequence the composite meson states are generated in all channels. With the help of Operator Product Expansion the appropriate set of Chiral Symmetry Restoration (CSR) Sum Rules in these channels are imposed as matching rules to QCD at intermediate energies. The mass spectrum and some decay constants for ground and excited meson states are calculated

  19. Top quark theory

    Indian Academy of Sciences (India)

    2012-10-04

    Oct 4, 2012 ... The theoretical aspects of a number of top quark properties such as ... to the quadratic divergences of the Higgs self-energy, while yet, ..... given in the literature, each with the aim of recovering a well-behaved expansion in αs.

  20. The Theory of Quark and Gluon Interactions

    CERN Document Server

    Ynduráin, Francisco J

    2006-01-01

    F. J. Ynduráin's book on Quantum Chromodynamics has become a classic among advanced textbooks. First published in 1983, and translated into Russian in 1986, it now sees its fourth edition. It addresses readers with basic knowledge of field theory and particle phenomenology. The author presents the basic facts of quark and gluon physics in pedagogical form. Theory is always confronted with experimental findings. The reader will learn enough to be able to follow modern research articles. This fourth edition presents a new section on heavy quark effective theories, more material on lattice QCD and on chiral perturbation theory.

  1. Quark disconnected diagrams in chiral perturbation theory

    CERN Document Server

    Della Morte, Michele

    2010-01-01

    We show how quark-disconnected and quark-connected contributions to hadronic n-point functions can be written as independent correlators for which one can derive expressions in partially quenched chiral effective theory. As an example we apply the idea to the case of the hadronic vacuum polarisation. In particular, we consider the cases of the Nf = 2 theory without and with a partially quenched strange quark and also the Nf = 2 + 1 theory. In the latter two cases a parameter-free prediction for the disconnected contribution at NLO in the effective theory is given. Finally we show how twisted boundary conditions can then be used in lattice QCD to improve the q^2 resolution in the connected contributions even when flavour singlet operators are considered.

  2. Prediction of beauty particle masses with the heavy quark effective theory

    International Nuclear Information System (INIS)

    Aglietti, U.

    1992-01-01

    Using symmetry properties of the static theory for heavy quarks, the spectrum of beauty particles is predicted in terms of the spectrum of charmed particles. A simple technique for cancelling spin dependent corrections to the static theory is explained and systematically applied. (orig.)

  3. Effective theory for heavy quark QCD at finite temperature and density with stochastic quantization

    Energy Technology Data Exchange (ETDEWEB)

    Neuman, Mathias

    2015-07-01

    In this thesis we presented the derivation as well as the numerical and analytical treatment of an effective theory for lattice Quantum Chromodynamics (LQCD). We derived the effective theory directly from LQCD, which allows us to systematically introduce further improvements. The derivation was performed by means of an expansion around the limit of infinite quark masses and infinite gauge coupling. Using this theory we were able to derive results in the region of large densities. This region is, due to the sign problem, inaccessible to standard LQCD approaches. Although LQCD simulations at large densities have been performed recently by applying stochastic quantization, those are still limited to lattice with low numbers of timeslices and therefor can not reach the low temperature region. Furthermore, they can not be crosschecked with Monte-Carlo simulations. Since the equivalence between stochastic quantization and Monte-Carlo is unproven for the case of finite density systems, new approaches to access the cold dense region of the QCD phase diagram are desirable. The effective theory presented in this thesis provides such an approach. We introduced continuum QCD in chapter 2. In chapter 3 we presented how LQCD, i.e. QCD in a discretized space-time, can be formulated and used as a tool to explore the non-perturbative regions of the QCD phase diagram. Special emphasis was placed on simulations at finite baryon densities and the numerical problems that arise in this region. These problems are caused by the complexification of the action and are known as the sign problem. We gave a detailed presentation of the derivation of our effective theory in chapter 4. For this we performed expansions around the limit of strong coupling and static quarks, κ=β=0, introducing corrections order by order in the expansion parameters κ and β. Truncating the theory at different orders allowed us to determine the parameter region where the convergence to full LQCD is good. The gauge

  4. The low-energy effective theory of QCD at small quark masses in a finite volume

    Energy Technology Data Exchange (ETDEWEB)

    Lehner, Christoph

    2010-01-15

    At low energies the theory of quantum chromodynamics (QCD) can be described effectively in terms of the lightest particles of the theory, the pions. This approximation is valid for temperatures well below the mass difference of the pions to the next heavier particles. We study the low-energy effective theory at very small quark masses in a finite volume V. The corresponding perturbative expansion in 1/{radical}(V) is called {epsilon} expansion. At each order of this expansion a finite number of low-energy constants completely determine the effective theory. These low-energy constants are of great phenomenological importance. In the leading order of the {epsilon} expansion, called {epsilon} regime, the theory becomes zero-dimensional and is therefore described by random matrix theory (RMT). The dimensionless quantities of RMT are mapped to dimensionful quantities of the low-energy effective theory using the leading-order lowenergy constants {sigma} and F. In this way {sigma} and F can be obtained from lattice QCD simulations in the '' regime by a fit to RMT predictions. For typical volumes of state-of-the-art lattice QCD simulations, finite-volume corrections to the RMT prediction cannot be neglected. These corrections can be calculated in higher orders of the {epsilon} expansion. We calculate the finite-volume corrections to {sigma} and F at next-to-next-to-leading order in the {epsilon} expansion. We also discuss non-universal modifications of the theory due to the finite volume. These results are then applied to lattice QCD simulations, and we extract {sigma} and F from eigenvalue correlation functions of the Dirac operator. As a side result, we provide a proof of equivalence between the parametrization of the partially quenched low-energy effective theory without singlet particle and that of the super-Riemannian manifold used earlier in the literature. Furthermore, we calculate a special version of the massless sunset diagram at finite volume without

  5. Towards next-to-leading order corrections to the heavy quark potential in the effective string theory

    Directory of Open Access Journals (Sweden)

    Hwang Sungmin

    2017-01-01

    Full Text Available We present our calculation of the non-relativistic corrections to the heavy quark-antiquark potential up to leading and next-to-leading order (NLO via the effective string theory (EST. Full systematics of effective field theory (EFT are discussed in order for including the NLO contribution that arises in the EST. We also show how the number of dimensionful parameters arising from the EST are reduced by the constraints between the Wilson coeffcients from non-relativistic EFTs for QCD.

  6. Predictions of a theory of quark confinement

    International Nuclear Information System (INIS)

    Mack, G.

    1980-03-01

    We propose a theory of quark confinement which uses only the simplest of approximations. It explains persistence of quark confinement in Yang Mills theories with gauge group SU(2) or SU(3) as a consequence of asymptotic freedom in perturbation theory and of the known phase structure of Z(2) resp. Z(3) lattice gauge theory. Predictions are derived which can in principle be tested by computer simulation. Some are already tested by results of Creutz. They are in good agreement. (orig.)

  7. Predictions of a theory of quark confinement

    International Nuclear Information System (INIS)

    Mack, G.

    1980-01-01

    A theory of quark confinement is proposed which uses only the simplest of approximations. It explains persistence of quark confinement in Yang-Mills theories with gauge group SU(2) or SU(3) as a consequence of asymptotic freedom in perturbation theory and of the known phase structure of Z(2) and Z(3) lattice gauge theory. Predictions are derived which can in principle be tested by computer simulation. Some are are already tested by results of Creutz. They are in good agreement

  8. Recent advances in heavy quark theory

    Energy Technology Data Exchange (ETDEWEB)

    Wise, M. [California Institute of Technology, Pasadena, CA (United States)

    1997-01-01

    Some recent developments in heavy quark theory are reviewed. Particular emphasis is given to inclusive weak decays of hadrons containing a b quark. The isospin violating hadronic decay D{sub s}* {yields} D{sub s}{sup pi}{sup 0} is also discussed.

  9. Diagrammatic group theory in quark models

    International Nuclear Information System (INIS)

    Canning, G.P.

    1977-05-01

    A simple and systematic diagrammatic method is presented for calculating the numerical factors arising from group theory in quark models: dimensions, casimir invariants, vector coupling coefficients and especially recoupling coefficients. Some coefficients for the coupling of 3 quark objects are listed for SU(n) and SU(2n). (orig.) [de

  10. Non-perturbative subtractions in the heavy quark effective field theory

    International Nuclear Information System (INIS)

    Maiani, L.; Martinelli, G.; Sachrajda, C.T.

    1992-01-01

    We demonstrate the presence of ultraviolet power divergences in the O(1/m h ) corrections to matrix elements of hadronic operators containing a heavy quark field (where m h is the mass of the heavy quark). These power divergences must be subtracted non-perturbatively. The implications for lattice computations are discussed in detail. (orig.)

  11. Additivity of quark masses in gauge theories

    International Nuclear Information System (INIS)

    Scadron, M.D.

    1987-01-01

    It is shown that, in spite of the confinement of quarks in (color-singlet) hadrons, effective quark masses of all types (dynamically generated, constituent and current masses), naturally form hadron masses in an additivity fashion. For the purposes of brevity, the discussion is limited primarily to the nonstrange flavor sector

  12. Instanton density in a theory with massless quarks

    International Nuclear Information System (INIS)

    Shifman, M.A.; Vainshtein, A.I.; Zakharov, V.I.

    1979-01-01

    Effect of the complex structure of the QCD vacuum on the density of small-sized instantons is discussed. The method which allows to account for this effect of vacuum quark and gluon condensate is developed. Evaluation of the instanton density is given in the framework of the theory with one, two or three massless quarks. The results of the paper are presented for the cases of SU(2) and SU(3) color groups

  13. Nuclear matter from effective quark-quark interaction.

    Science.gov (United States)

    Baldo, M; Fukukawa, K

    2014-12-12

    We study neutron matter and symmetric nuclear matter with the quark-meson model for the two-nucleon interaction. The Bethe-Bruckner-Goldstone many-body theory is used to describe the correlations up to the three hole-line approximation with no extra parameters. At variance with other nonrelativistic realistic interactions, the three hole-line contribution turns out to be non-negligible and to have a substantial saturation effect. The saturation point of nuclear matter, the compressibility, the symmetry energy, and its slope are within the phenomenological constraints. Since the interaction also reproduces fairly well the properties of the three-nucleon system, these results indicate that the explicit introduction of the quark degrees of freedom within the considered constituent quark model is expected to reduce the role of three-body forces.

  14. Quark effects in nuclear physics

    International Nuclear Information System (INIS)

    Miller, G.A.

    1983-01-01

    A phenomenological approach which enables the size of quark effects in various nuclear processes is discussed. The principle of conservation of probability provides significant constraints on six quark wave functions. Using this approach, it is found that the low-energy proton-proton weak interaction can be explained in terms of W and Z boson exchanges between quarks. That the value of the asymptotic ratio of D to S state wave functions is influenced (at the 5% level) by quark effects, is another result of our approach. We have not discovered a nuclear effect that can be uniquely explained by quark-quark interactions. However it does seem that quark physics is very relevant for nuclear physics. 52 references

  15. Evolution equation for the B-meson distribution amplitude in the heavy-quark effective theory in coordinate space

    International Nuclear Information System (INIS)

    Kawamura, Hiroyuki; Tanaka, Kazuhiro

    2010-01-01

    The B-meson distribution amplitude (DA) is defined as the matrix element of a quark-antiquark bilocal light-cone operator in the heavy-quark effective theory, corresponding to a long-distance component in the factorization formula for exclusive B-meson decays. The evolution equation for the B-meson DA is governed by the cusp anomalous dimension as well as the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi-type anomalous dimension, and these anomalous dimensions give the ''quasilocal'' kernel in the coordinate-space representation. We show that this evolution equation can be solved analytically in the coordinate space, accomplishing the relevant Sudakov resummation at the next-to-leading logarithmic accuracy. The quasilocal nature leads to a quite simple form of our solution which determines the B-meson DA with a quark-antiquark light-cone separation t in terms of the DA at a lower renormalization scale μ with smaller interquark separations zt (z≤1). This formula allows us to present rigorous calculation of the B-meson DA at the factorization scale ∼√(m b Λ QCD ) for t less than ∼1 GeV -1 , using the recently obtained operator product expansion of the DA as the input at μ∼1 GeV. We also derive the master formula, which reexpresses the integrals of the DA at μ∼√(m b Λ QCD ) for the factorization formula by the compact integrals of the DA at μ∼1 GeV.

  16. Chemical Potential Dependence of the Dressed-Quark Propagator from an Effective Quark-Quark Interaction

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; PING Jia-Lun; SUN Wei-Min; CHANG Chao-Hsi; WANG Fan

    2002-01-01

    We exhibit a method for obtaining the low chemical potential dependence of the dressed quark propagatorfrom an effective quark-quark interaction model. Within this approach we explore the chemical potential dependenceof the dressed-quark propagator, which provides a means of determining the behavior of the chiral and deconfinementorder parameters. A comparison with the results of previous researches is given.

  17. A search for light gluinos, and, Heavy quark effective field theory and B-physics with applications to the collider detector at Fermilab

    International Nuclear Information System (INIS)

    Cakir, M.B.

    1993-01-01

    In the first part of this dissertation a search for light gluinos in the 0(1 GeV) region - especially in radiative decays of vector quarkonia - is presented. It is shown that light gluinos have not been excluded by experiments to date. In fact some evidence contrary to that fact is presented. In the second part the recent Heavy Quark Effective Field Theory methods are used in calculating rare decays of vector and pseudoscalar mesons of b-quarks. Applications to the Collider Detector at Fermilab environment are discussed

  18. The Gribov theory of quark confinement

    CERN Document Server

    2001-01-01

    V N Gribov, one of the founders of modern particle physics, shaped our understanding of QCD as the microscopic dynamics of hadrons. This volume collects his papers on quark confinement, showing the road he followed to arrive at the theory and formulating the theory itself. It begins with papers providing a beautiful physical explanation of asymptotic freedom based on the phenomenon of antiscreening and demonstrating the inconsistency of the standard perturbative treatment of the gluon fields (Gribov copies, Gribov horizon). It continues with papers presenting the Gribov theory according to whi

  19. Quark Physics without Quarks: A Review of Recent Developments in S-Matrix Theory.

    Science.gov (United States)

    Capra, Fritjof

    1979-01-01

    Reviews the developments in S-matrix theory over the past five years which have made it possible to derive results characteristic of quark models without any need to postulate the existence of physical quarks. In the new approach, the quark patterns emerge as a consequence of combining the general S-matrix principles with the concept of order.…

  20. Quark effects in nuclear physics

    International Nuclear Information System (INIS)

    Scholten, O.

    1990-01-01

    The magnitude of the quark effect for low-energy nuclear physics is investigated. Coulomb energy is studied in the A=3 system in order to determine the effect of the composite structure of the nucleon. In the actual calculations a non-relativistic quark-cluster model description has been used. A nucleon size b=0.617 fm, the width of the relative wave function Φ of the quarks in the nucleon, has been assumed. It is concluded that the contribution to Coulomb energies due to quark effects are significant compared to the observed Nolen-Schiffer anomaly. However these do not provide the long searched for 'smoking gun'. When the free parameters that appear in the calculation are adjusted to reproduce the same charge form factor, the calculated anomalies are not significantly different. 2 figs., 2 tabs., 8 refs.2

  1. Quark effects in nuclear structure

    International Nuclear Information System (INIS)

    Watt, A.

    1987-01-01

    Some experimental data in nuclear structure physics cannot be explained on the assumption that nuclei consist of inert protons and neutrons. The quark model attributes a definite internal structure to nucleons and implies that their properties should change when embedded in a nucleus. This article reviews some of the experimental evidence for these effects and discusses some new aspects of nuclear structure predicted by the quark model

  2. Quark soup al dente: applied superstring theory

    Energy Technology Data Exchange (ETDEWEB)

    Myers, R C; Vazquez, S E [Perimeter Institute for Theoretical Physics, 31 Caroline St N, Waterloo, Ontario N2 L 2Y5 (Canada)], E-mail: rmyers@perimeterinstitute.ca, E-mail: svazquez@perimeterinstitute.ca

    2008-06-07

    In recent years, experiments have discovered an exotic new state of matter known as the strongly coupled quark-gluon plasma (sQGP). At present, it seems that standard theoretical tools, such as perturbation theory and lattice gauge theory, are poorly suited to understand this new phase. However, recent progress in superstring theory has provided us with a theoretical laboratory for studying very similar systems of strongly interacting hot non-Abelian plasmas. This surprising new perspective extracts the fluid properties of the sQGP from physical processes in a black hole spacetime. Hence we may find the answers to difficult particle physics questions about the sQGP from straightforward calculations in classical general relativity.

  3. Effects of dynamical quarks in UKQCD simulations

    International Nuclear Information System (INIS)

    Allton, Chris

    2002-01-01

    Recent results from the UKQCD Collaboration's dynamical simulations are presented. The main feature of these ensembles is that they have a fixed lattice spacing and volume, but varying sea quark mass from infinite (corresponding to the quenched simulation) down to roughly that of the strange quark mass. The main aim of this work is to uncover dynamical quark effects from these 'matched' ensembles. We obtain some evidence of dynamical quark effects in the static quark potential with less effects in the hadronic spectrum

  4. Theory of heavy quark-antiquark states

    International Nuclear Information System (INIS)

    Shifman, M.A.

    1981-01-01

    A brief review of data on Q anti Q quark-antiquark states is presented. Masses and leptonic widths of Q anti Q levels on the basis of QCD sum rules are determined. Spin effects in Q anti Q interactions are discussed. Hadronic transitions between quarkonium levels and the processes of tau/psi→γ + light hadrons, Y→γ + light hadrons are considered [ru

  5. Effective meson lagrangian with chiral and heavy quark symmetries from quark flavor dynamics

    International Nuclear Information System (INIS)

    Ebert, D.; Feldmann, T.; Friedrich, R.; Reinhardt, H.

    1994-06-01

    By bosonization of an extended NJL model we derive an effective meson theory which describes the interplay between chiral symmetry and heavy quark dynamics. This effective theory is worked out in the low-energy regime using the gradient expansion. The resulting effective lagrangian describes strong and weak interactions of heavy B and D mesons with pseudoscalar Goldstone bosons and light vector and axial-vector mesons. Heavy meson weak decay constants, coupling constants and the Isgur-Wise function are predicted in terms of the model parameters partially fixed from the light quark sector. Explicit SU(3) F symmetry breaking effects are estimated and, if possible, confronted with experiment. (orig.)

  6. Non-perturbative renormalization of the chromo-magnetic operator in heavy quark effective theory and the B{sup *} - B mass splitting

    Energy Technology Data Exchange (ETDEWEB)

    Guazzini, D.; Sommer, R. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Meyer, H. [Massachusetts Institute of Technology, Cambridge, MA (United States). Center for Theoretical Physics

    2007-05-15

    We carry out the non-perturbative renormalization of the chromo-magnetic operator in Heavy Quark Effective Theory. At order 1/m of the expansion, the operator is responsible for the mass splitting between the pseudoscalar and vector B mesons. We obtain its two-loop anomalous dimension in a Schroedinger functional scheme by successive oneloop conversions to the lattice MS scheme and the MS scheme. We then compute the scale evolution of the operator non-perturbatively in the N{sub f}=0 theory between {mu} {approx}0.3 GeV and {mu} {approx}100 GeV, where contact is made with perturbation theory. The overall renormalization factor that converts the bare lattice operator to its renormalization group invariant form is given for the Wilson gauge action and two standard discretizations of the heavy-quark action. As an application, we find that this factor brings the previous quenched predictions of the B{sup *}-B mass splitting closer to the experimental value than found with a perturbative renormalization. The same renormalization factor is applicable to the spin-dependent potentials of Eichten and Feinberg. (orig.)

  7. Adler function for light quarks in analytic perturbation theory

    International Nuclear Information System (INIS)

    Milton, K. A.; Solovtsov, I. L.; Solovtsova, O. P.

    2001-01-01

    The method of analytic perturbation theory, which avoids the problem of ghost-pole-type singularities and gives a self-consistent description of both spacelike and timelike regions, is applied to describe the 'light' Adler function corresponding to the nonstrange vector channel of the inclusive decay of the τ lepton. The role of threshold effects is investigated. The behavior of the quark-antiquark system near threshold is described by using a new relativistic resummation factor. It is shown that the method proposed leads to good agreement with the 'experimental' Adler function down to the lowest energy scale

  8. Dual Ginzburg-Landau theory and quark nuclear physics

    International Nuclear Information System (INIS)

    Toki, Hiroshi

    1999-01-01

    The elementary building blocks of matter are quarks. Hence, it is fundamental to describe hadrons and nuclei in terms of quarks and gluons, the subject of which is called Quark Nuclear Physics. The quark-dynamics is described by Quantum Chromodynamics (QCD). Our interest is the non-perturbative aspect of QCD as confinement, chiral symmetry breaking, hadronization etc. We introduce the dual Ginzburg-Landau theory (DGL), where the color monopole fields and their condensation is the QCD vacuum, play essential roles in describing these non-perturbative phenomena. We emphasize its connection to QCD through the use of the Abelian gauge. We apply the DGL theory to various observables. We discuss then the connection of the monopole fields with instantons, which are the classical solutions of the non-Abelian gauge theory and connect through the tunneling process QCD vacuum with different winding numbers. (author)

  9. Recent developments in the theory of heavy-quark decays

    International Nuclear Information System (INIS)

    Neubert, M.

    1992-01-01

    I report on recent developments in the heavy-quark effective theory and its application to B meson decays. The parameters of the effective theory, the spin-flavor symmetry limit, and the leading symmetry-breaking corrections to it are discussed. The results of a QCD sum rule analysis of the universal Isgur-Wise functions that appear at leading and subleading order in the 1/m Q expansion are presented. The author illustrate the phenomenological applications of this formalism by focusing on two specific examples: the determination of V cb from the endpoint spectrum in semileptoinc decays, and the study of spin-symmetry violating effects in ratios of form factors. He also briefly comment on nonleptonic decays

  10. Recent developments in the theory of heavy-quark decays

    International Nuclear Information System (INIS)

    Neubert, M.

    1992-06-01

    I report on recent developments in the heavy-quark effective theory and its application to B meson decays. The parameters of the effective theory, the spin-flavor symmetry limit, and the leading symmetry-breaking corrections to it are discussed. The results of a QCD sum rule analysis of the universal Isgur-Wise functions that appear at leading and subleading order in the 1 /m Q expansion are presented. I illustrate the phenomenological applications of this formalism by focusing on two specific examples: the determination of V cb from the endpoint spectrum in semileptonic decays, and the study of spin-symmetry violating effects in ratios of form facts. I also briefly comment on nonleptonic decays

  11. Spin effects in high energy quark-quark scattering

    International Nuclear Information System (INIS)

    Goloskokov, S.V.; Selyugin, O.V.

    1993-01-01

    The spin amplitudes in high-energy quark-quark scattering at /t/>1 GeV 2 are analyzed. It is shown that the gluon contributions in the QCDα s 3 order lead to the spin-flip amplitude growing as s. This means the existence of the spin-flip part in pomeron exchange. The resulting T f is about few per cent of the spin-non-flip contribution. The factorization of the large-distance and high-energy effects in the spin-flip amplitude is obtained. 13 refs.; 2 figs.; 1 tab

  12. Is there a signal of quark confinement from perturbation theory

    International Nuclear Information System (INIS)

    Poggio, E.C.

    1977-01-01

    The question of whether the presence of the large infrared logarithms affects in any sense the determination of physical amplitudes involving quarks and gluons is considered in a report of results from previous investigations. Global impressions of their nature and of what they mean as far as the confinement issue is concerned. A comparison is made with analogous quantum electrodynamic processes, where the corresponding infrared aspects are completely understood. Quark form factor behavior, quark-antiquark scattering, the weak and the strong KLN theorems, and perturbation theory and confinement are treated. 26 references

  13. Quark mass effects in QCD

    International Nuclear Information System (INIS)

    Shirkov, D.V.

    1982-01-01

    In this paper recent studies of invariant QCD coupling anti asub(s)(Qsup(2)) in the 2-loop approximation with account of fermionic mass effects are summarized. The main results are: An explicit expression for anti asub(s)(Qsup(2)) in the 2-loop approximation with accurate account of heavy quark masses. A quantitative analysis on the basis of the above-mentioned expression for anti asub(s)(Qsup(2)) of the energy dependence of the scale QCD parameter ν and the conclusion about its inadequacy in the modern energy range

  14. The gentilionic theory for quarks: Manifestly confining for quarks and manifestly non-coalescent for hadrons

    International Nuclear Information System (INIS)

    Cattani, M.S.D.

    1987-01-01

    It's shown that the gentilionic theory for quarks is manifestly confining for quarks and manifestly non-coalescent for hadrons, and that these properties are rigorously deduced only from first principles. To prove them no arguments involving the intrinsic nature of gentileons or dynamical hypothesis are necessary to be adopted. It's also shown that, in the context of the quantum field theory, gentileous can be taken approximately as fermions and that the usual quantum chromodynamics can be used to calculate the properties of gentilionic hadrons. (Author) [pt

  15. A single quark effective potential model

    International Nuclear Information System (INIS)

    Bodmann, B.E.J.; Vasconcellos, C.A.Z.

    1994-01-01

    In the present work we construct a radial spherical symmetric single quark potential model for the nucleon, consistent with asymptotic freedom and confinement. The quark mass enters as potential parameter and that way induces indirectly an isospin dependence in the interaction. As a consequence, a contribution to the negative charge square radius of the neutron arises an an effect of the quark core, which simulates an isospin symmetry breaking effect in the nucleon due to strong interaction. (author)

  16. Large N baryons, strong coupling theory, quarks

    International Nuclear Information System (INIS)

    Sakita, B.

    1984-01-01

    It is shown that in QCD the large N limit is the same as the static strong coupling limit. By using the static strong coupling techniques some of the results of large N baryons are derived. The results are consistent with the large N SU(6) static quark model. (author)

  17. Strangeness and quark gluon plasma: Aspects of theory and experiment

    International Nuclear Information System (INIS)

    Eggers, H.C.; Rafelski, J.

    1990-07-01

    A survey of our current understanding of the strange particle signature of quark gluon plasma is presented. Emphasis is placed on the theory of strangeness production in the plasma and recent pertinent experimental results. Useful results on spectra of thermal particles are given. (orig.)

  18. Theory of hadronic production of heavy quarks

    International Nuclear Information System (INIS)

    Peterson, C.

    1981-07-01

    Conventional theoretical predictions for hadronic production of heavy quarks (Q anti Q) are reviewed and confronted with data. Perturbative hard scattering predictions agree qualitatively well with hidden Q anti Q production (e.g., psi, chi, T) whereas for open Q anti Q-production (e.g., pp → Λ/sub c/ + X) additional mechanisms or inputs are needed to explain the forwardly produced Λ/sub c/ + at ISR. It is suggested that the presence of c anti c-pairs on the 1 to 2% level in the hadron Fock state decomposition (intrinsic charm) gives a natural description of the ISR data. The theoretical foundations of the intrinsic charm hypotheses together with its consequences for lepton-induced reactions is discussed in some detail

  19. A gauge quantum field theory of confined quarks and gluons

    International Nuclear Information System (INIS)

    Voelkel, A.H.

    1983-01-01

    A SU(3)-gauge quantum field theory with a quark triplet, an antiquark triplet and a self-conjugate gluon octet as basic fields is investigated. In virtue of a non trivial coupling between the representation of the translation group and the SU(3)-colour charge of the basic fields it is proved: (i) The basic quark, antiquark and gluon fields are confined. (ii) Every statevector of the physical Hilbert space is a SU(3)-colour singlet state. (iii) Poincare invariance holds in the physical Hilbert space. (orig.)

  20. Quarks

    Energy Technology Data Exchange (ETDEWEB)

    Shekhter, V [AN SSSR, Leningrad. Inst. Yadernoj Fiziki

    1981-04-01

    The history is described of the concept of quarks, ie., hypothetical particles of which,hadrons (strongly interacting particles) are believed to consist. The quark properties differ from those of known elementary particles. The electric charge of quarks is 1/3 and 2/3 of the electron charge and they obviously only exist inside hadrons. Quark existence is generally recognized because it has been confirmed by experimental verification of predictions made using a quark model.

  1. The effect of dynamical quark mass on the calculation of a strange quark star's structure

    Institute of Scientific and Technical Information of China (English)

    Gholam Hossein Bordbar; Babak Ziaei

    2012-01-01

    We discuss the dynamical behavior of strange quark matter components,in particular the effects of density dependent quark mass on the equation of state of strange quark matter.The dynamical masses of quarks are computed within the Nambu-Jona-Lasinio model,then we perform strange quark matter calculations employing the MIT bag model with these dynamical masses.For the sake of comparing dynamical mass interaction with QCD quark-quark interaction,we consider the one-gluon-exchange term as the effective interaction between quarks for the MIT bag model.Our dynamical approach illustrates an improvement in the obtained equation of state values.We also investigate the structure of the strange quark star using TolmanOppenheimer-Volkoff equations for all applied models.Our results show that dynamical mass interaction leads to lower values for gravitational mass.

  2. Quark and pion effective couplings from polarization effects

    Energy Technology Data Exchange (ETDEWEB)

    Braghin, Fabio L. [Federal University of Goias, Instituto de Fisica, Goiania, GO (Brazil)

    2016-05-15

    A flavor SU(2) effective model for pions and quarks is derived by considering polarization effects departing from the usual quark-quark effective interaction induced by dressed gluon exchange, i.e. a global color model for QCD. For that, the quark field is decomposed into a component that yields light mesons and the quark-antiquark condensate, being integrated out by means of the auxiliary field method, and another component which yields constituent quarks, which is basically a background quark field. Within a long-wavelength and weak quark field expansion (or large quark effective mass expansion) of a quark determinant, the leading terms are found up to the second order in a zero-order derivative expansion, by neglecting vector mesons that are considerably heavier than the pion. Pions are considered in the structureless limit and, besides the chiral invariant terms that reproduce previously derived expressions, symmetry breaking terms are also presented. The leading chiral quark-quark effective couplings are also found corresponding to a NJL and a vector-NJL couplings. All the resulting effective coupling constants and parameters are expressed in terms of the current and constituent quark masses and of the coupling g. (orig.)

  3. Monte Carlo simulation of Su(2) lattice gauge theory with internal quark loops

    International Nuclear Information System (INIS)

    Azcoiti, V.; Nakamura, A.

    1982-01-01

    Dynamical effects of quark loops in lattice gauge theory with icosahedral group are studied. The standard Wilson action is employed and the fermionic part by a discretize pseudo fermionic method is calculated. The masses of π, rho, ω are computed and the average value of an effective fermionic action is evaluated

  4. Giving top quark effective operators a boost

    CERN Document Server

    Englert, Christoph

    2016-01-01

    We investigate the prospects to systematically improve generic effective field theory-based searches for new physics in the top sector during LHC run 2 as well as the high luminosity phase. In particular, we assess the benefits of high momentum transfer final states on top EFT-fit as a function of systematic uncertainties in comparison with sensitivity expected from fully-resolved analyses focusing on $t\\bar t$ production. We find that constraints are typically driven by fully-resolved selections, while boosted top quarks can serve to break degeneracies in the global fit. This demystifies and clarifies the importance of high momentum transfer final states for global fits to new interactions in the top sector from direct measurements.

  5. Vector Susceptibility of QCD Vacuum from an Effective Quark-Quark Interaction

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; QI Shi; CHEN Wei; WU Xiao-Hua

    2003-01-01

    .A new approach for calculating vacuum susceptibilities from an effective quark-quark interaction model is derived. As a special case, the vector vacuum susceptibility is calculated. A comparison with the results of the previous approaches is given.

  6. Hadronic interactions from effective chiral Lagrangians of quarks and gluons

    International Nuclear Information System (INIS)

    Krein, G.

    1996-06-01

    We discuss the combined used of the techniques of effective chiral field theory and the field theoretic method known as Fock-Tani representation to derive effective hadron interactions. The Fock-Tani method is based on a change of representation by means of a unitary transformation such that the composite hadrons are redescribed by elementary-particle field operators. Application of the unitary transformation on the microscopic quark-quark interaction derived from a chiral effective Lagrangian leads to chiral effective interactions describing all possible processes involving hadrons and their constituents. The formalism is illustrated by deriving the one-pion-exchange potential between the nucleons using the quark-gluon effective chiral Lagrangian of Manohar and Georgi. We also present the results of a study of the saturation properties of the nuclear matter using this formalism. (author). 9 refs., 2 figs

  7. Effects of quarks in nuclei

    International Nuclear Information System (INIS)

    Rho, M.

    1983-11-01

    The issue as to whether or not quarks will manifest themselves explicitly in nuclear processes is discussed in the light of the recently discovered topological structure of the baryon. Due to the leakage of the baryon charge from a confinement region (bag) into a meson-cloud region, there emerges a sort of topological equivalence principle which renders physically equivalent the description in terms of Goldstone meson fields alone (the Skyrmion) and the description in terms of a bag (confining quarks) surrounded by a meson cloud (the chiral bag model). How this new structure will modify our understanding of the nucleon and the nucleus is examined

  8. Dual Ginzburg-Landau theory and quark nuclear physics

    International Nuclear Information System (INIS)

    Toki, H.; Suganuma, H.; Ichie, H.; Monden, H.; Umisedo, S.

    1998-01-01

    In quark nuclear physics (QNP), where hadrons and nuclei are described in terms of quarks and gluons, confinement and chiral symmetry breaking are the most fundamental phenomena. The dual Ginzburg-Landau (DGL) theory, which contains monopole fields as the most essential degrees of freedom and their condensation in the vacuum, is able to describe both phenomena. We discuss also the recovery of the chiral symmetry and the deconfinement phase transition at finite temperature in the DGL theory. As for the connection to QCD, we study the instanton configurations in the abelian gauge a la 't Hooft. We find a close connection between instantons and QCD monopoles. We demonstrate also the signature of confinement as the appearance of long monopole trajectories in the MA gauge for the case of dense instanton configurations. (orig.)

  9. Quark mass matrices in left-right symmetric gauge theories

    International Nuclear Information System (INIS)

    Ecker, G.; Grimus, W.; Konetschny, W.

    1981-01-01

    The most general left-right symmetry for SU(2)sub(L) x SU(2)sub(R) x U(1) gauge theories with any number of flavours and with at most two scalar multiplets transforming as anti qq bilinears is analyzed. In order to get additional constraints on the structure of quark mass matrices all possible horizontal groups (continuous or discrete) are investigated. A complete classification of physically inequivalent quark mass matrices is given for four and six flavours. It is argued that the methods and results are also applicable in the case of dynamical symmetry breaking. Parity invariance and horizontal symmetry are shown to imply CP conservation on the Lagrangian level. For all non-trivial three-generation models there is spontaneous CP violation which in most cases turns out to be naturally small. (Auth.)

  10. Towards a theory of quark and lepton masses

    International Nuclear Information System (INIS)

    Hall, L.J.

    1993-01-01

    Has any progress been made on understanding and predicting the 13 parameters which describe the observed masses and mixing angles of the quarks and leptons? Arguments are given in favor of pursuing schemes in which grand unified and family symmetries provide many relations among these 13 parameters. A sequence of simple assumptions leads to a supersymmetric SO(10) theory with 8 predictions: tan β, M t , V cb , M s ,M s /M d , M u /M d , V ub and the amount of CP violation J. These predictions are presented, together with experiments which will test them

  11. Heavy quark theory and b-polarisation at LEP

    International Nuclear Information System (INIS)

    Close, F.E.; Korner, J.; Phillips, R.J.N.; Summers, D.J.

    1992-03-01

    According to the standard model, b quarks from the Z resonance e + e - → Z → b-barb have almost complete longitudinal polarization. A small transverse polarization of order 0.02 is predicted in the scattering plane; there is no polarization normal to the plane if we neglect γ - Z interference and loop corrections. The question we address here is whether this big polarization can be exploited. Does it lead to new measurable effects and if so what can be learned from them? We must first determine whether b-quark polarization can survive hadronization to give b-hadron polarization, and if so how to measure the latter through b-hadron decays. Finally we must estimate the size of the effects from models. (author)

  12. On the effective quark potential in baryons

    International Nuclear Information System (INIS)

    Gromes, D.

    1977-01-01

    The splitting of the non-strange members of the first excited level [70,1 - ] 1 of baryon resonances is analysed. The spin-dependent forces (spin-spin, spin-orbit, tensor) are supposed to arise from the Coulomb term due to one-gluon exchange, from the long-range linearly rising part of the potential, and from additional 'hard-core' spin-spin terms which may be generated by higher-order graphs contributing to the qq kernel. For the long range part it is assumed either that it comes from a superposition of a vector and a scalar kernel of the form epsilon(γsup(μ) X γsub(μ) X 1) + (1 - epsilon)(1 X 1 X 1) (+ permutations), or, alternatively, that it arises from a vector exchange with an anomalous moment kappa in the quark-gluon vertex. Values of epsilon approximately 0 or kappa approximately -1 turn out to be favoured. The strong coupling constant and the slope of the linear potential come out in the correct order of magnitude. Very large hard-core spin-spin terms are needed. This fact makes the determination of the effective potential from the underlying theory of quantum chromodynamics as well as the phenomenological analysis of the observed spectra rather problematic. (Auth.)

  13. Topics in the theory of heavy-quark systems

    International Nuclear Information System (INIS)

    Flory, C.A.

    1981-04-01

    Due to the kinematic and dynamic simplifications possible because of the large mass of heavy quark bound states, certain properties of these systems can be quantitatively analyzed within the framework of quantum chromodynamics. It is clear that dimensionally the size of the bound state is proportional to the inverse quark mass, and for very heavy quarkonia the radius of the system should become smaller than that of normal hadrons. When this small system interacts with external long wavelength field quanta, the natural expansion that results is of a multipole type, analogous to the familiar multipole expansion in electrodynamics. This multipole expansion has better convergence properties than the standard perturbative treatment in certain kinematic regimes, which opens up a new area for strong interaction physics calculations. More specifically, it is ideally suited to investigate soft non-perturbative effects in QCD which appear to be so crucial to present day phenomenology and the conjectured confinement mechanism

  14. Lattice Yang-Mills theory at finite densities of heavy quarks

    International Nuclear Information System (INIS)

    Langfeld, Kurt; Shin, Gwansoo

    2000-01-01

    SU(N c ) Yang-Mills theory is investigated at finite densities of N f heavy quark flavors. The calculation of the (continuum) quark determinant in the large-mass limit is performed by analytic methods and results in an effective gluonic action. This action is then subject to a lattice representation of the gluon fields and computer simulations. The approach maintains the same number of quark degrees of freedom as in the continuum formulation and a physical heavy quark limit (to be contrasted with the quenched approximation N f →0). The proper scaling towards the continuum limit is manifest. We study the partition function for given values of the chemical potential as well as the partition function which is projected onto a definite baryon number. First numerical results for an SU(2) gauge theory are presented. We briefly discuss the breaking of the color-electric string at finite densities and shed light onto the origin of the overlap problem inherent in the Glasgow approach

  15. Quark Synthesis String Theory From Dark Matter to Light Emitting Atoms

    Science.gov (United States)

    Webb, William

    2012-10-01

    Forefather physicists formulated fusion based on nucleosynthesis. They directed that whole nucleons synthesize. Quark Synthesis String Theory now shows that it's the string-like quarks that do the synthesizing: not whole nucleons. In a dark region, string-like quarks synthesize with other string-like quarks to make rope-like quarks. Quarks structure into threesomes bound only by electrostatic and gravitational forces. Quarks not structuring as threesomes remain dark. Balanced threesomes of string-like quarks become neutrons. Balanced threesomes of rope-like quarks become more massive neutroniumA nuclei. After their formation, neutrons and neutroniumAs quickly begin emitting electrons. This paper develops equations that correctly describe nuclear structures and their electron emissions. Electron emission beta decay is calculated for the 30 least massive neutroniumA nuclei and their subsequent transmutation thru 203 intermediate nuclei on their way to becoming well known nuclei centering the 30 least massive light emitting atoms. This is a perfect 233 for 233 match between calculations of Quark Synthesis String Theory and factual nuclear data. This perfect match provides affirmation that nuclei have no need for the unknown strong or week forces and mediating particles. Nuclear physics succeeds using a string theory that has the quarks doing the synthesizing.

  16. Quark motional effects on the interquark potential in baryons

    International Nuclear Information System (INIS)

    Yamamoto, Arata; Suganuma, Hideo

    2008-01-01

    We study the heavy-heavy-light quark (QQq) system in a nonrelativistic potential model, and investigate the quark motional effect on the inter-two-quark potential in baryons. We adopt the Hamiltonian with the static three-quark potential which is obtained by the first-principle calculation of lattice QCD, rather than the two-body force in ordinary quark models. Using the renormalization-group inspired variational method in discretized space, we calculate the ground-state energy of QQq systems and the light-quark spatial distribution. We find that the effective string tension between the two heavy quarks is reduced compared to the static three-quark case. This reduction of the effective string tension originates from the geometrical difference between the interquark distance and the flux-tube length, and is conjectured to be a general property for baryons

  17. Physical and cut-off effects of heavy sea quarks

    CERN Document Server

    Knechtli, Francesco; Bruno, Mattia; Finkenrath, Jacob; Leder, Björn; Marinkovic, Marina; Sommer, Rainer

    2014-01-01

    We simulate a theory with two dynamical O($a$) improved Wilson quarks whose mass $M$ ranges from a factor eight up to a factor two below the charm quark mass and at three values of the lattice spacing ranging from 0.066 to 0.034 fm. This theory is a prototype to study the decoupling of heavy quarks. We measure the mass and cut-off dependence of ratios of gluonic observables defined from the Wilson flow or the static potential. The size of the 1/$M$ corrections can be determined and disentangled from the lattice artifacts. The difference with the pure gauge theory is at the percent level when two quarks with a mass of the charm quark are present.

  18. Quark loops and spin-flip effects in pomeron exchange

    International Nuclear Information System (INIS)

    Goloskokov, S.V.

    1991-01-01

    On the basis of QCD at large distances with taking account of some nonperturbative properties of the theory, the possibility of spin-flip effects in high energy hadron processes at fixed momenta transfer is investigated. It is shown that the diagrams with the quark loops in QCD at large distances may lead to the spin-flip amplitude growing as s for s→∞, t-fixed. The confirmation of this result is obtained by calculations of the nonleading contributions from quark loops in t-channel exchange in QED up to the end. Physical mechanisms leading to that behaviour of the spin-flip amplitude is discussed. So we conclude that the pomeron has a complicated spin structure. (orig.)

  19. Chiral magnetic effect in the anisotropic quark-gluon plasma

    International Nuclear Information System (INIS)

    Ali-Akbari, Mohammad; Taghavi, Seyed Farid

    2015-01-01

    An anisotropic thermal plasma phase of a strongly coupled gauge theory can be holographically modelled by an anisotropic AdS black hole. The temperature and anisotropy parameter of the AdS black hole background of interest http://dx.doi.org/10.1007/JHEP07(2011)054 is specified by the location of the horizon and the value of the Dilaton field at the horizon. Interestingly, for the first time, we obtain two functions for the values of the horizon and Dilaton field in terms of the temperature and anisotropy parameter. Then by introducing a number of spinning probe D7-branes in the anisotropic background, we compute the value of the chiral magnetic effect (CME). We observe that in the isotropic and anisotropic plasma the value of the CME is equal for the massless quarks. However, at fixed temperature, raising the anisotropy in the system will increase the value of the CME for the massive quarks.

  20. Effective Hamiltonian for ΔS=1 weak nonleptonic decays in the six-quark model

    International Nuclear Information System (INIS)

    Gilman, F.J.; Wise, M.B.

    1979-01-01

    Strong-interaction corrections to the nonleptonic weak-interaction Hamiltonian are calculated in the leading-logarithmic approximation using quantum chromodynamics. Starting with a six-quark theory, the W boson, t quark, b quark, and c quark are successively considered as ''heavy'' and the effective Hamiltonian is calculated. The resulting effective Hamiltonian for strangeness-changing nonleptonic decays involves u, d, and s quarks and has possible CP-violating pieces both in the usual (V-A) x (V-A) terms and in induced, ''penguin''-type terms. Numerically, the CP-violating compared to CP-conserving parts of the latter terms are close to results calculated on the basis of the lowest-order ''penguin'' diagram

  1. Quark matter inside neutron stars in an effective chiral model

    International Nuclear Information System (INIS)

    Kotlorz, A.; Kutschera, M.

    1994-02-01

    An effective chiral model which describes properties of a single baryon predicts that the quark matter relevant to neutron stars, close to the deconfinement density, is in a chirally broken phase. We find the SU(2) model that pion-condensed up and down quark matter is preferred energetically at neutron star densities. It exhibits spin ordering and can posses a permanent magnetization. The equation of state of quark matter with chiral condensate is very well approximated by bag model equation of the state with suitably chosen parameters. We study quark cores inside neutron stars in this model using realistic nucleon equations of state. The biggest quark core corresponds to the second order phase transition to quark matter. Magnetic moment of the pion-condensed quark core is calculated. (author). 19 refs, 10 refs, 1 tab

  2. A second order QCD effect. quark-quark bremsstrahlung contribution to transverse momentum of lepton pairs

    International Nuclear Information System (INIS)

    Chaichian, M.; Hayashi, M.; Honkaranta, T.

    1980-01-01

    We consider in QCD the second order, in gluon-quark coupling constant, contribution of the quark-quark scatte-ring (bremsstrahlung) to the transverse momentum distribution of muon pairs produced in proton-proton collisions. In certain kinematical regions accesible to experimental tests, this contribution is quite large in comparison with the first order calculations. This happens for a specific choice of scale violating structure functions which fit the deep inelastic data. Thus the first order QCD calcula-tion alone is not conclusive in trying to fit the data -one must necessarily check the effect of the second order quark-quark scattering as compared with the first order quark-gluon and the quark-antiquark scattering. This remark concerns also the case when in the first order diagrams the effect of primordial transverse momentum of partons is included as well as the case when the first order is replaced by DDT type of formulae. Mass regularization and different prescriptions for the constant term in q → g + q vertex are considered. Results are presented for the energies √s=6.5, 27, 63, 800 GeV and are compared with experiment. Implications of these results for the detection of W +- -mesons via psub(T) distribution of their decay products μ +- in proton-proton collisions are mentioned. (author)

  3. Theory of quark mixing matrix and invariant functions of mass matrices

    International Nuclear Information System (INIS)

    Jarlskog, C.

    1987-10-01

    The outline of this talk is as follows: The origin of the quark mixing matrix. Super elementary theory of flavour projection operators. Equivalences and invariances. The commutator formalism and CP violation. CP conditions for any number of families. The 'angle' between the quark mass matrices. Application to Fritzsch and Stech matrices. References. (author)

  4. Introduction to quantum chromo transport theory for quark-gluon plasmas

    International Nuclear Information System (INIS)

    Gyulassy, M.; Elze, H.Th.; Iwazaki, A.; Vasak, D.

    1986-08-01

    Upcoming heavy ion experiments at the AGS and SPS are aimed at producing and diagnosing a primordial form of matter, the quark-gluon plasma. In these lectures some recent developments on formulating a quantum transport theory for quark-gluon plasmas are introduced. 46 refs

  5. Medium effects in strange quark matter and strange stars

    International Nuclear Information System (INIS)

    Schertler, K.; Greiner, C.; Thoma, M.H.

    1997-01-01

    We investigate the properties of strange quark matter at zero temperature including medium effects. The quarks are considered as quasiparticles which acquire an effective mass generated by the interaction with the other quarks of the dense system. The effective quark masses are derived from the zero momentum limit of the dispersion relations following from an effective quark propagator obtained from resumming one-loop self-energy diagrams in the hard dense loop approximation. This leads to a thermodynamic self-consistent description of strange quark matter as an ideal Fermi gas of quasiparticles. Within this approach we find that medium effects reduce the overall binding energy with respect to 56 Fe of strange quark matter. For typical values of the strong coupling constant (α s >or∼1) strange quark matter is not absolutely stable. The application to pure strange quark matter stars shows that medium effects have, nevertheless, no impact on the mass-radius relation of the stars. However, a phase transition to hadronic matter at the surface of the stars becomes more likely. (orig.)

  6. Quark confinement in a constituent quark model

    International Nuclear Information System (INIS)

    Langfeld, K.; Rho, M.

    1995-01-01

    On the level of an effective quark theory, we define confinement by the absence of quark anti-quark thresholds in correlation function. We then propose a confining Nambu-Jona-Lasinio-type model. The confinement is implemented in analogy to Anderson localization in condensed matter systems. We study the model's phase structure as well as its behavior under extreme conditions, i.e. high temperature and/or high density

  7. Low energy constituent quark and pion effective couplings in a weak external magnetic field

    Science.gov (United States)

    Braghin, Fábio L.

    2018-03-01

    An effective model with pions and constituent quarks in the presence of a weak external background electromagnetic field is derived by starting from a dressed one gluon exchange quark-quark interaction. By applying the auxiliary field and background field methods, the structureless pion limit is considered to extract effective pion and constituent quark couplings in the presence of a weak magnetic field. The leading terms of a large quark and gluon masses expansion are obtained by resolving effective coupling constants which turn out to depend on a weak magnetic field. Two pion field definitions are considered for that. Several relations between the effective coupling constants and parameters can be derived exactly or in the limit of very large quark mass at zero and weak constant magnetic field. Among these ratios, the Gell-Mann-Oakes-Renner and the quark level Goldberger-Treiman relations are obtained. In addition to that, in the pion sector, the leading terms of Chiral Perturbation Theory coupled to the electromagnetic field are recovered. Some numerical estimates are provided for the effective coupling constants and parameters.

  8. Effects of an electromagnetic quark form factor on meson properties

    International Nuclear Information System (INIS)

    Silvestre-Brac, B.

    2002-01-01

    A form factor is introduced in the quark electromagnetic current. Its effect is analyzed on charge mean square radii and form factors in the mesonic sector. The decay of a vector meson into lepton-antilepton pair is also affected. Two different expressions for the form factors, and two different types of quark potential are tested and some relativistic kinematical corrections are proposed. In any case the introduction of a quark form factor greatly improves the agreement with experimental data

  9. Quark mass correction to chiral separation effect and pseudoscalar condensate

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Er-dong [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190 (China); Kavli Institute of Theoretical Physics China, Chinese Academy of Sciences,Beijing 100190 (China); Lin, Shu [School of Physics and Astronomy, Sun Yat-Sen University,No 2 University Road, Zhuhai 519082 (China)

    2017-01-25

    We derived an analytic structure of the quark mass correction to chiral separation effect (CSE) in small mass regime. We confirmed this structure by a D3/D7 holographic model study in a finite density, finite magnetic field background. The quark mass correction to CSE can be related to correlators of pseudo-scalar condensate, quark number density and quark condensate in static limit. We found scaling relations of these correlators with spatial momentum in the small momentum regime. They characterize medium responses to electric field, inhomogeneous quark mass and chiral shift. Beyond the small momentum regime, we found existence of normalizable mode, which possibly leads to formation of spiral phase. The normalizable mode exists beyond a critical magnetic field, whose magnitude decreases with quark chemical potential.

  10. Probing quark mass effects in low-energy hadron physics

    International Nuclear Information System (INIS)

    Ditsche, Christoph

    2012-01-01

    Since quarks are confined inside hadrons, their properties as well as their contributions to hadronic observables can be assessed by indirect methods only. As the strength of the strong interaction increases with the spatial distance, the treatment of quantum chromodynamics at low energies in general requires non-perturbative methods like dispersion relations or lattice gauge theory. Based on the fact that the light quark masses are very small with respect to the typical hadronic mass scales for mesons and baryons, furthermore effective field theories can be constructed to describe low-energy properties and dynamics of hadrons perturbatively. The present work is concerned with two particularly interesting hadronic processes that are closely related to the light quark masses. Although distinct theoretical frameworks utilizing different calculational techniques are applied, in both cases the investigations at hand are prerequisites for high-precision analyses of the respective quark-mass effects. In the first part of this thesis, we investigate higher-order isospin-breaking effects in η→3π decays, namely η→π 0 π + π - and η→3π 0 , in chiral perturbation theory. By evaluating the second-order mixed strong and electromagnetic isospin-breaking corrections, we confirm the picture that the electromagnetic contributions are small. Therefore, η→3π is perfectly suited to extract isospin-breaking ratios of light quark masses via comparing theoretical predictions with experimental results. Since for an accurate determination a detailed description of the Dalitz plot distributions is necessary, we study the different effects of higher-order isospin breaking in η→3π on a more general basis. In particular, we investigate corrections to isospin relations between both decay channels at the level of Dalitz plot parameters, showing that the branching ratio of the two partial decay widths entails sizeable uncertainties. In the second part, we develop a dispersive

  11. Effective interactions from q-deformed quark fields

    International Nuclear Information System (INIS)

    Timoteo, V. S.; Lima, C. L.

    2007-01-01

    From the mass term for q-deformed quark fields, we obtain effective contact interactions of the NJL type. The parameters of the model that maps a system of non-interacting deformed fields into quarks interacting via NJL contact terms is discussed

  12. Two-colour QCD at finite fundamental quark-number density and related theories

    International Nuclear Information System (INIS)

    Hands, S.J.; Kogut, J.B.; Morrison, S.E.; Sinclair, D.K.

    2001-01-01

    We are simulating SU(2) Yang-Mills theory with four flavours of dynamical quarks in the fundamental representation of SU(2) 'colour' at finite chemical potential, μ for quark number, as a model for QCD at finite baryon number density. In particular we observe that for μ large enough this theory undergoes a phase transition to a state with a diquark condensate which breaks quark-number symmetry. In this phase we examine the spectrum of light scalar and pseudoscalar bosons and see evidence for the Goldstone boson associated with this spontaneous symmetry breaking. This theory is closely related to QCD at finite chemical potential for isospin, a theory which we are now studying for SU(3) colour

  13. Two-colour QCD at finite fundamental quark-number density and related theories

    International Nuclear Information System (INIS)

    Hands, S. J.; Kogut, J. B.; Morrison, S. E.; Sinclair, D. K.

    2000-01-01

    We are simulating SU(2) Yang-Mills theory with four flavours of dynamical quarks in the fundamental representation of SU(2) colour at finite chemical potential, p for quark number, as a model for QCD at finite baryon number density. In particular we observe that for p large enough this theory undergoes a phase transition to a state with a diquark condensate which breaks quark-number symmetry. In this phase we examine the spectrum of light scalar and pseudoscalar bosons and see evidence for the Goldstone boson associated with this spontaneous symmetry breaking. This theory is closely related to QCD at finite chemical potential for isospin, a theory which we are now studying for SU(3) colour

  14. Some spectroscopic problems in the bag theory of quark confinement

    International Nuclear Information System (INIS)

    Jaffe, R.L.

    1976-04-01

    In addition to conventional mesons and baryons, the bag model predicts the existence of several classes of unusual hadrons. The spectroscopy of two classes of unconventional hadrons is discussed: first are the Q 2 antiQ 2 mesons; second are Q 3 baryons or QantiQ mesons with quantum numbers forbidden by the nonrelativistic quark model

  15. arXiv Phase structure of complete asymptotically free SU($N_c$) theories with quarks and scalar quarks

    CERN Document Server

    Hansen, Frederik F.; Langæble, Kasper; Mann, Robert B.; Sannino, Francesco; Steele, Tom G.; Wang, Zhi-Wei

    2018-03-21

    We determine the phase diagram of completely asymptotically free SU(Nc) gauge theories featuring Ns complex scalars and Nf Dirac quarks transforming according to the fundamental representation of the gauge group. The analysis is performed at the maximum known order in perturbation theory. We unveil a very rich dynamics and associated phase structure. Intriguingly, we discover that the completely asymptotically free conditions guarantee that the infrared dynamics displays long-distance conformality, and in a regime when perturbation theory is applicable. We conclude our analysis by determining the quantum corrected potential of the model and summarizing the possible patterns of radiative symmetry breaking. These models are of potential phenomenological interest as either elementary or composite ultraviolet finite extensions of the standard model.

  16. Vortices and quark confinement in non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Mandelstam, S.

    1976-01-01

    Non-Abelian vortices of the type proposed by Nielsen and Olesen are discussed. It is shown that the vortices must contain a single unit of quantized flux absorbed by a Dirac monopole at each end. The monopoles satisfy a confinement condition; if quark numbers are assigned to the monopoles, is is found that the model contains a natural explanation of quark confinement. The I-spin variables associated with the non-Abelian gauge field correspond to the colour degree freedom. An alternative model in which (colour) charges and monopoles are interchanged is also suggested. The Higgs field which breaks the degeneracy of the vacuum is replaced by an operator which creates monopoles of the type suggested by 't Hooft. In such a model colour might be confined. The investigations are at a very preliminary stage, but the model appears to offer a natural explanation of confinement without the explicit introduction of monopole fields. (Auth.)

  17. Quark mean field theory and consistency with nuclear matter

    International Nuclear Information System (INIS)

    Dey, J.; Tomio, L.; Dey, M.; Frederico, T.

    1989-01-01

    1/N c expansion in QCD (with N c the number of colours) suggests using a potential from meson sector (e.g. Richardson) for baryons. For light quarks a σ field has to be introduced to ensure chiral symmetry breaking ( χ SB). It is found that nuclear matter properties can be used to pin down the χ SB-modelling. All masses, M Ν , m σ , m ω are found to scale with density. The equations are solved self consistently. (author)

  18. Reactions probing effects of quark clusters in nuclei

    International Nuclear Information System (INIS)

    Lassila, K.E.; Sukhatme, U.P.

    1988-01-01

    We study signatures of quark clusters in reactions which probe quarks in nuclei. We examine the EMC effect and use physical arguments to establish features of valence and ocean parton distributions in multiquark clusters. We predict from these distributions ratios of structure functions and cross sections measured with neutrino, antineutrinos and proton beams. It appears that a unique determination of the source of the EMC effect will be possible. 6 refs., 4 figs

  19. Ratio of a strange quark mass ms to up or down quark mass mu,d predicted by a quark propagator in the framework of the chiral perturbation theory

    International Nuclear Information System (INIS)

    Peng Jinsong; Meng Chengju; Pan Jihuan; Yuan Tongquan; Zhou Lijuan; Ma Weixing

    2013-01-01

    Based on the fully dressed quark propagator and chiral perturbation theory, we study the ratio of the strange quark mass m s to up or down quark mass m u,d . The ratio is related to the determination of quark masses which are fundamental input parameters of QCD Lagrangian in the Standard Model of particle physics and can not be directly measured since the quark is confined within a hadron. An accurate determination of these QCD free parameters is extremely important for both phenomenological and theoretical applications. We begin with a brief introduction to the non-perturbation QCD theory, and then study the mass ratio in the framework of the chiral perturbation theory (χPT) with a parameterized fully dressed quark propagator which describes confining fully dressed quark propagation and is analytic everywhere in the finite complex p 2 -plane and has no Lehmann representation so there are no quark production thresholds in any theoretical calculations of observable data. Our prediction for the ratio m s /m u,d is consistent with other model predictions such as Lattice QCD, instanton model, QCD sum rules and the empirical values used widely in the literature. As a by-product of this study, our theoretical results, together with other predictions of physical quantities that used this quark propagator in our previous publications, clearly show that the parameterized form of the fully dressed quark propagator is an applicable and reliable approximation to the solution of the Dyson-Schwinger Equation of quark propagator in the QCD. (authors)

  20. Electromagnetic couplings of the chiral perturbation theory Lagrangian from the perturbative chiral quark model

    International Nuclear Information System (INIS)

    Lyubovitskij, V.E.; Gutsche, Th.; Faessler, Amand; Mau, R. Vinh

    2002-01-01

    We apply the perturbative chiral quark model to the study of the low-energy πN interaction. Using an effective chiral Lagrangian we reproduce the Weinberg-Tomozawa result for the S-wave πN scattering lengths. After inclusion of the photon field we give predictions for the electromagnetic O(p 2 ) low-energy couplings of the chiral perturbation theory effective Lagrangian that define the electromagnetic mass shifts of nucleons and first-order (e 2 ) radiative corrections to the πN scattering amplitude. Finally, we estimate the leading isospin-breaking correction to the strong energy shift of the π - p atom in the 1s state, which is relevant for the experiment 'pionic hydrogen' at PSI

  1. Study on Scattering Theory and Perturbative Quantum Chromodynamics: case of quark-antiquark Top pair production

    International Nuclear Information System (INIS)

    Randriamisy, H.D.E.

    2014-01-01

    Nowadays, the study of scattering and production of particles occupies an important place in subatomic physics research. The main ongoing experiments concern high-energy scattering in the colliders, the scattering theory based on quantum field theory is used for the theoretical study. The work presented in this thesis is located in this framework, in fact it concerns a study on the scattering theory and Perturbative Quantum Chromodynamics. We used the path integral formalism of quantum field theory and perturbation theory. As we considered the higher order corrections in perturbative developments, the renormalization theory with the method of dimensional regularization was also used. As an application, the case of the Top quark production was considered. As main results, we can quote the obtention of the cross section of quark-antiquark top pair production up to second order. [fr

  2. Jet energy loss in quark-gluon plasma. Kinetic theory with a Bhatnagar-Gross-Krook collisional kernel

    Energy Technology Data Exchange (ETDEWEB)

    Han, Cheng; Hou, De-fu; Li, Jia-rong [Central China Normal University, Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Wuhan, Hubei (China); Jiang, Bing-feng [Hubei University for Nationalities, Center for Theoretical Physics and School of Sciences, Enshi, Hubei (China)

    2017-10-15

    The dielectric functions ε{sub L}, ε{sub T} of the quark-gluon plasma (QGP) are derived within the framework of the kinetic theory with BGK-type collisional kernel. The collision effect manifested by the collision rate is encoded in the dielectric functions. Based on the derived dielectric functions we study the collisional energy loss suffered by a fast parton traveling through the QGP. The numerical results show that the collision rate increases the energy loss. (orig.)

  3. Playing with QCD I: effective field theories

    International Nuclear Information System (INIS)

    Fraga, Eduardo S.

    2009-01-01

    The building blocks of hadrons are quarks and gluons, although color is confined into singlet states. QCD is believed to be the fundamental theory of strong interactions. Its asymptotically free nature puts the vacuum out of reach for perturbation theory. The Lagrangian of QCD and the Feynman rules associated were built by using the Gauge Principle, starting from the quark matter fields and obtaining gluons as connections. A simpler, and sometimes necessary or complementary, approach is provided by effective field theories or effective models, especially when one has to deal with the nonperturbative sector of the theory. (author)

  4. Quark mean field theory and consistency with nuclear matter

    International Nuclear Information System (INIS)

    Dey, J.; Dey, M.; Frederico, T.; Tomio, L.

    1990-09-01

    1/N c expansion in QCD (with N c the number of colours) suggests using a potential from meson sector (e.g. Richardson) for baryons. For light quarks a σ field has to be introduced to ensure chiral symmetry breaking ( χ SB). It is found that nuclear matter properties can be used to pin down the χ SB-modelling. All masses, M N , m σ , m ω are found to scale with density. The equations are solved self consistently. (author). 29 refs, 2 tabs

  5. Heavy quark mass effects and improved tests of the flavor independence of strong interactions

    Energy Technology Data Exchange (ETDEWEB)

    Burrows, P.N. [Univ. of Oxford (United Kingdom); SLD Collaboration

    1998-08-01

    A review is given of latest results on tests of the flavor independence of strong interactions. Heavy quark mass effects are evident in the data and are now taken into account at next-to-leading order in QCD perturbation theory. The strong-coupling ratios {alpha}{sub s}{sup b}/{alpha}{sub s}{sup uds} and {alpha}{sub s}{sup c}/{alpha}{sub s}{sup uds} are found to be consistent with unity. Determinations of the b-quark mass m{sub b} (M{sub Z}) are discussed.

  6. SU(5) finite unified theories and the mass of the top quark

    International Nuclear Information System (INIS)

    Mondragon, M.; Zoupanos, G.

    1994-01-01

    We present results of a study of phenomenologically interesting SU(5) supersymmetric GUT's, which are finite to all-loops before spontaneous symmetry breaking. The finiteness conditions provide the spontaneously broken theory with relationships among the Yukawa and gauge couplings at the unification point. These in turn predict a heavy top quark mass (∼175-190 GeV). (orig.)

  7. Charm-quarks and new elementary particles

    International Nuclear Information System (INIS)

    Petersen, J.L.

    1978-01-01

    This is the first part of an extensive paper which discusses: the Nobel prize in physics 1976; discovery of the J/psi-particle; elementary particles and elementary building blocks; the four reciprocal effects; gauge theories; quark-antiquark reciprocal effects; the high-energy approximation; a simple quark-antiquark potential; and quark diagrams and the Zweig rule. (Auth.)

  8. The theory and phenomenology of coloured quark models

    CERN Document Server

    Close, F E

    1975-01-01

    A general introduction to coloured quark models is given and their phenomenology is described with particular reference to the new particles. It is shown that there are essentially three types of colour models with colour excitation when the colour group is SU(3)- Han-Nambu, Greenberg and a model which has the same charges as that of Tati and which can be thought of as the Gell-Mann colour scheme with excitation of the colour degrees of freedom. Particular attention is paid to the four problems of colour models for psi phenomenology-the radiative decays, the G parity conservation, the lack of deep inelastic threshold phenomena and the apparent discovery of dileptons at SPEAR. (40 refs).

  9. The theory and phenomenology of coloured quark models

    International Nuclear Information System (INIS)

    Close, F.E.

    1975-01-01

    A general introduction to coloured quark models is given and their phenomenology is described with particular reference to the new particles. It is shown that there are essentially three types of colour models with colour excitation when the colour group is SU(3) - Han-Nambu, Greenberg and a model which has the same charges as that of Tati and which can be thought of as the Gell-Mann colour scheme with excitation of the colour degrees of freedom. Particular attention is paid to the four problems of colour models for PSI phenomenology - the radiative decays, the G parity conservation, the lack of deep inelastic threshold phenomena and the apparent discovery of dileptons at SPEAR. (author)

  10. Two-Quark Condensate Changes with Quark Current Mass

    International Nuclear Information System (INIS)

    Lu Changfang; Lue Xiaofu; Wu Xiaohua; Zhan Yongxin

    2009-01-01

    Using the Schwinger-Dyson equation and perturbation theory, we calculate the two-quark condensates for the light quarks u, d, strange quark s and a heavy quark c with their current masses respectively. The results show that the two-quark condensate will decrease when the quark mass increases, which hints the chiral symmetry may be restored for the heavy quarks.

  11. Factorization and resummation for massive quark effects in exclusive Drell-Yan

    Energy Technology Data Exchange (ETDEWEB)

    Pietrulewicz, Piotr; Tackmann, Frank J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Samitz, Daniel [Wien Univ. (Austria). Fakultaet fuer Physik; Spiering, Anne [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik

    2017-10-15

    Exclusive differential spectra in color-singlet processes at hadron colliders are benchmark observables that have been studied to high precision in theory and experiment. We present an effective-theory framework utilizing soft-collinear effective theory to incorporate massive (bottom) quark effects into resummed differential distributions, accounting for both heavy-quark initiated primary contributions to the hard scattering process as well as secondary effects from gluons splitting into heavy-quark pairs. To be specific, we focus on the Drell-Yan process and consider the vector-boson transverse momentum, q{sub T}, and beam thrust, T, as examples of exclusive observables. The theoretical description depends on the hierarchy between the hard, mass, and the q{sub T} (or T) scales, ranging from the decoupling limit q{sub T} << m to the massless limit m << q{sub T}. The phenomenologically relevant intermediate regime m∝q{sub T} requires in particular quark-mass dependent beam and soft functions. We calculate all ingredients for the description of primary and secondary mass effects required at NNLL{sup '} resummation order (combining NNLL evolution with NNLO boundary conditions) for q{sub T} and T in all relevant hierarchies. For the q{sub T} distribution the rapidity divergences are different from the massless case and we discuss features of the resulting rapidity evolution. Our results will allow for a detailed investigation of quark-mass effects in the ratio of W and Z boson spectra at small q{sub T}, which is important for the precision measurement of the W-boson mass at the LHC.

  12. Perturbation theory of the quark-gluon plasma at finite temperature and baryon number density

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    At very high energy densities, hadronic matter becomes an almost ideal gas of quarks and gluons. In these circumstances, the effects of particle interactions are small, and to some order in perturbation theory are computable by methods involving weak coupling expansions. To illustrate the perturbative methods which may be used to compute the thermodynamic potential, the results and methods which are employed to compute to first order in α/sub s/ are reviewed. The problem of the plasmon effect, and the necessity of using non-perturbative methods when going beyond first order in α/sub s/ in evaluating the thermodynamic potential are discussed. The results at zero temperature and finite baryon number density to second order in α/sub s/ are also reviewed. The method of renormalization group improving the weak coupling expansions by replacing the expansion by an expansion in a temperature and baryon number density dependent coupling which approaches zero at high energy densities is discussed. Non-perturbative effects such as instantons are briefly mentioned and the breakdown of perturbation theory for the thermodynamical at order α/sub s/ 3 for finite temperature is presented

  13. Quark distributions in nuclear matter and the EMC effect

    Energy Technology Data Exchange (ETDEWEB)

    Mineo, H.; Bentz, W. E-mail: bentz@keyaki.cc.u-tokai.ac.jp; Ishii, N.; Thomas, A.W.; Yazaki, K

    2004-05-03

    Quark light cone momentum distributions in nuclear matter and the structure function of a bound nucleon are investigated in the framework of the Nambu-Jona-Lasinio model. This framework describes the nucleon as a relativistic quark-diquark state, and the nuclear matter equation of state by using the mean field approximation. The scalar and vector mean fields in the nuclear medium couple to the quarks in the nucleon and their effect on the spin independent nuclear structure function is investigated in detail. Special emphasis is placed on the important effect of the vector mean field and on a formulation which guarantees the validity of the number and momentum sum rules from the outset.

  14. Thermodynamics of a solvable quark model inspired by the Gribov-Zwanziger theory

    International Nuclear Information System (INIS)

    Mintz, B.W.; Guimaraes, M.S.

    2013-01-01

    Full text: In an attempt to solve the problem of spurious gauge copies in the path integral approach to gauge theories, V. N. Gribov proposed in 1978 a method to restrict the integration domain of the path integral to only one gauge field representative of each physical field configuration. As a result, the quadratic part of the gluon propagator is modified in the infrared, so that it acquires complex poles, i.e., complex m asses . This implies the absence of gluons in the physical spectrum, which is a necessary condition for confinement. An analogous reasoning may be applied to quark fields coupled to the gauge fields. As a consequence, the quark propagator also gets modified in the infrared, giving rise to unphysical propagators (i.e., with complex poles) at small momenta. Such a property is understood as a sign of both quark confinement and of the breaking of chiral symmetry in the vacuum. In this work, we study the thermodynamics of this model by exactly calculating the partition function using standard methods of finite-temperature quantum field theory. We find that the infrared behavior of the quark propagator leads to a highly nontrivial pressure as a function of the temperature, which is qualitatively close to the results from lattice QCD at finite temperature. (author)

  15. Simulations of dimensionally reduced effective theories of high temperature QCD

    CERN Document Server

    Hietanen, Ari

    Quantum chromodynamics (QCD) is the theory describing interaction between quarks and gluons. At low temperatures, quarks are confined forming hadrons, e.g. protons and neutrons. However, at extremely high temperatures the hadrons break apart and the matter transforms into plasma of individual quarks and gluons. In this theses the quark gluon plasma (QGP) phase of QCD is studied using lattice techniques in the framework of dimensionally reduced effective theories EQCD and MQCD. Two quantities are in particular interest: the pressure (or grand potential) and the quark number susceptibility. At high temperatures the pressure admits a generalised coupling constant expansion, where some coefficients are non-perturbative. We determine the first such contribution of order g^6 by performing lattice simulations in MQCD. This requires high precision lattice calculations, which we perform with different number of colors N_c to obtain N_c-dependence on the coefficient. The quark number susceptibility is studied by perf...

  16. Confinement of quarks

    International Nuclear Information System (INIS)

    Nambu, J.

    1978-01-01

    Three quark models of hadron structure, which suggest an explanation of quarks confinement mechanism in hadrons are considered. Quark classifications, quark flawors and colours, symmetry model of hadron structure based on the colour theory of strong interaction are discussed. Diagrams of colour combinations of quarks and antiquarks, exchange of gluons, binding quarks in hadron. Quark confinement models based on the field theory, string model rotating and bag model are discussed. Diagrams of the colour charge distribution explaining the phenomena of infrared ''slavery'' and ultraviolet ''freedom'' are given. The models considered explain but some quark properties, creating prerequisites for the development of the consequent theory of hadron structure

  17. Non-uniform chiral phase in effective chiral quark models

    International Nuclear Information System (INIS)

    Sadzikowski, M.; Broniowski, W.

    2000-01-01

    We analyze the phase diagram in effective chiral quark models (the Nambu-Jona-Lasinio model, the σ-model with quarks) and show that at the mean-field level a phase with a periodically-modulated chiral fields separates the usual phases with broken and restored chiral symmetry. A possible signal of such a phase is the production of multipion jets travelling in opposite directions, with individual pions having momenta of the order of several hundred MeV. This signal can be interpreted in terms of disoriented chiral condensates. (author)

  18. Quark model with chiral-symmetry breaking and confinement in the Covariant Spectator Theory

    Energy Technology Data Exchange (ETDEWEB)

    Biernat, Elmer P. [CFTP, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Pena, Maria Teresa [CFTP, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Ribiero, Jose' Emilio F. [CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Stadler, Alfred [Departamento de Física, Universidade de Évora, 7000-671 Évora, Portugal; Gross, Franz L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-03-01

    We propose a model for the quark-antiquark interaction in Minkowski space using the Covariant Spectator Theory. We show that with an equal-weighted scalar-pseudoscalar structure for the confining part of our interaction kernel the axial-vector Ward-Takahashi identity is preserved and our model complies with the Adler-zero constraint for pi-pi-scattering imposed by chiral symmetry.

  19. Non-perturbative Heavy Quark Effective Theory

    DEFF Research Database (Denmark)

    Della Morte, Michele; Heitger, Jochen; Simma, Hubert

    2015-01-01

    We review a lattice strategy how to non-perturbatively determine the coefficients in the HQET expansion of all components of the heavy-light axial and vector currents, including 1/m_h-corrections. We also discuss recent preliminary results on the form factors parameterizing semi-leptonic B...

  20. Spectator interactions in soft-collinear effective theory

    International Nuclear Information System (INIS)

    Hill, Richard J.; Neubert, Matthias

    2003-01-01

    Soft-collinear effective theory is generalized to include soft massless quarks in addition to collinear fields. This extension is necessary for the treatment of interactions with the soft spectator quark in a heavy meson. The power counting of the relevant fields and the construction of the effective Lagrangian are discussed at leading order in Λ/m b . Several novel effects occur in the matching of full-theory amplitudes onto effective-theory operators containing soft light quarks, such as the appearance of an intermediate mass scale and large non-localities of operators on scales of order 1/Λ. Important examples of effective-theory operators with soft light quarks are studied and their renormalization properties explored. The formalism presented here forms the basis for a systematic analysis of factorization and power corrections for any exclusive B-meson decay into light particles

  1. Spectator Interactions in Soft-Collinear Effective Theory

    International Nuclear Information System (INIS)

    Hill, Richard J

    2002-01-01

    Soft-collinear effective theory is generalized to include soft massless quarks in addition to collinear fields. This extension is necessary for the treatment of interactions with the soft spectator quark in a heavy meson. The power counting of the relevant fields and the construction of the effective Lagrangian are discussed at leading order in Λ/m b . Several novel effects occur in the matching of full-theory amplitudes onto effective-theory operators containing soft light quarks, such as the appearance of an intermediate mass scale and large non-localities of operators on scales of order 1/Λ. Important examples of effective-theory operators with soft light quarks are studied and their renormalization properties explored. The formalism presented here forms the basis for a systematic analysis of factorization and power corrections for any exclusive B-meson decay into light particles

  2. Phase transition in a quark-gluon plasma and hydrodynamic theory

    International Nuclear Information System (INIS)

    Chernavskaya, O.D.; Chernavskij, D.S.

    1988-01-01

    A wide range of problem concerning the phase transition of a quark-gluon plasma to the hadron matter is considered in connection with the hardronization problem within the frame of the hydrodynamical theory of ultra-relativistic collisions. A short review of the present hadron models and possible mechanisms of thermalization is given. The character of the phase transition within the bag model is analysed, effects of the surface interaction result in a nontrivial character of the phase transition: the metastable states of matter become possible. The review of the possible scenaria of hadronization of the cooling hydrodynamical matter is given, the choice between them is determined by a kinetic analysis. The systems with the energy density near the critical point (∼ 4 GeV/Fm 3 ) are shown to be hadronized by the mechanism based on a strong plasma supercooling (with a considerable transverse momentum increase). The traditional hadronization mechanism (mixed phase) is preferable for more hot systems. Theoretical estimations are compared with the JACEE (cosmic rays) data

  3. Heavy quarks and strong binding: A field theory of hadron structure

    International Nuclear Information System (INIS)

    Bardeen, W.A.; Chanowitz, M.S.; Drell, S.D.; Weinstein, M.; Yan, T.

    1975-01-01

    We investigate in canonical field theory the possibility that quarks may exist in isolation as very heavy particles, M/sub quark/) very-much-greater-than 1 GeV, yet form strongly bound hadronic states, M/sub hadron/) approx. 1 GeV. In a model with spin-1/2 quarks coupled to scalar gluons we find that a mechanism exists for the formation of bound states which are much lighter than the free constituents. Following Nambu, we introduce a color interaction mediated by gauge vector mesons to guarantee that all states with nonvanishing triality have masses much larger than 1 GeV. The possibility of such a solution to a stronly coupled field theory is exhibited by a calculation employing the variational principle in tree approximation. This procedure reduces the field-theoretical problem to a set of coupled differential equations for classical fields which are just the free parameters of the variational state. A striking property of the solution is that the quark wave function is confined to a thin shell at the surface of the hadronic bound state. Though the quantum corrections to this procedure remain to be investigated systematically, we explore some of the phenomenological implications of the trial wave functions so obtained. In particular, we exhibit the low-lying meson and baryon multiplets of SU(6); their magnetic moments, charge radii, and radiative decays, and the axial charge of the baryons. States of nonvanishing momenta are constructed and the softness of the hadron shell to deformations in scattering processes is discussed qualitatively along with the implications for deep-inelastic electron scattering and dual resonance models

  4. Applied string theory, hot and cold. A holographic view on quark-gluon plasma and superfluids

    Energy Technology Data Exchange (ETDEWEB)

    Samberg, Andreas Wilhelm

    2015-12-21

    This thesis deals with applications of gauge/gravity duality to strong-coupling phenomena in the quark-gluon plasma and far-from-equilibrium superfluids. In a first part we search for model-independent (universal) behavior in various non-Abelian gauge-theory plasmas at finite temperature and chemical potential. We employ the holographic duals of strongly coupled N=4 supersymmetric Yang-Mills theory and three one-parameter families of non-conformal deformations thereof, two of which solve the equations of motion of a five-dimensional Einstein-Maxwell-scalar action. We study the free energy and associated thermodynamic quantities of heavy quarks and bound quark-anti-quark (Q anti Q) pairs as well as the Q anti Q binding energy and the running coupling. We find qualitative agreement with available lattice QCD data. Moreover, we show that several observables exhibit universal behavior for all values of the chemical potential. In a second part we investigate the real-time dynamics of a bosonic superfluid in two spatial dimensions after initial quenches that take the system to far-from-equilibrium states characterized by many topological vortex defects in association with quantum turbulence. To this end we numerically solve the full equations of motion of the holographically dual Abelian Higgs model on four-dimensional anti-de Sitter space. We observe a universal non-equilibrium late-time regime characterized by power-law behavior in a two-point correlation function and in characteristic length scales, which we interpret as a non-thermal fixed point.

  5. Applied string theory, hot and cold. A holographic view on quark-gluon plasma and superfluids

    International Nuclear Information System (INIS)

    Samberg, Andreas Wilhelm

    2015-01-01

    This thesis deals with applications of gauge/gravity duality to strong-coupling phenomena in the quark-gluon plasma and far-from-equilibrium superfluids. In a first part we search for model-independent (universal) behavior in various non-Abelian gauge-theory plasmas at finite temperature and chemical potential. We employ the holographic duals of strongly coupled N=4 supersymmetric Yang-Mills theory and three one-parameter families of non-conformal deformations thereof, two of which solve the equations of motion of a five-dimensional Einstein-Maxwell-scalar action. We study the free energy and associated thermodynamic quantities of heavy quarks and bound quark-anti-quark (Q anti Q) pairs as well as the Q anti Q binding energy and the running coupling. We find qualitative agreement with available lattice QCD data. Moreover, we show that several observables exhibit universal behavior for all values of the chemical potential. In a second part we investigate the real-time dynamics of a bosonic superfluid in two spatial dimensions after initial quenches that take the system to far-from-equilibrium states characterized by many topological vortex defects in association with quantum turbulence. To this end we numerically solve the full equations of motion of the holographically dual Abelian Higgs model on four-dimensional anti-de Sitter space. We observe a universal non-equilibrium late-time regime characterized by power-law behavior in a two-point correlation function and in characteristic length scales, which we interpret as a non-thermal fixed point.

  6. Quark confinement

    International Nuclear Information System (INIS)

    Joos, H.

    1976-07-01

    The main topics of these lectures are: phenomenological approach to quark confinement, standard Lagrangian of hadrondynamics, Lagrangian field theory and quark confinement, classical soliton solutions in a simple model, quantization of extended systems, colour charge screening and quantization on a lattice and remarks on applications. A survey of the scientific publications listed according to the topics until 26 March 1976 is supplemented. (BJ) [de

  7. Renormalons in effective field theories

    International Nuclear Information System (INIS)

    Luke, M.; Manohar, A.V.; Savage, M.J.

    1995-01-01

    We investigate the high-order behavior of perturbative matching conditions in effective field theories. These series are typically badly divergent, and are not Borel summable due to infrared and ultraviolet renormalons which introduce ambiguities in defining the sum of the series. We argue that, when treated consistently, there is no physical significance to these ambiguities. Although nonperturbative matrix elements and matching conditions are in general ambiguous, the ambiguity in any physical observable is always higher order in 1/M than the theory has been defined. We discuss the implications for the recently noticed infrared renormalon in the pole mass of a heavy quark. We show that a ratio of form factors in exclusive Λ b decays (which is related to the pole mass) is free from renormalon ambiguities regardless of the mass used as the expansion parameter of heavy quark effective theory. The renormalon ambiguities also cancel in inclusive heavy hadron decays. Finally, we demonstrate the cancellation of renormalons in a four-Fermi effective theory obtained by integrating out a heavy colored scalar

  8. Supersymmetric grand unified theories from quarks to strings via SUSY GUTs

    CERN Document Server

    Raby, Stuart

    2017-01-01

    These course-tested lectures provide a technical introduction to Supersymmetric Grand Unified Theories (SUSY GUTs), as well as a personal view on the topic by one of the pioneers in the field. While the Standard Model of Particle Physics is incredibly successful in describing the known universe it is, nevertheless, an incomplete theory with many free parameters and open issues. An elegant solution to all of these quandaries is the proposed theory of SUSY GUTs. In a GUT, quarks and leptons are related in a simple way by the unifying symmetry and their electric charges are quantized, further the relative strength of the strong, weak and electromagnetic forces are predicted. SUSY GUTs additionally provide a framework for understanding particle masses and offer candidates for dark matter. Finally, with the extension of SUSY GUTs to string theory, a quantum-mechanically consistent unification of the four known forces (including gravity) is obtained. The book is organized in three sections: the first section contai...

  9. Heavy quark free energy in QCD and in gauge theories with gravity duals

    Science.gov (United States)

    Noronha, Jorge

    2010-09-01

    Recent lattice results in pure glue SU(3) theory at high temperatures have shown that the expectation value of the renormalized Polyakov loop approaches its asymptotic limit at high temperatures from above. We show that this implies that the “heavy quark free energy” obtained from the renormalized loop computed on the lattice does not behave like a true thermodynamic free energy. While this should be expected to occur in asymptotically free gauge theories such as QCD, we use the gauge/string duality to show that in a large class of strongly coupled gauge theories with nontrivial UV fixed points the Polyakov loop reaches its asymptotic value from above only if the dimension of the relevant operator used to deform the conformal field theory is greater than or equal to 3.

  10. Correlation functions in finite temperature field theories: formalism and applications to quark-gluon plasma

    International Nuclear Information System (INIS)

    Gelis, Francois

    1998-12-01

    The general framework of this work is thermal field theory, and more precisely the perturbative calculation of thermal Green's functions. In a first part, I consider the problems closely related to the formalism itself. After two introductory chapters devoted to set up the framework and the notations used afterwards, a chapter is dedicated to a clarification of certain aspects of the justification of the Feynman rules of the real time formalism. Then, I consider in the chapter 4 the problem of cutting rules in the real time formalisms. In particular, after solving a controversy on this subject, I generalize these cutting rules to the 'retarded-advanced' version of this formalism. Finally, the last problem considered in this part is that of the pion decay into two photons in a thermal bath. I show that the discrepancies found in the literature are due to peculiarities of the analytical properties of the thermal Green's functions. The second part deals with the calculations of the photons or dilepton (virtual photon) production rate by a quark gluon plasma. The framework of this study is the effective theory based on the resummation of hard thermal loops. The first aspects of this study is related to the production of virtual photons, where we show that important contributions arise at two loops, completing the result already known at one loop. In the case of real photon production, we show that extremely strong collinear singularities make two loop contributions dominant compared to one loop ones. In both cases, the importance of two loop contributions can be interpreted as weaknesses of the hard thermal loop approximation. (author)

  11. Radiative corrections to the quark masses in the ferromagnetic Ising and Potts field theories

    Science.gov (United States)

    Rutkevich, Sergei B.

    2017-10-01

    We consider the Ising Field Theory (IFT), and the 3-state Potts Field Theory (PFT), which describe the scaling limits of the two-dimensional lattice q-state Potts model with q = 2, and q = 3, respectively. At zero magnetic field h = 0, both field theories are integrable away from the critical point, have q degenerate vacua in the ferromagnetic phase, and q (q - 1) particles of the same mass - the kinks interpolating between two different vacua. Application of a weak magnetic field induces confinement of kinks into bound states - the "mesons" (for q = 2 , 3) consisting predominantly of two kinks, and "baryons" (for q = 3), which are essentially the three-kink excitations. The kinks in the confinement regime are also called "the quarks". We review and refine the Form Factor Perturbation Theory (FFPT), adapting it to the analysis of the confinement problem in the limit of small h, and apply it to calculate the corrections to the kink (quark) masses induced by the multi-kink fluctuations caused by the weak magnetic field. It is shown that the subleading third-order ∼h3 correction to the kink mass vanishes in the IFT. The leading second order ∼h2 correction to the kink mass in the 3-state PFT is estimated by truncation the infinite form factor expansion at the first term representing contribution of the two-kink fluctuations into the kink self-energy.

  12. The Skyrmions and quarks in nuclei

    International Nuclear Information System (INIS)

    Rho, M.

    1984-08-01

    It is proposed that the quark-bag description and the Skyrmion description of baryons are related to each other by quantized parameters. Topology (through a chiral anomaly) plays an important role in bridging the fundamental theory of the strong interactions (QCD) to effective theories. Some consequences on the efforts to see quark degrees of freedom in nuclear matter are discussed. It is suggested that at low energies there will be no ''smoking gun'' evidences for quark presence in nuclei

  13. QCD corrections, virtual heavy quark effects and electroweak precision measurements

    International Nuclear Information System (INIS)

    Kniehl, B.A.; Kuehn, J.H.; Stuart, R.G.

    1988-01-01

    QCD corrections to virtual heavy quark effects on electroweak parameters are calculated, which may affect planned precision measurements at SLC and LEP. The influence of toponium and T b resonances is incorporated as well as the proper threshold behaviour of the imaginary part of the vacuum polarization function. The shift of the W-boson mass from these corrections and their influence on the polarization asymmetry are calculated and compared to the envisaged experimental precision. (orig.)

  14. Possible retardation effects of quark confinement on the meson spectrum

    International Nuclear Information System (INIS)

    Qiao, C.; Huang, H.; Chao, K.

    1996-01-01

    The reduced Bethe-Salpeter equation with scalar confinement and vector gluon exchange is applied to quark-antiquark bound states. The so-called intrinsic flaw of the Salpeter equation with static scalar confinement is investigated. The notorious problem of narrow level spacings is found to be remedied by taking into consideration the retardation effect of scalar confinement. A good fit for the mass spectrum of both heavy and light quarkonium states is then obtained. copyright 1996 The American Physical Society

  15. The gluonic field of a heavy quark in conformal field theories at strong coupling

    Science.gov (United States)

    Chernicoff, Mariano; Güijosa, Alberto; Pedraza, Juan F.

    2011-10-01

    We determine the gluonic field configuration sourced by a heavy quark undergoing arbitrary motion in mathcal{N} = 4 super-Yang-Mills at strong coupling and large number of colors. More specifically, we compute the expectation value of the operator Tr[ F 2 + …] in the presence of such a quark, by means of the AdS/CFT correspondence. Our results for this observable show that signals propagate without temporal broadening, just as was found for the expectation value of the energy density in recent work by Hatta et al. We attempt to shed some additional light on the origin of this feature, and propose a different interpretation for its physical significance. As an application of our general results, we examine (Tr[ F 2 + …])when the quark undergoes oscillatory motion, uniform circular motion, and uniform acceleration. Via the AdS/CFT correspondence, all of our results are pertinent to any conformal field theory in 3 + 1 dimensions with a dual gravity formulation.

  16. Reformulations of the Yang-Mills theory toward quark confinement and mass gap

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Kei-Ichi; Shinohara, Toru [Department of Physics, Graduate School of Science, Chiba University, Chiba 263-8522 (Japan); Kato, Seikou [Fukui National College of Technology, Sabae 916-8507 (Japan); Shibata, Akihiro [Computing Research Center, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 (Japan)

    2016-01-22

    We propose the reformulations of the SU (N) Yang-Mills theory toward quark confinement and mass gap. In fact, we have given a new framework for reformulating the SU (N) Yang-Mills theory using new field variables. This includes the preceding works given by Cho, Faddeev and Niemi, as a special case called the maximal option in our reformulations. The advantage of our reformulations is that the original non-Abelian gauge field variables can be changed into the new field variables such that one of them called the restricted field gives the dominant contribution to quark confinement in the gauge-independent way. Our reformulations can be combined with the SU (N) extension of the Diakonov-Petrov version of the non-Abelian Stokes theorem for the Wilson loop operator to give a gauge-invariant definition for the magnetic monopole in the SU (N) Yang-Mills theory without the scalar field. In the so-called minimal option, especially, the restricted field is non-Abelian and involves the non-Abelian magnetic monopole with the stability group U (N− 1). This suggests the non-Abelian dual superconductivity picture for quark confinement. This should be compared with the maximal option: the restricted field is Abelian and involves only the Abelian magnetic monopoles with the stability group U(1){sup N−1}, just like the Abelian projection. We give some applications of this reformulation, e.g., the stability for the homogeneous chromomagnetic condensation of the Savvidy type, the large N treatment for deriving the dimensional transmutation and understanding the mass gap, and also the numerical simulations on a lattice which are given by Dr. Shibata in a subsequent talk.

  17. Reformulations of the Yang-Mills theory toward quark confinement and mass gap

    Science.gov (United States)

    Kondo, Kei-Ichi; Kato, Seikou; Shibata, Akihiro; Shinohara, Toru

    2016-01-01

    We propose the reformulations of the SU (N) Yang-Mills theory toward quark confinement and mass gap. In fact, we have given a new framework for reformulating the SU (N) Yang-Mills theory using new field variables. This includes the preceding works given by Cho, Faddeev and Niemi, as a special case called the maximal option in our reformulations. The advantage of our reformulations is that the original non-Abelian gauge field variables can be changed into the new field variables such that one of them called the restricted field gives the dominant contribution to quark confinement in the gauge-independent way. Our reformulations can be combined with the SU (N) extension of the Diakonov-Petrov version of the non-Abelian Stokes theorem for the Wilson loop operator to give a gauge-invariant definition for the magnetic monopole in the SU (N) Yang-Mills theory without the scalar field. In the so-called minimal option, especially, the restricted field is non-Abelian and involves the non-Abelian magnetic monopole with the stability group U (N- 1). This suggests the non-Abelian dual superconductivity picture for quark confinement. This should be compared with the maximal option: the restricted field is Abelian and involves only the Abelian magnetic monopoles with the stability group U(1)N-1, just like the Abelian projection. We give some applications of this reformulation, e.g., the stability for the homogeneous chromomagnetic condensation of the Savvidy type, the large N treatment for deriving the dimensional transmutation and understanding the mass gap, and also the numerical simulations on a lattice which are given by Dr. Shibata in a subsequent talk.

  18. Scaling of the quark-antiquark potential and improved actions in SU(2) lattice gauge theory

    International Nuclear Information System (INIS)

    Montvay, I.; Gutbrod, F.

    1983-11-01

    The scaling behaviour of the quark-antiquark potential is investigated by a high statistics Monte Carlo calculation in SU(2) lattice gauge theory. Besides the standard one-plaquette action we also use Symanzik's tree-level improved action and Wilson's block-spin improved action. No significant differences between Symanzik's action and the standard action have been observed. For small β Wilson's action scales differently. The string tension value chi extracted from the data corresponds to Λsub(latt) = (0.018 +- 0.001) √chi for the one-plaquette action. (orig.)

  19. Strange sea quark effects for low lying baryons

    International Nuclear Information System (INIS)

    Upadhyay, A.; Batra, Meenakshi

    2013-01-01

    Assuming hadrons as an ensemble of quark-gluon Fock states, contributions from sea quarks and gluons can be studied in detail for ground state baryons. Spin crisis of nucleons say that only a small fraction of proton spin is carried by valence quarks. Rest part is distributed among gluons and sea which includes both strange and non-strange quark-anti-quark pairs. This necessitates the study of strange sea quark contribution for other baryons too due to higher mass and presence of strange quark in valence part. Recent studies have also studied strange sea contribution for baryons using different models. We implement the statistical modeling techniques to compute strange sea quark content for baryon octet. Statistical model has already been applied to study sea quark content for nucleons in the form of scalar, vector and tensor sea. In our present work the same idea has been extended for strange sea to probe the structure in more detail. (author)

  20. Quark confinement: Dual superconductor picture based on a non-Abelian Stokes theorem and reformulations of Yang-Mills theory

    Science.gov (United States)

    Kondo, Kei-Ichi; Kato, Seikou; Shibata, Akihiro; Shinohara, Toru

    2015-05-01

    The purpose of this paper is to review the recent progress in understanding quark confinement. The emphasis of this review is placed on how to obtain a manifestly gauge-independent picture for quark confinement supporting the dual superconductivity in the Yang-Mills theory, which should be compared with the Abelian projection proposed by 't Hooft. The basic tools are novel reformulations of the Yang-Mills theory based on change of variables extending the decomposition of the SU(N) Yang-Mills field due to Cho, Duan-Ge and Faddeev-Niemi, together with the combined use of extended versions of the Diakonov-Petrov version of the non-Abelian Stokes theorem for the SU(N) Wilson loop operator. Moreover, we give the lattice gauge theoretical versions of the reformulation of the Yang-Mills theory which enables us to perform the numerical simulations on the lattice. In fact, we present some numerical evidences for supporting the dual superconductivity for quark confinement. The numerical simulations include the derivation of the linear potential for static interquark potential, i.e., non-vanishing string tension, in which the "Abelian" dominance and magnetic monopole dominance are established, confirmation of the dual Meissner effect by measuring the chromoelectric flux tube between quark-antiquark pair, the induced magnetic-monopole current, and the type of dual superconductivity, etc. In addition, we give a direct connection between the topological configuration of the Yang-Mills field such as instantons/merons and the magnetic monopole. We show especially that magnetic monopoles in the Yang-Mills theory can be constructed in a manifestly gauge-invariant way starting from the gauge-invariant Wilson loop operator and thereby the contribution from the magnetic monopoles can be extracted from the Wilson loop in a gauge-invariant way through the non-Abelian Stokes theorem for the Wilson loop operator, which is a prerequisite for exhibiting magnetic monopole dominance for quark

  1. Phase transition from nuclear matter to color superconducting quark matter

    Energy Technology Data Exchange (ETDEWEB)

    Bentz, W. E-mail: bentz@keyaki.cc.u-tokai.ac.jp; Horikawa, T.; Ishii, N.; Thomas, A.W

    2003-06-02

    We construct the nuclear and quark matter equations of state at zero temperature in an effective quark theory (the Nambu-Jona-Lasinio model), and discuss the phase transition between them. The nuclear matter equation of state is based on the quark-diquark description of the single nucleon, while the quark matter equation of state includes the effects of scalar diquark condensation (color superconductivity). The effect of diquark condensation on the phase transition is discussed in detail.

  2. Non-perturbative aspects of quantum field theory. From the quark-gluon plasma to quantum gravity

    International Nuclear Information System (INIS)

    Christiansen, Nicolai

    2015-01-01

    In this dissertation we investigate several aspects of non-perturbative quantum field theory. Two main parts of the thesis are concerned with non-perturbative renormalization of quantum gravity within the asymptotic safety scenario. This framework is based on a non-Gaussian ultraviolet fixed point and provides a well-defined theory of quantized gravity. We employ functional renormalization group (FRG) techniques that allow for the study of quantum fields even in strongly coupled regimes. We construct a setup for the computation of graviton correlation functions and analyze the ultraviolet completion of quantum gravity in terms of the properties of the two- and three point function of the graviton. Moreover, the coupling of gravity to Yang-Mills theories is discussed. In particular, we study the effects of graviton induced interactions on asymptotic freedom on the one hand, and the role of gluonic fluctuations in the gravity sector on the other hand. The last subject of this thesis is the physics of the quark-gluon plasma. We set-up a general non-perturbative strategy for the computation of transport coefficients in non-Abelian gauge theories. We determine the viscosity over entropy ratio η/s in SU(3) Yang-Mills theory as a function of temperature and estimate its behavior in full quantum chromodynamics (QCD).

  3. O (6 ) algebraic theory of three nonrelativistic quarks bound by spin-independent interactions

    Science.gov (United States)

    Dmitrašinović, V.; Salom, Igor

    2018-05-01

    We apply the newly developed theory of permutation-symmetric O (6 ) hyperspherical harmonics to the quantum-mechanical problem of three nonrelativistic quarks confined by a spin-independent three-quark potential. We use our previously derived results to reduce the three-body Schrödinger equation to a set of coupled ordinary differential equations in the hyper-radius R with coupling coefficients expressed entirely in terms of (i) a few interaction-dependent O (6 ) expansion coefficients and (ii) O (6 ) hyperspherical harmonics matrix elements that have been evaluated in our previous paper. This system of equations allows a solution to the eigenvalue problem with homogeneous three-quark potentials, the class of which includes a number of standard Ansätze for the confining potentials, such as the Y- and Δ -string ones. We present analytic formulas for the K =2 , 3, 4, 5 shell states' eigenenergies in homogeneous three-body potentials, which we then apply to the Y and Δ strings as well as the logarithmic confining potentials. We also present numerical results for power-law pairwise potentials with the exponent ranging between -1 and +2 . In the process, we resolve the 25-year-old Taxil and Richard vs Bowler et al. controversy regarding the ordering of states in the K =3 shell, in favor of the former. Finally, we show the first clear difference between the spectra of Δ - and Y-string potentials, which appears in K ≥3 shells. Our results are generally valid, not just for confining potentials but also for many momentum-independent permutation-symmetric homogenous potentials that need not be pairwise sums of two-body terms. The potentials that can be treated in this way must be square integrable under the O (6 ) hyperangular integral, the class of which, however, does not include the Dirac δ function.

  4. Effective quark-diquark supersymmetry an algebraic approach

    International Nuclear Information System (INIS)

    Catto, S.

    1989-01-01

    Effective hadronic supersymmetries and color algebra, where extended Miyazawa U(6/21) supersymmetry between mesons and baryons are derived from QCD under some assumptions and within some approximation, also using a dynamical suppression of color-symmetric states. This shows the hadronic origin of supersymmetry as well as the underlying structure of exceptional algebras to the quark model. Supergroups, and infinite groups like Virasoro algebra, then emerge as useful descriptions of certain properties of the hadronic spectrum. Applications to exotic mesons and baryons are discussed

  5. Finite size effects in quark-gluon plasma formation

    International Nuclear Information System (INIS)

    Gopie, Andy; Ogilvie, Michael C.

    1999-01-01

    Using lattice simulations of quenched QCD we estimate the finite size effects present when a gluon plasma equilibrates in a slab geometry, i.e., finite width but large transverse dimensions. Significant differences are observed in the free energy density for the slab when compared with bulk behavior. A small shift in the critical temperature is also seen. The free energy required to liberate heavy quarks relative to bulk is measured using Polyakov loops; the additional free energy required is on the order of 30 - 40 MeV at 2 - 3 T c

  6. Hadron energy spectrum in polarized top-quark decays considering the effects of hadron and bottom quark masses

    Energy Technology Data Exchange (ETDEWEB)

    Nejad, S.M.M. [Yazd University, Faculty of Physics, P.O. Box 89195-741, Yazd (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, P.O.Box 19395-5531, Tehran (Iran, Islamic Republic of); Balali, Mahboobe [Yazd University, Faculty of Physics, P.O. Box 89195-741, Yazd (Iran, Islamic Republic of)

    2016-03-15

    We present the analytical expressions for the next-to-leading order corrections to the partial decay width t(↑) → bW{sup +}, followed by b @→ H{sub b}X, for nonzero b-quark mass (m{sub b} ≠ 0) in the fixed-flavor-number scheme (FFNs). To make the predictions for the energy distribution of outgoing hadrons H{sub b}, as a function of the normalized H{sub b}-energy fraction x{sub H}, we apply the general-mass variable-flavor-number scheme (GM-VFNs) in a specific helicity coordinate system where the polarization of top quark is evaluated relative to the b-quark momentum. We also study the effects of gluon fragmentation and finite hadron mass on the hadron energy spectrum so that hadron masses are responsible for the low x{sub H} threshold. In order to describe both the b-quark and the gluon hadronizations in top decays we apply realistic and nonperturbative fragmentation functions extracted through a global fit to the e{sup +}e{sup -} annihilation data from CERN LEP1 and SLAC SLC by relying on their universality and scaling violations. (orig.)

  7. Radiative corrections to the quark masses in the ferromagnetic Ising and Potts field theories

    Directory of Open Access Journals (Sweden)

    Sergei B. Rutkevich

    2017-10-01

    Full Text Available We consider the Ising Field Theory (IFT, and the 3-state Potts Field Theory (PFT, which describe the scaling limits of the two-dimensional lattice q-state Potts model with q=2, and q=3, respectively. At zero magnetic field h=0, both field theories are integrable away from the critical point, have q degenerate vacua in the ferromagnetic phase, and q(q−1 particles of the same mass – the kinks interpolating between two different vacua. Application of a weak magnetic field induces confinement of kinks into bound states – the “mesons” (for q=2,3 consisting predominantly of two kinks, and “baryons” (for q=3, which are essentially the three-kink excitations. The kinks in the confinement regime are also called “the quarks”. We review and refine the Form Factor Perturbation Theory (FFPT, adapting it to the analysis of the confinement problem in the limit of small h, and apply it to calculate the corrections to the kink (quark masses induced by the multi-kink fluctuations caused by the weak magnetic field. It is shown that the subleading third-order ∼h3 correction to the kink mass vanishes in the IFT. The leading second order ∼h2 correction to the kink mass in the 3-state PFT is estimated by truncation the infinite form factor expansion at the first term representing contribution of the two-kink fluctuations into the kink self-energy.

  8. QCD mixing effects in a gauge invariant quark model for photo- and electroproduction of baryon resonances

    International Nuclear Information System (INIS)

    Zhenping Li; Close, F.E.

    1990-03-01

    The photo and electroproduction of baryon resonances has been calculated using the Constituent Quark Model with chromodynamics consistent with O(υ 2 /c 2 ) for the quarks. We find that the successes of the nonrelativistic quark model are preserved, some problems are removed and that QCD mixing effects may become important with increasing q 2 in electroproduction. For the first time both spectroscopy and transitions receive a unified treatment with a single set of parameters. (author)

  9. Possible identification of quarks with leptons in Lie-isotopic SU(3) theory

    International Nuclear Information System (INIS)

    Animalu, A.O.E.

    1984-01-01

    A possible identification of the six quarks (d,s,c;u,t,b) with the corresponding leptons (e - ,μ - ,tau - ;v/sub e/,v/sub μ/,v/sub tau/) is attempted via the corrspondence principle, dapprox.(uv-bar/sub e/)e - , sapprox.(tv-bar/sub μ/)μ - , c(bv-bar/sub t/)t - ,uapprox.(uv/sub e/) v/sub e/,..., and its inverse, which are formally represented by a non-unitary integral transformation (with kernel P) and its inverse or dual (with kernel Q), connecting the quark and lepton fields. It is shown that PQ and QP may be interpreted as hadronic and leptonic density matrix operators which obey the quantum mechanical analog of the Liouville equation of conservation from which a Lie-isotopic generalization of Heisenberg's equation of motion is abstracted. P and Q form iso-canonically conjugate dynamical veriables, i.e., Q is the isotpic element for the isoassociative product H*Q = HPQ in the equation of motion for Q. It is also shown that PQ and QP, being idempotent operators, have eigenvalues 0 or 1, which imply that both P and Q can be singular, leading to a further differentiation of ''hadronic mechanics'' into the conventional ''isotopic'' theory in which the isotopic element (g) in the isoassociative product A*B = AgB is non-singular and Hermitian, and a new ''homotopic'' theory in which g is singular and non-Hermitian A Lie-admissible generalization is also obained, and SU(2)-spin realizations are indicated

  10. Incorporating pion effects into the naive quark model

    International Nuclear Information System (INIS)

    Nogami, Y.; Ohtuska, N.

    1982-01-01

    A hybrid of the naive nonrelativistic quark model and the Chew-Low model is proposed. The pion is treated as an elementary particle which interacts with the ''bare baryon'' or ''baryon core'' via the Chew-Low interaction. The baryon core, which is the source of the pion interaction, is described by the naive nonrelativistic quark model. It turns out that the baryon-core radius has to be as large as 0.8 fm, and consequently the cutoff momentum Λ for the pion interaction is < or approx. =3m/sub π/, m/sub π/ being the pion mass. Because of this small Λ (as compared with Λapprox. nucleon mass in the old Chew-Low model) the effects of the pion cloud are strongly suppressed. The baryon masses, baryon magnetic moments, and the nucleon charge radii can be reproduced quite well. However, we found it singularly difficult to fit the axial-vector weak decay constant g/sub A/

  11. Charge symmetry breaking via Δ I = 1 group theory or by the u-d quark mass difference and direct photon exchange

    International Nuclear Information System (INIS)

    Coon, S.A.; Scadron, M.D.

    2000-01-01

    Charge symmetry breaking (CSB) in the strong N N interaction is believed to have its origins at the quark level. However, the meson-exchange potentials which successfully describe the empirical CSB utilize instead values of the Δ I = 1 π η and ρ ω mixing obtained with the aid of group theory from a hadronic tadpole Hamiltonian introduced by Coleman and Glashow to describe electromagnetic mass splitting in hadronic isospin multiplets. We review i) the CSB N N potentials so constructed and their nuclear charge asymmetry effects, i i) the universal scale of the Coleman-Glashow tadpole, and i i i) the quark loop evaluation of both meson mass differences and meson mixing. The latter quark loop calculations, which use chiral symmetry to evaluate the integrals, demonstrate clearly that the u-d constituent quark mass difference, long suspected as the origin of CSB, does quantitatively yield the universal Coleman-Glashow tadpole scale which underlies the successful meson-exchange description of CSB in nuclear physics. (Author) 38 refs., 3 figs

  12. Effect of soft mode on shear viscosity of quark matter

    International Nuclear Information System (INIS)

    Fukutome, Takahiko; Iwasaki, Masaharu

    2008-01-01

    We calculate the shear viscosity of quark matter at finite temperature and density. If we assume that the quark interacts with the soft mode, which is a collective mode of a quark-antiquark pair, the self-energy of the quark is calculated by quasi-particle random phase approximation. It is shown that its imaginary part is large and its mean free path is short. With the use of the Kubo formula, the shear viscosity of quark matter decreases. The Reynolds number of quark matter is estimated to be about 10. As temperature increases, shear viscosity increases gradually for T>200 MeV. Moreover it is shown that the shear viscosity also increases with the chemical potential for μ>200 MeV. (author)

  13. Renormalization in Large Momentum Effective Theory of Parton Physics.

    Science.gov (United States)

    Ji, Xiangdong; Zhang, Jian-Hui; Zhao, Yong

    2018-03-16

    In the large-momentum effective field theory approach to parton physics, the matrix elements of nonlocal operators of quark and gluon fields, linked by straight Wilson lines in a spatial direction, are calculated in lattice quantum chromodynamics as a function of hadron momentum. Using the heavy-quark effective theory formalism, we show a multiplicative renormalization of these operators at all orders in perturbation theory, both in dimensional and lattice regularizations. The result provides a theoretical basis for extracting parton properties through properly renormalized observables in Monte Carlo simulations.

  14. Quark-Pauli effects in s-shell {Lambda} hypernuclei

    Energy Technology Data Exchange (ETDEWEB)

    Nemura, Hidekatsu; Suzuki, Yasuyuki [Niigata Univ. (Japan)

    1998-07-01

    To make clear the differences between the singlet and triplet forces in {Lambda}N interaction, we investigate that how {Lambda}N interaction is concerned with the binding energies of s-shell {Lambda} hypernuclei, using through the effective forces. We shape the effective {Lambda}N potential to reproduce both the experimental binding energies of three- and four-body {Lambda} hypernuclei. It gives the maximal numbers of phase shift of the 31-32 and 19-20 (in degree) in the {Lambda}N scattering at {sup 1}S{sub 0} and {sup 3}S{sub 1} states, respectively. In the case of five-body system, {sub {Lambda}}{sup 5}He, we conclude that the quark Pauli effect is crucial. (author)

  15. Light-quark, heavy-quark systems: An update

    Science.gov (United States)

    Grinstein, B.

    1993-06-01

    We review many of the recently developed applications of Heavy Quark Effective Theory techniques. After a brief update on Luke's theorem, we describe striking relations between heavy baryon form factors, and how to use them to estimate the accuracy of the extraction of (vert bar)V(sub cb)(vert bar). We discuss factorization and compare with experiment. An elementary presentation, with sample applications, of reparametrization invariance comes next. The final and most extensive chapter in this review deals with phenomenological lagrangians that incorporate heavy-quark spin-flavor as well as light quark chiral symmetries. We compile many interesting results and discuss the validity of the calculations.

  16. Light-quark, heavy-quark systems: An update

    International Nuclear Information System (INIS)

    Grinstein, B.

    1993-01-01

    The author reviews many of the recently developed applications of Heavy Quark Effective Theory techniques. After a brief update on Luke's theorm, he describes striking relations between heavy baryon form factors, and how to use them to estimate the accuracy of the extraction of |B cb |. He discusses factorization and compares with experiment. An elementary presentation, with sample applications, of reparametrization invariance comes next. The final and most extensive chapter in this review deals with phenomenological lagrangians that incorporate heavy-quark spin-flavor as well as light quark chiral symmetries. He compiles many interesting results and discuss the validity of the calculations

  17. Effects of delta degrees of freedom on quark condensate in hot and dense matter

    International Nuclear Information System (INIS)

    Li Lei; Ning Pingzhi

    1996-01-01

    The relativistic mean-field theory is applied to study the quark condensate systematically in nuclear matter at zero and finite temperature in terms of the relative importance of delta degrees of freedom. Calculations have included the high-order contributions to quark condensate in nuclear medium due to the baryon-baryon interactions. Numerical results are presented for the nuclear density up to five times larger than the normal density and temperature up to 120 MeV. It is found that the delta resonance in nuclear matter can cause substantial decreases to in-medium quark condensate

  18. Diquark condensation and the quark-quark interaction

    International Nuclear Information System (INIS)

    Bloch, J. C. R.; Roberts, C. D.; Schmidt, S. M.

    1999-01-01

    We employ a bispinor gap equation to study superfluidity at nonzero chemical potential, μ≠0, in two- and three-color QCD, exploring the gap's sensitivity to the nature of the quark-quark interaction. The two-color theory, QC 2 D, is an excellent exemplar; the order of truncation of the quark-quark scattering kernel K has no qualitative impact, which allows a straightforward elucidation of the effects of μ when the coupling is strong. In the three-color theory the rainbow-ladder truncation admits diquark bound states, a defect that is eliminated by an improvement of K. The corrected gap equation describes a superfluid phase that is semiquantitatively similar to that obtained using the rainbow truncation. A model study suggests that the width of the superfluid gap and the transition point in QC 2 D provide reliable quantitative estimates of those quantities in QCD. (c) 1999 The American Physical Society

  19. Helmholtz international Summer school quantum field theory at the limits. From strong fields to heavy quarks (HQ 2016). Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ahmed; Blaschke, David; Issadykov, Aidos; Ivanov, Mikhail (eds.)

    2017-04-15

    two broad areas of research covered at this school: heavy quark physics and physics of high field intensities. The focus of the former was on the latest results on heavy quark physics from all four large experimental collaborations at the LHC (ALICE, ATLAS, CMS, LHCb), at the B-factory experiments (BaBar and Belle), and from BESIII. This was accompanied with lectures on the theoretical aspects of heavy quark physics, Quarkonia and Quarkonia-like multiquarks states (tetra- and pentaquarks), including various state-of-the-art calculational techniques, such as perturbative QCD, lattice-QCD, and effective field theories. The focus on the later topic was on the high intensity frontier and extreme states of matter as probed by current and upcoming high power laser and high-Z ion facilities all around the world. An afternoon tour at the heavy ion collider facility NICA, the superconducting accelerator complex under construction at the Veksler-Baldin Laboratory for High-Energy Physics, was also organized. A number of experimental facilities are now operating effectively, foremost among them the LHC, providing extremely precise measurements on a wide variety of phenomena, in particular, the top quark - Higgs boson complex. A new force - the Higgs force - has been discovered at the LHC, which in all likelihood will act as a portal to physics at very high energy scales, deepening our understanding also of the early stages of the cosmic evolution. Apart from the emphasis on the high energy frontier, which is probing new phenomena and forces in nature, also the so-called rare processes in the charm and bottom quark physics are of great interest. They test the standard theory of particle physics at the quantum level, and hence also probe physics beyond-the-standard model. Experimental precision achieved on a number of observables is impressive and has to be matched by theory to have meaningful and quantitative tests of the standard model. Consequently, the focus of the talks was on

  20. Helmholtz international Summer school quantum field theory at the limits. From strong fields to heavy quarks (HQ 2016). Proceedings

    International Nuclear Information System (INIS)

    Ali, Ahmed; Blaschke, David; Issadykov, Aidos; Ivanov, Mikhail

    2017-04-01

    two broad areas of research covered at this school: heavy quark physics and physics of high field intensities. The focus of the former was on the latest results on heavy quark physics from all four large experimental collaborations at the LHC (ALICE, ATLAS, CMS, LHCb), at the B-factory experiments (BaBar and Belle), and from BESIII. This was accompanied with lectures on the theoretical aspects of heavy quark physics, Quarkonia and Quarkonia-like multiquarks states (tetra- and pentaquarks), including various state-of-the-art calculational techniques, such as perturbative QCD, lattice-QCD, and effective field theories. The focus on the later topic was on the high intensity frontier and extreme states of matter as probed by current and upcoming high power laser and high-Z ion facilities all around the world. An afternoon tour at the heavy ion collider facility NICA, the superconducting accelerator complex under construction at the Veksler-Baldin Laboratory for High-Energy Physics, was also organized. A number of experimental facilities are now operating effectively, foremost among them the LHC, providing extremely precise measurements on a wide variety of phenomena, in particular, the top quark - Higgs boson complex. A new force - the Higgs force - has been discovered at the LHC, which in all likelihood will act as a portal to physics at very high energy scales, deepening our understanding also of the early stages of the cosmic evolution. Apart from the emphasis on the high energy frontier, which is probing new phenomena and forces in nature, also the so-called rare processes in the charm and bottom quark physics are of great interest. They test the standard theory of particle physics at the quantum level, and hence also probe physics beyond-the-standard model. Experimental precision achieved on a number of observables is impressive and has to be matched by theory to have meaningful and quantitative tests of the standard model. Consequently, the focus of the talks was on

  1. Shear viscosity of the quark-gluon plasma in a kinetic theory approach

    International Nuclear Information System (INIS)

    Puglisi, A.; Plumari, S.; Scardina, F.; Greco, V.

    2014-01-01

    One of the main results of heavy ions collision (HIC) at relativistic energy experiments is the very small shear viscosity to entropy density ratio of the Quark-Gluon Plasma, close to the conjectured lower bound η/s=1/4π for systems in the infinite coupling limit. Transport coefficients like shear viscosity are responsible of non-equilibrium properties of a system: Green-Kubo relations give us an exact expression to compute these coefficients. We compute shear viscosity numerically using Green-Kubo relation in the framework of Kinetic Theory solving the relativistic transport Boltzmann equation in a finite box with periodic boundary conditions. We investigate a system of particles interacting via anisotropic and energy dependent cross-section in the range of temperature of interest for HIC. Green-Kubo results are in agreement with Chapman-Enskog approximation while Relaxation Time approximation can underestimates the viscosity of a factor 2. The correct analytic formula for shear viscosity can be used to develop a transport theory with a fixed η/s and have a comparison with physical observables like elliptic flow

  2. Covariant solution of the three-quark problem in quantum field theory: the nucleon

    Directory of Open Access Journals (Sweden)

    Nicmorus D.

    2010-04-01

    Full Text Available We provide details on a recent solution of the nucleon’s covariant Faddeev equation in an explicit three-quark approach. The full Poincaré-covariant structure of the three-quark amplitude is implemented through an orthogonal basis obtained from a partial-wave decomposition. We employ a rainbow-ladder gluon exchange kernel which allows for a comparison with meson Bethe-Salpeter and baryon quark-diquark studies. We describe the construction of the three-quark amplitude in full detail and compare it to a notation widespread in recent publications. Finally, we discuss first numerical results for the nucleon’s amplitude.

  3. In-medium effects in the holographic quark-gluon plasma

    International Nuclear Information System (INIS)

    Rust, Felix Christian

    2009-01-01

    In this dissertation we use the gauge/gravity duality to investigate various properties of strongly coupled gauge theories, which we interpret as models for the quark-gluon plasma (QGP). In particular, we use variants of the D3/D7 setup as an implementation of the top-down approach of connecting string theory with phenomenologically relevant gauge theories. We focus on the effects of finite temperature and finite density on fundamental matter in the holographic quark-gluon plasma, which we model as the N = 2 hypermultiplet in addition to the N=4 gauge multiplet of supersymmetric Yang-Mills theory. As a key ingredient we develop a setup in which we can describe vector meson spectra in the holographic plasma at finite temperature and either baryon or isospin density. The description of vector meson excitations allows for a demonstration of the splitting of their spectrum at finite isospin chemical potential. In the effort to better understand transport processes in the QGP, we then study various diffusion coefficients in the quark-gluon plasma, including their dependence on temperature and particle density. In particular, we perform a simple calculation to obtain the diffusion coefficient of baryon charge and we derive expressions to obtain the isospin diffusion coefficient. Furthermore, we make use of an effective model to study the diffusion behavior of mesons in the plasma by setting up a kinetic model. Finally, we observe the implications of finite temperature and finite baryon or isospin density on the phase structure of fundamental matter in the holographic plasma. As one consequence we find a phase transition in the baryon diffusion coefficient which vanishes at a critical value of the particle density. The critical density we quantify matches the values of the according critical densities previously found in the phase transitions of other quantities. More important, we observe a new phase transition occurring when the isospin chemical potential excesses a

  4. In-medium effects in the holographic quark-gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Rust, Felix Christian

    2009-08-05

    In this dissertation we use the gauge/gravity duality to investigate various properties of strongly coupled gauge theories, which we interpret as models for the quark-gluon plasma (QGP). In particular, we use variants of the D3/D7 setup as an implementation of the top-down approach of connecting string theory with phenomenologically relevant gauge theories. We focus on the effects of finite temperature and finite density on fundamental matter in the holographic quark-gluon plasma, which we model as the N = 2 hypermultiplet in addition to the N=4 gauge multiplet of supersymmetric Yang-Mills theory. As a key ingredient we develop a setup in which we can describe vector meson spectra in the holographic plasma at finite temperature and either baryon or isospin density. The description of vector meson excitations allows for a demonstration of the splitting of their spectrum at finite isospin chemical potential. In the effort to better understand transport processes in the QGP, we then study various diffusion coefficients in the quark-gluon plasma, including their dependence on temperature and particle density. In particular, we perform a simple calculation to obtain the diffusion coefficient of baryon charge and we derive expressions to obtain the isospin diffusion coefficient. Furthermore, we make use of an effective model to study the diffusion behavior of mesons in the plasma by setting up a kinetic model. Finally, we observe the implications of finite temperature and finite baryon or isospin density on the phase structure of fundamental matter in the holographic plasma. As one consequence we find a phase transition in the baryon diffusion coefficient which vanishes at a critical value of the particle density. The critical density we quantify matches the values of the according critical densities previously found in the phase transitions of other quantities. More important, we observe a new phase transition occurring when the isospin chemical potential excesses a

  5. Initial and Final State Interaction Effects in Small-x Quark Distributions

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Bo-Wen; Yuan, Feng

    2010-08-30

    We study the initial and final state interaction effects in the transverse momentum dependent parton distributions in the small-x saturation region. In particular, we discuss the quark distributions in the semi-inclusive deep inelastic scattering, Drell-Yan lepton pair production and dijet-correlation processes in pA collisions. We calculate the quark distributions in the scalar-QED model and then extend to the color glass condensate formalism in QCD. The quark distributions are found universal between the DIS and Drell-Yan processes. On the other hand, the quark distribution from the qq'-->qq' channel contribution to the dijet-correlation process is not universal. However, we find that it can be related to the quark distribution in DIS process by a convolution with the normalized unintegrated gluon distribution in the CGC formalism in the large Nc limit.

  6. An effective potential for heavy quark antiquark bound system

    International Nuclear Information System (INIS)

    Barik, B.K.; Deo, B.B.

    1985-01-01

    A heavy quark antiquark potential is suggested connecting asymptotic freedom and quark confinement in a unified way. The α g (q 2 ) calculated using Borel summation technique with three loop agrees with the two loop β-function up to g 2 /4π ∼ 1.1 but changes appreciably after g 2 /4π = 1.5. The potential so derived satisfactorily explains the c overlined c and b overlined b spectrum. (author)

  7. Transport coefficients of Quark-Gluon Plasma in a Kinetic Theory approach

    International Nuclear Information System (INIS)

    Puglisi, A; Plumari, S; Scardina, F; Greco, V

    2014-01-01

    One of the main results of heavy ions collision at relativistic energy experiments is the very small shear viscosity to entropy density ratio of the Quark-Gluon Plasma, close to the conjectured lower bound η/s = 1/4π for systems in the infinite coupling limit. Transport coefficients like shear viscosity are responsible of non-equilibrium properties of a system: Green- Kubo relations give us an exact expression to compute these coefficients. We computed shear viscosity numerically using Green-Kubo relation in the framework of Kinetic Theory solving the relativistic transport Boltzmann equation in a finite box with periodic boundary conditions. We investigated different cases of particles, for one component system (gluon matter), interacting via isotropic or anisotropic cross-section in the range of temperature of interest for HIC. Green-Kubo results are in agreement with Chapman-Enskog approximation while Relaxation Time approximation can underestimates the viscosity of a factor 2. Another transport coefficient of interest is the electric conductivity σ el which determines the response of QGP to the electromagnetic fields present in the early stage of the collision. We study the σ el dependence on microscopic details of interaction and we find also in this case that Relaxation Time Approximation is a good approximation only for isotropic cross-section.

  8. Effects of causality on the fluidity and viscous horizon of quark-gluon plasma

    Science.gov (United States)

    Rahaman, Mahfuzur; Alam, Jan-e.

    2018-05-01

    The second-order Israel-Stewart-M u ̈ller relativistic hydrodynamics was applied to study the effects of causality on the acoustic oscillation in relativistic fluid. Causal dispersion relations have been derived with nonvanishing shear viscosity, bulk viscosity, and thermal conductivity at nonzero temperature and baryonic chemical potential. These relations have been used to investigate the fluidity of quark-gluon plasma (QGP) at finite temperature (T ). Results of the first-order dissipative hydrodynamics have been obtained as a limiting case of the second-order theory. The effects of the causality on the fluidity near the transition point and on the viscous horizon are found to be significant. We observe that the inclusion of causality increases the value of fluidity measure of QGP near Tc and hence makes the flow strenuous. It was also shown that the inclusion of the large magnetic field in the causal hydrodynamics alters the fluidity of QGP.

  9. Quantum field kinetics of QCD: Quark-gluon transport theory for light-cone-dominated processes

    International Nuclear Information System (INIS)

    Geiger, K.

    1996-01-01

    A quantum-kinetic formalism is developed to study the dynamical interplay of quantum and statistical-kinetic properties of nonequilibrium multiparton systems produced in high-energy QCD processes. The approach provides the means to follow the quantum dynamics in both space-time and energy-momentum, starting from an arbitrary initial configuration of high-momentum quarks and gluons. Using a generalized functional integral representation and adopting the open-quote open-quote closed-time-path close-quote close-quote Green function techniques, a self-consistent set of equations of motions is obtained: a Ginzburg-Landau equation for a possible color background field, and Dyson-Schwinger equations for the two-point functions of the gluon and quark fields. By exploiting the open-quote open-quote two-scale nature close-quote close-quote of light-cone-dominated QCD processes, i.e., the separation between the quantum scale that specifies the range of short-distance quantum fluctuations, and the kinetic scale that characterizes the range of statistical binary interactions, the quantum field equations of motion are converted into a corresponding set of open-quote open-quote renormalization equations close-quote close-quote and open-quote open-quote transport equations.close-quote close-quote The former describe renormalization and dissipation effects through the evolution of the spectral density of individual, dressed partons, whereas the latter determine the statistical occurrence of scattering processes among these dressed partons. The renormalization equations and the transport equations are coupled, and, hence, must be solved self-consistently. This amounts to evolving the multiparton system, from a specified initial configuration, in time and full seven-dimensional phase space, constrained by the Heisenberg uncertainty principle. (Abstract Truncated)

  10. Qualitative quark confinement

    International Nuclear Information System (INIS)

    Jackson, T.L.

    1976-01-01

    The infrared limit in asymptotically free non-abelian gauge theories using recently developed non-perturbative methods which allow derivation of zero momentum theorems for Green's functions and vertices is described. These low-energy theorems are compared to the infrared behavior predicted from the renormalization group equation when the existence of an infrared fixed point is assumed. A set of objects is exhibited whose low energy theorems violate the scaling behavior predicted by the renormalization group. This shows that the assumed fixed point cannot exist and that in the Landau gauge the effective charge becomes infinite in the infrared. Qualitatively this implies that as an attempt is made to separate elementary quanta the interaction between the quanta becomes arbitrarily strong. This indicates at least that the theories studied are capable of color confinement. Results are true only for theories with large numbers of quarks. This opens the possibility that large numbers of quarks are actually necessary for confinement

  11. The self-energy of a heavy quark in the gluonic vacuum and the effective mass

    International Nuclear Information System (INIS)

    Ishizuka, W.; Kikuchi, Y.

    1983-01-01

    We calculate, be use of the multipole expansion, the self-energy of the heavy quark in the gluonic vacuum from which the momentum dependent effective mass is derived. A phenomenological consequence is discussed also. (orig.)

  12. Spontaneous chiral symmetry breaking and effective quark masses in quantum chromodynamics

    International Nuclear Information System (INIS)

    Miransky, V.A.

    1982-01-01

    The ultraviolet asymptotics of the dynamical effective quark mass is determined directly from the equation for the fermion mass function. The indications about the character of the dynamics of the spontaneous chiral symmetry breaking in QCD are obtained

  13. Top quark mass measurement and color effects at the LHC

    International Nuclear Information System (INIS)

    Kovalchuk, Nataliia

    2018-04-01

    The top quark, the heaviest fundamental particle discovered to date, is one of the most peculiar particles that were discovered so far. It plays a crucial role in consistency checks of the Standard Model and in searches for new physics, e.g., supersymmetry, composite Higgs, and many other exotic models. In this thesis, an important property of the top quark is measured: the mass. This analysis is based on the data recorded at a center-of-mass energy of 13 TeV in 2016 with the CMS detector at the CERN LHC, and corresponds to an integrated luminosity of 35.9 fb -1 . The mass of the top quark is measured using the top quark pair event candidate, which corresponds to events with one muon or electron and at least four jets. The corresponding decay products are used in a kinematic fit to perform the jet quark assignment, increase the fraction of correctly reconstructed top quarks and to improve the mass resolution. Using the ideogram method the top quark mass is measured simultaneously with the jet scale factor (JSF), constrained by the jets arising from the W boson decay. The estimated result is calibrated with samples simulated with a next-to-leading order matrix element generator matched to the parton shower. The top quark mass is measured to be m t =172.25±0.08 (stat+JSF)±0.62 (syst) GeV. The results are tested for possible kinematic dependence by performing measurements of the top quark mass in different phase space regions. The residual data-to-simulation calibration of the energy of the jets is also estimated from dijet events with data collected at center-of-mass energy of 13 TeV in 2015 with the CMS detector corresponding to an integrated luminosity of 2.1 fb -1 . The corrections are performed using selected back-to-back dijet events by the MPF and dijet balance methods and are found to differ from unity by less then 3% in the barrel region and up to 17% in the endcap and forward regions of the detector. This result was used in the top mass measurement

  14. Up-down quark mass difference effect in nuclear many-body systems

    International Nuclear Information System (INIS)

    Nakamura, S.; Muto, K.; Oka, M.; Takeuchi, S.; Oda, T.

    1995-01-01

    A charge-symmetry-breaking nucleon-nucleon force due to the up-down quark mass difference is evaluated in the quark cluster model. It is applied to the shell-model calculation for the isovector mass shifts of isospin multiplets and the isospin-mixing matrix elements in 1s0d-shell nuclei. We find that the contribution of the quark mass difference effect is large and agrees with experiment. This contribution may explain the Okamoto-Nolen-Schiffer anomaly, alternatively to the meson-mixing contribution, which is recently predicted to be reduced by the large off-shell correction. (author)

  15. Up-down quark mass difference effect in nuclear many-body systems

    International Nuclear Information System (INIS)

    Nakamura, S.; Muto, K.; Oka, M.; Takeuchi, S.; Oda, T.

    1996-01-01

    A charge-symmetry-breaking nucleon-nucleon force due to the up-down quark mass difference is evaluated in the quark cluster model. It is applied to the shell-model calculation for the isovector mass shifts of isospin multiplets in 1s0d-shell nuclei. We find that the contribution of the quark mass difference effect explains the systematic behavior of experiment. This contribution is large and may explain the Okamoto-Nolen-Schiffer anomaly, alternatively to the meson-mixing contribution, which is recently predicted to be reduced by the large off-shell correction. copyright 1996 The American Physical Society

  16. SPIN EFFECTS IN THE FRAGMENTATION OF TRANSVERSELY POLARIZED AND UNPOLARIZED QUARKS

    International Nuclear Information System (INIS)

    ANSELMINO, M.; BOER, D.; DALESIO, U.; MURGIA, F.

    2001-01-01

    We study the fragmentation of a transversely polarized quark into a non-collinear (kperpendicular ≠ 0) spinless hadron and the fragmentation of an unpolarized quark into a non collinear transversely polarized spin 1/2 baryon. These nonperturbative properties are described by spin and kperpendicular dependent fragmentation functions and are revealed in the observation of single spin asymmetries. Recent data on the production of pions in polarized semi-inclusive DIS and long known data on A polarization in unpolarized p-N processes are considered: these new fragmentation functions can describe the experimental results and the single spin effects in the quark fragmentation turn out to be surprisingly large

  17. Quark Loop Effects on Dressed Gluon Propagator in Framework of Global Color Symmetry Model

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; SUN Wei-Min

    2006-01-01

    Based on the global color symmetry model (GCM), a method for obtaining the quark loop effects on the dressed gluon propagator in GCM is developed. In the chiral limit, it is found that the dressed gluon propagator containing the quark loop effects in the Nambu-Goldstone and Wigner phases are quite different. In solving the quark self-energy functions in the two different phases and subsequent study of bag constant one should use the above dressed gluon propagator as input. The above approach for obtaining the current quark mass effects on the dressed gluon propagator is quite general and can also be used to calculate the chemical potential dependence of the dressed gluon propagator.

  18. Effective quantum field theories

    International Nuclear Information System (INIS)

    Georgi, H.M.

    1993-01-01

    The most appropriate description of particle interactions in the language of quantum field theory depends on the energy at which the interactions are studied; the description is in terms of an ''effective field theory'' that contains explicit reference only to those particles that are actually important at the energy being studied. The various themes of the article are: local quantum field theory, quantum electrodynamics, new physics, dimensional parameters and renormalizability, socio-dynamics of particle theory, spontaneously broken gauge theories, scale dependence, grand unified and effective field theories. 2 figs

  19. Lowering of proton mass with respect to neutron state in g'-quark electromagnetic soliton theory: Pt. 1

    International Nuclear Information System (INIS)

    Lebrun, J.-P.M.

    1988-01-01

    The modification of electrodynamics for the g'-quark permitting chiral invariance, CA, and PCAC to hold effords to relate the nucleon electromagnetic mass splitting to the pionic case previously treated by Ward's identities. This gives correct sign and order of magnitude for his effect and finite positive proton charge

  20. Effective potential for heavy quark antiquark bound system

    Energy Technology Data Exchange (ETDEWEB)

    Barik, B K; Deo, B B

    1985-12-01

    A heavy quark antiquark potential is suggested connecting asymptotic freedom and quark confinement in a unified way. The ..cap alpha../sub g/(q/sup 2/) calculated using Borel summation technique with three loop agrees with the two loop ..beta..-function up to g/sup 2//4..pi.. -- 1.1 but changes appreciably after g/sup 2//4..pi.. = 1.5. The potential so derived satisfactorily explains the c overlined c and b overlined b spectrum. 13 refs., 4 figures, 3 tables.

  1. Perturbative study in quantum field theory at finite temperature, application to lepton pair production from a quark-gluon plasma

    International Nuclear Information System (INIS)

    Altherr, T.

    1989-12-01

    The main topic of this thesis is a perturbative study of Quantum Field Theory at Finite Temperature. The real-time formalism is used throughout this work. We show the cancellation of infrared and mass singularities in the case of the first order QCD corrections to lepton pair production from a quark-gluon plasma. Two methods of calculation are presented and give the same finite result in the limit of vanishing quark mass. These finite terms are analysed and give small corrections in the region of interest for ultra-relativistic heavy ions collisions, except for a threshold factor. Specific techniques for finite temperature calculations are explicited in the case of the fermionic self-energy in QED [fr

  2. Correlation functions in finite temperature field theories: formalism and applications to quark-gluon plasma; Fonctions de correlations en theorie des champs a temperature finie: aspects formels et applications au plasma de quarks et de gluons

    Energy Technology Data Exchange (ETDEWEB)

    Gelis, Francois [Savoie Univ., 73 - Chambery (France)

    1998-12-01

    The general framework of this work is thermal field theory, and more precisely the perturbative calculation of thermal Green`s functions. In a first part, I consider the problems closely related to the formalism itself. After two introductory chapters devoted to set up the framework and the notations used afterwards, a chapter is dedicated to a clarification of certain aspects of the justification of the Feynman rules of the real time formalism. Then, I consider in the chapter 4 the problem of cutting rules in the real time formalisms. In particular, after solving a controversy on this subject, I generalize these cutting rules to the `retarded-advanced` version of this formalism. Finally, the last problem considered in this part is that of the pion decay into two photons in a thermal bath. I show that the discrepancies found in the literature are due to peculiarities of the analytical properties of the thermal Green`s functions. The second part deals with the calculations of the photons or dilepton (virtual photon) production rate by a quark gluon plasma. The framework of this study is the effective theory based on the resummation of hard thermal loops. The first aspects of this study is related to the production of virtual photons, where we show that important contributions arise at two loops, completing the result already known at one loop. In the case of real photon production, we show that extremely strong collinear singularities make two loop contributions dominant compared to one loop ones. In both cases, the importance of two loop contributions can be interpreted as weaknesses of the hard thermal loop approximation. (author) 366 refs., 109 figs.

  3. Hadron spectra and quarks

    International Nuclear Information System (INIS)

    Gasiorowicz, S.; Rosner, J.L.

    1982-01-01

    The quark model began as little more than a quantum-number counting device. After a brief period during which quarks only played a symmetry role, serious interest in quark dynamics developed. The marriage of the principle of local gauge invariance and quarks has been astonishingly productive. Although many questions still need to be be answered, there is little doubt that the strong, weak and electroweak interactions of matter are described by gauge theories of interactions of the quarks. This review is focussed on the successes

  4. Effects of Density-Dependent Quark Mass on Phase Diagram of Color-Flavor-Locked Quark Matter

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Considering the density dependence of quark mass, we investigate the phase transition between the (unpaired) strange quark matter and the color-flavor-locked matter, which are supposed to be two candidates for the ground state of strongly interacting matter. We find that if the current mass of strange quark ms is small, the strange quark matter remains stable unless the baryon density is very high. If ms is large, the phase transition from the strange quark matter to the color-flavor-locked matter in particular to its gapless phase is found to be different from the results predicted by previous works. A complicated phase diagram of three-flavor quark matter is presented, in which the color-flavor-locked phase region is suppressed for moderate densities.

  5. On the exotic Higgs decays in effective field theory.

    Science.gov (United States)

    Bélusca-Maïto, Hermès; Falkowski, Adam

    2016-01-01

    We discuss exotic Higgs decays in an effective field theory where the Standard Model is extended by dimension-6 operators. We review and update the status of two-body lepton- and quark-flavor-violating decays involving the Higgs boson. We also comment on the possibility of observing three-body flavor-violating Higgs decays in this context.

  6. On the exotic Higgs decays in effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Belusca-Maito, Hermes; Falkowski, Adam [Universite Paris-Sud, Laboratoire de Physique Theorique, Orsay (France)

    2016-09-15

    We discuss exotic Higgs decays in an effective field theory where the Standard Model is extended by dimension-6 operators. We review and update the status of two-body lepton- and quark-flavor-violating decays involving the Higgs boson. We also comment on the possibility of observing three-body flavor-violating Higgs decays in this context. (orig.)

  7. Limits on the effective quark radius from inclusive ep scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H. [Tel Aviv Univ. (Israel). School of Physics; Max Planck Institute for Physics, Munich (Germany); Abt, I. [Max Planck Institute for Physics, Munich (Germany); Adamczyk, L. [AGH-Univ. of Science and Technology, Krakow (Poland). Faculty of Physics and Applied Computer Sciences; Collaboration: ZEUS Collaboration; and others

    2016-04-15

    The high-precision HERA data allows searches up to TeV scales for Beyond the Standard Model contributions to electron-quark scattering. Combined measurements of the inclusive deep inelastic cross sections in neutral and charged current ep scattering corresponding to a luminosity of around 1 fb{sup -1} have been used in this analysis. A new approach to the beyond the Standard Model analysis of the inclusive ep data is presented; simultaneous fits of parton distribution functions together with contributions of ''new physics'' processes were performed. Results are presented considering a finite radius of quarks within the quark form-factor model. The resulting 95% C.L. upper limit on the effective quark radius is 0.43.10{sup -16} cm.

  8. Limits on the effective quark radius from inclusive ep scattering at HERA

    International Nuclear Information System (INIS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.

    2016-04-01

    The high-precision HERA data allows searches up to TeV scales for Beyond the Standard Model contributions to electron-quark scattering. Combined measurements of the inclusive deep inelastic cross sections in neutral and charged current ep scattering corresponding to a luminosity of around 1 fb -1 have been used in this analysis. A new approach to the beyond the Standard Model analysis of the inclusive ep data is presented; simultaneous fits of parton distribution functions together with contributions of ''new physics'' processes were performed. Results are presented considering a finite radius of quarks within the quark form-factor model. The resulting 95% C.L. upper limit on the effective quark radius is 0.43.10 -16 cm.

  9. Higgs boson pair production: Top quark mass effects at NLO and NNLO

    Directory of Open Access Journals (Sweden)

    Jonathan Grigo

    2015-11-01

    Full Text Available We compute next-to-next-to-leading order QCD corrections to the gluon-induced production cross section of Higgs boson pairs in the large top quark mass limit using the soft-virtual approximation. In the limit of infinitely-heavy top quark we confirm the results in the literature. We add two more expansion terms in the inverse top quark mass to the Mt→∞ result. Since the 1/Mt expansion converges poorly, we try to improve on it by factorizing the exact leading order cross section. We discuss two ways of doing that and conclude that the finite top quark mass effects shift the cross section at most by about 10% at next-to-leading order and by about 5% at next-to-next-to-leading order.

  10. Limits on the effective quark radius from inclusive $ep$ scattering at HERA

    CERN Document Server

    Abramowicz, H; Adamczyk, L; Adamus, M; Antonelli, S; Aushev, V; Behnke, O; Behrens, U; Bertolin, A; Bloch, I; Boos, EG; Brock, I; Brook, NH; Brugnera, R; Bruni, A; Bussey, PJ; Caldwell, A; Capua, M; Catterall, CD; Chwastowski, J; Ciborowski, J; Ciesielski, R; Cooper-Sarkar, AM; Corradi, M; Dementiev, RK; Devenish, RCE; Dusini, S; Foster, B; Gach, G; Gallo, E; Garfagnini, A; Geiser, A; Gizhko, A; Gladilin, LK; Golubkov, Yu A; Grzelak, G; Guzik, M; Hain, W; Hochman, D; Hori, R; Ibrahim, ZA; Iga, Y; Ishitsuka, M; Januschek, F; Jomhari, NZ; Kadenko, I; Kananov, S; Karshon, U; Kaur, P; Kisielewska, D; Klanner, R; Klein, U; Korzhavina, IA; Kotański, A; Kötz, U; Kovalchuk, N; Kowalski, H; Krupa, B; Kuprash, O; Kuze, M; Levchenko, BB; Levy, A; Limentani, S; Lisovyi, M; Lobodzinska, E; Löhr, B; Lohrmann, E; Longhin, A; Lontkovskyi, D; Lukina, OYu; Makarenko, I; Malka, J; Mohamad Idris, F; Mohammad Nasir, N; Myronenko, V; Nagano, K; Nobe, T; Nowak, RJ; Onishchuk, Yu; Paul, E; Perlański, W; Pokrovskiy, NS; Przybycien, M; Roloff, P; Ruspa, M; Saxon, DH; Schioppa, M; Schneekloth, U; Schörner-Sadenius, T; Shcheglova, LM; Shevchenko, R; Shkola, O; Shyrma, Yu; Singh, I; Skillicorn, IO; Słomiński, W; Solano, A; Stanco, L; Stefaniuk, N; Stern, A; Stopa, P; Sztuk-Dambietz, J; Tassi, E; Tokushuku, K; Tomaszewska, J; Tsurugai, T; Turcato, M; Turkot, O; Tymieniecka, T; Verbytskyi, A; Wan Abdullah, WAT; Wichmann, K; Wing, M; Yamada, S; Yamazaki, Y; Zakharchuk, N; Żarnecki, AF; Zawiejski, L; Zenaiev, O; Zhautykov, BO; Zotkin, DS; Bhadra, S; Gwenlan, C; Hlushchenko, O; Polini, A; Mastroberardino, A; Sukhonos, D

    2016-01-01

    The high-precision HERA data allows searches up to TeV scales for Beyond the Standard Model contributions to electron-quark scattering. Combined measurements of the inclusive deep inelastic cross sections in neutral and charged current $ep$ scattering corresponding to a luminosity of around 1 fb$^{-1}$ have been used in this analysis. A new approach to the beyond the Standard Model analysis of the inclusive $ep$ data is presented; simultaneous fits of parton distribution functions together with contributions of "new physics" processes were performed. Results are presented considering a finite radius of quarks within the quark form-factor model. The resulting 95% C.L. upper limit on the effective quark radius is $0.43\\cdot 10^{-16}$ cm.

  11. Quark-nuclear hybrid star equation of state with excluded volume effects

    Science.gov (United States)

    Kaltenborn, Mark Alexander Randolph; Bastian, Niels-Uwe Friedrich; Blaschke, David Bernhard

    2017-09-01

    A two-phase description of the quark-nuclear matter hybrid equation of state that takes into account the effect of excluded volume in both the hadronic and the quark-matter phases is introduced. The nuclear phase manifests a reduction of the available volume as density increases, leading to a stiffening of the matter. The quark-matter phase displays a reduction of the effective string tension in the confining density functional from available volume contributions. The nuclear equation of state is based upon the relativistic density-functional model DD2 with excluded volume. The quark-matter equation of state is based upon a quasiparticle model derived from a relativistic density-functional approach and will be discussed in greater detail. The interactions are decomposed into mean scalar and vector components. The scalar interaction is motivated by a string potential between quarks, whereas the vector interaction potential is motivated by higher-order interactions of quarks leading to an increased stiffening at high densities. As an application, we consider matter under compact star constraints of electric neutrality and β equilibrium. We obtain mass-radius relations for hybrid stars that form a third family, disconnected from the purely hadronic star branch, and fulfill the 2 M⊙ constraint.

  12. Power corrections from decoupling of the charm quark

    Science.gov (United States)

    Knechtli, Francesco; Korzec, Tomasz; Leder, Björn; Moir, Graham; Alpha Collaboration

    2017-11-01

    Decoupling of heavy quarks at low energies can be described by means of an effective theory as shown by S. Weinberg in Ref. [1]. We study the decoupling of the charm quark by lattice simulations. We simulate a model, QCD with two degenerate charm quarks. In this case the leading order term in the effective theory is a pure gauge theory. The higher order terms are proportional to inverse powers of the charm quark mass M starting at M-2. Ratios of hadronic scales are equal to their value in the pure gauge theory up to power corrections. We show, by precise measurements of ratios of scales defined from the Wilson flow, that these corrections are very small and that they can be described by a term proportional to M-2 down to masses in the region of the charm quark mass.

  13. Cool quark matter

    CERN Document Server

    Kurkela, Aleksi

    2016-07-20

    We generalize the state-of-the-art perturbative Equation of State of cold quark matter to nonzero temperatures, needed in the description of neutron star mergers and core collapse processes. The new result is accurate to order g^5 in the gauge coupling, and is based on a novel framework for dealing with the infrared sensitive soft field modes of the theory. The zero Matsubara mode sector is treated using a dimensionally reduced effective theory, while the soft non-zero modes are resummed using the Hard Thermal Loop approximation. This combination of known effective descriptions offers unprecedented access to small but nonzero temperatures, both in and out of beta equilibrium.

  14. Gauging Non-local Quark Models

    International Nuclear Information System (INIS)

    Broniowski, W.

    1999-09-01

    The gauge effective quark model with non-local interactions is considered. It is shown how this approach regularize the theory in such a way that the anomalies are preserved and charges are properly quantized. With non-local interactions the effective action is finite to all orders in the loop expansion and there is no need to introduce the quark momentum cut-off parameter

  15. Quark condensate effects on charmonium-pion scattering

    Indian Academy of Sciences (India)

    Fb; 14.40.Lb. 1. Introduction. In the context of quark gluon plasma physics [1], charmonium–hadron cross-sections are of crucial importance. Small J/ψ–hadron dissociation cross-sections may favor an inter- pretation of the recent Pb+Pb .... The QCD sum rule results for ΛDD +ADDM2 and ΛD£D£ +AD£D£M2 as a function of.

  16. QCD as a basis for quark and nuclear forces

    International Nuclear Information System (INIS)

    Close, F.E.

    1983-01-01

    This chapter examines quarks in nucleons and the ideas behind the quantum chromodynamic (QCD) theory of their interactions. Compares nuclei and nucleons, and examines length or energy scales in physics. Reviews the present knowledge about the basic building blocks: quarks and leptons. Discusses color, building colorless hadrons, effects of color inside hadrons (spin flavor correlations, magnetic moments), color as the source of a field theory (molecular and nuclear forces), non-Abelian theories (qualitative features, boson-fermion vertices in SU(N), gauge invariance), renormalization and scaling violation (Lagrangians and renormalization, logs in perturbation theory), and quarks and nuclear forces

  17. Gapless Color-Flavor-Locked Quark Matter

    DEFF Research Database (Denmark)

    Alford, Mark; Kouvaris, Christoforos; Rajagopal, Krishna

    2004-01-01

    In neutral cold quark matter that is sufficiently dense that the strange quark mass M_s is unimportant, all nine quarks (three colors; three flavors) pair in a color-flavor locked (CFL) pattern, and all fermionic quasiparticles have a gap. We argue that as a function of decreasing quark chemical...... potential mu or increasing M_s, there is a quantum phase transition from the CFL phase to a new ``gapless CFL phase'' in which only seven quasiparticles have a gap. The transition occurs where M_s^2/mu is approximately equal to 2*Delta, with Delta the gap parameter. Gapless CFL, like CFL, leaves unbroken...... a linear combination Qtilde of electric and color charges, but it is a Qtilde-conductor with a nonzero electron density. These electrons and the gapless quark quasiparticles make the low energy effective theory of the gapless CFL phase and, consequently, its astrophysical properties are qualitatively...

  18. Quark-quark interactions

    International Nuclear Information System (INIS)

    Jacob, M.

    1982-01-01

    This chapter discusses interactions only at the constituent level, as observed in hadron-hadron collisions. It defines quarks and gluons as constituents of the colliding hadrons, reviews some applications of perturbative OCD, discussing in turn lepton pair production, which in lowest order approximation corresponds to the Drell-Yan process. It investigates whether quark-quark interactions could not lead to some new color structure different from those prevalent for known baryons and mesons, which could be created in hadron interactions, and whether color objects (not specifically quarks or gluons) could not appear as free particles. Discussed is perturbative QCD in hadron collisions; the quark approach to soft processes; and new color structures. It points out that perturbative QCD has been at the origin of much progress in the understanding of hadron interactions at the constituent level

  19. Effective quantum field theories

    International Nuclear Information System (INIS)

    Georgi, H.M.

    1989-01-01

    Certain dimensional parameters play a crucial role in the understanding of weak and strong interactions based on SU(2) x U(1) and SU(3) symmetry group theories and of grand unified theories (GUT's) based on SU(5). These parameters are the confinement scale of quantum chromodynamics and the breaking scales of SU(2) x U(1) and SU(5). The concepts of effective quantum field theories and renormalisability are discussed with reference to the economics and ethics of research. (U.K.)

  20. One-loop lattice artifacts of a dynamical charm quark

    Energy Technology Data Exchange (ETDEWEB)

    Athenodorou, Andreas; Sommer, Rainer [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2011-10-15

    For a few observables in O(a) improved lattice QCD, we compute discretization effects arising from the vacuum polarization of a heavy quark at one-loop order. In particular, the force between static quarks, the running coupling in the Schroedinger functional and a related quantity, anti {upsilon}, are considered. Results show that the cutoff effects of a dynamical charm quark are typically smaller than those present in the pure gauge theory. This perturbative result is a good indication that dynamical charm quarks are feasible already now. (orig.)

  1. One-loop lattice artifacts of a dynamical charm quark

    International Nuclear Information System (INIS)

    Athenodorou, Andreas; Sommer, Rainer

    2011-10-01

    For a few observables in O(a) improved lattice QCD, we compute discretization effects arising from the vacuum polarization of a heavy quark at one-loop order. In particular, the force between static quarks, the running coupling in the Schroedinger functional and a related quantity, anti υ, are considered. Results show that the cutoff effects of a dynamical charm quark are typically smaller than those present in the pure gauge theory. This perturbative result is a good indication that dynamical charm quarks are feasible already now. (orig.)

  2. Twisted mass lattice QCD with non-degenerate quark masses

    International Nuclear Information System (INIS)

    Muenster, Gernot; Sudmann, Tobias

    2006-01-01

    Quantum Chromodynamics on a lattice with Wilson fermions and a chirally twisted mass term is considered in the framework of chiral perturbation theory. For two and three numbers of quark flavours, respectively, with non-degenerate quark masses the pseudoscalar meson masses and decay constants are calculated in next-to-leading order including lattice effects quadratic in the lattice spacing a

  3. What quark theory gives for the potential description of the parity violation in NN interactions

    International Nuclear Information System (INIS)

    Dubovik, V.M.; Zenkin, S.V.

    1982-01-01

    The constants of the parity violating (PV) πNN, rhoNN and #betta#NN interactions are calculated in the framework of quark picture based on the standard SU(2)sub(L)xU(1) electroweak model with account for the QCD corrections. The constants are close to the well-known ''best values'', which provide a successful fit to the low-energy PV experimental data

  4. A mean field theory for the cold quark gluon plasma applied to stellar structure

    Energy Technology Data Exchange (ETDEWEB)

    Fogaca, D. A.; Navarra, F. S.; Franzon, B. [Instituto de Fisica, Universidade de Sao Paulo Rua do Matao, Travessa R, 187, 05508-090 Sao Paulo, SP (Brazil); Horvath, J. E. [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao, 1226, 05508-090, Sao Paulo, SP (Brazil)

    2013-03-25

    An equation of state based on a mean-field approximation of QCD is used to describe the cold quark gluon plasma and also to study the structure of compact stars. We obtain stellar masses compatible with the pulsar PSR J1614-2230 that was determined to have a mass of (1.97 {+-} 0.04 M{sub Circled-Dot-Operator }), and the corresponding radius around 10-11 km.

  5. Quark interchange model of baryon interactions

    Energy Technology Data Exchange (ETDEWEB)

    Maslow, J.N.

    1983-01-01

    The strong interactions at low energy are traditionally described by meson field theories treating hadrons as point-like particles. Here a mesonic quark interchange model (QIM) is presented which takes into account the finite size of the baryons and the internal quark structure of hadrons. The model incorporates the basic quark-gluon coupling of quantum chromodynamics (QCD) and the MIT bag model for color confinement. Because the quark-gluon coupling constant is large and it is assumed that confinement excludes overlap of hadronic quark bags except at high momenta, a non-perturbative method of nuclear interactions is presented. The QIM allows for exchange of quark quantum numbers at the bag boundary between colliding hadrons mediated at short distances by a gluon exchange between two quarks within the hadronic interior. This generates, via a Fierz transformation, an effective space-like t channel exchange of color singlet (q anti-q) states that can be identified with the low lying meson multiplets. Thus, a one boson exchange (OBE) model is obtained that allows for comparison with traditional phenomenological models of nuclear scattering. Inclusion of strange quarks enables calculation of YN scattering. The NN and YN coupling constants and the nucleon form factors show good agreement with experimental values as do the deuteron low energy data and the NN low energy phase shifts. Thus, the QIM provides a simple model of strong interactions that is chirally invariant, includes confinement and allows for an OBE form of hadronic interaction at low energies and momentum transfers.

  6. Quark interchange model of baryon interactions

    International Nuclear Information System (INIS)

    Maslow, J.N.

    1983-01-01

    The strong interactions at low energy are traditionally described by meson field theories treating hadrons as point-like particles. Here a mesonic quark interchange model (QIM) is presented which takes into account the finite size of the baryons and the internal quark structure of hadrons. The model incorporates the basic quark-gluon coupling of quantum chromodynamics (QCD) and the MIT bag model for color confinement. Because the quark-gluon coupling constant is large and it is assumed that confinement excludes overlap of hadronic quark bags except at high momenta, a non-perturbative method of nuclear interactions is presented. The QIM allows for exchange of quark quantum numbers at the bag boundary between colliding hadrons mediated at short distances by a gluon exchange between two quarks within the hadronic interior. This generates, via a Fierz transformation, an effective space-like t channel exchange of color singlet (q anti-q) states that can be identified with the low lying meson multiplets. Thus, a one boson exchange (OBE) model is obtained that allows for comparison with traditional phenomenological models of nuclear scattering. Inclusion of strange quarks enables calculation of YN scattering. The NN and YN coupling constants and the nucleon form factors show good agreement with experimental values as do the deuteron low energy data and the NN low energy phase shifts. Thus, the QIM provides a simple model of strong interactions that is chirally invariant, includes confinement and allows for an OBE form of hadronic interaction at low energies and momentum transfers

  7. Quark-gluon plasma (Selected Topics)

    International Nuclear Information System (INIS)

    Zakharov, V. I.

    2012-01-01

    Introductory lectures to the theory of (strongly interacting) quark-gluon plasma given at the Winter School of Physics of ITEP (Moscow, February 2010). We emphasize theoretical issues highlighted by the discovery of the low viscosity of the plasma. The topics include relativistic hydrodynamics, manifestations of chiral anomaly in hydrodynamics, superfluidity, relativistic superfluid hydrodynamics, effective stringy scalars, holographic models of Yang-Mills theories.

  8. Effective field theories

    International Nuclear Information System (INIS)

    Mack, G.; Kalkreuter, T.; Palma, G.; Speh, M.

    1992-05-01

    Effective field theories encode the predictions of a quantum field theory at low energy. The effective theory has a fairly low utraviolet cutoff. As a result, loop corrections are small, at least if the effective action contains a term which is quadratic in the fields, and physical predictions can be read straight from the effective Lagrangean. Methods will be discussed how to compute an effective low energy action from a given fundamental action, either analytically or numerically, or by a combination of both methods. Basically, the idea is to integrate out the high frequency components of fields. This requires the choice of a 'blockspin', i.e. the specification af a low frequency field as a function of the fundamental fields. These blockspins will be fields of the effective field theory. The blockspin need not be a field of the same type as one of the fundamental fields, and it may be composite. Special features of blockspin in nonabelian gauge theories will be discussed in some detail. In analytical work and in multigrid updating schemes one needs interpolation kernels A from coarse to fine grid in addition to the averaging kernels C which determines the blockspin. A neural net strategy for finding optimal kernels is presented. Numerical methods are applicable to obtain actions of effective theories on lattices of finite volume. The special case of a 'lattice' with a single site (the constraint effective potential) is of particular interest. In a higgs model, the effective action reduces in this case to the free energy, considered as a function of a gauge covariant magnetization. Its shape determines the phase structure of the theory. Its loop expansion with and without gauge fields can be used to determine finite size corrections to numerical data. (orig.)

  9. Effects of final-state interaction and screening on strange and heavy quark production

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Cheuk-Yin [Oak Ridge National Lab., TN (United States); Chatterjee, L. [Oak Ridge National Lab., TN (United States)]|[Tennessee Univ., Knoxville, TN (United States)]|[Jadavpur Univ., Calcutta (India)

    1996-10-01

    Final-state interaction and screening have a great influence on {ital q{anti q}} production cross sections, which are important quantities in many problems in quark-gluon plasma physics. They lead to an enhancement of the cross section for a {ital q{anti q}} color-singlet state and a suppression for a color-octet state. The effects are large near the production threshold. The presence of screening gives rise to resonances for {ital q{anti q}} production just above the threshold at specific plasma temperatures. These resonances, especially {ital c{anti c}} and {ital b{anti b}} resonances, may be utilized to search for the quark-gluon plasma by studying the temperature dependence of heavy-quark pair production just above the threshold.

  10. Quark-exchange effects in a deuteron breakup at intermediate energy

    International Nuclear Information System (INIS)

    Kobushkin, A.P.; Syamtomov, A.I.; Glozman, L.Ya.

    1995-01-01

    Microscopical approach to a deuteron breakup at high and intermediate energies is proposed. We show that the quark exchange effects, resulting from the full asymmetry of the 6q-deuteron wave function with respect to the pair permutations of quark variables, strongly affect the proton momentum distribution in the deuteron, as well as the polarization observables of inclusive deuteron breakup, when the '' internal momentum '' in the deuteron is of order of a few hundreds MeV/c. 25 refs., 2 tab., 9 figs

  11. Quark-exchange effects in a deuteron breakup at intermediate energy.

    Energy Technology Data Exchange (ETDEWEB)

    Kobushkin, A P; Syamtomov, A I; Glozman, L Ya

    1996-12-31

    Microscopical approach to a deuteron breakup at high and intermediate energies is proposed. We show that the quark exchange effects, resulting from the full asymmetry of the 6q-deuteron wave function with respect to the pair permutations of quark variables, strongly affect the proton momentum distribution in the deuteron, as well as the polarization observables of inclusive deuteron breakup, when the `` internal momentum `` in the deuteron is of order of a few hundreds MeV/c. 25 refs., 2 tab., 9 figs.

  12. Mass effects in the emission of gluons from heavy quarks at high energies

    CERN Document Server

    Fuster, J A; Tortosa, P

    2001-01-01

    The effects in the emission of gluons due to the mass of the heavy quarks have clearly been observed by the experiments at LEP and SLC. The analyses of the data using theoretical corrections computed at Next-to-Leading Order have allowed to either test the flavour independence of the strong coupling constant with very high precision (~1%) or measure the b-quark mass at high energy, square root s~M/sub Z/. The results obtained by the various experiments, ALEPH, DELPHI, OPAL and SLD, agree well within errors. The systematic uncertainties limit present determinations though new methods and strategies are being developed to overcome the present bounds. (15 refs).

  13. Spin effects from quark and lepton substructure at future machines

    International Nuclear Information System (INIS)

    Rueckl, R.

    1985-01-01

    If quarks and leptons are composite on a distance scale Λ -1 the physics at energies larger than Λ will provide plenty of evidence for the new level of substructure. However, already at energies below Λ compositeness should become manifest in deviations from the standard model due to form factors, residual interactions and, possibly, new ''light'' states. I discuss the virtue of polarized lepton and hadron beams in searching for new interactions and exemplify the production of excited fermions and bosons focussing on spin properties. The detailed of the contact interactions and the spin of the excited fermions and bosons can give important clues on the basic preon structure and dynamics. Phenomenological studies show that polarization asymmetries and angular distributions of decay products probe most sensitively the chiral properties of contact interactions and the spin of new states. Thus, polarized beams and good angular coverage are of great advantage

  14. Prediction of new Quarks, Generations and Quark Masses

    Science.gov (United States)

    Lach, Thedore

    2002-04-01

    The Standard model currently suggests no relationship between the quark and lepton masses. The CBM (model) of the nucleus has resulted in the prediction of two new quarks, an up quark mass of 237.31 MeV/c2 and a dn quark mass of 42.392 MeV/c2. These two new quarks help explain the numerical relationship between all the quark and lepton masses in a single function. The mass of each SNU-P (quark or lepton) is just the geometric mean of two related SNU-Ps, either in the same generation or in the same family. This numerology predicts the following masses for the electron family: 0.511000 (electron), 7.743828 (predicted), 117.3520, 1778.38, 26950.08 MeV. The resulting slope of these masses when plotted on semi log paper is "e" to 5 significant figures using the currently accepted mass for Tau. This theory suggests that all the "dn like" quarks have a mass of just 10X multiples of 4.24 MeV (the mass of the "d" quark). The first 3 "up like" quark masses are 38, 237 and 1500 MeV. This theory also predicts a new heavy generation with a lepton mass of 27 GeV, a "dn like" quark of 42.4 GeV, and an "up like" quark of 65 GeV. Significant evidence already exists for the existence of these quarks, and lepton.

  15. Quark exchange and nuclear dynamics

    International Nuclear Information System (INIS)

    Moniz, E.J.

    1985-01-01

    This paper gives a qualitative understanding of hadronic phenomena in terms of quark degrees of freedom. The basic model which incorporates saturating confining interactions and the study of hadron-hadron scattering has been carried through in collaboration with F. Lenz, J.T. Londergan, R. Rosenfelder, M. Stingl and K. Yazaki. It is shown that minimal confining dynamics together with exchange symmetry indeed leads to a remarkable range of phenomena at both the nuclear and particle energy scales. Most observables are well described by an effective hadron theory, the quark momentum distribution being the major exception. These features emerge even in the simplest model, namely, U(1) color and hadrons composed of two quarks (anti qq or qq). The author concentrates here on this model. In the concluding section, he remarks on the SU(N) results, particularly on the extent to which the color-hidden dynamics are constrained by examining the systematics of nuclear and hadronic phenomena. (Auth.)

  16. Quark-antiquark condensates in the hadronic phase

    International Nuclear Information System (INIS)

    Tawfik, A.; Toublan, D.

    2005-01-01

    We use a hadron resonance gas model to calculate the quark-antiquark condensates for light (up and down) and strange quark flavors at finite temperatures and chemical potentials. At zero chemical potentials, we find that at the temperature where the light quark-antiquark condensates entirely vanish the strange quark-antiquark condensate still keeps a relatively large fraction of its value in the vacuum. This is in agreement with results obtained in lattice simulations and in chiral perturbation theory at finite temperature and zero chemical potentials. Furthermore, we find that this effect slowly disappears at larger baryon chemical potential. These results might have significant consequences for our understanding of QCD at finite temperatures and chemical potentials. Concretely, our results imply that there might be a domain of temperatures where chiral symmetry is restored for light quarks, but still broken for strange quark that persists at small chemical potentials. This might have practical consequences for heavy ion collision experiments

  17. Quantum field kinetics of QCD quark-gluon transport theory for light-cone dominated processes

    CERN Document Server

    Kinder-Geiger, Klaus

    1996-01-01

    A quantum kinetic formalism is developed to study the dynamical interplay of quantum and statistical-kinetic properties of non-equilibrium multi-parton systems produced in high-energy QCD processes. The approach provides the means to follow the quantum dynamics in both space-time and energy-momentum, starting from an arbitrary initial configuration of high-momentum quarks and gluons. Using a generalized functional integral representation and adopting the `closed-time-path' Green function techniques, a self-consistent set of equations of motions is obtained: a Ginzburg-Landau equation for a possible color background field, and Dyson-Schwinger equations for the 2-point functions of the gluon and quark fields. By exploiting the `two-scale nature' of light-cone dominated QCD processes, i.e. the separation between the quantum scale that specifies the range of short-distance quantum fluctuations, and the kinetic scale that characterizes the range of statistical binary inter- actions, the quantum-field equations of ...

  18. Quarks and mesons in nuclei

    International Nuclear Information System (INIS)

    Rho, M.

    1981-01-01

    Quantum chromodynamics is believed to be candidate theory for the strong interactions and contains as its ingredients spinor quark fields and vector gluons, none of which can perhaps be ever liberated and detected in laboratories. A nucleus consists of nucleons bound by nuclear force which are however separately observable and which seem to preserve their identities even under extreme conditions. An intriguing question is: when compressed to high densities or heated to high temperature, at what point does a nuclear matter cease to be describable in terms of nucleon and meson degrees of freedom, but become a plasma of quarks and gluons; and how does this transition occur. This is not an idle question. If quarks and gluons are never to be observed isolated, then it may be that at low energies (or at low densities) they are not the right variables to do physics with. Instead hadrons must be. On the other hand, asymptotic freedom - the unique property of non-abelian gauge theories to which QCD belongs that quark-gluon and gluon-gluon interactions get weaker at short distances - tells us that at some large matter density the matter must necessarily be in the form of quark gas interacting only weakly. This means that a change in degrees of freedom must take place. We would like to know where this occurs and how. In this talk, I would like to address to this question by discussing first the large success we have had in understanding the role that mesons play in finite nuclei and nuclear matter and then attempting to correlate nucleon and meson degrees of freedom to quark-gluon degrees of freedom. In my opinion we are now at a stage where we feel fairly confident in our understanding of nucleon-meson structure of nuclei and nuclear matter and any further progress in deeper understanding of nuclear dynamics - and strong interactions - must come from QCD or its effective version, bags or strings. (orig.)

  19. Heavy quarks and leptons

    International Nuclear Information System (INIS)

    Azimov, Ya.I.; Khoze, V.A.

    1979-01-01

    Experimental results which proved the reality of quarks are reviewed along with further experiments broadening the representation of quarks and leptons and providing the basis to develop the theory of elementary particles. The discovery of the J/psi particle is noted to give rise to the discovery of c-quark, the existance of which is confirmed by the discovery of charmed hadrons. The main aspects of quantum chromodynamics explaining the mechanism of strong interaction of quarks are considered along with those of the Weinberg-Salam theory proposed to describe weak and electromagnetic interactions of quarks and leptons. Experimental data testifying to the existance of heavy tausup(+-) leptons are presented. The history of discovery of γ mesons and of a new heavier b-quark is described. Perspectives for studying elementary particles are discussed. Further studies of γ mesons, discovery and investigation of charmed particles are noted to be immediate tasks along with the search for manifestation of t-quark considered to be a partner of b-quark from the viewpoint of the Weinberg-Salam model

  20. Light quark correlators in a mixed-action setup

    Energy Technology Data Exchange (ETDEWEB)

    Bernardoni, Fabio [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Garron, Nicolas [Edinburgh Univ. (United Kingdom). SUPA, School of Physics; Hernandez, Pilar [CSIC-Univ. de Valencia (Spain). Inst. de Fisica Corpuscular; Necco, Silvia [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Pena, Carlos [Univ. Autonoma de Madrid (Spain). Dept. de Fisica Teorica y Inst. de Fisica Teorica UAM/CSIC

    2011-11-15

    We report our progress in simulating Neuberger valence fermions on N{sub f}=2 Wilson O(a)-improved sea quarks. We compute correlators with valence quark masses both in the p- and in the e-regime, and we match the results with the predictions of the Chiral Effective Theory in the mixed regime. This allows us to extract the Low Energy Couplings (LECs) of the N{sub f}=2 theory and to test the validity of the approach. (orig.)

  1. An effective field theory for the neutron electric dipole moment

    International Nuclear Information System (INIS)

    Chang, D.; Kephart, T.W.; Keung, W.Y.; Yuan, T.C.

    1992-01-01

    We derive a CP-odd effective field theory involving the field strengths of the gluon and the photon and their duals as a result of integrating out a heavy quark which carries both the chromo-electric dipole moment and electric dipole moment. The coefficients of the induced gluonic, photonic, and mixed gluon-photon operators with dimension ≤ 8 are determined. Implications of some of these operators on the neutron electric dipole moment are also discussed. (orig.)

  2. Holographic effective field theories

    Energy Technology Data Exchange (ETDEWEB)

    Martucci, Luca [Dipartimento di Fisica ed Astronomia “Galileo Galilei' , Università di Padova,and INFN - Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Zaffaroni, Alberto [Dipartimento di Fisica, Università di Milano-Bicocca,and INFN - Sezione di Milano-Bicocca, I-20126 Milano (Italy)

    2016-06-28

    We derive the four-dimensional low-energy effective field theory governing the moduli space of strongly coupled superconformal quiver gauge theories associated with D3-branes at Calabi-Yau conical singularities in the holographic regime of validity. We use the dual supergravity description provided by warped resolved conical geometries with mobile D3-branes. Information on the baryonic directions of the moduli space is also obtained by using wrapped Euclidean D3-branes. We illustrate our general results by discussing in detail their application to the Klebanov-Witten model.

  3. Introduction to soft-collinear effective theory

    CERN Document Server

    Becher, Thomas; Ferroglia, Andrea

    2015-01-01

    Among resummation techniques for perturbative QCD in the context of collider and flavor physics, soft-collinear effective theory (SCET) has emerged as both a powerful and versatile tool, having been applied to a large variety of processes, from B-meson decays to jet production at the LHC.  This book provides a concise, pedagogical introduction to this technique. It discusses the expansion of Feynman diagrams around the high-energy limit, followed by the explicit construction of the effective Lagrangian - first for a scalar theory, then for QCD. The underlying concepts are illustrated with the quark vector form factor at large momentum transfer, and the formalism is applied to compute soft-gluon resummation and to perform transverse-momentum resummation for the Drell-Yan process utilizing renormalization group evolution in SCET. Finally, the infrared structure of n-point gauge-theory amplitudes is analyzed by relating them to effective-theory operators. This text is suitable for graduate students and non-spe...

  4. Di-jet conical correlations associated with heavy quark jets in anti-de sitter space/conformal field theory correspondence.

    Science.gov (United States)

    Noronha, Jorge; Gyulassy, Miklos; Torrieri, Giorgio

    2009-03-13

    We show that far zone Mach and diffusion wake "holograms" produced by supersonic strings in anti-de Sitter space/conformal field theory (AdS/CFT) correspondence do not lead to observable conical angular correlations in the strict N_{c}-->infinity supergravity limit if Cooper-Frye hadronization is assumed. However, a special nonequilibrium "neck" zone near the jet is shown to produce an apparent sonic boom azimuthal angle distribution that is roughly independent of the heavy quark's velocity. Our results indicate that a measurement of the dependence of the away-side correlations on the velocity of associated identified heavy quark jets at the BNL Relativistic Heavy Ion Collider and CERN LHC will provide a direct test of the nonperturbative dynamics involved in the coupling between jets and the strongly coupled quark-gluon plasma implied by AdS/CFT correspondence.

  5. Di-Jet Conical Correlations Associated with Heavy Quark Jets in anti-de Sitter Space/Conformal Field Theory Correspondence

    International Nuclear Information System (INIS)

    Noronha, Jorge; Gyulassy, Miklos; Torrieri, Giorgio

    2009-01-01

    We show that far zone Mach and diffusion wake 'holograms' produced by supersonic strings in anti-de Sitter space/conformal field theory (AdS/CFT) correspondence do not lead to observable conical angular correlations in the strict N c →∞ supergravity limit if Cooper-Frye hadronization is assumed. However, a special nonequilibrium 'neck' zone near the jet is shown to produce an apparent sonic boom azimuthal angle distribution that is roughly independent of the heavy quark's velocity. Our results indicate that a measurement of the dependence of the away-side correlations on the velocity of associated identified heavy quark jets at the BNL Relativistic Heavy Ion Collider and CERN LHC will provide a direct test of the nonperturbative dynamics involved in the coupling between jets and the strongly coupled quark-gluon plasma implied by AdS/CFT correspondence

  6. /sub Λ/5He: hadrons or quarks

    International Nuclear Information System (INIS)

    Gibson, B.F.

    1985-01-01

    Nuclear physics has dealt with nuclei and their interactions at interparticle distances which correspond to conditions that might be described as two bags of quarks barely overlapping. Here, where the asymptotically free theories of QCD have yet to provide a calculable picture of observed phenomena, the nuclear physicist has found a modicum of success and simplification in terms of a picture based upon the physically observable baryons and mesons. However, our understanding is far from complete. Because of this and our desire to learn where the transition to the quark-gluon matter picture occurs, we seek measurable effects due to the quark substructure. To that end, we must first define the limits of validity for describing nuclear phenomena in terms of the observed hadrons before evidence for quark-gluon degrees of freedom can be critically evaluated

  7. Heavy quark threshold dynamics in higher order

    Energy Technology Data Exchange (ETDEWEB)

    Piclum, J.H.

    2007-05-15

    In this work we discuss an important building block for the next-to-next-to-next-to leading order corrections to the pair production of top quarks at threshold. Specifically, we explain the calculation of the third order strong corrections to the matching coefficient of the vector current in non-relativistic Quantum Chromodynamics and provide the result for the fermionic part, containing at least one loop of massless quarks. As a byproduct, we obtain the matching coefficients of the axial-vector, pseudo-scalar and scalar current at the same order. Furthermore, we calculate the three-loop corrections to the quark renormalisation constants in the on-shell scheme in the framework of dimensional regularisation and dimensional reduction. Finally, we compute the third order strong corrections to the chromomagnetic interaction in Heavy Quark Effective Theory. The calculational methods are discussed in detail and results for the master integrals are given. (orig.)

  8. Quark bag coupling to finite size pions

    International Nuclear Information System (INIS)

    De Kam, J.; Pirner, H.J.

    1982-01-01

    A standard approximation in theories of quark bags coupled to a pion field is to treat the pion as an elementary field ignoring its substructure and finite size. A difficulty associated with these treatments in the lack of stability of the quark bag due to the rapid increase of the pion pressure on the bad as the bag size diminishes. We investigate the effects of the finite size of the qanti q pion on the pion quark bag coupling by means of a simple nonlocal pion quark interaction. With this amendment the pion pressure on the bag vanishes if the bag size goes to zero. No stability problems are encountered in this description. Furthermore, for extended pions, no longer a maximum is set to the bag parameter B. Therefore 'little bag' solutions may be found provided that B is large enough. We also discuss the possibility of a second minimum in the bag energy function. (orig.)

  9. Photons and dileptons production in a quark gluon plasma: infrared structure and coherent scattering effects; Production de photons et de dileptons dans un plasma de quarks et de gluons: structure infrarouge et effets coherents

    Energy Technology Data Exchange (ETDEWEB)

    Zaraket, H

    2000-06-01

    This work is devoted to photon and dilepton production in a quark gluon plasma. The theoretical framework in which the study is carried out is Thermal Field Theory, more precisely the hard thermal loop effective theory. Several features of the observables preclude a straightforward application of the effective theory and new tools had to be developed such as the counter term method to avoid double counting. The first part of my study concerns static virtual photon production where I show that important physical contributions are missing in the effective theory at one loop level and hence a two loop calculation is indispensable. Furthermore I give an analytic leading logarithmic estimate of this two loop result showing clearly the insufficiency of the effective theory. The second part of the work focuses on real and quasi real photon production. Again, important contributions arise at two loop level due to collinear divergences. For high mass dilepton the two loop calculation is sufficient. On the other hand, near the light cone photon production rate is non perturbative. Getting closer to the light cone coherent scattering effects (Landau-Pomeranchuk-Migdal effect) arise, which imply the resummation of an infinite series of diagrams. Still nearer the light cone we found a dependence on the non perturbative magnetic mass due to infrared singularities. (author)

  10. A rationale for long-lived quarks and leptons at the LHC: low energy flavour theory

    Science.gov (United States)

    Éboli, O. J. P.; Savoy, C. A.; Funchal, R. Zukanovich

    2012-02-01

    In the framework of gauged flavour symmetries, new fermions in parity symmetric representations of the standard model are generically needed for the compensation of mixed anomalies. The key point is that their masses are also protected by flavour symmetries and some of them are expected to lie way below the flavour symmetry breaking scale(s), which has to occur many orders of magnitude above the electroweak scale to be compatible with the available data from flavour changing neutral currents and CP violation experiments. We argue that, actually, some of these fermions would plausibly get masses within the LHC range. If they are taken to be heavy quarks and leptons, in (bi)-fundamental representations of the standard model symmetries, their mixings with the light ones are strongly constrained to be very small by electroweak precision data. The alternative chosen here is to exactly forbid such mixings by breaking of flavour symmetries into an exact discrete symmetry, the so-called proton-hexality, primarily suggested to avoid proton decay. As a consequence of the large value needed for the flavour breaking scale, those heavy particles are long-lived and rather appropriate for the current and future searches at the LHC for quasi-stable hadrons and leptons. In fact, the LHC experiments have already started to look for them.

  11. Quantum numbers of anti-grand-unified-theory Higgs fields from the quark-lepton spectrum

    International Nuclear Information System (INIS)

    Froggatt, C.D.; Nielsen, H.B.; Smith, D.J.

    2002-01-01

    A series of Higgs field quantum numbers in the anti-grand-unification model, based on the gauge group SMG 3 xU(1) f , is tested against the spectrum of quark and lepton masses and mixing angles. A more precise formulation of the statement that the couplings are assumed of order unity is given. It is found that the corrections coming from this more precise assumption do not contain factors of the order of the number of colors, N c =3, as one could have feared. We also include a combinatorial correction factor, taking account of the distinct internal orderings within the chain Feynman diagrams in our statistical estimates. Strictly speaking our model predicts that the uncertainty in its predictions and thus the accuracy of our fits should be ±60%. Many of the best fitting quantum numbers give a higher accuracy fit to the masses and mixing angles, although within the expected fluctuations in a χ 2 . This means that our fit is as good as it can possibly be

  12. Polarized quark distributions in bound nucleon and polarized EMC effect in Thermodynamical Bag Model

    Energy Technology Data Exchange (ETDEWEB)

    Ganesamurthy, Kuppusamy, E-mail: udckgm@sify.co [Research Department of Physics, Urumu Dhanalakshmi College, Trichy 620019 (India); Sambasivam, Raghavan, E-mail: udcsam@sify.co [Research Department of Physics, Urumu Dhanalakshmi College, Trichy 620019 (India)

    2011-04-15

    The polarized parton distribution functions (PDFs) and nuclear structure functions are evaluated by the phenomenological Thermodynamical Bag Model for nuclear media {sup 7}Li and {sup 27}Al. The Fermi statistical distribution function which includes the spin degree of freedom is used in this statistical model. We predict a sizeable polarized EMC effect. The results of quark spin sum and axial coupling constant of bound nucleons are compared with theoretical predictions of modified Nambu-Jona-Lasinio (NJL) model by Bentz et al.

  13. Quest for quark soup

    Energy Technology Data Exchange (ETDEWEB)

    Goldhaber, J.

    1986-11-13

    The paper concerns the experimental search for quark-gluon plasma. The theory of a quark-gluon plasma is first given. Then the method which researchers hope will create the quark-gluon plasma is described; the idea is to use heavy ion beams in, the CERN SPS. The CERN 'heavy-ion programme' involves research groups mainly from CERN, Lawrence Berkeley Laboratory and Gellsellschaft fuer Schwerionenforschung. The experiments in the research programme are outlined, together with the detector equipment employed in the experiments.

  14. Hadron structure in a simple model of quark/nuclear matter

    International Nuclear Information System (INIS)

    Horowitz, C.J.; Moniz, E.J.; Negele, J.W.

    1985-01-01

    We study a simple model for one-dimensional hadron matter with many of the essential features needed for examining the transition from nuclear to quark matter and the limitations of models based upon hadron rather than quark degrees of freedom. The dynamics are generated entirely by the quark confining force and exchange symmetry. Using Monte Carlo techniques, the ground-state energy, single-quark momentum distribution, and quark correlation function are calculated for uniform matter as a function of density. The quark confinement scale in the medium increases substantially with increasing density. This change is evident in the correlation function and momentum distribution, in qualitative agreement with the changes observed in deep-inelastic lepton scattering. Nevertheless, the ground-state energy is smooth throughout the transition to quark matter and is described remarkably well by an effective hadron theory based on a phenomenological hadron-hadron potential

  15. Quark diquark symmetry breaking

    International Nuclear Information System (INIS)

    Souza, M.M. de

    1980-01-01

    Assuming the baryons are made of quark-diquark pairs, the wave functions for the 126 allowed ground states are written. The quark creation and annihilations operators are generalized to describe the quark-diquark structure in terms of a parameter σ. Assuming that all quark-quark interactions are mediated by gluons transforming like an octet of vector mesons, the effective Hamiltonian and the baryon masses as constraint equations for the elements of the mass matrix is written. The symmetry is the SU(6) sub(quark)x SU(21) sub(diquark) broken by quark-quark interactions respectively invariant under U(6), U(2) sub(spin), U(3) and also interactions transforming like the eighth and the third components of SU(3). In the limit of no quark-diquark structure (σ = 0), the ground state masses is titted to within 1% of the experimental data, except for the Δ(1232), where the error is almost 2%. Expanding the decuplet mass equations in terms of σ and keeping terms only up to the second order, this error is reduced to 67%. (Author) [pt

  16. Higher order and heavy quark mass effects in the determination of parton distribution functions

    Energy Technology Data Exchange (ETDEWEB)

    Bertone, Valerio

    2013-07-01

    The present thesis was devoted to the study of the inclusion of higher-order corrections and heavy quark mass effects in a PDF determination. This has been carried out in the NNPDF framework resulting originally in the NNPDF2.1 sets, which were at a later stage supplemented by the first LHC data leading to the most recent NNPDF2.3 sets. In Chapter 1 the concept of Parton Distribution Function (PDF) was introduced. We have shown how the analytical computation of the Deep-Inelastic-Scattering (DIS) process at order α{sub s} in QCD leads to initial-stale collinear divergences which, using the factorization theorem, can be reabsorbed into the PDFs. The energy dependence of PDFs is fully determined and the task is then reduced to the determination of the x (Bjorken variable) dependence. In Chapter 2 a detailed discussion of the factorization schemes presently available to include heavy quark mass effects into DIS structure functions has been given. It emerged that there are two possible basic approaches to the calculation of the DIS structure functions. In the first approach, the so-called Fixed-Flavour-Number Scheme (FFNS), the calculation is performed retaining the quark mass of the heavy flavours which provide a ''natural'' regulator for the infrared divergences. In the second approach, called Zero-Mass Variable-Flavour-Number Scheme (ZM-VFNS), the heavy quark masses are instead set to zero and this gives rise to the usual final-state collinear divergences that are absorbed into the PDFs. In addition, in the ZM-VFNS, the number of active flavours is assumed to increase by one unity as the energy of the process crosses the energy threshold of a given heavy quark. In order to obtain a factorization scheme that is accurate both at large and low energies, several prescriptions that interpolate between FFNS at low energy and ZM-VFNS at large energy have been proposed and implemented in as many PDF fits. In Chapter 2 they have been described showing how they behave for

  17. Higher order and heavy quark mass effects in the determination of parton distribution functions

    Energy Technology Data Exchange (ETDEWEB)

    Bertone, Valerio

    2013-07-01

    The present thesis was devoted to the study of the inclusion of higher-order corrections and heavy quark mass effects in a PDF determination. This has been carried out in the NNPDF framework resulting originally in the NNPDF2.1 sets, which were at a later stage supplemented by the first LHC data leading to the most recent NNPDF2.3 sets. In Chapter 1 the concept of Parton Distribution Function (PDF) was introduced. We have shown how the analytical computation of the Deep-Inelastic-Scattering (DIS) process at order α{sub s} in QCD leads to initial-stale collinear divergences which, using the factorization theorem, can be reabsorbed into the PDFs. The energy dependence of PDFs is fully determined and the task is then reduced to the determination of the x (Bjorken variable) dependence. In Chapter 2 a detailed discussion of the factorization schemes presently available to include heavy quark mass effects into DIS structure functions has been given. It emerged that there are two possible basic approaches to the calculation of the DIS structure functions. In the first approach, the so-called Fixed-Flavour-Number Scheme (FFNS), the calculation is performed retaining the quark mass of the heavy flavours which provide a ''natural'' regulator for the infrared divergences. In the second approach, called Zero-Mass Variable-Flavour-Number Scheme (ZM-VFNS), the heavy quark masses are instead set to zero and this gives rise to the usual final-state collinear divergences that are absorbed into the PDFs. In addition, in the ZM-VFNS, the number of active flavours is assumed to increase by one unity as the energy of the process crosses the energy threshold of a given heavy quark. In order to obtain a factorization scheme that is accurate both at large and low energies, several prescriptions that interpolate between FFNS at low energy and ZM-VFNS at large energy have been proposed and implemented in as many PDF fits. In Chapter 2 they have been described showing

  18. Higher order and heavy quark mass effects in the determination of parton distribution functions

    International Nuclear Information System (INIS)

    Bertone, Valerio

    2013-01-01

    The present thesis was devoted to the study of the inclusion of higher-order corrections and heavy quark mass effects in a PDF determination. This has been carried out in the NNPDF framework resulting originally in the NNPDF2.1 sets, which were at a later stage supplemented by the first LHC data leading to the most recent NNPDF2.3 sets. In Chapter 1 the concept of Parton Distribution Function (PDF) was introduced. We have shown how the analytical computation of the Deep-Inelastic-Scattering (DIS) process at order α s in QCD leads to initial-stale collinear divergences which, using the factorization theorem, can be reabsorbed into the PDFs. The energy dependence of PDFs is fully determined and the task is then reduced to the determination of the x (Bjorken variable) dependence. In Chapter 2 a detailed discussion of the factorization schemes presently available to include heavy quark mass effects into DIS structure functions has been given. It emerged that there are two possible basic approaches to the calculation of the DIS structure functions. In the first approach, the so-called Fixed-Flavour-Number Scheme (FFNS), the calculation is performed retaining the quark mass of the heavy flavours which provide a ''natural'' regulator for the infrared divergences. In the second approach, called Zero-Mass Variable-Flavour-Number Scheme (ZM-VFNS), the heavy quark masses are instead set to zero and this gives rise to the usual final-state collinear divergences that are absorbed into the PDFs. In addition, in the ZM-VFNS, the number of active flavours is assumed to increase by one unity as the energy of the process crosses the energy threshold of a given heavy quark. In order to obtain a factorization scheme that is accurate both at large and low energies, several prescriptions that interpolate between FFNS at low energy and ZM-VFNS at large energy have been proposed and implemented in as many PDF fits. In Chapter 2 they have been described showing how

  19. The effect of meson wave function on heavy-quark fragmentation function

    Energy Technology Data Exchange (ETDEWEB)

    Moosavi Nejad, S.M. [Yazd University, Faculty of Physics (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, Tehran (Iran, Islamic Republic of)

    2016-05-15

    We calculate the process-independent fragmentation functions (FFs) for a heavy quark to fragment into heavy mesons considering the effects of meson wave function. In all previous works, where the FFs of heavy mesons or heavy baryons were calculated, a delta function form was approximated for the wave function of hadrons. Here, for the first time, we consider a typical mesonic wave function which is different from the delta function and is the nonrelativistic limit of the solution of Bethe-Salpeter equation with the QCD kernel. We present our numerical results for the heavy FFs and show how the proposed wave function improves the previous results. As an example, we focus on the fragmentation function for c-quark to split into S-wave D{sup 0} -meson and compare our results with experimental data from BELLE and CLEO. (orig.)

  20. Quark pair creation in color electric fields and effects of magnetic fields

    International Nuclear Information System (INIS)

    Tanji, Noato

    2010-01-01

    The time evolution of a system where a uniform and classical SU(3) color electric field and quantum fields of quarks interact with each other is studied focusing on non-perturbative pair creation and its back reaction. We characterize a color direction of an electric field in a gauge invariant way, and investigate its dependence. Momentum distributions of created quarks show plasma oscillation as well as quantum effects such as the Pauli blocking and interference. Pressure of the system is also calculated, and we show that pair creation moderates degree of anisotropy of pressure. Furthermore, enhancement of pair creation and induction of chiral charge under a color magnetic field which is parallel to an electric field are discussed.

  1. Boundary operators in effective string theory

    Energy Technology Data Exchange (ETDEWEB)

    Hellerman, Simeon [Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo,Kashiwa, Chiba 277-8582 (Japan); Swanson, Ian [Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo,Kashiwa, Chiba 277-8582 (Japan)

    2017-04-13

    Various universal features of relativistic rotating strings depend on the organization of allowed local operators on the worldsheet. In this paper, we study the set of Neumann boundary operators in effective string theory, which are relevant for the controlled study of open relativistic strings with freely moving endpoints. Relativistic open strings are thought to encode the dynamics of confined quark-antiquark pairs in gauge theories in the planar approximation. Neumann boundary operators can be organized by their behavior under scaling of the target space coordinates X{sup μ}, and the set of allowed X-scaling exponents is bounded above by +1/2 and unbounded below. Negative contributions to X-scalings come from powers of a single invariant, or “dressing' operator, which is bilinear in the embedding coordinates. In particular, we show that all Neumann boundary operators are dressed by quarter-integer powers of this invariant, and we demonstrate how this rule arises from various ways of regulating the short-distance singularities of the effective theory.

  2. Ab Initio Nuclear Theory - Progress and Prospects from Quarks to the Cosmos

    International Nuclear Information System (INIS)

    Vary, J.P.

    2011-01-01

    The vision of solving the nuclear many-body problem with fundamental interactions tied to QCD appears to approach reality. The goals are to preserve the predictive power of the underlying theory, to test fundamental symmetries with the nucleus as laboratory and to develop new understandings of the full range of complex nuclear phenomena. Recent progress includes the derivation, within chiral perturbation theory (ChPT), of the leading terms of the nucleon-nucleon (NN), three-nucleon (3N) and four nucleon (4N) potentials. Additional substantial progress includes solving nuclear structure and reactions in nuclei up to mass 16 and selected heavier nuclei around closed shells using these ChPT interactions. Advances in theoretical frameworks (renormalization and many-body methods) as well as in computational resources (new algorithms and leadership-class parallel computers) signal a new generation of theory simulations that will yield valuable insights into origins of nuclear shell structure, collective phenomena and complex reaction dynamics. I outline some recent achievements and present ambitious consensus plans for a coming decade of research that will strengthen the links between nuclear theory and nuclear experiment, between nuclear physics and astrophysics, and between nuclear physics and nuclear energy applications. (author)

  3. Critical parameters of Quark-Hadron phase transition with interacting and massive quarks

    International Nuclear Information System (INIS)

    Singh, C.P.; Patra, B.K.

    1994-06-01

    Current techniques to simulate the dynamical behaviour of Quark-Gluon Plasma (QGP) reveal that the order of the phase transition as well as the values of the critical parameters depend on the number of quark flavours as well as on the quark-masses included in the simulation. We attempt to show here the effects of the number of quark flavours and quark-masses on critical parameters by using the perturbative, finite temperature field theory to g 3 s order in the strong coupling g s . We treat the hadrons as particles with finite size and its implications on the equation of state for hadron gas are studied. We find that the critical temperature T c is lowered by 9 MeV as we move from two to three quark flavours. The nature of the phase transition always remains as first order. However, the inclusion of quark-masses in our calculation does not affect the result much. (author). 14 refs, 3 figs

  4. Higgs Effective Field Theories

    CERN Document Server

    2016-01-01

    The main focus of this meeting is to present new theoretical advancements related to effective field theories, evaluate the impact of initial results from the LHC Run2, and discuss proposals for data interpretation/presentation during Run2. A crucial role of the meeting is to bring together theorists from different backgrounds and with different viewpoints and to extend bridges towards the experimental community. To this end, we would like to achieve a good balance between senior and junior speakers, enhancing the visibility of younger scientists while keeping some overview talks.

  5. Meson spectroscopy, quark mixing and quantum chromodynamics

    International Nuclear Information System (INIS)

    Filippov, A.T.

    1979-01-01

    A semiphenomenological theory of mass spectrum for mesons, consisting of a quark-antiquark pair, is presented. Relativistic kinematical effects of the quark mass differences, the SU(3)-symmetry breaking in slopes of the Regge trajectories and in radially excited states are taken into account. The OZI-rule breaking is taken into account by means of the mixing matrix for the quark wave functions, whose form is suggested by the quantum chromodynamics. A simple extrapolation of expression, given by the quantum chromodynamics from the ''asymptotic freedom'' region to the ''infrared slavery'' region is proposed to describe the dependence of the mixing parameters on the meson masses. To calculate masses and mixing angles for pseudoscalar mesons a condition is proposed that the pion mass is minimal. In this situation the eta-meson mass is near the maximal value. The predictions of the theory for masses and mixing angles of the mesons are in good agreement with the experiment

  6. Effective field theory approaches for tensor potentials

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Maximilian

    2016-11-14

    Effective field theories are a widely used tool to study physical systems at low energies. We apply them to systematically analyze two and three particles interacting via tensor potentials. Two examples are addressed: pion interactions for anti D{sup 0}D{sup *0} scattering to dynamically generate the X(3872) and dipole interactions for two and three bosons at low energies. For the former, the one-pion exchange and for the latter, the long-range dipole force induce a tensor-like structure of the potential. We apply perturbative as well as non-perturbative methods to determine low-energy observables. The X(3872) is of major interest in modern high-energy physics. Its exotic characteristics require approaches outside the range of the quark model for baryons and mesons. Effective field theories represent such methods and provide access to its peculiar nature. We interpret the X(3872) as a hadronic molecule consisting of neutral D and D{sup *} mesons. It is possible to apply an effective field theory with perturbative pions. Within this framework, we address chiral as well as finite volume extrapolations for low-energy observables, such as the binding energy and the scattering length. We show that the two-point correlation function for the D{sup *0} meson has to be resummed to cure infrared divergences. Moreover, next-to-leading order coupling constants, which were introduced by power counting arguments, appear to be essential to renormalize the scattering amplitude. The binding energy as well as the scattering length display a moderate dependence on the light quark masses. The X(3872) is most likely deeper bound for large light quark masses. In a finite volume on the other hand, the binding energy significantly increases. The dependence on the light quark masses and the volume size can be simultaneously obtained. For bosonic dipoles we apply a non-perturbative, numerical approach. We solve the Lippmann-Schwinger equation for the two-dipole system and the Faddeev

  7. Clustering in a quark gas

    International Nuclear Information System (INIS)

    Welke, G.M.; Heiss, W.D.

    1986-01-01

    In an infinite one-dimensional quark gas it is shown that a static color force, which increases at large distance, leads to a density fluctuation in the ground state. A self-consistent mean field can only be found for an effectively attractive quark-quark interaction that increases less than linearly at large distances. For a fixed coupling constant, the clustering disappears at high quark density

  8. Color screening effect in the quark potential model

    International Nuclear Information System (INIS)

    Zhang Zongye; Yu Youwen; Shen Pengnian; Shen Xiaoyan; Dong Yubin

    1993-01-01

    By using the color confinement potential which includes the color screening effect, we studied the baryon spectra and the nucleon-nucleon interaction. The results show that the color screening effect not only improves the baryon spectrum calculation, but also can solve the long-tail problem of the color Van der Waals force. A part of the medium attraction of the nuclear force can be obtained from the color Van der Waals force. (orig.)

  9. Penguin loops with confined quark propagators - the ΔI=1/2 rule as a long distance effect

    International Nuclear Information System (INIS)

    Eeg, J.O.

    1985-01-01

    We calculate the ΔS=1 penguin diagram by representing the internal quark lines in the loop by bag model wave functions. Because of the involved GIM mechanism we keep only the lowest internal quark modes in the loop, that is with quark momenta of order msub(c) and lower. Our results depends crucially on the values of the strong coupling constant and on the quark energy of the bag model wavefunctions. With reasonable values of parameters, we find contributions corresponding to effective penguin coefficients proportional2-5 times the standard perturbative ones. Thus the theoretical value for the ratio between ΔI=1/2 and ΔI=3/2 amplitudes seem to be improved. (orig.)

  10. EMC effect and quarks and gluons in nuclei

    International Nuclear Information System (INIS)

    Nikolaev, N.N.

    1985-05-01

    The QCD evolution is shown to result in the striking flavour dependence of the EMC effect, what could be used to disentangle the origin of the effect. We discuss in detail: i) Distinct A-dependence of the valence u and d in the pion model. ii) Charge asymmetry of the anti u, anti d sea in nuclei in the pion model. iii) SU(3) asymmetry of the sea in nucleons and strong nuclear enhancement of the strange sea in the multiquark bag/cluster models. iv) Nuclear enhancement of glue in the pion and multiquark bag models. (author)

  11. Structure functions of hadrons in the QCD effective theory

    International Nuclear Information System (INIS)

    Shigetani, Takayuki

    1996-01-01

    We study the structure functions of hadrons with the low energy effective theory of QCD. We try to clarify a link between the low energy effective theory, where non-perturbative dynamics is essential, and the high energy deep inelastic scattering experiment. We calculate the leading twist matrix elements of the structure function at the low energy model scale within the effective theory. Calculated structure functions are evoluted to the high momentum scale with the help of the perturbative QCD, and compared with the experimental data. Through the comparison of the model calculations with the experiment, we discuss how the non-perturbative dynamics of the effective theory is reflected in the deep inelastic phenomena. We first evaluate the structure functions of the pseudoscalar mesons using the NJL model. The resulting structure functions show reasonable agreements with experiments. We study then the quark distribution functions of the nucleon using a covariant quark-diquark model. We calculate three leading twist distribution functions, spin-independent f 1 (x), longitudinal spin distribution g 1 (x), and chiral-odd transversity spin distribution h 1 (x). The results for f 1 (x) and g 1 (x) turn out to be consistent with available experiments because of the strong spin-0 diquark correlation. (author)

  12. Static quark-antiquark potential

    International Nuclear Information System (INIS)

    Deo, B.B.; Barik, B.K.

    1983-01-01

    A heavy-quark--antiquark potential is suggested which connects asymptotic freedom and quark confinement in a unified manner by formal methods of field theory using some plausible assumptions. The potential has only one additional adjustable parameter B which is proportional to (M/sub q//m/sub q/), where M/sub q/ and m/sub q/ are the constituent and current quark masses, respectively

  13. Infrared slavery and quark confinement

    CERN Document Server

    Alabiso, C

    1976-01-01

    The question is considered of whether the so-called infrared slavery mechanism as, e.g., being manifest in non-Abelian gauge theories, necessarily confines quarks. Making a specific ansatz for the long- range forces, the Schwinger-Dyson equation is solved for the quark Green function. Besides having a confining solution, it appears that quarks may by-pass the long-range forces and be produced. (20 refs).

  14. Infrared slavery and quark confinement

    International Nuclear Information System (INIS)

    Alabiso, C.; Schierholz, G.

    1976-01-01

    The question of whether the so-called infrared slavery mechanism as, e.g., being manifest in non-Abelian gauge theories, necessarily confines quarks is posed. Making a specific ansatz for the long-range forces, the Schwinger-Dyson equation is solved for the quark Green function. Besides having a confining solution, it appears that quarks may by-pass the long-range forces and be produced. (Auth.)

  15. Decoupling of heavy quarks in quantum chromodynamics

    International Nuclear Information System (INIS)

    Bernreuther, W.

    1983-01-01

    Decoupling of heavy quarks in quantum chromodynamics (QCD) defined by mass-independent renormalization is investigated. The structure of the relations between the parameters of f flavour QCD below a heavy-quark threshold is discussed to all orders in the loop expansion, and the relations are computed to two-loop approximation for the minimal subtraction schemes (MS) and to one-loop approximation for some Weinberg schemes. These matching relations can be used to systematically determine the renormalization group (RG)-invariant parameters of the effective theory in terms of the RG-invariant parameters of the theory which includes the heavy quark, or vice versa. For MS scheme the connection between Λ/sub f/-1 and Λ/sub f/ to two and three loops is given as well as the two-loop connection between the RG-invariant mass parameters of the f-1 and f flavour theory. The effect of heavy quarks on the evolution of the QCQ coupling is of significance for present QCD phenomenology based on next-to-leading-order perturbation theory. This is illustrated with a few examples within the MS scheme

  16. A quark is born: discovery and theory development in high-energy physics

    International Nuclear Information System (INIS)

    Edge, D.O.

    1979-04-01

    The aim was to gather empirical data on the social construction of the technical core of scientific culture and to contribute to sociological theory through an analysis of these data. The development of high energy physics between 1974 and 1977, specifically the production of experimental and theoretical knowledge on a family of 'new particles', was studied. By the end of this period theoretical consensus on the nature of these particles had been achieved. Methods of investigation included a literature survey and the collection of archival material and of opinions and recollections of important personalities involved. The work of R.K. Merton and his followers was used as a basis for investigating the sociology of scientific communities; also the work of T.S. Kuhn. A brief summary of the sociological analysis of the empirical data is given. (author)

  17. Exact effective actions for quarks in pure and self-dual mean fields

    International Nuclear Information System (INIS)

    Elizalde, E.; Soto, J.

    1985-01-01

    The QCD effective action for ordinary quarks in the presence of a constant self-dual, pure colormagnetic or pure color-electric background created by themselves is calculated at all loop orders. This is done in a very simple way, by using zeta-function regularization and the fact that the dependence of the effective action on the background can be factorized in these three cases, leaving a well-defined constant factor. The zero mode problem and the imaginary contributions are seen to be mere one-loop artifacts which automatically vanish when the exact calculation is carried out. (orig.)

  18. Quark contribution to the gluon Regge trajectory at NLO from the high energy effective action

    International Nuclear Information System (INIS)

    Chachamis, G.; Hentschinski, M.; Madrigal Martínez, J.D.; Sabio Vera, A.

    2012-01-01

    The two loop (NLO) diagrams with quark content contributing to the gluon Regge trajectory are computed within the framework of Lipatov's effective action for QCD, using the regularization procedure for longitudinal divergencies recently proposed by two of us in (M. Hentschinski and A. Sabio Vera, 2011). Perfect agreement with previous results in the literature is found, providing a robust check of the regularization prescription and showing that the high energy effective action is a very useful computational tool in the quasi-multi-Regge limit.

  19. Prediction of new Quarks, Generations & low Mass Quarks

    Science.gov (United States)

    Lach, Theodore

    2003-04-01

    The CBM (model) of the nucleus has resulted in the prediction of two new quarks, an "up" quark of mass 237.31 MeV/c2 and a "dn" quark of mass 42.392 MeV/c2. These two new predicted quarks helped to determine that the masses of the quarks and leptons are all related by a geometric progression relationship. The mass of each quark or lepton is just the "geometric mean" of two related elementary particles, either in the same generation or in the same family. This numerology predicts the following masses for the electron family: 0.511000 (electron), 7.74 (predicted), 117.3, 1778.4 (tau), 26950.1 MeV. The geometric ratio of this progression is 15.154 (e to the power e). The mass of the tau in this theory agrees very well with accepted values. This theory suggests that all the "dn like" quarks have a mass of just 10X multiples of 4.24 MeV (the mass of the "d" quark). The first 3 "up like" quark masses are 38, 237.31 and 1500 MeV. This theory also predicts a new heavy generation with a lepton mass of 27 GeV, a "dn like" quark of 42.4 GeV, and an "up like" quark of 65 GeV. Significant evidence already exists for the existence of these new quarks, and lepton. Ref. Masses of the Sub-Nuclear Particles, nucl-th/ 0008026, @ http://xxx.lanl.gov. Infinite Energy, Vol 5, issue 30.

  20. Quantum Fluctuations and the Unruh effect in strongly-coupled conformal field theories

    Science.gov (United States)

    Cáceres, Elena; Chernicoff, Mariano; Güijosa, Alberto; Pedraza, Juan F.

    2010-06-01

    Through the AdS/CFT correspondence, we study a uniformly accelerated quark in the vacuum of strongly-coupled conformal field theories in various dimensions, and determine the resulting stochastic fluctuations of the quark trajectory. From the perspective of an inertial observer, these are quantum fluctuations induced by the gluonic radiation emitted by the accelerated quark. From the point of view of the quark itself, they originate from the thermal medium predicted by the Unruh effect. We scrutinize the relation between these two descriptions in the gravity side of the correspondence, and show in particular that upon transforming the conformal field theory from Rindler space to the open Einstein universe, the acceleration horizon disappears from the boundary theory but is preserved in the bulk. This transformation allows us to directly connect our calculation of radiation-induced fluctuations in vacuum with the analysis by de Boer et al. of the Brownian motion of a quark that is on average static within a thermal medium. Combining this same bulk transformation with previous results of Emparan, we are also able to compute the stress-energy tensor of the Unruh thermal medium.

  1. The Effect of Quark Mass and α-α Term on qq Condensation in QCD Vacuum

    Institute of Scientific and Technical Information of China (English)

    YANG Sheng-Dong; ZHOU Zhi-Ning; YANG Ze-Sen

    2001-01-01

    Beginning with the QCD Lagrangian in the global color symmetry model, we have derived a Hamiltonian including the lowest order current-current coupling. Taking instantaneous quadratic interaction kernel and using the Bogoliubov-Valatin transformation, we have got an effective Hamiltonian for computation. This Hamiltonian is similar to that introduced by Le Yaouanc et al., except that the α-α term has been considered here. We calculated the qq condensation in the BCS type of vacuum with quark mass and α-α term included. Our calculation shows that the value of qq condensation has increased by at least 10% with the α-α term included.``

  2. Baryons in the unquenched quark model

    Energy Technology Data Exchange (ETDEWEB)

    Bijker, R.; Díaz-Gómez, S. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, AP 70-543, 04510 Mexico DF (Mexico); Lopez-Ruiz, M. A. [Physics Department and Center for Exploration of Energy and Matter, Indiana University, Bloomington, IN 47408 (United States); Santopinto, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Genova, via Dodecaneso 33, I-16146 Italy (Italy)

    2016-07-07

    In this contribution, we present the unquenched quark model as an extension of the constituent quark model that includes the effects of sea quarks via a {sup 3}P{sub 0} quark-antiquark pair-creation mechanism. Particular attention is paid to the spin and flavor content of the proton, magnetic moments and β decays of octet baryons.

  3. Strange Quark Matter Status and Prospects

    Science.gov (United States)

    Sandweiss, J.

    2004-01-01

    The existence of quark states with more than three quarks is allowed in QCD. The stability of such quark matter states has been studied with lattice QCD and phenomenological bag models, but is not well constrained by theory. The addition of strange quarks to the system allows the quarks to be in lower energy states despite the additional mass penalty. There is additional stability from reduced Coulomb repulsion. SQM is expected to have a low Z/A. Stable or metastable massive multiquark states contain u, d, and s quarks.

  4. Soft deconfinement — critical phenomena at the Mott transition in a field theory for quarks and mesons

    Science.gov (United States)

    Hüfner, J.; Klevansky, S. P.; Rehberg, P.

    1996-02-01

    Critical phenomena associated with Mott transitions are investigated in the finite temperature SUf(3) Nambu-Jona-Lasinio model, that describes quarks u, d, s and bound mesons π, K. Critical exponents for the behavior close to the Mott temperature TM are determined for the static properties of a pion, such as mπ( T), gπqq( T), fπ( T), π, and the pion polarizabilities αC, N, as well as for the behavior of mK( T), gKqs( T) fK( T) in the strange sector. The effect of the Mott transitions on the q overlineq and ππ scattering lengths and for hadronization cross sections σ q overlineq→ππ (T) is discussed. Divergencies that occur in these quantities at TM indicate an intransparence with respect to hadronic and photonic probes, much like the phenomenon of critical opalescence. Physically, the Mott transition models the deconfinement transition expected of QCD since it corresponds to a delocalizayion of the bound states when the temperature is raised above TM.

  5. New theoretical results in heavy quark hadroproduction

    International Nuclear Information System (INIS)

    Nason, P.

    1992-01-01

    We describe the status of the heavy quark hadroproduction theory. In particular, we discuss recent developments on production of heavy quarks in the high energy limit, and the results of a new calculation to next-to-leading accuracy of the fully exclusive parton cross section for heavy quark production. (orig.)

  6. Top Quark Mass

    CERN Document Server

    Mulders, Martijn

    2016-01-01

    Ever since the discovery of the top quark at the Tevatron collider in 1995 the measurement of its mass has been a high priority. As one of the fundamental parameters of the Standard Theory of particle physics, the precise value of the top quark mass together with other inputs provides a test for the self-consistency of the theory, and has consequences for the stability of the Higgs field that permeates the Universe. In this review I will briefly summarize the experimental techniques used at the Tevatron and the LHC experiments throughout the years to measure the top quark mass with ever improving accuracy, and highlight the recent progress in combining all measurements in a single world average combination. As experimental measurements became more precise, the question of their theoretical interpretation has become important. The difficulty of relating the measured quantity to the fundamental top mass parameter has inspired alternative measurement methods that extract the top mass in complementary ways. I wil...

  7. Effective theory of bosonic superfluids

    International Nuclear Information System (INIS)

    Schakel, A.M.J.

    1994-01-01

    The authors discuss the effective theory of a bosonic superfluid whose microscopic behavior is described by a nonrelativistic, weak-coupling φ 4 theory in the phase with broken particle number symmetry, both at zero temperature and in the vicinity of the phase transition. In the zero-temperature regime, the theory is governed by the gapless Goldstone mode resulting from the broken symmetry. Although this mode is gapless, the effective theory turns out to be Gallilei invariant. The regime just below the critical temperature is approached in a high-temperature expansion which is shown to be consistent with the weak-coupling assumption of the theory. The authors calculate the critical temperature, the coefficients of the Landau theory, and the finite-temperature sound velocity. A comparison with BCS theory is given

  8. Top quark soliton and its anomalous chromomagnetic moment

    International Nuclear Information System (INIS)

    Berger, J.; Blotz, A.; Kim, H.; Goeke, K.

    1996-01-01

    We show that under the assumption of dynamical symmetry breaking of electroweak interactions by a top quark condensate, motivated by the top mode standard model, the top quark in this effective theory can be considered then as a chiral color soliton. This is realized in an effective four-fermion interaction with chiral SU(3) c as well as SU(2) L circle-times U Y (1) symmetry. In the pure top quark sector the soliton consists of a top valence quark and a Dirac sea of top quarks and top antiquarks coupled to a color octet of Goldstone pions. The mass spectra, isoscalar quadratic radii, and the anomalous chromomagnetic moment because of a nontrivial color form factor are calculated with zero and finite current top quark masses and effects at the hadron colliders are discussed. The anomalous chromomagnetic moment turns out to have a value consistent with the top quark production rates of the D0 and CDF measurements. copyright 1996 The American Physical Society

  9. Fields, symmetries, and quarks

    International Nuclear Information System (INIS)

    Mosel, U.

    1989-01-01

    'Fields, symmetries, and quarks' covers elements of quantum field theory, symmetries, gauge field theories and phenomenological descriptions of hadrons, with special emphasis on topics relevant to nuclear physics. It is aimed at nuclear physicists in general and at scientists who need a working knowledge of field theory, symmetry principles of elementary particles and their interactions and the quark structure of hadrons. The book starts out with an elementary introduction into classical field theory and its quantization. As gauge field theories require a working knowledge of global symmetries in field theories this topic is then discussed in detail. The following part is concerned with the general structure of gauge field theories and contains a thorough discussion of the still less widely known features of Non-Abelian gauge field theories. Quantum Chromodynamics (QCD), which is important for the understanding of hadronic matter, is discussed in the next section together with the quark compositions of hadrons. The last two chapters give a detailed discussion of phenomenological bag-models. The MIT bag is discussed, so that all theoretical calculations can be followed step by step. Since in all other bag-models the calculational methods and steps are essentially identical, this chapter should enable the reader to actually perform such calculations unaided. A last chapter finally discusses the topological bag-models which have become quite popular over the last few years. (orig.)

  10. The quark matter

    International Nuclear Information System (INIS)

    Rho, Mannque.

    1980-04-01

    The present status of our understanding of the physics of hadronic (nuclear or neutron) matter under extreme conditions, in particular at high densities is discussed. This is a problem which challenges three disciplines of physics: nuclear physics, astrophysics and particle physics. It is generally believed that we now have a correct and perhaps ultimate theory of the strong interactions, namely quantum chromodynamics (QCD). The constituents of this theory are quarks and gluons, so highly dense matters should be describable in terms of these constituents alone. This is a question that addresses directly to the phenomenon of quark confinement, one of the least understood aspects in particle physics. For nuclear physics, the possibility of a phase change between nuclear matter and quark matter introduces entirely new degrees of freedom in the description of nuclei and will bring perhaps a deeper understanding of nuclear dynamics. In astrophysics, the properties of neutron stars will be properly understood only when the equation of state of 'neutron' matter at densities exceeding that of nuclear matter can be realiably calculated. Most fascinating is the possibility of quark stars existing in nature, not entirely an absurd idea. Finally the quark matter - nuclear matter phase transition must have occured in the early stage of universe when matter expanded from high temperature and density; this could be an essential ingredient in the big-bang cosmology

  11. Media Effects: Theory and Research.

    Science.gov (United States)

    Valkenburg, Patti M; Peter, Jochen; Walther, Joseph B

    2016-01-01

    This review analyzes trends and commonalities among prominent theories of media effects. On the basis of exemplary meta-analyses of media effects and bibliometric studies of well-cited theories, we identify and discuss five features of media effects theories as well as their empirical support. Each of these features specifies the conditions under which media may produce effects on certain types of individuals. Our review ends with a discussion of media effects in newer media environments. This includes theories of computer-mediated communication, the development of which appears to share a similar pattern of reformulation from unidirectional, receiver-oriented views, to theories that recognize the transactional nature of communication. We conclude by outlining challenges and promising avenues for future research.

  12. Top quark properties

    Indian Academy of Sciences (India)

    eter for the tests of the electroweak theory, since radiative corrections to many ... The uncertainty due to jet energy scale (JES) is the dominating systematic .... In the Standard Model, the charge of the top quark is predicted to be that of a normal up- ..... non-negative and f+ + f0 < 1, and the star marks the expectation from the ...

  13. Kinetic theory of radiation effects

    International Nuclear Information System (INIS)

    Mansur, L.K.

    1987-01-01

    To help achieve the quantitative and mechanistic understanding of these processes, the kinetic theory of radiation effects has been developed in the DOE basic energy sciences radiation effects and fusion reactor materials programs, as well as in corresponding efforts in other countries. This discipline grapples with a very wide range of phenomena and draws on numerous sub-fields of theory such as defect physics, diffusion, elasticity, chemical reaction rates, phase transformations and thermodynamics. The theory is cast in a mathematical framework of continuum dynamics. Issues particularly relevant to the present inquiry can be viewed from the standpoints of applications of the theory and areas requiring further progress

  14. ''Follow that quark!'' (and other exclusive stories)

    International Nuclear Information System (INIS)

    Carroll, A.S.

    1987-01-01

    Quarks are considered to be the basic constituents of matter. In a series of recent experiments, Carroll studied exclusive reactions as a means of determining the interactions between quarks. Quantum Chromo-dynamics (QCD) is the modern theory of the interaction of quarks. This theory explains how quarks are held together via the strong interaction in particles known as hadrons. Hadrons consisting of three quarks are called baryons. Hadrons made up of a quark and an antiquark are called mesons. In his lecture, Carroll describes what happens when two hadrons collide and scatter to large angles. The violence of the collision causes the gluons that bind the quarks in a particular hadron to temporarily lose their grip on particular quarks. Quarks scramble toward renewed unity with other quarks, and they undergo rearrangement, which generally results in additional new particles. A two-body exclusive reaction has occurred when the same number of particles exist before and after the collisions. At large angles these exclusive reactions are very rare. The labels on the quarks known as flavor enable the experimenter to follow the history of individual quarks in detail during these exclusive reactions. Carroll describes the equipment used in the experiment to measure short distance, hard collisions at large angles. The collisions he discusses occur when a known beam of mesons or protons collide with a stationary proton target. Finally, Carroll summarizes what the experiments have shown from the study of exclusive reactions and what light some of their results shed on the theory of QCD

  15. Top-quark polarization and asymmetries at the LHC in the effective description of squark interactions

    International Nuclear Information System (INIS)

    Abrahantes, A.; Arganda, E.; Penaranda, S.

    2015-01-01

    Adetailed study of top-quark polarizations and tt - charge asymmetries, induced by top-squark-pair production at the LHC and the subsequent decays t → tχ 1 0 , is performed within the effective description of squark interactions, which includes the effective Yukawa couplings and another logarithmic term encoding the supersymmetry breaking. This effective approach is more suitable for its introduction into Monte-Carlo simulations and we make use of its implementation in MadGraph in order to investigate the possibilities of the charge asymmetry A C , measured at the LHC and consistent with SM expectations, to discriminate between different SUSY scenarios and analyze the implications of these scenarios in the top polarizations and related observables. (orig.)

  16. 1+1-dimensional quantum electrodynamics as an illustration of the hypothetical structure of quark field theory

    International Nuclear Information System (INIS)

    Becher, P.; Joos, H.

    1977-07-01

    It is the aim of the main part of these lectures to show how most of the expected dynamical properties of quantum chromodynamics are realised in 1+1 dimensional quantum electrodynamics. Asymptotic freedom, the infrared limit, quark confinement and bag approximation are discussed in detail. (BJ) [de

  17. Observational Constraints on Quark Matter in Neutron Stars

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We study the observational constraints of mass and redshift on the properties of the equation of state (EOS) for quark matter in compact stars based on the quasi-particle description. We discuss two scenarios: strange stars and hybrid stars. We construct the equations of state utilizing an extended MIT bag model taking the medium effect into account for quark matter and the relativistic mean field theory for hadron matter. We show that quark matter may exist in strange stars and in the interior of neutron stars. The bag constant is a key parameter that affects strongly the mass of strange stars. The medium effect can lead to the stiffer hybrid-star EOS approaching the pure hadronic EOS, due to the reduction of quark matter, and hence the existence of heavy hybrid stars. We find that a middle range coupling constant may be the best choice for the hybrid stars being compatible with the observational constraints.

  18. Do Quarks Propagate?

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Taylor, John C.

    1984-01-01

    Processes with coloured particles in the initial state are generally infrared divergent. We investigate the effect of this on processes with colourless particles in the initial state, when the amplitude is near an intermediate quark pole. The result is a characteristic logarithmic depedence...... on the 'binding energy'(even though spectator interactions are taken into account), and the result is gauge-invariant. Summed to all orders the logarithms could perhaps suppress the quark pole....

  19. The time-reversal- and parity-violating nuclear potential in chiral effective theory

    NARCIS (Netherlands)

    Maekawa, C. M.; Mereghetti, E.; de Vries, J.; van Kolck, U.

    2011-01-01

    We derive the parity- and time-reversal-violating nuclear interactions stemming from the QCD (theta) over bar term and quark/gluon operators of effective dimension 6: quark electric dipole moments, quark and gluon chromo-electric dipole moments, and two four-quark operators. We work in the framework

  20. Quark-Gluon Plasma

    CERN Document Server

    1990-01-01

    This volume contains 14 review articles on the theory and phenomenology of the creation and diagnosis of quark-gluon plasma. They are written by active investigators of in the various research topics, which range from the QCD foundation through transport theory and thermalization models to the examination of possible signatures. The monograph should be useful not only to the experienced researchers in the subject but also to newcomers.

  1. Quark fragmentation function and the nonlinear chiral quark model

    International Nuclear Information System (INIS)

    Zhu, Z.K.

    1993-01-01

    The scaling law of the fragmentation function has been proved in this paper. With that, we show that low-P T quark fragmentation function can be studied as a low energy physocs in the light-cone coordinate frame. We therefore use the nonlinear chiral quark model which is able to study the low energy physics under scale Λ CSB to study such a function. Meanwhile the formalism for studying the quark fragmentation function has been established. The nonlinear chiral quark model is quantized on the light-front. We then use old-fashioned perturbation theory to study the quark fragmentation function. Our first order result for such a function shows in agreement with the phenomenological model study of e + e - jet. The probability for u,d pair formation in the e + e - jet from our calculation is also in agreement with the phenomenological model results

  2. Unified theory of effective interaction

    Energy Technology Data Exchange (ETDEWEB)

    Takayanagi, Kazuo, E-mail: k-takaya@sophia.ac.jp

    2016-09-15

    We present a unified description of effective interaction theories in both algebraic and graphic representations. In our previous work, we have presented the Rayleigh–Schrödinger and Bloch perturbation theories in a unified fashion by introducing the main frame expansion of the effective interaction. In this work, we start also from the main frame expansion, and present various nonperturbative theories in a coherent manner, which include generalizations of the Brandow, Brillouin–Wigner, and Bloch–Horowitz theories on the formal side, and the extended Krenciglowa–Kuo and the extended Lee–Suzuki methods on the practical side. We thus establish a coherent and comprehensive description of both perturbative and nonperturbative theories on the basis of the main frame expansion.

  3. Pion-cloud effects on the electromagnetic properties of nucleons in a quark model

    International Nuclear Information System (INIS)

    Barik, N.

    1992-01-01

    This paper reports that incorporating corrections for the center-of-mass motion and pion-cloud effects the nucleon electromagnetic form factors G N E.M (q 2 ) are computed in an independent quark model based on the Dirac equation with a confining potential V q (r) = (1 + γ 0 ) a 1n (r/b). The static quantities like magnetic moment μn, charge radius (r 2 ) 1/2 N and axial vector coupling constant (g A ) n → pev of the nucleons computed in this model are in reasonable agreement with the experiment. The pseudoscalar and the pseudovector pion-nucleon coupling constants are obtained as g NNπ = 13.52 and f NNπ = 0.284, which are in excellent agreement with the experimental data

  4. Effects of Δ baryon in hyperon stars in a modified quark meson coupling model

    International Nuclear Information System (INIS)

    Sahoo, H.S.; Mishra, R.N.; Panda, P.K.; Barik, N.

    2016-01-01

    Recent studies on the appearance of the Δ (1232) isobars in neutron stars has ignited much debate on the possibility of its existence in neutron stars satisfying the observational limit of 2 M_⊙. Given the fact that the presence of the Δ tends to soften the equation of state (EoS) and reduce the maximum mass, theoretical and observational contradictions have given rise to the so called Δ puzzle, similar to the hyperon puzzle. In the present work we develop the EoS for dense matter with the inclusion of the nucleons, hyperons and the Delta isobars and study the effects of such inclusion on stellar properties using a Modified Quark-Meson coupling model (MQMC)

  5. On the Coulomb gauge quark propagator

    International Nuclear Information System (INIS)

    Kloker, M.; Alkofer, R.; Krassnigg, A.; Krenn, R.

    2006-01-01

    Full text: A solution of the quark Dyson-Schwinger equation including transverse gluons is presented. The corresponding retardation effects in the quark propagator are discussed. Especially, their effects on confinement properties and dynamical mass generation are described. (author)

  6. Quenched BK-parameter from Osterwalder-Seiler tmQCD quarks and mass-splitting discretization effects

    International Nuclear Information System (INIS)

    Dimopoulos, P.; Simma, H.; Vladikas, A.

    2009-01-01

    We apply an Osterwalder-Seiler version of twisted mass QCD to a study of the B K parameter, in which three of the four quark fields making up the relevant ΔS = 2 operator are maximally twisted with the same twist angle, while the fourth one has a twist angle of opposite sign. It is known that this setup ensures automatic improvement of the bare K 0 -K-bar 0 operator matrix element and multiplicative renormalization of the ΔS = 2 operator, at the price of breaking the K 0 -K-bar 0 mass degeneracy by discretization effects. As a result, two dominant systematic errors of the B K determination with Wilson fermions are kept under control. With the Clover term included in the fermion action, we perform a feasibility study and find, in the quenched approximation, a significant improvement of the scaling behaviour of B K , compared to earlier standard tmQCD determinations. Moreover, we study in detail the K 0 -K-bar 0 mass splitting that characterizes this approach and confirm that, in the presence of the Clover term, it is greatly reduced in a maximally twisted theory.

  7. Current s - quark mass corrections to the form factors of D - meson semileptonic decays

    International Nuclear Information System (INIS)

    Hussain, F.; Ivanov, A.N.; Troitskaya, N.I.

    1994-11-01

    The infinite mass effective theory, when a heavy quark mass tends to infinity, and Chiral perturbation theory at the quark level, based on the extended Nambu - Jona - Lasinio model with linear realization of chiral U(3) x U(3) symmetry, are applied to the calculations of current s - quark mass corrections to the form factors of the D → K-bar e + ν e and D → K-bar * e + ν e decays. These corrections turn out to be quite significant, of the order of 7 - 20%. The theoretical results are compared with experimental data. (author). 17 refs

  8. Theory of CP violation based on the charm and strangeness changing righthanded weak current. [Quark mass term

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsch, H; Minkowski, P [California Inst. of Tech., Pasadena (USA)

    1976-06-21

    If the charged weak current contains the righthanded current (anti cs)sub(R), the quark mass term can be the origin of CP violation, which is then intimately related to the origin of the dominating mod(..delta..I)=1/2 and mod(..delta..S)=1 nonleptonic weak interaction. The electric dipole moment of the neutron is predicted to be of the order of 10/sup -25/ecm.

  9. Non-diagonal processes of singlet and ordinary quark production

    International Nuclear Information System (INIS)

    Bejlin, V.A.; Vereshkov, G.M.; Kuksa, V.I.

    1995-01-01

    Non-diagonal processes of singlet and ordinary quark production are analyzed in the model where the down singlet quark mixes with the ordinary ones. The possibility of experimental selection of h-quark effects is demonstrated

  10. Nuclear matter descriptions including quark structure of the hadrons

    International Nuclear Information System (INIS)

    Huguet, R.

    2008-07-01

    It is nowadays well established that nucleons are composite objects made of quarks and gluons, whose interactions are described by Quantum chromodynamics (QCD). However, because of the non-perturbative character of QCD at the energies of nuclear physics, a description of atomic nuclei starting from quarks and gluons is still not available. A possible alternative is to construct effective field theories based on hadronic degrees of freedom, in which the interaction is constrained by QCD. In this framework, we have constructed descriptions of infinite nuclear matter in relativistic mean field theories taking into account the quark structure of hadrons. In a first approach, the in medium modifications of mesons properties is dynamically obtained in a Nambu-Jona-Lasinio (NJL) quark model. This modification is taken into account in a relativistic mean field theory based on a meson exchange interaction between nucleons. The in-medium modification of mesons masses and the properties of infinite nuclear matter have been studied. In a second approach, the long and short range contributions to the in-medium modification of the nucleon are determined. The short range part is obtained in a NJL quark model of the nucleon. The long range part, related to pions exchanges between nucleons, has been determined in the framework of Chiral Perturbation theory. These modifications have been used to constrain the couplings of a point coupling relativistic mean field model. A realistic description of the saturation properties of nuclear matter is obtained. (author)

  11. Phenomenology of heavy quark systems

    International Nuclear Information System (INIS)

    Gilman, F.J.

    1987-03-01

    The spectroscopy of heavy quark systems is examined with regards to spin independent and spin dependent potentials. It is shown that a qualitative picture exists of the spin-independent forces, and that a semi-quantitative understanding exists for the spin-dependent effects. A brief review is then given of the subject of the decays of hadrons containing heavy quarks, including weak decays at the quark level, and describing corrections to the spectator model

  12. Heavy quarks and their experimental consequences

    International Nuclear Information System (INIS)

    Appelquist, T.

    1975-09-01

    Recent theoretical work on heavy quark dynamics is reviewed. In the context of a color gauge theory of strong interactions, the structure of heavy quark-antiquark bound states and their decay properties is discussed. The emphasis is on the dynamical differences between heavy and light quark bound states. It is suggested that the former will more directly reflect the structure of the underlying field theory

  13. Quark sea and the. delta. I=1/2 rule

    Energy Technology Data Exchange (ETDEWEB)

    Donoghue, J F [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA). Dept. of Physics; Golowich, E [Massachusetts Univ., Amherst (USA)

    1977-08-29

    The effect on nonleptonic processes of quark-antiquark pairs due to quantum chromodynamics is studied. Their presence improves agreement between theory and experiment for hyperon decays. In kaon decays a new ..delta..I=1/2 contribution is found, but ..delta..I=3/2 effects are still too large to be in agreement.

  14. Theory of Effectiveness Measurement

    National Research Council Canada - National Science Library

    Bullock, Richard K

    2006-01-01

    Effectiveness measures provide decision makers feedback on the impact of deliberate actions and affect critical issues such as allocation of scarce resources, as well as whether to maintain or change existing strategy...

  15. Quark-anti-quark potential in N=4 SYM

    Energy Technology Data Exchange (ETDEWEB)

    Gromov, Nikolay [Mathematics Department, King’s College London,The Strand, London WC2R 2LS (United Kingdom); St. Petersburg INP,Gatchina, 188 300, St.Petersburg (Russian Federation); Levkovich-Maslyuk, Fedor [Mathematics Department, King’s College London,The Strand, London WC2R 2LS (United Kingdom); Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden)

    2016-12-22

    We construct a closed system of equations describing the quark-anti-quark potential at any coupling in planar N=4 supersymmetric Yang-Mills theory. It is based on the Quantum Spectral Curve method supplemented with a novel type of asymptotics. We present a high precision numerical solution reproducing the classical and one-loop string predictions very accurately. We also analytically compute the first 7 nontrivial orders of the weak coupling expansion. Moreover, we study analytically the generalized quark-anti-quark potential in the limit of large imaginary twist to all orders in perturbation theory. We demonstrate how the QSC reduces in this case to a one-dimensional Schrodinger equation. In the process we establish a link between the Q-functions and the solution of the Bethe-Salpeter equation.

  16. Electromagnetic properties of light and heavy baryons in the relativistic quark model

    International Nuclear Information System (INIS)

    Nicmorus Marinescu, Diana

    2007-01-01

    One of the main challenges of nowadays low-energy physics remains the description of the internal structure of hadrons, strongly connected to the electromagnetic properties of matter. In this vein, the success of the relativistic quark model in the analysis of the hadron structure constitutes a solid motivation for the study carried out throughout this work. The relativistic quark model is extended to the investigation of static electromagnetic properties of both heavy and light baryons. The bare contributions to the magnetic moments of the single-, double- and triple-heavy baryons are calculated. Moreover, the relativistic quark model allows the study of the electromagnetic properties of the light baryon octet incorporating meson cloud contributions in a perturbative manner. The long disputed values of the multipole ratios E2/M1 and C2/M1 and the electromagnetic form factors of the N→Δγ transition are successfully reproduced. The relativistic quark model can be viewed as a quantum field theory approach based on a phenomenological Lagrangian coupling light and heavy baryons to their constituent quarks. In our approach the baryon is a composite object of three constituent quarks, at least in leading order. The effective interaction Lagrangian is written in terms of baryon and constituent quark fields. The effective action preserves Lorentz covariance and gauge invariance. The main ingredients of the model are already introduced at the level of the interaction Lagrangian: the three-quark baryon currents, the Gaussian distribution of the constituent quarks inside the baryon and the compositeness condition which sets an upper limit for the baryon-quark vertex. The S-matrix elements are expressed by a set of Feynman quark-diagrams. The model contains only few parameters, namely, the cut-off parameter of the Gaussian quark distribution and the free quark propagator, which are unambiguously determined from the best fit to the data. The heavy quark limit within this

  17. Electromagnetic properties of light and heavy baryons in the relativistic quark model

    Energy Technology Data Exchange (ETDEWEB)

    Nicmorus Marinescu, Diana

    2007-06-14

    One of the main challenges of nowadays low-energy physics remains the description of the internal structure of hadrons, strongly connected to the electromagnetic properties of matter. In this vein, the success of the relativistic quark model in the analysis of the hadron structure constitutes a solid motivation for the study carried out throughout this work. The relativistic quark model is extended to the investigation of static electromagnetic properties of both heavy and light baryons. The bare contributions to the magnetic moments of the single-, double- and triple-heavy baryons are calculated. Moreover, the relativistic quark model allows the study of the electromagnetic properties of the light baryon octet incorporating meson cloud contributions in a perturbative manner. The long disputed values of the multipole ratios E2/M1 and C2/M1 and the electromagnetic form factors of the N{yields}{delta}{gamma} transition are successfully reproduced. The relativistic quark model can be viewed as a quantum field theory approach based on a phenomenological Lagrangian coupling light and heavy baryons to their constituent quarks. In our approach the baryon is a composite object of three constituent quarks, at least in leading order. The effective interaction Lagrangian is written in terms of baryon and constituent quark fields. The effective action preserves Lorentz covariance and gauge invariance. The main ingredients of the model are already introduced at the level of the interaction Lagrangian: the three-quark baryon currents, the Gaussian distribution of the constituent quarks inside the baryon and the compositeness condition which sets an upper limit for the baryon-quark vertex. The S-matrix elements are expressed by a set of Feynman quark-diagrams. The model contains only few parameters, namely, the cut-off parameter of the Gaussian quark distribution and the free quark propagator, which are unambiguously determined from the best fit to the data. The heavy quark limit

  18. Dual chiral density wave in quark matter

    International Nuclear Information System (INIS)

    Tatsumi, Toshitaka

    2002-01-01

    We prove that quark matter is unstable for forming a dual chiral density wave above a critical density, within the Nambu-Jona-Lasinio model. Presence of a dual chiral density wave leads to a uniform ferromagnetism in quark matter. A similarity with the spin density wave theory in electron gas and the pion condensation theory is also pointed out. (author)

  19. Electromagnetic moments of hadrons and quarks in a hybrid model

    International Nuclear Information System (INIS)

    Gerasimov, S.B.

    1989-01-01

    Magnetic moments of baryons are analyzed on the basis of general sum rules following from the theory of broken symmetries and quark models including the relativistic effects and hadronic corrections due to the meson exchange currents. A new sum rule is proposed for the hyperon magnetic moments, which is in accord with the most precise new data and also with a theory of the electromagnetic ΛΣ 0 mixing. The numerical values of the quark electromagnetic moments are obtained within a hybrid model treating the pion cloud effects through the local coupling of the pion field with the constituent massive quarks. Possible sensitivity of the weak neutral current magnetic moments to violation of the Okubo-Zweig-Izuki rule is emphasized nand discussed. 39 refs.; 1 fig

  20. NJL-jet model for quark fragmentation functions

    International Nuclear Information System (INIS)

    Ito, T.; Bentz, W.; Cloeet, I. C.; Thomas, A. W.; Yazaki, K.

    2009-01-01

    A description of fragmentation functions which satisfy the momentum and isospin sum rules is presented in an effective quark theory. Concentrating on the pion fragmentation function, we first explain why the elementary (lowest order) fragmentation process q→qπ is completely inadequate to describe the empirical data, although the crossed process π→qq describes the quark distribution functions in the pion reasonably well. Taking into account cascadelike processes in a generalized jet-model approach, we then show that the momentum and isospin sum rules can be satisfied naturally, without the introduction of ad hoc parameters. We present results for the Nambu-Jona-Lasinio (NJL) model in the invariant mass regularization scheme and compare them with the empirical parametrizations. We argue that the NJL-jet model, developed herein, provides a useful framework with which to calculate the fragmentation functions in an effective chiral quark theory.

  1. When is a heavy quark not a parton? Charged Higgs production and heavy quark mass effects in the QCD-based parton model

    International Nuclear Information System (INIS)

    Olness, F.I.; Tung, Wu-Ki

    1989-10-01

    Applications of the QCD-based parton model to new physics processes involving heavy partons are illustrated using charged Higgs production. The naive parton model predictions are found to over-estimate the actual cross section by a factor of 2 to 5. The role of the top quark as a ''parton'' is examined, and the energy range over which heavy quarks (or other particles) should or should not be naturally treated as ''partons'' is delineated. 12 refs., 5 figs

  2. Dark Matter Effective Theory

    DEFF Research Database (Denmark)

    Del Nobile, Eugenio; Sannino, Francesco

    2012-01-01

    We organize the effective (self)interaction terms for complex scalar dark matter candidates which are either an isosinglet, isodoublet or an isotriplet with respect to the weak interactions. The classification has been performed ordering the operators in inverse powers of the dark matter cutoff...... scale. We assume Lorentz invariance, color and charge neutrality. We also introduce potentially interesting dark matter induced flavor-changing operators. Our general framework allows for model independent investigations of dark matter properties....

  3. An effective strong-coupling theory of composite particles in UV-domain

    Science.gov (United States)

    Xue, She-Sheng

    2017-05-01

    We briefly review the effective field theory of massive composite particles, their gauge couplings and characteristic energy scale in the UV-domain of UV-stable fixed point of strong four-fermion coupling, then mainly focus the discussions on the decay channels of composite particles into the final states of the SM gauge bosons, leptons and quarks. We calculate the rates of composite bosons decaying into two gauge bosons γγ, γZ 0, W + W -, Z 0 Z 0 and give the ratios of decay rates of different channels depending on gauge couplings only. It is shown that a composite fermion decays into an elementary fermion and a composite boson, the latter being an intermediate state decays into two gauge bosons, leading to a peculiar kinematics of final states of a quark (or a lepton) and two gauge bosons. These provide experimental implications of such an effective theory of composite particles beyond the SM. We also present some speculative discussions on the channels of composite fermions decaying into W W , W Z and ZZ two boson-tagged jets with quark jets, or to four-quark jets. Moreover, at the same energy scale of composite particles produced in high-energy experiments, composite particles are also produced by high-energy sterile neutrino (dark matter) collisions, their decays lead to excesses of cosmic ray particles in space and signals of SM particles in underground laboratories.

  4. An effective strong-coupling theory of composite particles in UV-domain

    Energy Technology Data Exchange (ETDEWEB)

    Xue, She-Sheng [ICRANet,Piazzale della Repubblica 10, 10-65122, Pescara (Italy); Physics Department, Sapienza University of Rome,Piazzale Aldo Moro 5, 00185 Roma (Italy)

    2017-05-29

    We briefly review the effective field theory of massive composite particles, their gauge couplings and characteristic energy scale in the UV-domain of UV-stable fixed point of strong four-fermion coupling, then mainly focus the discussions on the decay channels of composite particles into the final states of the SM gauge bosons, leptons and quarks. We calculate the rates of composite bosons decaying into two gauge bosons γγ, γZ{sup 0}, W{sup +}W{sup −}, Z{sup 0}Z{sup 0} and give the ratios of decay rates of different channels depending on gauge couplings only. It is shown that a composite fermion decays into an elementary fermion and a composite boson, the latter being an intermediate state decays into two gauge bosons, leading to a peculiar kinematics of final states of a quark (or a lepton) and two gauge bosons. These provide experimental implications of such an effective theory of composite particles beyond the SM. We also present some speculative discussions on the channels of composite fermions decaying into WW, WZ and ZZ two boson-tagged jets with quark jets, or to four-quark jets. Moreover, at the same energy scale of composite particles produced in high-energy experiments, composite particles are also produced by high-energy sterile neutrino (dark matter) collisions, their decays lead to excesses of cosmic ray particles in space and signals of SM particles in underground laboratories.

  5. Holographic lessons for quark dynamics

    Science.gov (United States)

    Chernicoff, Mariano; García, J. Antonio; Güijosa, Alberto; Pedraza, Juan F.

    2012-05-01

    We give a brief overview of recent results obtained through the gauge/gravity correspondence, concerning the propagation of a heavy quark in strongly coupled conformal field theories (such as {N}=4 super-Yang-Mills), both at zero and finite temperature. In the vacuum, we discuss energy loss, radiation damping, signal propagation and radiation-induced fluctuations. In the presence of a thermal plasma, our emphasis is on early-time energy loss, screening and quark-antiquark evolution after pair creation. Throughout, quark dynamics is seen to be efficiently encapsulated in the usual string worldsheet dynamics.

  6. Effective field theory and weak non-leptonic interactions

    International Nuclear Information System (INIS)

    Miller, R.D.C.

    1982-06-01

    The techniques of Ovrut and Schnitzer (1981) are used to calculate the finite decoupling renormalisation constants resulting from heavy fermion decoupling in a non-abelian gauge theory exhibiting broken flavour symmetry. The results of this calculation are applied to realistic, massive QCD. The decoupling information may be absorbed into renormalisation group (R.G.) invariants. Working in the Landau gauge R.G. invariants are derived for the running coupling constants and running quark masses of effective QCD in the modified minimal subtraction scheme (for effective QCD with 3 to 8 flavours). This work is then applied to the major part of the thesis; a complete derivation of the effective weak non-leptonic sector of the standard model (SU(3)/sub c/ x SU(2) x U(1)), that is the construction of all effective weak non-leptonic Hamiltonians resulting from the standard model when all quark generations above the third along with the W and Z are explicitily decoupled. The form of decoupling in the work of Gilman and Wise (1979) has been adopted. The weak non-leptonic sector naturally decomposes into flavour changing and flavour conserving sectors relative to anomalous dimension calculations. The flavour changing sector further decomposes into penguin free and penguin generating sectors. Individual analyses of these three sectors are given. All sectors are analysed uniformly, based upon a standard model with n generations

  7. Top quark mass effects in Higgs boson pair production up to NNLO

    International Nuclear Information System (INIS)

    Hoff, Jens

    2016-09-01

    We consider the production of pairs of Standard Model Higgs bosons via gluon fusion. Until recently the full dependence on the top quark mass M_t was not known at next-to-leading order. For this reason we apply an approximation based on the expansion for large top quark masses up to O(1/M"1"2_t). At next-to-next-to-leading order we avoid the calculation of real corrections via the soft-virtual approximation and obtain top quark mass corrections up to O(1/M"4_t). We use our results to estimate the residual uncertainty of the total cross section due to a finite top quark mass to be O(10%) at next-to-leading order and O(5%) at next-to-next-to-leading order.

  8. Quark and Gluon Relaxation in Quark-Gluon Plasmas

    Science.gov (United States)

    Heiselberg, H.; Pethick, C. J.

    1993-01-01

    The quasiparticle decay rates for quarks and gluons in quark-gluon plasmas are calculated by solving the kinetic equation. Introducing an infrared cutoff to allow for nonperturbative effects, we evaluate the quasiparticle lifetime at momenta greater than the inverse Debye screening length to leading order in the coupling constant.

  9. Hot nuclear matter in the modified quark-meson coupling model with quark-quark correlations

    International Nuclear Information System (INIS)

    Zakout, I.; Jaqaman, H.R.

    2000-01-01

    Short-range quark-quark correlations in hot nuclear matter are examined within the modified quark-meson coupling (MQMC) model by adding repulsive scalar and vector quark-quark interactions. Without these correlations, the bag radius increases with the baryon density. However, when the correlations are introduced the bag size shrinks as the bags overlap. Also as the strength of the scalar quark-quark correlation is increased, the decrease of the effective nucleon mass M* N with the baryonic density is slowed down and tends to saturate at high densities. Within this model we study the phase transition from the baryon-meson phase to the quark-gluon plasma (QGP) phase with the latter modelled as an ideal gas of quarks and gluons inside a bag. Two models for the QGP bag parameter are considered. In one case, the bag is taken to be medium-independent and the phase transition from the hadron phase to QGP is found to occur at five to eight times ordinary nuclear matter density for temperatures less than 60 MeV. For lower densities, the transition takes place at a higher temperature, reaching up to 130 MeV at zero density. In the second case, the QGP bag parameter is considered to be medium-dependent as in the MQMC model for the hadronic phase. In this case, it is found that the phase transition occurs at much lower densities. (author)

  10. Heavy quarks

    International Nuclear Information System (INIS)

    Khoze, V.A.

    1983-10-01

    We discuss the results accumulated during the last five years in heavy quark physics and try to draw a simple general picture of the present situation. The survey is based on a unified point of view resulting from quantum chromodynamics. (orig.)

  11. arXiv Higgs boson pair production at NNLO with top quark mass effects

    CERN Document Server

    Grazzini, Massimiliano; Jones, Stephen; Kallweit, Stefan; Kerner, Matthias; Lindert, Jonas M.; Mazzitelli, Javier

    2018-05-09

    We consider QCD radiative corrections to Higgs boson pair production through gluon fusion in proton collisions. We combine the exact next-to-leading order (NLO) contribution, which features two-loop virtual amplitudes with the full dependence on the top quark mass M$_{t}$ , with the next-to-next-to-leading order (NNLO) corrections computed in the large-M$_{t}$ approximation. The latter are improved with different reweighting techniques in order to account for finite-M$_{t}$ effects beyond NLO. Our reference NNLO result is obtained by combining one-loop double-real corrections with full M$_{t}$ dependence with suitably reweighted real-virtual and double-virtual contributions evaluated in the large-M$_{t}$ approximation. We present predictions for inclusive cross sections in pp collisions at $ \\sqrt{s} $ = 13, 14, 27 and 100 TeV and we discuss their uncertainties due to missing M$_{t}$ effects. Our approximated NNLO corrections increase the NLO result by an amount ranging from +12% at $ \\sqrt{s}=13 $ TeV to +7%...

  12. Heavy mesons spectroscopy and new quarks

    International Nuclear Information System (INIS)

    Carvalho, H.F. de.

    1977-12-01

    The spectroscopy of new heavy mesons with masses above 2.8 GeV in the context of the asymptoticallty free gauge theories is analysed. To this end a power -law confinement potential is chosen. It is shown that the charmonium spectroscopy is best described by a potential where the exponent is around 0.5. It is observed that the spin-spin interaction is problematic. A possible interpretation of the γ resonances in the neighbourhood of 10 GeV is also discussed. The possible consequences of the existence of heavy quarks beyond charm with special reference to the processes initiated by neutral currents is also discussed. The present results on processes initiated by neutral current effects does not require introduction of right-handed heavy quarks beyond charm. Inclusion of the sea-quark contribution improves the agreements of the results of the Salam-Weinberg model with the recently observed results from CERN where 'ν anomaly' was not seen. The recently discovered γ resonances probably indicate the existence of heavy quarks probably with left handed coupling. Some preliminary study of this possibility was also carried out. (Author) [pt

  13. Soft-Collinear Effective Theory

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    I will review the basic principles about Soft-Collinear Effective Theory. I will focus on how it can be used to understand factorization properties and how one can resum large logarithms arising from infrared physics using the renormalization group evolution.

  14. WIMP-nucleus scattering in chiral effective theory

    Science.gov (United States)

    Cirigliano, Vincenzo; Graesser, Michael L.; Ovanesyan, Grigory

    2012-10-01

    We discuss long-distance QCD corrections to the WIMP-nucleon(s) interactions in the framework of chiral effective theory. For scalar-mediated WIMP-quark interactions, we calculate all the next-to-leading-order corrections to the WIMP-nucleus elastic cross-section, including two-nucleon amplitudes and recoil-energy dependent shifts to the single-nucleon scalar form factors. As a consequence, the scalar-mediated WIMP-nucleus cross-section cannot be parameterized in terms of just two quantities, namely the neutron and proton scalar form factors at zero momentum transfer, but additional parameters appear, depending on the short-distance WIMP-quark interaction. Moreover, multiplicative factorization of the cross-section into particle, nuclear and astro-particle parts is violated. In practice, while the new effects are of the natural size expected by chiral power counting, they become very important in those regions of parameter space where the leading order WIMP-nucleus amplitude is suppressed, including the so-called "isospin-violating dark matter" regime. In these regions of parameter space we find order-of-magnitude corrections to the total scattering rates and qualitative changes to the shape of recoil spectra.

  15. Physics of the Quark Model

    Science.gov (United States)

    Young, Robert D.

    1973-01-01

    Discusses the charge independence, wavefunctions, magnetic moments, and high-energy scattering of hadrons on the basis of group theory and nonrelativistic quark model with mass spectrum calculated by first-order perturbation theory. The presentation is explainable to advanced undergraduate students. (CC)

  16. Effect Of Superfluidity And Differential Rotation Of Quark Matter On Magetic Field Evolution in Neutron Star And Black Hole

    Science.gov (United States)

    Aurongzeb, Deeder

    2010-11-01

    Anomalous X-ray pulsars and soft gamma-ray repeaters reveal that existence of very strong magnetic field(> 10e15G) from neutron stars. It has been estimated that at the core the magnitude can be even higher at the center. Apart from dynamo mechanism it has been shown that color locked ferromagnetic phase [ Phys. Rev. D. 72,114003(2005)] can be a possible origin of magnetic field. In this study, we explore electric charge of strange quark matter and its effect on forming chirality in the quark-gluon plasma. We show that electromagnetic current induced by chiral magnetic effect [(Phys. Rev. D. 78.07033(2008)] can induce differential rotation in super fluid quark-gluon plasma giving additional boost to the magnetic field. The internal phase and current has no effect from external magnetic field originating from active galactic nuclei due to superconducting phase formation which screens the fields due to Meissner effect. We show that differential motion can create high radial electric field at the surface making all radiation highly polarized and directional including thermal radiation. As the electric field strength can be even stronger for a collapsing neutron star, the implication of this study to detect radiation from black holes will also be discussed. The work was partly completed at the University of Texas at austin

  17. Perturbation theory of effective Hamiltonians

    International Nuclear Information System (INIS)

    Brandow, B.H.

    1975-01-01

    This paper constitutes a review of the many papers which have used perturbation theory to derive ''effective'' or ''model'' Hamiltonians. It begins with a brief review of nondegenerate and non-many-body perturbation theory, and then considers the degenerate but non-many-body problem in some detail. It turns out that the degenerate perturbation problem is not uniquely defined, but there are some practical criteria for choosing among the various possibilities. Finally, the literature dealing with the linked-cluster aspects of open-shell many-body systems is reviewed. (U.S.)

  18. The significance of the heavy top quark

    International Nuclear Information System (INIS)

    Simmons, Elizabeth H.

    1997-01-01

    Experiment shows that the top quark is far heavier than the other elementary fermions. This finding has stimulated research on theories of electroweak and flavor symmetry breaking that include physics beyond the standard model. Efforts to accommodate a heavy top quark within existing frameworks have revealed constraints on model-building. Other investigations have started from the premise that a large top quark mass could signal a qualitative difference between the top quark and other fermions, perhaps in the form of new interactions peculiar to the top quark. Such new dynamics may also help answer existing questions about electroweak and flavor physics. This talk explores the implications of the heavy top quark in the context of weakly-coupled (e.g., SUSY) and strongly-coupled (e.g., technicolor) theories of electroweak symmetry breaking

  19. Top-squark mixing effects in the supersymmetric electroweak corrections to top-quark production at the Fermilab Tevatron

    International Nuclear Information System (INIS)

    Yang, J.M.; Li, C.S.

    1996-01-01

    Taking into account the mixing effects between left- and right-handed top squarks, we calculate the genuine supersymmetric electroweak correction to top-quark production at the Fermilab Tevatron in the minimal supersymmetric model. The analytic expressions of the corrections to both the parton level cross section and the total hadronic cross section are presented. Some numerical examples are also given to show the size of the corrections. copyright 1996 The American Physical Society

  20. The role of electroweak penguin and magnetic dipole QCD penguin on hadronic b Quark Decays

    Directory of Open Access Journals (Sweden)

    H Mehrban

    2010-03-01

    Full Text Available This research, works with the effective Hamiltonian and the quark model. Using, the decay rates of matter-antimatter of b quark was investigated. We described the effective Hamiltonian theory which was applied to the calculation of current-current (Q1,2, QCD penguin (Q3,…,6, magnetic dipole (Q8 and electroweak penguin (Q7,…,10 decay rates. The gluonic penguin structure of hadronic decays b→qkg→qkqiqj was studied through the Wilson coefficients of the effective Hamiltonian. The branching ratios of the Tree-Level, effective Hamiltonian, effective Hamiltonian including electroweak penguin, effective Hamiltonian including magnetic dipole and the effective Hamiltonian including electroweak penguin and magnetic dipole b quark decays b→qiqkqj, qi{u,c}, qk{d,s}, qj{u,c} have been calculated. It was shown that, the electroweak penguin and magnetic dipole contributions in b quark decays are small and current-current operators are dominated.

  1. Top Quark Pair Production in Association with a Jet with Next-to-Leading-Order QCD Off-Shell Effects at the Large Hadron Collider.

    Science.gov (United States)

    Bevilacqua, G; Hartanto, H B; Kraus, M; Worek, M

    2016-02-05

    We present a complete description of top quark pair production in association with a jet in the dilepton channel. Our calculation is accurate to next-to-leading order (NLO) in QCD and includes all nonresonant diagrams, interferences, and off-shell effects of the top quark. Moreover, nonresonant and off-shell effects due to the finite W gauge boson width are taken into account. This calculation constitutes the first fully realistic NLO computation for top quark pair production with a final state jet in hadronic collisions. Numerical results for differential distributions as well as total cross sections are presented for the Large Hadron Collider at 8 TeV. With our inclusive cuts, NLO predictions reduce the unphysical scale dependence by more than a factor of 3 and lower the total rate by about 13% compared to leading-order QCD predictions. In addition, the size of the top quark off-shell effects is estimated to be below 2%.

  2. Higgs boson pair production at NNLO with top quark mass effects

    Science.gov (United States)

    Grazzini, M.; Heinrich, G.; Jones, S.; Kallweit, S.; Kerner, M.; Lindert, J. M.; Mazzitelli, J.

    2018-05-01

    We consider QCD radiative corrections to Higgs boson pair production through gluon fusion in proton collisions. We combine the exact next-to-leading order (NLO) contribution, which features two-loop virtual amplitudes with the full dependence on the top quark mass M t , with the next-to-next-to-leading order (NNLO) corrections computed in the large- M t approximation. The latter are improved with different reweighting techniques in order to account for finite- M t effects beyond NLO. Our reference NNLO result is obtained by combining one-loop double-real corrections with full M t dependence with suitably reweighted real-virtual and double-virtual contributions evaluated in the large- M t approximation. We present predictions for inclusive cross sections in pp collisions at √{s} = 13, 14, 27 and 100 TeV and we discuss their uncertainties due to missing M t effects. Our approximated NNLO corrections increase the NLO result by an amount ranging from +12% at √{s}=13 TeV to +7% at √{s}=100 TeV, and the residual uncertainty of the inclusive cross section from missing M t effects is estimated to be at the few percent level. Our calculation is fully differential in the Higgs boson pair and the associated jet activity: we also present predictions for various differential distributions at √{s}=14 and 100 TeV, and discuss the size of the missing M t effects, which can be larger, especially in the tails of certain observables. Our results represent the most advanced perturbative prediction available to date for this process.

  3. Broken superfluid in dense quark matter

    Energy Technology Data Exchange (ETDEWEB)

    Parganlija, Denis; Schmitt, Andreas [Institut fuer Theoretische Physik, Technische Universitaet Wien, 1040 Vienna (Austria); Alford, Mark [Department of Physics, Washington University St Louis, MO, 63130 (United States)

    2014-07-01

    Quark matter at high densities is a superfluid. Properties of the superfluid become highly non-trivial if the effects of strange-quark mass and the weak interactions are considered. These properties are relevant for a microscopic description of compact stars. We discuss the effect of a (small) explicitly symmetry-breaking term on the properties of a zero-temperature superfluid in a relativistic φ{sup 4} theory. If the U(1) symmetry is exact, chemical potential and superflow can be equivalently introduced either via (1) a background gauge field or (2) a topologically nontrivial mode. However, in the case of the explicitly broken symmetry, we demonstrate that the scenarios (1) and (2) lead to quantitatively different results for the mass of the pseudo-Goldstone mode and the critical velocity for superfluidity.

  4. Effects of the d-state quarks on the nucleon electric form factors

    International Nuclear Information System (INIS)

    Oh, Y.J.; Kong, K.J.; Cheon, I.T.

    1987-11-01

    Considering the d-orbital excitation of a quark in the bag, we calculate the nucleon electric form factors in the cloudy bag model. In these calculations, we have taken into account the πNN, πΔN and πγ form factors though neglecting the c.m. correction. It turns out that the neutron charge form factor is very sensitive to the d-state quark admixture in the overall region of the momentum transfer but the proton charge form factor remains unchanged. Taking the d-state quark admixture in the intermediate state baryons, we can obtain the nucleon rms radii in remarkable agreement with the experimental values. We also investigate the roles of Δ particles in the nucleon charge form factors. (author). 20 refs, 10 figs

  5. Bottom-quark effects in Higgs production at intermediate transverse momentum arXiv

    CERN Document Server

    Caola, Fabrizio; Melnikov, Kirill; Monni, Pier Francesco; Tancredi, Lorenzo; Wever, Christopher

    We provide a precise description of the Higgs boson transverse momentum distribution including top and bottom quark contributions, that is valid for transverse momenta in the range mb < pt < mt, where mb and mt are the bottom and top quark masses. This description is based on a combination of fixed next-to-leading order (NLO) results with next-to-next-to-leading logarithmic (NNLL) transverse momentum resummation. We show that ambiguities in the resummation procedure for the b-quark loops are of the same order as the related fixed-order uncertainties. We conclude that the current uncertainty in the top-bottom interference contribution to the Higgs transverse momentum spectrum is O(20%).

  6. Heavy quarks - experimental

    International Nuclear Information System (INIS)

    Hollebeek, R.

    1990-01-01

    The purpose of these lectures, given at the 1989 SLAC Summer School, was to discuss the experimental aspects of heavy quark production. A companion set of lectures on the theoretical point of view were to be given by Keith Ellis. An experimentalist should gather together the measurements which have been made by various groups, compare, contrast and tabulate them, and if possible point out the ways in which these measurements confirm or contradict current theories. Here the authors has tried to do this, although the reader who expects to find here the latest of all experimental measurements should probably be forewarned that the field is moving extremely rapidly. In some cases, he has added and updated materials where crucial new information became available after or during the summer of 1989, but not in all cases. He has concentrated on trying to select those measurements which are at the moment most crucial in refining our understanding of heavy quarks as opposed to those which merely measure things which are perhaps too complicated to be enlightening at the moment. While theorists worry primarily about production mechanisms, cross sections, QCD corrections, and to some extent about signatures, the experimentalist must determine which measurements he is interested in making, and which signatures for heavy quark production are realistic and likely to produce results which will shed some new light on the underlying production model without undo theoretical complications. Experimentalists also need to evaluate the available experimental equipment, both machines and detectors to find the best way to investigate the properties of heavy quarks. In many cases, the things which we would like to measure are severely restricted by what we can measure. Nevertheless, many properties of heavy quark production and decay can be measured, and the results have already taught us much about the weak interactions and QCD

  7. From hadrons to quarks in neutron stars: a review

    Science.gov (United States)

    Baym, Gordon; Hatsuda, Tetsuo; Kojo, Toru; Powell, Philip D.; Song, Yifan; Takatsuka, Tatsuyuki

    2018-05-01

    In recent years our understanding of neutron stars has advanced remarkably, thanks to research converging from many directions. The importance of understanding neutron star behavior and structure has been underlined by the recent direct detection of gravitational radiation from merging neutron stars. The clean identification of several heavy neutron stars, of order two solar masses, challenges our current understanding of how dense matter can be sufficiently stiff to support such a mass against gravitational collapse. Programs underway to determine simultaneously the mass and radius of neutron stars will continue to constrain and inform theories of neutron star interiors. At the same time, an emerging understanding in quantum chromodynamics (QCD) of how nuclear matter can evolve into deconfined quark matter at high baryon densities is leading to advances in understanding the equation of state of the matter under the extreme conditions in neutron star interiors. We review here the equation of state of matter in neutron stars from the solid crust through the liquid nuclear matter interior to the quark regime at higher densities. We focus in detail on the question of how quark matter appears in neutron stars, and how it affects the equation of state. After discussing the crust and liquid nuclear matter in the core we briefly review aspects of microscopic quark physics relevant to neutron stars, and quark models of dense matter based on the Nambu–Jona–Lasinio framework, in which gluonic processes are replaced by effective quark interactions. We turn then to describing equations of state useful for interpretation of both electromagnetic and gravitational observations, reviewing the emerging picture of hadron-quark continuity in which hadronic matter turns relatively smoothly, with at most only a weak first order transition, into quark matter with increasing density. We review construction of unified equations of state that interpolate between the reasonably well

  8. Effects of renormalizing the chiral SU(2) quark-meson model

    Science.gov (United States)

    Zacchi, Andreas; Schaffner-Bielich, Jürgen

    2018-04-01

    We investigate the restoration of chiral symmetry at finite temperature in the SU(2) quark-meson model, where the mean field approximation is compared to the renormalized version for quarks and mesons. In a combined approach at finite temperature, all the renormalized versions show a crossover transition. The inclusion of different renormalization scales leave the order parameter and the mass spectra nearly untouched but strongly influence the thermodynamics at low temperatures and around the phase transition. We find unphysical results for the renormalized version of mesons and the combined one.

  9. QCD in heavy quark production and decay

    International Nuclear Information System (INIS)

    Wiss, J.

    1997-01-01

    The author discusses how QCD is used to understand the physics of heavy quark production and decay dynamics. His discussion of production dynamics primarily concentrates on charm photoproduction data which are compared to perturbative QCD calculations which incorporate fragmentation effects. He begins his discussion of heavy quark decay by reviewing data on charm and beauty lifetimes. Present data on fully leptonic and semileptonic charm decay are then reviewed. Measurements of the hadronic weak current form factors are compared to the nonperturbative QCD-based predictions of Lattice Gauge Theories. He next discusses polarization phenomena present in charmed baryon decay. Heavy Quark Effective Theory predicts that the daughter baryon will recoil from the charmed parent with nearly 100% left-handed polarization, which is in excellent agreement with present data. He concludes by discussing nonleptonic charm decay which is traditionally analyzed in a factorization framework applicable to two-body and quasi-two-body nonleptonic decays. This discussion emphasizes the important role of final state interactions in influencing both the observed decay width of various two-body final states as well as modifying the interference between interfering resonance channels which contribute to specific multibody decays. 50 refs., 77 figs

  10. QCD in heavy quark production and decay

    Energy Technology Data Exchange (ETDEWEB)

    Wiss, J. [Univ. of Illinois, Urbana, IL (United States)

    1997-06-01

    The author discusses how QCD is used to understand the physics of heavy quark production and decay dynamics. His discussion of production dynamics primarily concentrates on charm photoproduction data which are compared to perturbative QCD calculations which incorporate fragmentation effects. He begins his discussion of heavy quark decay by reviewing data on charm and beauty lifetimes. Present data on fully leptonic and semileptonic charm decay are then reviewed. Measurements of the hadronic weak current form factors are compared to the nonperturbative QCD-based predictions of Lattice Gauge Theories. He next discusses polarization phenomena present in charmed baryon decay. Heavy Quark Effective Theory predicts that the daughter baryon will recoil from the charmed parent with nearly 100% left-handed polarization, which is in excellent agreement with present data. He concludes by discussing nonleptonic charm decay which is traditionally analyzed in a factorization framework applicable to two-body and quasi-two-body nonleptonic decays. This discussion emphasizes the important role of final state interactions in influencing both the observed decay width of various two-body final states as well as modifying the interference between interfering resonance channels which contribute to specific multibody decays. 50 refs., 77 figs.

  11. Continuum strong-coupling expansion of Yang-Mills theory: quark confinement and infra-red slavery

    International Nuclear Information System (INIS)

    Mansfield, P.

    1994-01-01

    We solve Schroedinger's equation for the ground-state of four-dimensional Yang-Mills theory as an expansion in inverse powers of the coupling. Expectation values computed with the leading-order approximation are reduced to a calculation in two-dimensional Yang-Mills theory which is known to confine. Consequently the Wilson loop in the four-dimensional theory obeys an area law to leading order and the coupling becomes infinite as the mass scale goes to zero. (orig.)

  12. Effective field theory dimensional regularization

    International Nuclear Information System (INIS)

    Lehmann, Dirk; Prezeau, Gary

    2002-01-01

    A Lorentz-covariant regularization scheme for effective field theories with an arbitrary number of propagating heavy and light particles is given. This regularization scheme leaves the low-energy analytic structure of Greens functions intact and preserves all the symmetries of the underlying Lagrangian. The power divergences of regularized loop integrals are controlled by the low-energy kinematic variables. Simple diagrammatic rules are derived for the regularization of arbitrary one-loop graphs and the generalization to higher loops is discussed

  13. Effective field theory dimensional regularization

    Science.gov (United States)

    Lehmann, Dirk; Prézeau, Gary

    2002-01-01

    A Lorentz-covariant regularization scheme for effective field theories with an arbitrary number of propagating heavy and light particles is given. This regularization scheme leaves the low-energy analytic structure of Greens functions intact and preserves all the symmetries of the underlying Lagrangian. The power divergences of regularized loop integrals are controlled by the low-energy kinematic variables. Simple diagrammatic rules are derived for the regularization of arbitrary one-loop graphs and the generalization to higher loops is discussed.

  14. Quark mass variation constraints from Big Bang nucleosynthesis

    International Nuclear Information System (INIS)

    Bedaque, Paulo F.; Luu, Thomas; Platter, Lucas

    2011-01-01

    We study the impact on the primordial abundances of light elements created by a variation of the quark masses at the time of Big Bang nucleosynthesis (BBN). In order to navigate through the particle and nuclear physics required to connect quark masses to binding energies and reaction rates in a model-independent way, we use lattice QCD data and a hierarchy of effective field theories. We find that the measured 4 He abundances put a bound of -1% q /m q q /m q .

  15. Energy loss effects on heavy quark production in heavy-ion collisions at sq root s = 5.5 A TeV

    CERN Document Server

    Lin Zi Wei

    1999-01-01

    We study the effect of energy loss on charm and bottom quarks in high-energy heavy-ion collisions including hadronization, longitudinal expansion and partial thermalization. We consider in detail the detector geometry and single lepton energy cuts of the ALICE and CMS detectors at the Large Hadron Collider (LHC) to show the large suppression of high P sub T heavy quarks and the consequences on their semileptonic decays.

  16. Properties of the Top Quark

    Energy Technology Data Exchange (ETDEWEB)

    Wicke, Daniel; /Wuppertal U., Dept. Math.

    2009-08-01

    The aim of particle physics is the understanding of elementary particles and their interactions. The current theory of elementary particle physics, the Standard Model, contains twelve different types of fermions which (neglecting gravity) interact through the gauge bosons of three forces. In addition a scalar particle, the Higgs boson, is needed for theoretical consistency. These few building blocks explain all experimental results found in the context of particle physics, so far. Nevertheless, it is believed that the Standard Model is only an approximation to a more complete theory. First of all the fourth known force, gravity, has withstood all attempts to be included until now. Furthermore, the Standard Model describes several features of the elementary particles like the existence of three families of fermions or the quantisation of charges, but does not explain these properties from underlying principles. Finally, the lightness of the Higgs boson needed to explain the symmetry breaking is difficult to maintain in the presence of expected corrections from gravity at high scales. This is the so called hierarchy problem. In addition astrophysical results indicate that the universe consists only to a very small fraction of matter described by the Standard Model. Large fractions of dark energy and dark matter are needed to describe the observations. Both do not have any correspondence in the Standard Model. Also the very small asymmetry between matter and anti-matter that results in the observed universe built of matter (and not of anti-matter) cannot be explained until now. It is thus an important task of experimental particle physics to test the predictions of the Standard Model to the best possible accuracy and to search for deviations pointing to necessary extensions or modifications of our current theoretical understanding. The top quark was predicted to exist by the Standard Model as the partner of the bottom quark. It was first observed in 1995 by the

  17. Properties of the Top Quark

    International Nuclear Information System (INIS)

    Wicke, Daniel

    2009-01-01

    The aim of particle physics is the understanding of elementary particles and their interactions. The current theory of elementary particle physics, the Standard Model, contains twelve different types of fermions which (neglecting gravity) interact through the gauge bosons of three forces. In addition a scalar particle, the Higgs boson, is needed for theoretical consistency. These few building blocks explain all experimental results found in the context of particle physics, so far. Nevertheless, it is believed that the Standard Model is only an approximation to a more complete theory. First of all the fourth known force, gravity, has withstood all attempts to be included until now. Furthermore, the Standard Model describes several features of the elementary particles like the existence of three families of fermions or the quantisation of charges, but does not explain these properties from underlying principles. Finally, the lightness of the Higgs boson needed to explain the symmetry breaking is difficult to maintain in the presence of expected corrections from gravity at high scales. This is the so called hierarchy problem. In addition astrophysical results indicate that the universe consists only to a very small fraction of matter described by the Standard Model. Large fractions of dark energy and dark matter are needed to describe the observations. Both do not have any correspondence in the Standard Model. Also the very small asymmetry between matter and anti-matter that results in the observed universe built of matter (and not of anti-matter) cannot be explained until now. It is thus an important task of experimental particle physics to test the predictions of the Standard Model to the best possible accuracy and to search for deviations pointing to necessary extensions or modifications of our current theoretical understanding. The top quark was predicted to exist by the Standard Model as the partner of the bottom quark. It was first observed in 1995 by the

  18. Pion electromagnetic polarizabilities and quarks

    International Nuclear Information System (INIS)

    Llanta, E.; Tarrach, R.

    1980-01-01

    The electric and magnetic polarizabilities of the neutral and charged pion are calculated in a coloured quark field theory at the one-loop level. The theory has as free parameter the quark mass but our results do not depend on it. We have found that the electric polarizabilities are αsub(π+-) = -0.04 α/m 3 sub(π), αsub(π 0 ) = -0.4 α/m 3 sub(π). These values are compared with calculations in other models and some comments are made about the polarizability sum rules. (orig.)

  19. Exploiting finite-size-effects to simulate full QCD with light quarks - a progress report

    International Nuclear Information System (INIS)

    Orth, B.; Eicker, N.; Lippert, Th.; Schilling, K.; Schroers, W.; Sroczynski, Z.

    2002-01-01

    We present a report on the status of the GRAL project (Going Realistic And Light), which aims at simulating full QCD with two dynamical Wilson quarks below the vector meson decay threshold, m ps /m v < 0.5, making use of finite-size-scaling techniques

  20. The Nonlinear Effects of Pion-Quark Coupling in the Cloudy Bag Model

    OpenAIRE

    Yasuhiko, FUTAMI; Satoru, AKIYAMA; Department of Physics, Faculty of Science and Technology Science University of Tokyo; Department of Physics, Faculty of Science and Technology Science University of Tokyo

    1990-01-01

    The nonlinear pion-quark interaction in the Cloudy Bag Model is investigated. The Hamiltonian is normal-ordered. The vacuum expectation value of pion field squared is evaluated by introducting some cutoff momentum for the virtual pions.We then calculate g_A, including other corrections.

  1. The nonlinear effects of pion-quark coupling in the Cloudy Bag Model

    International Nuclear Information System (INIS)

    Futami, Yasuhiko; Akiyama, Satoru

    1990-01-01

    The nonlinear pion-quark interaction in the Cloudy Bag Model is investigated. The Hamiltonian is normal-ordered. The vacuum expectation value of pion field squared is evaluated by introducing some cutoff momentum for the virtual pions. We then calculate g A , including other corrections. (author)

  2. Dynamical quark and gluon condensates from a modified perturbative QCD

    International Nuclear Information System (INIS)

    Cabo Montes de Oca, A.; Martinez Pedrera, D.

    2004-12-01

    As it was suggested by previous works on a modified perturbation expansion for QCD, the possibility for the generation of large quark condensates in the massless version of the theory is explored. For this purpose, it is firstly presented a way to well define the Feynman diagrams at any number of loops by just employing dimensional regularization. After that, the calculated zero and one loop corrections to the effective potential indicate a strong instability of the system under the generation of quark condensates even in the absence of the gluon one. The quark condensate dependence of particular two loop terms does not modify the instability picture arising at one loop. The results suggest a possible mechanism for a sort of Top Condensate Model to be a dynamically fixed effective action for massless QCD. The inability of lattice calculations in detecting this possibility could be related to the current limitations in treating the fermion determinants. (author)

  3. Quark mass variation constraints from Big Bang nucleosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Bedaque, P; Luu, T; Platter, L

    2010-12-13

    We study the impact on the primordial abundances of light elements created of a variation of the quark masses at the time of Big Bang nucleosynthesis (BBN). In order to navigate through the particle and nuclear physics required to connect quark masses to binding energies and reaction rates in a model-independent way we use lattice QCD data and an hierarchy of effective field theories. We find that the measured {sup 4}He abundances put a bound of {delta}-1% {approx}< m{sub q}/m{sub 1} {approx}< 0.7%. The effect of quark mass variations on the deuterium abundances can be largely compensated by changes of the baryon-to-photon ratio {eta}. Including the bounds on the variation of {eta} coming from WMAP results and some additional assumptions narrows the range of allowed values of {delta}m{sub q}/m{sub q} somewhat.

  4. Continuum strong-coupling expansion of Yang-Mills theory: quark confinement and infra-red slavery

    Energy Technology Data Exchange (ETDEWEB)

    Mansfield, P. (Dept. of Mathematical Sciences, Univ. of Durham (United Kingdom))

    1994-04-25

    We solve Schroedinger's equation for the ground-state of four-dimensional Yang-Mills theory as an expansion in inverse powers of the coupling. Expectation values computed with the leading-order approximation are reduced to a calculation in two-dimensional Yang-Mills theory which is known to confine. Consequently the Wilson loop in the four-dimensional theory obeys an area law to leading order and the coupling becomes infinite as the mass scale goes to zero. (orig.)

  5. Continuum strong-coupling expansion of Yang-Mills theory: quark confinement and infra-red slavery

    Science.gov (United States)

    Mansfield, Paul

    1994-04-01

    We solve Schrödinger's equation for the ground-state of four-dimensional Yang-Mills theory as an expansion in inverse powers of the coupling. Expectation values computed with the leading-order approximation are reduced to a calculation in two-dimensional Yang-Mills theory which is known to confine. Consequently the Wilson loop in the four-dimensional theory obeys an area law to leading order and the coupling becomes infinite as the mass scale goes to zero.

  6. On the quark-mass dependence of baryon ground-state masses

    International Nuclear Information System (INIS)

    Semke, Alexander

    2010-01-01

    Baryon masses of the flavour SU(3) octet and decuplet baryons are calculated in the framework of the Chiral Perturbations Theory - the effective field theory of the strong interaction. The chiral extrapolation to the higher meson (quark) masses is carried out. The comparison with the recent results on the baryon masses from lattice calculations are presented. (orig.)

  7. On the quark-mass dependence of baryon ground-state masses

    Energy Technology Data Exchange (ETDEWEB)

    Semke, Alexander

    2010-02-17

    Baryon masses of the flavour SU(3) octet and decuplet baryons are calculated in the framework of the Chiral Perturbations Theory - the effective field theory of the strong interaction. The chiral extrapolation to the higher meson (quark) masses is carried out. The comparison with the recent results on the baryon masses from lattice calculations are presented. (orig.)

  8. M{sub b} and f{sub B} from non-perturbatively renormalized HQET with N{sub f} = 2 light quarks

    Energy Technology Data Exchange (ETDEWEB)

    Blossier, Benoit [CNRS et Univ. Paris-Sud XI, Orsay (France). Lab. de Physique Theorique; Bulava, John [CERN, Geneva (Switzerland). Physics Dept.; Della Morte, Michele; Hippel, Georg von [Mainz Univ. (Germany). Inst. fuer Kernphysik; Donnellan, Michael; Simma, Hubert; Sommer, Rainer [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). NIC; Fritzsch, Patrick [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Garron, Nicolas [Edinburgh Univ. (United Kingdom). Tait Inst.; Heitger, Jochen [Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1

    2011-12-15

    We present an updated analysis of the non-perturbatively renormalized b-quark mass and B meson decay constant based on CLS lattices with two dynamical non-perturbatively improved Wilson quarks. This update incorporates additional light quark masses and lattice spacings in large physical volume to improve chiral extrapolations and to reach the continuum limit. We use Heavy Quark Effective Theory (HQET) including 1/m{sub b} terms with non-perturbative coefficients based on the matching of QCD and HQET developed by the ALPHA collaboration during the past years. (orig.)

  9. Chiral dynamics of baryons in the perturbative chiral quark model

    Energy Technology Data Exchange (ETDEWEB)

    Pumsa-ard, K.

    2006-07-01

    In this work we develop and apply variants of a perturbative chiral quark model (PCQM) to the study of baryonic properties dominantly in the low-energy region. In a first step we consider a noncovariant form of the PCQM, where confinement is modelled by a static, effective potential and chiral corrections are treated to second order, in line with similar chiral quark models. We apply the PCQM to the study of the electromagnetic form factors of the baryon octet. We focus in particular on the low-energy observables such as the magnetic moments, the charge and magnetic radii. In addition, the electromagnetic N-delta transition is also studied in the framework of the PCQM. In the chiral loop calculations we consider a quark propagator, which is restricted to the quark ground state, or in hadronic language to nucleon and delta intermediate states, for simplicity. We furthermore include the low-lying excited states to the quark propagator. In particular, the charge radius of the neutron and the transverse helicity amplitudes of the N-delta transition are considerably improved by this additional effect. In a next step we develop a manifestly Lorentz covariant version of the PCQM, where in addition higher order chiral corrections are included. The full chiral quark Lagrangian is motivated by and in analogy to the one of Chiral Perturbation Theory (ChPT). This Lagrangian contains a set of low energy constants (LECs), which are parameters encoding short distance effects and heavy degrees of freedom. We evaluate the chiral Lagrangian to order O(p{sup 4}) and to one loop to generate the dressing of the bare quark operators by pseudoscalar mesons. In addition we include the vector meson degrees of freedom in our study. Projection of the dressed quark operators on the baryonic level serves to calculate the relevant matrix elements. In a first application of this scheme, we resort to a parameterization of the valence quark form factors in the electromagnetic sector. Constraints

  10. Weak interactions, quark masses and spontaneous violation of parity

    International Nuclear Information System (INIS)

    Kingsley, R.L.

    1976-09-01

    A six quark model is discussed for the weak interactions of hadrons in which parity is violated spontaneously in an SU(2) x U(1) gauge theory. Quarks with very small masses are required and their weak interactions approximate those of the Weinberg-Salam model. Suppression of strangeness-changing neutral currents requires at least seven quarks. (author)

  11. Quark bags

    International Nuclear Information System (INIS)

    Kerman, A.K.

    1981-01-01

    This short talk gives some very general comments on what I see as the impact on nuclear physics of the last ten years' developments in the picture of the nucleon and the hadron. On the other hand there may also be some nuclear physics lessons - lessons we've learned by trying to deal with the multi-fermion system over a long period - and I will discuss what those lessons might be for the problem at hand, hadron phy-physics up to 31 GeV. After that I will discuss a number of implications of quarks for low energy physics

  12. Quark and lepton masses at the GUT scale including supersymmetric threshold corrections

    International Nuclear Information System (INIS)

    Antusch, S.; Spinrath, M.

    2008-01-01

    We investigate the effect of supersymmetric (SUSY) threshold corrections on the values of the running quark and charged lepton masses at the grand unified theory (GUT) scale within the large tanβ regime of the minimal supersymmetric standard model. In addition to the typically dominant SUSY QCD contributions for the quarks, we also include the electroweak contributions for quarks and leptons and show that they can have significant effects. We provide the GUT scale ranges of quark and charged lepton Yukawa couplings as well as of the ratios m μ /m s , m e /m d , y τ /y b and y t /y b for three example ranges of SUSY parameters. We discuss how the enlarged ranges due to threshold effects might open up new possibilities for constructing GUT models of fermion masses and mixings.

  13. Thermo-magnetic effects in quark matter: Nambu-Jona-Lasinio model constrained by lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Farias, Ricardo L.S. [Universidade Federal de Santa Maria, Departamento de Fisica, Santa Maria, RS (Brazil); Kent State University, Physics Department, Kent, OH (United States); Timoteo, Varese S. [Universidade Estadual de Campinas (UNICAMP), Grupo de Optica e Modelagem Numerica (GOMNI), Faculdade de Tecnologia, Limeira, SP (Brazil); Avancini, Sidney S.; Pinto, Marcus B. [Universidade Federal de Santa Catarina, Departamento de Fisica, Florianopolis, Santa Catarina (Brazil); Krein, Gastao [Universidade Estadual Paulista, Instituto de Fisica Teorica, Sao Paulo, SP (Brazil)

    2017-05-15

    The phenomenon of inverse magnetic catalysis of chiral symmetry in QCD predicted by lattice simulations can be reproduced within the Nambu-Jona-Lasinio model if the coupling G of the model decreases with the strength B of the magnetic field and temperature T. The thermo-magnetic dependence of G(B, T) is obtained by fitting recent lattice QCD predictions for the chiral transition order parameter. Different thermodynamic quantities of magnetized quark matter evaluated with G(B, T) are compared with the ones obtained at constant coupling, G. The model with G(B, T) predicts a more dramatic chiral transition as the field intensity increases. In addition, the pressure and magnetization always increase with B for a given temperature. Being parametrized by four magnetic-field-dependent coefficients and having a rather simple exponential thermal dependence our accurate ansatz for the coupling constant can be easily implemented to improve typical model applications to magnetized quark matter. (orig.)

  14. Effects of Higgs sector CP violation in top-quark pair production at the LHC

    CERN Document Server

    Bernreuther, W; Flesch, M

    1998-01-01

    A striking manifestation of CP violation in the electroweak symmetry breaking sector would be the existence of neutral Higgs boson(s) with undefined CP parity. We analyse signatures of such a boson, with a mass of about 300 GeV or larger, produced in high energy proton-proton collisions at LHC energies in its top-quark antitop-quark decay channel. The large irreducible $t\\bar t$ background is taken into account. We propose, both for the dilepton and the lepton + jets decay channels of $t\\bar t$, several correlations and asymmetries with which (Higgs sector) CP violation can be traced. We show that for judiciously chosen cuts on the $t\\bar t$ invariant mass these CP observables yield, for an LHC integrated luminosity of 100 $\\rm{fb}^{-1}$, statistically significant signals for a range of Higgs boson masses and Yukawa couplings.

  15. Constituent quarks as clusters in quark-gluon-parton model. [Total cross sections, probability distributions

    Energy Technology Data Exchange (ETDEWEB)

    Kanki, T [Osaka Univ., Toyonaka (Japan). Coll. of General Education

    1976-12-01

    We present a quark-gluon-parton model in which quark-partons and gluons make clusters corresponding to two or three constituent quarks (or anti-quarks) in the meson or in the baryon, respectively. We explicitly construct the constituent quark state (cluster), by employing the Kuti-Weisskopf theory and by requiring the scaling. The quark additivity of the hadronic total cross sections and the quark counting rules on the threshold powers of various distributions are satisfied. For small x (Feynman fraction), it is shown that the constituent quarks and quark-partons have quite different probability distributions. We apply our model to hadron-hadron inclusive reactions, and clarify that the fragmentation and the diffractive processes relate to the constituent quark distributions, while the processes in or near the central region are controlled by the quark-partons. Our model gives the reasonable interpretation for the experimental data and much improves the usual ''constituent interchange model'' result near and in the central region (x asymptotically equals x sub(T) asymptotically equals 0).

  16. A diquark model for baryons containing one heavy quark

    International Nuclear Information System (INIS)

    Ebert, D.; Feldmann, T.; Kettner, C.; Reinhardt, H.

    1995-06-01

    We present a phenomenological ansatz for coupling a heavy quark with two light quarks to form a heavy baryon. The heavy quark is treated in the heavy mass limit, and the light quark dynamics is approximated by propagating scalar and axial vector 'diquarks'. The resulting effective lagrangian, which incorporates heavy quark and chiral symmetry, describes interactions of heavy baryons with Goldstone bosons in the low energy region. As an application, the Isgur-Wise formfactors are estimated. (orig.)

  17. arXiv Chiral Effective Theory of Dark Matter Direct Detection

    CERN Document Server

    Bishara, Fady

    2017-02-03

    We present the effective field theory for dark matter interactions with the visible sector that is valid at scales of O(1 GeV). Starting with an effective theory describing the interactions of fermionic and scalar dark matter with quarks, gluons and photons via higher dimension operators that would arise from dimension-five and dimension-six operators above electroweak scale, we perform a nonperturbative matching onto a heavy baryon chiral perturbation theory that describes dark matter interactions with light mesons and nucleons. This is then used to obtain the coefficients of the nuclear response functions using a chiral effective theory description of nuclear forces. Our results consistently keep the leading contributions in chiral counting for each of the initial Wilson coefficients.

  18. Effective Field Theory on Manifolds with Boundary

    Science.gov (United States)

    Albert, Benjamin I.

    In the monograph Renormalization and Effective Field Theory, Costello made two major advances in rigorous quantum field theory. Firstly, he gave an inductive position space renormalization procedure for constructing an effective field theory that is based on heat kernel regularization of the propagator. Secondly, he gave a rigorous formulation of quantum gauge theory within effective field theory that makes use of the BV formalism. In this work, we extend Costello's renormalization procedure to a class of manifolds with boundary and make preliminary steps towards extending his formulation of gauge theory to manifolds with boundary. In addition, we reorganize the presentation of the preexisting material, filling in details and strengthening the results.

  19. Non-leptonic decays in an extended chiral quark model

    Energy Technology Data Exchange (ETDEWEB)

    Eeg, J. O. [Dept. of Physics, Univ. of Oslo, P.O. Box 1048 Blindern, N-0316 Oslo (Norway)

    2012-10-23

    We consider the color suppressed (nonfactorizable) amplitude for the decay mode B{sub d}{sup 0}{yields}{pi}{sup 0}{pi}{sup 0}. We treat the b-quark in the heavy quark limit and the energetic light (u,d,s) quarks within a variant of Large Energy Effective Theory combined with an extension of chiral quark models. Our calculated amplitude for B{sub d}{sup 0}{yields}{pi}{sup 0}{pi}{sup 0} is suppressed by a factor of order {Lambda}{sub QCD}/m{sub b} with respect to the factorized amplitude, as it should according to QCD-factorization. Further, for reasonable values of the (model dependent) gluon condensate and the constituent quark mass, the calculated nonfactorizable amplitude for B{sub d}{sup 0}{yields}{pi}{sup 0}{pi}{sup 0} can easily accomodate the experimental value. Unfortunately, the color suppressed amplitude is very sensitive to the values of these model dependent parameters. Therefore fine-tuning is necessary in order to obtain an amplitude compatible with the experimental result for B{sub d}{sup 0}{yields}{pi}{sup 0}{pi}{sup 0}.

  20. Wilsonian effective action of superstring theory

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Ashoke [Harish-Chandra Research Institute,Chhatnag Road, Jhusi, Allahabad 211019 (India); Homi Bhabha National Institute,Training School Complex, Anushakti Nagar, Mumbai 400085 (India)

    2017-01-25

    By integrating out the heavy fields in type II or heterotic string field theory one can construct the effective action for the light fields. This effective theory inherits all the algebraic structures of the parent theory and the effective action automatically satisfies the Batalin-Vilkovisky quantum master equation. This theory is manifestly ultraviolet finite, has only light fields as its explicit degrees of freedom, and the Feynman diagrams of this theory reproduce the exact scattering amplitudes of light states in string theory to any arbitrary order in perturbation theory. Furthermore in this theory the degrees of freedom of light fields above certain energy scale are also implicitly integrated out. This energy scale is determined by a particular parameter labelling a family of equivalent actions, and can be made arbitrarily low, leading to the interpretation of the effective action as the Wilsonian effective action.

  1. Effective actions for F-theory compactifications and tensor theories

    International Nuclear Information System (INIS)

    Bonetti, Federico

    2014-01-01

    In this thesis we study the low-energy effective dynamics emerging from a class of F-theory compactifications in four and six dimensions. We also investigate six-dimensional supersymmetric quantum field theories with self-dual tensors, motivated by the problem of describing the long-wavelength regime of a stack of M5-branes in M-theory. These setups share interesting common features. They both constitute examples of intrinsically non-perturbative physics. On the one hand, in the context of F-theory the non-perturbative character is encoded in the geometric formulation of this class of string vacua, which allows the complexified string coupling to vary in space. On the other hand, the dynamics of a stack of multiple M5-branes flows in the infrared to a novel kind of superconformal field theories in six dimensions - commonly referred to as (2,0) theories - that are expected to possess no perturbative weakly coupled regime and have resisted a complete understanding so far. In particular, no Lagrangian description is known for these models. The strategy we employ to address these two problems is also analogous. A recurring Leitmotif of our work is a transdimensional treatment of the system under examination: in order to extract information about dynamics in d dimensions we consider a (d-1)-dimensional setup. As far as F-theory compactifications are concerned, this is a consequence of the duality between M-theory and F-theory, which constitutes our main tool in the derivation of the effective action of F-theory compactifications. We apply it to six-dimensional F-theory vacua, obtained by taking the internal space to be an elliptically fibered Calabi-Yau threefold, but we also employ it to explore a novel kind of F-theory constructions in four dimensions based on manifolds with Spin(7) holonomy. With reference to six-dimensional (2,0) theories, the transdimensional character of our approach relies in the idea of studying these theories in five dimensions. Indeed, we

  2. Top-quark decay at next-to-next-to-leading order in QCD.

    Science.gov (United States)

    Gao, Jun; Li, Chong Sheng; Zhu, Hua Xing

    2013-01-25

    We present the complete calculation of the top-quark decay width at next-to-next-to-leading order in QCD, including next-to-leading electroweak corrections as well as finite bottom quark mass and W boson width effects. In particular, we also show the first results of the fully differential decay rates for the top-quark semileptonic decay t → W(+)(l(+)ν)b at next-to-next-to-leading order in QCD. Our method is based on the understanding of the invariant mass distribution of the final-state jet in the singular limit from effective field theory. Our result can be used to study arbitrary infrared-safe observables of top-quark decay with the highest perturbative accuracy.

  3. Heavy quark production and spectroscopy

    International Nuclear Information System (INIS)

    Appel, J.A.

    1993-11-01

    This review covers many new experimental results on heavy flavor production and spectroscopy. It also shows some of the increasingly improved theoretical understanding of results in light of basic perturbative QCD and heavy quark symmetry. At the same time, there are some remaining discrepancies among experiments as well as significant missing information on some of the anticipated lowest lying heavy quark states. Most interesting, perhaps, are some clearly measured production effects awaiting full explanation

  4. An introduction to effective field theory

    International Nuclear Information System (INIS)

    Donoghue, John F.

    1999-01-01

    In these lectures I describe the main ideas of effective field theory. These are first illustrated using QED and the linear sigma model as examples. Calculational techniques using both Feynman diagrams and dispersion relations are introduced. Within QCD, chiral perturbation theory is a complete effective field theory, and I give a guide to some calculations in the literature which illustrates key ideas. (author)

  5. In search of the quark-gluon plasma

    International Nuclear Information System (INIS)

    Schutz, Y.; Delagrange, H.

    2002-01-01

    This article describes in a very pedagogical manner the ultimate state of matter when quarks are no longer confined in hadrons. This state is called quark and gluon plasma, its existence is suspected through 4 facts: 1) a quark and gluon plasma that has just been created from a high energy ion-collision is mainly made up of light quarks (up and down), then this plasma should evolve towards other quarks (particularly strange quarks) because of the Pauli exclusion principle. This fact has been experimentally confirmed: at the CERN accelerator physicists have detected a higher production of strange hadrons when the energy of the collision increases; 2) some particles like ρ 0 mesons, that are made up of 2 quarks, are massively produced in ion collisions, their mass has been measured at the moment of the collision and later in the quark and gluon plasma, 2 different values have been found so it confirms the theory that predicts that free quarks have a mass that decreases as energy increases; 3) J/Ψ mesons are made up of a charmed quark combined with its anti-quark, physicists have noticed that less J/Ψ mesons are detected when the energy of the collision rises, this result agrees with the fact that in quark gluon plasma where quarks are free and of different colours and flavors, it is highly unlikely that a charmed quark combines with its anti-quark to form a J/Ψ meson; and 4) the theory of the formation of quark gluon plasma predicts that its electromagnetic radiation has a thermal radiation specificity, physicists have studied the radiation spectra emitted in the core of a ion collision, they have shown that it is a thermal radiation and that the temperature of the emitter corresponds to the temperature of a quark gluon plasma. (A.C.)

  6. Study of X(3872) from effective field theory with pion-exchange interaction.

    Science.gov (United States)

    Wang, P; Wang, X G

    2013-07-26

    We study DD[over ¯]* (D*D[over ¯]) scattering in the framework of unitarized heavy meson chiral perturbation theory with pion exchange and a contact interaction. 3S1-3D1 mixing effects are taken into account. A loosely bound state X(3872), with the pole position being Mpole}=(3871.70-i0.39)  MeV, is found. The result is not sensitive to the strength of the contact interaction. Our calculation provides a theoretical confirmation of the existence of the 1++ state X(3872). The light quark mass dependence of the pole position indicates it has a predominately DD[over ¯]* (D*D[over ¯]) molecular nature. When the π mass is larger than 142 MeV, the pole disappears, which makes impossible the lattice simulation of this state at large quark mass.

  7. Effective potentials in gauge field theories

    International Nuclear Information System (INIS)

    Caldas, P.S.S.; Fleming, H.; Garcia, R.L.

    An elementary and very efficient method for computing the effective potential of any theory containing scalar bosons is described. Examples include massless scalar electrodynamics and Yang-Mills theories [pt

  8. Semileptonic Decays of Heavy Omega Baryons in a Quark Model

    International Nuclear Information System (INIS)

    Muslema Pervin; Winston Roberts; Simon Capstick

    2006-01-01

    The semileptonic decays of (Omega) c and (Omega) b are treated in the framework of a constituent quark model developed in a previous paper on the semileptonic decays of heavy Λ baryons. Analytic results for the form factors for the decays to ground states and a number of excited states are evaluated. For (Omega) b to (Omega) c the form factors obtained are shown to satisfy the relations predicted at leading order in the heavy-quark effective theory at the non-recoil point. A modified fit of nonrelativistic and semirelativistic Hamiltonians generates configuration-mixed baryon wave functions from the known masses and the measured Λ c + → Λe + ν rate, with wave functions expanded in both harmonic oscillator and Sturmian bases. Decay rates of (Omega) b to pairs of ground and excited (Omega) c states related by heavy-quark symmetry calculated using these configuration-mixed wave functions are in the ratios expected from heavy-quark effective theory, to a good approximation. Our predictions for the semileptonic elastic branching fraction of (Omega) Q vary minimally within the models we use. We obtain an average value of (84 ± 2%) for the fraction of (Omega) c → Ξ (*) decays to ground states, and 91% for the fraction of (Omega) c → (Omega) (*) decays to the ground state (Omega). The elastic fraction of (Omega) b → (Omega) c ranges from about 50% calculated with the two harmonic-oscillator models, to about 67% calculated with the two Sturmian models

  9. Order αGsub(μ) corrections to the parity-violating electron-quark potential in the Weinberg-Salam theory: parity-violations in one-electron atoms

    International Nuclear Information System (INIS)

    Lynn, B.W.

    We have calculated the order αGsub(μ) corrections to the order Gsub(μ) parity-violating (PV) electron-quark potential Hsub(PV)sup(e-q) at q 2 =0 in the standard SU(2)sub(L) x U(1) theory using a renormalization scheme which has Msub(W), Msub(Z) and Msub(H) (Higgs' mass) as input parameters. We then use SU(3) relations to write an effective PV electron-nucleon potential Hsub(PV)sup(e-N) in terms of the dimensionless parameters Csub(1P), Csub(1N) (nuclear spin independent) Csub(2P), Csub(2N) (nuclear spin dependent) and Csub(3P), Csub(3N) (electron anomalous magnetic moment dependent). For ssub(theta) 2 identical to 1-Msub(W) 2 /Msub(Z) 2 approx.= .23 and small Higgs' mass Msub(H) or approx.1 TeV. Csub(3P), and Csub(3N) are first induced at one loop and are small. We show that Csub(2P) and Csub(2N) suffer from large uncertainties due to the strong interactions which make the theoretical interpretation of experiments designed to measure these quantities less clear than was previously thought. The other parameters are relatively free from strong interaction uncertainties. We review the diseases of the old 1934 four-fermion theory and give an overview of the renormalization of the Weinberg-Salam theory. We discuss the possibility of high-precision experiments in one-electron atoms to measure these radiative corrections and remind the reader of a previously proposed experiment in hydrogen or deuterium which will measure Csub(1P) or Csub(1P)+Csub(1N) respectively. (author)

  10. Second quantization approach to composite hadron interactions in quark models

    International Nuclear Information System (INIS)

    Hadjimichef, D.; Krein, G.; Veiga, J.S. da; Szpigel, S.

    1995-11-01

    Starting from the Fock space representation of hadron bound states in a quark model, a change of representation is implemented by a unitary transformation such that the composite hadrons are redescribed by elementary-particle field operators. Application of the unitary transformation to the microscopic quark Hamiltonian gives rise to effective hadron-hadron, hadron-quark, and quark-quark Hamiltonians. An effective baryon Hamiltonian is derived using a simple quark model. The baryon Hamiltonian is free of the post-prior discrepancy which usually plagues composite-particle effective interactions. (author). 13 refs., 1 fig

  11. Measuring the sea quark polarization

    International Nuclear Information System (INIS)

    Makdisi, Y.

    1993-01-01

    Spin is a fundamental degree of freedom and measuring the spin structure functions of the nucleon should be a basic endeavor for hadron physics. Polarization experiments have been the domain of fixed target experiments. Over the years large transverse asymmetries have been observed where the prevailing QCD theories predicted little or no asymmetries, and conversely the latest deep inelastic scattering experiments of polarized leptons from polarized targets point to the possibility that little of the nucleon spin is carried by the valence quarks. The possibility of colliding high luminosity polarized proton beams in the Brookhaven Relativistic Heavy Ion Collider (RHIC) provides a great opportunity to extend these studies and systematically probe the spin dependent parton distributions specially to those reactions that are inaccessible to current experiments. This presentation focuses on the measurement of sea quark and possibly the strange quark polarization utilizing the approved RHIC detectors

  12. Renormalization effects in the SU(16) maximally gauged theory

    International Nuclear Information System (INIS)

    Mahdavi-Hezaveh, E.

    1981-03-01

    In the context of a quark-lepton unified gauge theory, when fermionic degrees of freedom are maximally gauged, several intermediate mass scales filling the grand plateau, between 10 2 Gev. and the grand unifying mass scale, M, may exist. In particular, when renormalization effects are taken into account for the SU(16) ''maximal'' gauge symmetry, [in which lepton number is regarded as the fourth color quantum number], it turns out that two intermediate stages governed by the symmetries G 2 =SU(8)sub(I) S SU(8)sub(II) X U(1)sub(F) and G 3 =SU(2)sub(L) X XU(2)sub(R) X SU(4)sub(C) can naturally coexist if Sin 2 theta (Msub(W))>1/6+5/9(α(Msub(W)/αsub(S)(Msub(W)). It is shown that these symmetries break down at a mass scale of the order of Msub(X) approximately equal to 10 4 -10 5 Gev. If neutral current phenomenology (or any other experiment) predicts Sin 2 theta (Msub(W))>0.206, then quark-lepton unification and left-right symmetry simultaneously break down at M approximately equal to 10 4 Gev. (at which αsub(C)(Msub(X) approximately equal to 0.041). It is then argued that apart from proton decay, n-anti n oscillation and neutrinoless double β decay processes, an accurate experimental value of Sin 2 theta (Msub(W)), to α 10 -4 accuracy) plays a crucial role in determining the possible existence of such intermediate stages. (author)

  13. Flavour symmetry breaking and tuning the strange quark mass for 2+1 quark flavours

    Energy Technology Data Exchange (ETDEWEB)

    Bietenholz, W. [Universidad Autonoma de Mexico (Mexico). Inst. de Ciencias Nucleares; Bornyakov, V. [Institute for High Energy Physics, Protovino (Russian Federation); Institute of Theoretical and Experimental Physics, Moscow (Russian Federation); Goeckeler, M. [Regensburg Univ. (DE). Inst. fuer Theoretische Physik] (and others)

    2010-12-15

    QCD lattice simulations with 2+1 flavours typically start at rather large up-down and strange quark masses and extrapolate first the strange quark mass to its physical value and then the updown quark mass. An alternative method of tuning the quark masses is discussed here in which the singlet quark mass is kept fixed, which ensures that the kaon always has mass less than the physical kaon mass. Using group theory the possible quark mass polynomials for a Taylor expansion about the flavour symmetric line are found, which enables highly constrained fits to be used in the extrapolation of hadrons to the physical pion mass. Numerical results confirm the usefulness of this expansion and an extrapolation to the physical pion mass gives hadron mass values to within a few percent of their experimental values. (orig.)

  14. Effects of six-quark bags on the 1D2 NN partial wave and the question of dibaryon resonances

    International Nuclear Information System (INIS)

    Grach, I.L.; Kalashnikova, Yu.S.; Narodetskij, I.M.

    1986-01-01

    The coupled 1 D 2 (pp)- 5 S 0 (ΔN) channels are studied in a relativized version of the quark compound bag (QCB) model. The QCB model is a semiphenomenological model that incorporates the important role that the bag dynamics plays at small distances. In this model, the short-range hadron force is given by the energy-dependent and non-local potential and contains few parameters which are defined by the wave function of the six-quark primitive. It is suggested that this force is responsible for the appearance of the S-matrix pole of the dibaryon amplitude. The QCD short-range force is shown to reproduce an energy dependence of the 1 D 2 phase shift and inelasticity in the region T >or approx. 200 MeV. At small energy the effect of the long-range meson force is essential. The values of the QCD parameters found from the fit to the data are in good agreement with theoretical predictions for the MIT bag model

  15. Quarks and numerical simulation

    International Nuclear Information System (INIS)

    Weingarten, D.

    1996-01-01

    This work deals with the quantum chromodynamics and the theory of quarks's behaviour. The experimentation supports this theory but until now no computation have prove it. The resolution of the mathematic equations were far beyond the capability of human or the quickest computer of the seventies. A dedicated computer was built: the GF11. The mass of eight hadrons was computed in 91. In 95, a new particle was found by computation. The author explains the mathematical modeling of chromodynamics and the methods to solve it. It requires 10 17 arithmetic operations. So specific computer is needed. GF11 uses 566 processors in parallel. New machines hundred of times more efficient will be needed to go further. That will be a new tool for theorician physicists. (O.M.). 9 refs., 2 figs., 1 tab

  16. Effect of sea quarks on single-spin asymmetries ANW± in transversely polarized pp collisions at RHIC

    Science.gov (United States)

    Tian, Fang; Gong, Chang; Ma, Bo-Qiang

    2017-12-01

    We calculate the single-spin asymmetries ANW± of W± bosons produced in transversely polarized pp collisions with the valence part of the up (u) and down (d) quark Sivers functions treated by an available parametrization and the light-cone quark spectator-diquark model respectively, while the sea part Sivers functions of u and d quarks treated as parametrization. Comparing our results with those from experimental data at RHIC, we find that the Sivers functions of sea quarks play an important role in the determination of the shapes of ANW±. It is shown that ANW- is sensitive to u sea Sivers function, while ANW+ to d sea Sivers function intuitively. The results show that the contributions of u and d sea Sivers functions are rather sizable and of the same sign, and their signs agree with that of d valence quarks and are opposite to that of u valence quarks.

  17. Effective actions for gauge theories with Chern-Simons terms - I

    International Nuclear Information System (INIS)

    Bambah, B.A.; Mukku, C.

    1989-01-01

    The effective Lagrangian for a three-dimensional gauge theory with a Chern-Simons term is evaluated upto one-loop effects. It is shown to be completely finite. It also does not exhibit any imaginary part. The calculation is carried out in a background field analogue of the Feynman gauge and gauge invariance is maintained throughout the calculation. In an appendix an argument is presented as to why this Feynman gauge may be a 'good' gauge for our results to be applied to high temperature QCD and in particular to the quark-gluon plasma. (author). 12 refs

  18. Polarization in heavy quark decays

    Energy Technology Data Exchange (ETDEWEB)

    Alimujiang, K.

    2006-07-01

    In this thesis I concentrate on the angular correlations in top quark decays and their next.to.leading order (NLO) QCD corrections. I also discuss the leading.order (LO) angular correlations in unpolarized and polarized hyperon decays. In the first part of the thesis I calculate the angular correlation between the top quark spin and the momentum of decay products in the rest frame decay of a polarized top quark into a charged Higgs boson and a bottom quark in Two-Higgs-Doublet-Models: t({up_arrow}) {yields} b + H{sup +}. I provide closed form formulae for the O({alpha}{sub s}) radiative corrections to the unpolarized and the polar correlation functions for m{sub b}{ne}0 and m{sub b}=0. In the second part I concentrate on the semileptonic rest frame decay of a polarized top quark into a bottom quark and a lepton pair: t({up_arrow}){yields}X{sub b}+l{sup +}+{nu}{sub l}. I present closed form expressions for the O({alpha}{sub s}) radiative corrections to the unpolarized part and the polar and azimuthal correlations for m{sub b}{ne}0 and m{sub b}=0. In the last part I turn to the angular distribution in semileptonic hyperon decays. Using the helicity method I derive complete formulas for the leading order joint angular decay distributions occurring in semileptonic hyperon decays including lepton mass and polarization effects. (orig.)

  19. Quark matter and quark stars at finite temperature in Nambu-Jona-Lasinio model

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Peng-Cheng; Wang, Bin; Dong, Yu-Min; Jia, Yu-Yue; Wang, Shu-Mei; Ma, Hong-Yang [Qingdao Technological University, School of Science, Qingdao (China); Li, Xiao-Hua [University of South China, School of Nuclear Science and Technology, Hengyang (China); University of South China, Cooperative Innovation Center for Nuclear Fuel Cycle Technology and Equipment, Hengyang (China)

    2017-08-15

    We extend the SU(3) Nambu-Jona-Lasinio (NJL) model to include two types of vector interaction. Using these two types of vector interaction in NJL model, we study the quark symmetry free energy in asymmetric quark matter, the constituent quark mass, the quark fraction, the equation of state (EOS) for β-equilibrium quark matter, the maximum mass of QSs at finite temperature, the maximum mass of proto-quark stars (PQSs) along the star evolution, and the effects of the vector interaction on the QCD phase diagram. We find that comparing zero temperature case, the values of quark matter symmetry free energy get larger with temperature increasing, which will reduce the difference between the fraction of u, d and s quarks and stiffen the EoS for β-equilibrium quark matter. In particular, our results indicate that the maximum masses of the quark stars increase with temperature because of the effects of the quark matter symmetry free energy, and we find that the heating(cooling) process for PQSs will increase (decrease) the maximum mass within NJL model. (orig.)

  20. 1/M corrections to baryonic form factors in the quark model

    International Nuclear Information System (INIS)

    Cheng, H.; Tseng, B.

    1996-01-01

    Weak current-induced baryonic form factors at zero recoil are evaluated in the rest frame of the heavy parent baryon using the nonrelativistic quark model. Contrary to previous similar work in the literature, our quark model results do satisfy the constraints imposed by heavy quark symmetry for heavy-heavy baryon transitions at the symmetric point v·v'=1 and are in agreement with the predictions of the heavy quark effective theory for antitriplet-antitriplet heavy baryon form factors at zero recoil evaluated to order 1/m Q . Furthermore, the quark model approach has the merit that it is applicable to any heavy-heavy and heavy-light baryonic transitions at maximum q 2 . Assuming a dipole q 2 behavior, we have applied the quark model form factors to nonleptonic, semileptonic, and weak radiative decays of the heavy baryons. It is emphasized that the flavor suppression factor occurring in many heavy-light baryonic transitions, which is unfortunately overlooked in most literature, is very crucial towards an agreement between theory and experiment for the semileptonic decay Λ c →Λe + ν e . Predictions for the decay modes Λ b →J/ψΛ, Λ c →pφ, Λ b →Λγ, Ξ b →Ξγ, and for the semileptonic decays of Λ b , Ξ b, c, and Ω b are presented. copyright 1996 The American Physical Society

  1. Quarks and leptons as quasi Nambu-Goldstone fermions

    International Nuclear Information System (INIS)

    Buchmueller, W.; Peccei, R.D.; Yanagida, T.

    1983-01-01

    We discuss a new idea for constructing composite quarks and leptons which have (approximately) vanishing mass. They are associated with fermionic partners of Goldstone bosons arising from the spontaneous breakdown of an internal symmetry Gsub(f) in a supersymmetric preon theory. For Gsub(f)=SU(5) being broken to SU(3) x U(1)sub(em) there arise as quasi Goldstone fermions, naturally and unequivocally, precisely the quarks and leptons of one family. The dynamics of these quasi Goldstone fermions is explored by constructing a general supersymmetric nonlinear effective lagrangian. By means of a reduced model, we show that the first nontrivial interactions of the quasi Goldstone fermions can give rise, in an effective way, to the weak interactions. Issues connected with the incorporation of families in the scheme and the generation of masses, as well as the possible structure of the underlying preon theory are briefly discussed. (orig.)

  2. On effective theories of topological strings

    International Nuclear Information System (INIS)

    Elitzur, S.; Forge, A.; Rabinovici, E.

    1992-01-01

    We study the construction of effective target-space theories of topological string theories. The example of the CP1 topological sigma model is analysed in detail. An effective target-space theory whose correlation functions are defined by the sum over connected Riemann surfaces of all genera is found to be itself topological. The values of the couplings of this effective theory are expressed in terms of those of the world-sheet theory for a general CP1-like world-sheet model. Any model of this type can be obtained as an effective theory. The definition of the effective theory's expectation values as a sum over disconnected surfaces as well, is shown not to be compatible with those of a topological theory, at least as long as the connectivity of the target space is kept fixed. Dilaton-type couplings emerge in the full lagrangian realization of the moduli space of topological theories with n observables. En route, we encounter a nonperturbative duality, an equivalence of theories with different world-sheets and discuss the relation between the cosmological constant in these finite theories and the zero-point function. (orig.)

  3. Top-quark pair production at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Ahrens, Valentin

    2011-12-08

    In this thesis we investigate several phenomenologically important properties of top-quark pair production at hadron colliders. We calculate double differential cross sections in two different kinematical setups, pair invariant-mass (PIM) and single-particle inclusive (1PI) kinematics. In pair invariant-mass kinematics we are able to present results for the double differential cross section with respect to the invariant mass of the top-quark pair and the top-quark scattering angle. Working in the threshold region, where the pair invariant mass M is close to the partonic center-of-mass energy {radical}(s), we are able to factorize the partonic cross section into different energy regions. We use renormalization-group (RG) methods to resum large threshold logarithms to next-to-next-to-leading-logarithmic (NNLL) accuracy. On a technical level this is done using effective field theories, such as heavy-quark effective theory (HQET) and soft-collinear effective theory (SCET). The same techniques are applied when working in 1PI kinematics, leading to a calculation of the double differential cross section with respect to transverse-momentum pT and the rapidity of the top quark. We restrict the phase-space such that only soft emission of gluons is possible, and perform a NNLL resummation of threshold logarithms. The obtained analytical expressions enable us to precisely predict several observables, and a substantial part of this thesis is devoted to their detailed phenomenological analysis. Matching our results in the threshold regions to the exact ones at next-to-leading order (NLO) in fixed-order perturbation theory, allows us to make predictions at NLO+NNLL order in RG-improved, and at approximate next-to-next-to-leading order (NNLO) in fixed order perturbation theory. We give numerical results for the invariant mass distribution of the top-quark pair, and for the top-quark transverse-momentum and rapidity spectrum. We predict the total cross section, separately for both

  4. Effective medium theory principles and applications

    CERN Document Server

    Choy, Tuck C

    2015-01-01

    Effective medium theory dates back to the early days of the theory of electricity. Faraday in 1837 proposed one of the earliest models for a composite metal-insulator dielectric and around 1870 Maxwell and later Garnett (1904) developed models to describe a composite or mixed material medium. The subject has been developed considerably since and while the results are useful for predicting materials performance, the theory can also be used in a wide range of problems in physics and materials engineering. This book develops the topic of effective medium theory by bringing together the essentials of both the static and the dynamical theory. Electromagnetic systems are thoroughly dealt with, as well as related areas such as the CPA theory of alloys, liquids, the density functional theory etc., with applications to ultrasonics, hydrodynamics, superconductors, porous media and others, where the unifying aspects of the effective medium concept are emphasized. In this new second edition two further chapters have been...

  5. Quark matter 93

    Energy Technology Data Exchange (ETDEWEB)

    Otterlund, Ingvar; Ruuskanen, Vesa

    1993-12-15

    In his welcome address to the 10th International Conference on Ultra- Relativistic Nucleus-Nucleus Collisions (Quark Matter '93), held in Borlange, Sweden, from 20-24 June, Hans-Ake Gustafsson was puzzled why this year's conference was billed as the tenth in the series. He had tried to count but could only find eight forerunners - Bielefeld (1982), Brookhaven (1983), Helsinki (1984), Asilomar (1986), Nordkirchen (1987), Lenox (1988), Menton (1990), Gatlinburg (1991), making this year's meeting at Borlange the ninth. The answer was given by Helmut Satz in his introductory talk, pointing out that at the time of the Bielefeld meeting, a few conferences dealing with similar topics had already been held. The Bielefeld organizers thus did not consider their conference the first. Whatever its pedigree, the Borlange meeting covered particle production in highly excited and compressed nuclear matter, fluctuations and correlations, quark phenomena (quantum chromodynamics - QCD) in nuclear collisions, probes and signatures of Quark-Gluon Plasma (QGP), future collider experiments and instrumentation. The theoretical talks were split between the fundamental properties of the hot and dense matter at or near equilibrium, and the interface between theory and experiment. The phenomenological modelling of heavy ion collisions seems to reproduce at least all the main features of the data with hadrons, resonances and strings as the degrees of freedom. However secondary interactions among the produced hadrons or strings need to be added. Hydrodynamic calculations lead to results which reproduce the main features of the collisions. With increasing collision energy, the parton degrees of freedom become more important. Klaus Geiger described an ambitious scheme treating the whole nucleus-nucleus collision in terms of a kinetic parton (quark/gluon) cascade. The initial parton distribution at the beginning of the collision is determined from the quark-gluon nuclear structure and the

  6. Quark matter 93

    International Nuclear Information System (INIS)

    Otterlund, Ingvar; Ruuskanen, Vesa

    1993-01-01

    In his welcome address to the 10th International Conference on Ultra- Relativistic Nucleus-Nucleus Collisions (Quark Matter '93), held in Borlange, Sweden, from 20-24 June, Hans-Ake Gustafsson was puzzled why this year's conference was billed as the tenth in the series. He had tried to count but could only find eight forerunners - Bielefeld (1982), Brookhaven (1983), Helsinki (1984), Asilomar (1986), Nordkirchen (1987), Lenox (1988), Menton (1990), Gatlinburg (1991), making this year's meeting at Borlange the ninth. The answer was given by Helmut Satz in his introductory talk, pointing out that at the time of the Bielefeld meeting, a few conferences dealing with similar topics had already been held. The Bielefeld organizers thus did not consider their conference the first. Whatever its pedigree, the Borlange meeting covered particle production in highly excited and compressed nuclear matter, fluctuations and correlations, quark phenomena (quantum chromodynamics - QCD) in nuclear collisions, probes and signatures of Quark-Gluon Plasma (QGP), future collider experiments and instrumentation. The theoretical talks were split between the fundamental properties of the hot and dense matter at or near equilibrium, and the interface between theory and experiment. The phenomenological modelling of heavy ion collisions seems to reproduce at least all the main features of the data with hadrons, resonances and strings as the degrees of freedom. However secondary interactions among the produced hadrons or strings need to be added. Hydrodynamic calculations lead to results which reproduce the main features of the collisions. With increasing collision energy, the parton degrees of freedom become more important. Klaus Geiger described an ambitious scheme treating the whole nucleus-nucleus collision in terms of a kinetic parton (quark/gluon) cascade. The initial parton distribution at the beginning of the collision is determined from the quark-gluon nuclear structure

  7. Study of beauty quark production and next-to-leading order effects at HERA

    International Nuclear Information System (INIS)

    Nuncio Quiroz, Adriana Elizabeth

    2008-08-01

    In this thesis a study on the production and evolution of beauty quarks in ep collisions at HERA is presented. The emphasis is put on the corresponding Quantum Chromodynamics predictions including next-to-leading order corrections. In the context of this work the FMNR x Pythia interface was developed, which calculates next-to-leading order Quantum Chromodynamics predictions at visible level for heavy-flavour processes in the photoproduction regime. This is achieved using the RedStat routines which transform the FMNR program into a Monte Carlo-like event generator. The parton-level events obtained are interfaced to Pythia using the Le Houches accord routines. All branching ratios and decay channels of the heavy quarks implemented in the Pythia framework are used, and therefore complex cuts on the nal state can be applied. The FMNR x Pythia interface is applied in this thesis to obtain next-to-leading order predictions for the recently finished heavy flavour ZEUS analyses: the ep → b anti bX → D * μX' and ep → b anti bX → μ + μ - X' channels. A comparison with the H1 D * μ measurement is also performed. Since the use of such double tagging techniques to identify events where heavy flavours are present proved to be very convenient when the nal state is a pair of leptons, another part of this thesis work deals with the implementation of an electron finder, the G Elec finder. This finder is tested on the reconstruction of the J/ψ → e + e - signal. Finally, a heavy-flavour analysis has been started, namely the ep → b anti bX → eμX' dilepton channel, using an integrated luminosity of 114 pb -1 gated by the ZEUS detector in the years 1996-2000. Compared to previous analyses the study of beauty quark production in this channel extends the phase space of the measurement closer to the kinematic threshold, since electrons provide access to lower p T values than muons do. The technical part of this thesis consisted in the calibration, maintenance and data

  8. Restored symmetries, quark puzzle, and the Pomeron as a Josephson current. [Clustering effects, quantum supercurrents, cross sections, phase transitions, narrowing gap mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, R V [Instituto de Fisica e Matematica, Lisbon (Portugal)

    1976-07-01

    A special type of symmetry is studied, wherein manifest invariance is restored by direct integration over a set of spontaneously broken ground states. In addition to invariant states and multiplets these symmetry realizations are shown to lead, in general, to clustering effects and quantum supercurrents. A systematic exploration of these symmetry realizations is proposed, mostly in physical situations where it has so far been believed that the only consequences of the symmetry are invariant states and multiplets. An application of these ideas to the quark system yields a possible explanation for the unobservability of free quarks and an interpretation of the Pomeron as a generalized Josephson current. Furthermore, the 'narrowing gap mechanism' suggests an explanation for the behavior of the e/sup +/ e/sup -/ ..-->.. hadrons cross section and a speculation on an approaching phase transition in hadronic production and the observation of free quarks.

  9. Quark matter in a chiral chromodielectric model

    International Nuclear Information System (INIS)

    Broniowski, W.; Kutschera, M.; Cibej, M.; Rosina, M.

    1989-03-01

    Zero and finite temperature quark matter is studied in a chiral chromodielectric model with quark, meson and chromodielectric degrees of freedom. Mean field approximation is used. Two cases are considered: two-flavor and three-flavor quark matter. It is found that at sufficiently low densities and temperatures the system is in a chirally broken phase, with quarks acquiring effective masses of the order of 100 MeV. At higher densities and temperatures a chiral phase transition occurs and the quarks become massless. A comparison to traditional nuclear physics suggests that the chirally broken phase with massive quark gas may be the ground state of matter at densities of the order of a few nuclear saturation densities. 24 refs., 5 figs. (author)

  10. Non-perturbative RPA-method implemented in the Coulomb gauge QCD Hamiltonian: From quarks and gluons to baryons and mesons

    Science.gov (United States)

    Yepez-Martinez, Tochtli; Civitarese, Osvaldo; Hess, Peter O.

    2018-02-01

    Starting from an algebraic model based on the QCD-Hamiltonian and previously applied to study meson states, we have developed an extension of it in order to explore the structure of baryon states. In developing our approach we have adapted concepts taken from group theory and non-perturbative many-body methods to describe states built from effective quarks and anti-quarks degrees of freedom. As a Hamiltonian we have used the QCD Hamiltonian written in the Coulomb Gauge, and expressed it in terms of effective quark-antiquark, di-quarks and di-antiquark excitations. To gain some insights about the relevant interactions of quarks in hadronic states, the Hamiltonian was approximately diagonalized by mapping quark-antiquark pairs and di-quarks (di-antiquarks) onto phonon states. In dealing with the structure of the vacuum of the theory, color-scalar and color-vector states are introduced to account for ground-state correlations. While the use of a purely color-scalar ground state is an obvious choice, so that colorless hadrons contain at least three quarks, the presence of coupled color-vector pairs in the ground state allows for colorless excitations resulting from the action of color objects upon it.

  11. Quark antisymmetrization and deep-inelastic scattering. Pt. 2

    International Nuclear Information System (INIS)

    Meyer, H.; Mulders, P.J.; Spit, W.F.M.

    1994-01-01

    We consider the effects of quark antisymmetrization for nuclear structure functions. Antisymmetrizing the naive folding of nuclear wave functions in terms of nucleons and the nucleon wave function in terms of quarks, introduces additional contributions. Using the calculated results on quark three-momentum distributions, we calculate the effects on the deep-inelastic structure functions for s- and p-wave nuclei. The effects of quark antisymmetrization turn out to be small. (orig.)

  12. Measurements and searches with top quarks

    International Nuclear Information System (INIS)

    Peters, Reinhild Yvonne

    2008-01-01

    to search for charged or neutral Higgs bosons. Depending on its mass, the charged Higgs boson is expected to decay either into top quarks or be the decay product of a top quark. For masses below the top quark mass, the top decay into a charged Higgs boson and a b quark can occur at a certain rate, additionally to the decays into W bosons and a b quark. The different decays of W and charged Higgs bosons can lead to deviations of the observed final number of events in certain final states with respect to the Standard Model expectation. A global search for charged Higgs bosons in top quark pair events is presented in this thesis, resulting in the most stringent limits to-date. Besides the decay of top quarks into charged Higgs or W bosons, new physics can also show up in the quark part of the decay. While in the Standard Model the top quark decays with a rate of about 100% into a W boson and a b quark, there are models where the top quark can decay into a W boson and a non-b quark. The ratio of branching fractions in which the top quark decays into a b quark over the branching fractions in which the top quark decays into all quarks is measured as part of this thesis, yielding the most precise measurement today. Furthermore, the Standard Model top quark pair production cross section is essential to be known precisely since the top quark pair production is the main background for t(bar t)H production and many other Higgs and beyond the Standard Model searches. However, not only the search or the test of the Standard Model itself make the precise measurement of the top quark pair production cross section interesting. As the cross section is calculated with high accuracy in perturbative QCD, a comparison of the measurement to the theory expectation yields the possibility to extract the top quark mass from the cross section measurement. Although many dedicated techniques exist to measure the top quark mass, the extraction from the cross section represents an important

  13. Electromagnetic signals of quark gluon plasma

    Indian Academy of Sciences (India)

    Successive equilibration of quark degrees of freedom and its effects on electromagnetic signals of quark gluon plasma are discussed. The effects of the variation of vector meson masses and decay widths on photon production from hot strongly interacting matter formed after Pb + Pb and S + Au collisions at CERN SPS ...

  14. The Quark Box--A Particle Physics Game.

    Science.gov (United States)

    Swedler, James A.

    This game is designed to be used in junior and senior high school science classes with the purpose of introducing quark theory to students. This material expands on atomic theory and subatomic structure. Quarks are the fundamental building blocks of protons and neutrons. The game will teach students about the standard model of elementary…

  15. Kaon quark distribution functions in the chiral constituent quark model

    Science.gov (United States)

    Watanabe, Akira; Sawada, Takahiro; Kao, Chung Wen

    2018-04-01

    We investigate the valence u and s ¯ quark distribution functions of the K+ meson, vK (u )(x ,Q2) and vK (s ¯)(x ,Q2), in the framework of the chiral constituent quark model. We judiciously choose the bare distributions at the initial scale to generate the dressed distributions at the higher scale, considering the meson cloud effects and the QCD evolution, which agree with the phenomenologically satisfactory valence quark distribution of the pion and the experimental data of the ratio vK (u )(x ,Q2)/vπ (u )(x ,Q2) . We show how the meson cloud effects affect the bare distribution functions in detail. We find that a smaller S U (3 ) flavor symmetry breaking effect is observed, compared with results of the preceding studies based on other approaches.

  16. Exploring the Invisible Renormalon Renormalization of the Heavy-Quark Kinetic Energy

    CERN Document Server

    Neubert, M

    1997-01-01

    Using the virial theorem of the heavy-quark effective theory, we show that the mixing of the operator for the heavy-quark kinetic energy with the identity operator is forbidden at the one-loop order by Lorentz invariance. This explains why such a mixing was not observed in several one-loop calculations using regularization schemes with a Lorentz-invariant UV regulator, and why no UV renormalon singularity was found in the matrix elements of the kinetic operator in the bubble approximation (the ``invisible renormalon''). On the other hand, we show that the mixing is not protected in general by any symmetry, and it indeed occurs at the two-loop order. This implies that the parameter $\\lambda_1^H$ of the heavy-quark effective theory is not directly a physical quantity, but requires a non-perturbative subtraction.

  17. Unifying Theories of Psychedelic Drug Effects

    Directory of Open Access Journals (Sweden)

    Link R. Swanson

    2018-03-01

    Full Text Available How do psychedelic drugs produce their characteristic range of acute effects in perception, emotion, cognition, and sense of self? How do these effects relate to the clinical efficacy of psychedelic-assisted therapies? Efforts to understand psychedelic phenomena date back more than a century in Western science. In this article I review theories of psychedelic drug effects and highlight key concepts which have endured over the last 125 years of psychedelic science. First, I describe the subjective phenomenology of acute psychedelic effects using the best available data. Next, I review late 19th-century and early 20th-century theories—model psychoses theory, filtration theory, and psychoanalytic theory—and highlight their shared features. I then briefly review recent findings on the neuropharmacology and neurophysiology of psychedelic drugs in humans. Finally, I describe recent theories of psychedelic drug effects which leverage 21st-century cognitive neuroscience frameworks—entropic brain theory, integrated information theory, and predictive processing—and point out key shared features that link back to earlier theories. I identify an abstract principle which cuts across many theories past and present: psychedelic drugs perturb universal brain processes that normally serve to constrain neural systems central to perception, emotion, cognition, and sense of self. I conclude that making an explicit effort to investigate the principles and mechanisms of psychedelic drug effects is a uniquely powerful way to iteratively develop and test unifying theories of brain function.

  18. Unifying Theories of Psychedelic Drug Effects

    Science.gov (United States)

    Swanson, Link R.

    2018-01-01

    How do psychedelic drugs produce their characteristic range of acute effects in perception, emotion, cognition, and sense of self? How do these effects relate to the clinical efficacy of psychedelic-assisted therapies? Efforts to understand psychedelic phenomena date back more than a century in Western science. In this article I review theories of psychedelic drug effects and highlight key concepts which have endured over the last 125 years of psychedelic science. First, I describe the subjective phenomenology of acute psychedelic effects using the best available data. Next, I review late 19th-century and early 20th-century theories—model psychoses theory, filtration theory, and psychoanalytic theory—and highlight their shared features. I then briefly review recent findings on the neuropharmacology and neurophysiology of psychedelic drugs in humans. Finally, I describe recent theories of psychedelic drug effects which leverage 21st-century cognitive neuroscience frameworks—entropic brain theory, integrated information theory, and predictive processing—and point out key shared features that link back to earlier theories. I identify an abstract principle which cuts across many theories past and present: psychedelic drugs perturb universal brain processes that normally serve to constrain neural systems central to perception, emotion, cognition, and sense of self. I conclude that making an explicit effort to investigate the principles and mechanisms of psychedelic drug effects is a uniquely powerful way to iteratively develop and test unifying theories of brain function. PMID:29568270

  19. Issues of effective field theories with resonances

    International Nuclear Information System (INIS)

    Gegelia, J.; Japaridze, G.

    2014-01-01

    We address some issues of renormalization and symmetries of effective field theories with unstable particles - resonances. We also calculate anomalous contributions in the divergence of the singlet axial current in an effective field theory of massive SU(N) Yang-Mills fields interacting with fermions and discuss their possible relevance to the strong CP problem. (author)

  20. Quark mixing and CP violation

    International Nuclear Information System (INIS)

    Paschos, E.A.

    1992-01-01

    These lectures present a pedagogical introduction to the topics quark mixing and CP violation. They explain how the mixing matrix comes about and reviews the values of constraints for its elements. The second chapter reviews the CP transformation properties of amplitudes and defines the quantities which are measured in the experiments. Then it reviews the theory of CP violation in the standard model. In addition to the phase and the angles introduced through the flavor matrix, numerical predictions also depend (a) on hadronic matrix elements of weak current operators and (b) the short distance expansion of effective Hamiltonians computed by methods of Quantum Chromodynamics (QCD). I also review these topics and present predictions for (ε'/ε) which are shown to be consistent with the experiments. Last but not least, the article is divided into sections which are as self-contained as possible. The article assumes a general knowledge of the electroweak theory. For guidance, the interested reader will find a table of contents at the end of the text. (author). 29 refs, 5 figs, 1 tab

  1. Effective axial-vector coupling of the gluon and top-quark charge asymmetry at the LHC

    International Nuclear Information System (INIS)

    Gabrielli, E.; Giammanco, A.; Racioppi, A.; Raidal, M.

    2012-01-01

    We study the top quark charge asymmetry induced by an effective axial-vector coupling of the gluon at the LHC experiments. We showed that rapidity cut-dependent asymmetries are more sensitive to the new physics than the independent ones. We also study the dependence of the asymmetries and variations of the total tt-bar cross sections on the invariant mass of the tt-bar system and show that it would be necessary to measure those quantities as functions of m tt at the LHC. If this is done, in the context of the considered new physics scenario, the 7 TeV LHC has enough sensitivity either to confirm the Tevatron top charge asymmetry anomaly or to rule it out. In the latter case the LHC will be able to put stringent constraint on the new physics scale Λ in this framework. (authors)

  2. Search for vector-like quarks

    CERN Document Server

    Varnes, Erich; The ATLAS collaboration

    2017-01-01

    Vector like quarks appear in many theories beyond the Standard Model as a way to cancel the mass divergence for the Higgs boson. The current status of the ATLAS searches for the production of vector like quarks will be reviewed for proton-proton collisions at 13 TeV. This presentation will address the analysis techniques, in particular the selection criteria, the background modeling and the related experimental uncertainties. The phenomenological implications of the obtained results will also be discussed.

  3. Non-perturbative quark mass renormalization

    CERN Document Server

    Capitani, S.; Luescher, M.; Sint, S.; Sommer, R.; Weisz, P.; Wittig, H.

    1998-01-01

    We show that the renormalization factor relating the renormalization group invariant quark masses to the bare quark masses computed in lattice QCD can be determined non-perturbatively. The calculation is based on an extension of a finite-size technique previously employed to compute the running coupling in quenched QCD. As a by-product we obtain the $\\Lambda$--parameter in this theory with completely controlled errors.

  4. Physics of the quark-gluon plasma

    International Nuclear Information System (INIS)

    Polonyi, J.; Institut National de Physique Nucleaire et de Physique des Particules; Lorand Eoetvoes Univ., Budapest

    1995-01-01

    Some features of the high temperature gluonic matter, such as the breakdown of the fundamental group symmetry by the kinetic energy, the screening of test quarks by some unusual gluon states and the explanation of the absence of isolated quarks in the vacuum without the help of infinities are presented in this talk. Special attention is paid to separate the dynamical input inferred from the numerical results of lattice gauge theory from the kinematics. (author)

  5. Transverse Momentum Distributions for Heavy Quark Pairs

    OpenAIRE

    Berger, Edmond L.; Meng, Ruibin

    1993-01-01

    We study the transverse momentum distribution for a $pair$ of heavy quarks produced in hadron-hadron interactions. Predictions for the large transverse momentum region are based on exact order $\\alpha_s^3$ QCD perturbation theory. For the small transverse momentum region, we use techniques for all orders resummation of leading logarithmic contributions associated with initial state soft gluon radiation. The combination provides the transverse momentum distribution of heavy quark pairs for all...

  6. Observability of quarks

    International Nuclear Information System (INIS)

    Bjorken, J.D.

    1985-12-01

    Even if stable hadrons with fractional charge do not exist, most of the criteria of observability used for ordinary elementary particles apply in principle to quarks as well. This is especially true in a simplified world containing only hadrons made of top quarks and gluons. In the real world containing light quarks, essential complications do occur, but most of the conclusions survive

  7. CONFERENCE: Quark matter 88

    International Nuclear Information System (INIS)

    Jacob, Maurice

    1988-01-01

    The 'Quark Matter' Conference caters for physicists studying nuclear matter under extreme conditions. The hope is that relativistic (high energy) heavy ion collisions allow formation of the long-awaited quark-gluon plasma, where the inter-quark 'colour' force is no longer confined inside nucleon-like dimensions

  8. Quarks and leptons; what next

    International Nuclear Information System (INIS)

    Veltman, M.

    1979-01-01

    The theory of strong interactions is supposedly quantum chromodynamics, an unbroken gauge theory based on the group SU(3). The theory of weak and e.m. interactions is believed to be described by the Weinberg-GIM model, based on the spontaneously broken symmetry SU(2) x U(1). There are many uncertainties around these theories. Quantum chromodynamics has met with many successes, but the most important feature, quark confinement, has not been proven. Also other things, such as PCAC, have not yet been understood. And we have no reasonable calculation of particle masses (pion, proton, etc.). Nevertheless we consider quantum chromodynamics a reasonably respectable theory, and in this talk we will take that theory for granted. The situation with respect to the SU(2) x U(1) theory is much more difficult. No vector bosons have yet been observed, and the Higgs system is more obscure than ever. Glashow's model has been turned into a renormalizable model by Weinberg through the use of the Higgs system, but up to now no radiative corrections of the appropriate type have been measured. The only thing we know is that at low energies this Glashow model reduces to a four-fermion theory involving certain currents, and this has been checked reasonably well. Also, the discovery of charm (and hopefully the discovery of a top quark) fits beautifully into the picture along the lines of the GIM mechanism. CP violation could be due to complex quark masses according to the Kobayashi-Maskawa scheme. The point of view is taken that the existence of vector bosons is not evident, and the Higgs mechanism is a possibility at best. It is the purpose of this talk to outline and clarify this view

  9. Quark interactions and colour chemistry

    International Nuclear Information System (INIS)

    Hong-Mo, C.

    1982-01-01

    The interaction between quarks, according to the current theory of quantum chromodynamics, is similar to the electromagnetic interaction between electrons and nucleons, both being governed by locally gauge-invariant field theories. It is tempting therefore to discuss the spectroscopy of hadrons, which are quark composites bound by colour forces, in the same language as the spectroscopy of atoms and molecules which are bound states of electrons and nucleons held together by e.m. forces. Because of the difference in gauge groups, however, the dynamics are very different. Nonetheless, it appears likely that metastable multiquark hadron states can exist which are analogous to atoms and molecules in QED. In these lectures, tentative steps are taken in developing the rudiments of a new colour chemistry' of these 'atoms' and 'molecules'. (author)

  10. Higher order effects in electroweak theory 1981-12 (KEK)

    International Nuclear Information System (INIS)

    Aoki, Ken-ichi

    1982-01-01

    This is a brief report on the higher order or loop effects in electroweak theory. The discussion is based on the Weinberg Salam model and QCD. The loop correction to weak interaction is described. The renormalization conditions were applied to physical parameters, α(QED), M(W) and M(Z). It is expected to obtain experimentally the values of M(W) and M(Z) with the accuracy of 0.1 percent. In this scheme, the parameters were fixed loop by loop. The correction was evaluated along the present on-shell scheme. The general estimation of the order of correction was performed. The evaluation of the size of terms in one-loop correction was made. The examples of one loop analysis are presented. The leading logarithmic correction such as α ln(m 2 q 2 /M 2 ) is discussed. The system was described by H(eff) with the local operator O(i), in which the propagator of heavy particles was contracted. The effective interaction was obtained as C(i) (q 2 ) O(i), where C(i)(q 2 ) satisfies a proper equation of a renormalization group. As the practical examples, μ-decay, charged current and neutral current were studied. The correction to electron neutral current and the shift of M(W) and M(Z) were numerically obtained. Comments on quark mass and the uncertainty of sin 2 (theta) from the νN reaction are presented. (Kato, T.)

  11. Neutrinoless double β decay and effective field theory

    International Nuclear Information System (INIS)

    Prezeau, G.; Ramsey-Musolf, M.; Vogel, Petr

    2003-01-01

    We analyze neutrinoless double β decay (0νββ decay) mediated by heavy particles from the standpoint of effective field theory. We show how symmetries of the 0νββ-decay quark operators arising in a given particle physics model determine the form of the corresponding effective, hadronic operators. We classify the latter according to their symmetry transformation properties as well as the order at which they appear in a derivative expansion. We apply this framework to several particle physics models, including R-parity violating supersymmetry (RPV SUSY) and the left-right symmetric model (LRSM) with mixing and a right-handed Majorana neutrino. We show that, in general, the pion exchange contributions to 0νββ decay dominate over the short-range four-nucleon operators. This confirms previously published RPV SUSY results and allows us to derive new constraints on the masses in the LRSM. In particular, we show how a nonzero mixing angle ζ in the left-right symmetry model produces a new potentially dominant contribution to 0νββ decay that substantially modifies previous limits on the masses of the right-handed neutrino and boson stemming from constraints from 0νββ decay and vacuum stability requirements

  12. The errant life of a heavy quark in the quark-gluon plasma

    International Nuclear Information System (INIS)

    Meyer, Harvey B

    2011-01-01

    In the high-temperature phase of QCD, the heavy-quark momentum diffusion constant determines, via a fluctuation-dissipation relation, how fast a heavy quark kinetically equilibrates. This transport coefficient can be extracted from thermal correlators via a Kubo formula. We present a lattice calculation of the relevant Euclidean correlators in the gluon plasma, based on a recent formulation of the problem in heavy-quark effective field theory (HQET). We find a ∼20% enhancement of the Euclidean correlator at maximal time separation as the temperature is lowered from 6T c to 2T c , pointing to stronger interactions at lower temperatures. At the same time, the correlator becomes flatter from 6T c down to 2T c , indicating a relative shift of the spectral weight to lower frequencies. A recent next-to-leading order perturbative calculation of the correlator agrees with the time dependence of the lattice data at the few-per cent level. We estimate how much additional contribution from the ω∼ c .

  13. Boundary effects on quantum field theories

    International Nuclear Information System (INIS)

    Lee, Tae Hoon

    1991-01-01

    Quantum field theory in the S 1 *R 3 space-time is simply described by the imaginary time formalism. We generalize Schwinger-DeWitt proper-time technique which is very useful in zero temperature field theories to this case. As an example we calculate the one-loop effective potential of the finite temperature scala field theory by this technique.(Author)

  14. Exchange effects in Relativistic Schroedinger Theory

    International Nuclear Information System (INIS)

    Sigg, T.; Sorg, M.

    1998-01-01

    The Relativistic Schroedinger Theory predicts the occurrence of exchange and overlap effects in many-particle systems. For a 2-particle system, the interaction energy of the two particles consists of two contributions: Coulomb energy and exchange energy, where the first one is revealed to be the same as in standard quantum theory. However the exchange energy is mediated by an exchange potential, contrary to the kinematical origin of the exchange term in the standard theory

  15. Spin-polarized versus chiral condensate in quark matter at finite temperature and density

    DEFF Research Database (Denmark)

    Matsuoka, Hiroaki; Tsue, Yasuhiko; da Providencia, Joao

    2016-01-01

    It is shown that the spin-polarized condensate appears in quark matter at high baryon density and low temperature due to the tensor-type four-point interaction in the Nambu-Jona-Lasiniotype model as a low-energy effective theory of quantum chromodynamics. It is indicated within this low-energy ef...

  16. String theory and quark confinement

    International Nuclear Information System (INIS)

    Polyakov, A.M.

    1998-01-01

    This article is based on a talk given at the ''Strings '97'' conference. It discusses the search for the universality class of confining strings. The key ingredients include the loop equations, the zigzag symmetry, the non-linear renormalization group. Some new tests for the equivalence between gauge fields and strings are proposed. (orig.)

  17. K$\\to \\pi\\pi$ Amplitudes from Lattice QCD with a Light Charm Quark

    CERN Document Server

    Giusti, Leonardo; Laine, M; Peña, C; Wennekers, J; Wittig, H

    2007-01-01

    We compute the leading-order low-energy constants of the DeltaS=1 effective weak Hamiltonian in the quenched approximation of QCD with up, down, strange, and charm quarks degenerate and light (GIM limit). The low-energy constants are extracted by comparing the predictions of finite volume chiral perturbation theory with lattice QCD computations of suitable correlation functions carried out with quark masses ranging from a few MeV up to half of the physical strange mass. We observe a large DeltaI=1/2 enhancement in this corner of the parameter space of the theory. Although matching with the experimental result is not observed for the DeltaI=1/2 amplitude, our computation suggests large QCD contributions to the physical DeltaI=1/2 rule in the GIM limit, and represents the first step to quantify the role of the charm quark-mass in K-->pipi amplitudes.

  18. Retina as Reciprocal Spatial Fourier Transform Space Implies ``Wave-transformation'' Functions, String Theory, the Inappropriate Uncertainty Principle, and Predicts ``Quarked'' Protons.

    Science.gov (United States)

    Mc Leod, Roger David; Mc Leod, David M.

    2007-10-01

    Vision, via transform space: ``Nature behaves in a reciprocal way;' also, Rect x pressure-input sense-reports as Sinc p, indicating brain interprets reciprocal ``p'' space as object space. Use Mott's and Sneddon's Wave Mechanics and Its Applications. Wave transformation functions are strings of positron, electron, proton, and neutron; uncertainty is a semantic artifact. Neutrino-string de Broglie-Schr"odinger wave-function models for electron, positron, suggest three-quark models for protons, neutrons. Variably vibrating neutrino-quills of this model, with appropriate mass-energy, can be a vertical proton string, quills leftward; thread string circumferentially, forming three interlinked circles with ``overpasses''. Diameters are 2:1:2, center circle has quills radially outward; call it a down quark, charge --1/3, charge 2/3 for outward quills, the up quarks of outer circles. String overlap summations are nodes; nodes also far left and right. Strong nuclear forces may be --px. ``Dislodging" positron with neutrino switches quark-circle configuration to 1:2:1, `downers' outside. Unstable neutron charge is 0. Atoms build. With scale factors, retinal/vision's, and quantum mechanics,' spatial Fourier transforms/inverses are equivalent.

  19. Impact of the heavy quark matching scales in PDF fits

    Energy Technology Data Exchange (ETDEWEB)

    Bertone, V. [VU Univ., Amsterdam (Netherlands). Dept. of Physics and Astronomy; Nikhef Theory Goup, Amsterdam (Netherlands); Britzger, D. [DESY, Hamburg (Germany); Camarda, S. [CERN, Geneva (Switzerland); Collaboration: The xFitter Developers' Team; and others

    2017-07-15

    We investigate the impact of displaced heavy quark matching scales in a global fit. The heavy quark matching scale μ{sub m} determines at which energy scale μ the QCD theory transitions from N{sub F} to N{sub F}+1 in the Variable Flavor Number Scheme (VFNS) for the evolution of the Parton Distribution Functions (PDFs) and strong coupling α{sub S}(μ). We study the variation of the matching scales, and their impact on a global PDF fit of the combined HERA data. As the choice of the matching scale μ{sub m} effectively is a choice of scheme, this represents a theoretical uncertainty; ideally, we would like to see minimal dependence on this parameter. For the transition across the charm quark (from N{sub F}=3 to 4), we find a large μ{sub m}=μ{sub c} dependence of the global fit χ{sup 2} at NLO, but this is significantly reduced at NNLO. For the transition across the bottom quark (from N{sub F}=4 to 5), we have a reduced μ{sub m}=μ{sub b} dependence of the χ{sup 2} at both NLO and NNLO as compared to the charm. This feature is now implemented in xFitter 2.0.0, an open source QCD fit framework.

  20. Exploring CRM effectiveness: an institutional theory perspective

    NARCIS (Netherlands)

    B. Hillebrand (Bas); J.J. Nijholt (Jurriaan); E.J. Nijssen (Edwin)

    2011-01-01

    textabstractThis study identifies the potential contribution that institutional theory can make to understanding the success of marketing practices. Based on institutional theory, we argue that the effectiveness of marketing practices decreases when firms are motivated to adopt such practices under

  1. Exploring CRM effectiveness : an institutional theory perspective

    NARCIS (Netherlands)

    Hillebrand, B.; Nijholt, J.J.; Nijssen, E.J.

    2011-01-01

    This study identifies the potential contribution that institutional theory can make to understanding the success of marketing practices. Based on institutional theory, we argue that the effectiveness of marketing practices decreases when firms are motivated to adopt such practices under the

  2. Quark-Gluon Plasma Signatures

    CERN Document Server

    Vogt, Ramona

    1998-01-01

    Aspects of quark-gluon plasma signatures that can be measured by CMS are discussed. First the initial conditions of the system from minijet production are introduced, including shadowing effects. Color screening of the Upsilon family is then presented, followed by energy loss effects on charm and bottom hadrons, high Pt jets and global observables.

  3. Effective field theory for NN interactions

    International Nuclear Information System (INIS)

    Tran Duy Khuong; Vo Hanh Phuc

    2003-01-01

    The effective field theory of NN interactions is formulated and the power counting appropriate to this case is reviewed. It is more subtle than in most effective field theories since in the limit that the S-wave NN scattering lengths go to infinity. It is governed by nontrivial fixed point. The leading two body terms in the effective field theory for nucleon self interactions are scale invariant and invariant under Wigner SU(4) spin-isospin symmetry in this limit. Higher body terms with no derivatives (i.e. three and four body terms) are automatically invariant under Wigner symmetry. (author)

  4. Lectures on the soliton theory of nucleons

    International Nuclear Information System (INIS)

    Ripka, G.

    1984-04-01

    In these lectures we describe models in which the pion field or, more precisely, the chiral fields, are responsible for the binding of quarks in the nucleon. Such bound states in which the quarks constitute a source for the chiral fields, which, in turn, bind the quarks to each other, are called solitons. The starting point for such theories or models are chiral invariant lagrangians. They are not derived from QCD. The Skyrme lagrangian is simpler in that it involves only chiral fields and no quarks. However it may be understood as an effective lagrangian from which the quark degrees of freedom have been integrated out. It is not yet clear to what extent various models are equivalent. The description of the nucleon in these lectures may be viewed as an extension of the T.D. Lee solitons so as to include the pionic degree of freedom

  5. Toponium Tests Of Top-Quark Higgs Bags

    OpenAIRE

    Macpherson, Alick L.; Campbell, Bruce A.

    1993-01-01

    Recently it has been suggested that top quarks, or very massive fourth generation quarks, might surround themselves with a Higgs "bag" of deformation of the Higgs expectation value from its vacuum magnitude. In this paper we address the question of whether such nonlinear Higgs-top interaction effects are subject to experimental test. We first note that if top quarks were necessarily accompanied by Higgs "bags", then top quark weak decay would involve the sudden disruption of the Higgs "bag", ...

  6. Effective Field Theories and Strong Interactions. Final Technical Report

    International Nuclear Information System (INIS)

    Fleming, Sean

    2011-01-01

    The framework of Effective Field Theories (EFTs) allows us to describe strong interactions in terms of degrees of freedom relevant to the energy regimes of interest, in the most general way consistent with the symmetries of QCD. Observables are expanded systematically in powers of M lo /M hi , where M lo (M hi ) denotes a low-(high-)energy scale. This organizational principle is referred to as 'power counting'. Terms of increasing powers in the expansion parameter are referred to as leading order (LO), next-to-leading order (NLO), etc. Details of the QCD dynamics not included explicitly are encoded in interaction parameters, or 'low-energy constants' (LECs), which can in principle be calculated from an explicit solution of QCD - for example via lattice simulations- but can also be determined directly from experimental data. QCD has an intrinsic scale M QCD ≅ 1 GeV, at which the QCD coupling constant α s (M QCD ) becomes large and the dynamics becomes non-perturbative. As a consequence M QCD sets the scale for the masses of most hadrons, such as the nucleon mass m N ≅ 940 MeV. EFTs can roughly be divided into two categories: those that can be matched onto QCD in perturbation theory, which we call high-energy EFTs, and those that cannot be matched perturbatively, which we call low-energy EFTs. In high-energy EFTs, M QCD typically sets the low-energy scale, and all the dynamics associated with this scale reside in matrix elements of EFT operators. These non-perturbative matrix elements are the LECs and are also referred to as long-distance contributions. Each matrix element is multiplied by a short-distance coefficient, which contains the dynamics from the high scale M hi . Since M hi >> M QCD , α s (M hi ) hi ∼ M Q , the heavy-quark mass, and in addition to M QCD there are low scales associated with the typical relative momentum ∼ M Q v and energy ∼ M Q v 2 of the heavy quarks. Depending on the sizes of M Q and the heavy-quark velocity v these scales can

  7. Theoretical origin of quark mass matrices

    International Nuclear Information System (INIS)

    Mohapatra, R.N.

    1987-01-01

    This paper presents the theoretical origin of specific quark mass matrices in the grand unified theories. The author discusses the first natural derivation of the Stech-type mass matrix in unified gauge theories. A solution to the strong CP-problem is provided

  8. Vectorlike interactions of leptons and quarks

    International Nuclear Information System (INIS)

    Fritzsch, H.

    1976-07-01

    A vectorlike theory of hadronic weak interactions can only be constructed if there exist more than 4 quark flavours and more than 4 leptons. Any vectorlike theory implies the existence of right-handed weak currents. Typically those currents are relevant for the weak interactions of heavy leptons. The experimental consequences of some typical vectorlike models are discussed. (BJ) [de

  9. Soft collinear effective theory for gravity

    Science.gov (United States)

    Okui, Takemichi; Yunesi, Arash

    2018-03-01

    We present how to construct a soft collinear effective theory (SCET) for gravity at the leading and next-to-leading powers from the ground up. The soft graviton theorem and decoupling of collinear gravitons at the leading power are manifest from the outset in the effective symmetries of the theory. At the next-to-leading power, certain simple structures of amplitudes, which are completely obscure in Feynman diagrams of the full theory, are also revealed, which greatly simplifies calculations. The effective Lagrangian is highly constrained by effectively multiple copies of diffeomorphism invariance that are inevitably present in gravity SCET due to mode separation, an essential ingredient of any SCET. Further explorations of effective theories of gravity with mode separation may shed light on Lagrangian-level understandings of some of the surprising properties of gravitational scattering amplitudes. A gravity SCET with an appropriate inclusion of Glauber modes may serve as a powerful tool for studying gravitational scattering in the Regge limit.

  10. Effective field theory, electric dipole moments and electroweak baryogenesis

    International Nuclear Information System (INIS)

    Balazs, Csaba; White, Graham; Yue, Jason

    2017-01-01

    Negative searches for permanent electric dipole moments (EDMs) heavily constrain models of baryogenesis utilising various higher dimensional charge and parity violating (CPV) operators. Using effective field theory, we create a model independent connection between these EDM constraints and the baryon asymmetry of the universe (BAU) produced during a strongly first order electroweak phase transition. The thermal aspects of the high scale physics driving the phase transition are paramaterised by the usual kink solution for the bubble wall profile. We find that operators involving derivatives of the Higgs field yield CPV contributions to the BAU containing derivatives of the Higgs vacuum expectation value (vev), while non-derivative operators lack such contributions. Consequently, derivative operators cannot be eliminated in terms of non-derivative operators (via the equations of motion) if one is agnostic to the new physics that leads to the phase transition. Thus, we re-classify the independent dimension six operators, restricting ourselves to third generation quarks, gauge bosons and the Higgs. Finally, we calculate the BAU (as a function of the bubble wall width and the cutoff) for a derivative and a non-derivative operator, and relate it to the EDM constraints.

  11. Effective field theory, electric dipole moments and electroweak baryogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Balazs, Csaba; White, Graham [ARC Centre of Excellence for Particle Physics at the Terascale School of Physics and Astronomy,Monash University,Victoria 3800 (Australia); Yue, Jason [Department of Physics, National Taiwan Normal University,Taipei 116, Taiwan (China); ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics,The University of Sydney,NSW 2006 (Australia)

    2017-03-07

    Negative searches for permanent electric dipole moments (EDMs) heavily constrain models of baryogenesis utilising various higher dimensional charge and parity violating (CPV) operators. Using effective field theory, we create a model independent connection between these EDM constraints and the baryon asymmetry of the universe (BAU) produced during a strongly first order electroweak phase transition. The thermal aspects of the high scale physics driving the phase transition are paramaterised by the usual kink solution for the bubble wall profile. We find that operators involving derivatives of the Higgs field yield CPV contributions to the BAU containing derivatives of the Higgs vacuum expectation value (vev), while non-derivative operators lack such contributions. Consequently, derivative operators cannot be eliminated in terms of non-derivative operators (via the equations of motion) if one is agnostic to the new physics that leads to the phase transition. Thus, we re-classify the independent dimension six operators, restricting ourselves to third generation quarks, gauge bosons and the Higgs. Finally, we calculate the BAU (as a function of the bubble wall width and the cutoff) for a derivative and a non-derivative operator, and relate it to the EDM constraints.

  12. Effective field theory approach to open heavy flavor production in heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Zhong-Bo [Department of Physics and Astronomy, University of California,Los Angeles, California 90095 (United States); Mani L. Bhaumik Institute for Theoretical Physics, University of California,Los Angeles, California 90095 (United States); Theoretical Division, Los Alamos National Laboratory,Los Alamos, New Mexico 87545 (United States); Ringer, Felix; Vitev, Ivan [Theoretical Division, Los Alamos National Laboratory,Los Alamos, New Mexico 87545 (United States)

    2017-03-28

    We develop a version of Soft Collinear Effective Theory (SCET) which includes finite quark masses, as well as Glauber gluons that describe the interaction of collinear partons with QCD matter. In the framework of this new effective field theory, labeled SCET{sub M,G}, we derive the massive splitting functions in the vacuum and the QCD medium for the processes Q→Qg, Q→gQ and g→QQ̄. The numerical effects due to finite quark masses are sizable and our results are consistent with the traditional approach to parton energy loss in the soft gluon emission limit. In addition, we present a new framework for including the medium-induced full splitting functions consistent with next-to-leading order calculations in QCD for inclusive hadron production. Finally, we show numerical results for the suppression of D- and B-mesons in heavy ion collisions at √(s{sub NN})=5.02 TeV and 2.76 TeV and compare to available data from the LHC.

  13. Space-Time Geometry of Quark and Strange Quark Matter

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We study quark and strange quark matter in the context of general relativity. For this purpose, we solve Einstein's field equations for quark and strange quark matter in spherical symmetric space-times. We analyze strange quark matter for the different equations of state (EOS) in the spherical symmetric space-times, thus we are able to obtain the space-time geometries of quark and strange quark matter. Also, we discuss die features of the obtained solutions. The obtained solutions are consistent with the results of Brookhaven Laboratory, i.e. the quark-gluon plasma has a vanishing shear (i.e. quark-gluon plasma is perfect).

  14. QCD Effective Field Theories for Heavy Quarkonium

    International Nuclear Information System (INIS)

    Brambilla, Nora

    2006-01-01

    QCD nonrelativistic effective field theories (NREFT) are the modern and most suitable frame to describe heavy quarkonium properties. Here I summarize few relevant concepts and some of the interesting physical applications (spectrum, decays, production) of NREFT

  15. Effective theories with broken flavour symmetry

    International Nuclear Information System (INIS)

    Miller, R.D.C.; McKellar, B.H.J.

    1981-07-01

    The work of Ovrut and Schnitzer on effective theories derived from a non Abelian Gauge Theory is generalised to include the physically interesting case of broken flavour symmetry. The calculations are performed at the 1-loop level. It is shown that at an intermediate stage in the calculations two distinct renormalised gauge coupling constants appear, one describing gauge field coupling to heavy particles and the other describing coupling to light particles. Appropriately modified Slavnov-Taylor identities are shown to hold. A simple alternative to the Ovrut-Schnitzer rules for calculating with effective theories is also considered

  16. On supersymmetric effective theories of axion

    Energy Technology Data Exchange (ETDEWEB)

    Higaki, Tetsutaro [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kitano, Ryuichiro [Tohoku Univ., Sendai (Japan). Dept. of Physics

    2011-04-15

    We study effective theories of an axion in spontaneously broken supersymmetric theories. We consider a system where the axion supermultiplet is directly coupled to a supersymmetry breaking sector whereas the standard model sector is communicated with those sectors through loops of messenger fields. The gaugino masses and the axion-gluon coupling necessary for solving the strong CP problem are both obtained by the same effective interaction. We discuss cosmological constraints on this framework. (orig.)

  17. Local Finite Density Theory, Statistical Blocking and Color Superconductivity

    OpenAIRE

    Ying, S.

    2000-01-01

    The motivation for the development of a local finite density theory is discussed. One of the problems related to an instability in the baryon number fluctuation of the chiral symmetry breaking phase of the quark system in the local theory is shown to exist. Such an instability problem is removed by taking into account the statistical blocking effects for the quark propagator, which depends on a macroscopic {\\em statistical blocking parameter} $\\epsilon$. This new frame work is then applied to...

  18. Quark ensembles with the infinite correlation length

    Science.gov (United States)

    Zinov'ev, G. M.; Molodtsov, S. V.

    2015-01-01

    A number of exactly integrable (quark) models of quantum field theory with the infinite correlation length have been considered. It has been shown that the standard vacuum quark ensemble—Dirac sea (in the case of the space-time dimension higher than three)—is unstable because of the strong degeneracy of a state, which is due to the character of the energy distribution. When the momentum cutoff parameter tends to infinity, the distribution becomes infinitely narrow, leading to large (unlimited) fluctuations. Various vacuum ensembles—Dirac sea, neutral ensemble, color superconductor, and BCS state—have been compared. In the case of the color interaction between quarks, the BCS state has been certainly chosen as the ground state of the quark ensemble.

  19. Quark ensembles with the infinite correlation length

    International Nuclear Information System (INIS)

    Zinov’ev, G. M.; Molodtsov, S. V.

    2015-01-01

    A number of exactly integrable (quark) models of quantum field theory with the infinite correlation length have been considered. It has been shown that the standard vacuum quark ensemble—Dirac sea (in the case of the space-time dimension higher than three)—is unstable because of the strong degeneracy of a state, which is due to the character of the energy distribution. When the momentum cutoff parameter tends to infinity, the distribution becomes infinitely narrow, leading to large (unlimited) fluctuations. Various vacuum ensembles—Dirac sea, neutral ensemble, color superconductor, and BCS state—have been compared. In the case of the color interaction between quarks, the BCS state has been certainly chosen as the ground state of the quark ensemble

  20. Quark ensembles with the infinite correlation length

    Energy Technology Data Exchange (ETDEWEB)

    Zinov’ev, G. M. [National Academy of Sciences of Ukraine, Bogoliubov Institute for Theoretical Physics (Ukraine); Molodtsov, S. V., E-mail: molodtsov@itep.ru [Joint Institute for Nuclear Research (Russian Federation)

    2015-01-15

    A number of exactly integrable (quark) models of quantum field theory with the infinite correlation length have been considered. It has been shown that the standard vacuum quark ensemble—Dirac sea (in the case of the space-time dimension higher than three)—is unstable because of the strong degeneracy of a state, which is due to the character of the energy distribution. When the momentum cutoff parameter tends to infinity, the distribution becomes infinitely narrow, leading to large (unlimited) fluctuations. Various vacuum ensembles—Dirac sea, neutral ensemble, color superconductor, and BCS state—have been compared. In the case of the color interaction between quarks, the BCS state has been certainly chosen as the ground state of the quark ensemble.

  1. Influence of broken flavor and C and P symmetry on the quark propagator

    Energy Technology Data Exchange (ETDEWEB)

    Maas, Axel; Mian, Walid Ahmed [University of Graz, Institute of Physics, NAWI Graz, Graz (Austria)

    2017-02-15

    Embedding QCD into the standard model breaks various symmetries of QCD explicitly, especially C and P. While these effects are usually perturbatively small, they can be amplified in extreme environments like merging neutron stars or by the interplay with new physics. To correctly treat these cases requires fully backcoupled calculations. To pave the way for later investigations of hadronic physics, we study the QCD quark propagator coupled to an explicit breaking. This substantially increases the tensor structure even for this simplest correlation function. To cope with the symmetry structure, and covering all possible quark masses, from the top quark mass to the chiral limit, we employ Dyson-Schwinger equations. While at weak breaking the qualitative effects have similar trends as in perturbation theory, even moderately strong breakings lead to qualitatively different effects, non-linearly amplified by the strong interactions. (orig.)

  2. Quark Matter May Not Be Strange.

    Science.gov (United States)

    Holdom, Bob; Ren, Jing; Zhang, Chen

    2018-06-01

    If quark matter is energetically favored over nuclear matter at zero temperature and pressure, then it has long been expected to take the form of strange quark matter (SQM), with comparable amounts of u, d, and s quarks. The possibility of quark matter with only u and d quarks (udQM) is usually dismissed because of the observed stability of ordinary nuclei. However, we find that udQM generally has lower bulk energy per baryon than normal nuclei and SQM. This emerges in a phenomenological model that describes the spectra of the lightest pseudoscalar and scalar meson nonets. Taking into account the finite size effects, udQM can be the ground state of baryonic matter only for baryon number A>A_{min} with A_{min}≳300. This ensures the stability of ordinary nuclei and points to a new form of stable matter just beyond the periodic table.

  3. £ £ · 1 decay in the heavy quark effective theory

    Indian Academy of Sciences (India)

    a7μ唇 · 7 µqa; a is the color index. The values of the Wilson coefficients ... where the second term is a color singlet operator formed by the color octet currents, λ a are the SU(3) Gell–Mann matrices and ..... forms trivially under the spin symmetry, contributing to the form factors in the same proportion as the leading order term ...

  4. Non-perturbative heavy quark effective theory. An application to semi-leptonic B-decays

    International Nuclear Information System (INIS)

    Della Morte, Michele; Heitger, Jochen; Simma, Hubert; Sommer, Rainer; Humboldt-Universitaet, Berlin

    2015-01-01

    We review a lattice strategy how to non-perturbatively determine the coefficients in the HQET expansion of all components of the heavy-light axial and vector currents, including 1/m h -corrections. We also discuss recent preliminary results on the form factors parameterizing semi-leptonic B-decays at the leading order in 1/m h .

  5. Center-symmetric effective theory for two-color quark matter

    Czech Academy of Sciences Publication Activity Database

    Brauner, Tomáš

    2012-01-01

    Roč. 10, č. 6 (2012), s. 1382-1384 ISSN 1895-1082 Institutional support: RVO:61389005 Keywords : thermal field tehory * QCD * confinement Subject RIV: BE - Theoretical Physics Impact factor: 0.905, year: 2012

  6. Proceedings of the Summer institute on particle physics: The top quark and the electroweak interaction

    Energy Technology Data Exchange (ETDEWEB)

    Burke, D.; Dixon, L.; Leith, D.W.G.S.

    1997-01-01

    The XXIII SLAC Summer Institute on Particle Physics addressed the physics of the recently discovered top quark, and its connection to the electroweak interaction and to physics beyond the Standard Model. The seven-day school portion of the Institute covered many avenues for studying the top quark, from its direct production at hadron colliders and at future electron-positron colliders, to its virtual effects in precision electroweak quantities, in heavy flavor physics, and in the renormalization of supersymmetric theories, Vertex detectors - critical for identifying the b quark decay products of the top - and Cherenkov techniques for particle identification were also reviewed. The Institute concluded with a three-day topical conference covering recent developments in theory and experiment; this year, the highlights were the CDF and D0 top quark discovery. Also featured were updated precision electroweak measurements from SLC, LEP, and the Tevatron, heavy quark results from these facilities as well as CLEO, and new photoproduction and deep-inelastic scattering data from HERA. Separate abstracts have been submitted to the energy database for articles from this proceedings.

  7. Proceedings of the Summer institute on particle physics: The top quark and the electroweak interaction

    International Nuclear Information System (INIS)

    Burke, D.; Dixon, L.; Leith, D.W.G.S.

    1997-01-01

    The XXIII SLAC Summer Institute on Particle Physics addressed the physics of the recently discovered top quark, and its connection to the electroweak interaction and to physics beyond the Standard Model. The seven-day school portion of the Institute covered many avenues for studying the top quark, from its direct production at hadron colliders and at future electron-positron colliders, to its virtual effects in precision electroweak quantities, in heavy flavor physics, and in the renormalization of supersymmetric theories, Vertex detectors - critical for identifying the b quark decay products of the top - and Cherenkov techniques for particle identification were also reviewed. The Institute concluded with a three-day topical conference covering recent developments in theory and experiment; this year, the highlights were the CDF and D0 top quark discovery. Also featured were updated precision electroweak measurements from SLC, LEP, and the Tevatron, heavy quark results from these facilities as well as CLEO, and new photoproduction and deep-inelastic scattering data from HERA. Separate abstracts have been submitted to the energy database for articles from this proceedings

  8. Hydrodynamics of a quark droplet

    DEFF Research Database (Denmark)

    Bjerrum-Bohr, Johan J.; Mishustin, Igor N.; Døssing, Thomas

    2012-01-01

    We present a simple model of a multi-quark droplet evolution based on the hydrodynamical description. This model includes collective expansion of the droplet, effects of the vacuum pressure and surface tension. The hadron emission from the droplet is described following Weisskopf's statistical...

  9. Quark mass corrections to the perturbative thrust and its effect on the ...

    Indian Academy of Sciences (India)

    atic approach for handling power corrections using perturbation theory. ... The numerator of the above is given up to З(αs) and to З(ξ) by (σ0 = (4πα2/s)e2 i is the .... MARK II. AMY. ALEPH. DELPHI. OPAL. Massless formula. Massive formula ... We can also estimate the theoretical uncertainties on these quantities by vary-.

  10. The polarized EMC effect

    Energy Technology Data Exchange (ETDEWEB)

    W. Bentz; I. C. Cloet; A. W. Thomas

    2007-02-01

    We calculate both the spin independent and spin dependent nuclear structure functions in an effective quark theory. The nucleon is described as a composite quark-diquark state, and the nucleus is treated in the mean field approximation. We predict a sizable polarized EMC effect, which could be confirmed in future experiments.

  11. Effective field theories of QCD for heavy quarkonia at finite temperature

    International Nuclear Information System (INIS)

    Ghiglieri, Jacopo

    2011-01-01

    Quarkonia, i.e. heavy quark-antiquark bound states, represent one of the most important probes in the experimental investigation, through heavy-ion collisions, of the high-temperature region of the phase diagram of QCD, where the onset of a deconfined medium, the quark-gluon plasma, is expected. Such bound states were hypothesized to dissociate in this plasma due to the screening of the colour charges and experimental data from SPS, RHIC and very recently also LHC indeed show a suppression pattern. In this thesis we extend the well-established and successful zero temperature framework of Non-Relativistic (NR) Effective Field Theories (EFTs) (NRQCD, pNRQCD) for the study of heavy quarkonia (production, spectroscopy, decays,..) to finite temperatures. This is achieved by integrating out in sequence the scales that characterize a NR bound state and those that are typical of a thermal medium, in the possible hierarchies that are relevant for quarkonia in the quark-gluon plasma. Within this framework we show how the potential that governs the evolution of the quark-antiquark pair is derived from QCD in a modern and rigorous way, thereby bridging the gap between phenomenological potential models and QCD. We show how the EFTs can be systematically improved and how effects that cannot be encoded in a potential arise naturally in the EFT, giving rise to new mechanisms of dissociation. We use this EFT framework to compute the spectrum and width of quarkonia in a particular setting that is relevant for the phenomenology of the ground states of bottomonium at the LHC. We also analyze within this framework the correlator of Polyakov loops, which is related to the thermodynamical free energy of heavy quark-antiquark pairs in the medium. As such, lattice computations thereof were frequently used as input for potential models. With our approach we are able to clarify the relation between these free energies and the real-time potential describing the dynamics of quarkonia, finding

  12. Effective field theories of QCD for heavy quarkonia at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ghiglieri, Jacopo

    2011-07-27

    Quarkonia, i.e. heavy quark-antiquark bound states, represent one of the most important probes in the experimental investigation, through heavy-ion collisions, of the high-temperature region of the phase diagram of QCD, where the onset of a deconfined medium, the quark-gluon plasma, is expected. Such bound states were hypothesized to dissociate in this plasma due to the screening of the colour charges and experimental data from SPS, RHIC and very recently also LHC indeed show a suppression pattern. In this thesis we extend the well-established and successful zero temperature framework of Non-Relativistic (NR) Effective Field Theories (EFTs) (NRQCD, pNRQCD) for the study of heavy quarkonia (production, spectroscopy, decays,..) to finite temperatures. This is achieved by integrating out in sequence the scales that characterize a NR bound state and those that are typical of a thermal medium, in the possible hierarchies that are relevant for quarkonia in the quark-gluon plasma. Within this framework we show how the potential that governs the evolution of the quark-antiquark pair is derived from QCD in a modern and rigorous way, thereby bridging the gap between phenomenological potential models and QCD. We show how the EFTs can be systematically improved and how effects that cannot be encoded in a potential arise naturally in the EFT, giving rise to new mechanisms of dissociation. We use this EFT framework to compute the spectrum and width of quarkonia in a particular setting that is relevant for the phenomenology of the ground states of bottomonium at the LHC. We also analyze within this framework the correlator of Polyakov loops, which is related to the thermodynamical free energy of heavy quark-antiquark pairs in the medium. As such, lattice computations thereof were frequently used as input for potential models. With our approach we are able to clarify the relation between these free energies and the real-time potential describing the dynamics of quarkonia, finding

  13. The Model of Complex Structure of Quark

    Science.gov (United States)

    Liu, Rongwu

    2017-09-01

    In Quantum Chromodynamics, quark is known as a kind of point-like fundamental particle which carries mass, charge, color, and flavor, strong interaction takes place between quarks by means of exchanging intermediate particles-gluons. An important consequence of this theory is that, strong interaction is a kind of short-range force, and it has the features of ``asymptotic freedom'' and ``quark confinement''. In order to reveal the nature of strong interaction, the ``bag'' model of vacuum and the ``string'' model of string theory were proposed in the context of quantum mechanics, but neither of them can provide a clear interaction mechanism. This article formulates a new mechanism by proposing a model of complex structure of quark, it can be outlined as follows: (1) Quark (as well as electron, etc) is a kind of complex structure, it is composed of fundamental particle (fundamental matter mass and electricity) and fundamental volume field (fundamental matter flavor and color) which exists in the form of limited volume; fundamental particle lies in the center of fundamental volume field, forms the ``nucleus'' of quark. (2) As static electric force, the color field force between quarks has classical form, it is proportional to the square of the color quantity carried by each color field, and inversely proportional to the area of cross section of overlapping color fields which is along force direction, it has the properties of overlap, saturation, non-central, and constant. (3) Any volume field undergoes deformation when interacting with other volume field, the deformation force follows Hooke's law. (4) The phenomena of ``asymptotic freedom'' and ``quark confinement'' are the result of color field force and deformation force.

  14. Effective field theory approach to nuclear matter

    International Nuclear Information System (INIS)

    Saviankou, P.; Gruemmer, F.; Epelbaum, E.; Krewald, S.; Meissner, Ulf-G.

    2006-01-01

    Effective field theory provides a systematic approach to hardon physics and few-nucleon systems. It allows one to determine the effective two-, three-, and more-nucleon interactions which are consistent with each other. We present a project to derive bulk properties of nuclei from the effective nucleonic interactions

  15. Effect of Quark Spins to the Hadron Distributions for Chiral Magnetic Wave in Ultrarelativistic Heavy-Ion Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Byungsik [Korea University, Seoul (Korea, Republic of)

    2017-07-15

    Topological fluctuation of the gluon field in quantum chromodynamics modifies the vacuum structure, and causes various chiral anomalies. In the strong magnetic field generated by semi-central heavy-ion collisions, the axial and vector density fluctuations propagate along the external magnetic field, called the chiral magnetic wave. Up to now the investigation of the various chiral anomalies in heavy ion collisions has been focussed on the charge distribution in the transverse plane. However, this paper points out that the information on the charge distribution is not enough and the spin effect should also be taken into account. Considering the charge and spin distributions together, π{sup ±} with spin 0 are not proper particle species to study the chiral anomalies, as the signal may be significantly suppressed as one of the constituent (anti)quarks should come from background to form the pseudoscalar states. It is, therefore, necessary to analyze explicitly the vector mesons with spin 1 (K⋆{sup ±} (892)) and baryons with spin 3/2 (Δ{sup ++}(1232), Σ{sup −} (1385) and Ω{sup −} ). If the chiral anomaly effects exist, the elliptic flow parameter is expected to be larger for negative particles for each particle species.

  16. Some Recent Progress on Quark Pairings in Dense Quark and Nuclear Matter

    International Nuclear Information System (INIS)

    Pang Jinyi; Wang Jincheng; Wang Qun

    2012-01-01

    In this review article we give a brief overview on some recent progress in quark pairings in dense quark/nuclear matter mostly developed in the past five years. We focus on following aspects in particular: the BCS-BEC crossover in the CSC phase, the baryon formation and dissociation in dense quark/nuclear matter, the Ginzburg-Landau theory for three-flavor dense matter with U A (1) anomaly, and the collective and Nambu-Goldstone modes for the spin-one CSC. (physics of elementary particles and fields)

  17. Duality and quarks

    International Nuclear Information System (INIS)

    Volkov, D.V.; Zheltukhin, A.A.; Pashnev, A.I.

    1975-01-01

    As it has shown, the study of vacuum transitions in dual models makes it possible to establish certain relations between duality, on the one hand, and the quark structure of resonances and the internal symmetries, on the other. In the case of Veneziano model the corresponding quark structure of resonances is determined by the infinity number of quarks of increasing mass. The intercents of the main trajectory and all adopted trajectories are additive with respect to squares of mass-forming quarks. The latter circumstance results in a number of important consequences: the presence of quadratic mass formulas for resonance states; the exact SU(infinity)-symmetry for the three-resonance coupling constants; the validity of Adler's self-consistency principle for external particles composed of different quarks and anti-quarks, etc

  18. Effective medium theory for anisotropic metamaterials

    KAUST Repository

    Zhang, Xiujuan

    2015-01-20

    Materials with anisotropic material parameters can be utilized to fabricate many fascinating devices, such as hyperlenses, metasolids, and one-way waveguides. In this study, we analyze the effects of geometric anisotropy on a two-dimensional metamaterial composed of a rectangular array of elliptic cylinders and derive an effective medium theory for such a metamaterial. We find that it is possible to obtain a closed-form analytical solution for the anisotropic effective medium parameters, provided the aspect ratio of the lattice and the eccentricity of the elliptic cylinder satisfy certain conditions. The derived effective medium theory not only recovers the well-known Maxwell-Garnett results in the quasi-static regime, but is also valid beyond the long-wavelength limit, where the wavelength in the host medium is comparable to the size of the lattice so that previous anisotropic effective medium theories fail. Such an advance greatly broadens the applicable realm of the effective medium theory and introduces many possibilities in the design of structures with desired anisotropic material characteristics. A real sample of a recently theoretically proposed anisotropic medium, with a near-zero index to control the flux, is achieved using the derived effective medium theory, and control of the electromagnetic waves in the sample is clearly demonstrated.

  19. Global effects in quaternionic quantum field theory

    International Nuclear Information System (INIS)

    Brumby, S.P.; Joshi, G.C.

    1997-01-01

    A local quaternionic gauge structure is introduced onto space-time. It is a theory of vector bosons and dimensionless scalar fields, which recalls semi-classical treatments of gravity. After transforming to the 'i' gauge, it was found that the quaternionic symmetry takes the form of an exotic SU (2) gauge theory in the standard complex framework, with global phenomena appearing in the form of cosmic strings. Coupling this quaternionic sector to the Standard Model sector has only been achieved at the level of an effective theory, which is constrained by the quaternionic origin of the bosons to be of a nonrenormalisable form. 14 refs.,

  20. Gravitational effects in field gravitation theory

    International Nuclear Information System (INIS)

    Denisov, V.I.; Logunov, A.A.; Mestvirishvili, M.A.; Vlasov, A.A.

    1979-01-01

    The possibilities to describe various gravitation effects of field gravitation theory (FGT) are considered. Past-Newtonian approximation of the FGT has been constructed and on the basis of this approximation it has been shown that the field theory allows one to describe the whole set of experimental facts. The comparison of post-Newtonian parameters in FGT with those in the Einstein's theory makes it clear that these two; theories are undistinguishable from the viewpoint of any experiments, realized with post-Newtonian accuracy. Gravitational field of an island type source with spherically symmetrical distribution of matter and unstationary homogeneous model of Universe, which allows to describe the effect of cosmological red shift, are considered

  1. Heavy quark masses

    Science.gov (United States)

    Testa, Massimo

    1990-01-01

    In the large quark mass limit, an argument which identifies the mass of the heavy-light pseudoscalar or scalar bound state with the renormalized mass of the heavy quark is given. The following equation is discussed: m(sub Q) = m(sub B), where m(sub Q) and m(sub B) are respectively the mass of the heavy quark and the mass of the pseudoscalar bound state.

  2. Limitations on tests of quantum flavour dynamics from quark confinement

    International Nuclear Information System (INIS)

    Pietschmann, H.

    1989-01-01

    Quantum Flavour Dynamics is a theory of electroweak interactions. The Lagrangian is formulated for leptons and quarks. Since quarks are not directly accessible in experiment, predictions are model-dependent and the predictive power of the theory is limited. In view of these limitations QFD theory is formulated and confronted in several instances with experimental results: leptonic- and semi-leptonic processes, non-leptonic decay processes and radiative decay processes. 17 refs. (qui)

  3. Quarks and leptons

    International Nuclear Information System (INIS)

    Harari, H.

    1977-01-01

    The physics of quarks and leptons within the framework of gauge theories for the weak and electromagnetic interactions is reviewed. The Weinberg-Salam SU(2)xU(1) theory is used as a ''reference point'' but models based on larger gauge groups, especially SU(2)sub(L)xSU(2)sub(R)xU(1), are discussed. We distinguish among three ''Generations'' of fundamental fermions: The first generation (e - , νsub(e), u, d), the second generation (μ - , νsub(μ), c, s) and the third generation (tau - , νsub(tau), t, b). For each generation are discussed the classification of all fermions, the charged and neutral weak currents, possible right-handed currents, parity and CP-violation, fermion masses and Cabibbo-like angles and related problems. Theoretical ideas as well as experimental evidence, emphasizing open theoretical problems and possible experimental tests are reviewed, as well as the possibility of unifying the weak, electromagnetic and strong interactions in a grand unification scheme. The problems and their possible solutions are presented, generation by generation, but a brief subject-index (following the table of contents) enbales the interested reader to follow any specific topic throughout the three generations. (author)

  4. Semileptonic Decays of Heavy Lambda Baryons in a Quark Model

    Energy Technology Data Exchange (ETDEWEB)

    Winston Roberts; Muslema Pervin; Simon Capstick

    2005-03-01

    The semileptonic decays of {Lambda}{sub c} and {Lambda}{sub b} are treated in the framework of a constituent quark model. Both nonrelativistic and semirelativistic Hamiltonians are used to obtain the baryon wave functions from a fit to the spectra, and the wave functions are expanded in both the harmonic oscillator and Sturmian bases. The latter basis leads to form factors in which the kinematic dependence on q{sup 2} is in the form of multipoles, and the resulting form factors fall faster as a function of q{sup 2} in the available kinematic ranges. As a result, decay rates obtained in the two models using the Sturmian basis are significantly smaller than those obtained using the harmonic oscillator basis. In the case of the {Lambda}{sub c}, decay rates calculated using the Sturmian basis are closer to the experimentally reported rates. However, we find a semileptonic branching fraction for the {Lambda}{sub c} to decay to excited {Lambda}* states of 11% to 19%, in contradiction with what is assumed in available experimental analyses. Our prediction for the {Lambda}{sub b} semileptonic decays is that decays to the ground state {Lambda}{sub c} provide a little less than 70% of the total semileptonic decay rate. For the decays {Lambda}{sub b} {yields} {Lambda}{sub c}, the analytic form factors we obtain satisfy the relations expected from heavy-quark effective theory at the non-recoil point, at leading and next-to-leading orders in the heavy-quark expansion. In addition, some features of the heavy-quark limit are shown to naturally persist as the mass of the heavy quark in the daughter baryon is decreased.

  5. Radiative generation of quark masses and mixing angles in the two Higgs doublet model

    International Nuclear Information System (INIS)

    Ibarra, Alejandro; Solaguren-Beascoa, Ana

    2014-01-01

    We present a framework to generate the quark mass hierarchies and mixing angles by extending the Standard Model with one extra Higgs doublet. The charm and strange quark masses are generated by small quantum effects, thus explaining the hierarchy between the second and third generation quark masses. All the mixing angles are also generated by small quantum effects: the Cabibbo angle is generated at zeroth order in perturbation theory, while the remaining off-diagonal entries of the Cabibbo–Kobayashi–Maskawa matrix are generated at first order, hence explaining the observed hierarchy |V ub |,|V cb |≪|V us |. The values of the radiatively generated parameters depend only logarithmically on the heavy Higgs mass, therefore this framework can be reconciled with the stringent limits on flavor violation by postulating a sufficiently large new physics scale

  6. Top quark and Higgs boson masses from wormhole physics

    International Nuclear Information System (INIS)

    Harris, B.A.; Joshi, G.C.

    1994-01-01

    We bring together quantum field theory on S 4 with the Coleman wormhole hypothesis, which imposes constraints on terms in the gravitational Lagrangian. In particular, we investigate the effect of matter fields on the trace anomaly, which is related to the (curvature) 2 terms, by the use of the renormalization group equations. We consider a toy model of a nonconformally coupled Higgs boson to a single ''top'' quark. By numerically solving the renormalization group equations for the couplings of the model, we can find preferred values of the particle masses for various values of the bare nonconformal coupling. By making the ad hoc assumption that the tree-level, Higgs boson treace anomaly vanishes on shell, a unique prediction can be made within this model for the masses of both the Higgs boson and the top quark

  7. Gauge invariance and the quark-antiquark static potential

    International Nuclear Information System (INIS)

    Cahill, K.; Stump, D.R.

    1979-01-01

    We calculate the quark-antiquark static potential to order g 4 in temporal-gauge quantum chromodynamics by constructing a suitably general family of gauge-invariant qq-bar states and then selecting the one whose energy is minimal for a given qq-bar separation r. Our results agree with those of conventional perturbation theory. We study various ways in which quark confinement might arise from nonperturbative effects related to the Gribov ambiguity. We find that the presence of long-range gauge fields can change the asymptotic behavior of the Coulomb Green's function from r -1 to r/sup -1/2/. We illustrate this possibility by a simple example. After making some simplifying assumptions, we obtain a minimally confining potential V (r) that rises logarithmically for large r

  8. Quark masses: An environmental impact statement

    International Nuclear Information System (INIS)

    Jaffe, Robert L.; Jenkins, Alejandro; Kimchi, Itamar

    2009-01-01

    We investigate worlds that lie on a slice through the parameter space of the standard model over which quark masses vary. We allow as many as three quarks to participate in nuclei, while fixing the mass of the electron and the average mass of the lightest baryon flavor multiplet. We classify as congenial worlds that satisfy the environmental constraint that the quark masses allow for stable nuclei with charge one, six, and eight, making organic chemistry possible. Whether a congenial world actually produces observers capable of measuring those quark masses depends on a multitude of historical contingencies, beginning with primordial nucleosynthesis and including other astrophysical processes, which we do not explore. Such constraints may be independently superimposed on our results. Environmental constraints such as the ones we study may be combined with information about the a priori distribution of quark masses over the landscape of possible universes to determine whether the measured values of the quark masses are determined environmentally, but our analysis is independent of such an anthropic approach. We estimate baryon masses as functions of quark masses via first-order perturbation theory in flavor SU(3) breaking. We estimate nuclear masses as functions of the baryon masses using two separate tools: for a nucleus made of two baryon species, when possible we consider its analog in our world, a nucleus with a similar binding energy, up to Coulomb contributions. For heavy nuclei or nuclei made of more than two baryons, we develop a generalized Weizsaecker semiempirical mass formula, in which strong kinematic flavor symmetry violation is modeled by a degenerate Fermi gas . We check for the stability of nuclei against fission, strong particle emission (analogous to α decay), and weak nucleon emission. For two light quarks with charges 2/3 and -1/3 , we find a band of congeniality roughly 29 MeV wide in their mass difference, with our own world lying comfortably

  9. Plane Symmetric Cosmological Model with Quark and Strange ...

    Indian Academy of Sciences (India)

    Keywords. f(R,T) theory of gravity—plane symmetric space-time—quark and strange quark matter—constant deceleration parameter. 1. Introduction. Modern astrophysical observations point out that present expansion of the Universe is an accelerated epoch. The most fascinating evidence for this is found in measurements ...

  10. Precision determination of the top-quark mass

    International Nuclear Information System (INIS)

    Moch, Sven-Olaf

    2014-08-01

    Precision determinations of the top-quark mass require theory predictions with a well-defined mass parameter in a given renormalization scheme. The top-quark's running mass in the MS scheme can be extracted with good precision from the total cross section at next-to-next-to-leading order in QCD. The Monte Carlo top-quark mass parameter measured from comparison to events with top-quark decay products is not identical with the pole mass. Its translation to the pole mass scheme introduces an additional uncertainty of the order of 1 GeV.

  11. Effective Field Theories for Hot and Dense Matter

    Directory of Open Access Journals (Sweden)

    Blaschke D.

    2010-10-01

    Full Text Available The lecture is divided in two parts. The first one deals with an introduction to the physics of hot, dense many-particle systems in quantum field theory [1, 2]. The basics of the path integral approach to the partition function are explained for the example of chiral quark models. The QCD phase diagram is discussed in the meanfield approximation while QCD bound states in the medium are treated in the rainbow-ladder approximation (Gaussian fluctuations. Special emphasis is devoted to the discussion of the Mott effect, i.e. the transition of bound states to unbound, but resonant scattering states in the continnum under the influence of compression and heating of the system. Three examples are given: (1 the QCD model phase diagram with chiral symmetry ¨ restoration and color superconductivity [3], (2 the Schrodinger equation for heavy-quarkonia [4], and (2 Pions [5] as well as Kaons and D-mesons in the finite-temperature Bethe-Salpeter equation [6]. We discuss recent applications of this quantum field theoretical approach to hot and dense quark matter for a description of anomalous J/ψ supression in heavy-ion collisions [7] and for the structure and cooling of compact stars with quark matter interiors [8]. The second part provides a detailed introduction to the Polyakov-loop Nambu–Jona-Lasinio model [9] for thermodynamics and mesonic correlations [10] in the phase diagram of quark matter. Important relationships of low-energy QCD like the Gell-Mann–Oakes–Renner relation are generalized to finite temperatures. The effect of including the coupling to the Polyakov-loop potential on the phase diagram and mesonic correlations is discussed. An outlook is given to effects of nonlocality of the interactions [11] and of mesonic correlations in the medium [12] which go beyond the meanfield description.

  12. The Quark - A Decade Later

    Science.gov (United States)

    Dakin, James T.

    1974-01-01

    Reviews theoretical principles underlying the quark model. Indicates that the agreement with experimental results and the understanding of the quark-quark force are two hurdles for the model to survive in the future. (CC)

  13. A periodic table of effective field theories

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Clifford [Walter Burke Institute for Theoretical Physics,California Institute of Technology,Pasadena, CA (United States); Kampf, Karol; Novotny, Jiri [Institute of Particle and Nuclear Physics,Faculty of Mathematics and Physics, Charles University,Prague (Czech Republic); Shen, Chia-Hsien [Walter Burke Institute for Theoretical Physics,California Institute of Technology,Pasadena, CA (United States); Trnka, Jaroslav [Center for Quantum Mathematics and Physics (QMAP),Department of Physics, University of California,Davis, CA (United States)

    2017-02-06

    We systematically explore the space of scalar effective field theories (EFTs) consistent with a Lorentz invariant and local S-matrix. To do so we define an EFT classification based on four parameters characterizing 1) the number of derivatives per interaction, 2) the soft properties of amplitudes, 3) the leading valency of the interactions, and 4) the spacetime dimension. Carving out the allowed space of EFTs, we prove that exceptional EFTs like the non-linear sigma model, Dirac-Born-Infeld theory, and the special Galileon lie precisely on the boundary of allowed theory space. Using on-shell momentum shifts and recursion relations, we prove that EFTs with arbitrarily soft behavior are forbidden and EFTs with leading valency much greater than the spacetime dimension cannot have enhanced soft behavior. We then enumerate all single scalar EFTs in d<6 and verify that they correspond to known theories in the literature. Our results suggest that the exceptional theories are the natural EFT analogs of gauge theory and gravity because they are one-parameter theories whose interactions are strictly dictated by properties of the S-matrix.

  14. PREFACE: Quark Matter 2008

    Science.gov (United States)

    Jan-e~Alam; Subhasis~Chattopadhyay; Tapan~Nayak

    2008-10-01

    Quark Matter 2008—the 20th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions was held in Jaipur, the Pink City of India, from 4-10 February, 2008. Organizing Quark Matter 2008 in India itself indicates the international recognition of the Indian contribution to the field of heavy-ion physics, which was initiated and nurtured by Bikash Sinha, Chair of the conference. The conference was inaugurated by the Honourable Chief Minister of Rajasthan, Smt. Vasundhara Raje followed by the key note address by Professor Carlo Rubbia. The scientific programme started with the theoretical overview, `SPS to RHIC and onwards to LHC' by Larry McLerran followed by several theoretical and experimental overview talks on the ongoing experiments at SPS and RHIC. The future experiments at the LHC, FAIR and J-PARC, along with the theoretical predictions, were discussed in great depth. Lattice QCD predictions on the nature of the phase transition and critical point were vigorously debated during several plenary and parallel session presentations. The conference was enriched by the presence of an unprecedented number of participants; about 600 participants representing 31 countries across the globe. This issue contains papers based on plenary talks and oral presentations presented at the conference. Besides invited and contributed talks, there were also a large number of poster presentations. Members of the International Advisory Committee played a pivotal role in the selection of speakers, both for plenary and parallel session talks. The contributions of the Organizing Committee in all aspects, from helping to prepare the academic programme down to arranging local hospitality, were much appreciated. We thank the members of both the committees for making Quark Matter 2008 a very effective and interesting platform for scientific deliberations. Quark Matter 2008 was financially supported by: Air Liquide (New Delhi) Board of Research Nuclear Sciences (Mumbai) Bose

  15. Monopoles and confinement in lattice gauge theory

    International Nuclear Information System (INIS)

    Singh, V.

    1992-01-01

    The mechanism by which quarks, believed to be the fundamental constituents of matter, are prevented from existing in the free state is fundamental problems in physics. One of the most viable candidates for a hypothesis of confinement is the dual superconductor mechanism that likens quark confinement to the Meissner effect in superconductors. The peculiarities of quark interactions make a numerical approach to the subject a necessity, and therefore, much of the work in this area has been done through the methods of lattice gauge theory, with the simplicities afforded by putting spacetime on a four-dimensional grid. Over the years a large amount of indirect evidence has accumulated that the dual superconductor hypothesis does indeed lead to quark confinement but unambiguous evidence has eluded research efforts until recently. This work presents the first direct proof of a Meissner-like effect that leads to confinement, using the numerical techniques of lattice gauge theory. It is shown that for a U(1) lattice gauge theory, that serves as a toy model of the real world of quarks, a dual London relation and an electric fluxoid qauntization condition is satisfied, allowing the author to conclude that the vacuum in this case acts like an extreme type-II superconductor, and that quarks are confined. The author also shows that SU(2) lattice gauge theory, which is qualitatively different and another step closer to reality, shows a Meissner-like effect. In contrast to the U(1) case, the author's results are found consistent with a dual version of the Ginsburg-Landau theory of superconductor on the borderline between type-I and type-II. This approach paves the wave for a study of the more complicated theory, quantum chromodynamics, that is believed to describe quarks

  16. Effective medium theory for anisotropic metamaterials

    KAUST Repository

    Zhang, Xiujuan; Wu, Ying

    2015-01-01

    -dimensional metamaterial composed of a rectangular array of elliptic cylinders and derive an effective medium theory for such a metamaterial. We find that it is possible to obtain a closed-form analytical solution for the anisotropic effective medium parameters, provided

  17. Two-color lattice QCD with staggered quarks

    Energy Technology Data Exchange (ETDEWEB)

    Scheffler, David

    2015-07-20

    The study of quantum chromodynamics (QCD) at finite temperature and density provides important contributions to the understanding of strong-interaction matter as it is present e.g. in nuclear matter and in neutron stars or as produced in heavy-ion collision experiments. Lattice QCD is a non-perturbative approach, where equations of motion for quarks and gluons are discretized on a finite space-time lattice. The method successfully describes the behavior of QCD in the vacuum and at finite temperature, however it cannot be applied to finite baryon density due to the fermion sign problem. Various QCD-like theories, that offer to draw conclusions about QCD, allow simulations also at finite densities. In this work we investigate two-color QCD as a popular example of a QCD-like theory free from the sign problem with methods from lattice gauge theory. For the generation of gauge configurations with two dynamical quark flavors in the staggered formalism with the ''rooting trick'' we apply the Rational Hybrid Monte Carlo (RHMC) algorithm. We carry out essential preparatory work for future simulations at finite density. As a start, we concentrate on the calculation of the effective potential for the Polyakov loop, which is an order parameter for the confinement-deconfinement transition, in dependence of the temperature and quark mass. It serves as an important input for effective models of QCD. We obtain the effective potential via the histogram method from local distributions of the Polyakov loop. To study the influence of dynamical quarks on gluonic observables, the simulations are performed with large quark masses and are compared to calculations in the pure gauge theory. In the second part of the thesis we examine aspects of the chiral phase transition along the temperature axis. The symmetry group of chiral symmetry in two-color QCD is enlarged to SU(2N{sub f}). Discretized two-color QCD in the staggered formalism exhibits a chiral symmetry breaking

  18. Quasiconfigurations and the theory of effective interactions

    International Nuclear Information System (INIS)

    Poves, A.; Zuker, A.

    1980-01-01

    Perturbation theory is reformulated. Schroedinger's equation is recast as a non linear integral equation which yields by Neumann expansion a linked cluster series for the degenerate, quasi degenerate or non degenerate problem. An effective interaction theory emerges that can be formulated in a biorthogonal basis leading to a non Hermitian secular problem. Hermiticity can be recovered in a clear and rigorous way. As the mathematical form of the theory is dictated by the request of physical clarity the latter is obtained naturally. When written in diagrammatic many body language, the integral equation produces a set of linked coupled equations for the degenerate case. The classic summations (Brueckner, Bethe-Faddeev and RPA) emerge naturally. Possible extensions of nuclear matter theory are suggested

  19. Effective field theory for triaxially deformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Q.B. [Technische Universitaet Muechen, Physik-Department, Garching (Germany); Peking University, State Key Laboratory of Nuclear Physics and Technology, School of Physics, Beijing (China); Kaiser, N. [Technische Universitaet Muechen, Physik-Department, Garching (Germany); Meissner, Ulf G. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Institute for Advanced Simulation, Institut fuer Kernphysik, Juelich Center for Hadron Physics and JARA-HPC, Forschungszentrum Juelich, Juelich (Germany); Meng, J. [Peking University, State Key Laboratory of Nuclear Physics and Technology, School of Physics, Beijing (China); Beihang University, School of Physics and Nuclear Energy Engineering, Beijing (China); University of Stellenbosch, Department of Physics, Stellenbosch (South Africa)

    2017-10-15

    Effective field theory is generalized to investigate the rotational motion of triaxially deformed even-even nuclei. The Hamiltonian for the triaxial rotor is obtained up to next-to-leading order within the effective field theory formalism. Its applicability is examined by comparing with a five-dimensional rotor-vibrator Hamiltonian for the description of the energy spectra of the ground state and γ band in Ru isotopes. It is found that by taking into account the next-to-leading order corrections, the ground state band in the whole spin region and the γ band in the low spin region are well described. The deviations for high-spin states in the γ bands point towards the importance of including vibrational degrees of freedom in the effective field theory formulation. (orig.)

  20. Towards a comprehensive theory of monadic effects

    DEFF Research Database (Denmark)

    Filinski, Andrzej

    2011-01-01

    It has been more than 20 years since monads were proposed as a unifying concept for computational effects, in both formal semantics and functional programs. Over that period, there has been substantial incremental progress on several fronts within the ensuing research area, including denotational....... Some stronger-than-expected ties between the research topics mentioned above also instill hope that there is indeed a natural, comprehensive theory of monadic effects, waiting to be fully explicated......., and attempts to assess our collective progress towards the goal of a broad yet coherent theory of monadic effects. We are not quite there yet, but intriguingly, many potential ingredients of such a theory have been repeatedly discovered and developed, with only minor variations, in seemingly unrelated contexts...