WorldWideScience

Sample records for quantum-chemical study oligomerizatsiya

  1. Quantum chemical studies of estrogenic compounds

    Science.gov (United States)

    Quantum chemical methods are potent tools to provide information on the chemical structure and electronic properties of organic molecules. Modern computational chemistry methods have provided a great deal of insight into the binding of estrogenic compounds to estrogenic receptors (ER), an important ...

  2. Electrochemical, surface analytical and quantum chemical studies ...

    Indian Academy of Sciences (India)

    subject of numerous studies due to their high technological value and wide range .... Mulliken population analysis of atoms in triazole derivatives, depending on the ... 2102–0003) with an accelerating voltage of 20 kV, at a scan speed=slow 5 and ... the corrosion rate can also be determined by Tafel extra- polation of either ...

  3. Experimental and quantum chemical studies on corrosion inhibition ...

    Indian Academy of Sciences (India)

    Abstract. The corrosion inhibition effect of fluconazole (FLU) was investigated on steel in 1 M hydrochloric acid solution. Weight loss measurements and atomic force microscope analysis were utilized to investigate the corrosion inhibition properties and film formation behaviour of FLU. Quantum chemical approach was also ...

  4. Experimental and quantum chemical studies on corrosion inhibition

    Indian Academy of Sciences (India)

    The corrosion inhibition effect of fluconazole (FLU) was investigated on steel in 1 M hydrochloric acid solution. Weight loss measurements and atomic force microscope analysis were utilized to investigate the corrosion inhibition properties and film formation behaviour of FLU. Quantum chemical approach was also used to ...

  5. Quantum chemical studies on the some inorganic corrosion inhibitors

    International Nuclear Information System (INIS)

    Sayin, Koray; Karakaş, Duran

    2013-01-01

    Highlights: •Some quantum chemical parameters are important to determine inhibition efficiency. •Quantum chemical calculations were performed on six inorganic inhibitors. •Five experimental reports were used to explain the theoretical results. •Atomic charges and %contributions were used to determine the atom at protonation process. •For inorganic inhibitors, the best method and basis set were investigated. -- Abstract: Some quantum chemical parameters were calculated by using Hartree–Fock (HF) approximation, Density Functional Theory (DFT/B3LYP) and Møller Plesset perturbation theory (MP3) methods at LANL2DZ, LANL2MB and SDD levels in gas phase and water for dichromate (Cr 2 O 7 2- ), chromate (CrO 4 2- ), tungstate (WO 4 2- ), molybdate (MoO 4 2- ), nitrite (NO 2 - ) and nitrate (NO 3 - ) which are used as inorganic corrosion inhibitors. All theoretical results and experimental inhibition efficiencies of inhibitors were subjected to correlation analyses. In a summary, MP3/SDD level in water was found as the best level. In this level, the inhibition efficiency ranking was found as CrO 4 2- >WO 4 2- >MoO 4 2- >Cr 2 O 7 2- >NO 2 - ≈NO 3 -

  6. Electron-beam generated porous dextran gels: experimental and quantum chemical studies.

    Science.gov (United States)

    Naumov, Sergej; Knolle, Wolfgang; Becher, Jana; Schnabelrauch, Matthias; Reichelt, Senta

    2014-06-01

    The aim of this work was to investigate the reaction mechanism of electron-beam generated macroporous dextran cryogels by quantum chemical calculation and electron paramagnetic resonance measurements. Electron-beam radiation was used to initiate the cross-linking reaction of methacrylated dextran in semifrozen aqueous solutions. The pore morphology of the resulting cryogels was visualized by scanning electron microscopy. Quantum chemical calculations and electron paramagnetic resonance studies provided information on the most probable reaction pathway and the chain growth radicals. The most probable reaction pathway was a ring opening reaction and the addition of a C-atom to the double-bond of the methacrylated dextran molecule. First detailed quantum chemical calculation on the reaction mechanism of electron-beam initiated cross-linking reaction of methacrylated dextran are presented.

  7. Electrochemical and Quantum Chemical Study of Reactivity of Orthophthalaldehyde with Aliphatic Primary Amines

    Czech Academy of Sciences Publication Activity Database

    Donkeng Dazie, Joel; Liška, Alan; Ludvík, Jiří

    2016-01-01

    Roč. 163, č. 9 (2016), G127-G132 ISSN 0013-4651 R&D Projects: GA ČR GA13-21704S Institutional support: RVO:61388955 Keywords : electrochemistry * quantum chemical study * amines Subject RIV: CG - Electrochemistry Impact factor: 3.259, year: 2016

  8. Oxygen-vacancy defects on BaTiO3 (001) surface: a quantum chemical study

    International Nuclear Information System (INIS)

    Duque, Carlos; Stashans, Arvids

    2003-01-01

    A quantum-chemical study of technologically important BaTiO 3 crystal and oxygen-vacancy defects on its (001) surface is reported in the present work. The computations are made using a quantum-chemical method developed for periodic systems (crystals), which is based on the Hartree-Fock theory. The atomic rearrangement due to the surface creation is obtained for a pure BaTiO 3 by means of the periodic large unit cell (LUC) model and using an automated geometry optimisation procedure. The same technique is employed to study the electronic and structural properties of the material due to the presence of an O vacancy and F centre (two electrons trapped in an oxygen vacancy). The computations are carried out for both cubic and tetragonal lattices

  9. Quantum-chemical study on the bioactive conformation of epothilones.

    Science.gov (United States)

    Jiménez, Verónica A

    2010-12-27

    Herein, I report a DFT study on the bioactive conformation of epothilone A based on the analysis of 92 stable conformations of free and bound epothilone to a reduced model of tubulin receptor. The equilibrium structures and relative energies were studied using B3LYP and X3LYP functionals and the 6-31G(d) standard basis set, which was considered appropriate for the size of the systems under study. Calculated relative energies of free and bound epothilones led me to propose a new model for the bioactive conformation of epothilone A, which accounts for several structure-activity data.

  10. Quantum chemical study of penicillin: Reactions after acylation

    Science.gov (United States)

    Li, Rui; Feng, Dacheng; Zhu, Feng

    The density functional theory methods were used on the model molecules of penicillin to determine the possible reactions after their acylation on ?-lactamase, and the results were compared with sulbactam we have studied. The results show that, the acylated-enzyme tetrahedral intermediate can evolves with opening of ?-lactam ring as well as the thiazole ring; the thiazole ring-open products may be formed via ?-lactam ring-open product or from tetrahedral intermediate directly. Those products, in imine or enamine form, can tautomerize via hydrogen migration. In virtue of the water-assisted, their energy barriers are obviously reduced.

  11. Photosensitization and phototherapy with furocoumarins: A quantum-chemical study

    International Nuclear Information System (INIS)

    Serrano-Perez, Juan Jose; Serrano-Andres, Luis; Merchan, Manuela

    2008-01-01

    The effect of electromagnetic radiation on biological objects extends from heating to complex photochemistry, and includes DNA alteration, that properly modified in damaged cells may entail beneficial effects. In this regard, psoralen + UV-A (PUVA) therapy, in which furocoumarins, psoralen-like chromophores, are used as photosensitizers and photoreactants with DNA bases, is one of the most promising strategies against a plethora of diseases. Understanding the underlying photochemical mechanisms is crucial to design effective drugs without undesired side effects. We have undertaken a quantum-mechanical study on the photophysics and photochemistry of furocoumarins, analyzing firstly the most efficient way in which the lowest excited triplet state, as protagonist of the photosensitizing action, is populated from the initially promoted singlet states, and secondly the basics of the formation of furocoumarin-DNA photoadducts

  12. Vibrational spectroscopic studies of Isoleucine by quantum chemical calculations.

    Science.gov (United States)

    Moorthi, P P; Gunasekaran, S; Ramkumaar, G R

    2014-04-24

    In this work, we reported a combined experimental and theoretical study on molecular structure, vibrational spectra and NBO analysis of Isoleucine (2-Amino-3-methylpentanoic acid). The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments, thermodynamics properties, NBO analyses, NMR chemical shifts and ultraviolet-visible spectral interpretation of Isoleucine have been studied by performing MP2 and DFT/cc-pVDZ level of theory. The FTIR, FT-Raman spectra were recorded in the region 4000-400 cm(-1) and 3500-50 cm(-1) respectively. The UV-visible absorption spectra of the compound were recorded in the range of 200-800 nm. Computational calculations at MP2 and B3LYP level with basis set of cc-pVDZ is employed in complete assignments of Isoleucine molecule on the basis of the potential energy distribution (PED) of the vibrational modes, calculated using VEDA-4 program. The calculated wavenumbers are compared with the experimental values. The difference between the observed and calculated wavenumber values of most of the fundamentals is very small. (13)C and (1)H nuclear magnetic resonance chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method and compared with experimental results. The formation of hydrogen bond was investigated in terms of the charge density by the NBO calculations. Based on the UV spectra and TD-DFT calculations, the electronic structure and the assignments of the absorption bands were carried out. Besides, molecular electrostatic potential (MEP) were investigated using theoretical calculations. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. ELECTROREDUCTION MECHANISM OF Ni(DMG)-2 COMPLEX STUDIED WITH QUANTUM CHEMICAL METHOD

    Institute of Scientific and Technical Information of China (English)

    倪亚明; 任镜清; 黎健; 王德民; 梁伟根; 朱芝仙; 高小霞

    1990-01-01

    The electronic structures of the species Ni(DMG)2, (Ni(DMG)2)- and (Ni(DMG)2)2- have been studied by INDO quantum chemical method. The results have clearly shown that in the first stage of the electroreduction of Ni(DMG)2, one electron interacts with the d orbitals on the nickel atom, while in the further stage the second electron interacts with the p orbitals on the nitrogen atoms. It conforms with our electrochemical experimental studies which showed that not only Ni(Ⅱ) is reduced but also DMG is catalytically reduced during the reduction of Ni(DMG)2.

  14. Quantum Chemical Studies of Actinides and Lanthanides: From Small Molecules to Nanoclusters

    Science.gov (United States)

    Vlaisavljevich, Bess

    Research into actinides is of high interest because of their potential applications as an energy source and for the environmental implications therein. Global concern has arisen since the development of the actinide concept in the 1940s led to the industrial scale use of the commercial nuclear energy cycle and nuclear weapons production. Large quantities of waste have been generated from these processes inspiring efforts to address fundamental questions in actinide science. In this regard, the objective of this work is to use theory to provide insight and predictions into actinide chemistry, where experimental work is extremely challenging because of the intrinsic difficulties of the experiments themselves and the safety issues associated with this type of chemistry. This thesis is a collection of theoretical studies of actinide chemistry falling into three categories: quantum chemical and matrix isolation studies of small molecules, the electronic structure of organoactinide systems, and uranyl peroxide nanoclusters and other solid state actinide compounds. The work herein not only spans a wide range of systems size but also investigates a range of chemical problems. Various quantum chemical approaches have been employed. Wave function-based methods have been used to study the electronic structure of actinide containing molecules of small to middle-size. Among these methods, the complete active space self consistent field (CASSCF) approach with corrections from second-order perturbation theory (CASPT2), the generalized active space SCF (GASSCF) approach, and Moller-Plesset second-order perturbation theory (MP2) have been employed. Likewise, density functional theory (DFT) has been used along with analysis tools like bond energy decomposition, bond orders, and Bader's Atoms in Molecules. From these quantum chemical results, comparison with experimentally obtained structures and spectra are made.

  15. TG-FTIR, DSC and quantum chemical studies of the thermal decomposition of quaternary methylammonium halides

    International Nuclear Information System (INIS)

    Sawicka, Marlena; Storoniak, Piotr; Skurski, Piotr; Blazejowski, Jerzy; Rak, Janusz

    2006-01-01

    The thermal decomposition of quaternary methylammonium halides was studied using thermogravimetry coupled to FTIR (TG-FTIR) and differential scanning calorimetry (DSC) as well as the DFT, MP2 and G2 quantum chemical methods. There is almost perfect agreement between the experimental IR spectra and those predicted at the B3LYP/6-311G(d,p) level: this has demonstrated for the first time that an equimolar mixture of trimethylamine and a methyl halide is produced as a result of decomposition. The experimental enthalpies of dissociation are 153.4, 171.2, and 186.7 kJ/mol for chloride, bromide and iodide, respectively, values that correlate well with the calculated enthalpies of dissociation based on crystal lattice energies and quantum chemical thermodynamic barriers. The experimental activation barriers estimated from the least-squares fit of the F1 kinetic model (first-order process) to thermogravimetric traces - 283, 244 and 204 kJ/mol for chloride, bromide and iodide, respectively - agree very well with theoretically calculated values. The theoretical approach assumed in this work has been shown capable of predicting the relevant characteristics of the thermal decomposition of solids with experimental accuracy

  16. Molecular interactions in ethyl acetate-chlorobenzene binary solution: Dielectric, spectroscopic studies and quantum chemical calculations

    Science.gov (United States)

    Karthick, N. K.; Kumbharkhane, A. C.; Joshi, Y. S.; Mahendraprabu, A.; Shanmugam, R.; Elangovan, A.; Arivazhagan, G.

    2017-05-01

    Dielectric studies using Time Domain Reflectometry method has been carried out on the binary solution of Ethyl acetate (EA) with Chlorobenzene (CBZ) over the entire composition range. Spectroscopic (FTIR and 13C NMR) signatures of neat EA, CBZ and their equimolar binary solution have also been recorded. The results of the spectroscopic studies favour the presence of (CBZ) Csbnd H ⋯ Odbnd C (EA), (EA) methylene Csbnd H ⋯ π electrons (CBZ) and (EA) methyl Csbnd H ⋯ Cl (CBZ) contacts which have been validated using quantum chemical calculations. Dimerization of CBZ has been identified. Presence of β-clusters has been identified in all the solutions. Although EA and CBZ molecules have nearly equal molar volumes, CBZ molecules experience larger hindrance for the rotation than EA molecules. Very small excess dielectric constant (εE) values may be correlated with weak heteromolecular forces and/or closed heteromolecular association.

  17. Random Forest Approach to QSPR Study of Fluorescence Properties Combining Quantum Chemical Descriptors and Solvent Conditions.

    Science.gov (United States)

    Chen, Chia-Hsiu; Tanaka, Kenichi; Funatsu, Kimito

    2018-04-22

    The Quantitative Structure - Property Relationship (QSPR) approach was performed to study the fluorescence absorption wavelengths and emission wavelengths of 413 fluorescent dyes in different solvent conditions. The dyes included the chromophore derivatives of cyanine, xanthene, coumarin, pyrene, naphthalene, anthracene and etc., with the wavelength ranging from 250 nm to 800 nm. An ensemble method, random forest (RF), was employed to construct nonlinear prediction models compared with the results of linear partial least squares and nonlinear support vector machine regression models. Quantum chemical descriptors derived from density functional theory method and solvent information were also used by constructing models. The best prediction results were obtained from RF model, with the squared correlation coefficients [Formula: see text] of 0.940 and 0.905 for λ abs and λ em , respectively. The descriptors used in the models were discussed in detail in this report by comparing the feature importance of RF.

  18. A theoretical quantum chemical study of alanine formation in interstellar medium

    Science.gov (United States)

    Shivani; Pandey, Parmanad; Misra, Alka; Tandon, Poonam

    2017-08-01

    The interstellar medium, the vast space between the stars, is a rich reservoir of molecular material ranging from simple diatomic molecules to more complex, astrobiologically important molecules such as amino acids, nucleobases, and other organic species. Radical-radical and radical-neutral interaction schemes are very important for the formation of comparatively complex molecules in low temperature chemistry. An attempt has been made to explore the possibility of formation of complex organic molecules in interstellar medium, through detected interstellar molecules like CH3CN and HCOOH. The gas phase reactions are theoretically studied using quantum chemical techniques. We used the density functional theory (DFT) at the B3LYP/6-311G( d, p) level. The reaction energies, potential barrier and optimized structures of all the geometries, involved in the reaction path, has been discussed. We report the potential energy surfaces for the reactions considered in this work.

  19. Vibrational, electronic and quantum chemical studies of 1,2,4-benzenetricarboxylic-1,2-anhydride.

    Science.gov (United States)

    Arjunan, V; Raj, Arushma; Subramanian, S; Mohan, S

    2013-06-01

    The FTIR and FT-Raman spectra of 1,2,4-benzenetricarboxylic-1,2-anhydride (BTCA) have been recorded in the range 4000-400 and 4000-100 cm(-1), respectively. The complete vibrational assignments and analysis of BTCA have been performed. More support on the experimental findings was added from the quantum chemical studies performed with DFT (B3LYP, MP2, B3PW91) method using 6-311++G(**), 6-31G(**) and cc-pVTZ basis sets. The structural parameters, energies, thermodynamic parameters, vibrational frequencies and the NBO charges of BTCA were determined by the DFT method. The (1)H and (13)C isotropic chemical shifts (δ ppm) of BTCA with respect to TMS were also calculated using the gauge independent atomic orbital (GIAO) method and compared with the experimental data. The delocalization energies of different types of interactions were determined. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Proton exchange between oxymethyl radical and acids and bases: semiempirical quantum-chemical study

    Directory of Open Access Journals (Sweden)

    Irina Pustolaikina

    2016-12-01

    Full Text Available The reactions with proton participation are widely represented in the analytical, technological and biological chemistry. Quantum-chemical study of the exchange processes in hydrogen bonding complexes will allow us to achieve progress in the understanding of the elementary act mechanism of proton transfer in hydrogen bonding chain as well as the essence of the acid-base interactions. Oxymethyl radical •CH2ОН is small in size and comfortable as a model particle that well transmits protolytic properties of paramagnetic acids having more complex structure. Quantum-chemical modeling of proton exchange reaction oxymethyl radical ∙CH2OH and its diamagnetic analog CH3OH with amines, carboxylic acids and water was carried out using UAM1 method with the help of Gaussian-2009 program. QST2 method was used for the search of transition state, IRC procedure was applied for the calculation of descents along the reaction coordinate. The difference in the structure of transition states of ∙CH2OH/ CH3OH with bases and acids has been shown. It has been confirmed that in the case of bases, consecutive proton exchange mechanism was fixed, and in the case of complexes with carboxylic acids parallel proton exchange mechanism was fixed. The similarity in the reaction behavior of paramagnetic and diamagnetic systems in the proton exchange has been found. It was suggested that the mechanism of proton exchange reaction is determined by the structure of the hydrogen bonding cyclic complex, which is, in turn, depends from the nature of the acid-base interactions partners.

  1. Quantum-chemical study of hydride transfer in catalytic transformation of paraffins on zeolites

    NARCIS (Netherlands)

    Kazansky, V.B.; Frash, M.V.; Santen, van R.A.; Chon, H.; Ihm, S.-K.; Uh, Y.S.

    1997-01-01

    Ab initio quantum-chemical cluster calculations demonstrate that the activated complexes of hydride transfer reaction in catalytic transformation of paraffins on zeolites very much resembles adsorbed nonclassical carbonium ions. The calculated activation energies for reactions involving propane and

  2. Spectroscopic studies and quantum chemical investigations of (3,4-dimethoxybenzylidene) propanedinitrile.

    Science.gov (United States)

    Gupta, Ujval; Kumar, Vinay; Singh, Vivek K; Kant, Rajni; Khajuria, Yugal

    2015-04-05

    The Fourier Transform Infrared (FTIR), Ultra-Violet Visible (UV-Vis) spectroscopy and Thermogravimetric (TG) analysis of (3,4-dimethoxybenzylidene) propanedinitrile have been carried out and investigated using quantum chemical calculations. The molecular geometry, harmonic vibrational frequencies, Mulliken charges, natural atomic charges and thermodynamic properties in the ground state have been investigated by using Hartree Fock Theory (HF) and Density Functional Theory (DFT) using B3LYP functional with 6-311G(d,p) basis set. Both HF and DFT methods yield good agreement with the experimental data. Vibrational modes are assigned with the help of Vibrational Energy Distribution Analysis (VEDA) program. UV-Visible spectrum was recorded in the spectral range of 190-800nm and the results are compared with the calculated values using TD-DFT approach. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. The results obtained from the studies of Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) are used to calculate molecular parameters like ionization potential, electron affinity, global hardness, electron chemical potential and global electrophilicity. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Synthesis, structural characterization and quantum chemical studies of silicon-containing benzoic acid derivatives

    Science.gov (United States)

    Zaltariov, Mirela-Fernanda; Cojocaru, Corneliu; Shova, Sergiu; Sacarescu, Liviu; Cazacu, Maria

    2016-09-01

    The present paper is concerned with the synthesis and molecular structure investigation of two new benzoic acid derivatives having trimethylsilyl tails, 4-((trimethylsilyl)methoxy) and 4-(3-(trimethylsilyl)propoxy)benzoic acids. The structures of the novel compounds have been confirmed by X-ray crystallography, Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (1H and 13C NMR). The theoretical studies of molecules were conducted by using the quantum chemical methods, such as Density Functional Theory (DFT B3LYP/6-31 + G**), Hartree-Fock (HF/6-31 + G**) and semiempirical computations (PM3, PM6 and PM7). The optimized molecular geometries have been found to be in good agreement with experimental structures resulted from the X-ray diffraction. The maximum electronic absorption bands observed at 272-287 nm (UV-vis spectra) have been assigned to π → π* transitions, which were in reasonable agreement with the time dependent density functional theory (TD-DFT) calculations. The computed vibrational frequencies by DFT method were assigned and compared with the experimental FTIR spectra. The mapped electrostatic potentials revealed the reactive sites, which corroborated the observation of the dimer supramolecular structures formed in the crystals by hydrogen-bonding. The energies of frontier molecular orbitals (HOMO and LUMO), energy gap, dipole moment and molecular descriptors for the new compounds were calculated and discussed.

  4. The Nature of the Interactions in Triethanolammonium-Based Ionic Liquids. A Quantum Chemical Study.

    Science.gov (United States)

    Fedorova, Irina V; Safonova, Lyubov P

    2018-05-10

    Structural features and interionic interactions play a crucial role in determining the overall stability of ionic liquids and their physicochemical properties. Therefore, we performed high-level quantum-chemical study of different cation-anion pairs representing the building units of protic ionic liquids based on triethanolammonium cation and anions of sulfuric, nitric, phosphoric, and phosphorus acids to provide essential insight into these phenomena at the molecular level. It was shown that every structure is stabilized through multiple H bonds between the protons in the N-H and O-H groups of the cation and different oxygen atoms of the anion acid. Using atoms in molecules topological parameters and natural bond orbital analysis, we determined the nature and strength of these interactions. Our calculations suggest that the N-H group of the cation has more proton donor-like character than the O-H group that makes the N-H···O hydrogen bonds stronger. A close relation between the binding energies of these ion pairs and experimental melting points was established: the smaller the absolute value of the binding energy between ions, the lower is the melting point.

  5. Dependence of the extraction capacity of neutral bidentate organophosphorus compounds on their structure: a quantum chemical study

    International Nuclear Information System (INIS)

    Sudarushkin, S.K.; Morgalyuk, V.P.; Tananaev, I.G.; Gribov, L.A.; Myasoedov, B.F.

    2006-01-01

    Correlations between the extraction capacities and molecular structures of organic phosphorus compounds (reagents for extraction of transplutonium elements from spent nuclear fuel) were studied using a quantum chemical approach. The results of calculations are in qualitative agreement with experimental data. The approach proposed can be used for analysis of the extraction properties of all classes of organic phosphorus compounds and also for prediction of the most efficient organic phosphorus extractants with preset properties [ru

  6. A quantum-chemical study of oxygen-vacancy defects in PbTiO{sub 3} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Stashans, Arvids [Laboratorio de Fisica, Escuela de Electronica y Telecomunicaciones, Universidad Tecnica Particular de Loja, Apartado 11-01-608, Loja (Ecuador)]. E-mail: arvids@utpl.edu.ec; Serrano, Sheyla [Centro de Investigacion en Fisica de Materia Condensada, Corporacion de Fisica Fundamental y Aplicada, Apartado 17-12-637, Quito (Ecuador); Escuela de Ingenierias, Universidad Politecnica Salesiana, Campus Sur, Rumichaca s/n y Moran Valverde, Apartado 17-12-536, Quito (Ecuador); Medina, Paul [Centro de Investigacion en Fisica de Materia Condensada, Corporacion de Fisica Fundamental y Aplicada, Apartado 17-12-637, Quito (Ecuador)

    2006-05-31

    Investigation of an oxygen vacancy and F center in the cubic and tetragonal lattices of PbTiO{sub 3} crystals is done by means of quantum-chemical simulations. Displacements of defect-surrounding atoms, electronic and optical properties, lattice relaxation energies and some new effects due to the defects presence are reported and analyzed. A comparison with similar studies is made and conclusions are drawn on the basis of the obtained results.

  7. A quantum-chemical study of oxygen-vacancy defects in PbTiO3 crystals

    International Nuclear Information System (INIS)

    Stashans, Arvids; Serrano, Sheyla; Medina, Paul

    2006-01-01

    Investigation of an oxygen vacancy and F center in the cubic and tetragonal lattices of PbTiO 3 crystals is done by means of quantum-chemical simulations. Displacements of defect-surrounding atoms, electronic and optical properties, lattice relaxation energies and some new effects due to the defects presence are reported and analyzed. A comparison with similar studies is made and conclusions are drawn on the basis of the obtained results

  8. Photophysics of α-furil at room temperature and 77 K: Spectroscopic and quantum chemical studies

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Pronab; Chattopadhyay, Nitin, E-mail: nitin.chattopadhyay@yahoo.com [Department of Chemistry, Jadavpur University, Kolkata 700 032 (India)

    2016-06-21

    Steady state and time resolved spectroscopic measurements have been exploited to assign the emissions from different conformations of α-furil (2, 2′-furil) in solution phase at room temperature as well as cryogen (liquid nitrogen, LN{sub 2}) frozen matrices of ethanol and methylcyclohexane. Room temperature studies reveal a single fluorescence from the trans-planar conformer of the fluorophore or two fluorescence bands coming from the trans-planar and the relaxed skew forms depending on excitation at the nπ{sup ∗} or the ππ{sup ∗} absorption band, respectively. Together with the fluorescence bands, the LN{sub 2} studies in both the solvents unambiguously ascertain two phosphorescence emissions with lifetimes 5 ± 0.3 ms (trans-planar triplet) and 81 ± 3 ms (relaxed skew triplet). Quantum chemical calculations have been performed using density functional theory at CAM-B3LYP/6-311++G{sup ∗∗} level to prop up the spectroscopic surveillance. The simulated potential energy curves (PECs) illustrate that α-furil is capable of giving two emissions from each of the S{sub 1} and the T{sub 1} states—one corresponding to the trans-planar and the other to the relaxed skew conformation. Contrary to the other 1,2-dicarbonyl molecular systems like benzil and α-naphthil, α-furil does not exhibit any fluorescence from its second excited singlet (S{sub 2}) state. This is ascribed to the proximity of the minimum of the PEC of the S{sub 2} state and the hill-top of the PEC of the S{sub 1} state.

  9. Theoretical study of the electronic structure of f-element complexes by quantum chemical methods

    International Nuclear Information System (INIS)

    Vetere, V.

    2002-09-01

    This thesis is related to comparative studies of the chemical properties of molecular complexes containing lanthanide or actinide trivalent cations, in the context of the nuclear waste disposal. More precisely, our aim was a quantum chemical analysis of the metal-ligand bonding in such species. Various theoretical approaches were compared, for the inclusion of correlation (density functional theory, multiconfigurational methods) and of relativistic effects (relativistic scalar and 2-component Hamiltonians, relativistic pseudopotentials). The performance of these methods were checked by comparing computed structural properties to published experimental data, on small model systems: lanthanide and actinide tri-halides and on X 3 M-L species (X=F, Cl; M=La, Nd, U; L = NH 3 , acetonitrile, CO). We have thus shown the good performance of density functionals combined with a quasi-relativistic method, as well as of gradient-corrected functionals associated with relativistic pseudopotentials. In contrast, functionals including some part of exact exchange are less reliable to reproduce experimental trends, and we have given a possible explanation for this result . Then, a detailed analysis of the bonding has allowed us to interpret the discrepancies observed in the structural properties of uranium and lanthanides complexes, based on a covalent contribution to the bonding, in the case of uranium(III), which does not exist in the lanthanide(III) homologues. Finally, we have examined more sizeable systems, closer to experimental species, to analyse the influence of the coordination number, of the counter-ions and of the oxidation state of uranium, on the metal-ligand bonding. (author)

  10. Quantum chemical studies on the corrosion inhibition of some sulphonamides on mild steel in acidic medium

    International Nuclear Information System (INIS)

    Arslan, Taner; Kandemirli, Fatma; Ebenso, Eno E.; Love, Ian; Alemu, Hailemichael

    2009-01-01

    Quantum chemical calculations using the density functional theory (DFT) and some semi-empirical methods were performed on four sulphonamides (sulfaguanidine, sulfamethazine, sulfamethoxazole and sulfadiazine) used as corrosion inhibitors for mild steel in acidic medium to determine the relationship between molecular structure and their inhibition efficiencies. The results of the quantum chemical calculations and experimental %IE were subjected to correlation analysis and indicate that their inhibition effect are closely related to E HOMO , E LUMO , hardness, polarizability, dipole moment and charges. The %IE increased with increase in the E HOMO and decrease in E HOMO - E LUMO . The negative sign of the E HOMO values and other kinetic and thermodynamic parameters indicates that the data obtained support physical adsorption mechanism

  11. Molecular interactions of nucleic acid bases. A review of quantum-chemical studies

    Czech Academy of Sciences Publication Activity Database

    Šponer, Jiří; Hobza, Pavel

    2003-01-01

    Roč. 68, č. 12 (2003), s. 2231-2282 ISSN 0010-0765 R&D Projects: GA MŠk LN00A032; GA AV ČR IAA4040904 Grant - others:Wellcome Trust(GB) GR067507MF Institutional research plan: CEZ:AV0Z5004920; CEZ:AV0Z4040901 Keywords : DNA base pairs * initio quantum -chemical calculations * electron correlation Subject RIV: BO - Biophysics Impact factor: 1.041, year: 2003

  12. Structural studies of crystals of organic and organoelement compounds using modern quantum chemical calculations within the framework of the density functional theory

    International Nuclear Information System (INIS)

    Korlyukov, Alexander A; Antipin, Mikhail Yu

    2012-01-01

    The review generalizes the results of structural studies of crystals of organic and organometallic compounds by modern quantum chemical calculations within the framework of the density functional theory reported in the last decade. Features of the software for such calculations are discussed. Examples of the use of quantum chemical calculations for the studies of the electronic structure, spectroscopic and other physicochemical properties of molecular crystals are presented. The bibliography includes 223 references.

  13. Quantum chemical studies on electronic structure and photodynamics of ruthenium complexes

    International Nuclear Information System (INIS)

    Freitag, L.

    2015-01-01

    Ruthenium complexes have found their way into many applications in the last decades. Among those, ruthenium polypyridyl compounds have been employed as light harvesting devices and photosensitisers in artificial photosynthesis and molecular photocatalysis. Ruthenium nitrosyl complexes are rapidly emerging as NO delivery agents to biological tissues with promising applications in anticancer photodynamic therapy, thanks to their ability to photorelease nitric oxide (NO). This thesis encompasses computational studies on reactivity, electronic structure, excited states and photodynamics of several ruthenium nitrosyl and polypyridyl complexes. The first part of the thesis deals with ruthenium nitrosyls. The cis-trans isomerisation mechanism of RuHIndNO, a ruthenium nitrosyl derivate of the prominent anti-cancer drug candidate KP1019, is investigated with density functional theory calculations. Next, the electronic structure of the ground and the first excited triplet state of RuHIndNO is studied with multiconfigurational methods including the density-matrix renormalisation group (DMRG). The obtained multiconfigurational wavefunctions and DMRG-based orbital entanglement analysis provides theoretical insight into the non-innocence of the NO ligand in nitrosyl complexes by describing the electron correlation in the Ru--NO bond and assigning oxidation states to the metal and the NO ligand. Another study is performed on excited states of ruthenium nitrosyl complexes with quantum chemical calculations and surface-hopping dynamics to obtain insights into the photodissociation mechanism of NO. The second part of this thesis is devoted to the excited states and photophysics of ruthenium polypyridyl complexes. Accurate excitation energies of tris(2,2-bipyridine)ruthenium (II), the prototype ruthenium polypyridyl are obtained with multiconfigurational calculations assisted by an orbital entanglement analysis. Subsequently, the effect of the ligand substitution on the photophysics

  14. On the origin of the gauche effect. A quantum chemical study of 1,2-difluoroethane

    Science.gov (United States)

    Engkvist, O.; Karlström, G.; Widmark, P.-O.

    1997-01-01

    The conformational equilibrium of 1,2-difluoroethane has been investigated using ab initio quantum chemical calculations at the SCF, MP2 and CCSD(T) levels, with ANO basis sets. The relative stability of the gauche-conformation of 1,2-difluoroethane is found to be a consequence of the nodal structure of the singly occupied orbital in the CFH 2 radical. It is also shown that the nodal structure of the singly occupied orbitals in the CFH biradical can explain the stability of the cis conformation of 1,2-difluoroethene.

  15. Photocatalytic oxidation dynamics of acetone on TiO2: tight-binding quantum chemical molecular dynamics study

    International Nuclear Information System (INIS)

    Lv Chen; Wang Xiaojing; Agalya, Govindasamy; Koyama, Michihisa; Kubo, Momoji; Miyamoto, Akira

    2005-01-01

    The clarification of the excited states dynamics on TiO 2 surface is important subject for the design of the highly active photocatalysts. In the present study, we applied our novel tight-binding quantum chemical molecular dynamics method to the investigation on the photocatalytic oxidation dynamics of acetone by photogenerated OH radicals on the hydrated anatase TiO 2 surface. The elucidated photocatalytic reaction mechanism strongly supports the previous experimental proposal and finally the effectiveness of our new approach for the clarification of the photocatalytic reaction dynamics employing the large simulation model was confirmed

  16. Intra- und intermolecular hydrogen bonds. Spectroscopic, quantum chemical and molecular dynamics studies

    International Nuclear Information System (INIS)

    Simperler, A.

    1999-03-01

    Intra- and intermolecular H-bonds have been investigated with spectroscopic, quantum chemical, and molecular dynamics methods. The work is divided into the following three parts: 1. Intramolecular interactions in ortho-substituted phenols. Theoretical and experimental data that characterizes the intramolecular hydrogen bonds in 48 different o-substituted phenols are discussed. The study covers various kinds of O-H ... Y -type interactions (Y= N, O, S, F, Cl, Br, I, C=C, C=-C, and C-=N). The bond strength sequences for several series of systematically related compounds as obtained from IR spectroscopy data (i.e., v(OH) stretching frequencies) are discussed and reproduced with several theoretical methods (B3LYP/6-31G(d,p), B3LYP/6-311G(d,p), B3LYP/6-31++G(d,p), B3LYP/DZVP, MP2/6-31G(d,p), and MP2/6-31++G(d,p) levels of theory). The experimentally determined sequences are interpreted in terms of the intrinsic properties of the molecules: hydrogen bond distances, Mulliken partial charges, van der Waals radii, and electron densities of the Y-proton acceptors. 2. Competitive hydrogen bonds and conformational equilibria in 2,6-disubstituted phenols containing two different carbonyl substituents. The rotational isomers of ten unsymmetrical 2,6-disubstituted phenols as obtained by combinations of five different carbonyl substituents (COOH, COOCH 3 , CHO, COCH 3 , and CONH 2 ) have been theoretically investigated at the B3LYP/6-31G(d,p) level of theory. The relative stability of four to five conformers of each compound were determined by full geometry optimization for free molecules as well as for molecules in reaction fields with dielectric constants up to ε=37.5. A comparison with IR spectroscopic data of available compounds revealed excellent agreement with the theoretically predicted stability sequences and conformational equilibria. The stability of a conformer could be interpreted to be governed by the following two contributions: (i) an attractive hydrogen bond

  17. Conformational, structural, vibrational and quantum chemical analysis on 4-aminobenzohydrazide and 4-hydroxybenzohydrazide--a comparative study.

    Science.gov (United States)

    Arjunan, V; Jayaprakash, A; Carthigayan, K; Periandy, S; Mohan, S

    2013-05-01

    Experimental and theoretical quantum chemical studies were carried out on 4-hydroxybenzohydrazide (4HBH) and 4-aminobenzohydrazide (4ABH) using FTIR and FT-Raman spectral data. The structural characteristics and vibrational spectroscopic analysis were carried performed by quantum chemical methods with the hybrid exchange-correlation functional B3LYP using 6-31G(**), 6-311++G(**) and aug-cc-pVDZ basis sets. The most stable conformer of the title compounds have been determined from the analysis of potential energy surface. The stable molecular geometries, electronic and thermodynamic parameters, IR intensities, harmonic vibrational frequencies, depolarisation ratio and Raman intensities have been computed. Molecular electrostatic potential and frontier molecular orbitals were constructed to understand the electronic properties. The potential energy distributions (PEDs) were calculated to explain the mixing of fundamental modes. The theoretical geometrical parameters and the fundamental frequencies were compared with the experimental. The interactions of hydroxy and amino group substitutions on the characteristic vibrations of the ring and hydrazide group have been analysed. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Thiobenzamide: Structure of a free molecule as studied by gas electron diffraction and quantum chemical calculations

    Science.gov (United States)

    Kolesnikova, Inna N.; Putkov, Andrei E.; Rykov, Anatolii N.; Shishkov, Igor F.

    2018-06-01

    The equilibrium (re) molecular structure of thiobenzamide along with rh1 structure has been determined in gas phase using gas electron-diffraction (GED) at about 127 °C and quantum-chemical calculations (QC). Rovibrational distance corrections to the thermal averaged GED structure have been computed with anharmonic force constants obtained at the MP2/cc-pVTZ level of theory. According to the results of GED and QC thiobenzamide exists as mixture of two non-planar enantiomers of C1 symmetry. The selected equilibrium geometrical parameters of thiobenzamide (re, Å and ∠e, deg) are the following: (Cdbnd S) = 1.641(4), (Csbnd N) = 1.352(2), (Csbnd C) = 1.478(9), (Cdbnd C)av = 1.395(2), CCN = 114.7(5), CCS = 123.4(5), C2C1C7S = 31(4), C6C1C7N = 29(4). The structure of thiobenzamide in the gas phase is markedly different to that in the literature for the single crystal. The differences between the gas and the solid structures are ascribed to the presence of intermolecular hydrogen bonding in the solid phase.

  19. Structure activity studies of an analgesic drug tapentadol hydrochloride by spectroscopic and quantum chemical methods

    Science.gov (United States)

    Arjunan, V.; Santhanam, R.; Marchewka, M. K.; Mohan, S.; Yang, Haifeng

    2015-11-01

    Tapentadol is a novel opioid pain reliever drug with a dual mechanism of action, having potency between morphine and tramadol. Quantum chemical calculations have been carried out for tapentadol hydrochloride (TAP.Cl) to determine the properties. The geometry is optimised and the structural properties of the compound were determined from the optimised geometry by B3LYP method using 6-311++G(d,p), 6-31G(d,p) and cc-pVDZ basis sets. FT-IR and FT-Raman spectra are recorded in the solid phase in the region of 4000-400 and 4000-100 cm-1, respectively. Frontier molecular orbital energies, LUMO-HOMO energy gap, ionisation potential, electron affinity, electronegativity, hardness and chemical potential are also calculated. The stability of the molecule arising from hyperconjugative interactions and charge delocalisation has been analysed using NBO analysis. The 1H and 13C nuclear magnetic resonance chemical shifts of the molecule are analysed.

  20. From pirazoloquinolines to annulated azulene dyes: UV-VIS spectroscopy and quantum chemical study

    International Nuclear Information System (INIS)

    Gasiorski, P.; Danel, K.S.; Matusiewicz, M.; Uchacz, T.; Kityk, A.V.

    2010-01-01

    Paper reports UV-Vis absorption and photoluminescence spectra of 6-R derivatives (R=CH 3 , O-CH 3 , C(C 6 H 5 ) 3 , C 6 H 5 -N-C 10 H 7 ) of 4-(2-chlorophenyl)-1,3-diphenyl-1H-pyrazolo[3,4-b]quinoline, belonging to pyrazoloquinoline (PQ) family, likewise its regioisomeric products 10-R derivatives of 6-phenyl-6H-5,6,7-triazadibenzo[f,h]naphtho[3,2,1-cd]azulene representing cyclized seven-membered annulated azulene (AA) dyes. Cyclization of PQs into AAs is accompanied by a significant red shift of the first optical absorption band. This finding agrees with the results of quantum-chemical calculations performed by means of the semiempirical method PM3. As the solvent polarity rises all the dyes exhibit a blue shift of the first absorption band and a red shift of the fluorescence band. Such opposite trends in solvatochromic behavior have been reproduced within the semiempirical calculations in combination with the Lippert-Mataga dielectric polarization model. Depending on solvent polarity AA dyes emit light in the green, green-yellow or orange range of the visible spectrum what may be of interest for potential luminescent or electroluminescent applications.

  1. Radical cations in radiation chemistry of aldehydes. ESR study and quantum chemical analysis

    International Nuclear Information System (INIS)

    Belevskii, V.N.; Tyurin, D.A.; Chuvilkin, N.D.

    1998-01-01

    Quantum-chemical (MNDO-UHF) calculations of electronic, spin and energy characteristics of radical cations (RC) of ethanal, propanal, butanal, and pentanal and their distonic isomers were performed. The calculations both with 'frozen' (vertical ionization) and completely optimize geometry (adiabatic approximation) were made. It was been shown that the most positive charge and spin population are localized at O atoms and adjacent C atom as well as at aldehyde protons. The C-H bonds corresponding to those protons as well as neighboring C-O and C-C bonds are considerable weaker (longer) in radical cations as compared to their neutral precursors. That is why such reaction centers are apt to deprotonation with the formation of acyl radical as well as to α- and β-splitting (scission) which are well-known from aldehydes mass-spectra. Our calculations shown that distonic RC (products of intramolecular H-atom transfer) are more stable as compare to their classical isomers: e.g. the difference in energy ΔE = -0.95 eV, -1.2 eV, and -1.5 eV for tree distonic isomers of butanal RC as compare to classical isomer, ΔE -1.2 eV for distonic RC of ethanal. The results of calculations are effectively correlated with ESR data obtained in freonic solutions, X- and gamma-irradiated at 77 K and in liquid aldehydes, X-irradiated by using 2,4,6-tri-tert-burylnitrosobenzene (BNB) and t-BuNO (NtB) as a spin traps. (author)

  2. Comparison of sugar molecule decomposition through glucose and fructose: a high-level quantum chemical study.

    Energy Technology Data Exchange (ETDEWEB)

    Assary, R. S.; Curtiss, L. A. (Center for Nanoscale Materials); ( MSD); (Northwestern Univ.)

    2012-02-01

    Efficient chemical conversion of biomass is essential to produce sustainable energy and industrial chemicals. Industrial level conversion of glucose to useful chemicals, such as furfural, hydroxymethylfurfural, and levulinic acid, is a major step in the biomass conversion but is difficult because of the formation of undesired products and side reactions. To understand the molecular level reaction mechanisms involved in the decomposition of glucose and fructose, we have carried out high-level quantum chemical calculations [Gaussian-4 (G4) theory]. Selective 1,2-dehydration, keto-enol tautomerization, isomerization, retro-aldol condensation, and hydride shifts of glucose and fructose molecules were investigated. Detailed kinetic and thermodynamic analyses indicate that, for acyclic glucose and fructose molecules, the dehydration and isomerization require larger activation barriers compared to the retro-aldol reaction at 298 K in neutral medium. The retro-aldol reaction results in the formation of C2 and C4 species from glucose and C3 species from fructose. The formation of the most stable C3 species, dihydroxyacetone from fructose, is thermodynamically downhill. The 1,3-hydride shift leads to the cleavage of the C-C bond in the acyclic species; however, the enthalpy of activation is significantly higher (50-55 kcal/mol) than that of the retro-aldol reaction (38 kcal/mol) mainly because of the sterically hindered distorted four-membered transition state compared to the hexa-membered transition state in the retro-aldol reaction. Both tautomerization and dehydration are catalyzed by a water molecule in aqueous medium; however, water has little effect on the retro-aldol reaction. Isomerization of glucose to fructose and glyceraldehyde to dihydroxyacetone proceeds through hydride shifts that require an activation enthalpy of about 40 kcal/mol at 298 K in water medium. This investigation maps out accurate energetics of the decomposition of glucose and fructose molecules

  3. Syntheses, structural elucidation, thermal properties, theoretical quantum chemical studies (DFT and biological studies of barbituric–hydrazone complexes

    Directory of Open Access Journals (Sweden)

    Amina A. Soayed

    2015-03-01

    Full Text Available Condensation of barbituric acid with hydrazine hydrate yielded barbiturichydrazone (L which was characterized using IR, 1H NMR and mass spectra. The Co(II, Ni(II and Cu(II complexes derived from this ligand have been synthesized and structurally characterized by elemental analyses, spectroscopic methods (IR, UV–Vis and ESR and thermal analyses (TGA, DTG and DTA and the structures were further elucidated using quantum chemical density functional theory. Complexes of L were found to have the ML.nH2O stoichiometry with either tetrahedral or octahedral geometry. The ESR data showed the Cu(II complex to be in a tetragonal geometry. Theoretical investigation of the electronic structure of metal complexes at the TD-DFT/B3LYP level of theory has been carried out and discussed. The fundamental vibrational wavenumbers were calculated and a good agreement between observed and scaled calculated wavenumbers was achieved. Thermal studies were performed to deduce the stabilities of the ligand and complexes. Thermodynamic parameters, such as the order of reactions (n, activation energy ΔE∗, enthalpy of reaction ΔH∗ and entropy ΔS∗ were calculated from DTA curves using Horowitz–Metzger method. The ligand L and its complexes have been screened for their antifungal and antibacterial activities and were found to possess better biological activities compared to those of unsubstituted barbituric acid complexes.

  4. Vibrational studies of Thyroxine hormone: Comparative study with quantum chemical calculations

    Science.gov (United States)

    Borah, Mukunda Madhab; Devi, Th. Gomti

    2017-11-01

    The FTIR and Raman techniques have been used to record spectra of Thyroxine. The stable geometrical parameters and vibrational wave numbers were calculated based on potential energy distribution (PED) using vibrational energy distribution analysis (VEDA) program. The vibrational energies are assigned to monomer, chain dimer and cyclic dimers of this molecule using the basis set B3LYP/LANL2DZ. The computational scaled frequencies are in good agreements with the experimental results. The study is extended to calculate the HOMO-LUMO energy gap, Molecular Electrostatic Potential (MEP) surface, hardness (η), chemical potential (μ), Global electrophilicity index (ω) and different thermo dynamical properties of Thyroxine in different states. The calculated HOMO-LUMO energies show the charge transfer occurs within the molecule. The calculated Natural bond orbital (NBO) analysis confirms the presence of intra-molecular charge transfer as well as the hydrogen bonding interaction.

  5. Electrochemical and quantum chemical studies of some indole derivatives as corrosion inhibitors for C38 steel in molar hydrochloric acid

    International Nuclear Information System (INIS)

    Lebrini, M.; Robert, F.; Vezin, H.; Roos, C.

    2010-01-01

    A comparative study of 9H-pyrido[3,4-b]indole (norharmane) and 1-methyl-9H-pyrido[3,4-b]indole (harmane) as inhibitors for C38 steel corrosion in 1 M HCl solution at 25 o C was carried out. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques were applied to study the metal corrosion behavior in the absence and presence of different concentrations of these inhibitors. The OCP as a function of time were also established. Cathodic and anodic polarization curves show that norharmane and harmane are a mixed-type inhibitors. Adsorption of indole derivatives on the C38 steel surface, in 1 M HCl solution, follows the Langmuir adsorption isotherm model. The ΔG ads o values were calculated and discussed. The potential of zero charge (PZC) of the C38 steel in inhibited solution was studied by the EIS method, and a mechanism for the adsorption process was proposed. Raman spectroscopy confirmed that indole molecules strongly adsorbed onto the steel surface. The electronic properties of indole derivates, obtained using the AM1 semi-empirical quantum chemical approach, were correlated with their experimental efficiencies using the linear resistance model (LR).

  6. Quantum chemical study of the structure, spectroscopy and reactivity of NO+.(H2O) n=1-5 clusters.

    Science.gov (United States)

    Linton, Kirsty A; Wright, Timothy G; Besley, Nicholas A

    2018-03-13

    Quantum chemical methods including Møller-Plesset perturbation (MP2) theory and density functional theory (DFT) have been used to study the structure, spectroscopy and reactivity of NO + (H 2 O) n =1-5 clusters. MP2/6-311++G** calculations are shown to describe the structure and spectroscopy of the clusters well. DFT calculations with exchange-correlation functionals with a low fraction of Hartree-Fock exchange give a binding energy of NO + (H 2 O) that is too high and incorrectly predict the lowest energy structure of NO + (H 2 O) 2 , and this error may be associated with a delocalization of charge onto the water molecule directly binding to NO + Ab initio molecular dynamics (AIMD) simulations were performed to study the NO + (H 2 O) 5 [Formula: see text] H + (H 2 O) 4 + HONO reaction to investigate the formation of HONO from NO + (H 2 O) 5 Whether an intracluster reaction to form HONO is observed depends on the level of electronic structure theory used. Of note is that methods that accurately describe the relative energies of the product and reactant clusters did not show reactions on the timescales studied. This suggests that in the upper atmosphere the reaction may occur owing to the energy present in the NO + (H 2 O) 5 complex following its formation.This article is part of the theme issue 'Modern theoretical chemistry'. © 2018 The Author(s).

  7. Estimation of strength in different extra Watson-Crick hydrogen bonds in DNA double helices through quantum chemical studies.

    Science.gov (United States)

    Bandyopadhyay, D; Bhattacharyya, D

    2006-10-15

    It was shown earlier, from database analysis, model building studies, and molecular dynamics simulations that formation of cross-strand bifurcated or Extra Watson-Crick hydrogen (EWC) bonds between successive base pairs may lead to extra rigidity to DNA double helices of certain sequences. The strengths of these hydrogen bonds are debatable, however, as they do not have standard linear geometry criterion. We have therefore carried out detailed ab initio quantum chemical studies using RHF/6-31G(2d,2p) and B3LYP/6-31G(2p,2d) basis sets to determine strengths of several bent hydrogen bonds with different donor and acceptors. Interaction energy calculations, corrected for the basis set superposition errors, suggest that N-H...O type bent EWC hydrogen bonds are possible along same strands or across the strands between successive base pairs, leading to significant stability (ca. 4-9 kcal/mol). The N-H...N and C-H...O type interactions, however, are not so stabilizing. Hence, consideration of EWC N-H...O H-bonds can lead to a better understanding of DNA sequence directed structural features. Copyright (c) 2006 Wiley Periodicals, Inc.

  8. Quantum chemical density functional theory studies on the molecular structure and vibrational spectra of Gallic acid imprinted polymers

    Science.gov (United States)

    Pardeshi, Sushma; Dhodapkar, Rita; Kumar, Anupama

    2013-12-01

    Gallic acid (GA) is known by its antioxidant, anticarcinogenic properties and scavenger activity against several types of harmful free radicals. Molecularly imprinted polymers (MIPs) are used in separation of a pure compound from complex matrices. A stable template-monomer complex generates the MIPs with the highest affinity and selectivity for the template. The quantum chemical computations based on density functional theory (DFT) was used on the template Gallic acid (GA), monomer acrylic acid (AA) and GA-AA complex to study the nature of interactions involved in the GA-AA complex. B3LYP/6-31+G(2d,2p) model chemistry was used to optimize their structures and frequency calculations. The effect of porogen acetonitrile (ACN) on complex formation was included by using polarizable continuum model (PCM). The results demonstrated the formation of a stable GA-AA complex through the intermolecular hydrogen bonding between carboxylic acid groups of GA and AA. The Mulliken atomic charge analysis and simulated vibrational spectra also supported the stable hydrogen bonding interaction between the carboxylic acid groups of GA and AA with minimal interference of porogen ACN. Further, simulations on GA-AA mole ratio revealed that 1:4 GA-AA was optimum for synthesis of MIP for GA.

  9. Conformational analysis, spectroscopic, structure-activity relations and quantum chemical simulation studies of 4-(trifluoromethyl)benzylamine

    Science.gov (United States)

    Arjunan, V.; Devi, L.; Mohan, S.

    2018-05-01

    The FT-IR and FT-Raman spectra of 4-trifluoromethylbenzylamine (TFMBA) have been recorded in the range 4000-450 and 4000-100 cm-1 respectively. The conformational analysis of the compound has been carried out to attain stable geometry of the compound. The complete vibrational assignment and analysis of the fundamental modes of the compound are carried out using the experimental FTIR and FT-Raman data and quantum chemical studies. The experimental vibrational frequencies are compared with the wavenumbers obtained theoretically from the B3LYP gradient calculations employing the standard high level 6-311++G** and cc-pVTZ basis sets for the optimised geometry of the compound. The structural parameters, thermodynamic properties and vibrational frequencies of the normal modes obtained from the B3LYP methods are in good agreement with the experimental data. The 1H (400 MHz; CDCl3) and 13C (100 MHz; CDCl3) nuclear magnetic resonance (NMR) spectra were also recorded. The electronic properties, highest occupied molecular orbital and lowest unoccupied molecular orbital energies are measured by DFT approach. The charges of the atoms by natural bond orbital (NBO) analysis are determined by B3LYP/cc-pVTZ method. The structure-chemical reactivity relations of the compound are determined through chemical potential, global hardness, global softness, electronegativity, electrophilicity and local reactivity descriptors by conceptual DFT methods.

  10. Influence of N-Oxide Introduction on the Stability of Nitrogen-Rich Heteroaromatic Rings: A Quantum Chemical Study.

    Science.gov (United States)

    Yuan, Jia; Long, Xinping; Zhang, Chaoyang

    2016-12-01

    N-Oxidization is an important strategy for enhancing the density and energy of energetic materials. Nevertheless, the influence of N + -O - introduction on molecular stability remains relatively unknown. Thus, the present work comprehensively studied 102 basic N-rich ring structures, including azoles, furazans, and azines, as well as their N-oxides by quantum chemical calculations. The introduction of N + -O - weakens molecular stability in most cases because the process elongates chemical bonds, decreases ring aromaticity, narrows the gaps between the highest occupied and lowest unoccupied molecular orbitals, and increases the photochemical reactivity. Besides, the easy H transfer to the neighboring O atom, which forms a N-OH isomer in azoles, renders the stabilization by N-oxide introduction ineffective. However, N-oxide introduction can enhance the molecular stability of 1,2,3,4-tetrazine-1,3-dioxide and tetrazino-tetrazine 1,3,6,8-tetraoxide by promoting σ-π separation and relieving lone-pair repulsion. Moreover, the alternate arrangement of positive and negative charges is another factor stabilizing the 1,2,3,4-tetrazine ring by 1,3-dioxidation. Finally, we assess the accessibility of N-oxidized azoles and azines by regarding N 2 O and H 2 O 2 as oxidizers. We find that all the oxidations were exothermic, thermodynamically spontaneous, and kinetically feasible. After an overall evaluation, we propose 19 N-oxides as basic structures for high-energy materials with considerable stability.

  11. Quantum-chemical calculations and electron diffraction study of the equilibrium molecular structure of vitamin K3

    Science.gov (United States)

    Khaikin, L. S.; Tikhonov, D. S.; Grikina, O. E.; Rykov, A. N.; Stepanov, N. F.

    2014-05-01

    The equilibrium molecular structure of 2-methyl-1,4-naphthoquinone (vitamin K3) having C s symmetry is experimentally characterized for the first time by means of gas-phase electron diffraction using quantum-chemical calculations and data on the vibrational spectra of related compounds.

  12. The inhibition effect of Azure A on mild steel in 1 M HCl. A complete study: Adsorption, temperature, duration and quantum chemical aspects

    International Nuclear Information System (INIS)

    Özkır, Demet; Kayakırılmaz, Kadriye; Bayol, Emel; Gürten, A. Ali; Kandemirli, Fatma

    2012-01-01

    Highlights: ► Azure A molecule is found to be a good inhibitor for mild steel in HCl solution. ► SEM results clearly indicate that a protective film formation occurred on the mild steel surface. ► The long term corrosion tests are cleared that the Azure A has effectively protected the mild steel in HCl solution. ► The quantum chemical measurements were cleared the reactive sites and charges of atoms in the molecule. - Abstract: In this study, inhibition effect of Azure A on mild steel in 1.0 M HCl were evaluated by using electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR), and potentiodynamic polarization and scanning electron microscope (SEM) methods. These studies were carried out at different concentrations, temperatures and durations. The inhibitor molecules were chemisorbed on electrode surface according to the Langmuir adsorption isotherm. The quantum chemical calculations were employed to give further insight into the inhibition mechanism of Azure A.

  13. A quantum chemical study of the N2H+ + e- → N2 + H reaction I: The linear dissociation path

    International Nuclear Information System (INIS)

    Talbi, D.

    2007-01-01

    A theoretical investigation of the dissociative recombination (DR) of linear N 2 H + (X 1 Σ g + ) to give N 2 + H has been undertaken because it is of interest for astrochemistry and also because it has been recently studied experimentally. Using state of the art quantum chemical methods, it is shown that the lowest 2 Σ repulsive state of N 2 H leading to the N 2 and H fragments in their ground electronic states does not cross the curve of the ion nor the one of the lowest N 2 H Rydberg state. This lowest 2 Σ repulsive state is very low in energy. Its curve passes below the 1 Σ N 2 H + state and below the lowest bound 2 Σ N 2 H states. However, it is also shown that there exist higher repulsive 2 Σ and 2 Δ states of N 2 H (the second and third repulsive states) crossing the ion curve. These states will lead to the formation of N 2 in its 3 Σ u + and 3 Δ u states. This study, the first of its type, shows that the DR of linear N 2 H + should involve the direct mechanism and that it should lead to N 2 in its first excited states. However this process may not be efficient for N 2 H + in its ground vibrational state (v = 0), a state in which it exists in the cold environment of the interstellar medium. For the DR to be efficient for N 2 H + in its ground v = 0 vibrational state, bent geometries of the ion might have to be considered

  14. Interaction of anthraquinone anti-cancer drugs with DNA:Experimental and computational quantum chemical study

    Science.gov (United States)

    Al-Otaibi, Jamelah S.; Teesdale Spittle, Paul; El Gogary, Tarek M.

    2017-01-01

    Anthraquinones form the basis of several anticancer drugs. Anthraquinones anticancer drugs carry out their cytotoxic activities through their interaction with DNA, and inhibition of topoisomerase II activity. Anthraquinones (AQ4 and AQ4H) were synthesized and studied along with 1,4-DAAQ by computational and experimental tools. The purpose of this study is to shade more light on mechanism of interaction between anthraquinone DNA affinic agents and different types of DNA. This study will lead to gain of information useful for drug design and development. Molecular structures were optimized using DFT B3LYP/6-31 + G(d). Depending on intramolecular hydrogen bonding interactions two conformers of AQ4 were detected and computed as 25.667 kcal/mol apart. Molecular reactivity of the anthraquinone compounds was explored using global and condensed descriptors (electrophilicity and Fukui functions). Molecular docking studies for the inhibition of CDK2 and DNA binding were carried out to explore the anti cancer potency of these drugs. NMR and UV-VIS electronic absorption spectra of anthraquinones/DNA were investigated at the physiological pH. The interaction of the three anthraquinones (AQ4, AQ4H and 1,4-DAAQ) were studied with three DNA (calf thymus DNA, (Poly[dA].Poly[dT]) and (Poly[dG].Poly[dC]). NMR study shows a qualitative pattern of drug/DNA interaction in terms of band shift and broadening. UV-VIS electronic absorption spectra were employed to measure the affinity constants of drug/DNA binding using Scatchard analysis.

  15. Experimental and quantum chemical studies on poriferasterol - A natural phytosterol isolated from Cassia sophera Linn. (Caesalpiniaceae)

    Science.gov (United States)

    Brahmachari, Goutam; Mondal, Avijit; Nayek, Nayana; Kumar, Abhishek; Srivastava, Ambrish Kumar; Misra, Neeraj

    2017-09-01

    Poriferasterol, a biologically relevant phytosterol, has been isolated and identified first-time from Cassia sophera Linn. (family: Caesalpiniaceae) based on detailed spectral studies. Exhaustive theoretical studies on the molecular structure, vibrational spectra, HOMO, LUMO, MESP surfaces and reactivity descriptor of this plant-derived natural molecule have been performed. The experimentally observed FT-IR spectrum of the title compound has been compared with spectral data obtained by DFT-B3LYP/6-311 + G (d,p) method. The UV-visible spectrum of the title compound has also been recorded and the electronic properties, such as frontier orbitals and band gap energy are measured by TD-DFT approach. The 1H and 13C NMR spectrum has been calculated by using the gauge independent atomic orbital method and compared with the observed data.

  16. Conformational, vibrational spectroscopic and quantum chemical studies on 5-methoxyindole-3-carboxaldehyde: A DFT approach

    Science.gov (United States)

    Jeyaseelan, S. Christopher; Hussain, Shamima; Premkumar, R.; Rekha, T. N.; Benial, A. Milton Franklin

    2018-04-01

    Indole and its derivatives are considered as good ligands for various disease causing proteins in human because of presence of the single nitrogen atom. In the present study, the potential energy surface scan was performed for the most stable molecular structure of the 5-Methoxyindole-3-carboxaldehyde (MICA) molecule. The most stable molecular structure was optimized by DFT/B3LYP method with 6-311G++ (d, p) basis set using Gaussian 09 program package. The vibrational frequencies were calculated and assigned on the basis of potential energy distribution calculations using VEDA 4.0 program. The Frontier molecular orbitals analysis was performed and related molecular propertieswere calculated. The possible electrophilic and nucleophilic reactive sites of the molecule were studied using molecular electrostatic potential analysis, which confirms the bioactivity of the molecule. The natural bond orbital analysis was also performed to confirm the bioactivity of the title molecule.

  17. Evidence for excited-state intramolecular proton transfer in 4-chlorosalicylic acid from combined experimental and computational studies: Quantum chemical treatment of the intramolecular hydrogen bonding interaction

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Bijan Kumar [Department of Chemistry, University of Calcutta, 92 Acharya Prafulla Chandra Road, Calcutta 700009 (India); Guchhait, Nikhil, E-mail: nikhil.guchhait@rediffmail.com [Department of Chemistry, University of Calcutta, 92 Acharya Prafulla Chandra Road, Calcutta 700009 (India)

    2012-07-25

    Highlights: Black-Right-Pointing-Pointer Experimental and computational studies on the photophysics of 4-chlorosalicylic acid. Black-Right-Pointing-Pointer Spectroscopically established ESIPT reaction substantiated by theoretical calculation. Black-Right-Pointing-Pointer Quantum chemical treatment of IMHB unveils strength, nature and directional nature. Black-Right-Pointing-Pointer Superiority of quantum chemical treatment of H-bond over geometric criteria. Black-Right-Pointing-Pointer Role of H-bond as a modulator of aromaticity. -- Abstract: The photophysical study of a pharmaceutically important chlorine substituted derivative of salicylic acid viz., 4-chlorosalicylic acid (4ClSA) has been carried out by steady-state absorption, emission and time-resolved emission spectroscopy. A large Stokes shifted emission band with negligible solvent polarity dependence marks the spectroscopic signature of excited-state intramolecular proton transfer (ESIPT) reaction in 4ClSA. Theoretical calculation by ab initio and Density Functional Theory methods yields results consistent with experimental findings. Theoretical potential energy surfaces predict the occurrence of proton transfer in S{sub 1}-state. Geometrical and energetic criteria, Atoms-In-Molecule topological parameters, Natural Bond Orbital population analysis have been exploited to evaluate the intramolecular hydrogen bond (IMHB) interaction and to explore its directional nature. The inter-correlation between aromaticity and resonance assisted H-bond is also discussed in this context. Our results unveil that the quantum chemical treatment is a more accurate tool to assess hydrogen bonding interaction in comparison to geometrical criteria.

  18. Spectral analysis and quantum chemical studies of chair and twist-boat conformers of cycloheximide in gas and solution phases

    Science.gov (United States)

    Tokatli, A.; Ucun, F.; Sütçü, K.; Osmanoğlu, Y. E.; Osmanoğlu, Ş.

    2018-02-01

    In this study the conformational behavior of cycloheximide in the gas and solution (CHCl3) phases has theoretically been investigated by spectroscopic and quantum chemical properties using density functional theory (wB97X-D) method with 6-31++G(d,p) basis set, for the first time. The calculated IR results reveal that in the ground state the molecule exits as a mixture of the chair and twist-boat conformers in the gas phase, while the calculated NMR results reveal that it only exits as the chair conformer in the solution phase. In order to obtain the contributions coming from intramolecular interactions to the stability of the conformers in the gas and solution phases, the quantum theory of atoms in molecules (QTAIM), noncovalent interactions (NCI) method, and natural bond orbital analysis (NBO) have been employed. The QTAIM and NCI methods indicated that by intramolecular interactions with bond critical point (BCP) the twist-boat conformer is more stabilized than the chair conformer, while by steric interactions it is more destabilized. Considering that these interactions balance each other, the stabilities of the conformers are understood to be dictated by the van der Waals interactions. The NBO analyses show that the hyperconjugative and steric effects play an important role in the stabilization in the gas and solution phases. Furthermore, to get a better understanding of the chemical behavior of this important antibiotic drug we have evaluated and, commented the global and local reactivity descriptors of the both conformers. Finally, the EPR analysis of γ-irradiated cycloheximide has been done. The comparison of the experimental and calculated data have showed the inducement of a radical structure of (CH2)2ĊCH2 in the molecule. The experimental EPR spectrum has also confirmed that the molecule simultaneously exists in the chair and twist-boat conformers in the solid phase.

  19. Resonance Raman and quantum chemical studies of short polyene radical cations

    DEFF Research Database (Denmark)

    Keszthelyi, T.; Wilbrandt, R.; Bally, T.

    1997-01-01

    ,3,5-hexatriene have been studied. The radical cations were generated radiolytically in a glassy Freon matrix and investigated by optical absorption and resonance Raman spectroscopy. Ab initio and density functional molecular-orbital calculations have been carried out to predict equilibrium structures...... and to assist assignment of the resonance Raman spectra. A new and improved scaled quantum mechanical force field for the butadiene radical cation was also determined. The presence of more than one rotamer was observed in all the polyene radical cations we investigated. (C) 1997 Elsevier Science B.V....

  20. Quantum chemical study of the mechanism of action of vitamin K epoxide reductase (VKOR)

    Science.gov (United States)

    Deerfield, David, II; Davis, Charles H.; Wymore, Troy; Stafford, Darrel W.; Pedersen, Lee G.

    Possible model, but simplistic, mechanisms for the action of vitamin K epoxide reductase (VKOR) are investigated with quantum mechanical methods (B3LYP/6-311G**). The geometries of proposed model intermediates in the mechanisms are energy optimized. Finally, the energetics of the proposed (pseudo-enzymatic) pathways are compared. We find that the several pathways are all energetically feasible. These results will be useful for designing quantum mechanical/molecular mechanical method (QM/MM) studies of the enzymatic pathway once three-dimensional structural data are determined and available for VKOR.

  1. The electro-optical and charge transport study of imidazolidin derivative: Quantum chemical investigations

    Directory of Open Access Journals (Sweden)

    Ahmad Irfan

    2016-11-01

    Full Text Available Imidazolidin derivatives gained significant attention in our daily life from better biological activity to the semiconducting materials. The present investigation deals with the in depth study of (Z-2-sulfanylidene-5-(thiophen-2-ylmethylideneimidazolidin-4-one (STMI with respect to their structural, electronic, optical and charge transport properties as semiconducting material. The ground and first excited state geometries were optimized by applying density functional theory (DFT and time dependent DFT, respectively. The light has been shed on the frontier molecular orbitals (FMOs and observed comprehensible intramolecular charge transfer (ICT from the highest occupied molecular orbitals (HOMOs to the lowest unoccupied molecular orbitals (LUMOs. The absorption, emission, ionization potentials (IP, electron affinities (EA, total and partial densities of states and structure-property relationship have been discussed. Finally, hole as well as electron reorganization energies, transfer integrals and intrinsic mobilities have been calculated then charge transport behavior of STMI was discussed, intensively.

  2. Quantum chemical study of TiO2/dopamine-DNA triads

    International Nuclear Information System (INIS)

    Vega-Arroyo, Manuel; LeBreton, Pierre R.; Zapol, Peter; Curtiss, Larry A.; Rajh, Tijana

    2007-01-01

    Photoinduced charge separation in triads of DNA covalently linked to an anatase nanoparticle via a dopamine bridge was studied by ab initio calculations of the oxidation potentials of carboxyl-DNA trimers and the TiO 2 /dopamine complex. Conjugation of dopamine to the TiO 2 surface results in a lower oxidation potential of the complex relative to the surface and in localization of photogenerated holes on dopamine, while photogenerated electrons are excited into the conduction band of TiO 2 . Linking dopamine to the DNA trimers at the 5' end of the oligonucleotide may lead to further hole migration to the DNA. Calculations show that for several different sequences hole migration is favorable in double stranded DNA and unfavorable in single-stranded DNA. This extended charge separation was shown to follow from the redox properties of DNA sequence rather than from the modification of DNA's electron donating properties by the dopamine linker, which explains experimental observations

  3. Quantum chemical studies on structural, vibrational, nonlinear optical properties and chemical reactivity of indigo carmine dye

    Science.gov (United States)

    El-Mansy, M. A. M.

    2017-08-01

    Structural and vibrational spectroscopic studies were performed on indigo carmine (IC) isomers using FT-IR spectral analysis along with DFT/B3LYP method utilizing Gaussian 09 software. GaussView 5 program has been employed to perform a detailed interpretation of vibrational spectra. Simulation of infrared spectra has led to an excellent overall agreement with the observed spectral patterns. Mulliken population analyses on atomic charges, MEP, HOMO-LUMO, NLO, first order hyperpolarizability and thermodynamic properties have been examined by (DFT/B3LYP) method with the SDD basis set level. Density of state spectra (DOS) were calculated using GaussSum 3 at the same level of theory. Molecular modeling approved that DOS Spectra are the most significant tools for differentiating between two IC isomers so far. Moreover, The IC isomers (cis-isomer) have shown an extended applicability for manufacturing both NLO and photovoltaic devices such as solar cells.

  4. XRD, vibrational spectra and quantum chemical studies of an anticancer drug: 6-Mercaptopurine.

    Science.gov (United States)

    Kumar, S Suresh; Athimoolam, S; Sridhar, B

    2015-07-05

    The single crystal of the hydrated anticancer drug, 6-Mercaptopurine (6-MP), has been grown by slow evaporation technique under room temperature. The structure was determined by single crystal X-ray diffraction. The vibrational spectral analysis was carried out using Laser Raman and FT-IR spectroscopy in the range of 3300-100 and 4000-400 cm(-1). The single crystal X-ray studies shows that the crystal packing is dominated by N-H⋯O and O-H⋯N classical hydrogen bonds leading to a hydrogen bonded ensemble. This classical hydrogen bonds were further connected through O-H⋯S hydrogen bond to form two primary ring R4(4)(16) and R4(4)(12) motifs. These two primary ring motifs are interlinked with each other to build a ladder like structure. These ladders are connected through N-H⋯N hydrogen bond along c-axis of the unit cell through chain C(5) motifs. Further, the strength of the hydrogen bonds is studied through vibrational spectral measurements. The shifting of bands due to the intermolecular interactions was also analyzed in the solid crystalline state. Geometrical optimizations of the drug molecule were done by Density Functional Theory (DFT) using the B3LYP function and Hartree-Fock (HF) level with 6-311++G(d,p) basis set. The optimized molecular geometry and computed vibrational spectra are compared with experimental results which show significant agreement. The natural bond orbital (NBO) analysis was carried out to interpret hyperconjugative interaction and intramolecular charge transfer (ICT). The chemical hardness, electro-negativity and chemical potential of the molecule are carried out by HOMO-LUMO plot. In which, the frontier orbitals has lower band gap value indicating the possible pharmaceutical activity of the molecule. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Tautomerism and isomerism in some antitrichinellosis active benzimidazoles: Morphological study in polarized light, quantum chemical computations

    Science.gov (United States)

    Anichina, Kameliya; Mavrova, Anelia; Yancheva, Denitsa; Tsenov, Jordan; Dimitrov, Rasho

    2017-12-01

    The morphology of the crystal structure of some antitrichinellosis active benzimidazole derivatives including (1H-benzimidazol-2-ylthio)acetic acids, [1,3]thiazolo[3,2-a]benzimidazol-3(2H)-ones, 1H-benzimidazol-2-ylthioacetylpiperazines and starting 2-mercapto benzimidazoles, was studied by the use of Polarized Light Microscopy (PLM). Characterization of the crystal phase was complimented by Differential scanning calorimetry analysis (DSC) and spectroscopic data. DFT computations were performed in order to investigate the prototropic tautomerism and the geometry of the molecule of the synthesized compounds. One distinct type of crystal structure for each one of 5 or 6-methyl-(1H-benzimidazol-2-ylthio)acetic acid 6 was observed by PLM - dendritic and needle-shaped formations. Compound 14, containing a methyl substituent in the benzimidazole ring crystallized also into two phases; while for the unsubstituted compound 13 a separation of phases does not take place. The influence of the both solvents - chloroform and ethanol on the phase separation and the formation of the crystalline structure of compound 14 was investigated. The morphological study showed that the cyclization of 6 in the presence of acetic anhydride in pyridine medium led to a mixture of 6-methyl-[1,3]tiazolo[3,2-a]benzimidazol-3(2H)-one (10a) and 7-methyl-[1,3]thiazolo[3,2-a]-benzimidazole-3(2H)-one (10b), which crystallized in the form of fibrils and spherulites respectively. It was found that a difference in the crystal structures of substituted and unsubstituted benzimidazol-2-thiones, respectively benzimidazol-2-thiol derivatives exists, which may be due not only to the thiol-thione tautomerism but to the prototropic properties of the hydrogen atom in first position of the ring. The calculation results indicated that the thione form is more stable than the thiol tautomer by 51-55 kJ mol-1. But at the same time ΔG for the two thiol tautomers is below 0.5 kJ mol-1. In solid phase the 5

  6. Quantum Chemical Study of Water Adsorption on the Surfaces of SrTiO3 Nanotubes.

    Science.gov (United States)

    Bandura, Andrei V; Kuruch, Dmitry D; Evarestov, Robert A

    2015-07-20

    We have studied the adsorption of water molecules on the inner and outer surfaces of nanotubes generated by rolling (001) layers of SrTiO3 cubic crystals. The stability and the atomic and electronic structures of the adsorbed layers are determined by using hybrid density functional theory. The absorption energy and the preferred adsorbate structure are essentially governed by the nature of the surface of the nanotube. Dissociative adsorption prevails on the outer nanotube surfaces. The stability of the adsorbed layers on the inner surfaces is related to the possibility of the formation of hydrogen bonds between water molecules and surface oxygen atoms, and depends on the surface curvature. The presence of water molecules on the inner surface of the nanotubes leads to an increase of the electronic band gap. Externally TiO2 -terminated nanotubes could be used for the photocatalytic decomposition of water by ultraviolet radiation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Quantum Chemical Study on the Antioxidation Mechanism of Piceatannol and Isorhapontigenin toward Hydroxyl and Hydroperoxyl Radicals.

    Directory of Open Access Journals (Sweden)

    Yang Lu

    Full Text Available A systematic study of the antioxidation mechanisms behind hydroxyl (•OH and hydroperoxyl (•OOH radical scavenging activity of piceatannol (PIC and isorhapontigenin (ISO was carried out using density functional theory (DFT method. Two reaction mechanisms, abstraction (ABS and radical adduct formation (RAF, were discussed. A total of 24 reaction pathways of scavenging •OH and •OOH with PIC and ISO were investigated in the gas phase and solution. The thermodynamic and kinetic properties of all pathways were calculated. Based on these results, we evaluated the antioxidant activity of every active site of PIC and ISO and compared the abilities of PIC and ISO to scavenge radicals. According to our results, PIC and ISO may act as effective •OH and •OOH scavengers in organism. A4-hydroxyl group is a very important active site for PIC and ISO to scavenge radicals. The introducing of -OH or -OCH3 group to the ortho-position of A4-hydroxyl group would increase its antioxidant activity. Meanwhile, the conformational effect was researched, the results suggest that the presence and pattern of intramolecular hydrogen bond (IHB are considerable in determining the antioxidant activity of PIC and ISO.

  8. Detailed solvent, structural, quantum chemical study and antimicrobial activity of isatin Schiff base

    Science.gov (United States)

    Brkić, Dominik R.; Božić, Aleksandra R.; Marinković, Aleksandar D.; Milčić, Miloš K.; Prlainović, Nevena Ž.; Assaleh, Fathi H.; Cvijetić, Ilija N.; Nikolić, Jasmina B.; Drmanić, Saša Ž.

    2018-05-01

    The ratios of E/Z isomers of sixteen synthesized 1,3-dihydro-3-(substituted phenylimino)-2H-indol-2-one were studied using experimental and theoretical methodology. Linear solvation energy relationships (LSER) rationalized solvent influence of the solvent-solute interactions on the UV-Vis absorption maxima shifts (νmax) of both geometrical isomers using the Kamlet-Taft equation. Linear free energy relationships (LFER) in the form of single substituent parameter equation (SSP) was used to analyze substituent effect on pKa, NMR chemical shifts and νmax values. Electron charge density was obtained by the use of Quantum Theory of Atoms in Molecules, i.e. Bader's analysis. The substituent and solvent effect on intramolecular charge transfer (ICT) were interpreted with the aid of time-dependent density functional (TD-DFT) method. Additionally, the results of TD-DFT calculations quantified the efficiency of ICT from the calculated charge-transfer distance (DCT) and amount of transferred charge (QCT). The antimicrobial activity was evaluated using broth microdilution method. 3D QSAR modeling was used to demonstrate the influence of substituents effect as well as molecule geometry on antimicrobial activity.

  9. Quantum chemical study on gas phase pyrolysis of p-isopropenylphenol.

    Science.gov (United States)

    Mohan Verma, Anand; Kawale, Harshal D; Agrawal, Kushagra; Kishore, Nanda

    2018-05-01

    In the pyrolysis of Sphagnum moss species, p-isopropenylphenol (p-IPP) is a major product which has been considered in this density functional theory based computational study for its conversion to various products such as benzene, phenol, 4-propenylphenol, indan-5-ol, 4-propylcyclohexanone, 4-cyclopropylphenol, etc. In order to achieve these products, eight different reaction schemes are performed using B3LYP/6-311 + g (d,p) level of theory. Further, thermodynamic properties such as reaction free energies and reaction enthalpies associated with these eight reaction schemes are developed in the temperature range of 298-898 K. The reaction schemes that include partial hydrogenation of the aromatic carbon followed by elimination of functional groups are found to demand low activation energy. The production of benzene from p-IPP with isopropenylbenzene as an intermediate product requiring only 19.83 kcal/mol of activation energy is the rate limiting reaction step. Indan-5-ol produced from p-IPP is validated with the literature results and found excellent agreement between two results. Furthermore, the temperature is found to have phenomenal effect in each reaction scheme. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Structural, vibrational, electronic investigations and quantum chemical studies of 2-amino-4-methoxybenzothiazole

    Science.gov (United States)

    Arjunan, V.; Raj, Arushma; Santhanam, R.; Marchewka, M. K.; Mohan, S.

    2013-02-01

    Extensive vibrational investigations of 2-amino-4-methoxybenzothiazole have been carried out with FTIR and FT-Raman spectral techniques. The electronic structure of the molecule has been analysed by UV-Visible and NMR spectroscopies. The DFT studies were carried out with B3LYP and HF methods utilising 6-31G(d,p), 6-311++G(d,p) and cc-pVDZ basis sets to determine the structural, thermodynamical, vibrational, electronic characteristics of the compound and also to understand the electronic and steric influence of the methoxy amino groups on the skeletal frequencies. The mixing of the fundamental modes was determined with the help of total energy distribution (TED). The energies of the frontier molecular orbitals have also been determined. The kinetic and thermodynamic stability and chemical hardness of the molecule have been determined. Complete NBO analysis was also carried out to find out the intramolecular electronic interactions and their stabilisation energy. 1H and 13C NMR chemical shifts and the electronic transitions of the molecule are also discussed.

  11. Structural, vibrational, electronic investigations and quantum chemical studies of 2-amino-4-methoxybenzothiazole.

    Science.gov (United States)

    Arjunan, V; Raj, Arushma; Santhanam, R; Marchewka, M K; Mohan, S

    2013-02-01

    Extensive vibrational investigations of 2-amino-4-methoxybenzothiazole have been carried out with FTIR and FT-Raman spectral techniques. The electronic structure of the molecule has been analysed by UV-Visible and NMR spectroscopies. The DFT studies were carried out with B3LYP and HF methods utilising 6-31G(d,p), 6-311++G(d,p) and cc-pVDZ basis sets to determine the structural, thermodynamical, vibrational, electronic characteristics of the compound and also to understand the electronic and steric influence of the methoxy amino groups on the skeletal frequencies. The mixing of the fundamental modes was determined with the help of total energy distribution (TED). The energies of the frontier molecular orbitals have also been determined. The kinetic and thermodynamic stability and chemical hardness of the molecule have been determined. Complete NBO analysis was also carried out to find out the intramolecular electronic interactions and their stabilisation energy. (1)H and (13)C NMR chemical shifts and the electronic transitions of the molecule are also discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Quantum chemical study of fluorinated AlN nano-cage

    Energy Technology Data Exchange (ETDEWEB)

    Beheshtian, Javad [Department of Chemistry, Shahid Rajaee Teacher Training University, P.O. Box 16875-163, Tehran (Iran, Islamic Republic of); Peyghan, Ali Ahmadi, E-mail: ahmadi.iau@gmail.com [Young Researchers Club, Islamic Azad University, Islamshahr Branch, Tehran (Iran, Islamic Republic of); Bagheri, Zargham [Physics group, Science Department, Islamic Azad University, Islamshahr Branch, P.O. Box 33135-369, Islamshahr, Tehran (Iran, Islamic Republic of)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Adsorption of 1, 2, 3, and 12 F atom(s) on the Al{sub 12}N{sub 12} cluster studied by DFT. Black-Right-Pointing-Pointer F atom strongly prefers to be adsorbed on Al site of the cluster rather than N one. Black-Right-Pointing-Pointer Average {Delta}G is about -93.2 to 98.0 kcal/mol at 298 K and 1 atm. Black-Right-Pointing-Pointer {Delta}H of reaction is slightly increased by increasing the number of F atoms. Black-Right-Pointing-Pointer The cluster it is transferred from intrinsic semiconductor to p-type one. - Abstract: Adsorption of 1, 2, 3, and 12 F atom(s) on the surface of Al{sub 12}N{sub 12} nanocluster has been investigated using density functional theory. It has been found that the F atom strongly prefers to be adsorbed on Al site of the cluster rather than N one with the average Gibbs free energy change of -93.2 to 98.0 kcal/mol at 298 K and 1 atm. Average enthalpy change of the reaction is slightly increased by increasing the number of F atoms. The F adsorption considerably influences electronic properties of the cluster so that it is transferred from intrinsic semiconductor to p-type one. HOMO/LUMO energy gap of the cluster is narrowed and the Fermi level is dramatically shifted from -4.50 eV in the bare cluster to lower energies upon the F adsorptions along with increased work function of the cluster. This results in raised potential barrier of the electron emission for the cluster and hence hindering its field emission. Moreover, it has been shown that the following reaction may occur spontaneously at room temperature and 1 atm: Al{sub 12}N{sub 12} + 6F{sub 2} {yields} Al{sub 12}N{sub 12}F{sub 12}.

  13. The electronic structure of VO in its ground and electronically excited states: A combined matrix isolation and quantum chemical (MRCI) study

    International Nuclear Information System (INIS)

    Hübner, Olaf; Hornung, Julius; Himmel, Hans-Jörg

    2015-01-01

    The electronic ground and excited states of the vanadium monoxide (VO) molecule were studied in detail. Electronic absorption spectra for the molecule isolated in Ne matrices complement the previous gas-phase spectra. A thorough quantum chemical (multi-reference configuration interaction) study essentially confirms the assignment and characterization of the electronic excitations observed for VO in the gas-phase and in Ne matrices and allows the clarification of open issues. It provides a complete overview over the electronically excited states up to about 3 eV of this archetypical compound

  14. Some Phthalocyanine and Naphthalocyanine Derivatives as Corrosion Inhibitors for Aluminium in Acidic Medium: Experimental, Quantum Chemical Calculations, QSAR Studies and Synergistic Effect of Iodide Ions

    Directory of Open Access Journals (Sweden)

    Masego Dibetsoe

    2015-08-01

    Full Text Available The effects of seven macrocyclic compounds comprising four phthalocyanines (Pcs namely 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine (Pc1, 2,3,9,10,16,17,23,24-octakis(octyloxy-29H,31H-phthalocyanine (Pc2, 2,9,16,23-tetra-tert-butyl-29H,31H-phthalocyanine (Pc3 and 29H,31H-phthalocyanine (Pc4, and three naphthalocyanines namely 5,9,14,18,23,27,32,36-octabutoxy-2,3-naphthalocyanine (nPc1, 2,11,20,29-tetra-tert-butyl-2,3-naphthalocyanine (nPc2 and 2,3-naphthalocyanine (nP3 were investigated on the corrosion of aluminium (Al in 1 M HCl using a gravimetric method, potentiodynamic polarization technique, quantum chemical calculations and quantitative structure activity relationship (QSAR. Synergistic effects of KI on the corrosion inhibition properties of the compounds were also investigated. All the studied compounds showed appreciable inhibition efficiencies, which decrease with increasing temperature from 30 °C to 70 °C. At each concentration of the inhibitor, addition of 0.1% KI increased the inhibition efficiency compared to the absence of KI indicating the occurrence of synergistic interactions between the studied molecules and I− ions. From the potentiodynamic polarization studies, the studied Pcs and nPcs are mixed type corrosion inhibitors both without and with addition of KI. The adsorption of the studied molecules on Al surface obeys the Langmuir adsorption isotherm, while the thermodynamic and kinetic parameters revealed that the adsorption of the studied compounds on Al surface is spontaneous and involves competitive physisorption and chemisorption mechanisms. The experimental results revealed the aggregated interactions between the inhibitor molecules and the results further indicated that the peripheral groups on the compounds affect these interactions. The calculated quantum chemical parameters and the QSAR results revealed the possibility of strong interactions between the studied inhibitors and metal surface. QSAR

  15. Accurate quantum chemical calculations

    Science.gov (United States)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1989-01-01

    An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.

  16. Hydration structure and dynamics of a hydroxide ion in water clusters of varying size and temperature: Quantum chemical and ab initio molecular dynamics studies

    International Nuclear Information System (INIS)

    Bankura, Arindam; Chandra, Amalendu

    2012-01-01

    Highlights: ► A theoretical study of hydroxide ion-water clusters is carried for varying cluster size and temperature. ► The structures of OH − (H 2 O) n are found out through quantum chemical calculations for n = 4, 8, 16 and 20. ► The finite temperature behavior of the clusters is studied through ab initio dynamical simulations. ► The spectral features of OH modes (deuterated) and their dependence on hydrogen bonding states of water are discussed. ► The mechanism and kinetics of proton transfer processes in these anionic clusters are also investigated. - Abstract: We have investigated the hydration structure and dynamics of OH − (H 2 O) n clusters (n = 4, 8, 16 and 20) by means of quantum chemical and ab initio molecular dynamics calculations. Quantum chemical calculations reveal that the solvation structure of the hydroxide ion transforms from three and four-coordinated surface states to five-coordinated interior state with increase in cluster size. Several other isomeric structures with energies not very different from the most stable isomer are also found. Ab initio simulations show that the most probable configurations at higher temperatures need not be the lowest energy isomeric structure. The rates of proton transfer in these clusters are found to be slower than that in bulk water. The vibrational spectral calculations reveal distinct features for free OH (deuterated) stretch modes of water in different hydrogen bonding states. Effects of temperature on the structural and dynamical properties are also investigated for the largest cluster considered here.

  17. Porphyrins as Corrosion Inhibitors for N80 Steel in 3.5% NaCl Solution: Electrochemical, Quantum Chemical, QSAR and Monte Carlo Simulations Studies

    Directory of Open Access Journals (Sweden)

    Ambrish Singh

    2015-08-01

    Full Text Available The inhibition of the corrosion of N80 steel in 3.5 wt. % NaCl solution saturated with CO2 by four porphyrins, namely 5,10,15,20-tetrakis(4-hydroxyphenyl-21H,23H-porphyrin (HPTB, 5,10,15,20-tetra(4-pyridyl-21H,23H-porphyrin (T4PP, 4,4′,4″,4‴-(porphyrin-5,10,15,20-tetrayltetrakis(benzoic acid (THP and 5,10,15,20-tetraphenyl-21H,23H-porphyrin (TPP was studied using electrochemical impedance spectroscopy (EIS, potentiodynamic polarization, scanning electrochemical microscopy (SECM and scanning electron microscopy (SEM techniques. The results showed that the inhibition efficiency, η% increases with increasing concentration of the inhibitors. The EIS results revealed that the N80 steel surface with adsorbed porphyrins exhibited non-ideal capacitive behaviour with reduced charge transfer activity. Potentiodynamic polarization measurements indicated that the studied porphyrins acted as mixed type inhibitors. The SECM results confirmed the adsorption of the porphyrins on N80 steel thereby forming a relatively insulated surface. The SEM also confirmed the formation of protective films of the porphyrins on N80 steel surface thereby protecting the surface from direct acid attack. Quantum chemical calculations, quantitative structure activity relationship (QSAR were also carried out on the studied porphyrins and the results showed that the corrosion inhibition performances of the porphyrins could be related to their EHOMO, ELUMO, ω, and μ values. Monte Carlo simulation studies showed that THP has the highest adsorption energy, while T4PP has the least adsorption energy in agreement with the values of σ from quantum chemical calculations.

  18. Synthesis, Characterization, Antimicrobial Studies and Corrosion Inhibition Potential of 1,8-dimethyl-1,3,6,8,10,13-hexaazacyclotetradecane: Experimental and Quantum Chemical Studies

    Directory of Open Access Journals (Sweden)

    Henry U. Nwankwo

    2016-02-01

    Full Text Available The macrocylic ligand, 1,8-dimethyl-1,3,6,8,10,13-hexaazacyclotetradecane (MHACD was synthesized by the demetallation of its freshly synthesized Ni(II complex (NiMHACD. Successful synthesis of NiMHACD and the free ligand (MHACD was confirmed by various characterization techniques, including Fourier transform infra-red (FT-IR, proton nuclear magnetic resonance (1H-NMR, carbon-13 nuclear magnetic resonance (13C-NMR, ultraviolet-visible (UV-vis, and energy dispersive x-ray (EDX spectroscopic techniques. The anti-bacteria activities of MHACD were investigated against Staphylococcus aureus and Enterococcus species and the results showed that MHACD possesses a spectrum of activity against the two bacteria. The electrochemical cyclic voltammetry study on MHACD revealed that it is a redox active compound with promising catalytic properties in electrochemical applications. The inhibition potential of MHACD for mild steel corrosion in 1 M HCl was investigated using potentiodynamic polarization method. The results showed that MHACD inhibits steel corrosion as a mixed-type inhibitor, and the inhibition efficiency increases with increasing concentration of MHACD. The adsorption of MHACD obeys the Langmuir adsorption isotherm; it is spontaneous and involves competitive physisorption and chemisorption mechanisms. Quantum chemical calculations revealed that the energy of the highest occupied molecular orbital (HOMO of MHACD is high enough to favor forward donation of charges to the metal during adsorption and corrosion inhibition. Natural bond orbital (NBO analysis revealed the presence of various orbitals in the MHACD that are capable of donating or accepting electrons under favorable conditions.

  19. Quantum chemical study of the structure, spectroscopy and reactivity of NO+.(H2O)n=1-5 clusters

    Science.gov (United States)

    Linton, Kirsty A.; Wright, Timothy G.; Besley, Nicholas A.

    2018-03-01

    Quantum chemical methods including Møller-Plesset perturbation (MP2) theory and density functional theory (DFT) have been used to study the structure, spectroscopy and reactivity of NO+.(H2O)n=1-5 clusters. MP2/6-311++G** calculations are shown to describe the structure and spectroscopy of the clusters well. DFT calculations with exchange-correlation functionals with a low fraction of Hartree-Fock exchange give a binding energy of NO+.(H2O) that is too high and incorrectly predict the lowest energy structure of NO+.(H2O)2, and this error may be associated with a delocalization of charge onto the water molecule directly binding to NO+. Ab initio molecular dynamics (AIMD) simulations were performed to study the NO+.(H2O)5 H+.(H2O)4 + HONO reaction to investigate the formation of HONO from NO+.(H2O)5. Whether an intracluster reaction to form HONO is observed depends on the level of electronic structure theory used. Of note is that methods that accurately describe the relative energies of the product and reactant clusters did not show reactions on the timescales studied. This suggests that in the upper atmosphere the reaction may occur owing to the energy present in the NO+.(H2O)5 complex following its formation. This article is part of the theme issue `Modern theoretical chemistry'.

  20. Comparison of reactivity on step and terrace sites of Pd (3 3 2) surface for the dissociative adsorption of hydrogen: A quantum chemical molecular dynamics study

    International Nuclear Information System (INIS)

    Ahmed, Farouq; Nagumo, Ryo; Miura, Ryuji; Ai, Suzuki; Tsuboi, Hideyuki; Hatakeyama, Nozomu; Endou, Akira; Takaba, Hiromitsu; Kubo, Momoji; Miyamoto, Akira

    2011-01-01

    The notion of 'active sites' is fundamental to heterogeneous catalysis. However, the exact nature of the active sites, and hence the mechanism by which they act, are still largely a matter of speculation. In this study, we have presented a systematic quantum chemical molecular dynamics (QCMD) calculations for the interaction of hydrogen on different step and terrace sites of the Pd (3 3 2) surface. Finally the dissociative adsorption of hydrogen on step and terrace as well as the influence of surface hydrogen vacancy for the dissociative adsorption of hydrogen has been investigated through QCMD. This is a state-of-the-art method for calculating the interaction of atoms and molecules with metal surfaces. It is found that fully hydrogen covered (saturated) step sites can dissociate hydrogen moderately and that a monovacancy surface is suitable for significant dissociative adsorption of hydrogen. However in terrace site of the surface we have found that dissociation of hydrogen takes place only on Pd sites where the metal atom is not bound to any pre-adsorbed hydrogen atoms. Furthermore, from the molecular dynamics and electronic structure calculations, we identify a number of consequences for the interpretation and modeling of diffusion experiments demonstrating the coverage and directional dependence of atomic hydrogen diffusion on stepped palladium surface.

  1. A quantum chemical study of the reactivity of acetaminophen (paracetamol) toxic metabolite N-acetyl-p-benzoquinone imine with deoxyguanosine and glutathione.

    Science.gov (United States)

    Klopčič, Ivana; Poberžnik, Matic; Mavri, Janez; Dolenc, Marija Sollner

    2015-12-05

    Acetaminophen (APAP) forms some reactive metabolites that can react with DNA. APAP is a potentially genotoxic drug and is classified as a Group 3 drug according to International Agency for Research on Cancer (IARC). One of the possible mechanisms of APAP genotoxicity after long term of use is that its reactive quinone imine (QI) metabolite of acetaminophen (NAPQI), can chemically react with DNA after glutathione (GSH) depletion. A quantum chemical study of the reactions between the NAPQI and deoxyguanosine (dG) or GSH was performed. Activation energies (ΔG(ǂ)) for the reactions associated with the 1, 4-Michael addition were calculated on the M062X/6-311++G (d,p) level of theory. We modeled the reaction with dG as a multi-step process. The first step is rate-limiting (ΔG(ǂ) = 26.7 kcal/mol) and consists of formation of a C-N bond between the C3 atom of the QI moiety and the N7 atom of dG. The second step involves proton transfer from the C3 moiety to the nitrogen atom of the QI with ΔG(ǂ) of 13.8 kcal/mol. The depurination reaction that follows has a ΔG(ǂ) of 25.7 kcal/mol. The calculated ΔG(ǂ) for the nucleophilic attack of the deprotonated S atom of GSH on the C3 atom of the NAPQI is 12.9 kcal/mol. Therefore, the QI will react with GSH much faster than with DNA. Our study gives mechanistic insight into the genotoxicity of the APAP metabolite and will be useful for estimating the genotoxic potential of existing drugs with a QI moiety. Our results show that clinical application of APAP is safe, while in the case of severely depleted GSH levels APAP should be administered with caution. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. The use of semiempirical quantum chemical methods in studying the properties of large series of biologically active molecules

    International Nuclear Information System (INIS)

    Koeseoglu, Y.

    2004-01-01

    In this work, the productivity (temporal characteristics) of the so-called Electron Topological Method (ETM) proposed for the structure-activity relationships (SAR) investigation is studied. The method is standing aside the methods proposed for quantitative SAR (QSAR) studies because of the essential difference in the languages chosen for the compound structures description. ETM uses Electron Topological Matrices of Contiguity (ETMC) that include the most comprehensive data on the electronic structure of compounds and their topology. The flexibility of real molecules is taken into account in terms of two parameters, Δ 1 and Δ 2 , that characterise the accuracy allowed for atomic properties (diagonal matrix elements) and for bonds (non-diagonal ones). The dependence of the feature realisation on different values of Δ 1 and Δ 2 is studied and its graphical representation is given

  3. The solvent effect on the enthalpy of hydrolysis of cyclic adenosine 3',5'-monophosphate : a quantum chemical study

    NARCIS (Netherlands)

    Scheffers - Sap, Miek; Buck, H.M.

    1978-01-01

    The solvent effect on the enthalpy of hydrolysis has been studied by the Extended-Hückel method for the hydrolysis reactions of cyclic adenosine 3',5'-monophosphate (cyclic 3',5'-AMP) and related cyclic phosphate diesters. The results show that the difference in enthalpy of hydrolysis between cyclic

  4. Crystal and molecular structures of 3-amino-4-hydroxy benzenesulfonamide and its hydrochloride: Quantum-chemical study of their tautomerism

    Energy Technology Data Exchange (ETDEWEB)

    Kovalchukova, O. V., E-mail: okovalchukova@mail.ru; Strashnova, S. B.; Romashkina, E. P.; Strashnov, P. V.; Zaitsev, B. E. [Peoples' Friendship University of Russia (Russian Federation); Sergienko, V. S. [Russian Academy of Sciences, Kurnakov Institute of General and Inorganic Chemistry (Russian Federation)

    2013-03-15

    3-amino-4-hydroxy benzenesulfonamide and its hydrochloride have been isolated in the crystalline state. Their crystal and molecular structures are determined by X-ray diffraction. The equilibrium between neutral tautomeric forms of the 3-amino-4-hydroxy benzenesulfonamide molecule is studied within the approximation of density functional theory (B3LYP/aug-cc-pVDZ). The constants of acid-base equilibrium of 3-amino-4-hydroxy benzenesulfonamide are deter-mined using spectrophotometry.

  5. Molecular structure, vibrational spectra and quantum chemical MP2/DFT studies toward the rational design of hydroxyurea imprinted polymer

    Science.gov (United States)

    Prasad, Bhim Bali; Rai, Garima

    2013-03-01

    In this study, both experimental and theoretical vibrational spectra of template (hydroxyurea, HU), monomer (N-(4,6-bisacryloyl amino-[1,3,5] triazine-2-yl-)-acryl amide, TAT), and HU-TAT complexes were compared and these were respectively found to be in good agreement. Binding energies of HU, when complexed with different monomers, were computed using second order Moller Plesset theory (MP2) at 6-311++G(d,p) level both in the gas as well as solution phases. HU is an antineoplastic agent extensively being used in the treatment of polycythaemia Vera and thrombocythemia. It is also used to reduce the frequency of painful attacks in sickle cell anemia. It has antiretroviral property in disease like AIDS. All spectral characterizations were made using Density Functional Theory (DFT) at B3LYP employing 6-31+g(2d, 2p) basis set. The theoretical values for 13C and 1H NMR chemical shifts were found to be in accordance with the corresponding experimental values. Of all different monomers studied for the synthesis of molecularly imprinted polymer (MIP) systems, the monomer TAT (2 mol) was typically found to have a best binding score requisite for complexation with HU (1 mol) at the ground state.

  6. Quantum Chemical Calculations and Molecular Docking Studies of Some NSAID Drugs (Aceclofenac, Salicylic Acid, and Piroxicam as 1PGE Inhibitors

    Directory of Open Access Journals (Sweden)

    S. Suresh

    2016-01-01

    Full Text Available The molecular structure of the three compounds Aceclofenac (I, Salicylic Acid (II, and Piroxicam (III has been determined using Gaussian 03W program with B3LYP method using 6-311++G (d,p basis set calculations. The molecular structures were fully optimized with atomic numbering scheme adopted in the study. To understand the mode of binding and molecular interaction, the docking studies of compounds Aceclofenac (I, Salicylic Acid (II, and Piroxicam (III have been carried out with prostaglandin H2 synthase-1 (1PGE as target using induced fit docking. The molecular docking results show that the interactions and energy for Aceclofenac, Salicylic Acid, and Piroxicam show the best results when docked with prostaglandin H2 synthase-1 (1PGE. The hydrogen bonding interactions of compound I (Aceclofenac are prominent with Arginine moiety, those of compound II (Salicylic Acid are prominent with Tyrosine and Serine moieties, and compound III (Piroxicam shows such interaction with Tyrosine and Arginine moieties. These interactions of prostaglandin H2 synthase-1 (1PGE with substrates are responsible for governing COX-1 inhibitor potency which in turn is a direct measure of the potency of the drug.

  7. MSINDO quantum chemical modeling study of water molecule adsorption at nano-sized anatase TiO2 surfaces

    International Nuclear Information System (INIS)

    Wahab, Hilal S.; Bredow, Thomas; Aliwi, Salah M.

    2008-01-01

    In this work, we studied the adsorption of water molecule onto the (1 0 0), (0 1 0) and (0 0 1) surfaces of nano-sized anatase TiO 2 with semiempirical SCF MO method, MSINDO. The anatase TiO 2 particles are modeled with free clusters (TiO 2 ) n, where n = 20-80. Whereas, the surfaces have been modeled with two saturated clusters, Ti 21 O 58 H 32 and Ti 36 O 90 H 36 . The surface lattice fivefold coordinated titanium atoms (Ti 5C ), which represent the Lewis acid sites, are selected as adsorption centers. We also investigated the effect of TiO 2 cluster size on the computed band gap energy. Results reveal that the electronic properties of a cluster in the lowest excited state differ from that of the ground state. Furthermore, the MSINDO band gap energies of 3.68-3.77 eV for the anatase TiO 2 are in a fair accordance with other literature data. In agreement with other computational and experimental studies, the dissociated form of water molecule adsorption on anatase TiO 2 surfaces is always more stabilized than the molecular form

  8. Efficient Hydrogenolysis of Alkanes at Low Temperature and Pressure Using Tantalum Hydride on MCM-41, and a Quantum Chemical Study

    KAUST Repository

    Polshettiwar, Vivek

    2012-02-10

    Hydrogenolysis of hydrocarbons is of considerable technological importance for applications such as the hydroprocessing of petrochemical feedstocks to generate high-value and useful chemicals and fuels. We studied the catalytic activity of tantalum hydride supported on MCM-41 for the hydrogenolysis of alkanes at low temperature and low atmospheric pressure in a dynamic reactor. The reactions proceed with good turnover numbers, and the catalyst could be reused for several times, which makes the overall catalytic process sustainable. We derived the plausible mechanism by using DFT calculations and identified the preferred pathways by the analysis of potential energy surface. Our results and the proposed reaction mechanism demonstrate the viability of the "catalyst-by-design" approach. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Efficient Hydrogenolysis of Alkanes at Low Temperature and Pressure Using Tantalum Hydride on MCM-41, and a Quantum Chemical Study

    KAUST Repository

    Polshettiwar, Vivek; Pasha, Farhan Ahmad; De Mallmann, Aimery; Norsic, Sé bastien; Thivolle-Cazat, Jean; Basset, Jean-Marie

    2012-01-01

    Hydrogenolysis of hydrocarbons is of considerable technological importance for applications such as the hydroprocessing of petrochemical feedstocks to generate high-value and useful chemicals and fuels. We studied the catalytic activity of tantalum hydride supported on MCM-41 for the hydrogenolysis of alkanes at low temperature and low atmospheric pressure in a dynamic reactor. The reactions proceed with good turnover numbers, and the catalyst could be reused for several times, which makes the overall catalytic process sustainable. We derived the plausible mechanism by using DFT calculations and identified the preferred pathways by the analysis of potential energy surface. Our results and the proposed reaction mechanism demonstrate the viability of the "catalyst-by-design" approach. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Understanding Am3+/Cm3+ separation with H4TPAEN and its hydrophilic derivatives: a quantum chemical study.

    Science.gov (United States)

    Huang, Pin-Wen; Wang, Cong-Zhi; Wu, Qun-Yan; Lan, Jian-Hui; Song, Gang; Chai, Zhi-Fang; Shi, Wei-Qun

    2018-05-10

    Am3+/Cm3+ separation is an extremely hard but important task in nuclear waste treatment. In this study, Am and Cm complexes formed with a back-extraction agent N,N,N',N'-tetrakis[(6-carboxypyridin-2-yl)methyl]ethylene-diamine (H4TPAEN) and its two derivatives with hydrophilic substituents (methoxy and morpholine groups) were investigated using the density functional theory (DFT). The optimized geometrical structures indicated that the Am3+ cation matched better with the cavities of the three studied ligands than Cm3+, and the Am3+ cations were located deeper in the cavities of the ligands. The bond order and quantum theory of atoms in molecules (QTAIM) analyses suggested that ionic interactions dominated An-N and An-O (An = Cm and Am) bonds. However, weak and different extents of partial covalency could also be found in the Am-N and Cm-N bonds. The O donor atoms in the carboxylate groups preferably coordinated with Cm3+ rather than Am3+, whereas the N atoms preferred Am3+. Therefore, the Am3+/Cm3+ selectivity of H4TPAEN and its two hydrophilic derivatives may be ascribed to the competition between the An-N and An-O interactions and the few dissimilarities in their geometrical structures. Based on our calculations, the methoxy and morpholine groups in the two derivatives can serve as electron-donating groups and enhance the strength of the An-NPY bonds (NPY denotes the nitrogen atom of pyridine ring). When compared with the Am-complex, the Cm-complex exhibited significant strength effect, resulting in the relatively lower Am3+/Cm3+ separation ability of the H4TPAEN's hydrophilic derivatives.

  11. Quantum chemical studies on molecular structural conformations and hydrated forms of salicylamide and O-hydroxybenzoyl cyanide

    Science.gov (United States)

    Anandan, K.; Kolandaivel, P.; Kumaresan, R.

    Ab initio and density functional theory (DFT) methods have been employed to study the molecular structural conformations and hydrated forms of both salicylamide (SAM) and O-hydroxybenzoyl cyanide (OHBC). Molecular geometries and energetics have been obtained in the gaseous phase by employing the Møller-Plesset type 2 MP2/6-311G(2d,2p) and B3LYP/6-311G(2d,2p) levels of theory. The presence of an electron-releasing group (SAM) leads to an increase in the energy of the molecular system, while the presence of an electron-withdrawing group (OHBC) drastically decreases the energy. Chemical reactivity parameters (η and μ) have been calculated using the energy values of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) obtained at the Hartree-Fock (HF)/6-311G(2d,2p) level of theory for all the conformers and the principle of maximum hardness (MHP) has been tested. The condensed Fukui functions have been calculated using the atomic charges obtained through the natural bond orbital (NBO) analysis scheme for all the optimized structures at the B3LYP/6-311G(2d,2p) level of theory, and the most reactive sites of the molecules have been identified. Nuclear magnetic resonance (NMR) studies have been carried out at the B3LYP/6-311G(2d,2p) level of theory for all the conformers in the gaseous phase on the basis of the method of Cheeseman and coworkers. The calculated chemical shift values have been used to discuss the delocalization activity of the electron clouds. The dimeric structures of the most stable conformers of both SAM and OHBC in the gaseous phase have been optimized at the B3LYP/6-311G(2d,2p) level of theory, and the interaction energies have been calculated. The most stable conformers of both compounds bear an intramolecular hydrogen bond, which gives rise to the formation of a pseudo-aromatic ring. These conformers have been allowed to interact with the water molecule. Special emphasis has been given to analysis of the

  12. Quantum-chemical, NMR, FT IR, and ESI MS studies of complexes of colchicine with Zn(II).

    Science.gov (United States)

    Jankowski, Wojciech; Kurek, Joanna; Barczyński, Piotr; Hoffmann, Marcin

    2017-04-01

    Colchicine is a tropolone alkaloid from Colchicinum autumnale. It shows antifibrotic, antimitotic, and anti-inflammatory activities, and is used to treat gout and Mediterranean fever. In this work, complexes of colchicine with zinc(II) nitrate were synthesized and investigated using DFT, 1 H and 13 C NMR, FT IR, and ESI MS. The counterpoise-corrected and uncorrected interaction energies of these complexes were calculated. We also calculated their 1 H, 13 C NMR, and IR spectra and compared them with the corresponding experimentally obtained data. According to the ESI MS mass spectra, colchicine forms stable complexes with zinc(II) nitrate that have various stoichiometries: 2:1, 1:1:1, and 2:1:1 with respect to colchichine, Zn(II), and nitrate ion. All of the complexes were investigated using the quantum theory of atoms in molecules (QTAIM). The calculated and the measured spectra showed differences before and after the complexation process. Calculated electron densities and bond critical points indicated the presence of bonds between the ligands and the central cation in the investigated complexes that satisfied the quantum theory of atoms in molecules. Graphical Abstract DFT, NMR, FT IR, ESI MS, QTAIM and puckering studies of complexes of colchicine with Zn(II).

  13. Experimental and quantum chemical studies on two triazole derivatives as corrosion inhibitors for mild steel in acid media

    Energy Technology Data Exchange (ETDEWEB)

    Li, W.; Tian, H.; Hou, B. [Key Laboratory of Corrosion Science, Shandong, Institute of Oceanology, Chinese Academy of Sciences, Qingdao (China); Hu, L.; Tao, Z. [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing (China)

    2011-11-15

    Two triazole derivatives [1-phenyl-2-(5-(1,2,4) triazol-1-ylmethyl-(1,3,4) oxadizaol-2-ylsulphanyl)-ethanone (PTOE) and 2-(4-tert-butyl-benzylsulphanyl)-5-(1,2,4) triazol-1-ylmethyl-(1,3,4) oxadiazole (TBTO)] were synthesized as new corrosion inhibitors for the corrosion of mild steel in 1 M hydrochloric acid solutions. The inhibiting efficiency of the different inhibitors was evaluated by means of weight loss and electrochemical techniques such as electrochemical impedance spectroscopy (EIS) and polarization curves. The electrochemical investigation results indicate that these compounds act as mixed-type inhibitors retarding the anodic and cathodic corrosion reactions and do not change the mechanism of either hydrogen evolution reaction or mild steel dissolution. The studied compounds followed the Langmuir adsorption isotherm, and the thermodynamic parameters were determined and discussed. The effect of molecular structure on the inhibition efficiency has been investigated with ab initio calculations. The electronic properties such as highest occupied molecular orbital (HOMO) energy level, lowest unoccupied molecular orbital (LUMO) energy level, dipole moment ({mu}) and molecular orbital densities were calculated. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Carbon disulfide (CS{sub 2}) adsorption and dissociation on the Cu(100) surface: A quantum chemical study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenju, E-mail: wangwenju1982@163.com; Fan, Lili; Wang, Guoping, E-mail: wgp1976@163.com

    2017-08-31

    Highlights: • CS{sub 2}, CS, C and S are strongly chemadsorbed on the Cu(100) surface. • C/S/S, S/CS and CS{sub 2} accord to a decreased adsorption strength on the Cu(100). • The asymmetric model CS{sub 2}(II) is easier to dissociate on the Cu(100) surface. - Abstract: Density functional theory (DFT) is used to examine the adsorption and dissociation of CS{sub 2} on the Cu(100) surface. This study evaluates the adsorption energies and geometries of the species (CS{sub 2}, CS, C and S) adsorption on the Cu(100) surface, as well as that coadsorption of CS and a S atom, and that coadsorption of C atom and two S atoms. The results indicate that the species (CS{sub 2}, CS, C and S) are strongly chemadsorbed on the Cu(100) surface through the C−Cu and/or S−Cu bond with an increased adsorption energy (C/S/S > S/CS > CS{sub 2}). Two pathways for CS{sub 2} dissociation on the Cu(100) surface are constructed, and the energy barrier and reaction energy of each step are calculated. It shows that the dissociated energy barrier of the second C−S bond is 0.25 eV higher than that of the first C−S bond in the pathway 1, but in the pathway 2, the dissociated energy barrier of the second C−S bond is 0.11 eV lower than that of the first C−S bond. Comparing the highest dissociated energy barrier of pathway 1 (0.68 eV) and pathway 2 (0.5 eV), the structure of S/C/S(II) is regarded as a preferable product for the dissociation of CS{sub 2} on the Cu(100) surface.

  15. Quantum Chemical and Experimental Studies on the Mechanism of Alkylation of β-Dicarbonyl Compounds. The Synthesis of Five and Six Membered Heterocyclic Spiro Derivatives

    Directory of Open Access Journals (Sweden)

    Ali Hüseyinli

    2004-11-01

    Full Text Available The alkylation of β-dicarbonyl compounds in a K2CO3/DMSO system wasfound to afford O- and C-alkylated derivatives, depending on the type of the β-dicarbonylcompound involved. The alkyl derivatives obtained were used in the synthesis of some newspiro barbituric acid derivatives. Quantum chemical calculations were carried out toelucidate the reaction mechanisms for some typical synthesis.

  16. Quantum chemical calculations of using density functional theory ...

    Indian Academy of Sciences (India)

    K RACKESH JAWAHER

    2018-02-15

    Feb 15, 2018 ... Quantum chemical calculations have been employed to study the molecular effects produced by. Cr2O3/SnO2 optimised structure. ... are exploited in solar cells [2], high-capacity lithium– storage [3], solid-state chemical ..... bond distance of metal–oxygen is positively (0.5 Е) deviated to oxygen–oxygen ...

  17. Adsorption and Corrosion Inhibition Studies of Some Selected Dyes as Corrosion Inhibitors for Mild Steel in Acidic Medium: Gravimetric, Electrochemical, Quantum Chemical Studies and Synergistic Effect with Iodide Ions

    Directory of Open Access Journals (Sweden)

    Thabo Peme

    2015-09-01

    Full Text Available The corrosion inhibition properties of some organic dyes, namely Sunset Yellow (SS, Amaranth (AM, Allura Red (AR, Tartrazine (TZ and Fast Green (FG, for mild steel corrosion in 0.5 M HCl solution, were investigated using gravimetric, potentiodynamic polarization techniques and quantum chemical calculations. The results showed that the studied dyes are good corrosion inhibitors with enhanced inhibition efficiencies. The inhibition efficiency of all the studied dyes increases with increase in concentration, and decreases with increase in temperature. The results showed that the inhibition efficiency of the dyes increases in the presence of KI due to synergistic interactions of the dye molecules with iodide (I− ions. Potentiodynamic polarization results revealed that the studied dyes are mixed-type inhibitors both in the absence and presence of KI. The adsorption of the studied dyes on mild steel surface, with and without KI, obeys the Langmuir adsorption isotherm and involves physical adsorption mechanism. Quantum chemical calculations revealed that the most likely sites in the dye molecules for interactions with mild steel are the S, O, and N heteroatoms.

  18. Adsorption and Corrosion Inhibition Studies of Some Selected Dyes as Corrosion Inhibitors for Mild Steel in Acidic Medium: Gravimetric, Electrochemical, Quantum Chemical Studies and Synergistic Effect with Iodide Ions.

    Science.gov (United States)

    Peme, Thabo; Olasunkanmi, Lukman O; Bahadur, Indra; Adekunle, Abolanle S; Kabanda, Mwadham M; Ebenso, Eno E

    2015-09-02

    The corrosion inhibition properties of some organic dyes, namely Sunset Yellow (SS), Amaranth (AM), Allura Red (AR), Tartrazine (TZ) and Fast Green (FG), for mild steel corrosion in 0.5 M HCl solution, were investigated using gravimetric, potentiodynamic polarization techniques and quantum chemical calculations. The results showed that the studied dyes are good corrosion inhibitors with enhanced inhibition efficiencies. The inhibition efficiency of all the studied dyes increases with increase in concentration, and decreases with increase in temperature. The results showed that the inhibition efficiency of the dyes increases in the presence of KI due to synergistic interactions of the dye molecules with iodide (I(-)) ions. Potentiodynamic polarization results revealed that the studied dyes are mixed-type inhibitors both in the absence and presence of KI. The adsorption of the studied dyes on mild steel surface, with and without KI, obeys the Langmuir adsorption isotherm and involves physical adsorption mechanism. Quantum chemical calculations revealed that the most likely sites in the dye molecules for interactions with mild steel are the S, O, and N heteroatoms.

  19. molecular dynamics simulations and quantum chemical calculations

    African Journals Online (AJOL)

    ABSTRACT. The molecular dynamic (MD) simulation and quantum chemical calculations for the adsorption of [2-(2-Henicos-10- .... electronic properties of molecule clusters, surfaces and ... The local reactivity was analyzed by determining the.

  20. Ferrocene-based diradicals of imino nitroxide, nitronyl nitroxide and verdazyl, and their cations are possible SMM: A quantum chemical study

    Science.gov (United States)

    Pal, Arun K.; Datta, Sambhu N.

    2017-05-01

    Six diradicals designed from imino nitroxide, verdazyl and nitronyl nitroxide monoradicals coupled via the ferrocene moiety and six corresponding triradical cations are quantum chemically investigated. The transoid conformation is employed for considerations of general stability. All biradicals are found as very weakly and antiferromagnetically coupled. This agrees with experiment. The cations have strong antiferromagnetic spin-coupling. The charge and spin population distributions, spin alternation pattern, and the disjoint nature of SOMOs can be used to explain the nature and extent of magnetic interaction. Calculated EPR characteristics identify the neutral species as well as their cations as possible single molecule magnets.

  1. Quantum Chemical and FTIR Spectroscopic Studies on the Linkage Isomerism of Carbon Monoxide in Alkali-Metal-Exchanged Zeolites: A Review of Current Research

    OpenAIRE

    E. Garrone; A. A. Tsyganenko; G. Turnes Palomino; C. Otero Areán

    2002-01-01

    Abstract: When adsorbed (at a low temperature) on alkali-metal-exchanged zeolites, CO forms both M(CO)+ and M(OC)+ carbonyl species with the extra-framework alkali-metal cation of the zeolite. Both quantum chemical and experimental results show that C-bondend adducts are characterized by a C−O stretching IR band at a frequency higher than that of 2143 cm-1 for free CO, while for O-bonded adducts this IR band appears below 2143 cm-1. The cation-CO interaction energy is higher for M(CO)+ t...

  2. Microwave spectrum, structure, and quantum chemical studies of a compound of potential astrochemical and astrobiological interest: Z-3-amino-2-propenenitrile.

    Science.gov (United States)

    Askeland, Eva; Møllendal, Harald; Uggerud, Einar; Guillemin, Jean-Claude; Aviles Moreno, Juan-Ramon; Demaison, Jean; Huet, Thérèse R

    2006-11-23

    Z-3-Amino-2-propenenitrile, H2NCH=CHCN, a compound of astrochemical and astrobiological interest, has been studied by Stark and Fourier transform microwave spectroscopy along with eight of its isotopologues; the synthesis of five of these are reported. The spectra of the ground vibrational state and of three vibrationally excited states belonging to the two lowest normal modes were assigned for the parent species, whereas the ground states were assigned for the isotopologues. The frequency of the lowest in-plane bending fundamental vibration was determined to be 152(20) cm(-1) and the frequency of the lowest out-of-plane fundamental mode was found to be 176(20) cm(-1) by relative intensity measurements. A delicate problem is whether this compound is planar or slightly nonplanar. It was found that the rotational constants of the nine species cannot be used to conclude definitely whether the molecule is planar or not. The experimental dipole moment is mu(a) = 16.45(12), mu(b) = 2.86(6), mu(c) = 0 (assumed), and mu(tot.) = 16.70(12) x 10(-30) C m [5.01(4) D]. The quadrupole coupling constants of the two nitrogen nuclei are chi(aa) = -1.4917(21) and chi(cc) = 1.5644(24) MHz for the nitrogen atom of the cyano group and chi(aa) = 1.7262(18) and chi(cc) = -4.0591(17) MHz for the nitrogen atom of the amino group. Extensive quantum-chemical calculations have been performed, and the results obtained from these calculations have been compared with the experimental values. The equilibrium structures of vinylamine, vinyl cyanide, and Z-3-amino-2-propenenitrile have been calculated. These calculations have established that the equilibrium structure of the title compound is definitely nonplanar. However, the MP2/VQZ energy difference between the planar and nonplanar forms is small, only -423 J/mol. Z-Amino-2-propenenitrile and E-3-amino-2-propenenitrile are formed simply by mixing ammonia and cyanoacetylene at room temperature. A plausible reaction path has been modeled. G3

  3. Molecular dynamics and quantum chemical calculation studies on 4,4-dimethyl-3-thiosemicarbazide as corrosion inhibitor in 2.5 M H{sub 2}SO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Musa, Ahmed Y., E-mail: ahmed.musa@ymail.com [Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor (Malaysia); Kadhum, Abdul Amir H.; Mohamad, Abu Bakar; Takriff, Mohd Sobri [Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor (Malaysia)

    2011-09-15

    Highlights: {yields} This work deals with a study of chemical additives for corrosion inhibition of mild steel in acidic conditions. {yields} The effects of the additive 4,4-dimethyl-3-thiosemicarbazide (DTS) on mild steel were studied by means of electrochemical techniques. {yields} Quantum chemical calculations and molecular dynamic model were performed to characterize the inhibition mechanism. {yields} The calculations provided information that helps in the analysis/interpretation of the experimental work. - Abstract: The inhibition of mild steel corrosion in a 2.5 M H{sub 2}SO{sub 4} solution by 4,4-dimethyl-3-thiosemicarbazide (DTS) was studied at 30 deg. C using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Quantum chemical parameters were calculated for DTS using PM3-SCF method. The molecular dynamic method was performed to simulate the adsorption of the DTS molecules on Fe surface. Results showed that DTS performed excellent as inhibitor for mild steel corrosion in a 2.5 M H{sub 2}SO{sub 4} solution and indicated that the inhibition efficiencies increase with the concentration of inhibitor. Theoretical results indicated that DTS could adsorb on the mild steel surface firmly through heteroatoms.

  4. Recent Trends in Quantum Chemical Modeling of Enzymatic Reactions.

    Science.gov (United States)

    Himo, Fahmi

    2017-05-24

    The quantum chemical cluster approach is a powerful method for investigating enzymatic reactions. Over the past two decades, a large number of highly diverse systems have been studied and a great wealth of mechanistic insight has been developed using this technique. This Perspective reviews the current status of the methodology. The latest technical developments are highlighted, and challenges are discussed. Some recent applications are presented to illustrate the capabilities and progress of this approach, and likely future directions are outlined.

  5. Combined quantum chemical density functional theory and spectroscopic Raman and UV-vis-NIR study of oligothienoacenes with five and seven rings.

    Science.gov (United States)

    Osuna, Reyes Malavé; Zhang, Xinnan; Matzger, Adam Jay; Hernandez, Víctor; López Navarrete, Juan Teodomiro

    2006-04-20

    In this article, we report the characterization of novel oligothienoacenes with five and seven fused thiophene rings, materials with potential applications in organic electronics. In contrast to usual alpha-linked oligothiophenes, these fused oligothiophenes have a larger band gap than most semiconductors currently used in the fabrication of organic field-effect transistors (OFETs) and therefore they are expected to be more stable in air. The synthesis of these fused-ring oligomers was motivated by the notion that a more rigid and planar structure should reduce defects (such as torsion about single bonds between alpha-linked units or S-syn defects) and thus improve conjugation for better charge-carrier mobility. The conjugational properties of these two molecular materials have been investigated by means of FT-Raman spectroscopy, revealing that conjugation still increases in passing from the five-ring oligomer to that with seven-rings. DFT and TDDFT quantum chemical calculations have been performed, at the B3LYP/6-31G level, to assess information regarding the minimum-energy molecular structure, topologies, and absolute energies of the frontier molecular orbitals (MOs.) around the gap, vibrational normal modes related to the main Raman features, and vertical one-electron excitations giving rise to the main optical absorptions.

  6. Quantum Chemical and FTIR Spectroscopic Studies on the Linkage Isomerism of Carbon Monoxide in Alkali-Metal-Exchanged Zeolites: A Review of Current Research

    Directory of Open Access Journals (Sweden)

    E. Garrone

    2002-07-01

    Full Text Available Abstract: When adsorbed (at a low temperature on alkali-metal-exchanged zeolites, CO forms both M(CO+ and M(OC+ carbonyl species with the extra-framework alkali-metal cation of the zeolite. Both quantum chemical and experimental results show that C-bondend adducts are characterized by a C−O stretching IR band at a frequency higher than that of 2143 cm-1 for free CO, while for O-bonded adducts this IR band appears below 2143 cm-1. The cation-CO interaction energy is higher for M(CO+ than for M(OC+ carbonyls, although the corresponding difference decreases substantially when going from Li+ to Cs+. By means of variable-temperature FTIR spectroscopy, this energy difference was determined for several alkali-metal cations, and the existence of a thermal equilibrium between M(CO+ and M(OC+ species was established. The current state of research in this field is reviewed here, with a view to gain more insight into the thermal isomerization process.

  7. Theoretical description of copper Cu(I)/Cu(II) complexes in mixed ammine-aqua environment. DFT and ab initio quantum chemical study

    International Nuclear Information System (INIS)

    Pavelka, Matej; Burda, Jaroslav V.

    2005-01-01

    This work is devoted to investigate the interactions of the Cu(I)/Cu(II) cation with variable ammonia-water ligand field by the quantum chemical approach. For that purpose, the optimization of the [Cu(NH 3 ) m (H 2 O) n ] 2+/+ complexes (where n varies from 0 to 4 or 6 and m + n = 4 or 6) has been performed at the DFT/6-31+G(d) level of theory in conjunction with the B3PW91 hybrid functional. Based on the results of the single-point B3LYP/6-311++G(2df,2pd) calculations, the stabilization energies were determined. The two-coordinated copper(I) complexes appeared to be the most stable compounds with the remaining water or ammonia molecules in the second solvation shell. In the case of the Cu(II) systems, four-coordinated complexes were found to be the most stable. In order to examine and explain bonding characteristics, Morokuma interaction energy decomposition (for selected Cu + complexes) and Natural Population Analysis for all systems were performed. It was found that the most stable structures correlate with the highest donation effects. Therefore, more polarizable ammonia molecules exhibit higher donation than water and thus make stronger bonds to copper. This can be demonstrated by the fact that the NH 3 molecule always tries to occupy the first solvation shell in mixed ammine-aqua complexes

  8. Revealing the importance of linkers in K-series oxime reactivators for tabun-inhibited AChE using quantum chemical, docking and SMD studies.

    Science.gov (United States)

    Ghosh, Shibaji; Chandar, Nellore Bhanu; Jana, Kalyanashis; Ganguly, Bishwajit

    2017-08-01

    Inhibition of acetylcholinesterase (AChE) with organophosphorus compounds has a detrimental effect on human life. Oxime K203 seems to be one of the promising reactivators for tabun-inhibited AChE than (K027, K127, and K628). These reactivators differ only in the linker units between the two pyridinium rings. The conformational analyses performed with quantum chemical RHF/6-31G* level for K027, K127, K203 and K628 showed that the minimum energy conformers have different orientations of the active and peripheral pyridinium rings for these reactivator molecules. K203 with (-CH 2 -CH=CH-CH 2 -) linker unit possesses more open conformation compared to the other reactivators. Such orientation of K203 experiences favorable interaction with the surrounding residues of catalytic anionic site (CAS) and peripheral anionic site (PAS) of tabun-inhibited AChE. From the steered molecular dynamics simulations, it has been observed that the oxygen atom of the oxime group of K203 reactivator approaches nearest to the P-atom of the SUN203 (3.75 Å) at lower time scales (less than ~1000 ps) as compared to the other reactivators. K203 experiences less number of hydrophobic interaction with the PAS residues which is suggested to be an important factor for the efficient reactivation process. In addition, K203 crates large number of H-bonding with CAS residues SUN203, Phe295, Tyr337, Phe338 and His447. K203 barely changes its conformation during the SMD simulation process and hence the energy penalty to adopt any other conformation is minimal in this case as compared to the other reactivators. The molecular mechanics and Poisson-Boltzmann surface area binding energies obtained for the interaction of K203 inside the gorge of tabun inhibited AChE is substantially higher (-290.2 kcal/mol) than the corresponding K628 reactivator (-260.4 kcal/mol), which also possess unsaturated aromatic linker unit.

  9. Revealing the importance of linkers in K-series oxime reactivators for tabun-inhibited AChE using quantum chemical, docking and SMD studies

    Science.gov (United States)

    Ghosh, Shibaji; Chandar, Nellore Bhanu; Jana, Kalyanashis; Ganguly, Bishwajit

    2017-08-01

    Inhibition of acetylcholinesterase (AChE) with organophosphorus compounds has a detrimental effect on human life. Oxime K203 seems to be one of the promising reactivators for tabun-inhibited AChE than (K027, K127, and K628). These reactivators differ only in the linker units between the two pyridinium rings. The conformational analyses performed with quantum chemical RHF/6-31G* level for K027, K127, K203 and K628 showed that the minimum energy conformers have different orientations of the active and peripheral pyridinium rings for these reactivator molecules. K203 with (-CH2-CH=CH-CH2-) linker unit possesses more open conformation compared to the other reactivators. Such orientation of K203 experiences favorable interaction with the surrounding residues of catalytic anionic site (CAS) and peripheral anionic site (PAS) of tabun-inhibited AChE. From the steered molecular dynamics simulations, it has been observed that the oxygen atom of the oxime group of K203 reactivator approaches nearest to the P-atom of the SUN203 (3.75 Å) at lower time scales (less than 1000 ps) as compared to the other reactivators. K203 experiences less number of hydrophobic interaction with the PAS residues which is suggested to be an important factor for the efficient reactivation process. In addition, K203 crates large number of H-bonding with CAS residues SUN203, Phe295, Tyr337, Phe338 and His447. K203 barely changes its conformation during the SMD simulation process and hence the energy penalty to adopt any other conformation is minimal in this case as compared to the other reactivators. The molecular mechanics and Poisson-Boltzmann surface area binding energies obtained for the interaction of K203 inside the gorge of tabun inhibited AChE is substantially higher (-290.2 kcal/mol) than the corresponding K628 reactivator (-260.4 kcal/mol), which also possess unsaturated aromatic linker unit.

  10. From quantum chemical formation free energies to evaporation rates

    Directory of Open Access Journals (Sweden)

    I. K. Ortega

    2012-01-01

    Full Text Available Atmospheric new particle formation is an important source of atmospheric aerosols. Large efforts have been made during the past few years to identify which molecules are behind this phenomenon, but the actual birth mechanism of the particles is not yet well known. Quantum chemical calculations have proven to be a powerful tool to gain new insights into the very first steps of particle formation. In the present study we use formation free energies calculated by quantum chemical methods to estimate the evaporation rates of species from sulfuric acid clusters containing ammonia or dimethylamine. We have found that dimethylamine forms much more stable clusters with sulphuric acid than ammonia does. On the other hand, the existence of a very deep local minimum for clusters with two sulfuric acid molecules and two dimethylamine molecules hinders their growth to larger clusters. These results indicate that other compounds may be needed to make clusters grow to larger sizes (containing more than three sulfuric acid molecules.

  11. IR spectroscopy and quantum-chemical studies on the binding and activation of CO on metal catalysts. IR-spektroskopische und quantenmechanische Untersuchungen zur Bindung und Aktivierung von Kohlenmonoxid an Metallkatalysatoren

    Energy Technology Data Exchange (ETDEWEB)

    Miessner, H.

    1988-05-04

    The present study is concerned with the investigation of the interaction and activation of CO with metal carrier catalysts. In connection with the catalytic investigations on the generation of oxygenous products from synthesis gas or methanol, attention was directed mainly to rhodium carrier catalysts. The aim of the investigations was to characterise the rhodium catalysts, which, during CO hydrogenation, occupy an exceptional position among the metals of the 8th auxiliary group, and which show a special selectivity with respect to oxygenous C{sub 2}{sup +} products. Since the influence of the carrier is of a decisive importance in this connection, a whole lot of carriers were incorporated in the study: Al{sub 2}O{sub 3}, SiO{sub 2}, TiO{sub 2}, ZnO, MgO, X and Y zeolites with different Si:Al ratios of 1.1-100. To solve the problems mentioned, IR spectroscopy, particularly with the help of CO as a probe molecule, and quantum-chemical model calculations were applied. For interpretation purposes, the results of catalytic CO hydrogenation and of methanol carbonylation as well as of further physico-chemical investigation methods such as temperature-programmed reduction, the chemisorption of hydrogen and CO and the temperature-programmed desorption of CO were consulted. (orig./EF).

  12. Quantum chemical evaluation for the stability of liquid sodium containing titanium nanoparticles

    International Nuclear Information System (INIS)

    Suzuki, Ai; Inaba, Kenji; Ishizawa, Yukie; Miura, Ryuji; Hatakeyama, Nozomu; Miyamoto, Akira; Saito, Jun-ichi; Ara, Kuniaki

    2015-01-01

    Recently, liquid sodium containing titanium nanoparticles (LSnanop) have attracted considerable attention. In this study, suspension state of Ti nanoparticle in liquid sodium was quantum chemically evaluated. The atomic interaction between Ti nanoparticles and sodium atoms in the liquid sodium medium was investigated. There were some literatures which gained quantum chemical insight into a nanoparticle with the surrounding sodium atom. However, liquid sodium medium itself together with a Ti nanoparticle under the realistic temperature has not yet been investigated theoretically. To overcome the problem of conventional theoretical method, we applied computationally low-load Tight Binding Quantum Chemical Molecular Dynamics (TB-QCMD) calculation method to investigate the suspension state of the Ti nanoparticle in liquid sodium metal. (author)

  13. A quantum-chemical perspective into low optical-gap polymers for highly-efficient organic solar cells

    KAUST Repository

    Risko, Chad; McGehee, Michael D.; Bré das, Jean-Luc

    2011-01-01

    in photocurrent generation. In this Perspective, we first present an overview of the application of quantum-chemical techniques to study the intrinsic material properties and molecular- and nano-scale processes involved in device operation. In the second part

  14. Crystal and molecular structures of benzo[4,5]imidazo[1,2-c]quinazolin-6-one and 10-carboxybenzo[4,5]imidazo[1,2-c]quinazolin-6-one: A quantum-chemical study of their tautomerism

    International Nuclear Information System (INIS)

    Koval’chukova, O. V.; Stash, A. I.; Strashnov, P. V.; Neborak, E. V.; Strashnova, S. B.; Zaitsev, B. E.

    2011-01-01

    Benzo[4,5]imidazo[1,2-c]quinazolin-6-one and 10-carboxybenzo[4,5]imidazo[1,2-c]quinazolin-6-one were isolated in the crystalline state and studied by X-ray diffraction. The crystal and molecular structures of these compounds were determined by X-ray diffraction. The energy characteristics of the tautomeric and ionic forms were calculated by the quantum-chemical PM3 method.

  15. Quantum Chemical Modeling of Enzymatic Reactions: The Case of Decarboxylation.

    Science.gov (United States)

    Liao, Rong-Zhen; Yu, Jian-Guo; Himo, Fahmi

    2011-05-10

    We present a systematic study of the decarboxylation step of the enzyme aspartate decarboxylase with the purpose of assessing the quantum chemical cluster approach for modeling this important class of decarboxylase enzymes. Active site models ranging in size from 27 to 220 atoms are designed, and the barrier and reaction energy of this step are evaluated. To model the enzyme surrounding, homogeneous polarizable medium techniques are used with several dielectric constants. The main conclusion is that when the active site model reaches a certain size, the solvation effects from the surroundings saturate. Similar results have previously been obtained from systematic studies of other classes of enzymes, suggesting that they are of a quite general nature.

  16. Competing intermolecular interactions of artemisinin-type agents and aspirin with membrane phospholipids: Combined model mass spectrometry and quantum-chemical study

    Energy Technology Data Exchange (ETDEWEB)

    Pashynska, Vlada, E-mail: vlada@vl.kharkov.ua [B.Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, Lenin Ave., 47, 61103 Kharkov (Ukraine); Stepanian, Stepan [B.Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, Lenin Ave., 47, 61103 Kharkov (Ukraine); Gömöry, Agnes; Vekey, Karoly [Institute of Organic Chemistry of Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Magyar tudosok korutja, 2, Budapest H-1117 (Hungary); Adamowicz, Ludwik [University of Arizona, Department of Chemistry and Biochemistry, Tucson, AZ 85721 (United States)

    2015-07-09

    Highlights: • Competitive binding of artemisinin agents and aspirin with phospholipids is shown. • Complexation between the antimalarial drugs and aspirin molecules is also found. • Energetically favorable structures of the model complexes are identified by DFT. • Membranotropic activity of the studied drugs can be modified under joint usage. - Abstract: Study of intermolecular interactions of antimalarial artemisinin-type drugs and aspirin with membrane phospholipids is important in term of elucidation of the drugs activity modification under their joint usage. Combined experimental and computational study of the interaction of dihydroartemisinin, α-artemether, and artesunate with aspirin (ASP) and dipalmitoylphosphatidylcholine (DPPC) is performed by electrospray ionization (ESI) mass spectrometry and by DFT B3LYP/aug-cc-pVDZ methods. The results of the ESI investigation of systems containing artemisinin-type agent, ASP and DPPC, reveal a competition between the antimalarial agents and ASP for binding with DPPC molecules. The complexation between the antimalarial drugs and ASP is also found. Observed phenomena suggest that membranotropic activity of artemisin-type agents and aspirin is modified under their combined usage. To elucidate structure-energy characteristics of the non-covalent complexes studied the model DFT calculations are performed for dihydroartemisinin · ASP complex and complexes of the each drug with phosphatidylcholine head of DPPC in neutral and cationized forms.

  17. An NMR and ab initio quantum chemical study of acid-base equilibria for conformationally constrained acidic alpha-amino acids in aqueous solution

    DEFF Research Database (Denmark)

    Nielsen, Peter Aadal; Jaroszewski, Jerzy W.; Norrby, Per-Ola

    2001-01-01

    The protonation states of a series of piperidinedicarboxylic acids (PDAs), which are conformationally constrained acidic alpha -amino acids, have been studied by C-13 NMR titration in water. The resulting data have been correlated with theoretical results obtained by HF/6-31+G* calculations using...

  18. Competing intermolecular interactions of artemisinin-type agents and aspirin with membrane phospholipids: Combined model mass spectrometry and quantum-chemical study

    International Nuclear Information System (INIS)

    Pashynska, Vlada; Stepanian, Stepan; Gömöry, Agnes; Vekey, Karoly; Adamowicz, Ludwik

    2015-01-01

    Highlights: • Competitive binding of artemisinin agents and aspirin with phospholipids is shown. • Complexation between the antimalarial drugs and aspirin molecules is also found. • Energetically favorable structures of the model complexes are identified by DFT. • Membranotropic activity of the studied drugs can be modified under joint usage. - Abstract: Study of intermolecular interactions of antimalarial artemisinin-type drugs and aspirin with membrane phospholipids is important in term of elucidation of the drugs activity modification under their joint usage. Combined experimental and computational study of the interaction of dihydroartemisinin, α-artemether, and artesunate with aspirin (ASP) and dipalmitoylphosphatidylcholine (DPPC) is performed by electrospray ionization (ESI) mass spectrometry and by DFT B3LYP/aug-cc-pVDZ methods. The results of the ESI investigation of systems containing artemisinin-type agent, ASP and DPPC, reveal a competition between the antimalarial agents and ASP for binding with DPPC molecules. The complexation between the antimalarial drugs and ASP is also found. Observed phenomena suggest that membranotropic activity of artemisin-type agents and aspirin is modified under their combined usage. To elucidate structure-energy characteristics of the non-covalent complexes studied the model DFT calculations are performed for dihydroartemisinin · ASP complex and complexes of the each drug with phosphatidylcholine head of DPPC in neutral and cationized forms

  19. Spectroscopic [FT-IR and FT-Raman] and molecular modeling (MM) study of benzene sulfonamide molecule using quantum chemical calculations

    Science.gov (United States)

    Vinod, K. S.; Periandy, S.; Govindarajan, M.

    2016-07-01

    The spectroscopic and molecular modeling (MM) study includes, FT-IR, FT-Raman and 13C NMR and 1H NMR spectra of the Benzene sulfonamide were recorded for the analysis. The observed experimental and theoretical frequencies (IR and Raman) were assigned according to their distinctive region. The present study of this title molecule have been carried out by hybrid computational calculations of HF and DFT (B3LYP) methods with 6-311+G(d,p) and 6-311++G(d,p) basis sets and the corresponding results are tabulated. The structural modifications of the compound due to the substitutions of NH2 and SO2 were investigated. The minimum energy conformers of the compound were studied using conformational analysis. The alternations of the vibrational pattern of the base structure related to the substitutions were analyzed. The thermodynamic parameters (such as zero-point vibrational energy, thermal energy, specific heat capacity, rotational constants, entropy, and dipole moment) of Benzene sulfonamide have been calculated. The donor acceptor interactions of the compound and the corresponding UV transitions are found out using NBO analysis. The NMR spectra were simulated by using the gauge independent atomic orbital (GIAO) method with B3LYP methods and the 6-311++G(d,p) basis set and their spectra were simulated and the chemical shifts related to TMS were compared. A quantum computational study on the electronic and optical properties absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies, were performed by HF and DFT methods. The energy gap of the present compound was calculated related to HOMO and LUMO energies which confirm the occurring of charge transformation between the base and ligand group. Besides frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) was performed. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the title compound at different temperatures were calculated in gas phase and

  20. How different is the borazine-acetylene dimer from the benzene-acetylene dimer? A matrix isolation infrared and ab initio quantum chemical study

    Science.gov (United States)

    Verma, Kanupriya; Viswanathan, K. S.; Majumder, Moumita; Sathyamurthy, N.

    2017-11-01

    The 1:1 dimer of borazine-acetylene has been studied for the first time, both experimentally and computationally. The borazine-acetylene dimer was trapped in Ar and N2 matrices, and studied using infrared spectroscopy. Our experiments clearly revealed two isomers of the borazine-acetylene complex, one in which the N-H of borazine interacted with the carbon of acetylene, and another in which the C-H of acetylene formed a hydrogen bond with a nitrogen atom of borazine. The formation of both isomers in the matrix was evidenced by shifts in the vibrational frequencies of the appropriate modes. Reassuringly, the experimental observations were corroborated by our computations using the second-order Møller-Plesset perturbation theoretic method and coupled-cluster singles, doubles and perturbative triples method in conjunction with different Dunning basis sets, which indicated both these isomers to be stable minima, with the N-HṡṡṡC complex being the global minimum. Atoms-in-molecules and energy decomposition analysis were also carried out for the different isomers of the dimer. These studies reveal that replacing the three C-C linkages in benzene with three B-N linkages in borazine modifies the interaction in the dimer sufficiently, to result in a different potential energy landscape for the borazine-acetylene system when compared with the benzene-acetylene system.

  1. Experimental and quantum chemical studies of a new organic proton transfer compound, 1H-imidazole-3-ium-3-hydroxy-2,4,6-trinitrophenolate

    Science.gov (United States)

    Dhamodharan, P.; Sathya, K.; Dhandapani, M.

    2018-02-01

    A new proton transfer compound, 1H-imidazole-3-ium-3-hydroxy-2,4,6-trinitrophenolate (IMHTP), was crystallized by slow evaporation-solution growth technique. 1H and 13C NMR spectral studies confirm the molecular structure of the grown crystal. Single crystal X-ray diffraction study confirms that IMHTP crystallizes in monoclinic system with space group P21/c. Thermal curves (TG/DTA) show that the material is thermally stable up to 198 °C. The crystal emits fluorescence at 510 nm, proving its utility in making green light emitting materials in optical applications. The stable molecular structure was optimized by Gaussian 09 program with B3LYP/6-311++G(d,p) level of basis set. The frontier molecular orbital study shows that the charge transfer interaction occurs within the complex. The calculated first-order hyperpolarizability value of IMHTP is 44 times higher than that the reference material, urea. The electrostatic potential map was used to probe into electrophilic and nucleophilic reactive sites present in the molecule.

  2. Quantum-chemical consideration of extermal valent forms of actinides

    International Nuclear Information System (INIS)

    Ionova, G.V.; Pershina, V.G.; Spitsyn, V.I.

    1982-01-01

    Stability of valent forms of actinides that has not yet studied experimentally, is considered within the framework of quantum-chemical considerations. Oxidizing potentials E 0 for actinide elements are determined theoretically. A dependence of the definite valent state stability on relativistic effect is shown. A conclusion is made that oxidizing potential E 0 (4-5) for americium should be higher than E 0 (4-5) for plutonium. A relatively small oxidizing potential E 0 (4-5) for curium speaks about principle possibility of production of five-valent curium in solution, though it is less stable than the six-valent one. Oxidizing potential corresponding to transition of three-valent californium into the four-valent state should be less than the value adopted in literature. A relatively small oxidizing potential of californium E 0 (4-5) speaks about possible existence of five-valent californium in solution

  3. Theoretical study of the electronic structure of f-element complexes by quantum chemical methods; Analyse de la structure electronique des complexes contenant des elements F par des methodes de la chimie quantique

    Energy Technology Data Exchange (ETDEWEB)

    Vetere, V

    2002-09-15

    This thesis is related to comparative studies of the chemical properties of molecular complexes containing lanthanide or actinide trivalent cations, in the context of the nuclear waste disposal. More precisely, our aim was a quantum chemical analysis of the metal-ligand bonding in such species. Various theoretical approaches were compared, for the inclusion of correlation (density functional theory, multiconfigurational methods) and of relativistic effects (relativistic scalar and 2-component Hamiltonians, relativistic pseudopotentials). The performance of these methods were checked by comparing computed structural properties to published experimental data, on small model systems: lanthanide and actinide tri-halides and on X{sub 3}M-L species (X=F, Cl; M=La, Nd, U; L = NH{sub 3}, acetonitrile, CO). We have thus shown the good performance of density functionals combined with a quasi-relativistic method, as well as of gradient-corrected functionals associated with relativistic pseudopotentials. In contrast, functionals including some part of exact exchange are less reliable to reproduce experimental trends, and we have given a possible explanation for this result . Then, a detailed analysis of the bonding has allowed us to interpret the discrepancies observed in the structural properties of uranium and lanthanides complexes, based on a covalent contribution to the bonding, in the case of uranium(III), which does not exist in the lanthanide(III) homologues. Finally, we have examined more sizeable systems, closer to experimental species, to analyse the influence of the coordination number, of the counter-ions and of the oxidation state of uranium, on the metal-ligand bonding. (author)

  4. A critical quantum chemical and experimental study of the potentiality of direct labeling of the CN group with [99mTc(CO)3]+ or [186/188Re(CO)3]+ in CN containing biomolecules

    International Nuclear Information System (INIS)

    Safi, Benasser; Mertens, John; Kersemans, Ken; Geerlings, Paul

    2008-01-01

    Introduction: It was determined recently that [ 99m Tc(OH 2 ) 2 (X - )(CO 3 ) 3 ] could strongly bind to the CN group, allowing direct labeling of CN in vitamin B 12 despite the presence of a benzimidazole group. The aim of this paper was to perform a critical study of this potentiality, coupling quantum chemical calculations to experimental evidence. Methods: Computational methods: Within the density functional theory calculations, the 6-31+G** basis set (C, H, O, N atoms) and the LANL2DZ basis set (Tc,Re) were used. Stability calculations of the [RCNM(CO) 3 ] + ) (M=Tc,Re) complexes were performed with the Gaussian 03 suite of programs, while for the evaluation of relative stability substitution reactions were used. Radiochemistry: Vitamin B 12 , 4-hydroxy-benzylcyanide and 4-methoxy-benzonitrile were labeled at 100 deg. C during 30 min. High-performance liquid chromatography analysis was performed using radioactive and UV detection. Results: Computational methods: The influence of different ligands on the stability yielded a sequence: imidazole>tBuCN>NH 3 ∼CH 3 CN>HCN (mimicking the best CoCN)>H 2 O. The transmetalation reaction indicates that all ligands prefer Re to Tc. The preference for the nitrogen atom of imidazole to the cyanide nitrogen atom for complex formation with [Tc(CO) 3 (H 2 O) 3 ] + is interpreted in terms of the hard and soft acid and base properties principle. Radiochemistry: 4-Hydroxy-benzylcyanide and 4-methoxy-benzonitrile did not show any labeling. An excess of acetonitrile did not inhibit the labeling of vitamin B 12 as expected if the CN group should be involved, indicating that the labeling occurs on a stronger complexing group present like benzimidazole. Conclusion: Both theory and experiments prove that [CN-Tc(CO) 3 (H 2 O) (2-x) L x ] + complexes are weak and that in vitamin B 12 most probably the benzimidazole group is involved

  5. Quantum chemical study, spectroscopic investigations, NBO and HOMO-LUMO analyses of 3-aminoquinoline (3AQ) and [Ag(3AQ)2(TCA)] complex (TCA = Trichloroacetate)

    Science.gov (United States)

    Soliman, Saied M.; Kassem, Taher S.; Badr, Ahmed M. A.; Abu Youssef, Morsy A.; Assem, Rania

    2014-09-01

    The new [Ag(3AQ)2(TCA)]; (3AQ = 3-aminoquinoline and TCA = Trichloroacetate) complex is synthesized and characterized using elemental analysis, FTIR, NMR and mass spectroscopy. The molecular geometry, vibrational frequencies, gauge-including atomic orbital (GIAO) 1H chemical shift values of the free and coordinated 3AQ in the ground state have been calculated by using DFT/B3LYP method. The TD-DFT results of the [Ag(3AQ)2(TCA)] complex showed a π-π* transition band at 240.3-242.6 nm (f = 0.1334-0.1348) which has longer wavelength and lower absorption intensity than that for the free 3AQ (233.2 nm, f = 0.3958). Dipole moment, polarizability and HOMO-LUMO gap values predicted better nonlinear optical properties (NLO) for the [Ag(3AQ)2(TCA)] than the 3AQ ligand. NBO analysis has been used to predict the most accurate Lewis structure of the studied molecules. The energies of the different intramolecular charge transfer (ICT) interactions within the studied molecules were estimated using second order perturbation theory.

  6. A quantum chemical study of the mechanism for proton-coupled electron transfer leading to proton pumping in cytochrome c oxidase

    Science.gov (United States)

    Blomberg, Margareta R. A.; Siegbahn, Per E. M.

    2010-10-01

    The proton pumping mechanism in cytochrome c oxidase, the terminal enzyme in the respiratory chain, has been investigated using hybrid DFT with large chemical models. In previous studies, a gating mechanism was suggested based on electrostatic interpretations of kinetic experiments. The predictions from that analysis are tested here. The main result is that the suggestion of a positively charged transition state for proton transfer is confirmed, while some other suggestions for the gating are not supported. It is shown that a few critical relative energy values from the earlier studies are reproduced with quite high accuracy using the present model calculations. Examples are the forward barrier for proton transfer from the N-side of the membrane to the pump-loading site when the heme a cofactor is reduced, and the corresponding back leakage barrier when heme a is oxidised. An interesting new finding is an unexpected double-well potential for proton transfer from the N-side to the pump-loading site. In the intermediate between the two transition states found, the proton is bound to PropD on heme a. A possible purpose of this type of potential surface is suggested here. The accuracy of the present values are discussed in terms of their sensitivity to the choice of dielectric constant. Only one energy value, which is not critical for the present mechanism, varies significantly with this choice and is therefore less certain.

  7. Synthesis, spectral and quantum chemical studies on NO-chelating sulfamonomethoxine-cyclophosph(V)azane and its Er(III) complex.

    Science.gov (United States)

    Alaghaz, Abdel-Nasser M A; Ammar, Reda A A; Koehler, Gottfried; Wolschann, Karl Peter; El-Gogary, Tarek M

    2014-07-15

    Computational studies have been carried out at the DFT-B3LYP/6-31G(d) level of theory on the structural and spectroscopic properties of novel ethane-1,2-diol-dichlorocyclophosph(V)azane of sulfamonomethoxine (L), and its binuclear Er(III) complex. Different tautomers of the ligand were optimized at the ab initio DFT level. Keto-form structure is about 15.8 kcal/mol more stable than the enol form (taking zpe correction into account). Simulated IR frequencies were scaled and compared with that experimentally measured. TD-DFT method was used to compute the UV-VIS spectra which show good agreement with measured electronic spectra. The structures of the novel isolated products are proposed based on elemental analyses, IR, UV-VIS, (1)H NMR, (31)P NMR, SEM, XRD spectra, effective magnetic susceptibility measurements and thermogravimetric analysis (TGA). Copyright © 2014 Elsevier B.V. All rights reserved.

  8. A comparative study of key properties of glycine glycinium picrate (GGP and glycinium picrate (GP: A combined experimental and quantum chemical approach

    Directory of Open Access Journals (Sweden)

    Mohd. Shkir

    2018-03-01

    Full Text Available Using experimental and computational techniques, a comparative study of electro-optical properties for glycine glycinium picrate (GGP and glycinium picrate (GP compounds has been performed. The single crystal of GGP has been grown using slow evaporation technique that was further subjected to experimental characterization of its electro-optical properties. The good optical transparency and mechanical strength at micro level was confirmed from optical and nanoindentation measurements using the Oliver–Pharr method of the grown single crystals. Differential scanning calorimetric (DSC analysis was done to probe the thermal stability of the grown single crystals. Using the density functional theory (DFT methods, we have not only investigated the GGP but also proposed GP molecule. Additionally, we have shed light on the molecular geometries, infrared and Raman spectra, linear and nonlinear optical properties of both GGP and GP at molecular level. The time dependent DFT (TD-DFT approach was adopted to calculate the excitation energies of the molecules in different phases including gas, water, acetone, cyclohexane and chloroform as well. For GGP, its wavelength of maximum absorption is calculated to be ∼390 nm at B3LYP/6-31G∗ level of theory. The calculated amplitudes of first hyperpolarizability (βtot for GGP and GP are found to be 712 and 970 a. u., respectively, which are about 16 and 23 times larger than that of the urea molecule (a prototype NLO molecule. Thus the present study not only brings to limelight the optical and nonlinear optical properties of GGP but also sheds light on the possible potential of GP as new NLO molecule.

  9. Quantum chemical study of the interaction of elemental Hg with small neutral, anionic and cationic Aun (n = 1–6) clusters

    International Nuclear Information System (INIS)

    Siddiqui, Shamoon Ahmad; Bouarissa, Nadir; Rasheed, Tabish; Al-Assiri, M.S.

    2013-01-01

    Graphical abstract: Binding energies as a function of cluster size for Au n Hg, Au n Hg + and Au n Hg − complexes. Highlights: ► Hg adsorption of neutral and charged Au n (n = 1–6) clusters has been discussed. ► Size and charged state of cluster significantly affect the Hg adsorption. ► Transfer of electron mainly found from s orbital of Hg to s orbital of Au. - Abstract: Adsorption of elemental mercury (Hg) on small neutral, cationic and anionic gold clusters (Au n , n = 1–6) has been studied by using the density functional theory (DFT). Results of this investigation show that frontier molecular orbital theory is a useful tool to predict the selectivity of Hg adsorption. It is found that adsorption of Hg on neutral, cationic and anionic Au n (n = 1–6) clusters are thermodynamically favorable. The binding energies of Hg on the cationic Au n clusters are greater than those on the neutral and anionic clusters. Natural bond orbital (NBO) analysis indicates that the flow of electrons in the neutral and charged clusters is mainly due to the s orbitals of Hg and Au. Results of NBO analysis also indicate that the binding energy of Hg with Au n clusters is directly proportional to the charge transfer, i.e. greater is the charge transfer, higher is the binding energy

  10. Quantum chemical study of the geometrical and electronic structures of ScSi{sub 3}{sup −/0} clusters and assignment of the anion photoelectron spectra

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Quoc Tri; Tran, Van Tan, E-mail: tvtan@dthu.edu.vn [Theoretical and Physical Chemistry Division, Dong Thap University, 783-Pham Huu Lau, Cao Lanh City, Ward 6, Dong Thap (Viet Nam)

    2016-06-07

    The geometrical and electronic structures of ScSi{sub 3}{sup −/0} clusters have been studied with the B3LYP, CCSD(T), and CASPT2 methods. The ground state of the anionic cluster was evaluated to be the {sup 1}A{sub 1} of rhombic η{sup 2}-(Si{sub 3})Sc{sup −} isomer, whereas that of the neutral cluster was computed to be the {sup 2}A{sub 1} of the same isomer. All features in the 266 and 193 nm photoelectron spectra of ScSi{sub 3}{sup −} cluster were interpreted by the one- and two-electron detachments from the {sup 1}A{sub 1} of rhombic η{sup 2}-(Si{sub 3})Sc{sup −} isomer. The Franck-Condon factor simulation results show that the first broad band starting at 1.78 eV in the spectra comprises several vibrational progression peaks of two totally symmetric modes with the corresponding frequencies of 296 and 354 cm{sup −1}.

  11. Potential energy profile, structural, vibrational and reactivity descriptors of trans-2-methoxycinnamic acid by FTIR, FT-Raman and quantum chemical studies

    Science.gov (United States)

    Arjunan, V.; Anitha, R.; Thenmozhi, S.; Marchewka, M. K.; Mohan, S.

    2016-06-01

    The stable conformers of trans-2-methoxycinnamic acid (trans-2MCA) are determined by potential energy profile analysis. The energies of the s-cis and s-trans conformers of trans-2MCA determined by B3LYP/cc-pVTZ method are -612.9788331 Hartrees and -612.9780953 Hartrees, respectively. The vibrational and electronic investigations of the stable s-cis and s-trans conformers of trans-2-methoxycinnamic acid have been carried out extensively with FTIR and FT-Raman spectral techniques. The s-cis conformer (I) with a (C16-C17-C18-O19) dihedral angle equal to 0° is found to be more favoured relative to the one s-trans (II) with (C16-C17-C18-O19) = 180°, possibly due to delocalization, hydrogen bonding and steric repulsion effects between the methoxy and acrylic acid groups. The DFT studies are performed with B3LYP method by utilizing 6-311++G** and cc-pVTZ basis sets to determine the structure, thermodynamic properties, vibrational characteristics and chemical shifts of the compound. The total dipole moments of the conformers determined by B3LYP/cc-pVTZ method are 3.35 D and 4.87 D for s-cis and s-trans, respectively. It reveals the higher polarity of s-trans conformer of trans-2MCA molecule. The electronic and steric influence of the methoxy group on the skeletal frequencies has been analysed. The energies of the frontier molecular orbitals and the LUMO-HOMO energy gap have been determined. The MEP of s-cis conformer lie in the range +1.374e × 10-2 to -1.374e × 10-2 while for s-trans it is +1.591e × 10-2 to -1.591e × 10-2. The total electron density of s-cis conformer lie in the range +5.273e × 10-2 to -5.273e × 10-2 while for s-trans it is +5.403e × 10-2 to -5.403e × 10-2. The MEP and total electron density shows that the s-cis conformer is less polar, less reactive and more stable than the s-trans conformer. All the reactivity descriptors of the molecule have been discussed. Intramolecular electronic interactions and their stabilisation energies have analysed

  12. The use of quantum chemically derived descriptors for QSAR modelling of reductive dehalogenation of aromatic compounds

    NARCIS (Netherlands)

    Rorije E; Richter J; Peijnenburg WJGM; ECO; IHE Delft

    1994-01-01

    In this study, quantum-chemically derived parameters are developed for a limited number of halogenated aromatic compounds to model the anaerobic reductive dehalogenation reaction rate constants of these compounds. It is shown that due to the heterogeneity of the set of compounds used, no single

  13. SOME QUANTUM CHEMICAL STUDY ON THE STRUCTURAL ...

    African Journals Online (AJOL)

    Preferred Customer

    unoccupied molecular orbital (LUMO) energy, HOMO-LUMO gap energy, RHF energy, some of important bond ..... Sobczak, J.M.; Glowiak, T.; Zio, J.J. Transition Met.Chem. ... Wiley-VCH: Velang GmbH, Weinheim (Germany); 2000. (b) Becke ...

  14. Development and new applications of quantum chemical simulation methodology

    International Nuclear Information System (INIS)

    Weiss, A. K. H.

    2012-01-01

    The Division of Theoretical Chemistry at the University of Innsbruck is focused on the study of chemical compounds in aqueous solution, in terms of mainly hybrid quantum mechanical / molecular mechanical molecular dynamics simulations (QM/MM MD). Besides the standard means of data analysis employed for such simulations, this study presents several advanced and capable algorithms for the description of structural and dynamic properties of the simulated species and its hydration. The first part of this thesis further presents selected exemplary simulations, in particular a comparative study of Formamide and N-methylformamide, Guanidinium, and Urea. An included review article further summarizes the major advances of these studies. The computer programs developed in the course of this thesis are by now well established in the research field. The second part of this study presents the theory and a development guide for a quantum chemical program, QuMuLuS, that is by now used as a QM program for recent QM/MM simulations at the division. In its course, this part presents newly developed algorithms for electron integral evaluation and point charge embedding. This program is validated in terms of benchmark computations. The associated theory is presented on a detailed level, to serve as a source for contemporary and future studies in the division. In the third and final part, further investigations of related topics are addressed. This covers additional schemes of molecular simulation analysis, new software, as well as a mathematical investigation of a non-standard two-electron integral. (author)

  15. Characterization of heterocyclic rings through quantum chemical topology.

    Science.gov (United States)

    Griffiths, Mark Z; Popelier, Paul L A

    2013-07-22

    Five-membered rings are found in a myriad of molecules important in a wide range of areas such as catalysis, nutrition, and drug and agrochemical design. Systematic insight into their largely unexplored chemical space benefits from first principle calculations presented here. This study comprehensively investigates a grand total of 764 different rings, all geometry optimized at the B3LYP/6-311+G(2d,p) level, from the perspective of Quantum Chemical Topology (QCT). For the first time, a 3D space of local topological properties was introduced, in order to characterize rings compactly. This space is called RCP space, after the so-called ring critical point. This space is analogous to BCP space, named after the bond critical point, which compactly and successfully characterizes a chemical bond. The relative positions of the rings in RCP space are determined by the nature of the ring scaffold, such as the heteroatoms within the ring or the number of π-bonds. The summed atomic QCT charges of the five ring atoms revealed five features (number and type of heteroatom, number of π-bonds, substituent and substitution site) that dictate a ring's net charge. Each feature independently contributes toward a ring's net charge. Each substituent has its own distinct and systematic effect on the ring's net charge, irrespective of the ring scaffold. Therefore, this work proves the possibility of designing a ring with specific properties by fine-tuning it through manipulation of these five features.

  16. Quantum chemical modeling of enzymatic reactions: the case of 4-oxalocrotonate tautomerase.

    Science.gov (United States)

    Sevastik, Robin; Himo, Fahmi

    2007-12-01

    The reaction mechanism of 4-oxalocrotonate tautomerase (4-OT) is studied using the density functional theory method B3LYP. This enzyme catalyzes the isomerisation of unconjugated alpha-keto acids to their conjugated isomers. Two different quantum chemical models of the active site are devised and the potential energy curves for the reaction are computed. The calculations support the proposed reaction mechanism in which Pro-1 acts as a base to shuttle a proton from the C3 to the C5 position of the substrate. The first step (proton transfer from C3 to proline) is shown to be the rate-limiting step. The energy of the charge-separated intermediate (protonated proline-deprotonated substrate) is calculated to be quite low, in accordance with measured pKa values. The results of the two models are used to evaluate the methodology employed in modeling enzyme active sites using quantum chemical cluster models.

  17. Quantum chemical investigation of mechanisms of silane oxidation

    DEFF Research Database (Denmark)

    Mader, Mary M.; Norrby, Per-Ola

    2001-01-01

    Several mechanisms for the peroxide oxidation of organosilanes to alcohols are compared by quantum chemical calculations, including solvation with the PCM method. Without doubt, the reaction proceeds via anionic, pentacoordinate silicate species, but a profound difference is found between in vacuo...

  18. Metal compounds in zeolites as active components of chemisorption and catalysis. Quantum chemical approach

    International Nuclear Information System (INIS)

    Zhidomirov, G.M.

    1996-01-01

    A short review of possible catalitic active sites associated with various types of metal species in zoolite is presented. The structural and electronic peculiarity of aluminum ions in zeolite lattice and their distribution in the lattice are discussed on the basis of quantum chemical calculations in connection with the formation of Broensted activity of zeolites. Various molecular models of Lewis Acid Sites associated the extra-lattice oxide-hydroxide aluminum species have been investigated by means of density functional model cluster calculations using CO molecule as a probe. Probable ways of formation of the selective oxidation center in FeZSM-5 by decomposition of dinitrogen monoxide have been studied by ab-initio quantum chemical calculations. The immediate oxidizing site is reasonably represented by the binuclear iron-hydroxide cluster with peroxo-like fragment located between iron atoms. Various probable intermediates of the selective oxidation center formation resulted from interaction of a hydroperoxide molecule with a lattice titanium ion in titanium silicalite have been investigated by quantum chemical calculations. It was concluded that this reaction requires essential structural reconstruction in the vicinity of the titanium ion. Probability of this structural reconstruction is discussed. Possible reasons of an electron-deficient and electron-enriched state of metal particles entrapped in zoolite cavities are discussed. Also, various probable molecular models of such modified metal particles in zeolite are considered

  19. Spectroscopic (FT-IR, FT-Raman, and UV-visible) and quantum chemical studies on molecular geometry, Frontier molecular orbitals, NBO, NLO and thermodynamic properties of 1-acetylindole.

    Science.gov (United States)

    Shukla, Vikas K; Al-Abdullah, Ebtehal S; El-Emam, Ali A; Sachan, Alok K; Pathak, Shilendra K; Kumar, Amarendra; Prasad, Onkar; Bishnoi, Abha; Sinha, Leena

    2014-12-10

    Quantum chemical calculations of ground state energy, geometrical structure and vibrational wavenumbers of 1-acetylindole were carried out using density functional (DFT/B3LYP) method with 6-311++G(d,p) basis set. The FT-IR and FT-Raman spectra were recorded in the condensed state. The fundamental vibrational wavenumbers were calculated and a good correlation between experimental and scaled calculated wavenumbers has been accomplished. Electric dipole moment, polarizability and first static hyperpolarizability values of 1-acetylindole have been calculated at the same level of theory and basis set. The results show that the 1-acetylindole molecule possesses nonlinear optical (NLO) behavior with non-zero values. Stability of the molecule arising from hyper-conjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. UV-Visible spectrum of the molecule was recorded in the region 200-500nm and the electronic properties like HOMO and LUMO energies and composition were obtained using TD-DFT method. The calculated energies and oscillator strengths are in good correspondence with the experimental data. The thermodynamic properties of the compound under investigation were calculated at different temperatures. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Hydrophobic fluorine mediated switching of the hydrogen bonding site as well as orientation of water molecules in the aqueous mixture of monofluoroethanol: IR, molecular dynamics and quantum chemical studies.

    Science.gov (United States)

    Mondal, Saptarsi; Biswas, Biswajit; Nandy, Tonima; Singh, Prashant Chandra

    2017-09-20

    The local structures between water-water, alcohol-water and alcohol-alcohol have been investigated for aqueous mixtures of ethanol (ETH) and monofluoroethanol (MFE) by the deconvolution of IR bands in the OH stretching region, molecular dynamics simulation and quantum chemical calculations. It has been found that the addition of a small amount of ETH into the aqueous medium increases the strength of the hydrogen bonds between water molecules. In an aqueous mixture of MFE, the substitution of a single fluorine induces a change in the orientation as well as the hydrogen bonding site of water molecules from the oxygen to the fluorine terminal of MFE. The switching of the hydrogen bonding site of water in the aqueous mixture of MFE results in comparatively strong hydrogen bonds between MFE and water molecules as well as less clustering of water molecules, unlike the case of the aqueous mixture of ETH. These findings about the modification of a hydrogen bond network by the hydrophobic fluorine group probably make fluorinated molecules useful for pharmaceutical as well as biological applications.

  1. Quantum chemical approach to estimating the thermodynamics of metabolic reactions.

    Science.gov (United States)

    Jinich, Adrian; Rappoport, Dmitrij; Dunn, Ian; Sanchez-Lengeling, Benjamin; Olivares-Amaya, Roberto; Noor, Elad; Even, Arren Bar; Aspuru-Guzik, Alán

    2014-11-12

    Thermodynamics plays an increasingly important role in modeling and engineering metabolism. We present the first nonempirical computational method for estimating standard Gibbs reaction energies of metabolic reactions based on quantum chemistry, which can help fill in the gaps in the existing thermodynamic data. When applied to a test set of reactions from core metabolism, the quantum chemical approach is comparable in accuracy to group contribution methods for isomerization and group transfer reactions and for reactions not including multiply charged anions. The errors in standard Gibbs reaction energy estimates are correlated with the charges of the participating molecules. The quantum chemical approach is amenable to systematic improvements and holds potential for providing thermodynamic data for all of metabolism.

  2. Quantum Chemical Approach to Estimating the Thermodynamics of Metabolic Reactions

    OpenAIRE

    Adrian Jinich; Dmitrij Rappoport; Ian Dunn; Benjamin Sanchez-Lengeling; Roberto Olivares-Amaya; Elad Noor; Arren Bar Even; Alán Aspuru-Guzik

    2014-01-01

    Thermodynamics plays an increasingly important role in modeling and engineering metabolism. We present the first nonempirical computational method for estimating standard Gibbs reaction energies of metabolic reactions based on quantum chemistry, which can help fill in the gaps in the existing thermodynamic data. When applied to a test set of reactions from core metabolism, the quantum chemical approach is comparable in accuracy to group contribution methods for isomerization and group transfe...

  3. Development of a quantum chemical molecular dynamics tribochemical simulator and its application to tribochemical reaction dynamics of lubricant additives

    International Nuclear Information System (INIS)

    Onodera, T; Tsuboi, H; Hatakeyama, N; Endou, A; Miyamoto, A; Miura, R; Takaba, H; Suzuki, A; Kubo, M

    2010-01-01

    Tribology at the atomistic and molecular levels has been theoretically studied by a classical molecular dynamics (MD) method. However, this method inherently cannot simulate the tribochemical reaction dynamics because it does not consider the electrons in nature. Although the first-principles based MD method has recently been used for understanding the chemical reaction dynamics of several molecules in the tribology field, the method cannot simulate the tribochemical reaction dynamics of a large complex system including solid surfaces and interfaces due to its huge computation costs. On the other hand, we have developed a quantum chemical MD tribochemical simulator on the basis of a hybrid tight-binding quantum chemical/classical MD method. In the simulator, the central part of the chemical reaction dynamics is calculated by the tight-binding quantum chemical MD method, and the remaining part is calculated by the classical MD method. Therefore, the developed tribochemical simulator realizes the study on tribochemical reaction dynamics of a large complex system, which cannot be treated by using the conventional classical MD or the first-principles MD methods. In this paper, we review our developed quantum chemical MD tribochemical simulator and its application to the tribochemical reaction dynamics of a few lubricant additives

  4. Quantum-chemical modeling of smectite clays

    Science.gov (United States)

    Aronowitz, S.; Coyne, L.; Lawless, J.; Rishpon, J.

    1982-01-01

    A self-consistent charge extended Hueckel program is used in modeling isomorphic substitution of Al(3+) by Na(+), K(+), Mg(2+), Fe(2+), and Fe(3+) in the octahedral layer of a dioctahedral smectite clay, such as montmorillonite. Upon comparison of the energies involved in the isomorphic substitution, it is found that the order for successful substitution is as follows: Al(3+), Fe(3+), Mg(2+), Fe(2+), Na(+), which is equivalent to Ca(2+), and then K(+). This ordering is found to be consistent with experimental observation. The calculations also make it possible to determine the possible penetration of metal ions into the clay's 2:1 crystalline layer. For the cases studied, this type of penetration can occur at elevated temperatures into regions where isomorphic substitution has occurred with metal ions that bear a formal charge of less than 3+. The computed behavior of the electronic structure in the presence of isomorphic substitution is found to be similar to behavior associated with semiconductors.

  5. Evaluation of quantum-chemical methods of radiolysis stability for macromolecular structures

    International Nuclear Information System (INIS)

    Postolache, Cristian; Matei, Lidia

    2005-01-01

    The behavior of macromolecular structures in ionising fields was analyzed by quantum-chemical methods. In this study the primary radiolytic effect was analyzed using a two-step radiolytic mechanism: a) ionisation of molecule and spatial redistribution of atoms in order to reach a minimum value of energy, characteristic to the quantum state; b) neutralisation of the molecule by electron capture and its rapid dissociation into free radicals. Chemical bonds suspected to break are located in the distribution region of LUMO orbital and have minimal homolytic dissociation energies. Representative polymer structures (polyethylene, polypropylene, polystyrene, poly α and β polystyrene, polyisobutylene, polytetrafluoroethylene, poly methylsiloxanes) were analyzed. (authors)

  6. Quantum Chemical Prediction of Equilibrium Acidities of Ureas, Deltamides, Squaramides, and Croconamides.

    Science.gov (United States)

    Ho, Junming; Zwicker, Vincent E; Yuen, Karen K Y; Jolliffe, Katrina A

    2017-10-06

    Robust quantum chemical methods are employed to predict the pK a 's of several families of dual hydrogen-bonding organocatalysts/anion receptors, including deltamides and croconamides as well as their thio derivatives. The average accuracy of these predictions is ∼1 pK a unit and allows for a comparison of the acidity between classes of receptors and for quantitative studies of substituent effects. These computational insights further explain the relationship between pK a and chloride anion affinity of these receptors that will be important for designing future anion receptors and organocatalysts.

  7. Quantum Chemical: New name and focus for National Distillers

    Energy Technology Data Exchange (ETDEWEB)

    Reisch, M.S.

    1988-03-14

    This article explains why the National Distillers and Chemical Corporation has narrowed its focus on petrochemicals and energy. At one time the company had diversified into wine and spirits, insurance, metals, chemicals and energy. However, the company decided to reexamine where its commitments should be. It decided to stick with chemicals and energy because it could be a leader in these fields and not in its other interests. The article explains how the new company, Quantum Chemical, is doing and where it is headed in the future.

  8. Can hydroxylamine be a more potent nucleophile for the reactivation of tabun-inhibited AChE than prototype oxime drugs? An answer derived from quantum chemical and steered molecular dynamics studies.

    Science.gov (United States)

    Lo, Rabindranath; Ganguly, Bishwajit

    2014-07-29

    Organophosphorus nerve agents are highly toxic compounds which strongly inhibit acetylcholinesterase (AChE) in the blood and in the central nervous system (CNS). Tabun is one of the highly toxic organophosphorus (OP) compounds and is resistant to many oxime drugs formulated for the reactivation of AChE. The reactivation mechanism of tabun-conjugated AChE with various drugs has been examined with density functional theory and ab initio quantum chemical calculations. The presence of a lone-pair located on the amidic group resists the nucleophilic attack at the phosphorus center of the tabun-conjugated AChE. We have shown that the newly designed drug candidate N-(pyridin-2-yl)hydroxylamine, at the MP2/6-31+G*//M05-2X/6-31G* level in the aqueous phase with the polarizable continuum solvation model (PCM), is more effective in reactivating the tabun-conjugated AChE than typical oxime drugs. The rate determining activation barrier with N-(pyridin-2-yl)hydroxylamine was found to be ∼1.7 kcal mol(-1), which is 7.2 kcal mol(-1) lower than the charged oxime trimedoxime (one of the most efficient reactivators in tabun poisonings). The greater nucleophilicity index (ω(-)) and higher CHelpG charge of pyridinylhydroxylamine compared to TMB4 support this observation. Furthermore, we have also examined the reactivation process of tabun-inhibited AChE with some other bis-quaternary oxime drug candidates such as methoxime (MMB4) and obidoxime. The docking analysis suggests that charged bis-quaternary pyridinium oximes have greater binding affinity inside the active-site gorge of AChE compared to the neutral pyridinylhydroxylamine. The peripheral ligand attached to the neutral pyridinylhydroxylamine enhanced the binding with the aromatic residues in the active-site gorge of AChE through effective π-π interactions. Steered molecular dynamics (SMD) simulations have also been performed with the charged oxime (TMB4) and the neutral hydroxylamine. From protein-drug interaction

  9. Structural and vibrational spectral investigations of melaminium maleate monohydrate by FTIR, FT-Raman and quantum chemical calculations

    Science.gov (United States)

    Arjunan, V.; Kalaivani, M.; Marchewka, M. K.; Mohan, S.

    2013-04-01

    The structural investigations of the molecular complex of melamine with maleic acid, namely melaminium maleate monohydrate have been carried out by quantum chemical methods in addition to FTIR, FT-Raman and far-infrared spectral studies. The quantum chemical studies were performed with DFT (B3LYP) method using 6-31G**, cc-pVDZ and 6-311++G** basis sets to determine the energy, structural and thermodynamic parameters of melaminium maleate monohydrate. The hydrogen atom from maleic acid was transferred to the melamine molecule giving the singly protonated melaminium cation. The ability of ions to form spontaneous three-dimensional structure through weak Osbnd H⋯O and Nsbnd H⋯O hydrogen bonds shows notable vibrational effects.

  10. Structural and vibrational spectral investigations of melaminium maleate monohydrate by FTIR, FT-Raman and quantum chemical calculations.

    Science.gov (United States)

    Arjunan, V; Kalaivani, M; Marchewka, M K; Mohan, S

    2013-04-15

    The structural investigations of the molecular complex of melamine with maleic acid, namely melaminium maleate monohydrate have been carried out by quantum chemical methods in addition to FTIR, FT-Raman and far-infrared spectral studies. The quantum chemical studies were performed with DFT (B3LYP) method using 6-31G(**), cc-pVDZ and 6-311++G(**) basis sets to determine the energy, structural and thermodynamic parameters of melaminium maleate monohydrate. The hydrogen atom from maleic acid was transferred to the melamine molecule giving the singly protonated melaminium cation. The ability of ions to form spontaneous three-dimensional structure through weak OH···O and NH···O hydrogen bonds shows notable vibrational effects. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Quantum chemical prediction of antennae structures in lanthanide complexes

    International Nuclear Information System (INIS)

    Ottonelli, M.; Musso, G.F.; Rizzo, F.; Dellepiane, G.; Porzio, W.; Destri, S.

    2008-01-01

    In this paper the quantum chemical semiempirical procedure recently proposed by us to predict ground- and excited-state geometries of lanthanide complexes, the pseudo coordination centre method (PCC), is preliminarily compared with the semiempirical sparkle model for the calculation of lanthanide complexes (SMLC). Contrary to the SMLC method, where the rare-earth ion is replaced by a reparameterized sparkle atom, in our approach we replace it with a metal ion which is already present in the chosen semiempirical parameterization. This implies that in the optimization of the geometry of the complexes a different weight is implicitly given to the complex region including the rare-earth ion and its neighbour atoms with respect to the region of the ligands aggregate. As a consequence our approach is expected to reproduce better than the SMLC one the geometry of the ligands aggregate embedded in the complex, while the contrary happens for the coordination distances

  12. In situ synthesis, electrochemical and quantum chemical analysis of an amino acid-derived ionic liquid inhibitor for corrosion protection of mild steel in 1M HCl solution

    International Nuclear Information System (INIS)

    Kowsari, E.; Arman, S.Y.; Shahini, M.H.; Zandi, H.; Ehsani, A.; Naderi, R.; PourghasemiHanza, A.; Mehdipour, M.

    2016-01-01

    Highlights: • Electrochemical analysis of effectiveness of an amino acid-derived ionic liquid inhibitor. • Quantum chemical analysis of effectiveness of an amino acid-derived ionic liquid inhibitor. • Finding correlation between electrochemical analysis and quantum chemical analysis. - Abstract: In this study, an amino acid-derived ionic liquid inhibitor, namely tetra-n-butyl ammonium methioninate, was synthesized and the role this inhibitor for corrosion protection of mild steel exposed to 1.0 M HCl was investigated using electrochemical, quantum and surface analysis. By taking advantage of potentiodynamic polarization, the inhibitory action of tetra-n-butyl ammonium methioninate was found to be mainly mixed-type with dominant anodic inhibition. The effectiveness of the inhibitor was also indicated using electrochemical impedance spectroscopy (EIS). Moreover, to provide further insight into the mechanism of inhibition, electrochemical noise (EN) and quantum chemical calculations of the inhibitor were performed.

  13. Adaptive Neuro-Fuzzy Inference System Applied QSAR with Quantum Chemical Descriptors for Predicting Radical Scavenging Activities of Carotenoids.

    Science.gov (United States)

    Jhin, Changho; Hwang, Keum Taek

    2015-01-01

    One of the physiological characteristics of carotenoids is their radical scavenging activity. In this study, the relationship between radical scavenging activities and quantum chemical descriptors of carotenoids was determined. Adaptive neuro-fuzzy inference system (ANFIS) applied quantitative structure-activity relationship models (QSAR) were also developed for predicting and comparing radical scavenging activities of carotenoids. Semi-empirical PM6 and PM7 quantum chemical calculations were done by MOPAC. Ionisation energies of neutral and monovalent cationic carotenoids and the product of chemical potentials of neutral and monovalent cationic carotenoids were significantly correlated with the radical scavenging activities, and consequently these descriptors were used as independent variables for the QSAR study. The ANFIS applied QSAR models were developed with two triangular-shaped input membership functions made for each of the independent variables and optimised by a backpropagation method. High prediction efficiencies were achieved by the ANFIS applied QSAR. The R-square values of the developed QSAR models with the variables calculated by PM6 and PM7 methods were 0.921 and 0.902, respectively. The results of this study demonstrated reliabilities of the selected quantum chemical descriptors and the significance of QSAR models.

  14. Adaptive Neuro-Fuzzy Inference System Applied QSAR with Quantum Chemical Descriptors for Predicting Radical Scavenging Activities of Carotenoids.

    Directory of Open Access Journals (Sweden)

    Changho Jhin

    Full Text Available One of the physiological characteristics of carotenoids is their radical scavenging activity. In this study, the relationship between radical scavenging activities and quantum chemical descriptors of carotenoids was determined. Adaptive neuro-fuzzy inference system (ANFIS applied quantitative structure-activity relationship models (QSAR were also developed for predicting and comparing radical scavenging activities of carotenoids. Semi-empirical PM6 and PM7 quantum chemical calculations were done by MOPAC. Ionisation energies of neutral and monovalent cationic carotenoids and the product of chemical potentials of neutral and monovalent cationic carotenoids were significantly correlated with the radical scavenging activities, and consequently these descriptors were used as independent variables for the QSAR study. The ANFIS applied QSAR models were developed with two triangular-shaped input membership functions made for each of the independent variables and optimised by a backpropagation method. High prediction efficiencies were achieved by the ANFIS applied QSAR. The R-square values of the developed QSAR models with the variables calculated by PM6 and PM7 methods were 0.921 and 0.902, respectively. The results of this study demonstrated reliabilities of the selected quantum chemical descriptors and the significance of QSAR models.

  15. A quantum-chemical perspective into low optical-gap polymers for highly-efficient organic solar cells

    KAUST Repository

    Risko, Chad

    2011-03-15

    The recent and rapid enhancement in power conversion efficiencies of organic-based, bulk heterojunction solar cells has been a consequence of both improved materials design and better understanding of the underlying physical processes involved in photocurrent generation. In this Perspective, we first present an overview of the application of quantum-chemical techniques to study the intrinsic material properties and molecular- and nano-scale processes involved in device operation. In the second part, these quantum-chemical tools are applied to an oligomer-based study on a collection of donor-acceptor copolymers that have been used in the highest-efficiency solar cell devices reported to date. The quantum-chemical results are found to be in good agreement with the empirical data related to the electronic and optical properties. In particular, they provide insight into the natures of the electronic excitations responsible for the near-infrared/visible absorption profiles, as well as into the energetics of the low-lying singlet and triplet states. These results lead to a better understanding of the inherent differences among the materials, and highlight the usefulness of quantum chemistry as an instrument for material design. Importantly, the results also point to the need to continue the development of integrated, multi scale modeling approaches to provide a thorough understanding of the materials properties. © The Royal Society of Chemistry 2011.

  16. Degradation of Perfluorinated Ether Lubricants on Pure Aluminum Surfaces: Semiempirical Quantum Chemical Modeling

    Science.gov (United States)

    Slaby, Scott M.; Ewing, David W.; Zehe, Michael J.

    1997-01-01

    The AM1 semiempirical quantum chemical method was used to model the interaction of perfluoroethers with aluminum surfaces. Perfluorodimethoxymethane and perfluorodimethyl ether were studied interacting with aluminum surfaces, which were modeled by a five-atom cluster and a nine-atom cluster. Interactions were studied for edge (high index) sites and top (low index) sites of the clusters. Both dissociative binding and nondissociative binding were found, with dissociative binding being stronger. The two different ethers bound and dissociated on the clusters in different ways: perfluorodimethoxymethane through its oxygen atoms, but perfluorodimethyl ether through its fluorine atoms. The acetal linkage of perfluorodimeth-oxymethane was the key structural feature of this molecule in its binding and dissociation on the aluminum surface models. The high-index sites of the clusters caused the dissociation of both ethers. These results are consistent with the experimental observation that perfluorinated ethers decompose in contact with sputtered aluminum surfaces.

  17. Quantum chemical modeling of the inhibition mechanism of monoamine oxidase by oxazolidinone and analogous heterocyclic compounds.

    Science.gov (United States)

    Erdem, Safiye Sağ; Özpınar, Gül Altınbaş; Boz, Ümüt

    2014-02-01

    Monoamine oxidase (MAO, EC 1.4.3.4) is responsible from the oxidation of a variety of amine neurotransmitters. MAO inhibitors are used for the treatment of depression or Parkinson's disease. They also inhibit the catabolism of dietary amines. According to one hypothesis, inactivation results from the formation of a covalent adduct to a cysteine residue in the enzyme. If the adduct is stable enough, the enzyme is inhibited for a long time. After a while, enzyme can turn to its active form as a result of adduct breakdown by β-elimination. In this study, the proposed inactivation mechanism was modeled and tested by quantum chemical calculations. Eight heterocyclic methylthioamine derivatives were selected to represent the proposed covalent adducts. Activation energies related to their β-elimination reactions were calculated using ab initio and density functional theory methods. Calculated activation energies were in good agreement with the relative stabilities of the hypothetical adducts predicted in the literature by enzyme inactivation measurements.

  18. Quantum chemical calculations in the structural analysis of phloretin

    Science.gov (United States)

    Gómez-Zavaglia, Andrea

    2009-07-01

    In this work, a conformational search on the molecule of phloretin [2',4',6'-Trihydroxy-3-(4-hydroxyphenyl)-propiophenone] has been performed. The molecule of phloretin has eight dihedral angles, four of them taking part in the carbon backbone and the other four, related with the orientation of the hydroxyl groups. A systematic search involving a random variation of the dihedral angles has been used to generate input structures for the quantum chemical calculations. Calculations at the DFT(B3LYP)/6-311++G(d,p) level of theory permitted the identification of 58 local minima belonging to the C 1 symmetry point group. The molecular structures of the conformers have been analyzed using hierarchical cluster analysis. This method allowed us to group conformers according to their similarities, and thus, to correlate the conformers' stability with structural parameters. The dendrogram obtained from the hierarchical cluster analysis depicted two main clusters. Cluster I included all the conformers with relative energies lower than 25 kJ mol -1 and cluster II, the remaining conformers. The possibility of forming intramolecular hydrogen bonds resulted the main factor contributing for the stability. Accordingly, all conformers depicting intramolecular H-bonds belong to cluster I. These conformations are clearly favored when the carbon backbone is as planar as possible. The values of the νC dbnd O and νOH vibrational modes were compared among all the conformers of phloretin. The redshifts associated with intramolecular H-bonds were correlated with the H-bonds distances and energies.

  19. Spectral and quantum chemical studies on 1,3-bis(N(1)-4-amino-6-methoxypyrimidinebenzenesulfonamide-2,2,4,4-ethane-1,2-dithiol)-2,4-dichlorocyclodiphosph(V)azane and its erbium complex.

    Science.gov (United States)

    Al-Mogren, Muneerah M; Alaghaz, Abdel-Nasser M A; El-Gogary, Tarek M

    2014-01-24

    Novel 1,3-bis(N(1)-4-amino-6-methoxypyrimidine-benzenesulfonamide-2,2,4,4-ethane-1,2-dithiol)-2,4-dichlorocyclodiphosph(V)azane (L), was prepared and their coordinating behavior towards the lanthanide ion Er(III) was studied. The structures of the isolated products are proposed based on elemental analyses, IR, UV-VIS., (1)H NMR, (13)C NMR, (31)P NMR, SEM, XRD, mass spectra, effective magnetic susceptibility measurements and thermogravimetric analysis (TGA). Computational studies have been carried out at the DFT-B3LYP/6-31G(d) level of theory on the structural and spectroscopic properties of L and its binuclear Er(III) complex. Different tautomers of the ligand were optimized at the ab initio DFT level. Keto-form structure is about 17.7 kcal/mol more stable than the enol form (taking zpe correction into account). Simulated IR frequencies were scaled and compared with that experimentally measured. TD-DFT method was used to compute the UV-VIS spectra which compared by the measured electronic spectra. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Quantum chemical calculations and molecular docking studies of 5-(4-chlorobenzylidene)thiazolidine-2,4-dione(CTD) and its mannich product 5-(4-chlorobenzylidene)-3-(morpholinomethyl)thiazolidine-2,4-dione (CMTD)

    Science.gov (United States)

    Fatma, Shaheen; Bishnoi, Abha; Verma, Anil Kumar; Singh, Vineeta; Srivastava, Krishna

    2018-04-01

    This work presents the synthesis of 5-(4-chlorobenzylidene)thiazolidine-2,4-dione (CTD) by Claisen condensation of thiazolidine-2,4-dione and mannich product of CTD, 5-(4-chlorobenzylidene)-3-(morpholinomethyl)thiazolidine-2,4-dione (CMTD). The static first hyperpolarizability values for thiazolidine-2,4-dione derivatives have been calculated as 10.28 × 10-30 esu for CTD and 19.42 × 10-30 esu for CMTD. The gradual increase in hyperpolarizability values of synthesized thiazolidine-2,4-dione derivatives from CTD to CMTD is due to the blockage of sbnd NH group on CTD by mannich reaction. The structures of these compounds have been derived by spectroscopic(IR, UV, Mass, 1H and 13C NMR) analysis as well as with the help of theoretical studies. The high values of first static hyperpolarizability indicate that the synthesized derivatives are suitable as non-linear optical (NLO) material. CTD with MIC value of 12.5 μg/mL can be developed as an alternative drug for the treatment of enteric fever. Calculated frontier orbital gap values suggest that the CMTD is a soft molecule with high chemical reactivity and is more polarizable as compared to the CTD. Molecular electrostatic potential is calculated for the optimized geometry of the molecules to estimate their chemical reactivity. The inhibitor CTD forms a stable complex with 3-dehydroquinase enzyme of Salmonella typhi. It is evident from the ligand receptor interactions and a binding affinity value of -5.88 kcal/mol and an inhibition constant of 49.22 μM. This is further confirmed by the experimental biological data. The molecular docking studies are supportive of the antibacterial activity of CTD exhibiting high inhibition constant and binding energy.

  1. Difference between ²JC2H3 and ²JC3H2 spin-spin couplings in heterocyclic five- and six-membered rings as a probe for studying σ-ring currents: a quantum chemical analysis.

    Science.gov (United States)

    Contreras, Rubén H; dos Santos, Francisco P; Ducati, Lucas C; Tormena, Cláudio F

    2010-12-01

    Adequate analyses of canonical molecular orbitals (CMOs) can provide rather detailed information on the importance of different σ-Fermi contact (FC) coupling pathways (FC term transmitted through the σ-skeleton). Knowledge of the spatial distribution of CMOs is obtained by expanding them in terms of natural bond orbitals (NBOs). Their relative importance for transmitting the σ-FC contribution to a given spin-spin coupling constants (SSCCs) is estimated by resorting to the expression of the FC term given by the polarisation propagator formalism. In this way, it is possible to classify the effects affecting such couplings in two different ways: delocalisation interactions taking place in the neighbourhood of the coupling nuclei and 'round the ring' effects. The latter, associated with σ-ring currents, are observed to yield significant differences between the FC terms of (2)J(C2H3) and (2)J(C3H2) SSCCs which, consequently, are taken as probes to gauge the differences in σ-ring currents for the five-membered rings (furan, thiophene, selenophene and pyrrol) and also for the six-membered rings (benzene, pyridine, protonated pyridine and N-oxide pyridine) used in the present study. Copyright © 2010 John Wiley & Sons, Ltd.

  2. Quantum-chemical study of the geometric and electronic structure of the chromate anion CrO42- and a chromate group on the surface of finely divided silica by the CNDO/2 method

    International Nuclear Information System (INIS)

    Plyuto, I.V.; Shpak, A.P.; Plyuto, Yu.V.; Chuiko, A.A.

    1989-01-01

    A comparative study of the geometric and electronic structure of the chromate anion CrO 4 2- and a chromate group on the surface of finely divided silica (≡Si-O) 2 - CrO 2 , which was simulated by a CrO 9 Si 6 H 12 cluster, has been carried out by the SCF-MO-LCAO method in the all-valence-electron CNDO/2 approximation. The data obtained on the equilibrium geometry of the chromate group attest to the formation of a double bond between the Cr atom and each O atom (which is not bonded to Si). It has been shown that the support has a significant stabilizing in fluence on the energy of the MO's of the chromate group. The chromate group on an SiO 2 surface is characterized by partial delocalization of the frontier MO's among the skeletal bonds; however, the dominant contribution to the HOMO is made by the 2p AO of the oxygen atoms in the coordination shell of the Cr atom (∼70%), and the dominant contribution to the LUMO is made by the 3d AO of the chromium atom (∼50%). The positions and composition of the lowest unoccupied molecular orbitals point out the possibility of the display of electron-acceptor properties by a chromate group of an SiO 2 surface

  3. Spectroscopic (FT-IR, FT-Raman, NMR and UV-Visible) and quantum chemical studies of molecular geometry, Frontier molecular orbital, NLO, NBO and thermodynamic properties of salicylic acid.

    Science.gov (United States)

    Suresh, S; Gunasekaran, S; Srinivasan, S

    2014-11-11

    The solid phase FT-IR and FT-Raman spectra of 2-hydroxybenzoic acid (salicylic acid) have been recorded in the region 4000-400 and 4000-100 cm(-1) respectively. The optimized molecular geometry and fundamental vibrational frequencies are interpreted with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) method and a comparative study between Hartree Fork (HF) method at 6-311++G(d,p) level basis set. The calculated harmonic vibrational frequencies are scaled and they are compared with experimentally obtained FT-IR and FT-Raman spectra. A detailed interpretation of the vibrational spectra of this compound has been made on the basis of the calculated potential energy distribution (PED). The time dependent DFT method is employed to predict its absorption energy and oscillator strength. The linear polarizability (α) and the first order hyper polarizability (β) values of the investigated molecule have been computed. The electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MEP) are also performed. Stability of the molecule arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Published by Elsevier B.V.

  4. Quantum chemical study of the mechanisms of oxidation of ethylene ...

    Indian Academy of Sciences (India)

    lanl2tz basis set.32–36. Spartan uses a graphical model builder for input preparation. Molecules were constructed and mini- mized interactively using an appropriate molecular mechanics force field. All structural optimizations were done without symmetry restrictions. Normal mode analysis was performed to verify the nature ...

  5. Quantum chemical study of the structure and properties of citrinin

    Science.gov (United States)

    Citrinin is a well known polyketide mycotoxin produced by fungal species that naturally occur in certain agricultural commodities, including red yeast rice. This toxin possesses complex intramolecular hydrogen bonding interactions which influence its mode of action and selective detection. Detailed ...

  6. Experimental and quantum chemical studies on corrosion inhibition ...

    Indian Academy of Sciences (India)

    the metal surface and form barrier film. .... with time may be attributed to the formation of a barrier film, which prevents the ..... high chemical activity and low kinetic stability and is termed ... Physical adsorption of the organic inhibitor on the metal.

  7. Quantum-chemical study of antioxidant additives for jet fuels

    Energy Technology Data Exchange (ETDEWEB)

    Poletaeva, O.Yu. [Ufa State Petroleum Technological Univ., Ufa (Russian Federation); Karimova, R.I. [Bashkir State Agrarian Univ., Ufa (Russian Federation); Movsumzade, E.M. [Institute of Education of Indigenous Small-Numbered Peoples of the North RAE, Moscow (Russian Federation)

    2012-07-01

    To obtain the necessary quality of jet fuels it can be used technological methods (hydrocracking, deep hydration, hydrogenation) that increases the cost of the finished product. The second way is to use less purified raw materials with the introduction of effective additives. Fuels obtained by direct distillation, in ambient air are oxidized with great difficulty and oxidation products accumulate in them is very slow. Fuels derived by hydrogenation processes, have high susceptibility to oxidation, as a result in 1-2 years of storage considerably reduced their quality. Antioxidant additives play an important role in improving the quality of jet fuel. (orig.)

  8. Quantum chemical study of hydroxylation of alkanes by hypofluorous acid

    Czech Academy of Sciences Publication Activity Database

    Ončák, Milan; Srnec, Martin; Zahradník, Rudolf

    2008-01-01

    Roč. 82, č. 4 (2008), s. 649-659 ISSN 0137-5083 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z40550506 Keywords : electronic structure * nonheme iron * basis-set Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.518, year: 2008

  9. Experimental and quantum chemical studies on corrosion inhibition ...

    Indian Academy of Sciences (India)

    in different media (Bentiss et al 2006; Prabhu et al 2007;. Tebbji et al 2007; Avci ... Keeping the above facts in view, in this communication we have introduced two ... tion mixture was poured onto crushed ice; the solid mass thus separated out ...

  10. Quantum chemical study of mechanisms of dissociation and ...

    Indian Academy of Sciences (India)

    ... the electronic spectra of these molecules in terms of nature, energy and intensity of electronic transitions has been ... singlet to an open shell singlet along the reaction course. A search for the ...... 1(n,3s) in the oxygen atom. The numbers in ...

  11. Predicting allergic contact dermatitis: a hierarchical structure activity relationship (SAR) approach to chemical classification using topological and quantum chemical descriptors

    Science.gov (United States)

    Basak, Subhash C.; Mills, Denise; Hawkins, Douglas M.

    2008-06-01

    A hierarchical classification study was carried out based on a set of 70 chemicals—35 which produce allergic contact dermatitis (ACD) and 35 which do not. This approach was implemented using a regular ridge regression computer code, followed by conversion of regression output to binary data values. The hierarchical descriptor classes used in the modeling include topostructural (TS), topochemical (TC), and quantum chemical (QC), all of which are based solely on chemical structure. The concordance, sensitivity, and specificity are reported. The model based on the TC descriptors was found to be the best, while the TS model was extremely poor.

  12. Empirical, thermodynamic and quantum-chemical investigations of inclusion complexation between flavanones and (2-hydroxypropyl)-cyclodextrins.

    Science.gov (United States)

    Liu, Benguo; Li, Wei; Nguyen, Tien An; Zhao, Jian

    2012-09-15

    The inclusion complexation of (2-hydroxypropyl)-cyclodextrins with flavanones was investigated by phase solubility measurements, as well as thermodynamic and quantum chemical methods. Inclusion complexes were formed between (2-hydroxypropyl)-α-cyclodextrin (HP-α-CD), (2-hydroxypropyl)-β-cyclodextrin (HP-β-CD), (2-hydroxypropyl)-γ-cyclodextrin (HP-γ-CD) and β-cyclodextrin (β-CD) and four flavanones (naringenin, naringin, hesperetin and dihydromyricetin) in aqueous solutions and their phase solubility was determined. For all the flavanones, the stability constants of their complexes formed with different CDs followed the rank order: HP-β-CD (MW 1540)>HP-β-CD (MW 1460)>HP-β-CD (MW 1380)>β-CD>HP-γ-CD>HP-α-CD. Experimental results and quantum chemical calculations showed that the ability of flavanones to form inclusion complex with (2-hydroxypropyl)-cyclodextrins was determined by both the steric effect and hydrophobicity of the flavanones. For flavanones that have similar molecular volumes, the hydrophobicity of the molecule was the main determining factor of its ability to form inclusion complexes with HP-β-CD, and the hydrophobicity parameter Log P is highly correlated with the stability constant of the complexes. Results of thermodynamic study demonstrated that hydrophobic interaction is the main driving force for the formation process of the flavanone-CD inclusion complexes. Quantum chemical analysis of the most active hydroxyl groups and HOMO (the highest occupied molecular orbital) showed that the B ring of the flavanones was most likely involved in hydrogen bonding with the side groups in the cavity of the CDs, through which the inclusion complex was stabilised. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Quantum chemical investigation of levofloxacin-boron complexes: A computational approach

    Science.gov (United States)

    Sayin, Koray; Karakaş, Duran

    2018-04-01

    Quantum chemical calculations are performed over some boron complexes with levofloxacin. Boron complex with fluorine atoms are optimized at three different methods (HF, B3LYP and M062X) with 6-31 + G(d) basis set. The best level is determined as M062X/6-31 + G(d) by comparison of experimental and calculated results of complex (1). The other complexes are optimized by using the best level. Structural properties, IR and NMR spectrum are examined in detail. Biological activities of mentioned complexes are investigated by some quantum chemical descriptors and molecular docking analyses. As a result, biological activities of complex (2) and (4) are close to each other and higher than those of other complexes. Additionally, NLO properties of mentioned complexes are investigated by some quantum chemical parameters. It is found that complex (3) is the best candidate for NLO applications.

  14. Quantum chemical modeling of enzymatic reactions: the case of histone lysine methyltransferase.

    Science.gov (United States)

    Georgieva, Polina; Himo, Fahmi

    2010-06-01

    Quantum chemical cluster models of enzyme active sites are today an important and powerful tool in the study of various aspects of enzymatic reactivity. This methodology has been applied to a wide spectrum of reactions and many important mechanistic problems have been solved. Herein, we report a systematic study of the reaction mechanism of the histone lysine methyltransferase (HKMT) SET7/9 enzyme, which catalyzes the methylation of the N-terminal histone tail of the chromatin structure. In this study, HKMT SET7/9 serves as a representative case to examine the modeling approach for the important class of methyl transfer enzymes. Active site models of different sizes are used to evaluate the methodology. In particular, the dependence of the calculated energies on the model size, the influence of the dielectric medium, and the particular choice of the dielectric constant are discussed. In addition, we examine the validity of some technical aspects, such as geometry optimization in solvent or with a large basis set, and the use of different density functional methods. Copyright 2010 Wiley Periodicals, Inc.

  15. Prediction of radical scavenging activities of anthocyanins applying adaptive neuro-fuzzy inference system (ANFIS) with quantum chemical descriptors.

    Science.gov (United States)

    Jhin, Changho; Hwang, Keum Taek

    2014-08-22

    Radical scavenging activity of anthocyanins is well known, but only a few studies have been conducted by quantum chemical approach. The adaptive neuro-fuzzy inference system (ANFIS) is an effective technique for solving problems with uncertainty. The purpose of this study was to construct and evaluate quantitative structure-activity relationship (QSAR) models for predicting radical scavenging activities of anthocyanins with good prediction efficiency. ANFIS-applied QSAR models were developed by using quantum chemical descriptors of anthocyanins calculated by semi-empirical PM6 and PM7 methods. Electron affinity (A) and electronegativity (χ) of flavylium cation, and ionization potential (I) of quinoidal base were significantly correlated with radical scavenging activities of anthocyanins. These descriptors were used as independent variables for QSAR models. ANFIS models with two triangular-shaped input fuzzy functions for each independent variable were constructed and optimized by 100 learning epochs. The constructed models using descriptors calculated by both PM6 and PM7 had good prediction efficiency with Q-square of 0.82 and 0.86, respectively.

  16. Prediction of Radical Scavenging Activities of Anthocyanins Applying Adaptive Neuro-Fuzzy Inference System (ANFIS with Quantum Chemical Descriptors

    Directory of Open Access Journals (Sweden)

    Changho Jhin

    2014-08-01

    Full Text Available Radical scavenging activity of anthocyanins is well known, but only a few studies have been conducted by quantum chemical approach. The adaptive neuro-fuzzy inference system (ANFIS is an effective technique for solving problems with uncertainty. The purpose of this study was to construct and evaluate quantitative structure-activity relationship (QSAR models for predicting radical scavenging activities of anthocyanins with good prediction efficiency. ANFIS-applied QSAR models were developed by using quantum chemical descriptors of anthocyanins calculated by semi-empirical PM6 and PM7 methods. Electron affinity (A and electronegativity (χ of flavylium cation, and ionization potential (I of quinoidal base were significantly correlated with radical scavenging activities of anthocyanins. These descriptors were used as independent variables for QSAR models. ANFIS models with two triangular-shaped input fuzzy functions for each independent variable were constructed and optimized by 100 learning epochs. The constructed models using descriptors calculated by both PM6 and PM7 had good prediction efficiency with Q-square of 0.82 and 0.86, respectively.

  17. Quantum chemical aided prediction of the thermal decomposition mechanisms and temperatures of ionic liquids

    International Nuclear Information System (INIS)

    Kroon, Maaike C.; Buijs, Wim; Peters, Cor J.; Witkamp, Geert-Jan

    2007-01-01

    The long-term thermal stability of ionic liquids is of utmost importance for their industrial application. Although the thermal decomposition temperatures of various ionic liquids have been measured previously, experimental data on the thermal decomposition mechanisms and kinetics are scarce. It is desirable to develop quantitative chemical tools that can predict thermal decomposition mechanisms and temperatures (kinetics) of ionic liquids. In this work ab initio quantum chemical calculations (DFT-B3LYP) have been used to predict thermal decomposition mechanisms, temperatures and the activation energies of the thermal breakdown reactions. These quantum chemical calculations proved to be an excellent method to predict the thermal stability of various ionic liquids

  18. Molecular structure, vibrational analysis (IR and Raman) and quantum chemical investigations of 1-aminoisoquinoline

    Science.gov (United States)

    Sivaprakash, S.; Prakash, S.; Mohan, S.; Jose, Sujin P.

    2017-12-01

    Quantum chemical calculations of energy and geometrical parameters of 1-aminoisoquinoline [1-AIQ] were carried out by using DFT/B3LYP method using 6-311G (d,p), 6-311G++(d,p) and cc-pVTZ basis sets. The vibrational wavenumbers were computed for the energetically most stable, optimized geometry. The vibrational assignments were performed on the basis of potential energy distribution (PED) using VEDA program. The NBO analysis was done to investigate the intra molecular charge transfer of the molecule. The frontier molecular orbital (FMO) analysis was carried out and the chemical reactivity descriptors of the molecule were studied. The Mulliken charge analysis, molecular electrostatic potential (MEP), HOMO-LUMO energy gap and the related properties were also investigated at B3LYP level. The absorption spectrum of the molecule was studied from UV-Visible analysis by using time-dependent density functional theory (TD-DFT). Fourier Transform Infrared spectrum (FT-IR) and Raman spectrum of 1-AIQ compound were analyzed and recorded in the range 4000-400 cm-1 and 3500-100 cm-1 respectively. The experimentally determined wavenumbers were compared with those calculated theoretically and they complement each other.

  19. Quantum chemical spectral characterization of CH2NH2+ for remote sensing of Titan's atmosphere

    Science.gov (United States)

    Thackston, Russell; Fortenberry, Ryan C.

    2018-01-01

    Cassini has shown that CH2NH2+ is likely present in relatively high abundance in Titan's upper atmosphere. Relatively little is known about this molecule even though it contains the same number of electrons as ethylene, a molecule of significance to Titan's chemistry. Any studies on CH2NH2+ with application to Titan or its atmospheric chemistry will have to be done remotely at this point with the end of the fruitful Cassini mission. Consequently, trusted quantum chemical techniques are utilized here to produce the rotational, vibrational, and rovibrational spectroscopic constants for CH2NH2+ for the first time. The methodology produces a tightly fit potential energy surface here that is well-behaved indicating a strong credence in the accuracy for the produced values. Most notably, the 884.1 cm-1 NH2 out-of-plane bend is the brightest of the vibrational frequencies reported here for CH2NH2+ , and an observed and unattributed feature in this spectral region has been documented but never assigned to a molecular carrier. Follow-up IR or radio observations making use of the 540 GHz to 660 GHz range with the 0.45 D molecular dipole moment will have to be undertaken in order to confirm this or any attribution, but the data provided in this work will greatly assist in any such studies related to CH2NH2+.

  20. Synthesis, vibrational and quantum chemical investigations of hydrogen bonded complex betaine dihydrogen selenite

    Science.gov (United States)

    Arjunan, V.; Marchewka, Mariusz K.; Kalaivani, M.

    2012-10-01

    The molecular complex of betaine with selenious acid namely, betaine dihydrogen selenite (C5H13NO5Se, BDHSe) was synthesised by the reaction of betaine and SeO2 in a 1:1:1 solution of isopropanol, methanol and water. Crystals were grown from this solution by cooling to 253 K for few days. The complex was formed without accompanying proton transfer from selenious acid molecule to betaine. The complete vibrational assignments and analysis of BDHSe have been performed by FTIR, FT-Raman and far-infrared spectral studies. More support on the experimental findings was added from the quantum chemical studies performed with DFT (B3LYP) method using 6-311++G∗∗, 6-31G∗∗, cc-pVDZ and 3-21G basis sets. The structural parameters, energies, thermodynamic parameters and the NBO charges of BDHSe were determined by the DFT method. The 1H and 13C isotropic chemical shifts (δ ppm) of BDHSe with respect to TMS were also calculated using the gauge independent atomic orbital (GIAO) method and compared with the experimental data. SHG experiment was carried out using Kurtz-Perry powder technique. The efficiency of second harmonic generation for BDHSe was estimated relatively to KDP: deff = 0.97 deff (KDP).

  1. Molecular Structure of Phenytoin: NMR, UV-Vis and Quantum Chemical Calculations

    Directory of Open Access Journals (Sweden)

    Raluca Luchian

    2015-12-01

    Full Text Available Due to the presence of the carbonyl and imide groups in the structure of 5,5-diphenylhydantoin (DPH, the possibility for this compound to be involved in hydrogen bonding intermolecular interactions is obvious. Even though such interactions are presumably responsible for the mechanism of action of this drug, however, to the best of our knowledge, the self-hydrogen bonding interactions between the DPH monomers have not been addressed till now. Furthermore, studies reporting on the spectroscopic characteristics of this molecule are scarcely reported in the literature. Here we report on the possible dimers of DPH, investigated by quantum chemical calculations at B3LYP/6-31+G(2d,2p level of theory. Twelve unique DPH dimers were structurally optimized in gas-phase, as well as in ethanol and DMSO and then were used to compute the population-averaged UV-Vis and NMR spectra using Boltzmann statistics. UV-Vis and NMR techniques were employed to assess experimentally the spectroscopical response of this compound. DFT calculations are also used to investigate the structural transformations between the solid and liquid phase, as well as for describing the electronic transitions and for the assignment of NMR spectra of DPH.

  2. Recent developments of the quantum chemical cluster approach for modeling enzyme reactions.

    Science.gov (United States)

    Siegbahn, Per E M; Himo, Fahmi

    2009-06-01

    The quantum chemical cluster approach for modeling enzyme reactions is reviewed. Recent applications have used cluster models much larger than before which have given new modeling insights. One important and rather surprising feature is the fast convergence with cluster size of the energetics of the reactions. Even for reactions with significant charge separation it has in some cases been possible to obtain full convergence in the sense that dielectric cavity effects from outside the cluster do not contribute to any significant extent. Direct comparisons between quantum mechanics (QM)-only and QM/molecular mechanics (MM) calculations for quite large clusters in a case where the results differ significantly have shown that care has to be taken when using the QM/MM approach where there is strong charge polarization. Insights from the methods used, generally hybrid density functional methods, have also led to possibilities to give reasonable error limits for the results. Examples are finally given from the most extensive study using the cluster model, the one of oxygen formation at the oxygen-evolving complex in photosystem II.

  3. Quantum chemical approaches: semiempirical molecular orbital and hybrid quantum mechanical/molecular mechanical techniques.

    Science.gov (United States)

    Bryce, Richard A; Hillier, Ian H

    2014-01-01

    The use of computational quantum chemical methods to aid drug discovery is surveyed. An overview of the various computational models spanning ab initio, density function theory, semiempirical molecular orbital (MO), and hybrid quantum mechanical (QM)/molecular mechanical (MM) methods is given and their strengths and weaknesses are highlighted, focussing on the challenge of obtaining the accuracy essential for them to make a meaningful contribution to drug discovery. Particular attention is given to hybrid QM/MM and semiempirical MO methods which have the potential to yield the necessary accurate predictions of macromolecular structure and reactivity. These methods are shown to have advanced the study of many aspects of substrate-ligand interactions relevant to drug discovery. Thus, the successful parametrization of semiempirical MO methods and QM/MM methods can be used to model noncovalent substrate-protein interactions, and to lead to improved scoring functions. QM/MM methods can be used in crystal structure refinement and are particularly valuable for modelling covalent protein-ligand interactions and can thus aid the design of transition state analogues. An extensive collection of examples from the areas of metalloenzyme structure, enzyme inhibition, and ligand binding affinities and scoring functions are used to illustrate the power of these techniques.

  4. Interactions of ionic liquids and acetone: thermodynamic properties, quantum-chemical calculations, and NMR analysis.

    Science.gov (United States)

    Ruiz, Elia; Ferro, Victor R; Palomar, Jose; Ortega, Juan; Rodriguez, Juan Jose

    2013-06-20

    The interactions between ionic liquids (ILs) and acetone have been studied to obtain a further understanding of the behavior of their mixtures, which generally give place to an exothermic process, mutual miscibility, and negative deviation of Raoult's law. COSMO-RS was used as a suitable computational method to systematically analyze the excess enthalpy of IL-acetone systems (>300), in terms of the intermolecular interactions contributing to the mixture behavior. Spectroscopic and COSMO-RS results indicated that acetone, as a polar compound with strong hydrogen bond acceptor character, in most cases, establishes favorable hydrogen bonding with ILs. This interaction is strengthened by the presence of an acidic cation and an anion with dispersed charge and non-HB acceptor character in the IL. COSMO-RS predictions indicated that gas-liquid and vapor-liquid equilibrium data for IL-acetone systems can be finely tuned by the IL selection, that is, acting on the intermolecular interactions between the molecular and ionic species in the liquid phase. NMR measurements for IL-acetone mixtures at different concentrations were also carried out. Quantum-chemical calculations by using molecular clusters of acetone and IL species were finally performed. These results provided additional evidence of the main role played by hydrogen bonding in the behavior of systems containing ILs and HB acceptor compounds, such as acetone.

  5. An FT-Raman, FT-IR, and Quantum Chemical Investigation of Stanozolol and Oxandrolone

    Directory of Open Access Journals (Sweden)

    Tibebe Lemma

    2017-12-01

    Full Text Available We have studied the Fourier Transform Infrared (FT-IR and the Fourier transform Raman (FT-Raman spectra of stanozolol and oxandrolone, and we have performed quantum chemical calculations based on the density functional theory (DFT with a B3LYP/6-31G (d, p level of theory. The FT-IR and FT-Raman spectra were collected in a solid phase. The consistency between the calculated and experimental FT-IR and FT-Raman data indicates that the B3LYP/6-31G (d, p can generate reliable geometry and related properties of the title compounds. Selected experimental bands were assigned and characterized on the basis of the scaled theoretical wavenumbers by their total energy distribution. The good agreement between the experimental and theoretical spectra allowed positive assignment of the observed vibrational absorption bands. Finally, the calculation results were applied to simulate the Raman and IR spectra of the title compounds, which show agreement with the observed spectra.

  6. Complementing high-throughput X-ray powder diffraction data with quantum-chemical calculations

    DEFF Research Database (Denmark)

    Naelapaa, Kaisa; van de Streek, Jacco; Rantanen, Jukka

    2012-01-01

    of piroxicam form III. These combined experimental/quantum-chemical methods can provide access to reliable structural information in the course of an intensive experimentally based solid-form screening activity or in other circumstances wherein single crystals might never be viable, for example, for polymorphs...

  7. In Vivo Anti-Leukemia, Quantum Chemical Calculations and ADMET Investigations of Some Quaternary and Isothiouronium Surfactants

    Directory of Open Access Journals (Sweden)

    Ahmed A. El-Henawy

    2013-04-01

    Full Text Available Anti-leukemia screening of previously prepared isothiouronium and quaternary salts was performed, and some salts exhibited promising activity as anticancer agents. Quantum chemical calculations were utilized to explore the electronic structure and stability of these compounds. Computational studies have been carried out at the PM3 semiempirical molecular orbitals level, to establish the HOMO-LUMO, IP and ESP mapping of these compounds. The ADMET properties were also studied to gain a clear view of the potential oral bioavailability of these compounds. The surface properties calculated included critical micelle concentration (CMC, maximum surface excess (Γmax, minimum surface area (Amin, free energy of micellization (ΔGomic and adsorption (ΔGoads.

  8. DFT simulation, quantum chemical electronic structure, spectroscopic and structure-activity investigations of 2-benzothiazole acetonitrile.

    Science.gov (United States)

    Arjunan, V; Thillai Govindaraja, S; Jose, Sujin P; Mohan, S

    2014-07-15

    The Fourier transform infrared and FT-Raman spectra of 2-benzothiazole acetonitrile (BTAN) have been recorded in the range 4000-450 and 4000-100 cm(-1) respectively. The conformational analysis of the compound has been carried out to obtain the stable geometry of the compound. The complete vibrational assignment and analysis of the fundamental modes of the compound are carried out using the experimental FTIR and FT-Raman data and quantum chemical studies. The experimental vibrational frequencies are compared with the wavenumbers derived theoretically by B3LYP gradient calculations employing the standard 6-31G(**), high level 6-311++G(**) and cc-pVTZ basis sets. The structural parameters, thermodynamic properties and vibrational frequencies of the normal modes obtained from the B3LYP methods are in good agreement with the experimental data. The (1)H (400 MHz; CDCl3) and (13)C (100 MHz;CDCl3) nuclear magnetic resonance (NMR) spectra are also recorded. The electronic properties, the energies of the highest occupied and lowest unoccupied molecular orbitals are measured by DFT approach. The kinetic stability of the molecule has been determined from the frontier molecular orbital energy gap. The charges of the atoms and the structure-chemical reactivity relations of the compound are determined by its chemical potential, global hardness, global softness, electronegativity, electrophilicity and local reactivity descriptors by conceptual DFT methods. The non-linear optical properties of the compound have been discussed by measuring the polarisability and hyperpolarisability tensors. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. A quantum chemical analysis of Zn and Sb doping and co-doping in SnO2

    Directory of Open Access Journals (Sweden)

    Luis Villamagua

    2017-10-01

    Full Text Available This work presents a quantum chemical study of Zn and Sb doping and co-doping in SnO2 carried out by a DFT+U method. The analysis has been developed by introducing three different modifications in the otherwise pure SnO2 system. In the first place, an oxygen vacancy was introduced within the crystal. Following, such a system was doped (separately by Zn or Sb impurities. Finally, the best energetic positions for both Zn and Sb atoms were simultaneously introduced within the lattice. Results of the simulations show that the confined charge that appeared due to the introduction of the oxygen vacancy interacts with the dopants atoms, being this interaction mostly responsible of the observed effects, i.e., EG shrinkage, F-centers formations, and magnetic momentum rise.

  10. Combinatorial computational chemistry approach of tight-binding quantum chemical molecular dynamics method to the design of the automotive catalysts

    International Nuclear Information System (INIS)

    Ito, Yuki; Jung, Changho; Luo, Yi; Koyama, Michihisa; Endou, Akira; Kubo, Momoji; Imamura, Akira; Miyamoto, Akira

    2006-01-01

    Recently, we have developed a new tight-binding quantum chemical molecular dynamics program 'Colors' for combinatorial computational chemistry approach. This methodology is based on our original tight-binding approximation and realized over 5000 times acceleration compared to the conventional first-principles molecular dynamics method. In the present study, we applied our new program to the simulations on various realistic large-scale models of the automotive three-way catalysts, ultrafine Pt particle/CeO 2 (111) support. Significant electron transfer from the Pt particle to the CeO 2 (111) surface was observed and it was found to strongly depend on the size of the Pt particle. Furthermore, our simulation results suggest that the reduction of the Ce atom due to the electron transfer from the Pt particle to the CeO 2 surface is a main reason for the strong interaction of the Pt particle and CeO 2 (111) support

  11. Quantitative structure-activation barrier relationship modeling for Diels-Alder ligations utilizing quantum chemical structural descriptors.

    Science.gov (United States)

    Nandi, Sisir; Monesi, Alessandro; Drgan, Viktor; Merzel, Franci; Novič, Marjana

    2013-10-30

    In the present study, we show the correlation of quantum chemical structural descriptors with the activation barriers of the Diels-Alder ligations. A set of 72 non-catalysed Diels-Alder reactions were subjected to quantitative structure-activation barrier relationship (QSABR) under the framework of theoretical quantum chemical descriptors calculated solely from the structures of diene and dienophile reactants. Experimental activation barrier data were obtained from literature. Descriptors were computed using Hartree-Fock theory using 6-31G(d) basis set as implemented in Gaussian 09 software. Variable selection and model development were carried out by stepwise multiple linear regression methodology. Predictive performance of the quantitative structure-activation barrier relationship (QSABR) model was assessed by training and test set concept and by calculating leave-one-out cross-validated Q2 and predictive R2 values. The QSABR model can explain and predict 86.5% and 80% of the variances, respectively, in the activation energy barrier training data. Alternatively, a neural network model based on back propagation of errors was developed to assess the nonlinearity of the sought correlations between theoretical descriptors and experimental reaction barriers. A reasonable predictability for the activation barrier of the test set reactions was obtained, which enabled an exploration and interpretation of the significant variables responsible for Diels-Alder interaction between dienes and dienophiles. Thus, studies in the direction of QSABR modelling that provide efficient and fast prediction of activation barriers of the Diels-Alder reactions turn out to be a meaningful alternative to transition state theory based computation.

  12. Combined Docking with Classical Force Field and Quantum Chemical Semiempirical Method PM7

    Directory of Open Access Journals (Sweden)

    A. V. Sulimov

    2017-01-01

    Full Text Available Results of the combined use of the classical force field and the recent quantum chemical PM7 method for docking are presented. Initially the gridless docking of a flexible low molecular weight ligand into the rigid target protein is performed with the energy function calculated in the MMFF94 force field with implicit water solvent in the PCM model. Among several hundred thousand local minima, which are found in the docking procedure, about eight thousand lowest energy minima are chosen and then energies of these minima are recalculated with the recent quantum chemical semiempirical PM7 method. This procedure is applied to 16 test complexes with different proteins and ligands. For almost all test complexes such energy recalculation results in the global energy minimum configuration corresponding to the ligand pose near the native ligand position in the crystalized protein-ligand complex. A significant improvement of the ligand positioning accuracy comparing with MMFF94 energy calculations is demonstrated.

  13. Combined Docking with Classical Force Field and Quantum Chemical Semiempirical Method PM7.

    Science.gov (United States)

    Sulimov, A V; Kutov, D C; Katkova, E V; Sulimov, V B

    2017-01-01

    Results of the combined use of the classical force field and the recent quantum chemical PM7 method for docking are presented. Initially the gridless docking of a flexible low molecular weight ligand into the rigid target protein is performed with the energy function calculated in the MMFF94 force field with implicit water solvent in the PCM model. Among several hundred thousand local minima, which are found in the docking procedure, about eight thousand lowest energy minima are chosen and then energies of these minima are recalculated with the recent quantum chemical semiempirical PM7 method. This procedure is applied to 16 test complexes with different proteins and ligands. For almost all test complexes such energy recalculation results in the global energy minimum configuration corresponding to the ligand pose near the native ligand position in the crystalized protein-ligand complex. A significant improvement of the ligand positioning accuracy comparing with MMFF94 energy calculations is demonstrated.

  14. Quantum chemical modeling of antioxidant activity of glutathione interacting with hydroxyl- and superoxide anion radicals

    Directory of Open Access Journals (Sweden)

    N. V. Solovyova

    2015-04-01

    Full Text Available Following the analysis of the results of quantum chemical simulation of interaction between a GSH molecule and oxygen radicals •ОН and •ООˉ, it was found that it takes place through the acid-base mechanism, where GSH acts as a base towards •ОН, and as an acid towards •ООˉ. The results of quantum chemical calculations (electron density redistribution, energy characteristics were correlated at the time of interaction of a GSH molecule with •ОН and •ООˉ with a change of macroscopic parameters of the process of free oxygen radical electroreduction in the presence of GSH (potential and maximum current of reduction waves, which is a direct experimental macroscale evidence of results of the conducted nanoscale theoretical simulation.

  15. Mechanisms of gas phase decomposition of C-nitro compounds from quantum chemical data

    International Nuclear Information System (INIS)

    Khrapkovskii, Grigorii M; Shamov, Alexander G; Nikolaeva, E V; Chachkov, D V

    2009-01-01

    Data on the mechanisms of gas-phase monomolecular decomposition of nitroalkanes, nitroalkenes and nitroarenes obtained using modern quantum chemical methods are described systematically. The attention is focused on the discussion of multistage decomposition of nitro compounds to elementary experimentally observed products. Characteristic features of competition of different mechanisms and the effect of molecular structure on the change in the Arrhenius parameters of the primary reaction step are considered.

  16. Mechanisms of gas phase decomposition of C-nitro compounds from quantum chemical data

    Energy Technology Data Exchange (ETDEWEB)

    Khrapkovskii, Grigorii M; Shamov, Alexander G; Nikolaeva, E V; Chachkov, D V [Kazan State Technological University, Kazan (Russian Federation)

    2009-10-31

    Data on the mechanisms of gas-phase monomolecular decomposition of nitroalkanes, nitroalkenes and nitroarenes obtained using modern quantum chemical methods are described systematically. The attention is focused on the discussion of multistage decomposition of nitro compounds to elementary experimentally observed products. Characteristic features of competition of different mechanisms and the effect of molecular structure on the change in the Arrhenius parameters of the primary reaction step are considered.

  17. Quantum chemical and spectroscopic analysis of calcium hydroxyapatite and related materials

    International Nuclear Information System (INIS)

    Khavryuchenko, V.D.; Khavryuchenko, O.V.; Lisnyak, V.V.

    2007-01-01

    Amorphous calcium hydroxyapatite was examined by vibrational spectroscopy (Raman and infra-red (IR)) and quantum chemical simulation techniques. The structures and vibrational (IR, Raman and inelastic neutron scattering) spectra of PO 4 3- ion, Ca 3 (PO 4 ) 2 , [Ca 3 (PO 4 ) 2 ] 3 , Ca 5 (PO 4 ) 3 OH, CaHPO 4 , [CaHPO 4 ] 2 , Ca 3 (PO 4 ) 2 .H 2 O, Ca 3 (PO 4 ) 2 .2H 2 O and Ca 3 (PO 4 ) 2 .3H 2 O clusters were quantum chemically simulated at ab initio and semiempirical levels of approximation. A complete coordinate analysis of the vibrational spectra was performed. The comparison of the theoretically simulated spectra with the experimental ones allows to identify correctly the phase composition of the amorphous calcium hydroxyapatite and related materials. The shape of the bands in the IR spectra of the hydroxoapatite can be used in order to characterize the structural properties of the material, e.g., the PO 4 3- ion status, the degree of hydrolysis of the material and the presence of hydrolysis products. - Graphical abstract: The structure of the quantum chemically optimized Ca 5 (PO 4 ) 3 (OH) cluster, which was used for vibrations spectra simulation

  18. Chemical Reactivity as Described by Quantum Chemical Methods

    Directory of Open Access Journals (Sweden)

    F. De Proft

    2002-04-01

    Full Text Available Abstract: Density Functional Theory is situated within the evolution of Quantum Chemistry as a facilitator of computations and a provider of new, chemical insights. The importance of the latter branch of DFT, conceptual DFT is highlighted following Parr's dictum "to calculate a molecule is not to understand it". An overview is given of the most important reactivity descriptors and the principles they are couched in. Examples are given on the evolution of the structure-property-wave function triangle which can be considered as the central paradigm of molecular quantum chemistry to (for many purposes a structure-property-density triangle. Both kinetic as well as thermodynamic aspects can be included when further linking reactivity to the property vertex. In the field of organic chemistry, the ab initio calculation of functional group properties and their use in studies on acidity and basicity is discussed together with the use of DFT descriptors to study the kinetics of SN2 reactions and the regioselectivity in Diels Alder reactions. Similarity in reactivity is illustrated via a study on peptide isosteres. In the field of inorganic chemistry non empirical studies of adsorption of small molecules in zeolite cages are discussed providing Henry constants and separation constants, the latter in remarkable good agreement with experiments. Possible refinements in a conceptual DFT context are presented. Finally an example from biochemistry is discussed : the influence of point mutations on the catalytic activity of subtilisin.

  19. A quantum chemical explanation of the antioxidant activity af flavonoids.

    NARCIS (Netherlands)

    van Acker, S.A.B.E.; de Groot, M.J.; van den Berg, D.J.; Tromp, M.N.J.L.; Donné-Op den Kelder, G.M.; van der Vijgh, W.J.F.; Bast, A.

    1996-01-01

    Flavonoids are a group of naturally occurring antioxidants, which over the past years have gained tremendous interest because of their possible therapeutic applicability. The mechanism of their antioxidant activity has been extensively studied over several decades. However, there is still much

  20. Degradation of di(2-ethyl hexyl) phthalate by Fusarium culmorum: Kinetics, enzymatic activities and biodegradation pathway based on quantum chemical modelingpathway based on quantum chemical modeling

    International Nuclear Information System (INIS)

    Ahuactzin-Pérez, Miriam; Tlecuitl-Beristain, Saúl; García-Dávila, Jorge; González-Pérez, Manuel; Gutiérrez-Ruíz, María Concepción; Sánchez, Carmen

    2016-01-01

    Di(2-ethylhexyl) phthalate (DEHP) is a plasticizer widely used in the manufacture of plastics, and it is an environmental contaminant. The specific growth rate (μ), maximum biomass (X_m_a_x), biodegradation constant of DEHP (k), half-life (t_1_/_2) of DEHP biodegradation and removal efficiency of DEHP, esterase and laccase specific activities, and enzymatic yield parameters were evaluated for Fusarium culmorum grown on media containing glucose and different concentrations of DEHP (0, 500 and 1000 mg/L). The greatest μ and the largest X_m_a_x occurred in media supplemented with 1000 mg of DEHP/L. F. culmorum degraded 95% of the highest amount of DEHP tested (1000 mg/L) within 60 h of growth. The k and t_1_/_2 were 0.024 h"−"1 and 28 h, respectively, for both DEHP concentrations. The removal efficiency of DEHP was 99.8% and 99.9% for 1000 and 500 mg/L, respectively. Much higher specific esterase activity than specific laccase activity was observed in all media tested. The compounds of biodegradation of DEHP were identified by GC–MS. A DEHP biodegradation pathway by F. culmorum was proposed on the basis of the intermolecular flow of electrons of the identified intermediate compounds using quantum chemical modeling. DEHP was fully metabolized by F. culmorum with butanediol as the final product. This fungus offers great potential in bioremediation of environments polluted with DEHP. - Highlights: • F. culmorum degraded 95% of DEHP (1000 mg/L) within 60 h. • Removal efficiency of DEHP was 99.8% and 99.9% for 1000 and 500 mg/L, respectively. • DEHP was fully metabolized by F. culmorum, with butanediol as the final product. • A DEHP biodegradation pathway was proposed using on quantum chemical modeling.

  1. Degradation of di(2-ethyl hexyl) phthalate by Fusarium culmorum: Kinetics, enzymatic activities and biodegradation pathway based on quantum chemical modelingpathway based on quantum chemical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ahuactzin-Pérez, Miriam [Doctorado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa (UAM-I) (Mexico); Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, Ixtacuixtla, Tlaxcala (Mexico); Tlecuitl-Beristain, Saúl; García-Dávila, Jorge [Universidad Politécnica de Tlaxcala, San Pedro Xalcatzinco, Tepeyanco, Tlaxcala CP 90180 (Mexico); González-Pérez, Manuel [Universidad Popular Autónoma del Estado de Puebla, Puebla CP 72410 (Mexico); Gutiérrez-Ruíz, María Concepción [Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, D.F (Mexico); Sánchez, Carmen, E-mail: sanher6@hotmail.com [Laboratory of Biotechnology, Research Centre for Biological Sciences, Universidad Autónoma de Tlaxcala, Ixtacuixtla, Tlaxcala CP. 90062 (Mexico)

    2016-10-01

    Di(2-ethylhexyl) phthalate (DEHP) is a plasticizer widely used in the manufacture of plastics, and it is an environmental contaminant. The specific growth rate (μ), maximum biomass (X{sub max}), biodegradation constant of DEHP (k), half-life (t{sub 1/2}) of DEHP biodegradation and removal efficiency of DEHP, esterase and laccase specific activities, and enzymatic yield parameters were evaluated for Fusarium culmorum grown on media containing glucose and different concentrations of DEHP (0, 500 and 1000 mg/L). The greatest μ and the largest X{sub max} occurred in media supplemented with 1000 mg of DEHP/L. F. culmorum degraded 95% of the highest amount of DEHP tested (1000 mg/L) within 60 h of growth. The k and t{sub 1/2} were 0.024 h{sup −1} and 28 h, respectively, for both DEHP concentrations. The removal efficiency of DEHP was 99.8% and 99.9% for 1000 and 500 mg/L, respectively. Much higher specific esterase activity than specific laccase activity was observed in all media tested. The compounds of biodegradation of DEHP were identified by GC–MS. A DEHP biodegradation pathway by F. culmorum was proposed on the basis of the intermolecular flow of electrons of the identified intermediate compounds using quantum chemical modeling. DEHP was fully metabolized by F. culmorum with butanediol as the final product. This fungus offers great potential in bioremediation of environments polluted with DEHP. - Highlights: • F. culmorum degraded 95% of DEHP (1000 mg/L) within 60 h. • Removal efficiency of DEHP was 99.8% and 99.9% for 1000 and 500 mg/L, respectively. • DEHP was fully metabolized by F. culmorum, with butanediol as the final product. • A DEHP biodegradation pathway was proposed using on quantum chemical modeling.

  2. CRITIC2: A program for real-space analysis of quantum chemical interactions in solids

    Science.gov (United States)

    Otero-de-la-Roza, A.; Johnson, Erin R.; Luaña, Víctor

    2014-03-01

    We present CRITIC2, a program for the analysis of quantum-mechanical atomic and molecular interactions in periodic solids. This code, a greatly improved version of the previous CRITIC program (Otero-de-la Roza et al., 2009), can: (i) find critical points of the electron density and related scalar fields such as the electron localization function (ELF), Laplacian, … (ii) integrate atomic properties in the framework of Bader’s Atoms-in-Molecules theory (QTAIM), (iii) visualize non-covalent interactions in crystals using the non-covalent interactions (NCI) index, (iv) generate relevant graphical representations including lines, planes, gradient paths, contour plots, atomic basins, … and (v) perform transformations between file formats describing scalar fields and crystal structures. CRITIC2 can interface with the output produced by a variety of electronic structure programs including WIEN2k, elk, PI, abinit, Quantum ESPRESSO, VASP, Gaussian, and, in general, any other code capable of writing the scalar field under study to a three-dimensional grid. CRITIC2 is parallelized, completely documented (including illustrative test cases) and publicly available under the GNU General Public License. Catalogue identifier: AECB_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECB_v2_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: yes No. of lines in distributed program, including test data, etc.: 11686949 No. of bytes in distributed program, including test data, etc.: 337020731 Distribution format: tar.gz Programming language: Fortran 77 and 90. Computer: Workstations. Operating system: Unix, GNU/Linux. Has the code been vectorized or parallelized?: Shared-memory parallelization can be used for most tasks. Classification: 7.3. Catalogue identifier of previous version: AECB_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 157 Nature of problem: Analysis of quantum-chemical

  3. Some approaches to the quantum-chemical theory of heterogeneous catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Zhidomirov, G M

    1977-09-01

    A discussion of mathematical methods, models, and parameters used in various quantum-chemical descriptions of chemisorption and reaction at silica and aluminosilicate surfaces covers the continuous-surface model, the cluster model of the surface, the variation of pseudo-atom parameters to reduce the magnitude of boundary effects in the cluster model, the calculation of individual bond strengths in chemisorbed molecules, dissociative adsorption, applications to adsorption on silica and aluminosilicates, the mechanisms of hydrogen-deuterium exchange, etc. Diagrams, graphs, and 42 references.

  4. Compensation effects in molecular interactions and the quantum chemical le Chatelier principle.

    Science.gov (United States)

    Mezey, Paul G

    2015-05-28

    Components of molecular interactions and various changes in the components of total energy changes during molecular processes typically exhibit some degrees of compensation. This may be as prominent as the over 90% compensation of the electronic energy and nuclear repulsion energy components of the total energy in some conformational changes. Some of these compensations are enhanced by solvent effects. For various arrangements of ions in a solvent, however, not only compensation but also a formal, mutual enhancement between the electronic energy and nuclear repulsion energy components of the total energy may also occur, when the tools of nuclear charge variation are applied to establish quantum chemically rigorous energy inequalities.

  5. Ab initio quantum chemical calculation as a tool of evaluating diamagnetic susceptibility of magnetically levitating substances

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Y [Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Tanimoto, Y [Faculty of Pharmacy, Osaka Ohtani University, Nishikiorikita, Tondabayashi 584-8540 (Japan)], E-mail: fuji0710@sci.hiroshima-u.ac.jp

    2009-03-01

    On magnetic force evaluation necessary for magnetically levitated diamagnetic substances, isotropic diamagnetic susceptibility estimation by the ab initio quantum chemical calculation using Gaussian03W was verified for more than 300 molecules in a viewpoint of the accuracy in the absolute value and the calculation level affording good cost performance. From comparison, the method of B3PW91 / 6-311+G(d,p) was found to give the adequate absolute value by the relation of (observed) = (1.03 {+-} 0.005) x (calculated) - (1.22 {+-} 0.60) x 10{sup -6} in a unit of cm{sup 3} mol{sup -1} and good cost performance.

  6. Ab initio quantum chemical calculation as a tool of evaluating diamagnetic susceptibility of magnetically levitating substances

    International Nuclear Information System (INIS)

    Fujiwara, Y; Tanimoto, Y

    2009-01-01

    On magnetic force evaluation necessary for magnetically levitated diamagnetic substances, isotropic diamagnetic susceptibility estimation by the ab initio quantum chemical calculation using Gaussian03W was verified for more than 300 molecules in a viewpoint of the accuracy in the absolute value and the calculation level affording good cost performance. From comparison, the method of B3PW91 / 6-311+G(d,p) was found to give the adequate absolute value by the relation of (observed) = (1.03 ± 0.005) x (calculated) - (1.22 ± 0.60) x 10 -6 in a unit of cm 3 mol -1 and good cost performance.

  7. Evaluation of the catalytic mechanism of AICAR transformylase by pH-dependent kinetics, mutagenesis, and quantum chemical calculations.

    Science.gov (United States)

    Shim, J H; Wall, M; Benkovic, S J; Díaz, N; Suárez, D; Merz, K M

    2001-05-23

    The catalytic mechanism of 5-aminoimidazole-4-carboxamide ribonucleotide transformylase (AICAR Tfase) is evaluated with pH dependent kinetics, site-directed mutagenesis, and quantum chemical calculations. The chemistry step, represented by the burst rates, was not pH-dependent, which is consistent with our proposed mechanism that the 4-carboxamide of AICAR assists proton shuttling. Quantum chemical calculations on a model system of 5-amino-4-carboxamide imidazole (AICA) and formamide using the B3LYP/6-31G level of theory confirmed that the 4-carboxamide participated in the proton-shuttling mechanism. The result also indicated that the amide-assisted mechanism is concerted such that the proton transfers from the 5-amino group to the formamide are simultaneous with nucleophilic attack by the 5-amino group. Because the process does not lead to a kinetically stable intermediate, the intramolecular proton transfer from the 5-amino group through the 4-carboxamide to the formamide proceeds in the same transition state. Interestingly, the calculations predicted that protonation of the N3 of the imidazole of AICA would reduce the energy barrier significantly. However, the pK(a) of the imidazole of AICAR was determined to be 3.23 +/- 0.01 by NMR titration, and AICAR is likely to bind to the enzyme with its imidazole in the free base form. An alternative pathway was suggested by modeling Lys266 to have a hydrogen-bonding interaction with the N3 of the imidazole of AICAR. Lys266 has been implicated in catalysis based on mutagenesis studies and the recent X-ray structure of AICAR Tfase. The quantum chemical calculations on a model system that contains AICA complexed with CH3NH3+ as a mimic of the Lys residue confirmed that such an interaction lowered the activation energy of the reaction and likewise implicated the 4-carboxamide. To experimentally verify this hypothesis, we prepared the K266R mutant and found that its kcat is reduced by 150-fold from that of the wild type

  8. Include dispersion in quantum chemical modeling of enzymatic reactions: the case of isoaspartyl dipeptidase.

    Science.gov (United States)

    Zhang, Hai-Mei; Chen, Shi-Lu

    2015-06-09

    The lack of dispersion in the B3LYP functional has been proposed to be the main origin of big errors in quantum chemical modeling of a few enzymes and transition metal complexes. In this work, the essential dispersion effects that affect quantum chemical modeling are investigated. With binuclear zinc isoaspartyl dipeptidase (IAD) as an example, dispersion is included in the modeling of enzymatic reactions by two different procedures, i.e., (i) geometry optimizations followed by single-point calculations of dispersion (approach I) and (ii) the inclusion of dispersion throughout geometry optimization and energy evaluation (approach II). Based on a 169-atom chemical model, the calculations show a qualitative consistency between approaches I and II in energetics and most key geometries, demonstrating that both approaches are available with the latter preferential since both geometry and energy are dispersion-corrected in approach II. When a smaller model without Arg233 (147 atoms) was used, an inconsistency was observed, indicating that the missing dispersion interactions are essentially responsible for determining equilibrium geometries. Other technical issues and mechanistic characteristics of IAD are also discussed, in particular with respect to the effects of Arg233.

  9. Quantum chemical molecular dynamical investigation of alkyl nitrite photo-dissociated on copper surfaces

    International Nuclear Information System (INIS)

    Wang Xiaojing; Wang Wei; Han Peilin; Kubo, Momoji; Miyamoto, Akira

    2008-01-01

    An accelerated quantum chemical molecular dynamical code 'Colors-Excite' was used to investigate the photolysis of alkyl nitrites series, RONO (R=CH 3 and C(CH 3 ) 3 ) on copper surfaces. Our calculations showed that the photo-dissociated processes are associated with the alkyl substituents of RONO when adsorbed on copper surfaces. For R=CH 3 , a two-step photolysis reaction occurred, yielding diverse intermediate products including RO radical, NO, and HNO, consistent with those reported in gas phase. While for R=C(CH 3 ) 3 , only one-step photolysis reaction occurred and gave intermediate products of RO radical and NO. Consequently, pure RO species were achieved to adsorb on metal surfaces by removing the NO species in photolysis reaction. The detailed photo-dissociated behaviors of RONO on copper surfaces with different alkyl substituents which are uncovered by the present simulation can be extended to explain the diverse dissociative mechanism experimentally observed. The quantum chemical molecular dynamical code 'Colors-Excite' is proved to be highly applicable to the photo-dissociations on metal surfaces

  10. Molecular dynamic and quantum chemical calculations for phthalazine derivatives as corrosion inhibitors of mild steel in 1 M HCl

    Energy Technology Data Exchange (ETDEWEB)

    Musa, Ahmed Y., E-mail: AMUSA6@UWO.CA [Department of Chemistry, University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 5B7 (Canada); Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, Bangi, 43600 Selangor (Malaysia); Jalgham, Ramzi T.T.; Mohamad, Abu Bakar [Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, Bangi, 43600 Selangor (Malaysia)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer The inhibition of three phthalazine derivatives was studied. Black-Right-Pointing-Pointer The inhibition efficiency increased in the following order: PTD < PT < PTO. Black-Right-Pointing-Pointer The adsorption energies were calculated using molecular dynamics simulations. Black-Right-Pointing-Pointer Quantum chemical parameters were calculated using the AM1, MNDO and PM3 methods. Black-Right-Pointing-Pointer The adsorption of phthalazine derivatives obeys the Langmuir adsorption isotherm. - Abstract: The abilities of phthalazine derivatives, including phthalazine (PT), phthalazone (PTO) and phthalhydrazide (PTD), to inhibit the corrosion of mild steel in 1 M HCl at 30 Degree-Sign C were studied using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements. Theoretical calculations were performed to investigate the electronic structures of the PT derivatives. Our results showed that the inhibition efficiencies of these derivatives improved with increases in concentration. The data also showed that PTD < PT < PTO in terms of the inhibiting efficiency. Theoretical calculations also revealed that PTO is expected to be the best inhibitor among the studied phthalazine derivatives.

  11. X-ray diffraction, vibrational and quantum chemical investigations of 2-methyl-4-nitroanilinium trichloroacetate trichloroacetic acid

    Science.gov (United States)

    Arjunan, V.; Marchewka, Mariusz K.; Pietraszko, A.; Kalaivani, M.

    2012-11-01

    The structural investigations of the molecular complex of 2-methyl-4-nitroaniline with trichloroacetic acid, namely 2-methyl-4-nitroanilinium trichloroacetate trichloroacetic acid (C11H10Cl6N2O6) have been performed by means of single crystal and powder X-ray diffraction method. The complex was formed with accompanying proton transfer from trichloroacetic acid molecule to 2-methyl-4-nitroaniline. The studied crystal is built up of singly protonated 2-methyl-4-nitroanilinium cations, trichloroacetate anions and neutral trichloroacetic acid molecules. The crystals are monoclinic, space group P21/c, with a = 14.947 Å, b = 6.432 Å, c = 19.609 Å and Z = 4. The vibrational assignments and analysis of 2-methyl-4-nitroanilinium trichloroacetate trichloroacetic acid have also been performed by FTIR, FT-Raman and far-infrared spectral studies. More support on the experimental findings were added from the quantum chemical studies performed with DFT (B3LYP) method using 6-31G**, cc-pVDZ, 6-31G and 6-31++G basis sets. The structural parameters, energies, thermodynamic parameters and the NBO charges of 2M4NATCA were also determined by the DFT methods.

  12. Diversion of the melanin synthetic pathway by dopamine product scavengers: A quantum chemical modeling of the reaction mechanisms

    Directory of Open Access Journals (Sweden)

    T. B. Demissie

    2017-01-01

    Full Text Available We report the stability and reactivity of the oxidation products as well as L-cysteine and N-acetylcysteine adducts of dopamine studied using quantum chemical calculations. The overall reactions studied were subdivided into four reaction channels. The first reaction channel is the oxidation of dopamine to form dopaminoquinone. The second reaction channel leads to melanin formation through subsequent reactions. The third and fourth reaction channels are reactions leading to the formation of dopaminoquinone adducts which are aimed to divert the synthesis of melanin. The results indicate that L-cysteine and N-acetylcysteine undergo chemical reactions mainly at C5 position of dopaminoquinone. The analyses of the thermodynamic energies indicate that L-cysteine and N-acetylcysteine covalently bind to dopaminoquinone by competing with the internal cyclization reaction of dopaminoquinone which leads to the synthesis of melanin. The analysis of the results, based on the reaction free energies, is also supported by the investigation of the natural bond orbitals of the reactants and products.

  13. Calculation of 0-0 excitation energies of organic molecules by CIS(D) quantum chemical methods

    International Nuclear Information System (INIS)

    Grimme, Stefan; Izgorodina, Ekaterina I.

    2004-01-01

    The accuracy and reliability of the CIS(D) quantum chemical method and a spin-component scaled variant (SCS-CIS(D)) are tested for calculating 0-0 excitation energies of organic molecules. The ground and excited state geometries and the vibrational zero-point corrections are taken from (TD)DFT-B3LYP calculations. In total 32 valence excited states of different character are studied: π → π* states of polycyclic aromatic compounds/polyenes and n → π* states of carbonyl, thiocarbonyl and aza(azo)-aromatic compounds. This set is augmented by two systems of special interest, i.e., indole and the TICT state of dimethylaminbenzonitrile (DMABN). Both methods predict excitation energies that are on average higher than experiment by about 0.2 eV. The errors are found to be quite systematic (with a standard deviation of about 0.15 eV) and especially SCS-CIS(D) provides a more balanced treatment of π → π* vs. n → π* states. For the test suite of states, both methods clearly outperform the (TD)DFT-B3LYP approach. Opposed to previous conclusions about the performance of CIS(D), these methods can be recommended as reliable and efficient tools for computational studies of excited state problems in organic chemistry. In order to obtain conclusive results, however, the use of optimized excited state geometries and comparison with observables (0-0 excitation energies) are necessary

  14. Cation solvation with quantum chemical effects modeled by a size-consistent multi-partitioning quantum mechanics/molecular mechanics method.

    Science.gov (United States)

    Watanabe, Hiroshi C; Kubillus, Maximilian; Kubař, Tomáš; Stach, Robert; Mizaikoff, Boris; Ishikita, Hiroshi

    2017-07-21

    In the condensed phase, quantum chemical properties such as many-body effects and intermolecular charge fluctuations are critical determinants of the solvation structure and dynamics. Thus, a quantum mechanical (QM) molecular description is required for both solute and solvent to incorporate these properties. However, it is challenging to conduct molecular dynamics (MD) simulations for condensed systems of sufficient scale when adapting QM potentials. To overcome this problem, we recently developed the size-consistent multi-partitioning (SCMP) quantum mechanics/molecular mechanics (QM/MM) method and realized stable and accurate MD simulations, using the QM potential to a benchmark system. In the present study, as the first application of the SCMP method, we have investigated the structures and dynamics of Na + , K + , and Ca 2+ solutions based on nanosecond-scale sampling, a sampling 100-times longer than that of conventional QM-based samplings. Furthermore, we have evaluated two dynamic properties, the diffusion coefficient and difference spectra, with high statistical certainty. Furthermore the calculation of these properties has not previously been possible within the conventional QM/MM framework. Based on our analysis, we have quantitatively evaluated the quantum chemical solvation effects, which show distinct differences between the cations.

  15. Quantum chemical analysis of binary and ternary ferromagnetic alloys; Quantenchemische Untersuchungen binaerer und ternaerer ferromagnetischer Legierungen

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Yasemin Erika Charlotte

    2007-02-23

    In this work the electronic structures, densities of states, chemical bonding, magnetic exchange Parameters and Curie temperatures of binary and ternary ferromagnetic alloys are analyzed. The electronic structure of ferromagnetic MnAl has been calculated using density-functional techniques (TB-LMTO-ASA, FPLAPW) and quantum chemically analyzed by means of the crystal orbital Hamilton population analysis. The crystal structure of the ferromagnetic tetragonal MnAl may be understood to originate from the structure of nonmagnetic cubic MnAl with a CsCl motif through a two-step process. While the nonmagnetic cubic structure is stable against a structural deformation, antibonding Mn-Mn interactions at the Fermi level lead to spin polarization and the onset of magnetism, i.e., a symmetry reduction taking place solely in the electronic degrees of freedom, by that emptying antibonding Mn-Mn states. Residual antibonding Al--Al states can only be removed by a subsequent, energetically smaller structural deformation towards the tetragonal system. As a final result, homonuclear bonding is strengthened and heteronuclear bonding is weakened. Corresponding DFT calculations of the electronic structure as well as the calculation of the chemical bonding and the magnetic exchange interactions have been performed on the basis of LDA and GGA for a series of ferromagnetic full Heusler alloys of general formula Co2MnZ (Z=Ga,Si,Ge,Sn), Rh2MnZ (Z=Ge,Sn,Pb), Ni2MnZ (Z=Ga,In,Sn), Pd2MnZ (Z=Sn,Sb) and Cu2MnZ (Z=Al,In,Sn). The connection between the electronic spectra and the magnetic interactions have been studied. Correlations between the chemical bondings in Heusler alloys derived from COHP analysis and magnetic phenomena are obvious, and different mechanisms leading to spin polarization and ferromagnetism are derived. The band dependence of the exchange parameters, their dependence on volume and valence electron concentration have been thoroughly analyzed within the Green function technique

  16. Elucidation of Mechanisms and Selectivities of Metal-Catalyzed Reactions using Quantum Chemical Methodology.

    Science.gov (United States)

    Santoro, Stefano; Kalek, Marcin; Huang, Genping; Himo, Fahmi

    2016-05-17

    Quantum chemical techniques today are indispensable for the detailed mechanistic understanding of catalytic reactions. The development of modern density functional theory approaches combined with the enormous growth in computer power have made it possible to treat quite large systems at a reasonable level of accuracy. Accordingly, quantum chemistry has been applied extensively to a wide variety of catalytic systems. A huge number of problems have been solved successfully, and vast amounts of chemical insights have been gained. In this Account, we summarize some of our recent work in this field. A number of examples concerned with transition metal-catalyzed reactions are selected, with emphasis on reactions with various kinds of selectivities. The discussed cases are (1) copper-catalyzed C-H bond amidation of indoles, (2) iridium-catalyzed C(sp(3))-H borylation of chlorosilanes, (3) vanadium-catalyzed Meyer-Schuster rearrangement and its combination with aldol- and Mannich-type additions, (4) palladium-catalyzed propargylic substitution with phosphorus nucleophiles, (5) rhodium-catalyzed 1:2 coupling of aldehydes and allenes, and finally (6) copper-catalyzed coupling of nitrones and alkynes to produce β-lactams (Kinugasa reaction). First, the methodology adopted in these studies is presented briefly. The electronic structure method in the great majority of these kinds of mechanistic investigations has for the last two decades been based on density functional theory. In the cases discussed here, mainly the B3LYP functional has been employed in conjunction with Grimme's empirical dispersion correction, which has been shown to improve the calculated energies significantly. The effect of the surrounding solvent is described by implicit solvation techniques, and the thermochemical corrections are included using the rigid-rotor harmonic oscillator approximation. The reviewed examples are chosen to illustrate the usefulness and versatility of the adopted methodology in

  17. Elucidating Direct Photolysis Mechanisms of Different Dissociation Species of Norfloxacin in Water and Mg2+ Effects by Quantum Chemical Calculations.

    Science.gov (United States)

    Wang, Se; Wang, Zhuang

    2017-11-11

    The study of pollution due to combined antibiotics and metals is urgently needed. Photochemical processes are an important transformation pathway for antibiotics in the environment. The mechanisms underlying the effects of metal-ion complexation on the aquatic photochemical transformation of antibiotics in different dissociation forms are crucial problems in science, and beg solutions. Herein, we investigated the mechanisms of direct photolysis of norfloxacin (NOR) in different dissociation forms in water and metal ion Mg 2+ effects using quantum chemical calculations. Results show that different dissociation forms of NOR had different maximum electronic absorbance wavelengths (NOR 2+ direct photolysis pathways were de-ethylation (N7-C8 bond cleavage) and decarboxylation (C2-C5 bond cleavage). Furthermore, the presence of Mg 2+ changed the order of the wavelength at maximum electronic absorbance (NOR⁺-Mg 2+ direct photolysis of NOR⁰, NOR⁺, and NOR 2+ . The calculated TS results indicated that the presence of Mg 2+ increased E a for most direct photolysis pathways of NOR, while it decreased E a for some direct photolysis pathways such as the loss of the piperazine ring and the damage of the piperazine ring of NOR⁰ and the defluorination of NOR⁺.

  18. The molecular structure of 4-methylpyridine-N-oxide: Gas-phase electron diffraction and quantum chemical calculations

    Science.gov (United States)

    Belova, Natalya V.; Girichev, Georgiy V.; Kotova, Vitaliya E.; Korolkova, Kseniya A.; Trang, Nguyen Hoang

    2018-03-01

    The molecular structure of 4-methylpiridine-N-oxide, 4-MePyO, has been studied by gas-phase electron diffraction monitored by mass spectrometry (GED/MS) and quantum chemical (DFT) calculations. Both, quantum chemistry and GED analyses resulted in CS molecular symmetry with the planar pyridine ring. Obtained molecular parameters confirm the hyperconjugation in the pyridine ring and the sp2 hybridization concept of the nitrogen and carbon atoms in the ring. The experimental geometric parameters are in a good agreement with the parameters for non-substituted N-oxide and reproduced very closely by DFT calculations. The presence of the electron-donating CH3 substituent in 4-MePyO leads to a decrease of the ipso-angle and to an increase of r(N→O) in comparison with the non-substituted PyO. Electron density distribution analysis has been performed in terms of natural bond orbitals (NBO) scheme. The nature of the semipolar N→O bond is discussed.

  19. Structure, vibrations and quantum chemical investigations of hydrogen bonded complex of bis(1-hydroxy-2-methylpropan-2-aminium)selenate

    Science.gov (United States)

    Thirunarayanan, S.; Arjunan, V.; Marchewka, M. K.; Mohan, S.

    2017-04-01

    The hydrogen bonded molecular complex bis(1-hydroxy-2-methylpropan-2-aminium)selenate (C8H24N2O6Se) has been prepared by the reaction of 2-amino-2-methyl propanol and selenic acid. The X-ray diffraction analysis revealed that the intermolecular proton transfer from selenic acid (SeO4H2) to 2-amino-2-methylpropanol results in the formation of bis(1-hydroxy-2-methylpropan-2-aminium)selenate (HMPAS) salt and the fragments are connected through H-bonding and ion pairing. The N-H⋯O and O-H⋯O interactions between 2-amino-2-methylpropanol and selenic acid determine the supramolecular arrangement in three-dimensional space. The salt crystallises in the space group P121/n1 of monoclinic system. The complete vibrational assignments of HMPAS have been performed by FTIR and FT-Raman spectroscopy. The experimental data are correlated with the structural properties namely the energy, thermodynamic parameters, atomic charges, hybridization concepts and vibrational frequencies determined by quantum chemical studies performed with B3LYP method using 6-311++G*, 6-31+G* and 6-31G** basis sets.

  20. QSAR analysis of salicylamide isosteres with the use of quantum chemical molecular descriptors.

    Science.gov (United States)

    Dolezal, R; Van Damme, S; Bultinck, P; Waisser, K

    2009-02-01

    Quantitative relationships between the molecular structure and the biological activity of 49 isosteric salicylamide derivatives as potential antituberculotics with a new mechanism of action against three Mycobacterial strains were investigated. The molecular structures were represented by quantum chemical B3LYP/6-31G( *) based molecular descriptors. A resulting set of 220 molecular descriptors, including especially electronic properties, was statistically analyzed using multiple linear regression, resulting in acceptable and robust QSAR models. The best QSAR model was found for Mycobacterium tuberculosis (r(2)=0.92; q(2)=0.89), and somewhat less good QSAR models were found for Mycobacterium avium (r(2)=0.84; q(2)=0.78) and Mycobacterium kansasii (r(2)=0.80; q(2)=0.56). All QSAR models were cross-validated using the leave-10-out procedure.

  1. Quantum chemical simulation of hydrogen like states in silicon and diamond

    International Nuclear Information System (INIS)

    Gel'fand, R.B.; Gordeev, V.A.; Gorelkinskij, Yu.V.

    1989-01-01

    The quantum-chemical methods of the complete neglect of differential overlap (CNDO) and intermediate neglect of differential overlap (INDO) are used to calculate the electronic structure of atomic hydrogen (muonium) located at different interstital sites of the silicon and diamond crystal lattices. The electronic g- and hyperfine interaction tensors of the impure atom are determined.The results obtained are compared with the experimental data on the 'normal' (Mu') and 'anomalous' (Mu * ) muonium centers as well as on the hydrogen-bearing Si-AA9 EPR center which is a hydrogen-bearing analogue of (Mu * ). The most likely localization sites for hydrogen (muonium) atoms in silicon and diamond crystals are established. 22 refs

  2. Semiempirical Quantum Chemical Calculations Accelerated on a Hybrid Multicore CPU-GPU Computing Platform.

    Science.gov (United States)

    Wu, Xin; Koslowski, Axel; Thiel, Walter

    2012-07-10

    In this work, we demonstrate that semiempirical quantum chemical calculations can be accelerated significantly by leveraging the graphics processing unit (GPU) as a coprocessor on a hybrid multicore CPU-GPU computing platform. Semiempirical calculations using the MNDO, AM1, PM3, OM1, OM2, and OM3 model Hamiltonians were systematically profiled for three types of test systems (fullerenes, water clusters, and solvated crambin) to identify the most time-consuming sections of the code. The corresponding routines were ported to the GPU and optimized employing both existing library functions and a GPU kernel that carries out a sequence of noniterative Jacobi transformations during pseudodiagonalization. The overall computation times for single-point energy calculations and geometry optimizations of large molecules were reduced by one order of magnitude for all methods, as compared to runs on a single CPU core.

  3. Prediction of monomer reactivity in radical copolymerizations from transition state quantum chemical descriptors

    Directory of Open Access Journals (Sweden)

    Zhengde Tan

    2013-01-01

    Full Text Available In comparison with the Q-e scheme, the Revised Patterns Scheme: the U, V Version (the U-V scheme has greatly improved both its accessibility and its accuracy in interpreting and predicting the reactivity of a monomer in free-radical copolymerizations. Quantitative structure-activity relationship (QSAR models were developed to predict the reactivity parameters u and v of the U-V scheme, by applying genetic algorithm (GA and support vector machine (SVM techniques. Quantum chemical descriptors used for QSAR models were calculated from transition state species with structures C¹H3 - C²HR³• or •C¹H2 - C²H2R³ (formed from vinyl monomers C¹H²=C²HR³ + H•, using density functional theory (DFT, at the UB3LYP level of theory with 6-31G(d basis set. The optimum support vector regression (SVR model of the reactivity parameter u based on Gaussian radial basis function (RBF kernel (C = 10, ε = 10- 5 and γ = 1.0 produced root-mean-square (rms errors for the training, validation and prediction sets being 0.220, 0.326 and 0.345, respectively. The optimal SVR model for v with the RBF kernel (C = 20, ε = 10- 4 and γ = 1.2 produced rms errors for the training set of 0.123, the validation set of 0.206 and the prediction set of 0.238. The feasibility of applying the transition state quantum chemical descriptors to develop SVM models for reactivity parameters u and v in the U-V scheme has been demonstrated.

  4. Quantum-Chemical Electron Densities of Proteins and of Selected Protein Sites from Subsystem Density Functional Theory

    NARCIS (Netherlands)

    Kiewisch, K.; Jacob, C.R.; Visscher, L.

    2013-01-01

    The ability to calculate accurate electron densities of full proteins or of selected sites in proteins is a prerequisite for a fully quantum-mechanical calculation of protein-protein and protein-ligand interaction energies. Quantum-chemical subsystem methods capable of treating proteins and other

  5. Thermal transformation of bioactive caffeic acid on fumed silica seen by UV-Vis spectroscopy, thermogravimetric analysis, temperature programmed desorption mass spectrometry and quantum chemical methods.

    Science.gov (United States)

    Kulik, Tetiana V; Lipkovska, Natalia O; Barvinchenko, Valentyna M; Palyanytsya, Borys B; Kazakova, Olga A; Dudik, Olesia O; Menyhárd, Alfréd; László, Krisztina

    2016-05-15

    Thermochemical studies of hydroxycinnamic acid derivatives and their surface complexes are important for the pharmaceutical industry, medicine and for the development of technologies of heterogeneous biomass pyrolysis. In this study, structural and thermal transformations of caffeic acid complexes on silica surfaces were studied by UV-Vis spectroscopy, thermogravimetric analysis, temperature programmed desorption mass spectrometry (TPD MS) and quantum chemical methods. Two types of caffeic acid surface complexes are found to form through phenolic or carboxyl groups. The kinetic parameters of the chemical reactions of caffeic acid on silica surface are calculated. The mechanisms of thermal transformations of the caffeic chemisorbed surface complexes are proposed. Thermal decomposition of caffeic acid complex chemisorbed through grafted ester group proceeds via three parallel reactions, producing ketene, vinyl and acetylene derivatives of 1,2-dihydroxybenzene. Immobilization of phenolic acids on the silica surface improves greatly their thermal stability. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Molecular structure of tris(cyclopropylsilyl)amine as determined by gas electron diffraction and quantum-chemical calculations

    Science.gov (United States)

    Vishnevskiy, Yuri V.; Abaev, Maxim A.; Ivanov, Arkadii A.; Vilkov, Lev V.; Dakkouri, Marwan

    2008-10-01

    The molecular structure and conformation of tris(cyclopropylsilyl)amine (TCPSA) has been studied by means of gas-phase electron diffraction at 338 K and quantum-chemical calculations. A total of 12 relatively stable conformations of TCPSA molecule were considered. According to the experimental results and the DFT calculations the most stable conformer corresponds to a configuration (according to the Prelog-Klyne notation) of the type (-ac)(-ac)(+ac)-(-ac)(-ac)(+ac), where the first three parentheses describe the three different Si-N-Si-C torsional angles and the latter ones depict the rotation of the three cyclopropyl groups about the C ring-Si axes, respectively. The quantum-mechanical calculations were performed using various density functional (B3LYP, X3LYP and O3LYP) and perturbation MP2 methods in combination with double- and triple- ζ basis sets plus polarization and diffuse functions. The most important experimental geometrical parameters of TCPSA ( ra Å, ∠ h1 degrees) are: (Si-N) av = 1.741(3), (Si-C) av = 1.866(4), (C-C) av = 1.510(3), (C-C(Si)) av = 1.535(3), (N-Si-C) av = 115.1(18)°. For the purpose of comparison and searching for reasons leading to the planarity of the Si 3N moiety in trisilylated amines we carried out NBO analysis and optimized the geometries of numerous silylamines. Among these compounds was tris(allylsilyl)amine (TASA), which is isovalent and isoelectronic to TCPSA. Utilizing the structural results we obtained we could show that Si +⋯Si + electrostatic repulsive interaction is predominantly responsible for the planarity of the Si 3N skeleton in TCPSA and in all other trisilylamines we considered. We also found that regardless the size and partial charges of the substituents the Si-N-Si bond angle in various disilylamines amounts to 130 ± 2°.

  7. Isolation, characterization, spectroscopic properties and quantum chemical computations of an important phytoalexin resveratrol as antioxidant component from Vitis labrusca L. and their chemical compositions

    Science.gov (United States)

    Güder, Aytaç; Korkmaz, Halil; Gökce, Halil; Alpaslan, Yelda Bingöl; Alpaslan, Gökhan

    2014-12-01

    In this study, isolation and characterization of trans-resveratrol (RES) as an antioxidant compound were carried out from VLE, VLG and VLS. Furthermore, antioxidant activities were evaluated by using six different methods. Finally, total phenolic, flavonoid, ascorbic acid, anthocyanin, lycopene, β-carotene and vitamin E contents were carried out. In addition, the FT-IR, 13C and 1H NMR chemical shifts and UV-vis. spectra of trans-resveratrol were experimentally recorded. Quantum chemical computations such as the molecular geometry, vibrational frequencies, UV-vis. spectroscopic parameters, HOMOs-LUMOs energies, molecular electrostatic potential (MEP), natural bond orbitals (NBO) and nonlinear optics (NLO) properties of title molecule have been calculated by using DFT/B3PW91 method with 6-311++G(d,p) basis set in ground state for the first time. The obtained results show that the calculated spectroscopic data are in a good agreement with experimental data.

  8. Predicting Hydride Donor Strength via Quantum Chemical Calculations of Hydride Transfer Activation Free Energy.

    Science.gov (United States)

    Alherz, Abdulaziz; Lim, Chern-Hooi; Hynes, James T; Musgrave, Charles B

    2018-01-25

    We propose a method to approximate the kinetic properties of hydride donor species by relating the nucleophilicity (N) of a hydride to the activation free energy ΔG ⧧ of its corresponding hydride transfer reaction. N is a kinetic parameter related to the hydride transfer rate constant that quantifies a nucleophilic hydridic species' tendency to donate. Our method estimates N using quantum chemical calculations to compute ΔG ⧧ for hydride transfers from hydride donors to CO 2 in solution. A linear correlation for each class of hydrides is then established between experimentally determined N values and the computationally predicted ΔG ⧧ ; this relationship can then be used to predict nucleophilicity for different hydride donors within each class. This approach is employed to determine N for four different classes of hydride donors: two organic (carbon-based and benzimidazole-based) and two inorganic (boron and silicon) hydride classes. We argue that silicon and boron hydrides are driven by the formation of the more stable Si-O or B-O bond. In contrast, the carbon-based hydrides considered herein are driven by the stability acquired upon rearomatization, a feature making these species of particular interest, because they both exhibit catalytic behavior and can be recycled.

  9. How to compute isomerization energies of organic molecules with quantum chemical methods.

    Science.gov (United States)

    Grimme, Stefan; Steinmetz, Marc; Korth, Martin

    2007-03-16

    The reaction energies for 34 typical organic isomerizations including oxygen and nitrogen heteroatoms are investigated with modern quantum chemical methods that have the perspective of also being applicable to large systems. The experimental reaction enthalpies are corrected for vibrational and thermal effects, and the thus derived "experimental" reaction energies are compared to corresponding theoretical data. A series of standard AO basis sets in combination with second-order perturbation theory (MP2, SCS-MP2), conventional density functionals (e.g., PBE, TPSS, B3-LYP, MPW1K, BMK), and new perturbative functionals (B2-PLYP, mPW2-PLYP) are tested. In three cases, obvious errors of the experimental values could be detected, and accurate coupled-cluster [CCSD(T)] reference values have been used instead. It is found that only triple-zeta quality AO basis sets provide results close enough to the basis set limit and that sets like the popular 6-31G(d) should be avoided in accurate work. Augmentation of small basis sets with diffuse functions has a notable effect in B3-LYP calculations that is attributed to intramolecular basis set superposition error and covers basic deficiencies of the functional. The new methods based on perturbation theory (SCS-MP2, X2-PLYP) are found to be clearly superior to many other approaches; that is, they provide mean absolute deviations of less than 1.2 kcal mol-1 and only a few (computational thermochemistry methods.

  10. Quantum chemical modeling of zeolite-catalyzed methylation reactions: toward chemical accuracy for barriers.

    Science.gov (United States)

    Svelle, Stian; Tuma, Christian; Rozanska, Xavier; Kerber, Torsten; Sauer, Joachim

    2009-01-21

    The methylation of ethene, propene, and t-2-butene by methanol over the acidic microporous H-ZSM-5 catalyst has been investigated by a range of computational methods. Density functional theory (DFT) with periodic boundary conditions (PBE functional) fails to describe the experimentally determined decrease of apparent energy barriers with the alkene size due to inadequate description of dispersion forces. Adding a damped dispersion term expressed as a parametrized sum over atom pair C(6) contributions leads to uniformly underestimated barriers due to self-interaction errors. A hybrid MP2:DFT scheme is presented that combines MP2 energy calculations on a series of cluster models of increasing size with periodic DFT calculations, which allows extrapolation to the periodic MP2 limit. Additionally, errors caused by the use of finite basis sets, contributions of higher order correlation effects, zero-point vibrational energy, and thermal contributions to the enthalpy were evaluated and added to the "periodic" MP2 estimate. This multistep approach leads to enthalpy barriers at 623 K of 104, 77, and 48 kJ/mol for ethene, propene, and t-2-butene, respectively, which deviate from the experimentally measured values by 0, +13, and +8 kJ/mol. Hence, enthalpy barriers can be calculated with near chemical accuracy, which constitutes significant progress in the quantum chemical modeling of reactions in heterogeneous catalysis in general and microporous zeolites in particular.

  11. Energetics and stability of azulene: From experimental thermochemistry to high-level quantum chemical calculations

    International Nuclear Information System (INIS)

    Sousa, Clara C.S.; Matos, M. Agostinha R.; Morais, Victor M.F.

    2014-01-01

    Highlights: • Experimental standard molar enthalpy of formation, sublimation azulene. • Mini-bomb combustion calorimetry, sublimation Calvet microcalorimetry. • High level composite ab initio calculations. • Computational estimate of the enthalpy of formation of azulene. • Discussion of stability and aromaticity of azulene. - Abstract: The standard (p 0 = 0.1 MPa) molar enthalpy of formation for crystalline azulene was derived from the standard molar enthalpy of combustion, in oxygen, at T = 298.15 K, measured in a mini-bomb combustion calorimeter (aneroid isoperibol calorimeter) and the standard molar enthalpy of sublimation, at T = 298.15 K, measured by Calvet microcalorimetry. From these experiments, the standard molar enthalpy of formation of azulene in the gaseous phase at T = 298.15 K was calculated. In addition, very accurate quantum chemical calculations at the G3 and G4 composite levels of calculation were conducted in order to corroborate our experimental findings and further clarify and establish the definitive standard enthalpy of formation of this interesting non-benzenoid hydrocarbon

  12. FragIt: a tool to prepare input files for fragment based quantum chemical calculations.

    Directory of Open Access Journals (Sweden)

    Casper Steinmann

    Full Text Available Near linear scaling fragment based quantum chemical calculations are becoming increasingly popular for treating large systems with high accuracy and is an active field of research. However, it remains difficult to set up these calculations without expert knowledge. To facilitate the use of such methods, software tools need to be available to support these methods and help to set up reasonable input files which will lower the barrier of entry for usage by non-experts. Previous tools relies on specific annotations in structure files for automatic and successful fragmentation such as residues in PDB files. We present a general fragmentation methodology and accompanying tools called FragIt to help setup these calculations. FragIt uses the SMARTS language to locate chemically appropriate fragments in large structures and is applicable to fragmentation of any molecular system given suitable SMARTS patterns. We present SMARTS patterns of fragmentation for proteins, DNA and polysaccharides, specifically for D-galactopyranose for use in cyclodextrins. FragIt is used to prepare input files for the Fragment Molecular Orbital method in the GAMESS program package, but can be extended to other computational methods easily.

  13. A general intermolecular force field based on tight-binding quantum chemical calculations

    Science.gov (United States)

    Grimme, Stefan; Bannwarth, Christoph; Caldeweyher, Eike; Pisarek, Jana; Hansen, Andreas

    2017-10-01

    A black-box type procedure is presented for the generation of a molecule-specific, intermolecular potential energy function. The method uses quantum chemical (QC) information from our recently published extended tight-binding semi-empirical scheme (GFN-xTB) and can treat non-covalently bound complexes and aggregates with almost arbitrary chemical structure. The necessary QC information consists of the equilibrium structure, Mulliken atomic charges, charge centers of localized molecular orbitals, and also of frontier orbitals and orbital energies. The molecular pair potential includes model density dependent Pauli repulsion, penetration, as well as point charge electrostatics, the newly developed D4 dispersion energy model, Drude oscillators for polarization, and a charge-transfer term. Only one element-specific and about 20 global empirical parameters are needed to cover systems with nuclear charges up to radon (Z = 86). The method is tested for standard small molecule interaction energy benchmark sets where it provides accurate intermolecular energies and equilibrium distances. Examples for structures with a few hundred atoms including charged systems demonstrate the versatility of the approach. The method is implemented in a stand-alone computer code which enables rigid-body, global minimum energy searches for molecular aggregation or alignment.

  14. Quantum-Chemical Insights into the Self-Assembly of Carbon-Based Supramolecular Complexes

    Directory of Open Access Journals (Sweden)

    Joaquín Calbo

    2018-01-01

    Full Text Available Understanding how molecular systems self-assemble to form well-organized superstructures governed by noncovalent interactions is essential in the field of supramolecular chemistry. In the nanoscience context, the self-assembly of different carbon-based nanoforms (fullerenes, carbon nanotubes and graphene with, in general, electron-donor molecular systems, has received increasing attention as a means of generating potential candidates for technological applications. In these carbon-based systems, a deep characterization of the supramolecular organization is crucial to establish an intimate relation between supramolecular structure and functionality. Detailed structural information on the self-assembly of these carbon-based nanoforms is however not always accessible from experimental techniques. In this regard, quantum chemistry has demonstrated to be key to gain a deep insight into the supramolecular organization of molecular systems of high interest. In this review, we intend to highlight the fundamental role that quantum-chemical calculations can play to understand the supramolecular self-assembly of carbon-based nanoforms through a limited selection of supramolecular assemblies involving fullerene, fullerene fragments, nanotubes and graphene with several electron-rich π-conjugated systems.

  15. ExcelAutomat: a tool for systematic processing of files as applied to quantum chemical calculations

    Science.gov (United States)

    Laloo, Jalal Z. A.; Laloo, Nassirah; Rhyman, Lydia; Ramasami, Ponnadurai

    2017-07-01

    The processing of the input and output files of quantum chemical calculations often necessitates a spreadsheet as a key component of the workflow. Spreadsheet packages with a built-in programming language editor can automate the steps involved and thus provide a direct link between processing files and the spreadsheet. This helps to reduce user-interventions as well as the need to switch between different programs to carry out each step. The ExcelAutomat tool is the implementation of this method in Microsoft Excel (MS Excel) using the default Visual Basic for Application (VBA) programming language. The code in ExcelAutomat was adapted to work with the platform-independent open-source LibreOffice Calc, which also supports VBA. ExcelAutomat provides an interface through the spreadsheet to automate repetitive tasks such as merging input files, splitting, parsing and compiling data from output files, and generation of unique filenames. Selected extracted parameters can be retrieved as variables which can be included in custom codes for a tailored approach. ExcelAutomat works with Gaussian files and is adapted for use with other computational packages including the non-commercial GAMESS. ExcelAutomat is available as a downloadable MS Excel workbook or as a LibreOffice workbook.

  16. Silicon Oxysulfide, OSiS: Rotational Spectrum, Quantum-Chemical Calculations, and Equilibrium Structure.

    Science.gov (United States)

    Thorwirth, Sven; Mück, Leonie Anna; Gauss, Jürgen; Tamassia, Filippo; Lattanzi, Valerio; McCarthy, Michael C

    2011-06-02

    Silicon oxysulfide, OSiS, and seven of its minor isotopic species have been characterized for the first time in the gas phase at high spectral resolution by means of Fourier transform microwave spectroscopy. The equilibrium structure of OSiS has been determined from the experimental data using calculated vibration-rotation interaction constants. The structural parameters (rO-Si = 1.5064 Å and rSi-S = 1.9133 Å) are in very good agreement with values from high-level quantum chemical calculations using coupled-cluster techniques together with sophisticated additivity and extrapolation schemes. The bond distances in OSiS are very short in comparison with those in SiO and SiS. This unexpected finding is explained by the partial charges calculated for OSiS via a natural population analysis. The results suggest that electrostatic effects rather than multiple bonding are the key factors in determining bonding in this triatomic molecule. The data presented provide the spectroscopic information needed for radio astronomical searches for OSiS.

  17. Kinetic-quantum chemical model for catalytic cycles: the Haber-Bosch process and the effect of reagent concentration.

    Science.gov (United States)

    Kozuch, Sebastian; Shaik, Sason

    2008-07-03

    A combined kinetic-quantum chemical model is developed with the goal of estimating in a straightforward way the turnover frequency (TOF) of catalytic cycles, based on the state energies obtained by quantum chemical calculations. We describe how the apparent activation energy of the whole cycle, so-called energetic span (delta E), is influenced by the energy levels of two species: the TOF determining transition state (TDTS) and the TOF determining intermediate (TDI). Because these key species need not be adjoining states, we conclude that for catalysis there are no rate-determining steps, only rate determining states. In addition, we add here the influence of reactants concentrations. And, finally, the model is applied to the Haber-Bosch process of ammonia synthesis, for which we show how to calculate which catalyst will be the most effective under specific reagents conditions.

  18. Exploring the role of quantum chemical descriptors in modeling acute toxicity of diverse chemicals to Daphnia magna.

    Science.gov (United States)

    Reenu; Vikas

    2015-09-01

    Various quantum-mechanically computed molecular and thermodynamic descriptors along with physico-chemical, electrostatic and topological descriptors are compared while developing quantitative structure-activity relationships (QSARs) for the acute toxicity of 252 diverse organic chemicals towards Daphnia magna. QSAR models based on the quantum-chemical descriptors, computed with routinely employed advanced semi-empirical and ab-initio methods, along with the electron-correlation contribution (CORR) of the descriptors, are analyzed for the external predictivity of the acute toxicity. The models with reliable internal stability and external predictivity are found to be based on the HOMO energy along with the physico-chemical, electrostatic and topological descriptors. Besides this, the total energy and electron-correlation energy are also observed as highly reliable descriptors, suggesting that the intra-molecular interactions between the electrons play an important role in the origin of the acute toxicity, which is in fact an unexplored phenomenon. The models based on quantum-chemical descriptors such as chemical hardness, absolute electronegativity, standard Gibbs free energy and enthalpy are also observed to be reliable. A comparison of the robust models based on the quantum-chemical descriptors computed with various quantum-mechanical methods suggests that the advanced semi-empirical methods such as PM7 can be more reliable than the ab-initio methods which are computationally more expensive. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. The structure and conformations of piracetam (2-oxo-1-pyrrolidineacetamide): Gas-phase electron diffraction and quantum chemical calculations

    Science.gov (United States)

    Ksenafontov, Denis N.; Moiseeva, Natalia F.; Khristenko, Lyudmila V.; Karasev, Nikolai M.; Shishkov, Igor F.; Vilkov, Lev V.

    2010-12-01

    The geometric structure of piracetam was studied by quantum chemical calculations (DFT and ab initio), gas electron diffraction (GED), and FTIR spectroscopy. Two stable mirror symmetric isomers of piracetam were found. The conformation of pyrrolidine ring is an envelope in which the C4 atom deviates from the ring plane, the angle between the planes (C3 sbnd C4 sbnd C5) and (C2 sbnd C3 sbnd C5) is 154.1°. The direction of the deviation is the same as that of the side acetamide group. The piracetam molecule is stabilized in the gas phase by an intramolecular hydrogen bond between the N9H 2 group and the oxygen O6, bonded to C2. The principal structural parameters ( re, Å and ∠e, degrees; uncertainties are 3 σLS values) were found to be: r(С3 sbnd С4) = 1.533(1), r(C4 sbnd C5) = 1.540(1), r(N1 sbnd C5) = 1.456(1), r(C2 sbnd C3) = 1.520(1), r(N1 sbnd C7) = 1.452(1), r(C7 sbnd C8) = 1.537(1), r(N1 sbnd C2) = 1.365(2), r(C8 sbnd N9) = 1.360(2), r(C2 dbnd O6) = 1.229(1), r(C8 dbnd O10) = 1.221(1), ∠C2 sbnd N1 sbnd C5 = 113.4(6), ∠N1 sbnd C2 sbnd C3 = 106.9(6), ∠N1 sbnd C7 sbnd C8 = 111.9(6), ∠C7 sbnd C8 sbnd N9 = 112.5(6), ∠N1 sbnd C2 sbnd O6 = 123.0(4), ∠C3 sbnd N1 sbnd C7 = 120.4(4), ∠C7 sbnd C8 sbnd O10 = 120.2(4), ∠C5 sbnd N1 sbnd C2 sbnd O6 = 170(6), ∠C3 sbnd C2 sbnd N1 sbnd C7 = 178(6), ∠C2 sbnd N1 sbnd C7 sbnd C8 = 84.2, ∠N1 sbnd C7 sbnd C8 sbnd O10 = 111.9.

  20. Quantum chemical analysis of Со2+ aqua complexes electrochemical reduction

    Directory of Open Access Journals (Sweden)

    Viktor F. Vargalyuk

    2017-11-01

    Full Text Available Based on the analysis of quantum chemical calculations results (GAMESS, density functional theory, B3LYP method as to [Co(H2On]z(H2O6–n clusters for z = 0, 1, 2 and n=1÷6, it has been demonstrated that electrochemical reduction of [Co(H2O6]2+ aqua complexes runs stage-wise. At the first stage, an electron injected into the [Co(H2O6]2+ complex is entirely located in the orbital of the central atom, as z(Co herewith changes from +1.714 е to +0.777 е. The weakening of Со–ОН2 bonds leads to decomposition of resulting [Co(H2O6]+ particles into two energetically related forms – [Co(H2O4]+ and [Co(H2O3]+. Further reduction of these intermediates runs differently. Electron injection into the [Co(H2O3]+ intermediate terminatesthe transition of Со2+-ions to Со0 z(Co= –0.264 е. This process is accompanied by rapid decomposition of [Co(H2O3]0 product into monohydrate atom of cobalt Со(Н2О. On the contrary, electron injection into the [Co(H2O4]+ intermediate leads to emergence of a specific structure – [Co+(H2O–(Н2О3]¹0, whereby the electron is located in the atoms of cobalt only by 28%, and by 72% in cobalt-coordinated water molecules, clearly focusing on one of the. In this molecule, z(H2O changes from +0.148 е to –0.347 е. There is an assumption that a non-equilibrium [Co+(H2O–(Н2О3]0¹ form transits to [Co(ОH(Н2О3]0 hydroxo-form, which further disproportionates turning into Co(ОH2 hydroxide. In order to reduce the impact of this unfavorable reaction pathway on the overall reaction rate Со2+ + 2ē = Со0, we suggest raising the temperature to ensure complete dissociation of [Co(H2O4]+ to [Co(H2O3]+.

  1. Quantum-chemical analysis of formation reactions of Со2+ complexes

    Directory of Open Access Journals (Sweden)

    Viktor F. Vargalyuk

    2017-11-01

    Full Text Available Based on the analysis of quantum chemical calculations results (GAMESS, density functional theory, B3LYP method as to coordination compounds of Co2+ions with H2O, NH3, OH–, F–, Cl–, Br–, I–, CN–, Ac–, Ak– generally given by [Co(H2O6–nLn]2+nx, it has been demonstrated that within the selected series of ligands, there is no correlation between the amount of energy of monosubstituted cobalt aqua complexes formation(∆Е and pK1,just like between the effective nuclear charge of the central atom (z*Со and pK1. According to the behavior of ∆Е and z*Со,we identified two groups of ligands. The first group (OH–, F–, Ac–, Ak–, CN–, NH3 demonstrates logical ∆Е decrease caused by the growth of z*Со. On the contrary, the second group (Cl–, Br–, I– demonstrates ∆Е increase caused by the growth of z*Со. This phenomenon is explained by the change in electronegativity and polarizability of donor atoms in groups and periods of the periodic table. It is established that linear correlations given by lgK = A + B·z*Со can be actualized only for complexes having ligands with similar donor atoms. Referring to the literature on stepwise complex formation of hydroxide, amine and chloride cobalt complexes in combination with z*Со calculations results, we determined A and B constants of lgK, z*Со-correlations for the atoms of oxygen (30.2, –17.7; nitrogen (125.4, –69.9 and chlorine (–6.3, 5.8. The existence of the detected correlation series enables us to lean on lgK,z*М–dependence parameters for the fixed donor atom and to determine Kn values for various complexes with complex-based ligands using calculations and z*М data. This applies to complexes having central atoms of the same nature as well as simple monodentate ligands. The mentioned approach was used to calculate the stability constants for acrylate cobalt complexes (lgK1 = 1.2 и lgК2 = 4.3, which are not covered in literature.

  2. New generation of docking programs: Supercomputer validation of force fields and quantum-chemical methods for docking.

    Science.gov (United States)

    Sulimov, Alexey V; Kutov, Danil C; Katkova, Ekaterina V; Ilin, Ivan S; Sulimov, Vladimir B

    2017-11-01

    Discovery of new inhibitors of the protein associated with a given disease is the initial and most important stage of the whole process of the rational development of new pharmaceutical substances. New inhibitors block the active site of the target protein and the disease is cured. Computer-aided molecular modeling can considerably increase effectiveness of new inhibitors development. Reliable predictions of the target protein inhibition by a small molecule, ligand, is defined by the accuracy of docking programs. Such programs position a ligand in the target protein and estimate the protein-ligand binding energy. Positioning accuracy of modern docking programs is satisfactory. However, the accuracy of binding energy calculations is too low to predict good inhibitors. For effective application of docking programs to new inhibitors development the accuracy of binding energy calculations should be higher than 1kcal/mol. Reasons of limited accuracy of modern docking programs are discussed. One of the most important aspects limiting this accuracy is imperfection of protein-ligand energy calculations. Results of supercomputer validation of several force fields and quantum-chemical methods for docking are presented. The validation was performed by quasi-docking as follows. First, the low energy minima spectra of 16 protein-ligand complexes were found by exhaustive minima search in the MMFF94 force field. Second, energies of the lowest 8192 minima are recalculated with CHARMM force field and PM6-D3H4X and PM7 quantum-chemical methods for each complex. The analysis of minima energies reveals the docking positioning accuracies of the PM7 and PM6-D3H4X quantum-chemical methods and the CHARMM force field are close to one another and they are better than the positioning accuracy of the MMFF94 force field. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Quantum chemical analysis of the electronic structure and Moessbauer spectra parameters for low spin cyanide- and pyridine-hemichromes

    International Nuclear Information System (INIS)

    Khleskov, V.I.; Kolpakov, E.V.; Smirnov, A.B.

    1992-01-01

    The work contains results of quantum-chemical calculations of electronic structure and Moessbauer spectra parameters for low spin S=1/2 hexa-coordinated ferri-porphyrin complexes with cyanide (CN) and pyridine (Py) as axial ligands. Theoretical results made it possible to explain experimentally observed regularity of anomalous quadrupole splitting decrease after substitution of Py-ligands by CN. Comparison of theoretical and experimental data indicated that 2 E g must be the ground state of investigated hemichromes. In this state unpaired electron symmetrically occupies d π -orbitals of Fe-ion. (orig.)

  4. Quantum chemical approach for condensed-phase thermochemistry (V): Development of rigid-body type harmonic solvation model

    Science.gov (United States)

    Tarumi, Moto; Nakai, Hiromi

    2018-05-01

    This letter proposes an approximate treatment of the harmonic solvation model (HSM) assuming the solute to be a rigid body (RB-HSM). The HSM method can appropriately estimate the Gibbs free energy for condensed phases even where an ideal gas model used by standard quantum chemical programs fails. The RB-HSM method eliminates calculations for intra-molecular vibrations in order to reduce the computational costs. Numerical assessments indicated that the RB-HSM method can evaluate entropies and internal energies with the same accuracy as the HSM method but with lower calculation costs.

  5. Combined friction force microscopy and quantum chemical investigation of the tribotronic response at the propylammonium nitrate-graphite interface.

    Science.gov (United States)

    Li, H; Atkin, R; Page, A J

    2015-06-28

    The energetic origins of the variation in friction with potential at the propylammonium nitrate-graphite interface are revealed using friction force microscopy (FFM) in combination with quantum chemical simulations. For boundary layer lubrication, as the FFM tip slides energy is dissipated via (1) boundary layer ions and (2) expulsion of near-surface ion layers from the space between the surface and advancing tip. Simulations reveal how changing the surface potential changes the ion composition of the boundary and near surface layer, which controls energy dissipation through both pathways, and thus the friction.

  6. Quantum Chemical and Physicochemical Studies of Oximes (Prophylactics against and Reactivators of Phosphorylated AChE).

    Science.gov (United States)

    1984-10-25

    crystal structure of nicotinic acid ,. and we used the ether bridge from the crystal structure of dimethyl ether. We are investigating various rotamers...observations were made: - The titration curve (after the subtraction of the blank curve) shows only one titrable group, i.e. the oxime moiety. - The...subtraction of the blank curve, shows two titrable groups, i.e. the two oxime moieties. The results are as follows: Temperature Conditions PKa pK2

  7. Intramolecular tautomerisation and the conformational variability of some classical mutagens – cytosine derivatives: quantum chemical study

    Directory of Open Access Journals (Sweden)

    Hovorun D. M.

    2011-04-01

    Full Text Available Aim. To determine the lifetime of the mutagenic cytosine derivatives through the investigation of the physicochemical mechanisms of their intramolecular proton transfer. Methods. Non-empirical quantum chemistry, the analysis of the electron density by means of Bader’s atoms in molecules (AIM theory and physicochemical kinetics were used. Results. It is shown that the modification of all investigated compounds, except DCyt, prevents their pairing in both mutagenic and canonical tautomeric forms with a base which is an interacting partner. This effect can inhibit their mutagenic potential. It is also established that Watson-Crick tautomeric hypothesis can be formally expanded for the investigated molecules so far as a lifetime of the mutagenic tautomers much more exceeds characteristic time for the incorporation of one nucleotides pair by DNA biosynthesis machinery. It seems that just within the frame of this hypothesis it will be possible to give an adequate explanation of the mechanisms of mutagenic action of N4-aminocytosine, N4-methoxycytosine, N4-hydroxycytosine and N4dehydrocytosine, which have much more energy advantageous imino form in comparison with amino form. Conclusions. For the first time the comprehensive conformational analysis of a number of classical mutagens, namely cytosine derivatives, has been performed using the methods of non-empirical quantum chemistry at the MP2/6-311++G (2df,pd//B3LYP/6-311++G(d,p level of theory

  8. Quantum Chemical Benchmark Study on 46 RNA Backbone Families Using a Dinucleotide Unit

    Czech Academy of Sciences Publication Activity Database

    Kruse, H.; Mládek, Arnošt; Gkionis, Konstantinos; Hansen, A.; Grimme, S.; Šponer, Jiří

    2015-01-01

    Roč. 11, č. 10 (2015), s. 4972-4991 ISSN 1549-9618 R&D Projects: GA ČR(CZ) GBP305/12/G034 Institutional support: RVO:68081707 Keywords : MOLECULAR-DYNAMICS SIMULATIONS * DENSITY-FUNCTIONAL THEORY * SUGAR-PHOSPHATE BACKBONE Subject RIV: BO - Biophysics Impact factor: 5.301, year: 2015

  9. An Experimental and Quantum Chemical Study of the Electronic Spectrum of the HBCl Free Radical

    Science.gov (United States)

    Gharaibeh, Mohammed A.; Nagarajan, Ramya; Clouthier, Dennis J.; Tarroni, Ricardo

    2012-06-01

    The chloroborane (HBCl) free radical has a complex electronic spectrum in the visible that involves a transition from a bent ground state to a linear excited state, both of which are the Renner-Teller components of what would be a ^2π state at linearity. We have used the synchronous-scan LIF and single vibronic level emission techniques to untangle the many overlapping vibronic bands and assign upper state K quantum numbers for jet-cooled HBCl and DBCl. The radicals were produced in a pulsed electric discharge jet using a precursor mixture of boron trichloride (BCl_3) and hydrogen or deuterium in high-pressure argon. As an important aid to understanding the data, the ground and excited state high level ab initio potential energy surfaces (PES) have been calculated and the vibrational levels obtained variationally. The calculated ground state levels are in excellent agreement with the emission data validating the quality of the PES. Aside from an approximately 100 cm-1 shift in the upper state electronic term value, the calculated excited state vibrational energy levels and isotope shifts match the LIF data very well, allowing the observed bands to be assigned with confidence.

  10. A laser flash photolysis and quantum chemical study of the fluorinated derivatives of singlet phenylnitrene.

    Science.gov (United States)

    Gritsan, N P; Gudmundsdóttir, A D; Tigelaar, D; Zhu, Z; Karney, W L; Hadad, C M; Platz, M S

    2001-03-07

    Laser flash photolysis (LFP, Nd:YAG laser, 35 ps, 266 nm, 10 mJ or KrF excimer laser, 10 ns, 249 nm, 50 mJ) of 2-fluoro, 4-fluoro, 3,5-difluoro, 2,6-difluoro, and 2,3,4,5,6-pentafluorophenyl azides produces the corresponding singlet nitrenes. The singlet nitrenes were detected by transient absorption spectroscopy, and their spectra are characterized by sharp absorption bands with maxima in the range of 300-365 nm. The kinetics of their decay were analyzed as a function of temperature to yield observed decay rate constants, k(OBS). The observed rate constant in inert solvents is the sum of k(R) + k(ISC) where k(R) is the absolute rate constant of rearrangement of singlet nitrene to an azirine and k(ISC) is the absolute rate constant of nitrene intersystem crossing (ISC). Values of k(R) and k(ISC) were deduced after assuming that k(ISC) is independent of temperature. Barriers to cyclization of 4-fluoro-, 3,5-difluoro-, 2-fluoro-, 2,6-difluoro-, and 2,3,4,5,6-pentafluorophenylnitrene in inert solvents are 5.3 +/- 0.3, 5.5 +/- 0.3, 6.7 +/- 0.3, 8.0 +/- 1.5, and 8.8 +/- 0.4 kcal/mol, respectively. The barrier to cyclization of parent singlet phenylnitrene is 5.6 +/- 0.3 kcal/mol. All of these values are in good quantitative agreement with CASPT2 calculations of the relative barrier heights for the conversion of fluoro-substituted singlet aryl nitrenes to benzazirines (Karney, W. L. and Borden, W. T. J. Am. Chem. Soc. 1997, 119, 3347). A single ortho-fluorine substituent exerts a small but significant bystander effect on remote cyclization that is not steric in origin. The influence of two ortho-fluorine substituents on the cyclization is pronounced. In the case of the singlet 2-fluorophenylnitrene system, evidence is presented that the benzazirine is an intermediate and that the corresponding singlet nitrene and benzazirine interconvert. Ab initio calculations at different levels of theory on a series of benzazirines, their isomeric ketenimines, and the transition states converting the benzazirines to ketenimines were performed. The computational results are in good qualitative and quantitative agreement with the experimental findings.

  11. Ab initio Quantum Chemical and Experimental Reaction Kinetics Studies in the Combustion of Bipropellants

    Science.gov (United States)

    2017-03-24

    with higher performance non-toxic propellant Densified Ionic Liquid Electrosprays (DILE) High Power (>100 kW class) EP (FRCs) Next-gen Adv Biprop...for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data...sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden

  12. Neptunium carbonato complexes in aqueous solution: an electrochemical, spectroscopic, and quantum chemical study.

    Science.gov (United States)

    Ikeda-Ohno, Atsushi; Tsushima, Satoru; Takao, Koichiro; Rossberg, André; Funke, Harald; Scheinost, Andreas C; Bernhard, Gert; Yaita, Tsuyoshi; Hennig, Christoph

    2009-12-21

    The electrochemical behavior and complex structure of Np carbonato complexes, which are of major concern for the geological disposal of radioactive wastes, have been investigated in aqueous Na(2)CO(3) and Na(2)CO(3)/NaOH solutions at different oxidation states by using cyclic voltammetry, X-ray absorption spectroscopy, and density functional theory calculations. The end-member complexes of penta- and hexavalent Np in 1.5 M Na(2)CO(3) with pH = 11.7 have been determined as a transdioxo neptunyl tricarbonato complex, [NpO(2)(CO(3))(3)](n-) (n = 5 for Np(V), and 4 for Np(VI)). Hence, the electrochemical reaction of the Np(V/VI) redox couple merely results in the shortening/lengthening of bond distances mainly because of the change of the cationic charge of Np, without any structural rearrangement. This explains the observed reversible-like feature on their cyclic voltammograms. In contrast, the electrochemical oxidation of Np(V) in a highly basic carbonate solution of 2.0 M Na(2)CO(3)/1.0 M NaOH (pH > 13) yielded a stable heptavalent Np complex of [Np(VII)O(4)(OH)(2)](3-), indicating that the oxidation reaction from Np(V) to Np(VII) in the carbonate solution involves a drastic structural rearrangement from the transdioxo configuration to a square-planar-tetraoxo configuration, as well as exchanging the coordinating anions from carbonate ions (CO(3)(2-)) to hydroxide ions (OH(-)).

  13. Chiral diamine-silver(I)-alkene complexes: a quantum chemical and NMR study

    DEFF Research Database (Denmark)

    Kieken, Elsa; Wiest, Olaf; Helquist, Paul

    2005-01-01

    explored by DFT methods. By successive substitution of the computational model complexes, it has been possible to elucidate the role of each amine substituent in achieving successful discrimination of alkenes. The conformational space has been fully explored using small model systems, allowing an unbiased......The ability of chiral diamine silver complexes to bind chiral and prochiral alkenes has been analyzed in detail. The stereoselectivity in binding of alkenes to a chiral ethanediamine silver complex has been investigated by NMR. The low-energy conformations of several small model complexes have been...... calculation of stereoselectivities that match well the experimental results. For a chiral allylic alcohol substrate, the correct stereoselectivity was obtained only when the structures were optimized with a continuum representation of the solvent. The discrepancy between gas phase and solution data is found...

  14. Normal coordinate analysis and quantum chemical study of tris(p ...

    Indian Academy of Sciences (India)

    The crystal structure of the title compound tris(p-flourophenyl)antimony di(N- phenylglycinate) ..... in the present compound and presence of nitrogen atoms as well. ... [7] L Yu, Y Q Ma, G C Wang and J S Li, Heteroatom Chem. 15, 32 (2004).

  15. Quantum chemical study of the elementary reactions in zirconium oxide atomic layer deposition

    International Nuclear Information System (INIS)

    Widjaja, Yuniarto; Musgrave, Charles B.

    2002-01-01

    Elementary reactions in atomic layer deposition of zirconia using zirconium tetrachloride and water are investigated using the density functional theory. The atomistic mechanisms of the two deposition half cycles on the Zr-OH and Zr-Cl surface sites are investigated. Both half reactions proceed through the formation of stable intermediates, resulting in high barriers for HCl formation. We find that the intermediate stability is lowered as the surface temperature is raised. However, increasing temperature also increases the dissociation free-energy barrier, which in turn results in increased desorption of adsorbed precursors

  16. [Mass spectrometric and quantum chemical study of dimeric associates of nucleosides].

    Science.gov (United States)

    Sukhodub, L F; Aksenov, S A; Boldeskul, A I

    1995-01-01

    Deoxyribonucleosides H-bonded pairs were investigated using fast atom bombardment mass spectrometry and MNDO/H quantum chemistry method. It was shown that "rare" (enol or imin) forms of the nitrogen bases could form pairs with energy comparable with "canonical" base pair energy. It was shown that pair stability rows, which are measured using different experimental techniques, were in conformity each with other.

  17. Quantum-chemical studies on the favored and rare tautomers of neutral and redox adenine.

    Science.gov (United States)

    Raczyńska, Ewa D; Makowski, Mariusz; Zientara-Rytter, Katarzyna; Kolczyńska, Katarzyna; Stępniewski, Tomasz M; Hallmann, Małgorzata

    2013-02-21

    All possible twenty-three prototropic tautomers of neutral and redox adenine (nine amine and fourteen imine forms, including geometric isomerism of the exo ═NH group) were examined in vacuo {DFT(B3LYP)/6-311+G(d,p)}. The NH → NH conversions as well as those usually omitted, NH → CH and CH → CH, were considered. An interesting change of the tautomeric preference occurs when proceeding from neutral to reduced adenine. One-electron reduction favors the nonaromatic amine C8H-N10H tautomer. This tautomeric preference is similar to that (C2H) for reduced imidazole. Water molecules (PCM model) seem to not change this trend. They influence solely the relative energies. The DFT vertical detachment energy in the gas phase is positive for each tautomer, e.g., 0.03 eV for N9H-N10H and 1.84 eV for C8H-N10H. The DFT adiabatic electron affinity for the favored process, neutral N9H-N10H → reduced C8H-N10H (ground states), is equal to 0.18 eV at 0 K (ZPE included). One-electron oxidation does not change the tautomeric preference in the gas phase. The aromatic amine N9H-N10H tautomer is favored for the oxidized molecule similarly as for the neutral one. The DFT adiabatic ionization potential for the favored process, neutral N9H-N10H → oxidized N9H-N10H (ground states), is equal to 8.12 eV at 0 K (ZPE included). Water molecules (PCM model) seem to influence solely the composition of the tautomeric mixture and the relative energies. They change the energies of the oxidation and reduction processes by ca. 2 eV.

  18. Quantum chemical study of agonist-receptor vibrational interactions for activation of the glutamate receptor.

    Science.gov (United States)

    Kubo, M; Odai, K; Sugimoto, T; Ito, E

    2001-06-01

    To understand the mechanism of activation of a receptor by its agonist, the excitation and relaxation processes of the vibrational states of the receptor should be examined. As a first approach to this problem, we calculated the normal vibrational modes of agonists (glutamate and kainate) and an antagonist (6-cyano-7-nitroquinoxaline-2,3-dione: CNQX) of the glutamate receptor, and then investigated the vibrational interactions between kainate and the binding site of glutamate receptor subunit GluR2 by use of a semiempirical molecular orbital method (MOPAC2000-PM3). We found that two local vibrational modes of kainate, which were also observed in glutamate but not in CNQX, interacted through hydrogen bonds with the vibrational modes of GluR2: (i) the bending vibration of the amine group of kainate, interacting with the stretching vibration of the carboxyl group of Glu705 of GluR2, and (ii) the symmetric stretching vibration of the carboxyl group of kainate, interacting with the bending vibration of the guanidinium group of Arg485. We also found collective modes with low frequency at the binding site of GluR2 in the kainate-bound state. The vibrational energy supplied by an agonist may flow from the high-frequency local modes to the low-frequency collective modes in a receptor, resulting in receptor activation.

  19. Quantum chemical study of hole transfer coupling in nucleic acid base complexes containing 7-deazaadenine

    Czech Academy of Sciences Publication Activity Database

    Mikolajczyk, M. M.; Czyznikowska, Z.; Czelen, P.; Bielecka, Urszula; Zalesny, R.; Toman, Petr; Bartkowiak, W.

    2012-01-01

    Roč. 537, 1 June (2012), s. 94-100 ISSN 0009-2614 R&D Projects: GA ČR(CZ) GAP205/10/2280; GA MŠk MEB051010 Institutional research plan: CEZ:AV0Z40500505 Keywords : charge transfer * DNA * 7-deazaadenine Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.145, year: 2012

  20. Quantum Chemical Study of Supercritical Carbon Dioxide Effects on Combustion Kinetics.

    Science.gov (United States)

    Masunov, Artëm E; Wait, Elizabeth E; Atlanov, Arseniy A; Vasu, Subith S

    2017-05-18

    In oxy-fuel combustion, the pure oxygen (O 2 ), diluted with CO 2 is used as oxidant instead air. Hence, the combustion products (CO 2 and H 2 O) are free from pollution by nitrogen oxides. Moreover, high pressures result in the near-liquid density of CO 2 at supercritical state (sCO 2 ). Unfortunately, the effects of sCO 2 on the combustion kinetics are far from being understood. To assist in this understanding, in this work we are using quantum chemistry methods. Here we investigate potential energy surfaces of important combustion reactions in the presence of the carbon dioxide molecule. All transition states and reactant and product complexes are reported for three reactions: H 2 CO + HO 2 → HCO + H 2 O 2 (R1), 2HO 2 → H 2 O 2 + O 2 (R2), and CO + OH → CO 2 + H (R3). In reaction R3, covalent binding of CO 2 to the OH radical and then the CO molecule opens a new pathway, including hydrogen transfer from oxygen to carbon atoms followed by CH bond dissociation. Compared to the bimolecular OH + CO mechanism, this pathway reduces the activation barrier by 5 kcal/mol and is expected to accelerate the reaction. In the case of hydroperoxyl self-reaction 2HO 2 → H 2 O 2 + O 2 the intermediates, containing covalent bonds to CO 2 are found not to be competitive. However, the spectator CO 2 molecule can stabilize the cyclic transition state and lower the barrier by 3 kcal/mol. Formation of covalent intermediates is also discovered in the H 2 CO + HO 2 → HCO + H 2 O 2 reaction, but these species lead to substantially higher activation barriers, which makes them unlikely to play a role in hydrogen transfer kinetics. The van der Waals complexation with carbon dioxide also stabilizes the transition state and reduces the reaction barrier. These results indicate that the CO 2 environment is likely to have a catalytic effect on combustion reactions, which needs to be included in kinetic combustion mechanisms in supercritical CO 2 .

  1. Electronic structure of transition metal-isocorrole complexes: A first quantum chemical study

    NARCIS (Netherlands)

    van Oort, B; Tangen, E; Ghosh, A.

    2004-01-01

    DFT calculations indicate that the broad electronic-structural features of metalloisocorroles are rather similar to those of analogous metallocorroles. Thus, like their corrole analogues, many metalloisocorroles feature substantially non-innocent ligands. Another key point is that both corroles and

  2. Quantum-chemical study of halogenophyl interactions. 2. Modelling of halogenophyl reactions with participation chlorophosphonium

    International Nuclear Information System (INIS)

    Kobychev, V.B.; Virkovskaya, N.M.; Timokhin, B.V.; Golubin, A.I.

    1997-01-01

    Calculations of the model reactions (P(CH 3 ) n Cl 4-n + +Hlg - →P(CH 3 ) n Cl 3-n +Cl+Hg (Hlg=Cl, Br, I; n=0,1,2). It is shown that chlorine atom is a preferable object. The calculated heat of alogenophyl reactions is the highest one for PCl 4 + and decreases by substitution of chlorine atoms through methyl groups. The potential curves for all reactions contain the minima, corresponding to the complexes with the linear triad P-Cl-Hlg

  3. Hydrolysis of aspartic acid phosphoramidate nucleotides: a comparative quantum chemical study.

    Science.gov (United States)

    Michielssens, Servaas; Tien Trung, Nguyen; Froeyen, Matheus; Herdewijn, Piet; Tho Nguyen, Minh; Ceulemans, Arnout

    2009-09-07

    L-Aspartic acid has recently been found to be a good leaving group during HIV reverse transcriptase catalyzed incorporation of deoxyadenosine monophosphate (dAMP) in DNA. This showed that L-Asp is a good mimic for the pyrophosphate moiety of deoxyadenosine triphosphate. The present work explores the thermochemistry and mechanism for hydrolysis of several models for L-aspartic-dAMP using B3LYP/DGDZVP, MP2/6-311++G** and G3MP2 level of theory. The effect of the new compound is gradually investigated: starting from a simple methyl amine leaving group up to the aspartic acid leaving group. The enzymatic environment was mimicked by involving two Mg(2+) ions and some important active site residues in the reaction. All reactions are compared to the corresponding O-coupled leaving group, which is methanol for methyl amine and malic acid for aspartic acid. With methyl amine as a leaving group a tautomeric associative or tautomeric dissociative mechanism is preferred and the barrier is lower than the comparable mechanism with methanol as a leaving group. The calculations on the aspartic acid in the enzymatic environment show that qualitatively the mechanism is the same as for triphosphate but the barrier for hydrolysis by the associative mechanism is higher for L-aspartic-dAMP than for L-malic-dAMP and pyrophosphate.

  4. Synthesis, vibrational, NMR, quantum chemical and structure-activity relation studies of 2-hydroxy-4-methoxyacetophenone.

    Science.gov (United States)

    Arjunan, V; Devi, L; Subbalakshmi, R; Rani, T; Mohan, S

    2014-09-15

    The stable geometry of 2-hydroxy-4-methoxyacetophenone is optimised by DFT/B3LYP method with 6-311++G(∗∗) and cc-pVTZ basis sets. The structural parameters, thermodynamic properties and vibrational frequencies of the optimised geometry have been determined. The effects of substituents (hydroxyl, methoxy and acetyl groups) on the benzene ring vibrational frequencies are analysed. The vibrational frequencies of the fundamental modes of 2-hydroxy-4-methoxyacetophenone have been precisely assigned and analysed and the theoretical results are compared with the experimental vibrations. 1H and 13C NMR isotropic chemical shifts are calculated and assignments made are compared with the experimental values. The energies of important MO's, the total electron density and electrostatic potential of the compound are determined. Various reactivity and selectivity descriptors such as chemical hardness, chemical potential, softness, electrophilicity, nucleophilicity and the appropriate local quantities are calculated. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Adsorption of Organic Electron Acceptors on Graphene-like Molecules: Quantum Chemical and Molecular Mechanical Study

    Czech Academy of Sciences Publication Activity Database

    Haldar, Susanta; Kolář, Michal; Sedlák, Robert; Hobza, Pavel

    2012-01-01

    Roč. 116, č. 48 (2012), s. 25328-25336 ISSN 1932-7447 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : graphene * organic electron acceptors * interaction energies * base-pairs * hydrophobic association Subject RIV: CF - Physical ; The oretical Chemistry Impact factor: 4.814, year: 2012

  6. A combined experimental (IR, Raman and UV-Vis) and quantum chemical study of canadine

    Science.gov (United States)

    Joshi, Bhawani Datt; Srivastava, Anubha; Tandon, Poonam; Jain, Sudha; Ayala, A. P.

    2018-02-01

    Plant based natural products cover a major sector of the medicinal field, as such focus on plant research has been increased all over the world. As an attempt to aid that research, we have performed structural and spectroscopic analysis of a natural product, an alkaloid: canadine. Both ab initio Hartree-Fock (HF) and density functional theory (DFT) employing B3LYP using 6-311 ++G(d,p) basis set were used for the calculations. The calculated vibrational frequencies were scaled and compared with the experimental infrared and Raman spectra. The complete vibrational assignments were made using potential energy distribution. The structure-activity relation has also been interpreted by mapping electrostatic potential surface and evaluating the reactivity descriptors, which are valuable information for quality control of medicines and drug-receptor interactions. Natural bond orbital analysis has also been performed to understand the stability and hyperconjugative interactions of the molecule. Furthermore, UV-Vis spectra have been recorded in an ethanol solvent (EtOH) and the electronic property has been analyzed employing TD-DFT for both gaseous and solvent phase. The HOMO and LUMO calculation with their energy gap show that charge transfer occurs within the molecule. Additionally, the nonlinear optical properties of the title compound have been interpreted that predicts it's the best candidate for the NLO materials.

  7. Quantum chemical calculations and spectroscopic measurements of spectroscopic and thermodynamic properties of given uranyl complexes in aqueous solutions with possible environmental and industrial applications

    Directory of Open Access Journals (Sweden)

    Višňak Jakub

    2016-01-01

    Full Text Available A brief introduction into computational methodology and preliminary results for spectroscopic (excitation energies, vibrational frequencies in ground and excited electronic states and thermodynamic (stability constants, standard enthalpies and entropies of complexation reactions properties of some 1:1, 1:2 and 1:3 uranyl sulphato- and selenato- complexes in aqueos solutions will be given. The relativistic effects are included via Effective Core Potential (ECP, electron correlation via (TDDFT/B3LYP (dispersion interaction corrected and solvation is described via explicit inclusion of one hydration sphere beyond the coordinated water molecules. We acknowledge limits of this approximate description – more accurate calculations (ranging from semi-phenomenological two-component spin-orbit coupling up to four-component Dirac-Coulomb-Breit hamiltonian and Molecular Dynamics simulations are in preparation. The computational results are compared with the experimental results from Time-resolved Laser-induced Fluorescence Spectroscopy (TRLFS and UV-VIS spectroscopic studies (including our original experimental research on this topic. In case of the TRLFS and UV-VIS speciation studies, the problem of complex solution spectra decomposition into individual components is ill-conditioned and hints from theoretical chemistry could be very important. Qualitative agreement between our quantum chemical calculations of the spectroscopic properties and experimental data was achieved. Possible applications for geochemical modelling (e.g. safety studies of nuclear waste repositories, modelling of a future mining site and analytical chemical studies (including natural samples are discussed.

  8. Geometrical criteria versus quantum chemical criteria for assessment of intramolecular hydrogen bond (IMHB) interaction: A computational comparison into the effect of chlorine substitution on IMHB of salicylic acid in its lowest energy ground state conformer

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Bijan Kumar [Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Calcutta 700009 (India); Guchhait, Nikhil, E-mail: nikhil.guchhait@rediffmail.com [Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Calcutta 700009 (India)

    2013-02-01

    Highlights: ► Intramolecular hydrogen bonding (IMHB) in salicylic acid and its chloro derivatives. ► A complex effect of +R and −I effect of chlorine substituents on IMHB energy. ► Interplay between IMHB energy and aromaticity. ► Directional nature of IMHB from quantum chemical assessment. ► Quantum chemical treatment vs. geometrical criteria to assess weak interaction. - Abstract: Density functional theory based computational study has been performed to characterize intramolecular hydrogen bonding (IMHB) interaction in a series of salicylic acid derivatives varying in chlorine substitution on the benzene ring. The molecular systems studied are salicylic acid, 5-chlorosalicylic acid, 3,5-dichlorosalicylic acid and 3,5,6-tricholorosalicylic acid. Major emphasis is rendered on the analysis of IMHB interaction by calculation of electron density ρ(r) and Laplacian ∇{sup 2}ρ(r) at the bond critical point using atoms-in-molecule theory. Topological features, energy densities based on ρ(r) through perturbing the intramolecular H-bond distances suggest that at equilibrium geometry the IMHB interaction develops certain characteristics typical of covalent interaction. The interplay between aromaticity and resonance-assisted hydrogen bonding (RAHB) is discussed using both geometrical and magnetic criteria as the descriptors of aromaticity. The optimized geometry features, molecular electrostatic potential map analysis are also found to produce a consensus view in relation with the formation of RAHB in these systems.

  9. Geometrical criteria versus quantum chemical criteria for assessment of intramolecular hydrogen bond (IMHB) interaction: A computational comparison into the effect of chlorine substitution on IMHB of salicylic acid in its lowest energy ground state conformer

    International Nuclear Information System (INIS)

    Paul, Bijan Kumar; Guchhait, Nikhil

    2013-01-01

    Highlights: ► Intramolecular hydrogen bonding (IMHB) in salicylic acid and its chloro derivatives. ► A complex effect of +R and −I effect of chlorine substituents on IMHB energy. ► Interplay between IMHB energy and aromaticity. ► Directional nature of IMHB from quantum chemical assessment. ► Quantum chemical treatment vs. geometrical criteria to assess weak interaction. - Abstract: Density functional theory based computational study has been performed to characterize intramolecular hydrogen bonding (IMHB) interaction in a series of salicylic acid derivatives varying in chlorine substitution on the benzene ring. The molecular systems studied are salicylic acid, 5-chlorosalicylic acid, 3,5-dichlorosalicylic acid and 3,5,6-tricholorosalicylic acid. Major emphasis is rendered on the analysis of IMHB interaction by calculation of electron density ρ(r) and Laplacian ∇ 2 ρ(r) at the bond critical point using atoms-in-molecule theory. Topological features, energy densities based on ρ(r) through perturbing the intramolecular H-bond distances suggest that at equilibrium geometry the IMHB interaction develops certain characteristics typical of covalent interaction. The interplay between aromaticity and resonance-assisted hydrogen bonding (RAHB) is discussed using both geometrical and magnetic criteria as the descriptors of aromaticity. The optimized geometry features, molecular electrostatic potential map analysis are also found to produce a consensus view in relation with the formation of RAHB in these systems

  10. The synergistic inhibitive effect and some quantum chemical parameters of 2,3-diaminonaphthalene and iodide ions on the hydrochloric acid corrosion of aluminium

    International Nuclear Information System (INIS)

    Obot, I.B.; Obi-Egbedi, N.O.; Umoren, S.A.

    2009-01-01

    The effect of iodide ions on the inhibitive performance of 2,3-diaminonaphthalene (2,3-DAN) in 1 M HCl for aluminium corrosion has been studied using hydrogen evolution (gasometry) measurements at 30 and 40 deg. C. Results obtained showed that the presence of 2,3-DAN molecules in the corrosive medium (1 M HCl solution) inhibits the corrosion process of aluminium and as the concentration of 2,3-DAN increases the inhibition efficiency also increased at the studied temperatures. A synergistic effect was observed between KI and 2,3-DAN. The experimental results suggest that the presence of iodide ions in the solutions stabilized the adsorption of 2,3-DAN molecules on the metal surfaces and, therefore improve the inhibition efficiency of 2,3-DAN. Phenomenon of physical adsorption is proposed for the inhibition and the process followed the Freundlich adsorption isotherm. The activation energy (E a ), heat of adsorption (Q ads ) and free energy of adsorption for the corrosion process (ΔG ads ) have been evaluated at the different temperatures and the values support the results obtained. Some quantum chemical parameters and the Mulliken charge densities for 2,3-diaminonaphthalene were calculated by the AM1 Semi-empirical method to provide further insight into the mechanism of inhibition of the corrosion process

  11. Conformation of the azo bond and its influence on the molecular and crystal structures, IR and Raman spectra, and electron properties of 6-methyl-3,5-dinitro-2-[(E)-phenyldiazenyl]pyridine - Quantum chemical DFT calculations

    Science.gov (United States)

    Michalski, J.; Bryndal, I.; Lorenc, J.; Hermanowicz, K.; Janczak, J.; Hanuza, J.

    2018-02-01

    The crystal and molecular structures of 6-methyl-3,5-dinitro-2-[(E)-phenyldiazenyl]pyridine have been determined by X-ray diffraction and quantum chemical DFT calculations. The crystal is monoclinic, space group Cc (No. 9) with Z = 4 with the unit cell parameters: a = 12.083(7), b = 12.881(6), c = 8.134(3) Å and β = 97.09(5)°. The azo-bridge appears in the trans conformation in which C2-N2-N2‧-C1‧ torsion angle takes a value - 178.6(3)°, whereas the dihedral angle between the planes of the phenyl and pyridine rings is 3.5(2)°. The IR and Raman spectra measured in the temperature range 80-350 K and quantum chemical calculations with the use of B3LYP/6-311G(2d,2p) approach confirmed the trans configuration of the azo-bridge as the most stable energetically and allowed determination of the energy other virtual structures. The observed effects were used in the discussion of vibrational dynamics of the studied compound. The energy gap between cis and trans conformers equals to 1.054 eV (0.03873 Hartree). The electron absorption and emission spectra have been measured and analyzed on the basis of DFT calculations. The life time of the excited state is 12 μs and the Stokes shift is close to 5470 cm- 1.

  12. An investigation on the structure, spectroscopy and thermodynamic aspects of Br2((-))(H2O)n clusters using a conjunction of stochastic and quantum chemical methods.

    Science.gov (United States)

    Naskar, Pulak; Chaudhury, Pinaki

    2016-06-28

    In this work we obtained global as well as local structures of Br2((-))(H2O)n clusters for n = 2 to 6 followed by the study of IR-spectral features and thermochemistry for the structures. The way adopted by us to obtain structures is not the conventional one used in most cases. Here we at first generated excellent quality pre-optimized structures by exploring the suitable empirical potential energy surface using stochastic optimizer simulated annealing. These structures are then further refined using quantum chemical calculations to obtain the final structures, and spectral and thermodynamic features. We clearly showed that our approach results in very quick and better convergence which reduces the computational cost and obviously using the strategy we are able to get one [i.e. global] or more than one [i.e. global and local(s)] energetically lower structures than those which are already reported for a given cluster size. Moreover, IR-spectral results and the evolutionary trends in interaction energy, solvation energy and vertical detachment energy for global structures of each size have also been presented to establish the utility of the procedure employed.

  13. Quantum chemical modeling of new derivatives of (E,E)-azomethines: Synthesis, spectroscopic (FT-IR, UV/Vis, polarization) and thermophysical investigations

    Science.gov (United States)

    Shahab, Siyamak; Sheikhi, Masoome; Filippovich, Liudmila; Anatol'evich, Dikusar Evgenij; Yahyaei, Hooriye

    2017-06-01

    In the present work, the molecular structures of three new azomethine dyes: N-benzylidene-4-((E)-phenyldiazenyl)aniline (PAZB-1), 2-methoxy-4-(((4-((E)- phenyldiazenyl)phenyl)imino)methyl)phenol (PAZB-2) and 2-methoxy-5-((E)-((4-((E)- phenyldiazenyl)phenyl)imino)methyl)phenol (PAZB-8) have been predicted and investigated using Density Functional Theory (DFT) in dimethylformamide (DMF). The geometries of the azomethine dyes were optimized by PBE0/6-31 + G* level of theory. The electronic spectra of these azomethine dyes in a DMF solution was carried out by TDPBE0/6-31 + G* method. After quantum-chemical calculations three new azomethine dyes for optoelectronic applications were synthesized. FT-IR spectra of the title compounds are recorded and discussed. The computed absorption spectral data of the azomethine dyes are in good agreement with the experimental data, thus allowing an assignment of the UV/Vis spectra. On the basis of polyvinyl alcohol (PVA) and the new synthesized azomethine dyes polarizing films for Visible region of spectrum were developed. The main optical parameters of polarizing PVA-films (Transmittance, Polarization Efficiency and Dichroic Ratio) have been measured and discussed. Anisotropy of thermal conductivity of the PVA-films has been studied.

  14. Exploration of bulk and interface behavior of gas molecules and 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid using equilibrium and nonequilibrium molecular dynamics simulation and quantum chemical calculation.

    Science.gov (United States)

    Yang, Quan; Achenie, Luke E K

    2018-04-18

    Ionic liquids (ILs) show brilliant performance in separating gas impurities, but few researchers have performed an in-depth exploration of the bulk and interface behavior of penetrants and ILs thoroughly. In this research, we have performed a study on both molecular dynamics (MD) simulation and quantum chemical (QC) calculation to explore the transport of acetylene and ethylene in the bulk and interface regions of 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]-[BF4]). The diffusivity, solubility and permeability of gas molecules in the bulk were researched with MD simulation first. The subdiffusion behavior of gas molecules is induced by coupling between the motion of gas molecules and the ions, and the relaxation processes of the ions after the disturbance caused by gas molecules. Then, QC calculation was performed to explore the optical geometry of ions, ion pairs and complexes of ions and penetrants, and interaction potential for pairs and complexes. Finally, nonequilibrium MD simulation was performed to explore the interface structure and properties of the IL-gas system and gas molecule behavior in the interface region. The research results may be used in the design of IL separation media.

  15. Quantum chemical estimation of sorption/desorption of H{sub 2} and H{sub 2}O (gas) at the plasma-wall interface

    Energy Technology Data Exchange (ETDEWEB)

    Nagasaki, Shinya; Tsushima, Satoru; Tanaka, Masataka; Umemura, Yasuhiro [Tokyo Univ. (Japan). Faculty of Engineering

    1996-10-01

    By using MOPAC Code, we estimated the charge density of SiO{sub 2}-Al{sub 2}O{sub 3}-SiO{sub 2} metal oxide. We could find that the such quantum chemical calculation is a fruitful tool for understanding the plasma-wall interactions from the microscopic point of view. (author)

  16. Exploring the Structure of a DNA Hairpin with the Help of NMR Spin-Spin Coupling Constants: An Experimental and Quantum Chemical Investigation

    Czech Academy of Sciences Publication Activity Database

    Sychrovský, Vladimír; Vacek, Jaroslav; Hobza, Pavel; Žídek, L.; Sklenář, V.; Cremer, D.

    2002-01-01

    Roč. 106, - (2002), s. 10242-10250 ISSN 1089-5639 R&D Projects: GA MŠk LN00A032 Institutional research plan: CEZ:AV0Z4040901 Keywords : DNA * help of NMR spin-spin coupling constants * quantum chemical investigation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.765, year: 2002

  17. Distribution of electron density and internal rotation in phospha-alkenes according to data from quantum-chemical calculations by the MNDO method

    International Nuclear Information System (INIS)

    Boldeskul, I.E.; Pen'kovskii, V.V.; Povolotskii, M.I.

    1988-01-01

    A quantum-chemical investigation of the characteristics of the phosphorus-carbon bond and the internal rotation around it in phospha-alkenes has been carried out in the MNDO approximation. The results of the calculation have been compared with experimental dynamic 1 H NMR data

  18. Complexation reactions in pyridine and 2,6-dimethylpyridine-water system: The quantum-chemical description and the path to liquid phase separation

    Science.gov (United States)

    Chernia, Zelig; Tsori, Yoav

    2018-03-01

    Phase separation in substituted pyridines in water is usually described as an interplay between temperature-driven breakage of hydrogen bonds and the associating interaction of the van der Waals force. In previous quantum-chemical studies, the strength of hydrogen bonding between one water and one pyridine molecules (the 1:1 complex) was assigned a pivotal role. It was accepted that the disassembly of the 1:1 complex at a critical temperature leads to phase separation and formation of the miscibility gap. Yet, for over two decades, notable empirical data and theoretical arguments were presented against that view, thus revealing the need in a revised quantum-mechanical description. In the present study, pyridine-water and 2,6-dimethylpyridine-water systems at different complexation stages are calculated using high level Kohn-Sham theory. The hydrophobic-hydrophilic properties are accounted for by the polarizable continuum solvation model. Inclusion of solvation in free energy of formation calculations reveals that 1:1 complexes are abundant in the organically rich solvents but higher level oligomers (i.e., 2:1 dimers with two pyridines and one water molecule) are the only feasible stable products in the more polar media. At the critical temperature, the dissolution of the external hydrogen bonds between the 2:1 dimer and the surrounding water molecules induces the demixing process. The 1:1 complex acts as a precursor in the formation of the dimers but is not directly involved in the demixing mechanism. The existence of the miscibility gap in one pyridine-water system and the lack of it in another is explained by the ability of the former to maintain stable dimerization. Free energy of formation of several reaction paths producing the 2:1 dimers is calculated and critically analyzed.

  19. Quantum chemical calculations and experimental investigations on 2-aminobenzoic acid-cyclodiphosph(V)azane derivative and its homo-binuclear Cu(II) complex

    Science.gov (United States)

    El-Gogary, Tarek M.; Alaghaz, Abdel-Nasser M. A.; Ammar, Reda A. A.

    2012-03-01

    A novel 2-aminobenzoic acid-cyclodiphosph(V)azane ligand H4L and its homo-binuclear Cu(II) complex of the type [Cu2L(H2O)2].2.5 H2O in which L is 1,3-di(-o-pyridyl)-2,4-(dioxo)-2',4'-bis-(2-iminobenzoic acid) cyclodiphosph(V)azane, were synthesized and characterized by different physical techniques. Infrared spectra of the complex indicate deprotonation and coordination of the imine NH and carboxyl COOH groups. It also confirms that nitrogen atom of the pyridine ring contribute to the complexation. Electronic spectra and magnetic susceptibility measurements reveal square-planar geometry for the Cu(II) complex. The elemental analyses and thermogravimetric results have justified the [Cu2L(H2O)2]·2.5H2O composition of the complex. Quantum chemical calculations were utilized to explore the electronic structure and stability of the H4L as well as the binuclear Cu(II) complex. Computational studies have been carried out at the DFT-B3LYP/6-31G(d) level of theory on the structural and spectroscopic properties of H4L and its binuclear Cu(II) complex. Different tautomers and geometrical isomers of the ligand were optimized at the ab initio DFT level. Simulated IR frequencies were scaled and compared with that experimentally measured. TD-DFT method was used to compute the UV-VIS spectra which show good agreement with measured electronic spectra.

  20. Cob(I)alamin: insight into the nature of electronically excited states elucidated via quantum chemical computations and analysis of absorption, CD and MCD data.

    Science.gov (United States)

    Kornobis, Karina; Ruud, Kenneth; Kozlowski, Pawel M

    2013-02-07

    The nature of electronically excited states of the super-reduced form of vitamin B(12) (i.e., cob(I)alamin or B(12s)), a ubiquitous B(12) intermediate, was investigated by performing quantum-chemical calculations within the time-dependent density functional theory (TD-DFT) framework and by establishing their correspondence to experimental data. Using response theory, the electronic absorption (Abs), circular dichroism (CD) and magnetic CD (MCD) spectra of cob(I)alamin were simulated and directly compared with experiment. Several issues have been taken into considerations while performing the TD-DFT calculations, such as strong dependence on the applied exchange-correlation (XC) functional or structural simplification imposed on the cob(I)alamin. In addition, the low-lying transitions were also validated by performing CASSCF/MC-XQDPT2 calculations. By comparing computational results with existing experimental data a new level of understanding of electronic excitations has been established at the molecular level. The present study extends and confirms conclusions reached for other cobalamins. In particular, the better performance of the BP86 functional, rather than hybrid-type, was observed in terms of the excitations associated with both Co d and corrin π localized transitions. In addition, the lowest energy band was associated with multiple metal-to-ligand charge transfer excitations as opposed to the commonly assumed view of a single π → π* transition followed by vibrational progression. Finally, the use of the full cob(I)alamin structure, instead of simplified molecular models, shed new light on the spectral analyses of cobalamin systems and revealed new challenges of this approach related to long-range charge transfer excitations involving side chains.

  1. Quantum chemical and thermodynamic calculations of fulvic and humic copper complexes in reactions of malachite and azurite formation

    International Nuclear Information System (INIS)

    Fomin, Vitaliy N.; Gogol, Daniil B.; Rozhkovoy, Ivan E.; Ponomarev, Dmitriy L.

    2017-01-01

    This article provides a thermodynamic evaluation of the reactions of humic and fulvic acids in the process of malachite and azurite mineralogenesis. Semi-empirical methods AM/1, MNDO, PM3, PM5, PM6 and PM7 were used to compute the heat of formation, enthalpy and entropy for thermodynamic calculations of the reactions performed on the basis of Hess's law. It is shown that methods PM6 and PM7 in the MOPAC software package provide good compliance with experimental and calculated heats of formation for copper complexes and alkaline earth metal complexes with organic acids. It is found that the malachite and azurite formation processes involving humus complexing substances are thermodynamically possible. - Highlights: • Copper and alkali-earth metal complexes with humic and fulvic acids are considered. • Quantum chemical calculation of thermodynamics for the structures was performed. • Semi-empirical methods PM6 and PM7 provide best correlation for the properties. • Parameters of basic copper carbonate formation reactions were obtained by Hess's law. • Processes of malachite and azurite formation from humus complexes are possible.

  2. Quantum Chemical Calculations Using Accelerators: Migrating Matrix Operations to the NVIDIA Kepler GPU and the Intel Xeon Phi.

    Science.gov (United States)

    Leang, Sarom S; Rendell, Alistair P; Gordon, Mark S

    2014-03-11

    Increasingly, modern computer systems comprise a multicore general-purpose processor augmented with a number of special purpose devices or accelerators connected via an external interface such as a PCI bus. The NVIDIA Kepler Graphical Processing Unit (GPU) and the Intel Phi are two examples of such accelerators. Accelerators offer peak performances that can be well above those of the host processor. How to exploit this heterogeneous environment for legacy application codes is not, however, straightforward. This paper considers how matrix operations in typical quantum chemical calculations can be migrated to the GPU and Phi systems. Double precision general matrix multiply operations are endemic in electronic structure calculations, especially methods that include electron correlation, such as density functional theory, second order perturbation theory, and coupled cluster theory. The use of approaches that automatically determine whether to use the host or an accelerator, based on problem size, is explored, with computations that are occurring on the accelerator and/or the host. For data-transfers over PCI-e, the GPU provides the best overall performance for data sizes up to 4096 MB with consistent upload and download rates between 5-5.6 GB/s and 5.4-6.3 GB/s, respectively. The GPU outperforms the Phi for both square and nonsquare matrix multiplications.

  3. Mechanism of Microwave-Assisted Pyrolysis of Glucose to Furfural Revealed by Isotopic Tracer and Quantum Chemical Calculations.

    Science.gov (United States)

    Bao, Liwei; Shi, Lei; Luo, Hu; Kong, Lingzhao; Li, Shenggang; Wei, Wei; Sun, Yuhan

    2017-08-10

    Glucose labeled with 13 C or 18 O was used to investigate the mechanism of its conversion into furfural by microwaveassisted pyrolysis. The isotopic content and location in furfural were determined from GC-MS and 13 C NMR spectroscopic measurements and data analysis. The results suggest that the carbon skeleton in furfural is mainly derived from C1 to C5 of glucose, whereas the C of the aldehyde group and the O of the furan ring in furfural primarily originate from C1 and O5 of glucose, respectively. For the first time, the source of O in the furan ring of furfural was elucidated directly by experiment, providing results that are consistent with predictions from recent quantum chemical calculations. Moreover, further theoretical calculations indicate substantially lower energy barriers than previous predictions by considering the potential catalytic effect of formic acid, which is one of the pyrolysis products. The catalytic role of formic acid is further confirmed by experimental evidence. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Synthesis, antimicrobial activities and computational studies of some ...

    African Journals Online (AJOL)

    The quantitative structure-antibacterial activity relationship was studied using some quantum chemical parameters with the aid of Spartan 10 (V1.0.1) and XLSTAT (add-in) software. A good correlation was observed between the antibacterial activity of the compounds and the calculated quantum chemical descriptors.

  5. Numerical simulation of multi-layer graphene structures based on quantum-chemical model

    International Nuclear Information System (INIS)

    Kasper, Y; Tuchin, A; Bokova, A; Bityutskaya, L

    2016-01-01

    The electronic structure of the multi-layer graphene has been studied using the density functional theory (DFT). The dependence of the average interlayer distance on the number of layers ( n = 2 ÷ 6) has been determined. The analysis of the charge redistribution and the electron density of the bi- and three-layer graphene under the external pressure up to 50 GPa has been performed. The model of the interlayer conductivity of compressed multigraphene was offered (paper)

  6. Quantum chemical modeling of perovskite: An investigation of piezoelectricity in ferrite of yttrium.

    Science.gov (United States)

    de Lira, Fábio Augusto M; Farias, Márcio de Souza; de Figueiredo, Antonio Florêncio; Gil, Fábio dos Santos; dos Santos, Marcos Antonio B; Malheiros, Bruno Veiga; Ferreira, João Elias V; Pinheiro, José Ciríaco; Treu-Filho, Oswaldo; Kondo, Rogério Toshiaki

    2011-07-01

    In a previous article, we used Hartree-Fock (HF) theory to study the piezoelectricity in BaTiO₃. In this paper, we applied the Douglas-Kroll-Hess second order scalar relativistic method to investigate the possible piezoelectric properties in the perovskite YFeO₃ structure, which has not yet been studied experimentally. The 30s20p13d and 31s21p17d Gaussian basis sets for the Fe (⁵D) and Y (²D) atoms, respectively, were built with the Generator Coordinate HF method. After contraction to [13s7p5d] and [13s8p7d], in combination with the 20s14p/6s4p basis set for the O (³P) atom from literature, they had their quality evaluated using calculations of the total and the orbital energies for the ²FeO⁺¹ and ¹YO⁺¹ fragments. The dipole moment, the total energy, and the total atomic charges in YFeO₃ in C(s) space group were calculated. The results and the analysis lead us to believe that the perovskite YFeO₃ does not present piezoelectric properties.

  7. Synthesis, characterization, crystal structure and quantum chemical investigations of three novel coumarin-benzenesulfonohydrazide derivatives

    Science.gov (United States)

    Chethan Prathap, K. N.; Lokanath, N. K.

    2018-04-01

    Coumarin derivatives are an important class of heterocyclic compounds due to their physical and biological properties. Coumarin derivatives have been identified with many significant electro-optical properties and biological activities. Three novel coumarin derivatives containing benzene sulfonohydrazide group were synthesized by condensation reaction. The synthesized compounds were characterized by various spectroscopic techniques (Mass, 1H/13C NMR and FTIR). Thermal and optical properties were investigated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and UV-Vis spectroscopic studies. Finally their structures were confirmed by single crystal X-ray diffraction (XRD) studies. The three compounds exhibit diverse intermolecular interactions, as observed by the crystal packing and Hirshfeld surface analysis. Further, their structures were optimized by density functional theory (DFT) calculations using B3LYP hybrid functionals with 6-311G+(d,p) level basis set. The Mulliken charge, molecular electrostatic potential (MEP), frontier molecular orbitals (HOMO-LUMO) were investigated. The experimentally determined parameters were compared with those calculated theoretically and they complement each other with a very good correlation. The transitions among the molecular orbitals were investigated using time-dependent density functional theory (TD-DFT) and the electronic absorption spectra obtained showed very good agreement with the experimentally measured UV-Vis spectra. Furthermore, non-linear optical (NLO) properties were investigated by calculating polarizabilities and hyperpolarizabilities. All three compounds exhibit significantly high hyperpolarizabilities compared to the reference material urea, which makes them potential candidates for NLO applications.

  8. Spectroscopic (vibrational, NMR and UV-vis.) and quantum chemical investigations on 4-hexyloxy-3-methoxybenzaldehyde.

    Science.gov (United States)

    Abbas, Ashgar; Gökce, Halil; Bahçeli, Semiha

    2016-01-05

    In this study, the 4-hexyloxy-3-methoxybenzaldehyde compound as one of the derivatives of vanillin which is a well known flavoring agent, C14H20O3, has been investigated by experimentally and extensively utilizing density functional theory (DFT) at the B3LYP/6-311++G(d,p) level. In this context, the optimized geometry, vibrational frequencies, (1)H and (13)C NMR chemical shifts, UV-vis. (in gas phase and in methanol solvent) spectra, HOMO-LUMO analysis, molecular electrostatic potential (MEP), thermodynamic parameters and atomic charges of 4-hexyloxy-3-methoxybenzaldehyde have been calculated. In addition, theoretically predicted IR, Raman and UV-vis. (in gas phase and in methanol solvent) spectra of the mentioned molecule have been constructed. The results calculated were compared with the experimental data. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Vibrational analysis of 4-chloro-3-nitrobenzonitrile by quantum chemical calculations

    Science.gov (United States)

    Sert, Yusuf; Çırak, Çağrı; Ucun, Fatih

    2013-04-01

    In the present study, the experimental and theoretical harmonic and anharmonic vibrational frequencies of 4-chloro-3-nitrobenzonitrile were investigated. The experimental FT-IR (400-4000 cm-1) and μ-Raman spectra (100-4000 cm-1) of the molecule in the solid phase were recorded. Theoretical vibrational frequencies and geometric parameters (bond lengths and bond angles) were calculated using ab initio Hartree Fock (HF), density functional B3LYP and M06-2X methods with 6-311++G(d,p) basis set by Gaussian 09 W program, for the first time. The assignments of the vibrational frequencies were performed by potential energy distribution (PED) analysis by using VEDA 4 program. The theoretical optimized geometric parameters and vibrational frequencies were compared with the corresponding experimental data, and they were seen to be in a good agreement with each other. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies were found.

  10. FTIR, FT-Raman, FT-NMR and quantum chemical investigations of 3-acetylcoumarin

    Science.gov (United States)

    Arjunan, V.; Sakiladevi, S.; Marchewka, M. K.; Mohan, S.

    2013-05-01

    3-Acetylcoumarin (3AC) was synthesised by a Knoevenagel reaction. Conformational analysis using the B3LYP method was also carried out to determine the most stable conformation of the compound. FTIR and FT-Raman spectra of 3AC have been recorded in the range 4000-400 and 4000-100 cm-1, respectively. 1H and 13C NMR spectra have also been recorded. The complete vibrational assignment and analysis of the fundamental modes of the compound were carried out using the experimental FTIR and FT-Raman data and quantum mechanical studies. The experimental vibrational frequencies were compared with the wavenumbers obtained theoretically from the DFT-B3LYP/B3PW91 gradient calculations employing the standard 6-31G**, high level 6-311++G** and cc-pVTZ basis sets for optimised geometry of the compound. The frontier molecular orbital energies of the compound are determined by DFT method.

  11. A quantitative analysis of weak intermolecular interactions & quantum chemical calculations (DFT) of novel chalcone derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Chavda, Bhavin R., E-mail: chavdabhavin9@gmail.com; Dubey, Rahul P.; Patel, Urmila H. [Department of Physics, Sardar Patel University, Vallabh Vidyanagar-388120, Gujarat (India); Gandhi, Sahaj A. [Bhavan’s Shri I.L. Pandya Arts-Science and Smt. J.M. shah Commerce College, Dakar, Anand -388001, Gujarat, Indian (India); Barot, Vijay M. [P. G. Center in Chemistry, Smt. S. M. Panchal Science College, Talod, Gujarat 383 215 (India)

    2016-05-06

    The novel chalcone derivatives have widespread applications in material science and medicinal industries. The density functional theory (DFT) is used to optimized the molecular structure of the three chalcone derivatives (M-I, II, III). The observed discrepancies between the theoretical and experimental (X-ray data) results attributed to different environments of the molecules, the experimental values are of the molecule in solid state there by subjected to the intermolecular forces, like non-bonded hydrogen bond interactions, where as isolated state in gas phase for theoretical studies. The lattice energy of all the molecules have been calculated using PIXELC module in Coulomb –London –Pauli (CLP) package and is partitioned into corresponding coulombic, polarization, dispersion and repulsion contributions. Lattice energy data confirm and strengthen the finding of the X-ray results that the weak but significant intermolecular interactions like C-H…O, Π- Π and C-H… Π plays an important role in the stabilization of crystal packing.

  12. Molcas 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table.

    Science.gov (United States)

    Aquilante, Francesco; Autschbach, Jochen; Carlson, Rebecca K; Chibotaru, Liviu F; Delcey, Mickaël G; De Vico, Luca; Fdez Galván, Ignacio; Ferré, Nicolas; Frutos, Luis Manuel; Gagliardi, Laura; Garavelli, Marco; Giussani, Angelo; Hoyer, Chad E; Li Manni, Giovanni; Lischka, Hans; Ma, Dongxia; Malmqvist, Per Åke; Müller, Thomas; Nenov, Artur; Olivucci, Massimo; Pedersen, Thomas Bondo; Peng, Daoling; Plasser, Felix; Pritchard, Ben; Reiher, Markus; Rivalta, Ivan; Schapiro, Igor; Segarra-Martí, Javier; Stenrup, Michael; Truhlar, Donald G; Ungur, Liviu; Valentini, Alessio; Vancoillie, Steven; Veryazov, Valera; Vysotskiy, Victor P; Weingart, Oliver; Zapata, Felipe; Lindh, Roland

    2016-02-15

    In this report, we summarize and describe the recent unique updates and additions to the Molcas quantum chemistry program suite as contained in release version 8. These updates include natural and spin orbitals for studies of magnetic properties, local and linear scaling methods for the Douglas-Kroll-Hess transformation, the generalized active space concept in MCSCF methods, a combination of multiconfigurational wave functions with density functional theory in the MC-PDFT method, additional methods for computation of magnetic properties, methods for diabatization, analytical gradients of state average complete active space SCF in association with density fitting, methods for constrained fragment optimization, large-scale parallel multireference configuration interaction including analytic gradients via the interface to the Columbus package, and approximations of the CASPT2 method to be used for computations of large systems. In addition, the report includes the description of a computational machinery for nonlinear optical spectroscopy through an interface to the QM/MM package Cobramm. Further, a module to run molecular dynamics simulations is added, two surface hopping algorithms are included to enable nonadiabatic calculations, and the DQ method for diabatization is added. Finally, we report on the subject of improvements with respects to alternative file options and parallelization. © 2015 Wiley Periodicals, Inc.

  13. FTIR, FT-Raman, FT-NMR and quantum chemical investigations of 3-acetylcoumarin.

    Science.gov (United States)

    Arjunan, V; Sakiladevi, S; Marchewka, M K; Mohan, S

    2013-05-15

    3-Acetylcoumarin (3AC) was synthesised by a Knoevenagel reaction. Conformational analysis using the B3LYP method was also carried out to determine the most stable conformation of the compound. FTIR and FT-Raman spectra of 3AC have been recorded in the range 4000-400 and 4000-100 cm(-1), respectively. (1)H and (13)C NMR spectra have also been recorded. The complete vibrational assignment and analysis of the fundamental modes of the compound were carried out using the experimental FTIR and FT-Raman data and quantum mechanical studies. The experimental vibrational frequencies were compared with the wavenumbers obtained theoretically from the DFT-B3LYP/B3PW91 gradient calculations employing the standard 6-31G(**), high level 6-311++G(**) and cc-pVTZ basis sets for optimised geometry of the compound. The frontier molecular orbital energies of the compound are determined by DFT method. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Optimization of the geometry of the diphenylamine molecule by semiempirical quantum chemical methods

    International Nuclear Information System (INIS)

    Pankratov, A.N.; Mushtakova, S.P.; Gribov, L.A.

    1986-01-01

    Available data on experimental study of the geometry of the diphenylamine molecule (I) in solution and in the crystal are fragmentary and not always reliable. Previously, they did a conformational analysis of molecule I using the atom-atom potential method. In order to refine the geometric parameters found for molecule I, optimization of its geometry is provided in the paper using the CNDO/2, INDO, MINDO/3 methods with the use of programs for the BESM-6 computer which are part of the VIKING program set. The angles of rotation for the phenyl rings relative to the CNC plane, the bond angles C 2 N 7 C 8 and C 2 N 7 H 19 , and also the dihedral angle H 19 N 7 C 8 C 9 were subjected to optimization. For any set of values for the indicated parameters, the bond angle C 8 N 7 H 19 is determined unambiguously. The results of the calculations are evidence that the MINDO/3 method is not suitable for optimization of the geometry for molecules of the indicated series; in particular, it leads to much too high a value for the CNC angles (135.9 0 ). The CNDO/2 method reproduces well the real value of the CNC angle (124.1 0 ) and confirms the known pyrimidal character of the nitrogen atom, the sum of the bond angles of which proved to be equal to 353.6 0 . The calculation in the INDO approximation successfully gives the basic characteristics of the molecular geometry of (I); according to this approximation, the CNC angle is equal to 123.2 0 , the CNH angles are equal to 118.0 and 118.8 0 , the sum of the angles for the nitrogen atom is 360.0 0

  15. Prediction of pKa Values for Druglike Molecules Using Semiempirical Quantum Chemical Methods.

    Science.gov (United States)

    Jensen, Jan H; Swain, Christopher J; Olsen, Lars

    2017-01-26

    Rapid yet accurate pK a prediction for druglike molecules is a key challenge in computational chemistry. This study uses PM6-DH+/COSMO, PM6/COSMO, PM7/COSMO, PM3/COSMO, AM1/COSMO, PM3/SMD, AM1/SMD, and DFTB3/SMD to predict the pK a values of 53 amine groups in 48 druglike compounds. The approach uses an isodesmic reaction where the pK a value is computed relative to a chemically related reference compound for which the pK a value has been measured experimentally or estimated using a standard empirical approach. The AM1- and PM3-based methods perform best with RMSE values of 1.4-1.6 pH units that have uncertainties of ±0.2-0.3 pH units, which make them statistically equivalent. However, for all but PM3/SMD and AM1/SMD the RMSEs are dominated by a single outlier, cefadroxil, caused by proton transfer in the zwitterionic protonation state. If this outlier is removed, the RMSE values for PM3/COSMO and AM1/COSMO drop to 1.0 ± 0.2 and 1.1 ± 0.3, whereas PM3/SMD and AM1/SMD remain at 1.5 ± 0.3 and 1.6 ± 0.3/0.4 pH units, making the COSMO-based predictions statistically better than the SMD-based predictions. For pK a calculations where a zwitterionic state is not involved or proton transfer in a zwitterionic state is not observed, PM3/COSMO or AM1/COSMO is the best pK a prediction method; otherwise PM3/SMD or AM1/SMD should be used. Thus, fast and relatively accurate pK a prediction for 100-1000s of druglike amines is feasible with the current setup and relatively modest computational resources.

  16. Molecular Structure and Electronic Properties of Porphyrin-Thiophene-Perylene Using Quantum Chemical Calculation

    Directory of Open Access Journals (Sweden)

    Tatiya Chokbunpiam

    2010-01-01

    Full Text Available This study aimed to design a new series of compounds consisting of a porphyrin macrocycle linked to a perylene unit via a thiophenic bridge. The structural and electronic properties of the molecules, and the effects of mono- and di-substituents R on C3 and R′ on C4 of the thiophene ring were investigated using a quantum calculation approach. The results from the method validation revealed that using the density functional theory approach at B3LYP/6–31G(d data set was the optimal one, considering the accuracy attained and maintaining the computer time required within tractable limits. The results from the B3LYP/6–31G(d approach indicated that significant changes of the torsion angle between the molecular planes of the porphyrin and perylene rings, compared to that of the unsubstituted derivatives, were found in the di-substituted systems bearing R = R′ = −OCH3 and −NH2, and in a mono-substituted system having R = −H and R′=−NH2. The symmetric di-substitution does not provide a significantly lower HOMO-LUMO energy gap (ΔEg. Noticeable decreases in ΔEg were found only with the substitution patterns of: R, R′ = −OCH3, −H; −OH, −H; −N(CH32, −H; −H, −NH2. UV-visible spectra of all derivatives exhibited characteristic absorption maxima of the free bases of porphyrin and perylene.

  17. Quantum chemical elucidation of the mechanism for hydrogenation of TiO2 anatase crystals

    Science.gov (United States)

    Raghunath, P.; Huang, W. F.; Lin, M. C.

    2013-04-01

    Hydrogenation of TiO2 is relevant to hydrogen storage and water splitting. We have carried out a detailed mechanistic study on TiO2 hydrogenation through H and/or H2 diffusion from the surface into subsurface layers of anatase TiO2 (101) by periodic density functional theory calculations implementing on-site Coulomb interactions (DFT + U). Both H atoms and H2 molecules can migrate from the crystal surface into TiO2 near subsurface layer with 27.8 and 46.2 kcal/mol energy barriers, respectively. The controlling step for the former process is the dissociative adsorption of H2 on the surface which requires 47.8 kcal/mol of energy barrier. Both hydrogen incorporation processes are expected to be equally favorable. The barrier energy for H2 migration from the first layer of the subsurface Osub1 to the 2nd layer of the subsurface oxygen Osub2 requires only 6.6 kcal. The presence of H atoms on the surface and inside the subsurface layer tends to promote both H and H2 penetration into the subsurface layer by reducing their energy barriers, as well as to prevent the escape of the H2 from the cage by increasing its escaping barrier energy. The H2 molecule inside a cage can readily dissociate and form 2HO-species exothermically (ΔH = -31.0 kcal/mol) with only 26.2 kcal/mol barrier. The 2HO-species within the cage may further transform into H2O with a 22.0 kcal/mol barrier and 19.3 kcal/mol exothermicity relative to the caged H2 molecule. H2O formation following the breaking of Ti-O bonds within the cage may result in the formation of O-vacancies and surface disordering as observed experimentally under a high pressure and moderately high temperature condition. According to density of states analysis, the projected density of states of the interstitial H, H2, and H2O appear prominently within the TiO2 band gap; in addition, the former induces a shift of the band gap position notably towards the conduction band. The thermochemistry for formation of the most stable sub

  18. Vibrational, NMR and quantum chemical investigations of acetoacetanilde, 2-chloroacetoacetanilide and 2-methylacetoacetanilide.

    Science.gov (United States)

    Arjunan, V; Kalaivani, M; Senthilkumari, S; Mohan, S

    2013-11-01

    The vibrational assignment and analysis of the fundamental modes of the compounds acetoacetanilide (AAA), 2-chloroacetoacetanilide (2CAAA) and 2-methylacetoacetanilide (2MAAA) have been performed. Density functional theory studies have been carried out with B3LYP method utilising 6-311++G(**) and cc-pVTZ basis sets to determine structural, thermodynamic and vibrational characteristics of the compounds and also to understand the influence of chloro and methyl groups on the characteristic frequencies of amide (CONH) group. Intramolecular hydrogen bond exists in acetoacetanilide and o-substituted acetoacetanilide molecules and the N⋯O distance is found to be around 2.7Å. The (1)H and (13)C nuclear magnetic resonance chemical shifts of the molecules were determined and the same have been calculated using the gauge independent atomic orbital (GIAO) method. The energies of the frontier molecular orbitals have been determined. In AAA, 2CAAA and 2MAAA molecules, the nN→πCO(∗) interaction between the nitrogen lone pair and the amide CO antibonding orbital gives strong stabilization of 64.75, 62.84 and 64.18kJmol(-1), respectively. The blue shift in amide-II band of 2MAAA is observed by 45-50cm(-1) than that of AAA. The steric effect of ortho methyl group significantly operating on the NH bond properties. The amide-III, the CN stretching mode of methyl and chloro substituted acetoacetanilide compounds are not affected by the substitution while the amide-V band, the NH out of plane bending mode of 2-chloroacetoacetanilide compound is shifted to a higher frequency than that of AAA. The substituent chlorine plays significantly and the blue shift in o-substituted compounds than the parent in the amide-V vibration is observed. The amide-VI, CO out of plane bending modes of 2MAAA and 2CAAA are significantly raised than that of AAA. A blue shift of amide-VI, CO out of plane bending modes of 2MAAA and 2CAAA than AAA is observed. Copyright © 2013 Elsevier B.V. All rights

  19. Quantum chemical elucidation of the mechanism for hydrogenation of TiO{sub 2} anatase crystals

    Energy Technology Data Exchange (ETDEWEB)

    Raghunath, P.; Huang, W. F.; Lin, M. C. [Center for Interdisciplinary Molecular Science, Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan (China)

    2013-04-21

    Hydrogenation of TiO{sub 2} is relevant to hydrogen storage and water splitting. We have carried out a detailed mechanistic study on TiO{sub 2} hydrogenation through H and/or H{sub 2} diffusion from the surface into subsurface layers of anatase TiO{sub 2} (101) by periodic density functional theory calculations implementing on-site Coulomb interactions (DFT + U). Both H atoms and H{sub 2} molecules can migrate from the crystal surface into TiO{sub 2} near subsurface layer with 27.8 and 46.2 kcal/mol energy barriers, respectively. The controlling step for the former process is the dissociative adsorption of H{sub 2} on the surface which requires 47.8 kcal/mol of energy barrier. Both hydrogen incorporation processes are expected to be equally favorable. The barrier energy for H{sub 2} migration from the first layer of the subsurface O{sub sub1} to the 2nd layer of the subsurface oxygen O{sub sub2} requires only 6.6 kcal. The presence of H atoms on the surface and inside the subsurface layer tends to promote both H and H{sub 2} penetration into the subsurface layer by reducing their energy barriers, as well as to prevent the escape of the H{sub 2} from the cage by increasing its escaping barrier energy. The H{sub 2} molecule inside a cage can readily dissociate and form 2HO-species exothermically ({Delta}H =-31.0 kcal/mol) with only 26.2 kcal/mol barrier. The 2HO-species within the cage may further transform into H{sub 2}O with a 22.0 kcal/mol barrier and 19.3 kcal/mol exothermicity relative to the caged H{sub 2} molecule. H{sub 2}O formation following the breaking of Ti-O bonds within the cage may result in the formation of O-vacancies and surface disordering as observed experimentally under a high pressure and moderately high temperature condition. According to density of states analysis, the projected density of states of the interstitial H, H{sub 2}, and H{sub 2}O appear prominently within the TiO{sub 2} band gap; in addition, the former induces a shift of the

  20. High and low oxidation states and special bonding situations. An investigation of f-elements, xenon and fluorine by matrix-isolation spectroscopy and quantum-chemical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Vent-Schmidt, Thomas

    2015-11-30

    During this thesis, the matrix-isolation technique in conjuction with quantum-chemical calculations has been employed in order to synthesize and characterize new compounds. The focus of the study were new species of the actinide and lanthanide series, but the photochemistry of XeO{sub 4} and the polyfluorides were also investigated. Based on the experience of laser ablated uranium and thorium atoms with H{sub 2} and F{sub 2} the reaction of these actinide atoms with HF has been investigated. The main products in these experiments are HThF and HUF which contain an actinide metal in the rather scarce +II oxidation state. In addition, the deuterated compounds have also been prepared and the isotopic shifts support the assignment. The higher hydride fluorides of thorium such as HThF{sub 3}, H{sub 2}ThF{sub 2} and H{sub 3}ThF have also been observed, whereas there is only little evidence for higher uranium hydride fluorides. The different behavior of the two metals under similar reaction conditions has been investigated theoretically. Besides the hydride fluorides, the reaction of the actinide atoms with HF gives also rise to the low valent fluorides and hydrides such as AnH and AnF (An = U, Th). These compounds have already been identified in experiments using fluorine or hydrogen as reagent, but a more reliable assignment can be made in these experiments due to the lower concentration of H or F. In addition, ThF{sub 2} has been observed in these experiments and there is evidence for the unknown difluoride of uranium, which will be addressed in a future paper. Experiments with laser ablated uranium and thorium atoms were extended to the reaction of these metals with H{sub 2}Se. Previous experiments using H{sub 2}O and H{sub 2}S instead of H{sub 2}Se yielded H{sub 2}AnX (An = U, Th; X = O, S) compounds which show evidence for an actinide-chalcogenide multiple bond. The new synthesized species H{sub 2}ThSe and H{sub 2}USe are characterized by their symmetric and

  1. Quantum-Chemical ab initio Calculations on the Three Isomers of Diborabenzene (C4H4B2)

    Science.gov (United States)

    Singh, Jaswinder; Wang, Yuekui; Raabe, Gerhard

    2010-01-01

    Quantum-chemical ab initio calculations up to the ZPE+CCSD(T)/aug-cc-pVTZ//MP2/6- 311++G** level were performed on three possible structural isomers of diborabenzene (C4H4B2). All three molecules were found to be local minima on the C4H4B2 energy surface and to have closed shell singlet ground states. While the ground states of the 1,3- and 1,4-isomer are planar and of C2v and D2h symmetry, respectively, 1,2-diborabenzene is non-planar with a C2 axis passing through the center of the BB bond and the middle of the opposite carbon-carbon bond as the only symmetry element. The energetically most favourable 1,3-diborabenzene was found to be about 19 and 36 kcal/mol lower in energy than the 1,2- and the 1,4-isomer. Planar 1,3- and 1,4-diborabenzene have three doubly occupied π orbitals while non-planar 1,2-diborabenzene has also three doubly occupied orbitals which can be derived from the π orbitals of its 3.7 kcal/mol energetically less favourable planar form ("π-like" orbitals). The lowest unoccupied orbitals of all three isomers have σ symmetry with large coefficients at the two boron atoms. These orbitals are lower in energy than the lowest unoccupied molecular orbitals (LUMOs) of e. g. benzene and pyridine and might cause pronounced acceptor properties which could be one of the reasons for the elusiveness of the title compounds. The results of bond separation reactions show that cyclic conjugation stabilizes all three diborabenzenes relative to their isolated fragments. The most effective stabilization energy of about 24 kcal/mol was found for the energetically lowest 1,3-isomer. This value amounts to approximately one third of the experimental value for the bond separation energy of pyridine. In all cases the energetically lowest triplet states are significantly (16 - 24 kcal/mol) higher in energy than the singlet ground states. Also among the triplets the 1,3-isomer is the energetically most fabourable species.

  2. Approximate quantum chemical methods for modelling carbohydrate conformation and aromatic interactions: β-cyclodextrin and its adsorption on a single-layer graphene sheet.

    Science.gov (United States)

    Jaiyong, Panichakorn; Bryce, Richard A

    2017-06-14

    Noncovalent functionalization of graphene by carbohydrates such as β-cyclodextrin (βCD) has the potential to improve graphene dispersibility and its use in biomedical applications. Here we explore the ability of approximate quantum chemical methods to accurately model βCD conformation and its interaction with graphene. We find that DFTB3, SCC-DFTB and PM3CARB-1 methods provide the best agreement with density functional theory (DFT) in calculation of relative energetics of gas-phase βCD conformers; however, the remaining NDDO-based approaches we considered underestimate the stability of the trans,gauche vicinal diol conformation. This diol orientation, corresponding to a clockwise hydrogen bonding arrangement in the glucosyl residue of βCD, is present in the lowest energy βCD conformer. Consequently, for adsorption on graphene of clockwise or counterclockwise hydrogen bonded forms of βCD, calculated with respect to this unbound conformer, the DFTB3 method provides closer agreement with DFT values than PM7 and PM6-DH2 approaches. These findings suggest approximate quantum chemical methods as potentially useful tools to guide the design of carbohydrate-graphene interactions, but also highlights the specific challenge to NDDO-based methods in capturing the relative energetics of carbohydrate hydrogen bond networks.

  3. A Quantum Chemical and Statistical Study of Phenolic Schiff Bases with Antioxidant Activity against DPPH Free Radical

    Directory of Open Access Journals (Sweden)

    El Hassane Anouar

    2014-04-01

    Full Text Available Phenolic Schiff bases are known as powerful antioxidants. To select the electronic, 2D and 3D descriptors responsible for the free radical scavenging ability of a series of 30 phenolic Schiff bases, a set of molecular descriptors were calculated by using B3P86 (Becke’s three parameter hybrid functional with Perdew 86 correlation functional combined with 6-31 + G(d,p basis set (i.e., at the B3P86/6-31 + G(d,p level of theory. The chemometric methods, simple and multiple linear regressions (SLR and MLR, principal component analysis (PCA and hierarchical cluster analysis (HCA were employed to reduce the dimensionality and to investigate the relationship between the calculated descriptors and the antioxidant activity. The results showed that the antioxidant activity mainly depends on the first and second bond dissociation enthalpies of phenolic hydroxyl groups, the dipole moment and the hydrophobicity descriptors. The antioxidant activity is inversely proportional to the main descriptors. The selected descriptors discriminate the Schiff bases into active and inactive antioxidants.

  4. Molecular mechanisms in the pyrolysis of unsaturated chlorinated hydrocarbons: formation of benzene rings. 1. Quantum chemical studies.

    Science.gov (United States)

    McIntosh, Grant J; Russell, Douglas K

    2013-05-23

    Analogues of important aromatic growth mechanisms in hydrocarbon pyrolysis and combustion systems are extended to chlorinated systems. We consider the addition of C2Cl2 to both C4Cl3 and C4Cl5 radicals at the M06-2X/6-311+G(3df,3p)//B3LYP/6-31G(d) level of theory, and we demonstrate that these reaction systems have much in common with those of nonchlorinated species. In particular, we find that these radicals appear to lead preferentially to fulvenes, and not to the observed aromatic products, as is found in nonchlorinated systems. We have therefore also considered nonradical C4/C2 channels by way of Diels-Alder cyclization of C4Cl4/C2Cl2 and C4H2Cl2/C2HCl pairs to describe aromatic formation. While the latter pair readily leads to the formation of partially chlorinated benzenes, the fully chlorinated congeners are sterically prohibited from ring closing directly; this leads to a series of novel rearrangement processes which predict the formation of hexachloro-1,5-diene-3-yne, in addition to hexachlorobenzene, in good agreement with experiment. This suggests, for the first time, that facile nonradical routes to aromatic formation are operative in partially and fully chlorinated pyrolysis and combustion systems.

  5. Internal rotation potential and structure of six fluorine substituted nitrobenzenes studied by microwave spectroscopy supported by quantum chemical calculations

    DEFF Research Database (Denmark)

    Larsen, Niels Wessel; Nielsen, Ole Vesterlund

    2014-01-01

    the potential minima in the non-planar molecules were 125.5, 74.9, 98.4 and 163 cm-1 respectively. Parameters for structural relaxation during the internal rotation were calculated by the B3LYP method using aug-cc-pVDZ basis and by the MP2(full) method using aug-cc-pVTZ basis. Using these relaxation parameters...

  6. Quantum-chemical studies of quasi-one-dimensional electron systems. Part 2. Cumulenes and origin of the forbidden zone

    Directory of Open Access Journals (Sweden)

    Yuriy Kruglyak

    2015-06-01

    Full Text Available This review is devoted to the basic problem in quantum theory of quasi-one-dimensional electron systems like polyenes (Part 1 and cumulenes (Part 2 – physical origin of the forbidden zone in these and analogous 1D electron systems due to two possible effects – Peierls instability (bond alternation and Mott instability (electron correlation. Both possible contradiction and coexistence of the Mott and Peierls instabilities are summerized on the basis of the Kiev quantum chemistry team research projects.

  7. Quantum-chemical ab initio and B3LYP study of donor-acceptor complexes of gallium halides with pyridine

    International Nuclear Information System (INIS)

    Timoshkin, A.Yu.; Suvorov, A.V.; Shefer, G.F.

    1999-01-01

    By the ab initio and density functional methods the structural characteristics and vibrational spectra of gallium iodide donor-acceptor complexes with pyridine have been calculated. The standard thermodynamic characteristics of GaI 3 Py complex dissociation in gaseous phase have been calculated, as well. Short I-H intramolecular distances suggest that hydrogen iodide elimination with Ga-N chemical bond retention is the first stage of the complex pyrolysis [ru

  8. On the Possibility of Uphill Intramolecular Electron Transfer in Multicopper Oxidases: Electrochemical and Quantum Chemical Study of Bilirubin Oxidase

    Czech Academy of Sciences Publication Activity Database

    Shleev, S.; Andoralov, V.; Falk, M.; Reimann, C. T.; Ruzgas, T.; Srnec, Martin; Ryde, U.; Rulíšek, Lubomír

    2012-01-01

    Roč. 24, č. 7 (2012), s. 1524-1540 ISSN 1040-0397 Grant - others:7th Framework Program(XE) NMP4-SL-2009-229255 Institutional research plan: CEZ:AV0Z40550506 Keywords : bilirubin oxidase * intramolecular electron transfer * rate-limiting catalytic step * reorganization energy * QM/MM calculations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.817, year: 2012

  9. Determination of Absolute Configuration in Chiral Solvents with Nuclear Magnetic Resonance. A Combined Molecular Dynamics/Quantum Chemical Study

    Czech Academy of Sciences Publication Activity Database

    Kessler, Jiří; Dračínský, Martin; Bouř, Petr

    2015-01-01

    Roč. 119, č. 21 (2015), s. 5260-5268 ISSN 1089-5639 R&D Projects: GA ČR GAP208/11/0105; GA ČR GA13-03978S; GA MŠk(CZ) LH11033 Grant - others:GA MŠk(CZ) LM2010005; GA MŠk(CZ) ED3.2.00/08.0144; GA AV ČR(CZ) M200551205 Institutional support: RVO:61388963 Keywords : X-ray crystallography * NMR spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.883, year: 2015

  10. No oxygen isotope exchange between water and APS-sulfate at surface temperature: Evidence from quantum chemical modeling and triple-oxygen isotope experiments

    Science.gov (United States)

    Kohl, Issaku E.; Asatryan, Rubik; Bao, Huiming

    2012-10-01

    In both laboratory experiments and natural environments where microbial dissimilatory sulfate reduction (MDSR) occurs in a closed system, the δ34S ((34S/32S)sample/(34S/32S)standard - 1) for dissolved SO42- has been found to follow a typical Rayleigh-Distillation path. In contrast, the corresponding δ18O ((18O/16O)sample/(18O/16O)standard) - 1) is seen to plateau with an apparent enrichment of between 23‰ and 29‰ relative to that of ambient water under surface conditions. This apparent steady-state in the observed difference between δ18O and δ18OO can be attributed to any of these three steps: (1) the formation of adenosine-5'-phosphosulfate (APS) from ATP and SO42-, (2) oxygen exchange between sulfite (or other downstream sulfoxy-anions) and water later in the MDSR reaction chain and its back reaction to APS and sulfate, and (3) the re-oxidation of produced H2S or precursor sulfoxy-anions to sulfate in environments containing Fe(III) or O2. This study examines the first step as a potential pathway for water oxygen incorporation into sulfate. We examined the structures and process of APS formation using B3LYP/6-31G(d,p) hybrid density functional theory, implemented in the Gaussian-03 program suite, to predict the potential for oxygen exchange. We conducted a set of in vitro, enzyme-catalyzed, APS formation experiments (with no further reduction to sulfite) to determine the degree of oxygen isotope exchange between the APS-sulfate and water. Triple-oxygen-isotope labeled water was used in the reactor solutions to monitor oxygen isotope exchange between water and APS sulfate. The formation and hydrolysis of APS were identified as potential steps for oxygen exchange with water to occur. Quantum chemical modeling indicates that the combination of sulfate with ATP has effects on bond strength and symmetry of the sulfate. However, these small effects impart little influence on the integrity of the SO42- tetrahedron due to the high activation energy required for

  11. Conformational and structural analysis of 2-allyl-1,2-benzisothiazol-3(2 H)-one 1,1-dioxide as probed by matrix-isolation spectroscopy and quantum chemical calculations

    Science.gov (United States)

    Gómez-Zavaglia, Andrea; Kaczor, Agnieszka; Coelho, Daniela; Cristiano, M. Lurdes S.; Fausto, Rui

    2009-02-01

    2-Allyl-1,2-benzisothiazol-3(2 H)-one 1,1-dioxide (ABIOD) has been studied by matrix-isolation infrared spectroscopy and quantum chemical calculations. A conformational search on the B3LYP/6 -311++G(3df,3pd) potential energy surface of the molecule demonstrated the existence of three conformers, Sk, Sk' and C, with similar energies, differing in the orientation of the allyl group. The calculations predicted the Sk form as the most stable in the gaseous phase, whereas the Sk' and C conformers have calculated relative energies of ca. 0.6 and 0.8-3.0 kJ mol -1, respectively (depending on the level of theory). In agreement with the relatively large (>6 kJ mol -1) calculated barriers for conformational interconversion, the three conformers could be efficiently trapped in an argon matrix at 10 K, the experimental infrared spectrum of the as-deposited matrix fitting well the simulated spectrum built from the calculated spectra for individual conformers scaled by their predicted populations at the temperature of the vapour of the compound prior to matrix deposition. Upon annealing the matrix at 24 K, however, both Sk and Sk' conformers were found to convert to the more polar C conformer, indicating that this latter form becomes the most stable ABIOD conformer in the argon matrix.

  12. Rotational Spectrum, Conformational Composition, Intramolecular Hydrogen Bonding, and Quantum Chemical Calculations of Mercaptoacetonitrile (HSCH2C≡N), a Compound of Potential Astrochemical Interest.

    Science.gov (United States)

    Møllendal, Harald; Samdal, Svein; Guillemin, Jean-Claude

    2016-03-31

    The microwave spectra of mercaptoacetonitrile (HSCH2C≡N) and one deuterated species (DSCH2C≡N) were investigated in the 7.5-124 GHz spectral interval. The spectra of two conformers denoted SC and AP were assigned. The H-S-C-C chain of atoms is synclinal in SC and anti-periplanar in AP. The ground state of SC is split into two substates separated by a comparatively small energy difference resulting in closely spaced transitions with equal intensities. Several transitions of the parent species of SC deviate from Watson's Hamiltonian. Only slight improvements were obtained using a Hamiltonian that takes coupling between the two substates into account. Deviations from Watson's Hamiltonian were also observed for the parent species of AP. However, the spectrum of the deuterated species, which was investigated only for the SC conformer, fits satisfactorily to Watson's Hamiltonian. Relative intensity measurements found SC to be lower in energy than AP by 3.8(3) kJ/mol. The strength of the intramolecular hydrogen bond between the thiol and cyano groups was estimated to be ∼2.1 kJ/mol. The microwave work was augmented by quantum chemical calculations at CCSD and MP2 levels using basis sets of minimum triple-ζ quality. Mercaptoacetonitrile has astrochemical interest, and the spectra presented herein should be useful for a potential identification of this compound in the interstellar medium. Three different ways of generating mercaptoacetonitrile from compounds already found in the interstellar medium were explored by quantum chemical calculations.

  13. Vibronic coupling in molecular crystals: A Franck-Condon Herzberg-Teller model of H-aggregate fluorescence based on quantum chemical cluster calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wykes, M., E-mail: mikewykes@gmail.com; Parambil, R.; Gierschner, J. [Madrid Institute for Advanced Studies, IMDEA Nanoscience, Calle Faraday 9, Campus Cantoblanco, 28049 Madrid (Spain); Beljonne, D. [Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, 7000 Mons (Belgium)

    2015-09-21

    Here, we present a general approach to treating vibronic coupling in molecular crystals based on atomistic simulations of large clusters. Such clusters comprise model aggregates treated at the quantum chemical level embedded within a realistic environment treated at the molecular mechanics level. As we calculate ground and excited state equilibrium geometries and vibrational modes of model aggregates, our approach is able to capture effects arising from coupling to intermolecular degrees of freedom, absent from existing models relying on geometries and normal modes of single molecules. Using the geometries and vibrational modes of clusters, we are able to simulate the fluorescence spectra of aggregates for which the lowest excited state bears negligible oscillator strength (as is the case, e.g., ideal H-aggregates) by including both Franck-Condon (FC) and Herzberg-Teller (HT) vibronic transitions. The latter terms allow the adiabatic excited state of the cluster to couple with vibrations in a perturbative fashion via derivatives of the transition dipole moment along nuclear coordinates. While vibronic coupling simulations employing FC and HT terms are well established for single-molecules, to our knowledge this is the first time they are applied to molecular aggregates. Here, we apply this approach to the simulation of the low-temperature fluorescence spectrum of para-distyrylbenzene single-crystal H-aggregates and draw comparisons with coarse-grained Frenkel-Holstein approaches previously extensively applied to such systems.

  14. Development of constraint algorithm for the number of electrons in molecular orbitals consisting mainly 4f atomic orbitals of rare-earth elements and its introduction to tight-binding quantum chemical molecular dynamics method

    International Nuclear Information System (INIS)

    Endou, Akira; Onuma, Hiroaki; Jung, Sun-ho

    2007-01-01

    Our original tight-binding quantum chemical molecular dynamics code, Colors', has been successfully applied to the theoretical investigation of complex materials including rare-earth elements, e.g., metal catalysts supported on a CeO 2 surface. To expand our code so as to obtain a good convergence for the electronic structure of a calculation system including a rare-earth element, we developed a novel algorithm to provide a constraint condition for the number of electrons occupying the selected molecular orbitals that mainly consist of 4f atomic orbitals of the rare-earth element. This novel algorithm was introduced in Colors. Using Colors, we succeeded in obtaining the classified electronic configurations of the 4f atomic orbitals of Ce 4+ and reduced Ce ions in a CeO 2 bulk model with one oxygen defect, which makes it difficult to obtain a good convergence using a conventional first-principles quantum chemical calculation code. (author)

  15. Delocalization does not always stabilize : a quantum chemical analysis of -substituent effects on 54 alkyl and vinyl cations

    NARCIS (Netherlands)

    Alem, van K.; Lodder, G.; Zuilhof, H.

    2002-01-01

    The effects of -substituents on alkyl and vinyl cations are studied using high-level ab initio calculations. The geometries, stabilities, and electronic properties of 27 alkyl cations and 27 vinyl cations with -substituents are computed at the B3LYP/6-311 G(d,p), MP2/6-311 G(d,p), and CBS-Q levels.

  16. POSSIBLE NATURE OF THE RADIATION-INDUCED SIGNAL IN NAILS: HIGH-FIELD EPR, CONFIRMING CHEMICAL SYNTHESIS, AND QUANTUM CHEMICAL CALCULATIONS.

    Science.gov (United States)

    Tipikin, Dmitriy S; Swarts, Steven G; Sidabras, Jason W; Trompier, François; Swartz, Harold M

    2016-12-01

    Exposure of finger- and toe-nails to ionizing radiation generates an Electron Paramagnetic Resonance (EPR) signal whose intensity is dose dependent and stable at room temperature for several days. The dependency of the radiation-induced signal (RIS) on the received dose may be used as the basis for retrospective dosimetry of an individual's fortuitous exposure to ionizing radiation. Two radiation-induced signals, a quasi-stable (RIS2) and stable signal (RIS5), have been identified in nails irradiated up to a dose of 50 Gy. Using X-band EPR, both RIS signals exhibit a singlet line shape with a line width around 1.0 mT and an apparent g-value of 2.0044. In this work, we seek information on the exact chemical nature of the radiation-induced free radicals underlying the signal. This knowledge may provide insights into the reason for the discrepancy in the stabilities of the two RIS signals and help develop strategies for stabilizing the radicals in nails or devising methods for restoring the radicals after decay. In this work an analysis of high field (94 GHz and 240 GHz) EPR spectra of the RIS using quantum chemical calculations, the oxidation-reduction properties and the pH dependence of the signal intensities are used to show that spectroscopic and chemical properties of the RIS are consistent with a semiquinone-type radical underlying the RIS. It has been suggested that semiquinone radicals formed on trace amounts of melanin in nails are the basis for the RIS signals. However, based on the quantum chemical calculations and chemical properties of the RIS, it is likely that the radicals underlying this signal are generated from the radiolysis of L-3,4-dihydroxyphenylalanine (DOPA) amino acids in the keratin proteins. These DOPA amino acids are likely formed from the exogenous oxidation of tyrosine in keratin by the oxygen from the air prior to irradiation. We show that these DOPA amino acids can work as radical traps, capturing the highly reactive and unstable sulfur

  17. POSSIBLE NATURE OF THE RADIATION-INDUCED SIGNAL IN NAILS: HIGH-FIELD EPR, CONFIRMING CHEMICAL SYNTHESIS, AND QUANTUM CHEMICAL CALCULATIONS

    Science.gov (United States)

    Tipikin, Dmitriy S.; Swarts, Steven G.; Sidabras, Jason W.; Trompier, François; Swartz, Harold M.

    2016-01-01

    Exposure of finger- and toe-nails to ionizing radiation generates an Electron Paramagnetic Resonance (EPR) signal whose intensity is dose dependent and stable at room temperature for several days. The dependency of the radiation-induced signal (RIS) on the received dose may be used as the basis for retrospective dosimetry of an individual's fortuitous exposure to ionizing radiation. Two radiation-induced signals, a quasi-stable (RIS2) and stable signal (RIS5), have been identified in nails irradiated up to a dose of 50 Gy. Using X-band EPR, both RIS signals exhibit a singlet line shape with a line width around 1.0 mT and an apparent g-value of 2.0044. In this work, we seek information on the exact chemical nature of the radiation-induced free radicals underlying the signal. This knowledge may provide insights into the reason for the discrepancy in the stabilities of the two RIS signals and help develop strategies for stabilizing the radicals in nails or devising methods for restoring the radicals after decay. In this work an analysis of high field (94 GHz and 240 GHz) EPR spectra of the RIS using quantum chemical calculations, the oxidation–reduction properties and the pH dependence of the signal intensities are used to show that spectroscopic and chemical properties of the RIS are consistent with a semiquinone-type radical underlying the RIS. It has been suggested that semiquinone radicals formed on trace amounts of melanin in nails are the basis for the RIS signals. However, based on the quantum chemical calculations and chemical properties of the RIS, it is likely that the radicals underlying this signal are generated from the radiolysis of L-3,4-dihydroxyphenylalanine (DOPA) amino acids in the keratin proteins. These DOPA amino acids are likely formed from the exogenous oxidation of tyrosine in keratin by the oxygen from the air prior to irradiation. We show that these DOPA amino acids can work as radical traps, capturing the highly reactive and unstable

  18. 3-Dimensional atomic scale structure of the ionic liquid-graphite interface elucidated by AM-AFM and quantum chemical simulations

    Science.gov (United States)

    Page, Alister J.; Elbourne, Aaron; Stefanovic, Ryan; Addicoat, Matthew A.; Warr, Gregory G.; Voïtchovsky, Kislon; Atkin, Rob

    2014-06-01

    In situ amplitude modulated atomic force microscopy (AM-AFM) and quantum chemical simulations are used to resolve the structure of the highly ordered pyrolytic graphite (HOPG)-bulk propylammonium nitrate (PAN) interface with resolution comparable with that achieved for frozen ionic liquid (IL) monolayers using STM. This is the first time that (a) molecular resolution images of bulk IL-solid interfaces have been achieved, (b) the lateral structure of the IL graphite interface has been imaged for any IL, (c) AM-AFM has elucidated molecular level structure immersed in a viscous liquid and (d) it has been demonstrated that the IL structure at solid surfaces is a consequence of both thermodynamic and kinetic effects. The lateral structure of the PAN-graphite interface is highly ordered and consists of remarkably well-defined domains of a rhomboidal superstructure composed of propylammonium cations preferentially aligned along two of the three directions in the underlying graphite lattice. The nanostructure is primarily determined by the cation. Van der Waals interactions between the propylammonium chains and the surface mean that the cation is enriched in the surface layer, and is much less mobile than the anion. The presence of a heterogeneous lateral structure at an ionic liquid-solid interface has wide ranging ramifications for ionic liquid applications, including lubrication, capacitive charge storage and electrodeposition.In situ amplitude modulated atomic force microscopy (AM-AFM) and quantum chemical simulations are used to resolve the structure of the highly ordered pyrolytic graphite (HOPG)-bulk propylammonium nitrate (PAN) interface with resolution comparable with that achieved for frozen ionic liquid (IL) monolayers using STM. This is the first time that (a) molecular resolution images of bulk IL-solid interfaces have been achieved, (b) the lateral structure of the IL graphite interface has been imaged for any IL, (c) AM-AFM has elucidated molecular level

  19. Full conformational landscape of 3-Methoxyphenol revealed by room temperature mm-wave rotational spectroscopy supported by quantum chemical calculations.

    Science.gov (United States)

    Roucou, Anthony; Fontanari, Daniele; Dhont, Guillaume; Jabri, Atef; Bray, Cédric; Hindle, Francis; Mouret, Gaël; Bocquet, Robin; Cuisset, Arnaud

    2018-03-30

    Room temperature millimeter-wave rotational spectroscopy supported by high level of theory calculations have been employed to fully characterise the conformational landscape of 3-Methoxyphenol, a semi-volatile polar oxygenated aromatic compound precursor of secondary organic aerosols in the atmosphere arising from biomass combustion. While previous rotationally-resolved spectroscopic studies in the microwave and in the UV domains failed to observe the complete conformational landscape, the 70 - 330 GHz rotational spectrum measured in this study reveals the ground state rotational signatures of the four stable conformations theoretically predicted. Moreover, rotational transitions in the lowest energy vibrationally excited states were assigned for two conformers. While the inertial defect of methoxyphenol does not signicantly change between conformers and isomers, the excitation of the methoxy out-of-plane bending is the main contribution to the non-planarity of the molecule. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Dipicolinate salt of imidazole: Discovering its structure and properties using different experimental methodologies and quantum chemical investigations

    Science.gov (United States)

    Thirumurugan, R.; Anitha, K.

    2018-03-01

    A novel organic proton transfer complex of imidazolium dipicolinate (ID) has been synthesized and it was grown as single crystals using slow evaporation method. The molecular structure of synthesized compound and vibrational modes of its functional groups were confirmed by (1H and 13C) NMR, FTIR and FT-Raman spectroscopic studies, respectively. Single crystal X-ray diffraction (SCXRD) analysis confirmed the orthorhombic system with noncentrosymmetric (NCS), P212121, space group of grown ID crystal. UV-Vis-NIR spectral study confirmed its high optical transparency within the region of 285-1500 nm. Powder second harmonic generation (SHG) efficiency of ID crystal was confirmed and it was 6.8 times that of KDP crystal. TG-DTA and DSC analysis revealed the higher thermal stability of grown crystal as 249 °C. The dielectric response and mechanical behaviour of grown crystal were studied effectively. Density functional theory calculations were performed to probe the relationship between the structure and its properties including molecular optimization, Mulliken atomic charge distribution, frontier molecular orbital (FMOs) and molecular electrostatic potential map (MEP) analysis and first hyperpolarizability. All these experimental and computational results were discussed in this communication and it endorsed the ID compound as a potential NLO candidate could be employed in optoelectronics device applications in near future.

  1. Photoinduced intramolecular charge transfer (ICT) reaction in trans-methyl p-(dimethylamino) cinnamate: A combined fluorescence measurement and quantum chemical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Amrita [Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009 (India); Kar, Samiran [Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Guchhait, Nikhil [Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009 (India)], E-mail: nikhilg@postmark.net

    2006-01-05

    The photophysical behaviour of trans-methyl p-(dimethylamino) cinnamate (t-MDMAC) donor-acceptor system has been investigated by steady-state absorption and emission spectroscopy and quantum chemical calculations. The molecule t-MDMAC shows an emission from the locally excited state in non-polar solvents. In addition to weak local emission, a strong solvent dependent red shifted fluorescence in polar aprotic solvents is attributed to highly polar intramolecular charge transfer state. However, the formation of hydrogen-bonded clusters with polar protic solvents has been suggested from a linear correlation between the observed red shifted fluorescence band maxima with hydrogen bonding parameters ({alpha}). Calculations by ab initio and density functional theory show that the lone pair electron at nitrogen center is out of plane of the benzene ring in the global minimum ground state structure. In the gas phase, a potential energy surface along the twist coordinate at the donor (-NMe{sub 2}) and acceptor (-CH = CHCOOMe) sites shows stabilization of S{sub 1} state and destabilization S{sub 2} and S{sub 0} states. A similar potential energy calculation along the twist coordinate in acetonitrile solvent using non-equilibrium polarized continuum model also shows more stabilization of S{sub 1} state relative to other states and supports solvent dependent red shifted emission properties. In all types of calculations it is found that the nitrogen lone pair is delocalized over the benzene ring in the global minimum ground state and is localized on the nitrogen centre at the 90 deg. twisted configuration. The S{sub 1} energy state stabilization along the twist coordinate at the donor site and localized nitrogen lone pair at the perpendicular configuration support well the observed dual fluorescence in terms of proposed twisted intramolecular charge transfer (TICT) model.

  2. Chlorination pattern effect on thermodynamic parameters and environmental degradability for C₁₀-SCCPs: Quantum chemical calculation based on virtual combinational library.

    Science.gov (United States)

    Sun, Yuzhen; Pan, Wenxiao; Lin, Yuan; Fu, Jianjie; Zhang, Aiqian

    2016-01-01

    Short-chain chlorinated paraffins (SCCPs) are still controversial candidates for inclusion in the Stockholm Convention. The inherent mixture nature of SCCPs makes it rather difficult to explore their environmental behaviors. A virtual molecule library of 42,720 C10-SCCP congeners covering the full structure spectrum was constructed. We explored the structural effects on the thermodynamic parameters and environmental degradability of C10-SCCPs through semi-empirical quantum chemical calculations. The thermodynamic properties were acquired using the AM1 method, and frontier molecular orbital analysis was carried out to obtain the E(HOMO), E(LUMO) and E(LUMO)-E(HOMO) for degradability exploration at the same level. The influence of the chlorination degree (N(Cl)) on the relative stability and environmental degradation was elucidated. A novel structural descriptor, μ, was proposed to measure the dispersion of the chlorine atoms within a molecule. There were significant correlations between thermodynamic values and N(Cl), while the reported N(Cl)-dependent pollution profile of C10-SCCPs in environmental samples was basically consistent with the predicted order of formation stability of C10-SCCP congeners. In addition, isomers with large μ showed higher relative stability than those with small μ. This could be further verified by the relationship between μ and the reactivity of nucleophilic substitution and OH attack respectively. The C10-SCCP congeners with less Cl substitution and lower dispersion degree are susceptible to environmental degradation via nucleophilic substitution and hydroxyl radical attack, while direct photolysis of C10-SCCP congeners cannot readily occur due to the large E(LUMO)-E(HOMO) values. The chlorination effect and the conclusions were further checked with appropriate density functional theory (DFT) calculations. Copyright © 2015. Published by Elsevier B.V.

  3. Exploring the dynamics of reaction N((2)D)+C2H4 with crossed molecular-beam experiments and quantum-chemical calculations.

    Science.gov (United States)

    Lee, Shih-Huang; Chin, Chih-Hao; Chen, Wei-Kan; Huang, Wen-Jian; Hsieh, Chu-Chun

    2011-05-14

    We conducted the title reaction using a crossed molecular-beam apparatus, quantum-chemical calculations, and RRKM calculations. Synchrotron radiation from an undulator served to ionize selectively reaction products by advantage of negligibly small dissociative ionization. We observed two products with gross formula C(2)H(3)N and C(2)H(2)N associated with loss of one and two hydrogen atoms, respectively. Measurements of kinetic-energy distributions, angular distributions, low-resolution photoionization spectra, and branching ratios of the two products were carried out. Furthermore, we evaluated total branching ratios of various exit channels using RRKM calculations based on the potential-energy surface of reaction N((2)D)+C(2)H(4) established with the method CCSD(T)/6-311+G(3df,2p)//B3LYP/6-311G(d,p)+ZPE[B3LYP/6-311G(d,p)]. The combination of experimental and computational results allows us to reveal the reaction dynamics. The N((2)D) atom adds to the C=C π-bond of ethene (C(2)H(4)) to form a cyclic complex c-CH(2)(N)CH(2) that directly ejects a hydrogen atom or rearranges to other intermediates followed by elimination of a hydrogen atom to produce C(2)H(3)N; c-CH(2)(N)CH+H is the dominant product channel. Subsequently, most C(2)H(3)N radicals, notably c-CH(2)(N)CH, further decompose to CH(2)CN+H. This work provides results and explanations different from the previous work of Balucani et al. [J. Phys. Chem. A, 2000, 104, 5655], indicating that selective photoionization with synchrotron radiation as an ionization source is a good choice in chemical dynamics research.

  4. Molecular structure, electronic properties, NLO, NBO analysis and spectroscopic characterization of Gabapentin with experimental (FT-IR and FT-Raman) techniques and quantum chemical calculations

    Science.gov (United States)

    Sinha, Leena; Karabacak, Mehmet; Narayan, V.; Cinar, Mehmet; Prasad, Onkar

    2013-05-01

    Gabapentin (GP), structurally related to the neurotransmitter GABA (gamma-aminobutyric acid), mimics the activity of GABA and is also widely used in neurology for the treatment of peripheral neuropathic pain. It exists in zwitterionic form in solid state. The present communication deals with the quantum chemical calculations of energies, geometrical structure and vibrational wavenumbers of GP using density functional (DFT/B3LYP) method with 6-311++G(d,p) basis set. In view of the fact that amino acids exist as zwitterions as well as in the neutral form depending on the environment (solvent, pH, etc.), molecular properties of both the zwitterionic and neutral form of GP have been analyzed. The fundamental vibrational wavenumbers as well as their intensities were calculated and compared with experimental FT-IR and FT-Raman spectra. The fundamental assignments were done on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanical (SQM) method. The electric dipole moment, polarizability and the first hyperpolarizability values of the GP have been calculated at the same level of theory and basis set. The nonlinear optical (NLO) behavior of zwitterionic and neutral form has been compared. Stability of the molecule arising from hyper-conjugative interactions and charge delocalization has been analyzed using natural bond orbital analysis. Ultraviolet-visible (UV-Vis) spectrum of the title molecule has also been calculated using TD-DFT method. The thermodynamic properties of both the zwitterionic and neutral form of GP at different temperatures have been calculated.

  5. Rotational Spectrum, Conformational Composition, and Quantum Chemical Calculations of Cyanomethyl Formate (HC(O)OCH2C≡N), a Compound of Potential Astrochemical Interest.

    Science.gov (United States)

    Samdal, Svein; Møllendal, Harald; Carles, Sophie

    2015-08-27

    The rotational spectrum of cyanomethyl formate (HC(O)OCH2C≡N) has been recorded in the 12–123 GHz spectral range. The spectra of two conformers were assigned. The rotamer denoted I has a symmetry plane and two out-of plane hydrogen atoms belonging to the cyanomethyl (CH2CN) moiety. In the conformer called II, the cyanomethyl group is rotated 80.3° out of this plane. Conformer I has an energy that is 1.4(6) kJ/mol lower than the energy of II according to relative intensity measurements. A large number of rotational transitions have been assigned for the ground and vibrationally excited states of the two conformers and accurate spectroscopic constants have been obtained. These constants should predict frequencies of transitions outside the investigated spectral range with a very high degree of precision. It is suggested that cyanomethyl formate is a potential interstellar compound. This suggestion is based on the fact that its congener methyl formate (HC(O)OCH3) exists across a large variety of interstellar environments and the fact that cyanides are very prevalent in the Universe. The experimental work has been augmented by high-level quantum chemical calculations. The CCSD/cc-pVQZ calculations are found to predict structures of the two forms that are very close to the Born–Oppenheimer equilibrium structures. MP2/cc-pVTZ predictions of several vibration–rotation interaction constants were generally found to be rather inaccurate. A gas-phase reaction between methyl formate and the cyanomethyl radical CH2CN to produce a hydrogen atom and cyanomethyl formate was mimicked using MP2/cc-pVTZ calculations. It was found that this reaction is not favored thermodynamically. It is also conjectured that the possible formation of cyanomethyl formate might be catalyzed and take place on interstellar particles.

  6. Rotational spectra of rare isotopic species of fluoroiodomethane: determination of the equilibrium structure from rotational spectroscopy and quantum-chemical calculations.

    Science.gov (United States)

    Puzzarini, Cristina; Cazzoli, Gabriele; López, Juan Carlos; Alonso, José Luis; Baldacci, Agostino; Baldan, Alessandro; Stopkowicz, Stella; Cheng, Lan; Gauss, Jürgen

    2012-07-14

    Supported by accurate quantum-chemical calculations, the rotational spectra of the mono- and bi-deuterated species of fluoroiodomethane, CHDFI and CD(2)FI, as well as of the (13)C-containing species, (13)CH(2)FI, were recorded for the first time. Three different spectrometers were employed, a Fourier-transform microwave spectrometer, a millimeter/submillimter-wave spectrometer, and a THz spectrometer, thus allowing to record a huge portion of the rotational spectrum, from 5 GHz up to 1.05 THz, and to accurately determine the ground-state rotational and centrifugal-distortion constants. Sub-Doppler measurements allowed to resolve the hyperfine structure of the rotational spectrum and to determine the complete iodine quadrupole-coupling tensor as well as the diagonal elements of the iodine spin-rotation tensor. The present investigation of rare isotopic species of CH(2)FI together with the results previously obtained for the main isotopologue [C. Puzzarini, G. Cazzoli, J. C. López, J. L. Alonso, A. Baldacci, A. Baldan, S. Stopkowicz, L. Cheng, and J. Gauss, J. Chem. Phys. 134, 174312 (2011); G. Cazzoli, A. Baldacci, A. Baldan, and C. Puzzarini, Mol. Phys. 109, 2245 (2011)] enabled us to derive a semi-experimental equilibrium structure for fluoroiodomethane by means of a least-squares fit procedure using the available experimental ground-state rotational constants together with computed vibrational corrections. Problems related to the missing isotopic substitution of fluorine and iodine were overcome thanks to the availability of an accurate theoretical equilibrium geometry (computed at the coupled-cluster singles and doubles level augmented by a perturbative treatment of triple excitations).

  7. Ionic liquids. Combination of combustion calorimetry with high-level quantum chemical calculations for deriving vaporization enthalpies.

    Science.gov (United States)

    Emel'yanenko, Vladimir N; Verevkin, Sergey P; Heintz, Andreas; Schick, Christoph

    2008-07-10

    In this work, the molar enthalpies of formation of the ionic liquids [C2MIM][NO3] and [C4MIM][NO3] were measured by means of combustion calorimetry. The molar enthalpy of fusion of [C2MIM][NO3] was measured using differential scanning calorimetry. Ab initio calculations of the enthalpy of formation in the gaseous phase have been performed for the ionic species using the G3MP2 theory. We have used a combination of traditional combustion calorimetry with modern high-level ab initio calculations in order to obtain the molar enthalpies of vaporization of a series of the ionic liquids under study.

  8. A new look into the quantum chemical and spectroscopic investigations of 5-chloro-1-methyl-4-nitroimidazole.

    Science.gov (United States)

    Arjunan, V; Raj, Arushma; Anitha, R; Mohan, S

    2014-05-05

    Optimised geometrical structural parameters, harmonic vibrational frequencies, natural bonding orbital analysis and frontier molecular orbitals are determined by B3LYP and B3PW91 methods. The exact geometry of 5-chloro-1-methyl-4-nitroimidazole is determined through conformational analysis. The experimentally observed infrared and Raman bands have been assigned and analysed. The (13)C and (1)H NMR chemical shifts of the compound are investigated. The total electron density and molecular electrostatic potentials are determined. The electrostatic potential (electron+nuclei) distribution, molecular shape, size and dipole moments of the molecule have been displayed. The energies of the frontier molecular orbitals and LUMO-HOMO energy gap are measured. The possible electronic transitions of the molecule are studied by TD-DFT method along with the UV-Visible spectrum. The structure-activity relationship of the compound is also investigated by conceptual DFT methods. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Structural analysis of ternary actinyl(V/VI) sorption complexes on gibbsite. A combined quantum chemical and spectroscopic approach

    Energy Technology Data Exchange (ETDEWEB)

    Gueckel, Katharina

    2013-10-08

    For the safety assessment of high-level nuclear waste repositories, it is mandatory to know the transportation paths of contaminants, e.g. actinyl ions, in the geological barrier. The most attention needs to be focused on the transport in aquifers, because water contamination, depending on retention and migration processes of radionuclides in the geosphere, is of primary environmental concern. The migration behavior of actinides in ground water is mainly controlled by aquatic speciations and sorption processes at water-mineral interfaces. Hence, the investigation of complexspecies in aqueous solutions and at mineral surfaces becomes essential for the safety assessment in the near and far field of nuclear repositories. For deep ground repositories, clay and clay minerals are considered as possible host rocks, because they show a low permeability and are expected to have a high retention capacity towards actinyl ions. But the complexity of naturally occurring minerals in particular their surface often hampers the unequivocal interpretation of results obtained from sorption experiments. The use of model phases only showing one particular functional group at the surfaces with a well defined surface topology is an appropriate approach for the understanding of the basic sorption processes. Aluminum oxide and hydroxides are of special interest because they represent main components in clays and clay minerals. In particular, gibbsite is widely used as a model system because it represents not only the most common crystalline aluminum hydroxide but also a ubiquitous weathering product of alumosilicates. Furthermore, the elemental structural unit of gibbsite, that is the Al(OH)6 octahedron, occurs ubiquitously as part of the structure of common clay minerals like kaolinite. In the present study, the sorption processes of U(VI) and Np(V) on gibbsite were studied under consideration of the aqueous speciation.

  10. A pH-induced conformational switch in a tyrosine kinase inhibitor identified by electronic spectroscopy and quantum chemical calculations.

    Science.gov (United States)

    Khattab, Muhammad; Wang, Feng; Clayton, Andrew H A

    2017-11-24

    Tyrosine kinase inhibitors (TKIs) are a major class of drug utilised in the clinic. During transit to their cognate kinases, TKIs will encounter different pH environments that could have a major influence on TKI structure. To address this, we report UV-Vis spectroscopic and computational studies of the TKI, AG1478, as a function of pH. The electronic absorption spectrum of AG1478 shifted by 10 nm (from 342 nm to 332 nm) from acid to neutral pH and split into two peaks (at 334 nm and 345 nm) in highly alkaline conditions. From these transitions, the pKa value was calculated as 5.58 ± 0.01. To compute structures and spectra, time-dependent density functional theory (TD-DFT) calculations were performed along with conductor-like polarizable continuum model (CPCM) to account for implicit solvent effect. On the basis of the theoretical spectra, we could assign the AG1478 experimental spectrum at acidic pH to a mixture of two twisted conformers (71% AG1478 protonated at quinazolyl nitrogen N(1) and 29% AG1478 protonated at quinazolyl nitrogen N(3)) and at neutral pH to the neutral planar conformer. The AG1478 absorption spectrum (pH 13.3) was fitted to a mixture of neutral (70%) and NH-deprotonated species (30%). These studies reveal a pH-induced conformational transition in a TKI.

  11. Quantum chemical analysis explains hemagglutinin peptide-MHC Class II molecule HLA-DRβ1*0101 interactions

    International Nuclear Information System (INIS)

    Cardenas, Constanza; Villaveces, Jose Luis; Bohorquez, Hugo; Llanos, Eugenio; Suarez, Carlos; Obregon, Mateo; Patarroyo, Manuel Elkin

    2004-01-01

    We present a new method to explore interactions between peptides and major histocompatibility complex (MHC) molecules using the resultant vector of the three principal multipole terms of the electrostatic field expansion. Being that molecular interactions are driven by electrostatic interactions, we applied quantum chemistry methods to better understand variations in the electrostatic field of the MHC Class II HLA-DRβ1*0101-HA complex. Multipole terms were studied, finding strong alterations of the field in Pocket 1 of this MHC molecule, and weak variations in other pockets, with Pocket 1 >> Pocket 4 > Pocket 9 ∼ Pocket 7 > Pocket 6. Variations produced by 'ideal' amino acids and by other occupying amino acids were compared. Two types of interactions were found in all pockets: a strong unspecific one (global interaction) and a weak specific interaction (differential interaction). Interactions in Pocket 1, the dominant pocket for this allele, are driven mainly by the quadrupole term, confirming the idea that aromatic rings are important in these interactions. Multipolar analysis is in agreement with experimental results, suggesting quantum chemistry methods as an adequate methodology to understand these interactions

  12. Prediction of pKa values for druglike molecules using semiempirical quantum chemical methods

    DEFF Research Database (Denmark)

    Jensen, Jan Halborg; Swain, Christopher J; Olsen, Lars

    2017-01-01

    Rapid yet accurate pKa prediction for druglike molecules is a key challenge in computational chemistry. This study uses PM6-DH+/COSMO, PM6/COSMO, PM7/COSMO, PM3/COSMO, AM1/COSMO, PM3/SMD, AM1/SMD, and DFTB3/SMD to predict the pKa values of 53 amine groups in 48 druglike compounds. The approach uses...... uncertainties of ±0.2-0.3 pH units, which make them statistically equivalent. However, for all but PM3/SMD and AM1/SMD the RMSEs are dominated by a single outlier, cefadroxil, caused by proton transfer in the zwitterionic protonation state. If this outlier is removed, the RMSE values for PM3/COSMO and AM1/COSMO...... drop to 1.0 ± 0.2 and 1.1 ± 0.3, whereas PM3/SMD and AM1/SMD remain at 1.5 ± 0.3 and 1.6 ± 0.3/0.4 pH units, making the COSMO-based predictions statistically better than the SMD-based predictions. For pKa calculations where a zwitterionic state is not involved or proton transfer in a zwitterionic state...

  13. On the utility of C_2_4 fullerene framework for Li-ion batteries: Quantum chemical analysis

    International Nuclear Information System (INIS)

    Bagheri, Zargham

    2016-01-01

    Highlights: • Hydrogenation of C_2_4 network makes it’s a promising anode for Li-ion batteries. • Hydrogenation of C_2_4 network produces a cell voltage of about 1.70 V based on the DFT. • Aromaticity of the structure plays an important role in the performance of the anode. - Abstract: The potential application of carbonaceous C_2_4 nanocluster framework as an anode in Li-ion batteries (LIBs) is investigated using density functional theory calculations. We find that this fullerene unexpectedly gives an imaginary cell voltage and cannot be used as an anode in LIBs. Here, we explain the origin of this unusual behavior and introduce a strategy to make it suitable for anode materials. We show that there is no energy barrier for Li"+ diffusion through two neighboring hydrogenated C_2_4 fullerenes. The percentage of Hartree Fock (HF) exchange of density functionals reversely affects the adsorption energies of Li and Li"+, so that it is decreased and increased by increasing %HF exchange, respectively. Also, a linear relationship between %HF and HOMO or LUMO level of the studied systems is predicted.

  14. A quantum-chemical validation about the formation of hydrogen bonds and secondary interactions in intermolecular heterocyclic systems

    Directory of Open Access Journals (Sweden)

    Boaz Galdino Oliveira

    2009-08-01

    Full Text Available We have performed a detailed theoretical study in order to understand the charge density topology of the C2H4O···C2H2 and C2H4S···C2H2 heterocyclic hydrogen-bonded complexes. Through the calculations derived from Quantum Theory of Atoms in Molecules (QTAIM, it was observed the formation of hydrogen bonds and secondary interactions. Such analysis was performed through the determination of optimized geometries at B3LYP/6-31G(d,p level of theory, by which is that QTAIM topological operators were computed, such as the electronic density ρ(r, Laplacian Ñ2ρ(r, and ellipticity ε. The examination of the hydrogen bonds has been performed through the measurement of ρ(r, Ñ2ρ(r and ε between (O···H—C and (S···H—C, whereas the secondary interaction between axial hydrogen atoms Hα and carbon of acetylene. In this insight, it was verified the existence of secondary interaction only in C2H4S···C2H2 complex because its structure is propitious to form multiple interactions.

  15. The Structure and Molecular Parameters of Camphene Determined by Fourier Transform Microwave Spectroscopy and Quantum Chemical Calculations

    Science.gov (United States)

    Neeman, Elias M.; Dréan, Pascal; Huet, T. R.

    2016-06-01

    The emission of volatile organic compounds, from plants has strong revelance for plant physiology, plant ecology and atmospheric chemistry. Camphene (C10H16) is a bicyclic monoterpene which is emitted in the atmosphere by biogenic sources. The structure of the unique stable conformer was optimized using density functional theory and ab initio calculations. The rotational spectrum of camphene was recorded in a supersonic jet expansion with a Fourier transform microwave spectrometer over the range 2-20 GHz. Signals from the parent species and from the ten 13C isotopomers were observed in natural abundance. The rotational and centrifugal distortion parameters were fitted to a Watson's Hamiltonian in the A-reduction. A magnetic hyperfine structure associated with the pairs of hydrogen nuclei in the methylene groups was observed and modeled.The rotational constants coupled to the equilibrium structure calculations were used to determine the r_0 and the r_m(1) gas-phase geometries of the carbon skeleton. The present work provides the first spectroscopic characterization of camphene in the gas phase and these results are also relevant for ozonolysis kinetics study through Criegee intermediates. R. Baraldi, F. Rapparini, O. Facini, D. Spano and P. Duce, Journal of Mediterranean Ecology, Vol.6, No.1, (2005). A. Bracho-Nunez, N. M. Knothe, S. Welter, M. Staudt, W. R. Costa, M. A. R. Liberato, M. T. F. Piedade, and J. Kesselmeier Biogeosciences, 10, 5855-5873, (2013). Minna Kivimäenpää, Narantsetseg Magsarjav, Rajendra Ghimire, Juha-Matti Markkanen, Juha Heijari, Martti Vuorinen and Jarmo K. Holopainen, Atmospheric Environment, 60, 477-485, (2012). R.C. de M. Oliveira and G. F. Bauerfeldt, J. Phys. Chem. A, 119 2802-2812 (2015)

  16. On the isomers of pyridine-4-carboxaldoxime and its nitrate salt, X-ray crystal structure and quantum chemical calculations

    Science.gov (United States)

    Soliman, Saied M.; Albering, Jörg; Abu-Youssef, Morsy A. M.

    2017-07-01

    The reaction between nitric acid and pyridine-4-carboxaldoxime (P4A) afford the corresponding pyridinum nitrate salt (P4AN). Its X-ray structure is measured and compared with the related P4A salts. The DFT/B3LYP results showed that both the P4A and P4AN favored the Syn-I form which has the lowest energy among the other possible isomers. Transition state calculations predicted that the Syn-I form is the thermodynamically and kinetically most stable form. The X-ray solid state structure of the new nitrate salt (P4AN) indicated that the labile proton favored the N-atom of the pyridine ring. DFT studies showed that the same is true for its solution in polar solvents. In contrast, the pyridinium cation is not favored either in the gas phase or solution of P4AN in nonpolar solvent. In these cases, the proton favored to bond with one O-atom from the nitrate group. Second order interaction energies and Mayer bond order values revealed these results. The bond order of the Nsbnd H bond is higher in polar solvents as well as at the experimental structure than either in the gas phase or non polar solvents. The topology parameters obtained from the atoms in molecules (AIM) analysis were used to describe the nature of the Nsbnd H and Osbnd H bonds. The bond critical points (BCP) were found to be close to the H-atoms in case of stronger interaction.

  17. Bond energies of ThO+ and ThC+: A guided ion beam and quantum chemical investigation of the reactions of thorium cation with O2 and CO

    Science.gov (United States)

    Cox, Richard M.; Citir, Murat; Armentrout, P. B.; Battey, Samuel R.; Peterson, Kirk A.

    2016-05-01

    Kinetic energy dependent reactions of Th+ with O2 and CO are studied using a guided ion beam tandem mass spectrometer. The formation of ThO+ in the reaction of Th+ with O2 is observed to be exothermic and barrierless with a reaction efficiency at low energies of k/kLGS = 1.21 ± 0.24 similar to the efficiency observed in ion cyclotron resonance experiments. Formation of ThO+ and ThC+ in the reaction of Th+ with CO is endothermic in both cases. The kinetic energy dependent cross sections for formation of these product ions were evaluated to determine 0 K bond dissociation energies (BDEs) of D0(Th+-O) = 8.57 ± 0.14 eV and D0(Th+-C) = 4.82 ± 0.29 eV. The present value of D0 (Th+-O) is within experimental uncertainty of previously reported experimental values, whereas this is the first report of D0 (Th+-C). Both BDEs are observed to be larger than those of their transition metal congeners, TiL+, ZrL+, and HfL+ (L = O and C), believed to be a result of lanthanide contraction. Additionally, the reactions were explored by quantum chemical calculations, including a full Feller-Peterson-Dixon composite approach with correlation contributions up to coupled-cluster singles and doubles with iterative triples and quadruples (CCSDTQ) for ThC, ThC+, ThO, and ThO+, as well as more approximate CCSD with perturbative (triples) [CCSD(T)] calculations where a semi-empirical model was used to estimate spin-orbit energy contributions. Finally, the ThO+ BDE is compared to other actinide (An) oxide cation BDEs and a simple model utilizing An+ promotion energies to the reactive state is used to estimate AnO+ and AnC+ BDEs. For AnO+, this model yields predictions that are typically within experimental uncertainty and performs better than density functional theory calculations presented previously.

  18. Bond energies of ThO{sup +} and ThC{sup +}: A guided ion beam and quantum chemical investigation of the reactions of thorium cation with O{sub 2} and CO

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Richard M; Citir, Murat; Armentrout, P. B., E-mail: armentrout@chem.utah.edu [Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850 (United States); Battey, Samuel R.; Peterson, Kirk A. [Department of Chemistry, Washington State University, Pullman, Washington 99164-4630 (United States)

    2016-05-14

    Kinetic energy dependent reactions of Th{sup +} with O{sub 2} and CO are studied using a guided ion beam tandem mass spectrometer. The formation of ThO{sup +} in the reaction of Th{sup +} with O{sub 2} is observed to be exothermic and barrierless with a reaction efficiency at low energies of k/k{sub LGS} = 1.21 ± 0.24 similar to the efficiency observed in ion cyclotron resonance experiments. Formation of ThO{sup +} and ThC{sup +} in the reaction of Th{sup +} with CO is endothermic in both cases. The kinetic energy dependent cross sections for formation of these product ions were evaluated to determine 0 K bond dissociation energies (BDEs) of D{sub 0}(Th{sup +}–O) = 8.57 ± 0.14 eV and D{sub 0}(Th{sup +}–C) = 4.82 ± 0.29 eV. The present value of D{sub 0} (Th{sup +}–O) is within experimental uncertainty of previously reported experimental values, whereas this is the first report of D{sub 0} (Th{sup +}–C). Both BDEs are observed to be larger than those of their transition metal congeners, TiL{sup +}, ZrL{sup +}, and HfL{sup +} (L = O and C), believed to be a result of lanthanide contraction. Additionally, the reactions were explored by quantum chemical calculations, including a full Feller-Peterson-Dixon composite approach with correlation contributions up to coupled-cluster singles and doubles with iterative triples and quadruples (CCSDTQ) for ThC, ThC{sup +}, ThO, and ThO{sup +}, as well as more approximate CCSD with perturbative (triples) [CCSD(T)] calculations where a semi-empirical model was used to estimate spin-orbit energy contributions. Finally, the ThO{sup +} BDE is compared to other actinide (An) oxide cation BDEs and a simple model utilizing An{sup +} promotion energies to the reactive state is used to estimate AnO{sup +} and AnC{sup +} BDEs. For AnO{sup +}, this model yields predictions that are typically within experimental uncertainty and performs better than density functional theory calculations presented previously.

  19. Multi-scale multi-physics computational chemistry simulation based on ultra-accelerated quantum chemical molecular dynamics method for structural materials in boiling water reactor

    International Nuclear Information System (INIS)

    Miyamoto, Akira; Sato, Etsuko; Sato, Ryo; Inaba, Kenji; Hatakeyama, Nozomu

    2014-01-01

    In collaboration with experimental experts we have reported in the present conference (Hatakeyama, N. et al., “Experiment-integrated multi-scale, multi-physics computational chemistry simulation applied to corrosion behaviour of BWR structural materials”) the results of multi-scale multi-physics computational chemistry simulations applied to the corrosion behaviour of BWR structural materials. In macro-scale, a macroscopic simulator of anode polarization curve was developed to solve the spatially one-dimensional electrochemical equations on the material surface in continuum level in order to understand the corrosion behaviour of typical BWR structural material, SUS304. The experimental anode polarization behaviours of each pure metal were reproduced by fitting all the rates of electrochemical reactions and then the anode polarization curve of SUS304 was calculated by using the same parameters and found to reproduce the experimental behaviour successfully. In meso-scale, a kinetic Monte Carlo (KMC) simulator was applied to an actual-time simulation of the morphological corrosion behaviour under the influence of an applied voltage. In micro-scale, an ultra-accelerated quantum chemical molecular dynamics (UA-QCMD) code was applied to various metallic oxide surfaces of Fe 2 O 3 , Fe 3 O 4 , Cr 2 O 3 modelled as same as water molecules and dissolved metallic ions on the surfaces, then the dissolution and segregation behaviours were successfully simulated dynamically by using UA-QCMD. In this paper we describe details of the multi-scale, multi-physics computational chemistry method especially the UA-QCMD method. This method is approximately 10,000,000 times faster than conventional first-principles molecular dynamics methods based on density-functional theory (DFT), and the accuracy was also validated for various metals and metal oxides compared with DFT results. To assure multi-scale multi-physics computational chemistry simulation based on the UA-QCMD method for

  20. Quantum-chemical ab initio calculations on the three isomers of diborabenzene (C{sub 4}H{sub 4}B{sub 2})

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jaswinder; Raabe, Gerhard [Inst. fuer Organische Chemie, RWTH Aachen Univ. (Germany); Wang Yuekui [Key Lab. of Chemical Biology and Molecular Engineering of the Education Ministry, Inst. of Molecular Science, Shanxi Univ., Taiyuan, SH (China)

    2010-01-15

    Quantum-chemical ab initio calculations up to the ZPE+CCSD(T)/aug-cc-pVTZ/MP2/6-311++G** level were performed on three possible structural isomers of diborabenzene (C{sub 4}H{sub 4}B{sub 2}). All three molecules were found to be local minima on the C{sub 4}H{sub 4}B{sub 2} energy surface and to have closed shell singlet ground states. While the ground states of the 1,3- and 1,4-isomer are planar and of C{sub 2v} and D{sub 2h} symmetry, respectively, 1,2-diborabenzene is non-planar with a C{sub 2} axis passing through the center of the BB bond and the middle of the opposite carbon-carbon bond as the only symmetry element. The energetically most favourable 1,3-diborabenzene was found to be about 19 and 36 kcal/mol lower in energy than the 1,2- and the 1,4-isomer. Planar 1,3- and 1,4-diborabenzene have three doubly occupied {pi} orbitals while non-planar 1,2-diborabenzene has also three doubly occupied orbitals which can be derived from the {pi} orbitals of its 3.7 kcal/mol energetically less favourable planar form (''{pi}=like'' orbitals). The lowest unoccupied orbitals of all three isomers have {sigma} symmetry with large coefficients at the two boron atoms. These orbitals are lower in energy than the lowest unoccupied molecular orbitals (LUMOs) of e. g. benzene and pyridine and might cause pronounced acceptor properties which could be one of the reasons for the elusiveness of the title compounds. The results of bond separation reactions show that cyclic conjugation stabilizes all three diborabenzenes relative to their isolated fragments. The most effective stabilization energy of about 24 kcal/mol was found for the energetically lowest 1,3-isomer. This value amounts to approximately one third of the experimental value for the bond separation energy of pyridine. In all cases the energetically lowest triplet states are significantly (16 - 24 kcal/mol) higher in energy than the singlet ground states. Also among the triplets the 1,3-isomer is the

  1. Quantum chemical analysis of thermodynamics of 2D cluster formation of alkanes at the water/vapor interface in the presence of aliphatic alcohols.

    Science.gov (United States)

    Vysotsky, Yu B; Kartashynska, E S; Belyaeva, E A; Fainerman, V B; Vollhardt, D; Miller, R

    2015-11-21

    Using the quantum chemical semi-empirical PM3 method it is shown that aliphatic alcohols favor the spontaneous clusterization of vaporous alkanes at the water surface due to the change of adsorption from the barrier to non-barrier mechanism. A theoretical model of the non-barrier mechanism for monolayer formation is developed. In the framework of this model alcohols (or any other surfactants) act as 'floats', which interact with alkane molecules of the vapor phase using their hydrophobic part, whereas the hydrophilic part is immersed into the water phase. This results in a significant increase of contact effectiveness of alkanes with the interface during the adsorption and film formation. The obtained results are in good agreement with the existing experimental data. To test the model the thermodynamic and structural parameters of formation and clusterization are calculated for vaporous alkanes C(n)H(2n+2) (n(CH3) = 6-16) at the water surface in the presence of aliphatic alcohols C(n)H(2n+1)OH (n(OH) = 8-16) at 298 K. It is shown that the values of clusterization enthalpy, entropy and Gibbs' energy per one monomer of the cluster depend on the chain lengths of corresponding alcohols and alkanes, the alcohol molar fraction in the monolayers formed, and the shift of the alkane molecules with respect to the alcohol molecules Δn. Two possible competitive structures of mixed 2D film alkane-alcohol are considered: 2D films 1 with single alcohol molecules enclosed by alkane molecules (the alcohols do not form domains) and 2D films 2 that contain alcohol domains enclosed by alkane molecules. The formation of the alkane films of the first type is nearly independent of the surfactant type present at the interface, but depends on their molar fraction in the monolayer formed and the chain length of the compounds participating in the clusterization, whereas for the formation of the films of the second type the interaction between the hydrophilic parts of the surfactant is

  2. Quantum chemical study of halophilic interactions. Communication 3. Non-empirical study of the ways of tetrachloromethane attack by halide ions

    International Nuclear Information System (INIS)

    Kobychev, V.B.; Vitkovskaya, N.M.; Abramov, A.V.; Timokhin, B.V.

    1999-01-01

    It has been shown by means of non-empirical calculations of model reactions between tetrachloromethane and chlorine/iodine anions that in case of attack via carbon atom according to mechanism S N 2 formation of weakly-bound CCl 4 complexes with halide ions is observed at initial state. Further transformation of the complexes is restricted by considerable potential barriers. Attack of nucleophil via chlorine atom with formation of stable complexes CCl 3 -Cl-Hlg - is preferable [ru

  3. Rational design and characterization of high-efficiency planar A–π–D–π–A type electron donors in small molecule organic solar cells: A quantum chemical approach

    International Nuclear Information System (INIS)

    Wang, Dongmei; Ding, Weilu; Geng, Zhiyuan; Wang, Li; Geng, Yun; Su, Zhongmin; Yu, Hailing

    2014-01-01

    Taking the reported donor DR3TBDT as reference, a series of A–π–D–π–A type donor molecules involving different planar donor cores were designed and investigated by using density functional theory (DFT)/time-dependent DFT methods. Preliminary calculations on geometries, energy levels and spectrum properties show that four of the designed molecules (4, 5, 12 and 13) could become potential donor replacements of DR3TBDT due to their good planarity, larger light harvesting efficiencies and similar exciton migration capability. Additionally, several factors influencing on short-circuit current density (J sc ) were analyzed by in-depth quantum chemical investigations on the transition density matrix, charge transfer indexes, exciton binding energy and Gibbs free energy loss in charge dissociation process. Comparative analyses demonstrate that 4 with indaceno[1,2-b:5,6-b′]dithiophene donor core has more significant electron transfer character and favorable exciton dissociation capability for enhancing the J sc , and would be potentially promising donor material in organic solar cells. - Graphical abstract: Display Omitted - Highlights: • A series of A–π–D–π–A type donors with different donor core for OSC were designed. • The relationship between donor properties and device performance is explored by DFT. • An In-depth quantum chemical investigation on the affecting factors on J sc . • The efficiency of new donor 4 may surpass the reported donor DR3TBDT

  4. Nonradiative Decay Route of Cinnamate Derivatives Studied by Frequency and Time Domain Laser Spectroscopy in the Gas Phase, Matrix Isolation FTIR Spectroscopy and Quantum Chemical Calculations

    Science.gov (United States)

    Ebata, Takayuki

    2017-06-01

    The nonraddiative dececy route involving trans → cis photo-isomerization from the S_1 (ππ*) state has been investigated for several trans-cinnamate derivatives, which are known as sunscreen reagents. We examined two types of substitution effects. One is structural isomer such as ortho-, meta-, and para-hydroxy-methylcinnmate (o-, m-, p-HMC). The S_1 lifetime of p-HMC is less than 8 ps at zero-point level, and it undergoes rapid S_1 → ^1nπ* → T_1 decay via multiple conical intersections. Finally, the trans → cis isomerization proceeds in the T_1 state. On the other hand, both o- and m-HMC show very slow decay. Their S_1 lifetimes are in the order of 100 ps even at the excess energy of 2000-3000 \\wn. The other is the effect of the complexity of ester group in para-subsitituted species, such as para-methoxy-methyl, -ethyl and -2ethylhexyl cinnamate (p-MMC, p-MEC, p-M2EHC). p-MMC and p-MEC show sharp S_0 → S_1 (ππ*) vibronic bands, while p-M2EHC shows only broad structureless feature even under the jet-cooled condition. In addition, we found that the S_0 → ^1nπ* absorption appears at 1000 \\wn below the S_0 → S_1 (ππ*) transition in p-MEC and p-M2EHC, but not in p-MMC. Thus, the complexity of the ester group is very important for the appearance of the ^1nπ* state.

  5. Inhibition Effects of a Synthesized Novel 4-Aminoantipyrine Derivative on the Corrosion of Mild Steel in Hydrochloric Acid Solution together with Quantum Chemical Studies

    Directory of Open Access Journals (Sweden)

    Abu Bakar Mohamad

    2013-06-01

    Full Text Available 1,5-Dimethyl-4-((2-methylbenzylideneamino-2-phenyl-1H-pyrazol-3(2H-one (DMPO was synthesized to be evaluated as a corrosion inhibitor. The corrosion inhibitory effects of DMPO on mild steel in 1.0 M HCl were investigated using electrochemical impedance spectroscopy (EIS, potentiodynamic polarization, open circuit potential (OCP and electrochemical frequency modulation (EFM. The results showed that DMPO inhibited mild steel corrosion in acid solution and indicated that the inhibition efficiency increased with increasing inhibitor concentration. Changes in the impedance parameters suggested an adsorption of DMPO onto the mild steel surface, leading to the formation of protective films. The novel synthesized corrosion inhibitor was characterized using UV-Vis, FT-IR and NMR spectral analyses. Electronic properties such as highest occupied molecular orbital energy, lowest unoccupied molecular orbital energy (EHOMO and ELUMO, respectively and dipole moment (μ were calculated and discussed. The results showed that the corrosion inhibition efficiency increased with an increase in the EHOMO values but with a decrease in the ELUMO value.

  6. Photo-physics study of an hydroxy-quinoline derivative as inhibitor of Pim-1 kinase: ultraviolet-visible linear dichroism spectroscopy and quantum chemical calculations.

    Science.gov (United States)

    Lamhasni, T; Ait Lyazidi, S; Hnach, M; Haddad, M; Desmaële, D; Spanget-Larsen, J; Nguyen, D D; Ducasse, L

    2013-09-01

    The photophysical properties of the antiviral 7-nicotinoyl-styrylquinoline (MB96) were investigated by means of UV-Vis linear dichroism (LD) spectroscopy on molecular samples aligned in stretched polyvinylalcohol (PVA), supported by time dependent density functional theory (TD-DFT) calculations. Experimentally, the directions of the transitions moments with respect to the long axis of the molecule were deduced from the orientation K factors, determined by means of "trial-and-error" procedure. The absorption spectrum presents two parts. The main transition in the lowest energy part, observed around 365 nm and showing the highest K value 0.8, is longitudinally in-plane polarized. The highest energy part which is extended between 230 and 320 nm, large, diffuse, and of weak intensity, shows estimated K values between 0.2 and 0.5. This complex structure is transversally polarized with some contamination by the longitudinal character of the first strong band. The TD-DFT results agree fairly well with the LD measurements. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Quantum-chemical study of structure and stability of hydride complexes Li4BeH6 and Li4MgH6

    International Nuclear Information System (INIS)

    Zyubin, A.S.; Charkin, O.P.; Klabo, D.A.; Shlojfer, P.R.

    1993-01-01

    Nonempirical calculations of geometrical structure, electronic structure and relative energies of a wide range of different configurations of Li 4 MH 6 (M = Be, Mg) molecules were conducted in order to predict the existence of complex hydrides with high hydrogen content. It was revealed, that Li 4 MH 6 molecules were stable to decomposition and could exist in isolated state or in inert matrices. Li 4 MH 6 systems are noted for existence of several isomers with energy, close to the basic structure. The presence of M atoms with coordination number (CN) equal to four is considered to be their common feature. The structure, where CN of Be and Mg is equal to three, are less stable. Configurations, including M atoms with CN = 5 or 6, are much more unfavorable from the viewpoint of energy

  8. Thermoresponsive behavior of block copolymers of PEO and PNIPAm with different architecture in aqueous solutions: a study by NMR, FTIR, DSC and quantum-chemical calculations

    Czech Academy of Sciences Publication Activity Database

    Spěváček, Jiří; Konefal, Rafal; Dybal, Jiří; Čadová, Eva; Kovářová, Jana

    2017-01-01

    Roč. 94, September (2017), s. 471-483 ISSN 0014-3057 R&D Projects: GA ČR(CZ) GA15-13853S Institutional support: RVO:61389013 Keywords : thermoresponsive polymer * diblock copolymer PEO-b-PNIPAm * y-shape triblock copolymer PEO-b-(PNIPAm)2 Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.531, year: 2016

  9. The DNA and RNA sugar-phosphate backbone emerges as the key player. An overview of quantum-chemical, structural biology and simulation studies

    Czech Academy of Sciences Publication Activity Database

    Šponer, Jiří; Mládek, Arnošt; Šponer, Judit E.; Svozil, Daniel; Zgarbová, M.; Banáš, Pavel; Jurečka, P.; Otyepka, M.

    2012-01-01

    Roč. 14, č. 44 (2012), s. 15257-15277 ISSN 1463-9076 R&D Projects: GA ČR(CZ) GD203/09/H046; GA ČR(CZ) GAP208/10/2302; GA ČR(CZ) GAP208/11/1822; GA ČR(CZ) GAP208/12/1878; GA ČR(CZ) GA203/09/1476; GA ČR(CZ) GBP305/12/G034 Institutional research plan: CEZ:AV0Z50040702 Keywords : DNA * RNA * sugar-phosphate backbone Subject RIV: BO - Biophysics Impact factor: 3.829, year: 2012

  10. The role of axial chirality in Schiff bases of pyridoxal phosphate and amino acids in the mechanism of racemase enzyme : a quantum-chemical study

    NARCIS (Netherlands)

    Genderen, van M.H.P.; Buck, H.M.

    1989-01-01

    In the enzymatic racemization of L and D amino acids, the coenzyme pyridoxal phosphate (PLP) forms a Schiff base with the amino acid. In the first step of the isomerization reaction, both the L and D PLP-amino acid compounds are deprotonated by a single basic site in the enzyme, which is normally

  11. Quantum chemical study of the nature of the ground state and the pressure-induced spin transition in CaFeO3

    NARCIS (Netherlands)

    Sadoc, Aymeric; de Graaf, Coen; Broer, Ria

    Ab initio calculations have been performed to clarify the character of the electronic ground state of the high-temperature phase of CaFeO3 at different external pressures. The analysis of the correlated N-electron wave function of properly embedded FeO6 clusters in terms of optimal atomic orbitals

  12. Inhibition Effects of a Synthesized Novel 4-Aminoantipyrine Derivative on the Corrosion of Mild Steel in Hydrochloric Acid Solution together with Quantum Chemical Studies

    Science.gov (United States)

    Junaedi, Sutiana; Al-Amiery, Ahmed A.; Kadihum, Abdulhadi; Kadhum, Abdul Amir H.; Mohamad, Abu Bakar

    2013-01-01

    1,5-Dimethyl-4-((2-methylbenzylidene)amino)-2-phenyl-1H-pyrazol-3(2H)-one (DMPO) was synthesized to be evaluated as a corrosion inhibitor. The corrosion inhibitory effects of DMPO on mild steel in 1.0 M HCl were investigated using electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, open circuit potential (OCP) and electrochemical frequency modulation (EFM). The results showed that DMPO inhibited mild steel corrosion in acid solution and indicated that the inhibition efficiency increased with increasing inhibitor concentration. Changes in the impedance parameters suggested an adsorption of DMPO onto the mild steel surface, leading to the formation of protective films. The novel synthesized corrosion inhibitor was characterized using UV-Vis, FT-IR and NMR spectral analyses. Electronic properties such as highest occupied molecular orbital energy, lowest unoccupied molecular orbital energy (EHOMO and ELUMO, respectively) and dipole moment (μ) were calculated and discussed. The results showed that the corrosion inhibition efficiency increased with an increase in the EHOMO values but with a decrease in the ELUMO value. PMID:23736696

  13. Quantum chemical study of regular and irregular geometries of MgO nanoclusters : Effects on magnetizability, electronic properties and physical characteristics

    NARCIS (Netherlands)

    Manzetti, Sergio; Yakovlev, Alexei

    2017-01-01

    Advanced materials and surfaces are key components in nanotechnology and are applied by their magnetizable and spintronic properties, high-frequency scattering, and properties attributing to nanoelectronics and nanomagnetic components. Earth oxides are a group of materials with catalytic effects in

  14. Quantum chemical DFT study of the interaction between molecular oxygen and FeN₄ complexes, and effect of the macrocyclic ligand.

    Science.gov (United States)

    Silva, Adilson Luís Pereira; de Almeida, Luciano Farias; Marques, Aldaléa Lopes Brandes; Costa, Hawbertt Rocha; Tanaka, Auro Atsushi; da Silva, Albérico Borges Ferreira; de Jesus Gomes Varela, Jaldyr

    2014-03-01

    Density functional theory (DFT) was used to examine the interaction between molecular oxygen (O₂) and macrocyclic iron complexes of the type FeN₄ during the formation of FeN₄--O₂ adducts. In order to understand how this interaction is affected by different macrocyclic ligands, O₂ was bonded to iron-tetraaza[14]annulene (FeTAA), iron-tetramethyl-tetraaza[14]annulene (FeTMTAA), iron-hexamethyl-tetraaza[14]annulene (FeHMTAA), iron dibenzotetraaza[14]annulene (FeDBTAA), and two iron-tetramethyl-dibenzotetraaza[14]annulene complexes (FeTMDBTAA1, FeTMDBTAA2). The ground state for FeN₄-O₂ adducts was the open-shell singlet. Analysis of the factors influencing the O₂ bonding process showed that different macrocyclic ligands yielded adducts with differences in O--O and Fe--O₂ bond lengths, total charge over the O₂ fragment, O--O vibrational frequency, and spin density in the O₂ fragment. A smaller energy gap between the α-HOMO of the FeN₄ complexes and the β-LUMO of O₂ increased the interaction between the complex and the O₂ molecule. The order of activity was FeDBTAA < FeTMDBTAA2 < FeTMDBTAA1 < FeTAA < FeTMTAA < FeHMTAA.

  15. Formation and stability of .beta.-structure in biodegradable ultra-high-molecular-weight poly(3-hydroxybutyrate) by infrared, Raman, and quantum chemical calculation studies

    Czech Academy of Sciences Publication Activity Database

    Murakami, R.; Sato, H.; Dybal, Jiří; Iwata, T.; Ozaki, Y.

    2007-01-01

    Roč. 48, č. 9 (2007), s. 2672-2680 ISSN 0032-3861 R&D Projects: GA ČR GA203/05/0425 Grant - others:Ministry of Education, Culture, Sports, Science and Technology(JP) 18750107 Institutional research plan: CEZ:AV0Z40500505 Keywords : ultra-high-molecular-weight poly(hydroxybutyrate) * .beta.-form * Raman spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.065, year: 2007

  16. Predicting Keto-Enol Equilibrium from Combining UV/Visible Absorption Spectroscopy with Quantum Chemical Calculations of Vibronic Structures for Many Excited States. A Case Study on Salicylideneanilines.

    Science.gov (United States)

    Zutterman, Freddy; Louant, Orian; Mercier, Gabriel; Leyssens, Tom; Champagne, Benoît

    2018-06-21

    Salicylideneanilines are characterized by a tautomer equilibrium, between an enol and a keto form of different colors, at the origin of their remarkable thermochromic, solvatochromic, and photochromic properties. The enol form is usually the most stable but appropriate choice of substituents and conditions (solvent, crystal, host compound) can displace the equilibrium toward the keto form so that there is a need for fast prediction of the keto:enol abundance ratio. Here we demonstrate the reliability of a combined theoretical-experimental method, based on comparing simulated and measured UV/visible absorption spectra, to determine this keto/enol ratio. The calculations of the excitation energies, oscillator strengths, and vibronic structures of both enol and keto forms are performed for all excited states absorbing in the relevant (visible and near-UV) wavelength range at the time-dependent density functional theory level by accounting for solvent effects using the polarizable continuum model. This approach is illustrated for two salicylideneaniline derivatives, which are present, in solution, under the form of keto-enol mixtures. The results are compared to those of chemometric analysis as well as ab initio predictions of the reaction free enthalpies.

  17. A Combined Theoretical and Experimental Study for Silver Electroplating

    Science.gov (United States)

    Liu, Anmin; Ren, Xuefeng; An, Maozhong; Zhang, Jinqiu; Yang, Peixia; Wang, Bo; Zhu, Yongming; Wang, Chong

    2014-01-01

    A novel method combined theoretical and experimental study for environmental friendly silver electroplating was introduced. Quantum chemical calculations and molecular dynamic (MD) simulations were employed for predicting the behaviour and function of the complexing agents. Electronic properties, orbital information, and single point energies of the 5,5-dimethylhydantoin (DMH), nicotinic acid (NA), as well as their silver(I)-complexes were provided by quantum chemical calculations based on density functional theory (DFT). Adsorption behaviors of the agents on copper and silver surfaces were investigated using MD simulations. Basing on the data of quantum chemical calculations and MD simulations, we believed that DMH and NA could be the promising complexing agents for silver electroplating. The experimental results, including of electrochemical measurement and silver electroplating, further confirmed the above prediction. This efficient and versatile method thus opens a new window to study or design complexing agents for generalized metal electroplating and will vigorously promote the level of this research region.

  18. A Combined Theoretical and Experimental Study for Silver Electroplating

    Science.gov (United States)

    Liu, Anmin; Ren, Xuefeng; An, Maozhong; Zhang, Jinqiu; Yang, Peixia; Wang, Bo; Zhu, Yongming; Wang, Chong

    2014-01-01

    A novel method combined theoretical and experimental study for environmental friendly silver electroplating was introduced. Quantum chemical calculations and molecular dynamic (MD) simulations were employed for predicting the behaviour and function of the complexing agents. Electronic properties, orbital information, and single point energies of the 5,5-dimethylhydantoin (DMH), nicotinic acid (NA), as well as their silver(I)-complexes were provided by quantum chemical calculations based on density functional theory (DFT). Adsorption behaviors of the agents on copper and silver surfaces were investigated using MD simulations. Basing on the data of quantum chemical calculations and MD simulations, we believed that DMH and NA could be the promising complexing agents for silver electroplating. The experimental results, including of electrochemical measurement and silver electroplating, further confirmed the above prediction. This efficient and versatile method thus opens a new window to study or design complexing agents for generalized metal electroplating and will vigorously promote the level of this research region. PMID:24452389

  19. X-Band Electron Paramagnetic Resonance Comparison of Mononuclear Mn(IV)-oxo and Mn(IV)-hydroxo Complexes and Quantum Chemical Investigation of Mn(IV) Zero-Field Splitting.

    Science.gov (United States)

    Leto, Domenick F; Massie, Allyssa A; Colmer, Hannah E; Jackson, Timothy A

    2016-04-04

    X-band electron paramagnetic resonance (EPR) spectroscopy was used to probe the ground-state electronic structures of mononuclear Mn(IV) complexes [Mn(IV)(OH)2(Me2EBC)](2+) and [Mn(IV)(O)(OH)(Me2EBC)](+). These compounds are known to effect C-H bond oxidation reactions by a hydrogen-atom transfer mechanism. They provide an ideal system for comparing Mn(IV)-hydroxo versus Mn(IV)-oxo motifs, as they differ by only a proton. Simulations of 5 K EPR data, along with analysis of variable-temperature EPR signal intensities, allowed for the estimation of ground-state zero-field splitting (ZFS) and (55)Mn hyperfine parameters for both complexes. From this analysis, it was concluded that the Mn(IV)-oxo complex [Mn(IV)(O)(OH)(Me2EBC)](+) has an axial ZFS parameter D (D = +1.2(0.4) cm(-1)) and rhombicity (E/D = 0.22(1)) perturbed relative to the Mn(IV)-hydroxo analogue [Mn(IV)(OH)2(Me2EBC)](2+) (|D| = 0.75(0.25) cm(-1); E/D = 0.15(2)), although the complexes have similar (55)Mn values (a = 7.7 and 7.5 mT, respectively). The ZFS parameters for [Mn(IV)(OH)2(Me2EBC)](2+) were compared with values obtained previously through variable-temperature, variable-field magnetic circular dichroism (VTVH MCD) experiments. While the VTVH MCD analysis can provide a reasonable estimate of the magnitude of D, the E/D values were poorly defined. Using the ZFS parameters reported for these complexes and five other mononuclear Mn(IV) complexes, we employed coupled-perturbed density functional theory (CP-DFT) and complete active space self-consistent field (CASSCF) calculations with second-order n-electron valence-state perturbation theory (NEVPT2) correction, to compare the ability of these two quantum chemical methods for reproducing experimental ZFS parameters for Mn(IV) centers. The CP-DFT approach was found to provide reasonably acceptable values for D, whereas the CASSCF/NEVPT2 method fared worse, considerably overestimating the magnitude of D in several cases. Both methods were poor in

  20. Evidence for excited state intramolecular charge transfer reaction in donor-acceptor molecule 5-(4-dimethylamino-phenyl)-penta-2,4-dienoic acid methyl ester: Experimental and quantum chemical approach

    International Nuclear Information System (INIS)

    Kumar Paul, Bijan; Samanta, Anuva; Kar, Samiran; Guchhait, Nikhil

    2010-01-01

    Intramolecular charge transfer (ICT) reaction has been investigated in 5-(4-dimethylamino-phenyl)-penta-2,4-dienoic acid methyl ester (DPDAME) using spectroscopic techniques. The molecule DPDAME shows local emission in non-polar solvent and dual emission in polar solvents. Solvatochromic effects on the Stokes shifted emission band clearly demonstrate the charge transfer character of the excited state. Quantum chemical calculations have been performed at Hartree-Fock (HF) and density functional theoretical (DFT) levels to correlate the experimental findings. Potential energy curves (PECs) for the ICT reaction have been evaluated along the donor twist angle at DFT and time dependent density functional theory (TDDFT) levels for the ground and excited states, respectively, using B3LYP hybrid functional and 6-31G** basis set. The solvent effects on the spectral properties have been explored theoretically at the same level with time dependent density functional theory-polarized continuum model (TDDFT-PCM) and the theoretical results are found to well substantiate the solvent polarity dependent Stokes shifted emission of DPDAME. Huge enhancement of dipole moment (Δμ=16.42 D) of the molecule following photoexcitation dictates the highly polar character of the excited state. Although elucidation of PECs does not exactly predict the operation of ICT according to twisted intramolecular charge transfer (TICT) model in DPDAME, lowering of vertical transition energy as a function of the donor twist coordinate scripts the occurrence of red shifted emission as observed experimentally.

  1. Comparison of Model Systems (M+n·[CrX63−] and M3CrX6 + 18MX Based on Quantum-Chemical Calculations (X: F, Cl

    Directory of Open Access Journals (Sweden)

    Vyacheslav Kremenetsky

    2016-01-01

    Full Text Available On the basis of quantum-chemical calculations the most stable particle compositions are estimated in such model systems as (M+n·[CrCl6] and M3CrCl6 + 18MCl (M = Na, K, and Cs. In all systems these particles are positively charged. For systems (M+n·[CrCl6], (M+n·[CrF6], M3CrF6 + 18MCl, M3CrF6 + 18MF, and M3CrCl6 + 18MCl (M = Na, K, and Cs a number of energy parameters characterizing the state of the system before and after electron transfer are calculated. The results indicate the possibility of electron transfer from the cathode to the melt system, which is in the initial state. However, this possibility cannot be realized in systems where LUMOs (lowest unoccupied molecular orbitals have purely ligand character. In this case, the preliminary deformation of a cationic shell of electroactive species is required; it transforms the initial system to the transition state. However, in all considered systems the search of the transition state should be carried close to the initial state Pi. This greatly simplifies a problem and transforms it from a purely theoretical sphere to the field of practical tasks that do not require exceptional cost of computer time.

  2. Dual-and quad-core tartarato-complexes of vanadium(V): quantum-chemical calculations of structural and spectroscopic parameters; Dvojjadrove a stvorjadrove tartaratokomplexy vanadu(V): kvantovochemicke vypocty strukturnych a spektroskopickych parametrov

    Energy Technology Data Exchange (ETDEWEB)

    Oreskova, G; Simunek, J; Noga, J [Univerzita Komenskeho v Bratislave, Prirodovedecka fakulta, Katedra anorganickej chemie, 84215 Bratislava (Slovakia)

    2012-04-25

    Geometry and spectral properties of the complex anion [V4O8 ((R, R)-tart) 2] 4 - were theoretically investigated by quantum-chemical calculations in gas phase or by using PCM model. Geometry optimization was done by us using the functionals BP86, B3LYP as well as by functional class M06. The best match with experimental data was given by M06 functionals. In the optimal geometry we assigned to individual relation a type of vibration active in infrared spectra. Wave numbers calculated by BP86 method are in a very good agreement with experiment, unlike the M06 functionals. For anion in the experimental geometry, we determined an area of maximum absorption (UV-VIS spectra) by calculating excitation energies. The calculated values of the absorption maxima are in a very good agreement with experiment and they successfully explain the celerity of the complex. For geometry optimized by BP86 functional in a gas phase as well as including the solvent we calculated NMR chemical shifts by B3LYP and B3PW91 functionals. The best results with respect to the experiment were given by the method B3PW91 for optimized geometry in a gas phase. (authors)

  3. Adsorption of carbon dioxide (CO{sub 2}) at S functionalized boron nitride (BN) and aluminum nitride (AlN) nanotubes (9, 0): A quantum chemical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Najafi, Meysam, E-mail: meysamnajafi2016@yahoo.com

    2016-10-30

    Highlights: • AlN-NT has higher potential to CO{sub 2} adsorption in comparison to BN-NT. • S functionalization of studied nanotubes improve the CO{sub 2} adsorption ability of them. • E{sub ad} is suitable scale to propose the novel toxic gas sensor based on nanostructured. • E{sub ad} and E{sub HLG} of studied nanotubes have linear dependences. - Abstract: We employed density functional theory to characterize CO{sub 2} adsorption on BNNT and AlNNT surfaces. The effects of S functionalization on the adsorption of CO{sub 2} gas on BNNT and AlNNT surfaces were investigated. Results reveal that adsorptions of CO{sub 2} on studied nanotubes were exothermic and experimentally possible from the energetic viewpoint. Results show that, E{sub ad} values of CO{sub 2} on AlNNT surface were more negative than corresponding values of BNNT. Results reveal that, S functionalization of studied nanotubes causes an increase in the absolute values of E{sub ad} of CO{sub 2} on surface of studied nanotubes. These results show that, there are good linearity dependencies between E{sub ad} and orbital energy values of studied nanotubes. Therefore we can conclude the E{sub ad} and orbital energy values are highly sensitive to the adsorption process which these may be used for the selection the suitable nanotubes with enhanced CO{sub 2} adsorption potential.

  4. Cysteine adsorption on the Au(111) surface and the electron transfer in configuration of a scanning tunneling microscope: A quantum-chemical approach

    DEFF Research Database (Denmark)

    Nazmutdinov, R.R.; Manyurov, I.R.; Zinkicheva, T.T.

    2007-01-01

    Adsorption of two forms, molecule and radical, of amino acid L-cysteine (Cys) on the Au-12 cluster that simulates the (111) face of single-crystal gold is studied in the framework of the density functional theory. Effects of solvation of adsorbed Cys particles and lateral interaction in a monolay...

  5. X-ray spectral and quantum-chemical investigation of electronic structure of 6,9-bis-(ammonia)-nido-decarborane(12)

    International Nuclear Information System (INIS)

    Yumatov, V.D.; Il'inchik, E.A.; Murakhtanov, V.V.; Dunaev, S.T.; Volkov, V.V.

    1993-01-01

    Electron structure of 6.9-bis-(ammonia)-nide-decarborane(12), that is, B 10 H 12 (NH 3 ) 2 , is studied by means of ultrasoft X-ray spectroscopy using nitrogen and boron atoms. Calculations of MNDO and ab initio are conducted. Electron structure of ammonia and of /B 10 H 12 / cluster is studied and its variation at complex formation is investigated, as well. On the basis of calculations one shows, that some vacant orbitals belonging to borane cluster participate into chemical bond of donor-acceptor type among the fragments. Presence of π-component of bond between NH 3 and /B 10 H 12 / and occurrence of four-central bound in borane cluster are detected

  6. Molecular Structure, Vibrational Spectra, Quantum Chemical Calculations and Photochemistry of Picolinamide and Isonicotinamide Isolated in Cryogenic Inert Matrixes and in the Neat Low-Temperature Solid Phases

    OpenAIRE

    Borba, Ana; Gómez-Zavaglia, Andrea; Fausto, R.

    2007-01-01

    Picolinamide (PA) and isonicotinamide (INA), two structural isomers of pyridinecarboxamide, have been investigated by matrix isolation and low-temperature solid-state infrared spectroscopy, combined with UV (λ > 235 nm) photoexcitation and density functional theory and ab initio (MP2) theoretical studies. In consonance with the theoretical data, both PA and INA were found to exist in a single conformation in cryogenic rare gas matrixes. Comparison between the experimental spectra of the matri...

  7. Synthesis of a new ONNO donor tetradentate schiff base ligand and binuclear Cu(II) complex: Quantum chemical, spectroscopic and photoluminescence investigations

    International Nuclear Information System (INIS)

    Sarıoğlu, Ahmet Oral; Ceylan, Ümit; Yalçın, Şerife Pınar; Sönmez, Mehmet; Ceyhan, Gökhan; Aygün, Muhittin

    2016-01-01

    The Schiff base compound 3,3′-(1,4-phenylimino)-bis-[1,3-bis-(4-methoxyphenyl) propan-1-one)], formulated as C 40 H 36 N 2 O 6, and its Cu(II) complex were synthesized and characterized by analytical analysis, various spectral techniques such as FT-IR, NMR, UV–vis, magnetic measurements and molar conductivity. Thermo gravimetric analysis (TGA and DTA) carried out to obtain information about its thermal stability. The molecular structure and spectroscopic properties of the ligand were obtained with FT-IR, 1 H and 13 C NMR, UV–vis investigations as experimentally and compared with theoretical results obtained from DFT/B3LYP/6-311++G(d,p) basis set. In addition to molecular calculations of the title compound, molecular electrostatic potential (MEP), dipole moments, atomic charges, HOMO–LUMO, NLO and NBO analysis were computed. The calculated results show that the optimized geometry can well reproduce the crystal structure parameters, and the theoretical vibrational frequencies, 1 H and 13 C NMR chemical shifts show good agreement with experimental values. Photoluminescence properties of the ligand and its Cu(II) complex were examined. - Highlights: • FT-IR and 1 H– 13 C NMR spectra were recorded and compared with the theoretical results. • The photoluminescence properties were studied. • NLO, NBO analysis of the molecule were studied. • HOMO and LUMO energies, MEP distribution of the molecule were calculated.

  8. Detailed adsorption mechanism of plasmid DNA by newly isolated cellulose from waste flower spikes of Thypa latifolia using quantum chemical calculations.

    Science.gov (United States)

    Mujtaba, Muhammad; Kaya, Murat; Akyuz, Lalehan; Erdonmez, Demet; Akyuz, Bahar; Sargin, Idris

    2017-09-01

    Current study was designed to use the newly obtained cellulose from waste flower spikes of Thypa latifolia plant for plasmid DNA adsorption. Cellulose was isolated according to a previously described method including acid and base treatment, and cellulose content was recorded as 17%. T. latifolia cellulose was physicochemically characterized via FT-IR, TGA and SEM techniques. Detailed mechanism of plasmid DNA adsorption by newly isolated cellulose was described using chemical quantum calculations. To check the effect of Cu ++ immobilization on the affinity of cellulose for plasmid DNA, copper ions were immobilized onto T. latifolia cellulose. pUC18 plasmid DNA was used for adsorption studies. Membranes prepared with only T. latifolia cellulose and Cu ++ immobilized T. latifolia cellulose revealed different adsorption ratios as 43.9 and 86.9% respectively. This newly isolated cellulose from waste flower spikes of T. latifolia can be utilized as a suitable carrier for plasmid DNA. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Spectroscopic and quantum-chemical investigation of association of ions in acetonitrile - LiX (X=I, ClO4, NCS) systems

    International Nuclear Information System (INIS)

    Semenov, S.G.; Solov'eva, L.A.; Akopyan, S.Kh.

    1995-01-01

    Data on association constants of ions in acetonitrile-salt binary systems, obtained from the data on intensity of IR absorption bands of acetonitrile (Acn) molecules contained in solvate shells of Li + cations, have been analyzed. Using the CCP MO LCAO semiempirical method in the PPDP approximation, electronic structure of acetonitrile molecule and Acn k Li + and Acn m Li + X - complexes has been studied. It is ascertained that relative stability of ionic pairs Acn 3 Li + X - , estimated by the squares of their dipole momenta (characterizing solvation energy) increases in the series X=I, ClO 4 , NCS in agreement with data of spectroscopic experiment, according to which the constant of ion association for LiNCS solution in acetonitrile is much higher than for the systems CH 3 CN-LiI and CH 3 CN-LiClO 4 . 13 refs.,2 figs., 2 tabs.64

  10. Quantum chemical protocols for modeling reactions and spectra in astrophysical ice analogs: the challenging case of the C⁺ + H₂O reaction in icy grain mantles.

    Science.gov (United States)

    Woon, David E

    2015-11-21

    Icy grain mantles that accrete on refractory dust particles in the very cold interstellar medium or beyond the snow line in protoplanetary disks serve as minute incubators for heterogeneous chemistry. Ice mantle chemistry can differ significantly from the gas phase chemistry that occurs in these environments and is often richer. Modeling ices and their chemistry is a challenging task for quantum theoretical methods, but theory promises insight into these systems that is difficult to attain with experiments. Density functional theory (DFT) is predominately employed for modeling reactions in icy grain mantles due to its favorable scalability, but DFT has limitations that risk undercutting its reliability for this task. In this work, basic protocols are proposed for identifying the degree to which DFT methods are able to reproduce experimental or higher level theoretical results for the fundamental interactions upon which ice mantle chemistry depends, including both reactive interactions and non-reactive scaffolding interactions. The exemplar of this study is the reaction of C(+) with H2O, where substantial methodological differences are found in the prediction of gas phase relative energetics for stationary points (about 10 kcal mol(-1) for the C-O bond energy of the H2OC(+) intermediate), which in turn casts doubt about employing it to treat the C(+) + H2O reaction on an ice surface. However, careful explorations demonstrate that B3LYP with small correlation consistent basis sets performs in a sufficiently reliable manner to justify using it to identify plausible chemical pathways, where the dominant products were found to be neutral HOC and the CO(-) anion plus one and two H3O(+) cations, respectively. Predicted vibrational and electronic spectra are presented that would serve to verify or disconfirm the pathways; the latter were computed with time-dependent DFT. Conclusions are compared with those of a recent similar study by McBride and coworkers (J. Phys. Chem

  11. Water soluble and efficient amino acid Schiff base receptor for reversible fluorescence turn-on detection of Zn2+ ions: Quantum chemical calculations and detection of bacteria

    Science.gov (United States)

    Subha, L.; Balakrishnan, C.; Natarajan, Satheesh; Theetharappan, M.; Subramanian, Balanehru; Neelakantan, M. A.

    2016-01-01

    An amino acid Schiff base (R) capable of recognizing Zn2+ ions selectively and sensitively in an aqueous medium was prepared and characterized. Upon addition of Zn2+ ions, the receptor exhibits fluorescence intensity enhancements ( 40 fold) at 460 nm (quantum yield, Φ = 0.05 for R and Φ = 0.18 for R-Zn2+) and can be detected by naked eye under UV light. The receptor can recognize the Zn2+ (1.04 × 10- 8 M) selectively for other metal ions in the pH range of 7.5-11. The Zn2+ chelation with R decreases the loss of energy through non-radiative transition and leads to fluorescence enhancement. The binding mode of the receptor with Zn2+ was investigated by 1H NMR titration and further validated by ESI-MS. The elemental color mapping and SEM/EDS analysis were also used to study the binding of R with Zn2+. Density functional theory calculations were carried out to understand the binding mechanism. The receptor was applied as a microbial sensor for Escherichia coli and Staphylococcus aureus.

  12. Comprehensive quantum chemical and spectroscopic (FTIR, FT-Raman, 1H, 13C NMR) investigations of O-desmethyltramadol hydrochloride an active metabolite in tramadol - An analgesic drug

    Science.gov (United States)

    Arjunan, V.; Santhanam, R.; Marchewka, M. K.; Mohan, S.

    2014-03-01

    O-desmethyltramadol is one of the main metabolites of tramadol widely used clinically and has analgesic activity. The FTIR and FT-Raman spectra of O-desmethyl tramadol hydrochloride are recorded in the solid phase in the regions 4000-400 cm-1 and 4000-100 cm-1, respectively. The observed fundamentals are assigned to different normal modes of vibration. Theoretical studies have been performed as its hydrochloride salt. The structure of the compound has been optimised with B3LYP method using 6-31G** and cc-pVDZ basis sets. The optimised bond length and bond angles are correlated with the X-ray data. The experimental wavenumbers were compared with the scaled vibrational frequencies determined by DFT methods. The IR and Raman intensities are determined with B3LYP method using cc-pVDZ and 6-31G(d,p) basic sets. The total electron density and molecular electrostatic potential surfaces of the molecule are constructed by using B3LYP/cc-pVDZ method to display electrostatic potential (electron + nuclei) distribution. The electronic properties HOMO and LUMO energies were measured. Natural bond orbital analysis of O-desmethyltramadol hydrochloride has been performed to indicate the presence of intramolecular charge transfer. The 1H and 13C NMR chemical shifts of the molecule have been anlysed.

  13. Geometrical and electronic structure of LaI3 molecule as determined by gas electron diffraction and quantum-chemical calculations

    International Nuclear Information System (INIS)

    Giricheva, N.I.; Shlykov, S.A.; Girichev, G.V.; Galanin, I.E.

    2006-01-01

    The saturated vapor over LaI 3 has been studied using the electron diffraction method with mass-spectral monitoring. It was determined that at a temperature 1142(10) K, along with monomer molecules, dimers are present in the vapor in the quantity of 0.7 mol.%. Effective configuration parameters of LaI 3 molecule were obtained: r g (La-I)=2.961(6) A, g (I-La-I)=116.5(9) deg, l(La-I)=0.106(1) A and l(I...I)=0.412(7) A. A small deviation of the valence angle g (I-La-I) from 120 deg can be totally caused by a contraction effect of the distance r g (I...I) of LaI 3 molecule with planar equilibrium configuration. The electronic structure of LaI 3 molecule was examined by the B3LYP/SDD method. In terms of the NBO-analysis, the participation of lanthanum 4f-AO in bonding orbitals La-I is noted. It is shown that the NBO-analysis describes the bond La-I in LaI 3 molecule as predominantly ionic one with a noticeable covalence component. The energy of the heterolytic bond breakage E(La-I) het =1216 kJ/mole was calculated [ru

  14. Quantum chemical investigation on the role of Li adsorbed on anatase (101) surface nano-materials on the storage of molecular hydrogen.

    Science.gov (United States)

    Srinivasadesikan, V; Raghunath, P; Lin, M C

    2015-06-01

    Lithiation of TiO2 has been shown to enhance the storage of hydrogen up to 5.6 wt% (Hu et al. J Am Chem Soc 128:11740-11741, 2006). The mechanism for the process is still unknown. In this work we have carried out a study on the adsorption and diffusion of Li atoms on the surface and migration into subsurface layers of anatase (101) by periodic density functional theory calculations implementing on-site Coulomb interactions (DFT+U). The model consists of 24 [TiO2] units with 11.097 × 7.655 Å(2) surface area. Adsorption energies have been calculated for different Li atoms (1-14) on the surface. A maximum of 13 Li atoms can be accommodated on the surface at two bridged O, Ti-O, and Ti atom adsorption sites, with 83 kcal mol(-1) adsorption energy for a single Li atom adsorbed between two bridged O atoms from where it can migrate into the subsurface layer with 27 kcal mol(-1) energy barrier. The predicted adsorption energies for H2 on the lithiated TiO2 (101) surface with 1-10 Li atoms revealed that the highest adsorption energies occurred on 1-Li, 5-Li, and 9-Li surfaces with 3.5, 4.4, and 7.6 kcal mol(-1), respectively. The values decrease rapidly with additional H2 co-adsorbed on the lithiated surfaces; the maximum H2 adsorption on the 9Li-TiO2(a) surface was estimated to be only 0.32 wt% under 100 atm H2 pressure at 77 K. The result of Bader charge analysis indicated that the reduction of Ti occurred depending on the Li atoms covered on the TiO2 surface.

  15. Quantum Chemical Examination of the Sequential Halogen Incorporation Scheme for the Modeling of Speciation of I/Br/Cl-Containing Trihalomethanes.

    Science.gov (United States)

    Zhang, Chenyang; Li, Maodong; Han, Xuze; Yan, Mingquan

    2018-02-20

    The recently developed three-step ternary halogenation model interprets the incorporation of chlorine, bromine, and iodine ions into natural organic matter (NOM) and formation of iodine-, bromine-, and chlorine-containing trihalomethanes (THMs) based on the competition of iodine, bromine, and chlorine species at each node of the halogenation sequence. This competition is accounted for using the dimensionless ratios (denoted as γ) of kinetic rates of reactions of the initial attack sites or halogenated intermediates with chlorine, bromine, and iodine ions. However, correlations between the model predictions made and mechanistic aspects of the incorporation of halogen species need to be ascertained in more detail. In this study, quantum chemistry calculations were first used to probe the formation mechanism of 10 species of Cl-/Br-/I- THMs. The HOMO energy (E HOMO ) of each mono-, bi-, or trihalomethanes were calculated by B3LYP method in Gaussian 09 software. Linear correlations were found to exist between the logarithms of experimentally determined kinetic preference coefficients γ reported in prior research and, on the other hand, differences of E HOMO values between brominated/iodinated and chlorinated halomethanes. One notable exception from this trend was that observed for the incorporation of iodine into mono- and di-iodinated intermediates. These observations confirm the three-step halogen incorporation sequence and the factor γ in the statistical model. The combined use of quantum chemistry calculations and the ternary sequential halogenation model provides a new insight into the microscopic nature of NOM-halogen interactions and the trends seen in the behavior of γ factors incorporated in the THM speciation models.

  16. Binding energy and preferred adsorption sites of CO on gold and silver-gold cluster cations: adsorption kinetics and quantum chemical calculations.

    Science.gov (United States)

    Neumaier, Marco; Weigend, Florian; Hampe, Oliver; Kappes, Manfred M

    2008-01-01

    We revisit the reactivity of trapped pure gold (Au(n)+, n cations (Ag(m)Au(n)+, m + n carbon monoxide as studied in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The experimental results are discussed in terms of ab initio computations which provide a comprehensive picture of the chemical binding behaviour (like binding energy, adsorption sites, associated vibrational frequencies) of CO to the noble metal as a function of cluster size and composition. Starting from results for pure gold cluster cations for which an overall decrease of CO binding energy with increasing cluster size was experimentally observed--from about 1.09 +/- 0.1 eV (for n = 6) to below 0.65 +/- 0.1 eV (for n > 26) we demonstrate that metal--CO bond energies correlate with the total electron density and with the energy of the lowest unoccupied molecular orbital (LUMO) on the bare metal cluster cation as obtained by density functional theory (DFT) computations. This is a consequence of the predominantly sigma-donating character of the CO-M bond. Further support for this concept is found by contrasting the predictions of binding energies to the experimental results for small alloy cluster cations (Ag(m)Au(n)+, 4 < m + n < 7) as a function of composition. Here, binding energy drops with increasing silver content, while CO still binds always in a head-on fashion to a gold atom. Finally we show how the CO stretch frequency of Ag(m)Au(n)CO+ may be used to identify possible adsorption sites and pre-screen favorable isomers.

  17. Molecular dynamics simulations and quantum chemical calculations ...

    African Journals Online (AJOL)

    Molecular dynamic simulation results indicate that the imidazoline derivative molecules uses the imidazoline ring to effectively adsorb on the surface of iron, with the alkyl hydrophobic tail forming an n shape (canopy like covering) at geometry optimization and at 353 K. The n shape canopy like covering to a large extent may ...

  18. rhf and dft study of the molecular properties of the malaria drug

    African Journals Online (AJOL)

    USER

    The molecular geometries of the common malaria drug Proguanil in gas phase, water and Ethanol have been studied using ab- initio Quantum Chemical calculations at the Restricted Hartree-Fock ... In this research article; we provide a ..... through Emeritus Professor scheme (Grant ... “Synthesis and biological properties of.

  19. Intramolecular CH···O hydrogen bonds in the AI and BI DNA-like conformers of canonical nucleosides and their Watson-Crick pairs. Quantum chemical and AIM analysis.

    Science.gov (United States)

    Yurenko, Yevgen P; Zhurakivsky, Roman O; Samijlenko, Svitlana P; Hovorun, Dmytro M

    2011-08-01

    The aim of this work is to cast some light on the H-bonds in double-stranded DNA in its AI and BI forms. For this purpose, we have performed the MP2 and DFT quantum chemical calculations of the canonical nucleoside conformers, relative to the AI and BI DNA forms, and their Watson-Crick pairs, which were regarded as the simplest models of the double-stranded DNA. Based on the atoms-in-molecules analysis (AIM), five types of the CH···O hydrogen bonds, involving bases and sugar, were detected numerically from 1 to 3 per a conformer: C2'H···O5', C1'H···O2, C6H···O5', C8H···O5', and C6H···O4'. The energy values of H-bonds occupy the range of 2.3-5.6 kcal/mol, surely exceeding the kT value (0.62 kcal/mol). The nucleoside CH···O hydrogen bonds appeared to "survive" turns of bases against the sugar, sometimes in rather large ranges of the angle values, pertinent to certain conformations, which points out to the source of the DNA lability, necessary for the conformational adaptation in processes of its functioning. The calculation of the interactions in the dA·T nucleoside pair gives evidence, that additionally to the N6H···O4 and N1···N3H canonical H-bonds, between the bases adenine and thymine the third one (C2H···O2) is formed, which, though being rather weak (about 1 kcal/mol), satisfies the AIM criteria of H-bonding and may be classified as a true H-bond. The total energy of all the CH···O nontraditional intramolecular H-bonds in DNA nucleoside pairs appeared to be commensurable with the energy of H-bonds between the bases in Watson-Crick pairs, which implies their possible important role in the DNA shaping.

  20. Modelling of retention of pesticides in reversed-phase high-performance liquid chromatography: Quantitative structure-retention relationships based on solute quantum-chemical descriptors and experimental (solvatochromic and spin-probe) mobile phase descriptors

    International Nuclear Information System (INIS)

    D'Archivio, Angelo Antonio; Ruggieri, Fabrizio; Mazzeo, Pietro; Tettamanti, Enzo

    2007-01-01

    A quantitative structure-retention relationship (QSRR) analysis based on multilinear regression (MLR) and artificial neural networks (ANNs) is carried out to model the combined effect of solute structure and eluent composition on the retention behaviour of pesticides in isocratic reversed-phase high-performance liquid chromatography (RP-HPLC). The octanol-water partition coefficient and four quantum chemical descriptors (the total dipole moment, the mean polarizability, the anisotropy of the polarizability and a descriptor of hydrogen-bonding based on the atomic charges on acidic and basic chemical functionalities) are considered as solute descriptors. In order to identify suitable mobile phase descriptors, encoding composition-dependent properties of both methanol- and acetonitrile-containing mobile phases, the Kamlet-Taft solvatochromic parameters (polarity-dipolarity, hydrogen-bond acidity and hydrogen-bond basicity, π * , α and β, respectively) and the 14 N hyperfine-splitting constant (a N ) of a spin-probe dissolved in the eluent are examined. A satisfactory description of mobile phase properties influencing the solute retention is provided by a N and β or alternatively π * and β. The two seven-parameter models resulting from combination of a N and β, or π * and β, with the solute descriptors were tested on a set of 26 pesticides representative of 10 different chemical classes in a wide range of mobile phase composition (30-60% (v/v) water-methanol and 30-70% (v/v) water-acetonitrile). Within the explored experimental range, the acidity of the eluent, as quantified by α, is almost constant, and this parameter is in fact irrelevant. The results reveal that a N and π * , that can be considered as interchangeable mobile phase descriptors, are the most influent variables in the respective models. The predictive ability of the proposed models, as tested on an external data set, is quite good (Q 2 close to 0.94) when a MLR approach is used, but the

  1. Modelling of retention of pesticides in reversed-phase high-performance liquid chromatography: Quantitative structure-retention relationships based on solute quantum-chemical descriptors and experimental (solvatochromic and spin-probe) mobile phase descriptors

    Energy Technology Data Exchange (ETDEWEB)

    D' Archivio, Angelo Antonio [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi di L' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy)]. E-mail: darchivi@univaq.it; Ruggieri, Fabrizio [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi di L' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy); Mazzeo, Pietro [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi di L' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy); Tettamanti, Enzo [Dipartimento di Scienze Biomediche Comparate, Universita di Teramo, P.zzale A. Moro 45, 64100 Teramo (Italy)

    2007-06-19

    A quantitative structure-retention relationship (QSRR) analysis based on multilinear regression (MLR) and artificial neural networks (ANNs) is carried out to model the combined effect of solute structure and eluent composition on the retention behaviour of pesticides in isocratic reversed-phase high-performance liquid chromatography (RP-HPLC). The octanol-water partition coefficient and four quantum chemical descriptors (the total dipole moment, the mean polarizability, the anisotropy of the polarizability and a descriptor of hydrogen-bonding based on the atomic charges on acidic and basic chemical functionalities) are considered as solute descriptors. In order to identify suitable mobile phase descriptors, encoding composition-dependent properties of both methanol- and acetonitrile-containing mobile phases, the Kamlet-Taft solvatochromic parameters (polarity-dipolarity, hydrogen-bond acidity and hydrogen-bond basicity, {pi} {sup *}, {alpha} and {beta}, respectively) and the {sup 14}N hyperfine-splitting constant (a {sub N}) of a spin-probe dissolved in the eluent are examined. A satisfactory description of mobile phase properties influencing the solute retention is provided by a {sub N} and {beta} or alternatively {pi} {sup *} and {beta}. The two seven-parameter models resulting from combination of a {sub N} and {beta}, or {pi} {sup *} and {beta}, with the solute descriptors were tested on a set of 26 pesticides representative of 10 different chemical classes in a wide range of mobile phase composition (30-60% (v/v) water-methanol and 30-70% (v/v) water-acetonitrile). Within the explored experimental range, the acidity of the eluent, as quantified by {alpha}, is almost constant, and this parameter is in fact irrelevant. The results reveal that a {sub N} and {pi} {sup *}, that can be considered as interchangeable mobile phase descriptors, are the most influent variables in the respective models. The predictive ability of the proposed models, as tested on an

  2. Theoretical study of adsorption of lithium atom on carbon nanotube

    OpenAIRE

    Senami, Masato; Ikeda, Yuji; Fukushima, Akinori; Tachibana, Akitomo

    2011-01-01

    We investigate the adsorption of lithium atoms on the surface of the (12, 0) single wall carbon nanotube (SWCNT) by using ab initio quantum chemical calculations. The adsorption of one lithium atom on the inside of this SWCNT is favored compared to the outside. We check this feature by charge transfer and regional chemical potential density. The adsorption of multiple lithium atoms on the interior of the SWCNT is studied in terms of adsorption energy and charge transfer. We show that repulsiv...

  3. Solid state .sup.13 ./sup.C NMR and DFT quantum-chemical study of polymer electrolyte poly(2-ethyl-2-oxazoline)/AgCF .sub.3 ./sub.SO.sub.3 ./sub

    Czech Academy of Sciences Publication Activity Database

    Spěváček, Jiří; Brus, Jiří; Dybal, Jiří; Kang, Y. S.

    2005-01-01

    Roč. 38, č. 12 (2005), s. 5083 -5087 ISSN 0024-9297 R&D Projects: GA AV ČR(CZ) IAA4050209 Keywords : polymer electrolyte poly(2-ethyl-2-oxazoline)/AgCF3SO3 * solid state NMR * DFT calculations Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.024, year: 2005

  4. Studies on adsorption and corrosion inhibitive properties of quinoline derivatives on N80 steel in 15% hydrochloric acid

    Directory of Open Access Journals (Sweden)

    K.R. Ansari

    2016-12-01

    Full Text Available This paper deals with the N80 steel corrosion protection study in 15% HCl which was carried by three quinoline derivatives namely 3-acetyl-1-(4-methylbenzylideneamino quinolin-2-one (AQ-1, 3-acetyl-1-(4 hydroxy benzylideneamino quinolin-2-one (AQ-2, 3-acetyl-1-(3-nitrobenzylideneamino quinolin-2(1H-one (AQ-3 using gravimetric, electrochemical, and quantum chemical studies. Tafel polarization showed that AQs are mixed type inhibitors but dominantly affect cathodic reaction more. The observed results reveal that AQ-1 is the best inhibitor. All the three inhibitors were found to obey the Langmuir adsorption isotherm. Scanning electron microscopy (SEM micrographs supports the protection of the N80 steel by AQs. Quantum chemical study reveals that the inhibitors have a tendency to get protonated and this protonated form has greater tendency to get adsorbed onto the N80 steel surface.

  5. Synthesis and prospective study of the use of thiophene thiosemicarbazones as signalling scaffolding for the recognition of anions

    OpenAIRE

    Raposo, M. Manuela M.; García-Acosta, Beatriz; Ábalos, Tatiana; Calero, P.; Martínez-Máñez, Ramón; Ros-Lis, José Vicente; Soto, Juan

    2010-01-01

    A family of phenyl-thiosemicarbazone dyes have been prepared and their interactions with anions monitorized via UV-Vis, fluorescence and 1H NMR titrations. Additionally quantum chemical calculations and electrochemical studies completed the studies carried out. The phenyl-thiosemicarbazone dyes show a modulation of their hydrogen-bonding and electron-donating capabilities as a function of the chemical groups attached and display two different chromo-fluorogenic responses towards anions in ace...

  6. Novel benzimidazole derivatives as corrosion inhibitors of mild steel in the acidic media. Part II: Theoretical studies

    International Nuclear Information System (INIS)

    Cao, Ziyi; Tang, Yongming; Cang, Hui; Xu, Jinqiu; Lu, Gang; Jing, Wenheng

    2014-01-01

    Highlights: • Quantum chemical and MD studies of benzimidazole derivatives inhibitors. • Inhibition effectiveness depends on the ability to accept electrons. • Active sites of adsorption are mainly centralized on imidazole rings. • Steric effect results in the non-planar adsorption of BBIA and TBIA. - Abstract: In this paper, the adsorption behavior and inhibition mechanism of 2-aminomethyl benzimidazole (ABI), bis(2-benzimidazolylmethyl) amine (BBIA) and tri-(2-benzimidazolylmethyl) amine (TBIA) on the surface of mild steel were studied by quantum chemical calculations and molecular dynamics (MD) simulations. It was found that the three molecules show the similar ability to donate electrons while the difference in inhibition performance should mainly be attributed to the difference in accepting electrons. MD simulations show that steric effect between the benzimidazole segments significantly affects the adsorptive configurations of the molecules on Fe (1 0 0) surface

  7. Computational studies of free radical-scavenging properties of phenolic compounds.

    Science.gov (United States)

    Alov, Petko; Tsakovska, Ivanka; Pajeva, Ilza

    2015-01-01

    For more than half a century free radical-induced alterations at cellular and organ levels have been investigated as a probable underlying mechanism of a number of adverse health conditions. Consequently, significant research efforts have been spent for discovering more effective and potent antioxidants / free radical scavengers for treatment of these adverse conditions. Being by far the most used antioxidants among natural and synthetic compounds, mono- and polyphenols have been the focus of both experimental and computational research on mechanisms of free radical scavenging. Quantum chemical studies have provided a significant amount of data on mechanisms of reactions between phenolic compounds and free radicals outlining a number of properties with a key role for the radical scavenging activity and capacity of phenolics. The obtained quantum chemical parameters together with other molecular descriptors have been used in quantitative structure-activity relationship (QSAR) analyses for the design of new more effective phenolic antioxidants and for identification of the most useful natural antioxidant phenolics. This review aims at presenting the state of the art in quantum chemical and QSAR studies of phenolic antioxidants and at analysing the trends observed in the field in the last decade.

  8. Quantum chemical investigations on the molecular structure, FTIR, UV-Vis and HOMO-LUMO analysis of 15-16-epoxy-7b, 9a dihydroxylabdane 13(16), 14-dien-6-one

    Science.gov (United States)

    Uppal, Anshul; Pathania, Kamni; Khajuria, Yugal

    2018-05-01

    The structural, spectroscopic (Fourier Transform Infrared (FT-IR), Ultra-Violet Visible (UV-VIS)) and thermodynamic properties of 15, 16-epoxy-7b, 9a dihydroxylabdane-13(16), 14-dien-6-one were studied by using both experimental techniques and theoretical methods. The FTIR spectrum of the title compound was recorded in the spectral range 4000-400 cm-1. The UV-VIS spectrum was measured in the spectral range 190-800 nm. The quantum chemistry calculations have been performed to compute optimized geometry, molecular parameters, vibrational frequencies along with intensities using Hartree Fock (HF) theory and Density Functional Theory (DFT) with 6-31G basis set. The calculated HOMO-LUMO energies show that the charge transfer occurs within the molecule. The temperature dependence of the thermodynamic properties like heat capacity, entropy and enthalpy of the optimized structure were obtained. Finally, a comparison between the experimental data and the calculated results presented a good agreement.

  9. Transition-Metal-Free C-Vinylation of Ketones with Acetylenes: A Quantum-Chemical Rationalization of Similarities and Differences in Catalysis by Superbases MOH/DMSO and tBuOM/DMSO (M = Na, K).

    Science.gov (United States)

    Orel, Vladimir B; Vitkovskaya, Nadezhda M; Kobychev, Vladimir B; Trofimov, Boris A

    2018-04-06

    Transition-metal-free C-vinylation of acetone with phenylacetylene catalyzed by superbases MOH/DMSO and tBuOM/DMSO (M = Na, K) has been theoretically evaluated in the B3LYP/6-311++G**//B3LYP/6-31+G* approach to rationalize similarities and differences in activity of the above catalytic systems. The close solvate surroundings of sodium and potassium tert-butoxides have been studied. Formation of tBuOM· nDMSO complexes and their structure and thermodynamic stability are discussed in comparison with similar complexes of alkali-metal hydroxides MOH· nDMSO. Activation barriers of the title reaction in the presence of tBuOM· nDMSO complexes are found to be less than those with MOH· nDMSO complexes participating.

  10. Experimental and quantum chemical simulations on the corrosion inhibition of mild steel by 3-((5-(3,5-dinitrophenyl)-1,3,4-thiadiazol-2-yl)imino)indolin-2-one

    Science.gov (United States)

    Al-Azawi, Khalida F.; Mohammed, Iman Mahdi; Al-Baghdadi, Shaimaa B.; Salman, Taghried A.; Issa, Hamsa A.; Al-Amiery, Ahmed A.; Gaaz, Tayser Sumer; Kadhum, Abdul Amir H.

    2018-06-01

    Iraq has been one of the most extensive oil and natural gas industries in the world. The corrosion of mild steel is costly and insufficiency process. It is responsible for great loss in manufacture and environment. Natural and organic inhibitors have been utilized for a long time to inhibit the corrosion. Selected thiadiazol derivative, namely 3-((5-(3,5-dinitrophenyl)-1,3,4-thiadiazol-2-yl)imino)indolin-2-one (TDIO) was investigated for it inhibitive impacts in 1 M HCl medium on corrosion of mild steel using weight loss and scanning electron microscope techniques. The maximum inhibition efficiency up to 90.7% at the maximum inhibitor concentration 0.5 mM. Surface morphology of results demonstrated that TDIO formed adsorbed film on surface of mild steel in hydrochloric acid solution. Give molecular based clarifications to the inhibitive impacts of the studied. The interactions between mild steel surface and the inhibitor molecules have been undertaken to further corroborate the methodological results.

  11. Water soluble and efficient amino acid Schiff base receptor for reversible fluorescence turn-on detection of Zn²⁺ ions: Quantum chemical calculations and detection of bacteria.

    Science.gov (United States)

    Subha, L; Balakrishnan, C; Natarajan, Satheesh; Theetharappan, M; Subramanian, Balanehru; Neelakantan, M A

    2016-01-15

    An amino acid Schiff base (R) capable of recognizing Zn(2+) ions selectively and sensitively in an aqueous medium was prepared and characterized. Upon addition of Zn(2+) ions, the receptor exhibits fluorescence intensity enhancements (~40 fold) at 460 nm (quantum yield, Φ=0.05 for R and Φ=0.18 for R-Zn(2+)) and can be detected by naked eye under UV light. The receptor can recognize the Zn(2+) (1.04×10(-8) M) selectively for other metal ions in the pH range of 7.5-11. The Zn(2+) chelation with R decreases the loss of energy through non-radiative transition and leads to fluorescence enhancement. The binding mode of the receptor with Zn(2+) was investigated by (1)H NMR titration and further validated by ESI-MS. The elemental color mapping and SEM/EDS analysis were also used to study the binding of R with Zn(2+). Density functional theory calculations were carried out to understand the binding mechanism. The receptor was applied as a microbial sensor for Escherichia coli and Staphylococcus aureus. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Comprehensive quantum chemical and spectroscopic (FTIR, FT-Raman, 1H, 13C NMR) investigations of O-desmethyltramadol hydrochloride an active metabolite in tramadol--an analgesic drug.

    Science.gov (United States)

    Arjunan, V; Santhanam, R; Marchewka, M K; Mohan, S

    2014-03-25

    O-desmethyltramadol is one of the main metabolites of tramadol widely used clinically and has analgesic activity. The FTIR and FT-Raman spectra of O-desmethyl tramadol hydrochloride are recorded in the solid phase in the regions 4000-400 cm(-1) and 4000-100 cm(-1), respectively. The observed fundamentals are assigned to different normal modes of vibration. Theoretical studies have been performed as its hydrochloride salt. The structure of the compound has been optimised with B3LYP method using 6-31G(**) and cc-pVDZ basis sets. The optimised bond length and bond angles are correlated with the X-ray data. The experimental wavenumbers were compared with the scaled vibrational frequencies determined by DFT methods. The IR and Raman intensities are determined with B3LYP method using cc-pVDZ and 6-31G(d,p) basic sets. The total electron density and molecular electrostatic potential surfaces of the molecule are constructed by using B3LYP/cc-pVDZ method to display electrostatic potential (electron+nuclei) distribution. The electronic properties HOMO and LUMO energies were measured. Natural bond orbital analysis of O-desmethyltramadol hydrochloride has been performed to indicate the presence of intramolecular charge transfer. The (1)H and (13)C NMR chemical shifts of the molecule have been anlysed. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Quantum-chemical insight into structure-reactivity relationship in 4,5,6,7-tetrahalogeno-1H-benzimidazoles: a combined X-ray, DSC, DFT/QTAIM, Hirshfeld surface-based, and molecular docking approach.

    Science.gov (United States)

    Latosińska, Jolanta Natalia; Latosińska, Magdalena; Maurin, Jan Krzysztof; Orzeszko, Andrzej; Kazimierczuk, Zygmunt

    2014-03-20

    The weak interaction patterns in 4,5,6,7-tetrahalogeno-1H-benzimidazoles, protein kinase CK2 inhibitors, in solid state are studied by the X-ray method and quantum chemistry calculations. The crystal structures of 4,5,6,7-tetrachloro- and 4,5,6,7-tetrabromo-1H-benzimidazole are determined by X-ray diffraction and refined to a final R-factor of 3.07 and 3.03%, respectively, at room temperature. The compound 4,5,6,7-tetrabromo-1H-benzimidazole, which crystallizes in the I41/a space group, is found to be isostructural with previously studied 4,5,6,7-tetraiodo-1H-benzimidazole in contrast to 4,5,6,7-tetrachloro-1H-benzimidazole, which crystallizes as triclinic P1̅ with 4 molecules in elementary unit. For 4,5,6,7-tetrachloro-1H-benzimidazole, differential scanning calorimetry (DSC) revealed a second order glassy phase transition at Tg = 95°/106° (heating/cooling), an indication of frozen disorder. The lack of 3D isostructurality found in all 4,5,6,7-tetrahalogeno-1H-benzimidazoles is elucidated on the basis of the intra- and intermolecular interactions (hydrogen bonding, van der Waals contacts, and C-H···π interactions). The topological Bader's Quantum Theory of Atoms in Molecules (QTAIM) and Spackman's Hirshfeld surface-based approaches reveal equilibration of electrostatic matching and dispersion van der Waals interactions between molecules consistent with the crystal site-symmetry. The weakening of van der Waals forces accompanied by increasing strength of the hydrogen bond (N-H···N) result in a decrease in the crystal site-symmetry and a change in molecular packing in the crystalline state. Crystal packing motifs were investigated with the aid of Hirshfeld surface fingerprint plots. The ordering 4,5,6,7-tetraiodo > 4,5,6,7-tetrabromo > 4,5,6,7-tetrachloro > 4,5,6,7-tetrafluoro reflects not only a decrease in crystal symmetry but also increase in chemical reactivity (electronic activation), which could explain some changes in biological activity of

  14. Synthesis, quantum chemical computations and x-ray ...

    African Journals Online (AJOL)

    Benyza N

    2017-05-01

    May 1, 2017 ... manganese (+II) co-ordination with pyridine-2,6-dicarboxamide oxime. We report here the synthesis, the single crystal X-ray structure of the complex and the Optimization of the structure using ... Absorption coefficient (mm. -1. ).

  15. Quantum chemical analysis of potential anti-Parkinson agents

    Indian Academy of Sciences (India)

    Intermolecular binding energy components could not be analyzed by docking and due to this limitation, quantum mechanical (QM) calculations including functional B3LYP in association with split valence basis set (Def2-SVP) were applied to estimate the ligand-residue binding energies in the MAO-B active site. Moreover ...

  16. Quantum chemical analysis of potential anti-Parkinson agents

    Indian Academy of Sciences (India)

    Intermolecular binding energy components could not be analyzed by docking and due to this .... Cluster analysis was performed on the docked results with regard to RMS ... gard, docking simulation is a key tool in structural mo- lecular biology ...

  17. Quantum Chemical Calculations and Experimental Investigations of Molecular Actinide Oxides

    NARCIS (Netherlands)

    Kovács, Attila; Konings, Rudy J. M.; Gibson, John K.; Infante, Ivan; Gagliardi, Laura

    2015-01-01

    The available experimental and theoretical information on gaseous actinide oxides covering both the neutral and the ionic species are reviewed. The ground-state electronic structures of the oxides of An = Th-Cm have been obtained by the well-tested SOCASPT2 method, and therefore they are very likely

  18. Accuracy of Quantum Chemical Methods for Large Noncovalent Complexes

    Czech Academy of Sciences Publication Activity Database

    Sedlák, Robert; Janowski, T.; Pitoňák, M.; Řezáč, Jan; Pulay, P.; Hobza, Pavel

    2013-01-01

    Roč. 9, č. 8 (2013), s. 3364-3374 ISSN 1549-9618 R&D Projects: GA ČR GBP208/12/G016 Grant - others:Operational Program Research and Development for Innovations(XE) CZ1.05/2.1.00/03/0058 Institutional support: RVO:61388963 Keywords : density functional theory * intermolecular interaction energies * correlated molecular calculations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.310, year: 2013

  19. Vibration spectroscopic analysis and quantum chemical calculation of thymine

    Directory of Open Access Journals (Sweden)

    FU Yichen

    2014-02-01

    Full Text Available In this paper,Raman and IR spectra of thymine(Th were measured respectively in this paper.Molecular structure of Th was optimized and it’s Raman and IR bands were calculated using B3LYP/6-311G(contain Density functional theory,DFT method.It was found that the calculated values match well with the experimental ones.The vibratinal frequencies of Th molecules were completely assigned with the assistance of Gauss View visualization software.

  20. Kinetic measurements and quantum chemical calculations on low ...

    Indian Academy of Sciences (India)

    shell singlet state with all paired electrons that results in the diamagnetic system. ..... Ni(II) ion and the oxygen atom of the water molecule is >3.1 Å (table 3) and it .... Energy considerations reveal that the formation of the sulphato complexes 3 ...

  1. Use of ab initio quantum chemical methods in battery technology

    Energy Technology Data Exchange (ETDEWEB)

    Deiss, E [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Ab initio quantum chemistry can nowadays predict physical and chemical properties of molecules and solids. An attempt should be made to use this tool more widely for predicting technologically favourable materials. To demonstrate the use of ab initio quantum chemistry in battery technology, the theoretical energy density (energy per volume of active electrode material) and specific energy (energy per mass of active electrode material) of a rechargeable lithium-ion battery consisting of a graphite electrode and a nickel oxide electrode has been calculated with this method. (author) 1 fig., 1 tab., 7 refs.

  2. Machine learning of parameters for accurate semiempirical quantum chemical calculations

    International Nuclear Information System (INIS)

    Dral, Pavlo O.; Lilienfeld, O. Anatole von; Thiel, Walter

    2015-01-01

    We investigate possible improvements in the accuracy of semiempirical quantum chemistry (SQC) methods through the use of machine learning (ML) models for the parameters. For a given class of compounds, ML techniques require sufficiently large training sets to develop ML models that can be used for adapting SQC parameters to reflect changes in molecular composition and geometry. The ML-SQC approach allows the automatic tuning of SQC parameters for individual molecules, thereby improving the accuracy without deteriorating transferability to molecules with molecular descriptors very different from those in the training set. The performance of this approach is demonstrated for the semiempirical OM2 method using a set of 6095 constitutional isomers C 7 H 10 O 2 , for which accurate ab initio atomization enthalpies are available. The ML-OM2 results show improved average accuracy and a much reduced error range compared with those of standard OM2 results, with mean absolute errors in atomization enthalpies dropping from 6.3 to 1.7 kcal/mol. They are also found to be superior to the results from specific OM2 reparameterizations (rOM2) for the same set of isomers. The ML-SQC approach thus holds promise for fast and reasonably accurate high-throughput screening of materials and molecules

  3. Carbene→N Coordination Bonds in Drugs: A Quantum Chemical ...

    Indian Academy of Sciences (India)

    ... National Institute of Pharmaceutical Education and Research (NIPER), ... In this article, electronic structure analysis of drug molecules like picloxydine, chlorhexi- dine, and moroxydine was performed at B3LYP/6-311++G(d,p) level of theory.

  4. Fluorescence of variously terminated nanodiamond particles: quantum chemical calculations

    Czech Academy of Sciences Publication Activity Database

    Kratochvílová, Irena; Kovalenko, Alexander; Taylor, Andrew; Fendrych, František; Řezáčová, V.; Vlček, Jan; Záliš, Stanislav; Šebera, Jakub; Cígler, Petr; Ledvina, Miroslav; Nesladek, M.

    2010-01-01

    Roč. 207, č. 9 (2010), s. 2045-2048 ISSN 1862-6300 R&D Projects: GA ČR GA203/08/1594; GA AV ČR KAN401770651; GA AV ČR KAN200100801; GA AV ČR KAN100400702; GA ČR(CZ) GAP304/10/1951 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z40550506; CEZ:AV0Z40400503 Keywords : nanodiamond particles, * NV centers * luminescence * DFT Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.458, year: 2010

  5. Theoretical study of adsorption of lithium atom on carbon nanotube

    Directory of Open Access Journals (Sweden)

    Masato Senami

    2011-12-01

    Full Text Available We investigate the adsorption of lithium atoms on the surface of the (12,0 single wall carbon nanotube (SWCNT by using ab initio quantum chemical calculations. The adsorption of one lithium atom on the inside of this SWCNT is favored compared to the outside. We check this feature by charge transfer and regional chemical potential density. The adsorption of multiple lithium atoms on the interior of the SWCNT is studied in terms of adsorption energy and charge transfer. We show that repulsive force between lithium atoms destabilizes a system for the large number of lithium atoms.

  6. Structural investigation of water-acetonitrile mixtures: An ab initio, molecular dynamics and X-ray diffraction study

    International Nuclear Information System (INIS)

    Bako, Imre; Megyes, Tuende; Palinkas, Gabor

    2005-01-01

    In this work, we present a study on water-acetonitrile (AN) mixtures by molecular dynamics ab initio and X-ray diffraction techniques. Comparison of the experimental total G(r) functions of the mixtures with the results of molecular dynamics simulation shows an overall good agreement. The properties of hydrogen bonded clusters (water clusters, and water-AN clusters) in these mixtures have been determined. Two different types of AN-water dimers were identified by ab initio quantum chemical calculation. One of these structures proved to be a true H-bonded dimer and the other a dipole bound dimer

  7. High-level Computational Study of the Site-, Facial- and Stereoselectivities for the Diels-Alder Reaction Between o-Benzoquinone and Norbornadiene

    Directory of Open Access Journals (Sweden)

    Ronald N. Warrener

    2000-12-01

    Full Text Available Ab initio and DFT quantum chemical calculations have been applied to a study of the Diels-Alder reaction of o-benzoquinone as diene and norbornadiene as dienophile. Transition states for the different reactions are located and activation energies estimated. The prefered exo-π-facial selectivity and exo,endo-stereoselectivity exhibited in this cycloaddition are readily predicted using RHF/3-21G or higher levels of calculations. Differences between experimentally observed results and calculations may be explained by the postulation of a second, nonconcerted biradical mechanism leading to formation of hetero Diels-Alder products.

  8. Quantum-mechanical parameters for the risk assessment of multi-walled carbon-nanotubes: A study using adsorption of probe compounds and its application to biomolecules.

    Science.gov (United States)

    Chayawan; Vikas

    2016-11-01

    This work forwards new insights into the risk-assessment of multi-walled carbon-nanotubes (MWCNTs) while analysing the role of quantum-mechanical interactions between the electrons in the adsorption of probe compounds and biomolecules by MWCNTs. For this, the quantitative models are developed using quantum-chemical descriptors and their electron-correlation contribution. The major quantum-chemical factors contributing to the adsorption are found to be mean polarizability, electron-correlation energy, and electron-correlation contribution to the absolute electronegativity and LUMO energy. The proposed models, based on only three quantum-chemical factors, are found to be even more robust and predictive than the previously known five or four factors based linear free-energy and solvation-energy relationships. The proposed models are employed to predict the adsorption of biomolecules including steroid hormones and DNA bases. The steroid hormones are predicted to be strongly adsorbed by the MWCNTs, with the order: hydrocortisone > aldosterone > progesterone > ethinyl-oestradiol > testosterone > oestradiol, whereas the DNA bases are found to be relatively less adsorbed but follow the order as: guanine > adenine > thymine > cytosine > uracil. Besides these, the developed electron-correlation based models predict several insecticides, pesticides, herbicides, fungicides, plasticizers and antimicrobial agents in cosmetics, to be strongly adsorbed by the carbon-nanotubes. The present study proposes that the instantaneous inter-electronic interactions may be quite significant in various physico-chemical processes involving MWCNTs, and can be used as a reliable predictor for their risk assessment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Quantitative structure–reactivity study on sulfonation of amines, alcohols and phenols

    Directory of Open Access Journals (Sweden)

    Abolghasem Beheshti

    2017-05-01

    Full Text Available Quantitative structure–reactivity relationship (QSRR can be considered as a variant of quantitative structure property relationship (QSPR studies, where the chemical reactivity of reactants in a specified chemical reaction is related to chemical structure. As follows, the sulfonation reaction yield of 24 amines, alcohols and phenols with sulfonyl chloride was studied by QSRR. Quantum chemical calculations (b3lyp/6-31+g (d were carried out to obtain the optimized geometry. The suitable set of molecular descriptors was calculated to represent the molecular structures of compounds, such as constitutional, topological, geometrical, electrostatic and quantum-chemical descriptors. The genetic algorithm (GA was applied to select the variables that resulted in the best-fitted models. After the variable selection, multiple linear regression (MLR was utilized to construct linear QSRR models. The maximum relative error in prediction (5.26 showed that the predictive ability of the model was satisfactory and it can be used for designing similar reactants with efficient sulfonation reaction.

  10. Laser spectroscopic and theoretical studies of the structures and encapsulation motifs of functional molecules

    Energy Technology Data Exchange (ETDEWEB)

    Ebata, Takayuki; Kusaka, Ryoji [Department of Chemistry, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, 739-8526 (Japan); Xantheas, Sotiris S. [Chemical and Materials Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS K1-83, Richland, WA 99352 (United States)

    2015-01-22

    Extensive laser spectroscopic and theoretical studies have been recently carried out with the aim to reveal the structure and dynamics of encapsulation complexes in the gas phase. The characteristics of the encapsulation complexes are governed by the fact that (i) most of the host molecules are flexible and (ii) the complexes form high dimensional structures by using weak non-covalent interactions. These characteristics result in the possibility of the coexistence of many conformers in close energetic proximity. The combination of supersonic jet/laser spectroscopy and high level quantum chemical calculations is essential in tackling these challenging problems. In this report we describe our recent studies on the structures and dynamics of the encapsulation complexes formed by calix[4]arene (C4A), dibenzo-18-crown-6-ether (DB18C6), and benzo-18-crown-6-ether (B18C6) 'hosts' interacting with N{sub 2}, acetylene, water, and ammonia 'guest' molecules. The gaseous host-guest complexes are generated under jet-cooled conditions. We apply various laser spectroscopic methods to obtain the conformer- and isomer-specified electronic and IR spectra. The experimental results are complemented with quantum chemical calculations ranging from density functional theory to high level first principles calculations at the MP2 and CCSD(T) levels of theory. We discuss the possible conformations of the bare host molecules, the structural changes they undergo upon complexation, and the key interactions that are responsible in stabilizing the specific complexes.

  11. Theoretical studies of three triazole derivatives as corrosion inhibitors for mild steel in acidic medium

    International Nuclear Information System (INIS)

    Guo, Lei; Zhu, Shanhong; Zhang, Shengtao; He, Qiao; Li, Weihua

    2014-01-01

    Highlights: • Three triazole derivatives as corrosion inhibitors were theoretically investigated. • Quantum chemical calculations and Monte Carlo simulations were performed. • Quantitative structure activity relationship (QSAR) approach has been used. • Theoretical conclusions are validated by the consistency with experimental findings. - Abstract: Corrosion inhibitive performance of 4-chloro-acetophenone-O-1′-(1′.3′.4′-triazolyl)-metheneoxime (CATM), 4-fluoro-acetophenone-O-1′-(1′.3′.4′-triazolyl)-metheneoxime (FATM), and 3,4-dichloro-acetophenone-O-1′-(1′.3′.4′-triazolyl)-metheneoxime (DATM) during the acidic corrosion of mild steel surface was investigated using density functional theory (DFT). Quantum chemical parameters such as the highest occupied molecular orbital energy (E HOMO ), the lowest unoccupied molecular orbital energy (E LUMO ), energy gap (ΔE), Mulliken charges, hardness (ξ), dipole moment (μ), and the fraction of electrons transferred (ΔN), were calculated. Quantitative structure activity relationship (QSAR) approach has been used, and a composite index of above-mentioned descriptors was performed to characterize the inhibition performance of the studied molecules. Furthermore, Monte Carlo simulation studies were applied to search for the best configurational space of iron/triazole derivative system

  12. An Insight into Flotation Chemistry of Pyrite with Isomeric Xanthates: A Combined Experimental and Computational Study

    Directory of Open Access Journals (Sweden)

    Guihong Han

    2018-04-01

    Full Text Available The flotation chemistry between pyrite and isomeric xanthates (butyl xanthate and isobutyl xanthate was investigated by means of adsorption experiments, surface tension tests, and molecular dynamic simulations in this work. The flotation chemical results were confirmed and further interpreted by quantum chemical calculations. The experiment results demonstrated that the isobutyl xanthate exhibited superior adsorption capacity and surface activity than those of butyl xanthate in flotation chemistry. In addition, molecular dynamic simulations were simultaneously performed in constant number, constant volume and temperature (NVT, and constant number, constant volume, and pressure (NPT ensemble, indicating that the NPT ensemble was more suitable to the flotation system and the isobutyl xanthate was easier to be adsorbed on pyrite surface compared with butyl xanthate during an appropriate range of concentrations. Furthermore, the quantum chemical calculations elucidated that the isobutyl xanthate presented higher reactivity than that of the corresponding butyl xanthate based on the frontier molecular orbital theory of chemical reactivity, which was consistent with experimental and simulation results obtained. This work can provide theoretical guidance for an in-depth study of the flotation chemistry of pyrite with isomeric xanthates.

  13. Two-site jumps in dimethyl sulfone studied by one- and two-dimensional 17O NMR spectroscopy

    Science.gov (United States)

    Beerwerth, J.; Storek, M.; Greim, D.; Lueg, J.; Siegel, R.; Cetinkaya, B.; Hiller, W.; Zimmermann, H.; Senker, J.; Böhmer, R.

    2018-03-01

    Polycrystalline dimethyl sulfone is studied using central-transition oxygen-17 exchange NMR. The quadrupolar and chemical shift tensors are determined by combining quantum chemical calculations with line shape analyses of rigid-lattice spectra measured for stationary and rotating samples at several external magnetic fields. Quantum chemical computations predict that the largest principal axes of the chemical shift anisotropy and electrical field gradient tensors enclose an angle of about 73°. This prediction is successfully tested by comparison with absorption spectra recorded at three different external magnetic fields. The experimental one-dimensional motionally narrowed spectra and the two-dimensional exchange spectrum are compatible with model calculations involving jumps of the molecules about their two-fold symmetry axis. This motion is additionally investigated by means of two-time stimulated-echo spectroscopy which allows for a determination of motional correlation functions over a wider temperature range than previously reported using carbon and deuteron NMR. On the basis of suitable second-order quadrupolar frequency distributions, sin-sin stimulated-echo amplitudes are calculated for a two-site model in the limit of vanishing evolution time and compared with experimental findings. The present study thus establishes oxygen-17 NMR as a powerful method that will be particularly useful for the study of solids and liquids devoid of nuclei governed by first-order anisotropies.

  14. Experimental and Theoretical Studies of the Acid-Catalyzed Conversion of Furfuryl Alcohol to Levulinic Acid in Aqueous Solution

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Maldonado, Gretchen M.; Assary, Rajeev S.; Dumesic, James A.; Curtiss, Larry A.

    2012-02-14

    The conversion of furfuryl alcohol (FAL) to levulinic acid over Amberlyst TM 15 in aqueous media was investigated using a combination of liquid chromatography-mass spectrometry (LC-MS) measurements, isotopic labeling studies, nuclear magnetic resonance (NMR) spectroscopy, and ab initio quantum chemical calculations using the G4MP2 method. The results of these combined studies showed that one of the major reaction pathways takes place via a geminal diol species (4,5,5- trihydroxypentan-2-one, denoted as intermediate A), formed by the addition of two water molecules to FAL, where two of the oxygen atoms from FAL are retained. This geminal diol species can also be produced from another intermediate found to be a dimer-like species, denoted as intermediate B. This dimer-like species is formed at the early stages of reaction, and it can also be converted to intermediate A, indicating that intermediate B is the product of the reaction of FAL with another early intermediate. Quantum chemical calculations suggested this to be a protonated acyclic species. Reaction of this early intermediate with water produces intermediate A, while reaction with FAL produces intermediate B.

  15. Experimental and Theoretical Studies of the Acid-Catalyzed Conversion of Furfuryl Alcohol to Levulinic Acid in Aqueous Solution

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Maldonado, Gretchen; Assary, Rajeev S.; Dumesic, James A; Curtiss, Larry A

    2012-01-01

    The conversion of furfuryl alcohol (FAL) to levulinic acid over AmberlystTM 15 in aqueous media was investigated using a combination of liquid chromatography-mass spectrometry (LC-MS) measurements, isotopic labeling studies, nuclear magnetic resonance (NMR) spectroscopy, and ab initio quantum chemical calculations using the G4MP2 method. The results of these combined studies showed that one of the major reaction pathways takes place via a geminal diol species (4,5,5-trihydroxypentan-2-one, denoted as intermediate A), formed by the addition of two water molecules to FAL, where two of the oxygen atoms from FAL are retained. This geminal diol species can also be produced from another intermediate found to be a dimer-like species, denoted as intermediate B. This dimer-like species is formed at the early stages of reaction, and it can also be converted to intermediate A, indicating that intermediate B is the product of the reaction of FAL with another early intermediate. Quantum chemical calculations suggested this to be a protonated acyclic species. Reaction of this early intermediate with water produces intermediate A, while reaction with FAL produces intermediate B.

  16. Molecular modeling studies of oleate adsorption on iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Rath, Swagat S. [CSIR-Institute of Minerals and Materials Technology, Bhubaneswar (India); Sinha, Nishant [Accelrys K.K, Bengaluru (India); Sahoo, Hrushikesh [CSIR-Institute of Minerals and Materials Technology, Bhubaneswar (India); Das, Bisweswar, E-mail: bdas@immt.res.in [CSIR-Institute of Minerals and Materials Technology, Bhubaneswar (India); Mishra, Barada Kanta [CSIR-Institute of Minerals and Materials Technology, Bhubaneswar (India)

    2014-03-01

    Graphical abstract: - Highlights: • Plane wave periodic DFT study of oleate-iron oxide interaction. • Magnetite-oleate complex is more stable than hematite and goethite. • Flotation recovery of magnetite is more compared to the other two oxides. - Abstract: Comparative studies of oleate interaction with hematite, magnetite and goethite using density functional calculations are presented. The approach is illustrated by carrying out geometric optimization of oleate on the stable and most exposed planes of hematite, magnetite, and goethite. Interaction energies for oleate-mineral surface have been determined, based on which, magnetite is found to be forming the most stable complex with oleate. Trend as obtained from the quantum chemical calculations has been validated by contact angle measurements and flotation studies on hematite, magnetite and goethite with sodium oleate at different pH and collector concentrations.

  17. Molecular modeling studies of oleate adsorption on iron oxides

    International Nuclear Information System (INIS)

    Rath, Swagat S.; Sinha, Nishant; Sahoo, Hrushikesh; Das, Bisweswar; Mishra, Barada Kanta

    2014-01-01

    Graphical abstract: - Highlights: • Plane wave periodic DFT study of oleate-iron oxide interaction. • Magnetite-oleate complex is more stable than hematite and goethite. • Flotation recovery of magnetite is more compared to the other two oxides. - Abstract: Comparative studies of oleate interaction with hematite, magnetite and goethite using density functional calculations are presented. The approach is illustrated by carrying out geometric optimization of oleate on the stable and most exposed planes of hematite, magnetite, and goethite. Interaction energies for oleate-mineral surface have been determined, based on which, magnetite is found to be forming the most stable complex with oleate. Trend as obtained from the quantum chemical calculations has been validated by contact angle measurements and flotation studies on hematite, magnetite and goethite with sodium oleate at different pH and collector concentrations

  18. Computing UV/vis spectra using a combined molecular dynamics and quantum chemistry approach: bis-triazin-pyridine (BTP) ligands studied in solution.

    Science.gov (United States)

    Höfener, Sebastian; Trumm, Michael; Koke, Carsten; Heuser, Johannes; Ekström, Ulf; Skerencak-Frech, Andrej; Schimmelpfennig, Bernd; Panak, Petra J

    2016-03-21

    We report a combined computational and experimental study to investigate the UV/vis spectra of 2,6-bis(5,6-dialkyl-1,2,4-triazin-3-yl)pyridine (BTP) ligands in solution. In order to study molecules in solution using theoretical methods, force-field parameters for the ligand-water interaction are adjusted to ab initio quantum chemical calculations. Based on these parameters, molecular dynamics (MD) simulations are carried out from which snapshots are extracted as input to quantum chemical excitation-energy calculations to obtain UV/vis spectra of BTP ligands in solution using time-dependent density functional theory (TDDFT) employing the Tamm-Dancoff approximation (TDA). The range-separated CAM-B3LYP functional is used to avoid large errors for charge-transfer states occurring in the electronic spectra. In order to study environment effects with theoretical methods, the frozen-density embedding scheme is applied. This computational procedure allows to obtain electronic spectra calculated at the (range-separated) DFT level of theory in solution, revealing solvatochromic shifts upon solvation of up to about 0.6 eV. Comparison to experimental data shows a significantly improved agreement compared to vacuum calculations and enables the analysis of relevant excitations for the line shape in solution.

  19. Electrochemistry of chlorogenic acid: experimental and theoretical studies

    Energy Technology Data Exchange (ETDEWEB)

    Namazian, Mansoor [Department of Chemistry, Yazd University, P.O. Box 89195-741, Yazd (Iran, Islamic Republic of)]. E-mail: namazian@yazduni.ac.ir; Zare, Hamid R. [Department of Chemistry, Yazd University, P.O. Box 89195-741, Yazd (Iran, Islamic Republic of)

    2005-08-10

    Cyclic voltammetry, chronoamperometry and rotating disk electrode voltammetry as well as quantum chemical methods, are used for electrochemical study of chlorogenic acid, as an important biological molecule. The standard formal potential, diffusion coefficient, and heterogeneous electron transfer rate constant of chlorogenic acid in aqueous solution are investigated. Acidic dissociation constant of chlorogenic acid is also obtained. Quantum mechanical calculations on oxidation of chlorogenic acid in aqueous solution, using density functional theory are presented. The change of Gibbs free energy and entropy of oxidation of chlorogenic acid are calculated using thermochemistry calculations. The calculations in aqueous solution are carried out with the use of polarizable continuum solvation method. Theoretical standard electrode potential of chlorogenic acid is achieved to be 0.580 V versus standard calomel electrode (SCE) which is in agreement with the experimental value of 0.617 V obtained experimentally in this work. The difference is consistent with the values we previously reported for other quinone derivatives.

  20. Cryosolution infrared study of hydrogen bonded halothane acetylene complex

    Science.gov (United States)

    Melikova, S. M.; Rutkowski, K. S.; Rospenk, M.

    2018-05-01

    The interactions between halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) and acetylene (C2H2) are studied by FTIR spectroscopy. Results obtained in liquid cryosolutions in Kr suggest weak complex formation stabilized by H - bond. The complexation enthalpy (∼11 kJ/mol) is evaluated in a series of temperature measurements (T ∼ 120-160 K) of integrated intensity of selected bands performed in liquefied Kr. The quantum chemical MP2/6-311++G(2d,2p) calculations predict four different structures of the complex. The most stable and populated (94% at T∼120 K) structure corresponds to the H - bond between H atom of halothane and pi-electron of triple bond between C atoms of acetylene. Wave numbers of vibrational bands of the most stable structure are calculated in anharmonic approximation implemented in Gaussian program.

  1. Monitoring corrosion and corrosion control of iron in HCl by non-ionic surfactants of the TRITON-X series - Part III. Immersion time effects and theoretical studies

    International Nuclear Information System (INIS)

    Amin, Mohammed A.; Ahmed, M.A.; Arida, H.A.; Kandemirli, Fatma; Saracoglu, Murat; Arslan, Taner; Basaran, Murat A.

    2011-01-01

    Graphical abstract: . Display Omitted Research highlights: → The inhibition effect of TX-100, TX-165 and TX-305 on iron corrosion in 1.0 M HCl was studied. → TX-305 inhibited iron corrosion more effectively than TX-100 and TX-165. → In most cases, inhibition efficiency increased with time during the first 60 min of immersion, then decreased. → Calculated quantum chemical parameters confirmed the experimental inhibition efficiencies of the tested surfactants. - Abstract: The inhibition performance of three selected non-ionic surfactants of the TRITON-X series, namely TRITONX-100 (TX-100), TRITON-X-165 (TX-165) and TRITON-X-305 (TX-305), on the corrosion of iron was studied in 1.0 M HCl solutions as a function of inhibitor concentration (0.01-0.20 g L -1 ) and immersion time (0.0-8 h) at 298 K. Measurements were conducted based on Tafel polarization, LPR and impedance studies. At high frequencies, the impedance spectrum showed a depressed capacitive loop in the complex impedance plane, whose diameter is a function of the immersion time and the type and concentration of the introduced surfactant. In all cases, an inductive loop was observed in the low frequency and this could be attributed to the adsorption behavior. The inhibition efficiency increased with immersion time, reached a maximum and then decreased. This was attributed to the orientation change of adsorbed surfactant molecules. TX-305 inhibited iron corrosion more effectively than TX-100 and TX-165. The frontier orbital energies, the energy gap between frontier orbitals, dipole moments (μ), charges on the C and O atoms, the polarizabilities, and the quantum chemical descriptors were calculated. The quantum chemical calculation results inferred that for the HOMO representing the condensed Fukui function for an electrophilic attack (f k + ), the contributions belong to the phenyl group and the oxygen atom attached to the phenyl group for each tested surfactant. Quantitative structure

  2. A computational study on kinetics, mechanism and thermochemistry ...

    Indian Academy of Sciences (India)

    level procedure employing the optimization at .... for a better understanding of mechanistic pathways, kinetics and thermochemistry we must rely on quantum chemical methods. The aim of this paper is to have .... The search was made along.

  3. Conformational reduction of DOPA in the gas phase studied by laser desorption supersonic jet laser spectroscopy.

    Science.gov (United States)

    Ishiuchi, Shun-ichi; Mitsuda, Haruhiko; Asakawa, Toshiro; Miyazaki, Mitsuhiko; Fujii, Masaaki

    2011-05-07

    The conformational reduction in catecholamine neurotransmitters was studied by resonance enhanced multi photon ionization (REMPI), ultraviolet-ultraviolet (UV-UV) hole burning and infrared (IR) dip spectroscopy with applying a laser desorption supersonic jet technique to DOPA, which is one of the catecholamine neurotransmitters and has one more phenolic OH group than tyrosine. It is concluded that DOPA has a single observable conformer in the gas phase at low temperature. Quantum chemical calculations at several levels with or without the dispersion correction were also carried out to study stable conformations. From the comparison between the computational IR spectra and the experimental ones, the most stable structure was determined. It is strongly suggested that the conformational reduction is caused by electrostatic interactions, such as a dipole-dipole interaction, between the chain and OH groups. This journal is © the Owner Societies 2011

  4. Study of n-Butyl Acrylate Self-Initiation Reaction Experimentally and via Macroscopic Mechanistic Modeling

    Directory of Open Access Journals (Sweden)

    Ahmad Arabi Shamsabadi

    2016-04-01

    Full Text Available This paper presents an experimental study of the self-initiation reaction of n-butyl acrylate (n-BA in free-radical polymerization. For the first time, the frequency factor and activation energy of the monomer self-initiation reaction are estimated from measurements of n-BA conversion in free-radical homo-polymerization initiated only by the monomer. The estimation was carried out using a macroscopic mechanistic mathematical model of the reactor. In addition to already-known reactions that contribute to the polymerization, the model considers a n-BA self-initiation reaction mechanism that is based on our previous electronic-level first-principles theoretical study of the self-initiation reaction. Reaction rate equations are derived using the method of moments. The reaction-rate parameter estimates obtained from conversion measurements agree well with estimates obtained via our purely-theoretical quantum chemical calculations.

  5. The Static and Molecular Structure of Barium Dibromide: A Theoretical Study

    International Nuclear Information System (INIS)

    Guerbuez, H.

    2004-01-01

    The geometry of barium dibromide was first determined by electron diffraction by Akishin and Spiridov. That study concluded that the molecule is linear, but recent modern electron diffraction and quantum chemical studies of BaBr 2 indicated that its equilibrium geometry is bent. The geometrical parameters, namely, bond lengths and bond angles of barium dibromide were calculated from different levels of computation and experimentally. In this work we have calculated the molecular structure of the BaCl 2 using the Interionic Force model. On the other hand, we have calculated the interionic potentials with two different rigid ion model potentials (RIM) which one is the Vashista-Rahman (VR) semi-empirical potential and second one is the RIM potential with parametrization of Tatlipinar. These two model potential are compared with each other by reproducing the experimental static structure. The structure calculations have been performed by solving numerically the hypernetted chain approximate of liquids

  6. Effects of xenon insertion into hydrogen bromide. Comparison of the electronic structure of the HBr···CO2 and HXeBr···CO2 complexes using quantum chemical topology methods: electron localization function, atoms in molecules and symmetry adapted perturbation theory.

    Science.gov (United States)

    Makarewicz, Emilia; Gordon, Agnieszka J; Mierzwicki, Krzysztof; Latajka, Zdzislaw; Berski, Slawomir

    2014-06-05

    Quantum chemistry methods have been applied to study the influence of the Xe atom inserted into the hydrogen-bromine bond (HBr → HXeBr), particularly on the nature of atomic interactions in the HBr···CO2 and HXeBr···CO2 complexes. Detailed analysis of the nature of chemical bonds has been carried out using topological analysis of the electron localization function, while topological analysis of electron density was used to gain insight into the nature of weak nonbonding interactions. Symmetry-adapted perturbation theory within the orbital approach was applied for greater understanding of the physical contributions to the total interaction energy.

  7. Complexes of uranyl nitrate with 2,6-pyridinedicarboxamides: synthesis, crystal structure, and DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Alyapyshev, Mikhail; Babain, Vasiliy [ITMO University, 49, Kronverksky pr., 197101, St. Petersburg (Russian Federation); ThreeArc Mining Ltd., 5, Stary Tolmachevskiy per., 115184, Moscow (Russian Federation); Tkachenko, Lyudmila; Lumpov, Alexander [Khlopin Radium Institute, 28, 2nd Murinskiy pr., 194021, St. Petersburg (Russian Federation); Gurzhiy, Vladislav; Zolotarev, Andrey; Dar' in, Dmitriy [St. Petersburg State University, 7-9, Universitetskaya nab., 199034, St. Petersburg (Russian Federation); Ustynyuk, Yuriy; Gloriozov, Igor [M.V. Lomonosov Moscow State University, 119991, Moscow (Russian Federation); Paulenova, Alena [Department of Nuclear Engineering, Oregon State University, Corvallis, OR (United States)

    2017-05-04

    Two complexes of uranyl nitrate with N,N,N',N'-tetrabutyl-2,6-pyridinedicarboxamide (TBuDPA) and N,N'-diethyl-N,N'-diphenyl-2,6-pyridinedicarboxamide (EtPhDPA) were synthesized and studied. The complex of tetraalkyl-2,6-pyridinedicarboxamide with metal nitrate was synthesized for the first time. XRD analysis revealed the different type of complexation: a 1:1 metal:ligand complex for EtPhDPA and complex with polymeric structure for TBuDPA. The quantum chemical calculations (DFT) confirm that both ligands form the most stable complexes that match the minimal values pre-organization energy of the ligands. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. NATO Advanced Study Institute on Electronic Structure of Polymers and Molecular Crystals

    CERN Document Server

    Ladik, János

    1975-01-01

    The NATO Advanced Study Institute on "Electronic Structure of Polymers and Molecular Crystals" was held at the Facultes Universi­ taires de Namur (F.U.N.) from September 1st till September 14th, 1974. We wish to express our appreciation to the NATO Scientific Affairs Division whose generous support made this Institute possible and to the Facultes Universitaires de Namur and the Societe Chimique de Belgique which provided fellowships and travel grants to a number of students. This volume contains the main lectures about the basic principles of the field and about different recent developments of the theory of the electronic structure of polymers and molecular crystals. The school started with the presentation of the basic SCF-LCAO theory of the electronic structure of periodic polymers and molecular crystals (contributions by Ladik, Andre & Delhalle) showing how a combination of quantum chemical and solid state physical methods can provide band structures for these systems. The numerical aspects of these ...

  9. Structure and property relationships of amorphous CN sub x a joint experimental and theoretical study

    CERN Document Server

    Santos, M C D

    2000-01-01

    Amorphous CN sub x and CN sub x :H have been prepared by the ion beam assisted deposition technique. Samples were characterized through X-ray and UV photoemission, IR absorption and Raman spectroscopies. These spectra have been interpreted with the aid of quantum chemical calculations based upon the Hartree-Fock theory on several molecular models. The understanding of the electronic and structural properties of the amorphous alloy as a function of nitrogen content could help in the task of synthesizing the metastable silicon-nitride like-phase beta-C sub 3 N sub 4 , a solid which has been predicted to be as hard as diamond. The physical picture emerging from the present study helps to clarify the difficulties in obtaining the crystalline phase of the material, suggesting new experimental directions for syntheses.

  10. A Density Functional Theory Study on the Reaction Mechanism of Terpinolene with O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hahkjoon [Duksung Women' s University, Seoul (Korea, Republic of)

    2016-02-15

    The energies of chemical species involved in the early stage of the reaction of terpinolene with ozone were calculated to understand the oxidation mechanism of terpinolene with atmospheric O{sub 2} and NO determined experimentally. All the quantum calculations for geometry optimization and frequency calculations in this study were carried out using B3LYP with the 6-31G(d,p) basis (Gaussian 03 software package). In conclusion, quantum chemical calculations were performed to obtain the relative energies and energy barriers for the early stage of the reaction pathways of terpinolene with ozone. The branching ratio for pathways 3 and 4 determined experimentally is in qualitative agreement with the current calculations. The results of these calculations are important for assessing the relative stabilities of the intermediates in the reaction of terpinolene with ozone although detailed RRKM calculations are still needed to fully understand the branching ratios of the final products.

  11. INS study of intermolecular interaction at the silicone-fumed silica interface

    International Nuclear Information System (INIS)

    Sheka, E.F.; Natkaniec, I.

    1999-01-01

    Complete text of publication follows. The paper presents results related to the interface formed between finned silica particles and polydimethylsiloxane polymers, presented in the study by a five-member cyclic oligomer SiS. The substrate surface is terminated by either hydroxyl units or by trimethylsiloxy ones. When the interface is formed, methyl units are the main constituents providing neutron scattering. Protium/deuterium exchange has been used to distinguish the latter belonging to either adsorbate or substrate. A detailed analysis of the intermolecular interaction impact on both adsorbed molecule and substrate has been performed. The observed features are supported by the vibrational spectra calculations performed on the basis of a modem quantum-chemical approach and supplemented by the solution of the inverse spectral problem. (author)

  12. Study on models of O2 binding to heme using density functional theory

    Directory of Open Access Journals (Sweden)

    Hovorun D. M.

    2009-08-01

    Full Text Available Aim. To study a mechanism of molecular oxygen binding to heme three models of geometry structure of the complex are considered: the axis of O2 molecule is situated perpendicularly to the porphin macrocycle, parallel, and angularly. Methods. The Fe(II porphin complexes with dioxygen are calculated by the quantum-chemical method of density functional theory with the UB3LYP/6-311G approximation. Results. The optimized geometry and electron structures as well as the absorption IR spectra of the complexes in the high-spin (septet state are described. Conclusions. It is shown that the main mechanism of spin-orbit coupling during the O2 binding to heme is connected with peculiarity of the O2 molecule electronic structure.

  13. Semiempirical Theoretical Studies of 1,3-Benzodioxole Derivatives as Corrosion Inhibitors

    Directory of Open Access Journals (Sweden)

    Omnia A. A. El-Shamy

    2017-01-01

    Full Text Available The efficiency of 1,3-benzodioxole derivatives as corrosion inhibitors is theoretically studied using quantum chemical calculation and Quantitative Structure Activity Relationship (QSAR. Different semiempirical methods (AM1, PM3, MNDO, MINDO/3, and INDO are applied in order to determine the relationship between molecular structure and their corrosion protection efficiencies. Different quantum parameters are obtained as the energy of highest occupied molecular orbital EHOMO, the energy of the lowest unoccupied molecular orbital ELUMO, energy gap ΔEg, dipole moment μ, and Mulliken charge on the atom. QSAR approach is applied to elucidate some important parameters as the hydrophobicity (Log P, surface area (S.A, polarization (P, and hydration energy (EHyd.

  14. B{sub 36} borophene as an electronic sensor for formaldehyde: Quantum chemical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shahbazi Kootenaei, Amirhossein, E-mail: a.kootenaei@gmail.com [Department of Chemical Engineering, Mahshahr Branch, Islamic Azad University, Mahshahr (Iran, Islamic Republic of); Ansari, Goodarz [Department of Chemistry, Mahshahr Branch, Islamic Azad University, Mahshahr (Iran, Islamic Republic of)

    2016-08-06

    Pristine carbon nanotubes and graphene show great sensitivity toward several lethal gases but cannot identify some extremely toxic chemicals such as formaldehyde (HCOH). Recent successful synthesis of all-boron graphene-like sheets attracted strong interest in exploring their possible applications. Herein, we inspected the potential application of B{sub 36} borophene sheet as a sensor for HCOH detection, using density functional theory computations. Different theoretical levels including B97D and Minnesota 06 functionals with different basis sets were employed. It was predicted that the electrical conductivity of B{sub 36} borophene significantly increases at the presence of HCOH molecules, thereby generating an electrical signal. The electrical signal is increased by increasing the number of adsorbed HCOH molecules, indicating that this sensor is sensitive to the concentration (or pressure) of HCOH gas. These results suggest that the pristine borophene may be used in the HCOH chemical sensors. - Highlights: • B{sub 36} borophene sheet can be used as a chemical sensor for HCOH detection. • The B{sub 36} is sensitive to the concentration of HCOH. • When the B{sub 36} adsorbs HCOH molecules, it is converted to a p-type semiconductor.

  15. Efficient Implementation of Many-body Quantum Chemical Methods on the Intel Xeon Phi Coprocessor

    Energy Technology Data Exchange (ETDEWEB)

    Apra, Edoardo; Klemm, Michael; Kowalski, Karol

    2014-12-01

    This paper presents the implementation and performance of the highly accurate CCSD(T) quantum chemistry method on the Intel Xeon Phi coprocessor within the context of the NWChem computational chemistry package. The widespread use of highly correlated methods in electronic structure calculations is contingent upon the interplay between advances in theory and the possibility of utilizing the ever-growing computer power of emerging heterogeneous architectures. We discuss the design decisions of our implementation as well as the optimizations applied to the compute kernels and data transfers between host and coprocessor. We show the feasibility of adopting the Intel Many Integrated Core Architecture and the Intel Xeon Phi coprocessor for developing efficient computational chemistry modeling tools. Remarkable scalability is demonstrated by benchmarks. Our solution scales up to a total of 62560 cores with the concurrent utilization of Intel Xeon processors and Intel Xeon Phi coprocessors.

  16. Quantum chemical modelling of magnesium centers in LiF crystals

    International Nuclear Information System (INIS)

    Shlyuger, A.L.; Mysovskij, S.N.; Nepomnyashchikh, A.I.

    1989-01-01

    It is shown theoretically that optical absorption at 4.0 eV in LiF irradiated crystals is linked with Mg c + v a + v c - -centers (M-centers) and results from electron transitions from quasi-local staes in valent zone to vetre local state. V k and M-centres resulting from M-centre photodecolorization at low temperatures cause optical absorption with maxima at 3.5 and 5.0 eV. M-centres are transformed into M-centres oriented along axis at temperatures higher than 240 K. Optical excitation of M-centres oriented along axis with 5.5 eV maximum results in the initiation of luminescence at 2 eV

  17. A Quantum Chemical Exploration of the Horner-Wadsworth-Emmons Reaction

    DEFF Research Database (Denmark)

    Brandt, Peter; Norrby, Per-Ola; Martin, Ivar

    1998-01-01

    The mechanism of the Horner-Wadsworth-Emmons (HWE) reaction has been investigated using high level quantum mechanical calculations on a realistic model system. The solvation contribution has been evaluated using the PCM/DIR method. In the free, anionic system, the rate determining step was found ...

  18. Quantum chemical and conventional TST calculations of rate constants for the OH + alkane reaction

    International Nuclear Information System (INIS)

    Bravo-Perez, Graciela; Alvarez-Idaboy, J. Raul; Jimenez, Annia Galano; Cruz-Torres, Armando

    2005-01-01

    Reactions of OH with methane, ethane, propane, i-butane, and n-butane have been modeled using ab initio (MP2) and hybrid DFT (BHandHLYP) methods, and the 6-311G(d,p) basis set. Furthermore, single-point calculations at the CCSD(T) level were carried out at the optimized geometries. The rate constants have been calculated using the conventional transition-state theory (CTST). Arrhenius equations are proposed in the temperature range of 250-650 K. Hindered Internal Rotation partition functions calculations were explicitly carried out and included in the total partition functions. These corrections showed to be relevant in the determination of the pre-exponential parameters, although not so important as in the NO 3 + alkane reactions [G. Bravo-Perez, J.R. Alvarez-Idaboy, A. Cruz-Torres, M.E. Ruiz, J. Phys. Chem. A 106 (2002) 4645]. The explicit participation of the tunnel effect has been taken into account. The calculated rate coefficients provide a very good agreement with the experimental data. The best agreement for the overall alkane + OH reactions seemed to occur when the BHandHLYP geometries and partition functions are used. For propane and i-butane, in addition to the respective secondary and tertiary H-abstraction channels, the primary one has been considered. These pathways are confirmed to be significant in spite of the large differences in activation energies between primary and secondary or primary and tertiary channels, respectively of propane and i-butane reactions and should not be disregarded

  19. Quantum chemical analysis of the structures of MgSO4 hydrates

    NARCIS (Netherlands)

    Iype, E.; Ozen, C.; Nedea, S.V.; Rindt, C.C.M.; Zondag, H.A.

    2012-01-01

    Magnesium sulfate salts can form hydrated compounds with up to seven degree of hydration with an energy exchange of the order of 2.8GJ/m3 [1]. In addition, this salt is abundant in nature and thus this material is a potential candidate for storing energy in seasonal heat storage systems. One of the

  20. The quantum-chemical investigation of N-cyclization reaction mechanism for epichlorohydrin aminolysis products

    Directory of Open Access Journals (Sweden)

    Andrey V. Tokar

    2014-12-01

    Full Text Available The mechanism of intramolecular cyclization for products of epichlorohydrin aminolysis by secondary amines has been investigated at ab initio level of theory. By comparative analysis of energetic characteristics, which obtained in vacuo as well as in acetonitrile solution with the trace quantities of water as an «active» solvation partner of reaction, it has been shown a decisive role of solvent, which occurs mainly at the expense of the polarizable effects for nonspecific solvation. Indeed, the addition to the substrate of one water molecule have decreased corresponding EACT values only 24.1 kJ/mol, while the appearance of acetonitrile surroundings have the same influence ~42.0 kJ/mol. The results of calculations are in good agreement with that data, which have been obtained for such type modeling previously.

  1. Quantum Chemical Investigation on Photochemical Reactions of Nonanoic Acids at Air-Water Interface.

    Science.gov (United States)

    Xiao, Pin; Wang, Qian; Fang, Wei-Hai; Cui, Ganglong

    2017-06-08

    Photoinduced chemical reactions of organic compounds at the marine boundary layer have recently attracted significant experimental attention because this kind of photoreactions has been proposed to have substantial impact on local new particle formation and their photoproducts could be a source of secondary organic aerosols. In this work, we have employed first-principles density functional theory method combined with cluster models to systematically explore photochemical reaction pathways of nonanoic acids (NAs) to form volatile saturated and unsaturated C 9 and C 8 aldehydes at air-water interfaces. On the basis of the results, we have found that the formation of C 9 aldehydes is not initiated by intermolecular Norrish type II reaction between two NAs but by intramolecular T 1 C-O bond fission of NA generating acyl and hydroxyl radicals. Subsequently, saturated C 9 aldehydes are formed through hydrogenation reaction of acyl radical by another intact NA. Following two dehydrogenation reactions, unsaturated C 9 aldehydes are generated. In parallel, the pathway to C 8 aldehydes is initiated by T 1 C-C bond fission of NA, which generates octyl and carboxyl radicals; then, an octanol is formed through recombination reaction of octyl with hydroxyl radical. In the following, two dehydrogenation reactions result into an enol intermediate from which saturated C 8 aldehydes are produced via NA-assisted intermolecular hydrogen transfer. Finally, two dehydrogenation reactions generate unsaturated C 8 aldehydes. In these reactions, water and NA molecules are found to play important roles. They significantly reduce relevant reaction barriers. Our work has also explored oxygenation reactions of NA with molecular oxygen and radical-radical dimerization reactions.

  2. N-propyl nitrate vibrational spectrum analysis using DFT B3LYP quantum-chemical method

    Science.gov (United States)

    Shaikhullina, R. M.; Hrapkovsky, G. M.; Shaikhullina, M. M.

    2018-05-01

    Calculation of a molecular structure, conformation and related vibrational spectra of the n- propyl nitrate C3H7NO3 was carried out by means of density functional theory (DFT) by employing the Gaussian 03 package. The molecular geometries were fully optimized by using the Becker's three-parameter hybrid exchange functional combined with the Lee–Yang–Parr correlation functional (B3LYP) and using the 6-31G(d) basis set. By scanning the dihedral angles around C-O and C-C bonds, five energetically most favorable conformers of n-propyl nitrate - TG, TT, GT, GG and G´G forms were found. Vibrational spectra of the most energetically favorable conformers were calculated. The comparative analysis of calculated and experimental spectra is carried out, the spectral features of the conformational state of n-propyl nitrate and the spectral effects of formation of intramolecular hydrogen bonds are established.

  3. The Alexandria library, a quantum-chemical database of molecular properties for force field development.

    Science.gov (United States)

    Ghahremanpour, Mohammad M; van Maaren, Paul J; van der Spoel, David

    2018-04-10

    Data quality as well as library size are crucial issues for force field development. In order to predict molecular properties in a large chemical space, the foundation to build force fields on needs to encompass a large variety of chemical compounds. The tabulated molecular physicochemical properties also need to be accurate. Due to the limited transparency in data used for development of existing force fields it is hard to establish data quality and reusability is low. This paper presents the Alexandria library as an open and freely accessible database of optimized molecular geometries, frequencies, electrostatic moments up to the hexadecupole, electrostatic potential, polarizabilities, and thermochemistry, obtained from quantum chemistry calculations for 2704 compounds. Values are tabulated and where available compared to experimental data. This library can assist systematic development and training of empirical force fields for a broad range of molecules.

  4. How soil organic matter composition controls hexachlorobenzene-soil-interactions: adsorption isotherms and quantum chemical modeling.

    Science.gov (United States)

    Ahmed, Ashour A; Kühn, Oliver; Aziz, Saadullah G; Hilal, Rifaat H; Leinweber, Peter

    2014-04-01

    Hazardous persistent organic pollutants (POPs) interact in soil with the soil organic matter (SOM) but this interaction is insufficiently understood at the molecular level. We investigated the adsorption of hexachlorobenzene (HCB) on soil samples with systematically modified SOM. These samples included the original soil, the soil modified by adding a hot water extract (HWE) fraction (soil+3 HWE and soil+6 HWE), and the pyrolyzed soil. The SOM contents increased in the order pyrolyzed soilsoilsoil+3 HWEsoil+6 HWE. For the latter three samples this order was also valid for the HCB adsorption. The pyrolyzed soil adsorbed more HCB than the other samples at low initial concentrations, but at higher concentrations the HCB adsorption became weaker than in the samples with HWE addition. This adsorption combined with the differences in the chemical composition between the soil samples suggested that alkylated aromatic, phenol, and lignin monomer compounds contributed most to the HCB adsorption. To obtain a molecular level understanding, a test set has been developed on the basis of elemental analysis which comprises 32 representative soil constituents. The calculated binding energy for HCB with each representative system shows that HCB binds to SOM stronger than to soil minerals. For SOM, HCB binds to alkylated aromatic, phenols, lignin monomers, and hydrophobic aliphatic compounds stronger than to polar aliphatic compounds confirming the above adsorption isotherms. Moreover, quantitative structure-activity relationship (QSAR) of the binding energy with independent physical properties of the test set systems for the first time indicated that the polarizability, the partial charge on the carbon atoms, and the molar volume are the most important properties controlling HCB-SOM interactions. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Molecular structure and spectroscopic characterization of Carbamazepine with experimental techniques and DFT quantum chemical calculations

    Science.gov (United States)

    Suhasini, M.; Sailatha, E.; Gunasekaran, S.; Ramkumaar, G. R.

    2015-04-01

    A systematic vibrational spectroscopic assignment and analysis of Carbamazepine has been carried out by using FT-IR, FT-Raman and UV spectral data. The vibrational analysis were aided by electronic structure calculations - ab initio (RHF) and hybrid density functional methods (B3LYP) performed with standard basis set 6-31G(d,p). Molecular equilibrium geometries, electronic energies, natural bond order analysis, harmonic vibrational frequencies and IR intensities have been computed. A detailed interpretation of the vibrational spectra of the molecule has been made on the basis of the calculated Potential Energy Distribution (PED) by VEDA program. UV-visible spectrum of the compound was also recorded and the electronic properties, such as HOMO and LUMO energies and λmax were determined by HF/6-311++G(d,p) Time-Dependent method. The thermodynamic functions of the title molecule were also performed using the RHF and DFT methods. The restricted Hartree-Fock and density functional theory-based nuclear magnetic resonance (NMR) calculation procedure was also performed, and it was used for assigning the 13C and 1H NMR chemical shifts of Carbamazepine.

  6. Parameters affecting the luminescence of nanodiamond particles:Quantum chemical calculations

    Czech Academy of Sciences Publication Activity Database

    Kovalenko, Alexander; Petráková, Vladimíra; Ashcheulov, Petr; Záliš, Stanislav; Nesladek, M.; Kraus, I.; Kratochvílová, Irena

    2012-01-01

    Roč. 209, č. 9 (2012), s. 1769-1773 ISSN 1862-6300 R&D Projects: GA TA ČR TA01011165; GA ČR(CZ) GAP304/10/1951 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z40400503 Keywords : defects * luminescence * nanodiamonds * surface termination Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.469, year: 2012 http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1862-6319/earlyview

  7. Microwave, High-Resolution Infrared, and Quantum Chemical Investigations of CHBrF2

    DEFF Research Database (Denmark)

    Cazzoli, Gabriele; Cludi, Lino; Puzzarini, Cristina

    2011-01-01

    terms as well as the hyperfine parameters (quadrupole-coupling and spin-rotation interaction constants) of the bromine nucleus. The determination of the latter was made possible by recording of spectra at sub-Doppler resolution, achieved by means of the Lamb-dip technique, and supporting the spectra......A combined microwave, infrared, and computational investigation of CHBrF2 is reported. For the vibrational ground state, measurements in the millimeter- and sub-millimeter-wave regions for (CHBrF2)-Br-79 and (CHBrF2)-Br-81 provided rotational and centrifugal-distortion constants up to the sextic...... parameters of the v(4) = 1 state were found to be close to those of the vibrational ground state, indicating that the v(4) band is essentially unaffected by perturbations....

  8. Semiempirical Quantum-Chemical Orthogonalization-Corrected Methods: Benchmarks for Ground-State Properties.

    Science.gov (United States)

    Dral, Pavlo O; Wu, Xin; Spörkel, Lasse; Koslowski, Axel; Thiel, Walter

    2016-03-08

    The semiempirical orthogonalization-corrected OMx methods (OM1, OM2, and OM3) go beyond the standard MNDO model by including additional interactions in the electronic structure calculation. When augmented with empirical dispersion corrections, the resulting OMx-Dn approaches offer a fast and robust treatment of noncovalent interactions. Here we evaluate the performance of the OMx and OMx-Dn methods for a variety of ground-state properties using a large and diverse collection of benchmark sets from the literature, with a total of 13035 original and derived reference data. Extensive comparisons are made with the results from established semiempirical methods (MNDO, AM1, PM3, PM6, and PM7) that also use the NDDO (neglect of diatomic differential overlap) integral approximation. Statistical evaluations show that the OMx and OMx-Dn methods outperform the other methods for most of the benchmark sets.

  9. Geometry optimization of supersymmetrical molecules in quantum chemical ab-initio calculations

    International Nuclear Information System (INIS)

    Gruenbichler, H.

    1985-01-01

    One-dimensional geometry optimizations in ab-initio SCF-calculations are investigated. It is shown, that the well known standard algorithms are sometimes too expensive and can be replaced or accompanied by more recent algorithms. Two alternatives were realized in the molecule calculating program GAUSSIAN 80, basing on the Fibonacci algorithm and Kryachco potential adjustment. The algorithms were compared in terms of accuracy of results, CPU-time used and reliability of the method. The results are presented in various tables, showing the efficiency of the various methods. A survey of the usual model potentials is given and the compatibility with ab-initio data is evaluated. (Author, shortened and translated by A.N.)

  10. Mechanism of action of anticancer titanocene derivatives: An insight from quantum chemical calculations

    Czech Academy of Sciences Publication Activity Database

    Šponer, Judit E.; Leszczynski, J.; Šponer, Jiří

    2006-01-01

    Roč. 110, č. 39 (2006), s. 19632-19636 ISSN 1520-6106 R&D Projects: GA AV ČR(CZ) 1QS500040581; GA ČR(CZ) GA203/05/0009; GA ČR(CZ) GA203/05/0388; GA MŠk(CZ) LC512 Institutional research plan: CEZ:AV0Z50040507 Keywords : titanocene * quantum chemistry * anticancer drug Subject RIV: BO - Biophysics Impact factor: 4.115, year: 2006

  11. Towards a physical interpretation of substituent effect: Quantum chemical interpretation of Hammett substituent constants

    Science.gov (United States)

    Varaksin, Konstantin S.; Szatylowicz, Halina; Krygowski, Tadeusz M.

    2017-06-01

    Quantitative description of substituent effects is of a great importance especially in organic chemistry and QSAR-type treatments. The proposed approaches: substituent effect stabilization energy (SESE) and charge of the substituent active region (cSAR) provide substituent effect characteristics, physically independent of the Hammett's substituent constants, σ. To document abilities of these descriptors the B3LYP/6-311++G(d,p) method is employed to examine changes in properties of a reaction center Y (Y = COOH or COO- groups) and a transmitting moiety (benzene ring) due to substituent effects in a series of meta- and para-X-substituted benzoic acid and benzoate anion derivatives (X = NMe2, NH2, OH, OMe, CH3, H, F, Cl, CF3, CN, CHO, COMe, CONH2, COOH, NO2, NO). The transmitting moiety is described by aromaticity indices HOMA and NICS(1). Furthermore, an advantage of the cSAR characteristic is the ability to use it to describe both electron donating/accepting properties of a substituent as well as a reaction center. It allows demonstration of the reverse substituent effects of COOH and COO- groups on substituent X.

  12. Quantum chemical investigation of attractive non-covalent interactions between halomethanes and rare gases.

    Science.gov (United States)

    McAllister, Linda J; Bruce, Duncan W; Karadakov, Peter B

    2012-11-01

    The interaction between rare gas atoms and trifluoromethylhalides and iodomethane is investigated using ab initio and density functional theory (DFT) methods: MP2, CCSD, B3LYP, M06, M06-L, M06-2X, M06-HF, X3LYP, PBE, B97-D, B3LYP-D3, and M06-L-D3, in combination with the aug-cc-pVTZ and aug-cc-pVTZ-PP basis sets. A weakly attractive interaction is observed for all complexes, whose strength increases as the rare gas and halogen bond donor become more polarizable, and as the group bound to the halogen bond donor becomes more electron-withdrawing. The separation between iodine and krypton in the complex CF(3)I···Kr, calculated at the MP2 and B3LYP-D3 levels of theory, agrees very well with recent experimental results (Stephens, S. L.; Walker, N. R.; Legon, A. C. J. Chem. Phys. 2011, 135, 224309). Analysis of the ability of theoretical methods to account for the dispersion interaction present in these complexes leads to the conclusion that MP2 and B3LYP-D3, which produce very similar results, are the better performing methods, followed by B97-D and the M06 suite of functionals; the popular B3LYP as well as X3LYP perform poorly and significantly underestimate the interaction strength. The orbitals responsible for the interaction are identified through Edmiston-Ruedenberg localization; it is shown that, by combining the key orbitals, it is possible to observe a molecular orbital picture of a σ-hole interaction.

  13. Intramolecular hydrogen bonding in N-salicylideneaniline: FT-IR spectrum and quantum chemical calculations

    Science.gov (United States)

    Moosavi-Tekyeh, Zainab; Dastani, Najmeh

    2015-12-01

    FT-IR and FT-Raman spectra of N-salicylideneaniline (SAn) and its deuterated analogue (D-SAn) are recorded, and the theoretical calculations are performed on their molecular structures and vibrational frequencies. The same calculations are performed for SAn in different solutions using the polarizable conductor continuum model (CPCM) method. Comparisons between the spectra obtained and the corresponding theoretical calculations are used to assign the vibrational frequencies for these compounds. The spectral behavior of SAn upon deuteration is also used to distinguish the positions of OH vibrational frequencies. The hydrogen bond strength of SAn is investigated by applying the atoms-in-molecules (AIM) theory, natural bond orbital (NBO) analysis, and geometry calculations. The harmonic vibrational frequencies of SAn are calculated at B3LYP and X3LYP levels of theory using 6-31G*, 6-311G**, and 6-311++G** basis sets. The AIM results support a medium hydrogen bonding in SAn. The observed νOH/νOD and γOH/γOD for SAn appear at 2940/2122 and 830/589 cm-1, respectively.

  14. Developing Quantum Chemical and Polyparameter Models for Predicting Environmentally Significant Parameters for New Munition Compounds

    Science.gov (United States)

    2017-05-31

    in fish , plants, and soil invertebrates have been used to build the models. In addition the BCFs for a soil invertebrate (oligochaete Eisenia......Streit B, Nagel R. Tubifex tubifex as a link in food chain transfer of hexachlorobenzene from contaminated sediment to fish . Hydrobiologia

  15. Ab initio quantum chemical calculations of the interaction between radioactive elements and imidazolium based ionic liquids

    Science.gov (United States)

    Saravanan, A. V. Sai; Abishek, B.; Anantharaj, R.

    2018-04-01

    The fundamental natures of the molecular level interaction and charge transfer between specific radioactive elements and ionic liquids of 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide ([BMIM]+[NTf2]-), 1-Butyl-3-methylimidazolium ethylsulfate ([BMIM]+[ES]-) and 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]+[BF4]-) were investigated utilising HF theory and B3LYP hybrid DFT. The ambiguity in reaction mechanism of the interacting species dictates to employ Effective Core Potential (ECP) basis sets such as UGBS, SDD, and SDDAll to account for the relativistic effects of deep core electrons in the system involving potential, heavy and hazardous radioactive elements present in nuclear waste. The SCF energy convergence of each system validates the characterisation of the molecular orbitals as a linear combination of atomic orbitals utilising fixed MO coefficients and the optimized geometry of each system is visualised based on which Mulliken partial charge analysis is carried out to account for the polarising behaviour of the radioactive element and charge transfer between the IL phase by comparison with the bare IL species.

  16. Quantum chemical approach for condensed-phase thermochemistry (IV): Solubility of gaseous molecules

    Science.gov (United States)

    Ishikawa, Atsushi; Kamata, Masahiro; Nakai, Hiromi

    2016-07-01

    The harmonic solvation model (HSM) was applied to the solvation of gaseous molecules and compared to a procedure based on the ideal gas model (IGM). Examination of 25 molecules showed that (i) the accuracy of ΔGsolv was similar for both methods, but the HSM shows advantages for calculating ΔHsolv and TΔSsolv; (ii) TΔSsolv contributes more than ΔHsolv to ΔGsolv in the HSM, i.e. the solvation of gaseous molecules is entropy-driven, which agrees well with experimental understanding (the IGM does not show this); (iii) the temperature dependence of Henry's law coefficient was correctly reproduced with the HSM.

  17. Reference quantum chemical calculations on RNA base pairs directly involving the 2'-OH group of ribose

    Czech Academy of Sciences Publication Activity Database

    Šponer, Jiří; Zgarbová, M.; Jurečka, Petr; Riley, K.E.; Šponer, Judit E.; Hobza, Pavel

    2009-01-01

    Roč. 5, č. 4 (2009), s. 1166-1179 ISSN 1549-9618 R&D Projects: GA AV ČR(CZ) IAA400040802; GA AV ČR(CZ) IAA400550701; GA MŠk(CZ) LC06030; GA MŠk(CZ) LC512 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702; CEZ:AV0Z40550506 Keywords : RNA * ribose * quantum calculations Subject RIV: BO - Biophysics Impact factor: 4.804, year: 2009

  18. Interaction of porphyrin and sapphyrin macrocycles with nucleobases and nucleosides. Spectroscopic, quantum chemical and chromatographic investigation

    Czech Academy of Sciences Publication Activity Database

    Záruba, K.; Tománková, Z.; Sýkora, D.; Charvátová, J.; Kavenová, I.; Bouř, Petr; Matějka, P.; Fähnrich, J.; Volka, K.; Král, V.

    2001-01-01

    Roč. 437, - (2001), s. 39-53 ISSN 0003-2670 R&D Projects: GA ČR GA203/01/0031; GA MŠk VS97135; GA ČR GV301/98/K042 Grant - others:HHMI(US) 75195-541101 Institutional research plan: CEZ:AV0Z4055905 Keywords : HPLC * porphyrin Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.073, year: 2001

  19. SUCCESS AND PITFALLS OF THE DIELECTRIC CONTINUUM MODEL IN QUANTUM-CHEMICAL CALCULATIONS

    NARCIS (Netherlands)

    DEVRIES, AH; VANDUIJNEN, PT; JUFFER, AH

    1993-01-01

    Recently we presented an extension of the direct reaction field (DRF) method, in which a quantum system and a set of point charges and interacting polarizabilities are embedded in a continuum that is characterized by a dielectric constant epsilon and a finite ionic strength. The reaction field of

  20. Quantum chemical investigation of the reaction of O( P2) with certain ...

    Indian Academy of Sciences (India)

    WINTEC

    In the case of methyl radical the minimum energy reaction pathway leads to the products CO + H2 + H. In ... Reactions of atomic oxygen with hydrocarbon radicals play an important role in ..... The reaction between singlet oxygen and propyl ...

  1. Charge carrier mobility in sulphonated and non-sulphonated Ni phthalocyanines: experiment and quantum chemical calculations

    Czech Academy of Sciences Publication Activity Database

    Šebera, Jakub; Nešpůrek, Stanislav; Kratochvílová, Irena; Záliš, Stanislav; Chaidogiannos, G.; Glezos, N.

    2009-01-01

    Roč. 72, č. 3 (2009), s. 385-395 ISSN 1434-6028 R&D Projects: GA MŠk OC 139; GA MŠk OC 137; GA AV ČR KAN401770651; GA AV ČR KAN200100801; GA ČR GA203/08/1594; GA MŠk OC 138 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z40500505; CEZ:AV0Z10100520 Keywords : Ni Phthalocyanines * chemical calculations * polymers Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.466, year: 2009

  2. Conformational, structural, vibrational, electronic and quantum chemical investigations of cis-2-methoxycinnamic acid

    Science.gov (United States)

    Arjunan, V.; Anitha, R.; Marchewka, M. K.; Mohan, S.; Yang, Haifeng

    2015-01-01

    The Fourier transform infrared (FTIR) and FT-Raman spectra of cis-2-methoxycinnamic acid have been measured in the range 4000-400 and 4000-100 cm-1, respectively. Complete vibrational assignment and analysis of the fundamental modes of the compound were carried out using the observed FTIR and FT-Raman data. The geometry was optimised without any symmetry constrains using the DFT/B3LYP method utilising 6-311++G∗∗ and cc-pVTZ basis sets. The thermodynamic stability and chemical reactivity descriptors of the molecule have been determined. The exact environment of C and H of the molecule has been analysed by NMR spectroscopies through 1H and 13C NMR chemical shifts of the molecule. The energies of the frontier molecular orbitals have also been determined. Complete NBO analysis was also carried out to find out the intramolecular electronic interactions and their stabilisation energy. The vibrational frequencies which were determined experimentally are compared with those obtained theoretically from density functional theory (DFT) gradient calculations employing the B3LYP/6-311++G∗∗ and cc-pVTZ methods.

  3. Quantum chemical approach for positron annihilation spectra of atoms and molecules beyond plane-wave approximation

    Science.gov (United States)

    Ikabata, Yasuhiro; Aiba, Risa; Iwanade, Toru; Nishizawa, Hiroaki; Wang, Feng; Nakai, Hiromi

    2018-05-01

    We report theoretical calculations of positron-electron annihilation spectra of noble gas atoms and small molecules using the nuclear orbital plus molecular orbital method. Instead of a nuclear wavefunction, the positronic wavefunction is obtained as the solution of the coupled Hartree-Fock or Kohn-Sham equation for a positron and the electrons. The molecular field is included in the positronic Fock operator, which allows an appropriate treatment of the positron-molecule repulsion. The present treatment succeeds in reproducing the Doppler shift, i.e., full width at half maximum (FWHM) of experimentally measured annihilation (γ-ray) spectra for molecules with a mean absolute error less than 10%. The numerical results indicate that the interpretation of the FWHM in terms of a specific molecular orbital is not appropriate.

  4. Electrochemical and Quantum Chemical Investigation of Tetranitrocalix[4]arenes: Molecules with Multiple Redox Centers

    Czech Academy of Sciences Publication Activity Database

    Liška, Alan; Vojtíšek, P.; Fry, A. J.; Ludvík, Jiří

    2013-01-01

    Roč. 78, č. 21 (2013), s. 10651-10656 ISSN 0022-3263 R&D Projects: GA ČR GA13-21704S Institutional support: RVO:61388955 Keywords : 1,3-ALTERNATE CONFORMATION * CALIXARENES * BINDING Subject RIV: CG - Electrochemistry Impact factor: 4.638, year: 2013

  5. Quantum Chemical Benchmarking, Validation, and Prediction of Acidity Constants for Substituted Pyridinium Ions and Pyridinyl Radicals.

    Science.gov (United States)

    Keith, John A; Carter, Emily A

    2012-09-11

    Sensibly modeling (photo)electrocatalytic reactions involving proton and electron transfer with computational quantum chemistry requires accurate descriptions of protonated, deprotonated, and radical species in solution. Procedures to do this are generally nontrivial, especially in cases that involve radical anions that are unstable in the gas phase. Recently, pyridinium and the corresponding reduced neutral radical have been postulated as key catalysts in the reduction of CO2 to methanol. To assess practical methodologies to describe the acid/base chemistry of these species, we employed density functional theory (DFT) in tandem with implicit solvation models to calculate acidity constants for 22 substituted pyridinium cations and their corresponding pyridinyl radicals in water solvent. We first benchmarked our calculations against experimental pyridinium deprotonation energies in both gas and aqueous phases. DFT with hybrid exchange-correlation functionals provide chemical accuracy for gas-phase data and allow absolute prediction of experimental pKas with unsigned errors under 1 pKa unit. The accuracy of this economical pKa calculation approach was further verified by benchmarking against highly accurate (but very expensive) CCSD(T)-F12 calculations. We compare the relative importance and sensitivity of these energies to selection of solvation model, solvation energy definitions, implicit solvation cavity definition, basis sets, electron densities, model geometries, and mixed implicit/explicit models. After determining the most accurate model to reproduce experimentally-known pKas from first principles, we apply the same approach to predict pKas for radical pyridinyl species that have been proposed relevant under electrochemical conditions. This work provides considerable insight into the pitfalls using continuum solvation models, particularly when used for radical species.

  6. The Alexandria library, a quantum-chemical database of molecular properties for force field development

    Science.gov (United States)

    Ghahremanpour, Mohammad M.; van Maaren, Paul J.; van der Spoel, David

    2018-04-01

    Data quality as well as library size are crucial issues for force field development. In order to predict molecular properties in a large chemical space, the foundation to build force fields on needs to encompass a large variety of chemical compounds. The tabulated molecular physicochemical properties also need to be accurate. Due to the limited transparency in data used for development of existing force fields it is hard to establish data quality and reusability is low. This paper presents the Alexandria library as an open and freely accessible database of optimized molecular geometries, frequencies, electrostatic moments up to the hexadecupole, electrostatic potential, polarizabilities, and thermochemistry, obtained from quantum chemistry calculations for 2704 compounds. Values are tabulated and where available compared to experimental data. This library can assist systematic development and training of empirical force fields for a broad range of molecules.

  7. Quantum-chemical calculation of energies and spectral characteristics of conformers in derivatives of phenylphosphine

    International Nuclear Information System (INIS)

    Chuvashev, D.D.; Ratovskii, G.V.; Zakzhevskii, V.G.

    1987-01-01

    The phenylphosphines PhPX 2 calculated by the MNDO method are characterized by two potential minima corresponding to the bisector and gonal conformations. For X = Cl, F, and C=N the bisector conformer predominates considerably, but for X = H and CH 3 the populations of the conformers are approximately the same. The characteristics of the electron transitions of the conformers found, determined by the CNDO/S method, differ substantially, which makes it possible to analyze the conformational compositions of arylphosphines by means of UV spectroscopy. In excited ππ* states the gonal conformation is characterized by a substantial donor effect of the PX 2 group, whereas the bisector conformation gives a certain acceptor effect

  8. 5-Chlorouracil and 5-bromouracil acid-base equilibrium study in water and DMSO by NMR spectroscopy

    Science.gov (United States)

    Abdrakhimova, G. S.; Ovchinnikov, M. Yu; Lobov, A. N.; Spirikhin, L. V.; Khursan, S. L.; Ivanov, S. P.

    2018-04-01

    Mechanism of 5-chloro- and 5-bromouracil deprotonation in water and dimethyl sulfoxide (DMSO) has been studied by the 13C and 1H NMR spectroscopy. NMR spectra were interpreted using DFT quantum chemical calculations at the CSGT-PCM-TPSSTPSS/6-311+G(d, p) level of theory. It was found that 5-chloro- (5ClU) and 5-bromouracil (5BrU) are present as a mixture of two anionic forms where the deprotonation is realized at the first (N1) and the third (N3) positions of the pyrimidine ring. N1 form is major for water-alkaline [xAN1/xAN3 (5ClU) = 0.65/0.35 and xAN1/xAN3 (5BrU) = 0.72/0.28, x - molar fraction] and the only one for DMSO solution.

  9. Experimental and computational studies of naphthyridine derivatives as corrosion inhibitor for N80 steel in 15% hydrochloric acid

    Science.gov (United States)

    Ansari, K. R.; Quraishi, M. A.

    2015-05-01

    The inhibition effect of three naphthyridine derivatives namely 2-amino-4-(4-methoxyphenyl)-1,8-naphthyridine-3-carbonitrile (ANC-1), 2-amino-4-(4-methylphenyl)-1,8-naphthyridine-3-carbonitrile (ANC-2) and 2-amino-4-(3-nitrophenyl)-1,8-naphthyridine-3-carbonitrile (ANC-3) as corrosion inhibitors for N80 steel in 15% HCl by using gravimetric, electrochemical techniques (EIS and potentiodynamic polarization), SEM, EDX and quantum chemical calculation. The order of inhibition efficiency is ANC-1>ANC-2>ANC-3. Potentiodynamic polarization reveals that these inhibitors are mixed type with predominant cathodic control. Studied inhibitors obey the Langmuir adsorption isotherm. The quantum calculation is in good agreement with experimental results.

  10. Molecular origin of differences in hole and electron mobility in amorphous Alq3--a multiscale simulation study.

    Science.gov (United States)

    Fuchs, Andreas; Steinbrecher, Thomas; Mommer, Mario S; Nagata, Yuki; Elstner, Marcus; Lennartz, Christian

    2012-03-28

    In order to determine the molecular origin of the difference in electron and hole mobilities of amorphous thin films of Alq(3) (meridional Alq(3) (tris(8-hydroxyquinoline) aluminium)) we performed multiscale simulations covering quantum mechanics, molecular mechanics and lattice models. The study includes realistic disordered morphologies, polarized site energies to describe diagonal disorder, quantum chemically calculated transfer integrals for the off-diagonal disorder, inner sphere reorganization energies and an approximative scheme for outer sphere reorganization energies. Intermolecular transfer rates were calculated via Marcus-theory and mobilities were simulated via kinetic Monte Carlo simulations and by a Master Equation approach. The difference in electron and hole mobility originates from the different localization of charge density in the radical anion (more delocalized) compared to the radical cation (more confined). This results in higher diagonal disorder for holes and less favourable overlap properties for the hole transfer integrals leading to an overall higher electron mobility.

  11. Theoretical and experimental studies on the corrosion inhibition potentials of some purines for aluminum in 0.1 M HCl.

    Science.gov (United States)

    Eddy, Nnabuk O; Momoh-Yahaya, H; Oguzie, Emeka E

    2015-03-01

    Experimental aspect of the corrosion inhibition potential of adenine (AD), guanine (GU) and, hypoxanthine (HYP) was carried out using weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) methods while the theoretical aspect of the work was carried out by calculations of semi-empirical parameters (for AM1, MNDO, CNDO, PM3 and RM1 Hamiltonians), Fukui functions and inhibitor-metal interaction energies. Results obtained from the experimental studies were in good agreement and indicated that adenine (AD), guanine (GU) and hypoxanthine (HYP) are good adsorption inhibitors for the corrosion of aluminum in solutions of HCl. Data obtained from electrochemical experiment revealed that the studied purines functioned by adsorption on the aluminum/HCl interface and inhibited the cathodic half reaction to a greater extent and anodic half reaction to a lesser extent. The adsorption of the purines on the metal surface was found to be exothermic and spontaneous. Deviation of the adsorption characteristics of the studied purines from the Langmuir adsorption model was compensated by the fitness of Flory Huggins and El Awardy et al. adsorption models. Quantum chemical studies revealed that the experimental inhibition efficiencies of the studied purines are functions of some quantum chemical parameters including total energy of the molecules (TE), energy gap (E L-H), electronic energy of the molecule (EE), dipole moment and core-core repulsion energy (CCR). Fukui functions analysis through DFT and MP2 theories indicated slight complications and unphysical results. However, results obtained from calculated Huckel charges, molecular orbital and interaction energies, the adsorption of the inhibitors proceeded through the imine nitrogen (N5) in GU, emanine nitrogen (N7) in AD and the pyridine nitrogen (N5) in HPY.

  12. Vibrational spectroscopic study of dehydroacetic acid and its cinnamoyl pyrone derivatives

    Science.gov (United States)

    Billes, Ferenc; Elečková, Lenka; Mikosch, Hans; Andruch, Vasil

    2015-07-01

    The infrared and Raman spectra of dehydroacetic acid and some of its derivatives were measured. The assignments of the vibrational bands were based on quantum chemical calculations and normal coordinate analysis. The optimized structures, atomic net charges and dipole moments of the investigated molecules were also results of our quantum chemical calculations. The analysis of the last properties made possible a deeper insight into the structure and substituent effect on the investigated molecules. One of them is presented in the graphical abstract.

  13. A DFT/TDDFT study of the structural and spectroscopic properties of Al(III) complexes with 4-nitrocatechol in acidic aqueous solution

    International Nuclear Information System (INIS)

    Cornard, Jean-Paul; Lapouge, Christine; Merlin, Jean-Claude

    2007-01-01

    The complexation of 4-nitrocatechol in aqueous solution at pH 5 has been studied by molecular spectroscopy combined with quantum chemical calculations. In these physico-chemical conditions, the formation of the two complexes [4ncatAl(H 2 O) 4 ] + and [(4ncat) 2 Al(H 2 O) 2 ] - has been highlighted. The electronic absorption spectra of the 1:1 and 1:2 complexes of Al(III) with 4-nitrocatechol have been computed using the time-dependent density functional theory and the polarizable continuum model. It turns out that the 6-311+G(d,p) basis set provides a good agreement between experimental and theoretical absorption spectra. This good agreement has allowed the determination of the preferential conformation of the 1:2 complex in aqueous solution. A complete assignment of the UV-Vis absorption and Raman spectra of the complexes has been proposed

  14. Preparation, crystal structure, vibrational spectral and density functional studies of bis (4-nitrophenol)-2,4,6-triamino-1,3,5-triazine monohydrate

    Science.gov (United States)

    Kanagathara, N.; Marchewka, M. K.; Drozd, M.; Renganathan, N. G.; Gunasekaran, S.; Anbalagan, G.

    2013-10-01

    An organic-organic salt, bis (4-nitrophenol) 2,4,6-triamino 1,3,5-triazine monohydrate (BNPM) has been prepared by slow evaporation technique at room temperature. Single crystal X-ray diffraction analysis reveals that the compound crystallizes in triclinic system with centrosymmetric space group P-1. IR and Raman spectra of BNPM have been recorded and analyzed. The study has been extended to confocal Raman spectral analysis. Band assignments have been made for the melamine and p-nitrophenol molecules. Vibrational spectra have also been discussed on the basis of quantum chemical density functional theory calculations using Firefly (PC GAMESS) Version 7.1 G. Vibrational frequencies are calculated and scaled values are compared with the experimental one. The Mulliken charges, HOMO-LUMO orbital energies are calculated and analyzed. The chemical structure of the compound was established by 1H NMR and 13C NMR spectra.

  15. Photoacoustic spectroscopic studies of polycyclic aromatic hydrocarbons

    Science.gov (United States)

    Zaidi, Zahid H.; Kumar, Pardeep; Garg, R. K.

    1999-02-01

    Because of their involvement in environmental pollutants, in carcinogenic activity, plastics, pharmaceuticals, synthesis of some laser dyes and presence in interstellar space etc., Polycyclic aromatic hydrocarbons (PAHs) are important. As their structure and properties can be varied systematically, they form a beautiful class of molecules for experimental and quantum chemical investigations. These molecules are being studied for last several years by using conventional spectroscopy. In recent years, Photoacoustic (PA) spectroscopy has emerged as a new non-destructive technique with unique capability and sensitivity. The PA effect is the process of generation of acoustic waves in a sample resulting from the absorption of photons. This technique not only reveals non- radiative transitions but also provides information about forbidden singlet-triplet transitions which are not observed normally by the conventional spectroscopy. The present paper deals with the spectroscopic studies of some PAH molecules by PA spectroscopy in the region 250 - 400 nm. The CNDO/S-CI method is used to calculate the electronic transitions with the optimized geometries. A good agreement is found between the experimental and calculated results.

  16. New 1H-pyrrole-2,5-dione derivatives as efficient organic inhibitors of carbon steel corrosion in hydrochloric acid medium: Electrochemical, XPS and DFT studies

    International Nuclear Information System (INIS)

    Zarrouk, A.; Hammouti, B.; Lakhlifi, T.; Traisnel, M.; Vezin, H.; Bentiss, F.

    2015-01-01

    Highlights: • 1H-pyrrole derivatives act as good corrosion inhibitors for carbon steel in 1 M HCl. • Adsorption of the inhibitors on carbon steel surface obeys Langmuir’s isotherm. • XPS showed that the inhibitors are chemisorbed on the metal surface. • Quantum chemical parameters were correlated with experimental results. - Abstract: New 1H-pyrrole-2,5-dione derivatives, namely 1-phenyl-1H-pyrrole-2,5-dione (PPD) and 1-(4-methylphenyl)-1H-pyrrole-2,5-dione (MPPD) were synthesised and their inhibitive action against the corrosion of carbon steel in 1 M HCl solution were investigated at 308 K by weight loss, potentiodynamic polarization curves, and electrochemical impedance spectroscopy (EIS) methods. The results showed that the investigated 1H-pyrrole-2,5-dione derivatives are good corrosion inhibitors for carbon steel in 1 M HCl medium, their inhibition efficiency increased with inhibitor concentration, and MPPD is slightly more effective than PPD. Potentiostatic polarization study showed that PPD and MPPD are mixed-type inhibitors in 1 M HCl. Impedance experimental data revealed a frequency distribution of the capacitance, simulated as constant phase element. The results obtained from electrochemical and weight loss studies were in reasonable agreement. The adsorption of MPPD and PPD on steel surface obeyed Langmuir’s adsorption isotherm. Thermodynamic data and XPS analysis clearly indicated that the adsorption mechanism of 1H-pyrrole-2,5-dione derivatives on carbon steel surface in 1 M HCl solution is mainly controlled by a chemisorption process. Quantum chemical calculations using the Density Functional Theory (DFT) were performed on 1H-pyrrole-2,5-dione derivatives to determine the relationship between molecular structures and their inhibition efficiencies

  17. Theoretical study about L-arginine complexes formation with thiotriazolin

    Directory of Open Access Journals (Sweden)

    L. I. Kucherenko

    2017-02-01

    Full Text Available Brain vascular diseases are one of the leading causes of morbidity, mortality and disability of population in the industrialized countries of the world. An important element of this problem’s solution is the creation of new highly effective and safe drugs, which would lead to mortality reduction, to increase in life expectancy and quality of life. Therefore it is interesting to create a new combined drug based on L-arginine and thiotriazolin. Purpose of the study: to consider the possible structure and energy characteristics of complexes formed by L-arginine, 3-methyl-1,2,4-triazolyl-5-thioacetate (MTTA and morpholine. Calculation method. The initial approximation to the complex geometry was obtained using molecular docking with the help of AutoDock Vina program. The obtained ternary complexes were pre-optimized by semi-empirical PM7 method with modeling the impact of the environment by COSMO method. The calculations were carried out using MOPAC2012 program. Then they were optimized by B97-D3/SVP + COSMO (Water dispersion-corrected DFT-D with geometrical spreading correction on insufficiency of gCP basis set. A more accurate calculation of the solvation energy was conducted by SMD. The calculations by density functional method were carried out using the ORCA 3.0.3 software. Energy complex formation in solution was calculated as the difference of the Gibbs free energy of the solvated complex and its individual components. Results. Quantum chemical calculations show, that thiotriazolin and L-arginine are able to form ternary complexes, where molecules are linked by multiple hydrogen bonds. The calculation data suggest, that studied complexes are thermodynamically unstable in solution. The energies of them are positive, but rather low despite charge gain of a number of intermolecular hydrogen bonds. Finding. Based on the results of the conducted quantum-chemical study of a three components system (MTTA, morpholine, and L-arginine it is possible

  18. Spectroscopic investigation (FT-IR and FT-Raman), vibrational assignments, HOMO-LUMO analysis and molecular docking study of 1-hydroxy-4,5,8-tris(4-methoxyphenyl) anthraquinone

    Science.gov (United States)

    Renjith, R.; Sheena Mary, Y.; Tresa Varghese, Hema; Yohannan Panicker, C.; Thiemann, Thies; Shereef, Anas; Al-Saadi, Abdulaziz A.

    2015-12-01

    FT-IR and FT-Raman spectra of 1-hydroxy-4,5,8-tris(4-methoxyphenyl)anthraquinone were recorded and analyzed. The vibrational wavenumbers were computed using DFT quantum chemical calculations. The data obtained from wavenumber calculations were used to assign the vibrational bands obtained experimentally. A detailed molecular picture of the title compound and its interactions were obtained from NBO analysis. From the MEP plot it is clear that the negative electrostatic potential regions are mainly localized over carbonyl group. There is some evidence of a region of negative electrostatic potential due to π-electron density of the benzo groups. Molecular docking study shows that methoxy groups attached to the phenyl rings and hydroxyl group are crucial for binding and the title compound might exhibit inhibitory activity against PI3K and may act as an anti-neoplastic agent.

  19. Study on apatite compounds; Apataitokei kagobutsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-28

    To clarify the material properties of apatite compounds, the synthesis method, and the evaluation of physical properties of material and elementary technology were investigated. For the study on synthesis and crystal growth, a method of precipitating calcium phosphate on the surface of metal was investigated by means of relatively mild electrolytic method using liquid phase system. A new molding method of Ca defective apatite was established. Composite similar to vital bone was prepared by means of a new low-temperature sintering. For the study on chemical properties, from the model experiments, it was found that the self-organizing phenomenon, which is observed in the composite of apatite and collagen, happened between the organic single molecular film and crystal of apatite. For the study on evaluation of physical properties and elementary technology, the surface and interface of ceramics such as apatite were investigated by means of spectroscopy, the electronic state was analyzed by the quantum chemical calculation, and the crystalline structure was analyzed using X-ray equipment. 270 refs., 102 figs., 10 tabs.

  20. An experimental and theoretical study of reaction steps relevant to the methanol-to-hydrocarbons reaction

    Energy Technology Data Exchange (ETDEWEB)

    Svelle, Stian

    2004-07-01

    The primary objective of the present work is to obtain new insight into the reaction mechanism of the zeolite catalyzed methanol-to-hydrocarbons (MTH) reaction. It was decided to use both experimental and computational techniques to reach this goal. An investigation of the n-butene + methanol system was therefore initiated. Over time, it became apparent that it was possible to determine the rate for the methylation of n-butene by methanol. The ethene and propene systems were therefore reexamined in order to collect kinetic information also for those cases. With the development of user-friendly quantum chemistry programs such as the Gaussian suite of programs, the possibility of applying quantum chemical methods to many types of problems has become readily available even for non-experts. When performing mechanistic studies, there is quite often a considerable synergy effect when combining experimental and computational approaches. The methylation reactions mentioned above turned out to be an issue well suited for quantum chemical investigations. The incentive for examining the halomethane reactivity was the clear analogy to the MTH reaction system. Alkene dimerization was also a reaction readily examined with quantum chemistry. As discussed in the introduction of this thesis, polymethylbenzenes, or their cationic counterparts, are suspected to be key intermediates in the MTH reaction. It was therefore decided to investigate the intrinsic reactivity of these species in the gas-phase by employing sophisticated mass spectrometric (MS) techniques in collaboration with the MS group at the Department of Chemistry, University of Oslo The data thus obtained will also be compared with results from an ongoing computational study on gas phase polymethylbenzenium reactivity. 6 papers presenting various studies are included. The titles are: 1) A Theoretical Investigation of the Methylation of Alkenes with Methanol over Acidic Zeolites. 2) A Theoretical Investigation of the

  1. An experimental and theoretical study of reaction steps relevant to the methanol-to-hydrocarbons reaction

    Energy Technology Data Exchange (ETDEWEB)

    Svelle, Stian

    2004-07-01

    The primary objective of the present work is to obtain new insight into the reaction mechanism of the zeolite catalyzed methanol-to-hydrocarbons (MTH) reaction. It was decided to use both experimental and computational techniques to reach this goal. An investigation of the n-butene + methanol system was therefore initiated. Over time, it became apparent that it was possible to determine the rate for the methylation of n-butene by methanol. The ethene and propene systems were therefore reexamined in order to collect kinetic information also for those cases. With the development of user-friendly quantum chemistry programs such as the Gaussian suite of programs, the possibility of applying quantum chemical methods to many types of problems has become readily available even for non-experts. When performing mechanistic studies, there is quite often a considerable synergy effect when combining experimental and computational approaches. The methylation reactions mentioned above turned out to be an issue well suited for quantum chemical investigations. The incentive for examining the halomethane reactivity was the clear analogy to the MTH reaction system. Alkene dimerization was also a reaction readily examined with quantum chemistry. As discussed in the introduction of this thesis, polymethylbenzenes, or their cationic counterparts, are suspected to be key intermediates in the MTH reaction. It was therefore decided to investigate the intrinsic reactivity of these species in the gas-phase by employing sophisticated mass spectrometric (MS) techniques in collaboration with the MS group at the Department of Chemistry, University of Oslo The data thus obtained will also be compared with results from an ongoing computational study on gas phase polymethylbenzenium reactivity. 6 papers presenting various studies are included. The titles are: 1) A Theoretical Investigation of the Methylation of Alkenes with Methanol over Acidic Zeolites. 2) A Theoretical Investigation of the

  2. Study of actinide paramagnetism in solution

    International Nuclear Information System (INIS)

    Autillo, Matthieu

    2015-01-01

    The physiochemical properties of actinide (An) solutions are still difficult to explain, particularly the behavioral differences between An(III) and Ln(III). The study of actinide paramagnetic behavior may be a 'simple' method to analyze the electronic properties of actinide elements and to obtain information on the ligand-actinide interaction. The objective of this PhD thesis is to understand the paramagnetic properties of these elements by magnetic susceptibility measurements and chemical shift studies. Studies on actinide electronic properties at various oxidation states in solution were carried out by magnetic susceptibility measurements in solution according to the Evans method. Unlike Ln(III) elements, there is no specific theory describing the magnetic properties of these ions in solution. To obtain accurate data, the influence of experimental measurement technique and radioactivity of these elements was analyzed. Then, to describe the electronic structure of their low energy states, the experimental results were complemented with quantum chemical calculations from which the influence of the ligand field was studied. Finally, these interpretations were applied to better understand the variations in the magnetic properties of actinide cations in chloride and nitrate media. Information about ligand-actinide interactions may be determined from an NMR chemical shift study of actinide complexes. Indeed, modifications induced by a paramagnetic complex can be separated into two components. The first component, a Fermi contact contribution (δ_c) is related to the degree of covalency in coordination bonds with the actinide ions and the second, a dipolar contribution (δ_p_c) is related to the structure of the complex. The paramagnetic induced shift can be used only if we can isolate these two terms. To achieve this study on actinide elements, we chose to work with the complexes of dipicolinic acid (DPA). Firstly, to characterize the geometrical parameters, a

  3. Benchmark thermodynamic properties of methylanisoles: Experimental and theoretical study

    International Nuclear Information System (INIS)

    Emel’yanenko, Vladimir N.; Zaitseva, Ksenia V.; Agapito, Filipe; Martinho Simões, José A.; Verevkin, Sergey P.

    2015-01-01

    Highlights: • Thermochemistry of 2-, 3-, and 4-methylanisoles was studied. • Liquid state enthalpies of formation were measured by calorimetry. • Vaporisation enthalpies were derived from by transpiration method. • Ab initio enthalpies of formation are in excellent agreement with experiment. • A new paradigm for obtaining thermochemistry of liquid compounds was suggested. - Abstract: Accurate standard molar enthalpy of formation values in the liquid phase can be obtained by combining high-level quantum chemistry values of gas-phase enthalpies of formation with experimentally determined enthalpies of vaporisation. The procedure is illustrated for 2-, 3-, and 4-methyl-anisoles. Using the W1-F12 and G4 quantum-chemical methods, the gas-phase enthalpies of formation of these compounds at T = 298.15 K were computed. Molar enthalpies of vaporisation for these isomers were measured by the transpiration method. Combining the experimental and the high-level ab initio values, the standard molar enthalpies of formation in the liquid phase for all three isomers were derived and compared with those determined for 2- and 4-methyl-anisoles by using combustion calorimetry

  4. Vibrational Spectral Studies of Gemfibrozil

    Science.gov (United States)

    Benitta, T. Asenath; Balendiran, G. K.; James, C.

    2008-11-01

    The Fourier Transform Raman and infrared spectra of the crystallized drug molecule 5-(2,5-Dimethylphenoxy)-2,2-dimethylpentanoic acid (Gemfibrozil) have been recorded and analyzed. Quantum chemical computational methods have been employed using Gaussian 03 software package based on Hartree Fock method for theoretically modeling the grown molecule. The optimized geometry and vibrational frequencies have been predicted. Observed vibrational modes have been assigned with the aid of normal coordinate analysis.

  5. Theoretical study of the possibility of glycin with thiotriazoline complexes formation

    Directory of Open Access Journals (Sweden)

    L. I. Kucherenko

    2017-10-01

    components. Results and its discussion. Quantum-chemical modeling of the complexes of thiatriazoline and glycine has showed the possibility of the formation of multiple hydrogen bonds in them. The results of calculations show that the multiplicity of charge-enhanced donor and acceptor sites for hydrogen bonding leads to the formation of complexes that are different in structure but close in energy formation. Conclusions. The conducted quantum-chemical study of system has shown the possibility of formation of three-component complexes with low stability in infinitely diluted solutions. The glycine molecule tends to form not only intermolecular hydrogen bonds, but also a charge-enhanced intramolecular hydrogen bond. It can be expected that in real solutions the enhancement of intermolecular interactions can lead to an increase in the stability of the complexes.

  6. Relative Stability of Different DNA Guanine Quadruplex Stem Topologies Derived Using Large-Scale Quantum-Chemical Computations

    Czech Academy of Sciences Publication Activity Database

    Šponer, Jiří (ed.); Mládek, Arnošt; Špačková, Naďa; Cang, X.; Cheatham III, Thomas E.; Grimme, S.

    2013-01-01

    Roč. 135, č. 26 (2013), s. 9785-9796 ISSN 0002-7863 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068; GA ČR(CZ) GAP208/11/1822 Institutional research plan: CEZ:AV0Z50040702 Institutional support: RVO:68081707 Keywords : DENSITY -FUNCTIONAL THEORY * MOLECULAR-DYNAMICS SIMULATIONS * SUGAR-PHOSPHATE BACKBONE Subject RIV: BO - Biophysics Impact factor: 11.444, year: 2013

  7. [Quantum-chemical investigation of tautomerization ways of Watson-Crick DNA base pair guanine-cytosine].

    Science.gov (United States)

    Brovarets', O O; Hovorun, D M

    2010-01-01

    A novel physico-chemical mechanism of the Watson-Crick DNA base pair Gua.Cyt tautomerization Gua.Cyt*Gua.CytGua*.Cyt (mutagenic tautomers of bases are marked by asterisks) have been revealed and realized in a pathway of single proton transfer through two mutual isoenergetic transition states with Gibbs free energy of activation 30.4 and 30.6 kcal/mol and they are ion pairs stabilized by three (N2H...N3, N1H...N4- and O6+H...N4-) and five (N2H...O2, N1H...O2, N1H...N3, O6+H...N4- and 06+H...N4-) H-bonds accordingly. Stable base pairs Gua-Cyt* and Gua*.Cyt which dissociate comparably easy into monomers have acceptable relative Gibbs energies--12.9 and 14.3 kcal/mol--for the explanation of the nature of the spontaneous transitions of DNA replication. Results are obtained at the MP2/6-311++G(2df,pd)//B3LYP/6-31 1++G(d,p) level of theory in vacuum approach.

  8. Host–guest complexes of mixed glycol-bipyridine cryptands: prediction of ion selectivity by quantum chemical calculations, part V

    Directory of Open Access Journals (Sweden)

    Svetlana Begel

    2013-06-01

    Full Text Available The selectivity of the cryptands [2.2.bpy] and [2.bpy.bpy] for the endohedral complexation of alkali, alkaline-earth and earth metal ions was predicted on the basis of the DFT (B3LYP/LANL2DZp calculated structures and complex-formation energies. The cavity size in both cryptands lay between that for [2.2.2] and [bpy.bpy.bpy], such that the complexation of K+, Sr2+ and Tl3+ is most favorable. While the [2.2.bpy] is moderately larger, preferring Rb+ complexation and demonstrating equal priority for Sr2+ and Ba2+, the slightly smaller [2.bpy.bpy] yields more stable cryptates with Na+ and Ca2+. Although the CH2-units containing molecular bars fixed at the bridgehead nitrogen atoms determine the flexibility of the cryptands, the twist angles associated with the bipyridine and glycol building blocks also contribute considerably.

  9. QSPR models based on molecular mechanics and quantum chemical calculations. 2. Thermodynamic properties of alkanes, alcohols, polyols, and ethers

    DEFF Research Database (Denmark)

    Dyekjær, Jane Dannow; Jonsdottir, Svava Osk

    2003-01-01

    Quantitative Structure-Property Relationship (QSPR) models for prediction of various thermodynamic properties of simple organic compounds have been developed. A number of new descriptors are proposed and used alongside with descriptors available within the Codessa program. An important feature...... for alkanes, alcohols, diols, ethers, and oxyalcohols, including cyclic alkanes and alcohols. Several good models, having good predictability, have been developed. To enhance the applicability of the QSPR models, simpler expressions for each descriptor have also been developed. This allows for the prediction...

  10. Decomposition mechanisms and kinetics of novel energetic molecules BNFF-1 and ANFF-1: quantum-chemical modeling.

    Science.gov (United States)

    Tsyshevsky, Roman V; Kuklja, Maija M

    2013-07-18

    Decomposition mechanisms, activation barriers, Arrhenius parameters, and reaction kinetics of the novel explosive compounds, 3,4-bis(4-nitro-1,2,5-oxadiazol-3-yl)-1,2,5-oxadiazole (BNFF-1), and 3-(4-amino-1,2,5-oxadiazol-3-yl)-4-(4-nitro-1,2,5-oxadiazol-3-yl)-1,2,5-oxadiazole (ANFF-1) were explored by means of density functional theory with a range of functionals combined with variational transition state theory. BNFF-1 and ANFF-1 were recently suggested to be good candidates for insensitive high energy density materials. Our modeling reveals that the decomposition initiation in both BNFF-1 and ANFF-1 molecules is triggered by ring cleavage reactions while the further process is defined by a competition between two major pathways, the fast C-NO₂ homolysis and slow nitro-nitrite isomerization releasing NO. We discuss insights on design of new energetic materials with targeted properties gained from our modeling.

  11. Standard Gibbs free energies of reactions of ozone with free radicals in aqueous solution: quantum-chemical calculations.

    Science.gov (United States)

    Naumov, Sergej; von Sonntag, Clemens

    2011-11-01

    Free radicals are common intermediates in the chemistry of ozone in aqueous solution. Their reactions with ozone have been probed by calculating the standard Gibbs free energies of such reactions using density functional theory (Jaguar 7.6 program). O(2) reacts fast and irreversibly only with simple carbon-centered radicals. In contrast, ozone also reacts irreversibly with conjugated carbon-centered radicals such as bisallylic (hydroxycylohexadienyl) radicals, with conjugated carbon/oxygen-centered radicals such as phenoxyl radicals, and even with nitrogen- oxygen-, sulfur-, and halogen-centered radicals. In these reactions, further ozone-reactive radicals are generated. Chain reactions may destroy ozone without giving rise to products other than O(2). This may be of importance when ozonation is used in pollution control, and reactions of free radicals with ozone have to be taken into account in modeling such processes.

  12. Decomposition Mechanisms and Kinetics of Novel Energetic Molecules BNFF-1 and ANFF-1: Quantum-Chemical Modeling

    Directory of Open Access Journals (Sweden)

    Maija M. Kuklja

    2013-07-01

    Full Text Available Decomposition mechanisms, activation barriers, Arrhenius parameters, and reaction kinetics of the novel explosive compounds, 3,4-bis(4-nitro-1,2,5-oxadiazol-3-yl-1,2,5-oxadiazole (BNFF-1, and 3-(4-amino-1,2,5-oxadiazol-3-yl-4-(4-nitro-1,2,5-oxadiazol-3-yl-1,2,5-oxadiazole (ANFF-1 were explored by means of density functional theory with a range of functionals combined with variational transition state theory. BNFF-1 and ANFF-1 were recently suggested to be good candidates for insensitive high energy density materials. Our modeling reveals that the decomposition initiation in both BNFF-1 and ANFF-1 molecules is triggered by ring cleavage reactions while the further process is defined by a competition between two major pathways, the fast C-NO2 homolysis and slow nitro-nitrite isomerization releasing NO. We discuss insights on design of new energetic materials with targeted properties gained from our modeling.

  13. Learning Quantum Chemical Model with Learning Media Concept Map and Power Point Viewed from Memory and Creativity Skills Students

    Directory of Open Access Journals (Sweden)

    Agus Wahidi

    2017-03-01

    Full Text Available This research is experimental, using first class learning a quantum model of learning with concept maps media and the second media using real environments by power point presentation. The population is all class XI Science, number 2 grade. The sampling technique is done by purposive random sampling. Data collection techniques to test for cognitive performance and memory capabilities, with a questionnaire for creativity. Hypothesis testing using three-way ANOVA different cells with the help of software Minitab 15.Based on the results of data processing, concluded: (1 there is no influence of the quantum model of learning with media learning concept maps and real environments for learning achievement chemistry, (2 there is a high impact memory ability and low on student achievement, (3 there is no the effect of high and low creativity in student performance, (4 there is no interaction learning model quantum media learning concept maps and real environments with memory ability on student achievement, (5 there is no interaction learning model quantum media learning concept maps and real environments with creativity of student achievement, (6 there is no interaction memory skills and creativity of student achievement, (7 there is no interaction learning model quantum media learning concept maps and real environments, memory skills, and creativity on student achievement.

  14. Quantum-chemical ab initio and B3LYP investigation of tricyanides and triisocyanides of Al, Ga, In

    International Nuclear Information System (INIS)

    Timoshkin, A.Yu.; Shefer, G.F.

    2000-01-01

    Ab initio and density functional B3LYP methods are used to obtain structural parameters, standard entropies and vibrational spectra of cyanides and isocyanides of trivalent Al, Ga, In for the first time. It is pointed out that for In cyanide form is more stable. There is divergence in data obtained in the framework of self-consistent field and by B3LYP methods what indicates importance of estimation of energy of electronic correlation and in the same time comparison of basic sets DZP and LANL2DZP demonstrates insufficiency of basic sets with effective potentials of skeleton for description molecular tricyanides of elements of the 3a group [ru

  15. The quantum-chemical modeling of structure and spectral characteristics for molecular complexes in system «penton-terlon»

    Directory of Open Access Journals (Sweden)

    Andrey V. Tokar

    2014-03-01

    Full Text Available The structure and spectral properties for molecular complexes, which formed by added monomer form of pentaplast as well as N-phenylbenzamide with some species of intermolecular interaction in system «penton-terlon» have been investigated at ab initio level of theory. It is shown, that the main contribution in total energy of molecules have included by dispersion forces, which realized between Chlorine atom of CH2Cl-group and Hydrogen atoms of benzene rings with amide fragment. The proposed theoretical models are validated in reflection of spectral and energetic characteristics of investigating system. Finally, the results of calculations are in good agreement with that data, which have been obtained for such type modeling previously.

  16. Accurate pKa Calculation of the Conjugate Acids of Alkanolamines, Alkaloids and Nucleotide Bases by Quantum Chemical Methods

    NARCIS (Netherlands)

    Gangarapu, S.; Marcelis, A.T.M.; Zuilhof, H.

    2013-01-01

    The pKa of the conjugate acids of alkanolamines, neurotransmitters, alkaloid drugs and nucleotide bases are calculated with density functional methods (B3LYP, M08-HX and M11-L) and ab initio methods (SCS-MP2, G3). Implicit solvent effects are included with a conductor-like polarizable continuum

  17. On the performance of quantum chemical methods to predict solvatochromic effects. The case of acrolein in aqueous solution

    DEFF Research Database (Denmark)

    Aidas, Kestutis; Møgelhøj, Andreas; Nilsson, Elna Johanna Kristina

    2008-01-01

    The performance of the Hartree–Fock method and the three density functionals B3LYP, PBE0, and CAM-B3LYP is compared to results based on the coupled cluster singles and doubles model in predictions of the solvatochromic effects on the vertical n¿* and ¿* electronic excitation energies of acrolein...... of acrolein in vapor phase and aqueous solution. The gas-to-aqueous solution shift of the n¿* excitation energy is well reproduced by using all density functional methods considered. However, the B3LYP and PBE0 functionals completely fail to describe the ¿* electronic transition in solution, whereas...... the recent CAM-B3LYP functional performs well also in this case. The ¿* excitation energy of acrolein in water solution is found to be very dependent on intermolecular induction and nonelectrostatic interactions. The computed excitation energies of acrolein in vacuum and solution compare well to experimental...

  18. Quantum-Chemical Calculation and Visualization of the Vibrational Modes of Graphene in Different Points of the Brillouin Zone.

    Science.gov (United States)

    Lebedieva, Tetiana; Gubanov, Victor; Dovbeshko, Galyna; Pidhirnyi, Denys

    2015-12-01

    Different notations of graphene irreducible representations and optical modes could be found in the literature. The goals of this paper are to identify the correspondence between available notations, to calculate the optical modes of graphene in different points of the Brillouin zone, and to compare them with experimental data obtained by Raman and coherent anti-Stokes Raman scattering (CARS) spectroscopy. The mechanism of the resonance enhancement of vibration modes of the molecules adsorbed on graphene in CARS experiments is proposed. The possibility of appearance of the discrete breathing modes is discussed.

  19. How to understand quantum chemical computations on DNA and RNA systems? A practical guide for non-specialists

    Czech Academy of Sciences Publication Activity Database

    Šponer, Jiří; Šponer, Judit E.; Mládek, Arnošt; Banáš, Pavel; Jurečka, P.; Otyepka, Michal

    2013-01-01

    Roč. 64, č. 1 (2013), s. 3-11 ISSN 1046-2023 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068; GA ČR(CZ) GAP208/12/1878; GA ČR(CZ) GBP208/12/G016 Grant - others:GA MŠk(CZ) ED2.1.00/03.0058; GA ČR(CZ) GBP305/12/G034; GA ČR(CZ) GPP301/11/P558 Program:ED; GB; GP Institutional research plan: CEZ:AV0Z50040702 Institutional support: RVO:68081707 Keywords : DNA structure * Quantum chemistry * Molecular mechanics Subject RIV: BO - Biophysics Impact factor: 3.221, year: 2013

  20. FTIR, FT-Raman, FT-NMR, UV-visible and quantum chemical investigations of 2-amino-4-methylbenzothiazole.

    Science.gov (United States)

    Arjunan, V; Sakiladevi, S; Rani, T; Mythili, C V; Mohan, S

    2012-03-01

    The FT-IR (4000-400 cm(-1)) and FT-Raman (4000-100 cm(-1)) spectral measurements and complete assignments of the observed spectra of 2-amino-4-methylbenzothiazole (2A4MBT) have been proposed. Ab initio and DFT calculations have been performed and the structural parameters of the compound were determined from the optimised geometry with 6-31G(d,p), 6-311++G(d,p) and cc-pVDZ basis sets and giving energies, harmonic vibrational frequencies, depolarisation ratios, IR intensities and Raman activities. (1)H and (13)C NMR spectra were recorded and (1)H and (13)C nuclear magnetic resonance chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method. UV-visible spectrum of the compound was also recorded and the electronic properties, such as HOMO, LUMO and band gap energies were measured by time-dependent DFT (TD-DFT) approach. The geometric parameters, energies, harmonic vibrational frequencies, IR intensities, Raman activities chemical shifts and absorption wavelengths were compared with the available experimental data of the molecule. The influences of methyl and amino groups on the skeletal modes and on the proton chemical shifts have been investigated. Copyright © 2011 Elsevier B.V. All rights reserved.