WorldWideScience

Sample records for quark condensation

  1. Structure of Nonlocal Vacuum Condensate of Quarks

    Institute of Scientific and Technical Information of China (English)

    周丽娟; 马维兴

    2003-01-01

    The Dyson-Schwinger formalism is used to derive a fully dressed quark propagator. By use of the derived form of the quark propagator, the structure of non-local quark vacuum condensate is studied, and the values of local quark vacuum condensate as well as quark gluon mixed condensate are calculated. The theoretical predictions are in good agreement with the empirical one used commonly in the literature.

  2. Quark Virtuality and QCD Vacuum Condensates

    Institute of Scientific and Technical Information of China (English)

    ZHOU Li-Juan; MA Wei-Xing

    2004-01-01

    @@ Based on the Dyson-Schwinger equations (DSEs) in the ‘rainbow' approximation, we investigate the quark virtuality in the vacuum state and quantum-chromodynamics (QCD) vacuum condensates. In particular, we calculate the local quark vacuum condensate and quark-gluon mixed condensates, and then the virtuality of quark. The calculated quark virtualities are λ2u,d = 0.7 GeV2 for u, d quarks, and 2s 1.6 GeV2 for s quark.Our theoretical predictions are consistent with empirical values used in QCD sum rules, and also fit to lattice QCD predictions.

  3. Turbulent meson condensation in quark deconfinement

    Directory of Open Access Journals (Sweden)

    Koji Hashimoto

    2015-06-01

    Full Text Available In a QCD-like strongly coupled gauge theory at large Nc, using the AdS/CFT correspondence, we find that heavy quark deconfinement is accompanied by a coherent condensation of higher meson resonances. This is revealed in non-equilibrium deconfinement transitions triggered by static, as well as quenched electric fields even below the Schwinger limit. There, we observe a “turbulent” energy flow to higher meson modes, which finally results in the quark deconfinement. Our observation is consistent with seeing deconfinement as a condensation of long QCD strings.

  4. Chiral Lagrangians and quark condensate in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Delorme, J.; Chanfray, G.; Ericson, M.

    1996-03-01

    The evolution of density of quark condensate in nuclear medium with interacting nucleons, including the short range correlations is examined. Two chiral models are used, the linear sigma model and the non-linear one. It is shown that the quark condensate, as other observables, is independent on the variant selected. The application to physical pions excludes the linear sigma model as a credible one. The non-linear models restricted to pure s-wave pion-nucleon scattering are examined. (author). 28 refs.; Submitted to nuclear Physics, A (NL).

  5. Essence of the Vacuum Quark Condensate

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; Roberts, Craig D.; /Argonne, PHY /Peking U.; Shrock, Robert; /YITP, Stony Brook; Tandy, Peter C.; /Kent State U.

    2010-08-25

    We show that the chiral-limit vacuum quark condensate is qualitatively equivalent to the pseudoscalar meson leptonic decay constant in the sense that they are both obtained as the chiral-limit value of well-defined gauge-invariant hadron-to-vacuum transition amplitudes that possess a spectral representation in terms of the current-quark mass. Thus, whereas it might sometimes be convenient to imagine otherwise, neither is essentially a constant mass-scale that fills all spacetime. This means, in particular, that the quark condensate can be understood as a property of hadrons themselves, which is expressed, for example, in their Bethe-Salpeter or light-front wavefunctions.

  6. Linear Chemical Potential Dependence of Two-Quark Condensate

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; SUN Wei-Min

    2006-01-01

    By differentiating the inverse dressed quark propagator at finite chemical potential μ with respect to μ, the linear response of the dressed quark propagator to the chemical potential can be obtained. From this we extract a modelindependent formula for the linear chemical potential dependence of the in-medium two-quark condensate and show by two independent methods (explicit calculation and Lorentz covariance arguments) that the first-order contribution in μto the in-medium two-quark condensate vanishes identically. Therefore if one wants to study the in-medium two-quark condensate one should expand to at least the second order in the chemical potential μ.

  7. Quark Gluon Condensate,Virtuality and Susceptibility of QCD Vacuum

    Institute of Scientific and Technical Information of China (English)

    ZHOU Li-Juan; WU Qing; MA Wei-Xing

    2008-01-01

    We study vacuum of QCD in this work.The structure of non-local quark vacuum condensate,values of various local quark and gluon vacuum condensates,quark-gluon mixed vacuum condensate,quark and gluon virtuality in QCD vacuum state,quark dynamical mass and susceptibility of QCD vacuum state to external field are predicted by use of the solutions of Dyson-Schwinger equations in "rainbow" approximation with a modeling gluon propagator and three different sets of quark-quark interaction parameters.Our theoretical predictions are in good agreement with the correspondent empirical values used widely in literature,and many other theoretical calculations.The quark propagator and self-energy functions are also obtained from the numerical solutions of Dyson-Schwinger equations.This work is centrally important for studying non-perturbative QCD,and has many important applications both in particle and nuclear physics.

  8. Dynamically Running Mass of Light Quark and QCD Vacuum Condensates

    Institute of Scientific and Technical Information of China (English)

    ZHOULi-Juan; PINGRong-Gang

    2004-01-01

    Based on Dyson-Schwinger equations (DSEs) in “rainbow”approximation, the dynamically running mass of light quark and QCD vacuum condensate are investigated. The structure of non-local quark vacuum condensate, the values of local vacuum condensate of quarks and quark-gluon mixture, and dynamical transition of quark mass from current quark to constituent quark are illustrated. At the same time, according to the knowledge and experience learned from an extensive study of the solutions of DSEs, a parameterized form of confining quark propagator is suggested for a practical use. The new parameterized form of quark propagator is analytic everywhere in the finite complex p2-plane and has no Lehmann representation. The predictions for p2-dependence of effective quark masses, Mr(p2), defined by the self-energy functions Af(p2) and Bf(p2), both from the numerical solutions of DSEs and from its parameterized form, are shown dynamically. Our conclusion is that all numerical results are consistent with empirical values used in(QCD sum rules and lattice QCD calculations. For a qualitative study, the parameterized form is a sumciently good approximation to confining quark propagator.

  9. Dynamically Running Mass of Light Quark and QCD Vacuum Condensates

    Institute of Scientific and Technical Information of China (English)

    ZHOU Li-Juan; PING Rong-Gang; MA Wei-Xing

    2004-01-01

    Based on Dyson-Schwinger equations (DSEs) in "rainbow" approximation, the dynamically running mass of light quark and QCD vacuum condensate are investigated. The structure of non-local quark vacuum condensate, the values of local vacuum condensate of quarks and quark-gluon mixture, and dynamical transition of quark mass from current quark to constituent quark are illustrated. At the same time, according to the knowledge and experience learned from an extensive study of the solutions of DSEs, a parameterized form of confining quark propagator is suggested for a practical use. The new parameterized form of quark propagator is analytic everywhere in the finite complex p2-plane and has no Lehmann representation. The predictions for p2-dependence of effective quark masses, Mf(p2), defined by the self-energy functions Af(p2) and Bf(p2), both from the numerical solutions of DSEs and from its parameterized form, are shown dynamically. Our conclusion is that all numerical results are consistent with empirical values used in QCD sum rules and lattice QCD calculations. For a qualitative study, the parameterized form is a sufficiently good approximation to confining quark propagator.

  10. Quark Mass Correction to Chiral Separation Effect and Pseudoscalar Condensate

    CERN Document Server

    Guo, Er-dong

    2016-01-01

    We derived an analytic structure of the quark mass correction to chiral separation effect (CSE) in small mass regime. We confirmed this structure by a D3/D7 holographic model study in a finite density, finite magnetic field background. The quark mass correction to CSE can be related to correlators of pseudo-scalar condensate, quark number density and quark condensate in static limit. We found scaling relations of these correlators with spatial momentum in the small momentum regime. They characterize medium responses to electric field, inhomogeneous quark mass and chiral shift. Beyond the small momentum regime, we found existence of normalizable mode, which possibly leads to formation of spiral phase. The normalizable mode exists beyond a critical magnetic field, whose magnitude decreases with quark chemical potential.

  11. Modified Approach for Calculating Four-Quark Condensates

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; SUN Wei-Min

    2007-01-01

    By differentiating the dressed quark propagator with respect to a variable background field,the linear response of the dressed quark propagator in the presence of the background field can be obtained.From this general method,using the vector background field as an illustration,we extract a general formula for the four-quark condensate〈(0)|:-q(0)γμq(0)-q(0)γμq(0):|0〉.This formula contains the corresponding fully dressed vector vertex. We use this formula to analyze the factorization problem of the four-quark condensate and show that in the bare vertex approximation factorization holds exactly.

  12. Hadron Masses and Quark Condensate from Overlap Fermions

    Science.gov (United States)

    Liu, K. F.; Dong, S. J.; Lee, F. X.; Zhang, J. B.

    We present results on hadron masses and quark condensate from Neuberger's overlap fermion. The scaling and chiral properties and finite volume effects from this new Dirac operator are studied. We find that the generalized Gell-Mann-Oakes-Renner relation is well satisfied down to the physical u and d quark mass range. We find that in the range of the lattice spacing we consider, the π and ϱ masses at a fixed mπ/ mϱ ratio have weak O( a2) dependence.

  13. Quark condensate effects on charmonium-pion scattering

    Indian Academy of Sciences (India)

    F S Navarra; M Nielsen

    2003-05-01

    The → $\\overline{D}D^{*}$; $\\overline{D}D$, $\\overline{D}^{*}D^{*}$ and $\\overline{D}D^{*}$ cross-sections as a function of $\\sqrt{s}$ are evaluated in a QCD sum rule calculation. We study the Borel sum rule for the four point function involving pseudoscalar and vector meson currents, up to dimension four in the operator product expansion. We find that our results are close to those obtained with quark exchange models. We also find that the quark condensate gives the main nonperturbative contribution to the cross-section.

  14. Quark masses from quark-gluon condensates in a modified perturbative QCD

    CERN Document Server

    Cabo-Montes de Oca, Alejandro

    2003-01-01

    In this note, it is argued that the mass matrix for the six quarks can be generated in first approximation by introducing fermion condensates on the same lines as was done before for gluons, within the modified perturbative expansion for QCD proposed in former works. Thus, the results point in the direction of the conjectured link of the approximate `Democratic' symmetry of the quark mass matrix and `gap' effects similar to the ones occuring in superconductivity. The condensates are introduced here non-dynamically and therefore the question of the possibility for their spontaneous generation remains open. However, possible ways out of the predicted lack of the `Democratic' symmetry of the condensates resulting from the spontaneous breaking of the flavour symmetry are suggested. They come from an analysis based on the Cornwall--Jackiw--Tomboulis (CJT) effective potential for composite operators

  15. Quark and gluon condensates in nuclear matter with Brown- Rho scaling

    Institute of Scientific and Technical Information of China (English)

    郭华; 杨树; 刘玉鑫

    2001-01-01

    Quark and gluon condensates in nuclear matter are investigated in a density-dependent relativistic mean-field theory. The in-medium quark condensate decreases rapidly as the density of nu-clear matter increases, if the Brown-Rho scaling is included. The decrease in the in-medium quark condensate with the nuclear matter density is consistent with the result predicted by the partial chiral symmetry restoration. The gluon condensate and the influence of the strange quark contents on the gluon condensate in nuclear matter are discussed.

  16. Melting of the quark condensate in the NJL model with meson loops

    Energy Technology Data Exchange (ETDEWEB)

    Florkowski, W.; Broniowski, W. [Institute of Nuclear Physics, Cracow (Poland)

    1996-05-01

    Temperature dependence of the quark condensate is studied in the Nambu-Jona-Lasinio model with meson loops. Substantial differences are found compared to the results with quark loop only. (author). 13 refs, 3 figs.

  17. Quark production, Bose-Einstein condensates and thermalization of the quark-gluon plasma

    CERN Document Server

    Blaizot, Jean-Paul; Yan, Li

    2014-01-01

    In this paper, we study the thermalization of gluons and N_f flavors of massless quarks and antiquarks in a spatially homogeneous system. First, two coupled transport equations for gluons and quarks (and antiquarks) are derived within the diffusion approximation of the Boltzmann equation, with only 2 2 processes included in the collision term. Then, these transport equations are solved numerically in order to study the thermalization of the quark-gluon plasma. At initial time, we assume that no quarks or antiquarks are present and we choose the gluon distribution in the form f = f_0 theta (1-p/Q_s) with Q_s the saturation momentum and f_0 a constant. The subsequent evolution of systems may, or may not, lead to the formation of a (transient) Bose condensate, depending on the value of f_0. In fact, we observe, depending on the value of f_0, three different patterns: (a) thermalization without gluon Bose-Einstein condensate (BEC) for f_0 1 > f_{0c}, the onset of BEC occurs at a finite time t_c ~ 1/((alpha_s f_0...

  18. The condensate for two dynamical chirally improved quarks in QCD

    CERN Document Server

    Lang, C B; Ortner, W; Majumdar, Pushan; Ortner, Wolfgang

    2007-01-01

    We compare the eigenvalue spectra of the Dirac operator from a simulation with two mass degenerate dynamical chirally improved fermions with Random Matrix Theory. Comparisons with distribution of k-th eigenvalues (k=1,2,3) in fixed topological sectors (nu=0,1) are carried out using the Kolmogorov-Smirnov test. The eigenvalue distributions are well described by the RMT predictions. The match allows us to read off the quark condensate in the chiral limit directly. Correcting for finite size and renormalization we obtain a mean value of -(276 (11)(16) MeV)**3 in the MS-bar scheme.

  19. Lattice Study of Planar Equivalence: The Quark Condensate

    CERN Document Server

    Armoni, Adi; Patella, Agostino; Pica, Claudio

    2008-01-01

    We study quenched SU(N) gauge theories with fermions in the two-index symmetric, antisymmetric and the adjoint representations. Our main motivation is to check whether at large number of colours those theories become non-perturbatively equivalent. We prove the equivalence assuming that the charge-conjugation symmetry is not broken in pure Yang-Mills theory. We then carry out a quenched lattice simulation of the quark condensate in the symmetric, antisymmetric and the adjoint representations for SU(2), SU(3), SU(4), SU(6) and SU(8). We show that the data support the equivalence and discuss the size of subleading corrections.

  20. A path integral formula for quark condensate states in a modified PQCD

    Energy Technology Data Exchange (ETDEWEB)

    Cabo Montes de Oca, A. [Perimeter Institute for Theoretical Physics, Waterloo, Ontario (Canada); Instituto de Cibernetica, Matematica y Fisica, Grupo de Fisica Teorica, La Habana (Cuba); Cabo-Bizet, N.G. [Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), Departamento de Fisica, La Habana (Cuba); Bonn University, Institute of Physics, Bonn (Germany); Cabo-Bizet, A. [Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), Departamento de Fisica, La Habana (Cuba)

    2009-11-15

    A modified version of PQCD considered in previous works is investigated here in the case of retaining only the quark condensate. The Green function generating functional is expressed in a form in which Dirac's delta functions are now absent from the free propagators. The new expansion implements the dimensional transmutation effect through a single interaction vertex in addition to the standard ones in massless QCD. The new vertex suggest a way for constructing an alternative to the SM, in which the mass and CKM matrices could be generated by the instability of massless QCD under the production of the top quark and other fermions condensates, in a kind of generalized Nambu-Jona-Lasinio mechanism. The results of a two loop evaluation of the vacuum energy indicate that the quark condensate is dynamically generated. However, the energy as a function of the condensate parameter is again unbounded from below in this approximation. Assuming the existence of a minimum of the vacuum energy at the experimental value of the top quark mass m{sub q} =173 GeV, we evaluate the two particle propagator in the quark-anti-quark channel in zero order in the coupling and a ladder approximation in the condensate vertex. Adopting the notion from the former top quark models in which the Higgs field corresponds to the quark condensate, the results suggest that the Higgs particle could be represented by a meson which might appear at energies around twice the top quark mass. (orig.)

  1. Quark deconfinement and gluon condensate in a weak magnetic field

    CERN Document Server

    Ayala, Alejandro; Hernandez, L A; Loewe, M; Rojas, Juan Cristobal; Villavicencio, Cristian

    2015-01-01

    We study QCD finite energy sum rules (FESR) for the axial-vector current correlator in the presence of a magnetic field, in the weak field limit and at zero temperature. We find that the perturbative QCD as well as the hadronic contribution to the sum rules get explicit magnetic field-dependent corrections and that these in turn induce a magnetic field dependence on the deconfinement phenomenological parameter s_0 and on the gluon condensate. The leading corrections turn out to be quadratic in the field strength. We find from the dimension d=2 first FESR that the magnetic field dependence of s_0 is proportional to the absolute value of the light-quark condensate. Hence, it increases with increasing field strength. This implies that the parameters describing chiral symmetry restoration and deconfinement behave similarly as functions of the magnetic filed. Thus, at zero temperature the magnetic field is a catalysing agent of both chiral symmetry breaking and confinement. From the dimension d=4 second FESR we ob...

  2. About the electroweak vacuum and its connection with the quark condensates

    CERN Document Server

    Jora, Renata

    2016-01-01

    We make a change of variable in the standard model Higgs field by a fermion operator and show that the latter is responsible for the electroweak vacuum. By computing the vacuum expectation value of this fermion operator in the path integral formalism we determine a relation among the quark vacuum condensates, the quark masses and the intrinsic scale of the theory. We show that the heavy quark vacuum condensates do not justify the hypothesis of dynamical electroweak symmetry breaking with only standard model fermions.

  3. Quark correlations in the Color Glass Condensate: Pauli blocking and the ridge

    CERN Document Server

    Altinoluk, Tolga; Beuf, Guillaume; Kovner, Alex; Lublinsky, Michael

    2016-01-01

    We consider, for the first time, correlations between produced quarks in p-A collisions in the framework of the Color Glass Condensate. We find a quark-quark ridge that shows a dip at $\\Delta\\eta\\sim 2$ relative to the gluon-gluon ridge. The origin of this dip is the short range (in rapidity) Pauli blocking experienced by quarks in the wave function of the incoming projectile. We observe that these correlations, present in the initial state, survive the scattering process. We suggest that this effect may be observable in open charm-open charm correlations at the Large Hadron Collider.

  4. High energy pA collisions in the color glass condensate approach II. Quark production

    CERN Document Server

    Blaizot, J P; Venugopalan, R

    2004-01-01

    We compute the production of quark-antiquark pairs in high energy collisions between a small and a large projectile, as in proton-nucleus collisions, in the framework of the Color Glass Condensate. We derive a general expression for quark pair-production, which is not k_t-factorizable. However, k_t-factorization is recovered in the limit of large mass pairs or large quark--anti-quark momenta. Our results are amenable to a simple interpretation and suggest how multi-parton correlations at small x can be quantified in high-energy proton/deuteron-nucleus collisions.

  5. Spin-polarized versus chiral condensate in quark matter at finite temperature and density

    DEFF Research Database (Denmark)

    Matsuoka, Hiroaki; Tsue, Yasuhiko; da Providencia, Joao

    2016-01-01

    It is shown that the spin-polarized condensate appears in quark matter at high baryon density and low temperature due to the tensor-type four-point interaction in the Nambu-Jona-Lasiniotype model as a low-energy effective theory of quantum chromodynamics. It is indicated within this low-energy ef......It is shown that the spin-polarized condensate appears in quark matter at high baryon density and low temperature due to the tensor-type four-point interaction in the Nambu-Jona-Lasiniotype model as a low-energy effective theory of quantum chromodynamics. It is indicated within this low......-energy effective model that the chiral symmetry is broken again by the spin-polarized condensate on increasing the quark number density, while chiral symmetry restoration occurs, in which the chiral condensate disappears at a certain density....

  6. Scalar condensate and light quark masses from overlap fermions

    OpenAIRE

    Hernandez, Pilar; Jansen, Karl; Lellouch, Laurent; Wittig, Hartmut

    2001-01-01

    We have studied pseudoscalar correlation functions computed using the overlap operator. Within the accuracy of our calculation we find that the quark mass dependence agrees with the prediction of lowest-order Chiral Perturbation Theory (ChPT) for quark masses in the range of m ~ m_s/2-2m_s. We present the results of an analysis which assumes lowest-order ChPT to be valid to extract the low-energy constants Sigma and f_P, as well as the strange quark mass. Non-perturbative renormalization is i...

  7. Quark-gluon mixed condensate for the SU(2) light-flavor sector at finite temperature

    CERN Document Server

    Nam, Seung-il

    2013-01-01

    We investigate the quark-gluon mixed condensate m^2_0 = for the SU(2) light-flavor sector at finite temperature (T). Relevant model parameters, such as the average (anti)instanton size, inter-(anti)instanton distance, and constituent-quark mass at zero virtuality, are modified as functions of T, employing the trivial-holonomy caloron solution. By doing that, we observe correct chiral restoration patterns depending on the current-quark mass m. We also perform the two-loop renormalization-group (RG) evolution for the both condensates by increasing the renormalization scale mu=(0.6~2.0) GeV. It turns out that the mixed condensate is insensitive to the RG evolution, whereas the quark condensate become larger considerably by the evolution. Numerically, we obtain -^1/5 = (0.45 ~ 0.46) GeV at T=0 within the present theoretical framework, and the mixed condensate plays the role of the chiral order parameter for finite T. The ratio of the two condensates m^2_0 is almost flat below the chiral transition T (T_0), and ...

  8. Bose-Einstein Condensation in Strong-Coupling Quark Color Superconductor near Flavor SU(3) Limit

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-Bing; REN Chun-Fu; ZHANG Yi

    2011-01-01

    Near the flavor SU(3) limit, we propose an analytical description for color-flavor-locked-type Bardeen-Cooper-Schrieffer (BCS) phase in the Nambu Jona-Lasinio (NJL) model. The diquark behaviors in light-flavor and strange-flavor-involved channels and Bose-Einstein condensation (BEC) of bound diquark states are studied. When the attractive interaction between quarks is strong enough, a BCS-BEC crossover is predicted in the environment with color-flavor-locked pairing pattern. The resulting Bose-Einstein condensed phase is found to be an intergrade phase before the emergence of the previous-predicted BEC phase in two-flavor quark superconductor.

  9. Quark-Antiquark and Diquark Condensates in Vacuum in a 2D Two-Flavor Gross-Neveu Model

    Institute of Scientific and Technical Information of China (English)

    ZHOU Bang-Rong

    2007-01-01

    The analysis based on the renormalized effective potential indicates that, similar to in the 4D two-flavor Nambu-Jona-Lasinio (NJL) model, in a 2D two-flavor Gross-Neveu model, the interplay between the quark-antiquark and the diquark condensates in vacuum also depends on Gs/Hs, the ratio of the coupling constants in scalar quark antiquark and scalar diquark channel. Only the pure quark-antiquark condensates exist if Gs/Hs > 2/3, which is just the ratio of the color numbers of the quarks participating in the diquark and quark-antiquark condensates. The two condensates will coexist if 0 < Gs/Hs < 2/3. However, different from the 4D NJL model, the pure diquark condensates arise only at Gs/Hs = 0 and are not in a possibly finite region of Gs/Hs below 2/3.

  10. Gauge-invariant nonlocal quark condensates in QCD a new interpretation of the lattice results

    CERN Document Server

    Meggiolaro, E

    2000-01-01

    We study the asymptotic short-distance behaviour as well as the asymptotic large-distance behaviour of the gauge-invariant quark-antiquark nonlocal condensates in QCD. A comparison of some analytical results with the available lattice data is performed.

  11. Quark and gluon condensates in nuclear matter with Brown- Rho scaling

    Institute of Scientific and Technical Information of China (English)

    GUO; Hua(

    2001-01-01

    [1]Brown, G. E., Rho, M., Scaling effective Lagrangian in a dense medium, Phys. Rev. Lett., 1991, 66: 2720-2723.[2]Delfino, A., Dey, J., Dey, M. et al., Decoupling of quark condensate from the effective nucleon at high density and tem-perature, Phys. Lett. B, 1995, 363: 17-23.[3]Guo, H., In-medium QMC model parameters and quark condensate in nuclear matter, J. Physics (London) G, 1999, 25: 1701-1711.[4]Li, G. Q., Ko, C. M., Quark condensate in nuclear matter, Phys. Lett. B, 1994, 338: 118-122.[5]Mitsumori, T., Noda, N., Kouno, H. et al., Quark condensate in nuclear matter based on nuclear Schwinger-Dyson for-mulism, Phys. Rev. C, 1997, 55: 1577-1579.[6]Malheiro, M., Dey, M., Delfino, A. et al., Connection between the nuclear matter mean-field equation of state and the quark and gluon condensates at high density, Phys. Rev. C, 1997, 55: 521-524.[7]Li, L., Shen, H., Ning, P. Z., Quark condensate in dense and hot baryonic matter, in Proceedings of CCAST-World Labo-ratory Workshop (CCAST-WL, Beijing), 1996, 77-98.[8]Haddad, S., Weigel, M. K., Finite nuclear systems in a relativistic extended Thomas-Fermi approach with density-dependent coupling parameters, Phys. Rev. C, 1993, 48: 2740-2745.[9]Brockman, R., Machleidt, R., Relativistic nuclear structure. I. Nuclear Matter, Phys. Rev. C, 1990, 42: 1965-1980.[10]Haddad, S., Weigel, M. K., Thermostatic properties and Coulomb instability of highly excited nuclei, Phys. Rev. C, 1994, 49: 3228-3233.[11]Fuchs, C., Lenske, H., Wolter, H., Density dependent hadron field theory, Phys. Rev. C, 1995, 52: 3043-3060.[12]Ineichen, F., Weigel, M. K., Eiff, D., Nuclear structure calculation in the density-dependent relativistic Hartree theory, Phys. Rev. C, 1996, 53: 2158-2162.[13]Guo, H., Liu, B., Toro, D. M., Phase transition in warm nuclear matter, Phys. Rev. C, 2000, 62: 1-8.[14]Cohen, T. D., Furnstahl, R. J., Griegel, D. K., Quark and gluon condensates in nuclear matter, Phys

  12. Wilson coefficients and four-quark condensates in QCD sum rules for medium modifications of $D$ mesons

    CERN Document Server

    Buchheim, Thomas; Kampfer, Burkhard

    2014-01-01

    Wilson coefficients of light four-quark condensates in QCD sum rules are evaluated for pseudo-scalar $D$ mesons, thus, pushing the sum rules toward mass dimension six. Contrary to the situation for $\\bar{q}q$ mesons the impact of the four-quark condensates for vacuum as well as in-medium situations is found to be rather small within the Borel window used in previous analyses. The complete four-quark condensate contributions enable to identify candidates for an order parameter of spontaneous chiral symmetry breaking/restoration as well as to evaluate stability criteria of operator product expansions.

  13. Top Quark Mass in the Condensate Model and the Possibility of Colored Bosons

    Science.gov (United States)

    Kundu, Anirban; de, Triptesh; Dutta-Roy, Binayak

    The dynamical electroweak symmetry breaking of the Standard Model triggered by a top quark condensate (induced by an effective strong interaction, associated with a highenergy scale, of the form gt bar ψ Li tR bar tR ψ Li ) usually requires an embarrassingly large top quark mass. A suggestion that this problem could be avoided through the introduction of an additional interaction gt' bar ψ LiP ( {AJI } ; )PQ tRQ bar tRS ( {AIJ } ; )STψ LiT } (where AJI are SU(3)c generators á la Okubo) is analyzed using the renormalization group approach. The mass of the top quark and the concomitant emergence of colored composite bosons is discussed.

  14. Pseudoscalar susceptibilities and quark condensates: chiral restoration and lattice screening masses

    Energy Technology Data Exchange (ETDEWEB)

    Nicola, A. Gómez [Departamento de Física Teórica II, Facultad de Ciencias Físicas,Universidad Complutense de Madrid,Plaza de las Ciencias 1, 28040 Madrid (Spain); Elvira, J. Ruiz de [Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics,Universität Bonn,D-53115 Bonn (Germany)

    2016-03-29

    We derive the formal Ward identities relating pseudoscalar susceptibilities and quark condensates in three-flavor QCD, including consistently the η-η{sup ′} sector and the U{sub A}(1) anomaly. These identities are verified in the low-energy realization provided by ChPT, both in the standard SU(3) framework for the octet case and combining the use of the U(3) framework and the large-N{sub c} expansion of QCD to account properly for the nonet sector and anomalous contributions. The analysis is performed including finite temperature corrections as well as the calculation of U(3) quark condensates and all pseudoscalar susceptibilities, which together with the full set of Ward identities, are new results of this work. Finally, the Ward identities are used to derive scaling relations for pseudoscalar masses which explain the behavior with temperature of lattice screening masses near chiral symmetry restoration.

  15. Temperature and quark density effects on the chiral condensate: an AdS/QCD study

    Energy Technology Data Exchange (ETDEWEB)

    Colangelo, P. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari (Italy); Giannuzzi, F.; Nicotri, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari (Italy); Universita degli Studi di Bari, Dipartimento di Fisica, Bari (Italy); Tangorra, V. [Universita degli Studi di Bari, Dipartimento di Fisica, Bari (Italy)

    2012-08-15

    We investigate the dependence of the chiral condensate left angle anti qq right angle on the temperature and quark density using the soft-wall holographic model of QCD, adopting geometries with black holes at finite temperature and quark chemical potential {mu}. We find that, for {mu} below a critical value, increasing the temperature the condensate decreases and vanishes at a temperature T{approx_equal}210{proportional_to} MeV (at {mu}=0). An analogous behaviour is observed increasing the chemical potential at fixed temperature. These results agree with the findings obtained by other methods. We also comment on the robustness of the results if geometries not involving black holes are adopted at low temperature, and an Hawking-Page transition is implemented. (orig.)

  16. Determination of the gluon condensate from data in the charm-quark region

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, C.A.; Hernandez, L.A. [Centre for Theoretical and Mathematical Physics and Department of Physics,University of Cape Town, Rondebosch 7700 (South Africa); Schilcher, K. [Centre for Theoretical and Mathematical Physics and Department of Physics,University of Cape Town, Rondebosch 7700 (South Africa); PRISMA Cluster of Excellence, Institut für Physik,Johannes Gutenberg-Universität, D-55099 Mainz (Germany)

    2015-07-21

    The gluon condensate, 〈((α{sub s})/π)G{sup 2}〉, i.e. the leading order power correction in the operator product expansion of current correlators in QCD at short distances, is determined from e{sup +}e{sup −} annihilation data in the charm-quark region. This determination is based on finite energy QCD sum rules, weighted by a suitable integration kernel to (i) account for potential quark-hadron duality violations, (ii) enhance the contribution of the well known first two narrow resonances, the J/ψ and the ψ(2S), while quenching substantially the data region beyond, and (iii) reinforce the role of the gluon condensate in the sum rules. By using a kernel exhibiting a singularity at the origin, the gluon condensate enters the Cauchy residue at the pole through the low energy QCD expansion of the vector current correlator. These features allow for a reasonably precise determination of the condensate, i.e. 〈((α{sub s})/π)G{sup 2}〉=0.037 ± 0.015 GeV{sup 4}.

  17. Quark-Antiquark and Diquark Condensates in Vacuum in a 3D Two-Flavor Gross-Neveu Model

    CERN Document Server

    Bang-Rong, Zhou

    2007-01-01

    The effective potential analysis indicates that, in a 3D two-flavor Gross-Neveu model in vacuum, depending on less or bigger than the critical value 2/3 of $G_S/H_P$, where $G_S$ and $H_P$ are respectively the coupling constants of scalar quark-antiquark channel and pseudoscalar diquark channel, the system will have the ground state with pure diquark condensates or with pure quark-antiquark condensates, but no the one with coexistence of the two forms of condensates. The similarities and differences in the interplay between the quark-antiquark and the diquark condensates in vacuum in the 2D, 3D and 4D two-flavor four-fermion interaction models are summarized.

  18. Mass generation via the Higgs boson and the quark condensate of the QCD vacuum

    Science.gov (United States)

    Schumacher, Martin

    2016-09-01

    The Higgs boson, recently discovered with a mass of 125.09$\\pm$0.24 GeV is known to mediate the masses of elementary particles, but only 2% of the mass of the nucleon. Extending a previous investigation [1] and including the strange-quark sector, hadron masses are derived from the quark condensate of the QCD vacuum and from the effects of the Higgs boson. These calculations include the $\\pi$ meson, the nucleon and the scalar mesons $\\sigma(600)$, $\\kappa(800)$, $a_0(980)$ $f_0(980)$ and $f_0(1370)$. The predicted second $\\sigma$ meson $\\sigma'(1344)=|s\\bar{s}\\rangle$, is investigated and identified with the $f_0(1370)$ meson. An outlook is given on the hyperons $\\Lambda$, $\\Sigma^{0,\\pm}$ and $\\Xi^{0,-}$.

  19. Mass generation via the Higgs boson and the quark condensate of the QCD vacuum

    Indian Academy of Sciences (India)

    MARTIN SCHUMACHER

    2016-09-01

    The Higgs boson, recently discovered with a mass of 125.7 GeV is known to mediate the masses of elementary particles, but only $2\\%$ of the mass of the nucleon. Extending a previous investigation (Schumacher, {\\it Ann. Phys. (Berlin) } {\\bf 526}, 215 (2014)) and including the strange-quark sector, hadron masses are derived from the quark condensate of the QCD vacuum and from the effects of the Higgs boson. These calculations include the $\\pi$ meson, the nucleon and the scalar mesons $\\sigma(600), \\kappa(800), a_{0}(980), f_{0}(980)$ and $f_{0}(1370)$. The predicted second $\\sigma$ meson, $\\sigma^{\\prime}(1344) = |s \\hbar{s})$, is investigated and identified with the $f_{0}(1370)$ meson. An outlook is given on the hyperons $\\Lambda, \\Sigma^{0,\\pm}$ and $\\Sigma^{0,−}$.

  20. Pion parameters and four quark condensates from τ-decay data

    Science.gov (United States)

    Kartvelishvili, V. G.; Margvelashvili, M. V.

    1992-03-01

    A modified finite energy sum rules procedure is presented and applied for the phenomenological analysis of the difference of vector and axial-vector two-point current correlators. In the chiral limit π→ evy decay axial formfactor F A , electro-magnetic difference of pion masses and the four quark condensates of dimensions six and eight are determined with improved accuracy, using the data on τ→ v+ nπ decays obtained by ARGUS collaboration. Our values for F A and Δ m em are close to the measured ones, while C 6 exceeds 2.5 3 times the value given by the vaccum saturation hypothesis.

  1. Quark Gluon Plasma an Color Glass Condensate at RHIC? The perspective from the BRAHMS experiment

    CERN Document Server

    Arsene, I; Beavis, D; Besliu, C; Budick, B; Bøggild, H; Chasman, C; Christensen, C H; Christiansen, P; Cibor, J; Debbe, R; Enger, E; Gaardhøje, J J; Germinario, M; Hansen, O; Holm, A; Holme, A K; Hagel, K; Ito, H; Jakobsen, E; Jipa, A; Jundt, F; Jordre, J I; Jorgensen, C E; Karabowicz, R; Kim, E J; Kozik, T; Larsen, T M; Lee, J H; Lee, Y K; Lindahl, S; Løvhøiden, G; Majka, Z; Makeev, A; Mikelsen, M; Murray, M J; Natowitz, J B; Neumann, B; Nielsen, B S; Ouerdane, D; Planeta, R; Rami, F; Ristea, C; Ristea, O; Röhrich, D; Samset, B H; Sandberg, D; Sanders, S J; Scheetz, R A; Staszel, P; Tveter, T S; Videbaek, F; Wada, R; Yin, Z; Zgura, I S

    2004-01-01

    We review the main results obtained by the BRAHMS collaboration on the properties of hot and dense hadronic and partonic matter produced in ultrarelativistic heavy ion collisions at RHIC. A particular focus of this paper is to discuss to what extent the results collected so far by BRAHMS, and by the other three experiments at RHIC, can be taken as evidence for the formation of a state of deconfined partonic matter, the so called quark-gluon-plasma (QGP). We also discuss evidence for a possible precursor state to the QGP, i.e. the proposed Color Glass Condensate.

  2. Quark-Antiquark and Diquark Condensates in Vacuum in a 2D Two-Flavor Gross-Neveu Model

    CERN Document Server

    Bang-Rong, Z

    2007-01-01

    The analysis based on the renormalized effective potential indicates that, similar to in the 4D two-flavor Nambu-Jona-Lasinio (NJL) model, in a 2D two-flavor Gross-Neveu model, the interplay between the quark-antiquark and the diquark condensates in vacuum also depends on $G_S/H_S$, the ratio of the coupling constants in scalar quark-antiquark and scalar diquark channel. Only the pure quark-antiquark condensates exist if $G_S/H_S>2/3$ which is just the ratio of the color numbers of the quarks participating in the diquark and quark-antiquark condensates. The two condensates will coexist if $0condensates arise only at $G_S/H_S=0$ and are not in a possibly finite region of $G_S/H_S$ below 2/3.

  3. Thermalization of the quark-gluon plasma and dynamical formation of Bose-Einstein Condensate

    CERN Document Server

    Liao, Jinfeng

    2012-01-01

    We report recent progress on understanding the thermalization of the quark-gluon plasma during the early stage in a heavy ion collision. The initially high overpopulation in the pre-equilibrium gluonic matter (``glasma'') is shown to play a crucial role. The strongly interacting nature (and thus fast evolution) naturally arises as an {\\em emergent property} of this pre-equilibrium matter where the intrinsic coupling is weak but the highly occupied gluon states coherently amplify the scattering. A possible transient Bose-Einstein Condensate is argued to form dynamically on a rather general ground. We develop the kinetic approach for describing this highly overpopulated system and find approximate scaling solutions as well as numerically study the onset of condensation. Finally we discuss possible phenomenological implications.

  4. Non-perturbative renormalization of the quark condensate in Ginsparg-Wilson regularizations

    CERN Document Server

    Hernández, Pilar; Lellouch, L P; Wittig, H; Hernandez, Pilar; Jansen, Karl; Lellouch, Laurent; Wittig, Hartmut

    2001-01-01

    We present a method to compute non-perturbatively the renormalization constant of the scalar density for Ginsparg-Wilson fermions. It relies on chiral symmetry and is based on a matching of renormalization group invariant masses at fixed pseudoscalar meson mass, making use of results previously obtained by the ALPHA Collaboration for O(a)-improved Wilson fermions. Our approach is quite general and enables the renormalization of scalar and pseudoscalar densities in lattice regularizations that preserve chiral symmetry and of fermion masses in any regularization. As an application we compute the non-perturbative factor which relates the renormalization group invariant quark condensate to its bare counterpart, obtained with overlap fermions at beta=5.85 in the quenched approximation.

  5. Interplay between quark-antiquark and diquark condensates in vacuum in a two-flavor Nambu-Jona-Lasinio model

    CERN Document Server

    Bang-Rong, Z

    2007-01-01

    By means of a relativistic effective potential, we have analytically researched competition between the quark-antiquark condensates $$ and the diquark condensates $$ in vacuum in ground state of a two-flavor Nambu-Jona-Lasinio (NJL) model and obtained the $G_S-H_S$ phase diagram, where $G_S$ and $H_S$ are the respective four-fermion coupling constants in scalar quark-antiquark channel and scalar color anti-triplet diquark channel. The results show that, in the chiral limit, there is only the pure $$ phase when $G_S/H_S>2/3$, and as $G_S/H_S$ decreases to $2/3>G_S/H_S\\geq 0$ one will first have a coexistence phase of the condensates $$ and $$ and then a pure $$ phase. In non-zero bare quark mass case, the critical value of $G_S/H_S$ at which the pure $$ phase will transfer to the coexistence phase of the condensates $$ and $$ will be less than 2/3. Our theoretical results, combined with present phenomenological fact that there is no diquark condensates in the vacuum of QCD, will also impose a real restriction ...

  6. Quarks

    Science.gov (United States)

    Gell-Mann, M.

    In these lectures I want to speak about at least two interpretations of the concept of quarks for hadrons and the possible relations between them. First I want to talk about quarks as "constituent quarks". These were used especially by G. Zweig (1964) who referred to them as aces. One has a sort of a simple model by which one gets elementary results about the low-lying bound and resonant states of mesons and baryons, and certain crude symmetry properties of these states, by saying that the hadrons act as if they were made up of subunits, the constituent quarks q. These quarks are arranged in an isotopic spin doublet u, d and an isotopic spin singlet s, which has the same charge as d and acts as if it had a slightly higher mass…

  7. Phenomenology of renormalons and the OPE from lattice regularization: The gluon condensate and the heavy quark pole mass

    Energy Technology Data Exchange (ETDEWEB)

    Bali, Gunnar S. [Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg (Germany); Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Pineda, Antonio [Grup de Física Teòrica and IFAE, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain)

    2016-01-22

    We study the operator product expansion of the plaquette (gluon condensate) and the self-energy of an infinitely heavy quark. We first compute their perturbative expansions to order α{sup 35} and α{sup 20}, respectively, in the lattice scheme. In both cases we reach the asymptotic regime where the renormalon behavior sets in. Subtracting the perturbative series, we obtain the leading non-perturbative corrections of their respective operator product expansions. In the first case we obtain the gluon condensate and in the second the binding energy of the heavy quark in the infinite mass limit. The results are fully consistent with the expectations from renormalons and the operator product expansion.

  8. The dual quark condensate in local and nonlocal NJL models: An order parameter for deconfinement?

    Directory of Open Access Journals (Sweden)

    Federico Marquez

    2015-07-01

    Full Text Available We study the behavior of the dual quark condensate Σ1 in the Nambu–Jona-Lasinio (NJL model and its nonlocal variant. In quantum chromodynamics Σ1 can be related to the breaking of the center symmetry and is therefore an (approximate order parameter of confinement. The deconfinement transition is then signaled by a strong rise of Σ1 as a function of temperature. However, a similar behavior is also seen in the NJL model, which is known to have no confinement. Indeed, it was shown that in this model the rise of Σ1 is triggered by the chiral phase transition. In order to shed more light on this issue, we calculate Σ1 for several variants of the NJL model, some of which have been suggested to be confining. Switching between “confining” and “non-confining” models and parametrizations we find no qualitative difference in the behavior of Σ1, namely, it always rises in the region of the chiral phase transition. We conclude that without having established a relation to the center symmetry in a given model, Σ1 should not blindly be regarded as an order parameter of confinement.

  9. Path Dependence of the Quark Nonlocal Condensate within the Instanton Model

    CERN Document Server

    Trevisan, L A; Tomio, Lauro; Tomio, Lauro

    2004-01-01

    Within the instanton liquid model, we study the dependence of the gauge invariant two--point quark correlator on the path used to perform the color parallel transport between two points in the Euclidean space.

  10. Quark-Gluon Mixed Vacuum Condensates in Dyson-Schwinger Equations%在Dyson-Schwinger方程中夸克-胶子的混合真空凝聚

    Institute of Scientific and Technical Information of China (English)

    周丽娟; 马维兴

    2005-01-01

    基于夸克传播子的Dyson-Schwinger方程,计算了夸克胶子混合真空凝聚和夸克真空凝聚.这些凝聚不仅联系着夸克在真空态中的虚度,而且也表征了真空中夸克分布的空间宽度.真空凝聚的存在直接反映着QCD真空的非微扰结构. 计算表明:上夸克与下夸克的虚度为λ2u,d=0.7GeV2, 奇异夸克的虚度为λ2s=1.6GeV2.这些结果与许多用完全不同的方法得到的结果一致.%Based on Dyson-Schwinger Equations of quark propagator, we calculate quark-gluon mixed vacuum condensates 〈0|∶gsσμνGμνq∶|0〉 and quark vacuum condensates 〈0|∶q∶|0〉 which are not only related to virtuality of quark in vacuum state but also characterize the space width of quark distribution in the vacuum. The existence of these vacuum condensates reflects in a direct way the non-perturbative structure of QCD vacuum. Our calculated results on the mixed condensates lead to quark virtualities of λ2u,d=0.7GeV2 for u,d quarks, and λ2s=1.6GeV2 for s quark which are consistent with other's calculations using completely different methods.

  11. The chiral condensate from lattice QCD with Wilson twisted mass quarks

    Energy Technology Data Exchange (ETDEWEB)

    Urbach, Carsten [Bonn Univ. (Germany). HISKP (Theorie)

    2016-11-01

    Lattice QCD is a very computer time demanding scientific application. Only with the computer time made available on supercomputers like SuperMUC significant progress, like the one reported here, can be reached. Moreover, the computing resources made available by LRZ are used to reduce the systematic uncertainties in our results even further: in another project we are generating ensembles with physical values of the quark masses, such that a chiral extrapolation is not needed anymore.

  12. Quark-Antiquark and Diquark Condensates in Vacuum in Two-Flavor Four-Fermion Interaction Models with Any Color Number Nc

    Institute of Scientific and Technical Information of China (English)

    ZHOU Bang-Rong

    2009-01-01

    The color number No-dependence of the interplay between quark-antiquark condensates and diquark condensates in vacuum in two-flavor four-fermion interaction models is researched. The results show that the Gs-Hs (the coupling constant of scalar (qq)2-scalar (qq)2 channel) phase diagrams will be qualitatively consistent with the case of Nc = 3 as Nc varies in 4D Nambu-Jona-Lasinio model and 2D Gross-Neveu (GN) model. However, in 3D GN model, the behavior of the Gs-Hp (the coupling constant of pseudoscalar (qq)2 channel) phase diagram will obviously depend on No. The known characteristic that a 3D GN model does not have the coexistence phase of the eondensates and is proven to appear only in the ease of Nc≤ 4. In all the models, the regions occupied by the phases containing the diquark condensates in corresponding phase diagrams will gradually decrease as Nc grows up and finally go to zero if Nc →∞, i.e. in this limit only the pure phase could exist.

  13. Quark confinement in a constituent quark model

    Energy Technology Data Exchange (ETDEWEB)

    Langfeld, K.; Rho, M. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique

    1995-07-01

    On the level of an effective quark theory, we define confinement by the absence of quark anti-quark thresholds in correlation function. We then propose a confining Nambu-Jona-Lasinio-type model. The confinement is implemented in analogy to Anderson localization in condensed matter systems. We study the model`s phase structure as well as its behavior under extreme conditions, i.e. high temperature and/or high density.

  14. Structure of Nonlo cal Quark Vacuum Condensate in Non-p erturbative QCD Vacuum%非微扰QCD真空中夸克真空凝聚的结构

    Institute of Scientific and Technical Information of China (English)

    向仟飞; 周丽娟; 蒋维洲; 马维兴

    2014-01-01

    Based on the Dyson-Schwinger Equations (DSEs) with the rainbow truncation, and Op-erator Product Expansion, the structure of nonlocal quark vacuum condensate in QCD, described by quark self-energy functions Af and Bf given usually by the solutions of the DSEs of quark propagator, is predicted numerically. We also calculate the local quark vacuum condensate, quark-gluon mixed local vacuum condensate, and quark virtuality. The self-energy functions Af and Bf are given by the parameterized quark propagator functions σfv (p2) and σfs (p2) of Roberts and Williams, instead of the numerical solutions of the DSEs. Our calculated results are in reasonable agreement with those of QCD sum rules, Lattice QCD calculations, and instanton model predictions, although the result-ing local quark vacuum condensate for light quarks, u, d, s, are a little bit larger than those of the above theoretical predictions. We think the differences are caused by model dependence. The larger of strange quark vacuum condensate than u, d quark is due to the s quark mass which is more larger than u, d quark masses. Of course, the Roberts-Williams parameterized quark propagator is an empirical formulism, which approximately describes quark propagation.%基于Dyson-Schwinger方程(DSEs)所确定的夸克传播子和算符成积展开(OPE),在彩虹近似下,预言了QCD真空中非定域夸克真空凝聚的结构。这种结构由夸克自能函数Af和Bf决定,通过数值求解DSEs就可以得到这些自能函数。但是,直接数值求解DSEs方程非常复杂,这里采用Roberts和Williams提出的参数化方法,用参数化的夸克传播函数σfv (p2)和σfs (p2)计算夸克自能函数。同时,也计算了定域的夸克真空凝聚值,夸克胶子混合的真空凝聚值,以及夸克的虚度。理论预言和计算结果均与标准QCD求和定则、格点QCD和瞬子模型的理论结果大致相符。和这些模型的结果相比,参数

  15. Propagators and Masses of Light Quarks

    Institute of Scientific and Technical Information of China (English)

    ZHOU Li-Juan; ZHU Ji-Zhen; MA Wei-Xing

    2003-01-01

    Based on Dyson-Schwinger equations in "rainbow" approximation, fully dressed confining quark propagator is obtained, and then the masses of light quarks (mu, md, and ms) are derived from the fully dressed confining quark propagator. At the same time, the local and non-local quark vacuum condensates as well as the quark-gluon mixed condensate are also predicted. Furthermore, the quark masses are also deduced from the Gell-Mann-Oakes-Renner relation and chiral perturbative theory. The results from different methods are consistent with each other.

  16. Propagators and Masses of Light Quarks

    Institute of Scientific and Technical Information of China (English)

    ZHOULi-Juan; ZHUJi-Zhen; MAWei-Xing

    2003-01-01

    Based on Dyson-Schwinger equations in “rainbow” approximation, fully dressed confining quark propagator is obtained, and then the masses of light quarks (mu, md, and ms) are derived from the fully dressed confining quark propagator. At the same time, the local and non-local quark vacuum condensates as well as the quark-gluon mixed condensate are also predicted. Furthermore, the quark masses are also deduced from the Gell-Mann-Oakes-Renner relation and chiral perturbative theory. The results from different methods are consistent with each other.

  17. Virtualities of quark and gluon in QCD vacuum

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The non-local vacuum condensates of quantum chromodynamics (QCD) describe the distributions of quarks and gluons in the non-perturbative QCD vacuum state. Physically, this means that vacuum quarks and gluons have a nonzero mean-squared momentum in the vacuum, called virtuality. The quark virtuality is given by the ratio of the local quark-gluon mixed vacuum condensate to the quark local vacuum condensate. The gluon virtuality is expressed by gluon vacuum condensates and four-quark vacuum condensates. We study the two virtualities by solving Dyson-Schwinger Equations and calculating quark and gluon vacuum condensates. Our theoretical results for quark virtuality are in good agreement with many other theoretical model predictions such as QCD sum rules and lattice QCD calculations. Our calculation on gluon virtuality is initial and the results are quite interesting.

  18. ISOSPIN BREAKING AND THE CHIRAL CONDENSATE.

    Energy Technology Data Exchange (ETDEWEB)

    CREUTZ, M.

    2005-07-25

    With two degenerate quarks, the chiral condensate exhibits a jump as the quark masses pass through zero. I discuss how this single transition splits into two Ising like transitions when the quarks are made non-degenerate. The order parameter is the expectation of the neutral pion field. The transitions represent long distance coherent phenomena occurring without the Dirac operator having vanishingly small eigenvalues.

  19. Quark and pion effective couplings from polarization effects

    CERN Document Server

    Braghin, Fabio L

    2016-01-01

    A flavor SU(2) effective model for pions and quarks is derived by considering polarization effects departing from the usual quark-quark effective interaction induced by dressed gluon exchange, i.e. a global color model for QCD. For that, the quark field is decomposed into a component that yields light mesons and the quark-antiquark condensate, being integrated out by means of the auxiliary field method, and another component which yields constituent quarks. Within a longwavelength and weak quark field expansion (or large quark effective mass expansion) of a quark determinant, the leading terms are found up to the second order in a zero order derivative expansion, by neglecting vector mesons that are considerably heavier than the pion. Pions are considered in the structureless limit and, besides the chiral invariant pion self interaction terms that reproduce previously derived expressions, symmetry breaking terms are also presented. The leading chiral quark-quark effective couplings are also found correspondin...

  20. State of matter for quark stars

    CERN Document Server

    Lai, X Y

    2009-01-01

    It depends on the state of matter at supra-nuclear density to model pulsar's structure, which is unfortunately not certain due to the difficulties in physics. In cold quark matter at realistic baryon densities of compact stars (with an average value of $\\sim 2-3\\rho_0$), the interaction between quarks is so strong that they would condensate in position space to form quark-clusters. We argue that quarks in quark stars are grouped in clusters, then we apply two phenomenological models for quark stars, the polytropic model and Lennard-Jones model. Both of the two models have stiffer EoS, and larger maximum mass for quark stars (larger than 2 $M_\\odot$). The gravitational energy releases during the AIQ process could explain the observed energy of three supergiant flares from soft gamma-ray repeaters ($\\sim 10^{47}$ ergs).

  1. Heavy-quark expansion for D and B mesons in nuclear matter

    CERN Document Server

    Buchheim, Thomas; Kampfer, Burkhard

    2014-01-01

    The planned experiments at FAIR enable the study of medium modifications of $D$ and $B$ mesons in (dense) nuclear matter. Evaluating QCD sum rules as a theoretical prerequisite for such investigations encounters heavy-light four-quark condensates. We utilize an extended heavy-quark expansion to cope with the condensation of heavy quarks.

  2. Heavy-quark expansion for D and B mesons in nuclear matter

    Directory of Open Access Journals (Sweden)

    Buchheim Thomas

    2014-01-01

    Full Text Available The planned experiments at FAIR enable the study of medium modifications of D and B mesons in (dense nuclear matter. Evaluating QCD sum rules as a theoretical prerequisite for such investigations encounters heavy-light four-quark condensates. We utilize an extended heavy-quark expansion to cope with the condensation of heavy quarks.

  3. Applicability of Parametrized Form of Fully Dressed Quark Propagator

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    According to extensive study of the Dyson-Schwinger equations for a fully dressed quark propagator in the "rainbow" approximation with an effective gluon propagator, a parametrized fully dressed confining quark propagator is suggested in this paper. The parametrized quark propagator describes a confined quark propagation in hadron, and is analytic everywhere in complex p2-plane and has no Lehmann representation. The vector and scalar self-energy functions [1 - Af(p2)] and [Bf(p2) - mf], dynamically running effective mass of quark Mf(p2) and the structure of non-local quark vacuum condensates as well as local quark vacuum condensates are predicted by use of the parametrized quark propagator. The results are compatible with other theoretical calculations.

  4. Inhomogeneous Polyakov loop induced by inhomogeneous chiral condensates

    Directory of Open Access Journals (Sweden)

    Tomoya Hayata

    2015-05-01

    Full Text Available We study the spatial inhomogeneity of the Polyakov loop induced by inhomogeneous chiral condensates. We formulate an effective model of gluons on the background fields of chiral condensates, and perform its lattice simulation. On the background of inhomogeneous chiral condensates, the Polyakov loop exhibits an in-phase spatial oscillation with the chiral condensates. We also analyze the heavy quark potential and show that the inhomogeneous Polyakov loop indicates the inhomogeneous confinement of heavy quarks.

  5. Inhomogeneous Polyakov loop induced by inhomogeneous chiral condensates

    Energy Technology Data Exchange (ETDEWEB)

    Hayata, Tomoya, E-mail: hayata@riken.jp [Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Theoretical Research Division, Nishina Center, RIKEN, Wako, Saitama 351-0198 (Japan); Yamamoto, Arata [Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Theoretical Research Division, Nishina Center, RIKEN, Wako, Saitama 351-0198 (Japan)

    2015-05-11

    We study the spatial inhomogeneity of the Polyakov loop induced by inhomogeneous chiral condensates. We formulate an effective model of gluons on the background fields of chiral condensates, and perform its lattice simulation. On the background of inhomogeneous chiral condensates, the Polyakov loop exhibits an in-phase spatial oscillation with the chiral condensates. We also analyze the heavy quark potential and show that the inhomogeneous Polyakov loop indicates the inhomogeneous confinement of heavy quarks.

  6. Spontaneous magnetization in high-density quark matter

    DEFF Research Database (Denmark)

    Tsue, Yasuhiko; da Providência, João; Providência, Constanca;

    2015-01-01

    It is shown that spontaneous magnetization occurs due to the anomalous magnetic moments of quarks in high-density quark matter under the tensor-type four-point interaction. The spin polarized condensate for each flavor of quark appears at high baryon density, which leads to the spontaneous...... magnetization due to the anomalous magnetic moments of quarks. The implications for the strong magnetic field in compact stars is discussed....

  7. Dual condensates at finite isospin chemical potential

    CERN Document Server

    Zhang, Zhao

    2015-01-01

    The dual observables as order parameters for center symmetry are tested at finite isospin chemical potential $\\mu_I$ in a Polyakov-loop enhanced chiral model of QCD with physical quark masses. As a counterpart of the dressed Polyakov-loop, the first Fourier moment of pion condensate is introduced for $\\mu_I>{m_\\pi}/{2}$ under the temporal twisted boundary conditions for quarks. We demonstrate that this dual condensate exhibits the similar temperature dependence as the conventional Polyakov-loop. We confirm that its rapid increase with $T$ is driven by the evaporating of pion condensation. On the other hand, the dressed Polyakov-loop shows abnormal thermal behavior, which even decreases with $T$ at low temperatures due to the influence of pion condensate. We thus argue that in QCD the critical temperature extracting from a dual observable may have nothing to do with the quark confinement-deconfinement transition if the quark mass is very small.

  8. Top quark and neutrino composite Higgs bosons

    Energy Technology Data Exchange (ETDEWEB)

    Smetana, Adam [Czech Technical University in Prague, Institute of Experimental and Applied Physics, Prague 2 (Czech Republic)

    2013-08-15

    In the context of top-quark condensation models, the top quark alone is too light to saturate the correct value of the electroweak scale by its condensate. Within the seesaw scenario the neutrinos can have their Dirac masses large enough so that their condensates can provide a significant contribution to the value of the electroweak scale. We address the question of a phenomenological feasibility of the top-quark and neutrino condensation conspiracy against the electroweak symmetry. It is mandatory to reproduce the masses of electroweak gauge bosons, the top-quark mass and the recently observed scalar mass of 125 GeV and to satisfy the upper limits on absolute value of active neutrino masses. To accomplish that we design a reasonably simplified effective model with two composite Higgs doublets. Additionally, we work with a general number N of right-handed neutrino flavor triplets participating on the seesaw mechanism. There are no experimental constraints limiting this number. The upper limit is set by the model itself. Provided that the condensation scale is of order 10{sup 17-18} GeV and the number of right-handed neutrinos is O(100-1000), the model predicts masses of additional Higgs bosons below 250 GeV and a suppression of the top-quark Yukawa coupling to the 125 GeV particle at the {proportional_to}60 % level of the Standard model value. (orig.)

  9. Top quark and neutrino composite Higgs bosons

    Science.gov (United States)

    Smetana, Adam

    2013-08-01

    In the context of top-quark condensation models, the top quark alone is too light to saturate the correct value of the electroweak scale by its condensate. Within the seesaw scenario the neutrinos can have their Dirac masses large enough so that their condensates can provide a significant contribution to the value of the electroweak scale. We address the question of a phenomenological feasibility of the top-quark and neutrino condensation conspiracy against the electroweak symmetry. It is mandatory to reproduce the masses of electroweak gauge bosons, the top-quark mass and the recently observed scalar mass of 125 GeV and to satisfy the upper limits on absolute value of active neutrino masses. To accomplish that we design a reasonably simplified effective model with two composite Higgs doublets. Additionally, we work with a general number N of right-handed neutrino flavor triplets participating on the seesaw mechanism. There are no experimental constraints limiting this number. The upper limit is set by the model itself. Provided that the condensation scale is of order 1017-18 GeV and the number of right-handed neutrinos is , the model predicts masses of additional Higgs bosons below 250 GeV and a suppression of the top-quark Yukawa coupling to the 125 GeV particle at the ˜60 % level of the Standard model value.

  10. Quark Models and Quark Phenomenology

    CERN Document Server

    Lipkin, Harry Jeannot

    1997-01-01

    Overwhelming experimental evidence for quarks as real physical constituents of hadrons along with the QCD analogs of the Balmer Formula, Bohr Atom and Schroedinger Equation already existed in 1966. A model of colored quarks interacting with a one-gluon-exchange potential explained the systematics of the meson and baryon spectrum and gave a hadron mass formula in surprising agreement with experiment. The simple quark model dismissed as heresy and witchcraft by the establishment predicted quantum numbers of an enormous number of hadronic states as well as relations between masses, reaction cross sections and electromagnetic properties, all unexplained by other approaches. Further developments leading to QCD included confinement in the large $N_c$ limit, duality, dual resonance and string models, high energy scattering systematics, unified treatment of mesons and baryons, no exotics and no free quarks.

  11. Effective models for interacting quarks from QCD

    Energy Technology Data Exchange (ETDEWEB)

    Braghin, Fabio L. [Universidade Federal de Goias (UFG), Goiania, GO (Brazil). Inst. de Fisica

    2012-07-01

    Full text: In this work the Quantum Chromodynamics ( QCD ) path integral is considered with the introduction of auxiliary variables for composite gluon fields. One of these variables eventually leads to the gluon condensates of order 2 and another one corresponds to an anti - symmetric composite gluon configuration. Gluon degrees of freedom, and part of the quark degrees of freedom, are integrated out and two different limits of the resulting effective quark interactions are analysed. (author)

  12. Quantifying zig-zag motion of quarks

    CERN Document Server

    Antonov, D

    2010-01-01

    Quark condensate is calculated in terms of the effective string tension and the constituent quark mass. For 3 colors and 2 light flavors, the constituent mass is bounded from below by the value of 460 MeV. This value is only accessible when the string tension decreases linearly with the Schwinger proper time. For this reason, the Hausdorff dimension of a light-quark trajectory is equal to 4, indicating that these trajectories are similar to branched polymers, which can describe a weak first-order deconfinement phase transition in SU(3) Yang-Mills theory. Using this indication, we develop a gluon-chain model based on such trajectories.

  13. ATLAS top quark results

    CERN Document Server

    Menke, Sven; The ATLAS collaboration

    2017-01-01

    The top quark is the heaviest known fundamental particle. As it is the only quark that decays before it hadronises, analyses of events containing top quarks allow to probe the properties of bare quarks and to test perturbative QCD. This talk will focus on recent precision top-quark measurements by the ATLAS Collaboration: Single top-quark and top-quark pair production cross sections including differential distributions will be presented, as well as measurements of top-quark pair production in association with a W or Z boson and measurements of top quark properties such as the spin correlation and W boson helicity in top quark pair events.

  14. Quark and pion effective couplings from polarization effects

    Energy Technology Data Exchange (ETDEWEB)

    Braghin, Fabio L. [Federal University of Goias, Instituto de Fisica, Goiania, GO (Brazil)

    2016-05-15

    A flavor SU(2) effective model for pions and quarks is derived by considering polarization effects departing from the usual quark-quark effective interaction induced by dressed gluon exchange, i.e. a global color model for QCD. For that, the quark field is decomposed into a component that yields light mesons and the quark-antiquark condensate, being integrated out by means of the auxiliary field method, and another component which yields constituent quarks, which is basically a background quark field. Within a long-wavelength and weak quark field expansion (or large quark effective mass expansion) of a quark determinant, the leading terms are found up to the second order in a zero-order derivative expansion, by neglecting vector mesons that are considerably heavier than the pion. Pions are considered in the structureless limit and, besides the chiral invariant terms that reproduce previously derived expressions, symmetry breaking terms are also presented. The leading chiral quark-quark effective couplings are also found corresponding to a NJL and a vector-NJL couplings. All the resulting effective coupling constants and parameters are expressed in terms of the current and constituent quark masses and of the coupling g. (orig.)

  15. Chaos of chiral condensate

    CERN Document Server

    Hashimoto, Koji; Yoshida, Kentaroh

    2016-01-01

    Assigning a chaos index for vacua of generic quantum field theories is a challenging problem. We find chaotic behavior of chiral condensates of a quantum gauge theory at strong coupling limit, by using the AdS/CFT correspondence. We evaluate the time evolution of homogeneous quark condensates and in an N=2 supersymmetric QCD with the SU(N_c) gauge group at large N_c and at large 't Hooft coupling lambda. At an equivalent classical gravity picture, a Lyapunov exponent is readily defined. We show that the condensates exhibit chaotic behavior for energy density E > (6x10^2) (N_c/lambda^2) (m_q)^4 where m_q is the quark mass. The energy region of the chaotic vacua of the N=2 supersymmetric QCD increases for smaller N_c or larger lambda. The Lyapunov exponent is calculated as a function of the theory (N_c,lambda,E), showing that the N=2 supersymmetric QCD is more chaotic for smaller N_c.

  16. Confinement Contains Condensates

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; Roberts, Craig D.; Shrock, Robert; Tandy, Peter C.

    2012-03-12

    Dynamical chiral symmetry breaking and its connection to the generation of hadron masses has historically been viewed as a vacuum phenomenon. We argue that confinement makes such a position untenable. If quark-hadron duality is a reality in QCD, then condensates, those quantities that have commonly been viewed as constant empirical mass-scales that fill all spacetime, are instead wholly contained within hadrons; i.e., they are a property of hadrons themselves and expressed, e.g., in their Bethe-Salpeter or light-front wave functions. We explain that this paradigm is consistent with empirical evidence, and incidentally expose misconceptions in a recent Comment.

  17. Dilepton production from the Color Glass Condensate

    CERN Document Server

    Gelis, François; Jalilian-Marian, Jamal

    2002-01-01

    We consider dilepton production in high energy proton-nucleus (and very forward nucleus-nucleus) collisions. Treating the target nucleus as a Color Glass Condensate and describing the projectile proton (nucleus) as a collection of quarks and gluons as in the parton model, we calculate the differential cross section for dilepton production in quark-nucleus scattering and show that it is very sensitive to the saturation scale characterizing the target nucleus.

  18. Quark confinement and the fractional quantum Hall effect

    Institute of Scientific and Technical Information of China (English)

    WANG Hai-Jun; GENG Wen-Tong

    2008-01-01

    Working in the physics of Wilson factor and Aharonov-Bohm effect,we find in the fluxtubequark system the topology of a baryon consisting of three heavy flavor quarks resembles that of the fractional quantum Hall effect(FQHE)in condensed matter.This similarity yields the result that the constituent quarks of baryon have the"filling factor"1/3.thus the previous conjecture that quark confinement is a correlation effect is confirmed.Moreover,by deriving a Hamiltonian of the system analogous to that of FQHE,we predict an energy gap for the ground state of a heavy three-quark system.

  19. Analysis of 1/2+ baryon states containing fourth-family quarks from QCD sum rules

    Institute of Scientific and Technical Information of China (English)

    YOU Fu-Yi; WANG Zhi-Gang; WAN Shao-Long

    2012-01-01

    When the fourth generation of quarks have sufficiently small mixing with ordinary standard-model quarks,the hadrons made up from these quarks can be long-lived enough.We analyze the 1/2+ baryon statescontaining fourth-generation quarks and standard-model quarks,i.e.the charm or bottom quarks,in the QCD sum rules approach.Considering the perturbative and two gluon condensate contributions in the calculation,we give the numerical results of the masses and pole residues.

  20. Calcium quarks.

    Science.gov (United States)

    Niggli, Ernst; Egger, Marcel

    2002-05-01

    Elementary subcellular Ca2+ signals arising from the opening of single ion channels may offer the possibility to examine the stochastic behavior and the microscopic chemical reaction rates of these channel proteins in their natural environment. Such an analysis can yield detailed information about the molecular function that cannot be derived from recordings obtained from an ensemble of channels. In this review, we summarize experimental evidence suggesting that Ca2+ sparks, elementary Ca2+ signaling events of cardiac and skeletal muscle excitation contraction coupling, may be comprised of a number of smaller Ca2+ signaling events, the Ca2+ quarks.

  1. Quark mass effects in quark number susceptibilities

    CERN Document Server

    Graf, Thorben

    2016-01-01

    The quark degrees of freedom of the QGP with special focus on mass effects are investigated. A next-to-leading-order perturbation theory approach with quark mass dependence is applied and compared to lattice QCD results.

  2. Equation of State for physical quark masses

    CERN Document Server

    Cheng, M; Hegde, P; Karsch, F; Kaczmarek, O; Laermann, E; Mawhinney, R D; Miao, C; Mukherjee, S; Petreczky, P; Schmidt, C; Soeldner, W

    2009-01-01

    We calculate the QCD equation of state for temperatures corresponding to the transition region with physical mass values for two degenerate light quark flavors and a strange quark using an improved staggered fermion action (p4-action) on lattices with temporal extent N_tau=8. We compare our results with previous calculations performed at twice larger values of the light quark masses as well as with results obtained from a resonance gas model calculation. We also discuss the deconfining and chiral aspects of the QCD transition in terms of renormalized Polyakov loop, strangeness fluctuations and subtracted chiral condensate. We show that compared to the calculations performed at twice larger value of the light quark mass the transition region shifts by about 5 MeV toward smaller temperatures

  3. Can mass-less QCD dynamically generate heavy quarks?

    CERN Document Server

    Cabo-Montes de Oca, Alejandro; Oca, Alejandro Cabo Montes de; Martinez-Pedrera, Danny

    2005-01-01

    As it was suggested by previous works on a modified perturbation expansion for QCD, the possibility for the generation of large quark condensates in the mass-less version of the theory is explored. For this purpose, it is firstly presented a way of well define the Feynman diagrams at any number of loops by just employing dimensional regularization. After that, the calculated zero and one loop corrections to the effective potential indicate a strong instability of the system under the generation of quark condensates. The also evaluated quark condensate dependence of particular two loop terms does not modify the instability picture arising at one loop. The results suggest a possible mechanism for a sort of Top Condensate Model to be a dynamically fixed effective action for mass-less QCD. The inability of lattice calculations in detecting this possibility could be related with the limitations in treating the fermion determinants.

  4. Quark-Quark Forces in Quantum Chromodynamics

    CERN Document Server

    Arkhipov, A A

    2014-01-01

    By single-time reduction technique of Bethe-Salpeter formalism for two-fermion systems analytical expressions for the quasipotential of quark-quark interactions in QCD have been obtained in one-gluon exchange approximation. The influence of infrared singularities of gluon Green`s functions on the character of quark-quark forces in QCD has been investigated. The way the asymptotic freedom manifests itself in terms of two-quark interaction quasipotential in quantum chromodynamics is shown. Consistent relativistic consideration of quark interaction problem by single-time reduction technique in QFT allows one to establish a nontrivial energy dependence of the two-quark interaction quasipotential. As a result of the energy dependence of the interaction quasipotential, the character of the forces changes qualitatively during the transition from the discrete spectrum (the region of the negative values of the binding energy) to the continuous spectrum (that of the positive values of the binding energy): the smooth be...

  5. ATLAS Top Quark Results

    CERN Document Server

    Black, Kevin; The ATLAS collaboration

    2017-01-01

    The top quark is the heaviest known fundamental particle. As it is the only quark that decays before it hadronizes, this gives us the unique opportunity to probe the properties of bare quarks at the Large Hadron Collider. This talk will present highlights of a few recent precision measurements by the ATLAS Collaboration of the top quark using 13 TeV and 8 TeV collision data: top-quark pair and single top production cross sections including differential distributions will be presented alongside top quark properties measurements. These measurements, including results using boosted top quarks, probe our understanding of top quark production in the TeV regime. Measurements of the top quark mass and searches for rare top quark decays are also presented.

  6. Constituent quark masses from modified perturbative QCD

    Energy Technology Data Exchange (ETDEWEB)

    Cabo Montes de Oca, A. [Instituto de Cibernetica, Matematica y Fisica, La Habana (Cuba); International Institute for Theoretical and Applied Physics (IITAP), UNESCO and Iowa State University, Ames, IA (United States); Rigol Madrazo, M. [Centro de Estudios Aplicados al Desarrollo Nuclear, La Habana (Cuba)

    2002-03-01

    A recently proposed modified perturbative expansion for QCD incorporating gluon condensation is employed to evaluate the quark and gluon self-energy corrections in first approximation. The results predict mass values of 1/3 of the nucleon mass for the light quarks u, d, and s and a monotonously growing variation with the current mass. The only phenomenological input is that left angle G{sup 2} right angle is evaluated up to order g{sup 2} as a function of the unique parameter C defining the modified propagator, and then C is fixed to give a current estimate of left angle g{sup 2}G{sup 2} right angle. The light quarks u and d as a result are found to be confined and the s, c, b and t ones show damped propagation modes, suggesting a model for the large differences in stability between the nucleons and the higher resonances. The above properties of quark modes diverge from the fully confinement result following from the similar gluon propagator previously considered by Munczek and Nemirovski. On the other hand, the condensate effects on the gluon self-energy furnish a tachyonic mass shell as predicted by the Fukuda analysis of gluon condensation in QCD. (orig.)

  7. Water Condensation

    DEFF Research Database (Denmark)

    Jensen, Kasper Risgaard; Fojan, Peter; Jensen, Rasmus Lund

    2014-01-01

    The condensation of water is a phenomenon occurring in multiple situations in everyday life, e.g., when fog is formed or when dew forms on the grass or on windows. This means that this phenomenon plays an important role within the different fields of science including meteorology, building physics......, and chemistry. In this review we address condensation models and simulations with the main focus on heterogeneous condensation of water. The condensation process is, at first, described from a thermodynamic viewpoint where the nucleation step is described by the classical nucleation theory. Further, we address...

  8. Dynamical Self-mass for Massive Quarks

    CERN Document Server

    Huang, Z; Huang, Zheng

    1992-01-01

    We examine dynamical mass generation in QCD with large current mass quarks. A renormalization group analysis is performed to separate fermion self-mass into a dynamical and a kinematical part. It is shown that the energy scale og the Schwinger-Dyson (SD) equation and the effective gauge coupling are fixed by the current mass. The dynamical self-mass satisfies a homogeneous SD equation which has a trivial solution when the current mass exceeds a critical value. We therefore suggest that the quark condensate, as the function of the current mass, observes a local minimum around 2.7\\Lambda_(QCD).

  9. On the strange quark mass with improved staggered quarks

    OpenAIRE

    Hein, J.; Davies, C.; Lepage, G. P.; Mason, Q.; Trottier, H.

    2002-01-01

    We present results on the sum of the masses of light and strange quark using improved staggered quarks. Our calculation uses 2+1 flavours of dynamical quarks. The effects of the dynamical quarks are clearly visible.

  10. Lepton mass hierarchy from the quark mass hierarchy in the light of the quark Technicolor Dynamics

    CERN Document Server

    Sauli, Vladimir

    2013-01-01

    We explore the possibility that all electroweak symmetry breaking (EWSB) comes from the strong dynamics of Technicolor while these are the only quarks which receive masses through Technicolor dynamics. We assume the leptons are not embedded in a representation of Extended Technigroup. In this paper we suggest a model where the leptons receive their masses through the loop corrections which includes at least one closed quark loop. For this purpose we introduce model based on private family SU(2) scalar two doublets which interact very weakly with the Standard Model(SM) fermions and which do not condense at tree level. Assuming quark/lepton universality of suggested Yukawa interactions the model becomes strongly predictive and we calculate mass contributions to the all known SM lepton gauge eigenstates. Up to not yet explored mixing, the model suggests that the lepton mass hierarchy comes from the quark mass hierarchy. Within a single universal Yukawa coupling the absolute values of masses for neutrino family e...

  11. Top quark properties

    Indian Academy of Sciences (India)

    Yuji Takeuchi

    2012-10-01

    Since the top quark was discovered at Tevatron in 1995, many top quark properties have been measured. However, the top quark is still interesting due to unique features which originate from the extremely heavy mass, and providing various test grounds on the Standard Model as well as searches for a new physics. Though the measurements of the top quark had been performed only at Tevatron so far, LHC is now ready for measurements with more top quarks than Tevatron. In this article, recent measurements of top quark properties from Tevatron (CDF and DØ) as well as LHC (ATLAS and CMS) are presented.

  12. Quarks with Twisted Boundary Conditions in the Epsilon Regime

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Mehen; Brian C. Tiburzi

    2005-05-01

    We study the effects of twisted boundary conditions on the quark fields in the epsilon regime of chiral perturbation theory. We consider the SU(2){sub L} x SU(2){sub R} chiral theory with non-degenerate quarks and the SU(3){sub L} x SU(3){sub R} chiral theory with massless up and down quarks and massive strange quarks. The partition function and condensate are derived for each theory. Because flavor-neutral Goldstone bosons are unaffected by twisted boundary conditions chiral symmetry is still restored in finite volumes. The dependence of the condensate on the twisting parameters can be used to extract the pion decay constant from simulations in the epsilon regime. The relative contribution to the partition function from sectors of different topological charge is numerically insensitive to twisted boundary conditions.

  13. Spin polarization in high density quark matter under a strong external magnetic field

    CERN Document Server

    Tsue, Yasuhiko; Providencia, Constanca; Yamamura, Masatoshi; Bohr, Henrik

    2016-01-01

    In high density quark matter under a strong external magnetic field, possible phases are investigated by using the Nambu-Jona-Lasinio model with axial vector-type four-point interaction or tensor-type four-point interaction between quarks. In the axial vector-type interaction, it is shown that a quark spin polarized phase is realized in all region of the quark chemical potential under a strong external magnetic field within the lowest Landau level approximation. Each phase is characterized by the chiral condensate or dynamical quark mass. On the other hand, in the tensor-type interaction, it is also shown that the quark spin polarized phase does not appear even if there exists the strong external magnetic field. However, if the anomalous magnetic moment of quark is taken into account, it may be possible to realize the quark spin polarized phase.

  14. Small Current Quark Mass Effects on Dressed-Quark Propagator in an Effective Quark-Quark Interaction Model

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; WU Xiao-Hua; SUN Wei-Min; ZHAO En-Guang; WANG Fan

    2003-01-01

    A method for obtaining the smallcurrent quark mass dependence of the dressed quark propagator froman effective quark-quark interaction model is developed. Within this approach the small current quark mass effects ondressed-quark propagator have been studied. A comparison with previous results is given.

  15. Heavy quark photoproduction in $pp$ coherent interactions at LHC

    CERN Document Server

    Goncalves, V P; Meneses, A R

    2009-01-01

    In this work we analyse the possibility of constraining the QCD dynamics at high energies studying the heavy quark photoproduction at LHC in coherent interactions. The rapidity distribution and total cross section for charm and bottom production are estimated using three different phenomenological saturation models which successfully describe the HERA data. Our results indicate that the experimental study of the inclusive heavy quark photoproduction can be very useful to discriminate between the classical and quantum versions of the Color Glass Condensate (CGC) formalism.

  16. Quarks and partons. [Review

    Energy Technology Data Exchange (ETDEWEB)

    Paschos, E A

    1976-01-01

    This contribution reviews the evidence accumulated over the past year in favor of quarks and partons. Then it applies the quark ideas in order to interpret the neutrino-induced production of charm and the structure of neutral currents.

  17. Top quark measurements

    CERN Document Server

    Iorio, Alberto Orso Maria

    2016-01-01

    Measurements of top quarks from Run-I and Run-II of the LHC are presented. Results on dif- ferential and inclusive top quark production cross sections, measured by the ATLAS, CMS and LHCb experiments, and measurements of top quark properties and mass are reported.

  18. Top Quark Results

    CERN Document Server

    ATLAS collaboration; LHCb collaboration

    2016-01-01

    Measurements of top quarks from Run-I and Run-II of the LHC are presented. Results on differential and inclusive top quark production cross sections, measured by the ATLAS, CMS and LHCb experiments, and measurements of top quark properties and mass are reported.

  19. Nonlocal Condensate Model for QCD Sum Rules

    CERN Document Server

    Hsieh, Ron-Chou

    2009-01-01

    We include effects of nonlocal quark condensates into QCD sum rules (QSR) via the K$\\ddot{\\mathrm{a}}$ll$\\acute{\\mathrm{e}}$n-Lehmann representation for a dressed fermion propagator, in which a negative spectral density function manifests their nonperturbative nature. Applying our formalism to the pion form factor as an example, QSR results are in good agreement with data for momentum transfer squared up to $Q^2 \\approx 10 $ GeV$^2$. It is observed that the nonlocal quark-condensate contribution descends like $1/Q^4$, different from the exponential decrease in $Q^2$ obtained in the literature, and contrary to the linear rise in the local-condensate approximation.

  20. Evolution of proto-neutron stars with quarks.

    Science.gov (United States)

    Pons, J A; Steiner, A W; Prakash, M; Lattimer, J M

    2001-06-01

    Neutrino fluxes from proto-neutron stars with and without quarks are studied. Observable differences become apparent after 10-20 s of evolution. Sufficiently massive stars containing negatively charged, strongly interacting, particles collapse to black holes during the first minute of evolution. Since the neutrino flux vanishes when a black hole forms, this is the most obvious signal that quarks (or other types of strange matter) have appeared. The metastability time scales for stars with quarks are intermediate between those containing hyperons and kaon condensates.

  1. Direct Urca neutrino rate in colour superconducting quark matter

    OpenAIRE

    Jaikumar, Prashanth; Roberts, Craig D.; Sedrakian, Armen

    2005-01-01

    If deconfined quark matter exists inside compact stars, the primary cooling mechanism is neutrino radiation via the direct Urca processes d->u+e+antinu_e and u+e->d+nu_e. Below a critical temperature, T_c, quark matter forms a colour superconductor, one possible manifestation of which is a condensate of quark Cooper pairs in an electric-charge neutralising background of electrons. We compute the neutrino emission rate from such a phase, including charged pair-breaking and recombination effec...

  2. Holographic Model of Dual Superconductor for Quark Confinement

    CERN Document Server

    Huang, Tsung-Sheng

    2016-01-01

    We show that a hairy black hole solution can provide a holographically dual description of quark confinement. There exists a one-parameter sensible metric which receives the backreaction of matter contents in the holographic action, where the scalar and gauge field are responsible for the condensation of chromomagnetic monopoles. This model features a preconfining phase triggered by second-order monopole condensation and a first-order confinement/deconfinement phase transition. To confirm the confinement, the quark-antiquark potential is calculated by probing a QCD string in both phases. At last, contribution from Kaluza-Klein monopoles in the confining phase is discussed.

  3. Gravitino condensation, supersymmetry breaking and inflation

    CERN Document Server

    Houston, N

    2015-01-01

    Motivated by dualistic considerations of the reality of quark condensation in quantum chromodynamics, and the connections of supergravity to the exotic physics of string and M-theory, in this thesis we investigate the dynamical breaking of local supersymmetry via gravitino condensation. We firstly demonstrate non-perturbative gravitino mass generation via this mechanism in flat spacetime, and from this derive the condensate mode wavefunction renormalisation. By then calculating the full canonically normalised one-loop effective potential for the condensate mode about a de Sitter background, we demonstrate that, contrary to claims in the literature, this process may both occur and function in a phenomenologically viable manner. In particular, we find that outside of certain unfortunate gauge choices, the stability of the condensate is intimately tied via gravitational degrees of freedom to the sign of the tree-level cosmological constant. Furthermore, we find that the energy density liberated may provide the n...

  4. Space-Time Geometry of Quark and Strange Quark Matter

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We study quark and strange quark matter in the context of general relativity. For this purpose, we solve Einstein's field equations for quark and strange quark matter in spherical symmetric space-times. We analyze strange quark matter for the different equations of state (EOS) in the spherical symmetric space-times, thus we are able to obtain the space-time geometries of quark and strange quark matter. Also, we discuss die features of the obtained solutions. The obtained solutions are consistent with the results of Brookhaven Laboratory, i.e. the quark-gluon plasma has a vanishing shear (i.e. quark-gluon plasma is perfect).

  5. Kondo cloud of single heavy quark in cold and dense matter

    CERN Document Server

    Yasui, Shigehiro

    2016-01-01

    The Kondo effect is a universal phenomena observed in a variety of fermion systems containing a heavy impurity particle whose interaction is governed by the non-Abelian interaction. At extremely high density, I study the Kondo effect by color exchange in quark matter containing a single heavy (charm or bottom) quark as an impurity particle. To obtain the ground state with the Kondo effect, I introduce the condensate mixing the light quark and the heavy quark (Kondo cloud) in the mean-field approximation. I estimate the energy gain by formation of the Kondo cloud, and present that the Kondo cloud exhibits the resonant structure. I also evaluate the scattering cross section for the light quark and the heavy quark, and discuss its effect to the finite size quark matter.

  6. Kondo cloud of single heavy quark in cold and dense matter

    Science.gov (United States)

    Yasui, Shigehiro

    2017-10-01

    The Kondo effect is a universal phenomena observed in a variety of fermion systems containing a heavy impurity particle whose interaction is governed by the non-Abelian interaction. At extremely high density, I study the Kondo effect by color exchange in quark matter containing a single heavy (charm or bottom) quark as an impurity particle. To obtain the ground state with the Kondo effect, I introduce the condensate mixing the light quark and the heavy quark (Kondo cloud) in the mean-field approximation. I estimate the energy gain by formation of the Kondo cloud, and present that the Kondo cloud exhibits the resonant structure. I also evaluate the scattering cross section for the light quark and the heavy quark, and discuss its effect to the finite size quark matter.

  7. Top quark physics

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadov, A.; Azuelos, G.; Bauer, U.; Belyaev, A.; Berger, E. L.; Sullivan, Z.; Tait, T. M. P.

    2000-03-24

    The top quark, when it was finally discovered at Fermilab in 1995 completed the three-generation structure of the Standard Model (SM) and opened up the new field of top quark physics. Viewed as just another SM quark, the top quark appears to be a rather uninteresting species. Produced predominantly, in hadron-hadron collisions, through strong interactions, it decays rapidly without forming hadrons, and almost exclusively through the single mode t {r_arrow} Wb. The relevant CKM coupling V{sub tb} is already determined by the (three-generation) unitarity of the CKM matrix. Rare decays and CP violation are unmeasurable small in the SM. Yet the top quark is distinguished by its large mass, about 35 times larger than the mass of the next heavy quark, and intriguingly close to the scale of electroweak (EW) symmetry breaking. This unique property raises a number of interesting questions. Is the top quark mass generated by the Higgs mechanism as the SM predicts and is its mass related to the top-Higgs-Yukawa coupling? Or does it play an even more fundamental role in the EW symmetry breaking mechanism? If there are new particles lighter than the top quark, does the top quark decay into them? Could non-SM physics first manifest itself in non-standard couplings of the top quark which show up as anomalies in top quark production and decays? Top quark physics tries to answer these questions. Several properties of the top quark have already been examined at the Tevatron. These include studies of the kinematical properties of top production, the measurements of the top mass, of the top production cross-section, the reconstruction of t{bar t}pairs in the fully hadronic final states, the study of {tau} decays of the top quark, the reconstruction of hadronic decays of the W boson from top decays, the search for flavor changing neutral current decays, the measurement of the W helicity in top decays, and bounds on t{bar t} spin correlations. Most of these measurements are limited by

  8. Heavy quark masses

    Science.gov (United States)

    Testa, Massimo

    1990-01-01

    In the large quark mass limit, an argument which identifies the mass of the heavy-light pseudoscalar or scalar bound state with the renormalized mass of the heavy quark is given. The following equation is discussed: m(sub Q) = m(sub B), where m(sub Q) and m(sub B) are respectively the mass of the heavy quark and the mass of the pseudoscalar bound state.

  9. Top Quark Measurements

    CERN Document Server

    Juste, A

    2006-01-01

    Ten years after its discovery at the Tevatron collider, we still know little about the top quark. Its large mass suggests it may play a key role in the mechanism of Electroweak Symmetry Breaking (EWSB), or open a window of sensitivity to new physics related to EWSB and preferentially coupled to it. To determine whether this is the case, precision measurements of top quark properties are necessary. The high statistics samples being collected by the Tevatron experiments during Run II start to incisively probe the top quark sector. This report summarizes the experimental status of the top quark, focusing in particular on the recent measurements from the Tevatron Run II.

  10. Top quark properties

    CERN Document Server

    Cuevas Maestro, Javier

    2016-01-01

    An overview of recent top quark measurements in proton-proton collisions at 7, and 8 TeV in data collected with the CMS and ATLAS experiments at the LHC, using a data sample collected during the years 2011, 2012 is presented. The results include measurements of top-quark pairs spin correlation, the top pair charge asymmetry, the cross section of top-quark pair events produced in association with a W or a Z boson. The mass of the top quark is estimated by different methods. Some results on the same topics are also presented in data collected by the CDF and D0 collaborations at the Tevatron collider.

  11. New quarks: exotic versus strong

    OpenAIRE

    Holdom, B.

    2011-01-01

    The new quarks of a fourth family are being pushed into the strongly interacting regime due to the lower limits on their masses. The theoretical basis and experimental implications of such quarks are compared with exotic quarks.

  12. The Quark - A Decade Later

    Science.gov (United States)

    Dakin, James T.

    1974-01-01

    Reviews theoretical principles underlying the quark model. Indicates that the agreement with experimental results and the understanding of the quark-quark force are two hurdles for the model to survive in the future. (CC)

  13. The Quark - A Decade Later

    Science.gov (United States)

    Dakin, James T.

    1974-01-01

    Reviews theoretical principles underlying the quark model. Indicates that the agreement with experimental results and the understanding of the quark-quark force are two hurdles for the model to survive in the future. (CC)

  14. Massive Quark Propagator in the Colour-Superconducting Phase

    Institute of Scientific and Technical Information of China (English)

    黄梅; 庄鹏飞; 赵维勤

    2002-01-01

    A more general expression for the quark propagator including both chiral and diquark condensates has been derived by using energy projectors. This makes it possible to study the phase transition from the hadron phase to the colour-superconductivity phase in the moderate baryon density region by using the Feynman diagrammatic method or the Green function method.

  15. Study of Strange Quark Mass in CFL Phase

    Institute of Scientific and Technical Information of China (English)

    LI Xin; L(U) Xiao-Fu

    2006-01-01

    In this paper we introduce bilocal fields in the global color symmetry model and consider color and electrical neutrality conditions simultaneously to study the effect of strange quark mass Ms for the momentum-dependent condensate of color-flavor locked phase. Consequently we find that there will be a quantum phase transition occurring.

  16. Condensation Polymerization

    Indian Academy of Sciences (India)

    S Ramakrishnan

    2017-04-01

    The very idea that large polymer molecules can indeed existwas hotly debated during the early part of the 20th century.As highlighted by Sivaram in his articles on Carothersand Flory, Staudinger’s macromolecular hypothesis was finallyaccepted, and the study of polymers gained momentumbecause of the remarkable efforts of the these two individualswho laid down the foundations concerning the processes thatled to the formation of large polymer molecules, and to thosethat led to an understanding of many of their extraordinaryphysical properties. Condensation polymerizations, as thename suggests, utilizes bond-forming reactions that generatea small molecule condensate, which often needs to be continuouslyremoved to facilitate the formation of the polymer. Inthis article, I shall describe some of the essential principles ofcondensation polymerizations or more appropriately calledstep-growth polymerizations; and I will also describe someinteresting extensions that lead to the formation of polymernetworks and highly branched polymers.

  17. Quantitative study of the violation of kperpendicular factorization in hadroproduction of quarks at collider energies.

    Science.gov (United States)

    Fujii, Hirotsugu; Gelis, François; Venugopalan, Raju

    2005-10-14

    We demonstrate the violation of kperpendicular factorization for quark production in high energy hadronic collisions. This violation is quantified in the color glass condensate framework and studied as a function of the quark mass, the quark transverse momentum, and the saturation scale Q(s), which is a measure of large parton densities. At x values where parton densities are large but leading twist shadowing effects are still small, violations of kperpendicularkfactorization can be significant--especially for lighter quarks. At very small x, where leading twist shadowing is large, we show that violations of kperpendicular factorization are relatively weaker.

  18. A Modified Approach for Calculating Dressed Quark Propagator at Finite Chemical Potential

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Based on the rainbow approximation of Dyson-Schwinger equation and the assumption that the full inverse quark propagator at finite chemical potential is analytic in the neighborhood of μ = 0, it is proved that the dressed From the dressed quark propagator at finite chemical potential μ can be written as (g0-1)[μ]=iγ·(p~)A((p~2))+B((p~2))with (p~)μ=((p),p4+iμ).From the dressed quark propagator at finite chemical potential in Munczek model the bag constant of a baryon and the scalar quark condensate are evaluated. A comparison with previous results is given.

  19. Pion Decay Constant and Masses of Light Quarks and In-medium Goldstone Bosons

    Institute of Scientific and Technical Information of China (English)

    ZHOU Li-Juan; MA Wei-Xing

    2006-01-01

    Based on the fully dressed confining quark propagator, the pion decay constant fπ, local quark vacuum condensate, and the masses of light quarks and in-medium Goldstone bosons are investigated. The pion decay constant fπ is predicted and compared with its value of experimental measurement. A great agreement is obtained. With the predicted fπ and values of Goldstone boson masses measured by experiments in free configuration the current masses of light quarks and the masses of in-medium Goldstone bosons are obtained.

  20. Chiral condensate from the twisted mass Dirac operator spectrum

    CERN Document Server

    Cichy, Krzysztof; Jansen, Karl

    2013-01-01

    We present the results of our computation of the chiral condensate with $N_f=2$ and $N_f=2+1+1$ flavours of maximally twisted mass fermions. The condensate is determined from the Dirac operator spectrum, applying the spectral projector method proposed by Giusti and Luscher. We use 3 lattice spacings and several quark masses at each lattice spacing to reliably perform the chiral and continuum extrapolations. We study the effect of the dynamical strange and charm quarks by comparing our results for $N_f=2$ and $N_f=2+1+1$ dynamical flavours.

  1. Geometric approach to condensates in holographic QCD

    CERN Document Server

    Hirn, J; Sanz, V; Hirn, Johannes; Rius, Nuria; Sanz, Veronica

    2006-01-01

    An SU(Nf)xSU(Nf) Yang-Mills theory on an extra-dimensional interval is considered, with appropriate symmetry-breaking boundary conditions on the IR brane. UV-brane to UV-brane correlators at high energies are compared with the OPE of two-point functions of QCD quark currents. Condensates correspond to departure from AdS of the (different) metrics felt by vector and axial combinations, away from the UV brane. Their effect on hadronic observables is studied: the extracted condensates agree with the signs and orders of magnitude expected from QCD.

  2. Colored condensates deep inside neutron stars

    CERN Document Server

    Blaschke, David

    2014-01-01

    It is demonstrated how in the absence of solutions for QCD under conditions deep inside compact stars an equation of state can be obtained within a model that is built on the basic symmetries of the QCD Lagrangian, in particular chiral symmetry and color symmetry. While in the vacuum the chiral symmetry is spontaneously broken, it gets restored at high densities. Color symmetry, however, gets broken simultaneously by the formation of colorful diquark condensates. It is shown that a strong diquark condensate in cold dense quark matter is essential for supporting the possibility that such states could exist in the recently observed pulsars with masses of 2 $M_\\odot$.

  3. The Phase Structure of the Polyakov--Quark-Meson Model

    CERN Document Server

    Schaefer, Bernd-Jochen; Wambach, Jochen

    2007-01-01

    The relation between the deconfinement and chiral phase transition is explored in the framework of an Polyakov-loop-extended two-flavor quark-meson (PQM) model. In this model the Polyakov loop dynamics is represented by a background temporal gauge field which also couples to the quarks. As a novelty an explicit quark chemical potential and N_f-dependence in the Polyakov loop potential is proposed by using renormalization group arguments. The behavior of the Polyakov loop as well as the chiral condensate as function of temperature and quark chemical potential is obtained by minimizing the grand canonical thermodynamic potential of the system. The effect of the Polyakov loop dynamics on the chiral phase diagram and on several thermodynamic bulk quantities is presented.

  4. Phase structure of the Polyakov-quark-meson model

    Science.gov (United States)

    Schaefer, B.-J.; Pawlowski, J. M.; Wambach, J.

    2007-10-01

    The relation between the deconfinement and chiral phase transition is explored in the framework of a Polyakov-loop-extended two-flavor quark-meson (PQM) model. In this model the Polyakov loop dynamics is represented by a background temporal gauge field which also couples to the quarks. As a novelty an explicit quark chemical potential and Nf-dependence in the Polyakov loop potential is proposed by using renormalization group arguments. The behavior of the Polyakov loop as well as the chiral condensate as function of temperature and quark chemical potential is obtained by minimizing the grand canonical thermodynamic potential of the system. The effect of the Polyakov loop dynamics on the chiral phase diagram and on several thermodynamic bulk quantities is presented.

  5. Effective degrees of freedom of the quark-gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Castorina, P. [Dipartimento di Fisica, Universita di Catania, and INFN Sezione di Catania, Via Santa Sofia 64, I-95100 Catania (Italy); Mannarelli, M. [Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)]. E-mail: massimo@lns.mit.edu

    2007-01-25

    The effective degrees of freedom of the quark-gluon plasma are studied in the temperature range {approx}(1-2)T{sub c}. We show that including light bosonic states one can reproduce the pressure and energy density of the quark-gluon plasma obtained by lattice simulations. The number of the bosonic states required is at most of the order of 20, consistent with the number of light mesonic states and in disagreement with a recently proposed picture of the quark-gluon plasma as a system populated with exotic bound states. We also constrain the quark quasiparticle chiral invariant mass to be {approx}300 MeV. Some remarks regarding the role of the gluon condensation and the baryon number-strangeness correlation are also presented.

  6. Top quark theory

    NARCIS (Netherlands)

    E. Laenen

    2011-01-01

    The theoretical aspects of a number of top quark properties such as its mass and its couplings are reviewed. Essential aspects in the theoretical description of top quark production, singly, in pairs and in association, as well as its decay related to spin and angular correlations are discussed.

  7. Top quark theory

    Indian Academy of Sciences (India)

    Eric Laenen

    2012-10-01

    The theoretical aspects of a number of top quark properties such as its mass and its couplings are reviewed. Essential aspects in the theoretical description of top quark production, singly, in pairs and in association, as well as its decay related to spin and angular correlations are discussed.

  8. Top quark physics

    Energy Technology Data Exchange (ETDEWEB)

    Erbacher, Robin D.; /UC, Davis

    2005-10-01

    While the top quark was discovered in 1995 at the Fermilab Tevatron, a decade later they still have very little information about the top. As the heaviest particle yet discovered, the top quark is interesting in and of itself, but some speculate that it may play a special role in physics beyond the Standard Model. With Run 2 of the Tevatron well underway, they have the opportunity to study top quark properties with much better sensitivity, and to test whether top quarks behave as predicted by current theories. This article focuses on the basics of top quark physics at the Tevatron, highlighting only a sample of the many recent measurements, as new results are being released monthly, and constantly changing the landscape of our knowledge of top.

  9. Quark mass and the masses of Goldstone bosons

    Institute of Scientific and Technical Information of China (English)

    Qing WU; Li-juan ZHOU; Wei-xing MA

    2008-01-01

    Based on the Dyson-Schwinger Equations (DSEs) of QCD in the "rainbow" approximation, the fully dressed quark propagator S,f (p) is investigated, and then an algebraic parametrization form of the propagator is obtained as a solu-tion of the equations. The dressed quark amplitudes A,f and Bf which built up the fully dressed quark propagator, and the dynamical running masses M,f, which is defined by A,f and By for light quarks u, d and s, are calculated, respec-tively. Using the predicted current masses m,f, quark local vacuum condensates, and our predicted value of pion decay constant, the masses of Goldstone bosons K, π and η and their in-medium values are also evaluated. Our predictions fit to data and to many other different calculations quite well. The numerical results show that the mass of quark is depen-dent of its momentum p'2. The fully dressed quark amplitudes A,f and B,f have correct behaviors and can be used for many purposes in our future researches on non-perturbative QCD.

  10. Light Quark Mass Effects in Bottom Quark Mass Determinations

    OpenAIRE

    Hoang, A. H.

    2001-01-01

    Recent results for charm quark mass effects in perturbative bottom quark mass determinations from $\\Upsilon$ mesons are reviewed. The connection between the behavior of light quark mass corrections and the infrared sensitivity of some bottom quark mass definitions is examined in some detail.

  11. Quark i mattoni del mondo

    CERN Document Server

    Fritzsch, Harald

    1983-01-01

    Quark rossi, verdi e blu ; quark dotati di stranezza e di incanto ; quark 'su' e 'giù' : sembra che i fisici delle particelle giochino a confondere la curiosità del profano, con queste denominazioni fantasiose. Che cosa significano ? e, soprattutto, i quark sono i costituenti davvero elementari della materia ?

  12. Scaling and low energy constants in lattice QCD with N_f=2 maximally twisted Wilson quarks

    CERN Document Server

    Dimopoulos, P; Herdoiza, G; Urbach, C; Wenger, U

    2007-01-01

    We report on the scaling of basic hadronic observables in lattice QCD with N_f=2 maximally twisted Wilson dynamical quarks. We give preliminary results for some of the Gasser-Leutwyler low energy constants, the chiral condensate and the average mass of u and d quarks.

  13. Top quark measurements at ATLAS

    CERN Document Server

    Grancagnolo, Sergio; The ATLAS collaboration

    2017-01-01

    The top quark is the heaviest known fundamental particle. As it is the only quark that decays before it hadronizes, this gives us the unique opportunity to probe the properties of bare quarks at the Large Hadron Collider. This talk will present highlights of a few recent precision measurements by the ATLAS Collaboration of the top quark using 13 TeV and 8 TeV collision data: top-quark pair and single top production cross sections including differential distributions will be presented alongside top quark properties measurements. These measurements, including results using boosted top quarks, probe our understanding of top quark production in the TeV regime. Measurements of the top quark mass and searches for rare top quark decays are also presented.

  14. Constituent quark and baryon spectra from a modified Perturbative QCD

    CERN Document Server

    Cabo-Montes de Oca, Alejandro; Cabo Montes de Oca, Alejandro; Madrazo, Marcos Rigol

    2000-01-01

    A recently proposed perturbative expansion for QCD incorporating gluon condensation is employed to evaluate the quark and gluon self-energy corrections in the simplest approximations. The results predict mass values of the order of 1/3 of the nucleon mass for the light quarks u,d and s and a monotonously growing variation with the current mass values. The mass spectrum of the ground states within the various groups of baryonic resonances and a class of vector meson ones is well predicted by the simple addition of the calculated constituent quark masses. In connection with the self-energy, it follows that the gluonic mass shell becomes tachyonic in the considered approximation. In order to obtain the above mentioned results was evaluated as a function of the condensate paramater up to order g^2 and then this parameter fixed to give the accepted numerical value of . The discussion leads us to conjecture that the procedure, after also introducing quark condensates in the same token as the gluonic ones, could a...

  15. Chemical Potential Dependence of the Dressed-Quark Propagator from an Effective Quark-Quark Interaction

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; PING Jia-Lun; SUN Wei-Min; CHANG Chao-Hsi; WANG Fan

    2002-01-01

    We exhibit a method for obtaining the low chemical potential dependence of the dressed quark propagatorfrom an effective quark-quark interaction model. Within this approach we explore the chemical potential dependenceof the dressed-quark propagator, which provides a means of determining the behavior of the chiral and deconfinementorder parameters. A comparison with the results of previous researches is given.

  16. Condensates in Quantum Chromodynamics and the Cosmological Constant

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; Shrock, Robert

    2009-05-08

    Casher and Susskind have noted that in the light-front description, spontaneous chiral symmetry breaking in quantum chromodynamics (QCD) is a property of hadronic wavefunctions and not of the vacuum. Here we show from several physical perspectives that, because of color confinement, quark and gluon QCD condensates are associated with the internal dynamics of hadrons. We discuss condensates using condensed matter analogues, the AdS/CFT correspondence, and the Bethe-Salpeter/Dyson-Schwinger approach for bound states. Our analysis is in agreement with the Casher and Susskind model and the explicit demonstration of 'in-hadron' condensates by Roberts et al., using the Bethe-Salpeter/Dyson-Schwinger formalism for QCD bound states. These results imply that QCD condensates give zero contribution to the cosmological constant, since all of the gravitational effects of the in-hadron condensates are already included in the normal contribution from hadron masses.

  17. Top quark physics: Overview

    Energy Technology Data Exchange (ETDEWEB)

    Parke, S.

    1998-01-01

    In this presentation I will primarily focus on top quark physics but I will include a discussion of the W-boson mass and the possibility of discovering a light Higgs boson via associated production at the Tevatron.

  18. Quarks in finite nuclei

    CERN Document Server

    Guichon, P A M; Thomas, A W

    1996-01-01

    We describe the development of a theoretical description of the structure of finite nuclei based on a relativistic quark model of the structure of the bound nucleons which interact through the (self-consistent) exchange of scalar and vector mesons.

  19. Hermitian quark matrices

    Indian Academy of Sciences (India)

    Narendra Singh

    2003-01-01

    Assuming a relation between the quark mass matrices of the two sectors a unique solution can be obtained for the CKM flavor mixing matrix. A numerical example is worked out which is in excellent agreement with experimental data.

  20. Do Quarks Propagate?

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Taylor, John C.

    1984-01-01

    Processes with coloured particles in the initial state are generally infrared divergent. We investigate the effect of this on processes with colourless particles in the initial state, when the amplitude is near an intermediate quark pole. The result is a characteristic logarithmic depedence...... on the 'binding energy'(even though spectator interactions are taken into account), and the result is gauge-invariant. Summed to all orders the logarithms could perhaps suppress the quark pole....

  1. Chiral symmetry breaking as open string tachyon condensation

    CERN Document Server

    Casero, R; Paredes, A; Casero, Roberto; Kiritsis, Elias; Paredes, Angel

    2007-01-01

    We consider a general framework to study holographically the dynamics of fundamental quarks in a confining gauge theory. Flavors are introduced by placing a set of (coincident) branes and antibranes on a background dual to a confining color theory. The spectrum contains an open string tachyon and its condensation describes the U(N_f)_L x U(N_f)_R -> U(N_f)_V symmetry breaking. By studying worldvolume gauge transformations of the flavor brane action, we obtain the QCD global anomalies and an IR condition that allows to fix the quark condensate in terms of the quark mass. We find the expected N_f^2 Goldstone bosons (for m_q=0), the Gell-Mann-Oakes-Renner relation (for m_q small) and the \\eta' mass. Remarkably, the linear confinement behavior for the masses of highly excited spin-1 mesons, m_n^2 ~ n is naturally reproduced.

  2. Condensation heat transfer

    Science.gov (United States)

    Rose, J. W.

    The paper gives a brief description of some of the better understood aspects of condensation heat transfer and includes discussion of the liquid-vapour interface, natural and forced convection laminar film condensation and dropwise condensation.

  3. Quark-cluster Stars: hints from the surface

    CERN Document Server

    Dai, Shi

    2012-01-01

    The matter inside pulsar-like compact stars could be in a quark-cluster phase since in cold dense matter at a few nuclear densities (2 to 10 times), quarks could be coupled still very strongly and condensate in position space to form quark clusters. Quark-cluster stars are chromatically confined and could initially be bare, therefore the surface properties of quark-cluster stars would be quite different from that of conventional neutron stars. Some facts indicate that a bare and self-confined surface of pulsar-like compact stars might be necessary in order to naturally understand different observational manifestations. On one hand, as for explaining the drifting sub-pulse phenomena, the binding energy of particles on pulsar surface should be high enough to produce vacuum gaps, which indicates that pulsar's surface might be strongly self-confined. On the other hand, a bare surface of quark-cluster star can overcome the baryon contamination problem of Gamma-ray burst as well as promote a successful core-collaps...

  4. Recursive fragmentation model with quark spin. Application to quark polarimetry

    CERN Document Server

    Artru, X

    2010-01-01

    An elementary recursive model accounting for the quark spin in the fragmentation of a quark into mesons is presented. The quark spin degree of freedom is represented by a two-components spinor. Spin one meson can be included. The model produces Collins effect and jet handedness. The influence of the initial quark polarisation decays exponentially with the rank of the meson, at dierent rates for longitudinal and transverse polarisations

  5. Bootstrapping quarks and gluons

    Energy Technology Data Exchange (ETDEWEB)

    Chew, G.F.

    1979-04-01

    Dual topological unitarization (DTU) - the approach to S-matrix causality and unitarity through combinatorial topology - is reviewed. Amplitudes associated with triangulated spheres are shown to constitute the core of particle physics. Each sphere is covered by triangulated disc faces corresponding to hadrons. The leading current candidate for the hadron-face triangulation pattern employs 3-triangle basic subdiscs whose orientations correspond to baryon number and topological color. Additional peripheral triangles lie along the hadron-face perimeter. Certain combinations of peripheral triangles with a basic-disc triangle can be identified as quarks, the flavor of a quark corresponding to the orientation of its edges that lie on the hadron-face perimeter. Both baryon number and flavor are additively conserved. Quark helicity, which can be associated with triangle-interior orientation, is not uniformly conserved and interacts with particle momentum, whereas flavor does not. Three different colors attach to the 3 quarks associated with a single basic subdisc, but there is no additive physical conservation law associated with color. There is interplay between color and quark helicity. In hadron faces with more than one basic subdisc, there may occur pairs of adjacent flavorless but colored triangles with net helicity +-1 that are identifiable as gluons. Broken symmetry is an automatic feature of the bootstrap. T, C and P symmetries, as well as up-down flavor symmetry, persist on all orientable surfaces.

  6. Decays of heavy quarks

    CERN Document Server

    Rizzo, T G

    1979-01-01

    The weak decay of heavy b and t quarks is discussed using the mixing angles obtained in Fritzsch's model (1978). The author finds that the decay b to c dominates over b to u for 7quark lifetime is approximately 1.6*10/sup -13/ sec. for m /sub t/ approximately=14 GeV. For t quarks of this mass he finds tau /sub t/quark cascade decay is found to be an insignificant source of multimuons in nu interactions and suitably small in nu interactions, consistent with the data of the CERN-Dortmund-Heidelberg-Saclay and Harvard-Pennsylvania-Wisconsin- Fermilab collaborations. Several branching ratios for exotic final states produced via b quarks in e/sup +/e/sup -/ annihilation are discussed. (23 refs).

  7. Hadronic and Quark-Gluon Excitations of Dense and Hot Matter

    CERN Document Server

    Renk, T; Weise, W

    2002-01-01

    We summarize recent developments in our understanding of low-mass quark-antiquark excitations in hadronic matter under various different conditions. This includes the thermodynamics of the chiral condensate, pions as Goldstone bosons in normal nuclear matter, and excursions into extreme territory of the QCD phase diagram: lepton pair production from a fireball expanding through the transition boundary between the quark-gluon and hadron pha ses of QCD.

  8. The Quark's Model and Confinement

    Science.gov (United States)

    Novozhilov, Yuri V.

    1977-01-01

    Quarks are elementary particles considered to be components of the proton, the neutron, and others. This article presents the quark model as a mathematical concept. Also discussed are gluons and bag models. A bibliography is included. (MA)

  9. The Quark's Model and Confinement

    Science.gov (United States)

    Novozhilov, Yuri V.

    1977-01-01

    Quarks are elementary particles considered to be components of the proton, the neutron, and others. This article presents the quark model as a mathematical concept. Also discussed are gluons and bag models. A bibliography is included. (MA)

  10. Quark structure of chiral solitons

    CERN Document Server

    Diakonov, D

    2004-01-01

    There is a prejudice that the chiral soliton model of baryons is something orthogonal to the good old constituent quark models. In fact, it is the opposite: the spontaneous chiral symmetry breaking in strong interactions explains the appearance of massive constituent quarks of small size thus justifying the constituent quark models, in the first place. Chiral symmetry ensures that constituent quarks interact very strongly with the pseudoscalar fields. The ``chiral soliton'' is another word for the chiral field binding constituent quarks. We show how the old SU(6) quark wave functions follow from the ``soliton'', however, with computable relativistic corrections and additional quark-antiquark pairs. We also find the 5-quark wave function of the exotic baryon Theta+.

  11. Top Quark Mass

    CERN Document Server

    Mulders, Martijn

    2016-01-01

    Ever since the discovery of the top quark at the Tevatron collider in 1995 the measurement of its mass has been a high priority. As one of the fundamental parameters of the Standard Theory of particle physics, the precise value of the top quark mass together with other inputs provides a test for the self-consistency of the theory, and has consequences for the stability of the Higgs field that permeates the Universe. In this review I will briefly summarize the experimental techniques used at the Tevatron and the LHC experiments throughout the years to measure the top quark mass with ever improving accuracy, and highlight the recent progress in combining all measurements in a single world average combination. As experimental measurements became more precise, the question of their theoretical interpretation has become important. The difficulty of relating the measured quantity to the fundamental top mass parameter has inspired alternative measurement methods that extract the top mass in complementary ways. I wil...

  12. Collective excitations, instabilities, and ground state in dense quark matter

    CERN Document Server

    Gorbar, E V; Miransky, V A; Shovkovy, I A; Hashimoto, Michio

    2006-01-01

    We study the spectrum of light plasmons in the (gapped and gapless) two-flavor color superconducting phases and its connection with the chromomagnetic instabilities and the structure of the ground state. It is revealed that the chromomagnetic instabilities in the 4-7th and 8th gluonic channels correspond to two very different plasmon spectra. These spectra lead us to the unequivocal conclusion about the existence of gluonic condensates (some of which can be spatially inhomogeneous) in the ground state. We also argue that spatially inhomogeneous gluonic condensates should exist in the three-flavor quark matter with the values of the mass of strange quark corresponding to the gapless color-flavor locked state.

  13. The Instanton-Dyon Liquid Model V: Twisted Light Quarks

    CERN Document Server

    Liu, Yizhuang; Zahed, Ismail

    2016-01-01

    We discuss an extension of the instanton-dyon liquid model that includes twisted light quarks in the fundamental representation with explicit $Z_{N_c}$ symmetry for the case with equal number of colors $N_c$ and flavors $N_f$. We map the model on a 3-dimensional quantum effective theory, and analyze it in the mean-field approximation. The effective potential and the vacuum chiral condensates are made explicit for $N_f=N_c=2, 3$. The low temperature phase is center symmetric but breaks spontaneously flavor symmetry with $N_f-1$ massless pions. The high temperature phase breaks center symmetry but supports finite and unequal quark condensates.

  14. Meson turbulence at quark deconfinement from AdS/CFT

    CERN Document Server

    Hashimoto, Koji; Murata, Keiju; Oka, Takashi

    2014-01-01

    Based on the QCD string picture at confining phase, we conjecture that the deconfinement transition always accompanies a condensation of higher meson resonances with a power-law behavior, "meson turbulence". We employ the AdS/CFT correspondence to calculate the meson turbulence for $\\mathcal{N}=2$ supersymmetric QCD at large $N_c$ and at strong coupling limit, and find that the energy distribution to each meson level $n$ scales as $n^\\alpha$ with the universal scaling $\\alpha=-5$. The universality is checked for various ways to attain the quark deconfinement: a static electric field below/around the critical value, a time-dependent electric field quench, and a time-dependent quark mass quench, all result in the turbulent meson condensation with the universal power $\\alpha=-5$ around the deconfinement.

  15. Chiral quark model

    Indian Academy of Sciences (India)

    H Weigel

    2003-11-01

    In this talk I review studies of hadron properties in bosonized chiral quark models for the quark flavor dynamics. Mesons are constructed from Bethe–Salpeter equations and baryons emerge as chiral solitons. Such models require regularization and I show that the two-fold Pauli–Villars regularization scheme not only fully regularizes the effective action but also leads the scaling laws for structure functions. For the nucleon structure functions the present approach serves to determine the regularization prescription for structure functions whose leading moments are not given by matrix elements of local operators. Some numerical results are presented for the spin structure functions.

  16. Quark Orbital Angular Momentum

    Directory of Open Access Journals (Sweden)

    Burkardt Matthias

    2015-01-01

    Full Text Available Definitions of orbital angular momentum based on Wigner distributions are used as a framework to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. We find that the difference between these two definitions can be interpreted as the change in the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism responsible for that change is similar to the mechanism that causes transverse single-spin asymmetries in semi-inclusive deep-inelastic scattering.

  17. Quark Helicity and Transversity Distributions

    CERN Document Server

    Hwang, Dae Sung

    2016-01-01

    The quark transversity distribution inside nucleon is less understood than the quark unpolarized and helicity distributions inside nucleon. In particular, it is important to know clearly why the quark helicity and transversity distributions are different. We investigate the origin of their discrepancy.

  18. Color confinement multi quark resonance

    Energy Technology Data Exchange (ETDEWEB)

    Wang Fan [Department of Physics, Nanjing University, Joint Center for Particle Nuclear Physics and Cosmology, Nanjing University and Pupil Mountain Observatory, Nanjing, 210008 (China); Ping, J.L. [Department of Physics, Nanjing Normal University, Nanjing, 210097 (China); Pang, H.R. [Department of Physics, Southeast University, Nanjing, 210008 (China); Chen, L.Z. [Department of Physics, Nanjing University, Joint Center for Particle Nuclear Physics and Cosmology, Nanjing University and Pupil Mountain Observatory, Nanjing, 210008 (China)

    2007-06-15

    A new kind microscopic resonance, the color confinement multi quark resonance is proposed and studied. The quark delocalization color screening model is compared to one of the chiral quark model, the Salamanca model, and a new mechanism of the intermediate range NN interaction, the mutual distortion of interacting nucleons, is checked to be similar to the {sigma} meson exchange.

  19. Spontaneous magnetization of quark matter in the inhomogeneous chiral phase

    CERN Document Server

    Yoshiike, Ryo; Tatsumi, Tositaka

    2015-01-01

    Considering the density wave of scalar and pseudoscalar condensates, we study the response of quark matter to a weak external magnetic field. In an external magnetic field, the energy spectrum of the lowest Landau level becomes asymmetric about zero, which is closely related to chiral anomaly, and gives rise to the spontaneous magnetization. This mechanism may be one of candidates for the origin of the strong magnetic field in pulsars and/or magnetars.

  20. Quark Number Susceptibilities with Domain-Wall Fermions

    CERN Document Server

    Hegde, Prasad; Schmidt, Christian

    2008-01-01

    We present results from calculations of different quark number and hadronic susceptibilities on 2+1-flavor dynamical domain wall ensembles. We find that the iso-spin and electric charge susceptibilities are especially well suited to determine the transition temperature, as these quantities show only small statistical errors. Moreover, the transition values of the coupling obtained from iso-spin and electrical charge susceptibilities are in good agreement with the one obtained from the chiral condensate.

  1. Spontaneous magnetization of quark matter in the inhomogeneous chiral phase

    Directory of Open Access Journals (Sweden)

    R. Yoshiike

    2015-12-01

    Full Text Available Considering the density wave of scalar and pseudoscalar condensates, we study the response of quark matter to a weak external magnetic field. In an external magnetic field, the energy spectrum of the lowest Landau level becomes asymmetric about zero, which is closely related to chiral anomaly, and gives rise to the spontaneous magnetization. This mechanism may be one of candidates for the origin of the strong magnetic field in pulsars and/or magnetars.

  2. Initial and Final State Interaction Effects in Small-x Quark Distributions

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Bo-Wen; Yuan, Feng

    2010-08-30

    We study the initial and final state interaction effects in the transverse momentum dependent parton distributions in the small-x saturation region. In particular, we discuss the quark distributions in the semi-inclusive deep inelastic scattering, Drell-Yan lepton pair production and dijet-correlation processes in pA collisions. We calculate the quark distributions in the scalar-QED model and then extend to the color glass condensate formalism in QCD. The quark distributions are found universal between the DIS and Drell-Yan processes. On the other hand, the quark distribution from the qq'-->qq' channel contribution to the dijet-correlation process is not universal. However, we find that it can be related to the quark distribution in DIS process by a convolution with the normalized unintegrated gluon distribution in the CGC formalism in the large Nc limit.

  3. Top quark properties in ATLAS

    CERN Document Server

    Demilly, A; The ATLAS collaboration

    2014-01-01

    Properties of the top quark are measured with the ATLAS detector using LHC proton-proton collisions data. Measurements of the top-quark mass and polarisation, as well as of the polarization of W bosons in top quark decays to probe the Wtb-vertex are presented. In addition, measurements of the spin correlation between top and anti-top quarks as well as of the top- quark charge asymmetry, which constitute important tests of QCD and are sensitive to new physics, are discussed.

  4. Top quark mass measurement

    Energy Technology Data Exchange (ETDEWEB)

    Maki, Tuula [Univ. of Helsinki (Finland)

    2008-03-18

    The top quark is the heaviest elementary particle. Its mass is one of the fundamental parameters of the standard model of particle physics, and an important input to precision electroweak tests. This thesis describes three measurements of the top-quark mass in the dilepton decay channel. The dilepton events have two neutrinos in the final state; neutrinos are weakly interacting particles that cannot be detected with a multipurpose experiment. Therefore, the signal of dilepton events consists of a large amount of missing energy and momentum carried off by the neutrinos. The top-quark mass is reconstructed for each event by assuming an additional constraint from a top mass independent distribution. Template distributions are constructed from simulated samples of signal and background events, and parametrized to form continuous probability density functions. The final top-quark mass is derived using a likelihood fit to compare the reconstructed top mass distribution from data to the parametrized templates. One of the analyses uses a novel technique to add top mass information from the observed number of events by including a cross-section-constraint in the likelihood function. All measurements use data samples collected by the CDF II detector.

  5. Top Quark Mass

    Science.gov (United States)

    Mulders, Martijn

    2016-10-01

    Ever since the discovery of the top quark at the Tevatron collider in 1995 the measurement of its mass has been a high priority. As one of the fundamental parameters of the Standard Theory of particle physics, the precise value of the top quark mass together with other inputs provides a test for the self-consistency of the theory, and has consequences for the stability of the Higgs field that permeates the Universe. In this review I will briefly summarize the experimental techniques used at the Tevatron and the LHC experiments throughout the years to measure the top quark mass with ever improving accuracy, and highlight the recent progress in combining all measurements in a single world average combination. As experimental measurements became more precise, the question of their theoretical interpretation has become important. The difficulty of relating the measured quantity to the fundamental top mass parameter has inspired alternative measurement methods that extract the top mass in complementary ways. I will discuss the status of those techniques and their results, and present a brief outlook of further improvements in the experimental determination of the top quark mass to be expected at the LHC and beyond.

  6. Quark gluon plasma

    Indian Academy of Sciences (India)

    C P Singh

    2000-04-01

    Recent trends in the research of quark gluon plasma (QGP) are surveyed and the current experimental and theoretical status regarding the properties and signals of QGP is reported. We hope that the experiments commencing at relativistic heavy-ion collider (RHIC) in 2000 will provide a glimpse of the QGP formation.

  7. Quark-resonance model

    NARCIS (Netherlands)

    Pallante, E.; Petronzio, R.

    1995-01-01

    We construct an effective Lagrangian for low energy hadronic interactions through an infinite expansion in inverse powers of the low energy cutoff Λχ of all possible chiral invariant non-renormalizable interactions between quarks and mesons degrees of freedom arising from the bosonization of a gen

  8. Non-leptonic decays in an extended chiral quark model

    CERN Document Server

    Eeg, J O

    2012-01-01

    We consider the color suppressed (nonfactorizable) amplitude for the decay mode $\\bar{B_{d}^0} \\rightarrow \\pi^0 \\pi^{0} $. We treat the $b$-quark in the heavy quark limit and the energetic light ($u,d,s$) quarks within a variant of Large Energy Effective Theory combined with an extension of chiral quark models. Our calculated amplitude for $\\bar{B_{d}^0} \\rightarrow \\pi^0 \\pi^{0} $ is suppressed by a factor of order $\\Lambda_{QCD}/m_b$ with respect to the factorized amplitude, as it should according to QCD-factorization. Further, for reasonable values of the (model dependent) gluon condensate and the constituent quark mass, the calculated nonfactorizable amplitude for $\\bar{B_{d}^0} \\rightarrow \\pi^0 \\pi^{0} $ can easily accomodate the experimental value. Unfortunately, the color suppressed amplitude is very sensitive to the values of these model dependent parameters. Therefore fine-tuning is necessary in order to obtain an amplitude compatible with the experimental result for $\\bar{B_{d}^0} \\rightarrow \\pi^...

  9. Strange quark matter and quark stars with the Dyson-Schwinger quark model

    Science.gov (United States)

    Chen, H.; Wei, J.-B.; Schulze, H.-J.

    2016-09-01

    We calculate the equation of state of strange quark matter and the interior structure of strange quark stars in a Dyson-Schwinger quark model within rainbow or Ball-Chiu vertex approximation. We emphasize constraints on the parameter space of the model due to stability conditions of ordinary nuclear matter. Respecting these constraints, we find that the maximum mass of strange quark stars is about 1.9 solar masses, and typical radii are 9-11km. We obtain an energy release as large as 3.6 × 10^{53} erg from conversion of neutron stars into strange quark stars.

  10. Strange quark matter and quark stars with the Dyson-Schwinger quark model

    CERN Document Server

    Chen, H; Schulze, H -J

    2016-01-01

    We calculate the equation of state of strange quark matter and the interior structure of strange quark stars in a Dyson-Schwinger quark model within rainbow or Ball-Chiu vertex approximation. We emphasize constraints on the parameter space of the model due to stability conditions of ordinary nuclear matter. Respecting these constraints, we find that the maximum mass of strange quark stars is about 1.9 solar masses, and typical radii are 9--11 km. We obtain an energy release as large as $3.6 \\times 10^{53}\\,\\text{erg}$ from conversion of neutron stars into strange quark stars.

  11. Strange quark matter and quark stars with the Dyson-Schwinger quark model

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Wei, J.B. [China University of Geosciences, School of Mathematics and Physics, Wuhan (China); Schulze, H.J. [Universita di Catania, Dipartimento di Fisica, Catania (Italy); INFN, Sezione di Catania (Italy)

    2016-09-15

    We calculate the equation of state of strange quark matter and the interior structure of strange quark stars in a Dyson-Schwinger quark model within rainbow or Ball-Chiu vertex approximation. We emphasize constraints on the parameter space of the model due to stability conditions of ordinary nuclear matter. Respecting these constraints, we find that the maximum mass of strange quark stars is about 1.9 solar masses, and typical radii are 9-11 km. We obtain an energy release as large as 3.6 x 10{sup 53} erg from conversion of neutron stars into strange quark stars. (orig.)

  12. SPECTRAL PROPERTIES OF QUARKS IN THE QUARK-GLUON PLASMA.

    Energy Technology Data Exchange (ETDEWEB)

    KARSCH,F.; KITAZAWA, M.

    2007-07-30

    We analyze the spectral properties of the quark propagator above the critical temperature for the deconfinement phase transition in quenched lattice QCD using clover improved Wilson fermions. The bare quark mass dependence of the quark spectral function is analyzed by varying the hopping parameter {kappa} in Landau gauge. We assume a two-pole structure for the quark spectral function, which is numerically found to work quite well for any value of {kappa}. It is shown that in the chiral limit the quark spectral function has two collective modes that correspond to the normal and plasmino excitations, while it is dominated by a single-pole structure when the bare quark mass becomes large.

  13. Spectral Properties of Quarks in the Quark-Gluon Plasma

    CERN Document Server

    Karsch, F

    2007-01-01

    We analyze the spectral properties of the quark propagator above the critical temperature for the deconfinement phase transition in quenched lattice QCD using clover improved Wilson fermions. The bare quark mass dependence of the quark spectral function is analyzed by varying the hopping parameter \\kappa in Landau gauge. We assume a two-pole structure for the quark spectral function, which is numerically found to work quite well for any value of \\kappa. It is shown that in the chiral limit the quark spectral function has two collective modes that correspond to the normal and plasmino excitations, while it is dominated by a single-pole structure when the bare quark mass becomes large.

  14. Parametrization of Fully Dressed Quark Propagator

    Institute of Scientific and Technical Information of China (English)

    MA Wei-Xing; ZHU Ji-Zhen; ZHOU Li-Juan; SHEN Peng-Nian; HU Zhao-Hui

    2005-01-01

    Based on an extensive study of the Dyson-Schwinger equations for a fully dressed quark propagator in the "rainbow" approximation, a parametrized form of the quark propagator is suggested. The corresponding quark selfform of the quark propagator proposed in this work describes a confining quark propagation, and is quite convenient to be used in any numerical calculations.

  15. The Multimedia Project Quarked!

    CERN Document Server

    Bean, Alice

    2011-01-01

    Can exposure to fundamental ideas about the nature of matter help motivate children in math and science and support the development of their understanding of these ideas later? Physicists, designers, and museum educators at the University of Kansas created the Quarked!(tm) Adventures in the subatomic Universe project to provide an opportunity for youth to explore the subatomic world in a fun and user friendly way. The project components include a website (located at http://www.quarked.org) and hands-on education programs. These are described and assessment results are presented. Questions addressed include the following. Can you engage elementary and middle school aged children with concepts related to particle physics? Can young children make sense of something they can't directly see? Do teachers think the material is relevant to their students?

  16. The discovery of quarks.

    Science.gov (United States)

    Riordan, M

    1992-05-29

    Quarks are widely recognized today as being among the elementary particles of which matter is composed. The key evidence for their existence came from a series of inelastic electron-nucleon scattering experiments conducted between 1967 and 1973 at the Stanford Linear Accelerator Center. Other theoretical and experimental advances of the 1970s confirmed this discovery, leading to the present standard model of elementary particle physics.

  17. Melting Hadrons, Boiling Quarks

    OpenAIRE

    Rafelski, Johann

    2015-01-01

    In the context of the Hagedorn temperature half-centenary I describe our understanding of the hot phases of hadronic matter both below and above the Hagedorn temperature. The first part of the review addresses many frequently posed questions about properties of hadronic matter in different phases, phase transition and the exploration of quark-gluon plasma (QGP). The historical context of the discovery of QGP is shown and the role of strangeness and strange antibaryon signature of QGP illustra...

  18. What is a Quark?

    Science.gov (United States)

    Kane, Gordon L.; Perry, Malcolm J.

    2015-03-01

    We are used to thinking of quarks as fundamental particles in the same way we think of the electron, or gauge bosons, neutrinos, leptons. In strong theory, these objects are unified with gravitation and the physics of spacetime into what is hoped to be an ultimate theory, string/M theory. The string/M theory paradigm completely changes the way we think of the socalled elementary particles in quantum field theory.

  19. The unquenched quark model

    CERN Document Server

    Santopinto, E

    2015-01-01

    In this contribution, we briefly discuss the results for charmonium and bottomonium spectra with self-energy corrections in the unquenched quark model, due to the coupling to the meson-meson continuum. The UQM formalism can be extended to include also the effects of hybrid mesons, i.e. hybrid loops. Finally, we discuss the results of a calculation of hybrid mesons spectrum in Coulomb Gauge QCD.

  20. Top quark pair production and top quark properties at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Chang-Seong [INFN, Pisa

    2016-06-02

    We present the most recent measurements of top quark pairs production and top quark properties in proton-antiproton collisions with center-of-mass energy of 1.96 TeV using CDF II detector at the Tevatron. The combination of top pair production cross section measurements and the direct measurement of top quark width are reported. The test of Standard Model predictions for top quark decaying into $b$-quarks, performed by measuring the ratio $R$ between the top quark branching fraction to $b$-quark and the branching fraction to any type of down quark is shown. The extraction of the CKM matrix element $|V_{tb}|$ from the ratio $R$ is discussed. We also present the latest measurements on the forward-backward asymmetry ($A_{FB}$) in top anti-top quark production. With the full CDF Run II data set, the measurements are performed in top anti-top decaying to final states that contain one or two charged leptons (electrons or muons). In addition, we combine the results of the leptonic forward-backward asymmetry in $t\\bar t$ system between the two final states. All the results show deviations from the next-to-leading order (NLO) standard model (SM) calculation.

  1. Improved light quark masses from pseudoscalar sum rules

    Directory of Open Access Journals (Sweden)

    Stephan Narison

    2014-11-01

    Full Text Available Using ratios of the inverse Laplace transform sum rules within stability criteria for the subtraction point μ in addition to the ones of the usual τ spectral sum rule variable and continuum threshold tc, we extract the π(1300 and K(1460 decay constants to order αs4 of perturbative QCD by including power corrections up to dimension-six condensates, tachyonic gluon mass for an estimate of large order PT terms, instanton and finite width corrections. Using these inputs with enlarged generous errors, we extract, in a model-independent and conservative ways, the sum of the scale-independent renormalization group invariant (RGI quark masses (mˆu+mˆq:q≡d,s and the corresponding running masses (m¯u+m¯q evaluated at 2 GeV. By giving the value of the ratio mu/md, we deduce the running quark masses m¯u,d,s and condensate 〈u¯u¯〉 and the scale-independent mass ratios: 2ms/(mu+md and ms/md. Using the positivity of the QCD continuum contribution to the spectral function, we also deduce, from the inverse Laplace transform sum rules, for the first time to order αs4, new lower bounds on the RGI masses which are translated into the running masses at 2 GeV and into upper bounds on the running quark condensate 〈u¯u¯〉. Our results summarized in Table 3 and compared with our previous results and with recent lattice averages suggest that precise phenomenological determinations of the sum of light quark masses require improved experimental measurements of the π(1.3 and K(1.46 hadronic widths and/or decay constants which are the dominant sources of errors in the analysis.

  2. Quark gluon plasma

    CERN Document Server

    Nayak, Tapan; Sarkar, Sourav

    2014-01-01

    At extremely high temperatures and densities, protons and neutrons may dissolve into a "soup" of quarks and gluons, called the Quark-Gluon Plasma (QGP). For a few microseconds, shortly after the Big Bang, the Universe was filled with the QGP matter. The search and study of Quark-Gluon Plasma (QGP) is one of the most fundamental research topics of our times. The QGP matter has been probed by colliding heavy ions at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory, New York and the Large Hadron Collider at CERN, Geneva. By colliding heavy-ions at a speed close to that of light, scientists aim to obtain - albeit over a tiny volume of the size of a nucleus and for an infinitesimally short instant - a QGP state. This QGP state can be observed by dedicated experiments, as it reverts to hadronic matter through expansion and cooling. This volume presents some of the current theoretical and experimental understandings in the field of QGP.

  3. Validity of Parametrized Quark Propagator

    Institute of Scientific and Technical Information of China (English)

    ZHUJi-Zhen; ZHOULi-Juan; MAWei-Xing

    2005-01-01

    Based on an extensively study of the Dyson-Schwinger equations for a fully dressed quark propagator in the “rainbow”approximation, a parametrized fully dressed quark propagator is proposed in this paper. The parametrized propagator describes a confining quark propagator in hadron since it is analytic everywhere in complex p2-plane and has no Lemmann representation. The validity of the new propagator is discussed by comparing its predictions on selfenergy functions A/(p2), Bl(p2) and effective mass M$(p2) of quark with flavor f to their corresponding theoretical results produced by Dyson-Schwinger equations. Our comparison shows that the parametrized quark propagator is a good approximation to the fully dressed quark propagator given by the solutions of Dyson-Schwinger equations in the rainbow approximation and is convenient to use in any theoretical calculations.

  4. Validity of Parametrized Quark Propagator

    Institute of Scientific and Technical Information of China (English)

    ZHU Ji-Zhen; ZHOU Li-Juan; MA Wei-Xing

    2005-01-01

    Based on an extensively study of the Dyson-Schwinger equations for a fully dressed quark propagator in the "rainbow" approximation, a parametrized fully dressed quark propagator is proposed in this paper. The parametrized propagator describes a confining quark propagator in hadron since it is analytic everywhere in complex p2-plane and has no Lemmann representation. The validity of the new propagator is discussed by comparing its predictions on selfenergy functions Af(p2), Bf(p2) and effective mass Mf(p2) of quark with flavor f to their corresponding theoretical results produced by Dyson-Schwinger equations. Our comparison shows that the parametrized quark propagator is a good approximation to the fully dressed quark propagator given by the solutions of Dyson-Schwinger equations in the rainbow approximation and is convenient to use in any theoretical calculations.

  5. String worldsheet for accelerating quark

    Science.gov (United States)

    Hubeny, Veronika E.; Semenoff, Gordon W.

    2015-10-01

    We consider the AdS bulk dual to an external massive quark in SYM following an arbitrary trajectory on Minkowski background. While a purely outgoing boundary condition on the gluonic field allows one to express the corresponding string worldsheet in a closed form, the setup has curious consequences. In particular, we argue that any quark whose trajectory on flat spacetime approaches that of a light ray in the remote past (as happens e.g. in the case of uniform acceleration) must necessarily be accompanied by an anti-quark. This is puzzling from the field theory standpoint, since one would expect that a sole quark following any timelike trajectory should be allowed. We explain the resolution in terms of boundary and initial conditions. We analyze the configuration in global AdS, which naturally suggests a modification to the boundary conditions allowing for a single accelerated quark without accompanying anti-quark. We contrast this resolution with earlier proposals.

  6. Excitation rates of heavy quarks

    Energy Technology Data Exchange (ETDEWEB)

    Canal, C.A.G.; Santangelo, E.M.; Ducati, M.B.G.

    1985-06-01

    We obtain the production rates for c, b, and t quarks in deep-inelastic neutrino- (antineutrino-) nucleon interactions, in the standard six-quark model with left-handed couplings. The results are obtained with the most recent mixing parameters and we include a comparison between quark parametrizations. The excitations are calculated separately for each flavor, allowing the understanding of the role of threshold effects when considered through different rescaling variables.

  7. Quark matter or new particles?

    Science.gov (United States)

    Michel, F. Curtis

    1988-01-01

    It has been argued that compression of nuclear matter to somewhat higher densities may lead to the formation of stable quark matter. A plausible alternative, which leads to radically new astrophysical scenarios, is that the stability of quark matter simply represents the stability of new particles compounded of quarks. A specific example is the SU(3)-symmetric version of the alpha particle, composed of spin-zero pairs of each of the baryon octet (an 'octet' particle).

  8. Quark matter or new particles?

    Science.gov (United States)

    Michel, F. Curtis

    1988-01-01

    It has been argued that compression of nuclear matter to somewhat higher densities may lead to the formation of stable quark matter. A plausible alternative, which leads to radically new astrophysical scenarios, is that the stability of quark matter simply represents the stability of new particles compounded of quarks. A specific example is the SU(3)-symmetric version of the alpha particle, composed of spin-zero pairs of each of the baryon octet (an 'octet' particle).

  9. Static quark-antiquark potential

    Energy Technology Data Exchange (ETDEWEB)

    Deo, B.B.; Barik, B.K.

    1983-01-01

    A heavy-quark--antiquark potential is suggested which connects asymptotic freedom and quark confinement in a unified manner by formal methods of field theory using some plausible assumptions. The potential has only one additional adjustable parameter B which is proportional to (M/sub q//m/sub q/), where M/sub q/ and m/sub q/ are the constituent and current quark masses, respectively.

  10. Phenomenology of heavy quark systems

    Energy Technology Data Exchange (ETDEWEB)

    Gilman, F.J.

    1987-03-01

    The spectroscopy of heavy quark systems is examined with regards to spin independent and spin dependent potentials. It is shown that a qualitative picture exists of the spin-independent forces, and that a semi-quantitative understanding exists for the spin-dependent effects. A brief review is then given of the subject of the decays of hadrons containing heavy quarks, including weak decays at the quark level, and describing corrections to the spectator model. (LEW)

  11. Exotic Signals of Vectorlike Quarks

    Energy Technology Data Exchange (ETDEWEB)

    Dobrescu, Bogdan A. [Fermilab; Yu, Felix [U. Mainz, PRISMA

    2016-12-06

    Vectorlike fermions are an important target for hadron collider searches. We show that the vectorlike quarks may predominantly decay via higher-dimensional operators into a quark plus a couple of other Standard Model fermions. Pair production of vectorlike quarks of charge 2/3 at the LHC would then lead to a variety of possible final states, including $t\\bar t + 4\\tau$, $t\\bar b\

  12. Condensation in insulated homes

    Energy Technology Data Exchange (ETDEWEB)

    Wiley, R A

    1978-05-28

    A research proposal on condensation in insulated homes is presented. Information is provided on: justification for condensation control; previous work and present outlook (good vapor barrier, condensation and retrofit insulation, vapor barrier decreases condensation, brick-veneer walls, condensation in stress-skin panels, air-conditioned buildings, retrofitting for conservation, study on mobile homes, high indoor relative humidity, report on various homes); and procedure (after funding has been secured). Measures are briefly described on opening walls, testing measures, and retrofitting procedures. An extensive bibliography and additional informative citations are included. (MCW)

  13. PREFACE: Hot Quarks 2004

    Science.gov (United States)

    Antinori, Federico; Bass, Steffen A.; Bellwied, Rene; Ullrich, Thomas; Velkovska, Julia; Wiedemann, Urs

    2005-04-01

    Why another conference devoted to ultra-relativistic heavy-ion physics? As we looked around the landscape of the existing international conferences and workshops, we realized that there was not a single one tailored to the people who are most directly involved with the actual research work: students, post-docs, and junior faculty/research scientists. Of course there are schools, but that was not what we had in mind. We wanted a meeting where young researchers could come together to discuss in depth the physics that they are working on without any hindrance. The major conferences have very limited time for discussions which is often shared amongst the most established. This leaves little room for young people to ask their questions and to get the detailed feedback which they deserve and which satisfies their curiosity. A discussion-driven workshop, centering on those without whom there will be no future—that seemed like what was needed. And thus the Hot Quarks workshop was born. The aim of Hot Quarks was to enhance the direct exchange of scientific information among the younger members of the community, from both experiment and theory. Participation was by invitation only in order to emphasize the contributions from junior researchers. This approach makes the workshop unique among the many forums in the field. For young scientists it represented an opportunity for exposure that they would not have had in one of the major conferences. The hope is that this meeting has helped to stimulate the next generation of scientists in our field and, at the same time, strengthened their sense of community. It all came together from 18 24 July 2004, when the 77 participants met at The Inn at Snakedance in the Taos Ski Valley, New Mexico, USA, for the first Hot Quarks workshop. Photograph Participants gather in the sunshine at the foot of the Taos Ski Valley chairlift. By all accounts, Hot Quarks 2004 was a great success. Every participant had the opportunity to present her or

  14. Top Quark Current Experimental Status

    CERN Document Server

    Juste, A

    2006-01-01

    Ten years after its discovery at the Tevatron collider, we still know little about the top quark. Its large mass suggests it may play a key role in the mechanism of Electroweak Symmetry Breaking (EWSB), or open a window of sensitivity to new physics related to EWSB and preferentially coupled to it. To determine whether this is the case, precision measurements of top quark properties are necessary. The high statistics samples being collected by the Tevatron experiments during Run II start to incisively probe the top quark sector. This report summarizes the experimental status of the top quark, focusing in particular on the recent measurements from the Tevatron.

  15. Quark forces from hadronic spectroscopy.

    Science.gov (United States)

    Pirjol, Dan; Schat, Carlos

    2009-04-17

    We consider the implications of the most general two-body quark-quark interaction Hamiltonian for the spin-flavor structure of the negative parity L = 1 excited baryons. Assuming the most general two-body quark interaction Hamiltonian, we derive two correlations among the masses and mixing angles of these states, which constrain the mixing angles, and can be used to test for the presence of three-body quark interactions. We find that the pure gluon-exchange model is disfavored by data, independently of any assumptions about hadronic wave functions.

  16. Cold quark matter in compact stars

    Energy Technology Data Exchange (ETDEWEB)

    Franzon, B.; Fogaca, D. A.; Navarra, F. S. [Instituto de Fisica, Universidade de Sao Paulo Rua do Matao, Travessa R, 187, 05508-090 Sao Paulo, SP (Brazil); Horvath, J. E. [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao, 1226, 05508-090, Sao Paulo, SP (Brazil)

    2013-03-25

    We used an equation of state for the cold quark matter to the study of properties of quark stars. We also discuss the absolute stability of quark matter and compute the mass-radius relation for self-bound stars.

  17. Odderon in the Color Glass Condensate

    CERN Document Server

    Hatta, Y; Itakura, K; McLerran, L

    2005-01-01

    We discuss the definition and the energy evolution of scattering amplitudes with $C$-odd ("odderon") quantum numbers within the effective theory for the Color Glass Condensate (CGC) endowed with the functional, JIMWLK, evolution equation. We explicitly construct gauge-invariant amplitudes describing multiple odderon exchanges in the scattering between the CGC and two types of projectiles: a color--singlet quark--antiquark pair (or `color dipole') and a system of three quarks in a colorless state. We deduce the energy evolution of these amplitudes from the general JIMWLK equation, which for this purpose is recast in a more synthetic form, which is manifestly infrared finite. For the dipole odderon, we confirm and extend the non--linear evolution equations recently proposed by Kovchegov, Szymanowski and Wallon, which couple the evolution of the odderon to that of the pomeron, and predict the rapid suppression of the odderon exchanges in the saturation regime at high energy. For the 3--quark system, we focus on ...

  18. Inverse Magnetic Catalysis in hot quark matter within (P)NJL models

    CERN Document Server

    Ferreira, M; Providência, C; Lourenço, O; Frederico, T

    2015-01-01

    Apart from Magnetic Catalysis at low temperatures, recent LQCD studies have shown the opposite effect at temperatures near the transition region: instead of enhancing, the magnetic field suppresses the quark condensates (Inverse Magnetic Catalysis). In this paper, two approaches are discussed within NJL-type models with Polyakov Loop that reproduce both effects.

  19. Thermodynamics in 2+1 flavor QCD with improved Wilson quarks by the fixed scale approach

    CERN Document Server

    Umeda, T; Ejiri, S; Hatsuda, T; Kanaya, K; Maezawa, Y; Ohno, H

    2012-01-01

    We study thermodynamic properties of 2+1 flavor QCD with improved Wilson quarks coupled with the RG improved Iwasaki glue, using the fixed scale approach. We present the results for the equation of state, renormalized Polyakov loop, and chiral condensate.

  20. Chiral magnetic effect in condensed matter systems

    Science.gov (United States)

    Li, Qiang; Kharzeev, Dmitri E.

    2016-12-01

    The chiral magnetic effect (CME) is the generation of electrical current induced by chirality imbalance in the presence of magnetic field. It is a macroscopic manifestation of the quantum chiral anomaly [S. L. Adler. Axial-vector vertex in spinor electrodynamics. Physical Review, 177, 2426 (1969), J. S. Bell and R. Jackiw. A PCAC puzzle: π 0 γγin the σ-model. Il Nuovo Cimento A, 60, 47-61 (1969)] in systems possessing charged chiral fermions. In quark-gluon plasma containing nearly massless quarks, the chirality imbalance is sourced by the topological transitions. In condensed matter systems, the chiral quasiparticles emerge in gapless semiconductors with two energy bands having pointlike degeneracies opening the path to the study of chiral anomaly [H. B. Nielsen and M. Ninomiya. The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal. Physics Letters B, 130, 389-396 (1983)]. Recently, these novel materials - so-called Dirac and Weyl semimetals have been discovered experimentally, are suitable for the investigation of the CME in condensed matter experiments. Here we report on the first experimental observation of the CME in a 3D Dirac semimetal ZrTe5 [Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosić, A. V. Fedorov, R. D. Zhong, J. A. Schneeloch, G. D. Gu, and T. Valla. Chiral magnetic effect in ZrTe5. Nature Physics (2016) doi:10.1038/nphys3648].

  1. Chaos in Chiral Condensates in Gauge Theories

    Science.gov (United States)

    Hashimoto, Koji; Murata, Keiju; Yoshida, Kentaroh

    2016-12-01

    Assigning a chaos index for dynamics of generic quantum field theories is a challenging problem because the notion of a Lyapunov exponent, which is useful for singling out chaotic behavior, works only in classical systems. We address the issue by using the AdS /CFT correspondence, as the large Nc limit provides a classicalization (other than the standard ℏ→0 ) while keeping nontrivial quantum condensation. We demonstrate the chaos in the dynamics of quantum gauge theories: The time evolution of homogeneous quark condensates ⟨q ¯q ⟩ and ⟨q ¯γ5q ⟩ in an N =2 supersymmetric QCD with the S U (Nc) gauge group at large Nc and at a large 't Hooft coupling λ ≡NcgYM2 exhibits a positive Lyapunov exponent. The chaos dominates the phase space for energy density E ≳(6 ×1 02)×mq4(Nc/λ2), where mq is the quark mass. We evaluate the largest Lyapunov exponent as a function of (Nc,λ ,E ) and find that the N =2 supersymmetric QCD is more chaotic for smaller Nc.

  2. Spontaneous chiral-symmetry breaking of lattice QCD with massless dynamical quarks

    Institute of Scientific and Technical Information of China (English)

    LUO XiangQian

    2007-01-01

    One of the most challenging issues in QCD is the investigation of spontaneous chiral-symmetry breaking,which is characterized by the non-vanishing chiral condensate when the bare fermion mass is zero.In standard methods of the lattice gauge theory,one has to perform expensive simulations at multiple bare quark masses,and employ some modeled functions to extrapolate the data to the chiral limit.This paper applies the probability distribution function method to computing the chiral condensate in lattice QCD with massless dynamical quarks,without any ambiguous mass extrapolation.The results for staggered quarks indicate that this might be a promising and efficient method for investigating the spontaneous chiral-symmetry breaking in lattice QCD,which deserves further investigation.

  3. Spontaneous chiral-symmetry breaking of lattice QCD with massless dynamical quarks

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    One of the most challenging issues in QCD is the investigation of spontaneous chiral-symmetry breaking, which is characterized by the non-vanishing chiral condensate when the bare fermion mass is zero. In standard methods of the lattice gauge theory, one has to perform expensive simulations at multiple bare quark masses, and employ some modeled functions to extrapolate the data to the chiral limit. This paper applies the probability distribution function method to computing the chiral condensate in lattice QCD with massless dynamical quarks, without any ambiguous mass extrapolation. The results for staggered quarks indicate that this might be a promising and efficient method for investigating the spontaneous chiral-symmetry breaking in lattice QCD, which deserves further investigation.

  4. QCD sum rules for quark-gluon three-body components in the B meson

    CERN Document Server

    Nishikawa, Tetsuo

    2011-01-01

    We discuss the QCD sum rule calculation of the heavy-quark effective theory parameters, $\\lambda_E$ and $\\lambda_H$, which correspond to matrix elements representing quark-gluon three-body components in the $B$-meson wavefunction. We derive the sum rules for $\\lambda_{E,H}$ calculating the new higher-order QCD corrections, i.e., the order $\\alpha_s$ radiative corrections to the Wilson coefficients associated with the dimension-5 quark-gluon mixed condensates, and the power corrections due to the dimension-6 vacuum condensates. We find that the new radiative corrections significantly improve the stability of the corresponding Borel sum rules and lead to the reduction of the values of $\\lambda_{E,H}$. We also discuss the renormalization-group improvement for the sum rules and present update on the values of $\\lambda_{E,H}$.

  5. The Discovery of the Top Quark

    Science.gov (United States)

    Sinervo, P.K.

    1995-12-01

    The top quark and the Higgs boson are the heaviest elementary particles predicted by the standard model. The four lightest quark flavours, the up, down, strange and charm quarks, were well-established by the mid-1970's. The discovery in 1977 of the {Tau} resonances, a new family of massive hadrons, required the introduction of the fifth quark flavour. Experimental and theoretical studies have indicated that this quark also has a heavier partner, the top quark.

  6. Quark and Gluon Relaxation in Quark-Gluon Plasmas

    Science.gov (United States)

    Heiselberg, H.; Pethick, C. J.

    1993-01-01

    The quasiparticle decay rates for quarks and gluons in quark-gluon plasmas are calculated by solving the kinetic equation. Introducing an infrared cutoff to allow for nonperturbative effects, we evaluate the quasiparticle lifetime at momenta greater than the inverse Debye screening length to leading order in the coupling constant.

  7. Quark and Gluon Relaxation in Quark-Gluon Plasmas

    Science.gov (United States)

    Heiselberg, H.; Pethick, C. J.

    1993-01-01

    The quasiparticle decay rates for quarks and gluons in quark-gluon plasmas are calculated by solving the kinetic equation. Introducing an infrared cutoff to allow for nonperturbative effects, we evaluate the quasiparticle lifetime at momenta greater than the inverse Debye screening length to leading order in the coupling constant.

  8. Gluon, Quark and Hadron Masses from a Modified Perturbative QCD

    CERN Document Server

    Rigol, M

    2000-01-01

    The development of a Modified Perturbation Theory for QCD, introduced in previous works, is continued. The gluon propagator is modified as consequence of a soft gluon pairs condensate in the vacuum. The modified Feynman rules for $\\alpha=1$ are shown, and some physical magnitudes calculated with them. The mean value of $G^{2}$, gluon masses and the effective potential are calculated up to the $g^2$ order, improving previous calculations. In connection with the gluon self-energy it follows that the gluonic mass shell becomes tachyonic in the considered approximation. The constituent quarks masses, produced by the influence of the condensate, are also calculated. Results of the order of 1/3 of the nucleon mass, are obtained for the constituent masses of the up and down quarks. In addition, the predicted flavour dependence of the calculated quarks masses turns out to be the appropriate to reproduce the spectrum of the ground states within the various groups of hadronic resonances, through the simple addition of ...

  9. Cool Quark Matter.

    Science.gov (United States)

    Kurkela, Aleksi; Vuorinen, Aleksi

    2016-07-22

    We generalize the state-of-the-art perturbative equation of state of cold quark matter to nonzero temperatures, needed in the description of neutron star mergers and core collapse processes. The new result is accurate to O(g^{5}) in the gauge coupling, and is based on a novel framework for dealing with the infrared sensitive soft field modes of the theory. The zero Matsubara mode sector is treated via a dimensionally reduced effective theory, while the soft nonzero modes are resummed using the hard thermal loop approximation. This combination of known effective descriptions offers unprecedented access to small but nonzero temperatures, both in and out of beta equilibrium.

  10. Cool quark matter

    CERN Document Server

    Kurkela, Aleksi

    2016-01-01

    We generalize the state-of-the-art perturbative Equation of State of cold quark matter to nonzero temperatures, needed in the description of neutron star mergers and core collapse processes. The new result is accurate to order g^5 in the gauge coupling, and is based on a novel framework for dealing with the infrared sensitive soft field modes of the theory. The zero Matsubara mode sector is treated using a dimensionally reduced effective theory, while the soft non-zero modes are resummed using the Hard Thermal Loop approximation. This combination of known effective descriptions offers unprecedented access to small but nonzero temperatures, both in and out of beta equilibrium.

  11. From QCD to a dynamical quark model: construction and some meson spectroscopy

    CERN Document Server

    Dudal, D; Palhares, L F; Sorella, S P

    2013-01-01

    We introduce an effective quark model that is in principle dynamically derivable from the QCD action. An important feature is the incorporation of spontaneous chiral symmetry breaking in a renormalizable fashion. The quark propagator in the condensed vacuum exhibits complex conjugate poles, indicative of an unphysical spectral form, i.e. confined quarks. Moreover, the ensuing mass function can be fitted well to existing lattice data. To validate the physical nature of the new model, we identify not only a massless pseudoscalar (i.e. a pion) in the chiral limit, but we also present reasonable estimates for the rho meson mass and decay constant, employing a contact point interaction and a large N argument to simplify the diagrammatic spectral analysis. We stress that we do not use any experimental input to obtain our numbers, but only rely on our model and lattice quark data.

  12. Properties of the Top Quark

    Energy Technology Data Exchange (ETDEWEB)

    Déliot, Frédéric [IRFU, Saclay; Hadley, Nicholas [Maryland U., College Park; Parke, Stephen [Fermilab; Schwarz, Tom [Michigan U.

    2014-10-01

    The top quark is the heaviest known elementary particle, and it is often seen as a window to search for new physics processes in particle physics. A large program to study the top-quark properties has been performed both at the Tevatron and LHC colliders by the D0, CDF, ATLAS and CMS experiments. The most recent results are discussed in this article.

  13. Heavy quark spectroscopy at LHCb

    CERN Document Server

    INSPIRE-00165164

    2015-01-01

    The analysis of $3.0 fb^{-1}$ of proton-proton collisions collected with the LHCb detector has yielded a broad range of results in spectroscopy of conventional and exotic hadrons with heavy quark(s) inside. We review the LHCb results which have been obtained over the last year.

  14. Wounded quarks at the LHC

    CERN Document Server

    Broniowski, Wojciech; Rybczynski, Maciej

    2016-01-01

    We review the results of the wounded quark model, with a stress on eccentricity observables in small systems. A new element is a presentation of symmetric cumulants for the elliptic and triangular flow correlations, obtained in the wounded-quark approach.

  15. Quark Gluon Plasma: Surprises from strongly coupled QCD matter

    Science.gov (United States)

    Jacak, Barbara

    2017-01-01

    Quantum Chromodynamics has long predicted a transition from normal hadronic matter to a phase where the quarks and gluons are no longer bound together and can move freely. Quark gluon plasma is now produced regularly in collisions of heavy nuclei at very high energy at both the Relativistic Heavy Ion Collider (RHIC) in the U.S. and at the LHC in Europe. Quark gluon plasma exhibits remarkable properties. Its vanishingly small shear viscosity to entropy density ratio means that it flows essentially without internal friction, making it one of the most ``perfect'' liquids known. It is also very opaque to transiting particles including heavy charm quarks, though the exact mechanism for this is not yet understood. Recent data suggest that even very small colliding systems may produce a droplet of plasma. The similarities to strongly coupled or correlated systems in ultra-cold atoms and condensed matter are striking, and have inspired novel theoretical descriptions growing out of string theory. It remains a mystery how this plasma emerges from cold, dense gluonic matter deep inside nuclei. I will discuss how a future electron-ion collider can help address this question.

  16. Dynamical Running Mass of Quark in the Dyson-Schwinger Equation Approach

    Institute of Scientific and Technical Information of China (English)

    MA Wei-Xing; SHEN Peng-Nian; ZHOU Li-Juan

    2002-01-01

    Based on the Dyson-Schwinger equations of QCD in the "rainbow" approximation, the fully dressed quarkpropagator Sf(p) is investigated, and then an algebraic parametrization form of the propagator is obtained as a solutionof the equations. The dressed quark amplitudes Af and Bf built up the fully dressed quark propagator and the dynamicalrunning masses Mf defined by Af and Bf for light quarks u, d and s are calculated, respectively. Using the predictedrunning masses Mf, quark condensates = -(0.255 GeV)a for u, d quarks, and = 0.8<0|q(0)q(0)]0)for s quark, and experimental pion decay constant fπ = 0.093 GeV, the masses of Goldstone bosons K, π, and η are alsoevaluated. The numerical results show that the masses of quarks are dependent on their momentum p2. The fully dressedquark amplitudes Af and Bf have correct behaviors which can be used for many purposes in our future researches onnonperturbative QCD.

  17. Quarks and gluons in the phase diagram of quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Welzbacher, Christian Andreas

    2016-07-14

    that a dynamical charm quark has no influence on the phase structure. An open question about the phase diagram of quantum chromodynamics is the importance of hadronic degrees of freedom. These are subject to an exploratory study in Ch. 5, where we perform a two flavour calculation and include the nucleon as a degree of freedom in the well-known quark-diquark approximation. Due to the lack of explicit knowledge of in-medium properties of the nucleon, we refer to vacuum results and test their influence by variation. The results show that in this truncation baryons have only very little influence on the phase diagram. This is followed by an approach for a systematic investigation of the quark-gluon vertex Dyson-Schwinger equation at finite temperature. The presented work features an internal model vertex. Calculations taking an unquenched gluon as input are presented, where we compare the quark mass function to results from lattice calculations. We give details about the regularised condensate and study the impact of the different quark flavours and the dependence of the calculation on the chosen internal properties. In the last chapter we perform an investigation of the analytical properties of the quark. The Schwinger function, as the Fourier transform of the Euclidean quark propagator with respect to (imaginary) time, is studied in the vacuum as well as the medium. The spectral function, obtained from correlator data by solving an ill-defined inverse problem, is introduced together with the Rothkopf-Burnier Bayesian reconstruction algorithm, which returns the Bayesian answer to the given inverse problem. The status of the reconstruction for test data is presented and an outline given.

  18. PREFACE: Quark Matter 2008

    Science.gov (United States)

    Jan-e~Alam; Subhasis~Chattopadhyay; Tapan~Nayak

    2008-10-01

    Quark Matter 2008—the 20th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions was held in Jaipur, the Pink City of India, from 4-10 February, 2008. Organizing Quark Matter 2008 in India itself indicates the international recognition of the Indian contribution to the field of heavy-ion physics, which was initiated and nurtured by Bikash Sinha, Chair of the conference. The conference was inaugurated by the Honourable Chief Minister of Rajasthan, Smt. Vasundhara Raje followed by the key note address by Professor Carlo Rubbia. The scientific programme started with the theoretical overview, `SPS to RHIC and onwards to LHC' by Larry McLerran followed by several theoretical and experimental overview talks on the ongoing experiments at SPS and RHIC. The future experiments at the LHC, FAIR and J-PARC, along with the theoretical predictions, were discussed in great depth. Lattice QCD predictions on the nature of the phase transition and critical point were vigorously debated during several plenary and parallel session presentations. The conference was enriched by the presence of an unprecedented number of participants; about 600 participants representing 31 countries across the globe. This issue contains papers based on plenary talks and oral presentations presented at the conference. Besides invited and contributed talks, there were also a large number of poster presentations. Members of the International Advisory Committee played a pivotal role in the selection of speakers, both for plenary and parallel session talks. The contributions of the Organizing Committee in all aspects, from helping to prepare the academic programme down to arranging local hospitality, were much appreciated. We thank the members of both the committees for making Quark Matter 2008 a very effective and interesting platform for scientific deliberations. Quark Matter 2008 was financially supported by: Air Liquide (New Delhi) Board of Research Nuclear Sciences (Mumbai) Bose

  19. Thin accretion disks around cold Bose–Einstein condensate stars

    Energy Technology Data Exchange (ETDEWEB)

    Dănilă, Bogdan, E-mail: bogdan.danila22@gmail.com [Department of Physics, Babes-Bolyai University, Kogalniceanu Street, Cluj-Napoca (Romania); Harko, Tiberiu, E-mail: t.harko@ucl.ac.uk [Department of Mathematics, University College London, Gower Street, WC1E 6BT, London (United Kingdom); Kovács, Zoltán, E-mail: kovacsz2013@yahoo.com [Max-Fiedler-Str. 7, 45128, Essen (Germany)

    2015-05-09

    Due to their superfluid properties some compact astrophysical objects, like neutron or quark stars, may contain a significant part of their matter in the form of a Bose–Einstein condensate (BEC). Observationally distinguishing between neutron/quark stars and BEC stars is a major challenge for this latter theoretical model. An observational possibility of indirectly distinguishing BEC stars from neutron/quark stars is through the study of the thin accretion disks around compact general relativistic objects. In the present paper, we perform a detailed comparative study of the electromagnetic and thermodynamic properties of the thin accretion disks around rapidly rotating BEC stars, neutron stars and quark stars, respectively. Due to the differences in the exterior geometry, the thermodynamic and electromagnetic properties of the disks (energy flux, temperature distribution, equilibrium radiation spectrum, and efficiency of energy conversion) are different for these classes of compact objects. Hence in this preliminary study we have pointed out some astrophysical signatures that may allow one to observationally discriminate between BEC stars and neutron/quark stars.

  20. Thin accretion disks around cold Bose-Einstein condensate stars

    Energy Technology Data Exchange (ETDEWEB)

    Danila, Bogdan [Babes-Bolyai University, Department of Physics, Cluj-Napoca (Romania); Harko, Tiberiu [University College London, Department of Mathematics, London (United Kingdom); Kovacs, Zoltan

    2015-05-15

    Due to their superfluid properties some compact astrophysical objects, like neutron or quark stars, may contain a significant part of their matter in the form of a Bose-Einstein condensate (BEC). Observationally distinguishing between neutron/quark stars and BEC stars is a major challenge for this latter theoretical model. An observational possibility of indirectly distinguishing BEC stars from neutron/quark stars is through the study of the thin accretion disks around compact general relativistic objects. In the present paper, we perform a detailed comparative study of the electromagnetic and thermodynamic properties of the thin accretion disks around rapidly rotating BEC stars, neutron stars and quark stars, respectively. Due to the differences in the exterior geometry, the thermodynamic and electromagnetic properties of the disks (energy flux, temperature distribution, equilibrium radiation spectrum, and efficiency of energy conversion) are different for these classes of compact objects. Hence in this preliminary study we have pointed out some astrophysical signatures that may allow one to observationally discriminate between BEC stars and neutron/quark stars. (orig.)

  1. Quark-gluon plasma in strong magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Kalaydzhyan, Tigran

    2013-04-15

    One of the fundamental problems in subatomic physics is the determination of properties of matter at extreme temperatures, densities and electromagnetic fields. The modern ultrarelativistic heavy-ion experiments are able to study such states (the quark-gluon plasma) and indicate that the physics at extreme conditions differs drastically from what is known from the conventional observations. Also the theoretical methods developed mostly within the perturbative framework face various conceptual problems and need to be replaced by a nonperturbative approach. In this thesis we study the physics of the strongly-coupled quark-gluon plasma in external magnetic fields as well as general electromagnetic and topological properties of the QCD and QCD-like systems. We develop and apply various nonperturbative techniques, based on e.g. gauge-gravity correspondence, lattice QCD simulations, relativistic hydrodynamics and condensed-matter-inspired models.

  2. Stability of superfluid vortices in dense quark matter

    CERN Document Server

    Alford, Mark G; Vachaspati, Tanmay; Windisch, Andreas

    2016-01-01

    Superfluid vortices in the color-flavor-locked (CFL) phase of dense quark matter are known to be energetically disfavored relative to well-separated triplets of "semi-superfluid" color flux tubes. However, the short-range interaction (metastable versus unstable) has not been established. In this paper we perform numerical calculations using the effective theory of the condensate field, mapping the regions in the parameter space of coupling constants where the vortices are metastable versus unstable. For the case of zero gauge coupling we analytically identify a candidate for the unstable mode, and show that it agrees well with the results of the numerical calculations. We find that in the region of the parameter space that seems likely to correspond to real-world CFL quark matter the vortices are unstable, indicating that if such matter exists in neutron star cores it is very likely to contain semi-superfluid color flux tubes rather than superfluid vortices.

  3. Clustered Quark Matter Calculation for Strange Quark Matter

    CERN Document Server

    Na, Xuesen

    2009-01-01

    Motivated by the need for a solid state strange quark matter to better explain some observational phenomena, we discussed possibility of color singlet cluster formation in cold strange quark matter by a rough calculation following the excluded volume method proposed by Clark et al (1986) and adopted quark mass density dependent model with cubic scaling. It is found that 70% to 75% of volume and 80% to 90% of baryon number is in clusters at temperature from 10MeV to 50MeV and 1 to 10 times nuclear density.

  4. Condensation Energy of a Spacetime Condensate

    CERN Document Server

    de Matos, Clovis Jacinto

    2010-01-01

    Starting from an analogy between the Planck-Einstein scale and the dual length scales in Ginzburg-Landau theory of superconductivity, and assuming that space-time is a condensate of neutral fermionic particles with Planck mass, we derive the baryonic mass of the universe. In that theoretical framework baryonic matter appears to be associated with the condensation energy gained by spacetime in the transition from its normal (symetric) to its (less symetric) superconducting-like phase. It is shown however that the critical transition temperature cannot be the Planck temperature. Thus leaving open the enigma of the microscopic description of spacetime at quantum level.

  5. Baryons in the unquenched quark model

    CERN Document Server

    Bijker, R; Lopez-Ruiz, M A; Santopinto, E

    2016-01-01

    In this contribution, we present the unquenched quark model as an extension of the constituent quark model that includes the effects of sea quarks via a $^{3}P_{0}$ quark-antiquark pair-creation mechanism. Particular attention is paid to the spin and flavor content of the proton, magnetic moments and $\\beta$ decays of octet baryons.

  6. Evidence for production of single top quarks

    NARCIS (Netherlands)

    Abazov, V.M.; et al., [Unknown; de Jong, S.J.; Demarteau, M.; Houben, P.; van den Berg, P.J.

    2008-01-01

    We present first evidence for the production of single top quarks in the D0 detector at the Fermilab Tevatron p (p) over bar collider. The standard model predicts that the electroweak interaction can produce a top quark together with an antibottom quark or light quark, without the antiparticle top-q

  7. Top Quark Properties Measurements in CMS

    CERN Document Server

    Yazgan, Efe

    Recent top quark properties measurements made with the CMS detector at the LHC are presented. The measurements summarized include spin correlation of top quark pairs, asymmetries, top quark mass, and the underlying event in top quark pair events. The results are compared to the standard model predictions and new physics models.

  8. Top quark properties at ATLAS and CMS

    CERN Document Server

    Brock, Ian; The ATLAS collaboration

    2016-01-01

    Recent results from ATLAS and CMS connected to the properties of the top quark are presented. The talk concentrates on asymmetries connected with top-quark production and the measurement of spin correlations between the top quark and antiquark. A search for CP violation in top-quark-antiquark production is also discussed.

  9. Top quark properties measurements in CMS

    Science.gov (United States)

    Yazgan, E.; CMS Collaboration

    2017-07-01

    Recent top quark properties measurements made with the CMS detector at the LHC are presented. The measurements summarized include spin correlation of top quark pairs, asymmetries, top quark mass, and the underlying event in top quark pair events. The results are compared to the standard model predictions and new physics models.

  10. Top quark studies at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Sinervo, P.K. [Univ. of Toronto, Ontario (Canada)

    1997-01-01

    The techniques used to study top quarks at hadron colliders are presented. The analyses that discovered the top quark are described, with emphasis on the techniques used to tag b quark jets in candidate events. The most recent measurements of top quark properties by the CDF and DO Collaborations are reviewed, including the top quark cross section, mass, branching fractions, and production properties. Future top quark studies at hadron colliders are discussed, and predictions for event yields and uncertainties in the measurements of top quark properties are presented.

  11. Systematic text condensation

    DEFF Research Database (Denmark)

    Malterud, Kirsti

    2012-01-01

    To present background, principles, and procedures for a strategy for qualitative analysis called systematic text condensation and discuss this approach compared with related strategies.......To present background, principles, and procedures for a strategy for qualitative analysis called systematic text condensation and discuss this approach compared with related strategies....

  12. Measure Guideline: Evaporative Condensers

    Energy Technology Data Exchange (ETDEWEB)

    German, A [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Dakin, B. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Hoeschele, M. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2012-03-01

    This measure guideline on evaporative condensers provides information on properly designing, installing, and maintaining evaporative condenser systems as well as understanding the benefits, costs, and tradeoffs. This is a prescriptive approach that outlines selection criteria, design and installation procedures, and operation and maintenance best practices.

  13. Top quark physics

    Energy Technology Data Exchange (ETDEWEB)

    Menzione, A. [INFN Sezione di Pisa (Italy)

    1995-10-01

    Most of the material presented in this report, comes from contributions to the parallel session PL20 of this conference. We summarise the experimental results of direct production of Top quarks, coming from the CDF and C0 Collaborations at Fermilab, and compare these results to what one expects within current theoretical understanding. Particular attention is given to new results such as all hadronic modes of t{bar t} decay. As far as the mass is concerned, a comparison is made with precision measurements of related quantities, coming from LEP and other experiments. An attempt is made to look at the medium-term future and understand which variables and with what accuracy one can measure them with increased integrated luminosity.

  14. Melting Hadrons, Boiling Quarks

    CERN Document Server

    Rafelski, Johann

    2015-01-01

    In the context of the Hagedorn temperature half-centenary I describe our understanding of the hot phases of hadronic matter both below and above the Hagedorn temperature. The first part of the review addresses many frequently posed questions about properties of hadronic matter in different phases, phase transition and the exploration of quark-gluon plasma (QGP). The historical context of the discovery of QGP is shown and the role of strangeness and strange antibaryon signature of QGP illustrated. In the second part I discuss the corresponding theoretical ideas and show how experimental results can be used to describe the properties of QGP at hadronization. Finally in two appendices I present previously unpublished reports describing the early prediction of the different forms of hadron matter and of the formation of QGP in relativistic heavy ion collisions, including the initial prediction of strangeness and in particular strange antibaryon signature of QGP.

  15. Melting hadrons, boiling quarks

    Energy Technology Data Exchange (ETDEWEB)

    Rafelski, Johann [CERN-PH/TH, Geneva 23 (Switzerland); The University of Arizona, Department of Physics, Tucson, Arizona (United States)

    2015-09-15

    In the context of the Hagedorn temperature half-centenary I describe our understanding of the hot phases of hadronic matter both below and above the Hagedorn temperature. The first part of the review addresses many frequently posed questions about properties of hadronic matter in different phases, phase transition and the exploration of quark-gluon plasma (QGP). The historical context of the discovery of QGP is shown and the role of strangeness and strange antibaryon signature of QGP illustrated. In the second part I discuss the corresponding theoretical ideas and show how experimental results can be used to describe the properties of QGP at hadronization. The material of this review is complemented by two early and unpublished reports containing the prediction of the different forms of hadron matter, and of the formation of QGP in relativistic heavy ion collisions, including the discussion of strangeness, and in particular strange antibaryon signature of QGP. (orig.)

  16. Decays of the b quark

    Science.gov (United States)

    Thorndike, Edward H.; Poling, Ronald A.

    1988-01-01

    Recent experimental results on the decay of b-flavored hadrons are reviewed. Substantial progress has been made in the study of exclusive and inclusive B-meson decays, as well as in the theoretical understanding of these processes. The two most prominent developments are the continuing failure to observe evidence of decays of the b quark to a u quark rather than a c quark, and the surprisingly high level of B 0- overlineB0 mi xing which has recently been reported by the ARGUS collaboration. Notwithstanding these results, we conclude that the health of the Standard Model is excellent.

  17. Properties of the Top Quark

    Energy Technology Data Exchange (ETDEWEB)

    Wicke, Daniel; /Wuppertal U., Dept. Math.

    2009-08-01

    The aim of particle physics is the understanding of elementary particles and their interactions. The current theory of elementary particle physics, the Standard Model, contains twelve different types of fermions which (neglecting gravity) interact through the gauge bosons of three forces. In addition a scalar particle, the Higgs boson, is needed for theoretical consistency. These few building blocks explain all experimental results found in the context of particle physics, so far. Nevertheless, it is believed that the Standard Model is only an approximation to a more complete theory. First of all the fourth known force, gravity, has withstood all attempts to be included until now. Furthermore, the Standard Model describes several features of the elementary particles like the existence of three families of fermions or the quantisation of charges, but does not explain these properties from underlying principles. Finally, the lightness of the Higgs boson needed to explain the symmetry breaking is difficult to maintain in the presence of expected corrections from gravity at high scales. This is the so called hierarchy problem. In addition astrophysical results indicate that the universe consists only to a very small fraction of matter described by the Standard Model. Large fractions of dark energy and dark matter are needed to describe the observations. Both do not have any correspondence in the Standard Model. Also the very small asymmetry between matter and anti-matter that results in the observed universe built of matter (and not of anti-matter) cannot be explained until now. It is thus an important task of experimental particle physics to test the predictions of the Standard Model to the best possible accuracy and to search for deviations pointing to necessary extensions or modifications of our current theoretical understanding. The top quark was predicted to exist by the Standard Model as the partner of the bottom quark. It was first observed in 1995 by the

  18. Holographic quark-gluon plasmas at finite quark density

    Energy Technology Data Exchange (ETDEWEB)

    Bigazzi, F. [Dipartimento di Fisica e Astronomia, Universita di Firenze, Sesto Fiorentino (Firenze), Pisa (Italy); INFN, Sezione di Torino (Italy); Cotrone, A. [Dipartimento di Fisica, Universita di Torino (Italy); Mas, J. [Departamento de Fisica de Particulas, Universidade de Santiago de Compostela (Spain); Instituto Galego de Fisica de Altas Enerxias (IGFAE), Santiago de Compostela (Spain); Tarrio, J. [Institute for Theoretical Physics and Spinoza Institute, Universiteit Utrecht, 3584 CE, Utrecht (Netherlands); Mayerson, D. [Institute for Theoretical Physics, University of Amsterdam (Netherlands)

    2012-07-15

    Gravity solutions holographically dual to strongly coupled quark-gluon plasmas with non-zero quark density are reviewed. They are motivated by the urgency of finding novel tools to explore the phase diagram of QCD-like theories at finite chemical potential. After presenting the solutions and their regime of validity, some of their physical properties are discussed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Quark-anti-quark potential in N = 4 SYM

    Science.gov (United States)

    Gromov, Nikolay; Levkovich-Maslyuk, Fedor

    2016-12-01

    We construct a closed system of equations describing the quark-anti-quark potential at any coupling in planar N = 4 supersymmetric Yang-Mills theory. It is based on the Quantum Spectral Curve method supplemented with a novel type of asymptotics. We present a high precision numerical solution reproducing the classical and one-loop string predictions very accurately. We also analytically compute the first 7 nontrivial orders of the weak coupling expansion.

  20. Heavy Quark Photoproduction in Coherent Interactions at High Energies

    CERN Document Server

    Gonçalves, V P; Meneses, A R

    2009-01-01

    We calculate the inclusive and diffractive photoproduction of heavy quarks in proton-proton collisions at Tevatron and LHC energies, where the photon reaches energies larger than those ones accessible at DESY-HERA. The integrated cross section and the rapidity distributions for charm and bottom production are computed within the color dipole picture employing three phenomenological saturation models based on the Color Glass Condensate formalism. Our results demonstrate that the experimental analyzes of these reactions is feasible and that the cross sections are sensitive to the underlying parton dynamics.

  1. Quark-gluon plasma and topological quantum field theory

    Science.gov (United States)

    Luo, M. J.

    2017-03-01

    Based on an analogy with topologically ordered new state of matter in condensed matter systems, we propose a low energy effective field theory for a parity conserving liquid-like quark-gluon plasma (QGP) around critical temperature in quantum chromodynamics (QCD) system. It shows that below a QCD gap which is expected several times of the critical temperature, the QGP behaves like topological fluid. Many exotic phenomena of QGP near the critical temperature discovered at Relativistic Heavy Ion Collision (RHIC) are more readily understood by the suggestion that QGP is a topologically ordered state.

  2. Spontaneous Magnetization of Quark Matter in Inhomogeneous Chiral Phase

    CERN Document Server

    Yoshiike, Ryo; Tatsumi, Toshitaka

    2015-01-01

    Considering the density wave of scalar and pseudoscalar condensates, we study the response of quark matter to a weak external magnetic field. In an external magnetic field, the energy spectrum of the lowest Landau level becomes asymmetric about zero, which is closely related to chiral anomaly. This spectral asymmetry gives rise to spontaneous magnetization. This mechanism may be one of candidates for the origin of the strong magnetic field in magnetars. Furthermore, using the generalized Ginzburg-Landau(gGL) expansion, we show that magnetic susceptibility exhibits a peculiar feature

  3. Non-perturbative studies of QCD at small quark masses

    Energy Technology Data Exchange (ETDEWEB)

    Wennekers, J.

    2006-07-15

    We investigate the quenched approximation of lattice QCD with numerical simulations of Ginsparg-Wilson fermions, which are a fermion discretisation with exact chiral symmetry. We compute the renormalisation constant of the scalar density, which allows to extrapolate the chiral condensate to the continuum limit. Furthermore we match lattice results of matrix elements describing hadronic kaon decays to Chiral Perturbation Theory in finite volume and at almost vanishing quark mass. The resulting low-energy constants in the considered SU(4)-flavour symmetric case indicate a substantial contribution of low scale QCD effects to the {delta}I = 1/2 rule. (Orig.)

  4. Heavy quarks and CP: Moriond 1985

    Energy Technology Data Exchange (ETDEWEB)

    Bjorken, J.D.

    1985-03-01

    The presentations at the Fifth Moriond Workshop on Heavy Quarks, Flavor Mixing, and CP Violation (La Plagne, France, January 13-19, 1985) are summarized. The following topics are reviewed. What's New (beyond the top, top quarks, bottom quarks, charm quarks, strange quarks, and others); why is all this being done (strong interactions and hadron structure, and electroweak properties); and what next (facilities and can one see CP violation in the B-anti B system). 64 refs., 10 figs.

  5. Maximal Wavelength of Confined Quarks and Gluons and Properties of Quantum Chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC /YITP, Stony Brook /Durham U.; Shrock, Robert; /YITP, Stony Brook

    2008-08-01

    Because quarks and gluons are confined within hadrons, they have a maximum wavelength of order the confinement scale. Propagators, normally calculated for free quarks and gluons using Dyson-Schwinger equations, are modified by bound-state effects in close analogy to the calculation of the Lamb shift in atomic physics. Because of confinement, the effective quantum chromodynamic coupling stays finite in the infrared. The quark condensate which arises from spontaneous chiral symmetry breaking in the bound state Dyson-Schwinger equation is the expectation value of the operator {bar q}q evaluated in the background of the fields of the other hadronic constituents, in contrast to a true vacuum expectation value. Thus quark and gluon condensates reside within hadrons. The effects of instantons are also modified. We discuss the implications of the maximum quark and gluon wavelength for phenomena such as deep inelastic scattering and annihilation, the decay of heavy quarkonia, jets, and dimensional counting rules for exclusive reactions. We also discuss implications for the zero-temperature phase structure of a vectorial SU(N) gauge theory with a variable number N{sub f} of massless fermions.

  6. Lab cooks up quark soup

    CERN Multimedia

    Dumé, Belle

    2003-01-01

    "Physicists working at the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National Laboratory in the US say that they have come closer than ever before to creating a quark-gluon plasma" (0.5 page)

  7. Quark Model and multiquark system

    CERN Document Server

    da Silva, Cristiane Oldoni

    2010-01-01

    The discovery of many particles, especially in the 50's, when the firsts accelerators appeared, caused the searching for a model that would describe in a simple form the whole of known particles. The Quark Model, based in the mathematical structures of group theory, provided in the beginning of the 60's a simplified description of hadronic matter already known, proposing that three particles, called quarks, would originate all the observed hadrons. This model was able to preview the existence of particles that were later detected, confirming its consistency. Extensions of the Quark Model were made in the beginning of the 70's, focusing in describing observed particles that were excited states of the fundamental particles and others that presented new quantum numbers (flavors). Recently, exotic states as tetraquarks and pentaquarks types, also called multiquarks systems, previewed by the model, were observed, what renewed the interest in the way as quarks are confined inside the hadrons. In this article we pre...

  8. Observation of the Top Quark

    Science.gov (United States)

    Abachi, S.; Abbott, B.; Abolins, M.; Acharya, B. S.; Adam, I.; Adams, D. L.; Adams, M.; Ahn, S.; Aihara, H.; Alitti, J.; Álvarez, G.; Alves, G. A.; Amidi, E.; Amos, N.; Anderson, E. W.; Aronson, S. H.; Astur, R.; Avery, R. E.; Baden, A.; Balamurali, V.; Balderston, J.; Baldin, B.; Bantly, J.; Bartlett, J. F.; Bazizi, K.; Bendich, J.; Beri, S. B.; Bertram, I.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Bischoff, A.; Biswas, N.; Blazey, G.; Blessing, S.; Boehnlein, A.; Bojko, N. I.; Borcherding, F.; Borders, J.; Boswell, C.; Brandt, A.; Brock, R.; Bross, A.; Buchholz, D.; Burtovoi, V. S.; Butler, J. M.; Casey, D.; Castilla-Valdez, H.; Chakraborty, D.; Chang, S.-M.; Chekulaev, S. V.; Chen, L.-P.; Chen, W.; Chevalier, L.; Chopra, S.; Choudhary, B. C.; Christenson, J. H.; Chung, M.; Claes, D.; Clark, A. R.; Cobau, W. G.; Cochran, J.; Cooper, W. E.; Cretsinger, C.; Cullen-Vidal, D.; Cummings, M.; Cutts, D.; Dahl, O. I.; de, K.; Demarteau, M.; Demina, R.; Denisenko, K.; Denisenko, N.; Denisov, D.; Denisov, S. P.; Dharmaratna, W.; Diehl, H. T.; Diesburg, M.; di Loreto, G.; Dixon, R.; Draper, P.; Drinkard, J.; Ducros, Y.; Dugad, S. R.; Durston-Johnson, S.; Edmunds, D.; Efimov, A. O.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Evdokimov, V. N.; Fahey, S.; Fahland, T.; Fatyga, M.; Fatyga, M. K.; Featherly, J.; Feher, S.; Fein, D.; Ferbel, T.; Finocchiaro, G.; Fisk, H. E.; Fisyak, Yu.; Flattum, E.; Forden, G. E.; Fortner, M.; Frame, K. C.; Franzini, P.; Fredriksen, S.; Fuess, S.; Galjaev, A. N.; Gallas, E.; Gao, C. S.; Gao, S.; Geld, T. L.; Genik, R. J., II; Genser, K.; Gerber, C. E.; Gibbard, B.; Glaubman, M.; Glebov, V.; Glenn, S.; Glicenstein, J. F.; Gobbi, B.; Goforth, M.; Goldschmidt, A.; Gomez, B.; Goncharov, P. I.; Gordon, H.; Goss, L. T.; Graf, N.; Grannis, P. D.; Green, D. R.; Green, J.; Greenlee, H.; Griffin, G.; Grossman, N.; Grudberg, P.; Grünendahl, S.; Guida, J. A.; Guida, J. M.; Guryn, W.; Gurzhiev, S. N.; Gutnikov, Y. E.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hahn, K. S.; Hall, R. E.; Hansen, S.; Hatcher, R.; Hauptman, J. M.; Hedin, D.; Heinson, A. P.; Heintz, U.; Hernandez-Montoya, R.; Heuring, T.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hoftun, J. S.; Hsieh, F.; Hu, Ting; Hu, Tong; Huehn, T.; Igarashi, S.; Ito, A. S.; James, E.; Jaques, J.; Jerger, S. A.; Jiang, J. Z.-Y.; Joffe-Minor, T.; Johari, H.; Johns, K.; Johnson, M.; Johnstad, H.; Jonckheere, A.; Jöstlein, H.; Jun, S. Y.; Jung, C. K.; Kahn, S.; Kang, J. S.; Kehoe, R.; Kelly, M.; Kernan, A.; Kerth, L.; Kim, C. L.; Kim, S. K.; Klatchko, A.; Klima, B.; Klochkov, B. I.; Klopfenstein, C.; Klyukhin, V. I.; Kochetkov, V. I.; Kohli, J. M.; Koltick, D.; Kostritskiy, A. V.; Kotcher, J.; Kourlas, J.; Kozelov, A. V.; Kozlovski, E. A.; Krishnaswamy, M. R.; Krzywdzinski, S.; Kunori, S.; Lami, S.; Landsberg, G.; Lanou, R. E.; Lebrat, J.-F.; Lee-Franzini, J.; Leflat, A.; Li, H.; Li, J.; Li, Y. K.; Li-Demarteau, Q. Z.; Lima, J. G.; Lincoln, D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Liu, Y. C.; Lobkowicz, F.; Loken, S. C.; Lökös, S.; Lueking, L.; Lyon, A. L.; Maciel, A. K.; Madaras, R. J.; Madden, R.; Mandrichenko, I. V.; Mangeot, Ph.; Mani, S.; Mansoulié, B.; Mao, H. S.; Margulies, S.; Markeloff, R.; Markosky, L.; Marshall, T.; Martin, M. I.; Marx, M.; May, B.; Mayorov, A. A.; McCarthy, R.; McKibben, T.; McKinley, J.; Melanson, H. L.; de Mello Neto, J. R.; Merritt, K. W.; Miettinen, H.; Milder, A.; Milner, C.; Mincer, A.; de Miranda, J. M.; Mishra, C. S.; Mohammadi-Baarmand, M.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Mooney, P.; Mudan, M.; Murphy, C.; Murphy, C. T.; Nang, F.; Narain, M.; Narasimham, V. S.; Narayanan, A.; Neal, H. A.; Negret, J. P.; Neis, E.; Nemethy, P.; NešiĆ, D.; Norman, D.; Oesch, L.; Oguri, V.; Oltman, E.; Oshima, N.; Owen, D.; Padley, P.; Pang, M.; Para, A.; Park, C. H.; Park, Y. M.; Partridge, R.; Parua, N.; Paterno, M.; Perkins, J.; Peryshkin, A.; Peters, M.; Piekarz, H.; Pischalnikov, Y.; Pluquet, A.; Podstavkov, V. M.; Pope, B. G.; Prosper, H. B.; Protopopescu, S.; Pušeljić, D.; Qian, J.; Quintas, P. Z.; Raja, R.; Rajagopalan, S.; Ramirez, O.; Rao, M. V.; Rapidis, P. A.; Rasmussen, L.; Read, A. L.; Reucroft, S.; Rijssenbeek, M.; Rockwell, T.; Roe, N. A.; Roldan, J. M.; Rubinov, P.; Ruchti, R.; Rusin, S.; Rutherfoord, J.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Schmid, D.; Sculli, J.; Shabalina, E.; Shaffer, C.; Shankar, H. C.; Shivpuri, R. K.; Shupe, M.; Singh, J. B.; Sirotenko, V.; Smart, W.; Smith, A.; Smith, R. P.; Snihur, R.; Snow, G. R.; Snyder, S.; Solomon, J.; Sood, P. M.; Sosebee, M.; Souza, M.; Spadafora, A. L.; Stephens, R. W.; Stevenson, M. L.; Stewart, D.; Stocker, F.; Stoianova, D. A.; Stoker, D.; Streets, K.; Strovink, M.; Taketani, A.; Tamburello, P.; Tarazi, J.; Tartaglia, M.; Taylor, T. L.; Teiger, J.; Thompson, J.; Trippe, T. G.; Tuts, P. M.; Varelas, N.; Varnes, E. W.; Virador, P. R.; Vititoe, D.; Volkov, A. A.; von Goeler, E.; Vorobiev, A. P.; Wahl, H. D.; Wang, J.; Wang, L. Z.; Warchol, J.; Wayne, M.; Weerts, H.; Wenzel, W. A.; White, A.; White, J. T.; Wightman, J. A.; Wilcox, J.; Willis, S.; Wimpenny, S. J.; Wirjawan, J. V.; Wolf, Z.; Womersley, J.; Won, E.; Wood, D. R.; Xu, H.; Yamada, R.; Yamin, P.; Yanagisawa, C.; Yang, J.; Yasuda, T.; Yoshikawa, C.; Youssef, S.; Yu, J.; Yu, Y.; Zhang, Y.; Zhou, Y. H.; Zhu, Q.; Zhu, Y. S.; Zhu, Z. H.; Zieminska, D.; Zieminski, A.; Zinchenko, A.; Zylberstejn, A.

    1995-04-01

    The D0 Collaboration reports on a search for the standard model top quark in pp¯ collisions at s = 1.8 TeV at the Fermilab Tevatron with an integrated luminosity of approximately 50 pb-1. We have searched for tt¯ production in the dilepton and single-lepton decay channels with and without tagging of b-quark jets. We observed 17 events with an expected background of 3.8+/-0.6 events. The probability for an upward fluctuation of the background to produce the observed signal is 2×10-6 (equivalent to 4.6 standard deviations). The kinematic properties of the excess events are consistent with top quark decay. We conclude that we have observed the top quark and measured its mass to be 199+19-21 (stat) +/-22 (syst) GeV/c2 and its production cross section to be 6.4+/-2.2 pb.

  9. Solid Bare Strange Quark Stars

    CERN Document Server

    Xu, R X

    2003-01-01

    The reason, we need three terms of `strange', `bare', and `solid' before quark stars, is presented concisely though some fundamental issues are not certain. Observations favoring these stars are introduced.

  10. Top Quark Physics: Future Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Jaros, John A

    2003-05-09

    We discuss the study of the top quark at future experiments and machines. Top's large mass makes it a unique probe of physics at the natural electroweak scale. We emphasize measurements of the top quark's mass, width, and couplings, as well as searches for rare or nonstandard decays, and discuss the complementary roles played by hadron and lepton colliders.

  11. Stability of Quark Star Models

    Science.gov (United States)

    Azam, M.; Mardan, S. A.; Rehman, M. A.

    2016-05-01

    In this paper, we investigate the stability of quark stars with four different types of inner matter configurations; isotropic, charged isotropic, anisotropic and charged anisotropic by using the concept of cracking. For this purpose, we have applied local density perturbations technique to the hydrostatic equilibrium equation as well as on physical parameters involved in the model. We conclude that quark stars become potentially unstable when inner matter configuration is changed and electromagnetic field is applied.

  12. Pourquoi les quarks restent invisibles

    CERN Multimedia

    Gross, David J

    2005-01-01

    At the beginning of the seventies, physicists discovered a new scale in the matter structure. Protons and neutrons, components of the atomic nucleus, seemed to be constituted by even more elementar particles: the quarks. But while they seemed to move freely inside the protons, it was impossible to isolate one of these quarks. The Nobel Prize for physics rewarded the explanation of this phenomenon (3 pages)

  13. Heavy quark production and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Appel, J.A.

    1993-11-01

    This review covers many new experimental results on heavy flavor production and spectroscopy. It also shows some of the increasingly improved theoretical understanding of results in light of basic perturbative QCD and heavy quark symmetry. At the same time, there are some remaining discrepancies among experiments as well as significant missing information on some of the anticipated lowest lying heavy quark states. Most interesting, perhaps, are some clearly measured production effects awaiting full explanation.

  14. The strange-quark distribution

    Energy Technology Data Exchange (ETDEWEB)

    Barone, V. [Turin Univ. (Italy). Ist. di Fisica Teorica; Genovese, M. [Turin Univ. (Italy). Ist. di Fisica Teorica]|[European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.; Nikolaev, N.N. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Kernphysik]|[L.D. Landau Institute for Theoretical Physics, Moscow (Russian Federation); Predazzi, E. [Turin Univ. (Italy). Ist. di Fisica Teorica; Zakharov, B.G. [L.D. Landau Institute for Theoretical Physics, Moscow (Russian Federation)

    1996-03-01

    We discuss the latest CCFR determination of the strange sea density of the proton. We comment on the differences with a previous, leading-order, result and point out the relevance of quark mass effects and current non-conservation effects. By taking them into account it is possible to solve the residual discrepancy with another determination of the strange-quark distribution. Two important sources of uncertainties are also analysed. (orig.). With 4 figs.

  15. Deconfinement and virtual quark loops

    Science.gov (United States)

    Çelik, T.; Engels, J.; Satz, H.

    1983-12-01

    We calculate paer Monte Carlo evaluation on an 83 × 3 lattice the energy density ɛG of the gluon sector of QCD, including virtual quark loops up to the fourth power in the hopping parameter expansion. For light quarks of one flavour, we observe at T/ΛL 95 +/- 10 a rapid variation of ɛG in T, accompanied by strong fluctuations from iteration to iteration. as clear signal of the deconfinement transition.

  16. Sedimentary condensation and authigenesis

    Science.gov (United States)

    Föllmi, Karl

    2016-04-01

    Most marine authigenic minerals form in sediments, which are subjected to condensation. Condensation processes lead to the formation of well individualized, extremely thin ( 100ky), and which experienced authigenesis and the precipitation of glaucony, verdine, phosphate, iron and manganese oxyhydroxides, iron sulfide, carbonate and/or silica. They usually show complex internal stratigraphies, which result from an interplay of sediment accumulation, halts in sedimentation, sediment winnowing, erosion, reworking and bypass. They may include amalgamated faunas of different origin and age. Hardgrounds may be part of condensed beds and may embody strongly condensed beds by themselves. Sedimentary condensation is the result of a hydrodynamically active depositional regime, in which sediment accumulation, winnowing, erosion, reworking and bypass are processes, which alternate as a function of changes in the location and intensity of currents, and/or as the result of episodic high-energy events engendered by storms and gravity flow. Sedimentary condensation has been and still is a widespread phenomenon in past and present-day oceans. The present-day distribution of glaucony and verdine-rich sediments on shelves and upper slopes, phosphate-rich sediments and phosphorite on outer shelves and upper slopes, ferromanganese crusts on slopes, seamounts and submarine plateaus, and ferromanganese nodules on abyssal seafloors is a good indication of the importance of condensation processes today. In the past, we may add the occurrence of oolitic ironstone, carbonate hardgrounds, and eventually also silica layers in banded iron formations as indicators of the importance of condensation processes. Besides their economic value, condensed sediments are useful both as a carrier of geochemical proxies of paleoceanographic and paleoenvironmental change, as well as the product of episodes of paleoceanographic and paleoenvironmental change themselves.

  17. Two-colour QCD at non-zero quark-number density

    CERN Document Server

    Kogut, J B; Hands, S J; Morrison, S E

    2001-01-01

    We have simulated two-colour four-flavour QCD at non-zero chemical potential $\\mu$ for quark number. Simulations were performed on $8^4$ and $12^3 \\times 24$ lattices. Clear evidence was seen for the formation of a colourless diquark condensate which breaks quark number spontaneously, for $\\mu > \\mu_c \\sim m_\\pi/2$. The transition appears to be second order. We have measured the spectrum of scalar and pseudoscalar bosons which shows clear evidence for the expected Goldstone boson. Our results are in qualitative agreement with those from effective Lagrangians for the potential Goldstone excitations of this theory.

  18. Magnetic catalysis and inverse magnetic catalysis in nonlocal chiral quark models

    Science.gov (United States)

    Pagura, V. P.; Gómez Dumm, D.; Noguera, S.; Scoccola, N. N.

    2017-02-01

    We study the behavior of strongly interacting matter under an external constant magnetic field in the context of nonlocal chiral quark models within the mean field approximation. We find that at zero temperature the behavior of the quark condensates shows the expected magnetic catalysis effect, our predictions being in good quantitative agreement with lattice QCD results. On the other hand, in contrast to what happens in the standard local Nambu-Jona-Lasinio model, when the analysis is extended to the case of finite temperature, our results show that nonlocal models naturally lead to the inverse magnetic catalysis effect.

  19. Magnetic catalysis and inverse magnetic catalysis in nonlocal chiral quark models

    CERN Document Server

    Pagura, V P; Noguera, S; Scoccola, N N

    2016-01-01

    We study the behavior of strongly interacting matter under an external constant magnetic field in the context of nonlocal chiral quark models within the mean field approximation. We find that at zero temperature the behavior of the quark condensates shows the expected magnetic catalysis effect, our predictions being in good quantitative agreement with lattice QCD results. On the other hand, in contrast to what happens in the standard local Nambu-Jona-Lasinio model, when the analysis is extended to the case of finite temperature our results show that nonlocal models naturally lead to the Inverse Magnetic Catalysis effect.

  20. Unquenched QCD with Light Quarks

    CERN Document Server

    Duncan, A; Yoo, J

    2003-01-01

    We present recent results in unquenched lattice QCD with two degenerate light sea quarks using the truncated determinant approximation (TDA). In the TDA the infrared modes contributing to the quark determinant are computed exactly up to some cutoff in quark off-shellness (typically 2$\\Lambda_{QCD}$). This approach allows simulations to be performed at much lighter quark masses than possible with conventional hybrid MonteCarlo techniques. Results for the static energy and topological charge distributions are presented using a large ensemble generated on very coarse (6$^4$) but physically large lattices. Preliminary results are also reported for the static energy and meson spectrum on 10$^3$x20 lattices (lattice scale $a^{-1}$=1.15 GeV) at quark masses corresponding to pions of mass $\\leq$ 200 MeV. Using multiboson simulation to compute the ultraviolet part of the quark determinant the TDA approach becomes an exact with essentially no increase in computational effort. Some preliminary results using this fully u...

  1. Polarization in heavy quark decays

    Energy Technology Data Exchange (ETDEWEB)

    Alimujiang, K.

    2006-07-01

    In this thesis I concentrate on the angular correlations in top quark decays and their next.to.leading order (NLO) QCD corrections. I also discuss the leading.order (LO) angular correlations in unpolarized and polarized hyperon decays. In the first part of the thesis I calculate the angular correlation between the top quark spin and the momentum of decay products in the rest frame decay of a polarized top quark into a charged Higgs boson and a bottom quark in Two-Higgs-Doublet-Models: t({up_arrow}) {yields} b + H{sup +}. I provide closed form formulae for the O({alpha}{sub s}) radiative corrections to the unpolarized and the polar correlation functions for m{sub b}{ne}0 and m{sub b}=0. In the second part I concentrate on the semileptonic rest frame decay of a polarized top quark into a bottom quark and a lepton pair: t({up_arrow}){yields}X{sub b}+l{sup +}+{nu}{sub l}. I present closed form expressions for the O({alpha}{sub s}) radiative corrections to the unpolarized part and the polar and azimuthal correlations for m{sub b}{ne}0 and m{sub b}=0. In the last part I turn to the angular distribution in semileptonic hyperon decays. Using the helicity method I derive complete formulas for the leading order joint angular decay distributions occurring in semileptonic hyperon decays including lepton mass and polarization effects. (orig.)

  2. Properties of the top quark

    Energy Technology Data Exchange (ETDEWEB)

    Jung, A. W. [Fermilab

    2014-09-24

    Recent measurements of top-quark properties at the LHC and the Tevatron are presented. Most recent measurements of the top quark mass have been carried out by CMS using $19.7/$fb of $\\sqrt{s} = 8$ TeV data including the study of the dependence on event kinematics. ATLAS uses the full Run I data at $\\sqrt{s} = 7$ TeV for a "3D" measurement that significantly reduces systematic uncertainties. D0 employs the full Run II data using the matrix element method to measure the top quark mass with significantly reduced systematic uncertainties. Many different measurements of the top quark exist to date and the most precise ones per decay channel per experiment have been combined into the first world combination with a relative precision of 0.44%. Latest updates of measurements of production asymmetries include the measurement of the \\ttbar production asymmetry by D0 employing the full Run II data set, by CMS and ATLAS (including the polarization of the top quark) employing both the full data set at $\\sqrt{s} = 7$ TeV. CMS uses the full $\\sqrt{s} = 8$ TeV data to measure the top quark polarization in single top production, the ratio ${\\cal R}$ of the branching fractions ${\\cal B}(t \\rightarrow Wb) / {\\cal B}(t \\rightarrow Wq)$ and to search for flavor changing neutral currents. The results from all these measurements agree well with their respective Standard Model expectation.

  3. Physics of condensed matter

    CERN Document Server

    Misra, Prasanta K

    2012-01-01

    Physics of Condensed Matter is designed for a two-semester graduate course on condensed matter physics for students in physics and materials science. While the book offers fundamental ideas and topic areas of condensed matter physics, it also includes many recent topics of interest on which graduate students may choose to do further research. The text can also be used as a one-semester course for advanced undergraduate majors in physics, materials science, solid state chemistry, and electrical engineering, because it offers a breadth of topics applicable to these majors. The book be

  4. Fermion Condensates and the Trivial Vacuum of Light-Cone Quantum Field Theory

    CERN Document Server

    Heinzl, T

    1996-01-01

    We discuss the definition of condensates within light-cone quantum field theory. As the vacuum state in this formulation is trivial, we suggest to abstract vacuum properties from the particle spectrum. The latter can in principle be calculated by solving the eigenvalue problem of the light-cone Hamiltonian. We focus on fermionic condensates which are order parameters of chiral symmetry breaking. As a paradigm identity we use the Gell-Mann-Oakes-Renner relation between the quark condensate and the observable pion mass. We examine the analogues of this relation in the `t~Hooft and Schwinger model, respectively. A brief discussion of the Nambu-Jona-Lasinio model is added.

  5. Trace Anomaly and Dimension Two Gluon Condensate Above the Phase Transition

    Energy Technology Data Exchange (ETDEWEB)

    Megias,E.; Ruiz Arriola, E.; Salcedo, L.L.

    2008-02-04

    The dimension two gluon condensate has been used previously within a simple phenomenological model to describe power corrections from available lattice data for the renormalized Polyakov loop and the heavy quark-antiquark free energy in the deconfined phase of QCD. The QCD trace anomaly of gluodynamics also shows unequivocal inverse temperature power corrections which may be encoded as dimension two gluon condensate. We analyze lattice data of the trace anomaly and compare with other determinations of the condensate from previous references, yielding roughly similar numerical values.

  6. Measurement of top quark properties at CMS

    CERN Document Server

    Piedra Gomez, Jonatan

    2015-01-01

    Measurements of top quark properties in top quark decays are presented, using data collected by the CMS experiment during the years 2011 and 2012. The polarization of W bosons in top quark decays is measured. The W boson helicity fractions and angular asymmetries are extracted, and limits on anomalous contributions to the Wtb vertex are determined. Furthermore, searches for flavor changing neutral currents in top quark decays are presented. The flavor contents in top quark pair events are measured using the fraction of top quarks decaying into a W boson and a b quark relative to all top quark decays, $R=BR({\\rm t} \\to {\\rm Wb})/BR({\\rm t} \\to {\\rm Wq})$, and the result is used to determine the CKM matrix element $V_{\\rm tb}$ as well as the width of the top quark resonance.

  7. Chiral symmetry breaking as open string tachyon condensation

    Energy Technology Data Exchange (ETDEWEB)

    Casero, Roberto [CPHT, Ecole Polytechnique, UMR du CNRS 7644, 91128 Palaiseau (France); Kiritsis, Elias [CPHT, Ecole Polytechnique, UMR du CNRS 7644, 91128 Palaiseau (France); Department of Physics, University of Crete, 71003 Heraklion (Greece); Paredes, Angel [CPHT, Ecole Polytechnique, UMR du CNRS 7644, 91128 Palaiseau (France)], E-mail: paredes@cpht.polytechnique.fr

    2007-12-24

    We consider a general framework to study holographically the dynamics of fundamental quarks in a confining gauge theory. Flavors are introduced by placing a set of (coincident) branes and antibranes on a background dual to a confining color theory. The spectrum contains an open string tachyon and its condensation describes the U(N{sub f}){sub L}xU(N{sub f}){sub R}{yields}U(N{sub f}){sub V} symmetry breaking. By studying worldvolume gauge transformations of the flavor brane action, we obtain the QCD global anomalies and an IR condition that allows to fix the quark condensate in terms of the quark mass. We find the expected N{sub f}{sup 2} Goldstone bosons (for m{sub q}=0), the Gell-Mann-Oakes-Renner relation (for m{sub q} small) and the {eta}{sup '} mass. Remarkably, the linear confinement behavior for the masses of highly excited spin-1 mesons, m{sub n}{sup 2}{approx}n is naturally reproduced.

  8. Fermi-Einstein condensation in dense QCD-like theories

    CERN Document Server

    Langfeld, Kurt

    2011-01-01

    While pure Yang-Mills theory feature the centre symmetry, this symmetry is explicitly broken by the presence of dynamical matter. We study the impact of the centre symmetry in such QCD-like theories. In the analytically solvable Schwinger model, centre transitions take place even under extreme conditions, temperature and/or density, and we show that they are key to the solution of the Silver-Blaze problem. We then develop an effective SU(3) quark model which confines quarks by virtue of centre sector transitions. The phase diagram by confinement is obtained as a function of the temperature and the chemical potential. We show that at low temperatures and intermediate values for the chemical potential the centre dressed quarks undergo condensation due to Bose like statistics. This is the Fermi Einstein condensation. To corroborate the existence of centre sector transitions in gauge theories with matter, we study (at vanishing chemical potential) the interface tension in the three-dimensional Z2 gauge theory wit...

  9. Spontaneous Chiral Symmetry Breaking as Condensation of Dynamical Chirality

    CERN Document Server

    Alexandru, Andrei

    2012-01-01

    The occurrence of spontaneous chiral symmetry breaking (SChSB) is equivalent to sufficient abundance of Dirac near-zeromodes. However, dynamical mechanism leading to breakdown of chiral symmetry should be naturally reflected in chiral properties of the modes. Here we offer such connection, presenting evidence that SChSB in QCD proceeds via the appearance of modes exhibiting dynamical tendency for local chiral polarization. These modes form a band of finite width Lambda_ch (chiral polarization scale) around the surface of otherwise anti--polarized Dirac sea, and condense. Lambda_ch characterizes the dynamics of the breaking phenomenon and can be converted to a quark mass scale, thus offering conceptual means to determine which quarks of nature are governed by broken chiral dynamics. It is proposed that, within the context of SU(3) gauge theories with fundamental Dirac quarks, mode condensation is equivalent to chiral polarization, making Lambda_ch an "order parameter" of SChSB. Several uses of these features, ...

  10. Heavy quarks in proton

    CERN Document Server

    AUTHOR|(SzGeCERN)655637

    The measurement of prompt photon associated with a b jet in proton-proton interactions can provide us insight into the inner structure of proton. This is because precision of determination of parton distribution functions of b quark and gluon can be increased by such a measurement. The measurement of cross-section of prompt photon associated with a b jet (process $pp\\longrightarrow \\gamma + b + X$) at $\\sqrt{s}$= 8 TeV with the ATLAS detector is presented. Full 8 TeV dataset collected by ATLAS during the year 2012 was used in this analysis. Corresponding integrated luminosity is 20.3 $fb^{-1}$. Fiducial differential cross-section as a function of photon transverse momentum at particle level was extracted from data and compared with the prediction of leading order event generator Pythia 8. Cross-section extracted from data is normalised independently on the Monte Carlo prediction. Values of data distribution lie above Monte Carlo values. The difference can be explained by presence of higher order effects not ...

  11. Measure Guideline: Evaporative Condensers

    Energy Technology Data Exchange (ETDEWEB)

    German, A.; Dakin, B.; Hoeschele, M.

    2012-03-01

    The purpose of this measure guideline on evaporative condensers is to provide information on a cost-effective solution for energy and demand savings in homes with cooling loads. This is a prescriptive approach that outlines selection criteria, design and installation procedures, and operation and maintenance best practices. This document has been prepared to provide a process for properly designing, installing, and maintaining evaporative condenser systems as well as understanding the benefits, costs, and tradeoffs.

  12. Strange Quark Matter Status and Prospects

    Science.gov (United States)

    Sandweiss, J.

    2004-01-01

    The existence of quark states with more than three quarks is allowed in QCD. The stability of such quark matter states has been studied with lattice QCD and phenomenological bag models, but is not well constrained by theory. The addition of strange quarks to the system allows the quarks to be in lower energy states despite the additional mass penalty. There is additional stability from reduced Coulomb repulsion. SQM is expected to have a low Z/A. Stable or metastable massive multiquark states contain u, d, and s quarks.

  13. Selected top quark mass measurements at CMS

    CERN Document Server

    Bouvier, Elvire

    2016-01-01

    Selected measurements of the top quark mass are presented, obtained from CMS data collected in proton-proton collisions at the LHC at center-of-mass energies of 7, 8, and 13 TeV. ``Standard'' techniques are employed in each decay channel of top quark pair events and their results are combined. The mass of the top quark is also measured using several ``alternative'' methods, including measurements from shapes of top quark decay distributions in single top quark and top quark pair events as well as pole mass measurements.

  14. QCD sum rule calculation of quark-gluon three-body components in the B-meson wave function

    Science.gov (United States)

    Nishikawa, Tetsuo; Tanaka, Kazuhiro

    2011-10-01

    We discuss the QCD sum rule calculation of the heavy-quark effective theory parameters λE and λH, which represent quark-gluon three-body components in the B-meson wave function. We update the sum rules for λE,H calculating the new higher-order contributions to the operator product expansion for the corresponding correlator, i.e., the order αs radiative corrections to the Wilson coefficients associated with the dimension-5 quark-gluon mixed condensate, and the power corrections due to the dimension-6 vacuum condensates. We find that the new radiative corrections significantly improve stability of the corresponding Borel sum rules, modifying the values of λE,H.

  15. Improved light quark masses from pseudoscalar sum rules

    Energy Technology Data Exchange (ETDEWEB)

    Narison, Stephan, E-mail: snarison@yahoo.fr

    2014-11-10

    Using ratios of the inverse Laplace transform sum rules within stability criteria for the subtraction point μ in addition to the ones of the usual τ spectral sum rule variable and continuum threshold t{sub c}, we extract the π(1300) and K(1460) decay constants to order α{sub s}{sup 4} of perturbative QCD by including power corrections up to dimension-six condensates, tachyonic gluon mass for an estimate of large order PT terms, instanton and finite width corrections. Using these inputs with enlarged generous errors, we extract, in a model-independent and conservative ways, the sum of the scale-independent renormalization group invariant (RGI) quark masses (m{sup ^}{sub u}+m{sup ^}{sub q}):q≡d,s and the corresponding running masses (m{sup ¯}{sub u}+m{sup ¯}{sub q}) evaluated at 2 GeV. By giving the value of the ratio m{sub u}/m{sub d}, we deduce the running quark masses m{sup ¯}{sub u,d,s} and condensate 〈u{sup ¯}u{sup ¯}〉 and the scale-independent mass ratios: 2m{sub s}/(m{sub u}+m{sub d}) and m{sub s}/m{sub d}. Using the positivity of the QCD continuum contribution to the spectral function, we also deduce, from the inverse Laplace transform sum rules, for the first time to order α{sub s}{sup 4}, new lower bounds on the RGI masses which are translated into the running masses at 2 GeV and into upper bounds on the running quark condensate 〈u{sup ¯}u{sup ¯}〉. Our results summarized in Table 3 and compared with our previous results and with recent lattice averages suggest that precise phenomenological determinations of the sum of light quark masses require improved experimental measurements of the π(1.3) and K(1.46) hadronic widths and/or decay constants which are the dominant sources of errors in the analysis.

  16. Nuclear matter from effective quark-quark interaction.

    Science.gov (United States)

    Baldo, M; Fukukawa, K

    2014-12-12

    We study neutron matter and symmetric nuclear matter with the quark-meson model for the two-nucleon interaction. The Bethe-Bruckner-Goldstone many-body theory is used to describe the correlations up to the three hole-line approximation with no extra parameters. At variance with other nonrelativistic realistic interactions, the three hole-line contribution turns out to be non-negligible and to have a substantial saturation effect. The saturation point of nuclear matter, the compressibility, the symmetry energy, and its slope are within the phenomenological constraints. Since the interaction also reproduces fairly well the properties of the three-nucleon system, these results indicate that the explicit introduction of the quark degrees of freedom within the considered constituent quark model is expected to reduce the role of three-body forces.

  17. The QCD string with quarks; 1, spinless quarks

    CERN Document Server

    Dubin, A Yu; Simonov, Yu A

    1993-01-01

    Starting from the QCD Lagrangian we derive the effective action for massive quark and antiquark at large distances, corresponding to the minimal area low of the Wilson loop. The path integral method is used to quantize the system and the spectrum is obtained with asymptotically linear Regge trajectories. Two dynamical regimes distinguished by the string energy--momentum distribution are found: at large orbital excitations ($l\\gg 1$) the system behaves as a string and yields the Regge slope of $\\frac{1}{2 \\pi \\sigma}$, while at small $l$ one obtains a potential-like regime for relativistic or nonrelativistic system . The problem of relative time is clarified. It is shown that in the valence quark approximation one can reduce the initial four-dimensional dynamics to the three-dimensional one. The limiting case of a pure string (without quark kinetic terms) is studied and the spectrum of the straight-line string is obtained.

  18. Quark pseudoscalar vertex and quark mass function with clover fermions : spontaneous symmetry breaking, OPE, symmetry restoration at small volume

    CERN Document Server

    Boucaud, Ph; Yaouanc, A Le; Micheli, J; Pene, O; Rodriguez-Quintero, J

    2009-01-01

    We consider the quark mass function which, in spite of the very large Wilson term artefact, can be studied efficiently with clover fermions, by using the quark pseudoscalar vertex and Ward identities. We then study a series of questions about the chiral limit at N_F=0, through the standard chiral extrapolation method. We confirm that the corresponding OPE of the quark mass function, does not work by far at the available momenta ; this seems to be explainable by a recent high order perturbative calculation of the Wilson coefficient which implies very large high order corrections, much larger than in usual QCD perturbative expansions; the gap with the recognized estimate of the condensate remains large, around a factor 2 at the largest momenta available to us (p ~ 6 GeV), showing the need for very high momenta to test OPE in elementary Green functions. We also observe a remarkable property in function of the physical volume: there is a striking discontinuity in the properties of chiral extrapolation around some...

  19. Duality between quark-quark and quark-antiquark pairing in 1+1 dimensional large N models

    CERN Document Server

    Thies, M

    2003-01-01

    We identify a canonical transformation which maps the chiral Gross-Neveu model onto a recently proposed Cooper pair model. Baryon number and axial charge are interchanged. The same physics can be described either as chiral symmetry breaking (quark-antiquark pairing) or as superconductivity (quark-quark pairing).

  20. Explicit and Dynamical Chiral Symmetry Bresking in an Effective Quark-Quark Interaction Model

    Institute of Scientific and Technical Information of China (English)

    宗红石; 吴小华; 侯丰尧; 赵恩广

    2004-01-01

    A method for obtaining the small current quark mass effect on the dressed quark propagator from an effective quark-quark interaction model is developed. Within this approach both the explicit and dynamical chiral symmetry breakings are analysed. A comparison with the previous results is given.

  1. NN Interaction in Chiral Constituent Quark Models

    CERN Document Server

    Valcarce, A; González, P

    2003-01-01

    We review the actual state in the description of the NN interaction by means of chiral constituent quark models. We present a series of relevant features that are nicely explained within the quark model framework.

  2. Two-colour QCD at finite fundamental quark-number density and related theories

    CERN Document Server

    Hands, S J; Morrison, S E; Sinclair, D K

    2001-01-01

    We are simulating SU(2) Yang-Mills theory with four flavours of dynamical quarks in the fundamental representation of SU(2) `colour' at finite chemical potential, mu for quark number, as a model for QCD at finite baryon number density. In particular we observe that for mu large enough this theory undergoes a phase transition to a state with a diquark condensate which breaks quark-number symmetry. In this phase we examine the spectrum of light scalar and pseudoscalar bosons and see evidence for the Goldstone boson associated with this spontaneous symmetry breaking. This theory is closely related to QCD at finite chemical potential for isospin, a theory which we are now studying for SU(3) colour.

  3. Vector meson masses in two-dimensional SU(NC) lattice gauge theory with massive quarks

    Institute of Scientific and Technical Information of China (English)

    JIANG Jun-Qin

    2008-01-01

    Using an improved lattice Hamiltonian with massive Wilson quarks a variational method is applied to study the dependence of the vector meson mass Mv on the quark mass m and the Wilson parameter r in in the scaling window 1 ≤ 1/g2 ≤ 2, Mv/g is approximately linear in m, but Mv/g obviously does not depend on r (this differs from the quark condensate). Particularly for m → 0 our numerical results agree very well with Bhattacharya's analytical strong coupling result in the continuum, and the value of ((e)Mv/(e)m) |mm=0 in two-dimensional SU(NC) lattice gauge theory is very close to that in Schwinger model.

  4. What binds quarks together at different momentum scales? A conceptual scenario

    Directory of Open Access Journals (Sweden)

    N.G. Stefanis

    2014-11-01

    Full Text Available The binding effects of quarks within hadrons are discussed in terms of the pion distribution amplitude over longitudinal momentum fractions. To understand the behavior of this quantity at different momentum scales, the concept of synchronization in complex systems has been employed. It is argued that at low momentum scales, the quarks get correlated by nonlocal quark/gluon condensates that cause an endpoint-suppressed, mainly bimodal structure of the pion distribution amplitude inferred from a sum-rule analysis. The mass generation mechanism, within the framework of Dyson–Schwinger equations, and evolution effects pull these two peaks back to the center to form at Q2→∞ the asymptotic distribution amplitude which represents the most synchronized q¯q state.

  5. In-medium kaon and antikaon properties in the quark-meson coupling model

    CERN Document Server

    Tsushima, K; Thomas, A W; Wright, S V

    1998-01-01

    The properties of the kaon, $K$, and antikaon, $\\kbar$, in nuclear medium are studied in the quark-meson coupling (QMC) model. Employing a constituent quark-antiquark (MIT bag model) picture, their excitation energies in a nuclear medium at zero momentum are calculated within mean field approximation. The scalar, and the vector mesons are assumed to couple directly to the nonstrange quarks and antiquarks in the $K$ and $\\kbar$ mesons. It is demonstrated that the $\\rho$ meson induces different mean field potentials for each member of the isodoublets, $K$ and $\\kbar$, when they are embedded in asymmetric nuclear matter. Furthermore, it is also shown that this $\\rho$ meson potential is repulsive for the $K^-$ meson in matter with a neutron excess, and renders $K^-$ condensation less likely to occur.

  6. Investigation of the light four-quark states with exotic $J^{PC}=0^{--}$

    CERN Document Server

    Huang, Zhuo-Ran; Steele, T G; Zhang, Zhu-Feng; Jin, Hong-Ying

    2016-01-01

    We study the exotic $J^{PC}=0^{--}$ four-quark states in Laplace sum rules (LSR) and finite energy sum rules (FESR). We use the vector tetraquark-like currents as interpolating currents in the correlator, from which the $1^{+-}$ states are also studied. In the mass extraction, we use the standard stability criterion with respect to the Borel parameters and the QCD continuum thresholds and consider the effect of the violation of factorization in estimating the high dimensional condensates as a source of uncertainties. The obtained mass prediction $1.66\\pm0.14$ GeV is much lower than the previous sum rule predictions obtained using the scalar currents. Our result favours the four-quark interpretation of the possible $\\rho\\pi$ dominance in the $D^0$ decay. We also discuss the possible decay patterns of these exotic four-quark states.

  7. Quark spin-orbit correlations

    CERN Document Server

    Lorcé, Cédric

    2014-01-01

    The proton spin puzzle issue focused the attention on the parton spin and orbital angular momentum contributions to the proton spin. However, a complete characterization of the proton spin structure requires also the knowledge of the parton spin-orbit correlation. We showed that this quantity can be expressed in terms of moments of measurable parton distributions. Using the available phenomenological information about the valence quarks, we concluded that this correlation is negative, meaning that the valence quark spin and kinetic orbital angular momentum are, in average, opposite. The quark spin-orbit correlation can also be expressed more intuitively in terms of relativistic phase-space distributions, which can be seen as the mother distributions of the standard generalized and transverse-momentum dependent parton distributions. We present here for the first time some examples of the general multipole decomposition of these phase-space distributions.

  8. Gluon propagator with dynamical quarks

    CERN Document Server

    Papavassiliou, Joannis

    2014-01-01

    We review recent work on the effects of quark loops on the gluon propagator in the Landau gauge, relying mainly on the Schwinger-Dyson equations that describe the two-point sector of QCD. Particularly important in this context is the detailed study of how the standard gluon mass generation mechanism, which is responsible for the infrared finiteness of the quenched gluon propagator, is affected by the inclusions of dynamical quarks. This issue is especially relevant and timely, given the qualitative picture that emerges from recent unquenched lattice simulations. Our results demonstrate clearly that the gluon mass generation persists, and that the corresponding saturation points of the unquenched gluon propagators are progressively suppressed, as the number of quark flavors increases.

  9. Energy Density in Quark-Gluon Plasma

    Institute of Scientific and Technical Information of China (English)

    马忠彪; 苗洪; 高崇寿

    2003-01-01

    We study the energy density in quark-gluon plasma. At the very high temperature, the quark matter is a hot and dense matter in the colour deconfinement condition, and quarks can coalescent diquarks. Energy density of this system is worked out and compared with the energy density in the other two kinds of situations. Possible energy density is about eo ≈ 2.4 GeV/fm3 according to our estimation for quark matter including diquarks,

  10. The Body Center Cubic Quark Lattice Model (A Modification and Further Development of the Quark Model)

    CERN Document Server

    Xu, J L

    2002-01-01

    We assume that the u quarks and the d quarks constitute a body center cubic quark lattice in the vacuum. Using energy band theory, we deduce an excited quark spectrum (from the quark lattice). Using the accompanying excitation concept, we deduce a baryon spectrum (including S, C, b, I, Q, and mass) from the quark spectrum. With a phenomenological binding energy formula, we deduce a meson spectrum (including S, C, b, I, Q, and mass) from the quark spectrum. The baryon and meson spectra agree well with experimental results. The BCC Quark Model predicts many new quarks (u'(3), d'(6)), baryons ($\\Lambda^0(4280)$, $\\Lambda_{C}^{+}(6600)$, $\\Lambda_{b}^{0}(9960))$, and mesons (K(3597), D(5996), B(9504), $\\eta(5926)$, $\\Upsilon(17805)$, T(1603) with I=2). The quarks u'(3) and d'(6) and the meson T(1603) have already been discovered.

  11. Equilibration in quark gluon plasma

    Science.gov (United States)

    Das, S. K.; Alam, J.; Mohanty, P.

    2011-07-01

    The hydrodynamic expansion rate of quark gluon plasma (QGP) is evaluated and compared with the scattering rate of quarks and gluons within the system. Partonic scattering rates evaluated within the ambit of perturbative Quantum Choromodynamics (pQCD) are found to be smaller than the expansion rate evaluated with ideal equation of state (EoS) for the QGP. This indicate that during the space-time evolution the system remains out of equilibrium. Enhancement of pQCD cross sections and a more realistic EoS keep the partons closer to the equilibrium.

  12. Equilibration in Quark Gluon Plasma

    OpenAIRE

    Das, Santosh K.; Alam, Jan-e; Mohanty, Payal

    2009-01-01

    The hydrodynamic expansion rate of quark gluon plasma (QGP) is evaluated and compared with the scattering rate of quarks and gluons within the system. Partonic scattering rates evaluated within the ambit of perturbative Quantum Choromodynamics (pQCD) are found to be smaller than the expansion rate evaluated with ideal equation of state (EoS) for the QGP. This indicate that during the space-time evolution the system remains out of equilibrium. Enhancement of pQCD cross sections and a more real...

  13. Equilibration in Quark Gluon Plasma

    CERN Document Server

    Das, Santosh K; Mohanty, Payal

    2009-01-01

    The hydrodynamic expansion rate of quark gluon plasma (QGP) is evaluated and compared with the scattering rate of quarks and gluons within the system. Partonic scattering rates evaluated within the ambit of perturbative Quantum Choromodynamics (pQCD) are found to be smaller than the expansion rate evaluated with ideal equation of state (EoS) for the QGP. This indicate that during the space-time evolution the system remains out of equilibrium. Enhancement of pQCD cross sections and a more realistic EoS keep the partons closer to the equilibrium.

  14. Quark-gluon plasma 5

    CERN Document Server

    2016-01-01

    This is the fifth volume in the series on the subject of quark-gluon plasma, a unique phase created in heavy-ion collisions at high energy. It contains review articles by the world experts on various aspects of quark-gluon plasma taking into account the advances driven by the latest experimental data collected at both the Relativistic Heavy-Ion Collider (RHIC) and the Large Hadron Collider (LHC). The articles are pedagogical and comprehensive which can be helpful for both new researchers entering the field as well as the experienced physicists working on the subject.

  15. Searches for monopoles and quarks

    Energy Technology Data Exchange (ETDEWEB)

    Matis, H.S.

    1986-07-01

    Within the last year, several sensitive searches for monopoles and quarks have been done. Recent experiments at the Tevatron and at the CERN p anti p collider have detected no evidence for free fractional charge. An experiment in a iron refinery, which searched for GUT monopoles trapped in iron ore with two SQUID detectors, found no monopole candidate. However, an experiment looking for monopoles in cosmic rays has measured an interesting event which could be interpreted as a monopole. Several detectors are being built to achieve significant improvements in sensitivity for detection of quarks and monopoles. 21 refs.

  16. Mesons in the Constituent Quark Model

    Institute of Scientific and Technical Information of China (English)

    WANG Li; PING Jia-Lun

    2007-01-01

    The quark-antiquark (q(-q)) spectrum is studied by solving the Schrǒdinger equation in the framework of non-relativistic constituent quark model. An overall good fit to the experimental data of meson is obtained. The interactions between quark and antiquark consist of quadratic colour confinement-exchange, one-gluon-exchange, and Goldstone-boson-exchange potentials.

  17. Why quarks cannot be fundamental particles

    CERN Document Server

    Kalman, C S

    2005-01-01

    Many reasons why quarks should be considered composite particles are found in the book Preons by D'Souza and Kalman. One reason not found in the book is that all the quarks except for the u quark decay. The electron and the electron neutrino do not decay. A model of fundamental particles based upon the weak charge is presented.

  18. SPONTANEOUS CP VIOLATION AND QUARK MASS AMBIGUITIES.

    Energy Technology Data Exchange (ETDEWEB)

    CREUTZ,M.

    2004-09-21

    I explore the regions of quark masses where CP will be spontaneously broken in the strong interactions. The boundaries of these regions are controlled by the chiral anomaly, which manifests itself in ambiguities in the definition of non-degenerate quark masses. In particular, the concept of a single massless quark is ill defined.

  19. LATTICE QCD THERMODYNAMICS WITH WILSON QUARKS.

    Energy Technology Data Exchange (ETDEWEB)

    EJIRI,S.

    2007-11-20

    We review studies of QCD thermodynamics by lattice QCD simulations with dynamical Wilson quarks. After explaining the basic properties of QCD with Wilson quarks at finite temperature including the phase structure and the scaling properties around the chiral phase transition, we discuss the critical temperature, the equation of state and heavy-quark free energies.

  20. Top Quark Results from D0

    CERN Document Server

    Greenlee, H B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Agelou, M; Agram, J L; Ahn, S H; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Andeen, T; Anderson, S; Andrieu, B; Arnoud, Y; Askew, A; Åsman, B; Assis-Jesus, A C S; Atramentov, O; Autermann, C; Avila, C; Badaud, F; Baden, A; Baldin, B Yu; Balm, P W; Banerjee, S; Barberis, E; Bargassa, P; Baringer, P; Barnes, C; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Bean, A; Beauceron, S; Begel, M; Bellavance, A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Binder, M; Biscarat, C; Black, K M; Blackler, I; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Blumenschein, U; Böhnlein, A; Boeriu, O; Bolton, T A; Borcherding, F; Borissov, G; Bos, K; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Buchanan, N J; Buchholz, D; Bühler, M; Büscher, V; Burdin, S; Burnett, T H; Busato, E; Butler, J M; Bystrický, J; Caron, S; Carvalho, W; Casey, B C K; Cason, N M; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Chapin, D; Charles, F; Cheu, E; Cho, D K; Choi, S; Choudhary, B; Christiansen, T; Christofek, L; Claes, D; Clement, B; Clément, C; Coadou, Y; Cooke, M; Cooper, W E; Coppage, D; Corcoran, M; Cothenet, A; Cousinou, M C; Cox, B; Crepe-Renaudin, S; Cristetiu, M; Cutts, D; Da Motta, H; Davies, B; Davies, G; Davis, G A; De, K; de Jong, P; De Jong, S J; De La Cruz-Burelo, E; De Oliveira Martins, C; Dean, S; Degenhardt, J D; Déliot, F; Demarteau, M; Demina, R; Demine, P; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Doidge, M; Dong, H; Doulas, S; Dudko, L V; Duflot, L; Dugad, S R; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Edwards, T; Ellison, J; Elmsheuser, J; Elvira, V D; Eno, S; Ermolov, P; Eroshin, O V; Estrada, J; Evans, D; Evans, H; Evdokimov, A; Evdokimov, V N; Fast, J; Fatakia, S N; Feligioni, L; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fleck, I; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; Galyaev, E; García, C; García-Bellido, A; Gardner, J; Gavrilov, V; Gay, P; Gelé, D; Gelhaus, R; Genser, K; Gerber, C E; Gershtein, Yu; Ginther, G; Golling, T; Gómez, B; Gounder, K; Goussiou, A; Grannis, P D; Greder, S; Abazov, V M; Greenwood, Z D; Gregores, E M; Gris, P; Grivaz, J F; Groer, L; Grünendahl, S; Grünewald, M W; Gurzhev, S N; Gutíerrez, G; Gutíerrez, P; Haas, A; Hadley, N J; Hagopian, S; Hall, I; Hall, R E; Han, C; Han, L; Hanagaki, K; Harder, K; Harrington, R; Hauptman, J M; Hauser, R; Hays, J; Hebbeker, T; Hedin, D; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hong, S J; Hooper, R; Houben, P; Hu, Y; Huang, J; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jain, V; Jakobs, K; Jenkins, A; Jesik, R; Johns, K; Johnson, M; Jonckheere, A; Jonsson, P; Juste, A; Käfer, D; Kahl, W; Kahn, S; Kajfasz, E; Kalinin, A M; Kalk, J; Karmanov, D; Kasper, J; Kau, D; Kaur, R; Kehoe, R; Kermiche, S; Kesisoglou, S; Khanov, A; Kharchilava, A I; Kharzheev, Yu M; Kim, H; Klima, B; Klute, M; Kohli, J M; Kopal, M; Korablev, V M; Kotcher, J; Kothari, B; Koubarovsky, A; Kozelov, A V; Kozminski, J; Kryemadhi, A; Krzywdzinski, S; Kuleshov, S; Kulik, Y; Kumar, A; Kunori, S; Kupco, A; Kurca, T; Kvita, J; Lager, S; Lahrichi, N; Landsberg, G L; Lazoflores, J; Le Bihan, A C; Lebrun, P; Lee, W M; Leflat, A; Lehner, F; Leonidopoulos, C; Lévêque, J; Lewis, P; Li, J; Li, Q Z; Lima, J G R; Lincoln, D; Linn, S L; Linnemann, J T; Lipaev, V V; Lipton, R; Lobo, L; Lobodenko, A; Lokajícek, M; Lounis, A; Love, P; Lubatti, H J; Lueking, L; Lynker, M; Lyon, A L; Maciel, A K A; Madaras, R J; Mättig, P; Magass, C; Magerkurth, A; Magnan, A M; Makovec, N; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Mao, H S; Maravin, Y; Martens, M; Mattingly, S E K; Mayorov, A A; McCarthy, R; McCroskey, R; Meder, D; Melanson, H L; Melnitchouk, A S; Mendes, A; Merkin, M; Merritt, K W; Meyer, A; Michaut, M; Miettinen, H; Mitrevski, J; Mokhov, N V; Molina, J; Mondal, N K; Moore, R W; Muanza, G S; Mulders, M; Mutaf, Y D; Nagy, E; Narain, M; Naumann, N A; Neal, H A; Negret, J P; Nelson, S; Neustroev, P; Nöding, C; Nomerotski, A; Novaes, S F; Nunnemann, T; Nurse, E; O'Dell, V; O'Neil, D C; Oguri, V; Oliveira, N; Oshima, N; Oteroy-Garzon, G J; Padley, P; Parashar, N; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Perea, P M; Pérez, E; Petroff, P; Petteni, M; Phaf, L; Piegaia, R; Pleier, M A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pope, B G; Prado da Silva, W L; Prosper, H B; Protopopescu, S D; Qian, J; Quadt, A; Quinn, B; Rani, K J; Ranjan, K; Rapidis, P A; Ratoff, P N; Reay, N W; Reucroft, S; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F K; Rodrigues, R F; Royon, C; Rubinov, P; Ruchti, R; Rud, V I; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santoro, A F S; Savage, G; Sawyer, L; Scanlon, T; Schaile, A D; Schamberger, R D; Schellman, H; Schieferdecker, P; Schmitt, C; Schwartzman, A; Schwienhorst, R; Sen-Gupta, S; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shephard, W D; Shivpuri, R K; Shpakov, D; Sidwell, R A; Simák, V; Sirotenko, V I; Skubic, P L; Slattery, P F; Smith, R P; Smolek, K; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Song, X; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Souza, M; Spurlock, B; Stanton, N R; Stark, J; Steele, J; Stevenson, K; Stolin, V; Stone, A; Stoyanova, D A; Strandberg, J; Strang, M A; Strauss, M; Ströhmer, R; Strom, D; Strovink, M; Stutte, L; Sumowidagdo, S; Sznajder, A; Talby, M; Tamburello, P; Taylor, W; Telford, P; Temple, J; Thomas, E; Thooris, B; Tomoto, M; Toole, T; Torborg, J; Towers, S; Trefzger, T; Trincaz-Duvoid, S; Tuchming, B; Tully, C; Turcot, A S; Tuts, P M; Uvarov, L; Uvarov, S; Uzunyan, S; Vachon, B; Van Kooten, R; Van Leeuwen, W M; Varelas, N; Varnes, E W; Vartapetian, A H; Vasilyev, I A; Vaupel, M; Verdier, P; Vertogradov, L S; Verzocchi, M; Villeneuve-Séguier, F; Vlimant, J R; Von Törne, E; Vreeswijk, M; Vu-Anh, T; Wahl, H D; Walker, R; Wang, L; Wang, Z M; Warchol, J; Watts, G; Wayne, M; Weber, M; Weerts, H; Wegner, M; Wermes, N; White, A; White, V; Wicke, D; Wijngaarden, D A; Wilson, G W; Wimpenny, S J; Wittlin, J; Wobisch, M; Womersley, J; Wood, D R; Wyatt, T R; Xu, Q; Xuan, N; Yacoob, S Y; Yamada, R; Yan, M; Yasuda, T; Yatsunenko, Y A; Yen, Y; Yip, K; Yoo, H D; Youn, S W; Yu, J; Yurkewicz, A; Zabi, A; Zatserklyaniy, A; Zdrazil, M; Zeitnitz, C; Zhang, D; Zhang, X; Zhao, T; Zhao, Z; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zitoun, R; Zutshi, V; Zverev, E G

    2005-01-01

    In this talk I will present recent preliminary results from the D0 experiment from Tevatron Run II ($p\\bar p$ collisions at $\\sqrt{s} = 1.96$ TeV). The results presented in this talk include top quark pair production cross section, top quark mass, and upper limits on single top quark production.

  1. CONDENSATION OF WATER VAPOR IN A VERTICAL TUBE CONDENSER

    Directory of Open Access Journals (Sweden)

    Jan Havlík

    2015-10-01

    Full Text Available This paper presents an analysis of heat transfer in the process of condensation of water vapor in a vertical shell-and-tube condenser. We analyze the use of the Nusselt model for calculating the condensation heat transfer coefficient (HTC inside a vertical tube and the Kern, Bell-Delaware and Stream-flow analysis methods for calculating the shell-side HTC from tubes to cooling water. These methods are experimentally verified for a specific condenser of waste process vapor containing air. The operating conditions of the condenser may be different from the assumptions adopted in the basic Nusselt theory. Modifications to the Nusselt condensation model are theoretically analyzed.

  2. Egalitarian Improvement to Democracy: Quark renormalization constants in N_f=2 QCD

    CERN Document Server

    Petrov, K

    2010-01-01

    We present our results on the non-perturbative evaluation of the renormalization constant for the quark field, $Z_q$, in Landau gauge within RI-MOM scheme. Using three lattice spacing we are able to isolate lattice artefacts of various origin, both perturbative and non-perturbative. In particular, the existence of the dimension-two gluon-condensate is discussed, and confirmed.

  3. The phase diagram of nuclear and quark matter at high baryon density

    CERN Document Server

    Fukushima, Kenji

    2013-01-01

    We review theoretical approaches to explore the phase diagram of nuclear and quark matter at high baryon density. We first look over the basic properties of quantum chromodynamics (QCD) and address how to describe various states of QCD matter. In our discussions on nuclear matter we cover the relativistic mean-field model, the chiral perturbation theory, and the approximation based on the large-Nc limit where Nc is the number of colors. We then explain the liquid-gas phase transition and the inhomogeneous meson condensation in nuclear matter with emphasis put on the relevance to quark matter. We commence the next part focused on quark matter with the bootstrap model and the Hagedorn temperature. Then we turn to properties associated with chiral symmetry and exposit theoretical descriptions of the chiral phase transition. There emerge some quark-matter counterparts of phenomena seen in nuclear matter such as the liquid-gas phase transition and the inhomogeneous structure of the chiral condensate. The third reg...

  4. Condensed matter physics

    CERN Document Server

    Isihara, A

    2007-01-01

    More than a graduate text and advanced research guide on condensed matter physics, this volume is useful to plasma physicists and polymer chemists, and their students. It emphasizes applications of statistical mechanics to a variety of systems in condensed matter physics rather than theoretical derivations of the principles of statistical mechanics and techniques. Isihara addresses a dozen different subjects in separate chapters, each designed to be directly accessible and used independently of previous chapters. Topics include simple liquids, electron systems and correlations, two-dimensional

  5. The Chiral Condensate on Two-flavor Staggered Configurations from an Overlap Operator

    CERN Document Server

    Hasenfratz, Anna; Hasenfratz, Anna; Hoffmann, Roland

    2006-01-01

    We measure the low lying eigenmodes of an overlap Dirac operator on 2--flavor staggered configurations. By comparing the eigenmode distribution to the predictions of Random Matrix Theory we test to what accuracy staggered configurations describe continuum QCD. The agreement between the numerical data and RMT implies that at our quark mass values the lattice artifacts of the staggered configurations are comparable to overlap configurations. We identify the overlap valence mass that best matches the staggered sea quarks and predict the value of the infinite volume 2-flavor chiral condensate.

  6. Large mass Q-Qbar production from the Color Glass Condensate

    CERN Document Server

    Gelis, François

    2004-01-01

    We compute quark-antiquark pair production in the context of the Color Glass Condensate model for central heavy-ion collisions. The calculation is performed analytically to leading order in the density of hard sources present in the projectiles, and is applicable to quarks with a mass large compared to the saturation momentum. The formulas derived in this paper are compared to expressions derived in the framework of collinearly factorized perturbative QCD and in kt factorization models. We comment on the breaking of kt factorization which occurs beyond leading order in our approach.

  7. Dirac spectrum of one-flavor QCD at \\theta=0 and continuity of the chiral condensate

    CERN Document Server

    Verbaarschot, J J M

    2014-01-01

    We derive exact analytical expressions for the spectral density of the Dirac operator at fixed \\theta-angle in the microscopic domain of one-flavor QCD. These results are obtained by performing the sum over topological sectors using novel identities involving sums of products of Bessel functions. Because the fermion determinant is not positive definite for negative quark mass, the usual Banks-Casher relation is not valid and has to be replaced by a different mechanism first observed for QCD at nonzero chemical potential. Using the exact results for the spectral density we explain how this mechanism results in a chiral condensate that remains constant when the quark mass changes sign.

  8. Monopole condensation in two-flavour Adjoint QCD

    CERN Document Server

    Cossu, G; Di Giacomo, Adriano; Lacagnina, G; Pica, C

    2006-01-01

    Two distinct phase transitions occur at different temperatures in QCD with adjoint fermions (aQCD): deconfinement and chiral symmetry restoration. In this model, quarks do no explicitely break the center Z(3) symmetry and therefore the Polyakov loop is a good order parameter for the deconfinement transition. We study monopole condensation by inspecting the expectation value of an operator which creates a monopole. Such a quantity is expected to be an order parameter for the deconfinement transition as in the case of fundamental fermions.

  9. Simple Simulations of DNA Condensation

    Energy Technology Data Exchange (ETDEWEB)

    STEVENS,MARK J.

    2000-07-12

    Molecular dynamics simulations of a simple, bead-spring model of semiflexible polyelectrolytes such as DNA are performed. All charges are explicitly treated. Starting from extended, noncondensed conformations, condensed structures form in the simulations with tetravalent or trivalent counterions. No condensates form or are stable for divalent counterions. The mechanism by which condensates form is described. Briefly, condensation occurs because electrostatic interactions dominate entropy, and the favored Coulombic structure is a charge ordered state. Condensation is a generic phenomena and occurs for a variety of polyelectrolyte parameters. Toroids and rods are the condensate structures. Toroids form preferentially when the molecular stiffness is sufficiently strong.

  10. Top quark physics with the CMS experiment

    Directory of Open Access Journals (Sweden)

    Cuevas Javier

    2014-04-01

    Full Text Available An overview of recent top quark measurements in proton-proton collisions at √s = 7 and 8 TeV in data collected with the CMS experiment at the LHC, using a data sample collected during the years 2011 and 2012 is presented. Measurements of top quark pair production cross sections in several top quark final states are reported, as well as electroweak production of single top quarks in both t-and tW-channels. The mass of the top quark is estimated by different methods.

  11. Top-Quark Physics Results From LHC

    CERN Document Server

    INSPIRE-00214275

    2012-01-01

    The top-quark is a fundamental element of the physics program at the Large Hadron Collider (LHC). We review the current status of the top-quark measurements performed by ATLAS and CMS experiments in pp collisions at sqrt(s)=7 TeV with a focus on the recent results of the top-quark production rates and the measurements of the mass and other properties of the top-quark. We will also describe the recent searches for physics beyond the Standard Model in the top-quark sector.

  12. Quark sea asymmetry of the nucleon

    Science.gov (United States)

    Mírez, Carlos; Tomio, Lauro; Trevisan, L. A.; Frederico, T.

    2010-02-01

    The light anti-quark and quark distribution in the proton, as well as the neutron to proton ratio of the structure functions, extracted from experimental data, are well fitted by a statistical model of linear-confined quarks. The parameters of the model are given by a temperature, which is adjusted by the Gottfried sum-rule violation, and two chemical potentials given by the corresponding up ( u) and down ( d) quark normalizations in the nucleon. The quark energy levels are generated by a relativistic linear-confined scalar plus vector potential.

  13. Phenomenology with Lattice NRQCD b Quarks

    CERN Document Server

    Colquhoun, Brian; Dowdall, Rachel J; Koponen, Jonna; Lepage, G Peter; Lytle, Andrew T

    2015-01-01

    The HPQCD collaboration has used radiatively-improved NonRelativistic QCD (NRQCD) for $b$ quarks in bottomonium to determine the decay rate of $\\Upsilon$ and $\\Upsilon^\\prime$ mesons to leptons in lattice QCD. Using time-moments of vector bottomonium current-current correlators, we are also able to determine the $b$ quark mass in the $\\overline{\\mathrm{MS}}$ scheme. We use the same NRQCD $b$ quarks and Highly Improved Staggered Quark (HISQ) light quarks -- with masses down to their physical values -- to give a complete picture of heavy-light meson decay constants including those for vector mesons. We also study the semileptonic $B\\rightarrow\\pi\\ell\

  14. Heavy quark colorimetry of QCD matter

    CERN Document Server

    Dokshitzer, Yu L; Dokshitzer, Yu.L.

    2001-01-01

    We consider propagation of heavy quarks in QCD matter. Because of large quark mass, the radiative quark energy loss appears to be qualitatively different from that of light quarks at all energies of practical importance. Finite quark mass effects lead to an in-medium enhancement of the heavy-to-light D/\\pi ratio at moderately large (5--10 GeV) transverse momenta. For hot QCD matter a large enhancement is expected, whose magnitude and shape are exponentially sensitive to the density of colour charges in the medium.

  15. Triminimal parametrization of quark mixing matrix

    Science.gov (United States)

    He, Xiao-Gang; Li, Shi-Wen; Ma, Bo-Qiang

    2008-12-01

    Starting from a new zeroth order basis for quark mixing (CKM) matrix based on the quark-lepton complementarity and the tribimaximal pattern of lepton mixing, we derive a triminimal parametrization of a CKM matrix with three small angles and a CP-violating phase as its parameters. This new triminimal parametrization has the merits of fast convergence and simplicity in application. With the quark-lepton complementary relations, we derive relations between the two unified triminimal parametrizations for quark mixing obtained in this work and for lepton mixing obtained by Pakvasa-Rodejohann-Weiler. Parametrization deviating from quark-lepton complementarity is also discussed.

  16. Physics of the Quark Model

    Science.gov (United States)

    Young, Robert D.

    1973-01-01

    Discusses the charge independence, wavefunctions, magnetic moments, and high-energy scattering of hadrons on the basis of group theory and nonrelativistic quark model with mass spectrum calculated by first-order perturbation theory. The presentation is explainable to advanced undergraduate students. (CC)

  17. Observation of the Top Quark

    Science.gov (United States)

    Kim, S. B.

    1995-08-01

    Top quark production is observed in{bar p}p collisions at{radical}s= 1.8 TeV at the Fermilab Tevatron. The Collider Detector at Fermilab (CDF) and D{O} observe signals consistent with t{bar t} to WWb{bar b}, but inconsistent with the background prediction by 4.8{sigma} (CDF), 4.6a (D{O}). Additional evidence for the top quark Is provided by a peak in the reconstructed mass distribution. The kinematic properties of the excess events are consistent with the top quark decay. They measure the top quark mass to be 176{plus_minus}8(stat.){plus_minus}10(sys.) GeV/c{sup 2} (CDF), 199{sub -21}{sup+19}(stat.){plus_minus}22(sys.) GeV/c{sup 2} (D{O}), and the t{bar t} production cross section to be 6.8{sub -2.4}{sup+3.6}pb (CDF), 6.4{plus_minus}2.2 pb (D{O}).

  18. Hydrodynamics of a quark droplet

    DEFF Research Database (Denmark)

    Bjerrum-Bohr, Johan J.; Mishustin, Igor N.; Døssing, Thomas

    2012-01-01

    We present a simple model of a multi-quark droplet evolution based on the hydrodynamical description. This model includes collective expansion of the droplet, effects of the vacuum pressure and surface tension. The hadron emission from the droplet is described following Weisskopf's statistical...

  19. Physics of the Quark Model

    Science.gov (United States)

    Young, Robert D.

    1973-01-01

    Discusses the charge independence, wavefunctions, magnetic moments, and high-energy scattering of hadrons on the basis of group theory and nonrelativistic quark model with mass spectrum calculated by first-order perturbation theory. The presentation is explainable to advanced undergraduate students. (CC)

  20. Top quark mass and kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Barberis, Emanuela; /Northeastern U.

    2006-05-01

    A summary of the results on the measurement of the Top Quark mass and the study of the kinematics of the t{bar t} system at the Tevatron collider is presented here. Results from both the CDF and D0 collaborations are reported.

  1. Heavy-Quark QCD Exotica

    CERN Document Server

    Lebed, Richard F; Swanson, Eric S

    2016-01-01

    This review presents an overview of the remarkable progress in the field of heavy-quark exotic hadrons over the past 15 years. It seeks to be pedagogical rather than exhaustive, summarizing both the progress and specific results of experimental discoveries, and the variety of theoretical approaches designed to explain these new states.

  2. NA60 frees the quarks

    CERN Multimedia

    2003-01-01

    Fitted with new state-of-the-art silicon detectors, NA60 is prepared to study the phase transition from confined hadronic matter to a deconfined (free) quark-gluon plasma, a state of matter which probably existed an instant after the Big Bang.

  3. Heavy Quark Asymmetries at LEP

    CERN Document Server

    Halley, A W

    1999-01-01

    Measurements of b and c quark asymmetries using data collected at LEP 1 are described. The relative merits of each of the individual techniques used is emphasised as is the most profitable way of combining them. Effects of radiative corrections are discussed, together with the impact of these measurements on global electroweak fits used to estimate the expected mass of the Higgs boson.

  4. Quark masses without Yukawa hierarchies

    Energy Technology Data Exchange (ETDEWEB)

    Fanchiotti, H.; Garcia-Canal, C. [Plata Univ. Nacional, Laboratorio de Fisica Teorica, Dept. de Fisica, Facultad de Ciencias Exactas, La Plata (Argentina); Ponce, W.A. [Antioquia Univ., Instituto de Fisica, Colombia La (Argentina)

    2005-12-15

    A model based on the local gauge group SU(3){sub c}*SU(3){sub L}*U(1){sub X} without particles with exotic electric charges is shown to be able to provide the quark mass spectrum and their mixing, by means of universal see-saw mechanisms, avoiding a hierarchy in the Yukawa coupling constants. (authors)

  5. Preventing freezing of condensate inside tubes of air cooled condenser

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Jeong A; Hwang, In Hwan; Lee, Dong Hwan [Chonbuk Nat' l Univ., Jeonju (Korea, Republic of); Cho, Young Il [Drexel Univ., Philadelphia (United States)

    2012-08-15

    An air cooled condenser is a device that is used for converting steam into condensate by using ambient air. The air cooled condenser is prone to suffer from a serious explosion when the condensate inside the tubes of a heat exchanger is frozen; in particular, tubes can break during winter. This is primarily due to the structural problem of the tube outlet of an existing conventional air cooled condenser system, which causes the backflow of residual steam and noncondensable gases. To solve the backflow problem in such condensers, such a system was simulated and a new system was designed and evaluated in this study. The experimental results using the simulated condenser showed the occurrence of freezing because of the backflow inside the tube. On the other hand, no backflow and freezing occurred in the advanced new condenser, and efficient heat exchange occurred.

  6. Condensed Matter Physics

    Science.gov (United States)

    Marder, Michael P.

    2000-01-01

    A modern, unified treatment of condensed matter physics This new work presents for the first time in decades a sweeping review of the whole field of condensed matter physics. It consolidates new and classic topics from disparate sources, teaching "not only about the effective masses of electrons in semiconductor crystals and band theory, but also about quasicrystals, dynamics of phase separation, why rubber is more floppy than steel, electron interference in nanometer-sized channels, and the quantum Hall effect." Six major areas are covered---atomic structure, electronic structure, mechanical properties, electron transport, optical properties, and magnetism. But rather than defining the field in terms of particular materials, the author focuses on the way condensed matter physicists approach physical problems, combining phenomenology and microscopic arguments with information from experiments. For graduate students and professionals, researchers and engineers, applied mathematicians and materials scientists, Condensed Matter Physics provides: * An exciting collection of new topics from the past two decades. * A thorough treatment of classic topics, including band theory, transport theory, and semiconductor physics. * Over 300 figures, incorporating many images from experiments. * Frequent comparison of theory and experiment, both when they agree and when problems are still unsolved. * More than 50 tables of data and a detailed index. * Ample end-of-chapter problems, including computational exercises. * Over 1000 references, both recent and historically significant.

  7. Soft condensed matter

    NARCIS (Netherlands)

    Frenkel, D.

    2002-01-01

    These lectures illustrate some of the concepts of soft-condensed matter physics, taking examples from colloid physics. Many of the theoretical concepts will be illustrated with the results of computer simulations. After a brief introduction describing interactions between colloids, the paper focuses

  8. Condensed landscape experience

    DEFF Research Database (Denmark)

    Earon, Ofri

    2011-01-01

    . This paper addresses the question of whether the sensation of landscape can be condensed in function or to the size of an urban building. It also discusses the benefits and potentials of the amalgamate, by underlining the unique qualities of such a hybrid. In an attempt to define the experience of landscape...

  9. Pions to Quarks

    Science.gov (United States)

    Brown, Laurie Mark; Dresden, Max; Hoddeson, Lillian

    2009-01-01

    Part I. Introduction; 1. Pions to quarks: particle physics in the 1950s Laurie M Brown, Max Dresden and Lillian Hoddeson; 2. Particle physics in the early 1950s Chen Ning Yang; 3. An historian's interest in particle physics J. L. Heilbron; Part II. Particle discoveries in cosmic rays; 4. Cosmic-ray cloud-chamber contributions to the discovery of the strange particles in the decade 1947-1957 George D. Rochester; 5. Cosmic-ray work with emulsions in the 1940s and 1950s Donald H. Perkins; Part III. High-energy nuclear physics; Learning about nucleon resonances with pion photoproduction Robert L. Walker; 7. A personal view of nucleon structure as revealed by electron scattering Robert Hofstadter; 8. Comments on electromagnetic form factors of the nucleon Robert G. Sachs and Kameshwar C. Wali; Part IV. The new laboratory; 9. The making of an accelerator physicist Matthew Sands; 10. Accelerator design and construction in the 1950s John P. Blewett; 11. Early history of the Cosmotron and AGS Ernest D. Courant; 12. Panel on accelerators and detectors in the 1950s Lawrence W. Jones, Luis W. Alvarez, Ugo Amaldi, Robert Hofstadter, Donald W. Kerst, Robert R. Wilson; 13. Accelerators and the Midwestern Universities Research Association in the 1950s Donald W. Kerst; 14. Bubbles, sparks and the postwar laboratory Peter Galison; 15. Development of the discharge (spark) chamber in Japan in the 1950s Shuji Fukui; 16. Early work at the Bevatron: a personal account Gerson Goldhaber; 17. The discovery of the antiproton Owen Chamberlain; 18. On the antiproton discovery Oreste Piccioni; Part V. The Strange Particles; 19. The hydrogen bubble chamber and the strange resonances Luis W. Alvarez; 20. A particular view of particle physics in the fifties Jack Steinberger; 21. Strange particles William Chinowsky; 22. Strange particles: production by Cosmotron beams as observed in diffusion cloud chambers William B. Fowler; 23. From the 1940s into the 1950s Abraham Pais; Part VI. Detection of the

  10. Is the up-quark massless?

    CERN Document Server

    Irving, A C; Michael, C; Sharkey, K J; Wittig, H

    2001-01-01

    We report on determinations of the low-energy constants alpha5 and alpha8 in the effective chiral Lagrangian at O(p^4), using lattice simulations with N_f=2 flavours of dynamical quarks. Precise knowledge of these constants is required to test the hypothesis whether or not the up-quark is massless. Our results are obtained by studying the quark mass dependence of suitably defined ratios of pseudoscalar meson masses and matrix elements. Although comparisons with an earlier study in the quenched approximation reveal small qualitative differences in the quark mass behaviour, numerical estimates for alpha5 and alpha8 show only a weak dependence on the number of dynamical quark flavours. Our results disfavour the possibility of a massless up-quark, provided that the quark mass dependence in the physical three-flavour case is not fundamentally different from the two-flavour case studied here.

  11. The effect of dynamical quark mass on the calculation of a strange quark star's structure

    Institute of Scientific and Technical Information of China (English)

    Gholam Hossein Bordbar; Babak Ziaei

    2012-01-01

    We discuss the dynamical behavior of strange quark matter components,in particular the effects of density dependent quark mass on the equation of state of strange quark matter.The dynamical masses of quarks are computed within the Nambu-Jona-Lasinio model,then we perform strange quark matter calculations employing the MIT bag model with these dynamical masses.For the sake of comparing dynamical mass interaction with QCD quark-quark interaction,we consider the one-gluon-exchange term as the effective interaction between quarks for the MIT bag model.Our dynamical approach illustrates an improvement in the obtained equation of state values.We also investigate the structure of the strange quark star using TolmanOppenheimer-Volkoff equations for all applied models.Our results show that dynamical mass interaction leads to lower values for gravitational mass.

  12. Using heavy quark fragmentation into heavy hadrons to determine QCD parameters and test heavy quark symmetry

    CERN Document Server

    Randall, Lisa

    1994-01-01

    We present a detailed analysis of the use of heavy quark fragmentation into heavy hadrons for testing the heavy quark effective theory through comparison of the measured fragmentation parameters of the c and b quarks. Our analysis is entirely model independent. We interpret the known perturbative evolution in a way useful for exploiting heavy quark symmetry at low energy. We first show consistency with perturbative QCD scaling for measurements done solely with c quarks. We then apply the perturbative analysis and the heavy quark expansion to relate measurements from ARGUS and LEP. We place bounds on a nonperturbative quark mass suppressed parameter, and compare the values for the b and c quarks. We find consistency with the heavy quark expansion but fairly sizable QCD uncertainties. We also suggest that one might reduce the systematic uncertainty in the result by not extrapolating to low z.

  13. Gluonic phases, vector condensates, and exotic hadrons in dense QCD

    CERN Document Server

    Gorbar, E V; Miransky, V A; Hashimoto, Michio

    2007-01-01

    We study the dynamics in phases with vector condensates of gluons (gluonic phases) in dense two-flavor quark matter. These phases yield an example of dynamics in which the Higgs mechanism is provided by condensates of gauge (or gauge plus scalar) fields. Because vacuum expectation values of spatial components of vector fields break the rotational symmetry, it is naturally to have a spontaneous breakdown both of external and internal symmetries in this case. In particular, by using the Ginzburg-Landau approach, we establish the existence of a gluonic phase with both the rotational symmetry and the electromagnetic U(1) being spontaneously broken. In other words, this phase describes an anisotropic medium in which the color and electric superconductivities coexist. It is shown that this phase corresponds to a minimum of the Ginzburg-Landau potential and, unlike the two-flavor superconducting (2SC) phase, it does not suffer from the chromomagnetic instability. The dual (confinement) description of its dynamics is...

  14. Thermalization and Bose-Einstein Condensation in Overpopulated Glasma

    CERN Document Server

    Blaizot, Jean-Paul; Liao, Jinfeng; McLerran, Larry; Venugopalan, Raju

    2012-01-01

    We report recent progress on understanding the thermalization of the quark-gluon plasma during the early stage in a heavy ion collision. The initially high overpopulation in the far-from-equilibrium gluonic matter ("Glasma") is shown to play a crucial role. The strongly interacting nature (and thus fast evolution) naturally arises as an {\\em emergent property} of this pre-equilibrium matter where the intrinsic coupling is weak but the highly occupied gluon states coherently amplify the scattering. A possible transient Bose-Einstein Condensate is argued to form dynamically on a rather general ground. We develop a kinetic approach for describing its evolution toward thermalization, and based on that we find approximate scaling solutions as well as numerically study the onset of condensation.

  15. Thermalization and Bose-Einstein Condensation in Overpopulated Glasma

    Energy Technology Data Exchange (ETDEWEB)

    Blaizot, Jean-Paul; Gelis, François [Institut de Physique Théorique (URA 2306 du CNRS), CEA/DSM/Saclay, 91191, Gif-sur-Yvette Cedex (France); Liao, Jinfeng [Physics Department and CEEM, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); McLerran, Larry [Physics Department, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); Venugopalan, Raju [Physics Department, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2013-05-02

    We report recent progress on understanding the thermalization of the quark-gluon plasma during the early stage in a heavy ion collision. The initially high overpopulation in the far-from-equilibrium gluonic matter (“Glasma”) is shown to play a crucial role. The strongly interacting nature (and thus fast evolution) naturally arises as an emergent property of this pre-equilibrium matter where the intrinsic coupling is weak but the highly occupied gluon states coherently amplify the scattering. A possible transient Bose-Einstein Condensate is argued to form dynamically on a rather general ground. We develop a kinetic approach for describing its evolution toward thermalization as well as the onset of condensation.

  16. Domains of Disoriented Chiral Condensate

    CERN Document Server

    Amado, R D; Lu, Yang

    1996-01-01

    The probability distribution of neutral pion fraction from independent domains of disoriented chiral condensate is characterized. The signal for the condensate is clear for a small number of domains but is greatly reduced for more than three.

  17. Inclusive Single-Spin Asymmetries, Quark-Photon, and Quark-Quark Correlations

    CERN Document Server

    Burkardt, Matthias

    2016-01-01

    We consider quark-photon correlations that have been proposed as a source for single-spin asymmetries in inclusive deep-inelastic scattering. A new sum rule for these correlators is derived and its phenomenological consequences are discussed. The results are interpreted within the context of an intuitive 'electrodynamic lensing' picture.

  18. Results on top-quark physics and top-quark-like signatures by CMS

    CERN Document Server

    Chabert, Eric Christian

    2017-01-01

    This report reviews the results obtained by the CMS Collaboration on top quark physics, focusing on the latest ones based on p--p collisions provided by the LHC at $\\sqrt{s}$=13 TeV during Run II. It covers measurements of single-top, top quark pairs and associated productions as well as measurements of top quark properties.Finally several beyond the standard model searches involving top quark in the final states are presented such as searches for supersymmetry in the third generation, heavy resonances decaying into a top quark pair, or dark matter produced in association to a single-top or a top quark pair.

  19. QCD phase transition with chiral quarks and physical quark masses.

    Science.gov (United States)

    Bhattacharya, Tanmoy; Buchoff, Michael I; Christ, Norman H; Ding, H-T; Gupta, Rajan; Jung, Chulwoo; Karsch, F; Lin, Zhongjie; Mawhinney, R D; McGlynn, Greg; Mukherjee, Swagato; Murphy, David; Petreczky, P; Renfrew, Dwight; Schroeder, Chris; Soltz, R A; Vranas, P M; Yin, Hantao

    2014-08-22

    We report on the first lattice calculation of the QCD phase transition using chiral fermions with physical quark masses. This calculation uses 2+1 quark flavors, spatial volumes between (4 fm)(3) and (11 fm)(3) and temperatures between 139 and 196 MeV. Each temperature is calculated at a single lattice spacing corresponding to a temporal Euclidean extent of N(t) = 8. The disconnected chiral susceptibility, χ(disc) shows a pronounced peak whose position and height depend sensitively on the quark mass. We find no metastability near the peak and a peak height which does not change when a 5 fm spatial extent is increased to 10 fm. Each result is strong evidence that the QCD "phase transition" is not first order but a continuous crossover for m(π) = 135 MeV. The peak location determines a pseudocritical temperature T(c) = 155(1)(8) MeV, in agreement with earlier staggered fermion results. However, the peak height is 50% greater than that suggested by previous staggered results. Chiral SU(2)(L) × SU(2)(R) symmetry is fully restored above 164 MeV, but anomalous U(1)(A) symmetry breaking is nonzero above T(c) and vanishes as T is increased to 196 MeV.

  20. Quasiparticle properties of the quarks of the Nambu-Jona-Lasinio model

    Science.gov (United States)

    Cao, Nan-Wei; Shakin, C. M.; Sun, Wei-Dong

    1992-12-01

    In spite of the apparent limitations of the model, in recent years there have been many applications of the Nambu-Jona-Lasinio (NJL) model in the study of hadron structure and in the study of the behavior of nuclear matter at finite temperature and density. A number of researchers have studied a generalized SU(3) version of the NJL model. For example, Vogl, Lutz, Klimt, and Weise [Nucl. Phys. A516 469 (1990)] have performed extensive calculations that include a calculation of a scalar form factor of a constituent quark, Fs(q2), and a calculation of a quark sigma term σq. (In their work, the latter quantity is related to the nucleon sigma term σN as in a constituent quark model: σN=3σq.) These calculations are made in what may be termed a sigma-dominance approximation. In the work reported here, we review the important role played by the nucleon sigma term in understanding the behavior of the quark condensate in the presence of matter. We make use of the original SU(2) version of the NJL model to study how various quark properties are modified when we take into account the dressing of the constituent quarks by the pion, the Goldstone boson of the model. We calculate the quark self-energy arising from emission and absorption of a pion and also show how the calculation of the scalar form factor of the quark and σq are modified due to the coupling of the quark to the pion. The correction terms considered here serve to reduce the value of σq by a small amount relative to the value obtained in the simplest version of the sigma dominance model. For example, for a Euclidean momentum cutoff, Λ=1050 MeV, the uncorrected result is σN=54.6 MeV. That value is then reduced to σN=51.5 MeV, if the corrections due to the pion ``dressing'' are included. It is also found that the residue at the quasiparticle pole of the quark propagator Z is about 0.86 when the coupling to the pion field is taken into account.

  1. Photon condensation: A new paradigm for Bose-Einstein condensation

    Science.gov (United States)

    Rajan, Renju; Ramesh Babu, P.; Senthilnathan, K.

    2016-10-01

    Bose-Einstein condensation is a state of matter known to be responsible for peculiar properties exhibited by superfluid Helium-4 and superconductors. Bose-Einstein condensate (BEC) in its pure form is realizable with alkali atoms under ultra-cold temperatures. In this paper, we review the experimental scheme that demonstrates the atomic Bose-Einstein condensate. We also elaborate on the theoretical framework for atomic Bose-Einstein condensation, which includes statistical mechanics and the Gross-Pitaevskii equation. As an extension, we discuss Bose-Einstein condensation of photons realized in a fluorescent dye filled optical microcavity. We analyze this phenomenon based on the generalized Planck's law in statistical mechanics. Further, a comparison is made between photon condensate and laser. We describe how photon condensate may be a possible alternative for lasers since it does not require an energy consuming population inversion process.

  2. Discovery of single top quark production

    CERN Document Server

    Gillberg, Dag

    2011-01-01

    The top quark is by far the heaviest known fundamental particle with a mass nearing that of a gold atom. Because of this strikingly high mass, the top quark has several unique properties and might play an important role in electroweak symmetry breaking—the mechanism that gives all elementary particles mass. Creating top quarks requires access to very high energy collisions, and at present only the Tevatron collider at Fermilab is capable of reaching these energies. Until now, top quarks have only been observed produced in pairs via the strong interaction. At hadron colliders, it should also be possible to produce single top quarks via the electroweak interaction. Studies of single top quark production provide opportunities to measure the top quark spin, how top quarks mix with other quarks, and to look for new physics beyond the standard model. Because of these interesting properties, scientists have been looking for single top quarks for more than 15 years. This thesis presents the first discovery of singl...

  3. Condensed matter physics

    CERN Document Server

    Marder, Michael P

    2010-01-01

    This Second Edition presents an updated review of the whole field of condensed matter physics. It consolidates new and classic topics from disparate sources, teaching not only about the effective masses of electrons in semiconductor crystals and band theory, but also about quasicrystals, dynamics of phase separation, why rubber is more floppy than steel, granular materials, quantum dots, Berry phases, the quantum Hall effect, and Luttinger liquids.

  4. Fermion-Antifermion Condensate Contribution to the Anomalous Magnetic Moment of a Fundamental Dirac Fermion

    CERN Document Server

    Elias, V; Elias, Victor; Sprague, Kevin

    1998-01-01

    We consider the contribution of fermion-antifermion condensates to the anomalous magnetic moment of a fermion in a vacuum in which such condensates exist. The real part of the condensate contribution to the anomalous magnetic moment is shown to be zero. A nonzero imaginary part is obtained below the kinematic threshold for intermediate fermion-antifermion pairs. The calculation is shown to be gauge-parameter independent provided a single fermion mass characterizes both the fermion propagator and condensate-sensitive contributions, suggestive of a dynamically-generated fermion mass. The nonzero imaginary part is then argued to correspond to the kinematic production of the intermediate-state Goldstone bosons anticipated from a chiral-noninvariant vacuum. Finally, speculations are presented concerning the applicability of these results to quark electromagnetic properties.

  5. Asymmetric condensed dark matter

    CERN Document Server

    Aguirre, Anthony

    2015-01-01

    We explore the viability of a boson dark matter candidate with an asymmetry between the number densities of particles and antiparticles. A simple thermal field theory analysis confirms that, under certain general conditions, this component would develop a Bose-Einstein condensate in the early universe that, for appropriate model parameters, could survive the ensuing cosmological evolution until now. The condensation of a dark matter component in equilibrium with the thermal plasma is a relativistic process, hence the amount of matter dictated by the charge asymmetry is complemented by a hot relic density frozen out at the time of decoupling. Contrary to the case of ordinary WIMPs, dark matter particles in a condensate can be very light, $10^{-22}\\,{\\rm eV} \\lesssim m \\lesssim 10^2\\,{\\rm eV}$; the lower limit arises from constraints on small-scale structure formation, while the upper bound ensures that the density from thermal relics is not too large. Big-Bang nucleosynthesis constrains the temperature of deco...

  6. Asymmetric condensed dark matter

    Science.gov (United States)

    Aguirre, Anthony; Diez-Tejedor, Alberto

    2016-04-01

    We explore the viability of a boson dark matter candidate with an asymmetry between the number densities of particles and antiparticles. A simple thermal field theory analysis confirms that, under certain general conditions, this component would develop a Bose-Einstein condensate in the early universe that, for appropriate model parameters, could survive the ensuing cosmological evolution until now. The condensation of a dark matter component in equilibrium with the thermal plasma is a relativistic process, hence the amount of matter dictated by the charge asymmetry is complemented by a hot relic density frozen out at the time of decoupling. Contrary to the case of ordinary WIMPs, dark matter particles in a condensate must be lighter than a few tens of eV so that the density from thermal relics is not too large. Big-Bang nucleosynthesis constrains the temperature of decoupling to the scale of the QCD phase transition or above. This requires large dark matter-to-photon ratios and very weak interactions with standard model particles.

  7. SU(2 color NJL model and EOS of quark-hadron matter at finite temperature and density

    Directory of Open Access Journals (Sweden)

    Weise Wolfram

    2012-02-01

    Full Text Available We study the NJL model with the Polyakov loop in the SU(2-color case for the EOS of quark-hadron matter at finite temperature and density. We consider the spontaneous chiral symmetry breaking and the diquark condensation together with the behavior of the Polyakov loop for the phase diagram of quark-hadron matter. We discuss the spectrum of mesons and diquark baryons (boson at finite temperature and density.We derive also the linear sigma model Lagrangian for diquark baryon and mesons.

  8. Effect of a Small Current Quark Mass on Bag Constant

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; FENG Hong-Tao; SUN Wei-Min; DING Xiao-Ping; PING Jia-Lun

    2004-01-01

    A method for obtaining the small current quark mass effect on the dressed quark propagator within the Dyson-Schwinger approach is developed. From this the small current quark mass dependence of the bag constant is evaluated. It is found that the bag constant decreases with the increasing current quark mass and the contribution of the current quark mass cannot be dropped.

  9. Effect of a Small Current Quark Mass on Bag Constant

    Institute of Scientific and Technical Information of China (English)

    ZONGHong-Shi; FENGHong-Tao; SUNWei-Min; DINGXiao-Ping; PINGJia-Lun

    2004-01-01

    A method for obtaining the small current quark mass effect on the dressed quark propagator within the Dyson Schwinger approach is developed. From this the small current quark mass dependence of the bag constant is evaluated. It is found that the bag constant decreases with the increasing current quark mass and the contribution of the current quark mass cannot be dropped.

  10. Quark Confinement and Force Unification

    Directory of Open Access Journals (Sweden)

    Stone R. A. Jr.

    2010-04-01

    Full Text Available String theory had to adopt a bi-scale approach in order to produce the weakness of gravity. Taking a bi-scale approach to particle physics along with a spin connection produces 1 the measured proton radius, 2 a resolution of the multiplicity of measured weak angle values 3 a correct theoretical value for the Z 0 4 a reason that h is a constant and 5 a “neutral current” source. The source of the “neutral current” provides 6 an alternate solution to quark confinement, 7 produces an effective r like potential, and 8 gives a reason for the observed but unexplained Regge trajectory like J M 2 behavior seen in quark composite particle spin families.

  11. Quark-lepton complementarity revisited

    CERN Document Server

    Zhang, Xinyi; Ma, Bo-Qiang

    2012-01-01

    We reexamine the quark-lepton complementarity (QLC) in nine angle-phase parametrizations with the latest result for a large lepton mixing angle $\\vartheta_{13}$ from the T2K, MINOS and Double Chooz experiments. We find that the original form of the QLC two relations only hold in the standard parametrization (P1) and only one of the relations holds in P2, P3, P4, P5, P6 and P9 parametrizations separately. We also work out the corresponding reparametrization-invariant form of the relations and examine the resulting expressions with the data. The results can be used as check of the validity of the QLC relations, as well as new perspective into the issue of seeking the connection between quarks and leptons.

  12. Chiral Quark Model of Mesons

    CERN Document Server

    Wang, X J; Wang, Xiao-Jun; Yan, Mu-Lin

    1999-01-01

    We study SU(3)$_L\\timesSU(3)_R$ chiral quark model of mesons up to next leading order of $1/N_c$ expansion. Composite vector and axial-vector mesons resonances are introduced via non-linear realization of chiral SU(3) and vector meson dominant. Effects of one-loop graphs of pseudoscalar, vector and axial-vector mesons is calculated systematically and the significant results are obtained. Correction of effective gluon interaction is studied too. The light quark masses are introduced via new mechanism which agree with phenomenology and the requirement of chiral symmetry. Up to powers four of derivatives, chiral effective lagrangian of mesons is derived and evaluated to next leading order of $1/N_c$. Low energy limit of the model is examined. Ten low energy coupling constants $L_i(i=1,2,...,10)$ in ChPT are obtained and agree with ChPT well.

  13. Cooking Up Hot Quark Soup

    Science.gov (United States)

    Walsh, Karen McNulty

    2011-03-28

    Near-light-speed collisions of gold ions provide a recipe for in-depth explorations of matter and fundamental forces. The Relativistic Heavy Ion Collider (RHIC) has produced the most massive antimatter nucleus ever discovered—and the first containing an anti-strange quark. The presence of strange antimatter makes this antinucleus the first to be entered below the plane of the classic Periodic Table of Elements, marking a new frontier in physics.

  14. Search for strange quark matter

    CERN Document Server

    Hill, J C

    2000-01-01

    We present results of a search for charged and neutral strangelets produced on collisions of 11.6 A GeV/c Au beams with Pt or Pb targets. Yields of light nuclei and hypernuclei produced by coalescence were measured. Penalty factors were measured for the addition to a fragment of a nucleon or strange hadron. These are useful in planning future searches for strange quark matter.

  15. Interplay of mesonic and baryonic degrees of freedom in quark matter

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Naseemuddin

    2015-11-03

    In this work we study the influence of mesonic and baryonic fluctuations on the phase diagram of quark matter with two flavors. By examining the hadronization process and related techniques, we derive effective low-energy models, where the gluons are integrated out. To be able to compare our model calculations with lattice results at finite chemical potential, we investigate a QCD-like theory with two colors, where the sign-problem is absent. To this end we introduce a quark-meson-diquark model, where the bosonic diquarks play the role of colorless, baryonic degrees of freedom competing with the mesons. To access the phase diagram and determine the phases of chiral and diquark condensation, we employ a functional renormalization group approach allowing for a systematic non-perturbative truncation scheme. Interesting phenomena arise that are known from condensed matter physics, as the BEC-BSC crossover and a phase of condensation within domains. We explore the impact of running wave function renormalizations and Yukawa couplings for the quarks and the boson fields on top of the scale dependence of the effective potential. In the course of this we discuss the Silver Blaze property and its realization within a functional approach. In parallel, we formulate a quark-meson-diquark-baryon model for physical QCD as a low-energy effective theory for baryonic matter at high density, and discuss the relevance of the diquark and baryon degrees of freedom. In this sense, we compute a phase diagram for QCD from functional methods, including a color superconducting phase.

  16. Open charm production in heavy ion collisions and the Color Glass Condensate

    CERN Document Server

    Kharzeev, Dima E

    2003-01-01

    We consider the production of open charm in heavy ion collisions in the framework of the Color Glass Condensate. In the central rapidity region at RHIC, for the charm quark yield we expect N(coll) (number of collisions) scaling in the absence of final-state effects. At higher energies, or forward rapidities at RHIC, the saturation scale exceeds the charm quark mass; we find that this results in the approximate N(part) (number of participants) scaling of charm production in AA collisions and N(part)^A scaling in p(d)A collisions, similarly to the production of high pT gluons discussed earlier. We also show that the saturation phenomenon makes spectra harder as compared to the naive parton model approach. We then discuss the energy loss of charm quarks in hot and cold media and argue that the hardness of the spectrum implies very slow dependence of the quenching factor on pT.

  17. Quark masses and their hierarchies

    Science.gov (United States)

    Ida, M.

    1987-12-01

    Electroweak symmetry breaking is attributed to dynamical generation of quark masses. Quarks q (and leptons l) are assumed to be produced by hypercolor confinement of preons at an intermediate scale Λ hc. Hierarchies observed in the q mass spectra can be explained by a BCS mechanism if the color interaction is enough asymptotically free and if residual ones emerging by the confinement are medium strong. The former assumption claims that N≦4, where N is the family number of q and l. Dynamical equations to determine q masses and mixings are given, but they require knowledge on the physics at Λ hc. A phenomenological approach is also made on the basis of an SU(7)× SU(7) chiral preon model with N=4. The mass ratio m t/ mb is related to ( m c/ m s)ηB with η B≃1.1 and m t'/ mb' to ( m u/ m d)ηA with η A≃1.4. In this scheme the fourth down quark is the heaviest (˜ 110 GeV) and contributes dominantly to F 2, where F is the Fermi scale.

  18. Quark confinement mechanism for baryons

    CERN Document Server

    Goncharov, Yu P

    2013-01-01

    The confinement mechanism proposed earlier and then successfully applied to meson spectroscopy by the author is extended over baryons. For this aim the wave functions of baryons are built as tensorial products of those corresponding to the 2-body problem underlying the confinement mechanism of two quarks. This allows one to obtain the Hamiltonian of the quark interactions in a baryon and, accordingly, the possible energy spectrum of the latter. Also one may construct the electric and magnetic form factors of baryon in a natural way which entails the expressions for the root-mean-square radius and anomalous magnetic moment. To ullustrate the formalism in the given Chapter for the sake of simplicity only symmetrical baryons (i.e., composed from three quarks of the same flavours) $\\Delta^{++}$, $\\Delta^{-}$, $\\Omega^-$ are considered. For them the masses, the root-mean-square radii and anomalous magnetic moments are expressed in an explicit analytical form through the parameters of the confining SU(3)-gluonic fi...

  19. Electrically Charged Strange Quark Stars

    CERN Document Server

    Negreiros, Rodrigo P; Malheiro, Manuel; Usov, Vladimir

    2009-01-01

    The possible existence of compact stars made of absolutely stable strange quark matter--referred to as strange stars--was pointed out by E. Witten almost a quarter of a century ago. One of the most amazing features of such objects concerns the possible existence of ultra-strong electric fields on their surfaces, which, for ordinary strange matter, is around $10^{18}$ V/cm. If strange matter forms a color superconductor, as expected for such matter, the strength of the electric field may increase to values that exceed $10^{19}$ V/cm. The energy density associated with such huge electric fields is on the same order of magnitude as the energy density of strange matter itself, which, as shown in this paper, alters the masses and radii of strange quark stars at the 15% and 5% level, respectively. Such mass increases facilitate the interpretation of massive compact stars, with masses of around $2 M_\\odot$, as strange quark stars.

  20. Better Hadronic Top Quark Polarimetry

    CERN Document Server

    Tweedie, Brock

    2014-01-01

    Observables sensitive to top quark polarization are important for characterizing or even discovering new physics. The most powerful spin analyzer in top decay is the down-type fermion from the W, which in the case of leptonic decay allows for very clean measurements. However, in many applications it is useful to measure the polarization of hadronically decaying top quarks. Usually it is assumed that at most 50% of the spin analyzing power can be recovered in this case. This paper introduces a simple and truly optimal hadronic spin analyzer, with a power of 64% at leading-order. The improvement is demonstrated to be robust in a handful of simulated measurements, including the spins and spin correlations of boosted top quarks from multi-TeV top-antitop resonances, the spins of semi-boosted tops from chiral stop decays, and the potentially CP-violating spin correlations induced in continuum top pairs by color dipole operators. For the boosted studies, we explore jet substructure techniques that exhibit improved ...

  1. Lattice Landau gauge quark propagator and the quark-gluon vertex

    CERN Document Server

    Oliveira, Orlando; Silva, Paulo J; Skullerud, Jon-Ivar; Sternbeck, Andre; Williams, Anthony G

    2016-01-01

    We report preliminary results of our ongoing lattice computation of the Landau gauge quark propagator and the soft gluon limit of the quark-gluon vertex with 2 flavors of dynamical O(a) improved Wilson fermions.

  2. Vector Susceptibility of QCD Vacuum from an Effective Quark-Quark Interaction

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; QI Shi; CHEN Wei; WU Xiao-Hua

    2003-01-01

    .A new approach for calculating vacuum susceptibilities from an effective quark-quark interaction model is derived. As a special case, the vector vacuum susceptibility is calculated. A comparison with the results of the previous approaches is given.

  3. Vector Susceptibility of QCD Vacuum from an Effective Quark-Quark Interaction

    Institute of Scientific and Technical Information of China (English)

    ZONGHong-Shi; QIShi; CHENWei; WUXiao-Hua

    2003-01-01

    A new approach for calculating vacuum susceptibilities from an effective quark-quark interaction model is derived. As a special case, the vector vacuum susceptibility is calculated. A comparison with the results of the previous approaches is given.

  4. Effect of a Small Current Quark Mass on Dressed Gluon and Quark Propagator

    Institute of Scientific and Technical Information of China (English)

    HOU Feng-Yao; GU Jian-Zhong; ZONG Hong-Shi; L(U)Xiao-Fu

    2004-01-01

    Based on the Dyson-Schwinger approach, a method for obtaining the small current quark mass effect on the dressed gluon and quark propagator is developed. A comparison with the results of the previous approach is given.

  5. QQqq Four-Quark Bound States in Chiral SU(3) Quark Model

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ming; ZHANG Hai-Xia; ZHANG Zong-Ye

    2008-01-01

    The possibility of QQqq heavy-light four-quark bound states has been analyzed by means of the chiral SU(3) quark model, where Q is the heavy quark (c or b) and q is the light quark (u, d, or s). We obtain a bound state for the bbnn configuration with quantum number JP=1+, I=0 and for the ccnn (JP=1+, I=0) configuration, which is not bound but slightly above the D*D* threshold (n is u or d quark). Meanwhile, we also conclude that a weakly bound state in bbnn system can also be found without considering the chiral quark interactions between the two light quarks, yet its binding energy is weaker than that with the chiral quark interactions.

  6. Thermodynamics of strong coupling 2-color QCD with chiral and diquark condensates

    CERN Document Server

    Nishida, Y; Hatsuda, T

    2003-01-01

    2-color QCD (quantum chromodynamics with N_c=2) at finite temperature T and chemical potential \\mu is revisited in the strong coupling limit on the lattice with staggered fermions. The phase structure in the space of T, \\mu, and the quark mass m is elucidated with the use of the mean field approximation and the 1/d expansion (d being the number of spatial dimensions). We put special emphasis on the interplay among the chiral condensate , the diquark condensate , and the quark density in the T-\\mu-m space. Simple analytic formulae are also derived without assuming \\mu nor m being small. Qualitative comparisons are made between our results and those of recent Monte-Carlo simulations in 2-color QCD.

  7. Chiral density wave versus pion condensation in the 1+1 dimensional NJL model

    CERN Document Server

    Adhikari, Prabal

    2016-01-01

    In this paper, we study the possibility of an inhomogeneous quark condensate in the 1+1 dimensional Nambu-Jona-Lasinio model in the large-$N_c$ limit at finite temperature $T$ and quark chemical potential $\\mu$ using dimensional regularization. The phase diagram in the $\\mu$--$T$ plane is mapped out. At zero temperature, an inhomogeneous phase with a chiral-density wave exists for all values of $\\mu>\\mu_c$. Performing a Ginzburg-Landau analysis, we show that in the chiral limit, the critical point and the Lifschitz point coincide. We also consider the competition between a chiral-density wave and a constant pion condensate at finite isospin chemical potential $\\mu_I$. The phase diagram in the $\\mu_I$--$\\mu$ plane is mapped out and shows a rich phase structure.

  8. Computation of the chiral condensate using $N_f=2$ and $N_f=2+1+1$ dynamical flavors of twisted mass fermions

    CERN Document Server

    Cichy, Krzysztof; Jansen, Karl; Shindler, Andrea

    2013-01-01

    We apply the spectral projector method, recently introduced by Giusti and L\\"uscher, to compute the chiral condensate using $N_f=2$ and $N_f=2+1+1$ dynamical flavors of maximally twisted mass fermions. We present our results for several quark masses at three different lattice spacings which allows us to perform the chiral and continuum extrapolations. In addition we report our analysis on the $O(a)$ improvement of the chiral condensate for twisted mass fermions. We also study the effect of the dynamical strange and charm quarks by comparing our results for $N_f=2$ and $N_f=2+1+1$ dynamical flavors.

  9. A New Model for Quark Mass Matrix

    Institute of Scientific and Technical Information of China (English)

    JIANG Zhi-Wei

    2011-01-01

    We study the status of S3, I.e. A slightly broken symmetry of quarks and propose a new model in which the S3 symmetry among the three generation up-quarks is slightly broken into the C2 symmetry while the S3 symmetry of the down-quarks is completely broken in a different way.%@@ We study the status of Sa, i.e.a slightly broken symmetry of quarks and propose a new model in which the Sa symmetry among the three generation up-quarks is slightly broken into the C symmetry while the S symmetry of the down-quarks is completely broken in a different way.

  10. Physics of the nucleon sea quark distributions

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, R.

    2000-03-10

    Sea quark distributions in the nucleon have naively been expected to be generated perturbatively by gluon splitting. In this case, there is no reason for the light quark and anti-quark sea distributions to be different. No asymmetries in the strange or heavy quark sea distributions are predicted in the improved parton model. However,recent experiments have called these naive expectations into question. A violation of the Gottfried sum rule has been measured in several experiments, suggesting that (bar u) < (bar d) in the proton. Additionally, other measurements, while not definitive, show that there may be an asymmetry in the strange and anti-strange quark sea distributions. These effects may require nonperturbative explanations. In this review we first discuss the perturbative aspects of the sea quark distributions. We then describe the experiments that could point to nonperturbative contributions to the nucleon sea. Current phenomenological models that could explain some of these effects are reviewed.

  11. Single top quark production with CMS

    CERN Document Server

    Mitra, Soureek

    2016-01-01

    Measurements of single top quark production are presented, performed using CMS data collected in 2011, 2012 and 2015 at centre-of-mass energies of 7, 8 and 13 TeV respectively. The cross sections for the electroweak production of single top quarks in the t-channel and in association with W-bosons is measured and the results are used to place constraints on the CKM matrix element Vtb. In the t-channel the ratio of top and anti-top production cross sections is determined and compared with predictions from different parton density distribution functions. In the same channel, the inclusive cross-section in the fiducial volume is also measured. Measurements of top quark properties in single top quark production such as the top-quark polarisation, W-helicity in top quark decay and searches for anomalous couplings to gluons, photons are also presented,. A search for the s-channel is also performed.

  12. Experimental Studies of Top Quark Production

    CERN Document Server

    Wagner-Kuhr, Jeannine

    2016-01-01

    In this review article three promising aspects of top quark production are discussed: the charge asymmetry in top quark pair production, the search for resonant top quark pair production, and electroweak single top quark production. First, an overview of the theoretical predictions of top quark pair and single top quark production is given. Then, for each topic the general analysis strategy and improvements are exemplarily explained using selected analyses and are put into the context of the global status at the beginning of LHC Run II and progress in this field. The example analyses discussed in more detail in this article use data from the LHC experiment CMS and for the charge asymmetry studies also data from the Tevatron experiment CDF have been used.

  13. Vortex structure in superfluid color-flavor locked quark matter

    CERN Document Server

    Alford, Mark G; Vachaspati, Tanmay; Windisch, Andreas

    2016-01-01

    The core region of a neutron star may feature quark matter in the color-flavor- locked (CFL) phase. The CFL condensate breaks the baryon number symmetry, such that the phenomenon of superfluidity arises. If the core of the star is rotating, vortices will form in the superfluid, carrying the quanta of angular momentum. In a previous study we have solved the question of stability of these vortices, where we found numerical proof of a conjectured instability, according to which superfluid vortices will decay into an arrangement of so-called semi-superfluid fluxtubes. Here we report first results of an extension of our framework that allows us to study multi-vortex dynamics. This will in turn enable us to investigate the structure of semi-superfluid string lattices, which could be relevant to study pinning phenomena at the boundary of the core.

  14. Tevatron Top-Quark Combinations and World Top-Quark Mass Combination

    OpenAIRE

    Peters, Reinhild Yvonne; ATLAS, on behalf of the; CDF; CMS; collaborations, D0

    2014-01-01

    Almost 20 years after its discovery, the top quark is still an interesting particle, undergoing precise investigation of its properties. For many years, the Tevatron proton antiproton collider at Fermilab was the only place to study top quarks in detail, while with the recent start of the LHC proton proton collider a top quark factory has opened. An important ingredient for the full understanding of the top quark is the combination of measurements from the individual experiments. In particula...

  15. Radiatively induced quark and lepton mass model

    Science.gov (United States)

    Nomura, Takaaki; Okada, Hiroshi

    2016-10-01

    We propose a radiatively induced quark and lepton mass model in the first and second generation with extra U (1) gauge symmetry and vector-like fermions. Then we analyze the allowed regions which simultaneously satisfy the FCNCs for the quark sector, LFVs including μ- e conversion, the quark mass and mixing, and the lepton mass and mixing. Also we estimate the typical value for the (g - 2) μ in our model.

  16. Top quark mass measurements at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Maki, Tuula; /Helsinki U. /Helsinki Inst. of Phys.

    2007-10-01

    The top quark mass is interesting both as a fundamental parameter of the standard model as well as an important input to precision electroweak tests. The CDF Collaboration has measured the top quark mass with high precision in all decay channels with complementary methods. A combination of the results from CDF gives a top quark mass of 170.5{+-}1.3(stat.){+-}1.8(syst.) GeV/c{sup 2}.

  17. On quark number susceptibilities at high temperatures

    CERN Document Server

    Bazavov, A; Hegde, P; Karsch, F; Miao, C; Mukherjee, Swagato; Petreczky, P; Schmidt, C; Velytsky, A

    2013-01-01

    We calculated second and fourth order quark number susceptibilities for 2+1 flavor QCD in the high temperature region using two improved staggered fermion formulations. The calculations are performed at several lattice spacing and we show that in the continuum limit the two formulations give consistent results. We compare our continuum extrapolated results on quark number susceptibilities with recent weak coupling calculations, and find that these cannot simultaneously explain the lattice results for second and fourth order quark number susceptibilities.

  18. Overview of top quark physics at ATLAS

    CERN Document Server

    Finelli, Kevin Daniel; The ATLAS collaboration

    2016-01-01

    Analyses of top quark pair production, single top production, and measurements of top quark properties are presented, showing the scope of recent ATLAS activities in the field. Many of these measurements test the predictions of the standard model in regimes and modes that have not previously been explored. Several top quark measurements are also being used to set limits on theories of new physics beyond the standard model, for example using an effective field theory framework.

  19. Baryon stopping in the Color Glass Condensate formalism: A phenomenological study

    CERN Document Server

    Duraes, F O; Goncalves, V P; Navarra, F S

    2014-01-01

    The net-baryon production at forward rapidities is investigated considering the Color Glass Condensate formalism. We assume that at large energies the coherence of the projectile quarks is lost and that the leading baryon production mechanism changes from recombination to independent fragmentation. The phenomenological implications for net-baryon production in $pp/pA/AA$ collisions are analysed and predictions for LHC energies are presented.

  20. Baryon stopping in the color glass condensate formalism: A phenomenological study

    Science.gov (United States)

    Durães, F. O.; Giannini, A. V.; Gonçalves, V. P.; Navarra, F. S.

    2014-03-01

    The net-baryon production at forward rapidities is investigated considering the color glass condensate formalism. We assume that at large energies the coherence of the projectile quarks is lost and that the leading baryon production mechanism changes from recombination to independent fragmentation. The phenomenological implications for net-baryon production in pp /pA/AA collisions are analyzed and predictions for Large Hadron Collider energies are presented.

  1. Quark Physics without Quarks: A Review of Recent Developments in S-Matrix Theory.

    Science.gov (United States)

    Capra, Fritjof

    1979-01-01

    Reviews the developments in S-matrix theory over the past five years which have made it possible to derive results characteristic of quark models without any need to postulate the existence of physical quarks. In the new approach, the quark patterns emerge as a consequence of combining the general S-matrix principles with the concept of order.…

  2. The quark revolution and the ZGS - new quarks physics since the ZGS

    Energy Technology Data Exchange (ETDEWEB)

    Lipkin, H.J. [Weizmann Institute of Science, Rehovot (Israel)]|[Tel Aviv Univ. (Israel)

    1994-12-31

    Overwhelming experimental evidence for quarks as real physical constituents of hadrons along with the QCD analogs of the Balmer Formula, Bohr Atom and Schroedinger Equation already existed in 1966 but was dismissed as heresy. ZGS experiments played an important role in the quark revolution. This role is briefly reviewed and subsequent progress in quark physics is described.

  3. Quark Physics without Quarks: A Review of Recent Developments in S-Matrix Theory.

    Science.gov (United States)

    Capra, Fritjof

    1979-01-01

    Reviews the developments in S-matrix theory over the past five years which have made it possible to derive results characteristic of quark models without any need to postulate the existence of physical quarks. In the new approach, the quark patterns emerge as a consequence of combining the general S-matrix principles with the concept of order.…

  4. Transversity of quarks in a nucleon

    Indian Academy of Sciences (India)

    K Bora; D K Choudhury

    2003-11-01

    The transversity distribution of quarks in a nucleon is one of the three fundamental distributions, that characterize nucleon’s properties in hard scattering processes at leading twist (twist 2). It measures the distribution of quark transverse spin in a nucleon polarized transverse to its (infinite) momentum. It is a chiral-odd twist-two distribution function – gluons do not couple to it. Quarks in a nucleon/hadron are relativistically bound and transversity is a measure of the relativistic nature of bound quarks in a nucleon. In this work, we review some important aspects of this less familiar distribution function which has not been measured experimentally so far.

  5. Quark masses in two-flavor QCD

    CERN Document Server

    Creutz, Michael

    2011-01-01

    Considered as a function of the quark mases, two-flavor QCD depends on three parameters, including one that is CP violating. As the masses vary to unphysical values, regions of both first- and second-order phase transitions are expected. For non-degenerate quarks, non-perturbative effects leave individual quark mass ratios with a renormalization scheme dependence. This complicates matching lattice results with perturbative schemes and clarifies the tautology with attacking the strong CP problem via a vanishing up quark mass.

  6. Top quark measurements in the CMS experiment

    CERN Document Server

    Lista, Luca

    2017-01-01

    Experimental results on top-quark physics obtained at the CMS experiment are reported based on the data recorded at centre-of-mass energy up to 13 TeV. Inclusive and differential cross sections for both top-quark pair and single top-quark production are presented, as well as measurements of top-quark properties in production and decay, and searches for anomalous couplings. The presented measurements test theoretical predictions, including recent perturbative QCD calculations, provide constraints of fundamental standard model parameters, and set limits on physics beyond the standard model.

  7. Is Heavy Quark Axion Necessarily Hadronic Axion?

    OpenAIRE

    Chang, Sanghyeon; Kim, Jihn E.

    1993-01-01

    We show that heavy quark axion is not necessarily a hadronic axion, which manifests in the quark and lepton seesaw mechanism. We introduce a heavy $SU(2)$ singlet fermion for each known fermion in order to unify the axion scale and the seesaw scale. The light quarks and leptons gain their masses by the seesaw mechanism. Even though our axion model gives a kind of heavy quark axion, the axion has tree level lepton--axion coupling suppressed by $F_a$, contrary to a widely known belief that heav...

  8. CP Violation in Single Top Quark Production

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Weigang [Michigan State Univ., East Lansing, MI (United States)

    2012-01-01

    We present a search for CP violation in single top quark production with the DØ experiment at the Tevatron proton-antiproton collider. CP violation in the top electroweak interaction results in different single top quark production cross sections for top and antitop quarks. We perform the search in the single top quark final state using 5.4 fb-1 of data, in the s-channel, t-channel, and for both combined. At this time, we do not see an observable CP asymmetry.

  9. Measurements and searches with top quarks

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Reinhild Yvonne [Univ. of Wuppertal (Germany)

    2008-08-01

    In 1995 the last missing member of the known families of quarks, the top quark, was discovered by the CDF and D0 experiments at the Tevatron, a proton-antiproton collider at Fermilab near Chicago. Until today, the Tevatron is the only place where top quarks can be produced. The determination of top quark production and properties is crucial to understand the Standard Model of particle physics and beyond. The most striking property of the top quark is its mass--of the order of the mass of a gold atom and close to the electroweak scale--making the top quark not only interesting in itself but also as a window to new physics. Due to the high mass, much higher than of any other known fermion, it is expected that the top quark plays an important role in electroweak symmetry breaking, which is the most prominent candidate to explain the mass of particles. In the Standard Model, electroweak symmetry breaking is induced by one Higgs field, producing one additional physical particle, the Higgs boson. Although various searches have been performed, for example at the Large Electron Positron Collider (LEP), no evidence for the Higgs boson could yet be found in any experiment. At the Tevatron, multiple searches for the last missing particle of the Standard Model are ongoing with ever higher statistics and improved analysis techniques. The exclusion or verification of the Higgs boson can only be achieved by combining many techniques and many final states and production mechanisms. As part of this thesis, the search for Higgs bosons produced in association with a top quark pair (t$\\bar{t}$H) has been performed. This channel is especially interesting for the understanding of the coupling between Higgs and the top quark. Even though the Standard Model Higgs boson is an attractive candidate, there is no reason to believe that the electroweak symmetry breaking is induced by only one Higgs field. In many models more than one Higgs boson are expected to exist, opening even more

  10. Thermal Recombination: Beyond the Valence Quark Approximation

    CERN Document Server

    Müller, B; Bass, S A

    2005-01-01

    Quark counting rules derived from recombination models agree well with data on hadron production at intermediate transverse momenta in relativistic heavy-ion collisions. They convey a simple picture of hadrons consisting only of valence quarks. We discuss the inclusion of higher Fock states that add sea quarks and gluons to the hadron structure. We show that, when recombination occurs from a thermal medium, hadron spectra remain unaffected by the inclusion of higher Fock states. However, the quark number scaling for elliptic flow is somewhat affected. We discuss the implications for our understanding of data from the Relativistic Heavy Ion Collider.

  11. Top Quark Mass Measurements at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Reinhild Yvonne [DESY

    2014-01-01

    Since the discovery of the top quark in 1995 by the CDF and D0 collaborations at the Fermilab Tevatron proton antiproton collider, precise measurements of its mass are ongoing. Using data recorded by the D0 and CDF experiment, corresponding to up to the full Tevatron data sample, top quark mass measurements performed in different final states using various extraction techniques are presented in this article. The recent Tevatron top quark mass combination yields m_t=173.20 +-0.87 GeV. Furthermore, measurements of the top antitop quark mass difference from the Tevatron are discussed.

  12. Hydrodynamics of anisotropic quark and gluon fluids

    Science.gov (United States)

    Florkowski, Wojciech; Maj, Radoslaw; Ryblewski, Radoslaw; Strickland, Michael

    2013-03-01

    The recently developed framework of anisotropic hydrodynamics is generalized to describe the dynamics of coupled quark and gluon fluids. The quark and gluon components of the fluids are characterized by different dynamical anisotropy parameters. The dynamical equations describing such mixtures are derived from kinetic theory, with the collisional kernel treated in the relaxation-time approximation, allowing for different relaxation times for quarks and gluons. Baryon number conservation is enforced in the quark and antiquark components of the fluid, but overall parton number nonconservation is allowed in the system. The resulting equations are solved numerically in the (0+1)-dimensional boost-invariant case at zero and finite baryon density.

  13. Hydrodynamics of anisotropic quark and gluon fluids

    CERN Document Server

    Florkowski, Wojciech; Ryblewski, Radoslaw; Strickland, Michael

    2012-01-01

    The recently developed framework of anisotropic hydrodynamics is generalized to describe the dynamics of coupled quark and gluon fluids. The quark and gluon components of the fluids are characterized by different dynamical anisotropy parameters. The dynamical equations describing such mixtures are derived from kinetic theory with the collisional kernel treated in the relaxation-time approximation. Baryon number conservation is enforced in the quark and anti-quark components of the fluid, but overall parton number non-conservation is allowed in the system. The resulting equations are solved numerically in the (0+1)-dimensional boost-invariant case at zero and finite baryon density.

  14. Pseudoscalar meson physics with four dynamical quarks

    CERN Document Server

    Bazavov, A; Bouchard, C; DeTar, C; Du, D; El-Khadra, A X; Foley, J; Freeland, E D; Gamiz, E; Gottlieb, Steven; Heller, U M; Hetrick, J E; Kim, J; Kronfeld, A S; Laiho, J; Levkova, L; Lightman, M; Mackenzie, P B; Neil, E T; Oktay, M; Simone, J N; Sugar, R L; Toussaint, D; Van de Water, R S; Zhou, R

    2012-01-01

    We present preliminary results for light, strange and charmed pseudoscalar meson physics from simulations using four flavors of dynamical quarks with the highly improved staggered quark (HISQ) action. These simulations include lattice spacings ranging from 0.15 to 0.06 fm, and sea-quark masses both above and at their physical value. The major results are charm meson decay constants f_D, f_{D_s} and f_{D_s}/f_D and ratios of quark masses. This talk will focus on our procedures for finding the decay constants on each ensemble, the continuum extrapolation, and estimates of systematic error.

  15. The Body Center Cubic Quark Lattice Model

    CERN Document Server

    Lin Xu, Jiao

    2004-01-01

    The Standard Model while successful in many ways is incomplete; many questions remain. The origin of quark masses and hadronization of quarks are awaiting an answer. From the Dirac sea concept, we infer that two kinds of elementary quarks (u(0) and d(0)) constitute a body center cubic (BCC) quark lattice with a lattice constant a < $10^{-18}$m in the vacuum. Using energy band theory and the BCC quark lattice, we can deduce the rest masses and the intrinsic quantum numbers (I, S, C, b and Q) of quarks. With the quark spectrum, we deduce a baryon spectrum. The theoretical spectrum is in agreement well with the experimental results. Not only will this paper provide a physical basis for the Quark Model, but also it will open a door to study the more fundamental nature at distance scales <$10^{-18}$m. This paper predicts some new quarks $u_{c}$(6490) and d$_{b}$(9950), and new baryons $\\Lambda_{c}^{+}$(6500), $\\Lambda_{b}^{0}$(9960).

  16. Relativistic quark model and pentaquark spectroscopy

    CERN Document Server

    Gerasyuta, S M

    2002-01-01

    The relativistic five-quark equations are found in the framework of the dispersion relation technique. The solutions of these equations using the method based on the extraction of leading singularities of the amplitudes are obtained. The five-quark amplitudes for the low-lying pentaquarks are calculated under the condition that flavor SU(3) symmetry holds. The poles of five-quark amplitudes determine the masses of the lowest pentaquarks. The mass spectra of pentaquarks which contain only light quarks are calculated. The calculation of pentaquark amplitudes estimates the contributions of three subamplitudes. The main contributions to the pentaquark amplitude are determined by the subamplitudes, which include the meson states.

  17. Nuclear Structure Functions from Constituent Quark Model

    CERN Document Server

    Arash, F; Arash, Firooz; Atashbar-Tehrani, Shahin

    1999-01-01

    We have used the notion of the constituent quark model of nucleon, where a constituent quark carries its own internal structure, and applied it to determine nuclear structure functions ratios. It is found that the description of experimental data require the inclusion of strong shadowing effect for $x<0.01$. Using the idea of vector meson dominance model and other ingredients this effect is calculated in the context of the constituent quark model. It is rather striking that the constituent quark model, used here, gives a good account of the data for a wide range of atomic mass number from A=4 to A=204.

  18. Single top quark production with CMS

    Directory of Open Access Journals (Sweden)

    Piccolo Davide

    2013-11-01

    Full Text Available Measurements of single top quark production performed using the CMS experiment [1] data collected in 2011 at centre-of-mass energies of 7 TeV and in 2012 at 8 TeV, are presented. The cross sections for the electroweak production of single top quarks in the t-channel and in association with W-bosons is measured and the results are used to place constraints on the CKM matrix element Vtb. Measurements of top quark properties in single top quark production are also presented. The results include the measurement of the charge ratio in the single top t-channel.

  19. Review of meson spectroscopy: quark states and glueballs

    Energy Technology Data Exchange (ETDEWEB)

    Chanowitz, M.S.

    1981-11-01

    A group of three lectures on hadron spectroscopy are presented. Topics covered include: light L = 0 mesons, light L = 1 mesons, antiquark antiquark quark quark exotics, a catalogue of higher quark antiquark excitations, heavy quarkonium, and glueballs. (GHT)

  20. Condensed Matter Nuclear Science

    Science.gov (United States)

    Biberian, Jean-Paul

    2006-02-01

    1. General. A tribute to gene Mallove - the "Genie" reactor / K. Wallace and R. Stringham. An update of LENR for ICCF-11 (short course, 10/31/04) / E. Storms. New physical effects in metal deuterides / P. L. Hagelstein ... [et al.]. Reproducibility, controllability, and optimization of LENR experiments / D. J. Nagel -- 2. Experiments. Electrochemistry. Evidence of electromagnetic radiation from Ni-H systems / S. Focardi ... [et al.]. Superwave reality / I. Dardik. Excess heat in electrolysis experiments at energetics technologies / I. Dardik ... [et al.]. "Excess heat" during electrolysis in platinum/K[symbol]CO[symbol]/nickel light water system / J. Tian ... [et al.]. Innovative procedure for the, in situ, measurement of the resistive thermal coefficient of H(D)/Pd during electrolysis; cross-comparison of new elements detected in the Th-Hg-Pd-D(H) electrolytic cells / F. Celani ... [et al.]. Emergence of a high-temperature superconductivity in hydrogen cycled Pd compounds as an evidence for superstoihiometric H/D sites / A. Lipson ... [et al.]. Plasma electrolysis. Calorimetry of energy-efficient glow discharge - apparatus design and calibration / T. B. Benson and T. O. Passell. Generation of heat and products during plasma electrolysis / T. Mizuno ... [et al.]. Glow discharge. Excess heat production in Pd/D during periodic pulse discharge current in various conditions / A. B. Karabut. Beam experiments. Accelerator experiments and theoretical models for the electron screening effect in metallic environments / A. Huke, K. Czerski, and P. Heide. Evidence for a target-material dependence of the neutron-proton branching ratio in d+d reactions for deuteron energies below 20keV / A. Huke ... [et al.]. Experiments on condensed matter nuclear events in Kobe University / T. Minari ... [et al.]. Electron screening constraints for the cold fusion / K. Czerski, P. Heide, and A. Huke. Cavitation. Low mass 1.6 MHz sonofusion reactor / R. Stringham. Particle detection. Research

  1. Convective condensation heat transfer in a horizontal condenser tube

    Energy Technology Data Exchange (ETDEWEB)

    Sarma, P.K. [College of Engineering, GITAM, Visakhapatnam (India); Sastry, C.V.N.; Rao, V.D. [Andhra Univ., College of Engineering, Visakhapatnam (India); Kakac, S.; Liu, H. [Miami Univ., College of Engineering, FL (United States)

    2002-03-01

    The purpose of this article is to solve analytically the problem of convective condensation of vapors inside a horizontal condenser tube. Homogeneous model approach is employed in the estimation of shear velocity, which is subsequently, made use of in predicting local convective condensation heat transfer coefficients. The resulting analysis of the present study is compared with some of the available equations in the literature. It is observed that the agreement is reasonably satisfactory validating the assumptions and the theory presented. (authors)

  2. Superfluidity in polariton condensates

    Energy Technology Data Exchange (ETDEWEB)

    Amo, A; Lefrere, J; Adrados, C; Giacobino, E; Bramati, A [Laboratoire Kastler Brossel, UPMC, ENS and CNRS, 75005 Paris (France); Sanvitto, D; Laussy, F P; Ballarini, D; Valle, E del; MartIn, M D; Tejedor, C; Vina, L [SEMICUAM, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Pigeon, S; Ciuti, C [Laboratoire Materiaux et Phenomenes Quantiques, UMR 7162, Universite Paris Diderot-Paris 7 and CNRS, 75013 Paris (France); Carusotto, I [BEC-CNR-INFM and Dip. di Fisica, Universita di Trento, I-38050 Povo (Italy); Houdre, R [Institut de Photonique et d' Electronique Quantique, Ecole Polytechnique Federale de Lausanne, Station 3, CH-1015 Lausanne (Switzerland); LemaItre, A; Bloch, J [Laboratoire de Photonique et de Nanostructures, CNRS, Route de Nozay, 91460 Marcoussis (France); Krizhanovskii, D N; Skolnick, M S, E-mail: alberto.amo@spectro.jussieu.f [Department of Physics and Astronomy, University of Sheffield, S3 7RH, Sheffield (United Kingdom)

    2010-02-01

    Exciton-polaritons, two-dimensional composite bosons arising from the quantum mixture of excitons and photons, can manifest many-body quantum effects at liquid He temperatures (4 K). Interestingly, polaritons are predicted to behave as particular quantum fluids due to their out of equilibrium character, arising from their reduced lifetime (shorter than their thermalization time). Here we report the observation of superfluid motion of polaritons in semiconductor microcavities both under cw and pulsed excitation. Among other signatures, superfluidity is manifested via the absence of scattering of the polariton condensates when encountering a localized defect in their flow path.

  3. Nanocarbon condensation in detonation

    Science.gov (United States)

    Bastea, Sorin

    2017-01-01

    We analyze the definition of the Gibbs free energy of a nanoparticle in a reactive fluid environment, and propose an approach for predicting the size of carbon nanoparticles produced by the detonation of carbon-rich explosives that regards their condensation as a nucleation process and takes into account absolute entropy effects of the cluster population. The results are consistent with experimental observations and indicate that such entropy considerations are important for determining chemical equilibrium states in energetic materials that contain an excess of carbon. The analysis may be useful for other applications that deal with the nucleation of nanoparticles under reactive conditions. PMID:28176827

  4. Galaxies as condensates

    CERN Document Server

    Bugg, D V

    2012-01-01

    A novel interpretation of MOND is presented. For galactic data, in addition to Newtonian acceleration, there is an attractive acceleration peaking at Milgrom's parameter a_0. The peak lies within experimental error where a_0 = cH_0/2\\pi and H_0 is the present-time value of the Hubble constant. This peaking may be understood in terms of quantum mechanical mixing between Newtonian gravitation and the Hubble mechanism. There are five pointers towards galaxies being Fermi-Dirac condensates.

  5. Highlights of top quark properties measurements at ATLAS

    CERN Document Server

    Barranco Navarro, Laura; The ATLAS collaboration

    2017-01-01

    The top quark is the heaviest known fundamental particle. As it is the only quark that decays before it hadronizes, this gives the unique opportunity to probe the properties of bare quarks. This talk will focus on a few recent precision measurements of top quark properties in production and decay by the ATLAS Collaboration. Measurements of the top quark mass and searches for rare top quark decays are also presented.

  6. Highlights of top quark properties measurements at ATLAS

    CERN Document Server

    Barranco Navarro, Laura; The ATLAS collaboration

    2017-01-01

    The top quark is the heaviest known fundamental particle. As it is the only quark that decays before it hadronizes, this gives the unique opportunity to probe the properties of bare quarks. This talk focuses on a few recent precision measurements of top quark properties in production and decay by the ATLAS Collaboration. Measurements of the top quark mass and searches for rare top quark decays are also presented.

  7. Quasiparticle properties of the quarks of the Nambu--Jona-Lasinio model

    Energy Technology Data Exchange (ETDEWEB)

    Cao, N.; Shakin, C.M.; Sun, W. (Department of Physics and Center for Nuclear Theory, Brooklyn College of the City University of New York, Brooklyn, New York 11210 (United States))

    1992-12-01

    In spite of the apparent limitations of the model, in recent years there have been many applications of the Nambu--Jona-Lasinio (NJL) model in the study of hadron structure and in the study of the behavior of nuclear matter at finite temperature and density. A number of researchers have studied a generalized SU(3) version of the NJL model. For example, Vogl, Lutz, Klimt, and Weise (Nucl. Phys. A516 469 (1990)) have performed extensive calculations that include a calculation of a scalar form factor of a constituent quark, {ital F}{sub {ital s}}({ital q}{sup 2}), and a calculation of a quark sigma term {sigma}{sub {ital q}}. (In their work, the latter quantity is related to the nucleon sigma term {sigma}{sub {ital N}} as in a constituent quark model: {sigma}{sub {ital N}}=3{sigma}{sub {ital q}}.) These calculations are made in what may be termed a sigma-dominance approximation. In the work reported here, we review the important role played by the nucleon sigma term in understanding the behavior of the quark condensate in the presence of matter. We make use of the original SU(2) version of the NJL model to study how various quark properties are modified when we take into account the dressing of the constituent quarks by the pion, the Goldstone boson of the model. We calculate the quark self-energy arising from emission and absorption of a pion and also show how the calculation of the scalar form factor of the quark and {sigma}{sub {ital q}} are modified due to the coupling of the quark to the pion. The correction terms considered here serve to reduce the value of {sigma}{sub {ital q}} by a small amount relative to the value obtained in the simplest version of the sigma dominance model. For example, for a Euclidean momentum cutoff, {Lambda}=1050 MeV, the uncorrected result is {sigma}{sub {ital N}}=54.6 MeV.

  8. Two-color lattice QCD with staggered quarks

    Energy Technology Data Exchange (ETDEWEB)

    Scheffler, David

    2015-07-20

    pattern of U(2N{sub f})→O(2N{sub f}), contrary to the continuum theory. We determine pseudo-critical couplings where Ferrenberg-Swendsen reweighting is applied for an improved extraction of the peak of the chiral susceptibility. In order to assess the universality class critical exponents are studied via the scaling behavior of the chiral condensate and the corresponding susceptibility. Simulations are performed at various small quark masses to obtain results in the chiral limit. By introducing an improved discretization of the gauge action we mitigate effects of an unphysical ''bulk'' phase, which appears as a discretization artifact at small values of the lattice coupling. Furthermore, an important step is the detailed investigation of finite volume effects, which become relevant at very small quark masses. When temperature is varied using the coupling constant, also the underlying length and energy scale is modified. It is desirable to simulate along ''lines of constant physics'' (LCP) in parameter space. We thus have begun to calculate meson masses to determine LCP via the pion to rho meson mass ratio. Influence of the bulk phase at low lattice couplings and finite-volume effects at larger couplings however hamper their calculation.

  9. Topology and Fermionic Condensate

    Science.gov (United States)

    Kulikov, I.; Pronin, P.

    The purpose of this paper is to investigate an influence of a space-time topology on the formation of fermionic condensate in the model with four-fermion interaction ()2. The value for the space-time with topology of R1 × R1 × S1 is found. Moreover a relation of the value of fermionic condensate to a periodic length is studied. In this connection the possibility of a relation of the topologic deposits to structure of hadrons is discussed.Translated AbstractTopologie und FermikondensatEs wird der Einfluß einer Raum-Zeittopologie auf die Bildung des Fermikondensats in einem Modell mit Vierfermionenwechselwirkung ()2 untersucht. Für eine Raum-Zeit mit der Topologie R1 × R2 × S1 werden die Parameter gegeben. Weiterhin wird die Relation der Größe des Fermikondensats zu einer periodischen Länge untersucht. In diesem Zusammenhang wird die Verbindung des topologischen Depots zur Struktur der Hadronen diskutiert.

  10. Nucleation rate of the quark-gluon plasma droplet at finite quark chemical potential

    Indian Academy of Sciences (India)

    D S Gosain; S Somorendro Singh; Agam K Jha

    2012-05-01

    The nucleation rate of quark-gluon plasma (QGP) droplet is computed at finite quark chemical potential. In the course of computing the nucleation rate, the finite size effects of the QGP droplet are taken into account. We consider the phenomenological flow parameter of quarks and gluons, which is dependent on quark chemical potential and we calculate the nucleation rate of the QGP droplet with this parameter. While calculating the nucleation rate, we find that for low values of quark phenomenological parameter $ q$, nucleation rate is negligible and when increases, nucleation rate increases significantly.

  11. Quark distribution functions in the chiral quark-soliton model cancellation of quantum anomalies

    CERN Document Server

    Göke, K; Polyakov, M V; Schweitzer, P; Urbano, D

    2001-01-01

    In the framework of the chiral quark-soliton model of the nucleon we investigate the properties of the polarized quark distribution. In particular we analyse the so called anomalous difference between the representations of the quark distribution functions in terms of occupied and non-occupied quark states. By an explicit analytical calculation it is shown that this anomaly is absent in the polarized isoscalar distribution \\Delta u + \\Delta d, which is ultaviolet finite. In the case of the polarized isovector quark distribution which is also needed for the regularization of the ultraviolet divergence.

  12. Generation of strong magnetic fields in dense quark matter driven by the electroweak interaction of quarks

    Science.gov (United States)

    Dvornikov, Maxim

    2016-12-01

    We study the generation of strong large scale magnetic fields in dense quark matter. The magnetic field growth is owing to the magnetic field instability driven by the electroweak interaction of quarks. We discuss the situation when the chiral symmetry is unbroken in the degenerate quark matter. In this case we predict the amplification of the seed magnetic field 1012G to the strengths (1014 -1015)G. In our analysis we use the typical parameters of the quark matter in the core of a hybrid star or in a quark star. We also discuss the application of the obtained results to describe the magnetic fields generation in magnetars.

  13. Polariton condensates put in motion

    Energy Technology Data Exchange (ETDEWEB)

    Sanvitto, D; Amo, A; Vina, L [Departamento de Fisica de Materiales, Universidad Autonoma de Madrid, E-28049, Madrid (Spain); Laussy, F P; Tejedor, C [Departamento de Fisica Teorica de la Materia Condensada, Universidad Autonoma de Madrid, E-28049, Madrid (Spain); LemaItre, A; Bloch, J, E-mail: daniele.sanvitto@uam.es [LPN/CNRS, Route de Nozay, F-91460, Marcoussis (France)

    2010-04-02

    We present several examples of the interesting phenomenology shown by a moving polariton condensate in semiconductor microcavities. The superfluid behavior is probed by colliding the polariton condensate against physical obstacles in the form of natural defects of the sample, demonstrating a clear suppression of scattering when the speed of the flow lies below the critical velocity. At higher velocities Cerenkov-like shock waves around the defect and disruption of the condensate are also observed.

  14. Quantitative assessment of DNA condensation.

    Science.gov (United States)

    Trubetskoy, V S; Slattum, P M; Hagstrom, J E; Wolff, J A; Budker, V G

    1999-02-15

    A fluorescent method is proposed for assessing DNA condensation in aqueous solutions with variety of condensing agents. The technique is based on the effect of concentration-dependent self-quenching of covalently bound fluorophores upon DNA collapse. The method allows a more precise determination of charge equivalency in titration experiments with various polycations. The technique's ability to determine the number of DNA molecules that are condensed together in close proximity is under further investigation.

  15. PREFACE: Quark Matter 2006 Conference Quark Matter 2006 Conference

    Science.gov (United States)

    Ma, Yu-Gang; Wang, En-Ke; Cai, Xu; Huang, Huan-Zhong; Wang, Xin-Nian; Zhu, Zhi-Yuan

    2007-07-01

    The Quark Matter 2006 conference was held on 14-20 November 2006 at the Shanghai Science Hall of the Shanghai Association of Sciences and Technology in Shanghai, China. It was the 19th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions. The conference was organized jointly by SINAP (Shanghai Institute of Applied Physics, Chinese Academy of Sciences (CAS)) and CCNU (Central China Normal University, Wuhan). Over 600 scientists from 32 countries in five continents attended the conference. This is the first time that China has hosted such a premier conference in the field of relativistic heavy-ion collisions, an important event for the Chinese high energy nuclear physics community. About one half of the conference participants are junior scientists—a clear indication of the vigor and momentum for this field, in search of the fundamental nature of the nuclear matter at extreme conditions. Professor T D Lee, honorary chair of the conference and one of the founders of the quark matter research, delivered an opening address with his profound and philosophical remarks on the recent discovery of the nature of strongly-interacting quark-gluon-plasma (sQGP). Professor Hongjie Xu, director of SINAP, gave a welcome address to all participants on behalf of the two hosting institutions. Dr Peiwen Ji, deputy director of the Mathematics and Physics Division of the Natural Science Foundation of China (NSFC), also addressed the conference participants and congratulated them on the opening of the conference. Professor Mianheng Jiang, vice president of the Chinese Academy of Sciences (CAS), gave a concise introduction about the CAS as the premier research institution in China. He highlighted continued efforts at CAS to foster international collaborations between China and other nations. The Quark Matter 2006 conference is an example of such a successful collaboration between high energy nuclear physicists in China and other nations all over the world. The

  16. Relationship between quark-antiquark potential and quark-antiquark free energy in hadronic matter

    Institute of Scientific and Technical Information of China (English)

    SHEN Zhen-Yu; XU Xiao-Ming

    2015-01-01

    In high-temperature quark-gluon plasma and its subsequent hadronic matter created in a high-energy nucleus-nucleus collision,the quark-antiquark potential depends on the temperature.The temperature-dependent potential is expected to be derived from the free energy obtained in lattice gauge theory calculations.This requires one to study the relationship between the quark-antiquark potential and the quark-antiquark free energy.When the system's temperature is above the critical temperature,the potential of a heavy quark and a heavy antiquark almost equals the free energy,but the potential of a light quark and a light antiquark,of a heavy quark and a light antiquark and of a light quark and a heavy antiquark is substantially larger than the free energy.When the system's temperature is below the critical temperature,the quark-antiquark free energy can be taken as the quark-antiquark potential.This allows one to apply the quark-antiquark free energy to study hadron properties and hadron-hadron reactions in hadronic matter.

  17. Quark-Gluon Plasma Fireball

    OpenAIRE

    Hamieh, Salah; Letessier, Jean; Rafelski, Johann

    2000-01-01

    Lattice-QCD results provide an opportunity to model, and extrapolate to finite baryon density, the properties of the quark-gluon plasma (QGP). Upon fixing the scale of the thermal coupling constant and vacuum energy to the lattice data, the properties of resulting QGP equations of state (EoS) are developed. We show that the physical properties of the dense matter fireball formed in heavy ion collision experiments at CERN-SPS are well described by the QGP-EoS we presented. We also estimate the...

  18. Charm physics with HISQ quarks

    CERN Document Server

    Davies, C T H; Kendall, I; McNeile, C; Lepage, G P; Allison, I; Woloshyn, R; Dalgic, E; Trottier, H; Follana, E; Horgan, R; Hornbostel, K; Shigemitsu, J

    2008-01-01

    We present an update of results from the HPQCD collaboration on charm physics using the Highly Improved Staggered Quark action. This includes a precise determination of m_c using moments of current-current correlators combined with high-order continuum QCD perturbation theory. We also include an update on the determination of alpha_s from lattice QCD, preliminary results on the determination of m_b and a summary plot of the status of the gold-plated meson spectrum. There is an appendix on tackling systematic errors in fitting using the Bayesian approach.

  19. Color Screening and Quark-Quark Interactions in Finite Temperature QCD

    CERN Document Server

    Döring, M; Kaczmarek, O; Karsch, F

    2007-01-01

    We analyze the screening of static diquark sources in 2-flavor QCD and compare results with the screening of static quark-antiquark pairs. We show that a two quark system in a fixed color representations is screened at short distances like a single quark source in the same color representation whereas at large distances the two quarks are screened independently. At high temperatures we observe that the relative strength of the interaction in diquark and quark-antiquark systems, respectively, obeys Casimir scaling. We use this result to examine the possible existence of heavy quark-quark bound states in the high temperature phase of QCD. We find support for the existence of $bb$ states up to about $2T_c$ while $cc$ states are unlikely to be formed above $T_c$.

  20. Tevatron Top-Quark Combinations and World Top-Quark Mass Combination

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Reinhild Yvonne [DESY

    2014-11-04

    Almost 20 years after its discovery, the top quark is still an interesting particle, undergoing precise investigation of its properties. For many years, the Tevatron proton antiproton collider at Fermilab was the only place to study top quarks in detail, while with the recent start of the LHC proton proton collider a top quark factory has opened. An important ingredient for the full understanding of the top quark is the combination of measurements from the individual experiments. In particular, the Tevaton combinations of single top-quark cross sections, the ttbar production cross section, the W helicity in top-quark decays as well as the Tevatron and the world combination of the top-quark mass are discussed.

  1. Goldstone boson condensation and effects of the axial anomaly in color superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Basler, Hannes Gregor Steffen

    2011-01-12

    One of the central objects of interest in high energy physics is the phase diagram of strongly interacting matter, the behavior of quarks and gluons in dependence of temperature and chemical potential. At very high densities and low temperatures it is expected that quarks form a superconductor, the so-called color superconductor. Such a color superconductor might be realized in the inner core of a neutron star. To study the phase structure of a color superconductor under neutron star conditions the Nambu-Jona-Lasinio model is used. The diquark condensates appearing in a color superconductor may break the original symmetries and give rise to Goldstone bosons. In this work we study the possible condensation of these Goldstone bosons. On the level of diquark condensates the condensation of Goldstone bosons is realized by a rotation of scalar into pseudoscalar diquark condensates. The phase diagram is studied, including pseudoscalar diquark condensates, for several different values of the lepton number chemical potential. The masses and thereby the condensation of the Goldstone bosons is effected by a six-point interaction that breaks the axial U(1) symmetry. Usually this six-point interaction is implemented in the NJL model in such a way that is does not effect the diquark sector. This can be fixed by adding an second six-point interaction term to the NJL Lagrangian. The coupling strength of this new interaction term has a great influence on the phase digram. In this context also the effect on the chiral phase transition is studied. (orig.)

  2. The Top Quark, QCD, And New Physics.

    Science.gov (United States)

    Dawson, S.

    2002-06-01

    The role of the top quark in completing the Standard Model quark sector is reviewed, along with a discussion of production, decay, and theoretical restrictions on the top quark properties. Particular attention is paid to the top quark as a laboratory for perturbative QCD. As examples of the relevance of QCD corrections in the top quark sector, the calculation of e{sup+}e{sup -}+ t{bar t} at next-to-leading-order QCD using the phase space slicing algorithm and the implications of a precision measurement of the top quark mass are discussed in detail. The associated production of a t{bar t} pair and a Higgs boson in either e{sup+}e{sup -} or hadronic collisions is presented at next-to-leading-order QCD and its importance for a measurement of the top quark Yulrawa coupling emphasized. Implications of the heavy top quark mass for model builders are briefly examined, with the minimal supersymmetric Standard Model and topcolor discussed as specific examples.

  3. Dissociation coloured quarks and inclusive scattering

    CERN Document Server

    Bartelski, J

    1974-01-01

    A simple parton model of the nucleon built up of three-triplet quarks dissociated into the Gell-Mann-Zweig quarks and 'coloured' gluons is considered. It is shown that the model is consistent with SLAC-MIT and CERN data for inclusive scattering. (21 refs).

  4. Top quark property measurements in single top

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00386283; The ATLAS collaboration

    2016-01-01

    A review of the recent results on measurements of top quark properties in single top quark processes, performed at the LHC by ATLAS and CMS is presented. The measurements are in good agreement with predictions and no deviations from Standard Model expectations have been observed.

  5. Quark Model in the Quantum Mechanics Curriculum.

    Science.gov (United States)

    Hussar, P. E.; And Others

    1980-01-01

    This article discusses in detail the totally symmetric three-quark karyonic wave functions. The two-body mesonic states are also discussed. A brief review of the experimental efforts to identify the quark model multiplets is given. (Author/SK)

  6. Composite Models of Quarks and Leptons.

    Science.gov (United States)

    Geng, Chaoqiang

    1987-09-01

    We review the various constraints on composite models of quarks and leptons. Some dynamical mechanisms for chiral symmetry breaking in chiral preon models are discussed. We have constructed several "realistic candidate" chiral preon models satisfying complementarity between the Higgs and confining phases. The models predict three to four generations of ordinary quarks and leptons.

  7. Quark Model in the Quantum Mechanics Curriculum.

    Science.gov (United States)

    Hussar, P. E.; And Others

    1980-01-01

    This article discusses in detail the totally symmetric three-quark karyonic wave functions. The two-body mesonic states are also discussed. A brief review of the experimental efforts to identify the quark model multiplets is given. (Author/SK)

  8. Wigner Functions and Quark Orbital Angular Momentum

    Directory of Open Access Journals (Sweden)

    Mukherjee Asmita

    2015-01-01

    Full Text Available Wigner distributions contain combined position and momentum space information of the quark distributions and are related to both generalized parton distributions (GPDs and transverse momentum dependent parton distributions (TMDs. We report on a recent model calculation of the Wigner distributions for the quark and their relation to the orbital angular momentum.

  9. Free quarks and antiquarks versus hadronic matter

    Institute of Scientific and Technical Information of China (English)

    XU Xiao-Ming; PENG Ru

    2009-01-01

    Meson-meson reactions A(q1q1) + B(q2q2) → q1+q1+ q2+q2 in high-temperature hadronic matter are found to produce an appreciable amount of quarks and antiquarks freely moving in hadronic matter and to establish a new mechanism for deconfinement of quarks and antiquarks in hadronic matter.

  10. Baryon Ratios in Quark-Gluon Plasma

    Institute of Scientific and Technical Information of China (English)

    MA Zhong-Biao; MIAO Hong; GAO Chong-Shou

    2003-01-01

    A way to calculate ratios of baryon produced from quark gluon plasma in relativistic heavyion collisionsis presented. It is assumed that at the beginning of the hadronization there are diquarks and anti-diquarks in the quarkmatter. The number of three-quark states is distributed between the corresponding multiplets, and hadronic decays aretaken into account. The results are shown at last.

  11. A note on Quarks and numbers theory

    CERN Document Server

    Hage-Hassan, Mehdi

    2013-01-01

    We express the basis vectors of Cartan fundamental representations of unitary groups by binary numbers. We determine the expression of Gel'fand basis of SU (3) based on the usual subatomic quarks notations and we represent it by binary numbers. By analogy with the mesons and quarks we find a new property of prime numbers.

  12. Dressed Quarks and PROTON’S Spin

    Science.gov (United States)

    Yang, Xin-Hua; Wong, Chun Wa; Chu, Keh-Cheng

    The effect on the proton spin of mixing gluon and sea quark configurations is studied in a perturbative treatment based on the MIT bag model. As little as 29% of the proton spin is found to remain as the intrinsic spin of quarks when they are “dressed” by gluons.

  13. Heavy quark production in pp collisions

    Energy Technology Data Exchange (ETDEWEB)

    McGaughey, P.L. [Los Alamos National Lab., NM (United States); Quack, E. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany); Ruuskanen, P.V. [Univ. of Helsinki (Finland)]|[Univ. of Jyvaeskylae (Finland)] [and others

    1995-07-01

    A systematic study of the inclusive single heavy quark and heavy-quark pair production cross sections in pp collisions is presented for RHIC and LHC energies. We compare with existing data when possible. The dependence of the rates on the renormalization and factorization scales is discussed. Predictions of the cross sections are given for two different sets of parton distribution functions.

  14. Evidence for production of single top quarks

    CERN Document Server

    Abazov, V M; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguiló, E; Ahn, S H; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Ancu, L S; Andeen, T; Anderson, S; Andrieu, B; Anzelc, M S; Aoki, M; Arnoud, Y; Arov, M; Arthaud, M; Askew, A; sman, B; Assis-Jesus, A C S; Atramentov, O; Avila, C; Ay, C; Badaud, F; Baden, AA; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, P; Banerjee, S; Barberis, E; Barfuss, A F; Bargassa, P; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benítez, J A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Biscarat, C; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Bloom, K; Böhnlein, A; Boline, D; Bolton, T A; Boos, E E; Borissov, G; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Buchanan, N J; Buchholz, D; Bühler, M; Büscher, V; Bunichev, V; Burdin, S; Burke, S; Burnett, T H; Buszello, C P; Butler, J M; Calfayan, P; Calvet, S; Cammin, J; Carvalho, W; Casey, B C K; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K; Chan, K M; Chandra, A; Charles, F; Cheu, E; Chevallier, F; Cho, D K; Choi, S; Choudhary, B; Christofek, L; Christoudias, T; Cihangir, S; Claes, D; Coadou, Y; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M C; Crepe-Renaudin, S; Cutts, D; Cwiok, M; Da Motta, H; Das, A; Davies, G; De, K; De Jong, S J; De La Cruz-Burelo, E; De Oliveira Martins, C; Degenhardt, J D; Dliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, e H T; Diesburg, M; Dominguez, A; Dong, H; Dudko, L V; Duflot, L; Dugad, S R; Duggan, D; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Ermolov, P; Evans, H; Evdokimov, A; Evdokimov, V N; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; García, C; García-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Gel, D; Gerber, eC E; Gershtein, Yu; Gillberg, D; Ginther, G; Gollub, N; Gmez, B; Goussiou, A; Grannis, P D; Greenlee, o H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, P; Grivaz, J F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutíerrez, G; Gutíerrez, P; Haas, A; Hadley, N J; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Harder, K; Harel, A; Harrington, R; Hauptman, J M; Hauser, R; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hoeth, H; Hohlfeld, M; Hong, S J; Hossain, S; Houben, P; Hu, Y; Hubacek, Z; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jarvis, C; Jesik, e R; Johns, K; Johnson, C; Johnson, M; Jonckheere, A; Jonsson, P; Juste, A; Kajfasz, E; Kalinin, A M; Kalk, J M; Kappler, S; Karmanov, D; Kasper, P A; Katsanos, I; Kau, D; Kaushik, V; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Yu M; Khatidze, D; Kim, T J; Kirby, M H; Kirsch, M; Klima, B; Kohli, J M; Konrath, J P; Korablev, V M; Kozelov, A V; Kraus, J; Krop, D; Kühl, T; Kumar, A; Kupco, A; Kura, T; Kvita, J; Lacroix, F; Lam, cD; Lammers, S; Landsberg, G; Lebrun, P; Lee, W M; Leflat, A; Lellouch, J; Lévêque, J; Li, J; Li, L; Li, Q Z; Lietti, S M; Lima, J G R; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobodenko, A; Lokajícek, M; Love, P; Lubatti, H J; Luna, R; Lyon, A L; Maciel, A K A; Mackin, D; Madaras, R J; Mättig, P; Magass, C; Magerkurth, A; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Mao, H S; Maravin, Y; Martin, B; McCarthy, R; Melnitchouk, A; Mendoza, L; Mercadante, P G; Merkin, M; Merritt, K W; Meyer, A; Meyer, J; Millet, T; Mitrevski, J; Molina, J; Mommsen, R K; Mondal, N K; Moore, R W; Moulik, T; Muanza, G S; Mulders, M; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Naumann, N A; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Nogima, H; Novaes, S F; Nunnemann, T; O'Dell, V; O'Neil, D C; Obrant, G; Ochando, C; Onoprienko, D; Oshima, N; Osman, N; Osta, J; Otec, R; Oteroy-Garzon, G J; Owen, M; Padley, P; Pangilinan, M; Parashar, N; Park, S J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Penning, B; Perfilov, M; Peters, K; Peters, Y; Pétroff, P; Petteni, M; Piegaia, R; Piper, J; Pleier, M A; Podesta-Lerma, P L M; Podstavkov, e V M; Pogorelov, Y; Pol, M E; Polozov, P; Pope, B G; Popov, A V; Potter, C; Prado da Silva, W L; Prosper, H B; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rakitine, A; Rangel, M S; Ranjan, K; Ratoff, P N; Renkel, P; Reucroft, S; Rich, P; Rieger, J; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rodrigues, R F; Rominsky, M; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santoro, A; Savage, G; Sawyer, L; Scanlon, T; Schaile, A D; Schamberger, R D; Scheglov, Y; Schellman, H; Schliephake, T; Schwanenberger, C; Schwartzman, A; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shivpuri, R K; Siccardi, V; Simák, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Spurlock, B; Stark, J; Steele, J; Stolin, V; Stoyanova, D A; Strandberg, J; Strandberg, S; Strang, M A; Strauss, E; Strauss, M; Ströhmer, R; Strom, D; Stutte, L; Sumowidagdo, S; Svoisky, P; Sznajder, A; Tamburello, P; Tanasijczuk, A; Taylor, W; Temple, J; Tiller, B; Tissandier, F; Titov, M; Tokmenin, V V; Toole, T; Torchiani, I; Trefzger, T; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, L; Uvarov, S; Uzunyan, S; Vachon, B; vanden Berg, P J; Van Kooten, R; Van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Vaupel, M; Verdier, P; Vertogradov, L S; Verzocchi, M; Vetterli, M; Villeneuve-Séguier, F; Vint, P; Vokac, P; Von Törne, E; Voutilainen, M; Wagner, R; Wahl, H D; Wang, L; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, G; Weber, M; Welty-Rieger, L; Wenger, A; Wermes, N; Wetstein, M; White, A; Wicke, D; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Yacoob, S; Yamada, R; Yan, M; Yasuda, T; Yatsunenko, Y A; Yip, K; Yoo, H D; Youn, S W; Yu, J; Zatserklyaniy, A; Zeitnitz, C; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zivkovic, L; Zutshi, V; Zverev, E G

    2008-01-01

    We present first evidence for the production of single top quarks in the D0 detector at the Fermilab Tevatron ppbar collider. The standard model predicts that the electroweak interaction can produce a top quark together with an antibottom quark or light quark, without the antiparticle top quark partner that is always produced from strong coupling processes. Top quarks were first observed in pair production in 1995, and since then, single top quark production has been searched for in ever larger datasets. In this analysis, we select events from a 0.9 fb-1 dataset that have an electron or muon and missing transverse energy from the decay of a W boson from the top quark decay, and two, three, or four jets, with one or two of the jets identified as originating from a b hadron decay. The selected events are mostly backgrounds such as W+jets and ttbar events, which we separate from the expected signals using three multivariate analysis techniques: boosted decision trees, Bayesian neural networks, and matrix element...

  15. Light-quark decays in heavy hadrons

    Science.gov (United States)

    Faller, Sven; Mannel, Thomas

    2015-11-01

    We consider weak decays of heavy hadrons (bottom and charmed) where the heavy quark acts as a spectator. These decays are heavily phase-space suppressed but may become experimentally accessible in the near future. These decays may be interesting as a QCD laboratory to study the behaviour of the light quarks in the colour-background field of the heavy spectator.

  16. Light-quark decays in heavy hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Faller, Sven, E-mail: faller@physik.uni-siegen.de; Mannel, Thomas, E-mail: mannel@physik.uni-siegen.de

    2015-11-12

    We consider weak decays of heavy hadrons (bottom and charmed) where the heavy quark acts as a spectator. These decays are heavily phase-space suppressed but may become experimentally accessible in the near future. These decays may be interesting as a QCD laboratory to study the behaviour of the light quarks in the colour-background field of the heavy spectator.

  17. Light-Quark Decays in Heavy Hadrons

    CERN Document Server

    Faller, Sven

    2015-01-01

    We consider weak decays of heavy hadrons (bottom and charmed) where the heavy quark acts as a spectator. Theses decays are heavily phase-space suppressed but may become experimentally accessible in the near future. These decays are interesting as a QCD laboratory to study the behaviour of the light quarks in the colour-background field of the heavy spectator.

  18. The heavy quark expansion of QCD

    Energy Technology Data Exchange (ETDEWEB)

    Falk, A.F. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Physics and Astronomy

    1997-06-01

    These lectures contain an elementary introduction to heavy quark symmetry and the heavy quark expansion. Applications such as the expansion of heavy meson decay constants and the treatment of inclusive and exclusive semileptonic B decays are included. Heavy hadron production via nonperturbative fragmentation processes is also discussed. 54 refs., 7 figs.

  19. An Extended Chiral SU(3) Quark Model

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zong-Ye; YU You-Wen; WANG Ping; DAI Lian-Rong

    2003-01-01

    The chiral SU(3) quark model is extended by including the vector meson exchanges to describe the short range interactions. The phase shifts of NN scattering are studied in this model. Compared with the results of the chiral SU(3) quark model in which only the pseudo-scalar and scalar chiralfields are considered, the phase shifts of 1 So wave are obviously improved.

  20. Review of Top Quark Physics Results

    Energy Technology Data Exchange (ETDEWEB)

    Kehoe, R.; Narain, M.; Kumar, A.

    2007-12-01

    As the heaviest known fundamental particle, the top quark has taken a central role in the study of fundamental interactions. Production of top quarks in pairs provides an important probe of strong interactions. The top quark mass is a key fundamental parameter which places a valuable constraint on the Higgs boson mass and electroweak symmetry breaking. Observations of the relative rates and kinematics of top quark final states constrain potential new physics. In many cases, the tests available with study of the top quark are both critical and unique. Large increases in data samples from the Fermilab Tevatron have been coupled with major improvements in experimental techniques to produce many new precision measurements of the top quark. The first direct evidence for electroweak production of top quarks has been obtained, with a resulting direct determination of V{sub tb}. Several of the properties of the top quark have been measured. Progress has also been made in obtaining improved limits on potential anomalous production and decay mechanisms. This review presents an overview of recent theoretical and experimental developments in this field. We also provide a brief discussion of the implications for further efforts.

  1. Recent advances in heavy quark theory

    Energy Technology Data Exchange (ETDEWEB)

    Wise, M. [California Institute of Technology, Pasadena, CA (United States)

    1997-01-01

    Some recent developments in heavy quark theory are reviewed. Particular emphasis is given to inclusive weak decays of hadrons containing a b quark. The isospin violating hadronic decay D{sub s}* {yields} D{sub s}{sup pi}{sup 0} is also discussed.

  2. A Lattice Determination of Light Quark Masses

    CERN Document Server

    Göckeler, M; Oelrich, H; Petters, D; Pleiter, D; Rakow, P E L; Schierholz, G; Stephenson, P

    2000-01-01

    A fully non-perturbative lattice determination of the up/down and strange quark masses is given for quenched QCD using both, $O(a)$ improved Wilson fermions and ordinary Wilson fermions. For the strange quark mass with $O(a)$ improved fermions we obtain $m^{\\msbar}_s(\\mu=2 {GeV}) = 105(4) {MeV}$, using the interquark force scale $r_0$. Due to quenching problems fits are only possible for quark masses larger than the strange quark mass. If we extrapolate our fits to the up/down quark mass we find for the average mass $m^{\\msbar}_l(\\mu=2 {GeV}) = 4.4(2) {MeV}$.

  3. The QCD spectrum with three quark flavors

    CERN Document Server

    Bernard, C; DeGrand, T A; Datta, S; DeTar, C E; Gottlieb, S; Heller, U M; Orginos, K; Sugar, R; Toussaint, D; Bernard, Claude; Burch, Tom; Grand, Thomas A. De; Datta, Saumen; Tar, Carleton De; Gottlieb, Steven; Heller, Urs M.; Orginos, Kostas; Sugar, Robert; Toussaint, Doug

    2001-01-01

    We present results from a lattice hadron spectrum calculation using three flavors of dynamical quarks - two light and one strange, and quenched simulations for comparison. These simulations were done using a one-loop Symanzik improved gauge action and an improved Kogut-Susskind quark action. The lattice spacings, and hence also the physical volumes, were tuned to be the same in all the runs to better expose differences due to flavor number. Lattice spacings were tuned using the static quark potential, so as a byproduct we obtain updated results for the effect of sea quarks on the static quark potential. We find indications that the full QCD meson spectrum is in better agreement with experiment than the quenched spectrum. For the 0++ (a0) meson we see a coupling to two pseudoscalar mesons, or a meson decay on the lattice.

  4. Transverse Force on Quarks in DIS

    CERN Document Server

    Burkardt, Matthias

    2015-01-01

    Generalized Parton Distributions (GPDs) provide information on the distribution of quarks in impact paarmeter space. For transversely polarized nucleons, these impact parameter distributions are transversely distorted and this deviation from axial symmetry leads on average to a net transverse force from the spectators on the active quark in a DIS experiment. %The strength of that force can be related to twist-3 PDFs. This force when acting along the whole trajectory of the active quark leads to a transverse single-spin asymmetries. For a longitudinally polarized nucleon target, the transverse force implies a torque acting on the quark Orbital Angular Momentum (OAM). The resulting change in OAM as the quark leaves the target equals the difference between the Jaffe-Manohar and Ji OAMs.

  5. Top quark production at the LHC

    CERN Document Server

    Ferreira da Silva, Pedro

    2016-01-01

    Twenty years past its discovery, the top quark continues attracting great interest as experiments keep unveiling its properties. An overview of the latest measurements in the domain of top quark production, performed by the ATLAS and CMS experiments at the CERN LHC, is given. The latest measurements of top quark production rates via strong and electroweak processes are reported and compared to different perturbative QCD predictions. Fundamental properties, such as the mass or the couplings of the top quark, as well as re-interpretations seeking for beyond the standard model contributions in the top quark sector, are extracted from these measurements. In each case an attempt to highlight the first results and main prospects for the on-going Run 2 of the LHC is made.

  6. Heavy quark dynamics in QCD matter

    Science.gov (United States)

    Das, S. K.; Scardina, F.; Plumari, S.; Greco, V.

    2017-01-01

    Simultaneous description of heavy quark nuclear modification factor RAA and the elliptic flow v 2 is a top challenge for all the existing models. We highlight how the temperature dependence of the energy loss/transport coefficients is responsible for addressing a large part of such a puzzle along with the full solution of the Boltzmann collision integral for the momentum evolution of heavy quarks in the medium. We consider four different models to evaluate the temperature dependence of drag coefficients of the heavy quark in the QGP. We have also highlighted the heavy quark dynamics in the presence of an external electromagnetic field which induces a sizable heavy quark directed flow, v 1(y), that can be measurable at LHC.

  7. Heavy quark dynamics in QCD matter

    CERN Document Server

    Das, Santosh K; Plumari, Salvatore; Greco, Vincenzo

    2016-01-01

    Simultaneous description of heavy quark nuclear suppression factor $R_{AA}$ and the elliptic flow $v_2$ is a top challenge for all the existing models. We highlight how the temperature dependence of the energy loss/transport coefficients is responsible to address a large part of such a puzzle along with the the full solution of the Boltzmann collision integral for the momentum evolution of heavy quark. We consider four different models to evaluate the temperature dependence of drag coefficients of the heavy quark in the QGP. We have also highlighted the heavy quark dynamics in the presence of an external electromagnetic field which develops a sizable heavy quark directed flow, $v_1(y)$, can be measurable at LHC.

  8. Search for new resonances with top quark

    CERN Document Server

    Kim, Min Suk

    2015-01-01

    Many models of physics beyond the Standard Model predict new gauge bosons that decay to a top quark pair or a top quark and a bottom quark. The most recent results from new resonance searches for $\\rm{Z'} \\rightarrow \\rm{t\\bar{t}} \\rightarrow \\rm{W^{+}bW^{-}\\bar{b}}$ and $\\rm{W'} \\rightarrow \\rm{tb} \\rightarrow \\rm{Wbb}$ are presented using the proton-proton collision data at a centre-of-mass energy of 8 TeV. The searches are performed with the ATLAS and CMS experiments at the LHC using an integrated luminosity of 20.3 fb$^{-1}$ and 19.7 fb$^{-1}$, respectively. The analyses are done in the leptonic and hadronic decay modes of the top quark. No evidence for new resonances with top quark is observed and 95\\% confidence level (CL) limits on the production rate are determined for massive states in theories beyond the Standard Model.

  9. Strange quark matter in explosive astrophysical systems

    CERN Document Server

    Sagert, I; Hempel, M; Pagliara, G; Schaffner-Bielich, J; Thielemann, F -K; Liebendörfer, M

    2010-01-01

    Explosive astrophysical systems, such as supernovae or compact star binary mergers, provide conditions where strange quark matter can appear. The high degree of isospin asymmetry and temperatures of several MeV in such systems may cause a transition to the quark phase already around saturation density. Observable signals from the appearance of quark matter can be predicted and studied in astrophysical simulations. As input in such simulations, an equation of state with an integrated quark matter phase transition for a large temperature, density and proton fraction range is required. Additionally, restrictions from heavy ion data and pulsar observation must be considered. In this work we present such an approach. We implement a quark matter phase transition in a hadronic equation of state widely used for astrophysical simulations and discuss its compatibility with heavy ion collisions and pulsar data. Furthermore, we review the recently studied implications of the QCD phase transition during the early post-bou...

  10. Algebra of optical quarks: an experiment

    Science.gov (United States)

    Egorov, Yuriy; Konovalenko, Viktor; Zinovev, Alexey; Nesterova, Mariya; Glumova, Marina

    2013-12-01

    We have considered a new type of singular beams called as optical quarks. They have fractional topological charges being equal to half an integer and they possess rather unique properties. There are four types of optical quarks, even and odd ones, which reveal the opposite signs of topological charges. The sums or differences of the even and odd quarks form standard vortex or non-vortex beams with the topological charges of integer order. All the quarks in the same beam annihilate and the beam vanishes. We conducted an analysis of all possible combinations of even and odd optical quarks with different charges. What provided an opportunity to explore what interactions correspond to their "sum" and "difference."

  11. Nonequilibrium Weak Processes in Kaon Condensation; 2, Kinetics of condensation

    CERN Document Server

    Muto, T; Iwamoto, N; Muto, Takumi; Tatsumi, Toshitaka; Iwamoto, Naoki

    2000-01-01

    The kinetics of negatively charged kaon condensation in the early stages of a newly born neutron star is considered. The thermal kaon process, in which kaons are thermally produced by nucleon-nucleon collisions, is found to be dominant throughout the equilibration process. Temporal changes of the order parameter of the condensate and the number densities of the chemical species are obtained from the rate equations, which include the thermal kaon reactions as well as the kaon-induced Urca and the modified Urca reactions. It is shown that the dynamical evolution of the condensate is characterized by three stages: the first, prior to establishment of a condensate, the second, during the growth and subsequent saturation of the condensate, and the third, near chemical equilibrium. The connection between the existence of a soft kaon mode and the instability of the noncondensed state is discussed. Implications of the nonequilibrium process on the possible delayed collapse of a protoneutron star are also mentioned.

  12. Condensation Processes in Geothermal Systems

    Science.gov (United States)

    Norman, D. I.; Moore, J. N.

    2005-12-01

    We model condensation processes in geothermal systems to understand how this process changes fluid chemistry. We assume two processes operate in geothermal systems: 1) condensation of a vapor phase derived by boiling an aqueous geothermal fluid into a cool near surface water and 2) condensation of a magmatic vapor by a deep circulating meteoric thermal fluid. It is assumed that the condensation process has two stages. Initially the condensing fluid is under saturated in gaseous species. Condensation of the vapor phase continues until the pressure on the fluid equals the sum of the partial pressures of water and the dissolved gaseous species. At that time bubbles flux through the condensing fluid. In time the fluid and fluxing gas phase come to equilibrium. Calculation shows that during the second stage of the condensation process the liquid phase becomes enriched in more soluble gaseous species like CO2 and H2S, and depleted in less soluble species like CH4 and N2. Stage 2 condensation processes can therefore be monitored by ratios of more and less condensable species like CO2/N2. Condensation of vapor released by boiling geothermal fluids results in liquids with high concentrations of H2S and CO2 like is seen in geothermal system steam-heated waters. Condensation of a magmatic vapor into circulating meteoric water has been proposed, but not well demonstrated. We compare to our models the Cerro Prieto, Mexico gas analysis data set collected over twelve years time by USGS personnel. It was assumed for modeling that the Cerro Prieto geothermal fluids are circulating meteoritic fluids with N2/Ar ratios about 40 to which is added a magmatic vapor with N2/Ar ratio = 400. The Cerro Prieto analyses show a strong correlation between N2/Ar and CO2/N2 as predicted by calculation. Two dimensional image plots of well N2/Ar + CO2/N2 show a bull's-eye pattern on the geothermal field. Image plots of analyses collected over a year or less time show N2/Ar and CO2/N2 hot spots

  13. Microgravity condensing heat exchanger

    Science.gov (United States)

    Thomas, Christopher M. (Inventor); Ma, Yonghui (Inventor); North, Andrew (Inventor); Weislogel, Mark M. (Inventor)

    2011-01-01

    A heat exchanger having a plurality of heat exchanging aluminum fins with hydrophilic condensing surfaces which are stacked and clamped between two cold plates. The cold plates are aligned radially along a plane extending through the axis of a cylindrical duct and hold the stacked and clamped portions of the heat exchanging fins along the axis of the cylindrical duct. The fins extend outwardly from the clamped portions along approximately radial planes. The spacing between fins is symmetric about the cold plates, and are somewhat more closely spaced as the angle they make with the cold plates approaches 90.degree.. Passageways extend through the fins between vertex spaces which provide capillary storage and communicate with passageways formed in the stacked and clamped portions of the fins, which communicate with water drains connected to a pump externally to the duct. Water with no entrained air is drawn from the capillary spaces.

  14. Production and decay of heavy top quarks

    Energy Technology Data Exchange (ETDEWEB)

    Kauffman, R.P.

    1989-08-01

    Experimental evidence indicates that the top quark exists and has a mass between 50 and 200 GeV/c{sup 2}. The decays of a top quark with a mass in this range are studied with emphasis placed on the mass region near the threshold for production of real W bosons. Topics discussed are: (1) possible enhancement of strange quark production when M{sub W} + m{sub s} < m{sub t} < M{sub W} + m{sub b}; (2) exclusive decays of T mesons to B and B{asterisk} mesons using the non-relativistic quark model; (3) polarization of intermediate W's in top quark decay as a source of information on the top quark mass. The production of heavy top quarks in an e{sup +}e{sup {minus}} collider with a center-of-mass energy of 2 TeV is studied. The effective-boson approximation for photons, Z{sup 0}'s and W's is reviewed and an analogous approximation for interfaces between photons and Z{sup 0}'s is developed. The cross sections for top quark pair production from photon-photon, photon-Z{sup 0}, Z{sup 0}Z{sup 0}, and W{sup +}W{sup {minus}} fusion are calculated using the effective-boson approximation. Production of top quarks along with anti-bottom quarks via {gamma}W{sup +} and Z{sup 0}W{sup +} fusion is studied. An exact calculation of {gamma}e{sup +} {yields} {bar {nu}}t{bar b} is made and compared with the effective-W approximation. 31 refs., 46 figs.

  15. PREFACE: Quark Matter 2006 Conference

    Science.gov (United States)

    Ma, Yu-Gang; Wang, En-Ke; Cai, Xu; Huang, Huan-Zhong; Wang, Xin-Nian; Zhu, Zhi-Yuan

    2007-07-01

    The Quark Matter 2006 conference was held on 14 20 November 2006 at the Shanghai Science Hall of the Shanghai Association of Sciences and Technology in Shanghai, China. It was the 19th International Conference on Ultra-Relativistic Nucleus Nucleus Collisions. The conference was organized jointly by SINAP (Shanghai Institute of Applied Physics, Chinese Academy of Sciences (CAS)) and CCNU (Central China Normal University, Wuhan). Over 600 scientists from 32 countries in five continents attended the conference. This is the first time that China has hosted such a premier conference in the field of relativistic heavy-ion collisions, an important event for the Chinese high energy nuclear physics community. About one half of the conference participants are junior scientists—a clear indication of the vigor and momentum for this field, in search of the fundamental nature of the nuclear matter at extreme conditions. Professor T D Lee, honorary chair of the conference and one of the founders of the quark matter research, delivered an opening address with his profound and philosophical remarks on the recent discovery of the nature of strongly-interacting quark-gluon-plasma (sQGP). Professor Hongjie Xu, director of SINAP, gave a welcome address to all participants on behalf of the two hosting institutions. Dr Peiwen Ji, deputy director of the Mathematics and Physics Division of the Natural Science Foundation of China (NSFC), also addressed the conference participants and congratulated them on the opening of the conference. Professor Mianheng Jiang, vice president of the Chinese Academy of Sciences (CAS), gave a concise introduction about the CAS as the premier research institution in China. He highlighted continued efforts at CAS to foster international collaborations between China and other nations. The Quark Matter 2006 conference is an example of such a successful collaboration between high energy nuclear physicists in China and other nations all over the world. The

  16. PPOOLEX experiments on wall condensation

    Energy Technology Data Exchange (ETDEWEB)

    Laine, J.; Puustinen, M. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2009-08-15

    This report summarizes the results of the wall condensation experiments carried out in December 2008 and January 2009 with the scaled down PPOOLEX test facility designed and constructed at Lappeenranta University of Technology. Steam was blown into the dry well compartment and from there through a DN200 blowdown pipe to the condensation pool. Altogether five experiments, each consisting of several blows, were carried out. The main purpose of the experiment series was to study wall condensation phenomenon inside the dry well compartment while steam is discharged through it into the condensation pool and to produce comparison data for CFD calculations at VTT. The PPOOLEX test facility is a closed stainless steel vessel divided into two compartments, dry well and wet well. For the wall condensation experiments the test facility was equipped with a system for collecting and measuring the amount of condensate from four different wall segments of the dry well compartment. A thermo graphic camera was used in a couple of experiments for filming the outside surface of the dry well wall. The effect of the initial temperature level of the dry well structures and of the steam flow rate for the accumulation of condensate was studied. The initial temperature level of the dry well structures varied from 23 to 99 deg. C. The steam flow rate varied from 90 to 690 g/s and the temperature of incoming steam from 115 to 160 deg. C. During the initial phase of steam discharge the accumulation of condensate was strongly controlled by the temperature level of the dry well structures; the lower the initial temperature level was the more condensate was accumulated. As the dry well structural temperatures increased the condensation process slowed down. Most of the condensate usually accumulated during the first 200 seconds of the discharge. However, the condensation process never completely stopped because a small temperature difference remained between the dry well atmosphere and inner wall

  17. Decay of Ultralight Axion Condensates

    Energy Technology Data Exchange (ETDEWEB)

    Eby, Joshua; Ma, Michael; Suranyi, Peter; Wijewardhana, L. C.R.

    2017-05-15

    Axion particles can form macroscopic condensates, whose size can be galactic in scale for models with very small axion masses $m\\sim10^{-22}$ eV, and which are sometimes referred to under the name of Fuzzy Dark Matter. Many analyses of these condensates are done in the non-interacting limit, due to the weakness of the self-interaction coupling of axions. We investigate here how certain results change upon inclusion of these interactions, finding a decreased maximum mass and a modified mass-radius relationship. Further, these condensates are, in general, unstable to decay through number-changing interactions. We analyze the stability of galaxy-sized condensates of axion-like particles, and sketch the parameter space of stable configurations as a function of a binding energy parameter. We find a strong lower bound on the size of Fuzzy Dark Matter condensates which are stable to decay, with lifetimes longer than the age of the universe.

  18. APPARATUS FOR CONDENSATION AND SUBLIMATION

    Science.gov (United States)

    Schmidt, R.J.; Fuis, F. Jr.

    1958-10-01

    An apparatus is presented for the sublimation and condensation of uranium compounds in order to obtain an improved crystalline structure of this material. The apparatus comprises a vaporizing chamber and condensing structure connected thereto. There condenser is fitted with a removable liner having a demountable baffle attached to the liner by means of brackets and a removable pin. The baffle is of spiral cross-section and is provided with cooling coils disposed between the surfaces of the baffle for circulation of a temperature controlling liquid within the baffle. The cooling coll provides for controlllng the temperature of the baffle to insure formatlon of a satisfactory condensate, and the removable liner facilitates the removal of condensate formed during tbe sublimation process.

  19. The QuarkNet Collaboration

    Science.gov (United States)

    Erzberger, A.

    2003-12-01

    QuarkNet is a long-term high school education project, supported by NSF and DOE and carried out by a collaboration of university and laboratory research groups. These research groups are part of major international particle physics experiments, including those at CERN in Switzerland, Fermilab in Illinois, and SLAC in California. Goals and Objectives: A major goal is to engage students and teachers in authentic scientific research; they gain a first-hand understanding of research and its application in the inquiry method of learning. Teachers enhance their content knowledge, increase their abilities to solve science-related problems, engage students in scientific inquiry, and develop responsibility for their own professional development. Students learn fundamental physics and are motivated by current research questions as they analyze real data. A second goal is to engage particle physicists with current issues in science education, including their understanding of the National Science Education Standards and local science education needs and what constitutes age-appropriate content. Project Design: Working with physicists nationwide, we have established a project framework with three program areas-teacher research experience, teacher development programs, and online resources and inquiry-based activities. Eight-week research appointments allow teachers to experience scientific research first-hand. In teacher institutes the next summer these teachers and scientists lead a group of teachers through a short research scenario lasting two to three weeks and assist them in creating similar scenarios for their students. When fully implemented QuarkNet will support centers associated with 60 particle physics research groups at universities and laboratories in the U. S. The QuarkNet website provides: - Experimental data for use in inquiry-based activities. - Opportunities for communication and collaboration among physicists, teachers and students. - A place for students to

  20. HUNTING THE QUARK GLUON PLASMA.

    Energy Technology Data Exchange (ETDEWEB)

    LUDLAM, T.; ARONSON, S.

    2005-04-11

    The U.S. Department of Energy's Relativistic Heavy Ion Collider (RHIC) construction project was completed at BNL in 1999, with the first data-taking runs in the summer of 2000. Since then the early measurements at RHIC have yielded a wealth of data, from four independent detectors, each with its international collaboration of scientists: BRAHMS, PHENIX, PHOBOS, and STAR [1]. For the first time, collisions of heavy nuclei have been carried out at colliding-beam energies that have previously been accessible only for high-energy physics experiments with collisions of ''elementary'' particles such as protons and electrons. It is at these high energies that the predictions of quantum chromodynamics (QCD), the fundamental theory that describes the role of quarks and gluons in nuclear matter, come into play, and new phenomena are sought that may illuminate our view of the basic structure of matter on the sub-atomic scale, with important implications for the origins of matter on the cosmic scale. The RHIC experiments have recorded data from collisions of gold nuclei at the highest energies ever achieved in man-made particle accelerators. These collisions, of which hundreds of millions have now been examined, result in final states of unprecedented complexity, with thousands of produced particles radiating from the nuclear collision. All four of the RHIC experiments have moved quickly to analyze these data, and have begun to understand the phenomena that unfold from the moment of collision as these particles are produced. In order to provide benchmarks of simpler interactions against which to compare the gold-gold collisions, the experiments have gathered comparable samples of data from collisions of a very light nucleus (deuterium) with gold nuclei, as well as proton-proton collisions, all with identical beam energies and experimental apparatus. The early measurements have revealed compelling evidence for the existence of a new form of nuclear

  1. Latest ATLAS measurements on top quark properties

    CERN Document Server

    Derue, Frederic; The ATLAS collaboration

    2017-01-01

    The top quark is unique among the known quarks in that it decays before it has an opportunity to form hadronic bound states. This makes measurements of its properties particularly interesting as one can access directly the properties of a bare quark. The latest measurements of these properties with the ATLAS detector at the LHC are presented using 8 TeV and 13 TeV data, excluding results from single top production. Measurements of top quark spin observables in top-antitop events, each sensitive to a different coefficient of the spin density matrix, are presented and compared to the Standard Model predictions. The helicity of the W boson from the top decays and the production angles of the top quark are further discussed. New results on the measurment of color flow effects in $t{\\bar t}$ events are presented. Limits on the rate of flavour changing neutral currents in the production or decay of the top quark are reported. The cross-section measurement of photons produced in association with top-quark pairs is a...

  2. Soft Gluon Radiation off Heavy Quarks beyond Eikonal Approximation

    Directory of Open Access Journals (Sweden)

    Trambak Bhattacharyya

    2016-01-01

    Full Text Available We calculate the soft gluon radiation spectrum off heavy quarks (HQs interacting with light quarks (LQs beyond small angle scattering (eikonality approximation and thus generalize the dead-cone formula of heavy quarks extensively used in the literatures of Quark-Gluon Plasma (QGP phenomenology to the large scattering angle regime which may be important in the energy loss of energetic heavy quarks in the deconfined Quark-Gluon Plasma medium. In the proper limits, we reproduce all the relevant existing formulae for the gluon radiation distribution off energetic quarks, heavy or light, used in the QGP phenomenology.

  3. Quark Mixing and Preon Model

    Science.gov (United States)

    Senju, H.

    1991-07-01

    Inspired by unique features of the preon-subpreon model, we propose a new scheme for quark mixing. In our scheme, the mass relations m_{d} << m_{s} << m_{b} and m_{u} << m_{c} << m_{t} are naturally understood. The resultant CKM matrix has very nice properties. The fact that |V_{us}| and |V_{cd}| are remarkably large compared with other off-diagonal elements is naturally understood. |V_{cb}| =~ |V_{ts}| is predicted and their small values are explained. |V_{ub}| and |V_{td}| are predicted to be much smaller than |V_{cb}|. The parametrization invariant measure of CP violation, J, is predicted to be |V_{ud}| |V_{ub}| |V_{td}| sin phi. The mass relations and mixings of q', q'', l_{s} and leptons are also discussed.

  4. Quark-gluon plasma fireball

    Science.gov (United States)

    Hamieh, Salah; Letessier, Jean; Rafelski, Johann

    2000-12-01

    Lattice quantum chromodynamics results provide an opportunity to model, and extrapolate to finite baryon density, the properties of the quark-gluon plasma (QGP). Upon fixing the scale of the thermal coupling constant and vacuum energy to the lattice data, the properties of resulting QGP equations of state (EoS) are developed. We show that the physical properties of the dense matter fireball formed in heavy ion collision experiments at CERN-SPS are well described by the QGP-EoS we presented. We also estimate the properties of the fireball formed in early stages of nuclear collision, and argue that QGP formation must be expected down to 40A GeV in central Pb-Pb interactions.

  5. The FLIC Overlap Quark Propagator

    CERN Document Server

    Kamleh, W; Leinweber, D B; Williams, A G; Zhang, J; Kamleh, Waseem; Bowman, Patrick O.; Leinweber, Derek B.; Williams, Anthony G.; Zhang, Jianbo

    2004-01-01

    FLIC overlap fermions are a variant of the standard (Wilson) overlap action, with the FLIC (Fat Link Irrelevant Clover) action as the overlap kernel rather than the Wilson action. The structure of the FLIC overlap fermion propagator in momentum space is studied, and a comparison against previous studies of the Wilson overlap propagator in quenched QCD is performed. To explore the scaling properties of the propagator for the two actions, numerical calculations are performed in Landau Gauge across three lattices with different lattice spacing $a$ and similar physical volumes. We find that at light quark masses the acti ons agree in both the infrared and the ultraviolet, but at heavier masses some disagreement in the ultraviolet appears. This is attributed to the two action s having different discretisation errors with the FLIC overlap providing superior performance in this regime. Both actions scale reasonably, but some scaling violations are observed.

  6. Heavy quark physics from SLD

    Energy Technology Data Exchange (ETDEWEB)

    Messner, R. [Stanford Univ., CA (United States)

    1997-01-01

    This report covers preliminary measurements from SLD on heavy quark production at the Z{sup 0}, using 150,000 hadronic Z{sup 0} decays accumulated during the 1993-1995 runs. A measurement of R{sub b} with a lifetime double tag is presented. The high electron beam polarization of the SLC is employed in the direct measurement of the parity-violating parameters A{sub b} and A{sub c} by use of the left-right forward-backward asymmetry. The lifetimes of B{sup +} and B{sup 0} mesons have been measured by two analyses. The first identifies semileptonic decays of B mesons with high (p,p{sub t}) leptons; the second analysis isolates a sample of B meson decays with a two-dimensional impact parameter tag and reconstructs the decay length and charge using a topological vertex reconstruction method.

  7. Flavour symmetry breaking and tuning the strange quark mass for 2+1 quark flavours

    Energy Technology Data Exchange (ETDEWEB)

    Bietenholz, W. [Universidad Autonoma de Mexico (Mexico). Inst. de Ciencias Nucleares; Bornyakov, V. [Institute for High Energy Physics, Protovino (Russian Federation); Institute of Theoretical and Experimental Physics, Moscow (Russian Federation); Goeckeler, M. [Regensburg Univ. (DE). Inst. fuer Theoretische Physik] (and others)

    2010-12-15

    QCD lattice simulations with 2+1 flavours typically start at rather large up-down and strange quark masses and extrapolate first the strange quark mass to its physical value and then the updown quark mass. An alternative method of tuning the quark masses is discussed here in which the singlet quark mass is kept fixed, which ensures that the kaon always has mass less than the physical kaon mass. Using group theory the possible quark mass polynomials for a Taylor expansion about the flavour symmetric line are found, which enables highly constrained fits to be used in the extrapolation of hadrons to the physical pion mass. Numerical results confirm the usefulness of this expansion and an extrapolation to the physical pion mass gives hadron mass values to within a few percent of their experimental values. (orig.)

  8. Measurement of top quark polarisation in $t$-channel single top quark production

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Aşılar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Knünz, Valentin; König, Axel; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Matsushita, Takashi; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schieck, Jochen; Schöfbeck, Robert; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Lauwers, Jasper; Luyckx, Sten; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; Daci, Nadir; De Bruyn, Isabelle; Deroover, Kevin; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Moreels, Lieselotte; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Van Parijs, Isis; Barria, Patrizia; Brun, Hugues; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Fasanella, Giuseppe; Favart, Laurent; Grebenyuk, Anastasia; Karapostoli, Georgia; Lenzi, Thomas; Léonard, Alexandre; Maerschalk, Thierry; Marinov, Andrey; Perniè, Luca; Randle-conde, Aidan; Seva, Tomislav; Vander Velde, Catherine; Vanlaer, Pascal; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Crucy, Shannon; Dobur, Didar; Fagot, Alexis; Garcia, Guillaume; Gul, Muhammad; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Poyraz, Deniz; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Tytgat, Michael; Van Driessche, Ward; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Mertens, Alexandre; Musich, Marco; Nuttens, Claude; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Beliy, Nikita; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Hamer, Matthias; Hensel, Carsten; Mora Herrera, Clemencia; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Da Costa, Eliza Melo; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; De Souza Santos, Angelo; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Moon, Chang-Seong; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Cheng, Tongguang; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Romeo, Francesco; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Zhang, Huaqiao; Asawatangtrakuldee, Chayanit; Ban, Yong; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Micanovic, Sasa; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Abdelalim, Ahmed Ali; Awad, Adel; El Sawy, Mai; Mahrous, Ayman; Radi, Amr; Calpas, Betty; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Veelken, Christian; Eerola, Paula; Pekkanen, Juska; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Machet, Martina; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Zghiche, Amina; Antropov, Iurii; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Cadamuro, Luca; Chapon, Emilien; Charlot, Claude; Dahms, Torsten; Davignon, Olivier; Filipovic, Nicolas; Florent, Alice; Granier de Cassagnac, Raphael; Jo, Mihee; Lisniak, Stanislav; Mastrolorenzo, Luca; Miné, Philippe; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Pigard, Philipp; Regnard, Simon; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Strebler, Thomas; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Buttignol, Michael; Chabert, Eric Christian; Chanon, Nicolas; Collard, Caroline; Conte, Eric; Coubez, Xavier; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Merlin, Jeremie Alexandre; Skovpen, Kirill; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Bouvier, Elvire; Carrillo Montoya, Camilo Andres; Chierici, Roberto; Contardo, Didier; Courbon, Benoit; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Lagarde, Francois; Laktineh, Imad Baptiste; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Ruiz Alvarez, José David; Sabes, David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Toriashvili, Tengizi; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Edelhoff, Matthias; Feld, Lutz; Heister, Arno; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Ostapchuk, Andrey; Preuten, Marius; Raupach, Frank; Schael, Stefan; Schulte, Jan-Frederik; Verlage, Tobias; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Erdweg, Sören; Esch, Thomas; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Künsken, Andreas; Lingemann, Joschka; Nehrkorn, Alexander; Nowack, Andreas; Nugent, Ian Michael; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Asin, Ivan; Bartosik, Nazar; Behnke, Olaf; Behrens, Ulf; Bell, Alan James; Borras, Kerstin; Burgmeier, Armin; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Gallo, Elisabetta; Garay Garcia, Jasone; Geiser, Achim; Gizhko, Andrii; Gunnellini, Paolo; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Karacheban, Olena; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Korol, Ievgen; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Nayak, Aruna; Ntomari, Eleni; Perrey, Hanno; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Roland, Benoit; Sahin, Mehmet Özgür; Saxena, Pooja; Schoerner-Sadenius, Thomas; Schröder, Matthias; Seitz, Claudia; Spannagel, Simon; Trippkewitz, Karim Damun; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Gonzalez, Daniel; Görner, Martin; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Junkes, Alexandra; Klanner, Robert; Kogler, Roman; Kovalchuk, Nataliia; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Marconi, Daniele; Meyer, Mareike; Nowatschin, Dominik; Ott, Jochen; Pantaleo, Felice; Peiffer, Thomas; Perieanu, Adrian; Pietsch, Niklas; Poehlsen, Jennifer; Rathjens, Denis; Sander, Christian; Scharf, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Schwandt, Joern; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Tholen, Heiner; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Vormwald, Benedikt; Akbiyik, Melike; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Fink, Simon; Frensch, Felix; Friese, Raphael; Giffels, Manuel; Gilbert, Andrew; Haitz, Dominik; Hartmann, Frank; Heindl, Stefan Michael; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Lobelle Pardo, Patricia; Maier, Benedikt; Mildner, Hannes; Mozer, Matthias Ulrich; Müller, Thomas; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Röcker, Steffen; Roscher, Frank; Sieber, Georg; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weber, Marc; Weiler, Thomas; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Psallidas, Andreas; Topsis-Giotis, Iasonas; Agapitos, Antonis; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Tziaferi, Eirini; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Loukas, Nikitas; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Strologas, John; Bencze, Gyorgy; Hajdu, Csaba; Hazi, Andras; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Szillasi, Zoltan; Bartók, Márton; Makovec, Alajos; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Mal, Prolay; Mandal, Koushik; Sahoo, Deepak Kumar; Sahoo, Niladribihari; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Chawla, Ridhi; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Anterpreet; Kaur, Manjit; Kumar, Ramandeep; Mehta, Ankita; Mittal, Monika; Singh, Jasbir; Walia, Genius; Kumar, Ashok; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Garg, Rocky Bala; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Nishu, Nishu; Ranjan, Kirti; Sharma, Ramkrishna; Sharma, Varun; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dey, Sourav; Dutta, Suchandra; Jain, Sandhya; Majumdar, Nayana; Modak, Atanu; Mondal, Kuntal; Mukherjee, Swagata; Mukhopadhyay, Supratik; Roy, Ashim; Roy, Debarati; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Banerjee, Sudeshna; Bhowmik, Sandeep; Chatterjee, Rajdeep Mohan; Dewanjee, Ram Krishna; Dugad, Shashikant; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Mahakud, Bibhuprasad; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mitra, Soureek; Mohanty, Gagan Bihari; Parida, Bibhuti; Sarkar, Tanmay; Sur, Nairit; Sutar, Bajrang; Wickramage, Nadeesha; Chauhan, Shubhanshu; Dube, Sourabh; Kothekar, Kunal; Sharma, Seema; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Goldouzian, Reza; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Caputo, Claudio; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Abbiendi, Giovanni; Battilana, Carlo; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Chhibra, Simranjit Singh; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Di Mattia, Alessandro; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Primavera, Federica; Calvelli, Valerio; Ferro, Fabrizio; Lo Vetere, Maurizio; Monge, Maria Roberta; Robutti, Enrico; Tosi, Silvano; Brianza, Luca; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Esposito, Marco; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lanza, Giuseppe; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Sciacca, Crisostomo; Thyssen, Filip; Azzi, Patrizia; Bacchetta, Nicola; Benato, Lisa; Bisello, Dario; Boletti, Alessio; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; Dorigo, Tommaso; Dosselli, Umberto; Fanzago, Federica; Gasparini, Fabrizio; Gasparini, Ugo; Gonella, Franco; Gozzelino, Andrea; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Montecassiano, Fabio; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Zanetti, Marco; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Braghieri, Alessandro; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fedi, Giacomo; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Gelli, Simone; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Organtini, Giovanni; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Finco, Linda; Kiani, Bilal; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Ravera, Fabio; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Schizzi, Andrea; Zanetti, Anna; Kropivnitskaya, Anna; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Sakharov, Alexandre; Son, Dong-Chul; Brochero Cifuentes, Javier Andres; Kim, Hyunsoo; Kim, Tae Jeong; Song, Sanghyeon; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Hong, Byung-Sik; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Park, Sung Keun; Roh, Youn; Yoo, Hwi Dong; Choi, Minkyoo; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Yu, Intae; Dudenas, Vytautas; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Yusli, Mohd Nizam; Casimiro Linares, Edgar; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-De La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Byszuk, Adrian; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Walczak, Marek; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Di Francesco, Agostino; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Leonardo, Nuno; Lloret Iglesias, Lara; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Vlasov, Evgueni; Zhokin, Alexander; Bylinkin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Bunichev, Viacheslav; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Klyukhin, Vyacheslav; Kodolova, Olga; Korneeva, Natalia; Lokhtin, Igor; Miagkov, Igor; Obraztsov, Stepan; Perfilov, Maxim; Savrin, Viktor; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Cirkovic, Predrag; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Soares, Mara Senghi; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Palencia Cortezon, Enrique; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Castiñeiras De Saa, Juan Ramon; De Castro Manzano, Pablo; Fernandez, Marcos; Garcia-Ferrero, Juan; Gomez, Gervasio; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Trevisani, Nicolò; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Berruti, Gaia Maria; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Castello, Roberto; Cerminara, Gianluca; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Gruttola, Michele; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Di Marco, Emanuele; Dobson, Marc; Dordevic, Milos; Dorney, Brian; Du Pree, Tristan; Duggan, Daniel; Dünser, Marc; Dupont, Niels; Elliott-Peisert, Anna; Franzoni, Giovanni; Fulcher, Jonathan; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Glege, Frank; Guida, Roberto; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kirschenmann, Henning; Kortelainen, Matti J; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Lucchini, Marco Toliman; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Martelli, Arabella; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Nemallapudi, Mythra Varun; Neugebauer, Hannes; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Peruzzi, Marco; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Piparo, Danilo; Racz, Attila; Reis, Thomas; Rolandi, Gigi; Rovere, Marco; Ruan, Manqi; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Seidel, Markus; Sharma, Archana; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Takahashi, Yuta; Treille, Daniel; Triossi, Andrea; Tsirou, Andromachi; Veres, Gabor Istvan; Wardle, Nicholas; Wöhri, Hermine Katharina; Zagoździńska, Agnieszka; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Eller, Philipp; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Lustermann, Werner; Mangano, Boris; Marionneau, Matthieu; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meister, Daniel; Micheli, Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pata, Joosep; Pauss, Felicitas; Perrozzi, Luca; Quittnat, Milena; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Wallny, Rainer; Aarrestad, Thea Klaeboe; Amsler, Claude; Caminada, Lea; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Galloni, Camilla; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Ngadiuba, Jennifer; Pinna, Deborah; Robmann, Peter; Ronga, Frederic Jean; Salerno, Daniel; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Doan, Thi Hien; Jain, Shilpi; Khurana, Raman; Konyushikhin, Maxim; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Yu, Shin-Shan; Kumar, Arun; Bartek, Rachel; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Fiori, Francesco; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Liu, Yueh-Feng; Lu, Rong-Shyang; Miñano Moya, Mercedes; Petrakou, Eleni; Tsai, Jui-fa; Tzeng, Yeng-Ming; Asavapibhop, Burin; Kovitanggoon, Kittikul; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Demiroglu, Zuhal Seyma; Dozen, Candan; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Onengut, Gulsen; Ozdemir, Kadri; Polatoz, Ayse; Sunar Cerci, Deniz; Topakli, Huseyin; Vergili, Mehmet; Zorbilmez, Caglar; Akin, Ilina Vasileva; Bilin, Bugra; Bilmis, Selcuk; Isildak, Bora; Karapinar, Guler; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Yetkin, Elif Asli; Yetkin, Taylan; Cakir, Altan; Cankocak, Kerem; Sen, Sercan; Vardarlı, Fuat Ilkehan; Grynyov, Boris; Levchuk, Leonid; Sorokin, Pavel; Aggleton, Robin; Ball, Fionn; Beck, Lana; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Seif El Nasr-storey, Sarah; Senkin, Sergey; Smith, Dominic; Smith, Vincent J; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Calligaris, Luigi; Cieri, Davide; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Bundock, Aaron; Burton, Darren; Casasso, Stefano; Citron, Matthew; Colling, David; Corpe, Louie; Cripps, Nicholas; Dauncey, Paul; Davies, Gavin; De Wit, Adinda; Della Negra, Michel; Dunne, Patrick; Elwood, Adam; Ferguson, William; Futyan, David; Hall, Geoffrey; Iles, Gregory; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Raymond, David Mark; Richards, Alexander; Rose, Andrew; Seez, Christopher; Tapper, Alexander; Uchida, Kirika; Vazquez Acosta, Monica; Virdee, Tejinder; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Borzou, Ahmad; Call, Kenneth; Dittmann, Jay; Hatakeyama, Kenichi; Liu, Hongxuan; Pastika, Nathaniel; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Arcaro, Daniel; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Gastler, Daniel; Lawson, Philip; Rankin, Dylan; Richardson, Clint; Rohlf, James; St John, Jason; Sulak, Lawrence; Zou, David; Alimena, Juliette; Berry, Edmund; Bhattacharya, Saptaparna; Cutts, David; Dhingra, Nitish; Ferapontov, Alexey; Garabedian, Alex; Hakala, John; Heintz, Ulrich; Laird, Edward; Landsberg, Greg; Mao, Zaixing; Narain, Meenakshi; Piperov, Stefan; Sagir, Sinan; Syarif, Rizki; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Lander, Richard; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Saltzberg, David; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Ivova PANEVA, Mirena; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Wei, Hua; Wimpenny, Stephen; Yates, Brent; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Derdzinski, Mark; Holzner, André; Kelley, Ryan; Klein, Daniel; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Welke, Charles; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Bradmiller-Feld, John; Campagnari, Claudio; Dishaw, Adam; Dutta, Valentina; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Gran, Jason; Incandela, Joe; Mccoll, Nickolas; Mullin, Sam Daniel; Richman, Jeffrey; Stuart, David; Suarez, Indara; West, Christopher; Yoo, Jaehyeok; Anderson, Dustin; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Pierini, Maurizio; Spiropulu, Maria; Vlimant, Jean-Roch; Xie, Si; Zhu, Ren-Yuan; Andrews, Michael Benjamin; Azzolini, Virginia; Calamba, Aristotle; Carlson, Benjamin; Ferguson, Thomas; Paulini, Manfred; Russ, James; Sun, Menglei; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Gaz, Alessandro; Jensen, Frank; Johnson, Andrew; Krohn, Michael; Mulholland, Troy; Nauenberg, Uriel; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Eggert, Nicholas; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Soffi, Livia; Sun, Werner; Tan, Shao Min; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Wittich, Peter; Abdullin, Salavat; Albrow, Michael; Apollinari, Giorgio; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hasegawa, Satoshi; Hirschauer, James; Hu, Zhen; Jayatilaka, Bodhitha; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Jung, Andreas Werner; Klima, Boaz; Kreis, Benjamin; Lammel, Stephan; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mishra, Kalanand; Mrenna, Stephen; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Pedro, Kevin; Prokofyev, Oleg; Rakness, Gregory; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Strobbe, Nadja; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Weber, Hannsjoerg Artur; Whitbeck, Andrew; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Carnes, Andrew; Carver, Matthew; Curry, David; Das, Souvik; Field, Richard D; Furic, Ivan-Kresimir; Gleyzer, Sergei V; Hugon, Justin; Konigsberg, Jacobo; Korytov, Andrey; Low, Jia Fu; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Milenovic, Predrag; Mitselmakher, Guenakh; Rank, Douglas; Rossin, Roberto; Shchutska, Lesya; Snowball, Matthew; Sperka, David; Terentyev, Nikolay; Thomas, Laurent; Wang, Jian; Wang, Sean-Jiun; Yelton, John; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Ackert, Andrew; Adams, Jordon Rowe; Adams, Todd; Askew, Andrew; Bein, Samuel; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Khatiwada, Ajeeta; Prosper, Harrison; Weinberg, Marc; Baarmand, Marc M; Bhopatkar, Vallary; Colafranceschi, Stefano; Hohlmann, Marcus; Kalakhety, Himali; Noonan, Daniel; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Kurt, Pelin; O'Brien, Christine; Sandoval Gonzalez, Irving Daniel; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Wu, Zhenbin; Zakaria, Mohammed; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tiras, Emrah; Wetzel, James; Yi, Kai; Anderson, Ian; Barnett, Bruce Arnold; Blumenfeld, Barry; Eminizer, Nicholas; Fehling, David; Feng, Lei; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Osherson, Marc; Roskes, Jeffrey; Cocoros, Alice; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; Xin, Yongjie; You, Can; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Bruner, Christopher; Kenny III, Raymond Patrick; Majumder, Devdatta; Malek, Magdalena; Murray, Michael; Sanders, Stephen; Stringer, Robert; Wang, Quan; Ivanov, Andrew; Kaadze, Ketino; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Toda, Sachiko; Lange, David; Rebassoo, Finn; Wright, Douglas; Anelli, Christopher; Baden, Drew; Baron, Owen; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Ferraioli, Charles; Gomez, Jaime; Hadley, Nicholas John; Jabeen, Shabnam; Kellogg, Richard G; Kolberg, Ted; Kunkle, Joshua; Lu, Ying; Mignerey, Alice; Shin, Young Ho; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Baty, Austin; Bierwagen, Katharina; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; Demiragli, Zeynep; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Iiyama, Yutaro; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Marini, Andrea Carlo; Mcginn, Christopher; Mironov, Camelia; Narayanan, Siddharth; Niu, Xinmei; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Salfeld-Nebgen, Jakob; Stephans, George; Sumorok, Konstanty; Varma, Mukund; Velicanu, Dragos; Veverka, Jan; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Yang, Mingming; Zhukova, Victoria; Dahmes, Bryan; Evans, Andrew; Finkel, Alexey; Gude, Alexander; Hansen, Peter; Kalafut, Sean; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Nourbakhsh, Shervin; Ruckstuhl, Nicole; Rusack, Roger; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Fangmeier, Caleb; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Meier, Frank; Monroy, Jose; Ratnikov, Fedor; Siado, Joaquin Emilo; Snow, Gregory R; Alyari, Maral; Dolen, James; George, Jimin; Godshalk, Andrew; Harrington, Charles; Iashvili, Ia; Kaisen, Josh; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Roozbahani, Bahareh; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Hortiangtham, Apichart; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Teixeira De Lima, Rafael; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Zhang, Jinzhong; Hahn, Kristan Allan; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Brinkerhoff, Andrew; Dev, Nabarun; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Smith, Geoffrey; Taroni, Silvia; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hart, Andrew; Hill, Christopher; Hughes, Richard; Ji, Weifeng; Kotov, Khristian; Ling, Ta-Yung; Liu, Bingxuan; Luo, Wuming; Puigh, Darren; Rodenburg, Marissa; Winer, Brian L; Wulsin, Howard Wells; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Palmer, Christopher; Piroué, Pierre; Saka, Halil; Stickland, David; Tully, Christopher; Zuranski, Andrzej; Malik, Sudhir; Barnes, Virgil E; Benedetti, Daniele; Bortoletto, Daniela; Gutay, Laszlo; Jha, Manoj; Jones, Matthew; Jung, Kurt; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shi, Xin; Shipsey, Ian; Silvers, David; Sun, Jian; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Chen, Zhenyu; Ecklund, Karl Matthew; Geurts, Frank JM; Guilbaud, Maxime; Li, Wei; Michlin, Benjamin; Northup, Michael; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Rorie, Jamal; Tu, Zhoudunming; Zabel, James; Betchart, Burton; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Han, Jiyeon; Harel, Amnon; Hindrichs, Otto; Khukhunaishvili, Aleko; Petrillo, Gianluca; Tan, Ping; Verzetti, Mauro; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Lath, Amitabh; Nash, Kevin; Panwalkar, Shruti; Park, Michael; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Foerster, Mark; Riley, Grant; Rose, Keith; Spanier, Stefan; York, Andrew; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Celik, Ali; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Gilmore, Jason; Huang, Tao; Kamon, Teruki; Krutelyov, Vyacheslav; Mueller, Ryan; Osipenkov, Ilya; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Rose, Anthony; Safonov, Alexei; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Libeiro, Terence; Undleeb, Sonaina; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Ni, Hong; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Xu, Qiao; Arenton, Michael Wayne; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Sinthuprasith, Tutanon; Sun, Xin; Wang, Yanchu; Wolfe, Evan; Wood, John; Xia, Fan; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Gomber, Bhawna; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Levine, Aaron; Long, Kenneth; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ruggles, Tyler; Sarangi, Tapas; Savin, Alexander; Sharma, Archana; Smith, Nicholas; Smith, Wesley H; Taylor, Devin; Woods, Nathaniel

    2016-01-01

    A first measurement of the top quark spin asymmetry, sensitive to the top quark polarisation, in $t$-channel single top quark production is presented. It is based on a sample of pp collisions at a centre-of-mass energy of 8 TeV corresponding to an integrated luminosity of 19.7 fb$^{-1}$. A high-purity sample of $t$-channel single top quark events with an isolated muon is selected. Signal and background components are estimated using a fit to data. A differential cross section measurement, corrected for detector effects, of an angular observable sensitive to the top quark polarisation is performed. The differential distribution is used to extract a top quark spin asymmetry of 0.26 $\\pm$ 0.03 (stat) $\\pm$ 0.10 (syst), which is compatible with a $p$-value of 4.6% with the standard model prediction of 0.44.

  9. Measurement of top quark polarisation in t-channel single top quark production

    CERN Document Server

    Tiko, Andres

    2016-01-01

    A first measurement of the top quark spin asymmetry, sensitive to the top quark polarisation, in $t$-channel single top quark production is presented. It is based on a sample of pp collisions at a centre-of-mass energy of 8 TeV corresponding to an integrated luminosity of 19.7 $\\mathrm{fb^{-1}}$. A high-purity sample of $t$-channel single top quark events with an isolated muon is selected. Signal and background components are estimated using a fit to data. A differential cross section measurement, corrected for detector effects, of an angular observable sensitive to the top quark polarisation is performed. The differential distribution is used to extract a top quark spin asymmetry of $0.26 \\pm 0.03 \\textrm{(stat)} \\pm 0.10 \\textrm{(syst)}$, which is compatible with a p-value of $4.6\\%$ with the standard model prediction of 0.44.

  10. Collisional Energy Loss of a Heavy Quark in an Anisotropic Quark-Gluon Plasma

    CERN Document Server

    Romatschke, P; Romatschke, Paul; Strickland, Michael

    2004-01-01

    We compute the leading-order collisional energy loss of a heavy quark propagating through a quark-gluon plasma in which the quark and gluon distributions are anisotropic in momentum space. Following the calculation outlined for QED in an earlier work we indicate the differences encountered in QCD and their effect on the collisional energy loss results. For a 20 GeV bottom quark we show that momentum space anisotropies can result in the collisional heavy quark energy loss varying with the angle of propagation by up to 50%. For low velocity quarks we show that anisotropies result in energy gain instead of energy loss with the energy gain focused in such a way as to accelerate particles along the anisotropy direction thereby reducing the momentum-space anisotropy. The origin of this negative energy loss is explicitly identified as being related to the presence of plasma instabilities in the system.

  11. Overlap Quark Propagator in Coulomb Gauge QCD

    CERN Document Server

    Mercado, Ydalia Delgado; Schröck, Mario

    2014-01-01

    The chirally symmetric Overlap quark propagator is explored in Coulomb gauge. This gauge is well suited for studying the relation between confinement and chiral symmetry breaking, since confinement can be attributed to the infrared divergent Lorentz-vector dressing function. Using quenched gauge field configurations on a $20^4$ lattice, the quark propagator dressing functions are evaluated, the dynamical quark mass is extracted and the chiral limit of these quantities is discussed. By removing the low-lying modes of the Dirac operator, chiral symmetry is artificially restored. Its effect on the dressing functions is discussed.

  12. Top-Quark Properties at the LHC

    CERN Document Server

    Beernaert, Kelly Simone

    2016-01-01

    A review of recent measurements of top-quark properties is presented. Inclusive and differential top-quark pair charge asymmetry measurements using the full Run I dataset are found to be in agreement with the standard model (SM) predictions. Results of spin correlation in top-quark pairs are presented and interpreted in terms of the SM predicted values and new physics models. Limits are set on flavour-changing neutral currents (FCNC), in particular with a Higgs boson in the final state.

  13. Top quark physics at hadron colliders

    CERN Document Server

    Margaroli, F

    2015-01-01

    The top quark is the heaviest fundamental particle known so far. As such, it is expected to play a crucial role in the study of the electroweak symmetry breaking mechanism and the generation of mass, as well as to serve as an ideal window into new physics. The discovery of a Higgs boson provides us additional experimental opportunities to test our current understanding of top quarks physics. In this contribution I will discuss the status of top quark physics as of 2014, and present a few recent highlights.

  14. Four Preon Composite Quarks and Leptons

    Science.gov (United States)

    Rajpoot, S.; Samuel, Mark A.

    A model is presented in which quarks and leptons are composites of three spin-(1)/(2) preons and a scalar preon. The model is an extension of the rishon model and consists of two spin-(1)/(2) preons T, V and a scalar preon S as the fundamental building blocks of matter. Assuming distinguishability of states due to the order assigned to the preons in forming the quark and lepton states, the concepts of flavour, colour and generation number acquire meaning only at the level of compositeness. The model predicts four generations of conventional quarks and leptons.

  15. Top-quark physics: Status and prospects

    Science.gov (United States)

    Husemann, Ulrich

    2017-07-01

    After the discovery of the top quark more than 20 years ago, its properties have been studied in great detail both in production and in decay. Increasingly sophisticated experimental results from the Fermilab Tevatron and from Run 1 and Run 2 of the LHC at CERN are complemented by very precise theoretical predictions in the framework of the standard model of particle physics and beyond. In this article the current status of top-quark physics is reviewed, focusing on experimental results, and a perspective of top-quark physics at the LHC and at future colliders is given.

  16. Top quark mass: past, present and future

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, Gaston; /Fermilab

    2007-07-01

    The top quark is the most massive elementary particle discovered thus far. Its large mass may help explain the mechanism by which fundamental particles gain mass - the Standard Model's greatest standing mystery. Today the top quark mass, together with the W boson mass, plays an important role in constraining the Higgs boson mass. The current status of the top quark mass measurement and a brief outline of the expectation at the Large Hadron Collider and the International Linear Collider will be covered.

  17. Electromagnetic signals of quark gluon plasma

    Indian Academy of Sciences (India)

    Bikash Sinha

    2000-04-01

    Successive equilibration of quark degrees of freedom and its effects on electromagnetic signals of quark gluon plasma are discussed. The effects of the variation of vector meson masses and decay widths on photon production from hot strongly interacting matter formed after Pb + Pb and S + Au collisions at CERN SPS energies are considered. It has been shown that the present photon spectra measured by WA80 and WA98 Collaborations can not distinguish between the formation of quark matter and hadronic matter in the initial state.

  18. Single quark entropy and the Polyakov loop

    CERN Document Server

    Weber, Johannes Heinrich

    2016-01-01

    We study Quantum Chromodynamics (QCD) with 2+1 flavors with almost physical quark masses using the highly improved staggered quark action (HISQ). We calculate the Polyakov loop in a wide temperature range, obtain the free energy and the entropy of a single static quark and discuss the QCD crossover region in detail. We show that the entropy has a peak close to the chiral crossover and consider the consequences for the deconfinement aspects of the crossover phenomena. We study the renormalized Polyakov loop susceptibilities and place them into the context of the crossover. We also obtain a quantitative result for the onset of weak coupling behavior at high temperatures.

  19. Zero temperature quark matter equation of state

    Energy Technology Data Exchange (ETDEWEB)

    Grassi, F.

    1987-09-01

    An equation of state is computed for a plasma of one flavor quarks interacting through some phenomenological potential, in the Hartree approximation, at zero temperature. Assuming that the confining potential is scalar and color-independent, it is shown that the quarks undergo a first-order mass phase transition. In addition, due to the way screening is introduced, all the thermodynamic quantities computed are independent of the actual shape of the interquark potential. This equation of state is then generalized to a potential with scalar and vector components, Fock corrections are discussed and the case of a several quark flavor plasma is studied. 19 refs., 2 figs.

  20. Signatures for quark clustering in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, C.E. [College of William and Mary, Williamsburg, VA (United States); Lassila, K.E. [Iowa State Univ., Ames, IA (United States)

    1994-04-01

    As a signature for the presence of quark clusters in nuclei, the authors suggest studying backward protons produced by electron scattering off deuterons and suggest a ratio that cancels out much of the detailed properties of deuterons or 6-quark clusters. The test may be viewed as a test that the short range part of the deuteron is still a 2-nucleon system. They make estimates to show how it fails in characteristic and significant ways if the two nucleons at short range coalesce into a kneaded 6-quark cluster.

  1. Discovery of single top quark production

    Energy Technology Data Exchange (ETDEWEB)

    Gillberg, Dag [Simon Fraser Univ., Burnaby, BC (Canada)

    2009-04-01

    The top quark is by far the heaviest known fundamental particle with a mass nearing that of a gold atom. Because of this strikingly high mass, the top quark has several unique properties and might play an important role in electroweak symmetry breaking - the mechanism that gives all elementary particles mass. Creating top quarks requires access to very high energy collisions, and at present only the Tevatron collider at Fermilab is capable of reaching these energies. Until now, top quarks have only been observed produced in pairs via the strong interaction. At hadron colliders, it should also be possible to produce single top quarks via the electroweak interaction. Studies of single top quark production provide opportunities to measure the top quark spin, how top quarks mix with other quarks, and to look for new physics beyond the standard model. Because of these interesting properties, scientists have been looking for single top quarks for more than 15 years. This thesis presents the first discovery of single top quark production. An analysis is performed using 2.3 fb-1 of data recorded by the D0 detector at the Fermilab Tevatron Collider at centre-of-mass energy √s = 1.96 TeV. Boosted decision trees are used to isolate the single top signal from background, and the single top cross section is measured to be σ(p$\\bar{p}$ → tb + X, tqb + X) = 3.74-0.74+0.95 pb. Using the same analysis, a measurement of the amplitude of the CKM matrix element Vtb, governing how top and b quarks mix, is also performed. The measurement yields: |V{sub tb}|f1L| = 1.05 -0.12+0.13, where f1L is the left-handed Wtb coupling. The separation of signal from background is improved by combining the boosted decision trees with two other multivariate techniques. A new cross section measurement is performed, and the significance for the excess over the predicted background exceeds 5

  2. Antikaon condensation in neutron stars

    CERN Document Server

    Pal, S; Greiner, W

    2000-01-01

    We investigate the condensation of charged K sup - meson and neutral anti-K sup 0 meson in dense neutron star matter. Calculations are performed in relativistic mean field models in which both the baryon-baryon and (anti)kaon-baryon interactions are mediated by meson exchange. It is found that anti-K sup 0 condensation is quite sensitive to the antikaon optical potential and depends more strongly on the nucleonic equation of state. For moderate values of antikaon potential and a rather stiff equation of state, a significant region of maximum mass star will contain anti-K sup 0 meson. The critical density of anti-K sup 0 condensation is always higher than that of K sup - condensation. With the appearance of K sup - and anti-K sup 0 condensates, pairs of p-K sup - and n-Kbar sup 0 are produced with equal proportion leading to a perfectly symmetric matter of nucleons and antikaons in neutron stars. Along with K sup - condensate, anti-K sup 0 condensate makes the equation of state much softer resulting in smaller...

  3. Heavy Quark Entropy shift: From the Hadron Resonance Gas to Power Corrections

    CERN Document Server

    Megias, E; Salcedo, L L

    2016-01-01

    A heavy quark placed in the medium modifies its specific heat. Using a renormalization group argument we show a low energy theorem in terms of the defect in the trace of the energy-momentum tensor which allows the unambiguous determination of the corresponding entropy shift after imposing the third principle of thermodynamics for degenerate states. We show how recent lattice QCD data can be understood in the confined phase in terms of a single-heavy hadronic spectrum and above the phase transition through power corrections which are analyzed by means of a dimension 2 gluon condensate of the dimensionally reduced theory.

  4. The thermalization of soft modes in non-expanding isotropic quark gluon plasmas

    CERN Document Server

    Blaizot, Jean-Paul; Mehtar-Tani, Yacine

    2016-01-01

    We discuss the role of elastic and inelastic collisions and their interplay in the thermalization of the quark-gluon plasma. We consider a simplified situation of a static plasma, spatially uniform and isotropic in momentum space. We focus on the small momentum region, which equilibrates first, and on a short time scale. We obtain a simple kinetic equation that allows for an analytic description of the most important regimes. The present analysis suggests that the formation of a Bose condensate, expected when only elastic collisions are present, is strongly hindered by the inelastic, radiative, processes.

  5. Forward Rapidity Hadron Production in Deuteron Gold Collisions from Valence Quarks

    CERN Document Server

    Jalilian-Marian, J

    2005-01-01

    We consider hadron production in deuteron gold collisions at RHIC in the forward rapidity region. Treating the target nucleus as a Color Glass Condensate and the projectile deuteron as a dilute system of valence quarks, we obtain good agreement with the BRAHMS minimum bias data on charged hadron production in the forward rapidity ($y=3.2$) and low $p_t$ region. We provide predictions for neutral pion production in minimum bias deuteron gold collisions in the forward rapidity region, $y=3.8$, measured by the STAR collaboration at RHIC.

  6. Extended Quark Potential Model From Random Phase Approximation

    Institute of Scientific and Technical Information of China (English)

    DENGWei-Zhen; CHENXiao-Lin; 等

    2002-01-01

    The quark potential model is extended to include the sea quark excitation using the random phase approximation.The effective quark interaction preserves the important QCD properties-chiral symmetry and confinement simultaneously.A primary qualitative analysis shows that the π meson as a well-known typical Goldstone boson and the other mesons made up of valence qq quark pair such as the ρ meson can also be described in this extended quark potential model.

  7. Tetraquarks Production in Quark-Gluon Plasma with Diquarks

    Institute of Scientific and Technical Information of China (English)

    MA Zhong-Biao; GAO Chong-Shou

    2006-01-01

    @@ We present a way to calculate tetraquarks ratios for quark-gluon plasma with diquarks. The ratios of tetraquarks over baryons produced from quark matter are high than hadronic gas model limits. It is a better way to search for four-quark states in relativistic heavy ion collisions. It may become a criterion to judge whether quark-gluon plasma has formed to search for four-quark states in relativistic heavy ion collisions.

  8. Quenched hadron spectroscopy with improved staggered quark action

    CERN Document Server

    Bernard, C W; DeGrand, T A; DeTar, C E; Gottlieb, S; Heller, U M; Hetrick, J E; McNeile, C; Rummukainen, K; Sugar, B; Toussaint, D; Bernard, Claude; Blum, Tom; Grand, Thomas A. De; Tar, Carleton De; Gottlieb, Steven; Heller, Urs M.; Hetrick, James; Neile, Craig Mc; Sugar, Bob; Toussaint, Doug

    1998-01-01

    We investigate light hadron spectroscopy with an improved quenched staggered quark action. We compare the results obtained with an improved gauge plus an improved quark action, an improved gauge plus standard quark action, and the standard gauge plus standard quark action. Most of the improvement in the spectroscopy results is due to the improved gauge sector. However, the improved quark action substantially reduces violations of Lorentz invariance, as evidenced by the meson dispersion relations.

  9. Efficient, Long-Life Biocidal Condenser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Environmental control systems for manned lunar and planetary bases will require condensing heat exchangers to control humidity. Condensing surfaces must be...

  10. Efficient, Long-Life Biocidal Condenser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Environmental control systems for manned lunar and planetary bases will require condensing heat exchangers to control humidity in manned modules. Condensing surfaces...

  11. Bose condensation in (random traps

    Directory of Open Access Journals (Sweden)

    V.A. Zagrebnov

    2009-01-01

    Full Text Available We study a non-interacting (perfect Bose-gas in random external potentials (traps. It is shown that a generalized Bose-Einstein condensation in the random eigenstates manifests if and only if the same occurs in the one-particle kinetic-energy eigenstates, which corresponds to the generalized condensation of the free Bose-gas. Moreover, we prove that the amounts of both condensate densities are equal. This statement is relevant for justification of the Bogoliubov approximation} in the theory of disordered boson systems.

  12. A phenomenological study of bottom-quark fragmentation in top-quark decay

    Energy Technology Data Exchange (ETDEWEB)

    Corcella, Gennaro [Museo Storico della Fisica e Centro Studi e Ricerche E. Fermi, Rome (Italy); Scuola Normale Superiore, Pisa (Italy); INFN, Sezione di Pisa, Pisa (Italy); Mescia, Federico [Universitat de Barcelona, Departamento d' Estructura i Constituents de la Materia (ECM) and Institut de Ciencies del Cosmos (ICC), Barcelona (Spain)

    2010-01-15

    Top-quark physics is one of the main fields of investigation at the Tevatron accelerator and, ultimately, at the LHC. We perform a phenomenological analysis of t anti t events at hadron colliders, with a focus on observables relying on bottom-quark fragmentation in top-quark decay. In particular, we investigate the B-lepton invariant-mass distribution in the dilepton channel and give an estimate of the contribution of bottom fragmentation to the Monte Carlo uncertainty on the top-quark mass reconstruction. (orig.)

  13. Effect of current quark masses on quark phase transitions in supernovae

    Institute of Scientific and Technical Information of China (English)

    LAI Xiang-Jun; LUO Zhi-Quan; LIU Hong-Lin

    2008-01-01

    The current quark mass model is adopted to study the phase transition of two-flavor quark matter to more stable three-flavor quark matter in the whole core of a supernova. It shows that the timescale of the process is shorter than 10-8 seconds, thatthe u- and d-quark masses can be neglected completely in this model, and that the temperature and the total neutrino energies in the core after the conversion increase nearly by 40% and 20% on the average compared with former results, respectively. The last result can further enhance the probability of success for a supernova explosion significantly.

  14. Scattering of Quark-Quasiparticles in the Quark-Gluon Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Mannarelli, M. [Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Rapp, R. [Cyclotron Institute and Physics Department, Texas A and M University, College Station, Texas 77843-3366 (United States)

    2006-08-07

    Employing a Brueckner-type many-body approach, based on a driving potential extracted from lattice QCD, we study light quark properties in a Quark-Gluon Plasma (QGP) at moderate temperatures, T{approx}1-2T{sub c}. The quark-antiquark T-matrix is calculated self-consistently with pertinent quark self-energies. While the repulsive octet channel induces quasiparticle masses of up to 150 MeV, the attractive color-singlet part exhibits resonance structures which lead to quasiparticle widths of {approx}200MeV.

  15. Meson cloud effects on the pion quark distribution function in the chiral constituent quark model

    CERN Document Server

    Watanabe, Akira; Suzuki, Katsuhiko

    2016-01-01

    We investigate the valence quark distribution function of the pion $v^{\\pi}(x,Q^2)$ in the framework of the chiral constituent quark model and evaluate the meson cloud effects on $v^{\\pi}(x,Q^2)$. We explicitly demonstrate how the meson cloud effects affect $v^{\\pi}(x,Q^2)$ in detail. We find that the meson cloud correction causes an overall 32\\% reduction of the valence quark distribution and an enhancement at the small Bjorken $x$ regime. Besides, we also find that the dressing effect of the meson cloud will make the valence quark distribution to be softer in the large $x$ region.

  16. Heavy-Quark Diffusion Dynamics in Quark-Gluon Plasma under Strong Magnetic Fields

    CERN Document Server

    Hattori, Koichi; Yee, Ho-Ung; Yin, Yi

    2016-01-01

    We discuss heavy-quark dynamics in the quark-gluon plasma under a strong magnetic field induced by colliding nuclei. By the use of the diagrammatic resummation techniques for Hard Thermal Loop and the external magnetic field, we show analytic results of heavy-quark diffusion coefficient and drag force which become anisotropic due to the preferred spatial orientation in the magnetic field. We argue that the anisotropic diffusion coefficient gives rise to an enhancement/suppression of the heavy-quark elliptic flow depending on the transverse momentum.

  17. 1{sup --} and 0{sup ++} heavy four-quark and molecule states in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque, R.M., E-mail: rma@if.usp.br [Instituto de Fisica, Universidade de Sao Paulo, C.P. 66318, 05389-970 Sao Paulo, SP (Brazil); Laboratoire Particules et Univers de Montpellier, CNRS-IN2P3, Case 070, Place Eugene Bataillon, 34095 Montpellier (France); Fanomezana, F., E-mail: fanfenos@yahoo.fr [Institute of High-Energy Physics of Madagascar (iHEP-MAD), University of Antananarivo (Madagascar); Narison, S., E-mail: snarison@yahoo.fr [Laboratoire Particules et Univers de Montpellier, CNRS-IN2P3, Case 070, Place Eugene Bataillon, 34095 Montpellier (France); Rabemananjara, A., E-mail: achris_01@yahoo.fr [Institute of High-Energy Physics of Madagascar (iHEP-MAD), University of Antananarivo (Madagascar)

    2012-08-29

    We estimate the masses of the 1{sup --} heavy four-quark and molecule states by combining exponential Laplace (LSR) and finite energy (FESR) sum rules known perturbatively to lowest order (LO) in {alpha}{sub s} but including non-perturbative terms up to the complete dimension-six condensate contributions. This approach allows to fix more precisely the value of the QCD continuum threshold (often taken ad hoc) at which the optimal result is extracted. We use double ratio of sum rules (DRSR) for determining the SU(3) breakings terms. We also study the effects of the heavy quark mass definitions on these LO results. The SU(3) mass-splittings of about (50-110) MeV and the ones of about (250-300) MeV between the lowest ground states and their 1st radial excitations are (almost) heavy-flavor independent. The mass predictions summarized in Table 4 are compared with the ones in the literature (when available) and with the three Y{sub c}(4260,4360,4660) and Y{sub b}(10890)1{sup --} experimental candidates. We conclude (to this order approximation) that the lowest observed state cannot be a pure1{sup --} four-quark nor a pure molecule but may result from their mixings. We extend the above analyzes to the 0{sup ++} four-quark and molecule states which are about (0.5-1) GeV heavier than the corresponding 1{sup --} states, while the splittings between the 0{sup ++} lowest ground state and the 1st radial excitation is about (300-500) MeV. We complete the analysis by estimating the decay constants of the 1{sup --} and 0{sup ++} four-quark states which are tiny and which exhibit a 1/M{sub Q} behavior. Our predictions can be further tested using some alternative non-perturbative approaches or/and at LHC{sub b} and some other hadron factories.

  18. Deep-inelastic production of heavy quarks

    CERN Document Server

    Laenen, Eric; Harris, B W; Matiounine, Y; Migneron, R; Riemersma, S; Smith, J; van Neerven, W L

    1996-01-01

    Deep-inelastic production of heavy quarks at HERA, especially charm, is an excellent signal to measure the gluon distribution in the proton at small $x$ values. By measuring various differential distributions of the heavy quarks this reaction permits additional more incisive QCD analyses due to the many scales present. Furthermore, the relatively small mass of the charm quark, compared to the typical momentum transfer $Q$, allows one to study whether and when to treat this quark as a parton. This reaction therefore sheds light on some of the most fundamental aspects of perturbative QCD. We discuss the above issues and review the feasibility of their experimental investigation in the light of a large integrated luminosity.

  19. Top Quark Physics at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Andreas W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States). Particle Physics Division

    2015-05-21

    An overview of recent top quark measurements using the full Run II data set of CDF or D0 at the Tevatron is presented. Results are complementary to the ones at the LHC. Recent measurements of the production cross section of top quarks in strong and electroweak production and of top quark production asymmetries are presented. The latter includes the measurement of the tt-bar production asymmetry by D0 in the dilepton decay channel. Within their uncertainties the results from all these measurements agree with their respective Standard Model expectation. Finally latest updates on measurements of the top quark mass are discussed, which at the time of the conference are the most precise determinations.

  20. Quark Forces Attract Nobel Prize in Physics

    Institute of Scientific and Technical Information of China (English)

    Jenny Hogan; 滕晓燕

    2004-01-01

    @@ The force that holds together the tiniest particles① of matter has pulled in the Nobel Prize in Physics for the three US physicists who unraveled② its workings. David Gross, David Politzer and Frank Wilczek have each been awarded a third of the 2004 prize for explaining how quarks-sub-atomic③particles which make up the protons④ and neutrons⑤ in the nuclei⑥ of atomsstick together. Protons and neutrons consist of three quarks each, and there are six different types of quarks, such as "up" and "down" quarks. The trio⑦ of scientists were awarded the $1.3 million prize for work explaining the so-called "strong" or "color" force prevalent⑧ in the atomic nucleus. The strong force is one of the fundamental forces of nature, and their breakthrough "brought physics one step closer to fulfilling a grand dream... A theory for everything" according to the Royal Swedish.