WorldWideScience

Sample records for quantum wells coherent

  1. Coherent excitonic nonlinearity versus inhomogeneous broadening in single quantum wells

    DEFF Research Database (Denmark)

    Langbein, Wolfgang Werner; Borri, Paola; Hvam, Jørn Märcher

    1998-01-01

    The coherent response of excitons in semiconductor nanostructures, as measured in four wave mixing (FWM) experiments, depends strongly on the inhomogeneous broadening of the exciton transition. We investigate GaAs-AlGaAs single quantum wells (SQW) of 4 nm to 25 nm well width. Two main mechanisms...

  2. Instantaneous amplitude and frequency dynamics of coherent wave mixing in semiconductor quantum wells

    International Nuclear Information System (INIS)

    Chemla, D.S.

    1993-01-01

    This article reviews recent investigations of nonlinear optical processes in semiconductors. Section II discusses theory of coherent wave mixing in semiconductors, with emphasis on resonant excitation with only one exciton state. Section III reviews recent experimental investigations of amplitude and phase of coherent wave-mixing resonant with quasi-2d excitons in GaAs quantum wells

  3. Localized excitons in quantum wells show spin relaxation without coherence loss

    DEFF Research Database (Denmark)

    Zimmermann, R.; Langbein, W.; Runge, E.

    2001-01-01

    The coherence in the secondary emission from quantum well excitons is studied using the speckle method. Analysing the different polarization channels allows to conclude that (i) no coherence loss occurs in the cross-polarized emission, favouring spin beating instead of spin dephasing, and that (i...

  4. Quantum beats from the coherent interaction of hole states with surface state in near-surface quantum well

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Salahuddin; Jayabalan, J., E-mail: jjaya@rrcat.gov.in; Chari, Rama; Pal, Suparna [Laser Physics Applications Section, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Porwal, Sanjay; Sharma, Tarun Kumar; Oak, S. M. [Semiconductor Physics and Devices Lab., Solid State Laser Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2014-08-18

    We report tunneling assisted beating of carriers in a near-surface single GaAsP/AlGaAs quantum well using transient reflectivity measurement. The observed damped oscillating signal has a period of 120 ± 6 fs which corresponds to the energy difference between lh1 and hh2 hole states in the quantum well. Comparing the transient reflectivity signal at different photon energies and with a buried quantum well sample, we show that the beating is caused by the coherent coupling between surface state and the hole states (lh1 and hh2) in the near-surface quantum well. The dependence of decay of coherence of these tunneling carriers on the excitation fluence is also reported. This observation on the coherent tunneling of carrier is important for future quantum device applications.

  5. Quantum beats from the coherent interaction of hole states with surface state in near-surface quantum well

    International Nuclear Information System (INIS)

    Khan, Salahuddin; Jayabalan, J.; Chari, Rama; Pal, Suparna; Porwal, Sanjay; Sharma, Tarun Kumar; Oak, S. M.

    2014-01-01

    We report tunneling assisted beating of carriers in a near-surface single GaAsP/AlGaAs quantum well using transient reflectivity measurement. The observed damped oscillating signal has a period of 120 ± 6 fs which corresponds to the energy difference between lh1 and hh2 hole states in the quantum well. Comparing the transient reflectivity signal at different photon energies and with a buried quantum well sample, we show that the beating is caused by the coherent coupling between surface state and the hole states (lh1 and hh2) in the near-surface quantum well. The dependence of decay of coherence of these tunneling carriers on the excitation fluence is also reported. This observation on the coherent tunneling of carrier is important for future quantum device applications.

  6. Slow Light Using Electromagnetically Induced Transparency from Spin Coherence in [110] Strained Quantum Wells

    Science.gov (United States)

    Chang, Shu-Wei; Chang-Hasnain, Connie J.; Wang, Hailin

    2005-03-01

    The electromagnetically induced transparency from spin coherence has been proposed in [001] quantum wells recently. [1] The spin coherence is a potential candidate to demonstrate semiconductor-based slow light at room temperature. However, the spin coherence time is not long enough to demonstrate a significant slowdown factor in [001] quantum wells. Further, the required transition of light-hole excitons lies in the absorption of heavy-hole continuum states. The extra dephasing and absorption from these continuum states are drawbacks for slow light. Here, we propose to use [110] strained quantum wells instead of [001] quantum wells. The long spin relaxation time in [110] quantum wells at room temperature, and thus more robust spin coherence, [2] as well as the strain-induced separation [3, 4] of the light-hole exciton transition from the heavy-hole continuum absorption can help to slow down light in quantum wells. [1] T. Li, H. Wang, N. H. Kwong, and R. Binder, Opt. Express 11, 3298 (2003). [2] Y. Ohno, R. Terauchi, T. Adachi, F. Matsukura, and H. Ohno, Phys. Rev. Lett. 83, 4196 (1999). [3] C. Y. P. Chao and S. L. Chuang, Phys. Rev. B 46, 4110 (1992). [4] C. Jagannath, E. S. Koteles, J. Lee, Y. J. Chen, B. S. Elman, and J. Y. Chi, Phys. Rev. B 34, 7027 (1986).

  7. Coherent light from E-field induced quantum coupling of exciton states in superlattice-like quantum wells

    DEFF Research Database (Denmark)

    Lyssenko, V. G.; Østergaard, John Erland; Hvam, Jørn Märcher

    1999-01-01

    Summary form only given. We focus on the ability to control the electronic coupling in coupled quantum wells with external E-fields leading to a strong modification of the coherent light emission, in particular at a bias where a superlattice-like miniband is formed. More specifically, we investig......Summary form only given. We focus on the ability to control the electronic coupling in coupled quantum wells with external E-fields leading to a strong modification of the coherent light emission, in particular at a bias where a superlattice-like miniband is formed. More specifically, we...... investigate a MBE-grown GaAs sample with a sequence of 15 single quantum wells having a successive increase of 1 monolayer in width ranging from 62 A to 102 A and with AlGaAs barriers of 17 Å....

  8. Enhancement of coherent acoustic phonons in InGaN multiple quantum wells

    Science.gov (United States)

    Hafiz, Shopan D.; Zhang, Fan; Monavarian, Morteza; Avrutin, Vitaliy; Morkoç, Hadis; Özgür, Ümit

    2015-03-01

    Enhancement of coherent zone folded longitudinal acoustic phonon (ZFLAP) oscillations at terahertz frequencies was demonstrated in InGaN multiple quantum wells (MQWs) by using wavelength degenerate time resolved differential transmission spectroscopy. Screening of the piezoelectric field in InGaN MQWs by photogenerated carriers upon femtosecond pulse excitation gave rise to terahertz ZFLAPs, which were monitored at the Brillouin zone center in the transmission geometry. MQWs composed of 10 pairs InxGa1-xN wells and In0.03Ga0.97N barriers provided coherent phonon frequencies of 0.69-0.80 THz depending on the period of MQWs. Dependences of ZFLAP amplitude on excitation density and wavelength were also investigated. Possibility of achieving phonon cavity, incorporating a MQW placed between two AlN/GaN phonon mirrors designed to exhibit large acoustic gaps at the zone center, was also explored.

  9. Coherent dynamics and terahertz emission in an asymmetric quantum well coupled to broadband infrared pulses

    International Nuclear Information System (INIS)

    Wu, B H; Cao, J C

    2004-01-01

    A selected intersubband transition in the asymmetric quantum well is theoretically proposed by using the superposition of two identical time delayed and phase shifted broadband pulses. Three conduction subbands in the semiconductor quantum well structure are optically coupled with the ultrafast infrared pulses. By adjusting the delay between these two pulses, the carriers at ground level can be selectively pumped to one of the upper levels, while the other upper level remains unoccupied. Thus selective transitions in the three level model can be manipulated by optical interference. At the same time, terahertz radiation will be emitted by coherent controlled charge oscillations. The phase and amplitude of THz radiation is found to be sensitive to the optical interference of the coupling pulses

  10. Controllable optical bistability and multistability in asymmetric double quantum wells via spontaneously generated coherence

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yuan; Deng, Li [Department of Applied Physics, East China Jiaotong University, Nanchang, 330013 (China); Chen, Aixi, E-mail: aixichen@ecjtu.jx.cn [Department of Applied Physics, East China Jiaotong University, Nanchang, 330013 (China); Institute for Quantum Computing, University of Waterloo, Ontario N2L 3G1 (Canada)

    2015-02-15

    We investigate the nonlinear optical phenomena of the optical bistability and multistability via spontaneously generated coherence in an asymmetric double quantum well structure coupled by a weak probe field and a controlling field. It is shown that the threshold and hysteresis cycle of the optical bistability can be conveniently controlled only by adjusting the intensity of the SGC or the controlling field. Moreover, switching between optical bistability and multistability can be achieved. These studies may have practical significance for the preparation of optical bistable switching device.

  11. Controllable optical bistability and multistability in asymmetric double quantum wells via spontaneously generated coherence

    International Nuclear Information System (INIS)

    Chen, Yuan; Deng, Li; Chen, Aixi

    2015-01-01

    We investigate the nonlinear optical phenomena of the optical bistability and multistability via spontaneously generated coherence in an asymmetric double quantum well structure coupled by a weak probe field and a controlling field. It is shown that the threshold and hysteresis cycle of the optical bistability can be conveniently controlled only by adjusting the intensity of the SGC or the controlling field. Moreover, switching between optical bistability and multistability can be achieved. These studies may have practical significance for the preparation of optical bistable switching device

  12. Coherent manipulation of spontaneous emission spectra in coupled semiconductor quantum well structures.

    Science.gov (United States)

    Chen, Aixi

    2014-11-03

    In triple coupled semiconductor quantum well structures (SQWs) interacting with a coherent driving filed, a coherent coupling field and a weak probe field, spontaneous emission spectra are investigated. Our studies show emission spectra can easily be manipulated through changing the intensity of the driving and coupling field, detuning of the driving field. Some interesting physical phenomena such as spectral-line enhancement/suppression, spectral-line narrowing and spontaneous emission quenching may be obtained in our system. The theoretical studies of spontaneous emission spectra in SQWS have potential application in high-precision spectroscopy. Our studies are based on the real physical system [Appl. Phys. Lett.86(20), 201112 (2005)], and this scheme might be realizable with presently available techniques.

  13. Quantum coherence: Reciprocity and distribution

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Asutosh, E-mail: asukumar@hri.res.in [Harish-Chandra Research Institute, Allahabad-211019 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India)

    2017-03-18

    Quantum coherence is the outcome of the superposition principle. Recently, it has been theorized as a quantum resource, and is the premise of quantum correlations in multipartite systems. It is therefore interesting to study the coherence content and its distribution in a multipartite quantum system. In this work, we show analytically as well as numerically the reciprocity between coherence and mixedness of a quantum state. We find that this trade-off is a general feature in the sense that it is true for large spectra of measures of coherence and of mixedness. We also study the distribution of coherence in multipartite systems by looking at monogamy-type relation–which we refer to as additivity relation–between coherences of different parts of the system. We show that for the Dicke states, while the normalized measures of coherence violate the additivity relation, the unnormalized ones satisfy the same. - Highlights: • Quantum coherence. • Reciprocity between quantum coherence and mixedness. • Distribution of quantum coherence in multipartite quantum systems. • Additivity relation for distribution of quantum coherence in Dicke and “X” states.

  14. Cohering power of quantum operations

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Kaifeng, E-mail: bkf@zju.edu.cn [School of Mathematical Sciences, Zhejiang University, Hangzhou 310027 (China); Kumar, Asutosh, E-mail: asukumar@hri.res.in [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Zhang, Lin, E-mail: linyz@zju.edu.cn [Institute of Mathematics, Hangzhou Dianzi University, Hangzhou 310018 (China); Wu, Junde, E-mail: wjd@zju.edu.cn [School of Mathematical Sciences, Zhejiang University, Hangzhou 310027 (China)

    2017-05-18

    Highlights: • Quantum coherence. • Cohering power: production of quantum coherence by quantum operations. • Study of cohering power and generalized cohering power, and their comparison for differentmeasures of quantum coherence. • Operational interpretation of cohering power. • Bound on cohering power of a generic quantum operation. - Abstract: Quantum coherence and entanglement, which play a crucial role in quantum information processing tasks, are usually fragile under decoherence. Therefore, the production of quantum coherence by quantum operations is important to preserve quantum correlations including entanglement. In this paper, we study cohering power–the ability of quantum operations to produce coherence. First, we provide an operational interpretation of cohering power. Then, we decompose a generic quantum operation into three basic operations, namely, unitary, appending and dismissal operations, and show that the cohering power of any quantum operation is upper bounded by the corresponding unitary operation. Furthermore, we compare cohering power and generalized cohering power of quantum operations for different measures of coherence.

  15. Coherent dynamics of exciton and biexciton resonances in InGaAs/GaAs single quantum wells

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang; Hvam, Jørn Märcher

    1999-01-01

    The coherent dynamics of both exciton and biexciton resonances have been investigated in In0.18Ga0.82As/GaAs single quantum wells with thicknesses ranging from 1 to 4 nm, using time-integrated and spectrally-resolved transient four-wave mixing. From the temperature dependence of the exciton...

  16. Femtosecond coherent control of absorption and free induction decay in a GaAs multiple quantum well

    CERN Document Server

    Yee, D S

    2000-01-01

    Excitonic polarizations are coherently excited using two phase-locked pulses. By probing the linear propagation of the pulses through a GaAs/AlGaAs multiple quantum well sample, we directly demonstrate the intriguing interaction between the coherent exciton polarizations and the controlling pulses. It is shown that the second pulse can be either strongly amplified by taking up energy gained from the destruction of the exciton polarization or drastically decreased by giving up all its energy to excitons. The temporal signatures of the transmitted pulse shapes agree well with model calculations.

  17. Ultrafast spectral interferometry of resonant secondary emission from quantum wells: From Rayleigh scattering to coherent emission from biexcitons

    DEFF Research Database (Denmark)

    Birkedal, Dan; Shah, Jagdeep; Pfeiffer, L. N.

    1999-01-01

    Recent investigations of secondary emission from quantum well excitons following ultrafast resonant excitation have demonstrated an intricate interplay of coherent Rayleigh scattering and incoherent luminescence. We have very recently demonstrated that it is possible to isolate and time resolve...... the coherent field associated with Rayleigh component using ultrafast spectral interferometry or Tadpole, thus, obtaining substantial and new information of the nature of resonant secondary emission. Our observation demonstrates that Rayleigh scattering from static disorder is inherently a non-ergodic process...... invalidating the use of current theories using ensemble averages to describe our observations. Furthermore, we report here a new and hitherto unknown coherent scattering mechanism involving the two-photon coherence associated with the biexciton transition. The process leaves an exciton behind taking up...

  18. Coherent quantum logic

    International Nuclear Information System (INIS)

    Finkelstein, D.

    1987-01-01

    The von Neumann quantum logic lacks two basic symmetries of classical logic, that between sets and classes, and that between lower and higher order predicates. Similarly, the structural parallel between the set algebra and linear algebra of Grassmann and Peano was left incomplete by them in two respects. In this work a linear algebra is constructed that completes this correspondence and is interpreted as a new quantum logic that restores these invariances, and as a quantum set theory. It applies to experiments with coherent quantum phase relations between the quantum and the apparatus. The quantum set theory is applied to model a Lorentz-invariant quantum time-space complex

  19. Interaction-induced effects in the nonlinear coherent response of quantum-well excitons

    DEFF Research Database (Denmark)

    Wagner, Hans Peter; Schätz, A.; Langbein, Wolfgang Werner

    1999-01-01

    Interaction-induced processes are studied using the third-order nonlinear polarization created in polarization-dependent four-wave-mixing experiments (FWM) on a ZnSe single quantum well. We discuss their influence by a comparison of the experimental FWM with calculations based on extended optical...

  20. Quantifying quantum coherence with quantum Fisher information.

    Science.gov (United States)

    Feng, X N; Wei, L F

    2017-11-14

    Quantum coherence is one of the old but always important concepts in quantum mechanics, and now it has been regarded as a necessary resource for quantum information processing and quantum metrology. However, the question of how to quantify the quantum coherence has just been paid the attention recently (see, e.g., Baumgratz et al. PRL, 113. 140401 (2014)). In this paper we verify that the well-known quantum Fisher information (QFI) can be utilized to quantify the quantum coherence, as it satisfies the monotonicity under the typical incoherent operations and the convexity under the mixing of the quantum states. Differing from most of the pure axiomatic methods, quantifying quantum coherence by QFI could be experimentally testable, as the bound of the QFI is practically measurable. The validity of our proposal is specifically demonstrated with the typical phase-damping and depolarizing evolution processes of a generic single-qubit state, and also by comparing it with the other quantifying methods proposed previously.

  1. Quantum information and coherence

    CERN Document Server

    Öhberg, Patrik

    2014-01-01

    This book offers an introduction to ten key topics in quantum information science and quantum coherent phenomena, aimed at graduate-student level. The chapters cover some of the most recent developments in this dynamic research field where theoretical and experimental physics, combined with computer science, provide a fascinating arena for groundbreaking new concepts in information processing. The book addresses both the theoretical and experimental aspects of the subject, and clearly demonstrates how progress in experimental techniques has stimulated a great deal of theoretical effort and vice versa. Experiments are shifting from simply preparing and measuring quantum states to controlling and manipulating them, and the book outlines how the first real applications, notably quantum key distribution for secure communication, are starting to emerge. The chapters cover quantum retrodiction, ultracold quantum gases in optical lattices, optomechanics, quantum algorithms, quantum key distribution, quantum cont...

  2. Long-lived nanosecond spin coherence in high-mobility 2DEGs confined in double and triple quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Ullah, S.; Gusev, G. M.; Hernandez, F. G. G., E-mail: felixggh@if.usp.br [Instituto de Física, Universidade de São Paulo, Caixa Postal 66318, CEP 05315-970 São Paulo, SP (Brazil); Bakarov, A. K. [Institute of Semiconductor Physics and Novosibirsk State University, Novosibirsk 630090 (Russian Federation)

    2016-06-07

    We investigated the spin coherence of high-mobility two-dimensional electron gases confined in multilayer GaAs quantum wells. The dynamics of the spin polarization was optically studied using pump-probe techniques: time-resolved Kerr rotation and resonant spin amplification. For double and triple quantum wells doped beyond the metal-to-insulator transition, the spin-orbit interaction was tailored by the sample parameters of structural symmetry (Rashba constant), width, and electron density (Dresselhaus linear and cubic constants) which allow us to attain long dephasing times in the nanoseconds range. The determination of the scales, namely, transport scattering time, single-electron scattering time, electron-electron scattering time, and spin polarization decay time further supports the possibility of using n-doped multilayer systems for developing spintronic devices.

  3. Coherence in quantum estimation

    Science.gov (United States)

    Giorda, Paolo; Allegra, Michele

    2018-01-01

    The geometry of quantum states provides a unifying framework for estimation processes based on quantum probes, and it establishes the ultimate bounds of the achievable precision. We show a relation between the statistical distance between infinitesimally close quantum states and the second order variation of the coherence of the optimal measurement basis with respect to the state of the probe. In quantum phase estimation protocols, this leads to propose coherence as the relevant resource that one has to engineer and control to optimize the estimation precision. Furthermore, the main object of the theory i.e. the symmetric logarithmic derivative, in many cases allows one to identify a proper factorization of the whole Hilbert space in two subsystems. The factorization allows one to discuss the role of coherence versus correlations in estimation protocols; to show how certain estimation processes can be completely or effectively described within a single-qubit subsystem; and to derive lower bounds for the scaling of the estimation precision with the number of probes used. We illustrate how the framework works for both noiseless and noisy estimation procedures, in particular those based on multi-qubit GHZ-states. Finally we succinctly analyze estimation protocols based on zero-temperature critical behavior. We identify the coherence that is at the heart of their efficiency, and we show how it exhibits the non-analyticities and scaling behavior proper of a large class of quantum phase transitions.

  4. Quantum coherence and correlations in quantum system

    Science.gov (United States)

    Xi, Zhengjun; Li, Yongming; Fan, Heng

    2015-01-01

    Criteria of measure quantifying quantum coherence, a unique property of quantum system, are proposed recently. In this paper, we first give an uncertainty-like expression relating the coherence and the entropy of quantum system. This finding allows us to discuss the relations between the entanglement and the coherence. Further, we discuss in detail the relations among the coherence, the discord and the deficit in the bipartite quantum system. We show that, the one-way quantum deficit is equal to the sum between quantum discord and the relative entropy of coherence of measured subsystem. PMID:26094795

  5. From quantum coherence to quantum correlations

    Science.gov (United States)

    Sun, Yuan; Mao, Yuanyuan; Luo, Shunlong

    2017-06-01

    In quantum mechanics, quantum coherence of a state relative to a quantum measurement can be identified with the quantumness that has to be destroyed by the measurement. In particular, quantum coherence of a bipartite state relative to a local quantum measurement encodes quantum correlations in the state. If one takes minimization with respect to the local measurements, then one is led to quantifiers which capture quantum correlations from the perspective of coherence. In this vein, quantum discord, which quantifies the minimal correlations that have to be destroyed by quantum measurements, can be identified as the minimal coherence, with the coherence measured by the relative entropy of coherence. To advocate and formulate this idea in a general context, we first review coherence relative to Lüders measurements which extends the notion of coherence relative to von Neumann measurements (or equivalently, orthonomal bases), and highlight the observation that quantum discord arises as minimal coherence through two prototypical examples. Then, we introduce some novel measures of quantum correlations in terms of coherence, illustrate them through examples, investigate their fundamental properties and implications, and indicate their applications to quantum metrology.

  6. Coherent states in quantum mechanics

    International Nuclear Information System (INIS)

    Rodrigues, R. de Lima; Fernandes Junior, Damasio; Batista, Sheyla Marques

    2001-12-01

    We present a review work on the coherent states is non-relativistic quantum mechanics analysing the quantum oscillators in the coherent states. The coherent states obtained via a displacement operator that act on the wave function of ground state of the oscillator and the connection with Quantum Optics which were implemented by Glauber have also been considered. A possible generalization to the construction of new coherent states it is point out. (author)

  7. Coherent states in quantum mechanics

    CERN Document Server

    Rodrigues, R D L; Fernandes, D

    2001-01-01

    We present a review work on the coherent states is non-relativistic quantum mechanics analysing the quantum oscillators in the coherent states. The coherent states obtained via a displacement operator that act on the wave function of ground state of the oscillator and the connection with Quantum Optics which were implemented by Glauber have also been considered. A possible generalization to the construction of new coherent states it is point out.

  8. Manipulating Quantum Coherence in Solid State Systems

    CERN Document Server

    Flatté, Michael E; The NATO Advanced Study Institute "Manipulating Quantum Coherence in Solid State Systems"

    2007-01-01

    The NATO Advanced Study Institute "Manipulating Quantum Coherence in Solid State Systems", in Cluj-Napoca, Romania, August 29-September 9, 2005, presented a fundamental introduction to solid-state approaches to achieving quantum computation. This proceedings volume describes the properties of quantum coherence in semiconductor spin-based systems and the behavior of quantum coherence in superconducting systems. Semiconductor spin-based approaches to quantum computation have made tremendous advances in the past several years. Coherent populations of spins can be oriented, manipulated and detected experimentally. Rapid progress has been made towards performing the same tasks on individual spins (nuclear, ionic, or electronic) with all-electrical means. Superconducting approaches to quantum computation have demonstrated single qubits based on charge eigenstates as well as flux eigenstates. These topics have been presented in a pedagogical fashion by leading researchers in the fields of semiconductor-spin-based qu...

  9. Operational resource theory of total quantum coherence

    Science.gov (United States)

    Yang, Si-ren; Yu, Chang-shui

    2018-01-01

    Quantum coherence is an essential feature of quantum mechanics and is an important physical resource in quantum information. Recently, the resource theory of quantum coherence has been established parallel with that of entanglement. In the resource theory, a resource can be well defined if given three ingredients: the free states, the resource, the (restricted) free operations. In this paper, we study the resource theory of coherence in a different light, that is, we consider the total coherence defined by the basis-free coherence maximized among all potential basis. We define the distillable total coherence and the total coherence cost and in both the asymptotic regime and the single-copy regime show the reversible transformation between a state with certain total coherence and the state with the unit reference total coherence. Extensively, we demonstrate that the total coherence can also be completely converted to the total correlation with the equal amount by the free operations. We also provide the alternative understanding of the total coherence, respectively, based on the entanglement and the total correlation in a different way.

  10. Coherent control of quantum dots

    DEFF Research Database (Denmark)

    Johansen, Jeppe; Lodahl, Peter; Hvam, Jørn Märcher

    In recent years much effort has been devoted to the use of semiconductor quantum dotsystems as building blocks for solid-state-based quantum logic devices. One importantparameter for such devices is the coherence time, which determines the number ofpossible quantum operations. From earlier...

  11. Quantum Processes Which Do Not Use Coherence

    Directory of Open Access Journals (Sweden)

    Benjamin Yadin

    2016-11-01

    Full Text Available A major signature of quantum mechanics beyond classical physics is coherence, the existence of superposition states. The recently developed resource theory of quantum coherence allows the formalization of incoherent operations—those operations which cannot create coherence. We identify the set of operations which additionally do not use coherence. These are such that coherence cannot be exploited by a classical observer, who measures incoherent properties of the system, to go beyond classical dynamics. We give a physical interpretation in terms of interferometry and prove a dilation theorem, showing how these operations can always be constructed by the system interacting, in an incoherent way, with an ancilla. Such a physical justification is not known for the incoherent operations; thus, our results lead to a physically well-motivated resource theory of coherence. Next, we investigate the implications for coherence in multipartite systems. We show that quantum correlations can be defined naturally with respect to a fixed basis, providing a link between coherence and quantum discord. We demonstrate the interplay between these two quantities in the operations that we study and suggest implications for the theory of quantum discord by relating these operations to those which cannot create discord.

  12. Toward a superconducting quantum computer. Harnessing macroscopic quantum coherence.

    Science.gov (United States)

    Tsai, Jaw-Shen

    2010-01-01

    Intensive research on the construction of superconducting quantum computers has produced numerous important achievements. The quantum bit (qubit), based on the Josephson junction, is at the heart of this research. This macroscopic system has the ability to control quantum coherence. This article reviews the current state of quantum computing as well as its history, and discusses its future. Although progress has been rapid, the field remains beset with unsolved issues, and there are still many new research opportunities open to physicists and engineers.

  13. Coherent spin dynamics of an interwell excitonic gas in GaAs/AlGaAs coupled quantum wells

    DEFF Research Database (Denmark)

    Larionov, A. V.; Bisti, V. E.; Bayer, M.

    2006-01-01

    The spin dynamics of an interwell exciton gas has been investigated in n-i-n GaAs/AlGaAs coupled quantum wells. The time evolution kinetics of the interwell exciton photoluminescence has been measured under resonant excitation of the 1s heavy-hole intrawell exciton, using a pulsed tunable laser...

  14. Some remarks on quantum coherence theory

    International Nuclear Information System (INIS)

    Burzynski, A.

    1982-01-01

    This paper is devoted to the basic topics connected with coherence in quantum mechanics and quantum theory of radiation. In particular the formalism of the normal ordered coherence functions in cases of one and many degrees of freedom is described in detail. A few examples illustrate the analysis of the coherence properties of the various quantum states of the field of radiation. (author)

  15. Entropic cohering power in quantum operations

    Science.gov (United States)

    Xi, Zhengjun; Hu, Ming-Liang; Li, Yongming; Fan, Heng

    2018-02-01

    Coherence is a basic feature of quantum systems and a common necessary condition for quantum correlations. It is also an important physical resource in quantum information processing. In this paper, using relative entropy, we consider a more general definition of the cohering power of quantum operations. First, we calculate the cohering power of unitary quantum operations and show that the amount of distributed coherence caused by non-unitary quantum operations cannot exceed the quantum-incoherent relative entropy between system of interest and its environment. We then find that the difference between the distributed coherence and the cohering power is larger than the quantum-incoherent relative entropy. As an application, we consider the distributed coherence caused by purification.

  16. Trions in quantum wells

    CERN Document Server

    Peeters, F M; Varga, K

    2002-01-01

    The ground-state energy of three-particle systems consisting of electrons and holes as found in semiconducting quantum wells is studied. The degree of confinement is determined by the quantum-well width and we can vary the dimensionality of the system from two to three dimensions. The energy levels of the system can further be altered by the application of an external magnetic field which is directed perpendicular to the well. Refs.5 (author)

  17. Quantum learning of coherent states

    Energy Technology Data Exchange (ETDEWEB)

    Sentis, Gael [Universitat Autonoma de Barcelona, Fisica Teorica: Informacio i Fenomens Quantics, Barcelona (Spain); Guta, Madalin; Adesso, Gerardo [University of Nottingham, School of Mathematical Sciences, Nottingham (United Kingdom)

    2015-12-15

    We develop a quantum learning scheme for binary discrimination of coherent states of light. This is a problem of technological relevance for the reading of information stored in a digital memory. In our setting, a coherent light source is used to illuminate a memory cell and retrieve its encoded bit by determining the quantum state of the reflected signal. We consider a situation where the amplitude of the states produced by the source is not fully known, but instead this information is encoded in a large training set comprising many copies of the same coherent state. We show that an optimal global measurement, performed jointly over the signal and the training set, provides higher successful identification rates than any learning strategy based on first estimating the unknown amplitude by means of Gaussian measurements on the training set, followed by an adaptive discrimination procedure on the signal. By considering a simplified variant of the problem, we argue that this is the case even for non-Gaussian estimation measurements. Our results show that, even in absence of entanglement, collective quantum measurements yield an enhancement in the readout of classical information, which is particularly relevant in the operating regime of low-energy signals. (orig.)

  18. Quantum learning of coherent states

    International Nuclear Information System (INIS)

    Sentis, Gael; Guta, Madalin; Adesso, Gerardo

    2015-01-01

    We develop a quantum learning scheme for binary discrimination of coherent states of light. This is a problem of technological relevance for the reading of information stored in a digital memory. In our setting, a coherent light source is used to illuminate a memory cell and retrieve its encoded bit by determining the quantum state of the reflected signal. We consider a situation where the amplitude of the states produced by the source is not fully known, but instead this information is encoded in a large training set comprising many copies of the same coherent state. We show that an optimal global measurement, performed jointly over the signal and the training set, provides higher successful identification rates than any learning strategy based on first estimating the unknown amplitude by means of Gaussian measurements on the training set, followed by an adaptive discrimination procedure on the signal. By considering a simplified variant of the problem, we argue that this is the case even for non-Gaussian estimation measurements. Our results show that, even in absence of entanglement, collective quantum measurements yield an enhancement in the readout of classical information, which is particularly relevant in the operating regime of low-energy signals. (orig.)

  19. Quantum communication with coherent states of light

    Science.gov (United States)

    Khan, Imran; Elser, Dominique; Dirmeier, Thomas; Marquardt, Christoph; Leuchs, Gerd

    2017-06-01

    Quantum communication offers long-term security especially, but not only, relevant to government and industrial users. It is worth noting that, for the first time in the history of cryptographic encoding, we are currently in the situation that secure communication can be based on the fundamental laws of physics (information theoretical security) rather than on algorithmic security relying on the complexity of algorithms, which is periodically endangered as standard computer technology advances. On a fundamental level, the security of quantum key distribution (QKD) relies on the non-orthogonality of the quantum states used. So even coherent states are well suited for this task, the quantum states that largely describe the light generated by laser systems. Depending on whether one uses detectors resolving single or multiple photon states or detectors measuring the field quadratures, one speaks of, respectively, a discrete- or a continuous-variable description. Continuous-variable QKD with coherent states uses a technology that is very similar to the one employed in classical coherent communication systems, the backbone of today's Internet connections. Here, we review recent developments in this field in two connected regimes: (i) improving QKD equipment by implementing front-end telecom devices and (ii) research into satellite QKD for bridging long distances by building upon existing optical satellite links. This article is part of the themed issue 'Quantum technology for the 21st century'.

  20. Coherent states in quantum physics

    CERN Document Server

    Gazeau, Jean-Pierre

    2009-01-01

    This self-contained introduction discusses the evolution of the notion of coherent states, from the early works of Schrödinger to the most recent advances, including signal analysis. An integrated and modern approach to the utility of coherent states in many different branches of physics, it strikes a balance between mathematical and physical descriptions.Split into two parts, the first introduces readers to the most familiar coherent states, their origin, their construction, and their application and relevance to various selected domains of physics. Part II, mostly based on recent original results, is devoted to the question of quantization of various sets through coherent states, and shows the link to procedures in signal analysis. Title: Coherent States in Quantum Physics Print ISBN: 9783527407095 Author(s): Gazeau, Jean-Pierre eISBN: 9783527628292 Publisher: Wiley-VCH Dewey: 530.12 Publication Date: 23 Sep, 2009 Pages: 360 Category: Science, Science: Physics LCCN: Language: English Edition: N/A LCSH:

  1. Using nonlocal coherence to quantify quantum correlation

    OpenAIRE

    Pei, Pei; Wang, Wei; Li, Chong; Song, He-Shan

    2010-01-01

    We reexamine quantum correlation from the fundamental perspective of its consanguineous quantum property, the coherence. We emphasize the importance of specifying the tensor product structure of the total state space before discussing quantum correlation. A measure of quantum correlation for arbitrary dimension bipartite states using nonlocal coherence is proposed, and it can be easily generalized to the multipartite case. The quantification of non-entangled component within quantum correlati...

  2. Quantum well lasers

    CERN Document Server

    Zory, Jr, Peter S; Kelley, Paul

    1993-01-01

    This book provides the information necessary for the reader to achieve a thorough understanding of all aspects of QW lasers - from the basic mechanism of optical gain, through the current technolgoical state of the art, to the future technologies of quantum wires and quantum dots. In view of the growing importance of QW lasers, this book should be read by all those with an active interest in laser science and technology, from the advanced student to the experienced laser scientist.* The first comprehensive book-length treatment of quantum well lasers* Provides a detailed treatment

  3. Coherent communication with continuous quantum variables

    Science.gov (United States)

    Wilde, Mark M.; Krovi, Hari; Brun, Todd A.

    2007-06-01

    The coherent bit (cobit) channel is a resource intermediate between classical and quantum communication. It produces coherent versions of teleportation and superdense coding. We extend the cobit channel to continuous variables by providing a definition of the coherent nat (conat) channel. We construct several coherent protocols that use both a position-quadrature and a momentum-quadrature conat channel with finite squeezing. Finally, we show that the quality of squeezing diminishes through successive compositions of coherent teleportation and superdense coding.

  4. Effects of quantum coherence on work statistics

    Science.gov (United States)

    Xu, Bao-Ming; Zou, Jian; Guo, Li-Sha; Kong, Xiang-Mu

    2018-05-01

    In the conventional two-point measurement scheme of quantum thermodynamics, quantum coherence is destroyed by the first measurement. But as we know the coherence really plays an important role in the quantum thermodynamics process, and how to describe the work statistics for a quantum coherent process is still an open question. In this paper, we use the full counting statistics method to investigate the effects of quantum coherence on work statistics. First, we give a general discussion and show that for a quantum coherent process, work statistics is very different from that of the two-point measurement scheme, specifically the average work is increased or decreased and the work fluctuation can be decreased by quantum coherence, which strongly depends on the relative phase, the energy level structure, and the external protocol. Then, we concretely consider a quenched one-dimensional transverse Ising model and show that quantum coherence has a more significant influence on work statistics in the ferromagnetism regime compared with that in the paramagnetism regime, so that due to the presence of quantum coherence the work statistics can exhibit the critical phenomenon even at high temperature.

  5. Preparation of freezing quantum state for quantum coherence

    Science.gov (United States)

    Yang, Lian-Wu; Man, Zhong-Xiao; Zhang, Ying-Jie; Han, Feng; Du, Shao-jiang; Xia, Yun-Jie

    2018-06-01

    We provide a method to prepare the freezing quantum state for quantum coherence via unitary operations. The initial product state consists of the control qubit and target qubit; when it satisfies certain conditions, the initial product state converts into the particular Bell diagonal state under the unitary operations, which have the property of freezing of quantum coherence under quantum channels. We calculate the frozen quantum coherence and corresponding quantum correlations, and find that the quantities are determined by the control qubit only when the freezing phenomena occur.

  6. Symmetric configurations highlighted by collective quantum coherence

    Energy Technology Data Exchange (ETDEWEB)

    Obster, Dennis [Radboud University, Institute for Mathematics, Astrophysics and Particle Physics, Nijmegen (Netherlands); Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); Sasakura, Naoki [Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan)

    2017-11-15

    Recent developments in quantum gravity have shown the Lorentzian treatment to be a fruitful approach towards the emergence of macroscopic space-times. In this paper, we discuss another related aspect of the Lorentzian treatment: we argue that collective quantum coherence may provide a simple mechanism for highlighting symmetric configurations over generic non-symmetric ones. After presenting the general framework of the mechanism, we show the phenomenon in some concrete simple examples in the randomly connected tensor network, which is tightly related to a certain model of quantum gravity, i.e., the canonical tensor model. We find large peaks at configurations invariant under Lie-group symmetries as well as a preference for charge quantization, even in the Abelian case. In future study, this simple mechanism may provide a way to analyze the emergence of macroscopic space-times with global symmetries as well as various other symmetries existing in nature, which are usually postulated. (orig.)

  7. Effect of quantum lattice fluctuations on quantum coherent oscillations in a coherently driven quantum dot-cavity system

    International Nuclear Information System (INIS)

    Zhu, Ka-Di; Li, Wai-Sang

    2003-01-01

    The quantum coherent oscillations in a coherently driven quantum dot-cavity system with the presence of strong exciton-phonon interactions are investigated theoretically in a fully quantum treatment. It is shown that even at zero temperature, the strong exciton-phonon interactions still affect the quantum coherent oscillations significantly

  8. Coherent Coupled Qubits for Quantum Annealing

    Science.gov (United States)

    Weber, Steven J.; Samach, Gabriel O.; Hover, David; Gustavsson, Simon; Kim, David K.; Melville, Alexander; Rosenberg, Danna; Sears, Adam P.; Yan, Fei; Yoder, Jonilyn L.; Oliver, William D.; Kerman, Andrew J.

    2017-07-01

    Quantum annealing is an optimization technique which potentially leverages quantum tunneling to enhance computational performance. Existing quantum annealers use superconducting flux qubits with short coherence times limited primarily by the use of large persistent currents Ip. Here, we examine an alternative approach using qubits with smaller Ip and longer coherence times. We demonstrate tunable coupling, a basic building block for quantum annealing, between two flux qubits with small (approximately 50-nA) persistent currents. Furthermore, we characterize qubit coherence as a function of coupler setting and investigate the effect of flux noise in the coupler loop on qubit coherence. Our results provide insight into the available design space for next-generation quantum annealers with improved coherence.

  9. Coherent states in the quantum multiverse

    International Nuclear Information System (INIS)

    Robles-Perez, S.; Hassouni, Y.; Gonzalez-Diaz, P.F.

    2010-01-01

    In this Letter, we study the role of coherent states in the realm of quantum cosmology, both in a second-quantized single universe and in a third-quantized quantum multiverse. In particular, most emphasis will be paid to the quantum description of multiverses made of accelerated universes. We have shown that the quantum states involved at a quantum mechanical multiverse whose single universes are accelerated are given by squeezed states having no classical analogs.

  10. Coherent states in the quantum multiverse

    Energy Technology Data Exchange (ETDEWEB)

    Robles-Perez, S., E-mail: salvarp@imaff.cfmac.csic.e [Colina de los Chopos, Centro de Fisica ' Miguel Catalan' , Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain); Estacion Ecologica de Biocosmologia, Medellin (Spain); Hassouni, Y. [Laboratoire de Physique Theorique, Faculte des Sciences-Universite Sidi Med Ben Abdellah, Avenue Ibn Batouta B.P: 1014, Agdal Rabat (Morocco); Gonzalez-Diaz, P.F. [Colina de los Chopos, Centro de Fisica ' Miguel Catalan' , Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain); Estacion Ecologica de Biocosmologia, Medellin (Spain)

    2010-01-11

    In this Letter, we study the role of coherent states in the realm of quantum cosmology, both in a second-quantized single universe and in a third-quantized quantum multiverse. In particular, most emphasis will be paid to the quantum description of multiverses made of accelerated universes. We have shown that the quantum states involved at a quantum mechanical multiverse whose single universes are accelerated are given by squeezed states having no classical analogs.

  11. Coherence in Magnetic Quantum Tunneling

    Science.gov (United States)

    Fernandez, Julio F.

    2001-03-01

    Crystals of single molecule magnets such as Mn_12 and Fe8 behave at low temperatures as a collection of independent spins. Magnetic anisotropy barriers slow down spin-flip processes. Their rate Γ becomes temperature independent at sufficiently low temperature. Quantum tunneling (QT) accounts for this behavior. Currently, spin QT in Mn_12 and Fe8 is assumed to proceed as an incoherent sum of small probability increments that occur whenever a bias field h(t) (arising from hyperfine interactions with nuclear spins) that varies with time t becomes sufficiently small, as in Landau-Zener transitions. Within a two-state model, we study the behavior of a suitably defined coherence time τ_φ and compare it with the correlation time τh for h(t). It turns out that τ_φ >τ_h, when τ_hδ h < hbar, where δ h is the rms deviation of h. We show what effect such coherence has on Γ. Its dependence on a static longitudinal applied field Hz is drastically affected. There is however no effect if the field is swept through resonance.

  12. Design of coherent quantum observers for linear quantum systems

    International Nuclear Information System (INIS)

    Vuglar, Shanon L; Amini, Hadis

    2014-01-01

    Quantum versions of control problems are often more difficult than their classical counterparts because of the additional constraints imposed by quantum dynamics. For example, the quantum LQG and quantum H ∞ optimal control problems remain open. To make further progress, new, systematic and tractable methods need to be developed. This paper gives three algorithms for designing coherent quantum observers, i.e., quantum systems that are connected to a quantum plant and their outputs provide information about the internal state of the plant. Importantly, coherent quantum observers avoid measurements of the plant outputs. We compare our coherent quantum observers with a classical (measurement-based) observer by way of an example involving an optical cavity with thermal and vacuum noises as inputs. (paper)

  13. Modeling Quantum Well Lasers

    Directory of Open Access Journals (Sweden)

    Dan Alexandru Anghel

    2012-01-01

    Full Text Available In semiconductor laser modeling, a good mathematical model gives near-reality results. Three methods of modeling solutions from the rate equations are presented and analyzed. A method based on the rate equations modeled in Simulink to describe quantum well lasers was presented. For different signal types like step function, saw tooth and sinus used as input, a good response of the used equations is obtained. Circuit model resulting from one of the rate equations models is presented and simulated in SPICE. Results show a good modeling behavior. Numerical simulation in MathCad gives satisfactory results for the study of the transitory and dynamic operation at small level of the injection current. The obtained numerical results show the specific limits of each model, according to theoretical analysis. Based on these results, software can be built that integrates circuit simulation and other modeling methods for quantum well lasers to have a tool that model and analysis these devices from all points of view.

  14. Asymmetry and coherence weight of quantum states

    Science.gov (United States)

    Bu, Kaifeng; Anand, Namit; Singh, Uttam

    2018-03-01

    The asymmetry of quantum states is an important resource in quantum information processing tasks such as quantum metrology and quantum communication. In this paper, we introduce the notion of asymmetry weight—an operationally motivated asymmetry quantifier in the resource theory of asymmetry. We study the convexity and monotonicity properties of asymmetry weight and focus on its interplay with the corresponding semidefinite programming (SDP) forms along with its connection to other asymmetry measures. Since the SDP form of asymmetry weight is closely related to asymmetry witnesses, we find that the asymmetry weight can be regarded as a (state-dependent) asymmetry witness. Moreover, some specific entanglement witnesses can be viewed as a special case of an asymmetry witness—which indicates a potential connection between asymmetry and entanglement. We also provide an operationally meaningful coherence measure, which we term coherence weight, and investigate its relationship to other coherence measures like the robustness of coherence and the l1 norm of coherence. In particular, we show that for Werner states in any dimension d all three coherence quantifiers, namely, the coherence weight, the robustness of coherence, and the l1 norm of coherence, are equal and are given by a single letter formula.

  15. Coherent semiclassical states for loop quantum cosmology

    International Nuclear Information System (INIS)

    Corichi, Alejandro; Montoya, Edison

    2011-01-01

    The spatially flat Friedmann-Robertson-Walker cosmological model with a massless scalar field in loop quantum cosmology admits a description in terms of a completely solvable model. This has been used to prove that: (i) the quantum bounce that replaces the big bang singularity is generic; (ii) there is an upper bound on the energy density for all states, and (iii) semiclassical states at late times had to be semiclassical before the bounce. Here we consider a family of exact solutions to the theory, corresponding to generalized coherent Gaussian and squeezed states. We analyze the behavior of basic physical observables and impose restrictions on the states based on physical considerations. These turn out to be enough to select, from all the generalized coherent states, those that behave semiclassical at late times. We study then the properties of such states near the bounce where the most 'quantum behavior' is expected. As it turns out, the states remain sharply peaked and semiclassical at the bounce and the dynamics is very well approximated by the ''effective theory'' throughout the time evolution. We compare the semiclassicality properties of squeezed states to those of the Gaussian semiclassical states and conclude that the Gaussians are better behaved. In particular, the asymmetry in the relative fluctuations before and after the bounce are negligible, thus ruling out claims of so-called 'cosmic forgetfulness'.

  16. Quantum Interference and Coherence Theory and Experiments

    CERN Document Server

    Ficek, Zbigniew; Rhodes, William T; Asakura, Toshimitsu; Brenner, Karl-Heinz; Hänsch, Theodor W; Kamiya, Takeshi; Krausz, Ferenc; Monemar, Bo; Venghaus, Herbert; Weber, Horst; Weinfurter, Harald

    2005-01-01

    For the first time, this book assembles in a single volume accounts of many phenomena involving quantum interference in optical fields and atomic systems. It provides detailed theoretical treatments and experimental analyses of such phenomena as quantum erasure, quantum lithography, multi-atom entanglement, quantum beats, control of decoherence, phase control of quantum interference, coherent population trapping, electromagnetically induced transparency and absorption, lasing without inversion, subluminal and superluminal light propagation, storage of photons, quantum interference in phase space, interference and diffraction of cold atoms, and interference between Bose-Einstein condensates. This book fills a gap in the literature and will be useful to both experimentalists and theoreticians.

  17. Coherent transport through interacting quantum dots

    International Nuclear Information System (INIS)

    Hiltscher, Bastian

    2012-01-01

    the linear-conductance regime. The second work deals with the ratio of coherent processes in transport through quantum dots. To this end, a quantum dot is embedded in one of the arms of an Aharonov-Bohm interferometer. In former theoretical as well as experimental works it has been observed that an important source of decoherence are cotunneling processes that flip the dot's spin. In order to elucidate the role of spin in more detail, we assume one of the leads to be ferromagnetic and the other one to be normal. The main motivations of our work are the two questions: (1) What fraction of the total current through a single-level quantum dot weakly coupled to the electrodes is coherent? (2) How and under which circumstances can this fraction be extracted from a current measurement in an Aharonov-Bohm setup? The measurable quantity in such an experiment is the magnetic-flux dependent ratio of the total current. It turns out that the answers of the two questions strongly depend on the dot level position, the polarization of the ferromagnet, and the transport direction. Especially the flux-dependent and the coherent ratios are not necessarily the same. The main motivation of the third work is to identify crossed Andreev reflection in quantum dots, that is, a Cooper pair splits into two single electrons, which are transferred into different quantum dots in one coherent process. We consider a setup, where two quantum dots are tunnel coupled to the same superconductor and each dot is additionally coupled to a normal conductor. In previous works a bias voltage has been applied between the superconductor and the normal conductors. Then, three processes sustain transport. Beside crossed Andreev reflection also local Andreev reflection, where both electrons of the Cooper pair tunnel into the same dot, and single-particle tunneling occur. This complicates the identification of crossed Andreev reflection. Therefore, we propose the transport mechanism of adiabatic pumping in the

  18. Coherent transport through interacting quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Hiltscher, Bastian

    2012-10-05

    the linear-conductance regime. The second work deals with the ratio of coherent processes in transport through quantum dots. To this end, a quantum dot is embedded in one of the arms of an Aharonov-Bohm interferometer. In former theoretical as well as experimental works it has been observed that an important source of decoherence are cotunneling processes that flip the dot's spin. In order to elucidate the role of spin in more detail, we assume one of the leads to be ferromagnetic and the other one to be normal. The main motivations of our work are the two questions: (1) What fraction of the total current through a single-level quantum dot weakly coupled to the electrodes is coherent? (2) How and under which circumstances can this fraction be extracted from a current measurement in an Aharonov-Bohm setup? The measurable quantity in such an experiment is the magnetic-flux dependent ratio of the total current. It turns out that the answers of the two questions strongly depend on the dot level position, the polarization of the ferromagnet, and the transport direction. Especially the flux-dependent and the coherent ratios are not necessarily the same. The main motivation of the third work is to identify crossed Andreev reflection in quantum dots, that is, a Cooper pair splits into two single electrons, which are transferred into different quantum dots in one coherent process. We consider a setup, where two quantum dots are tunnel coupled to the same superconductor and each dot is additionally coupled to a normal conductor. In previous works a bias voltage has been applied between the superconductor and the normal conductors. Then, three processes sustain transport. Beside crossed Andreev reflection also local Andreev reflection, where both electrons of the Cooper pair tunnel into the same dot, and single-particle tunneling occur. This complicates the identification of crossed Andreev reflection. Therefore, we propose the transport mechanism of adiabatic pumping in

  19. Optical Coherence and Quantum Optics

    CERN Document Server

    Mandel, Leonard

    1995-01-01

    This book presents a systematic account of optical coherence theory within the framework of classical optics, as applied to such topics as radiation from sources of different states of coherence, foundations of radiometry, effects of source coherence on the spectra of radiated fields, coherence theory of laser modes, and scattering of partially coherent light by random media. The book starts with a full mathematical introduction to the subject area and each chapter concludes with a set of exercises. The authors are renowned scientists and have made substantial contributions to many of the topi

  20. Loss of quantum coherence from discrete quantum gravity

    International Nuclear Information System (INIS)

    Gambini, Rodolfo; Porto, Rafael A; Pullin, Jorge

    2004-01-01

    We show that a recent proposal for the quantization of gravity based on discrete spacetime implies a modification of standard quantum mechanics that naturally leads to a loss of coherence in quantum states of the type discussed by Milburn. The proposal overcomes the energy conservation problem of previously proposed decoherence mechanisms stemming from quantum gravity. Mesoscopic quantum systems (as Bose-Einstein condensates) appear as the most promising testing grounds for an experimental verification of the mechanism. (letter to the editor)

  1. Coherence protection in coupled quantum systems

    Science.gov (United States)

    Cammack, H. M.; Kirton, P.; Stace, T. M.; Eastham, P. R.; Keeling, J.; Lovett, B. W.

    2018-02-01

    The interaction of a quantum system with its environment causes decoherence, setting a fundamental limit on its suitability for quantum information processing. However, we show that if the system consists of coupled parts with different internal energy scales then the interaction of one part with a thermal bath need not lead to loss of coherence from the other. Remarkably, we find that the protected part can remain coherent for longer when the coupling to the bath becomes stronger or the temperature is raised. Our theory will enable the design of decoherence-resistant hybrid quantum computers.

  2. Quantum oscillators in the canonical coherent states

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, R. de Lima [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Lima, A.F. de; Ferreira, K. de Araujo [Paraiba Univ., Campina Grande, PB (Brazil). Dept. de Fisica; Vaidya, A.N. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Fisica

    2001-11-01

    The main characteristics of the quantum oscillator coherent states including the two-particle Calogero interaction are investigated. We show that these Calogero coherent states are the eigenstates of the second-order differential annihilation operator which is deduced via Wigner-Heisenberg algebraic technique and correspond exactly to the pure uncharged-bosonic states. They posses the important properties of non-orthogonality and completeness. The minimum uncertainty relation for the Wigner oscillator coherent states are investigated. New sets of even and odd coherent states are point out. (author)

  3. Coherent states for quantum compact groups

    International Nuclear Information System (INIS)

    Jurco, B.; Stovicek, P.; CTU, Prague

    1996-01-01

    Coherent states are introduced and their properties are discussed for simple quantum compact groups A l , B l , C l and D l . The multiplicative form of the canonical element for the quantum double is used to introduce the holomorphic coordinates on a general quantum dressing orbit. The coherent state is interpreted as a holomorphic function on this orbit with values in the carrier Hilbert space of an irreducible representation of the corresponding quantized enveloping algebra. Using Gauss decomposition, the commutation relations for the holomorphic coordinates on the dressing orbit are derived explicitly and given in a compact R-matrix formulation (generalizing this way the q-deformed Grassmann and flag manifolds). The antiholomorphic realization of the irreducible representations of a compact quantum group (the analogue of the Borel-Weil construction) is described using the concept of coherent state. The relation between representation theory and non-commutative differential geometry is suggested. (orig.)

  4. Coherent states for quantum compact groups

    Energy Technology Data Exchange (ETDEWEB)

    Jurco, B. [European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.; Stovicek, P. [Ceske Vysoke Uceni Technicke, Prague (Czech Republic). Dept. of Mathematics]|[CTU, Prague (Czech Republic). Doppler Inst.

    1996-12-01

    Coherent states are introduced and their properties are discussed for simple quantum compact groups A{sub l}, B{sub l}, C{sub l} and D{sub l}. The multiplicative form of the canonical element for the quantum double is used to introduce the holomorphic coordinates on a general quantum dressing orbit. The coherent state is interpreted as a holomorphic function on this orbit with values in the carrier Hilbert space of an irreducible representation of the corresponding quantized enveloping algebra. Using Gauss decomposition, the commutation relations for the holomorphic coordinates on the dressing orbit are derived explicitly and given in a compact R-matrix formulation (generalizing this way the q-deformed Grassmann and flag manifolds). The antiholomorphic realization of the irreducible representations of a compact quantum group (the analogue of the Borel-Weil construction) is described using the concept of coherent state. The relation between representation theory and non-commutative differential geometry is suggested. (orig.)

  5. Coherent states for quantum compact groups

    CERN Document Server

    Jurco, B

    1996-01-01

    Coherent states are introduced and their properties are discussed for all simple quantum compact groups. The multiplicative form of the canonical element for the quantum double is used to introduce the holomorphic coordinates on a general quantum dressing orbit and interpret the coherent state as a holomorphic function on this orbit with values in the carrier Hilbert space of an irreducible representation of the corresponding quantized enveloping algebra. Using Gauss decomposition, the commutation relations for the holomorphic coordinates on the dressing orbit are derived explicitly and given in a compact R--matrix formulation (generalizing this way the q--deformed Grassmann and flag manifolds). The antiholomorphic realization of the irreducible representations of a compact quantum group (the analogue of the Borel--Weil construction) are described using the concept of coherent state. The relation between representation theory and non--commutative differential geometry is suggested.}

  6. Quantum nonlinear lattices and coherent state vectors

    DEFF Research Database (Denmark)

    Ellinas, Demosthenes; Johansson, M.; Christiansen, Peter Leth

    1999-01-01

    for the state vectors invokes the study of the Riemannian and symplectic geometry of the CSV manifolds as generalized phase spaces. Next, we investigate analytically and numerically the behavior of mean values and uncertainties of some physically interesting observables as well as the modifications...... (FP) model. Based on the respective dynamical symmetries of the models, a method is put forward which by use of the associated boson and spin coherent state vectors (CSV) and a factorization ansatz for the solution of the Schrodinger equation, leads to quasiclassical Hamiltonian equations of motion...... state vectors, and accounts for the quantum correlations of the lattice sites that develop during the time evolution of the systems. (C) 1999 Elsevier Science B.V. All rights reserved....

  7. Communication: Fully coherent quantum state hopping

    Energy Technology Data Exchange (ETDEWEB)

    Martens, Craig C., E-mail: cmartens@uci.edu [University of California, Irvine, California 92697-2025 (United States)

    2015-10-14

    In this paper, we describe a new and fully coherent stochastic surface hopping method for simulating mixed quantum-classical systems. We illustrate the approach on the simple but unforgiving problem of quantum evolution of a two-state quantum system in the limit of unperturbed pure state dynamics and for dissipative evolution in the presence of both stationary and nonstationary random environments. We formulate our approach in the Liouville representation and describe the density matrix elements by ensembles of trajectories. Population dynamics are represented by stochastic surface hops for trajectories representing diagonal density matrix elements. These are combined with an unconventional coherent stochastic hopping algorithm for trajectories representing off-diagonal quantum coherences. The latter generalizes the binary (0,1) “probability” of a trajectory to be associated with a given state to allow integers that can be negative or greater than unity in magnitude. Unlike existing surface hopping methods, the dynamics of the ensembles are fully entangled, correctly capturing the coherent and nonlocal structure of quantum mechanics.

  8. Coherent control in simple quantum systems

    Science.gov (United States)

    Prants, Sergey V.

    1995-01-01

    Coherent dynamics of two, three, and four-level quantum systems, simultaneously driven by concurrent laser pulses of arbitrary and different forms, is treated by using a nonperturbative, group-theoretical approach. The respective evolution matrices are calculated in an explicit form. General aspects of controllability of few-level atoms by using laser fields are treated analytically.

  9. Coherence and measurement in quantum thermodynamics.

    Science.gov (United States)

    Kammerlander, P; Anders, J

    2016-02-26

    Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed.

  10. Efficient quantum computing using coherent photon conversion.

    Science.gov (United States)

    Langford, N K; Ramelow, S; Prevedel, R; Munro, W J; Milburn, G J; Zeilinger, A

    2011-10-12

    Single photons are excellent quantum information carriers: they were used in the earliest demonstrations of entanglement and in the production of the highest-quality entanglement reported so far. However, current schemes for preparing, processing and measuring them are inefficient. For example, down-conversion provides heralded, but randomly timed, single photons, and linear optics gates are inherently probabilistic. Here we introduce a deterministic process--coherent photon conversion (CPC)--that provides a new way to generate and process complex, multiquanta states for photonic quantum information applications. The technique uses classically pumped nonlinearities to induce coherent oscillations between orthogonal states of multiple quantum excitations. One example of CPC, based on a pumped four-wave-mixing interaction, is shown to yield a single, versatile process that provides a full set of photonic quantum processing tools. This set satisfies the DiVincenzo criteria for a scalable quantum computing architecture, including deterministic multiqubit entanglement gates (based on a novel form of photon-photon interaction), high-quality heralded single- and multiphoton states free from higher-order imperfections, and robust, high-efficiency detection. It can also be used to produce heralded multiphoton entanglement, create optically switchable quantum circuits and implement an improved form of down-conversion with reduced higher-order effects. Such tools are valuable building blocks for many quantum-enabled technologies. Finally, using photonic crystal fibres we experimentally demonstrate quantum correlations arising from a four-colour nonlinear process suitable for CPC and use these measurements to study the feasibility of reaching the deterministic regime with current technology. Our scheme, which is based on interacting bosonic fields, is not restricted to optical systems but could also be implemented in optomechanical, electromechanical and superconducting

  11. Modeling coherent errors in quantum error correction

    Science.gov (United States)

    Greenbaum, Daniel; Dutton, Zachary

    2018-01-01

    Analysis of quantum error correcting codes is typically done using a stochastic, Pauli channel error model for describing the noise on physical qubits. However, it was recently found that coherent errors (systematic rotations) on physical data qubits result in both physical and logical error rates that differ significantly from those predicted by a Pauli model. Here we examine the accuracy of the Pauli approximation for noise containing coherent errors (characterized by a rotation angle ɛ) under the repetition code. We derive an analytic expression for the logical error channel as a function of arbitrary code distance d and concatenation level n, in the small error limit. We find that coherent physical errors result in logical errors that are partially coherent and therefore non-Pauli. However, the coherent part of the logical error is negligible at fewer than {ε }-({dn-1)} error correction cycles when the decoder is optimized for independent Pauli errors, thus providing a regime of validity for the Pauli approximation. Above this number of correction cycles, the persistent coherent logical error will cause logical failure more quickly than the Pauli model would predict, and this may need to be combated with coherent suppression methods at the physical level or larger codes.

  12. Quantum coherence generated by interference-induced state selectiveness

    OpenAIRE

    Garreau, Jean Claude

    2001-01-01

    The relations between quantum coherence and quantum interference are discussed. A general method for generation of quantum coherence through interference-induced state selection is introduced and then applied to `simple' atomic systems under two-photon transitions, with applications in quantum optics and laser cooling.

  13. Quantum Communication Using Coherent Rejection Sampling

    Science.gov (United States)

    Anshu, Anurag; Devabathini, Vamsi Krishna; Jain, Rahul

    2017-09-01

    Compression of a message up to the information it carries is key to many tasks involved in classical and quantum information theory. Schumacher [B. Schumacher, Phys. Rev. A 51, 2738 (1995), 10.1103/PhysRevA.51.2738] provided one of the first quantum compression schemes and several more general schemes have been developed ever since [M. Horodecki, J. Oppenheim, and A. Winter, Commun. Math. Phys. 269, 107 (2007); , 10.1007/s00220-006-0118-xI. Devetak and J. Yard, Phys. Rev. Lett. 100, 230501 (2008); , 10.1103/PhysRevLett.100.230501A. Abeyesinghe, I. Devetak, P. Hayden, and A. Winter, Proc. R. Soc. A 465, 2537 (2009), 10.1098/rspa.2009.0202]. However, the one-shot characterization of these quantum tasks is still under development, and often lacks a direct connection with analogous classical tasks. Here we show a new technique for the compression of quantum messages with the aid of entanglement. We devise a new tool that we call the convex split lemma, which is a coherent quantum analogue of the widely used rejection sampling procedure in classical communication protocols. As a consequence, we exhibit new explicit protocols with tight communication cost for quantum state merging, quantum state splitting, and quantum state redistribution (up to a certain optimization in the latter case). We also present a port-based teleportation scheme which uses a fewer number of ports in the presence of information about input.

  14. Coherent states in quantum mechanics; Estados coerentes em mecanica quantica

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, R. de Lima [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mail: rafaelr@cbpf.br; Fernandes Junior, Damasio; Batista, Sheyla Marques [Paraiba Univ., Campina Grande, PB (Brazil). Dept. de Engenharia Eletrica

    2001-12-01

    We present a review work on the coherent states is non-relativistic quantum mechanics analysing the quantum oscillators in the coherent states. The coherent states obtained via a displacement operator that act on the wave function of ground state of the oscillator and the connection with Quantum Optics which were implemented by Glauber have also been considered. A possible generalization to the construction of new coherent states it is point out. (author)

  15. Quantum State Engineering Via Coherent-State Superpositions

    Science.gov (United States)

    Janszky, Jozsef; Adam, P.; Szabo, S.; Domokos, P.

    1996-01-01

    The quantum interference between the two parts of the optical Schrodinger-cat state makes possible to construct a wide class of quantum states via discrete superpositions of coherent states. Even a small number of coherent states can approximate the given quantum states at a high accuracy when the distance between the coherent states is optimized, e. g. nearly perfect Fock state can be constructed by discrete superpositions of n + 1 coherent states lying in the vicinity of the vacuum state.

  16. Coherent quantum dynamics of excitons in monolayer transition metal dichalcogenides

    KAUST Repository

    Moody, Galan

    2016-03-14

    Transition metal dichalcogenides (TMDs) have garnered considerable interest in recent years owing to their layer thickness-dependent optoelectronic properties. In monolayer TMDs, the large carrier effective masses, strong quantum confinement, and reduced dielectric screening lead to pronounced exciton resonances with remarkably large binding energies and coupled spin and valley degrees of freedom (valley excitons). Coherent control of valley excitons for atomically thin optoelectronics and valleytronics requires understanding and quantifying sources of exciton decoherence. In this work, we reveal how exciton-exciton and exciton-phonon scattering influence the coherent quantum dynamics of valley excitons in monolayer TMDs, specifically tungsten diselenide (WSe2), using two-dimensional coherent spectroscopy. Excitation-density and temperature dependent measurements of the homogeneous linewidth (inversely proportional to the optical coherence time) reveal that exciton-exciton and exciton-phonon interactions are significantly stronger compared to quasi-2D quantum wells and 3D bulk materials. The residual homogeneous linewidth extrapolated to zero excitation density and temperature is ~1:6 meV (equivalent to a coherence time of 0.4 ps), which is limited only by the population recombination lifetime in this sample. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  17. Coherent quantum dynamics of excitons in monolayer transition metal dichalcogenides

    KAUST Repository

    Moody, Galan; Hao, Kai; Dass, Chandriker Kavir; Singh, Akshay; Xu, Lixiang; Tran, Kha; Chen, Chang-Hsiao; Li, Ming-yang; Li, Lain-Jong; Clark, Genevieve; Bergh ä user, Gunnar; Malic, Ermin; Knorr, Andreas; Xu, Xiaodong; Li, Xiaoqin

    2016-01-01

    Transition metal dichalcogenides (TMDs) have garnered considerable interest in recent years owing to their layer thickness-dependent optoelectronic properties. In monolayer TMDs, the large carrier effective masses, strong quantum confinement, and reduced dielectric screening lead to pronounced exciton resonances with remarkably large binding energies and coupled spin and valley degrees of freedom (valley excitons). Coherent control of valley excitons for atomically thin optoelectronics and valleytronics requires understanding and quantifying sources of exciton decoherence. In this work, we reveal how exciton-exciton and exciton-phonon scattering influence the coherent quantum dynamics of valley excitons in monolayer TMDs, specifically tungsten diselenide (WSe2), using two-dimensional coherent spectroscopy. Excitation-density and temperature dependent measurements of the homogeneous linewidth (inversely proportional to the optical coherence time) reveal that exciton-exciton and exciton-phonon interactions are significantly stronger compared to quasi-2D quantum wells and 3D bulk materials. The residual homogeneous linewidth extrapolated to zero excitation density and temperature is ~1:6 meV (equivalent to a coherence time of 0.4 ps), which is limited only by the population recombination lifetime in this sample. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  18. Spectral coherent-state quantum cryptography.

    Science.gov (United States)

    Cincotti, Gabriella; Spiekman, Leo; Wada, Naoya; Kitayama, Ken-ichi

    2008-11-01

    A novel implementation of quantum-noise optical cryptography is proposed, which is based on a simplified architecture that allows long-haul, high-speed transmission in a fiber optical network. By using a single multiport encoder/decoder and 16 phase shifters, this new approach can provide the same confidentiality as other implementations of Yuen's encryption protocol, which use a larger number of phase or polarization coherent states. Data confidentiality and error probability for authorized and unauthorized receivers are carefully analyzed.

  19. Interpreting quantum coherence through a quantum measurement process

    Science.gov (United States)

    Yao, Yao; Dong, G. H.; Xiao, Xing; Li, Mo; Sun, C. P.

    2017-11-01

    Recently, there has been a renewed interest in the quantification of coherence or other coherencelike concepts within the framework of quantum resource theory. However, rigorously defined or not, the notion of coherence or decoherence has already been used by the community for decades since the advent of quantum theory. Intuitively, the definitions of coherence and decoherence should be two sides of the same coin. Therefore, a natural question is raised: How can the conventional decoherence processes, such as the von Neumann-Lüders (projective) measurement postulation or partially dephasing channels, fit into the bigger picture of the recently established theoretical framework? Here we show that the state collapse rules of the von Neumann or Lüders-type measurements, as special cases of genuinely incoherent operations (GIOs), are consistent with the resource theories of quantum coherence. New hierarchical measures of coherence are proposed for the Lüders-type measurement and their relationship with measurement-dependent discord is addressed. Moreover, utilizing the fixed-point theory for C* algebra, we prove that GIOs indeed represent a particular type of partially dephasing (phase-damping) channels which have a matrix representation based on the Schur product. By virtue of the Stinespring dilation theorem, the physical realizations of incoherent operations are investigated in detail and we find that GIOs in fact constitute the core of strictly incoherent operations and generally incoherent operations and the unspeakable notion of coherence induced by GIOs can be transferred to the theories of speakable coherence by the corresponding permutation or relabeling operators.

  20. Performance of quantum cloning and deleting machines over coherence

    Science.gov (United States)

    Karmakar, Sumana; Sen, Ajoy; Sarkar, Debasis

    2017-10-01

    Coherence, being at the heart of interference phenomena, is found to be an useful resource in quantum information theory. Here we want to understand quantum coherence under the combination of two fundamentally dual processes, viz., cloning and deleting. We found the role of quantum cloning and deletion machines with the consumption and generation of quantum coherence. We establish cloning as a cohering process and deletion as a decohering process. Fidelity of the process will be shown to have connection with coherence generation and consumption of the processes.

  1. Quantum-Well Thermophotovoltaic Cells

    Science.gov (United States)

    Freudlich, Alex; Ignatiev, Alex

    2009-01-01

    Thermophotovoltaic cells containing multiple quantum wells have been invented as improved means of conversion of thermal to electrical energy. The semiconductor bandgaps of the quantum wells can be tailored to be narrower than those of prior thermophotovoltaic cells, thereby enabling the cells to convert energy from longer-wavelength photons that dominate the infrared-rich spectra of typical thermal sources with which these cells would be used. Moreover, in comparison with a conventional single-junction thermophotovoltaic cell, a cell containing multiple narrow-bandgap quantum wells according to the invention can convert energy from a wider range of wavelengths. Hence, the invention increases the achievable thermal-to-electrical energy-conversion efficiency. These thermophotovoltaic cells are expected to be especially useful for extracting electrical energy from combustion, waste-heat, and nuclear sources having temperatures in the approximate range from 1,000 to 1,500 C.

  2. Quantum coherence and entanglement control for atom-cavity systems

    Science.gov (United States)

    Shu, Wenchong

    Coherence and entanglement play a significant role in the quantum theory. Ideal quantum systems, "closed" to the outside world, remain quantum forever and thus manage to retain coherence and entanglement. Real quantum systems, however, are open to the environment and are therefore susceptible to the phenomenon of decoherence and disentanglement which are major hindrances to the effectiveness of quantum information processing tasks. In this thesis we have theoretically studied the evolution of coherence and entanglement in quantum systems coupled to various environments. We have also studied ways and means of controlling the decay of coherence and entanglement. We have studied the exact qubit entanglement dynamics of some interesting initial states coupled to a high-Q cavity containing zero photon, one photon, two photons and many photons respectively. We have found that an initially correlated environmental state can serve as an enhancer for entanglement decay or generation processes. More precisely, we have demonstrated that the degree of entanglement, including its collapse as well as its revival times, can be significantly modified by the correlated structure of the environmental modes. We have also studied dynamical decoupling (DD) technique --- a prominent strategy of controlling decoherence and preserving entanglement in open quantum systems. We have analyzed several DD control methods applied to qubit systems that can eliminate the system-environment coupling and prolong the quantum coherence time. Particularly, we have proposed a new DD sequence consisting a set of designed control operators that can universally protected an unknown qutrit state against colored phase and amplitude environment noises. In addition, in a non-Markovian regime, we have reformulated the quantum state diffusion (QSD) equation to incorporate the effect of the external control fields. Without any assumptions on the system-environment coupling and the size of environment, we have

  3. Communication via an entangled coherent quantum network

    Energy Technology Data Exchange (ETDEWEB)

    El Allati, A; Hassouni, Y [Faculte des Sciences, Departement de Physique, Laboratoire de Physique Theorique URAC 13, Universite Mohammed V Agdal Rabat, Avenue Ibn Battouta, B.P. 1014, Rabat (Morocco); Metwally, N, E-mail: Nmetwally@gmail.com [Mathematics Department, College of Science, University of Bahrain, PO Box 32038 (Bahrain)

    2011-06-01

    A quantum network (QN) is constructed via maximum entangled coherent states. The possibility of using this network to achieve quantum communication between multi-participants is investigated. We showed that the probability of the successful teleportation of an unknown state depends on the size of the used network. As the number of participants increases, the success probability does not depend on the intensity of the field. Implementing a quantum teleportation protocol via a noisy QN is discussed. The unknown state can be teleported perfectly with small values of the field intensity and larger values of the noise strength. The success probability of this suggested protocol increases abruptly for larger values of the noise strength and gradually for small values. For small-size QNs, the fidelity of the teleported state decreases smoothly, whereas it decreases abruptly for larger-sized networks.

  4. Quantum Communication Using Coherent Rejection Sampling.

    Science.gov (United States)

    Anshu, Anurag; Devabathini, Vamsi Krishna; Jain, Rahul

    2017-09-22

    Compression of a message up to the information it carries is key to many tasks involved in classical and quantum information theory. Schumacher [B. Schumacher, Phys. Rev. A 51, 2738 (1995)PLRAAN1050-294710.1103/PhysRevA.51.2738] provided one of the first quantum compression schemes and several more general schemes have been developed ever since [M. Horodecki, J. Oppenheim, and A. Winter, Commun. Math. Phys. 269, 107 (2007); CMPHAY0010-361610.1007/s00220-006-0118-xI. Devetak and J. Yard, Phys. Rev. Lett. 100, 230501 (2008); PRLTAO0031-900710.1103/PhysRevLett.100.230501A. Abeyesinghe, I. Devetak, P. Hayden, and A. Winter, Proc. R. Soc. A 465, 2537 (2009)PRLAAZ1364-502110.1098/rspa.2009.0202]. However, the one-shot characterization of these quantum tasks is still under development, and often lacks a direct connection with analogous classical tasks. Here we show a new technique for the compression of quantum messages with the aid of entanglement. We devise a new tool that we call the convex split lemma, which is a coherent quantum analogue of the widely used rejection sampling procedure in classical communication protocols. As a consequence, we exhibit new explicit protocols with tight communication cost for quantum state merging, quantum state splitting, and quantum state redistribution (up to a certain optimization in the latter case). We also present a port-based teleportation scheme which uses a fewer number of ports in the presence of information about input.

  5. Coherent and generalized intelligent states for infinite square well potential and nonlinear oscillators

    International Nuclear Information System (INIS)

    El Kinani, A.H; Daoud, M.

    2001-10-01

    This article is an illustration of the construction of coherent and generalized intelligent states which has been recently proposed by us for an arbitrary quantum system. We treat the quantum system submitted to the infinite square well potential and the nonlinear oscillators. By means of the analytical representation of the coherent states a la Gazeau-Klauder and those a la Klauder-Perelomov, we derive the generalized intelligent states in analytical ways. (author)

  6. Quantum coherence and quantum phase transition in the XY model with staggered Dzyaloshinsky-Moriya interaction

    Energy Technology Data Exchange (ETDEWEB)

    Hui, Ning-Ju [Department of Applied Physics, Xi' an University of Technology, Xi' an 710054 (China); Xu, Yang-Yang; Wang, Jicheng; Zhang, Yixin [Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, Wuxi 214122 (China); Hu, Zheng-Da, E-mail: huyuanda1112@jiangnan.edu.cn [Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, Wuxi 214122 (China)

    2017-04-01

    We investigate the properties of geometric quantum coherence in the XY spin-1/2 chain with staggered Dzyaloshinsky-Moriya interaction via the quantum renormalization-group approach. It is shown that the geometric quantum coherence and its coherence susceptibility are effective to detect the quantum phase transition. In the thermodynamic limit, the geometric quantum coherence exhibits a sudden jump. The coherence susceptibilities versus the anisotropy parameter and the Dzyaloshinsky-Moriya interaction are infinite and vanishing, respectively, illustrating the distinct roles of the anisotropy parameter and the Dzyaloshinsky-Moriya interaction in quantum phase transition. Moreover, we also explore the finite-size scaling behaviors of the coherence susceptibilities. For a finite-size chain, the coherence susceptibility versus the phase-transition parameter is always maximal at the critical point, indicating the dramatic quantum fluctuation. Besides, we show that the correlation length can be revealed by the scaling exponent for the coherence susceptibility versus the Dzyaloshinsky-Moriya interaction.

  7. Coherent nonlinear quantum model for composite fermions

    Energy Technology Data Exchange (ETDEWEB)

    Reinisch, Gilbert [Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik (Iceland); Gudmundsson, Vidar, E-mail: vidar@hi.is [Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik (Iceland); Manolescu, Andrei [School of Science and Engineering, Reykjavik University, Menntavegur 1, IS-101 Reykjavik (Iceland)

    2014-04-01

    Originally proposed by Read [1] and Jain [2], the so-called “composite-fermion” is a phenomenological quasi-particle resulting from the attachment of two local flux quanta, seen as nonlocal vortices, to electrons situated on a two-dimensional (2D) surface embedded in a strong orthogonal magnetic field. In this Letter this phenomenon is described as a highly-nonlinear and coherent mean-field quantum process of the soliton type by use of a 2D stationary Schrödinger–Poisson differential model with only two Coulomb-interacting electrons. At filling factor ν=1/3 of the lowest Landau level the solution agrees with both the exact two-electron antisymmetric Schrödinger wavefunction and with Laughlin's Jastrow-type guess for the fractional quantum Hall effect, hence providing this latter with a tentative physical justification deduced from the experimental results and based on first principles.

  8. Coherent one-way quantum key distribution

    Science.gov (United States)

    Stucki, Damien; Fasel, Sylvain; Gisin, Nicolas; Thoma, Yann; Zbinden, Hugo

    2007-05-01

    Quantum Key Distribution (QKD) consists in the exchange of a secrete key between two distant points [1]. Even if quantum key distribution systems exist and commercial systems are reaching the market [2], there are still improvements to be made: simplify the construction of the system; increase the secret key rate. To this end, we present a new protocol for QKD tailored to work with weak coherent pulses and at high bit rates [3]. The advantages of this system are that the setup is experimentally simple and it is tolerant to reduced interference visibility and to photon number splitting attacks, thus resulting in a high efficiency in terms of distilled secret bits per qubit. After having successfully tested the feasibility of the system [3], we are currently developing a fully integrated and automated prototype within the SECOQC project [4]. We present the latest results using the prototype. We also discuss the issue of the photon detection, which still remains the bottleneck for QKD.

  9. Spatially indirect excitons in coupled quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Chih-Wei Eddy [Univ. of California, Berkeley, CA (United States)

    2004-03-01

    Microscopic quantum phenomena such as interference or phase coherence between different quantum states are rarely manifest in macroscopic systems due to a lack of significant correlation between different states. An exciton system is one candidate for observation of possible quantum collective effects. In the dilute limit, excitons in semiconductors behave as bosons and are expected to undergo Bose-Einstein condensation (BEC) at a temperature several orders of magnitude higher than for atomic BEC because of their light mass. Furthermore, well-developed modern semiconductor technologies offer flexible manipulations of an exciton system. Realization of BEC in solid-state systems can thus provide new opportunities for macroscopic quantum coherence research. In semiconductor coupled quantum wells (CQW) under across-well static electric field, excitons exist as separately confined electron-hole pairs. These spatially indirect excitons exhibit a radiative recombination time much longer than their thermal relaxation time a unique feature in direct band gap semiconductor based structures. Their mutual repulsive dipole interaction further stabilizes the exciton system at low temperature and screens in-plane disorder more effectively. All these features make indirect excitons in CQW a promising system to search for quantum collective effects. Properties of indirect excitons in CQW have been analyzed and investigated extensively. The experimental results based on time-integrated or time-resolved spatially-resolved photoluminescence (PL) spectroscopy and imaging are reported in two categories. (i) Generic indirect exciton systems: general properties of indirect excitons such as the dependence of exciton energy and lifetime on electric fields and densities were examined. (ii) Quasi-two-dimensional confined exciton systems: highly statistically degenerate exciton systems containing more than tens of thousands of excitons within areas as small as (10 micrometer)2 were

  10. Non-classical Correlations and Quantum Coherence in Mixed Environments

    Science.gov (United States)

    Hu, Zheng-Da; Wei, Mei-Song; Wang, Jicheng; Zhang, Yixin; He, Qi-Liang

    2018-05-01

    We investigate non-classical correlations (entanglement and quantum discord) and quantum coherence for an open two-qubit system each independently coupled to a bosonic environment and a spin environment, respectively. The modulating effects of spin environment and bosonic environment are respectively explored. A relation among the quantum coherence, quantum discord and classical correlation is found during the sudden transition phenomenon. We also compare the case of mixed environments with that of the same environments, showing that the dynamics is dramatically changed.

  11. Experimental investigation of quantum effects in time-resolved resonance Rayleigh scattering from quantum well excitons

    DEFF Research Database (Denmark)

    Birkedal, Dan; Shah, Jagdeep; Shchegrov, Andrei V.

    2000-01-01

    Resonant Rayleigh scattering from quantum well excitons is investigated using ultrafast spectral interferometry. We isolate the coherent Rayleigh scattering from incoherent luminescence in a single speckle. Averaging the resonant Rayleigh intensity over several speckles allows us to identify...... features in support of quantum corrections to the classical description of the underlying scattering process....

  12. Blind quantum computing with weak coherent pulses.

    Science.gov (United States)

    Dunjko, Vedran; Kashefi, Elham; Leverrier, Anthony

    2012-05-18

    The universal blind quantum computation (UBQC) protocol [A. Broadbent, J. Fitzsimons, and E. Kashefi, in Proceedings of the 50th Annual IEEE Symposiumon Foundations of Computer Science (IEEE Computer Society, Los Alamitos, CA, USA, 2009), pp. 517-526.] allows a client to perform quantum computation on a remote server. In an ideal setting, perfect privacy is guaranteed if the client is capable of producing specific, randomly chosen single qubit states. While from a theoretical point of view, this may constitute the lowest possible quantum requirement, from a pragmatic point of view, generation of such states to be sent along long distances can never be achieved perfectly. We introduce the concept of ϵ blindness for UBQC, in analogy to the concept of ϵ security developed for other cryptographic protocols, allowing us to characterize the robustness and security properties of the protocol under possible imperfections. We also present a remote blind single qubit preparation protocol with weak coherent pulses for the client to prepare, in a delegated fashion, quantum states arbitrarily close to perfect random single qubit states. This allows us to efficiently achieve ϵ-blind UBQC for any ϵ>0, even if the channel between the client and the server is arbitrarily lossy.

  13. Blind Quantum Computing with Weak Coherent Pulses

    Science.gov (United States)

    Dunjko, Vedran; Kashefi, Elham; Leverrier, Anthony

    2012-05-01

    The universal blind quantum computation (UBQC) protocol [A. Broadbent, J. Fitzsimons, and E. Kashefi, in Proceedings of the 50th Annual IEEE Symposiumon Foundations of Computer Science (IEEE Computer Society, Los Alamitos, CA, USA, 2009), pp. 517-526.] allows a client to perform quantum computation on a remote server. In an ideal setting, perfect privacy is guaranteed if the client is capable of producing specific, randomly chosen single qubit states. While from a theoretical point of view, this may constitute the lowest possible quantum requirement, from a pragmatic point of view, generation of such states to be sent along long distances can never be achieved perfectly. We introduce the concept of ɛ blindness for UBQC, in analogy to the concept of ɛ security developed for other cryptographic protocols, allowing us to characterize the robustness and security properties of the protocol under possible imperfections. We also present a remote blind single qubit preparation protocol with weak coherent pulses for the client to prepare, in a delegated fashion, quantum states arbitrarily close to perfect random single qubit states. This allows us to efficiently achieve ɛ-blind UBQC for any ɛ>0, even if the channel between the client and the server is arbitrarily lossy.

  14. Vacuum-induced coherence in quantum dot systems

    Science.gov (United States)

    Sitek, Anna; Machnikowski, Paweł

    2012-11-01

    We present a theoretical study of vacuum-induced coherence in a pair of vertically stacked semiconductor quantum dots. The process consists in a coherent excitation transfer from a single-exciton state localized in one dot to a delocalized state in which the exciton occupation gets trapped. We study the influence of the factors characteristic of quantum dot systems (as opposed to natural atoms): energy mismatch, coupling between the single-exciton states localized in different dots, and different and nonparallel dipoles due to sub-band mixing, as well as coupling to phonons. We show that the destructive effect of the energy mismatch can be overcome by an appropriate interplay of the dipole moments and coupling between the dots which allows one to observe the trapping effect even in a structure with technologically realistic energy splitting of the order of milli-electron volts. We also analyze the impact of phonon dynamics on the occupation trapping and show that phonon effects are suppressed in a certain range of system parameters. This analysis shows that the vacuum-induced coherence effect and the associated long-living trapped excitonic population can be achieved in quantum dots.

  15. Quantum Coherence, Time-Translation Symmetry, and Thermodynamics

    Directory of Open Access Journals (Sweden)

    Matteo Lostaglio

    2015-04-01

    Full Text Available The first law of thermodynamics imposes not just a constraint on the energy content of systems in extreme quantum regimes but also symmetry constraints related to the thermodynamic processing of quantum coherence. We show that this thermodynamic symmetry decomposes any quantum state into mode operators that quantify the coherence present in the state. We then establish general upper and lower bounds for the evolution of quantum coherence under arbitrary thermal operations, valid for any temperature. We identify primitive coherence manipulations and show that the transfer of coherence between energy levels manifests irreversibility not captured by free energy. Moreover, the recently developed thermomajorization relations on block-diagonal quantum states are observed to be special cases of this symmetry analysis.

  16. Coherent control of diamond defects for quantum information science and quantum sensing

    Science.gov (United States)

    Maurer, Peter

    Quantum mechanics, arguably one of the greatest achievements of modern physics, has not only fundamentally changed our understanding of nature but is also taking an ever increasing role in engineering. Today, the control of quantum systems has already had a far-reaching impact on time and frequency metrology. By gaining further control over a large variety of different quantum systems, many potential applications are emerging. Those applications range from the development of quantum sensors and new quantum metrological approaches to the realization of quantum information processors and quantum networks. Unfortunately most quantum systems are very fragile objects that require tremendous experimental effort to avoid dephasing. Being able to control the interaction between a quantum system with its local environment embodies therefore an important aspect for application and hence is at the focus of this thesis. Nitrogen Vacancy (NV) color centers in diamond have recently attracted attention as a room temperature solid state spin system that expresses long coherence times. The electronic spin associated with NV centers can be efficiently manipulated, initialized and readout using microwave and optical techniques. Inspired by these extraordinary properties, much effort has been dedicated to use NV centers as a building block for scalable room temperature quantum information processing and quantum communication as well as a quantum sensing. In the first part of this thesis we demonstrate that by decoupling the spin from the local environment the coherence time of a NV quantum register can be extended by three order of magnitudes. Employing a novel dissipative mechanism in combination with dynamical decoupling, memory times exceeding one second are observed. The second part shows that, based on quantum control, NV centers in nano-diamonds provide a nanoscale temperature sensor with unprecedented accuracy enabling local temperature measurements in living biological cells

  17. Coherence enhanced quantum metrology in a nonequilibrium optical molecule

    Science.gov (United States)

    Wang, Zhihai; Wu, Wei; Cui, Guodong; Wang, Jin

    2018-03-01

    We explore the quantum metrology in an optical molecular system coupled to two environments with different temperatures, using a quantum master equation beyond secular approximation. We discover that the steady-state coherence originating from and sustained by the nonequilibrium condition can enhance quantum metrology. We also study the quantitative measures of the nonequilibrium condition in terms of the curl flux, heat current and entropy production at the steady state. They are found to grow with temperature difference. However, an apparent paradox arises considering the contrary behaviors of the steady-state coherence and the nonequilibrium measures in relation to the inter-cavity coupling strength. This paradox is resolved by decomposing the heat current into a population part and a coherence part. Only the latter, the coherence part of the heat current, is tightly connected to the steady-state coherence and behaves similarly with respect to the inter-cavity coupling strength. Interestingly, the coherence part of the heat current flows from the low-temperature reservoir to the high-temperature reservoir, opposite to the direction of the population heat current. Our work offers a viable way to enhance quantum metrology for open quantum systems through steady-state coherence sustained by the nonequilibrium condition, which can be controlled and manipulated to maximize its utility. The potential applications go beyond quantum metrology and extend to areas such as device designing, quantum computation and quantum technology in general.

  18. Coherence and spin effects in quantum dots

    International Nuclear Information System (INIS)

    Katsumoto, S

    2007-01-01

    This review focuses on experiments on coherent transport through quantum dot systems. The most important quantity obtained in coherent transport is the phase shift through the dots, which gives complementary information to the scattering amplitude (i.e. the conductance). However, two-terminal devices have a particular difficulty, called 'phase rigidity', in obtaining the phase shift. There are two representative ways to avoid this problem: one is to adopt a multi-terminal configuration and another is to use resonance in the interferometer. This review mainly reviews the latter approaches. Such resonance in the whole interferometer often joins with local resonance inside the interferometer and appears as the Fano effect, which is a powerful tool for investigating the phase shift problem with the aid of theories. In addition to such resonances of single-electron states, electron spin causes a kind of many-body resonance, that is, the Kondo effect. Combination of these resonances is the Fano-Kondo effect. Experiments on the Fano-Kondo effect, which unveil the nature of the Kondo resonance, are also reviewed. (topical review)

  19. Quantum mechanics in coherent algebras on phase space

    International Nuclear Information System (INIS)

    Lesche, B.; Seligman, T.H.

    1986-01-01

    Quantum mechanics is formulated on a quantum mechanical phase space. The algebra of observables and states is represented by an algebra of functions on phase space that fulfills a certain coherence condition, expressing the quantum mechanical superposition principle. The trace operation is an integration over phase space. In the case where the canonical variables independently run from -infinity to +infinity the formalism reduces to the representation of quantum mechanics by Wigner distributions. However, the notion of coherent algebras allows to apply the formalism to spaces for which the Wigner mapping is not known. Quantum mechanics of a particle in a plane in polar coordinates is discussed as an example. (author)

  20. Coherence and dephasing in self-assembled quantum dots

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Leosson, K.; Birkedal, Dan

    2003-01-01

    We measured dephasing times in InGaAl/As self-assembled quantum dots at low temperature using degenerate four-wave mixing. At 0K, the coherence time of the quantum dots is lifetime limited, whereas at finite temperatures pure dephasing by exciton-phonon interactions governs the quantum dot...

  1. International Conference on Coherence and Quantum Optics

    CERN Document Server

    RECENT DEVELOPMENTS IN QUANTUM OPTICS

    1993-01-01

    This volume is composed of papers (invited and contributed) presented at the International Conference on Coherence and Quantum Optics held at the University of Hyderabad January 5-January 10, 1991. It has been organized by Professor Girish Agarwal and his colleagues at the School of Physics, University of Hyderabad, Hyder­ abad, India under partial support from the Department of Science and Technology, Government of India, International Center for Theoretical Physics, Trieste, Italy and the National Science Foundation, USA. Without the untiring efforts of Prof. Girish Agarwal and the members of his quantum office group, the Conference and the present volume would not have been possible. Some extraordinary circumstances resulted in a delay of the publication of the present volume. Our sincere apologies to all the authors. We deeply regret the inconvenience caused due to the delay. A debt of gratitude is due to Ms. Kim Bella for the excellent typing job of the different versions and the final version of the ma...

  2. Silicon Germanium Quantum Well Thermoelectrics

    Science.gov (United States)

    Davidson, Anthony Lee, III

    Today's growing energy demands require new technologies to provide high efficiency clean energy. Thermoelectrics that convert heat to electrical energy directly can provide a method for the automobile industry to recover waste heat to power vehicle electronics, hence improving fuel economy. If large enough efficiencies can be obtained then the internal combustion engine could even be replaced. Exhaust temperature for automotive application range from 400 to 800 K. In this temperature range the current state of the art materials are bulk Si1-xGex alloys. By alternating layers of Si and Si1-xGex alloy device performance may be enhanced through quantum well effects and variations in material thermal properties. In this study, superlattices designed for in-plane operation with varying period and crystallinity are examined to determine the effect on electrical and thermal properties. In-plane electrical resistivity of these materials was found to be below the bulk material at a similar doping at room temperature, confirming the role of quantum wells in electron transport. As period is reduced in the structures boundary scattering limits electron propagation leading to increased resistivity. The Seebeck coefficient measured at room temperature is higher than the bulk material, additionally lending proof to the effects of quantum wells. When examining cross-plane operation the low doping in the Si layers of the device produce high resistivity resulting from boundary scattering. Thermal conductivity was measured from 77 K up to 674 K and shows little variation due to periodicity and temperature, however an order of magnitude reduction over bulk Si1-xGex is shown in all samples. A model is developed that suggests a combination of phonon dispersion effects and strong boundary scattering. Further study of the phonon dispersion effects was achieved through the examination of the heat capacity by combining thermal diffusivity with thermal conductivity. All superlattices show a

  3. Coherence-generating power of quantum dephasing processes

    Science.gov (United States)

    Styliaris, Georgios; Campos Venuti, Lorenzo; Zanardi, Paolo

    2018-03-01

    We provide a quantification of the capability of various quantum dephasing processes to generate coherence out of incoherent states. The measures defined, admitting computable expressions for any finite Hilbert-space dimension, are based on probabilistic averages and arise naturally from the viewpoint of coherence as a resource. We investigate how the capability of a dephasing process (e.g., a nonselective orthogonal measurement) to generate coherence depends on the relevant bases of the Hilbert space over which coherence is quantified and the dephasing process occurs, respectively. We extend our analysis to include those Lindblad time evolutions which, in the infinite-time limit, dephase the system under consideration and calculate their coherence-generating power as a function of time. We further identify specific families of such time evolutions that, although dephasing, have optimal (over all quantum processes) coherence-generating power for some intermediate time. Finally, we investigate the coherence-generating capability of random dephasing channels.

  4. Optical generation and control of quantum coherence in semiconductor nanostructures

    CERN Document Server

    Slavcheva, Gabriela

    2010-01-01

    The unprecedented control of coherence that can be exercised in quantum optics of atoms and molecules has stimulated increasing efforts in extending it to solid-state systems. One motivation to exploit the coherent phenomena comes from the emergence of the quantum information paradigm, however many more potential device applications ranging from novel lasers to spintronics are all bound up with issues in coherence. The book focuses on recent advances in the optical control of coherence in excitonic and polaritonic systems as model systems for the complex semiconductor dynamics towards the goal

  5. Quantum renormalization group approach to quantum coherence and multipartite entanglement in an XXZ spin chain

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wei [Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027 (China); Beijing Computational Science Research Center, Beijing 100193 (China); Xu, Jing-Bo, E-mail: xujb@zju.edu.cn [Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027 (China)

    2017-01-30

    We investigate the performances of quantum coherence and multipartite entanglement close to the quantum critical point of a one-dimensional anisotropic spin-1/2 XXZ spin chain by employing the real-space quantum renormalization group approach. It is shown that the quantum criticality of XXZ spin chain can be revealed by the singular behaviors of the first derivatives of renormalized quantum coherence and multipartite entanglement in the thermodynamics limit. Moreover, we find the renormalized quantum coherence and multipartite entanglement obey certain universal exponential-type scaling laws in the vicinity of the quantum critical point of XXZ spin chain. - Highlights: • The QPT of XXZ chain is studied by renormalization group. • The renormalized coherence and multiparticle entanglement is investigated. • Scaling laws of renormalized coherence and multiparticle entanglement are revealed.

  6. Directly Measuring the Degree of Quantum Coherence using Interference Fringes

    Science.gov (United States)

    Wang, Yi-Tao; Tang, Jian-Shun; Wei, Zhi-Yuan; Yu, Shang; Ke, Zhi-Jin; Xu, Xiao-Ye; Li, Chuan-Feng; Guo, Guang-Can

    2017-01-01

    Quantum coherence is the most distinguished feature of quantum mechanics. It lies at the heart of the quantum-information technologies as the fundamental resource and is also related to other quantum resources, including entanglement. It plays a critical role in various fields, even in biology. Nevertheless, the rigorous and systematic resource-theoretic framework of coherence has just been developed recently, and several coherence measures are proposed. Experimentally, the usual method to measure coherence is to perform state tomography and use mathematical expressions. Here, we alternatively develop a method to measure coherence directly using its most essential behavior—the interference fringes. The ancilla states are mixed into the target state with various ratios, and the minimal ratio that makes the interference fringes of the "mixed state" vanish is taken as the quantity of coherence. We also use the witness observable to witness coherence, and the optimal witness constitutes another direct method to measure coherence. For comparison, we perform tomography and calculate l1 norm of coherence, which coincides with the results of the other two methods in our situation. Our methods are explicit and robust, providing a nice alternative to the tomographic technique.

  7. Critical components for diamond-based quantum coherent devices

    International Nuclear Information System (INIS)

    Greentree, Andrew D; Olivero, Paolo; Draganski, Martin; Trajkov, Elizabeth; Rabeau, James R; Reichart, Patrick; Gibson, Brant C; Rubanov, Sergey; Huntington, Shane T; Jamieson, David N; Prawer, Steven

    2006-01-01

    The necessary elements for practical devices exploiting quantum coherence in diamond materials are summarized, and progress towards their realization documented. A brief review of future prospects for diamond-based devices is also provided

  8. Quantum superchemistry in an output coupler of coherent matter waves

    International Nuclear Information System (INIS)

    Jing, H.; Cheng, J.

    2006-01-01

    We investigate the quantum superchemistry or Bose-enhanced atom-molecule conversions in a coherent output coupler of matter waves, as a simple generalization of the two-color photoassociation. The stimulated effects of molecular output step and atomic revivals are exhibited by steering the rf output couplings. The quantum noise-induced molecular damping occurs near a total conversion in a levitation trap. This suggests a feasible two-trap scheme to make a stable coherent molecular beam

  9. Entanglement diversion and quantum teleportation of entangled coherent states

    Institute of Scientific and Technical Information of China (English)

    Cai Xin-Hua; Guo Jie-Rong; Nie Jian-Jun; Jia Jin-Ping

    2006-01-01

    The proposals on entanglement diversion and quantum teleportation of entangled coherent states are presented.In these proposals,the entanglement between two coherent states,|α〉and |-α〉,with the same amplitude but a phase difference of π is utilized as a quantum channel.The processes of the entanglement diversion and the teleportation are achieved by using the 5050 symmetric beam splitters,the phase shifters and the photodetectors with the help of classical information.

  10. Exciton coherence in semiconductor quantum dots

    International Nuclear Information System (INIS)

    Ishi-Hayase, Junko; Akahane, Kouichi; Yamamoto, Naokatsu; Sasaki, Masahide; Kujiraoka, Mamiko; Ema, Kazuhiro

    2009-01-01

    The coherent dynamics of excitons in InAs quantum dots (QDs) was investigated in the telecommunication wavelength range using a transient four-wave mixing technique. The sample was fabricated on an InP(311)B substrate using strain compensation to control the emission wavelength. This technique also enabled us to fabricate a 150-layer stacked QD structure for obtaining a high S/N in the four-wave mixing measurements, although no high-sensitive heterodyne detection was carried out. The dephasing time and transition dipole moment were precisely estimated from the polarization dependence of signals, taking into account their anisotropic properties. The population lifetimes of the excitons were also measured by using a polarization-dependent pumpprobe technique. A quantitative comparison of these anisotropies demonstrates that in our QDs, non-radiative population relaxation, polarization relaxation and pure dephasing are considerably smaller than the radiative relaxation. A comparison of the results of the four-wave mixing and pump-probe measurements revealed that the pure dephasing could be directly estimated with an accuracy of greater than 0.1 meV by comparing the results of four-wave mixing and pump-probe measurements. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Experimental demonstration of macroscopic quantum coherence in Gaussian states

    DEFF Research Database (Denmark)

    Marquardt, C.; Andersen, Ulrik Lund; Leuchs, G.

    2007-01-01

    We witness experimentally the presence of macroscopic coherence in Gaussian quantum states using a recently proposed criterion [E. G. Cavalcanti and M. D. Reid, Phys. Rev. Lett. 97 170405 (2006)]. The macroscopic coherence stems from interference between macroscopically distinct states in phase...

  12. Electron transport and coherence in semiconductor quantum dots and rings

    NARCIS (Netherlands)

    Van der Wiel, W.G.

    2002-01-01

    A number of experiments on electron transport and coherence in semiconductor vertical and lateral quantum dots and semiconductor rings is described. Quantum dots are often referred to as "artificial atoms", because of their similarities with real atoms. Examples of such atom-like properties that

  13. Optical manifestation of magnetoexcitons in near-surface quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Desirena, B.; Perez-Rodriguez, F

    2003-05-15

    The optical response of excitons in quantum wells, close to the sample boundary and under the action of a strong magnetic field perpendicular to their plane, is investigated theoretically. Solving the system of coupled equations for the coherent electron-hole interband amplitude and the electromagnetic field, reflectivity spectra for such nanostructures are calculated. The effect of the interaction of magnetoexcitons with the sample surface on the resonance structure of reflectivity spectra is analyzed. These optical spectra are also affected by the phase change of the electromagnetic wave as it propagates in the cap layer, overlying the quantum well.

  14. Quantum coherence in the time-resolved Auger measurement

    Energy Technology Data Exchange (ETDEWEB)

    Smirnova, Olga; Yakovlev, Vladislav S; Scrinzi, Armin

    2003-12-19

    We present a quantum mechanical model of the attosecond-XUV (extreme ultraviolet) pump and laser probe measurement of an Auger decay [Drescher et al., Nature (London) 419, 803 (2002)10.1038/nature01143] and investigate effects of quantum coherence. The time-dependent Schroedinger equation is solved by numerical integration and in analytic form. We explain the transition from a quasiclassical energy shift of the spectrum to the formation of sidebands and the enhancement of high- and low-energy tails of the Auger spectrum due to quantum coherence between photoionization and Auger decay.

  15. Spin Splitting in Different Semiconductor Quantum Wells

    International Nuclear Information System (INIS)

    Hao Yafei

    2012-01-01

    We theoretically investigate the spin splitting in four undoped asymmetric quantum wells in the absence of external electric field and magnetic field. The quantum well geometry dependence of spin splitting is studied with the Rashba and the Dresselhaus spin-orbit coupling included. The results show that the structure of quantum well plays an important role in spin splitting. The Rashba and the Dresselhaus spin splitting in four asymmetric quantum wells are quite different. The origin of the distinction is discussed in this work. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  16. Coherent states in quaternionic quantum mechanics

    Science.gov (United States)

    Adler, Stephen L.; Millard, Andrew C.

    1997-05-01

    We develop Perelomov's coherent states formalism to include the case of a quaternionic Hilbert space. We find that, because of the closure requirement, an attempted quaternionic generalization of the special nilpotent or Weyl group reduces to the normal complex case. For the case of the compact group SU(2), however, coherent states can be formulated using the quaternionic half-integer spin matrices of Finkelstein, Jauch, and Speiser, giving a nontrivial quaternionic analog of coherent states.

  17. Coherent Quantum Control of Multidimensional Vibrational Spectroscopy

    National Research Council Canada - National Science Library

    Mukamel, Shaul; Sanda, Frantisek; Harbola, Upendra; Venkatramani, Ravi; Varonine, Dmitri

    2006-01-01

    .... Factorial moments of photon counting statistics from a single molecule coupled to a quantum bath were expressed in terms of multipoint quantum correlation functions and represented by double-sided Feynman diagrams...

  18. Coupled Qubits for Next Generation Quantum Annealing: Improving Coherence

    Science.gov (United States)

    Weber, Steven; Samach, Gabriel; Hover, David; Rosenberg, Danna; Yoder, Jonilyn; Kim, David K.; Kerman, Andrew; Oliver, William D.

    Quantum annealing is an optimization technique which potentially leverages quantum tunneling to enhance computational performance. Existing quantum annealers use superconducting flux qubits with short coherence times, limited primarily by the use of large persistent currents. Here, we examine an alternative approach, using flux qubits with smaller persistent currents and longer coherence times. We demonstrate tunable coupling, a basic building-block for quantum annealing, between two such qubits. Furthermore, we characterize qubit coherence as a function of coupler setting and investigate the effect of flux noise in the coupler loop on qubit coherence. Our results provide insight into the available design space for next-generation quantum annealers with improved coherence. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) and by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  19. Coherent radiation by quantum dots and magnetic nanoclusters

    International Nuclear Information System (INIS)

    Yukalov, V. I.; Yukalova, E. P.

    2014-01-01

    The assemblies of either quantum dots or magnetic nanoclusters are studied. It is shown that such assemblies can produce coherent radiation. A method is developed for solving the systems of nonlinear equations describing the dynamics of such assemblies. The method is shown to be general and applicable to systems of different physical nature. Despite mathematical similarities of dynamical equations, the physics of the processes for quantum dots and magnetic nanoclusters is rather different. In a quantum dot assembly, coherence develops due to the Dicke effect of dot interactions through the common radiation field. For a system of magnetic clusters, coherence in the spin motion appears due to the Purcell effect caused by the feedback action of a resonator. Self-organized coherent spin radiation cannot arise without a resonator. This principal difference is connected with the different physical nature of dipole forces between the objects. Effective dipole interactions between the radiating quantum dots, appearing due to photon exchange, collectivize the dot radiation. While the dipolar spin interactions exist from the beginning, yet before radiation, and on the contrary, they dephase spin motion, thus destroying the coherence of moving spins. In addition, quantum dot radiation exhibits turbulent photon filamentation that is absent for radiating spins

  20. The origins of macroscopic quantum coherence in high temperature superconductivity

    International Nuclear Information System (INIS)

    Turner, Philip; Nottale, Laurent

    2015-01-01

    Highlights: • We propose a new theoretical approach to superconductivity in p-type cuprates. • Electron pairing mechanisms in the superconducting and pseudogap phases are proposed. • A scale free network of dopants is key to macroscopic quantum coherence. - Abstract: A new, theoretical approach to macroscopic quantum coherence and superconductivity in the p-type (hole doped) cuprates is proposed. The theory includes mechanisms to account for e-pair coupling in the superconducting and pseudogap phases and their inter relations observed in these materials. Electron pair coupling in the superconducting phase is facilitated by local quantum potentials created by static dopants in a mechanism which explains experimentally observed optimal doping levels and the associated peak in critical temperature. By contrast, evidence suggests that electrons contributing to the pseudogap are predominantly coupled by fractal spin waves (fractons) induced by the fractal arrangement of dopants. On another level, the theory offers new insights into the emergence of a macroscopic quantum potential generated by a fractal distribution of dopants. This, in turn, leads to the emergence of coherent, macroscopic spin waves and a second associated macroscopic quantum potential, possibly supported by charge order. These quantum potentials play two key roles. The first involves the transition of an expected diffusive process (normally associated with Anderson localization) in fractal networks, into e-pair coherence. The second involves the facilitation of tunnelling between localized e-pairs. These combined effects lead to the merger of the super conducting and pseudo gap phases into a single coherent condensate at optimal doping. The underlying theory relating to the diffusion to quantum transition is supported by Coherent Random Lasing, which can be explained using an analogous approach. As a final step, an experimental program is outlined to validate the theory and suggests a new

  1. Bound states in continuum: Quantum dots in a quantum well

    Energy Technology Data Exchange (ETDEWEB)

    Prodanović, Nikola, E-mail: elnpr@leeds.ac.uk [Institute of Microwaves and Photonics, School of Electronic and Electrical Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT (United Kingdom); Milanović, Vitomir [School of Electrical Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, 11000 Belgrade (Serbia); Ikonić, Zoran; Indjin, Dragan; Harrison, Paul [Institute of Microwaves and Photonics, School of Electronic and Electrical Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT (United Kingdom)

    2013-11-01

    We report on the existence of a bound state in the continuum (BIC) of quantum rods (QR). QRs are novel elongated InGaAs quantum dot nanostructures embedded in the shallower InGaAs quantum well. BIC appears as an excited confined dot state and energetically above the bottom of a well subband continuum. We prove that high height-to-diameter QR aspect ratio and the presence of a quantum well are indispensable conditions for accommodating the BIC. QRs are unique semiconductor nanostructures, exhibiting this mathematical curiosity predicted 83 years ago by Wigner and von Neumann.

  2. Coherent states and parasupersymmetric quantum mechanics

    Science.gov (United States)

    Debergh, Nathalie

    1992-01-01

    It is well known that Parafermi and Parabose statistics are natural extensions of the usual Fermi and Bose ones, enhancing trilinear (anti)commutation relations instead of bilinear ones. Due to this generalization, positive parameters appear: the so-called orders of paraquantization p (= 1, 2, 3, ...) and h sub 0 (= 1/2, 1, 3/2, ...), respectively, the first value leading in each case to the usual statistics. The superpostion of the parabosonic and parafermionic operators gives rise to parasupermultiplets for which mixed trilinear relations have already been studied leading to two (nonequivalent) sets: the relative Parabose and the relative Parafermi ones. For the specific values p = 1 = 2h sub 0, these sets reduce to the well known supersymmetry. Coherent states associated with this last model have been recently put in evidence through the annihilation operator point of view and the group theoretical approach or displacement operator context. We propose to realize the corresponding studies within the new context p = 2 = 2h sub 0, being then directly extended to any order of paraquantization.

  3. Fluctuation theorems in feedback-controlled open quantum systems: Quantum coherence and absolute irreversibility

    Science.gov (United States)

    Murashita, Yûto; Gong, Zongping; Ashida, Yuto; Ueda, Masahito

    2017-10-01

    The thermodynamics of quantum coherence has attracted growing attention recently, where the thermodynamic advantage of quantum superposition is characterized in terms of quantum thermodynamics. We investigate the thermodynamic effects of quantum coherent driving in the context of the fluctuation theorem. We adopt a quantum-trajectory approach to investigate open quantum systems under feedback control. In these systems, the measurement backaction in the forward process plays a key role, and therefore the corresponding time-reversed quantum measurement and postselection must be considered in the backward process, in sharp contrast to the classical case. The state reduction associated with quantum measurement, in general, creates a zero-probability region in the space of quantum trajectories of the forward process, which causes singularly strong irreversibility with divergent entropy production (i.e., absolute irreversibility) and hence makes the ordinary fluctuation theorem break down. In the classical case, the error-free measurement ordinarily leads to absolute irreversibility, because the measurement restricts classical paths to the region compatible with the measurement outcome. In contrast, in open quantum systems, absolute irreversibility is suppressed even in the presence of the projective measurement due to those quantum rare events that go through the classically forbidden region with the aid of quantum coherent driving. This suppression of absolute irreversibility exemplifies the thermodynamic advantage of quantum coherent driving. Absolute irreversibility is shown to emerge in the absence of coherent driving after the measurement, especially in systems under time-delayed feedback control. We show that absolute irreversibility is mitigated by increasing the duration of quantum coherent driving or decreasing the delay time of feedback control.

  4. Coherent states in quaternionic quantum mechanics

    International Nuclear Information System (INIS)

    Adler, S.L.; Millard, A.C.

    1997-01-01

    We develop Perelomov close-quote s coherent states formalism to include the case of a quaternionic Hilbert space. We find that, because of the closure requirement, an attempted quaternionic generalization of the special nilpotent or Weyl group reduces to the normal complex case. For the case of the compact group SU(2), however, coherent states can be formulated using the quaternionic half-integer spin matrices of Finkelstein, Jauch, and Speiser, giving a nontrivial quaternionic analog of coherent states. copyright 1997 American Institute of Physics

  5. Continuous Variable Quantum Key Distribution Using Polarized Coherent States

    Science.gov (United States)

    Vidiella-Barranco, A.; Borelli, L. F. M.

    We discuss a continuous variables method of quantum key distribution employing strongly polarized coherent states of light. The key encoding is performed using the variables known as Stokes parameters, rather than the field quadratures. Their quantum counterpart, the Stokes operators Ŝi (i=1,2,3), constitute a set of non-commuting operators, being the precision of simultaneous measurements of a pair of them limited by an uncertainty-like relation. Alice transmits a conveniently modulated two-mode coherent state, and Bob randomly measures one of the Stokes parameters of the incoming beam. After performing reconciliation and privacy amplification procedures, it is possible to distill a secret common key. We also consider a non-ideal situation, in which coherent states with thermal noise, instead of pure coherent states, are used for encoding.

  6. arXiv Quantum coherence of cosmological perturbations

    CERN Document Server

    Giovannini, Massimo

    2017-10-26

    In this paper, the degrees of quantum coherence of cosmological perturbations of different spins are computed in the large-scale limit and compared with the standard results holding for a single mode of the electromagnetic field in an optical cavity. The degree of second-order coherence of curvature inhomogeneities (and, more generally, of the scalar modes of the geometry) reproduces faithfully the optical limit. For the vector and tensor fluctuations, the numerical values of the normalized degrees of second-order coherence in the zero time-delay limit are always larger than unity (which is the Poisson benchmark value) but differ from the corresponding expressions obtainable in the framework of the single-mode approximation. General lessons are drawn on the quantum coherence of large-scale cosmological fluctuations.

  7. Particle creation and destruction of quantum coherence by topological change

    International Nuclear Information System (INIS)

    Lavrelashvili, G.V.; Rubakov, V.A.; Tinyakov, P.G.

    1988-01-01

    The possibility is considered that changes of spatial topology occur as tunneling events in quantum gravity. Creation of scalar and spinor particles during these tunneling transitions is studied. The relevant formalism based on the euclidean Schroedinger equation and coherent state representation is developed. This formalism is illustrated in a two-dimensional example. It is argued that the particle creation during the topological changes induces the loss of quantum coherence. The particle creation is calculated in the case of O(4)-invariant background euclidean four-dimensional metrics. This calculation is used for estimating the loss of quantum coherence. An upper limit on the rate of the topological changes, A -17 M 4 Pl , is derived from the observation of K 0 -anti K 0 oscillations. (orig.)

  8. Experimental quantum fingerprinting with weak coherent pulses

    Science.gov (United States)

    Xu, Feihu; Arrazola, Juan Miguel; Wei, Kejin; Wang, Wenyuan; Palacios-Avila, Pablo; Feng, Chen; Sajeed, Shihan; Lütkenhaus, Norbert; Lo, Hoi-Kwong

    2015-10-01

    Quantum communication holds the promise of creating disruptive technologies that will play an essential role in future communication networks. For example, the study of quantum communication complexity has shown that quantum communication allows exponential reductions in the information that must be transmitted to solve distributed computational tasks. Recently, protocols that realize this advantage using optical implementations have been proposed. Here we report a proof-of-concept experimental demonstration of a quantum fingerprinting system that is capable of transmitting less information than the best-known classical protocol. Our implementation is based on a modified version of a commercial quantum key distribution system using off-the-shelf optical components over telecom wavelengths, and is practical for messages as large as 100 Mbits, even in the presence of experimental imperfections. Our results provide a first step in the development of experimental quantum communication complexity.

  9. Experimental quantum fingerprinting with weak coherent pulses

    Science.gov (United States)

    Xu, Feihu; Arrazola, Juan Miguel; Wei, Kejin; Wang, Wenyuan; Palacios-Avila, Pablo; Feng, Chen; Sajeed, Shihan; Lütkenhaus, Norbert; Lo, Hoi-Kwong

    2015-01-01

    Quantum communication holds the promise of creating disruptive technologies that will play an essential role in future communication networks. For example, the study of quantum communication complexity has shown that quantum communication allows exponential reductions in the information that must be transmitted to solve distributed computational tasks. Recently, protocols that realize this advantage using optical implementations have been proposed. Here we report a proof-of-concept experimental demonstration of a quantum fingerprinting system that is capable of transmitting less information than the best-known classical protocol. Our implementation is based on a modified version of a commercial quantum key distribution system using off-the-shelf optical components over telecom wavelengths, and is practical for messages as large as 100 Mbits, even in the presence of experimental imperfections. Our results provide a first step in the development of experimental quantum communication complexity. PMID:26515586

  10. A Numerical Approach to Optimal Coherent Quantum LQG Controller Design Using Gradient Descent

    OpenAIRE

    Sichani, Arash Kh.; Vladimirov, Igor G.; Petersen, Ian R.

    2016-01-01

    This paper is concerned with coherent quantum linear quadratic Gaussian (CQLQG) control. The problem is to find a stabilizing measurement-free quantum controller for a quantum plant so as to minimize a mean square cost for the fully quantum closed-loop system. The plant and controller are open quantum systems interconnected through bosonic quantum fields. In comparison with the observation-actuation structure of classical controllers, coherent quantum feedback is less invasive to the quantum ...

  11. Hilbert-Schmidt quantum coherence in multi-qudit systems

    Science.gov (United States)

    Maziero, Jonas

    2017-11-01

    Using Bloch's parametrization for qudits ( d-level quantum systems), we write the Hilbert-Schmidt distance (HSD) between two generic n-qudit states as an Euclidean distance between two vectors of observables mean values in R^{Π_{s=1}nds2-1}, where ds is the dimension for qudit s. Then, applying the generalized Gell-Mann's matrices to generate SU(ds), we use that result to obtain the Hilbert-Schmidt quantum coherence (HSC) of n-qudit systems. As examples, we consider in detail one-qubit, one-qutrit, two-qubit, and two copies of one-qubit states. In this last case, the possibility for controlling local and non-local coherences by tuning local populations is studied, and the contrasting behaviors of HSC, l1-norm coherence, and relative entropy of coherence in this regard are noticed. We also investigate the decoherent dynamics of these coherence functions under the action of qutrit dephasing and dissipation channels. At last, we analyze the non-monotonicity of HSD under tensor products and report the first instance of a consequence (for coherence quantification) of this kind of property of a quantum distance measure.

  12. Signatures of discrete breathers in coherent state quantum dynamics

    International Nuclear Information System (INIS)

    Igumenshchev, Kirill; Ovchinnikov, Misha; Prezhdo, Oleg; Maniadis, Panagiotis

    2013-01-01

    In classical mechanics, discrete breathers (DBs) – a spatial time-periodic localization of energy – are predicted in a large variety of nonlinear systems. Motivated by a conceptual bridging of the DB phenomena in classical and quantum mechanical representations, we study their signatures in the dynamics of a quantum equivalent of a classical mechanical point in phase space – a coherent state. In contrast to the classical point that exhibits either delocalized or localized motion, the coherent state shows signatures of both localized and delocalized behavior. The transition from normal to local modes have different characteristics in quantum and classical perspectives. Here, we get an insight into the connection between classical and quantum perspectives by analyzing the decomposition of the coherent state into system's eigenstates, and analyzing the spacial distribution of the wave-function density within these eigenstates. We find that the delocalized and localized eigenvalue components of the coherent state are separated by a mixed region, where both kinds of behavior can be observed. Further analysis leads to the following observations. Considered as a function of coupling, energy eigenstates go through avoided crossings between tunneling and non-tunneling modes. The dominance of tunneling modes in the high nonlinearity region is compromised by the appearance of new types of modes – high order tunneling modes – that are similar to the tunneling modes but have attributes of non-tunneling modes. Certain types of excitations preferentially excite higher order tunneling modes, allowing one to study their properties. Since auto-correlation functions decrease quickly in highly nonlinear systems, short-time dynamics are sufficient for modeling quantum DBs. This work provides a foundation for implementing modern semi-classical methods to model quantum DBs, bridging classical and quantum mechanical signatures of DBs, and understanding spectroscopic experiments

  13. Advantages of coherent feedback for cooling quantum oscillators.

    Science.gov (United States)

    Hamerly, Ryan; Mabuchi, Hideo

    2012-10-26

    We model the cooling of open optical and optomechanical resonators via optical feedback in the linear quadratic Gaussian setting of stochastic control theory. We show that coherent feedback control schemes, in which the resonator is embedded in an interferometer to achieve all-optical feedback, can outperform the best possible linear quadratic Gaussian measurement-based schemes in the quantum regime of low steady-state excitation number. Such performance gains are attributed to the coherent controller's ability to process noncommuting output field quadratures simultaneously without loss of fidelity, and may provide important clues for the design of coherent feedback schemes for more general problems of nonlinear and robust control.

  14. Coherent pulse position modulation quantum cipher

    Energy Technology Data Exchange (ETDEWEB)

    Sohma, Masaki; Hirota, Osamu [Quantum ICT Research Institute, Tamagawa University, 6-1-1 Tamagawa-gakuen, Machida, Tokyo 194-8610 (Japan)

    2014-12-04

    On the basis of fundamental idea of Yuen, we present a new type of quantum random cipher, where pulse position modulated signals are encrypted in the picture of quantum Gaussian wave form. We discuss the security of our proposed system with a phase mask encryption.

  15. Wave-packet dynamics in quantum wells

    DEFF Research Database (Denmark)

    Kuznetsov, A. V.; Sanders, G. D.; Stanton, C. J.

    1995-01-01

    It has been recently recognized that in bulk semiconductors the displacement current caused by ultrafast optical generation of ''polarized pairs'' in the applied de field is an important mechanism of charge transport in addition to the usual transport current. In quantum-well systems, this polari......It has been recently recognized that in bulk semiconductors the displacement current caused by ultrafast optical generation of ''polarized pairs'' in the applied de field is an important mechanism of charge transport in addition to the usual transport current. In quantum-well systems...... that the carriers in a quantum well can behave as an ensemble of classical particles and produce a transport like photocurrent....

  16. Phase-controlled coherent population trapping in superconducting quantum circuits

    International Nuclear Information System (INIS)

    Cheng Guang-Ling; Wang Yi-Ping; Chen Ai-Xi

    2015-01-01

    We investigate the influences of the-applied-field phases and amplitudes on the coherent population trapping behavior in superconducting quantum circuits. Based on the interactions of the microwave fields with a single Δ-type three-level fluxonium qubit, the coherent population trapping could be obtainable and it is very sensitive to the relative phase and amplitudes of the applied fields. When the relative phase is tuned to 0 or π, the maximal atomic coherence is present and coherent population trapping occurs. While for the choice of π/2, the atomic coherence becomes weak. Meanwhile, for the fixed relative phase π/2, the value of coherence would decrease with the increase of Rabi frequency of the external field coupled with two lower levels. The responsible physical mechanism is quantum interference induced by the control fields, which is indicated in the dressed-state representation. The microwave coherent phenomenon is present in our scheme, which will have potential applications in optical communication and nonlinear optics in solid-state devices. (paper)

  17. Resonantly enhanced nonlinear optics in semiconductor quantum wells: An application to sensitive infrared detection

    International Nuclear Information System (INIS)

    Yelin, S.F.; Hemmer, P.R.

    2002-01-01

    A novel class of coherent nonlinear optical phenomena, involving induced transparency in semiconductor quantum wells, is considered in the context of a particular application to sensitive long-wavelength infrared detection. It is shown that the strongest decoherence mechanisms can be suppressed or mitigated, resulting in substantial enhancement of nonlinear optical effects in semiconductor quantum wells

  18. Quantum mechanical signature in exclusive coherent pion production

    Science.gov (United States)

    Deutchman, P. A.; Buvel, R. L.; Maung, K. M.; Norbury, J. W.; Townsend, L. W.

    1986-01-01

    We calculate the coherent production of pions from subthreshold to relativistic energies in heavy-ion collisions using a quantum, microscopic, many-body model. For the first time, in this approach, we use harmonic oscillator wave functions to describe shell-model information. The theoretical quantum mechanical results obtained for the pion spectra represent an important improvement over our previous microscopic, many-body calculations.

  19. Conductance in double quantum well systems

    International Nuclear Information System (INIS)

    Hasbun, J E

    2003-01-01

    The object of this paper is to review the electronic conductance in double quantum well systems. These are quantum well structures in which electrons are confined in the z direction by large band gap material barrier layers, yet form a free two-dimensional Fermi gas within the sandwiched low band gap material layers in the x-y plane. Aspects related to the conductance in addition to the research progress made since the inception of such systems are included. While the review focuses on the tunnelling conductance properties of double quantum well devices, the longitudinal conductance is also discussed. Double quantum well systems are a more recent generation of structures whose precursors are the well known double-barrier resonant tunnelling systems. Thus, they have electronic signatures such as negative differential resistance, in addition to resonant tunnelling, whose behaviours depend on the wavefunction coupling between the quantum wells. As such, the barrier which separates the quantum wells can be tailored in order to provide better control of the device's electronic properties over their single well ancestors. (topical review)

  20. Coherent Dynamics of a Hybrid Quantum Spin-Mechanical Oscillator System

    Science.gov (United States)

    Lee, Kenneth William, III

    previous demonstrations of a strain-mediated spin-mechanical interface and hence the system is largely uncharacterized. Second, fabricating high quality diamond mechanical oscillators is difficult due to the robust and chemically inert nature of diamond. Finally, engineering highly coherent NV centers with a coherent optical interface in nanostructured diamond remains an outstanding challenge. In this thesis, we theoretically and experimentally address each of these challenges, and show that with future improvements, this device is suitable for future quantum-enabled applications. First, we theoretically and experimentally demonstrate a dynamic, strain-mediated coupling between the spin and orbital degrees of freedom of the NV center and the driven mechanical motion of a single-crystal diamond cantilever. We employ Ramsey interferometry to demonstrate coherent, mechanical driving of the NV spin evolution. Using this interferometry technique, we present the first demonstration of nanoscale strain imaging, and quantitatively characterize the previously unknown spin-strain coupling constants. Next, we use the driven motion of the cantilever to perform deterministic control of the frequency and polarization dependence of the optical transitions of the NV center. Importantly, this experiment constitutes the first demonstration of on-chip control of both the frequency and polarization state of a single photon produced by a quantum emitter. In the final experiment, we use mechanical driving to engineer a series of spin ``clock" states and demonstrate a significant increase in the spin coherence time of the NV center. We conclude this thesis with a theoretical discussion of prospective applications for this device, including generation of non-classical mechanical states and spin-spin entanglement, as well as an evaluation of the current limitations of our devices, including a possible avenues for improvement to reach the regime of strong spin-phonon coupling.

  1. Silicon Germanium Quantum Well Solar Cell

    Data.gov (United States)

    National Aeronautics and Space Administration — A single crystal SiGe has enormous potentials for high performance chips and solar cells. This project seeks to fabricate a rudimentary but 1st cut quantum-well...

  2. Ultrafast interfeometric investigation of resonant secondary emission from quantum well excitons

    DEFF Research Database (Denmark)

    Birkedal, Dan; Shah, Jagdeep; Pfeiffer, L. N.

    1999-01-01

    Coherent Rayleigh scattering and incoherent luminescence comprise the secondary emission from quantum well exciton following ultrafast resonant excitation. We show that coherent Rayleigh scattering forms a time-dependent speckle pattern and isolate in a single speckle the Rayleigh component from...

  3. Average subentropy, coherence and entanglement of random mixed quantum states

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lin, E-mail: godyalin@163.com [Institute of Mathematics, Hangzhou Dianzi University, Hangzhou 310018 (China); Singh, Uttam, E-mail: uttamsingh@hri.res.in [Harish-Chandra Research Institute, Allahabad, 211019 (India); Pati, Arun K., E-mail: akpati@hri.res.in [Harish-Chandra Research Institute, Allahabad, 211019 (India)

    2017-02-15

    Compact expressions for the average subentropy and coherence are obtained for random mixed states that are generated via various probability measures. Surprisingly, our results show that the average subentropy of random mixed states approaches the maximum value of the subentropy which is attained for the maximally mixed state as we increase the dimension. In the special case of the random mixed states sampled from the induced measure via partial tracing of random bipartite pure states, we establish the typicality of the relative entropy of coherence for random mixed states invoking the concentration of measure phenomenon. Our results also indicate that mixed quantum states are less useful compared to pure quantum states in higher dimension when we extract quantum coherence as a resource. This is because of the fact that average coherence of random mixed states is bounded uniformly, however, the average coherence of random pure states increases with the increasing dimension. As an important application, we establish the typicality of relative entropy of entanglement and distillable entanglement for a specific class of random bipartite mixed states. In particular, most of the random states in this specific class have relative entropy of entanglement and distillable entanglement equal to some fixed number (to within an arbitrary small error), thereby hugely reducing the complexity of computation of these entanglement measures for this specific class of mixed states.

  4. Generation of optical coherent state superpositions for quantum information processing

    DEFF Research Database (Denmark)

    Tipsmark, Anders

    2012-01-01

    I dette projektarbejde med titlen “Generation of optical coherent state superpositions for quantum information processing” har målet været at generere optiske kat-tilstande. Dette er en kvantemekanisk superpositions tilstand af to koherente tilstande med stor amplitude. Sådan en tilstand er...

  5. On coherent states for the simplest quantum groups

    Energy Technology Data Exchange (ETDEWEB)

    Jurco, B. (Palackeho Univ., Olomouc (Czechoslovakia). Dept. of Optics)

    1991-01-01

    The coherent states for the simplest quantum groups (q-Heisenberg-Weyl, SU{sub q}(2) and the discrete series of representations of SU{sub q}(1, 1)) are introduced and their properties investigated. The corresponding analytic representations, path integrals, and q-deformation of Berezin's quantization on C, a sphere, and the Lobatchevsky plane are discussed. (orig.).

  6. On coherent states for the simplest quantum groups

    International Nuclear Information System (INIS)

    Jurco, B.

    1991-01-01

    The coherent states for the simplest quantum groups (q-Heisenberg-Weyl, SU q (2) and the discrete series of representations of SU q (1, 1)) are introduced and their properties investigated. The corresponding analytic representations, path integrals, and q-deformation of Berezin's quantization on C, a sphere, and the Lobatchevsky plane are discussed. (orig.)

  7. Extended SUSY quantum mechanics, intertwining operators and coherent states

    International Nuclear Information System (INIS)

    Bagarello, F.

    2008-01-01

    We propose an extension of supersymmetric quantum mechanics which produces a family of isospectral Hamiltonians. Our procedure slightly extends the idea of intertwining operators. Several examples of the construction are given. Further, we show how to build up vector coherent states of the Gazeau-Klauder type associated to our Hamiltonians

  8. Quantum coherent switch utilizing commensurate nanoelectrode and charge density periodicities

    Science.gov (United States)

    Harrison, Neil [Santa Fe, NM; Singleton, John [Los Alamos, NM; Migliori, Albert [Santa Fe, NM

    2008-08-05

    A quantum coherent switch having a substrate formed from a density wave (DW) material capable of having a periodic electron density modulation or spin density modulation, a dielectric layer formed onto a surface of the substrate that is orthogonal to an intrinsic wave vector of the DW material; and structure for applying an external spatially periodic electrostatic potential over the dielectric layer.

  9. Long lived coherence in self-assembled quantum dots

    DEFF Research Database (Denmark)

    Birkedal, Dan; Leosson, Kristjan; Hvam, Jørn Märcher

    2001-01-01

    We report measurements of ultralong coherence in self-assembled quantum dots. Transient four-wave mixing experiments at 5 K show an average dephasing time of 372 ps, corresponding to a homogeneous linewidth of 3.5 mu eV, which is significantly smaller than the linewidth observed in single...

  10. Quantum coherence generating power, maximally abelian subalgebras, and Grassmannian geometry

    Science.gov (United States)

    Zanardi, Paolo; Campos Venuti, Lorenzo

    2018-01-01

    We establish a direct connection between the power of a unitary map in d-dimensions (d algebra). This set can be seen as a topologically non-trivial subset of the Grassmannian over linear operators. The natural distance over the Grassmannian induces a metric structure on Md, which quantifies the lack of commutativity between the pairs of subalgebras. Given a maximally abelian subalgebra, one can define, on physical grounds, an associated measure of quantum coherence. We show that the average quantum coherence generated by a unitary map acting on a uniform ensemble of quantum states in the algebra (the so-called coherence generating power of the map) is proportional to the distance between a pair of maximally abelian subalgebras in Md connected by the unitary transformation itself. By embedding the Grassmannian into a projective space, one can pull-back the standard Fubini-Study metric on Md and define in this way novel geometrical measures of quantum coherence generating power. We also briefly discuss the associated differential metric structures.

  11. Quantum electron transfer processes induced by thermo-coherent ...

    Indian Academy of Sciences (India)

    WINTEC

    Thermo-coherent state; electron transfer; quantum rate. 1. Introduction. The study ... two surfaces,16 namely, one electron two-centered exchange problem,7–10 many ... temperature classical regime for the single and the two-mode cases have ...

  12. Towards deterministic optical quantum computation with coherently driven atomic ensembles

    International Nuclear Information System (INIS)

    Petrosyan, David

    2005-01-01

    Scalable and efficient quantum computation with photonic qubits requires (i) deterministic sources of single photons, (ii) giant nonlinearities capable of entangling pairs of photons, and (iii) reliable single-photon detectors. In addition, an optical quantum computer would need a robust reversible photon storage device. Here we discuss several related techniques, based on the coherent manipulation of atomic ensembles in the regime of electromagnetically induced transparency, that are capable of implementing all of the above prerequisites for deterministic optical quantum computation with single photons

  13. Holonomic Quantum Control by Coherent Optical Excitation in Diamond.

    Science.gov (United States)

    Zhou, Brian B; Jerger, Paul C; Shkolnikov, V O; Heremans, F Joseph; Burkard, Guido; Awschalom, David D

    2017-10-06

    Although geometric phases in quantum evolution are historically overlooked, their active control now stimulates strategies for constructing robust quantum technologies. Here, we demonstrate arbitrary single-qubit holonomic gates from a single cycle of nonadiabatic evolution, eliminating the need to concatenate two separate cycles. Our method varies the amplitude, phase, and detuning of a two-tone optical field to control the non-Abelian geometric phase acquired by a nitrogen-vacancy center in diamond over a coherent excitation cycle. We demonstrate the enhanced robustness of detuned gates to excited-state decoherence and provide insights for optimizing fast holonomic control in dissipative quantum systems.

  14. Holonomic Quantum Control by Coherent Optical Excitation in Diamond

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Brian B.; Jerger, Paul C.; Shkolnikov, V. O.; Heremans, F. Joseph; Burkard, Guido; Awschalom, David D.

    2017-10-01

    Although geometric phases in quantum evolution are historically overlooked, their active control now stimulates strategies for constructing robust quantum technologies. Here, we demonstrate arbitrary singlequbit holonomic gates from a single cycle of nonadiabatic evolution, eliminating the need to concatenate two separate cycles. Our method varies the amplitude, phase, and detuning of a two-tone optical field to control the non-Abelian geometric phase acquired by a nitrogen-vacancy center in diamond over a coherent excitation cycle. We demonstrate the enhanced robustness of detuned gates to excited-state decoherence and provide insights for optimizing fast holonomic control in dissipative quantum systems.

  15. Coherent Oscillations inside a Quantum Manifold Stabilized by Dissipation

    Science.gov (United States)

    Touzard, S.; Grimm, A.; Leghtas, Z.; Mundhada, S. O.; Reinhold, P.; Axline, C.; Reagor, M.; Chou, K.; Blumoff, J.; Sliwa, K. M.; Shankar, S.; Frunzio, L.; Schoelkopf, R. J.; Mirrahimi, M.; Devoret, M. H.

    2018-04-01

    Manipulating the state of a logical quantum bit (qubit) usually comes at the expense of exposing it to decoherence. Fault-tolerant quantum computing tackles this problem by manipulating quantum information within a stable manifold of a larger Hilbert space, whose symmetries restrict the number of independent errors. The remaining errors do not affect the quantum computation and are correctable after the fact. Here we implement the autonomous stabilization of an encoding manifold spanned by Schrödinger cat states in a superconducting cavity. We show Zeno-driven coherent oscillations between these states analogous to the Rabi rotation of a qubit protected against phase flips. Such gates are compatible with quantum error correction and hence are crucial for fault-tolerant logical qubits.

  16. Coherent Oscillations inside a Quantum Manifold Stabilized by Dissipation

    Directory of Open Access Journals (Sweden)

    S. Touzard

    2018-04-01

    Full Text Available Manipulating the state of a logical quantum bit (qubit usually comes at the expense of exposing it to decoherence. Fault-tolerant quantum computing tackles this problem by manipulating quantum information within a stable manifold of a larger Hilbert space, whose symmetries restrict the number of independent errors. The remaining errors do not affect the quantum computation and are correctable after the fact. Here we implement the autonomous stabilization of an encoding manifold spanned by Schrödinger cat states in a superconducting cavity. We show Zeno-driven coherent oscillations between these states analogous to the Rabi rotation of a qubit protected against phase flips. Such gates are compatible with quantum error correction and hence are crucial for fault-tolerant logical qubits.

  17. Quantum mechanical coherence, resonance, and mind

    International Nuclear Information System (INIS)

    Stapp, H.P.

    1995-01-01

    Norbert Wiener and J.B.S. Haldane suggested during the early thirties that the profound changes in our conception of matter entailed by quantum theory opens the way for our thoughts, and other experiential or mind-like qualities, to play a role in nature that is causally interactive and effective, rather than purely epiphenomenal, as required by classical mechanics. The mathematical basis of this suggestion is described here, and it is then shown how, by giving mind this efficacious role in natural process, the classical character of our perceptions of the quantum universe can be seen to be a consequence of evolutionary pressures for the survival of the species

  18. Quantum mechanical coherence, resonance, and mind

    Energy Technology Data Exchange (ETDEWEB)

    Stapp, H.P.

    1995-03-26

    Norbert Wiener and J.B.S. Haldane suggested during the early thirties that the profound changes in our conception of matter entailed by quantum theory opens the way for our thoughts, and other experiential or mind-like qualities, to play a role in nature that is causally interactive and effective, rather than purely epiphenomenal, as required by classical mechanics. The mathematical basis of this suggestion is described here, and it is then shown how, by giving mind this efficacious role in natural process, the classical character of our perceptions of the quantum universe can be seen to be a consequence of evolutionary pressures for the survival of the species.

  19. Coherent states of quantum systems. [Hamiltonians, variable magnetic field, adiabatic approximation

    Energy Technology Data Exchange (ETDEWEB)

    Trifonov, D A

    1975-01-01

    Time-evolution of coherent states and uncertainty relations for quantum systems are considered as well as the relation between the various types of coherent states. The most general form of the Hamiltonians that keep the uncertainty products at a minimum is found using the coherent states. The minimum uncertainty packets are shown to be coherent states of the type nonstationary-system coherent states. Two specific systems, namely that of a generalized N-dimensional oscillator and that of a charged particle moving in a variable magnetic field, are treated as examples. The adiabatic approximation to the uncertainty products for these systems is also discussed and the minimality is found to be retained with an exponential accuracy.

  20. Coherent and conventional gravidynamic quantum 1/f noise

    Science.gov (United States)

    Handel, Peter H.; George, Thomas F.

    2008-04-01

    Quantum 1/f noise is a fundamental fluctuation of currents, physical cross sections or process rates, caused by infrared coupling of the current carriers to very low frequency (soft) quanta, also known as infraquanta. The latter are soft gravitons in the gravidynamic case with the coupling constant g= pGM2/Nch considered here -- soft photons in the electrodynamic case and soft transversal piezo-phonons in the lattice-dynamical case. Here p=3.14 and F=psi. Quantum 1/f noise is a new aspect of quantum mechanics expressed mainly through the coherent quantum 1/f effect 2g/pf derived here for large systems, and mainly through the conventional quantum 1/f effect for small systems or individual particles. Both effects are present in general, and their effects are superposed in a first approximation with the help of a coherence (weight) parameter s" that will be derived elsewhere for the gravitational case. The spectral density of fractional fluctuations S(dj/j,f) for j=e(hk/2pm)|F|2 is S(F2,f)/ = S(j,f)/2 = [4ps"/(1+s")]GM2/pfNch = 4.4 10E9 M2/(pfNgram2). Here s" = 2N'GM/c2=N'rs, where N' is the number of particles of mass M per unit length of the current, rs their Schwarzschild radius, and s" is our coherence (weight) parameter giving the ratio of coherent to conventional quantum 1/f contributions.

  1. Rabi model as a quantum coherent heat engine: From quantum biology to superconducting circuits

    Science.gov (United States)

    Altintas, Ferdi; Hardal, Ali Ü. C.; Müstecaplıoǧlu, Özgür E.

    2015-02-01

    We propose a multilevel quantum heat engine with a working medium described by a generalized Rabi model which consists of a two-level system coupled to a single-mode bosonic field. The model is constructed to be a continuum limit of a quantum biological description of light-harvesting complexes so that it can amplify quantum coherence by a mechanism which is a quantum analog of classical Huygens clocks. The engine operates in a quantum Otto cycle where the working medium is coupled to classical heat baths in the isochoric processes of the four-stroke cycle, while either the coupling strength or the resonance frequency is changed in the adiabatic stages. We found that such an engine can produce work with an efficiency close to the Carnot bound when it operates at low temperatures and in the ultrastrong-coupling regime. The interplay of the effects of quantum coherence and quantum correlations on the engine performance is discussed in terms of second-order coherence, quantum mutual information, and the logarithmic negativity of entanglement. We point out that the proposed quantum Otto engine can be implemented experimentally with modern circuit quantum electrodynamic systems where flux qubits can be coupled ultrastrongly to superconducting transmission-line resonators.

  2. Quantum wells and the generalized uncertainty principle

    International Nuclear Information System (INIS)

    Blado, Gardo; Owens, Constance; Meyers, Vincent

    2014-01-01

    The finite and infinite square wells are potentials typically discussed in undergraduate quantum mechanics courses. In this paper, we discuss these potentials in the light of the recent studies of the modification of the Heisenberg uncertainty principle into a generalized uncertainty principle (GUP) as a consequence of attempts to formulate a quantum theory of gravity. The fundamental concepts of the minimal length scale and the GUP are discussed and the modified energy eigenvalues and transmission coefficient are derived. (paper)

  3. Quantum Coherent Dynamics Enhanced by Synchronization with Nonequilibrium Environments

    Science.gov (United States)

    Ishikawa, Akira; Okada, Ryo; Uchiyama, Kazuharu; Hori, Hirokazu; Kobayashi, Kiyoshi

    2018-05-01

    We report the discovery of the anomalous enhancement of quantum coherent dynamics (CD) due to a non-Markovian mechanism originating from not thermal-equilibrium phonon baths but nonequilibrium coherent phonons. CD is an elementary process for quantum phenomena in nanosystems, such as excitation transfer (ET) in semiconductor nanostructures and light-harvesting systems. CD occurs in homogeneous nanosystems because system inhomogeneity typically destroys coherence. In real systems, however, nanosystems behave as open systems surrounded by environments such as phonon systems. Typically, CD in inhomogeneous nanosystems is enhanced by the absorption and emission of thermal-equilibrium phonons, and the enhancement is described by the conventional master equation. On the other hand, CD is also enhanced by synchronization between population dynamics in nanosystems and coherent phonons; namely, coherent phonons, which are self-consistently induced by phase matching with Rabi oscillation, are fed back to enhance CD. This anomalous enhancement of CD essentially originates from the nonequilibrium and dynamical non-Markovian nature of coherent phonon environments, and the enhancement is firstly predicted by applying time-dependent projection operators to nonequilibrium and dynamical environments. Moreover, CD is discussed by considering ET from a donor to an acceptor. It is found that the enhancement of ET by synchronization with coherent phonons depends on the competition between the output time from a system to an acceptor and the formation time of coherent phonons. These findings in this study will stimulate the design and manipulation of CD via structured environments from the viewpoint of application to nano-photoelectronic devices.

  4. EDITORIAL: Quantum control theory for coherence and information dynamics Quantum control theory for coherence and information dynamics

    Science.gov (United States)

    Viola, Lorenza; Tannor, David

    2011-08-01

    Precisely characterizing and controlling the dynamics of realistic open quantum systems has emerged in recent years as a key challenge across contemporary quantum sciences and technologies, with implications ranging from physics, chemistry and applied mathematics to quantum information processing (QIP) and quantum engineering. Quantum control theory aims to provide both a general dynamical-system framework and a constructive toolbox to meet this challenge. The purpose of this special issue of Journal of Physics B: Atomic, Molecular and Optical Physics is to present a state-of-the-art account of recent advances and current trends in the field, as reflected in two international meetings that were held on the subject over the last summer and which motivated in part the compilation of this volume—the Topical Group: Frontiers in Open Quantum Systems and Quantum Control Theory, held at the Institute for Theoretical Atomic, Molecular and Optical Physics (ITAMP) in Cambridge, Massachusetts (USA), from 1-14 August 2010, and the Safed Workshop on Quantum Decoherence and Thermodynamics Control, held in Safed (Israel), from 22-27 August 2010. Initial developments in quantum control theory date back to (at least) the early 1980s, and have been largely inspired by the well-established mathematical framework for classical dynamical systems. As the above-mentioned meetings made clear, and as the burgeoning body of literature on the subject testifies, quantum control has grown since then well beyond its original boundaries, and has by now evolved into a highly cross-disciplinary field which, while still fast-moving, is also entering a new phase of maturity, sophistication, and integration. Two trends deserve special attention: on the one hand, a growing emphasis on control tasks and methodologies that are specifically motivated by QIP, in addition and in parallel to applications in more traditional areas where quantum coherence is nevertheless vital (such as, for instance

  5. Quantum logic gates based on coherent electron transport in quantum wires.

    Science.gov (United States)

    Bertoni, A; Bordone, P; Brunetti, R; Jacoboni, C; Reggiani, S

    2000-06-19

    It is shown that the universal set of quantum logic gates can be realized using solid-state quantum bits based on coherent electron transport in quantum wires. The elementary quantum bits are realized with a proper design of two quantum wires coupled through a potential barrier. Numerical simulations show that (a) a proper design of the coupling barrier allows one to realize any one-qbit rotation and (b) Coulomb interaction between two qbits of this kind allows the implementation of the CNOT gate. These systems are based on a mature technology and seem to be integrable with conventional electronics.

  6. Time evolution of multiple quantum coherences in NMR

    International Nuclear Information System (INIS)

    Sanchez, Claudia M.; Pastawski, Horacio M.; Levstein, Patricia R.

    2007-01-01

    In multiple quantum NMR, individual spins become correlated with one another over time through their dipolar couplings. In this way, the usual Zeeman selection rule can be overcome and forbidden transitions can be excited. Experimentally, these multiple quantum coherences (MQC) are formed by the application of appropriate sequences of radio frequency pulses that force the spins to act collectively. 1 H spin coherences of even order up to 16 were excited in a polycrystalline sample of ferrocene (C 5 H 5 ) 2 Fe and up to 32 in adamantane (C 10 H 16 ) and their evolutions studied in different conditions: (a) under the natural dipolar Hamiltonian, H ZZ (free evolution) and with H ZZ canceled out by (b) time reversion or (c) with the MREV8 sequence. The results show that when canceling H ZZ the coherences decay with characteristic times (τ c ∼200 μs), which are more than one order of magnitude longer than those under free evolution (τ c ∼10 μs). In addition, it is observed that with both MREV8 and time reversion sequences, the higher the order of the coherence (larger number of correlated spins) the faster the speed of degradation, as it happens during the evolution with H ZZ . In both systems, it is observed that the sequence of time reversion of the dipolar Hamiltonian preserves coherences for longer times than MREV8

  7. From atomic to mesoscale the role of quantum coherence in systems of various complexities

    CERN Document Server

    Novikova, Irina

    2015-01-01

    This volume presents the latest advancements and future developments of atomic, molecular and optical (AMO) physics and its vital role in modern sciences and technologies. The chapters are devoted to studies of a wide range of quantum systems, with an emphasis on understanding of quantum coherence and other quantum phenomena originated from light-matter interactions. The book intends to survey the current research landscape and to highlight major scientific trends in AMO physics as well as those interfacing with interdisciplinary sciences. The volume may be particularly useful for young researchers working on establishing their scientific interests and goals.

  8. Quantum coherence in photo-ionisation with tailored XUV pulses

    Science.gov (United States)

    Carlström, Stefanos; Mauritsson, Johan; Schafer, Kenneth J.; L'Huillier, Anne; Gisselbrecht, Mathieu

    2018-01-01

    Ionisation with ultrashort pulses in the extreme ultraviolet (XUV) regime can be used to prepare an ion in a superposition of spin-orbit substates. In this work, we study the coherence properties of such a superposition, created by ionising xenon atoms using two phase-locked XUV pulses at different frequencies. In general, if the duration of the driving pulse exceeds the quantum beat period, dephasing will occur. If however, the frequency difference of the two pulses matches the spin-orbit splitting, the coherence can be efficiently increased and dephasing does not occur.

  9. Quantum Well Infrared Photodetectors Physics and Applications

    CERN Document Server

    Schneider, Harald

    2007-01-01

    Addressed to both students as a learning text and scientists/engineers as a reference, this book discusses the physics and applications of quantum-well infrared photodetectors (QWIPs). It is assumed that the reader has a basic background in quantum mechanics, solid-state physics, and semiconductor devices. To make this book as widely accessible as possible, the treatment and presentation of the materials is simple and straightforward. The topics for the book were chosen by the following criteria: they must be well-established and understood; and they should have been, or potentially will be, used in practical applications. The monograph discusses most aspects relevant for the field but omits, at the same time, detailed discussions of specialized topics such as the valence-band quantum wells.

  10. Coherent versus Measurement Feedback: Linear Systems Theory for Quantum Information

    Directory of Open Access Journals (Sweden)

    Naoki Yamamoto

    2014-11-01

    Full Text Available To control a quantum system via feedback, we generally have two options in choosing a control scheme. One is the coherent feedback, which feeds the output field of the system, through a fully quantum device, back to manipulate the system without involving any measurement process. The other one is measurement-based feedback, which measures the output field and performs a real-time manipulation on the system based on the measurement results. Both schemes have advantages and disadvantages, depending on the system and the control goal; hence, their comparison in several situations is important. This paper considers a general open linear quantum system with the following specific control goals: backaction evasion, generation of a quantum nondemolished variable, and generation of a decoherence-free subsystem, all of which have important roles in quantum information science. Some no-go theorems are proven, clarifying that those goals cannot be achieved by any measurement-based feedback control. On the other hand, it is shown that, for each control goal there exists a coherent feedback controller accomplishing the task. The key idea to obtain all the results is system theoretic characterizations of the above three notions in terms of controllability and observability properties or transfer functions of linear systems, which are consistent with their standard definitions.

  11. Geometric measure of pairwise quantum discord for superpositions of multipartite generalized coherent states

    International Nuclear Information System (INIS)

    Daoud, M.; Ahl Laamara, R.

    2012-01-01

    We give the explicit expressions of the pairwise quantum correlations present in superpositions of multipartite coherent states. A special attention is devoted to the evaluation of the geometric quantum discord. The dynamics of quantum correlations under a dephasing channel is analyzed. A comparison of geometric measure of quantum discord with that of concurrence shows that quantum discord in multipartite coherent states is more resilient to dissipative environments than is quantum entanglement. To illustrate our results, we consider some special superpositions of Weyl–Heisenberg, SU(2) and SU(1,1) coherent states which interpolate between Werner and Greenberger–Horne–Zeilinger states. -- Highlights: ► Pairwise quantum correlations multipartite coherent states. ► Explicit expression of geometric quantum discord. ► Entanglement sudden death and quantum discord robustness. ► Generalized coherent states interpolating between Werner and Greenberger–Horne–Zeilinger states

  12. Geometric measure of pairwise quantum discord for superpositions of multipartite generalized coherent states

    Energy Technology Data Exchange (ETDEWEB)

    Daoud, M., E-mail: m_daoud@hotmail.com [Department of Physics, Faculty of Sciences, University Ibnou Zohr, Agadir (Morocco); Ahl Laamara, R., E-mail: ahllaamara@gmail.com [LPHE-Modeling and Simulation, Faculty of Sciences, University Mohammed V, Rabat (Morocco); Centre of Physics and Mathematics, CPM, CNESTEN, Rabat (Morocco)

    2012-07-16

    We give the explicit expressions of the pairwise quantum correlations present in superpositions of multipartite coherent states. A special attention is devoted to the evaluation of the geometric quantum discord. The dynamics of quantum correlations under a dephasing channel is analyzed. A comparison of geometric measure of quantum discord with that of concurrence shows that quantum discord in multipartite coherent states is more resilient to dissipative environments than is quantum entanglement. To illustrate our results, we consider some special superpositions of Weyl–Heisenberg, SU(2) and SU(1,1) coherent states which interpolate between Werner and Greenberger–Horne–Zeilinger states. -- Highlights: ► Pairwise quantum correlations multipartite coherent states. ► Explicit expression of geometric quantum discord. ► Entanglement sudden death and quantum discord robustness. ► Generalized coherent states interpolating between Werner and Greenberger–Horne–Zeilinger states.

  13. Unconditional quantum cloning of coherent states with linear optics

    International Nuclear Information System (INIS)

    Leuchs, G.; Andersen, U.L.; Josse, V.

    2005-01-01

    Intense light pulses with non-classical properties are used to implement protocols for quantum communication. Most of the elements in the tool box needed to assemble the experimental set-ups for these protocols are readily described by Bogoliubov transformations corresponding to Gaussian transformations that map Gaussian states onto Gaussian states. One particularly interesting application is quantum cloning of a coherent state. A scheme for optimal Gaussian cloning of optical coherent states is proposed and experimentally demonstrated. Its optical realization is based entirely on simple linear optical elements and homodyne detection. The optimality of the presented scheme is only limited by detection inefficiencies. Experimentally we achieved a cloning fidelity of about 65%, which almost touches the optimal value of 2/3. (author)

  14. Glauber theory and the quantum coherence of curvature inhomogeneities

    CERN Document Server

    Giovannini, Massimo

    2017-01-12

    The curvature inhomogeneities are systematically scrutinized in the framework of the Glauber approach. The amplified quantum fluctuations of the scalar and tensor modes of the geometry are shown to be first-order coherent while the interference of the corresponding intensities is larger than in the case of Bose-Einstein correlations. After showing that the degree of second-order coherence does not suffice to characterize unambiguously the curvature inhomogeneities, we argue that direct analyses of the degrees of third and fourth-order coherence are necessary to discriminate between different correlated states and to infer more reliably the statistical properties of the large-scale fluctuations. We speculate that the moments of the multiplicity distributions of the relic phonons might be observationally accessible thanks to new generations of instruments able to count the single photons of the Cosmic Microwave Background in the THz region.

  15. Doubly tagged delayed-choice tunable quantum eraser: coherence, information and measurement

    Science.gov (United States)

    Imran, Muhammad; Tariq, Hinna; Rameez-ul-Islam; Ikram, Manzoor

    2018-01-01

    We present an idea for the doubly tagged delayed-choice tunable quantum eraser in a cavity QED setup, based on fully controlled resonant as well as dispersive atom-field interactions. Two cavity fields, bound initially in the Bell state, are coupled to a three-level atom. Such an atom is initially prepared in the coherent superposition of the lower two levels and is quite capable of exhibiting Ramsey fringes if taken independently. It is shown that the coherence lost due to tagging can not only be retrieved but that the fringe visibility/path distinguishability can also be conditionally tuned in a delayed manner through local manipulation of the entangled cavity fields. The stringent condition here is the retainment of the system’s coherence during successive manipulations of the individual cavity fields. Such a quantum eraser, therefore, prominently highlights the links among all the counterintuitive features of quantum theory including the conception of time, measurement, state vector reduction, coherence and information in an unambiguous manner. The schematics can be straightforwardly extended to a multipartite scenario and employed to explore multi-player quantum games with the payoff being strangely decided through delayed choice setups.

  16. Nature does not rely on long-lived electronic quantum coherence for photosynthetic energy transfer

    Science.gov (United States)

    Duan, Hong-Guang; Prokhorenko, Valentyn I.; Cogdell, Richard J.; Ashraf, Khuram; Stevens, Amy L.; Thorwart, Michael; Miller, R. J. Dwayne

    2017-08-01

    During the first steps of photosynthesis, the energy of impinging solar photons is transformed into electronic excitation energy of the light-harvesting biomolecular complexes. The subsequent energy transfer to the reaction center is commonly rationalized in terms of excitons moving on a grid of biomolecular chromophores on typical timescales Olson protein, in which interference oscillatory signals up to 1.5 ps were reported and interpreted as direct evidence of exceptionally long-lived electronic quantum coherence. Here, we show that the optical 2D photon echo spectra of this complex at ambient temperature in aqueous solution do not provide evidence of any long-lived electronic quantum coherence, but confirm the orthodox view of rapidly decaying electronic quantum coherence on a timescale of 60 fs. Our results can be considered as generic and give no hint that electronic quantum coherence plays any biofunctional role in real photoactive biomolecular complexes. Because in this structurally well-defined protein the distances between bacteriochlorophylls are comparable to those of other light-harvesting complexes, we anticipate that this finding is general and directly applies to even larger photoactive biomolecular complexes.

  17. Spectroscopy of GaAs quantum wells

    International Nuclear Information System (INIS)

    West, L.C.

    1985-07-01

    A new type of optical dipole transition in GaAs quantum wells has been observed. The dipole occurs between two envelope states of the conduction band electron wavefunction, and is called a quantum well envelope state transition (QWEST). The QWEST is observed by infrared absorption in three different samples with quantum well thicknesses 65, 82, and 92 A and resonant energies of 152, 121, and 108 MeV, respectively. The oscillator strength is found to have values of over 12, in good agreement with prediction. The linewidths are seen as narrow as 10 MeV at room temperature and 7 MeV at low temperature, thus proving a narrow line resonance can indeed occur between transitions of free electrons. Techniques for the proper growth of these quantum well samples to enable observation of the QWEST have also been found using (AlGa)As compounds. This QWEST is considered to be an ideal material for an all optical digital computer. The QWEST can be made frequency matched to the inexpensive Carbon Dioxide laser with an infrared wavelength of 10 microns. The nonlinearity and fast relaxation time of the QWEST indicate a logic element with a subpicosecond switch time can be built in the near future, with a power level which will eventually be limited only by the noise from a lack of quanta to above approximately 10 microwatts. 64 refs., 35 figs., 6 tabs

  18. Spectroscopy of GaAs quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    West, L.C.

    1985-07-01

    A new type of optical dipole transition in GaAs quantum wells has been observed. The dipole occurs between two envelope states of the conduction band electron wavefunction, and is called a quantum well envelope state transition (QWEST). The QWEST is observed by infrared absorption in three different samples with quantum well thicknesses 65, 82, and 92 A and resonant energies of 152, 121, and 108 MeV, respectively. The oscillator strength is found to have values of over 12, in good agreement with prediction. The linewidths are seen as narrow as 10 MeV at room temperature and 7 MeV at low temperature, thus proving a narrow line resonance can indeed occur between transitions of free electrons. Techniques for the proper growth of these quantum well samples to enable observation of the QWEST have also been found using (AlGa)As compounds. This QWEST is considered to be an ideal material for an all optical digital computer. The QWEST can be made frequency matched to the inexpensive Carbon Dioxide laser with an infrared wavelength of 10 microns. The nonlinearity and fast relaxation time of the QWEST indicate a logic element with a subpicosecond switch time can be built in the near future, with a power level which will eventually be limited only by the noise from a lack of quanta to above approximately 10 microwatts. 64 refs., 35 figs., 6 tabs.

  19. Mixed biexcitons in single quantum wells

    DEFF Research Database (Denmark)

    Wagner, Hans Peter; Langbein, Wolfgang Werner; Hvam, Jørn Märcher

    1999-01-01

    Biexcitonic complexes in a ZnSe single quantum well are investigated by spectrally resolved four-wave mixing (FWM). The formation of heavy-heavy-hole XXh and of mixed heavy-light-hole XXm biexcitons showing binding energies of Delta(h) = 4.8 meV and Delta(m)= 2.8 meV is identified by polarization...

  20. Quantum wells for optical information processing

    International Nuclear Information System (INIS)

    Miller, D.A.B.

    1989-01-01

    Quantum wells, alternate thin layers of two different semiconductor materials, show an exceptional electric field dependence of the optical absorption, called the quantum-confined Stark effect (QCSE), for electric fields perpendicular to the layers. This enables electrically controlled optical modulators and optically controlled self-electro-optic-effect devices that can operate at high speed and low energy density. Recent developments in these QCSE devices are summarized, including new device materials and novel device structures. The variety of sophisticated devices now demonstrated is promising for applications to information processing

  1. Relating Out-of-Time-Order Correlations to Entanglement via Multiple-Quantum Coherences.

    Science.gov (United States)

    Gärttner, Martin; Hauke, Philipp; Rey, Ana Maria

    2018-01-26

    Out-of-time-order correlations (OTOCs) characterize the scrambling, or delocalization, of quantum information over all the degrees of freedom of a system and thus have been proposed as a proxy for chaos in quantum systems. Recent experimental progress in measuring OTOCs calls for a more thorough understanding of how these quantities characterize complex quantum systems, most importantly in terms of the buildup of entanglement. Although a connection between OTOCs and entanglement entropy has been derived, the latter only quantifies entanglement in pure systems and is hard to access experimentally. In this work, we formally demonstrate that the multiple-quantum coherence spectra, a specific family of OTOCs well known in NMR, can be used as an entanglement witness and as a direct probe of multiparticle entanglement. Our results open a path to experimentally testing the fascinating idea that entanglement is the underlying glue that links thermodynamics, statistical mechanics, and quantum gravity.

  2. The quantum potential and ''causal'' trajectories for stationary states and for coherent states

    International Nuclear Information System (INIS)

    Barut, A.O.; Bozic, M.

    1988-07-01

    We show for stationary states in a central potential that the quantum action S is only a part of the classical action W and derive an expression for the ''quantum potential'' U Q in terms of the other part. The association of momenta of some ''particles'' in the causal interpretation of quantum mechanics by p-vector=∇S and by dp-vector'/dt=-∇(V+U Q ) gives for stationary states very different orbits which have no relation to classical orbits but express some flow properties of the quantum mechanical current. For coherent states, on the other hand, p-vector and p-vector' as well as the quantum mechanical average p-vector and classical momenta, all four, lead to essentially the same trajectories except for different integration constants. The spinning particle is also considered. (author). 27 refs, 2 figs

  3. Relating Out-of-Time-Order Correlations to Entanglement via Multiple-Quantum Coherences

    Science.gov (United States)

    Gärttner, Martin; Hauke, Philipp; Rey, Ana Maria

    2018-01-01

    Out-of-time-order correlations (OTOCs) characterize the scrambling, or delocalization, of quantum information over all the degrees of freedom of a system and thus have been proposed as a proxy for chaos in quantum systems. Recent experimental progress in measuring OTOCs calls for a more thorough understanding of how these quantities characterize complex quantum systems, most importantly in terms of the buildup of entanglement. Although a connection between OTOCs and entanglement entropy has been derived, the latter only quantifies entanglement in pure systems and is hard to access experimentally. In this work, we formally demonstrate that the multiple-quantum coherence spectra, a specific family of OTOCs well known in NMR, can be used as an entanglement witness and as a direct probe of multiparticle entanglement. Our results open a path to experimentally testing the fascinating idea that entanglement is the underlying glue that links thermodynamics, statistical mechanics, and quantum gravity.

  4. Dynamics of plasmonic field polarization induced by quantum coherence in quantum dot-metallic nanoshell structures.

    Science.gov (United States)

    Sadeghi, S M

    2014-09-01

    When a hybrid system consisting of a semiconductor quantum dot and a metallic nanoparticle interacts with a laser field, the plasmonic field of the metallic nanoparticle can be normalized by the quantum coherence generated in the quantum dot. In this Letter, we study the states of polarization of such a coherent-plasmonic field and demonstrate how these states can reveal unique aspects of the collective molecular properties of the hybrid system formed via coherent exciton-plasmon coupling. We show that transition between the molecular states of this system can lead to ultrafast polarization dynamics, including sudden reversal of the sense of variations of the plasmonic field and formation of circular and elliptical polarization.

  5. Piezoelectric effect in strained quantum wells

    International Nuclear Information System (INIS)

    Dang, L.S.; Andre, R.; Cibert, J.

    1995-01-01

    This paper describes some physical aspects of the piezoelectric effect which takes place in strained semiconductor heterostructures grown along a polar axis. First we show how piezoelectric fields can be accurately measured by optical spectroscopy. Then we discuss about the origin of the non-linear piezoelectric effect reported recently for CdTe, and maybe for InAs as well. Finally we compare excitonic effects in piezoelectric and non-piezoelectric quantum wells. (orig.)

  6. Characterization of interfaces in semimagnetic quantum wells

    International Nuclear Information System (INIS)

    Schmitt, G.; Kuhn-Heinrich, B.; Zehnder, U.; Ossau, W.; Litz, T.; Waag, A.; Landwehr, G.

    1995-01-01

    The interfaces between nonmagnetic CdTe quantum wells and semimagnetic barriers of Cd 1-x Mn x Te were investigated for several well widths by low temperature photoluminescence and photoluminescence excitation spectroscopy. Specially designed Cd 1-x Mn x /CdTe/Cd 1-y Mg y Te structures enable us to distinguish the quality of semimagnetic normal and inverted interfaces. The normal interface shows to better structural quality than the inverted interface. (author)

  7. Quantum Coherence and Random Fields at Mesoscopic Scales

    International Nuclear Information System (INIS)

    Rosenbaum, Thomas F.

    2016-01-01

    We seek to explore and exploit model, disordered and geometrically frustrated magnets where coherent spin clusters stably detach themselves from their surroundings, leading to extreme sensitivity to finite frequency excitations and the ability to encode information. Global changes in either the spin concentration or the quantum tunneling probability via the application of an external magnetic field can tune the relative weights of quantum entanglement and random field effects on the mesoscopic scale. These same parameters can be harnessed to manipulate domain wall dynamics in the ferromagnetic state, with technological possibilities for magnetic information storage. Finally, extensions from quantum ferromagnets to antiferromagnets promise new insights into the physics of quantum fluctuations and effective dimensional reduction. A combination of ac susceptometry, dc magnetometry, noise measurements, hole burning, non-linear Fano experiments, and neutron diffraction as functions of temperature, magnetic field, frequency, excitation amplitude, dipole concentration, and disorder address issues of stability, overlap, coherence, and control. We have been especially interested in probing the evolution of the local order in the progression from spin liquid to spin glass to long-range-ordered magnet.

  8. Can quantum coherent solar cells break detailed balance?

    International Nuclear Information System (INIS)

    Kirk, Alexander P.

    2015-01-01

    Carefully engineered coherent quantum states have been proposed as a design attribute that is hypothesized to enable solar photovoltaic cells to break the detailed balance (or radiative) limit of power conversion efficiency by possibly causing radiative recombination to be suppressed. However, in full compliance with the principles of statistical mechanics and the laws of thermodynamics, specially prepared coherent quantum states do not allow a solar photovoltaic cell—a quantum threshold energy conversion device—to exceed the detailed balance limit of power conversion efficiency. At the condition given by steady-state open circuit operation with zero nonradiative recombination, the photon absorption rate (or carrier photogeneration rate) must balance the photon emission rate (or carrier radiative recombination rate) thus ensuring that detailed balance prevails. Quantum state transitions, entropy-generating hot carrier relaxation, and photon absorption and emission rate balancing are employed holistically and self-consistently along with calculations of current density, voltage, and power conversion efficiency to explain why detailed balance may not be violated in solar photovoltaic cells

  9. Quantum Coherence and Random Fields at Mesoscopic Scales

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbaum, Thomas F. [Univ. of Chicago, IL (United States)

    2016-03-01

    We seek to explore and exploit model, disordered and geometrically frustrated magnets where coherent spin clusters stably detach themselves from their surroundings, leading to extreme sensitivity to finite frequency excitations and the ability to encode information. Global changes in either the spin concentration or the quantum tunneling probability via the application of an external magnetic field can tune the relative weights of quantum entanglement and random field effects on the mesoscopic scale. These same parameters can be harnessed to manipulate domain wall dynamics in the ferromagnetic state, with technological possibilities for magnetic information storage. Finally, extensions from quantum ferromagnets to antiferromagnets promise new insights into the physics of quantum fluctuations and effective dimensional reduction. A combination of ac susceptometry, dc magnetometry, noise measurements, hole burning, non-linear Fano experiments, and neutron diffraction as functions of temperature, magnetic field, frequency, excitation amplitude, dipole concentration, and disorder address issues of stability, overlap, coherence, and control. We have been especially interested in probing the evolution of the local order in the progression from spin liquid to spin glass to long-range-ordered magnet.

  10. LDRD final report on theory and exploration of quantum-dot optical nonlinearities and coherences

    International Nuclear Information System (INIS)

    Chow, Weng Wah

    2008-01-01

    A microscopic theory for investigating quantum-dot optical properties was developed. The theory incorporated advances on various aspects of quantum-dot physics developed at Sandia and elsewhere. Important components are a non-Markovian treatment of polarization dephasing due to carrier-carrier scattering (developed at Sandia) and a nonperturbative treatment within a polaron picture of the scattering of carriers by longitudinal-optical phonons (developed at Bremen University). A computer code was also developed that provides a detailed accounting of electronic structure influences and a consistent treatment of many-body effects, the latter via the incorporation of results from the microscopic theory. This code was used to explore quantum coherence physics in a quantum-dot system. The investigation furthers the understanding of the underlying differences between atomic quantum coherence and semiconductor quantum coherence, and helps improve the potential of using quantum coherences in quantum computing, coherent control and high-resolution spectroscopy

  11. Coherent inflation for large quantum superpositions of levitated microspheres

    Science.gov (United States)

    Romero-Isart, Oriol

    2017-12-01

    We show that coherent inflation (CI), namely quantum dynamics generated by inverted conservative potentials acting on the center of mass of a massive object, is an enabling tool to prepare large spatial quantum superpositions in a double-slit experiment. Combined with cryogenic, extreme high vacuum, and low-vibration environments, we argue that it is experimentally feasible to exploit CI to prepare the center of mass of a micrometer-sized object in a spatial quantum superposition comparable to its size. In such a hitherto unexplored parameter regime gravitationally-induced decoherence could be unambiguously falsified. We present a protocol to implement CI in a double-slit experiment by letting a levitated microsphere traverse a static potential landscape. Such a protocol could be experimentally implemented with an all-magnetic scheme using superconducting microspheres.

  12. Strained quantum well photovoltaic energy converter

    Science.gov (United States)

    Freundlich, Alexandre (Inventor); Renaud, Philippe (Inventor); Vilela, Mauro Francisco (Inventor); Bensaoula, Abdelhak (Inventor)

    1998-01-01

    An indium phosphide photovoltaic cell is provided where one or more quantum wells are introduced between the conventional p-conductivity and n-conductivity indium phosphide layer. The approach allows the cell to convert the light over a wider range of wavelengths than a conventional single junction cell and in particular convert efficiently transparency losses of the indium phosphide conventional cell. The approach hence may be used to increase the cell current output. A method of fabrication of photovoltaic devices is provided where ternary InAsP and InGaAs alloys are used as well material in the quantum well region and results in an increase of the cell current output.

  13. Fractional Quantum Hall States in a Ge Quantum Well.

    Science.gov (United States)

    Mironov, O A; d'Ambrumenil, N; Dobbie, A; Leadley, D R; Suslov, A V; Green, E

    2016-04-29

    Measurements of the Hall and dissipative conductivity of a strained Ge quantum well on a SiGe/(001)Si substrate in the quantum Hall regime are reported. We analyze the results in terms of thermally activated quantum tunneling of carriers from one internal edge state to another across saddle points in the long-range impurity potential. This shows that the gaps for different filling fractions closely follow the dependence predicted by theory. We also find that the estimates of the separation of the edge states at the saddle are in line with the expectations of an electrostatic model in the lowest spin-polarized Landau level (LL), but not in the spin-reversed LL where the density of quasiparticle states is not high enough to accommodate the carriers required.

  14. Quantum measurement of coherent tunneling between quantum dots

    International Nuclear Information System (INIS)

    Wiseman, H. M.; Utami, Dian Wahyu; Sun, He Bi; Milburn, G. J.; Kane, B. E.; Dzurak, A.; Clark, R. G.

    2001-01-01

    We describe the conditional and unconditional dynamics of two coupled quantum dots when one dot is subjected to a measurement of its occupation number by coupling it to a third readout dot via the Coulomb interaction. The readout dot is coupled to source and drain leads under weak bias, and a tunnel current flows through a single bound state when energetically allowed. The occupation of the quantum dot near the readout dot shifts the bound state of the readout dot from a low conducting state to a high conducting state. The measurement is made by continuously monitoring the tunnel current through the readout dot. We show that there is a difference between the time scale for the measurement-induced decoherence between the localized states of the dots, and the time scale on which the system becomes localized due to the measurement

  15. Coherent perfect absorption in a quantum nonlinear regime of cavity quantum electrodynamics

    Science.gov (United States)

    Wei, Yang-hua; Gu, Wen-ju; Yang, Guoqing; Zhu, Yifu; Li, Gao-xiang

    2018-05-01

    Coherent perfect absorption (CPA) is investigated in the quantum nonlinear regime of cavity quantum electrodynamics (CQED), in which a single two-level atom couples to a single-mode cavity weakly driven by two identical laser fields. In the strong-coupling regime and due to the photon blockade effect, the weakly driven CQED system can be described as a quantum system with three polariton states. CPA is achieved at a critical input field strength when the frequency of the input fields matches the polariton transition frequency. In the quantum nonlinear regime, the incoherent dissipation processes such as atomic and photon decays place a lower bound for the purity of the intracavity quantum field. Our results show that under the CPA condition, the intracavity field always exhibits the quadrature squeezing property manifested by the quantum nonlinearity, and the outgoing photon flux displays the super-Poissonian distribution.

  16. Parallel magnetotransport in multiple quantum well structures

    International Nuclear Information System (INIS)

    Sheregii, E.M.; Ploch, D.; Marchewka, M.; Tomaka, G.; Kolek, A.; Stadler, A.; Mleczko, K.; Strupinski, W.; Jasik, A.; Jakiela, R.

    2004-01-01

    The results of investigations of parallel magnetotransport in AlGaAs/GaAs and InGaAs/InAlAs/InP multiple quantum wells structures (MQW's) are presented in this paper. The MQW's were obtained by metalorganic vapour phase epitaxy with different shapes of QW, numbers of QW and levels of doping. The magnetotransport measurements were performed in wide region of temperatures (0.5-300 K) and at high magnetic fields up to 30 T (B is perpendicular and current is parallel to the plane of the QW). Three types of observed effects are analyzed: quantum Hall effect and Shubnikov-de Haas oscillations at low temperatures (0.5-6 K) as well as magnetophonon resonance at higher temperatures (77-300 K)

  17. Chalcopyrite semiconductors for quantum well solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Afshar, Maziar; Sadewasser, Sascha; Albert, Juergen; Lehmann, Sebastian; Abou-Ras, Daniel; Lux-Steiner, Martha C. [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Berlin (Germany); Marron, David Fuertes [Instituto de Energia Solar - ETSIT, Universidad Politecnica de Madrid, Ciudad Universitaria s.n., 28040 Madrid (Spain); Rockett, Angus A. [Department of Materials Science and Engineering, University of Illinois, 1304 W. Green Street, Urbana, IL 61801 (United States); Raesaenen, Esa [Nanoscience Center, Department of Physics University of Jyvaeskylae, FI-40014 Jyvaeskylae (Finland)

    2011-11-15

    The possibilities of using highly absorbing chalcopyrite semiconductors of the type Cu(In,Ga)Se{sub 2} in a quantum well solar cell structure are explored. Thin alternating layers of 50 nm CuInSe{sub 2} and CuGaSe{sub 2} were grown epitaxially on a GaAs(100) substrate. The optical properties of a resulting structure of three layers indicate charge carrier confinement in the low band gap CuInSe{sub 2} layer. By compositional analysis interdiffusion of In and Ga at the interfaces was found. The compositional profile was converted into a conduction-band diagram, for which the quantization of energy levels was numerically confirmed using the effective-mass approximation. The results provide a promising basis for the future development of chalcopyrite-type quantum well structures and their application, i.e. in quantum well solar cells. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Probing quantum coherence in single-atom electron spin resonance

    Science.gov (United States)

    Willke, Philip; Paul, William; Natterer, Fabian D.; Yang, Kai; Bae, Yujeong; Choi, Taeyoung; Fernández-Rossier, Joaquin; Heinrich, Andreas J.; Lutz, Christoper P.

    2018-01-01

    Spin resonance of individual spin centers allows applications ranging from quantum information technology to atomic-scale magnetometry. To protect the quantum properties of a spin, control over its local environment, including energy relaxation and decoherence processes, is crucial. However, in most existing architectures, the environment remains fixed by the crystal structure and electrical contacts. Recently, spin-polarized scanning tunneling microscopy (STM), in combination with electron spin resonance (ESR), allowed the study of single adatoms and inter-atomic coupling with an unprecedented combination of spatial and energy resolution. We elucidate and control the interplay of an Fe single spin with its atomic-scale environment by precisely tuning the phase coherence time T2 using the STM tip as a variable electrode. We find that the decoherence rate is the sum of two main contributions. The first scales linearly with tunnel current and shows that, on average, every tunneling electron causes one dephasing event. The second, effective even without current, arises from thermally activated spin-flip processes of tip spins. Understanding these interactions allows us to maximize T2 and improve the energy resolution. It also allows us to maximize the amplitude of the ESR signal, which supports measurements even at elevated temperatures as high as 4 K. Thus, ESR-STM allows control of quantum coherence in individual, electrically accessible spins. PMID:29464211

  19. Quantum coherence behaviors of fermionic system in non-inertial frame

    Science.gov (United States)

    Huang, Zhiming; Situ, Haozhen

    2018-04-01

    In this paper, we analyze the quantum coherence behaviors of a single qubit in the relativistic regime beyond the single-mode approximation. Firstly, we investigate the freezing condition of quantum coherence in fermionic system. We also study the quantum coherence tradeoff between particle and antiparticle sector. It is found that there exists quantum coherence transfer between particle and antiparticle sector, but the coherence lost in particle sector is not entirely compensated by the coherence generation of antiparticle sector. Besides, we emphatically discuss the cohering power and decohering power of Unruh channel with respect to the computational basis. It is shown that cohering power is vanishing and decohering power is dependent of the choice of Unruh mode and acceleration. Finally, we compare the behaviors of quantum coherence with geometric quantum discord and entanglement in relativistic setup. Our results show that this quantifiers in two region converge at infinite acceleration limit, which implies that this measures become independent of Unruh modes beyond the single-mode approximations. It is also demonstrated that the robustness of quantum coherence and geometric quantum discord are better than entanglement under the influence of acceleration, since entanglement undergoes sudden death.

  20. Quantum-coherence-assisted tunable on- and off-resonance tunneling through a quantum-dot-molecule dielectric film

    International Nuclear Information System (INIS)

    Shen Jianqi; Zeng Ruixi

    2017-01-01

    Quantum-dot-molecular phase coherence (and the relevant quantum-interference-switchable optical response) can be utilized to control electromagnetic wave propagation via a gate voltage, since quantum-dot molecules can exhibit an effect of quantum coherence (phase coherence) when quantum-dot-molecular discrete multilevel transitions are driven by an electromagnetic wave. Interdot tunneling of carriers (electrons and holes) controlled by the gate voltage can lead to destructive quantum interference in a quantum-dot molecule that is coupled to an incident electromagnetic wave, and gives rise to a quantum coherence effect (e.g., electromagnetically induced transparency, EIT) in a quantum-dot-molecule dielectric film. The tunable on- and off-resonance tunneling effect of an incident electromagnetic wave (probe field) through such a quantum-coherent quantum-dot-molecule dielectric film is investigated. It is found that a high gate voltage can lead to the EIT phenomenon of the quantum-dot-molecular systems. Under the condition of on-resonance light tunneling through the present quantum-dot-molecule dielectric film, the probe field should propagate without loss if the probe frequency detuning is zero. Such an effect caused by both EIT and resonant tunneling, which is sensitive to the gate voltage, can be utilized for designing devices such as photonic switching, transistors, and logic gates. (author)

  1. Macroscopic quantum interference in the conventional and coherent quantum 1/F effect with negative quantum entropy states

    International Nuclear Information System (INIS)

    Handel, P.H.

    1998-01-01

    The author's recent application of the new Quantum Information Theory Approach (QIT) to Infra Quantum Physics (IQP) explains for the first time the apparent lack of unitarity caused by the entropy increase in the Quantum 1/f Effect (Q1/fE). This allows for a better understanding of the quantum 1/f effect in this paper, showing no resultant entropy increase and therefore no violation of unitarity. This new interpretation involves the concept of von Neumann Quantum Entropy, including the new negative conditional entropy concept for quantum entangled states introduced by QIT. The Q1/fE was applied to many high-tech systems, in particular to ultra small electronic devices. The present paper explains how the additional entropy implied by the Q1/fE arises in spite of the entropy-conserving evolution of the system. On this basis, a general derivation of the conventional and coherent quantum 1/f effect is given. (author)

  2. Coherence properties and quantum state transportation in an optical conveyor belt.

    Science.gov (United States)

    Kuhr, S; Alt, W; Schrader, D; Dotsenko, I; Miroshnychenko, Y; Rosenfeld, W; Khudaverdyan, M; Gomer, V; Rauschenbeutel, A; Meschede, D

    2003-11-21

    We have prepared and detected quantum coherences of trapped cesium atoms with long dephasing times. Controlled transport by an "optical conveyor belt" over macroscopic distances preserves the atomic coherence with slight reduction of coherence time. The limiting dephasing effects are experimentally identified, and we present an analytical model of the reversible and irreversible dephasing mechanisms. Our experimental methods are applicable at the single-atom level. Coherent quantum bit operations along with quantum state transport open the route towards a "quantum shift register" of individual neutral atoms.

  3. Physics of strained quantum well lasers

    CERN Document Server

    Loehr, John P

    1998-01-01

    When this publisher offered me the opportunity to \\\\Tite a book, some six years ago, I did not hesitate to say yes. I had just spent the last four years of graduate school struggling to understand the physics of strained quantum well lasers, and it seemed to me the whole experience was much more difficult that it should have been. For although many of the results I needed were easy to locate, the underlying physical premises and intervening steps were not. If only I had a book providing the derivations, I could have absorbed them and gone on my way. Such a book lies before you. It provides a unified and self-contained descrip­ tion of the essential physics of strained quantum well lasers, starting from first principles whenever feasible. The presentation I have chosen requires only the standard introductory background in quantum mechanics, solid state physics, and electromagnetics expected of entering graduate students in physics or elec­ trical engineering. A single undergraduate course in each of these su...

  4. Characterization of interfaces in semimagnetic quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, G.; Kuhn-Heinrich, B.; Zehnder, U.; Ossau, W.; Litz, T.; Waag, A.; Landwehr, G. [Physikalishes Institut der Universitaet Wuerzburg am Hubland, Wuerzburg (Germany)

    1995-12-31

    The interfaces between nonmagnetic CdTe quantum wells and semimagnetic barriers of Cd{sub 1-x}Mn{sub x}Te were investigated for several well widths by low temperature photoluminescence and photoluminescence excitation spectroscopy. Specially designed Cd{sub 1-x}Mn{sub x}/CdTe/Cd{sub 1-y} Mg{sub y}Te structures enable us to distinguish the quality of semimagnetic normal and inverted interfaces. The normal interface shows to better structural quality than the inverted interface. (author). 5 refs, 2 figs, 1 tab.

  5. Ultrafast spectral interferometry of resonant secondary emmission from semiconductor quantum wells

    DEFF Research Database (Denmark)

    Birkedal, Dan; Shah, Jagdeep

    1999-01-01

    Recent investigations of secondary emission from quantum well excitons follwing resonant excitation have demonstrated an intricate interplay of coherent Rayleigh scattering and incoherent luminescence. We have very recently demonstrated that it is possible to isolate and time resolve the coherent...... field associated with the Rayleigh component using ultrafast spectral interferometry, thus, obtaining substantial and new information of the nature of resonant secondary emission. Our findings demonstrate that Rayleigh scattering from static disorder is inherently a non-ergodic process invalidating...

  6. Quantum bit string commitment protocol using polarization of mesoscopic coherent states

    International Nuclear Information System (INIS)

    Mendonca, Fabio Alencar; Ramos, Rubens Viana

    2008-01-01

    In this work, we propose a quantum bit string commitment protocol using polarization of mesoscopic coherent states. The protocol is described and its security against brute force and quantum cloning machine attack is analyzed

  7. Quantum bit string commitment protocol using polarization of mesoscopic coherent states

    Science.gov (United States)

    Mendonça, Fábio Alencar; Ramos, Rubens Viana

    2008-02-01

    In this work, we propose a quantum bit string commitment protocol using polarization of mesoscopic coherent states. The protocol is described and its security against brute force and quantum cloning machine attack is analyzed.

  8. Quantum coherence phenomena in semiconductor quantum dots: quantum interference, decoherence and Rabi oscillation

    International Nuclear Information System (INIS)

    Htoon, H.; Shih, C.K.; Takagahara, T.

    2003-01-01

    We performed extensive studies on quantum decoherence processes of excitons trapped in the various excited states of SAQDs. Energy level structure and dephasing times of excited states were first determined by conducting photoluminescence excitation spectroscopy and wave-packet interferometry on a large number of individual SAQDs. This large statistical basis allows us to extract the correlation between the energy level structure and dephasing times. The major decoherence mechanisms and their active regime were identified from this correlation. A significant suppression of decoherence was also observed in some of the energetically isolated excited states, providing an experimental evidence for the theoretical prediction, known as 'phonon bottleneck effect'. Furthermore, we observed the direct experimental evidence of Rabi oscillation in these excited states with long decoherence times. In addition, a new type of quantum interference (QI) phenomenon was discovered in the wave-packet interferometry experiments performed in the strong excitation regime where the non-linear effects of Rabi oscillation become important. Detailed theoretical investigations attribute this phenomenon to the coherent dynamics resulting from the interplay of Rabi oscillation and QI

  9. Coherent quantum cascade laser micro-stripe arrays

    Directory of Open Access Journals (Sweden)

    G. M. de Naurois

    2011-09-01

    Full Text Available We have fabricated InP-based coherent quantum cascade laser micro-stripe arrays. Phase-locking is provided by evanescent coupling between adjacent stripes. Stripes are buried into semi-insulating iron doped InP. Lasing at room temperature is obtained at 8.4μm for stripe arrays comprising up to 16 emitters. Pure supermode emission is demonstrated via farfield measurements and simulations. The farfield pattern shows a dual-lobe emission, corroborating the predicted phase-locked antisymmetric supermode emission.

  10. Differential-phase-shift quantum key distribution using coherent light

    International Nuclear Information System (INIS)

    Inoue, K.; Waks, E.; Yamamoto, Y.

    2003-01-01

    Differential-phase-shift quantum key distribution based on two nonorthogonal states is described. A weak coherent pulse train is sent from Alice to Bob, in which the phase of each pulse is randomly modulated by {0,π}. Bob measures the differential phase by a one-bit delay circuit. The system has a simple configuration without the need for an interferometer and a bright reference pulse in Alice's site, unlike the conventional QKD system based on two nonorthogonal states, and has an advantage of improved communication efficiency. The principle of the operation is successfully demonstrated in experiments

  11. Quantum theory of optical coherence selected papers and lectures

    CERN Document Server

    Glauber, Roy J

    2007-01-01

    A summary of the pioneering work of Glauber in the field of optical coherence phenomena and photon statistics, this book describes the fundamental ideas of modern quantum optics and photonics in a tutorial style. It is thus not only intended as a reference for researchers in the field, but also to give graduate students an insight into the basic theories of the field. Written by the Nobel Laureate himself, the concepts described in this book have formed the basis for three further Nobel Prizes in Physics within the last decade

  12. Coherent feedback control of multipartite quantum entanglement for optical fields

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Zhihui; Jia, Xiaojun; Xie, Changde; Peng, Kunchi [State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, 030006 (China)

    2011-12-15

    Coherent feedback control (CFC) of multipartite optical entangled states produced by a nondegenerate optical parametric amplifier is theoretically studied. The features of the quantum correlations of amplitude and phase quadratures among more than two entangled optical modes can be controlled by tuning the transmissivity of the optical beam splitter in the CFC loop. The physical conditions to enhance continuous variable multipartite entanglement of optical fields utilizing the CFC loop are obtained. The numeric calculations based on feasible physical parameters of realistic systems provide direct references for the design of experimental devices.

  13. Coherent eavesdropping attacks in tomographic quantum cryptography: Nonequivalence of quantum and classical key distillation

    International Nuclear Information System (INIS)

    Kaszlikowski, Dagomir; Lim, J.Y.; Englert, Berthold-Georg; Kwek, L.C.

    2005-01-01

    The security of a cryptographic key that is generated by communication through a noisy quantum channel relies on the ability to distill a shorter secure key sequence from a longer insecure one. We show that - for protocols that use quantum channels of any dimension and completely characterize them by state tomography - the noise threshold for classical advantage distillation of a specific kind is substantially lower than the threshold for quantum entanglement distillation if the eavesdropper can perform powerful coherent attacks. In marked contrast, earlier investigations had shown that the thresholds are identical for incoherent attacks on the same classical distillation scheme. It remains an open question whether other schemes for classical advantage distillation have higher thresholds for coherent eavesdropping attacks

  14. 8th Rochester Conference on Coherence and Quantum Optics

    CERN Document Server

    2001-01-01

    The Eighth Rochester Conference on Coherence and Quantum Optics was held on the campus of the University of Rochester during the period June 13-16,2001. This volume contains the proceedings of the meeting. The meeting was preceded by an affiliated conference, the International Conference on Quantum Information, with some overlapping sessions on June 13. The proceedings of the affiliated conference will be published separately by the Optical Society of America. A few papers that were presented in common plenary sessions of the two conferences will be published in both proceedings volumes. More than 268 scientists from 28 countries participated in the week long discussions and presentations. This Conference differed from the previous seven in the CQO series in several ways, the most important of which was the absence of Leonard Mandel. Professor Mandel died a few months before the conference. A special memorial symposium in his honor was held at the end of the conference. The presentations from that sym...

  15. Squeezed light in an optical parametric oscillator network with coherent feedback quantum control.

    Science.gov (United States)

    Crisafulli, Orion; Tezak, Nikolas; Soh, Daniel B S; Armen, Michael A; Mabuchi, Hideo

    2013-07-29

    We present squeezing and anti-squeezing spectra of the output from a degenerate optical parametric oscillator (OPO) network arranged in different coherent quantum feedback configurations. One OPO serves as a quantum plant, the other as a quantum controller. The addition of coherent feedback enables shaping of the output squeezing spectrum of the plant, and is found to be capable of pushing the frequency of maximum squeezing away from the optical driving frequency and broadening the spectrum over a wider frequency band. The experimental results are in excellent agreement with the developed theory, and illustrate the use of coherent quantum feedback to engineer the quantum-optical properties of the plant OPO output.

  16. Quantum cryptography using coherent states: Randomized encryption and key generation

    Science.gov (United States)

    Corndorf, Eric

    objectives of key generation and direct data-encryption, a new quantum cryptographic principle is demonstrated wherein keyed coherent-state signal sets are employed. Taking advantage of the fundamental and irreducible quantum-measurement noise of coherent states, these schemes do not require the users to measure the influence of an attacker. Experimental key-generation and data encryption schemes based on these techniques, which are compatible with today's WDM fiber-optic telecommunications infrastructure, are implemented and analyzed.

  17. Femtosecond spectroscopy in semiconductors: a key to coherences, correlations and quantum kinetics

    International Nuclear Information System (INIS)

    Axt, V M; Kuhn, T

    2004-01-01

    The application of femtosecond spectroscopy to the study of ultrafast dynamics in semiconductor materials and nanostructures is reviewed with particular emphasis on the physics that can be learned from it. Excitation with ultrashort optical pulses in general results in the creation of coherent superpositions and correlated many-particle states. The review comprises a discussion of the dynamics of this correlated many-body system during and after pulsed excitation as well as its analysis by means of refined measurements and advanced theories. After an introduction of basic concepts-such as coherence, correlation and quantum kinetics-a brief overview of the most important experimental techniques and theoretical approaches is given. The remainder of this paper is devoted to specific results selected in order to highlight how femtosecond spectroscopy gives access to the physics of coherences, correlations and quantum kinetics involving charge, spin and lattice degrees of freedom. First examples deal with the dynamics of basic laser-induced coherences that can be observed, e.g. in quantum beat spectroscopy, in coherent control measurements or in experiments using few-cycle pulses. The phenomena discussed here are basic in the sense that they can be understood to a large extent on the mean-field level of the theory. Nevertheless, already on this level it is found that semiconductors behave substantially differently from atomic systems. Subsequent sections report on the occurrence of coherences and correlations beyond the mean-field level that are mediated either by carrier-phonon or carrier-carrier interactions. The corresponding analysis gives deep insight into fundamental issues such as the energy-time uncertainty, pure dephasing in quantum dot structures, the role of two-pair or even higher correlations and the build-up of screening. Finally results are presented concerning the ultrafast dynamics of resonantly coupled excitations, where a combination of different

  18. The Physics of Quantum Well Infrared Photodetectors

    CERN Document Server

    Choi, K K

    1999-01-01

    In the past, infrared imaging has been used exclusively for military applications. In fact, it can also be useful in a wide range of scientific and commercial applications. However, its wide spread use was impeded by the scarcity of the imaging systems and its high cost. Recently, there is an emerging infrared technology based on quantum well intersubband transition in III-V compound semiconductors. With the new technology, these impedances can be eliminated and a new era of infrared imaging is in sight. This book is designed to give a systematic description on the underlying physics of the ne

  19. Electron Raman scattering in quantum well wires

    International Nuclear Information System (INIS)

    Zhao Xiangfu; Liu Cuihong

    2007-01-01

    Electron Raman scattering (ERS) is investigated in a semiconductor quantum well wire (QWW) of cylindrical geometry for T=0K and neglecting phonon-assisted transitions. The differential cross-section (DCS) involved in this process is calculated as a function of a scattering frequency and the cylindrical radius. Electron states are confined within a QWW. Single parabolic conduction and valence bands are assumed. The selection rules are studied. Singularities in the spectra are interpreted for various cylindrical radii. ERS discussed here can provide direct information about the electron band structure of the system

  20. Quantum coherence in the reflection of above barrier wavepackets

    Science.gov (United States)

    Petersen, Jakob; Pollak, Eli

    2018-02-01

    The quantum phenomenon of above barrier reflection is investigated from a time-dependent perspective using Gaussian wavepackets. The transition path time distribution, which in principle is experimentally measurable, is used to study the mean flight times ⟨t⟩R and ⟨t⟩T associated with the reflection and the transmission over the barrier paying special attention to their dependence on the width of the barrier. Both flight times, and their difference Δt, exhibit two distinct regimes depending on the ratio of the spatial width of the incident wavepacket and the length of the barrier. When the ratio is larger than unity, the reflection and transmission dynamics are coherent and dominated by the resonances above the barrier. The flight times ⟨t⟩R/T and the flight time difference Δt oscillate as a function of the barrier width (almost in phase with the transmission probability). These oscillations reflect a momentum filtering effect related to the coherent superposition of the reflected and transmitted waves. For a ratio less than unity, the barrier reflection and transmission dynamics are incoherent and the oscillations are absent. The barrier width which separates the coherent and incoherent regimes is identified analytically. The oscillatory structure of the time difference Δt as a function of the barrier width in the coherent regime is absent when considered in terms of the Wigner phase time delays for reflection and transmission. We conclude that the Wigner phase time does not correctly describe the temporal properties of above barrier reflection. We also find that the structure of the reflected and transmitted wavepackets depends on the coherence of the process. In the coherent regime, the wavepackets can have an overlapping peak structure, but the peaks are not fully resolved. In the incoherent regime, the wavepackets split in time into distinct separated Gaussian like waves, each one reflecting the number of times the wavepacket crosses the barrier

  1. Security proof of continuous-variable quantum key distribution using three coherent states

    Science.gov (United States)

    Brádler, Kamil; Weedbrook, Christian

    2018-02-01

    We introduce a ternary quantum key distribution (QKD) protocol and asymptotic security proof based on three coherent states and homodyne detection. Previous work had considered the binary case of two coherent states and here we nontrivially extend this to three. Our motivation is to leverage the practical benefits of both discrete and continuous (Gaussian) encoding schemes creating a best-of-both-worlds approach; namely, the postprocessing of discrete encodings and the hardware benefits of continuous ones. We present a thorough and detailed security proof in the limit of infinite signal states which allows us to lower bound the secret key rate. We calculate this is in the context of collective eavesdropping attacks and reverse reconciliation postprocessing. Finally, we compare the ternary coherent state protocol to other well-known QKD schemes (and fundamental repeaterless limits) in terms of secret key rates and loss.

  2. Carrier diffusion in low-dimensional semiconductors. a comparison of quantum wells, disordered quantum wells, and quantum dots

    NARCIS (Netherlands)

    Fiore, A.; Rossetti, M.; Alloing, B.; Paranthoën, C.; Chen, J.X.; Geelhaar, L.; Riechert, H.

    2004-01-01

    We present a comparative study of carrier diffusion in semiconductor heterostructures with different dimensionality [InGaAs quantum wells (QWs), InAs quantum dots (QDs), and disordered InGaNAs QWs (DQWs)]. In order to evaluate the diffusion length in the active region of device structures, we

  3. Quantum interference and coherent control in dissipative atomic systems

    International Nuclear Information System (INIS)

    Paspalakis, E.

    1999-01-01

    In this thesis we study the effects of quantum interference arising from dissipative processes in atomic systems. First, we identify quantum interference phenomena arising from decay mechanisms. Second, we use dynamical methods (the properties of laser fields) to obtain a tailored response of systems in which such interferences are present. We are mainly concerned with two dissipative processes: spontaneous emission and ionization. First, we study the effects of quantum interference arising from spontaneous emission on the population dynamics and the spontaneous emission spectrum of several multi-level systems. Coherent 'phase' control methods for manipulating the response of systems involving spontaneous emission interference are also proposed. Several interesting phenomena are identified such as partial and total quenching of spontaneous emission, phase dependent population dynamics and coherent population trapping. Next, we consider the process of laser-induced continuum structure, where an atom is coupled by two laser fields to the same electronic continuum. An {it ab initio}, non-perturbative study of this process in helium using the R-Matrix Floquet theory is presented. The results of our numerical calculations are compared with those obtained by simple perturbative models and with recent experimental results. The possibility of coherent population transfer via a continuum of states is then analyzed. We study two distinct atomic systems. A laser-induced continuum structure scheme (unstructured continuum) and a bichromatically driven autoionizing scheme (structured continuum). We find that the same conditions which lead to 'dark' states in these systems lead to efficient population transfer. We also identify parameters detrimental to the transfer efficiency and propose methods to overcome them. Finally, we study short pulse propagation in systems involving interfering dissipation mechanisms. We show that the existence of dark states can lead to loss-free and

  4. Controlled release of stored pulses in a double-quantum-well structure

    International Nuclear Information System (INIS)

    Carreno, F; Anton, M A

    2009-01-01

    We show that an asymmetric double-quantum-well structure can operate as an optical memory. The double quantum wells are modelled like an atomic ensemble of four-level atoms in the Λ-V-type configuration with vacuum-induced coherence arising from resonant tunnelling through the ultra-thin potential energy barrier between the wells. A weak quantum field connects the ground level with the two upper levels and an auxiliary classical control field connects the intermediate level with the upper levels. The quantum field can be mapped into two channels. One channel results from the adiabatic change of the control field which maps the incoming quantum field into the coherence of the two lower levels like in a Λ-type atomic ensemble. The other channel results from the mapping of the quantum field into a combination of coherences between the two upper levels and the ground level, and it is allowed by the adiabatic change of the upper level splitting via an external voltage. The possibility of releasing multiple pulses from the medium resulting from the existence of a non-evolving component of the two-channel memory is shown. A physical picture has been developed providing an explanation of the performance of the device.

  5. Comment on Kirk's “Analysis of quantum coherent solar photovoltaic cells”

    International Nuclear Information System (INIS)

    Chapin, K.R.; Cohen, D.; Das, S.; Dorfman, K.; Jha, P.K.; Kim, M.; Svidzinsky, A.; Vetter, P.; Voronine, D.V.

    2013-01-01

    We present our scientific and philosophical analysis of the comments made in the recent paper of A.P. Kirk, “An Analysis of Quantum Coherent Solar Photovoltaic Cells” Physica B 407 (2012) 544. We highlight the key role of quantum coherence in the enhancement of the photocell power without violating the laws of thermodynamics

  6. Delineating incoherent non-Markovian dynamics using quantum coherence

    Energy Technology Data Exchange (ETDEWEB)

    Chanda, Titas, E-mail: titaschanda@hri.res.in; Bhattacharya, Samyadeb, E-mail: samyadebbhattacharya@hri.res.in

    2016-03-15

    We introduce a method of characterization of non-Markovianity using coherence of a system interacting with the environment. We show that under the allowed incoherent operations, monotonicity of a valid coherence measure is affected due to non-Markovian features of the system–environment evolution. We also define a measure to quantify non-Markovianity of the underlying dynamics based on the non-monotonic behavior of the coherence measure. We investigate our proposed non-Markovianity marker in the behavior of dephasing and dissipative dynamics for one and two qubit cases. We also show that our proposed measure captures the back-flow of information from the environment to the system and compatible with well known distinguishability criteria of non-Markovianity.

  7. Pseudo-Hermitian coherent states under the generalized quantum condition with position-dependent mass

    International Nuclear Information System (INIS)

    Yahiaoui, S A; Bentaiba, M

    2012-01-01

    In the context of the factorization method, we investigate the pseudo-Hermitian coherent states and their Hermitian counterpart coherent states under the generalized quantum condition in the framework of a position-dependent mass. By considering a specific modification in the superpotential, suitable annihilation and creation operators are constructed in order to reproduce the Hermitian counterpart Hamiltonian in the factorized form. We show that by means of these ladder operators, we can construct a wide range of exactly solvable potentials as well as their accompanying coherent states. Alternatively, we explore the relationship between the pseudo-Hermitian Hamiltonian and its Hermitian counterparts, obtained from a similarity transformation, to construct the associated pseudo-Hermitian coherent states. These latter preserve the structure of Perelomov’s states and minimize the generalized position–momentum uncertainty principle. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’. (paper)

  8. Spin-orbit interaction in multiple quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Ya-Fei, E-mail: haoyafei@zjnu.cn [Physics Department, Zhejiang Normal University, Zhejiang 321004 (China)

    2015-01-07

    In this paper, we investigate how the structure of multiple quantum wells affects spin-orbit interactions. To increase the interface-related Rashba spin splitting and the strength of the interface-related Rashba spin-orbit interaction, we designed three kinds of multiple quantum wells. We demonstrate that the structure of the multiple quantum wells strongly affected the interface-related Rashba spin-orbit interaction, increasing the interface-related Rashba spin splitting to up to 26% larger in multiple quantum wells than in a stepped quantum well. We also show that the cubic Dresselhaus spin-orbit interaction similarly influenced the spin relaxation time of multiple quantum wells and that of a stepped quantum well. The increase in the interface-related Rashba spin splitting originates from the relationship between interface-related Rashba spin splitting and electron probability density. Our results suggest that multiple quantum wells can be good candidates for spintronic devices.

  9. Spin-orbit interaction in multiple quantum wells

    International Nuclear Information System (INIS)

    Hao, Ya-Fei

    2015-01-01

    In this paper, we investigate how the structure of multiple quantum wells affects spin-orbit interactions. To increase the interface-related Rashba spin splitting and the strength of the interface-related Rashba spin-orbit interaction, we designed three kinds of multiple quantum wells. We demonstrate that the structure of the multiple quantum wells strongly affected the interface-related Rashba spin-orbit interaction, increasing the interface-related Rashba spin splitting to up to 26% larger in multiple quantum wells than in a stepped quantum well. We also show that the cubic Dresselhaus spin-orbit interaction similarly influenced the spin relaxation time of multiple quantum wells and that of a stepped quantum well. The increase in the interface-related Rashba spin splitting originates from the relationship between interface-related Rashba spin splitting and electron probability density. Our results suggest that multiple quantum wells can be good candidates for spintronic devices

  10. Silicon nanophotonics for scalable quantum coherent feedback networks

    Energy Technology Data Exchange (ETDEWEB)

    Sarovar, Mohan; Brif, Constantin [Sandia National Laboratories, Livermore, CA (United States); Soh, Daniel B.S. [Sandia National Laboratories, Livermore, CA (United States); Stanford University, Edward L. Ginzton Laboratory, Stanford, CA (United States); Cox, Jonathan; DeRose, Christopher T.; Camacho, Ryan; Davids, Paul [Sandia National Laboratories, Albuquerque, NM (United States)

    2016-12-15

    The emergence of coherent quantum feedback control (CQFC) as a new paradigm for precise manipulation of dynamics of complex quantum systems has led to the development of efficient theoretical modeling and simulation tools and opened avenues for new practical implementations. This work explores the applicability of the integrated silicon photonics platform for implementing scalable CQFC networks. If proven successful, on-chip implementations of these networks would provide scalable and efficient nanophotonic components for autonomous quantum information processing devices and ultra-low-power optical processing systems at telecommunications wavelengths. We analyze the strengths of the silicon photonics platform for CQFC applications and identify the key challenges to both the theoretical formalism and experimental implementations. In particular, we determine specific extensions to the theoretical CQFC framework (which was originally developed with bulk-optics implementations in mind), required to make it fully applicable to modeling of linear and nonlinear integrated optics networks. We also report the results of a preliminary experiment that studied the performance of an in situ controllable silicon nanophotonic network of two coupled cavities and analyze the properties of this device using the CQFC formalism. (orig.)

  11. Silicon nanophotonics for scalable quantum coherent feedback networks

    International Nuclear Information System (INIS)

    Sarovar, Mohan; Brif, Constantin; Soh, Daniel B.S.; Cox, Jonathan; DeRose, Christopher T.; Camacho, Ryan; Davids, Paul

    2016-01-01

    The emergence of coherent quantum feedback control (CQFC) as a new paradigm for precise manipulation of dynamics of complex quantum systems has led to the development of efficient theoretical modeling and simulation tools and opened avenues for new practical implementations. This work explores the applicability of the integrated silicon photonics platform for implementing scalable CQFC networks. If proven successful, on-chip implementations of these networks would provide scalable and efficient nanophotonic components for autonomous quantum information processing devices and ultra-low-power optical processing systems at telecommunications wavelengths. We analyze the strengths of the silicon photonics platform for CQFC applications and identify the key challenges to both the theoretical formalism and experimental implementations. In particular, we determine specific extensions to the theoretical CQFC framework (which was originally developed with bulk-optics implementations in mind), required to make it fully applicable to modeling of linear and nonlinear integrated optics networks. We also report the results of a preliminary experiment that studied the performance of an in situ controllable silicon nanophotonic network of two coupled cavities and analyze the properties of this device using the CQFC formalism. (orig.)

  12. Electronic Conduction through Atomic Chains, Quantum Well and Quantum Wire

    International Nuclear Information System (INIS)

    Sharma, A. C.

    2011-01-01

    Charge transport is dynamically and strongly linked with atomic structure, in nanostructures. We report our ab-initio calculations on electronic transport through atomic chains and the model calculations on electron-electron and electron-phonon scattering rates in presence of random impurity potential in a quantum well and in a quantum wire. We computed synthesis and ballistic transport through; (a) C and Si based atomic chains attached to metallic electrodes, (b) armchair (AC), zigzag (ZZ), mixed, rotated-AC and rotated-ZZ geometries of small molecules made of 2S, 6C and 4H atoms attaching to metallic electrodes, and (c) carbon atomic chain attached to graphene electrodes. Computed results show that synthesis of various atomic chains are practically possible and their transmission coefficients are nonzero for a wide energy range. The ab-initio calculations on electronic transport have been performed with the use of Landauer-type scattering formalism formulated in terms of Grben's functions in combination with ground-state DFT. The electron-electron and electron-phonon scattering rates have been calculated as function of excitation energy both at zero and finite temperatures for disordered 2D and 1D systems. Our model calculations suggest that electron scattering rates in a disordered system are mainly governed by effective dimensionality of a system, carrier concentration and dynamical screening effects.

  13. Protecting quantum coherence of two-level atoms from vacuum fluctuations of electromagnetic field

    International Nuclear Information System (INIS)

    Liu, Xiaobao; Tian, Zehua; Wang, Jieci; Jing, Jiliang

    2016-01-01

    In the framework of open quantum systems, we study the dynamics of a static polarizable two-level atom interacting with a bath of fluctuating vacuum electromagnetic field and explore under which conditions the coherence of the open quantum system is unaffected by the environment. For both a single-qubit and two-qubit systems, we find that the quantum coherence cannot be protected from noise when the atom interacts with a non-boundary electromagnetic field. However, with the presence of a boundary, the dynamical conditions for the insusceptible of quantum coherence are fulfilled only when the atom is close to the boundary and is transversely polarizable. Otherwise, the quantum coherence can only be protected in some degree in other polarizable direction. -- Highlights: •We study the dynamics of a two-level atom interacting with a bath of fluctuating vacuum electromagnetic field. •For both a single and two-qubit systems, the quantum coherence cannot be protected from noise without a boundary. •The insusceptible of the quantum coherence can be fulfilled only when the atom is close to the boundary and is transversely polarizable. •Otherwise, the quantum coherence can only be protected in some degree in other polarizable direction.

  14. Coherent inflationary dynamics for Bose-Einstein condensates crossing a quantum critical point

    Science.gov (United States)

    Feng, Lei; Clark, Logan W.; Gaj, Anita; Chin, Cheng

    2018-03-01

    Quantum phase transitions, transitions between many-body ground states, are of extensive interest in research ranging from condensed-matter physics to cosmology1-4. Key features of the phase transitions include a stage with rapidly growing new order, called inflation in cosmology5, followed by the formation of topological defects6-8. How inflation is initiated and evolves into topological defects remains a hot topic of debate. Ultracold atomic gas offers a pristine and tunable platform to investigate quantum critical dynamics9-21. We report the observation of coherent inflationary dynamics across a quantum critical point in driven Bose-Einstein condensates. The inflation manifests in the exponential growth of density waves and populations in well-resolved momentum states. After the inflation stage, extended coherent dynamics is evident in both real and momentum space. We present an intuitive description of the quantum critical dynamics in our system and demonstrate the essential role of phase fluctuations in the formation of topological defects.

  15. Coherent Electron Scattering Captured by an Attosecond Quantum Stroboscope

    International Nuclear Information System (INIS)

    Mauritsson, J.; Johnsson, P.; Mansten, E.; Swoboda, M.; Ruchon, T.; L'Huillier, A.; Schafer, K. J.

    2008-01-01

    We demonstrate a quantum stroboscope based on a sequence of identical attosecond pulses that are used to release electrons into a strong infrared (IR) laser field exactly once per laser cycle. The resulting electron momentum distributions are recorded as a function of time delay between the IR laser and the attosecond pulse train using a velocity map imaging spectrometer. Because our train of attosecond pulses creates a train of identical electron wave packets, a single ionization event can be studied stroboscopically. This technique has enabled us to image the coherent electron scattering that takes place when the IR field is sufficiently strong to reverse the initial direction of the electron motion causing it to rescatter from its parent ion

  16. The size effect of the quantum coherence in the transverse-field XY chain

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lu; Yang, Cui-hong; Wang, Jun-feng [Department of Physics, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Lei, Shu-guo, E-mail: sglei@njtech.edu.cn [College of Science, Nanjing Tech University, Nanjing, 211816 (China)

    2016-12-15

    Based on the Wigner–Yanase skew information, the size effect of the quantum coherence in the ground state of the finite transverse-field spin-1/2 XY chain is explored. It is found that the first-order derivatives of the single-spin coherence and the two-spin local coherence both have scaling behaviors in the vicinity of the critical point. A simplified version of coherence is also studied and the same characteristics with its counterpart are found.

  17. Quantum entropy and uncertainty for two-mode squeezed, coherent and intelligent spin states

    Science.gov (United States)

    Aragone, C.; Mundarain, D.

    1993-01-01

    We compute the quantum entropy for monomode and two-mode systems set in squeezed states. Thereafter, the quantum entropy is also calculated for angular momentum algebra when the system is either in a coherent or in an intelligent spin state. These values are compared with the corresponding values of the respective uncertainties. In general, quantum entropies and uncertainties have the same minimum and maximum points. However, for coherent and intelligent spin states, it is found that some minima for the quantum entropy turn out to be uncertainty maxima. We feel that the quantum entropy we use provides the right answer, since it is given in an essentially unique way.

  18. Asymmetric quantum well broadband thyristor laser

    Science.gov (United States)

    Liu, Zhen; Wang, Jiaqi; Yu, Hongyan; Zhou, Xuliang; Chen, Weixi; Li, Zhaosong; Wang, Wei; Ding, Ying; Pan, Jiaoqing

    2017-11-01

    A broadband thyristor laser based on InGaAs/GaAs asymmetric quantum well (AQW) is fabricated by metal organic chemical vapor deposition (MOCVD). The 3-μm-wide Fabry-Perot (FP) ridge-waveguide laser shows an S-shape I-V characteristic and exhibits a flat-topped broadband optical spectrum coverage of ~27 nm (Δ-10 dB) at a center wavelength of ~1090 nm with a total output power of 137 mW under pulsed operation. The AQW structure was carefully designed to establish multiple energy states within, in order to broaden the gain spectrum. An obvious blue shift emission, which is not generally acquired in QW laser diodes, is observed in the broadening process of the optical spectrum as the injection current increases. This blue shift spectrum broadening is considered to result from the prominent band-filling effect enhanced by the multiple energy states of the AQW structure, as well as the optical feedback effect contributed by the thyristor laser structure. Project supported by the National Natural Science Foundation of China (Nos. 61604144, 61504137). Zhen Liu and Jiaqi Wang contributed equally to this work.

  19. Magnetophonon resonance in double quantum wells

    Science.gov (United States)

    Ploch, D.; Sheregii, E. M.; Marchewka, M.; Wozny, M.; Tomaka, G.

    2009-05-01

    The experimental results obtained for the magnetotransport in pulsed magnetic fields in the InGaAs/InAlAs double quantum well (DQW) structures of two different shapes of wells and different values of the electron density are reported. The magnetophonon resonance (MPR) was observed for both types of structures within the temperature range 77-125 K. Four kinds of LO phonons are taken into account to interpret the MPR oscillations in the DQW and a method of the Landau level calculation in the DQW is elaborated for this aim. The peculiarity of the MPR in the DQW is the large number of the Landau levels caused by SAS splitting of the electron states (splitting on the symmetric and anti-symmetric states) and the large number of the phonon assistance electron transitions between Landau levels. The significant role of the carrier statistics is shown too. The behavior of the electron states in the DQWs at comparably high temperatures has been studied using the MPR. It is shown that the Huang and Manasreh [Manasreh [Phys. Rev. B 54, 2044 (1996)] model involving screening of exchange interaction is confirmed.

  20. Polarization-insensitive quantum-dot coupled quantum-well semiconductor optical amplifier

    International Nuclear Information System (INIS)

    Huang Lirong; Yu Yi; Tian Peng; Huang Dexiu

    2009-01-01

    The optical gain of a quantum-dot semiconductor optical amplifier is usually seriously dependent on polarization; we propose a quantum-dot coupled tensile-strained quantum-well structure to obtain polarization insensitivity. The tensile-strained quantum well not only serves as a carrier injection layer of quantum dots but also offers gain to the transverse-magnetic mode. Based on the polarization-dependent coupled carrier rate-equation model, we study carrier competition among quantum well and quantum dots, and study the polarization dependence of the quantum-dot coupled quantum-well semiconductor optical amplifier. We also analyze polarization-dependent photon-mediated carrier distribution among quantum well and quantum dots. It is shown that polarization-insensitive gain can be realized by optimal design

  1. Biexciton binding energy in ZnSe quantum wells and quantum wires

    DEFF Research Database (Denmark)

    Wagner, Hans-Peter; Langbein, Wolfgang; Hvam, Jørn Märcher

    2002-01-01

    The biexciton binding energy E-XX is investigated in ZnSe/ZnMgSe quantum wells and quantum wires as a function of the lateral confinement by transient four-wave mixing. In the quantum wells one observes for decreasing well width a significant increase in the relative binding energy, saturating...... for well widths less than 8 nm. In the quantum wires an increase of 30% is found in the smallest quantum wire structures compared to the corresponding quantum well value. A simple analytical model taking into account the quantum confinement in these low-dimensional systems is used to explain...

  2. Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks

    DEFF Research Database (Denmark)

    Gehring, Tobias; Haendchen, Vitus; Duhme, Joerg

    2015-01-01

    Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution this is achieved without relying on the hardness of mathematical problems, which might be compromised by improved algorithms or by future quantum computers. State......-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side channels. Here we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our...... with conventional optical communication technology, our work is a step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components....

  3. Electron Spin Coherence Times in Si/SiGe Quantum Dots

    Science.gov (United States)

    Jock, R. M.; He, Jianhua; Tyryshkin, A. M.; Lyon, S. A.; Lee, C.-H.; Huang, S.-H.; Liu, C. W.

    2014-03-01

    Single electron spin states in silicon have shown a great deal of promise as qubits due to their long spin relaxation (T1) and coherence (T2) times. Recent results exhibit a T2 of 250 us for electrons confined in Si/SiGe quantum dots at 350 mK. These experiments used conventional X-band (10 GHz) pulsed Electron Spin Resonance on a large area (3.5 mm x 20 mm), dual-gated, undoped Si/SiGe heterostructure quantum dots. These dots are induced in a natural Si quantum well by e-beam defined gates having a lithographic radius of 150 nm and pitch of 700 nm. The relatively large size of these dots led to closely spaced energy levels and long T2's could only be measured at sub-Kelvin temperatures. At 2K confined electrons displayed a 3 us T2, which is comparable to that of 2D electrons at that temperature. Decreasing the quantum dot size increases the electron confinement and reduces the effects of valley-splitting and spin-orbit coupling on the electron spin coherence times. We will report results on dots with 80 nm lithographic radii and a 375 nm pitch. This device displays an extended electron coherence time of 30 us at 2K, suggesting tighter confinement of electrons. Further measurements at lower temperatures are in progress. This work was supported in part by NSF through the Materials World Network program (DMR-1107606) and the Princeton MRSEC (DMR-0819860), and in part by the U.S. Army Research Office (W911NF-13-1-0179).

  4. Security improvement by using a modified coherent state for quantum cryptography

    International Nuclear Information System (INIS)

    Lu, Y.J.; Zhu, Luobei; Ou, Z.Y.

    2005-01-01

    Weak coherent states as a photon source for quantum cryptography have a limit in secure data rate and transmission distance because of the presence of multiphoton events and loss in transmission line. Two-photon events in a coherent state can be taken out by a two-photon interference scheme. We investigate the security issue of utilizing this modified coherent state in quantum cryptography. A 4-dB improvement in the secure data rate or a nearly twofold increase in transmission distance over the coherent state are found. With a recently proposed and improved encoding strategy, further improvement is possible

  5. Dynamical model of coherent circularly polarized optical pulse interactions with two-level quantum systems

    International Nuclear Information System (INIS)

    Slavcheva, G.; Hess, O.

    2005-01-01

    We propose and develop a method for theoretical description of circularly (elliptically) polarized optical pulse resonant coherent interactions with two-level atoms. The method is based on the time-evolution equations of a two-level quantum system in the presence of a time-dependent dipole perturbation for electric dipole transitions between states with total angular-momentum projection difference (ΔJ z =±1) excited by a circularly polarized electromagnetic field [Feynman et al., J. Appl. Phys. 28, 49 (1957)]. The adopted real-vector representation approach allows for coupling with the vectorial Maxwell's equations for the optical wave propagation and thus the resulting Maxwell pseudospin equations can be numerically solved in the time domain without any approximations. The model permits a more exact study of the ultrafast coherent pulse propagation effects taking into account the vector nature of the electromagnetic field and hence the polarization state of the optical excitation. We demonstrate self-induced transparency effects and formation of polarized solitons. The model represents a qualitative extension of the well-known optical Maxwell-Bloch equations valid for linearly polarized light and a tool for studying coherent quantum control mechanisms

  6. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope.

    Science.gov (United States)

    Feist, Armin; Echternkamp, Katharina E; Schauss, Jakob; Yalunin, Sergey V; Schäfer, Sascha; Ropers, Claus

    2015-05-14

    Coherent manipulation of quantum systems with light is expected to be a cornerstone of future information and communication technology, including quantum computation and cryptography. The transfer of an optical phase onto a quantum wavefunction is a defining aspect of coherent interactions and forms the basis of quantum state preparation, synchronization and metrology. Light-phase-modulated electron states near atoms and molecules are essential for the techniques of attosecond science, including the generation of extreme-ultraviolet pulses and orbital tomography. In contrast, the quantum-coherent phase-modulation of energetic free-electron beams has not been demonstrated, although it promises direct access to ultrafast imaging and spectroscopy with tailored electron pulses on the attosecond scale. Here we demonstrate the coherent quantum state manipulation of free-electron populations in an electron microscope beam. We employ the interaction of ultrashort electron pulses with optical near-fields to induce Rabi oscillations in the populations of electron momentum states, observed as a function of the optical driving field. Excellent agreement with the scaling of an equal-Rabi multilevel quantum ladder is obtained, representing the observation of a light-driven 'quantum walk' coherently reshaping electron density in momentum space. We note that, after the interaction, the optically generated superposition of momentum states evolves into a train of attosecond electron pulses. Our results reveal the potential of quantum control for the precision structuring of electron densities, with possible applications ranging from ultrafast electron spectroscopy and microscopy to accelerator science and free-electron lasers.

  7. Substantially Enhancing Quantum Coherence of Electrons in Graphene via Electron-Plasmon Coupling.

    Science.gov (United States)

    Cheng, Guanghui; Qin, Wei; Lin, Meng-Hsien; Wei, Laiming; Fan, Xiaodong; Zhang, Huayang; Gwo, Shangjr; Zeng, Changgan; Hou, J G; Zhang, Zhenyu

    2017-10-13

    The interplays between different quasiparticles in solids lay the foundation for a wide spectrum of intriguing quantum effects, yet how the collective plasmon excitations affect the quantum transport of electrons remains largely unexplored. Here we provide the first demonstration that when the electron-plasmon coupling is introduced, the quantum coherence of electrons in graphene is substantially enhanced with the quantum coherence length almost tripled. We further develop a microscopic model to interpret the striking observations, emphasizing the vital role of the graphene plasmons in suppressing electron-electron dephasing. The novel and transformative concept of plasmon-enhanced quantum coherence sheds new insight into interquasiparticle interactions, and further extends a new dimension to exploit nontrivial quantum phenomena and devices in solid systems.

  8. Complete Coherent Control of a Quantum Dot Strongly Coupled to a Nanocavity

    Science.gov (United States)

    Dory, Constantin; Fischer, Kevin A.; Müller, Kai; Lagoudakis, Konstantinos G.; Sarmiento, Tomas; Rundquist, Armand; Zhang, Jingyuan L.; Kelaita, Yousif; Vučković, Jelena

    2016-04-01

    Strongly coupled quantum dot-cavity systems provide a non-linear configuration of hybridized light-matter states with promising quantum-optical applications. Here, we investigate the coherent interaction between strong laser pulses and quantum dot-cavity polaritons. Resonant excitation of polaritonic states and their interaction with phonons allow us to observe coherent Rabi oscillations and Ramsey fringes. Furthermore, we demonstrate complete coherent control of a quantum dot-photonic crystal cavity based quantum-bit. By controlling the excitation power and phase in a two-pulse excitation scheme we achieve access to the full Bloch sphere. Quantum-optical simulations are in good agreement with our experiments and provide insight into the decoherence mechanisms.

  9. Complete Coherent Control of a Quantum Dot Strongly Coupled to a Nanocavity.

    Science.gov (United States)

    Dory, Constantin; Fischer, Kevin A; Müller, Kai; Lagoudakis, Konstantinos G; Sarmiento, Tomas; Rundquist, Armand; Zhang, Jingyuan L; Kelaita, Yousif; Vučković, Jelena

    2016-04-26

    Strongly coupled quantum dot-cavity systems provide a non-linear configuration of hybridized light-matter states with promising quantum-optical applications. Here, we investigate the coherent interaction between strong laser pulses and quantum dot-cavity polaritons. Resonant excitation of polaritonic states and their interaction with phonons allow us to observe coherent Rabi oscillations and Ramsey fringes. Furthermore, we demonstrate complete coherent control of a quantum dot-photonic crystal cavity based quantum-bit. By controlling the excitation power and phase in a two-pulse excitation scheme we achieve access to the full Bloch sphere. Quantum-optical simulations are in good agreement with our experiments and provide insight into the decoherence mechanisms.

  10. Limitations on the Evolution of Quantum Coherences: Towards Fully Quantum Second Laws of Thermodynamics.

    Science.gov (United States)

    Ćwikliński, Piotr; Studziński, Michał; Horodecki, Michał; Oppenheim, Jonathan

    2015-11-20

    The second law of thermodynamics places a limitation into which states a system can evolve into. For systems in contact with a heat bath, it can be combined with the law of energy conservation, and it says that a system can only evolve into another if the free energy goes down. Recently, it's been shown that there are actually many second laws, and that it is only for large macroscopic systems that they all become equivalent to the ordinary one. These additional second laws also hold for quantum systems, and are, in fact, often more relevant in this regime. They place a restriction on how the probabilities of energy levels can evolve. Here, we consider additional restrictions on how the coherences between energy levels can evolve. Coherences can only go down, and we provide a set of restrictions which limit the extent to which they can be maintained. We find that coherences over energy levels must decay at rates that are suitably adapted to the transition rates between energy levels. We show that the limitations are matched in the case of a single qubit, in which case we obtain the full characterization of state-to-state transformations. For higher dimensions, we conjecture that more severe constraints exist. We also introduce a new class of thermodynamical operations which allow for greater manipulation of coherences and study its power with respect to a class of operations known as thermal operations.

  11. Robust quantum state engineering through coherent localization in biased-coin quantum walks

    Energy Technology Data Exchange (ETDEWEB)

    Majury, Helena [Queen' s University, Centre for Secure Information Technologies (CSIT), Belfast (United Kingdom); Queen' s University, Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Belfast (United Kingdom); Boutari, Joelle [University of Oxford, Clarendon Laboratory, Oxford (United Kingdom); O' Sullivan, Elizabeth [Queen' s University, Centre for Secure Information Technologies (CSIT), Belfast (United Kingdom); Ferraro, Alessandro; Paternostro, Mauro [Queen' s University, Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Belfast (United Kingdom)

    2018-12-15

    We address the performance of a coin-biased quantum walk as a generator for non-classical position states of the walker. We exploit a phenomenon of coherent localization in the position space - resulting from the choice of small values of the coin parameter and assisted by post-selection - to engineer large-size coherent superpositions of position states of the walker. The protocol that we design appears to be remarkably robust against both the actual value taken by the coin parameter and strong dephasing-like noise acting on the spatial degree of freedom. We finally illustrate a possible linear-optics implementation of our proposal, suitable for both bulk and integrated-optics platforms. (orig.)

  12. Propagation of superconducting coherence via chiral quantum-Hall edge channels.

    Science.gov (United States)

    Park, Geon-Hyoung; Kim, Minsoo; Watanabe, Kenji; Taniguchi, Takashi; Lee, Hu-Jong

    2017-09-08

    Recently, there has been significant interest in superconducting coherence via chiral quantum-Hall (QH) edge channels at an interface between a two-dimensional normal conductor and a superconductor (N-S) in a strong transverse magnetic field. In the field range where the superconductivity and the QH state coexist, the coherent confinement of electron- and hole-like quasiparticles by the interplay of Andreev reflection and the QH effect leads to the formation of Andreev edge states (AES) along the N-S interface. Here, we report the electrical conductance characteristics via the AES formed in graphene-superconductor hybrid systems in a three-terminal configuration. This measurement configuration, involving the QH edge states outside a graphene-S interface, allows the detection of the longitudinal and QH conductance separately, excluding the bulk contribution. Convincing evidence for the superconducting coherence and its propagation via the chiral QH edge channels is provided by the conductance enhancement on both the upstream and the downstream sides of the superconducting electrode as well as in bias spectroscopy results below the superconducting critical temperature. Propagation of superconducting coherence via QH edge states was more evident as more edge channels participate in the Andreev process for high filling factors with reduced valley-mixing scattering.

  13. A Coherence Preservation Control Strategy in Cavity QED Based on Classical Quantum Feedback

    Directory of Open Access Journals (Sweden)

    Ming Li

    2013-01-01

    Full Text Available For eliminating the unexpected decoherence effect in cavity quantum electrodynamics (cavity QED, the transfer function of Rabi oscillation is derived theoretically using optical Bloch equations. In particular, the decoherence in cavity QED from the atomic spontaneous emission is especially considered. A feedback control strategy is proposed to preserve the coherence through Rabi oscillation stabilization. In the scheme, a classical quantum feedback channel for the quantum information acquisition is constructed via the quantum tomography technology, and a compensation system based on the root locus theory is put forward to suppress the atomic spontaneous emission and the associated decoherence. The simulation results have proved its effectiveness and superiority for the coherence preservation.

  14. Continuous-variable quantum teleportation of even and odd coherent states through varied gain channels

    Institute of Scientific and Technical Information of China (English)

    Li Ying; Zhang Jing; Zhang Jun-Xiang; Zhang Tian-Cai

    2006-01-01

    This paper has investigated quantum teleportation of even and odd coherent states in terms of the EPR entanglement states for continuous variables. It discusses the relationship between the fidelity and the entanglement of EPR states, which is characterized by the degree of squeezing and the gain of classical channels. It shows that the quality of teleporting quantum states also depends on the characteristics of the states themselves. The properties of teleporting even and odd coherent states at different intensities are investigated. The difference of teleporting two such kinds of quantum states are analysed based on the quantum distance function.

  15. Coherent confinement of plasmonic field in quantum dot-metallic nanoparticle molecules.

    Science.gov (United States)

    Sadeghi, S M; Hatef, A; Fortin-Deschenes, Simon; Meunier, Michel

    2013-05-24

    Interaction of a hybrid system consisting of a semiconductor quantum dot and a metallic nanoparticle (MNP) with a laser beam can replace the intrinsic plasmonic field of the MNP with a coherently normalized field (coherent-plasmonic or CP field). In this paper we show how quantum coherence effects in such a hybrid system can form a coherent barrier (quantum cage) that spatially confines the CP field. This allows us to coherently control the modal volume of this field, making it significantly smaller or larger than that of the intrinsic plasmonic field of the MNP. We investigate the spatial profiles of the CP field and discuss how the field barrier depends on the collective states of the hybrid system.

  16. Thermal activation of carriers from semiconductor quantum wells

    International Nuclear Information System (INIS)

    Johnston, M.B.; Herz, L.M.; Dao, L.V.; Gal, M.; Tan, H.H.; Jagadish, C.

    1999-01-01

    Full text: We have conducted a systematic investigation of the thermal excitation of carriers in confined states of quantum wells. Carriers may be injected into a sample containing a quantum well electrically or optically, once there they rapidly thermalise and are captured by the confined state of the quantum well. Typically electrons and holes recombine radiatively from their respective quantum well states. As a quantum well sample is heated from low temperatures (∼10K), phonon interactions increase which leads to carriers being excited from the well region into the higher energy, barrier region of the sample. Since carrier recombination from barrier regions is via non-radiative processes, there is strong temperature dependence of photoluminescence from the quantum well region. We measured quantum well photoluminescence as a function of excitation intensity and wavelength over the temperature range from 8K to 300K. In high quality InGaAs quantum wells we found unexpected intensity dependence of the spectrally integrated temperature dependent photoluminescence. We believe that this is evidence for by the existence of saturable states at the interfaces of the quantum wells

  17. Quantum Fisher information on its own is not a valid measure of the coherence

    Science.gov (United States)

    Kwon, Hyukjoon; Tan, Kok Chuan; Choi, Seongjeon; Jeong, Hyunseok

    2018-06-01

    We show that contrary to the claim in Feng and Wei (2017), the quantum Fisher information itself is not a valid measure of the coherence based on the resource theory because it can increase via an incoherent operation.

  18. Quantum Coherent Three-Terminal Thermoelectrics: Maximum Efficiency at Given Power Output

    Directory of Open Access Journals (Sweden)

    Robert S. Whitney

    2016-05-01

    Full Text Available This work considers the nonlinear scattering theory for three-terminal thermoelectric devices used for power generation or refrigeration. Such systems are quantum phase-coherent versions of a thermocouple, and the theory applies to systems in which interactions can be treated at a mean-field level. It considers an arbitrary three-terminal system in any external magnetic field, including systems with broken time-reversal symmetry, such as chiral thermoelectrics, as well as systems in which the magnetic field plays no role. It is shown that the upper bound on efficiency at given power output is of quantum origin and is stricter than Carnot’s bound. The bound is exactly the same as previously found for two-terminal devices and can be achieved by three-terminal systems with or without broken time-reversal symmetry, i.e., chiral and non-chiral thermoelectrics.

  19. Design and Analysis of a Multicolor Quantum Well Infrared Photodetector

    National Research Council Canada - National Science Library

    Alves, Fabio D. P

    2005-01-01

    .... These characteristics have been found in quantum well infrared photodetectors (QWIP). Driven by these applications, a QWIP photodetector capable of detecting simultaneously infrared emissions within near infrared (NIR...

  20. 7th Rochester Conference on Coherence and Quantum Optics

    CERN Document Server

    Mandel, Leonard; Wolf, Emil

    1996-01-01

    The Seventh Rochester Conference on Coherence and Quantum Optics was held on the campus of the University of Rochester during the four-day period June 7 - 10, 1996. More than 280 scientists from 33 countries participated. This book contains the Proceedings of the meeting. This Conference differed from the previous six in the series in having only a limited number of oral presentations, in order to avoid too many parallel sessions. Another new feature was the introduction of tutorial lectures. Most contributed papers were presented in poster sessions. The Conference was sponsored by the American Physical Society, by the Optical Society of America, by the International Union of Pure and Applied Physics and by the University of Rochester. We wish to express our appreciation to these organizations for their support and we especially extend our thanks to the International Union of Pure and Applied Physics for providing financial assistance to a number of speakers from Third World countries, to enable them to take ...

  1. Bandgap Engineering of 1300 nm Quantum Dots/Quantum Well Nanostructures Based Devices

    KAUST Repository

    Alhashim, Hala H.

    2016-05-29

    The main objectives of this thesis are to develop viable process and/or device technologies for bandgap tuning of 1300-nm InGaAs/GaAs quantum-dot (QD) laser structures, and broad linewidth 1300-nm InGaAsP/InP quantum well (QW) superluminescent diode structures. The high performance bandgap-engineered QD laser structures were achieved by employing quantum-dot intermixing (QDI) based on impurity free vacancy diffusion (IFVD) technique for eventual seamless active-passive integration, and bandgap-tuned lasers. QDI using various dielectric-capping materials, such as HfO2, SrTiO3, TiO2, Al2O3 and ZnO, etc, were experimented in which the resultant emission wavelength can be blueshifted to ∼ 1100 nm ─ 1200 nm range depending on process conditions. The significant results extracted from the PL characterization were used to perform an extensive laser characterization. The InAs/GaAs quantum-dot lasers with QDs transition energies were blueshifted by ~185 nm, and lasing around ~1070 – 1190 nm was achieved. Furthermore, from the spectral analysis, a simultaneous five-state lasing in the InAs/InGaAs intermixed QD laser was experimentally demonstrated for the first time in the very important wavelength range from 1030 to 1125 nm. The QDI methodology enabled the facile formation of a plethora of devices with various emission wavelengths suitable for a wide range of applications in the infrared. In addition, the wavelength range achieved is also applicable for coherent light generation in the green – yellow – orange visible wavelength band via frequency doubling, which is a cost-effective way of producing compact devices for pico-projectors, semiconductor laser based solid state lighting, etc. [1, 2] In QW-based superluminescent diode, the problem statement lies on achieving a flat-top and ultra-wide emission bandwidth. The approach was to design an inhomogeneous active region with a comparable simultaneous emission from different transition states in the QW stacks, in

  2. Optical Two-Dimensional Spectroscopy of Disordered Semiconductor Quantum Wells and Quantum Dots

    Energy Technology Data Exchange (ETDEWEB)

    Cundiff, Steven T. [Univ. of Colorado, Boulder, CO (United States)

    2016-05-03

    This final report describes the activities undertaken under grant "Optical Two-Dimensional Spectroscopy of Disordered Semiconductor Quantum Wells and Quantum Dots". The goal of this program was to implement optical 2-dimensional Fourier transform spectroscopy and apply it to electronic excitations, including excitons, in semiconductors. Specifically of interest are quantum wells that exhibit disorder due to well width fluctuations and quantum dots. In both cases, 2-D spectroscopy will provide information regarding coupling among excitonic localization sites.

  3. Quantum-well exciton polariton emission from multi-quantum-well wire structures

    Science.gov (United States)

    Kohl, M.; Heitmann, D.; Grambow, P.; Ploog, K.

    The radiative decay of quantum-well exciton (QWE) polaritons in microstructured Al0.3Ga0.7As - GaAs multi-quantum wells (MQW) has been studied by photoluminescence spectroscopy. Periodic wire structures with lateral periodicities a = 250-500 nm and lateral widths t = 100-200 nm have been fabricated by plasma etching. The thickness of the QWs was 13 nm. In the QW wire samples the free-exciton photoluminescence was strongly reduced and the QWE polariton emission was observed as a maximum peaked at a 3 meV higher energy than the free QWE transition. In samples which had only a microstructured cladding layer, the free-exciton photoluminescence was dominant in the spectrum and the QWE polariton emission was observed as a shoulder on the high-energy side of the free QWE transition. In addition, two transitions at the low energy side of the free QWE photoluminescence were present in the microstructured samples, which were related to etching induced states.

  4. Transient Evolutional Dynamics of Quantum-Dot Molecular Phase Coherence for Sensitive Optical Switching

    Science.gov (United States)

    Shen, Jian Qi; Gu, Jing

    2018-04-01

    Atomic phase coherence (quantum interference) in a multilevel atomic gas exhibits a number of interesting phenomena. Such an atomic quantum coherence effect can be generalized to a quantum-dot molecular dielectric. Two quantum dots form a quantum-dot molecule, which can be described by a three-level Λ-configuration model { |0> ,|1> ,|2> } , i.e., the ground state of the molecule is the lower level |0> and the highly degenerate electronic states in the two quantum dots are the two upper levels |1> ,|2> . The electromagnetic characteristics due to the |0>-|1> transition can be controllably manipulated by a tunable gate voltage (control field) that drives the |2>-|1> transition. When the gate voltage is switched on, the quantum-dot molecular state can evolve from one steady state (i.e., |0>-|1> two-level dressed state) to another steady state (i.e., three-level coherent-population-trapping state). In this process, the electromagnetic characteristics of a quantum-dot molecular dielectric, which is modified by the gate voltage, will also evolve. In this study, the transient evolutional behavior of the susceptibility of a quantum-dot molecular thin film and its reflection spectrum are treated by using the density matrix formulation of the multilevel systems. The present field-tunable and frequency-sensitive electromagnetic characteristics of a quantum-dot molecular thin film, which are sensitive to the applied gate voltage, can be utilized to design optical switching devices.

  5. Quantum dot-micropillars: a bright source of coherent single photons

    DEFF Research Database (Denmark)

    Unsleber, Sebastian; He, Yu-Ming; Maier, Sebastian

    2016-01-01

    We present the efficient generation of coherent single photons based on quantum dots in micropillars. We utilize a scalable lithography scheme leading to quantum dot-micropillar devices with 74% extraction efficiency. Via pulsed strict resonant pumping, we show an indistinguishability of consecut...

  6. Quantum control and coherence of interacting spins in diamond

    NARCIS (Netherlands)

    De Lange, G.

    2012-01-01

    The field of quantum science and technology has generated many ideas for new revolutionary devices that exploit the quantum mechanical properties of small-scale systems. Isolated solid state spins play a large role in quantum technologies. They can be used as basic building blocks for a quantum

  7. Quantum confined Stark effect in Gaussian quantum wells: A tight-binding study

    International Nuclear Information System (INIS)

    Ramírez-Morales, A.; Martínez-Orozco, J. C.; Rodríguez-Vargas, I.

    2014-01-01

    The main characteristics of the quantum confined Stark effect (QCSE) are studied theoretically in quantum wells of Gaussian profile. The semi-empirical tight-binding model and the Green function formalism are applied in the numerical calculations. A comparison of the QCSE in quantum wells with different kinds of confining potential is presented

  8. Quantum confined Stark effect in Gaussian quantum wells: A tight-binding study

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez-Morales, A.; Martínez-Orozco, J. C.; Rodríguez-Vargas, I. [Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad Esquina Con Paseo La Bufa S/N, 98060 Zacatecas, Zac. (Mexico)

    2014-05-15

    The main characteristics of the quantum confined Stark effect (QCSE) are studied theoretically in quantum wells of Gaussian profile. The semi-empirical tight-binding model and the Green function formalism are applied in the numerical calculations. A comparison of the QCSE in quantum wells with different kinds of confining potential is presented.

  9. Description of quantum coherence in thermodynamic processes requires constraints beyond free energy

    Science.gov (United States)

    Lostaglio, Matteo; Jennings, David; Rudolph, Terry

    2015-01-01

    Recent studies have developed fundamental limitations on nanoscale thermodynamics, in terms of a set of independent free energy relations. Here we show that free energy relations cannot properly describe quantum coherence in thermodynamic processes. By casting time-asymmetry as a quantifiable, fundamental resource of a quantum state, we arrive at an additional, independent set of thermodynamic constraints that naturally extend the existing ones. These asymmetry relations reveal that the traditional Szilárd engine argument does not extend automatically to quantum coherences, but instead only relational coherences in a multipartite scenario can contribute to thermodynamic work. We find that coherence transformations are always irreversible. Our results also reveal additional structural parallels between thermodynamics and the theory of entanglement. PMID:25754774

  10. Quantum key distribution with a single photon from a squeezed coherent state

    International Nuclear Information System (INIS)

    Matsuoka, Masahiro; Hirano, Takuya

    2003-01-01

    Squeezing of the coherent state by optical parametric amplifier is shown to efficiently produce single-photon states with reduced multiphoton probabilities compared with the weak coherent light. It can be a better source for a longer-distance quantum key distribution and also for other quantum optical experiments. The necessary condition for a secure quantum key distribution given by Brassard et al. is analyzed as functions of the coherent-state amplitude and squeeze parameter. Similarly, the rate of the gained secure bits G after error correction and privacy amplification given by Luetkenhaus is calculated. Compared with the weak coherent light, it is found that G is about ten times larger and its high level continues on about two times longer distance. By improvement of the detector efficiency it is shown that the distance extends further. Measurement of the intensity correlation function and the relation to photon antibunching are discussed for the experimental verification of the single-photon generation

  11. Description of quantum coherence in thermodynamic processes requires constraints beyond free energy

    Science.gov (United States)

    Lostaglio, Matteo; Jennings, David; Rudolph, Terry

    2015-03-01

    Recent studies have developed fundamental limitations on nanoscale thermodynamics, in terms of a set of independent free energy relations. Here we show that free energy relations cannot properly describe quantum coherence in thermodynamic processes. By casting time-asymmetry as a quantifiable, fundamental resource of a quantum state, we arrive at an additional, independent set of thermodynamic constraints that naturally extend the existing ones. These asymmetry relations reveal that the traditional Szilárd engine argument does not extend automatically to quantum coherences, but instead only relational coherences in a multipartite scenario can contribute to thermodynamic work. We find that coherence transformations are always irreversible. Our results also reveal additional structural parallels between thermodynamics and the theory of entanglement.

  12. Error Free Quantum Reading by Quasi Bell State of Entangled Coherent States

    Science.gov (United States)

    Hirota, Osamu

    2017-12-01

    Nonclassical states of light field have been exploited to provide marvellous results in quantum information science. Usefulness of nonclassical states in quantum information science depends on whether a physical parameter as a signal is continuous or discrete. Here we present an investigation of the potential of quasi Bell states of entangled coherent states in quantum reading of the classical digital memory which was pioneered by Pirandola (Phys.Rev.Lett.,106,090504,2011). This is a typical example of discrimination for discrete quantum parameters. We show that the quasi Bell state gives the error free performance in the quantum reading that cannot be obtained by any classical state.

  13. Fault-tolerant linear optical quantum computing with small-amplitude coherent States.

    Science.gov (United States)

    Lund, A P; Ralph, T C; Haselgrove, H L

    2008-01-25

    Quantum computing using two coherent states as a qubit basis is a proposed alternative architecture with lower overheads but has been questioned as a practical way of performing quantum computing due to the fragility of diagonal states with large coherent amplitudes. We show that using error correction only small amplitudes (alpha>1.2) are required for fault-tolerant quantum computing. We study fault tolerance under the effects of small amplitudes and loss using a Monte Carlo simulation. The first encoding level resources are orders of magnitude lower than the best single photon scheme.

  14. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode.

    Science.gov (United States)

    Verhagen, E; Deléglise, S; Weis, S; Schliesser, A; Kippenberg, T J

    2012-02-01

    Optical laser fields have been widely used to achieve quantum control over the motional and internal degrees of freedom of atoms and ions, molecules and atomic gases. A route to controlling the quantum states of macroscopic mechanical oscillators in a similar fashion is to exploit the parametric coupling between optical and mechanical degrees of freedom through radiation pressure in suitably engineered optical cavities. If the optomechanical coupling is 'quantum coherent'--that is, if the coherent coupling rate exceeds both the optical and the mechanical decoherence rate--quantum states are transferred from the optical field to the mechanical oscillator and vice versa. This transfer allows control of the mechanical oscillator state using the wide range of available quantum optical techniques. So far, however, quantum-coherent coupling of micromechanical oscillators has only been achieved using microwave fields at millikelvin temperatures. Optical experiments have not attained this regime owing to the large mechanical decoherence rates and the difficulty of overcoming optical dissipation. Here we achieve quantum-coherent coupling between optical photons and a micromechanical oscillator. Simultaneously, coupling to the cold photon bath cools the mechanical oscillator to an average occupancy of 1.7 ± 0.1 motional quanta. Excitation with weak classical light pulses reveals the exchange of energy between the optical light field and the micromechanical oscillator in the time domain at the level of less than one quantum on average. This optomechanical system establishes an efficient quantum interface between mechanical oscillators and optical photons, which can provide decoherence-free transport of quantum states through optical fibres. Our results offer a route towards the use of mechanical oscillators as quantum transducers or in microwave-to-optical quantum links.

  15. Coherent transport in a system of periodic linear chain of quantum dots situated between two parallel quantum wires

    International Nuclear Information System (INIS)

    Petrosyan, Lyudvig S

    2016-01-01

    We study coherent transport in a system of periodic linear chain of quantum dots situated between two parallel quantum wires. We show that the resonant-tunneling conductance between the wires exhibits a Rabi splitting of the resonance peak as a function of Fermi energy in the wires. This effect is an electron transport analogue of the Rabi splitting in optical spectra of two interacting systems. The conductance peak splitting originates from the anticrossing of Bloch bands in a periodic system that is caused by a strong coupling between the electron states in the quantum dot chain and quantum wires. (paper)

  16. The quantum coherence of disordered dipolar bosonic gas

    International Nuclear Information System (INIS)

    Wang Jiguo; Zhang Aixia; Tang Rongan; Gao Jimin; Xue Jukui

    2013-01-01

    We investigate the coherence of correlated dipolar gas in the presence of disorder within a three-site Bose–Hubbard model. We show that the interplay between the on-site interaction, the inter-site dipole–dipole interactions (DDI) and the disorder exhibits new and interesting coherence characters that cannot take place in a non-dipolar system. The ratio between the on-site interaction and DDI plays a dominant role in the phase coherence. The resonance character of the coherence against both disorder and interactions emerges. DDI can enhance the coherence at certain values of the disorder and on-site interaction. In the coherence region, the enhancement of the coherence by disorder in a dipolar system is more significant than that in a non-dipolar system. In particular, the on-site interaction and DDI together can enhance the coherence even in the clean dipolar system (i.e. a dipolar system without disorder). However, without the on-site interaction, disorder, DDI or both together suppress the coherence. Furthermore, the relationship between the coherence and the energy gap and the compressibility of the system is also discussed. (paper)

  17. Exciton absorption of entangled photons in semiconductor quantum wells

    Science.gov (United States)

    Rodriguez, Ferney; Guzman, David; Salazar, Luis; Quiroga, Luis; Condensed Matter Physics Group Team

    2013-03-01

    The dependence of the excitonic two-photon absorption on the quantum correlations (entanglement) of exciting biphotons by a semiconductor quantum well is studied. We show that entangled photon absorption can display very unusual features depending on space-time-polarization biphoton parameters and absorber density of states for both bound exciton states as well as for unbound electron-hole pairs. We report on the connection between biphoton entanglement, as quantified by the Schmidt number, and absorption by a semiconductor quantum well. Comparison between frequency-anti-correlated, unentangled and frequency-correlated biphoton absorption is addressed. We found that exciton oscillator strengths are highly increased when photons arrive almost simultaneously in an entangled state. Two-photon-absorption becomes a highly sensitive probe of photon quantum correlations when narrow semiconductor quantum wells are used as two-photon absorbers. Research funds from Facultad de Ciencias, Universidad de los Andes

  18. Insufficiency of avoided crossings for witnessing large-scale quantum coherence in flux qubits

    Science.gov (United States)

    Fröwis, Florian; Yadin, Benjamin; Gisin, Nicolas

    2018-04-01

    Do experiments based on superconducting loops segmented with Josephson junctions (e.g., flux qubits) show macroscopic quantum behavior in the sense of Schrödinger's cat example? Various arguments based on microscopic and phenomenological models were recently adduced in this debate. We approach this problem by adapting (to flux qubits) the framework of large-scale quantum coherence, which was already successfully applied to spin ensembles and photonic systems. We show that contemporary experiments might show quantum coherence more than 100 times larger than experiments in the classical regime. However, we argue that the often-used demonstration of an avoided crossing in the energy spectrum is not sufficient to make a conclusion about the presence of large-scale quantum coherence. Alternative, rigorous witnesses are proposed.

  19. Multichannel scattering of charge carriers on quantum well heterostructures

    CERN Document Server

    Galiev, V I; Polupanov, A F; Goldis, E M; Tansli, T L

    2002-01-01

    An efficient numerical analytical method has been developed for finding continuum spectrum states in quantum well systems with arbitrary potential profiles that are described by coupled Schroedinger equations. Scattering states and S matrix have been built for the case of multichannel scattering in one-dimensional systems with quantum wells and their symmetry properties are obtained and analyzed. The method is applied for studying hole scattering by strained GaInAs-InGaAsP quantum wells. Coefficients of the hole transmission and reflection as well as delay time are calculated as functions of the energy of the incident hole for various values of parameters of structures and values of the momentum

  20. Fisher information and quantum potential well model for finance

    Energy Technology Data Exchange (ETDEWEB)

    Nastasiuk, V.A., E-mail: nasa@i.ua

    2015-09-25

    The probability distribution function (PDF) for prices on financial markets is derived by extremization of Fisher information. It is shown how on that basis the quantum-like description for financial markets arises and different financial market models are mapped by quantum mechanical ones. - Highlights: • The financial Schrödinger equation is derived using the principle of minimum Fisher information. • Statistical models for price variation are mapped by the quantum models of coupled particle. • The model of quantum particle in parabolic potential well corresponds to Efficient market.

  1. Fisher information and quantum potential well model for finance

    International Nuclear Information System (INIS)

    Nastasiuk, V.A.

    2015-01-01

    The probability distribution function (PDF) for prices on financial markets is derived by extremization of Fisher information. It is shown how on that basis the quantum-like description for financial markets arises and different financial market models are mapped by quantum mechanical ones. - Highlights: • The financial Schrödinger equation is derived using the principle of minimum Fisher information. • Statistical models for price variation are mapped by the quantum models of coupled particle. • The model of quantum particle in parabolic potential well corresponds to Efficient market

  2. Students' Conceptual Difficulties in Quantum Mechanics: Potential Well Problems

    Science.gov (United States)

    Ozcan, Ozgur; Didis, Nilufer; Tasar, Mehmet Fatih

    2009-01-01

    In this study, students' conceptual difficulties about some basic concepts in quantum mechanics like one-dimensional potential well problems and probability density of tunneling particles were identified. For this aim, a multiple choice instrument named Quantum Mechanics Conceptual Test has been developed by one of the researchers of this study…

  3. Coherent quantum dynamics launched by incoherent relaxation in a quantum circuit simulator of a light-harvesting complex

    Science.gov (United States)

    Chin, A. W.; Mangaud, E.; Atabek, O.; Desouter-Lecomte, M.

    2018-06-01

    Engineering and harnessing coherent excitonic transport in organic nanostructures has recently been suggested as a promising way towards improving manmade light-harvesting materials. However, realizing and testing the dissipative system-environment models underlying these proposals is presently very challenging in supramolecular materials. A promising alternative is to use simpler and highly tunable "quantum simulators" built from programmable qubits, as recently achieved in a superconducting circuit by Potočnik et al. [A. Potočnik et al., Nat. Commun. 9, 904 (2018), 10.1038/s41467-018-03312-x]. We simulate the real-time dynamics of an exciton coupled to a quantum bath as it moves through a network based on the quantum circuit of Potočnik et al. Using the numerically exact hierarchical equations of motion to capture the open quantum system dynamics, we find that an ultrafast but completely incoherent relaxation from a high-lying "bright" exciton into a doublet of closely spaced "dark" excitons can spontaneously generate electronic coherences and oscillatory real-space motion across the network (quantum beats). Importantly, we show that this behavior also survives when the environmental noise is classically stochastic (effectively high temperature), as in present experiments. These predictions highlight the possibilities of designing matched electronic and spectral noise structures for robust coherence generation that do not require coherent excitation or cold environments.

  4. Force sensing based on coherent quantum noise cancellation in a hybrid optomechanical cavity with squeezed-vacuum injection

    International Nuclear Information System (INIS)

    Motazedifard, Ali; Bemani, F; Naderi, M H; Roknizadeh, R; Vitali, D

    2016-01-01

    We propose and analyse a feasible experimental scheme for a quantum force sensor based on the elimination of backaction noise through coherent quantum noise cancellation (CQNC) in a hybrid atom-cavity optomechanical setup assisted with squeezed vacuum injection. The force detector, which allows for a continuous, broadband detection of weak forces well below the standard quantum limit (SQL), is formed by a single optical cavity simultaneously coupled to a mechanical oscillator and to an ensemble of ultracold atoms. The latter acts as a negative-mass oscillator so that atomic noise exactly cancels the backaction noise from the mechanical oscillator due to destructive quantum interference. Squeezed vacuum injection enforces this cancellation and allows sub-SQL sensitivity to be reached in a very wide frequency band, and at much lower input laser powers. (paper)

  5. Force sensing based on coherent quantum noise cancellation in a hybrid optomechanical cavity with squeezed-vacuum injection

    Science.gov (United States)

    Motazedifard, Ali; Bemani, F.; Naderi, M. H.; Roknizadeh, R.; Vitali, D.

    2016-07-01

    We propose and analyse a feasible experimental scheme for a quantum force sensor based on the elimination of backaction noise through coherent quantum noise cancellation (CQNC) in a hybrid atom-cavity optomechanical setup assisted with squeezed vacuum injection. The force detector, which allows for a continuous, broadband detection of weak forces well below the standard quantum limit (SQL), is formed by a single optical cavity simultaneously coupled to a mechanical oscillator and to an ensemble of ultracold atoms. The latter acts as a negative-mass oscillator so that atomic noise exactly cancels the backaction noise from the mechanical oscillator due to destructive quantum interference. Squeezed vacuum injection enforces this cancellation and allows sub-SQL sensitivity to be reached in a very wide frequency band, and at much lower input laser powers.

  6. Tunnelling and relaxation in semiconductor double quantum wells

    International Nuclear Information System (INIS)

    Ferreira, R.; Bastard, G.

    1997-01-01

    Double quantum wells are among the simplest semiconductor heterostructures exhibiting tunnel coupling. The existence of a quantum confinement effect for the energy levels of a narrow single quantum well has been largely studied. In double quantum wells, in addition to these confinement effects which characterize the levels of the isolated wells, one faces the problem of describing the eigenstates of systems interacting weakly through a potential barrier. In addition, the actual structures differ from the ideal systems studied in the quantum mechanics textbooks in many aspects. The presence of defects leads, for instance, to an irreversible time evolution for a population of photocreated carriers. This irreversible transfer is now clearly established experimentally. The resonant behaviour of the transfer has also been evidenced, from the study of biased structures. If the existence of an interwell transfer is now clearly established from the experimental point of view, its theoretical description, however, is not fully satisfactory. This review focuses on the theoretical description of the energy levels and of the interwell assisted transfer in double quantum wells. We shall firstly outline the problem of tunnel coupling in semiconductor heterostructures and then discuss the single particle and exciton eigenstates in double quantum wells. In the remaining part of the review we shall present and critically review a few theoretical models used to describe the assisted interwell transfer in these structures. (author)

  7. Quantum coherent control of the vibrational dynamics of a ...

    Indian Academy of Sciences (India)

    2014-02-12

    Feb 12, 2014 ... c Indian Academy of Sciences. Vol. 82, No ... Abstract. We simulate adaptive feedback control to coherently shape a femtosecond infrared laser ... it was shown that different coherent control schemes are unified on a fundamental level. ... A 150 fs pulse with a fluence of 600 J/m2 was used as an initial pulse.

  8. Coherently-enabled environmental control of optics and energy transfer pathways of hybrid quantum dot-metallic nanoparticle systems.

    Science.gov (United States)

    Hatef, Ali; Sadeghi, Seyed M; Fortin-Deschênes, Simon; Boulais, Etienne; Meunier, Michel

    2013-03-11

    It is well-known that optical properties of semiconductor quantum dots can be controlled using optical cavities or near fields of localized surface plasmon resonances (LSPRs) of metallic nanoparticles. In this paper we study the optics, energy transfer pathways, and exciton states of quantum dots when they are influenced by the near fields associated with plasmonic meta-resonances. Such resonances are formed via coherent coupling of excitons and LSPRs when the quantum dots are close to metallic nanorods and driven by a laser beam. Our results suggest an unprecedented sensitivity to the refractive index of the environment, causing significant spectral changes in the Förster resonance energy transfer from the quantum dots to the nanorods and in exciton transition energies. We demonstrate that when a quantum dot-metallic nanorod system is close to its plasmonic meta-resonance, we can adjust the refractive index to: (i) control the frequency range where the energy transfer from the quantum dot to the metallic nanorod is inhibited, (ii) manipulate the exciton transition energy shift of the quantum dot, and (iii) disengage the quantum dot from the metallic nanoparticle and laser field. Our results show that near meta-resonances the spectral forms of energy transfer and exciton energy shifts are strongly correlated to each other.

  9. Phase-Sensitive Coherence and the Classical-Quantum Boundary in Ghost Imaging

    Science.gov (United States)

    Erkmen, Baris I.; Hardy, Nicholas D.; Venkatraman, Dheera; Wong, Franco N. C.; Shapiro, Jeffrey H.

    2011-01-01

    The theory of partial coherence has a long and storied history in classical statistical optics. the vast majority of this work addresses fields that are statistically stationary in time, hence their complex envelopes only have phase-insensitive correlations. The quantum optics of squeezed-state generation, however, depends on nonlinear interactions producing baseband field operators with phase-insensitive and phase-sensitive correlations. Utilizing quantum light to enhance imaging has been a topic of considerable current interest, much of it involving biphotons, i.e., streams of entangled-photon pairs. Biphotons have been employed for quantum versions of optical coherence tomography, ghost imaging, holography, and lithography. However, their seemingly quantum features have been mimicked with classical-sate light, questioning wherein lies the classical-quantum boundary. We have shown, for the case of Gaussian-state light, that this boundary is intimately connected to the theory of phase-sensitive partial coherence. Here we present that theory, contrasting it with the familiar case of phase-insensitive partial coherence, and use it to elucidate the classical-quantum boundary of ghost imaging. We show, both theoretically and experimentally, that classical phase-sensitive light produces ghost imaging most closely mimicking those obtained in biphotons, and we derived the spatial resolution, image contrast, and signal-to-noise ratio of a standoff-sensing ghost imager, taking into account target-induced speckle.

  10. Sonoluminescence Explained by the Standpoint of Coherent Quantum Vacuum Dynamics and its Prospects for Energy Production

    Science.gov (United States)

    Maxmilian Caligiuri, Luigi; Musha, Takaaki

    Sonoluminescence, or its more frequently studied version known as Single Bubble Sonoluminescence, consisting in the emission of light by a collapsing bubble in water under ultrasounds, represents one of the most challenging and interesting phenomenon in theoretical physics. In fact, despite its relatively easy reproducibility in a simple laboratory, its understanding within the commonly accepted picture of condensed matter remained so far unsatisfactory. On the other hand, the possibility to control the physical process involved in sonoluminescence, representing a sort of nuclear fusion on small scale, could open unthinkable prospects of free energy production from water. Different explanations has been proposed during the past years considering, in various way, the photoemission to be related to electromagnetic Zero Point Field energy dynamics, by considering the bubble surface as a Casimir force boundary. More recently a model invoking Cherenkov radiation emission from superluminal photons generated in quantum vacuum has been successfully proposed. In this paper it will be shown that the same results can be more generally explained and quantitative obtained within a QED coherent dynamics of quantum vacuum, according to which the electromagnetic energy of the emitted photons would be related to the latent heat involved in the phase transition from water's vapor to liquid phase during the bubble collapse. The proposed approach could also suggest an explanation of a possible mechanism of generation of faster than light (FTL) photons required to start Cherenkov radiation as well as possible applications to energy production from quantum vacuum.

  11. Piezo-Phototronic Effect in a Quantum Well Structure.

    Science.gov (United States)

    Huang, Xin; Du, Chunhua; Zhou, Yongli; Jiang, Chunyan; Pu, Xiong; Liu, Wei; Hu, Weiguo; Chen, Hong; Wang, Zhong Lin

    2016-05-24

    With enhancements in the performance of optoelectronic devices, the field of piezo-phototronics has attracted much attention, and several theoretical works have been reported based on semiclassical models. At present, the feature size of optoelectronic devices are rapidly shrinking toward several tens of nanometers, which results in the quantum confinement effect. Starting from the basic piezoelectricity equation, Schrödinger equation, Poisson equation, and Fermi's golden rule, a self-consistent theoretical model is proposed to study the piezo-phototronic effect in the framework of perturbation theory in quantum mechanics. The validity and universality of this model are well-proven with photoluminescence measurements in a single GaN/InGaN quantum well and multiple GaN/InGaN quantum wells. This study provides important insight into the working principle of nanoscale piezo-phototronic devices as well as guidance for the future device design.

  12. New method for control over exciton states in quantum wells

    International Nuclear Information System (INIS)

    Maslov, A Yu; Proshina, O V

    2010-01-01

    The theoretical study of the exciton states in the quantum well is performed with regard to the distinctions of the dielectric properties of quantum well and barrier materials. The strong exciton-phonon interaction is shown to be possible in materials with high ionicity. This leads to the essential modification of the exciton states. The relationship between the exciton binding energy, along with oscillator strength and the barrier material dielectric properties is found. This suggests the feasibility of the exciton spectrum parameter control by the choice of the barrier material. It is shown that such exciton spectrum engineering also is possible in the quantum wells based on the materials with low ionicity. The reason is the dielectric confinement effect in the quantum wells.

  13. Larmor precession and dwell time of a relativistic particle scattered by a rectangular quantum well

    CERN Document Server

    Li, Z J; Liang, J J; Liang, J Q

    2003-01-01

    The Larmor precession of a relativistic neutral spin particle in a uniform constant magnetic field confined to the region of a one-dimensional rectangular potential well is investigated. The spin precession serves as a clock to measure the time spent by a quantum particle dwelling at a potential well. With the help of a general spin coherent state it is explicitly shown that the spin precession time is equal to the dwell time in the first-order approximation of the infinitesimal field limit. The comparison of the time in a potential well with that in free space shows apparent superluminality.

  14. Mode locking of electron spin coherences in singly charged quantum dots.

    Science.gov (United States)

    Greilich, A; Yakovlev, D R; Shabaev, A; Efros, Al L; Yugova, I A; Oulton, R; Stavarache, V; Reuter, D; Wieck, A; Bayer, M

    2006-07-21

    The fast dephasing of electron spins in an ensemble of quantum dots is detrimental for applications in quantum information processing. We show here that dephasing can be overcome by using a periodic train of light pulses to synchronize the phases of the precessing spins, and we demonstrate this effect in an ensemble of singly charged (In,Ga)As/GaAs quantum dots. This mode locking leads to constructive interference of contributions to Faraday rotation and presents potential applications based on robust quantum coherence within an ensemble of dots.

  15. Theory of coherent quantum phase slips in Josephson junction chains with periodic spatial modulations

    Science.gov (United States)

    Svetogorov, Aleksandr E.; Taguchi, Masahiko; Tokura, Yasuhiro; Basko, Denis M.; Hekking, Frank W. J.

    2018-03-01

    We study coherent quantum phase slips which lift the ground state degeneracy in a Josephson junction ring, pierced by a magnetic flux of the magnitude equal to half of a flux quantum. The quantum phase-slip amplitude is sensitive to the normal mode structure of superconducting phase oscillations in the ring (Mooij-Schön modes). These, in turn, are affected by spatial inhomogeneities in the ring. We analyze the case of weak periodic modulations of the system parameters and calculate the corresponding modification of the quantum phase-slip amplitude.

  16. Electron Raman scattering in asymmetrical multiple quantum wells

    International Nuclear Information System (INIS)

    Betancourt-Riera, R; Rosas, R; Marin-Enriquez, I; Riera, R; Marin, J L

    2005-01-01

    Optical properties of asymmetrical multiple quantum wells for the construction of quantum cascade lasers are calculated, and expressions for the electronic states of asymmetrical multiple quantum wells are presented. The gain and differential cross-section for an electron Raman scattering process are obtained. Also, the emission spectra for several scattering configurations are discussed, and the corresponding selection rules for the processes involved are studied; an interpretation of the singularities found in the spectra is given. The electron Raman scattering studied here can be used to provide direct information about the efficiency of the lasers

  17. Two color photodetector using an asymmetric quantum well structure

    OpenAIRE

    Lantz, Kevin R.

    2002-01-01

    Approved for public release; distribution is unlimited The past twenty years have seen an explosion in the realm of infrared detection technology fueled by improvements in III-V semiconductor technology and by new semiconductor growth methods. One of the fastest growing areas of this research involves the use of bandgap engineering in order to create artificial quantum wells for use in Quantum Well Infrared Photodetectors (QWIPs). QWIPs have an advantage over other infrared detectors such ...

  18. Quantum Phase Spase Representation for Double Well Potential

    OpenAIRE

    Babyuk, Dmytro

    2002-01-01

    A behavior of quantum states (superposition of two lowest eigenstates, Gaussian wave packet) in phase space is studied for one and two dimensional double well potential. Two dimensional potential is constructed from double well potential coupled linearly and quadratically to harmonic potential. Quantum trajectories are compared with classical ones. Preferable tunneling path in phase space is found. An influence of energy of initial Gaussian wave packet and trajectory initial condition on tunn...

  19. Remote optically-tunable transimpedance amplifiers for quantum well diodes

    Energy Technology Data Exchange (ETDEWEB)

    Carraresi, L.; Landi, G.; Rocchi, S.; Vignoli, V

    1999-08-01

    In a previous paper we discussed the advantages in using linear optical transmission systems based on quantum well diodes in modern high energy physics experiments. In this paper, after a short summary of the quantum well theory, the electronics section of the above optical transmission system is presented. In particular the basic configuration of a transimpedance amplifier and the arrangement of an optical remote control system for the amplifier gain and bandwidth tuning are discussed.

  20. Remote optically-tunable transimpedance amplifiers for quantum well diodes

    International Nuclear Information System (INIS)

    Carraresi, L.; Landi, G.; Rocchi, S.; Vignoli, V.

    1999-01-01

    In a previous paper we discussed the advantages in using linear optical transmission systems based on quantum well diodes in modern high energy physics experiments. In this paper, after a short summary of the quantum well theory, the electronics section of the above optical transmission system is presented. In particular the basic configuration of a transimpedance amplifier and the arrangement of an optical remote control system for the amplifier gain and bandwidth tuning are discussed

  1. Quantum coherence dynamics of a three-level atom in a two-mode field

    International Nuclear Information System (INIS)

    Solovarov, N. K.

    2008-01-01

    The correlated dynamics of a three-level atom resonantly coupled to an electromagnetic cavity field is calculated (Λ, V, and L models). A diagrammatic representation of quantum dynamics is proposed for these models. As an example, Λ-atom dynamics is examined to demonstrate how the use of conventional von Neumann's reduction leads to internal decoherence (disentanglement-induced decoherence) and to the absence of atomic coherence under multiphoton excitation. The predicted absence of atomic coherence is inconsistent with characteristics of an experimentally observed atom-photon entangled state. It is shown that the correlated reduction of a composite quantum system proposed in [18] qualitatively predicts the occurrence and evolution of atomic coherence under multiphoton excitation if a seed coherence is introduced into any subsystem (the atom or a cavity mode)

  2. Delayed coherent quantum feedback from a scattering theory and a matrix product state perspective

    Science.gov (United States)

    Guimond, P.-O.; Pletyukhov, M.; Pichler, H.; Zoller, P.

    2017-12-01

    We study the scattering of photons propagating in a semi-infinite waveguide terminated by a mirror and interacting with a quantum emitter. This paradigm constitutes an example of coherent quantum feedback, where light emitted towards the mirror gets redirected back to the emitter. We derive an analytical solution for the scattering of two-photon states, which is based on an exact resummation of the perturbative expansion of the scattering matrix, in a regime where the time delay of the coherent feedback is comparable to the timescale of the quantum emitter’s dynamics. We compare the results with numerical simulations based on matrix product state techniques simulating the full dynamics of the system, and extend the study to the scattering of coherent states beyond the low-power limit.

  3. Thermal quantum coherence and correlation in the extended XY spin chain

    Science.gov (United States)

    Sha, Ya-Ting; Wang, Yue; Sun, Zheng-Hang; Hou, Xi-Wen

    2018-05-01

    Quantum coherence and correlation of thermal states in the extended XY spin chain are studied in terms of the recently proposed l1 norm, skew information, and Bures distance of geometry discord (BGD), respectively. The entanglement measured via concurrence is calculated for reference. A two-dimensional susceptibility is introduced to explore their capability in highlighting the critical lines associated with quantum phase transitions in the model. It is shown that the susceptibility of the skew information and BGD is a genuine indicator of quantum phase transitions, and characterizes the factorization. However, the l1 norm is trivial for the factorization. An explicit scaling law of BGD is captured at low temperature in the XY model. In contrast to the entanglement, quantum coherence reveals a kind of long-range nonclassical correlation. Moreover, the obvious relation among model parameters is extracted for the factorized line in the extended model. Those are instructive for the understanding of quantum coherence and correlation in the theory of quantum information, and quantum phase transitions and factorization in condensed-matter physics.

  4. Quantum coherent tractor beam effect for atoms trapped near a nanowaveguide

    Science.gov (United States)

    Sadgrove, Mark; Wimberger, Sandro; Nic Chormaic, Síle

    2016-01-01

    We propose several schemes to realize a tractor beam effect for ultracold atoms in the vicinity of a few-mode nanowaveguide. Atoms trapped near the waveguide are transported in a direction opposite to the guided mode propagation direction. We analyse three specific examples for ultracold 23Na atoms trapped near a specific nanowaveguide (i.e. an optical nanofibre): (i) a conveyor belt-type tractor beam effect, (ii) an accelerator tractor beam effect, and (iii) a quantum coherent tractor beam effect, all of which can effectively pull atoms along the nanofibre toward the light source. This technique provides a new tool for controlling the motion of particles near nanowaveguides with potential applications in the study of particle transport and binding as well as atom interferometry. PMID:27440516

  5. Self-induced coherence in a single pair of quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Sitek, Anna; Machnikowski, Pawel [Institute of Physics, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2011-04-15

    We study self-induced coherence (SIC) in a system composed of two coupled quantum dots (QDs). SIC consists in a coherent transfer of excitation between two systems (atoms or QDs) resulting from their collective interaction with the quantum electromagnetic vacuum. This leads to population trapping in a delocalized, optically inactive state. We focus on the effect of a difference in transition energies and coupling between the two emitters on the evolution of exciton occupation in the two QD system. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Coherent Dynamics of Quantum Dots in Photonic-Crystal Cavities

    DEFF Research Database (Denmark)

    Madsen, Kristian Høeg

    deviations. Similar measurements on a quantum dot in a photonic-crystal cavity sow a Rabi splitting on resonance, while time-resolved measurements prove that the system is in the weak coupling regime. Whle tuning the quantum dot through resonance of the high-Q mode we observe a strong and surprisingly...

  7. Monogamy relations of quantum entanglement for partially coherently superposed states

    Science.gov (United States)

    Shi, Xian

    2017-12-01

    Not Available Project partially supported by the National Key Research and Development Program of China (Grant No. 2016YFB1000902), the National Natural Science Foundation of China (Grant Nos. 61232015, 61472412, and 61621003), the Beijing Science and Technology Project (2016), Tsinghua-Tencent-AMSS-Joint Project (2016), and the Key Laboratory of Mathematics Mechanization Project: Quantum Computing and Quantum Information Processing.

  8. Fundamental limits to single-photon detection determined by quantum coherence and backaction

    Science.gov (United States)

    Young, Steve M.; Sarovar, Mohan; Léonard, François

    2018-03-01

    Single-photon detectors have achieved impressive performance and have led to a number of new scientific discoveries and technological applications. Existing models of photodetectors are semiclassical in that the field-matter interaction is treated perturbatively and time-separated from physical processes in the absorbing matter. An open question is whether a fully quantum detector, whereby the optical field, the optical absorption, and the amplification are considered as one quantum system, could have improved performance. Here we develop a theoretical model of such photodetectors and employ simulations to reveal the critical role played by quantum coherence and amplification backaction in dictating the performance. We show that coherence and backaction lead to trade-offs between detector metrics and also determine optimal system designs through control of the quantum-classical interface. Importantly, we establish the design parameters that result in a ideal photodetector with 100% efficiency, no dark counts, and minimal jitter, thus paving the route for next-generation detectors.

  9. Hydrogenic donor in a quantum well with an electric field

    International Nuclear Information System (INIS)

    Jayakumar, K.; Balasubramanian, S.; Tomak, M.

    1985-08-01

    Variational calculations of the binding energy of a hydrogenic donor in a quantum well formed by GaAs and Gasub(1-x)A1sub(x)As with a constant electric field are performed for different electric fields and well widths. A critical electric field is defined and its variation with well width is presented. (author)

  10. The quantum Zeno effect in double well tunnelling

    Science.gov (United States)

    Lerner, L.

    2018-05-01

    Measurement lies at the heart of quantum theory, and introductory textbooks in quantum mechanics cover the measurement problem in topics such as the Schrödinger’s cat thought experiment, the EPR problem, and the quantum Zeno effect (QZE). In this article we present a new treatment of the QZE suitable for undergraduate students, for the case of a particle tunnelling between two wells while being observed in one of the wells. The analysis shows that as the observation rate increases, the tunnelling rate tends towards zero, in accordance with Zeno’s maxim ‘a watched pot never boils’. The method relies on decoherence theory, which replaces aspects of quantum collapse by the Schrödinger evolution of an open system, and its recently simplified treatment for undergraduates. Our presentation uses concepts familiar to undergraduate students, so that calculations involving many-body theory and the formal properties of the density matrix are avoided.

  11. Crystal Phase Quantum Well Emission with Digital Control

    DEFF Research Database (Denmark)

    Assali, S.; Laehnemann, J.; Vu, Thi Thu Trang

    2017-01-01

    One of the major challenges in the growth of quantum well and quantum dot heterostructures is the realization of atomically sharp interfaces. Nanowires provide a new opportunity to engineer the band structure as they facilitate the controlled switching of the crystal structure between the zinc......-blende (ZB) and wurtzite (WZ) phases. Such a crystal phase switching results in the formation of crystal phase quantum wells (CPQWs) and quantum dots (CPQDs). For GaP CPQWs, the inherent electric fields due to the discontinuity of the spontaneous polarization at the WZ/ZB junctions lead to the confinement...... of both types of charge carriers at the opposite interfaces of the WZ/ZB/WZ structure. This confinement leads to a novel type of transition across a ZB flat plate barrier. Here, we show digital tuning of the visible emission of WZ/ZB/WZ CPQWs in a GaP nanowire by changing the thickness of the ZB barrier...

  12. Zero field spin splitting in asymmetric quantum wells

    International Nuclear Information System (INIS)

    Hao Yafei

    2012-01-01

    Spin splitting of asymmetric quantum wells is theoretically investigated in the absence of any electric field, including the contribution of interface-related Rashba spin-orbit interaction as well as linear and cubic Dresselhaus spin-orbit interaction. The effect of interface asymmetry on three types of spin-orbit interaction is discussed. The results show that interface-related Rashba and linear Dresselhaus spin-orbit interaction can be increased and cubic Dresselhaus spin-orbit interaction can be decreased by well structure design. For wide quantum wells, the cubic Dresselhaus spin-orbit interaction dominates under certain conditions, resulting in decreased spin relaxation time.

  13. The Influences of Quantum Coherence on the Positive Work and the Efficiency of Quantum Heat Engine with Working Substance of Two-Qubit Heisenberg XXX Model

    Science.gov (United States)

    Peng, Hu-Ping; Fang, Mao-Fa; Yu, Min; Zou, Hong-Mei

    2018-03-01

    We study the influences of quantum coherence on the positive work and the efficiency of quantum heat engine (QHE) based on working substance of two-qubit Heisenberg model under a constant external magnetic field. By using analytical and numerical solution, we give the relation expressions for both the positive work and the efficiency with quantum coherence, and in detail discuss the effects of the quantum coherence on the positive work and the efficiency of QHE in the absence or presence of external magnetic field, respectively.

  14. The Influences of Quantum Coherence on the Positive Work and the Efficiency of Quantum Heat Engine with Working Substance of Two-Qubit Heisenberg XXX Model

    Science.gov (United States)

    Peng, Hu-Ping; Fang, Mao-Fa; Yu, Min; Zou, Hong-Mei

    2018-06-01

    We study the influences of quantum coherence on the positive work and the efficiency of quantum heat engine (QHE) based on working substance of two-qubit Heisenberg model under a constant external magnetic field. By using analytical and numerical solution, we give the relation expressions for both the positive work and the efficiency with quantum coherence, and in detail discuss the effects of the quantum coherence on the positive work and the efficiency of QHE in the absence or presence of external magnetic field, respectively.

  15. Crystal Phase Quantum Well Emission with Digital Control.

    Science.gov (United States)

    Assali, S; Lähnemann, J; Vu, T T T; Jöns, K D; Gagliano, L; Verheijen, M A; Akopian, N; Bakkers, E P A M; Haverkort, J E M

    2017-10-11

    One of the major challenges in the growth of quantum well and quantum dot heterostructures is the realization of atomically sharp interfaces. Nanowires provide a new opportunity to engineer the band structure as they facilitate the controlled switching of the crystal structure between the zinc-blende (ZB) and wurtzite (WZ) phases. Such a crystal phase switching results in the formation of crystal phase quantum wells (CPQWs) and quantum dots (CPQDs). For GaP CPQWs, the inherent electric fields due to the discontinuity of the spontaneous polarization at the WZ/ZB junctions lead to the confinement of both types of charge carriers at the opposite interfaces of the WZ/ZB/WZ structure. This confinement leads to a novel type of transition across a ZB flat plate barrier. Here, we show digital tuning of the visible emission of WZ/ZB/WZ CPQWs in a GaP nanowire by changing the thickness of the ZB barrier. The energy spacing between the sharp emission lines is uniform and is defined by the addition of single ZB monolayers. The controlled growth of identical quantum wells with atomically flat interfaces at predefined positions featuring digitally tunable discrete emission energies may provide a new route to further advance entangled photons in solid state quantum systems.

  16. Coherence time of over a second in a telecom-compatible quantum memory storage material

    Science.gov (United States)

    Rančić, Miloš; Hedges, Morgan P.; Ahlefeldt, Rose L.; Sellars, Matthew J.

    2018-01-01

    Quantum memories for light will be essential elements in future long-range quantum communication networks. These memories operate by reversibly mapping the quantum state of light onto the quantum transitions of a material system. For networks, the quantum coherence times of these transitions must be long compared to the network transmission times, approximately 100 ms for a global communication network. Due to a lack of a suitable storage material, a quantum memory that operates in the 1,550 nm optical fibre communication band with a storage time greater than 1 μs has not been demonstrated. Here we describe the spin dynamics of 167Er3+: Y2SiO5 in a high magnetic field and demonstrate that this material has the characteristics for a practical quantum memory in the 1,550 nm communication band. We observe a hyperfine coherence time of 1.3 s. We also demonstrate efficient spin pumping of the entire ensemble into a single hyperfine state, a requirement for broadband spin-wave storage. With an absorption of 70 dB cm-1 at 1,538 nm and Λ transitions enabling spin-wave storage, this material is the first candidate identified for an efficient, broadband quantum memory at telecommunication wavelengths.

  17. Exciton trapping in interface defects/quantum dots in narrow quantum wells: magnetic-field effects

    International Nuclear Information System (INIS)

    Barticevic, Z.; Pacheco, M.; Duque, C.A.; Oliveira, L.E.

    2003-01-01

    The effects of applied magnetic fields on excitons trapped in quantum dots/interface defects in narrow GaAs/Ga 1-x Al x As quantum wells are studied within the effective-mass approximation. The magnetic fields are applied in the growth direction of the quantum wells, and exciton trapping is modeled through a quantum dot formed by monolayer fluctuations in the z-direction, together with lateral confinement via a truncated or infinite parabolic potential in the exciton in-plane coordinate. Theoretical results are found in overall agreement with available experimental measurements

  18. Feshbach shape resonance for high Tc pairing in superlattices of quantum stripes and quantum wells

    Directory of Open Access Journals (Sweden)

    A Bianconi

    2006-09-01

    Full Text Available   The Feshbach shape resonances in the interband pairing in superconducting superlattices of quantum wells or quantum stripes is shown to provide the mechanism for high Tc superconductivity. This mechanism provides the Tc amplification driven by the architecture of material: superlattices of quantum wells (intercalated graphite or diborides and superlattices of quantum stripes (doped high Tc cuprate perovskites where the chemical potential is tuned to a Van Hove-Lifshitz singularity (vHs in the electronic energy spectrum of the superlattice associated with the change of the Fermi surface dimensionality in one of the subbands.

  19. On-chip generation of high-dimensional entangled quantum states and their coherent control.

    Science.gov (United States)

    Kues, Michael; Reimer, Christian; Roztocki, Piotr; Cortés, Luis Romero; Sciara, Stefania; Wetzel, Benjamin; Zhang, Yanbing; Cino, Alfonso; Chu, Sai T; Little, Brent E; Moss, David J; Caspani, Lucia; Azaña, José; Morandotti, Roberto

    2017-06-28

    Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science. Specifically, the realization of high-dimensional states (D-level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics, for increasing the sensitivity of quantum imaging schemes, for improving the robustness and key rate of quantum communication protocols, for enabling a richer variety of quantum simulations, and for achieving more efficient and error-tolerant quantum computation. Integrated photonics has recently become a leading platform for the compact, cost-efficient, and stable generation and processing of non-classical optical states. However, so far, integrated entangled quantum sources have been limited to qubits (D = 2). Here we demonstrate on-chip generation of entangled qudit states, where the photons are created in a coherent superposition of multiple high-purity frequency modes. In particular, we confirm the realization of a quantum system with at least one hundred dimensions, formed by two entangled qudits with D = 10. Furthermore, using state-of-the-art, yet off-the-shelf telecommunications components, we introduce a coherent manipulation platform with which to control frequency-entangled states, capable of performing deterministic high-dimensional gate operations. We validate this platform by measuring Bell inequality violations and performing quantum state tomography. Our work enables the generation and processing of high-dimensional quantum states in a single spatial mode.

  20. Quantum well electronic states in a tilted magnetic field.

    Science.gov (United States)

    Trallero-Giner, C; Padilha, J X; Lopez-Richard, V; Marques, G E; Castelano, L K

    2017-08-16

    We report the energy spectrum and the eigenstates of conduction and uncoupled valence bands of a quantum well under the influence of a tilted magnetic field. In the framework of the envelope approximation, we implement two analytical approaches to obtain the nontrivial solutions of the tilted magnetic field: (a) the Bubnov-Galerkin spectral method and b) the perturbation theory. We discuss the validity of each method for a broad range of magnetic field intensity and orientation as well as quantum well thickness. By estimating the accuracy of the perturbation method, we provide explicit analytical solutions for quantum wells in a tilted magnetic field configuration that can be employed to study several quantitative phenomena.

  1. A Quantum Field Approach for Advancing Optical Coherence Tomography Part I: First Order Correlations, Single Photon Interference, and Quantum Noise.

    Science.gov (United States)

    Brezinski, M E

    2018-01-01

    Optical coherence tomography has become an important imaging technology in cardiology and ophthalmology, with other applications under investigations. Major advances in optical coherence tomography (OCT) imaging are likely to occur through a quantum field approach to the technology. In this paper, which is the first part in a series on the topic, the quantum basis of OCT first order correlations is expressed in terms of full field quantization. Specifically first order correlations are treated as the linear sum of single photon interferences along indistinguishable paths. Photons and the electromagnetic (EM) field are described in terms of quantum harmonic oscillators. While the author feels the study of quantum second order correlations will lead to greater paradigm shifts in the field, addressed in part II, advances from the study of quantum first order correlations are given. In particular, ranging errors are discussed (with remedies) from vacuum fluctuations through the detector port, photon counting errors, and position probability amplitude uncertainty. In addition, the principles of quantum field theory and first order correlations are needed for studying second order correlations in part II.

  2. A Quantum Field Approach for Advancing Optical Coherence Tomography Part I: First Order Correlations, Single Photon Interference, and Quantum Noise

    Science.gov (United States)

    Brezinski, ME

    2018-01-01

    Optical coherence tomography has become an important imaging technology in cardiology and ophthalmology, with other applications under investigations. Major advances in optical coherence tomography (OCT) imaging are likely to occur through a quantum field approach to the technology. In this paper, which is the first part in a series on the topic, the quantum basis of OCT first order correlations is expressed in terms of full field quantization. Specifically first order correlations are treated as the linear sum of single photon interferences along indistinguishable paths. Photons and the electromagnetic (EM) field are described in terms of quantum harmonic oscillators. While the author feels the study of quantum second order correlations will lead to greater paradigm shifts in the field, addressed in part II, advances from the study of quantum first order correlations are given. In particular, ranging errors are discussed (with remedies) from vacuum fluctuations through the detector port, photon counting errors, and position probability amplitude uncertainty. In addition, the principles of quantum field theory and first order correlations are needed for studying second order correlations in part II.

  3. Quantum wave packet revival in two-dimensional circular quantum wells with position-dependent mass

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Alexandre G.M. [Departamento de Ciencias Exatas, Polo Universitario de Volta Redonda-Universidade Federal Fluminense, Av. dos Trabalhadores 420, Volta Redonda RJ, CEP 27255-125 (Brazil)], E-mail: agmschmidt@gmail.com; Azeredo, Abel D. [Departamento de Fisica-Universidade Federal de Roraima, Av. Cap. Ene Garcez 2413, Boa Vista RR, CEP 69304-000 (Brazil)], E-mail: aazeredo@gmail.com; Gusso, A. [Departamento de Ciencias Exatas e Tecnologicas-Universidade Estadual de Santa Cruz, km 16 Rodovia Ilheus-Itabuna, Ilheus BA, CEP 45662-000 (Brazil)], E-mail: agusso@uesc.br

    2008-04-14

    We study quantum wave packet revivals on two-dimensional infinite circular quantum wells (CQWs) and circular quantum dots with position-dependent mass (PDM) envisaging a possible experimental realization. We consider CQWs with radially varying mass, addressing particularly the cases where M(r){proportional_to}r{sup w} with w=1,2, or -2. The two PDM Hamiltonians currently allowed by theory were analyzed and we were able to construct a strong theoretical argument favoring one of them.

  4. Quantum wave packet revival in two-dimensional circular quantum wells with position-dependent mass

    International Nuclear Information System (INIS)

    Schmidt, Alexandre G.M.; Azeredo, Abel D.; Gusso, A.

    2008-01-01

    We study quantum wave packet revivals on two-dimensional infinite circular quantum wells (CQWs) and circular quantum dots with position-dependent mass (PDM) envisaging a possible experimental realization. We consider CQWs with radially varying mass, addressing particularly the cases where M(r)∝r w with w=1,2, or -2. The two PDM Hamiltonians currently allowed by theory were analyzed and we were able to construct a strong theoretical argument favoring one of them

  5. Nanostructure van der Waals interaction between a quantum well and a quantum dot atom

    International Nuclear Information System (INIS)

    Horing, Norman J Morgenstern

    2006-01-01

    We examine the van der Waals interaction between mobile plasma electrons in a narrow quantum well nanostructure and a quantum dot atom. This formulation of the van der Waals interaction exhibits it to second order as the correlation energy (self-energy) of the dot-atom electrons mediated by the image potential arising from the dynamic, nonlocal and spatially inhomogeneous polarization of the quantum well plasma electrons. This image potential of the quantum-well plasma is, in turn, determined by the dynamic, nonlocal, inhomogeneous screening function of the quantum well, which involves the space-time matrix inversion of its spatially inhomogeneous, nonlocal and time-dependent dielectric function. The latter matrix inversion is carried out exactly, in closed form, and the van der Waals energy is evaluated in the electrostatic limit to dipole-dipole terms

  6. Quantum-correlated two-photon transitions to excitons in semiconductor quantum wells.

    Science.gov (United States)

    Salazar, L J; Guzmán, D A; Rodríguez, F J; Quiroga, L

    2012-02-13

    The dependence of the excitonic two-photon absorption on the quantum correlations (entanglement) of exciting biphotons by a semiconductor quantum well is studied. We show that entangled photon absorption can display very unusual features depending on space-time-polarization biphoton parameters and absorber density of states for both bound exciton states as well as for unbound electron-hole pairs. We report on the connection between biphoton entanglement, as quantified by the Schmidt number, and absorption by a semiconductor quantum well. Comparison between frequency-anti-correlated, unentangled and frequency-correlated biphoton absorption is addressed. We found that exciton oscillator strengths are highly increased when photons arrive almost simultaneously in an entangled state. Two-photon-absorption becomes a highly sensitive probe of photon quantum correlations when narrow semiconductor quantum wells are used as two-photon absorbers.

  7. Stark-like electron transfer between quantum wells

    International Nuclear Information System (INIS)

    Dubovis, S.A.; Voronko, A.N.; Basharov, A.M.

    2008-01-01

    The Stark-like mechanism of electron transfer between two energy subband localized in remote quantum wells is examined theoretically. Estimations of major parameters of the problem in case of delta-function-wells model are adduced. Schematic model allowing experimental study of Stark-like transfer is proposed

  8. A localized in vivo detection method for lactate using zero quantum coherence techniques

    NARCIS (Netherlands)

    van Dijk, J. E.; Bosman, D. K.; Chamuleau, R. A.; Bovee, W. M.

    1991-01-01

    A method is described to selectively measure lactate in vivo using proton zero quantum coherence techniques. The signal from lipids is eliminated. A surface coil and additionally slice selective localization are used. The resulting spectra demonstrate the good performance of the method

  9. Bound states in quantum field theory and coherent states: A fresh look

    International Nuclear Information System (INIS)

    Misra, S.P.

    1986-09-01

    We consider here bound state equations in quantum field theory where the state explicitly includes radiation quanta as constituents with the number of such quanta not fixed. The fully interacting system is dealt with through equal time commutators/anticommutators of field operators. The multiparticle channel for the radiation field is approximated through coherent state representations. (author)

  10. Characterization of collective Gaussian attacks and security of coherent-state quantum cryptography.

    Science.gov (United States)

    Pirandola, Stefano; Braunstein, Samuel L; Lloyd, Seth

    2008-11-14

    We provide a simple description of the most general collective Gaussian attack in continuous-variable quantum cryptography. In the scenario of such general attacks, we analyze the asymptotic secret-key rates which are achievable with coherent states, joint measurements of the quadratures and one-way classical communication.

  11. Frequency doubling of an InGaAs multiple quantum wells semiconductor disk laser

    Science.gov (United States)

    Lidan, Jiang; Renjiang, Zhu; Maohua, Jiang; Dingke, Zhang; Yuting, Cui; Peng, Zhang; Yanrong, Song

    2018-01-01

    We demonstrate a good beam quality 483 nm blue coherent radiation from a frequency doubled InGaAs multiple quantum wells semiconductor disk laser. The gain chip is consisted of 6 repeats of strain uncompensated InGaAs/GaAs quantum wells and 25 pairs of GaAs/AlAs distributed Bragg reflector. A 4 × 4 × 7 mm3 type I phase-matched BBO nonlinear crystal is used in a V-shaped laser cavity for the second harmonic generation, and 210 mW blue output power is obtained when the absorbed pump power is 3.5 W. The M2 factors of the laser beam in x and y directions are about 1.04 and 1.01, respectively. The output power of the blue laser is limited by the relatively small number of the multiple quantum wells, and higher power can be expected by increasing the number of the multiple quantum wells and improving the heat management of the laser.

  12. Coherent chemical kinetics as quantum walks. II. Radical-pair reactions in Arabidopsis thaliana

    Science.gov (United States)

    Chia, A.; Górecka, A.; Kurzyński, P.; Paterek, T.; Kaszlikowski, D.

    2016-03-01

    We apply the quantum-walk approach proposed in the preceding paper [A. Chia et al., preceding paper, Phys. Rev. E 93, 032407 (2016), 10.1103/PhysRevE.93.032407] to a radical-pair reaction where realistic estimates for the intermediate transition rates are available. The well-known average hitting time from quantum walks can be adopted as a measure of how quickly the reaction occurs and we calculate this for varying degrees of dephasing in the radical pair. The time for the radical pair to react to a product is found to be independent of the amount of dephasing introduced, even in the limit of no dephasing where the transient population dynamics exhibits strong coherent oscillations. This can be seen to arise from the existence of a rate-limiting step in the reaction and we argue that in such examples, a purely classical model based on rate equations can be used for estimating the time scale of the reaction but not necessarily its population dynamics.

  13. Harmonic Quantum Coherence of Multiple Excitons in PbS/CdS Core-Shell Nanocrystals

    Science.gov (United States)

    Tahara, Hirokazu; Sakamoto, Masanori; Teranishi, Toshiharu; Kanemitsu, Yoshihiko

    2017-12-01

    The generation and recombination dynamics of multiple excitons in nanocrystals (NCs) have attracted much attention from the viewpoints of fundamental physics and device applications. However, the quantum coherence of multiple exciton states in NCs still remains unclear due to a lack of experimental support. Here, we report the first observation of harmonic dipole oscillations in PbS/CdS core-shell NCs using a phase-locked interference detection method for transient absorption. From the ultrafast coherent dynamics and excitation-photon-fluence dependence of the oscillations, we found that multiple excitons cause the harmonic dipole oscillations with ω , 2 ω , and 3 ω oscillations, even though the excitation pulse energy is set to the exciton resonance frequency, ω . This observation is closely related to the quantum coherence of multiple exciton states in NCs, providing important insights into multiple exciton generation mechanisms.

  14. Recurrent neural network approach to quantum signal: coherent state restoration for continuous-variable quantum key distribution

    Science.gov (United States)

    Lu, Weizhao; Huang, Chunhui; Hou, Kun; Shi, Liting; Zhao, Huihui; Li, Zhengmei; Qiu, Jianfeng

    2018-05-01

    In continuous-variable quantum key distribution (CV-QKD), weak signal carrying information transmits from Alice to Bob; during this process it is easily influenced by unknown noise which reduces signal-to-noise ratio, and strongly impacts reliability and stability of the communication. Recurrent quantum neural network (RQNN) is an artificial neural network model which can perform stochastic filtering without any prior knowledge of the signal and noise. In this paper, a modified RQNN algorithm with expectation maximization algorithm is proposed to process the signal in CV-QKD, which follows the basic rule of quantum mechanics. After RQNN, noise power decreases about 15 dBm, coherent signal recognition rate of RQNN is 96%, quantum bit error rate (QBER) drops to 4%, which is 6.9% lower than original QBER, and channel capacity is notably enlarged.

  15. Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks.

    Science.gov (United States)

    Gehring, Tobias; Händchen, Vitus; Duhme, Jörg; Furrer, Fabian; Franz, Torsten; Pacher, Christoph; Werner, Reinhard F; Schnabel, Roman

    2015-10-30

    Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution this is achieved without relying on the hardness of mathematical problems, which might be compromised by improved algorithms or by future quantum computers. State-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side channels. Here we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our implementation is based on the distribution of continuous-variable Einstein-Podolsky-Rosen entangled light. It is one-sided device independent, which means the security of the generated key is independent of any memoryfree attacks on the remote detector. Since continuous-variable encoding is compatible with conventional optical communication technology, our work is a step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components.

  16. Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks

    Science.gov (United States)

    Gehring, Tobias; Händchen, Vitus; Duhme, Jörg; Furrer, Fabian; Franz, Torsten; Pacher, Christoph; Werner, Reinhard F.; Schnabel, Roman

    2015-10-01

    Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution this is achieved without relying on the hardness of mathematical problems, which might be compromised by improved algorithms or by future quantum computers. State-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side channels. Here we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our implementation is based on the distribution of continuous-variable Einstein-Podolsky-Rosen entangled light. It is one-sided device independent, which means the security of the generated key is independent of any memoryfree attacks on the remote detector. Since continuous-variable encoding is compatible with conventional optical communication technology, our work is a step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components.

  17. Detection of electromagnetic radiation using micromechanical multiple quantum wells structures

    Science.gov (United States)

    Datskos, Panagiotis G [Knoxville, TN; Rajic, Slobodan [Knoxville, TN; Datskou, Irene [Knoxville, TN

    2007-07-17

    An apparatus and method for detecting electromagnetic radiation employs a deflectable micromechanical apparatus incorporating multiple quantum wells structures. When photons strike the quantum-well structure, physical stresses are created within the sensor, similar to a "bimetallic effect." The stresses cause the sensor to bend. The extent of deflection of the sensor can be measured through any of a variety of conventional means to provide a measurement of the photons striking the sensor. A large number of such sensors can be arranged in a two-dimensional array to provide imaging capability.

  18. Photo-Induced Spin Dynamics in Semiconductor Quantum Wells.

    Science.gov (United States)

    Miah, M Idrish

    2009-01-17

    We experimentally investigate the dynamics of spins in GaAs quantum wells under applied electric bias by photoluminescence (PL) measurements excited with circularly polarized light. The bias-dependent circular polarization of PL (P(PL)) with and without magnetic field is studied. The P(PL) without magnetic field is found to be decayed with an enhancement of increasing the strength of the negative bias. However, P(PL) in a transverse magnetic field shows oscillations under an electric bias, indicating that the precession of electron spin occurs in quantum wells. The results are discussed based on the electron-hole exchange interaction in the electric field.

  19. Photo-Induced Spin Dynamics in Semiconductor Quantum Wells

    Directory of Open Access Journals (Sweden)

    Miah M

    2009-01-01

    Full Text Available Abstract We experimentally investigate the dynamics of spins in GaAs quantum wells under applied electric bias by photoluminescence (PL measurements excited with circularly polarized light. The bias-dependent circular polarization of PL (P PL with and without magnetic field is studied. TheP PLwithout magnetic field is found to be decayed with an enhancement of increasing the strength of the negative bias. However,P PLin a transverse magnetic field shows oscillations under an electric bias, indicating that the precession of electron spin occurs in quantum wells. The results are discussed based on the electron–hole exchange interaction in the electric field.

  20. Achieving Optimal Quantum Acceleration of Frequency Estimation Using Adaptive Coherent Control.

    Science.gov (United States)

    Naghiloo, M; Jordan, A N; Murch, K W

    2017-11-03

    Precision measurements of frequency are critical to accurate time keeping and are fundamentally limited by quantum measurement uncertainties. While for time-independent quantum Hamiltonians the uncertainty of any parameter scales at best as 1/T, where T is the duration of the experiment, recent theoretical works have predicted that explicitly time-dependent Hamiltonians can yield a 1/T^{2} scaling of the uncertainty for an oscillation frequency. This quantum acceleration in precision requires coherent control, which is generally adaptive. We experimentally realize this quantum improvement in frequency sensitivity with superconducting circuits, using a single transmon qubit. With optimal control pulses, the theoretically ideal frequency precision scaling is reached for times shorter than the decoherence time. This result demonstrates a fundamental quantum advantage for frequency estimation.

  1. Coherence and fluctuations in the interaction between moving atoms and a quantum field

    International Nuclear Information System (INIS)

    Hu, B.L.; Raval, A.

    1998-01-01

    Mesoscopic physics deals with three fundamental issues: quantum coherence, fluctuations and correlations. Here we analyze these issues for atom optics, using a simplified model of an assembly of atoms (or detectors, which are particles with some internal degree of freedom) moving in arbitrary trajectories in a quantum field. Employing the influence functional formalism, we study the self-consistent effect of the field on the atoms, and their mutual interactions via coupling to the field. We derive the coupled Langevin equations for the atom assemblage and analyze the relation of dissipative dynamics of the atoms (detectors) with the correlation and fluctuations of the quantum field. This provides a useful theoretical framework for analysing the coherent properties of atom-field systems. (author)

  2. Long-distance measurement-device-independent quantum key distribution with coherent-state superpositions.

    Science.gov (United States)

    Yin, H-L; Cao, W-F; Fu, Y; Tang, Y-L; Liu, Y; Chen, T-Y; Chen, Z-B

    2014-09-15

    Measurement-device-independent quantum key distribution (MDI-QKD) with decoy-state method is believed to be securely applied to defeat various hacking attacks in practical quantum key distribution systems. Recently, the coherent-state superpositions (CSS) have emerged as an alternative to single-photon qubits for quantum information processing and metrology. Here, in this Letter, CSS are exploited as the source in MDI-QKD. We present an analytical method that gives two tight formulas to estimate the lower bound of yield and the upper bound of bit error rate. We exploit the standard statistical analysis and Chernoff bound to perform the parameter estimation. Chernoff bound can provide good bounds in the long-distance MDI-QKD. Our results show that with CSS, both the security transmission distance and secure key rate are significantly improved compared with those of the weak coherent states in the finite-data case.

  3. Exact quantum solutions for some asymmetrical two-well potentials

    International Nuclear Information System (INIS)

    Ley-Koo, E.

    1985-01-01

    We discuss several points of interest in the study of two-well potentials in quantum mechanics courses. In particular, we construct the solutions of the Schroedinger equation for rectangular-well, harmonic-oscillator and triangular-well potentials with a delta-function potential superimposed in different positions. The energy spectra and eigenfunctions of such systems are presented and analyzed for different intensities and positions of the delta-function potential. (author)

  4. Quantum Coherent Multielectron Processes in an Atomic Scale Contact

    DEFF Research Database (Denmark)

    Peters, Peter-Jan; Xu, Fei; Kaasbjerg, Kristen

    2017-01-01

    The light emission from a scanning tunneling microscope operated on a Ag(111) surface at 6 K is analyzed from low conductances to values approaching the conductance quantum. Optical spectra recorded at sample voltages V reveal emission with photon energies hv > 2eV. A model of electrons interacting...

  5. Laser coherent control of quantum dynamics at the CSIR: NLC

    CSIR Research Space (South Africa)

    Botha, L

    2010-09-01

    Full Text Available reaction channels. The principle used is controlled interference of the quantum wave functions via time domain shaped ultra-short pulses. The time/frequency product of a pulse is a constant, determined by Heisenberg’s uncertainty principle, therefore, a...

  6. Fractional revivals of coherence in quantum mechanical oscillators

    NARCIS (Netherlands)

    Ross, J.C.; Capel, H.W.

    2000-01-01

    A case study is made of the delocalisation and revival dynamics of a continuously driven quantum pendulum in integrable and near integrable regimes, utilising the Husimi phase-space distribution function, and an entropy function which measures the degree of localisation. The numerical results can be

  7. Theory of coherent dynamic nuclear polarization in quantum dots

    DEFF Research Database (Denmark)

    Neder, Izhar; Rudner, Mark Spencer; Halperin, Bertrand

    2014-01-01

    We consider the production of dynamic nuclear spin polarization (DNP) in a two-electron double quantum dot, in which the electronic levels are repeatedly swept through a singlet-triplet avoided crossing. Our analysis helps to elucidate the intriguing interplay between electron-nuclear hyperfine...

  8. Electrically Induced Two-Photon Transparency in Semiconductor Quantum Wells

    International Nuclear Information System (INIS)

    Hayat, Alex; Nevet, Amir; Orenstein, Meir

    2009-01-01

    We demonstrate experimentally two-photon transparency, achieved by current injection into a semiconductor quantum-well structure which exhibits two-photon emission. The two-photon induced luminescence is progressively reduced by the injected current, reaching the point of two-photon transparency - a necessary condition for semiconductor two-photon gain and lasing. These results agree with our calculations.

  9. Comment on 'Local responsivity in quantum well photodetectors'

    International Nuclear Information System (INIS)

    Ryzhii, M.; Khmyrova, I.

    2001-01-01

    The response of multiple quantum well (QW) infrared photodetectors (QW) to the photoexcitation of one QW selected from many identical QWs was recently modeled [M. Ershov, J. Appl. Phys. 86, 7059 (1999)]. We point out here that the presented analysis based on the use of drift-diffusion model for a system with a few electrons is incorrect. [copyright] 2001 American Institute of Physics

  10. Semiconductor-Metal transition in a quantum well

    International Nuclear Information System (INIS)

    Nithiananthi, P.; Jayakumar, K.

    2007-01-01

    We demonstrate semiconductor-metal transition through diamagnetic susceptibility of a donor in a GaAs/Al x Ga 1- x As quantum well for both infinite and finite barrier models. We have also considered the non-parabolicity of the conduction band in our calculation. Our results agree with the earlier theoretical result and also with the recent experimental result

  11. Oscillatory magnetoconductance of quantum double-well channels

    International Nuclear Information System (INIS)

    Rojo, A.G.; Kumar, N.; Balseiro, C.A.

    1988-07-01

    The recently observed flux-periodic interference effect between parallel quantum double-well channels is theoretically studied in a discrete model that takes into account tunneling between channels. We obtain oscillatory magnetoconductance with small modulations which is attributable to the tunneling. Our treatment includes the effect of evanescent modes. (author). 7 refs, 2 figs

  12. Bose Condensation of Interwell Excitons in Double Quantum Wells

    DEFF Research Database (Denmark)

    Larionov, A. V.; Timofeev, V. B.; Ni, P. A.

    2002-01-01

    The luminescence of interwell excitons in double quantum wells GaAs/AlGaAs (n–i–n heterostructures) with large-scale fluctuations of random potential in the heteroboundary planes was studied. The properties of excitons whose photoexcited electron and hole are spatially separated in the neighboring...

  13. A new theory of the origin of cancer: quantum coherent entanglement, centrioles, mitosis, and differentiation.

    Science.gov (United States)

    Hameroff, Stuart R

    2004-11-01

    Malignant cells are characterized by abnormal segregation of chromosomes during mitosis ("aneuploidy"), generally considered a result of malignancy originating in genetic mutations. However, recent evidence supports a century-old concept that maldistribution of chromosomes (and resultant genomic instability) due to abnormalities in mitosis itself is the primary cause of malignancy rather than a mere byproduct. In normal mitosis chromosomes replicate into sister chromatids which are then precisely separated and transported into mirror-like sets by structural protein assemblies called mitotic spindles and centrioles, both composed of microtubules. The elegant yet poorly understood ballet-like movements and geometric organization occurring in mitosis have suggested guidance by some type of organizing field, however neither electromagnetic nor chemical gradient fields have been demonstrated or shown to be sufficient. It is proposed here that normal mirror-like mitosis is organized by quantum coherence and quantum entanglement among microtubule-based centrioles and mitotic spindles which ensure precise, complementary duplication of daughter cell genomes and recognition of daughter cell boundaries. Evidence and theory supporting organized quantum states in cytoplasm/nucleoplasm (and quantum optical properties of centrioles in particular) at physiological temperature are presented. Impairment of quantum coherence and/or entanglement among microtubule-based mitotic spindles and centrioles can result in abnormal distribution of chromosomes, abnormal differentiation and uncontrolled growth, and account for all aspects of malignancy. New approaches to cancer therapy and stem cell production are suggested via non-thermal laser-mediated effects aimed at quantum optical states of centrioles.

  14. Impact of Surface Functionalization on the Quantum Coherence of Nitrogen-Vacancy Centers in Nanodiamonds.

    Science.gov (United States)

    Ryan, Robert G; Stacey, Alastair; O'Donnell, Kane M; Ohshima, Takeshi; Johnson, Brett C; Hollenberg, Lloyd C L; Mulvaney, Paul; Simpson, David A

    2018-04-18

    Nanoscale quantum probes such as the nitrogen-vacancy (NV) center in diamonds have demonstrated remarkable sensing capabilities over the past decade as control over fabrication and manipulation of these systems has evolved. The biocompatibility and rich surface chemistry of diamonds has added to the utility of these probes but, as the size of these nanoscale systems is reduced, the surface chemistry of diamond begins to impact the quantum properties of the NV center. In this work, we systematically study the effect of the diamond surface chemistry on the quantum coherence of the NV center in nanodiamonds (NDs) 50 nm in size. Our results show that a borane-reduced diamond surface can on average double the spin relaxation time of individual NV centers in nanodiamonds when compared to thermally oxidized surfaces. Using a combination of infrared and X-ray absorption spectroscopy techniques, we correlate the changes in quantum relaxation rates with the conversion of sp 2 carbon to C-O and C-H bonds on the diamond surface. These findings implicate double-bonded carbon species as a dominant source of spin noise for near surface NV centers. The link between the surface chemistry and quantum coherence indicates that through tailored engineering of the surface, the quantum properties and magnetic sensitivity of these nanoscale systems may approach that observed in bulk diamond.

  15. Manipulating quantum coherence of charge states in interacting double-dot Aharonov–Bohm interferometers

    Science.gov (United States)

    Jin, Jinshuang; Wang, Shikuan; Zhou, Jiahuan; Zhang, Wei-Min; Yan, YiJing

    2018-04-01

    We investigate the dynamics of charge-state coherence in a degenerate double-dot Aharonov–Bohm interferometer with finite inter-dot Coulomb interactions. The quantum coherence of the charge states is found to be sensitive to the transport setup configurations, involving both the single-electron impurity channels and the Coulomb-assisted ones. We numerically demonstrate the emergence of a complete coherence between the two charge states, with the relative phase being continuously controllable through the magnetic flux. Interestingly, a fully coherent charge qubit arises at the double-dots electron pair tunneling resonance condition, where the chemical potential of one electrode is tuned at the center between a single-electron impurity channel and the related Coulomb-assisted channel. This pure quantum state of charge qubit could be experimentally realized at the current–voltage characteristic turnover position, where differential conductance sign changes. We further elaborate the underlying mechanism for both the real-time and the stationary charge-states coherence in the double-dot systems of study.

  16. Generating single-photon catalyzed coherent states with quantum-optical catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xue-xiang, E-mail: xuxuexiang@jxnu.edu.cn [Center for Quantum Science and Technology, Jiangxi Normal University, Nanchang 330022 (China); Yuan, Hong-chun [College of Electrical and Optoelectronic Engineering, Changzhou Institute of Technology, Changzhou 213002 (China)

    2016-07-15

    We theoretically generate single-photon catalyzed coherent states (SPCCSs) by means of quantum-optical catalysis based on the beam splitter (BS) or the parametric amplifier (PA). These states are obtained in one of the BS (or PA) output channels if a coherent state and a single-photon Fock state are present in two input ports and a single photon is registered in the other output port. The success probabilities of the detection (also the normalization factors) are discussed, which is different for BS and PA catalysis. In addition, we prove that the generated states catalyzed by BS and PA devices are actually the same quantum states after analyzing photon number distribution of the SPCCSs. The quantum properties of the SPCCSs, such as sub-Poissonian distribution, anti-bunching effect, quadrature squeezing effect, and the negativity of the Wigner function are investigated in detail. The results show that the SPCCSs are non-Gaussian states with an abundance of nonclassicality. - Highlights: • We generate single-photon catalyzed coherent states with quantum-optical catalysis. • We prove the equivalent effects of the lossless beam splitter and the non-degenerate parametric amplifier. • Some nonclassical properties of the generated states are investigated in detail.

  17. Coherent exciton transport in dendrimers and continuous-time quantum walks

    Science.gov (United States)

    Mülken, Oliver; Bierbaum, Veronika; Blumen, Alexander

    2006-03-01

    We model coherent exciton transport in dendrimers by continuous-time quantum walks. For dendrimers up to the second generation the coherent transport shows perfect recurrences when the initial excitation starts at the central node. For larger dendrimers, the recurrence ceases to be perfect, a fact which resembles results for discrete quantum carpets. Moreover, depending on the initial excitation site, we find that the coherent transport to certain nodes of the dendrimer has a very low probability. When the initial excitation starts from the central node, the problem can be mapped onto a line which simplifies the computational effort. Furthermore, the long time average of the quantum mechanical transition probabilities between pairs of nodes shows characteristic patterns and allows us to classify the nodes into clusters with identical limiting probabilities. For the (space) average of the quantum mechanical probability to be still or to be again at the initial site, we obtain, based on the Cauchy-Schwarz inequality, a simple lower bound which depends only on the eigenvalue spectrum of the Hamiltonian.

  18. Coherent states and classical limit of algebraic quantum models

    International Nuclear Information System (INIS)

    Scutaru, H.

    1983-01-01

    The algebraic models for collective motion in nuclear physics belong to a class of theories the basic observables of which generate selfadjoint representations of finite dimensional, real Lie algebras, or of the enveloping algebras of these Lie algebras. The simplest and most used for illustrations model of this kind is the Lipkin model, which is associated with the Lie algebra of the three dimensional rotations group, and which presents all characteristic features of an algebraic model. The Lipkin Hamiltonian is the image, of an element of the enveloping algebra of the algebra SO under a representation. In order to understand the structure of the algebraic models the author remarks that in both classical and quantum mechanics the dynamics is associated to a typical algebraic structure which we shall call a dynamical algebra. In this paper he shows how the constructions can be made in the case of the algebraic quantum systems. The construction of the symplectic manifold M can be made in this case using a quantum analog of the momentum map which he defines

  19. Corrugated Quantum Well Infrared Photodetector Focal Plane Array Test Results

    Science.gov (United States)

    Goldberg, A.; Choi, K. K.; Das, N. C.; La, A.; Jhabvala, M.

    1999-01-01

    The corrugated quantum-well infrared photodetector (C-QWIP) uses total internal reflection to couple normal incident light into the optically active quantum wells. The coupling efficiency has been shown to be relatively independent of the pixel size and wavelength thus making the C-QWIP a candidate for detectors over the entire infrared spectrum. The broadband coupling efficiency of the C-QWIP makes it an ideal candidate for multiwavelength detectors. We fabricated and tested C-QWIP focal plane arrays (FPAs) with cutoff wavelengths of 11.2 and 16.2 micrometers. Each FPA has 256 x 256 pixels that are bump-bonded to a direct injection readout circuit. Both FPAs provided infrared imagery with good aesthetic attributes. For the 11.2-micrometers FPA, background-limited performance (BLIP) was observed at 60 K with f/3 optics. For the 16.2-micrometers FPA, BLIP was observed at 38 K. Besides the reduction of dark current in C-QWIP structures, the measured internal quantum efficiency (eta) remains to be high. The values for responsivity and quantum efficiency obtained from the FPA results agree well with those measured for single devices.

  20. Quantum correlations between each two-level system in a pair of atoms and general coherent fields

    Directory of Open Access Journals (Sweden)

    S. Abdel-Khalek

    Full Text Available The quantitative description of the quantum correlations between each two-level system in a two-atom system and the coherent fields initially defined in a coherent state in the framework of power-law potentials (PLPCSs is considered. Specifically, we consider two atoms locally interacting with PLPCSs and take into account the different terms of interactions, the entanglement and quantum discord are studied including the time-dependent coupling and photon transition effects. Using the monogamic relation between the entanglement of formation and quantum discord in tripartite systems, we show that the control and preservation of the different kinds of quantum correlations greatly benefit from the combination of the choice of the physical quantities. Finally, we explore the link between the dynamical behavior of quantum correlations and nonclassicality of the fields with and without atomic motion effect. Keywords: Quantum correlations, Monogamic relation, Coherent states, Power-law potentials, Wehrl entropy

  1. Design rules for modulation doped AlAs quantum wells

    Science.gov (United States)

    Chung, Yoon Jang; Baldwin, K. W.; West, K. W.; Kamburov, D.; Shayegan, M.; Pfeiffer, L. N.

    AlxGa1-xAs/AlAs/AlxGa1-xAs quantum wells were grown with various barrier compositions ranging from x =0.26 to x =0.8. We investigate the modulation doping characteristics of the samples by magneto-transport measurements. The carrier concentration in the well peaks near the barrier alloy fraction of x =0.26 in the dark and near x =0.38 after illumination with a red LED. This behavior is consistent with the results in a separate study for AlxGa1-xAs/GaAs/AlxGa1-xAs quantum wells in the range of x =0.26 to x =1.0. We show from a charge transfer model that the calculated energy difference between the conduction band offset at the well interface and the donor energy level, ΔEC-ED, coincides for the two types of wells. This implies that, despite the differing positions of the conduction band minimum for the GaAs and AlAs wells, the doping of either well is governed by the electronic properties of the barrier. Based on this knowledge we designed high quality AlAs quantum wells with low (1 x 1011 cm-2) and high (3 x 1011 cm-2) density, and the magneto-transport data show clear signals of the fractional quantum Hall effect (2/3, 3/5, 4/7 for low density and 5/3, 8/5 for high density). Work supported by the NSF (Grants DMR-1305691, ECCS-1508925, and MRSEC DMR-1420541), the DOE Basic Energy Sciences (Grant DE-FG02-00-ER45841), the Gordon and Betty Moore Foundation (Grant GBMF4420), and the Keck Foundation.

  2. Security bound of continuous-variable quantum key distribution with noisy coherent states and channel

    International Nuclear Information System (INIS)

    Shen Yong; Yang Jian; Guo Hong

    2009-01-01

    Security of a continuous-variable quantum key distribution protocol based on noisy coherent states and channel is analysed. Assuming that the noise of coherent states is induced by Fred, a neutral party relative to others, we prove that the prepare-and-measurement scheme (P and M) and entanglement-based scheme (E-B) are equivalent. Then, we show that this protocol is secure against Gaussian collective attacks even if the channel is lossy and noisy, and, further, a lower bound to the secure key rate is derived.

  3. A simple coherent attack and practical security of differential phase shift quantum cryptography

    International Nuclear Information System (INIS)

    Kronberg, D A

    2014-01-01

    The differential phase shift quantum key distribution protocol reveals good security against such powerful attacks as unambiguous state discrimination and beam splitting attacks. Its complete security analysis is complex due to high dimensions of the supposed spaces and density operators. In this paper, we consider a particular and conceptually simple coherent attack, available in practical implementations. The main condition for this attack is the length of used coherent state tuples of order 8–12. We show that under this condition, no high level of practical distance between legitimate users can be achieved. (paper)

  4. Security bound of continuous-variable quantum key distribution with noisy coherent states and channel

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yong; Yang Jian; Guo Hong, E-mail: hongguo@pku.edu.c [CREAM Group, State Key Laboratory of Advanced Optical Communication Systems and Networks (Peking University) and Institute of Quantum Electronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871 (China)

    2009-12-14

    Security of a continuous-variable quantum key distribution protocol based on noisy coherent states and channel is analysed. Assuming that the noise of coherent states is induced by Fred, a neutral party relative to others, we prove that the prepare-and-measurement scheme (P and M) and entanglement-based scheme (E-B) are equivalent. Then, we show that this protocol is secure against Gaussian collective attacks even if the channel is lossy and noisy, and, further, a lower bound to the secure key rate is derived.

  5. Cavity-photon-switched coherent transient transport in a double quantum waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, Nzar Rauf, E-mail: nra1@hi.is; Gudmundsson, Vidar, E-mail: vidar@raunvis.hi.is [Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik (Iceland); Tang, Chi-Shung [Department of Mechanical Engineering, National United University, 1, Lienda, 36003 Miaoli, Taiwan (China); Manolescu, Andrei [School of Science and Engineering, Reykjavik University, Menntavegur 1, IS-101 Reykjavik (Iceland)

    2014-12-21

    We study a cavity-photon-switched coherent electron transport in a symmetric double quantum waveguide. The waveguide system is weakly connected to two electron reservoirs, but strongly coupled to a single quantized photon cavity mode. A coupling window is placed between the waveguides to allow electron interference or inter-waveguide transport. The transient electron transport in the system is investigated using a quantum master equation. We present a cavity-photon tunable semiconductor quantum waveguide implementation of an inverter quantum gate, in which the output of the waveguide system may be selected via the selection of an appropriate photon number or “photon frequency” of the cavity. In addition, the importance of the photon polarization in the cavity, that is, either parallel or perpendicular to the direction of electron propagation in the waveguide system is demonstrated.

  6. Bound magnetic polaron in a semimagnetic double quantum well

    Science.gov (United States)

    Kalpana, P.; Jayakumar, K.

    2017-09-01

    The effect of different combinations of the concentration of Mn2+ ion in the Quantum well Cd1-xinMnxin Te and the barrier Cd1-xoutMnxout Te on the Bound Magnetic Polaron (BMP) in a Diluted Magnetic Semiconductors (DMS) Double Quantum Well (DQW) has been investigated. The Schrodinger equation is solved variationally in the effective mass approximation through which the Spin Polaronic Shift (SPS) due to the formation of BMP has been estimated for various locations of the donor impurity in the DQW. The results show that the effect of the increase of Mn2+ ion composition with different combinations on SPS is predominant for On Centre Well (OCW) impurity when compared to all other impurity locations when there is no application of magnetic field (γ = 0), γ being a dimensionless parameter for the magnetic field, and the same is predominant for On Centre Barrier (OCB) impurity with the application of external magnetic field (γ = 0.15).

  7. Sense of coherence: A distinct perspective on financial well-being

    Directory of Open Access Journals (Sweden)

    Antoni Barnard

    2016-11-01

    Full Text Available With the ongoing financial challenges being faced in the economic environment, research exploring financial and psychological well-being is of significant value because employees’ socio-economic behaviour affects productivity. Research emphasises mainly the effect of income level on psychological well-being, and its orientation to psychological well-being is narrowly derived from a focus on subjective well-being constructs. This study addresses the research gap by exploring the relationship dynamics between sense of coherence, income level and financial well-being. Secondary data were obtained from a cross-sectional online employee-wellness survey (n=7 185. The sample distribution included 66 per cent females and 34 per cent males from various age groups, with 46 per cent of the sample comprising single-household earners and 54 per cent sharing household income. Analysis of variance was conducted to examine the relationship dynamics between sense of coherence, level of income and financial well-being. Demographic variables that formed part of the survey results were included in the analysis. The relationships between sense of coherence and identified significant income level, financial well-being and demographic effects were further explored in Bonferroni multiple comparisons of means test and cross reference frequency tables that included Pearson’s chi-square and/or Cochran–Armitage trend tests. Detail results indicate that high-income employees exhibit a significantly stronger sense of coherence than low-income employees, and that, despite level of income, financial wellbeing is nevertheless positively related to sense of coherence. Results indicate important implications for managing a financially healthy workforce. Limitations are discussed and recommendations for future research are highlighted.

  8. Quantum quench in one dimension: coherent inhomogeneity amplification and "supersolitons".

    Science.gov (United States)

    Foster, Matthew S; Yuzbashyan, Emil A; Altshuler, Boris L

    2010-09-24

    We study a quantum quench in a 1D system possessing Luttinger liquid (LL) and Mott insulating ground states before and after the quench, respectively. We show that the quench induces power law amplification in time of any particle density inhomogeneity in the initial LL ground state. The scaling exponent is set by the fractionalization of the LL quasiparticle number relative to the insulator. As an illustration, we consider the traveling density waves launched from an initial localized density bump. While these waves exhibit a particular rigid shape, their amplitudes grow without bound.

  9. Quantum dual signature scheme based on coherent states with entanglement swapping

    International Nuclear Information System (INIS)

    Liu Jia-Li; Shi Rong-Hua; Shi Jin-Jing; Lv Ge-Li; Guo Ying

    2016-01-01

    A novel quantum dual signature scheme, which combines two signed messages expected to be sent to two diverse receivers Bob and Charlie, is designed by applying entanglement swapping with coherent states. The signatory Alice signs two different messages with unitary operations (corresponding to the secret keys) and applies entanglement swapping to generate a quantum dual signature. The dual signature is firstly sent to the verifier Bob who extracts and verifies the signature of one message and transmits the rest of the dual signature to the verifier Charlie who verifies the signature of the other message. The transmission of the dual signature is realized with quantum teleportation of coherent states. The analysis shows that the security of secret keys and the security criteria of the signature protocol can be greatly guaranteed. An extensional multi-party quantum dual signature scheme which considers the case with more than three participants is also proposed in this paper and this scheme can remain secure. The proposed schemes are completely suited for the quantum communication network including multiple participants and can be applied to the e-commerce system which requires a secure payment among the customer, business and bank. (paper)

  10. Quantum dual signature scheme based on coherent states with entanglement swapping

    Science.gov (United States)

    Liu, Jia-Li; Shi, Rong-Hua; Shi, Jin-Jing; Lv, Ge-Li; Guo, Ying

    2016-08-01

    A novel quantum dual signature scheme, which combines two signed messages expected to be sent to two diverse receivers Bob and Charlie, is designed by applying entanglement swapping with coherent states. The signatory Alice signs two different messages with unitary operations (corresponding to the secret keys) and applies entanglement swapping to generate a quantum dual signature. The dual signature is firstly sent to the verifier Bob who extracts and verifies the signature of one message and transmits the rest of the dual signature to the verifier Charlie who verifies the signature of the other message. The transmission of the dual signature is realized with quantum teleportation of coherent states. The analysis shows that the security of secret keys and the security criteria of the signature protocol can be greatly guaranteed. An extensional multi-party quantum dual signature scheme which considers the case with more than three participants is also proposed in this paper and this scheme can remain secure. The proposed schemes are completely suited for the quantum communication network including multiple participants and can be applied to the e-commerce system which requires a secure payment among the customer, business and bank. Project supported by the National Natural Science Foundation of China (Grant Nos. 61272495, 61379153, and 61401519) and the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130162110012).

  11. Interaction of a quantum well with squeezed light: Quantum-statistical properties

    International Nuclear Information System (INIS)

    Sete, Eyob A.; Eleuch, H.

    2010-01-01

    We investigate the quantum statistical properties of the light emitted by a quantum well interacting with squeezed light from a degenerate subthreshold optical parametric oscillator. We obtain analytical solutions for the pertinent quantum Langevin equations in the strong-coupling and low-excitation regimes. Using these solutions we calculate the intensity spectrum, autocorrelation function, and quadrature squeezing for the fluorescent light. We show that the fluorescent light exhibits bunching and quadrature squeezing. We also show that the squeezed light leads to narrowing of the width of the spectrum of the fluorescent light.

  12. Computing Coherence Vectors and Correlation Matrices with Application to Quantum Discord Quantification

    Directory of Open Access Journals (Sweden)

    Jonas Maziero

    2016-01-01

    Full Text Available Coherence vectors and correlation matrices are important functions frequently used in physics. The numerical calculation of these functions directly from their definitions, which involves Kronecker products and matrix multiplications, may seem to be a reasonable option. Notwithstanding, as we demonstrate in this paper, some algebraic manipulations before programming can reduce considerably their computational complexity. Besides, we provide Fortran code to generate generalized Gell-Mann matrices and to compute the optimized and unoptimized versions of associated Bloch’s vectors and correlation matrix in the case of bipartite quantum systems. As a code test and application example, we consider the calculation of Hilbert-Schmidt quantum discords.

  13. Coherent versus incoherent dynamics in InAs quantum-dot active wave guides

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, W.; Hvam, Jørn Märcher

    2001-01-01

    Coherent dynamics measured by time-resolved four-wave mixing is compared to incoherent population dynamics measured by differential transmission spectroscopy on the ground-state transition at room temperature of two types of InAs-based quantum dots with different confinement energies. The measure....... The measurements are performed with heterodyne detection on quantum-dot active wave guides to enhance the light-matter interaction length. An elastic nature of the measured dephasing is revealed which is independent of the dot energy level scheme....

  14. Subwavelength atom localization via quantum coherence in a three-level atomic system

    Energy Technology Data Exchange (ETDEWEB)

    Ghafoor, Fazal [Centre for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan)

    2011-12-15

    We propose a three-level atomic system where quantum coherence is generated by a classical standing-wave field coupled to the two upper excited decaying levels. Quantum coherence results in cancellation of the spontaneously emitted spectral lines depending on the choice of the phase of the standing wave. We exploit this phenomenon for precision measurement of the atomic position in the standing wave. Measurement of the conditional position probability distribution shows one to eight peaks per unit wavelength of the standing wave. Only one controllable parameter, that is, the phase of the driving standing wave, is enough to control these atomic positions. Along with the other results, the result of obtaining a single peak is remarkable as it enhances the efficiency of our system by a factor of 8.

  15. Subwavelength atom localization via quantum coherence in a three-level atomic system

    International Nuclear Information System (INIS)

    Ghafoor, Fazal

    2011-01-01

    We propose a three-level atomic system where quantum coherence is generated by a classical standing-wave field coupled to the two upper excited decaying levels. Quantum coherence results in cancellation of the spontaneously emitted spectral lines depending on the choice of the phase of the standing wave. We exploit this phenomenon for precision measurement of the atomic position in the standing wave. Measurement of the conditional position probability distribution shows one to eight peaks per unit wavelength of the standing wave. Only one controllable parameter, that is, the phase of the driving standing wave, is enough to control these atomic positions. Along with the other results, the result of obtaining a single peak is remarkable as it enhances the efficiency of our system by a factor of 8.

  16. Quantum mechanical noise in coherent-state and squeezed-state Michelson interferometers

    International Nuclear Information System (INIS)

    Assaf, Ohad; Ben-Aryeh, Yacob

    2002-01-01

    In the present study we extend and generalize previous results for coherent-state and squeezed-state Michelson interferometer quantum mechanical uncertainties (or fluctuations), which are commonly referred to as 'quantum noise'. The calculation of photon counting (PC) fluctuations in the squeezed-state interferometer is extended to fourth-order correlation functions used as the measured signal. We also generalize a 'unified model' for treating both PC and radiation pressure fluctuations in the coherent-state interferometer, by using mathematical methods which apply to Kerr-type interactions. The results are more general than those reported previously in two ways. First, we obtain exact expressions, which lead to previous results under certain approximations. Second, we deal with cases in which the responses of the two mirrors to radiation pressure are not equal

  17. Weak antilocalization and spin precession in quantum wells

    Science.gov (United States)

    Knap, W.; Skierbiszewski, C.; Zduniak, A.; Litwin-Staszewska, E.; Bertho, D.; Kobbi, F.; Robert, J. L.; Pikus, G. E.; Pikus, F. G.; Iordanskii, S. V.; Mosser, V.; Zekentes, K.; Lyanda-Geller, Yu. B.

    1996-02-01

    The results of magnetoconductivity measurements in GaxIn1-xAs quantum wells are presented. The observed magnetoconductivity appears due to the quantum interference, which lead to the weak localization effect. It is established that the details of the weak localization are controlled by the spin splitting of electron spectra. A theory is developed that takes into account both linear and cubic in electron wave-vector terms in spin splitting, which arise due to the lack of inversion center in the crystal, as well as the linear terms that appear when the well itself is asymmetric. It is established that, unlike spin-relaxation rate, contributions of different terms into magnetoconductivity are not additive. It is demonstrated that in the interval of electron densities under investigation [(0.98-1.85)×1012 cm-2 ] all three contributions are comparable and have to be taken into account to achieve a good agreement between the theory and experiment. The results obtained from comparison of the experiment and the theory have allowed us to determine what mechanisms dominate the spin-relaxation in quantum wells and to improve the accuracy of determination of spin-splitting parameters in A3B5 crystals and two-dimensional structures.

  18. Electron Raman scattering in a HgS/CdS spherical quantum dot quantum well

    International Nuclear Information System (INIS)

    Zhong Qinghu; Lai Liping

    2013-01-01

    Electron Raman scattering (ERS) is investigated in a spherical HgS/CdS quantum dot quantum well (QDQW). The differential cross section (DCS) is calculated as a function of the scattering frequency and the sizes of QDQW. Single parabolic conduction and valence bands are assumed. The selection rules for the processes are studied. Singularities in the spectra are found and interpreted. The ERS studied here can be used to provide direct information about the electron band structure of these systems. (semiconductor physics)

  19. Temperature-dependent properties of semiconductor quantum dots in coherent regime; Temperaturabhaengige Eigenschaften einzelner Halbleiter-Quantenpunkte im Kohaerenten Regime

    Energy Technology Data Exchange (ETDEWEB)

    Huebner, Marc C.

    2009-10-15

    could be shown. Moreover, the influence of temperature on other properties of the system could be investigated. Resonances show noticeable broadening which results in decreased lifetime of the levels participated. In the same way it was shown that the temperature can influence the main channel of recombination of the predominate level. Varying the external voltage at the sample even at 4,2 K can set the exciton to decay radiatively (bias voltage smaller than 0,4 V) or through tunneling processes - and thus measureable through photo currents - due to an increased bending of bands (more than 0,4 V). This border can be changed for the benefit of the tunneling processes by thermal activation at higher temperatures. Investigations on quantum interference were another major part of the work. They are of special interest when it comes to quantum computing. For this, the sample is irradiated with two delayed laser pulses. The first pulse defines then a possible superposition of both possible states and gives the system a phase information. The following second pulse will sample this information with high sensitivity with respect to possible variations of the the quantum dot energy. The latter one may be influenced via the Stark effect. This procedure results in so called Ramsey interferences. Their periodicity shrinks with decreasing pulse delay. This gap was widened to nearly 1 ns for both exciton and biexciton. For the first time, Ramsey interferences of the biexciton were studied as well. This state consists of two single excitons and is excited with a resonant and coherent two-photon process. It was shown that the resolution of these interferences is increased by a factor of two with respect to the exciton case as expected. The coherent two-pulse experiments offer many possibilities: frequency stabilisation of quantum dots below the homogenous linewidth, a voltage controlled preparation of states and the implementation of C-not-gates with weakly coupled qubits. (orig.)

  20. Dynamics of spins in semiconductor quantum wells under drift

    International Nuclear Information System (INIS)

    Idrish Miah, M.

    2009-01-01

    The dynamics of spins in semiconductor quantum wells under applied electric bias has been investigated by photoluminescence (PL) spectroscopy. The bias-dependent polarization of PL (P PL ) was measured at different temperatures. The P PL was found to decay with an enhancement of increasing the strength of the negative bias, with an exception occurred for a low value of the negative bias. The P PL was also found to depend on the temperature. The P PL in the presence of a transverse magnetic field was also studied. The results showed that P PL in the magnetic field oscillates under an applied bias, demonstrating that the dephasing of electron spin occurs during the drift transport in semiconductor quantum wells.

  1. Dynamics of spins in semiconductor quantum wells under drift

    Energy Technology Data Exchange (ETDEWEB)

    Idrish Miah, M., E-mail: m.miah@griffith.edu.a [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2009-09-15

    The dynamics of spins in semiconductor quantum wells under applied electric bias has been investigated by photoluminescence (PL) spectroscopy. The bias-dependent polarization of PL (P{sub PL}) was measured at different temperatures. The P{sub PL} was found to decay with an enhancement of increasing the strength of the negative bias, with an exception occurred for a low value of the negative bias. The P{sub PL} was also found to depend on the temperature. The P{sub PL} in the presence of a transverse magnetic field was also studied. The results showed that P{sub PL} in the magnetic field oscillates under an applied bias, demonstrating that the dephasing of electron spin occurs during the drift transport in semiconductor quantum wells.

  2. High mobility and quantum well transistors design and TCAD simulation

    CERN Document Server

    Hellings, Geert

    2013-01-01

    For many decades, the semiconductor industry has miniaturized transistors, delivering increased computing power to consumers at decreased cost. However, mere transistor downsizing does no longer provide the same improvements. One interesting option to further improve transistor characteristics is to use high mobility materials such as germanium and III-V materials. However, transistors have to be redesigned in order to fully benefit from these alternative materials. High Mobility and Quantum Well Transistors: Design and TCAD Simulation investigates planar bulk Germanium pFET technology in chapters 2-4, focusing on both the fabrication of such a technology and on the process and electrical TCAD simulation. Furthermore, this book shows that Quantum Well based transistors can leverage the benefits of these alternative materials, since they confine the charge carriers to the high-mobility material using a heterostructure. The design and fabrication of one particular transistor structure - the SiGe Implant-Free Qu...

  3. Enhancing quantum entanglement for continuous variables by a coherent superposition of photon subtraction and addition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Su-Yong; Kim, Ho-Joon [Department of Physics, Texas A and M University at Qatar, P.O. Box 23874, Doha (Qatar); Ji, Se-Wan [School of Computational Sciences, Korea Institute for Advanced Study, Seoul 130-012 (Korea, Republic of); Nha, Hyunchul [Department of Physics, Texas A and M University at Qatar, P.O. Box 23874, Doha (Qatar); Institute fuer Quantenphysik, Universitaet Ulm, D-89069 Ulm (Germany)

    2011-07-15

    We investigate how the entanglement properties of a two-mode state can be improved by performing a coherent superposition operation ta+ra{sup {dagger}} of photon subtraction and addition, proposed by Lee and Nha [Phys. Rev. A 82, 053812 (2010)], on each mode. We show that the degree of entanglement, the Einstein-Podolsky-Rosen-type correlation, and the performance of quantum teleportation can be all enhanced for the output state when the coherent operation is applied to a two-mode squeezed state. The effects of the coherent operation are more prominent than those of the mere photon subtraction a and the addition a{sup {dagger}} particularly in the small-squeezing regime, whereas the optimal operation becomes the photon subtraction (case of r=0) in the large-squeezing regime.

  4. Coherent quantum phase slip in two-component bosonic atomtronic circuits

    International Nuclear Information System (INIS)

    Gallemí, A; Mateo, A Muñoz; Mayol, R; Guilleumas, M

    2016-01-01

    Coherent quantum phase slip consists in the coherent transfer of vortices in superfluids. We investigate this phenomenon in two miscible coherently coupled components of a spinor Bose gas confined in a toroidal trap. After imprinting different vortex states, i.e. states with quantized circulation, on each component, we demonstrate that during the whole dynamics the system remains in a linear superposition of two current states in spite of the nonlinearity, and can be mapped onto a linear Josephson problem. We propose this system as a good candidate for the realization of a Mooij–Harmans qubit and remark its feasibility for implementation in current experiments with 87 Rb, since we have used values for the physical parameters currently available in laboratories. (paper)

  5. Optical bistability induced by quantum coherence in a negative index atomic medium

    International Nuclear Information System (INIS)

    Zhang Hong-Jun; Sun Hui; Li Jin-Ping; Yin Bao-Yin; Guo Hong-Ju

    2013-01-01

    Bistability behaviors in an optical ring cavity filled with a dense V-type four-level atomic medium are theoretically investigated. It is found that the optical bistability can appear in the negative refraction frequency band, while both the bistability and multi-stability can occur in the positive refraction frequency bands. Therefore, optical bistability can be realized from conventional material to negative index material due to quantum coherence in our scheme. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  6. Scheme of 2-dimensional atom localization for a three-level atom via quantum coherence

    OpenAIRE

    Zafar, Sajjad; Ahmed, Rizwan; Khan, M. Khalid

    2013-01-01

    We present a scheme for two-dimensional (2D) atom localization in a three-level atomic system. The scheme is based on quantum coherence via classical standing wave fields between the two excited levels. Our results show that conditional position probability is significantly phase dependent of the applied field and frequency detuning of spontaneously emitted photons. We obtain a single localization peak having probability close to unity by manipulating the control parameters. The effect of ato...

  7. Security of continuous-variable quantum cryptography using coherent states: Decline of postselection advantage

    International Nuclear Information System (INIS)

    Namiki, Ryo; Hirano, Takuya

    2005-01-01

    We investigate the security of continuous-variable (CV) quantum key distribution (QKD) using coherent states in the presence of quadrature excess noise. We consider an eavesdropping attack that uses a linear amplifier and a beam splitter. This attack makes a link between the beam-splitting attack and the intercept-resend attack (classical teleportation attack). We also show how postselection loses its efficiency in a realistic channel

  8. Ferroelectric tunnel junctions with multi-quantum well structures

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhijun; Zhang, Tianjin, E-mail: zhangtj@hubu.edu.cn [Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062 (China); Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062 (China); Liang, Kun; Qi, Yajun; Wang, Duofa; Wang, Jinzhao; Jiang, Juan [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062 (China)

    2014-06-02

    Ferroelectric tunnel junctions (FTJs) with multi-quantum well structures are proposed and the tunneling electroresistance (TER) effect is investigated theoretically. Compared with conventional FTJs with monolayer ferroelectric barriers, FTJs with single-well structures provide TER ratio improvements of one order of magnitude, while FTJs with optimized multi-well structures can enhance this improvement by another order of magnitude. It is believed that the increased resonant tunneling strength combined with appropriate asymmetry in these FTJs contributes to the improvement. These studies may help to fabricate FTJs with large TER ratio experimentally and put them into practice.

  9. Surface states in thin versus thick organic quantum wells

    International Nuclear Information System (INIS)

    Nguyen Ba An; Hanamura, E.

    1995-08-01

    Surface states are studied in dependence on thickness or organic quantum wells within the nearest layer approximation. It is shown that there is a material-dependent critical thickness. Structures, that have thickness thinner or thicker than the critical one, exhibit qualitatively different characteristics of surface states. Criteria for existence and sign rules for location of energy levels of surface states are established which are general and contain the results of the previous works as particular cases. (author). 18 refs, 3 figs

  10. Quantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2).

    Science.gov (United States)

    Harel, Elad; Engel, Gregory S

    2012-01-17

    Light-harvesting antenna complexes transfer energy from sunlight to photosynthetic reaction centers where charge separation drives cellular metabolism. The process through which pigments transfer excitation energy involves a complex choreography of coherent and incoherent processes mediated by the surrounding protein and solvent environment. The recent discovery of coherent dynamics in photosynthetic light-harvesting antennae has motivated many theoretical models exploring effects of interference in energy transfer phenomena. In this work, we provide experimental evidence of long-lived quantum coherence between the spectrally separated B800 and B850 rings of the light-harvesting complex 2 (LH2) of purple bacteria. Spectrally resolved maps of the detuning, dephasing, and the amplitude of electronic coupling between excitons reveal that different relaxation pathways act in concert for optimal transfer efficiency. Furthermore, maps of the phase of the signal suggest that quantum mechanical interference between different energy transfer pathways may be important even at ambient temperature. Such interference at a product state has already been shown to enhance the quantum efficiency of transfer in theoretical models of closed loop systems such as LH2.

  11. Excitonic effects in the luminescence of quantum wells

    International Nuclear Information System (INIS)

    Deveaud, B.; Kappei, L.; Berney, J.; Morier-Genoud, F.; Portella-Oberli, M.T.; Szczytko, J.; Piermarocchi, C.

    2005-01-01

    We report on the origin of the excitonic luminescence in quantum wells. This study is carried out by time-resolved photoluminescence experiments performed on a very high-quality InGaAs quantum well sample in which the photoluminescence contributions at the energy of the exciton and at the band edge can be clearly separated and traced over a broad range of times and densities. This allows us to compare the two conflicting theoretical approaches to the question of the origin of the excitonic luminescence in quantum wells: the model of the exciton population and the model of the Coulomb correlated plasma. We measure the exciton formation time and we show the fast exciton formation and its dependence with carrier density. We are also able to give the boundaries of the Mott transition in our system, and to show the absence of observable renormalization of the gap below the onset of this transition. We detail the characteristics of the trion formation and evidence the possible formation of both positive and negative trions in the absence of any resident free carrier populations

  12. Transient gain property of a weak probe field in an asymmetric semiconductor coupled double quantum well structure

    International Nuclear Information System (INIS)

    Wang Zhigang; Zheng Zhiren; Yu Junhua

    2007-01-01

    The transient gain property of a weak probe field in an asymmetric semiconductor coupled double quantum well structure is reported. The transient process of the system, which is induced by the external coherent coupling field, shows the property of no inverse gain. We find that the transient behavior of the probe field can be tuned by the change of tunneling barrier. Both the amplitude of the transient gain and the frequency of the oscillation can be affected by the lifetime broadening

  13. Dynamics of quantum correlation and coherence for two atoms coupled with a bath of fluctuating massless scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhiming, E-mail: 465609785@qq.com [School of Economics and Management, Wuyi University, Jiangmen 529020 (China); Situ, Haozhen, E-mail: situhaozhen@gmail.com [College of Mathematics and Informatics, South China Agricultural University, Guangzhou 510642 (China)

    2017-02-15

    In this article, the dynamics of quantum correlation and coherence for two atoms interacting with a bath of fluctuating massless scalar field in the Minkowski vacuum is investigated. We firstly derive the master equation that describes the system evolution with initial Bell-diagonal state. Then we discuss the system evolution for three cases of different initial states: non-zero correlation separable state, maximally entangled state and zero correlation state. For non-zero correlation initial separable state, quantum correlation and coherence can be protected from vacuum fluctuations during long time evolution when the separation between the two atoms is relatively small. For maximally entangled initial state, quantum correlation and coherence overall decrease with evolution time. However, for the zero correlation initial state, quantum correlation and coherence are firstly generated and then drop with evolution time; when separation is sufficiently small, they can survive from vacuum fluctuations. For three cases, quantum correlation and coherence first undergo decline and then fluctuate to relatively stable values with the increasing distance between the two atoms. Specially, for the case of zero correlation initial state, quantum correlation and coherence occur periodically revival at fixed zero points and revival amplitude declines gradually with increasing separation of two atoms.

  14. Dynamics of quantum correlation and coherence for two atoms coupled with a bath of fluctuating massless scalar field

    International Nuclear Information System (INIS)

    Huang, Zhiming; Situ, Haozhen

    2017-01-01

    In this article, the dynamics of quantum correlation and coherence for two atoms interacting with a bath of fluctuating massless scalar field in the Minkowski vacuum is investigated. We firstly derive the master equation that describes the system evolution with initial Bell-diagonal state. Then we discuss the system evolution for three cases of different initial states: non-zero correlation separable state, maximally entangled state and zero correlation state. For non-zero correlation initial separable state, quantum correlation and coherence can be protected from vacuum fluctuations during long time evolution when the separation between the two atoms is relatively small. For maximally entangled initial state, quantum correlation and coherence overall decrease with evolution time. However, for the zero correlation initial state, quantum correlation and coherence are firstly generated and then drop with evolution time; when separation is sufficiently small, they can survive from vacuum fluctuations. For three cases, quantum correlation and coherence first undergo decline and then fluctuate to relatively stable values with the increasing distance between the two atoms. Specially, for the case of zero correlation initial state, quantum correlation and coherence occur periodically revival at fixed zero points and revival amplitude declines gradually with increasing separation of two atoms.

  15. Resolution enhancement in MR spectroscopy of red bone marrow fat via intermolecular double-quantum coherences

    Science.gov (United States)

    Bao, Jianfeng; Cui, Xiaohong; Huang, Yuqing; Zhong, Jianhui; Chen, Zhong

    2015-08-01

    High-resolution 1H magnetic resonance spectroscopy (MRS) is generally inaccessible in red bone marrow (RBM) tissues using conventional MRS techniques. This is because signal from these tissues suffers from severe inhomogeneity in the main static B0 field originated from the intrinsic honeycomb structures in trabecular bone. One way to reduce effects of B0 field inhomogeneity is by using the intermolecular double quantum coherence (iDQC) technique, which has been shown in other systems to obtain signals insensitive to B0 field inhomogeneity. In the present study, we employed an iDQC approach to enhance the spectral resolution of RBM. The feasibility and performance of this method for achieving high resolution MRS was verified by experiments on phantoms and pig vertebral bone samples. Unsaturated fatty acid peaks which overlap in the conventional MRS were well resolved and identified in the iDQC spectrum. Quantitative comparison of fractions of three types of fatty acids was performed between iDQC spectra on the in situ RMB and conventional MRS on the extracted fat from the same RBM. Observations of unsaturated fatty acids with iDQC MRS may provide valuable information and may hold potential in diagnosis of diseases such as obesity, diabetes, and leukemia.

  16. Efficient one-out-of-two quantum oblivious transfer based on four-coherent-state postselection protocol

    International Nuclear Information System (INIS)

    Chen, I-C; Hwang Tzonelih; Li C-M

    2008-01-01

    On the basis of the modified four-coherent-state post-selection quantum key distribution protocol (Namiki and Hirano 2006 Preprint quant-ph/0608144v1), two 1-out-of-2 quantum oblivious transfer (QOT 2 1 ) protocols are proposed. The first proposed protocol (called the receiver-based QOT 2 1 protocol) requires the coherent states to be prepared by the receiver, whereas the second protocol (called the sender-based QOT 2 1 protocol) allows the coherent states to be generated by the sender. The main advantages of the proposed protocols are that (i) no quantum bit commitment schemes and the assumption of quantum memory are needed; (ii) less communication cost between participants is required, i.e. the receiver-based QOT 2 1 protocol requires only one quantum communication and one classical communication and the sender-based QOT 2 1 protocol requires only one quantum communication between participants during protocol execution; and (iii) the utilization of quantum states is very efficient, wherein the receiver-based and the sender-based QOT 2 1 protocols use only two coherent pulses and one coherent pulse respectively for sending the sender's two messages

  17. Scattering theory of nonlinear thermoelectricity in quantum coherent conductors.

    Science.gov (United States)

    Meair, Jonathan; Jacquod, Philippe

    2013-02-27

    We construct a scattering theory of weakly nonlinear thermoelectric transport through sub-micron scale conductors. The theory incorporates the leading nonlinear contributions in temperature and voltage biases to the charge and heat currents. Because of the finite capacitances of sub-micron scale conducting circuits, fundamental conservation laws such as gauge invariance and current conservation require special care to be preserved. We do this by extending the approach of Christen and Büttiker (1996 Europhys. Lett. 35 523) to coupled charge and heat transport. In this way we write relations connecting nonlinear transport coefficients in a manner similar to Mott's relation between the linear thermopower and the linear conductance. We derive sum rules that nonlinear transport coefficients must satisfy to preserve gauge invariance and current conservation. We illustrate our theory by calculating the efficiency of heat engines and the coefficient of performance of thermoelectric refrigerators based on quantum point contacts and resonant tunneling barriers. We identify, in particular, rectification effects that increase device performance.

  18. Electron-electron interaction in Multiple Quantum Wells

    Science.gov (United States)

    Zybert, M.; Marchewka, M.; Tomaka, G.; Sheregii, E. M.

    2012-07-01

    The complex investigation of the magneto-transport effects in structures containing multiple quantum well (MQWs) based on the GaAs/AlGaAs-heterostructures has been performed. The MQWs investigated have different electron densities in QWs. The parameters of 2DEG in MQWs were determined from the data of the Integer Quantum Hall Effect (IQHE) and Shubnikov-de Haas oscillations (SdH) observed at low temperatures (0.6-4.2 K). The method of calculation of the electron states energies in MQWs has been developed which is based on the splitting of these states due to the exchange interaction (SAS-splitting, see D. Płoch et al., Phys. Rev. B 79 (2009) 195434) including the screening of this interaction. The IQHE and SdH observed in these multilayer structures with the third degree of freedom for electrons are interpreted from this.

  19. Suppressing Nonradiative Recombination in Crown-Shaped Quantum Wells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kwangwook [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ju, Gunwu [Gwangju Institute of Science and Technology; Korea Institute of Science and Technology; Na, Byung Hoon [Samsung Advanced Institute of Technology; Hwang, Hyeong-Yong [Gwangju Institute of Science and Technology; Jho, Young-Dahl [Gwangju Institute of Science and Technology; Myoung, NoSoung [Gwangju Institute of Science and Technology; Yim, Sang-Youp [Gwangju Institute of Science and Technology; Kim, Hyung-jun [Korea Institute of Science and Technology; Lee, Yong Tak [Gwangju Institute of Science and Technology

    2018-02-06

    We examined the structural and optical properties of a crown-shaped quantum well (CSQW) to suppress nonradiative recombination. To reduce carrier loss in defect traps at the well/barrier interface, the CSQW was designed to concentrate carriers in the central region by tailoring the bandgap energy. Temperature-dependent photoluminescence measurements showed that the CSQW had a high activation energy and low potential fluctuation. In addition, the long carrier lifetime of the CSQW at high temperatures can be interpreted as indicating a decrease in carrier loss at defect traps.

  20. Anti-Stokes Luminescence in High Quality Quantum Wells

    Science.gov (United States)

    Vinattieri, A.; Bogani, F.; Miotto, A.; Ceccherini, S.

    1997-11-01

    We present a detailed investigation of the anti-Stokes (AS) luminescence which originates from exciton recombination when below gap excitation is used, in a set of high quality quantum well structures. We observe strong excitonic resonances in the AS signal as measured from photoluminescence and photoluminescence excitation spectra. We demonstrate that neither the electromagnetic coupling between the wells nor the morphological disorder can explain this up-conversion effect. Time-resolved luminescence data after ps excitation and fs correlation spectroscopy results provide clear evidence of the occurrence of a two-step absorption which is assisted by the exciton population resonantly excited by the first photon.

  1. High intensity mid infra-red spectroscopy of intersubband transitions in semiconductor quantum wells

    International Nuclear Information System (INIS)

    Serapiglia, G.B.

    2000-01-01

    High intensity (10 8 Wcm -2 ) mid-infrared spectroscopy has been used to study the optical response of intersubband transitions in InGaAs/InAlAs quantum wells with three conduction subbands. Steady state optical pumping of 2 x 10 11 cm -2 electrons into the excited vertical bar2> subband and subsequent electron relaxation (via phonon emission) back to the ground vertical bar1> subband creates a non-equilibrium phonon population (phonon occupancy∼1 at T=30K). Phonon re-absorption leads to a non-thermal electron distribution where electron-phonon scattering rates ∼200-500fs -1 are much faster than electron-electron scattering. In this regime, the intersubband absorption is inhomogeneously broadened. For substantially weaker optical pumping (∼1 saturation intensity) however, the electron distribution is able to thermalise and the absorption is homogeneously broadened. The phenomenon of electromagnetically-induced quantum coherence is demonstrated between 3 confined electron subband levels in a quantum well which are almost equally spaced in energy. Applying a strong coupling field, two-photon-resonant with the 1-3 intersubband transition, produces a pronounced narrow transparency feature in the 1-2 absorption line. This result can be understood in terms of all 3 states being simultaneously driven into ''phase-locked'' quantum coherence by a single coupling field. We describe the effect theoretically with a density matrix method and an adapted linear response theory. Efficient (∼1%) second harmonic generation, resonantly enhanced near λ=8.6μm, has been observed in asymmetric double multi-quantum well (ADQW) structures. Both waveguide mode and 45 deg. wedge multi-bounce geometries were used. The phase matching in the waveguide mode was achieved by incorporating a separate multiple QW region which modifies (via Kramers-Kronig relation) the dispersion of light. In the case of the 45 deg. wedge geometry, the phases of second harmonic waves generated at sequential

  2. Proof-of-principle test of coherent-state continuous variable quantum key distribution through turbulent atmosphere (Conference Presentation)

    Science.gov (United States)

    Derkach, Ivan D.; Peuntinger, Christian; Ruppert, László; Heim, Bettina; Gunthner, Kevin; Usenko, Vladyslav C.; Elser, Dominique; Marquardt, Christoph; Filip, Radim; Leuchs, Gerd

    2016-10-01

    Continuous-variable quantum key distribution is a practical application of quantum information theory that is aimed at generation of secret cryptographic key between two remote trusted parties and that uses multi-photon quantum states as carriers of key bits. Remote parties share the secret key via a quantum channel, that presumably is under control of of an eavesdropper, and which properties must be taken into account in the security analysis. Well-studied fiber-optical quantum channels commonly possess stable transmittance and low noise levels, while free-space channels represent a simpler, less demanding and more flexible alternative, but suffer from atmospheric effects such as turbulence that in particular causes a non-uniform transmittance distribution referred to as fading. Nonetheless free-space channels, providing an unobstructed line-of-sight, are more apt for short, mid-range and potentially long-range (using satellites) communication and will play an important role in the future development and implementation of QKD networks. It was previously theoretically shown that coherent-state CV QKD should be in principle possible to implement over a free-space fading channel, but strong transmittance fluctuations result in the significant modulation-dependent channel excess noise. In this regime the post-selection of highly transmitting sub-channels may be needed, which can even restore the security of the protocol in the strongly turbulent channels. We now report the first proof-of-principle experimental test of coherent state CV QKD protocol using different levels Gaussian modulation over a mid-range (1.6-kilometer long) free-space atmospheric quantum channel. The transmittance of the link was characterized using intensity measurements for the reference but channel estimation using the modulated coherent states was also studied. We consider security against Gaussian collective attacks, that were shown to be optimal against CV QKD protocols . We assumed a

  3. Transport and Quantum Coherence in Graphene Rings: Aharonov-Bohm Oscillations, Klein Tunneling, and Particle Localization

    Science.gov (United States)

    Filusch, Alexander; Wurl, Christian; Pieper, Andreas; Fehske, Holger

    2018-06-01

    Simulating quantum transport through mesoscopic, ring-shaped graphene structures, we address various quantum coherence and interference phenomena. First, a perpendicular magnetic field, penetrating the graphene ring, gives rise to Aharonov-Bohm oscillations in the conductance as a function of the magnetic flux, on top of the universal conductance fluctuations. At very high fluxes, the interference gets suppressed and quantum Hall edge channels develop. Second, applying an electrostatic potential to one of the ring arms, nn'n- or npn-junctions can be realized with particle transmission due to normal tunneling or Klein tunneling. In the latter case, the Aharonov-Bohm oscillations weaken for smooth barriers. Third, if potential disorder comes in to play, both Aharonov-Bohm and Klein tunneling effects rate down, up to the point where particle localization sets in.

  4. QUANTUM INFORMATION. Coherent coupling between a ferromagnetic magnon and a superconducting qubit.

    Science.gov (United States)

    Tabuchi, Yutaka; Ishino, Seiichiro; Noguchi, Atsushi; Ishikawa, Toyofumi; Yamazaki, Rekishu; Usami, Koji; Nakamura, Yasunobu

    2015-07-24

    Rigidity of an ordered phase in condensed matter results in collective excitation modes spatially extending to macroscopic dimensions. A magnon is a quantum of such collective excitation modes in ordered spin systems. Here, we demonstrate the coherent coupling between a single-magnon excitation in a millimeter-sized ferromagnetic sphere and a superconducting qubit, with the interaction mediated by the virtual photon excitation in a microwave cavity. We obtain the coupling strength far exceeding the damping rates, thus bringing the hybrid system into the strong coupling regime. Furthermore, we use a parametric drive to realize a tunable magnon-qubit coupling scheme. Our approach provides a versatile tool for quantum control and measurement of the magnon excitations and may lead to advances in quantum information processing. Copyright © 2015, American Association for the Advancement of Science.

  5. Recent Developments in Quantum-Well Infrared Photodetectors

    Science.gov (United States)

    Gunapala, S. D.; Bandara, K. M. S. V.

    1995-01-01

    Intrinsic infrared (IR) detectors in the long wavelength range (8-20 Am) are based on an optically excited interband transition, which promotes an electron across the band gap (E(sub g)) from the valence band to the conduction band as shown. These photoelectrons can be collected efficiently, thereby producing a photocurrent in the external circuit. Since the incoming photon has to promote an electron from the valence band to the conduction band, the energy of the photon (h(sub upsilon)) must be higher than the E(sub g) of the photosensitive material. Therefore, the spectral response of the detectors can be controlled by controlling the E(sub g) of the photosensitive material. Examples for such materials are Hg(1-x), Cd(x), Te, and Pb(1-x), Sn(x), Te, in which the energy gap can be controlled by varying x. This means detection of very-long-wavelength IR radiation up to 20 microns requires small band gaps down to 62 meV. It is well known that these low band gap materials, characterized by weak bonding and low melting points, are more difficult to grow and process than large-band gap semiconductors such as GaAs. These difficulties motivate the exploration of utilizing the intersub-band transitions in multiquantum well (MQW) structures made of more refractory large-band gap semiconductors. The idea of using MQW structures to detect IR radiation can be explained by using the basic principles of quantum mechanics. The quantum well is equivalent to the well-known particle in a box problem in quantum mechanics, which can be solved by the time independent Schroudiner equation.

  6. Destruction of coherence in nondemolition monitoring: quantum 'watchdog effect' in gravity wave detectors

    International Nuclear Information System (INIS)

    Zurek, W.H.

    1984-01-01

    The author shows that nondemolition monitoring of a Weber bar may prevent changes of the number of phonons, and thus influence the sensitivity of quantum-counting gravity wave detectors. This effect is similar to the Watchdog Effect which is predicted to delay decays of the monitored, unstable quantum system. Relations between watchdog effect and Environment-Induced Superselection Rules as well as its connections to the fundamental questions of the quantum theory of measurement are briefly considered. (Auth.)

  7. Resonant Tunneling in Photonic Double Quantum Well Heterostructures

    Directory of Open Access Journals (Sweden)

    Cox Joel

    2010-01-01

    Full Text Available Abstract Here, we study the resonant photonic states of photonic double quantum well (PDQW heterostructures composed of two different photonic crystals. The heterostructure is denoted as B/A/B/A/B, where photonic crystals A and B act as photonic wells and barriers, respectively. The resulting band structure causes photons to become confined within the wells, where they occupy discrete quantized states. We have obtained an expression for the transmission coefficient of the PDQW heterostructure using the transfer matrix method and have found that resonant states exist within the photonic wells. These resonant states occur in split pairs, due to a coupling between degenerate states shared by each of the photonic wells. It is observed that when the resonance energy lies at a bound photonic state and the two photonic quantum wells are far away from each other, resonant states appear in the transmission spectrum of the PDQW as single peaks. However, when the wells are brought closer together, coupling between bound photonic states causes an energy-splitting effect, and the transmitted states each have two peaks. Essentially, this means that the system can be switched between single and double transparent states. We have also observed that the total number of resonant states can be controlled by varying the width of the photonic wells, and the quality factor of transmitted peaks can be drastically improved by increasing the thickness of the outer photonic barriers. It is anticipated that the resonant states described here can be used to develop new types of photonic-switching devices, optical filters, and other optoelectronic devices.

  8. Theoretical study of excitonic complexes in semiconductors quantum wells

    International Nuclear Information System (INIS)

    Dacal, Luis Carlos Ogando

    2001-08-01

    A physical system where indistinguishable particles interact with each other creates the possibility of studying correlation and exchange effect. The simplest system is that one with only two indistinguishable particles. In condensed matter physics, these complexes are represented by charged excitons, donors and acceptors. In quantum wells, the valence band is not parabolic, therefore, the negatively charged excitons and donors are theoretically described in a simpler way. Despite the fact that the stability of charged excitons (trions) is known since the late 50s, the first experimental observation occurred only at the early 90s in quantum well samples, where their binding energies are one order of magnitude larger due to the one dimensional carriers confinement. After this, these complexes became the subject of an intense research because the intrinsic screening of electrical interactions in semiconductor materials allows that magnetic fields that are usual in laboratories have strong effects on the trion binding energy. Another rich possibility is the study of trions as an intermediate state between the neutral exciton and the Fermi edge singularity when the excess of doping carriers is increased. In this thesis, we present a theoretical study of charged excitons and negatively charged donors in GaAs/Al 0.3 Ga 0.7 As quantum wells considering the effects of external electric and magnetic fields. We use a simple, accurate and physically clear method to describe these systems in contrast with the few and complex treatments s available in the literature. Our results show that the QW interface defects have an important role in the trion dynamics. This is in agreement with some experimental works, but it disagrees with other ones. (author)

  9. Ordered Dissipative Structures in Exciton Systems in Semiconductor Quantum Wells

    Directory of Open Access Journals (Sweden)

    Andrey A. Chernyuk

    2006-02-01

    Full Text Available A phenomenological theory of exciton condensation in conditions of inhomogeneous excitation is proposed. The theory is applied to the study of the development of an exciton luminescence ring and the ring fragmentation at macroscopical distances from the central excitation spot in coupled quantum wells. The transition between the fragmented and the continuous ring is considered. With assumption of a defect in the structure, a possibility of a localized island of the condensed phase in a fixed position is shown. Exciton density distribution is also analyzed in the case of two spatially separated spots of the laser excitation.

  10. Photoluminescence efficiency in AlGaN quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Tamulaitis, G.; Mickevičius, J. [Institute of Applied Research and Semiconductor Physics Department, Vilnius University, Sauletekio av. 9-III, Vilnius LT-10222 (Lithuania); Jurkevičius, J., E-mail: jonas.jurkevicius@ff.vu.lt [Institute of Applied Research and Semiconductor Physics Department, Vilnius University, Sauletekio av. 9-III, Vilnius LT-10222 (Lithuania); Shur, M.S. [Department of ECE and CIE, Rensselaer Polytechnic Institute (United States); Shatalov, M.; Yang, J.; Gaska, R. [Sensor Electronic Technology, Inc. (United States)

    2014-11-15

    Photoluminescence spectroscopy of AlGaN/AlGaN multiple quantum wells under quasi-steady-state conditions in the temperature range from 8 to 300 K revealed a strong dependence of droop onset threshold on temperature that was explained by the influence of carrier delocalization. The delocalization at room temperature results predominantly in enhancement of bimolecular radiative recombination, while being favorable for enhancement of nonradiative recombination at low temperatures. Studies of stimulated emission confirmed the strong influence of carrier localization on droop.

  11. Ionization of deep quantum wells: Optical trampoline effect

    Science.gov (United States)

    Perlin, E. Yu.; Levitskiĭ, R. S.

    2007-02-01

    A new mechanism of transitions of an electronic system from the ground state to states with excitation energies exceeding many times the energy of a light photon initiating the transitions has been considered. This mechanism is based on the so-called optical “trampoline” effect: one of the interacting electrons receives energy from another electron and, simultaneously absorbing a photon ħω, overcomes the energy gap significantly exceeding ħω. Ionization of deep quantum wells by low-frequency light of moderate intensity due to the optical trampoline effect was calculated.

  12. Quantum-well-driven magnetism in thin films

    DEFF Research Database (Denmark)

    Mirbt, S.; Johansson, B.; Skriver, Hans Lomholt

    1996-01-01

    We have performed local spin-density calculations for an fee (100) Ag substrate covered by 1 to 16 monolayers (ML) of Pd. We find that thin films of Pd are magnetic with a moment of the order of 0.3 mu(B) except for films of 1-2 ML and 5-7 ML where magnetism is completely suppressed. We present...... a physically transparent explanation of this behavior in terms of the Stoner picture and magnetic quantum-well states....

  13. Magneto-gyrotropic photogalvanic effects in semiconductor quantum wells

    International Nuclear Information System (INIS)

    Bel'kov, V V; Ganichev, S D; Ivchenko, E L; Tarasenko, S A; Weber, W; Giglberger, S; Olteanu, M; Tranitz, H-P; Danilov, S N; Schneider, Petra; Wegscheider, W; Weiss, D; Prettl, W

    2005-01-01

    We show that free-carrier (Drude) absorption of both polarized and unpolarized terahertz radiation in quantum well (QW) structures causes an electric photocurrent in the presence of an in-plane magnetic field. Experimental and theoretical analysis evidences that the observed photocurrents are spin dependent and related to the gyrotropy of the QWs. Microscopic models for the photogalvanic effects in QWs based on asymmetry of photoexcitation and relaxation processes are proposed. In most of the investigated structures the observed magneto-induced photocurrents are caused by spin-dependent relaxation of non-equilibrium carriers

  14. PbSe Quantum Well VECSEL on Si

    Science.gov (United States)

    Fill, M.; Khiar, A.; Rahim, M.; Felder, F.; Zogg, H.

    2011-12-01

    Vertical external cavity surface emitting lasers in the wavelength region from 3-5 μm are presented. They are based on PbSe quantum wells grown on Si substrates. As host material Pb1-xEuxSe and Pb1-xSrxSe are used. With Pb1-xSrxSe as host material maximum operation temperatures of 325 K are achieved, while with Pb1-xEuxSe an operation temperature of 245 K could not be overcome. This may be explained by a band alignment transition from type I to type II with increasing temperature.

  15. Coherent excitation-energy transfer and quantum entanglement in a dimer

    International Nuclear Information System (INIS)

    Liao Jieqiao; Sun, C. P.; Huang Jinfeng; Kuang Leman

    2010-01-01

    We study coherent energy transfer of a single excitation and quantum entanglement in a dimer, which consists of a donor and an acceptor modeled by two two-level systems. Between the donor and the acceptor, there exists a dipole-dipole interaction, which provides the physical mechanism for coherent energy transfer and entanglement generation. The donor and the acceptor couple to two independent heat baths with diagonal couplings that do not dissipate the energy of the noncoupling dimer. Special attention is paid to the effect on single-excitation energy transfer and entanglement generation of the energy detuning between the donor and the acceptor and the temperatures of the two heat baths. It is found that, the probability for single-excitation energy transfer largely depends on the energy detuning in the low temperature limit. Concretely, the positive and negative energy detunings can increase and decrease the probability at steady state, respectively. In the high temperature limit, however, the effect of the energy detuning on the probability is negligibly small. We also find that the probability is negligibly dependent on the bath temperature difference of the two heat baths. In addition, it is found that quantum entanglement can be generated in the process of coherent energy transfer. As the bath temperature increases, the generated steady-state entanglement decreases. For a given bath temperature, the steady-state entanglement decreases with the increase of the absolute value of the energy detuning.

  16. Coherent wave packet dynamics in a double-well potential in cavity

    Science.gov (United States)

    Zheng, Li; Li, Gang; Ding, Ming-Song; Wang, Yong-Liang; Zhang, Yun-Cui

    2018-02-01

    We investigate the coherent wave packet dynamics of a two-level atom trapped in a symmetric double-well potential in a near-resonance cavity. Prepared on one side of the double-well potential, the atom wave packet oscillates between the left and right wells, while recoil induced by the emitted photon from the atom entangles the atomic internal and external degrees of freedom. The collapse and revival of the tunneling occurs. Adjusting the width of the wave packets, one can modify the tunneling frequency and suppress the tunneling.

  17. Preparation and coherent manipulation of pure quantum states of a single molecular ion

    Science.gov (United States)

    Chou, Chin-Wen; Kurz, Christoph; Hume, David B.; Plessow, Philipp N.; Leibrandt, David R.; Leibfried, Dietrich

    2017-05-01

    Laser cooling and trapping of atoms and atomic ions has led to advances including the observation of exotic phases of matter, the development of precision sensors and state-of-the-art atomic clocks. The same level of control in molecules could also lead to important developments such as controlled chemical reactions and sensitive probes of fundamental theories, but the vibrational and rotational degrees of freedom in molecules pose a challenge for controlling their quantum mechanical states. Here we use quantum-logic spectroscopy, which maps quantum information between two ion species, to prepare and non-destructively detect quantum mechanical states in molecular ions. We develop a general technique for optical pumping and preparation of the molecule into a pure initial state. This enables us to observe high-resolution spectra in a single ion (CaH+) and coherent phenomena such as Rabi flopping and Ramsey fringes. The protocol requires a single, far-off-resonant laser that is not specific to the molecule, so many other molecular ions, including polyatomic species, could be treated using the same methods in the same apparatus by changing the molecular source. Combined with the long interrogation times afforded by ion traps, a broad range of molecular ions could be studied with unprecedented control and precision. Our technique thus represents a critical step towards applications such as precision molecular spectroscopy, stringent tests of fundamental physics, quantum computing and precision control of molecular dynamics.

  18. Coherent coupling of two different semiconductor quantum dots via an optical cavity mode

    Energy Technology Data Exchange (ETDEWEB)

    Laucht, Arne; Villas-Boas, Jose M.; Hauke, Norman; Hofbauer, Felix; Boehm, Gerhard; Kaniber, Michael; Finley, Jonathan J. [Walter Schottky Institut, Technische Universitaet Muenchen, Garching (Germany)

    2010-07-01

    We present a combined experimental and theoretical study of a strongly coupled system consisting of two spatially separated self-assembled InGaAs quantum dots and a single optical nanocavity mode. Due to their different size and strain profile, the two dots exhibit markedly different electric field dependences due to the quantum confined Stark effect. This allows us to tune them into resonance simply by changing the applied bias voltage and to independently tune them into the photonic crystal nanocavity mode. Photoluminescence measurements show a characteristic triple peak during the double anticrossing, which is a clear signature of a coherently coupled system of three quantum states. We fit the emission spectra of the coupled system to theory and are able to investigate the coupling between the two quantum dots directly via the cavity mode. Furthermore, we investigate the coupling between the two quantum dots when they are detuned from the cavity mode in a V-system where dephasing due to incoherent losses from the cavity mode can be reduced.

  19. Coherent coupling of two different semiconductor quantum dots via an optical cavity mode

    Energy Technology Data Exchange (ETDEWEB)

    Villas-Boas, Jose M. [Universidade Federal de Uberlandia (UFU), MG (Brazil). Inst. de Fisica; Laucht, Arne; Hauke, Norman; Hofbauer, Felix; Boehm, Gerhard; Kaniber, Michael; Finley, Jonathan J. [Technische Universitaet Muenchen, Garching (Germany). Walter Schottky Inst.

    2011-07-01

    Full text. We present a combined experimental and theoretical study of a strongly coupled system consisting of two spatially separated self-assembled InGaAs quantum dots and a single optical nano cavity mode. Due to their different size and strain profile, the two dots exhibit markedly different electric field dependences due to the quantum confined Stark effect. This allows us to tune them into resonance simply by changing the applied bias voltage and to independently tune them into the photonic crystal nano cavity mode. Photoluminescence measurements show a characteristic triple peak during the double anti crossing, which is a clear signature of a coherently coupled system of three quantum states. We fit the emission spectra of the coupled system to theory and are able to investigate the coupling between the two quantum dots directly via the cavity mode. Furthermore, we investigate the coupling between the two quantum dots when they are detuned from the cavity mode in a V-system where dephasing due to incoherent losses from the cavity mode can be reduced

  20. Entanglement distribution schemes employing coherent photon-to-spin conversion in semiconductor quantum dot circuits

    Science.gov (United States)

    Gaudreau, Louis; Bogan, Alex; Korkusinski, Marek; Studenikin, Sergei; Austing, D. Guy; Sachrajda, Andrew S.

    2017-09-01

    Long distance entanglement distribution is an important problem for quantum information technologies to solve. Current optical schemes are known to have fundamental limitations. A coherent photon-to-spin interface built with quantum dots (QDs) in a direct bandgap semiconductor can provide a solution for efficient entanglement distribution. QD circuits offer integrated spin processing for full Bell state measurement (BSM) analysis and spin quantum memory. Crucially the photo-generated spins can be heralded by non-destructive charge detection techniques. We review current schemes to transfer a polarization-encoded state or a time-bin-encoded state of a photon to the state of a spin in a QD. The spin may be that of an electron or that of a hole. We describe adaptations of the original schemes to employ heavy holes which have a number of attractive properties including a g-factor that is tunable to zero for QDs in an appropriately oriented external magnetic field. We also introduce simple throughput scaling models to demonstrate the potential performance advantage of full BSM capability in a QD scheme, even when the quantum memory is imperfect, over optical schemes relying on linear optical elements and ensemble quantum memories.

  1. InGaAs/GaAs quantum-dot-quantum-well heterostructure formed by submonolayer deposition

    DEFF Research Database (Denmark)

    Xu, Zhangcheng; Leosson, K.; Birkedal, Dan

    2003-01-01

    -dot-quantum-well (QDQW) structure, by using high power PL and selective PL with excitation energies below the band gap of the GaAs barriers and temperature dependent PL. As the temperature is increased from 10 to 300 K, a narrowing of the full width at half-maximum at intermediate temperatures and a sigmoidal behaviour......Discrete emission lines from self-assembled InGaAs quantum dots (QDs) grown in the submonolayer (SML) deposition mode have been observed in micro-photoluminescence (PL) spectra at 10 K. For the first time, the SML-grown InGaAs/GaAs QD heterostructure is verified to be a quantum...

  2. Indium antimonide quantum well structures for electronic device applications

    Science.gov (United States)

    Edirisooriya, Madhavie

    The electron effective mass is smaller in InSb than in any other III-V semiconductor. Since the electron mobility depends inversely on the effective mass, InSb-based devices are attractive for field effect transistors, magnetic field sensors, ballistic transport devices, and other applications where the performance depends on a high mobility or a long mean free path. In addition, electrons in InSb have a large g-factor and strong spin orbit coupling, which makes them well suited for certain spin transport devices. The first n-channel InSb high electron mobility transistor (HEMT) was produced in 2005 with a power-delay product superior to HEMTs with a channel made from any other III-V semiconductor. The high electron mobility in the InSb quantum-well channel increases the switching speed and lowers the required supply voltage. This dissertation focuses on several materials challenges that can further increase the appeal of InSb quantum wells for transistors and other electronic device applications. First, the electron mobility in InSb quantum wells, which is the highest for any semiconductor quantum well, can be further increased by reducing scattering by crystal defects. InSb-based heteroepitaxy is usually performed on semi-insulating GaAs (001) substrates due to the lack of a lattice matched semi-insulating substrate. The 14.6% mismatch between the lattice parameters of GaAs and InSb results in the formation of structural defects such as threading dislocations and microtwins which degrade the electrical and optical properties of InSb-based devices. Chapter 1 reviews the methods and procedures for growing InSb-based heterostructures by molecular beam epitaxy. Chapters 2 and 3 introduce techniques for minimizing the crystalline defects in InSb-based structures grown on GaAs substrates. Chapter 2 discusses a method of reducing threading dislocations by incorporating AlyIn1-ySb interlayers in an AlxIn1-xSb buffer layer and the reduction of microtwin defects by growth

  3. Quantum coherence due to Bose-Einstein condensation of parametrically driven magnons

    International Nuclear Information System (INIS)

    Demokritov, S O; Demidov, V E; Dzyapko, O; Melkov, G A; Slavin, A N

    2008-01-01

    The room-temperature kinetics and thermodynamics of the magnon gas driven by microwave pumping has been investigated by means of the Brillouin light scattering (BLS) technique. We show that for high enough pumping powers the quantum relaxation of the driven gas results in a quasi-equilibrium state described by the Bose-Einstein statistics with a nonzero chemical potential. Further increase of the pumping power causes a Bose-Einstein condensation in the magnon gas documented by an observation of the magnon accumulation at the lowest energy level. Using the sensitivity of the BLS to the coherence degree of the scattering magnons, we confirm the spontaneous emergence of coherence of the magnons accumulated at the bottom of the spectrum, if their density exceeds a critical value

  4. Quantum coherent transport in SnTe topological crystalline insulator thin films

    Energy Technology Data Exchange (ETDEWEB)

    Assaf, B. A.; Heiman, D. [Department of Physics, Northeastern University, Boston, Massachusetts 02115 (United States); Katmis, F.; Moodera, J. S. [Francis Bitter Magnet Laboratory, MIT, Cambridge, Massachusetts 02139 (United States); Department of Physics, MIT, Cambridge, Massachusetts 02139 (United States); Wei, P. [Department of Physics, MIT, Cambridge, Massachusetts 02139 (United States); Satpati, B. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Zhang, Z. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Bennett, S. P.; Harris, V. G. [Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115 (United States)

    2014-09-08

    Topological crystalline insulators (TCI) are unique systems where a band inversion that is protected by crystalline mirror symmetry leads to a multiplicity of topological surface states. Binary SnTe is an attractive lead-free TCI compound; the present work on high-quality thin films provides a route for increasing the mobility and reducing the carrier density of SnTe without chemical doping. Results of quantum coherent magnetotransport measurements reveal a multiplicity of Dirac surface states that are unique to TCI. Modeling of the weak antilocalization shows variations in the extracted number of carrier valleys that reflect the role of coherent intervalley scattering in coupling different Dirac states on the degenerate TCI surface.

  5. Coherent tunneling of Bose-Einstein condensates: Exact solutions for Josephson effects and macroscopic quantum self-trapping

    International Nuclear Information System (INIS)

    Raghavan, S.; Fantoni, S.; Shenoy, S.R.; Smerzi, A.

    1997-07-01

    We consider coherent atomic tunneling between two weakly coupled Bose-Einstein condensates (BEC) at T = 0 in (possibly asymmetric) double-well trap. The condensate dynamics of the macroscopic amplitudes in the two wells is modeled by two Gross-Pitaevskii equations (GPE) coupled by a tunneling matrix element. The evolution of the inter-well fractional population imbalance (related to the condensate phase difference) is obtained in terms of elliptic functions, generalizing well-known Josephson effects such as the 'ac' effect, the 'plasma oscillations', and the resonant Shapiro effect, to the nonsiusoidal regimes. We also present exact solutions for a novel 'macroscopic quantum self-trapping' effect arising from nonlinear atomic self-interaction in the GPE. The coherent BEC tunneling signatures are obtained in terms of the oscillations periods and the Fourier spectrum of the imbalance oscillations, as a function of the initial values of GPE parameters. Experimental procedures are suggested to make contact with theoretical predictions. (author). 44 refs, 8 figs

  6. Size-dependent electronic eigenstates of multilayer organic quantum wells

    International Nuclear Information System (INIS)

    Nguyen Ba An; Hanamura, E.

    1995-09-01

    A detailed theoretical treatment is given eigenfunctions and eigenenergies of a multilayer organic quantum well sandwiched between two different dielectric media. The abrupt change of dielectric constants at the interfaces distorts the wave function and results in possible surface states in addition to propagating states. The proper boundary conditions are accounted for by the method of image charges. Analytic criteria for existence of surface states are established using the nearest layers approximation, which depend not only on the intralayer parameters but also on the number of layers. The size dependence together with the dependence on signs and relative magnitudes of the structure parameters fully determine the energy spectrum of propagating states as well as the number and the location of surface states. (author). 28 refs, 10 figs, 2 tabs

  7. Barrier penetration effects on thermopower in semiconductor quantum wells

    International Nuclear Information System (INIS)

    Vaidya, R. G.; Sankeshwar, N. S.; Mulimani, B. G.

    2014-01-01

    Finite confinement effects, due to the penetration of the electron wavefunction into the barriers of a square well potential, on the low–temperature acoustic-phonon-limited thermopower (TP) of 2DEG are investigated. The 2DEG is considered to be scattered by acoustic phonons via screened deformation potential and piezoelectric couplings. Incorporating the barrier penetration effects, the dependences of diffusion TP and phonon drag TP on barrier height are studied. An expression for phonon drag TP is obtained. Numerical calculations of temperature dependences of mobility and TP for a 10 nm InN/In x Ga 1−x N quantum well for different values of x show that the magnitude and behavior of TP are altered. A decrease in the barrier height from 500 meV by a factor of 5, enhances the mobility by 34% and reduces the TP by 58% at 20 K. Results are compared with those of infinite barrier approximation

  8. Capacitance-voltage characteristics of quantum well structures

    CERN Document Server

    Moon, C R; Choe, B D

    1999-01-01

    The characteristics of the apparent carrier distribution (ACD) of quantum well (QW) structures are investigated using the self-consistent simulation and the capacitance-voltage (C-V) profiling techniques. The simulation results on the differential carrier distribution show that the change of position expectation value of two-dimensional electrons determines the full width at half maximum of 100 K ACD peaks when conduction band offset is DELTA E sub c = 160 meV and the QW width t sub w is greater than 120 A. The contribution of Debye averaging effects to the ACD peaks becomes important as t sub w and DELTA E sub c values decrease and the temperature is increased. The influence of Debye averaging effects on ACD peaks appears differently according to the location of each well in multiple QWs. These results indicate that the extraction of QW parameters from the C-V profile should be done with caution.

  9. Quantum oscillations and interference effects in strained n- and p-type modulation doped GaInNAs/GaAs quantum wells

    Science.gov (United States)

    Sarcan, F.; Nutku, F.; Donmez, O.; Kuruoglu, F.; Mutlu, S.; Erol, A.; Yildirim, S.; Arikan, M. C.

    2015-08-01

    We have performed magnetoresistance measurements on n- and p-type modulation doped GaInNAs/GaAs quantum well (QW) structures in both the weak (B  magnetoresistance traces are used to extract the spin coherence, phase coherence and elastic scattering times as well Rashba parameters and spin-splitting energy. The calculated Rashba parameters for nitrogen containing samples reveal that the nitrogen composition is a significant parameter to determine the degree of the spin-orbit interactions. Consequently, GaInNAs-based QW structures with various nitrogen compositions can be beneficial to adjust the spin-orbit coupling strength and may be used as a candidate for spintronics applications.

  10. Spectrally tunable mollow triplet emission from a coherently excited quantum dot in a microcavity

    DEFF Research Database (Denmark)

    Ulrich, Sven M.; Ates, Serkan; Reitzenstein, Stephan

    2010-01-01

    Resonance fluorescence of excitonic s-shell emission from a coherently pumped single InGaAs/GaAs quantum dot inside a micropillar cavity has been investigated in dependence on optical pump power and laser detuning, respectively. For strong purely resonant excitation, Mollow triplet spectra with l...... with large Rabi splittings of j~­j » 60¹eV have been observed. Laser detuning-dependent series revealed the pronounced asymmetry of the emission triplet as predicted by theory. From our data, an electrical dipole moment of ¹ » 17:8§0:5 Debye could be derived for the excitonic state....

  11. The Generalized Coherent State ansatz: Application to quantum electron-vibrational dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Borrelli, Raffaele, E-mail: raffaele.borrelli@unito.it [DISAFA, Università di Torino, I-10095 Grugliasco (Italy); Gelin, Maxim F. [Departement of Chemistry, Technische Universität München, D-85747 Garching (Germany)

    2016-12-20

    A new ansatz for molecular vibronic wave functions based on a superposition of time-dependent Generalized Coherent States is developed and analysed. The methodology is specifically tailored to describe the time evolution of the wave function of a system in which several interacting electronic states are coupled to a bath of harmonic oscillators. The equations of motion for the wave packet parameters are obtained by using the Dirac–Frenkel time-dependent variational principle. The methodology is used to describe the quantum dynamical behavior of a model polaron system and its scaling and convergence properties are discussed and compared with numerically exact results.

  12. Quantum electronics and Moscow State University's Khokhlov-Akhmanov school of coherent and nonlinear optics

    International Nuclear Information System (INIS)

    Makarov, V.A.

    2004-01-01

    The aim of the report is to describe the history of the Moscow University Coherent and Nonlinear Optics School headed by R.V. Khokhlov and S.A. Akhmanov being a part of the history of the Russian efforts to investigate into quantum electronics. The reports describes briefly the most significant results of the mentioned School activity, in particular, thermonuclear reactions initiated by laser pulses in plasma; the procedure to accelerate electrons up to 1 GeV using the present-day lasers; the nonlinear-optical analogues of the Faraday and the Kerr effects [ru

  13. Luminescence of quantum-well exciton polaritons from microstructured AlxGa1-xAs-GaAs multiple quantum wells

    Science.gov (United States)

    Kohl, M.; Heitmann, D.; Grambow, P.; Ploog, K.

    1988-06-01

    Periodic multiple-quantum-well wires have been prepared by etching five-layer quantum-well structures through a holographically prepared mask. The periodicity was 380 nm, the lateral confinement 180 nm, and the quantum-well width 13, nm. The luminescence from these microstructured systems in the frequency regime of the one-electron-one-heavy-hole transition was strongly polarized with the electric field perpendicular to the periodic structure. This effect was caused by the resonantly enhanced emission of quantum-well-exciton (QWE) polaritons. Excitation of QWE polaritons was also observed in reflection measurements on the microstructured samples.

  14. Nano-Optics: Coherent Nonlinear Optical Response and Control of Single Quantum Dots

    National Research Council Canada - National Science Library

    Steel, Duncan

    2002-01-01

    .... These features include optically induced and detected quantum entanglement of two exciton states as well as a demonstration of a classical Bell state, a Rabi oscillations corresponding to full...

  15. Changes in luminescence emission induced by proton irradiation: InGaAs/GaAs quantum wells and quantum dots

    Science.gov (United States)

    Leon, R.; Swift, G. M.; Magness, B.; Taylor, W. A.; Tang, Y. S.; Wang, K. L.; Dowd, P.; Zhang, Y. H.

    2000-01-01

    The photoluminescence emission from InGaAs/GaAs quantum-well and quantum-dot (QD) structures are compared after controlled irradiation with 1.5 MeV proton fluxes. Results presented here show a significant enhancement in radiation tolerance with three-dimensional quantum confinement.

  16. Stretchable Persistent Spin Helices in GaAs Quantum Wells

    Science.gov (United States)

    Dettwiler, Florian; Fu, Jiyong; Mack, Shawn; Weigele, Pirmin J.; Egues, J. Carlos; Awschalom, David D.; Zumbühl, Dominik M.

    2017-07-01

    the extracted spin-diffusion lengths and decay times show a significant enhancement near α =β . Since within the continuous-locking regime quantum transport is diffusive (2D) for charge while ballistic (1D) for spin and thus amenable to coherent spin control, stretchable PSHs could provide the platform for the much heralded long-distance communication ˜8 - 25 μ m between solid-state spin qubits, where the spin diffusion length for α ≠β is an order of magnitude smaller.

  17. Stretchable Persistent Spin Helices in GaAs Quantum Wells

    Directory of Open Access Journals (Sweden)

    Florian Dettwiler

    2017-07-01

    sufficiently weak so that the extracted spin-diffusion lengths and decay times show a significant enhancement near α=β. Since within the continuous-locking regime quantum transport is diffusive (2D for charge while ballistic (1D for spin and thus amenable to coherent spin control, stretchable PSHs could provide the platform for the much heralded long-distance communication ∼8–25  μm between solid-state spin qubits, where the spin diffusion length for α≠β is an order of magnitude smaller.

  18. Angle-dependent quantum Otto heat engine based on coherent dipole-dipole coupling

    Science.gov (United States)

    Su, Shan-He; Luo, Xiao-Qing; Chen, Jin-Can; Sun, Chang-Pu

    2016-08-01

    Electromagnetic interactions between molecules or within a molecule have been widely observed in biological systems and exhibit broad application for molecular structural studies. Quantum delocalization of molecular dipole moments has inspired researchers to explore new avenues to utilize this physical effect for energy harvesting devices. Herein, we propose a simple model of the angle-dependent quantum Otto heat engine which seeks to facilitate the conversion of heat to work. Unlike previous studies, the adiabatic processes are accomplished by varying only the directions of the magnetic field. We show that the heat engine continues to generate power when the angle relative to the vector r joining the centres of coupled dipoles departs from the magic angle θm where the static coupling vanishes. A significant improvement in the device performance has to be attributed to the presence of the quantum delocalized levels associated with the coherent dipole-dipole coupling. These results obtained may provide a promising model for the biomimetic design and fabrication of quantum energy generators.

  19. Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent

    Science.gov (United States)

    Vandersypen, L. M. K.; Bluhm, H.; Clarke, J. S.; Dzurak, A. S.; Ishihara, R.; Morello, A.; Reilly, D. J.; Schreiber, L. R.; Veldhorst, M.

    2017-09-01

    Semiconductor spins are one of the few qubit realizations that remain a serious candidate for the implementation of large-scale quantum circuits. Excellent scalability is often argued for spin qubits defined by lithography and controlled via electrical signals, based on the success of conventional semiconductor integrated circuits. However, the wiring and interconnect requirements for quantum circuits are completely different from those for classical circuits, as individual direct current, pulsed and in some cases microwave control signals need to be routed from external sources to every qubit. This is further complicated by the requirement that these spin qubits currently operate at temperatures below 100 mK. Here, we review several strategies that are considered to address this crucial challenge in scaling quantum circuits based on electron spin qubits. Key assets of spin qubits include the potential to operate at 1 to 4 K, the high density of quantum dots or donors combined with possibilities to space them apart as needed, the extremely long-spin coherence times, and the rich options for integration with classical electronics based on the same technology.

  20. Crystal orientation effects on wurtzite quantum well electromechanical fields

    DEFF Research Database (Denmark)

    Duggen, Lars; Willatzen, Morten

    2010-01-01

    in the literature for semiconductors, is inaccurate for ZnO/MgZnO heterostructures where shear-strain components play an important role. An interesting observation is that a growth direction apart from [1̅ 21̅ 0] exists for which the electric field in the quantum well region becomes zero. This is important for, e......A one-dimensional continuum model for calculating strain and electric field in wurtzite semiconductor heterostructures with arbitrary crystal orientation is presented and applied to GaN/AlGaN and ZnO/MgZnO heterostructure combinations. The model is self-consistent involving feedback couplings...... of spontaneous polarization, strain, and electric field. Significant differences between fully coupled and semicoupled models are found for the longitudinal and shear-strain components as a function of the crystal-growth direction. In particular, we find that the semicoupled model, typically used...

  1. Color center lasers passively mode locked by quantum wells

    International Nuclear Information System (INIS)

    Islam, M.N.; Soccolich, C.E.; Bar-Joseph, I.; Sauer, N.; Chang, T.Y.; Miller, B.I.

    1989-01-01

    This paper describes how, using multiple quantum well (MQW) saturable absorbers, the authors passively mode locked a NaCl color center laser to produce 275 fs transform-limited, pedestal-free pulses with as high as 3.7 kW peak power. The pulses are tunable from λ = 1.59 to 1.7 μm by choosing MQW's with different bandgaps. They shortened the output pulses from the laser to 25 fs using the technique of soliton compression in a fiber. The steady-state operation of the laser requires the combination of a fast saturable absorber and gain saturation. In addition to the NaCl laser, they passively mode locked a Tl 0 (1):KCl color center laser and produced -- 22 ps pulses. Although the 275 fs pulses from the NaCl laser are Gaussian, when broadened, the pulses acquire an asymmetric spectrum because of carrier-induced refractive index changes

  2. Transport studies in p-type double quantum well samples

    International Nuclear Information System (INIS)

    Hyndman, R.J.

    2000-01-01

    The motivation for the study of double quantum well samples is that the extra spatial degree of freedom can modify the ground state energies of the system, leading to new and interesting many body effects. Electron bi-layers have been widely studied but the work presented here is the first systematic study of transport properties of a p-type, double quantum well system. The samples, grown on the 311 plane, consisted of two 100A GaAs wells separated by a 30A AlAs barrier. The thin barrier in our structures, gives rise to very strong inter-layer Coulombic interactions but in contrast to electron double quantum well samples, tunnelling between the two wells is very weak. This is due to the large effective mass of holes compared with electrons. It is possible to accurately control the total density of a sample and the relative occupancy of each well using front and back gates. A systematic study of the magnetoresistance properties of the p-type bi-layers, was carried out at low temperatures and in high magnetic fields, for samples covering a range of densities. Considerable care was required to obtain reliable results as the samples were extremely susceptible to electrical shock and were prone to drift in density slowly over time. With balanced wells, the very low tunnelling in the p-type bi-layer leads to a complete absence of all odd integers in both resistance and thermopower except for the v=1 state, ( v 1/2 in each layer) where v is the total Landau level filling factor. Unlike other FQHE features the v=1 state strengthens with increased density as inter-layer interactions increase in strength over intra-layer interactions. The state is also destroyed at a critical temperature, which is much lower than the measured activation temperature. This is taken as evidence for a finite temperature phase transition predicted for the bi-layer v=1. From the experimental observations, we construct a phase diagram for the state, which agree closely with theoretical predictions

  3. High-dimensional quantum key distribution with the entangled single-photon-added coherent state

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yang [Zhengzhou Information Science and Technology Institute, Zhengzhou, 450001 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Bao, Wan-Su, E-mail: 2010thzz@sina.com [Zhengzhou Information Science and Technology Institute, Zhengzhou, 450001 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Bao, Hai-Ze; Zhou, Chun; Jiang, Mu-Sheng; Li, Hong-Wei [Zhengzhou Information Science and Technology Institute, Zhengzhou, 450001 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2017-04-25

    High-dimensional quantum key distribution (HD-QKD) can generate more secure bits for one detection event so that it can achieve long distance key distribution with a high secret key capacity. In this Letter, we present a decoy state HD-QKD scheme with the entangled single-photon-added coherent state (ESPACS) source. We present two tight formulas to estimate the single-photon fraction of postselected events and Eve's Holevo information and derive lower bounds on the secret key capacity and the secret key rate of our protocol. We also present finite-key analysis for our protocol by using the Chernoff bound. Our numerical results show that our protocol using one decoy state can perform better than that of previous HD-QKD protocol with the spontaneous parametric down conversion (SPDC) using two decoy states. Moreover, when considering finite resources, the advantage is more obvious. - Highlights: • Implement the single-photon-added coherent state source into the high-dimensional quantum key distribution. • Enhance both the secret key capacity and the secret key rate compared with previous schemes. • Show an excellent performance in view of statistical fluctuations.

  4. High-dimensional quantum key distribution with the entangled single-photon-added coherent state

    International Nuclear Information System (INIS)

    Wang, Yang; Bao, Wan-Su; Bao, Hai-Ze; Zhou, Chun; Jiang, Mu-Sheng; Li, Hong-Wei

    2017-01-01

    High-dimensional quantum key distribution (HD-QKD) can generate more secure bits for one detection event so that it can achieve long distance key distribution with a high secret key capacity. In this Letter, we present a decoy state HD-QKD scheme with the entangled single-photon-added coherent state (ESPACS) source. We present two tight formulas to estimate the single-photon fraction of postselected events and Eve's Holevo information and derive lower bounds on the secret key capacity and the secret key rate of our protocol. We also present finite-key analysis for our protocol by using the Chernoff bound. Our numerical results show that our protocol using one decoy state can perform better than that of previous HD-QKD protocol with the spontaneous parametric down conversion (SPDC) using two decoy states. Moreover, when considering finite resources, the advantage is more obvious. - Highlights: • Implement the single-photon-added coherent state source into the high-dimensional quantum key distribution. • Enhance both the secret key capacity and the secret key rate compared with previous schemes. • Show an excellent performance in view of statistical fluctuations.

  5. Improving the maximum transmission distance of continuous-variable quantum key distribution with noisy coherent states using a noiseless amplifier

    International Nuclear Information System (INIS)

    Wang, Tianyi; Yu, Song; Zhang, Yi-Chen; Gu, Wanyi; Guo, Hong

    2014-01-01

    By employing a nondeterministic noiseless linear amplifier, we propose to increase the maximum transmission distance of continuous-variable quantum key distribution with noisy coherent states. With the covariance matrix transformation, the expression of secret key rate under reverse reconciliation is derived against collective entangling cloner attacks. We show that the noiseless linear amplifier can compensate the detrimental effect of the preparation noise with an enhancement of the maximum transmission distance and the noise resistance. - Highlights: • Noiseless amplifier is applied in noisy coherent state quantum key distribution. • Negative effect of preparation noise is compensated by noiseless amplification. • Maximum transmission distance and noise resistance are both enhanced

  6. Strong quantum-confined stark effect in germanium quantum-well structures on silicon

    International Nuclear Information System (INIS)

    Kuo, Y.; Lee, Y. K.; Gei, Y.; Ren, S; Roth, J. E.; Miller, D. A.; Harris, J. S.

    2006-01-01

    Silicon is the dominant semiconductor for electronics, but there is now a growing need to integrate such component with optoelectronics for telecommunications and computer interconnections. Silicon-based optical modulators have recently been successfully demonstrated but because the light modulation mechanisms in silicon are relatively weak, long (for example, several millimeters) devices or sophisticated high-quality-factor resonators have been necessary. Thin quantum-well structures made from III-V semiconductors such as GaAs, InP and their alloys exhibit the much stronger Quantum-Confined Stark Effect (QCSE) mechanism, which allows modulator structures with only micrometers of optical path length. Such III-V materials are unfortunately difficult to integrate with silicon electronic devices. Germanium is routinely integrated with silicon in electronics, but previous silicon-germanium structures have also not shown strong modulation effects. Here we report the discovery of the QCSE, at room temperature, in thin germanium quantum-well structures grown on silicon. The QCSE here has strengths comparable to that in III-V materials. Its clarity and strength are particularly surprising because germanium is an indirect gap semiconductor, such semiconductors often display much weak optical effects than direct gap materials (such as the III-V materials typically used for optoelectronics). This discovery is very promising for small, high-speed, low-power optical output devices fully compatible with silicon electronics manufacture. (author)

  7. Nonlinear optical rectification in semiparabolic quantum wells with an applied electric field

    International Nuclear Information System (INIS)

    Karabulut, ibrahim; Safak, Haluk

    2005-01-01

    The optical rectification (OR) in a semiparabolic quantum well with an applied electric field has been theoretically investigated. The electronic states in a semiparabolic quantum well with an applied electric field are calculated exactly, within the envelope function and the displaced harmonic oscillator approach. Numerical results are presented for the typical Al x Ga 1- x As/GaAs quantum well. These results show that the applied electric field and the confining potential frequency of the semiparabolic quantum well have a great influence on the OR coefficient. Moreover, the OR coefficient also depends sensitively on the relaxation rate of the semiparabolic quantum well system

  8. Terahertz-bandwidth coherence measurements of a quantum dash laser in passive and active mode-locking operation.

    Science.gov (United States)

    Martin, Eamonn; Watts, Regan; Bramerie, Laurent; Shen, Alexandre; Gariah, Harry; Blache, Fabrice; Lelarge, Francois; Barry, Liam

    2012-12-01

    This research carries out coherence measurements of a 42.7 GHz quantum dash (QDash) semiconductor laser when passively, electrically, and optically mode-locked. Coherence of the spectral lines from the mode-locked laser is determined by examining the radio frequency beat-tone linewidth as the mode spacing is increased up to 1.1 THz. Electric-field measurements of the QDash laser are also presented, from which a comparison between experimental results and accepted theory for coherence in passively mode-locked lasers has been performed.

  9. Continuous-variable quantum cloning of coherent states with phase-conjugate input modes using linear optics

    International Nuclear Information System (INIS)

    Chen, Haixia; Zhang, Jing

    2007-01-01

    We propose a scheme for continuous-variable quantum cloning of coherent states with phase-conjugate input modes using linear optics. The quantum cloning machine yields M identical optimal clones from N replicas of a coherent state and N replicas of its phase conjugate. This scheme can be straightforwardly implemented with the setups accessible at present since its optical implementation only employs simple linear optical elements and homodyne detection. Compared with the original scheme for continuous-variable quantum cloning with phase-conjugate input modes proposed by Cerf and Iblisdir [Phys. Rev. Lett. 87, 247903 (2001)], which utilized a nondegenerate optical parametric amplifier, our scheme loses the output of phase-conjugate clones and is regarded as irreversible quantum cloning

  10. Effects of low charge carrier wave function overlap on internal quantum efficiency in GaInN quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Netzel, Carsten; Hoffmann, Veit; Wernicke, Tim; Knauer, Arne; Weyers, Markus [Ferdinand-Braun-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Strasse 4, 12489 Berlin (Germany); Kneissl, Michael [Ferdinand-Braun-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Strasse 4, 12489 Berlin (Germany); Institut fuer Festkoerperphysik, Technische Universitaet Berlin, Hardenbergstrasse 36, 10623 Berlin (Germany)

    2010-07-15

    To determine relevant processes affecting the internal quantum efficiency in GaInN quantum well structures, we have studied the temperature and excitation power dependent photoluminescence intensity for quantum wells with different well widths on (0001) c-plane GaN and for quantum wells on nonpolar (11-20) a-plane GaN. In thick polar quantum wells, the quantum confined Stark effect (QCSE) causes a stronger intensity decrease with increasing temperature as long as the radiative recombination dominates. At higher temperatures, when the nonradiative recombination becomes more important, thick polar quantum wells feature a lower relative intensity decrease than thinner polar or nonpolar quantum wells. Excitation power dependent photoluminescence points to a transition from a recombination of excitons to a bimolecular recombination of uncorrelated charge carriers for thick polar quantum wells in the same temperature range. This transition might contribute to the limitation of nonradiative recombination by a reduced diffusivity of charge carriers. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Efficiency droop in nonpolar InGaN quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Schade, Lukas; Schwarz, Ulrich [Fraunhofer Institut fuer Angewandte Festkoerperphysik (IAF), Freiburg im Breisgau (Germany); Institut fuer Mikrosystemtechnik (IMTEK), Universitaet Freiburg, Freiburg im Breisgau (Germany); Wernicke, Tim; Rass, Jens; Ploch, Simon [Institut fuer Festkoerperphysik, Technische Universitaet Berlin (Germany); Weyers, Markus [Ferdinand-Braun-Institut (FBH), Berlin (Germany); Kneissl, Michael [Institut fuer Festkoerperphysik, Technische Universitaet Berlin (Germany); Ferdinand-Braun-Institut (FBH), Berlin (Germany)

    2012-07-01

    InGaN quantum wells (QWs) exhibit a decline of the internal efficiency at high charge carrier excitation. This has been observed for polar as well as for semipolar and nonpolar oriented QWs. Polar stands for the (0001) growth direction with strong piezoelectric fields. Due to the vanishing fields, the orthogonal growth directions (a or m) are called nonpolar, while all directions between are merged as semipolar orientations. In contrast to the polar and many semipolar QWs, nonpolar InGaN QWs provide a special property: optical polarization of the radiative transitions, which is a result of the anisotropic strain within pseudomorphic grown nonpolar QWs. Using this property, the broadened effective emission can be resolved into two fundamental transitions. They are spectrally separated by a defined energy which corresponds to the energy distance of the valence subbands. We studied nonpolar InGaN/InGaN Multi-QWs grown on low defect density GaN substrates with a setup for confocal microscopy. To reach high excitation densities of charge carriers, we use either a combination of an UV laser and highly focusing objectives or an electric pulse generator. The emission is spectrally analysed and compared to established models.

  12. Quantum equivalence of a driven triple-well Van der Pol oscillator: A QTM study

    International Nuclear Information System (INIS)

    Chakraborty, Debdutta; Chattaraj, Pratim Kumar

    2014-01-01

    Highlights: • Quantum–classical correspondence is manifested at strong external coupling regime. • Suppression of classical chaos takes place in quantum domain. • Quantum chaos promotes quantum diffusion. • Quantum localisation is realised when interference effects are dominant. - Abstract: A quantum mechanical analogue of the classically chaotic triple-well oscillator under the influence of an external field and parametric excitation has been studied by using the quantum theory of motion. The on the fly calculations show the correspondence between some dynamical aspects of the classical and quantum oscillators along with a strictly quantum mechanical behaviour in case of diffusion and tunneling. Suitable external conditions have been obtained which can either assist or suppress the movement of quantum particles from one well to another. Quantum interference effects play a critical role in determining the nature of the quantum dynamics and in the presence of strong coupling to the external forces, quantum interference effects reduce drastically leading to decoherence of the quantum wave packet. In such situations, quantum dynamical features qualitatively resemble the corresponding classical dynamical behaviour and a correspondence between classical and quantum dynamics is obtained

  13. Study of quantum hadronic states using new optimum principles and new coherent production mechanisms

    International Nuclear Information System (INIS)

    Ion, D. B.; Ion, M. L.; Ion-Mihai, R.

    2002-01-01

    We introduced a new kind of quantum entropy for quantum scattering: conjugated nonextensivity entropy S Jθ bar (p,q). Using this new kind of nonextensive entropy we studied the nonextensive quantum scattering states of the hadronic interactions. We proved that probability distributions produced at quantum equilibrium coincide with optimal distributions given by the principle of minimum distance in the space of quantum scattering states. Using optimal states we proved new uncertainty relations and new entropic bands: For experimental tests we used the available phase shifts for the pion-nucleus scatterings and also for the pion-nucleon scatterings. Experimental tests of entropic bands and principle of maximum entropy for conjugated nonextensivity entropy are compared with entropic bands for usual entropy of joint probability S Jθ bar (p) and for pion-nucleus scatterings. Also given are the experimental tests of entropic bands and principle of maximum entropy for conjugated nonextensivity entropy compared with entropic bands for usual entropy of joint probability S Jθ bar (p) and for pion-nucleon scatterings.Our experimental tests proved the existence of the principle of limited entropic uncertainty in hadronic scattering. The experimental tests showed clearly that quantum elastic scattering is well described by the principle of minimum distance in the space of quantum states. By these results we obtained strong evidence for the nonextensivity of the hadronic scattering statistics. (authors)

  14. The Radical Pair Mechanism and the Avian Chemical Compass: Quantum Coherence and Entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yiteng [Purdue Univ., West Lafayette, IN (United States); Kais, Sabre [Purdue Univ., West Lafayette, IN (United States); Berman, Gennady Petrovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-02

    We review the spin radical pair mechanism which is a promising explanation of avian navigation. This mechanism is based on the dependence of product yields on 1) the hyperfine interaction involving electron spins and neighboring nuclear spins and 2) the intensity and orientation of the geomagnetic field. One surprising result is that even at ambient conditions quantum entanglement of electron spins can play an important role in avian magnetoreception. This review describes the general scheme of chemical reactions involving radical pairs generated from singlet and triplet precursors; the spin dynamics of the radical pairs; and the magnetic field dependence of product yields caused by the radical pair mechanism. The main part of the review includes a description of the chemical compass in birds. We review: the general properties of the avian compass; the basic scheme of the radical pair mechanism; the reaction kinetics in cryptochrome; quantum coherence and entanglement in the avian compass; and the effects of noise. We believe that the quantum avian compass can play an important role in avian navigation and can also provide the foundation for a new generation of sensitive and selective magnetic-sensing nano-devices.

  15. The quantum mechanical measuring process as a scattering phenomenon inducing a collective coherent motion

    International Nuclear Information System (INIS)

    Requardt, M.

    1984-01-01

    In this paper we want to discuss the quantum mechanical measuring process within the realm of many body quantum theory. Our starting point is to consider this process as a special scattering phenomenon where within one of the partners, i.e. the many body measuring device, a collective coherent motion is induced by the interaction with the microobject. We start our investigation with the many body system having a large but finite number N of degrees of freedom which is the real situation. We then study in detail what will happen in the limit N->infinite, however emphasizing that this transition is actually only performed in the mind of the observer. This implies that certain tail events together with their phase correlations have to be truncated. We show that the dichotomy 'pure state' versus 'mixture' as outgoing scattering states will vanish in this limit in so far as it has no observable consequences provided one is only interested in the state of the microobject. Furthermore, we discuss the role of the observer, the notion of 'event', the relation between single preparation and ensemble picture, and the so-called 'reduction of the wave function' in the light of our approach, i.e. explaining the phenomena accompanying the measuring process in terms of many body quantum theory. (orig.)

  16. Hybridization of electron states in a step quantum well in a magnetic field

    International Nuclear Information System (INIS)

    Barseghyan, M.G.; Kirakosyan, A.A.

    2005-01-01

    The quantum states and energy levels of an electrion in a rectangular step quantum well in a magnetic field parallel to the plane of two-dimentional electron gas are investigated. It is shown that the joint effect of the magnetic field and confining potential of the quantum well results in redical change of the electron spectrum. The dependence of the electron energy levels on the quantum well parameters, magnetic field induction and projection of the wave-vector along the magnetic field induction are calculated. Numerical calculations are carried out for a AlAs/GaAlAs/GaAs/AlAs step quantum well

  17. Intermixing effects on emission properties of InGaN/GaN coupled Quantum wells

    KAUST Repository

    Susilo, Tri B.; Alsunaidi, M. A.; Shen, Chao; Ooi, Boon S.

    2015-01-01

    Intermixing processes in quantum wells have been extensively studied in order to modify characteristic of semiconductor devices such as LEDs. Controlling the band gap of material by introducing intermixing process can be used to enable broadband and controllable emission of LEDs. Quantum well intermixing (QWI) in InGaN/GaN double quantum well (DQW) is discussed in this paper. By varying the interdiffusion and separation lengths, the effects of intermixing process on the quantum eigen energies of the wells are studied. The investigation is carried out using a homegrown Quantum-FDTD simulator. © 2015 IEEE.

  18. Intermixing effects on emission properties of InGaN/GaN coupled Quantum wells

    KAUST Repository

    Susilo, Tri B.

    2015-02-01

    Intermixing processes in quantum wells have been extensively studied in order to modify characteristic of semiconductor devices such as LEDs. Controlling the band gap of material by introducing intermixing process can be used to enable broadband and controllable emission of LEDs. Quantum well intermixing (QWI) in InGaN/GaN double quantum well (DQW) is discussed in this paper. By varying the interdiffusion and separation lengths, the effects of intermixing process on the quantum eigen energies of the wells are studied. The investigation is carried out using a homegrown Quantum-FDTD simulator. © 2015 IEEE.

  19. Blue and green electroluminescence from CdSe nanocrystal quantum-dot-quantum-wells

    International Nuclear Information System (INIS)

    Lu, Y. F.; Cao, X. A.

    2014-01-01

    CdS/CdSe/ZnS quantum dot quantum well (QDQW) nanocrystals were synthesized using the successive ion layer adsorption and reaction technique, and their optical properties were tuned by bandgap and strain engineering. 3-monolayer (ML) CdSe QWs emitted blue photoluminescence at 467 nm with a spectral full-width-at-half-maximum of ∼30 nm. With a 3 ML ZnS cladding layer, which also acts as a passivating and strain-compensating layer, the QDQWs acquired a ∼35% quantum yield of the QW emission. Blue and green electroluminescence (EL) was obtained from QDQW light-emitting devices with 3–4.5 ML CdSe QWs. It was found that as the peak blueshifted, the overall EL was increasingly dominated by defect state emission due to poor hole injection into the QDQWs. The weak EL was also attributed to strong field-induced charge separation resulting from the unique QDQW geometry, weakening the oscillator strength of optical transitions

  20. Emergence of the persistent spin helix in semiconductor quantum wells

    International Nuclear Information System (INIS)

    Koralek, Jake; Weber, Chris; Orenstein, Joe; Bernevig, Andrei; Zhang, Shoucheng; Mack, Shawn; Awschalom, David

    2008-01-01

    According to Noether's theorem, for every symmetry in nature there is a corresponding conservation law. For example, invariance with respect to spatial translation corresponds to conservation of momentum. In another well-known example, invariance with respect to rotation of the electron's spin, or SU(2) symmetry, leads to conservation of spin polarization. For electrons in a solid, this symmetry is ordinarily broken by spin-orbit (SO) coupling, allowing spin angular momentum to flow to orbital angular momentum. However, it has recently been predicted that SU(2) can be recovered in a two-dimensional electron gas (2DEG), despite the presence of SO coupling. The corresponding conserved quantities include the amplitude and phase of a helical spin density wave termed the 'persistent spin helix' (PSH) .2 SU(2) is restored, in principle, when the strength of two dominant SO interactions, the Rashba (alpha) and linear Dresselhaus (beta 1), are equal. This symmetry is predicted to be robust against all forms of spin-independent scattering, including electron-electron interactions, but is broken by the cubic Dresselhaus term (beta 3) and spin-dependent scattering. When these terms are negligible, the distance over which spin information can propagate is predicted to diverge as alpha approaches beta 1. Here we observe experimentally the emergence of the PSH in GaAs quantum wells (QW's) by independently tuning alpha and beta 1. Using transient spin-grating spectroscopy (TSG), we find a spin-lifetime enhancement of two orders of magnitude near the symmetry point. Excellent quantitative agreement with theory across a wide range of sample parameters allows us to obtain an absolute measure of all relevant SO terms, identifying beta 3 as the main SU(2) violating term in our samples. The tunable suppression of spin-relaxation demonstrated in this work is well-suited for application to spintronics

  1. Emergence of the Persistent Spin Helix in Semiconductor Quantum Wells

    International Nuclear Information System (INIS)

    Koralek, Jake

    2011-01-01

    According to Noether's theorem, for every symmetry in nature there is a corresponding conservation law. For example, invariance with respect to spatial translation corresponds to conservation of momentum. In another well-known example, invariance with respect to rotation of the electron's spin, or SU(2) symmetry, leads to conservation of spin polarization. For electrons in a solid, this symmetry is ordinarily broken by spin-orbit (SO) coupling, allowing spin angular momentum to flow to orbital angular momentum. However, it has recently been predicted that SU(2) can be recovered in a two-dimensional electron gas (2DEG), despite the presence of SO coupling. The corresponding conserved quantities include the amplitude and phase of a helical spin density wave termed the 'persistent spin helix' (PSH). SU(2) is restored, in principle, when the strength of two dominant SO interactions, the Rashba (α) and linear Dresselhaus (β 1 ), are equal. This symmetry is predicted to be robust against all forms of spin-independent scattering, including electron-electron interactions, but is broken by the cubic Dresselhaus term (β 3 ) and spin-dependent scattering. When these terms are negligible, the distance over which spin information can propagate is predicted to diverge as α → β 1 . Here we observe experimentally the emergence of the PSH in GaAs quantum wells (QW's) by independently tuning α and β 1 . Using transient spin-grating spectroscopy (TSG), we find a spin-lifetime enhancement of two orders of magnitude near the symmetry point. Excellent quantitative agreement with theory across a wide range of sample parameters allows us to obtain an absolute measure of all relevant SO terms, identifying β 3 as the main SU(2) violating term in our samples. The tunable suppression of spin-relaxation demonstrated in this work is well-suited for application to spintronics.

  2. Studies of quantum levels in GaInNAs single quantum wells

    International Nuclear Information System (INIS)

    Shirakata, Sho; Kondow, Masahiko; Kitatani, Takeshi

    2006-01-01

    Spectroscopic studies have been carried out on the quantum levels in GaInNAs/GaAs single quantum wells (SQWs). Photoluminescence (PL), PL excitation (PLE), photoreflectance (PR), and high-density-excited PL (HDE-PL) were measured on high quality GaInNAs SQWs, Ga 0.65 In 0.35 N 0.01 As 0.99 /GaAs (well thickness: l z =10 nm) and Ga 0.65 In 0.35 N 0.005 As 0.995 /GaAs (l z =3∝10 nm), grown by molecular-beam epitaxy. For Ga 0.65 In 0.35 N 0.01 As 0.99 /GaAs (l z =10 nm), PL at 8 K exhibited a peak at 1.07 eV due to the exciton-related transition between quantum levels of ground states (e1-hh1). Both PR and PLE exhibited three transitions (1.17, 1.20 and 1.32 eV), and the former two transitions were assigned to as either of e1-lh1 and e2-hh2 transitions, while the transition at 1.32 eV was assigned to as the e2-lh2 transition. For HDE-PL, a new PL peak was observed at about 1.2 eV, and it was assigned to the unresolved e1-lh1 and e2-hh2 transitions. Similar optical measurements have been done on the Ga 0.65 In 0.35 N 0.005 As 0.995 /GaAs with various l z (3∝10 nm). Dependence of optical spectra and energies of quantum levels on l z have been studied. It has been found that HDE-PL in combination with PLE is a good tool for the study of the quantum level of GaInNAs SQW. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  3. Theory of the Franz-Keldysh effect in quantum wells

    International Nuclear Information System (INIS)

    Trallero Giner, C.

    1986-09-01

    We use the effective-mass approximation to obtain the imaginary part, ε 2 , of the dielectric constant of a quantum well in an applied electric field for direct transitions at a normal (M O ) threshold. The calculations of ε 2 are used to evaluate the real part, ε 1 , of the dielectric constant through the Kramers-Kronig relations. The changes in ε 1 and ε 2 due to the electric field are expressed in terms of the corresponding electrooptic functions. All magnitudes are obtained, neglecting excitonic effects, for electric fields both perpendicular to and in the plane of the layers. We show that for fields parallel to the layers the electrooptic functions turn out to be a superposition of two-dimensional Franz-Keldysh ones. The electrooptic functions for fields perpendicular to the layers show a qualitatively different behaviour from those observed in bulk semiconductors. Analytic expressions for the Lorentzian broadening of ε 1 and ε 2 are given in terms of complex valued electrooptic functions of complex argument. (author)

  4. Physics of frequency-modulated comb generation in quantum-well diode lasers

    Science.gov (United States)

    Dong, Mark; Cundiff, Steven T.; Winful, Herbert G.

    2018-05-01

    We investigate the physical origin of frequency-modulated combs generated from single-section semiconductor diode lasers based on quantum wells, isolating the essential physics necessary for comb generation. We find that the two effects necessary for comb generation—spatial hole burning (leading to multimode operation) and four-wave mixing (leading to phase locking)—are indeed present in some quantum-well systems. The physics of comb generation in quantum wells is similar to that in quantum dot and quantum cascade lasers. We discuss the nature of the spectral phase and some important material parameters of these diode lasers.

  5. High Efficiency Quantum Well Waveguide Solar Cells, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The long-term objective of this program is to develop flexible, lightweight, single-junction solar cells using quantum structured designs that can achieve ultra-high...

  6. Significant internal quantum efficiency enhancement of GaN/AlGaN multiple quantum wells emitting at ~350 nm via step quantum well structure design

    KAUST Repository

    Wu, Feng; Sun, Haiding; Ajia, Idris A.; Roqan, Iman S.; Zhang, Daliang; Dai, Jiangnan; Chen, Changqing; Feng, Zhe Chuan; Li, Xiaohang

    2017-01-01

    Significant internal quantum efficiency (IQE) enhancement of GaN/AlGaN multiple quantum wells (MQWs) emitting at similar to 350 nm was achieved via a step quantum well (QW) structure design. The MQW structures were grown on AlGaN/AlN/sapphire templates by metal-organic chemical vapor deposition (MOCVD). High resolution x-ray diffraction (HR-XRD) and scanning transmission electron microscopy (STEM) were performed, showing sharp interface of the MQWs. Weak beam dark field imaging was conducted, indicating a similar dislocation density of the investigated MQWs samples. The IQE of GaN/AlGaN MQWs was estimated by temperature dependent photoluminescence (TDPL). An IQE enhancement of about two times was observed for the GaN/AlGaN step QW structure, compared with conventional QW structure. Based on the theoretical calculation, this IQE enhancement was attributed to the suppressed polarization-induced field, and thus the improved electron-hole wave-function overlap in the step QW.

  7. Significant internal quantum efficiency enhancement of GaN/AlGaN multiple quantum wells emitting at ~350 nm via step quantum well structure design

    KAUST Repository

    Wu, Feng

    2017-05-03

    Significant internal quantum efficiency (IQE) enhancement of GaN/AlGaN multiple quantum wells (MQWs) emitting at similar to 350 nm was achieved via a step quantum well (QW) structure design. The MQW structures were grown on AlGaN/AlN/sapphire templates by metal-organic chemical vapor deposition (MOCVD). High resolution x-ray diffraction (HR-XRD) and scanning transmission electron microscopy (STEM) were performed, showing sharp interface of the MQWs. Weak beam dark field imaging was conducted, indicating a similar dislocation density of the investigated MQWs samples. The IQE of GaN/AlGaN MQWs was estimated by temperature dependent photoluminescence (TDPL). An IQE enhancement of about two times was observed for the GaN/AlGaN step QW structure, compared with conventional QW structure. Based on the theoretical calculation, this IQE enhancement was attributed to the suppressed polarization-induced field, and thus the improved electron-hole wave-function overlap in the step QW.

  8. The energy-level crossing behavior and quantum Fisher information in a quantum well with spin-orbit coupling

    Science.gov (United States)

    Wang, Z. H.; Zheng, Q.; Wang, Xiaoguang; Li, Yong

    2016-03-01

    We study the energy-level crossing behavior in a two-dimensional quantum well with the Rashba and Dresselhaus spin-orbit couplings (SOCs). By mapping the SOC Hamiltonian onto an anisotropic Rabi model, we obtain the approximate ground state and its quantum Fisher information (QFI) via performing a unitary transformation. We find that the energy-level crossing can occur in the quantum well system within the available parameters rather than in cavity and circuit quantum eletrodynamics systems. Furthermore, the influence of two kinds of SOCs on the QFI is investigated and an intuitive explanation from the viewpoint of the stationary perturbation theory is given.

  9. Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7 μm wavelength region

    NARCIS (Netherlands)

    Tilma, B.W.; Jiao, Y.; Kotani, J.; Smalbrugge, B.; Ambrosius, H.P.M.M.; Thijs, P.J.A.; Leijtens, X.J.M.; Nötzel, R.; Smit, M.K.; Bente, E.A.J.M.

    2012-01-01

    In this paper we present the design and characterization of a monolithically integrated tunable laser for optical coherence tomography in medicine. This laser is the first monolithic photonic integrated circuit containing quantum-dot amplifiers, phase modulators and passive components. We

  10. Quantum Hall effect in InAs/AlSb double quantum well

    International Nuclear Information System (INIS)

    Yakunin, M.V.; Podgornykh, S.M.; Sadof'ev, Yu.G.

    2009-01-01

    Double quantum wells (DQWs) were first implemented in the InAs/AlSb heterosystem, which is characterized by a large Lande g factor |g|=15 of the InAs layers forming the well, much larger than the bulk g factor |g|=0.4 of the GaAs in conventional GaAs/AlGaAs DQWs. The quality of the samples is good enough to permit observation of a clear picture of the quantum Hall effect (QHE). Despite the small tunneling gap, which is due to the large barrier height (1.4 eV), features with odd filling factors ν=3,5,7, ... are present in the QHE, due to collectivized interlayer states of the DQW. When the field is rotated relative to the normal to the layers, the ν=3 state is suppressed, confirming the collectivized nature of that state and denying that it could owe its existence to a strong asymmetry of the DQW. Previously the destruction of the collectivized QHE states by a parallel field had been observed only for the ν=1 state. The observation of a similar effect for ν=3 in an InAs/AlSb DQW may be due to the large bulk g factor of InAs

  11. Electrical transport in strained silicon quantum wells on vicinal substrates

    International Nuclear Information System (INIS)

    Kaya, S.

    1999-01-01

    This thesis deals with the electrical transport studies of strained Si quantum wells grown on tilted Si substrates. Magnetotransport measurements at very low temperatures are used to investigate the high electron mobility, scattering processes and modified band structure for four different substrate orientations (2, 4, 6 and 10 deg.) and in two different directions of transport. We first discuss the morphology of the tilted system with the aid of, atomic force and optical microscopy. A clear change of surface morphology of tilted layers in comparison with the (001) type surfaces is explained by the degree of tilt in the system. The electron mobility and in-plane effective mass becomes anisotropic, which scale roughly with the tilt angle. The mobility anisotropy is shown to be the result of extra scattering when electrons travel across the steps common to vicinal surfaces. The extra scattering has characteristics similar to interface roughness scattering, as inferred from the trend that the transport (τ t ) and quantum scattering (τ q ) times follow. As the tilt angle grows, it is found that τ t /τ q →1 in the direction perpendicular to the steps. Electrons in tilted channels of multivalley semiconductors can involve a new interband scattering mechanism due to a one dimensional minigap opening in the conduction band. This effect, known from bulk Si MOSFETs, is investigated in strained Si for the first time in this thesis. First, the effect of applied electric fields on electron conduction is considered. Shubnikov-de Haas oscillations in the magnetoresistance data indicate a remarkably different electron scattering behaviour in tilted samples with increasing fields in directions parallel and perpendicular to the tilt direction. An FFT analysis of the data produces extra peaks in the electron density spectra. By clear contrast, flat samples grown under similar conditions do not show any unusual features. The difference is attributed to the existence of a minigap

  12. Enhancing the performance of the measurement-device-independent quantum key distribution with heralded pair-coherent sources

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Feng; Zhang, Chun-Hui; Liu, Ai-Ping [Institute of Signal Processing Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003 (China); Key Lab of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Ministry of Education, Nanjing 210003 (China); Wang, Qin, E-mail: qinw@njupt.edu.cn [Institute of Signal Processing Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003 (China); Key Lab of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Ministry of Education, Nanjing 210003 (China); Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026 (China)

    2016-04-01

    In this paper, we propose to implement the heralded pair-coherent source into the measurement-device-independent quantum key distribution. By comparing its performance with other existing schemes, we demonstrate that our new scheme can overcome many shortcomings existing in current schemes, and show excellent behavior in the quantum key distribution. Moreover, even when taking the statistical fluctuation into account, we can still obtain quite high key generation rate at very long transmission distance by using our new scheme. - Highlights: • Implement the heralded pair-coherent source into the measurement-device-independent quantum key distribution. • Overcome many shortcomings existing in current schemes and show excellent behavior. • Obtain quite high key generation rate even when taking statistical fluctuation into account.

  13. Effect of interface roughness on Auger recombination in semiconductor quantum wells

    Science.gov (United States)

    Tan, Chee-Keong; Sun, Wei; Wierer, Jonathan J.; Tansu, Nelson

    2017-03-01

    Auger recombination in a semiconductor is a three-carrier process, wherein the energy from the recombination of an electron and hole pair promotes a third carrier to a higher energy state. In semiconductor quantum wells with increased carrier densities, the Auger recombination becomes an appreciable fraction of the total recombination rate and degrades luminescence efficiency. Gaining insight into the variables that influence Auger recombination in semiconductor quantum wells could lead to further advances in optoelectronic and electronic devices. Here we demonstrate the important role that interface roughness has on Auger recombination within quantum wells. Our computational studies find that as the ratio of interface roughness to quantum well thickness is increased, Auger recombination is significantly enhanced. Specifically, when considering a realistic interface roughness for an InGaN quantum well, the enhancement in Auger recombination rate over a quantum well with perfect heterointerfaces can be approximately four orders of magnitude.

  14. Picosecond intersubband hole relaxation in p-type quantum wells

    International Nuclear Information System (INIS)

    Xu, Z.; Fauchet, P.M.; Rella, C.W.; Schwettman, H.A.

    1995-01-01

    We report the first direct measurement of the relaxation time of holes in p-type quantum wells using tunable, subpicosecond mid-infrared laser pulses in a pump-probe arrangement. The QW layers consisted of 50 In 0.5 Ga 0.5 As/Al 0.5 Ga 0.5 As periods. The In 0.5 Ga 0.5 As well was 4 nm wide and the Al 0.5 Ga 0.5 As barrier was 8 nm wide. The dopant concentration was 10 19 CM -3 which corresponds to a sheet density of 1.2 x 10 13 CM -2 . The room temperature IR spectrum showed a 50 meV wide absorption peak at 5.25 μm (220 meV). This energy agrees with the calculated n=1 heavy hole to n=1 light hole transition energy of 240 meV (150 meV for strain and 90 meV for confinement). The large absorption width results from hole-hole scattering and the difference in dispersion relations between the two subbands. The equal-wavelength pump-probe transmission measurements were performed using the Stanford free electron laser (FEL). The FEL pulses were tuned between 4 and 6 μ m and their duration was less than 1 ps. The measurements were performed as a function of temperature, pump wavelength and intensity (from 0.3 to 10 GW/cm 2 ). In all our experiments, we find an increase of transmission (decrease of absorption or bleaching) following photopumping, which recovers as a single exponential with a time constant (relaxation time) of the order of 1 picosecond. The maximum change in transmission is linear with pump 2 intensity below 1 GW/cm 2 and saturates to ∼3% with a saturation intensity I sat of 3 GW/cm 2 . As the saturation regime is entered, the relaxation time increases from 0.8 ps to 1.8 ps. This relaxation time depends on the temperature T: it increases from 0.8 ps to 1.3 ps as T decreases from 300 K to 77 K. Finally, when we tune the laser through the absorption band, the magnitude of the signal changes but its temporal behavior does not change, within the accuracy of the measurements

  15. Ultrafast dynamics of Coulomb correlated excitons in GaAs quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Mycek, M.A. [Univ. of California, Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley National Lab., CA (United States). Materials Sciences Div.

    1995-12-01

    The author measures the transient nonlinear optical response of room temperature excitons in gallium arsenide quantum wells via multi-wave mixing experiments. The dynamics of the resonantly excited excitons is directly reflected by the ultrafast decay of the induced nonlinear polarization, which radiates the detected multi-wave mixing signal. She characterizes this ultrafast coherent emission in both amplitude and phase, using time- and frequency-domain measurement techniques, to better understand the role of Coulomb correlation in these systems. To interpret the experimental results, the nonlinear optical response of a dense medium is calculated using a model including Coulomb interaction. She contributes three new elements to previous theoretical and experimental studies of these systems. First, surpassing traditional time-integrated measurements, she temporally resolves the amplitude of the ultrafast coherent emission. Second, in addition to measuring the third-order four-wave mixing signal, she also investigates the fifth-order six-wave mixing response. Third, she characterizes the ultrafast phase dynamics of the nonlinear emission using interferometric techniques with an unprecedented resolution of approximately 140 attoseconds. The author finds that effects arising from Coulomb correlation dominate the nonlinear optical response when the density of excitons falls below 3 {times} 10{sup 11} cm{sup {minus}2}, the saturation density. These signatures of Coulomb correlation are investigated for increasing excitation density to gradually screen the interactions and test the validity of the model for dense media. The results are found to be qualitatively consistent with both the predictions of the model and with numerical solutions to the semiconductor Bloch equations. Importantly, the results also indicate current experimental and theoretical limitations, which should be addressed in future research.

  16. Semiclassical description of quantum rotator in terms of SU(2) coherent states

    International Nuclear Information System (INIS)

    Gitman, D M; Petrusevich, D A; Shelepin, A L

    2013-01-01

    We introduce coordinates of the rigid body (rotator) using mutual positions between body-fixed and space-fixed reference frames. Wave functions that depend on such coordinates can be treated as scalar functions of the group SU(2). Irreducible representations of the group SU(2) × SU(2) in the space of such functions describe their possible transformations under independent rotations of the both reference frames. We construct sets of the corresponding group SU(2) × SU(2) Perelomov coherent states (CS) with a fixed angular momentum j of the rotator as special orbits of the latter group. Minimization of different uncertainty relations is discussed. The classical limit corresponds to the limit j → ∞. Considering Hamiltonians of rotators with different characteristics, we study the time evolution of the constructed CS. In some cases, the CS time evolution is completely or partially reduced to their parameter time evolution. If these parameters are chosen as Euler angles, then they obey the Euler equations in the classical limit. Quantum corrections to the motion of the quantum rotator can be found from exact equations on the CS parameters. (paper)

  17. Efficient amplitude-modulated pulses for triple- to single-quantum coherence conversion in MQMAS NMR.

    Science.gov (United States)

    Colaux, Henri; Dawson, Daniel M; Ashbrook, Sharon E

    2014-08-07

    The conversion between multiple- and single-quantum coherences is integral to many nuclear magnetic resonance (NMR) experiments of quadrupolar nuclei. This conversion is relatively inefficient when effected by a single pulse, and many composite pulse schemes have been developed to improve this efficiency. To provide the maximum improvement, such schemes typically require time-consuming experimental optimization. Here, we demonstrate an approach for generating amplitude-modulated pulses to enhance the efficiency of the triple- to single-quantum conversion. The optimization is performed using the SIMPSON and MATLAB packages and results in efficient pulses that can be used without experimental reoptimisation. Most significant signal enhancements are obtained when good estimates of the inherent radio-frequency nutation rate and the magnitude of the quadrupolar coupling are used as input to the optimization, but the pulses appear robust to reasonable variations in either parameter, producing significant enhancements compared to a single-pulse conversion, and also comparable or improved efficiency over other commonly used approaches. In all cases, the ease of implementation of our method is advantageous, particularly for cases with low sensitivity, where the improvement is most needed (e.g., low gyromagnetic ratio or high quadrupolar coupling). Our approach offers the potential to routinely improve the sensitivity of high-resolution NMR spectra of nuclei and systems that would, perhaps, otherwise be deemed "too challenging".

  18. Tailoring Quantum Dot Assemblies to Extend Exciton Coherence Times and Improve Exciton Transport

    Science.gov (United States)

    Seward, Kenton; Lin, Zhibin; Lusk, Mark

    2012-02-01

    The motion of excitons through nanostructured assemblies plays a central role in a wide range of physical phenomena including quantum computing, molecular electronics, photosynthetic processes, excitonic transistors and light emitting diodes. All of these technologies are severely handicapped, though, by quasi-particle lifetimes on the order of a nanosecond. The movement of excitons must therefore be as efficient as possible in order to move excitons meaningful distances. This is problematic for assemblies of small Si quantum dots (QDs), where excitons quickly localize and entangle with dot phonon modes. Ensuing exciton transport is then characterized by a classical random walk reduced to very short distances because of efficient recombination. We use a combination of master equation (Haken-Strobl) formalism and density functional theory to estimate the rate of decoherence in Si QD assemblies and its impact on exciton mobility. Exciton-phonon coupling and Coulomb interactions are calculated as a function of dot size, spacing and termination to minimize the rate of intra-dot phonon entanglement. This extends the time over which more efficient exciton transport, characterized by partial coherence, can be maintained.

  19. Magneto-transport study of quantum phases in wide GaAs quantum wells

    Science.gov (United States)

    Liu, Yang

    In this thesis we study several quantum phases in very high quality two-dimensional electron systems (2DESs) confined to GaAs single wide quantum wells (QWs). In these systems typically two electric subbands are occupied. By controlling the electron density as well as the QW symmetry, we can fine tune the cyclotron and subband separation energies, so that Landau levels (LLs) belonging to different subbands cross at the Fermi energy EF. The additional subband degree of freedom enables us to study different quantum phases. Magneto-transport measurements at fixed electron density n and various QW symmetries reveal a remarkable pattern for the appearance and disappearance of fractional quantum Hall (FQH) states at LL filling factors nu = 10/3, 11/3, 13/3, 14/3, 16/3, and 17/3. These q/3 states are stable and strong as long as EF lies in a ground-state (N = 0) LL, regardless of whether that level belongs to the symmetric or the anti-symmetric subband. We also observe subtle and distinct evolutions near filling factors nu = 5/2 and 7/2, as we change the density n, or the symmetry of the charge distribution. The even-denominator FQH states are observed at nu = 5/2, 7/2, 9/2 and 11/2 when EF lies in the N= 1 LLs of the symmetric subband (the S1 levels). As we increase n, the nu = 5/2 FQH state suddenly disappears and turns into a compressible state once EF moves to the spin-up, N = 0, anti-symmetric LL (the A0 ↑ level). The sharpness of this disappearance suggests a first-order transition from a FQH to a compressible state. Moreover, thanks to the renormalization of the susbband energy separation in a well with asymmetric change distribution, two LLs can get pinned to each other when they are crossing at E F. We observe a remarkable consequence of such pinning: There is a developing FQH state when the LL filling factor of the symmetric subband nuS equals 5/2 while the antisymmetric subband has filling 1 < nuA <2. Next, we study the evolution of the nu=5/2 and 7/2 FQH

  20. Spin injection in self-assembled quantum dots coupled with a diluted magnetic quantum well

    International Nuclear Information System (INIS)

    Murayama, A.; Asahina, T.; Souma, I.; Koyama, T.; Hyomi, K.; Nishibayashi, K.; Oka, Y.

    2007-01-01

    Spin injection is studied in self-assembled quantum dots (QDs) of CdSe coupled with a diluted magnetic semiconductor quantum well (DMS-QW) of Zn 1- x - y Cd x Mn y Se, by means of time-resolved circularly polarized photoluminescence (PL). Excitonic PL from the CdSe QDs shows σ - -circular polarization in magnetic fields, mainly due to negative g-values of individual dots, when the energy difference of excitons between the QDs and DMS-QW is large as 300 meV. However, when such energy difference is comparable with LO-phonon energy in the QD, we observe an additional PL peak with the long lifetime as 3.5 ns and σ + -polarization in magnetic fields. It can be attributed to a type-II transition between the down-spin electron injected from the DMS-QW into the QDs, via LO-phonon-assisted resonant tunneling, and the down-spin heavy hole in the DMS-QW. In addition, the electron spin-injection is also evidenced by σ + -polarized PL with the fast rise-time of 20 ps in the QDs

  1. Strong coupling and polariton lasing in Te based microcavities embedding (Cd,Zn)Te quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Rousset, J.-G., E-mail: j-g.rousset@fuw.edu.pl; Piętka, B.; Król, M.; Mirek, R.; Lekenta, K.; Szczytko, J.; Borysiuk, J.; Suffczyński, J.; Kazimierczuk, T.; Goryca, M.; Smoleński, T.; Kossacki, P.; Nawrocki, M.; Pacuski, W. [Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL-02-093 Warszawa (Poland)

    2015-11-16

    We report on properties of an optical microcavity based on (Cd,Zn,Mg)Te layers and embedding (Cd,Zn)Te quantum wells. The key point of the structure design is the lattice matching of the whole structure to MgTe, which eliminates the internal strain and allows one to embed an arbitrary number of unstrained quantum wells in the microcavity. We evidence the strong light-matter coupling regime already for the structure containing a single quantum well. Embedding four unstrained quantum wells results in further enhancement of the exciton-photon coupling and the polariton lasing in the strong coupling regime.

  2. Direct observation of free-exciton thermalization in quantum-well structures

    DEFF Research Database (Denmark)

    Umlauff, M.; Hoffmann, J.; Kalt, H.

    1998-01-01

    We report on a direct observation of free-exciton thermalization in quantum-well structures. A narrow energy distribution of free 1s excitons is created in ZnSe-based quantum wells by emission of one LO phonon after optical excitation of the continuum stales with picosecond laser pulses. The subs......We report on a direct observation of free-exciton thermalization in quantum-well structures. A narrow energy distribution of free 1s excitons is created in ZnSe-based quantum wells by emission of one LO phonon after optical excitation of the continuum stales with picosecond laser pulses...

  3. Non-square quantum well growth for reduced threshold current in ...

    African Journals Online (AJOL)

    This paper presents calculations demonstrating that non-square quantum well growth (well shaping) can result in reduced threshold current for tensilely strained quantum well bipolar diode lasers operating at 1.52ìm m. Calculations of subband structure, optical matrix elements and laser gain are performed for arbitrarily ...

  4. Coherent Transport in a Linear Triple Quantum Dot Made from a Pure-Phase InAs Nanowire.

    Science.gov (United States)

    Wang, Ji-Yin; Huang, Shaoyun; Huang, Guang-Yao; Pan, Dong; Zhao, Jianhua; Xu, H Q

    2017-07-12

    A highly tunable linear triple quantum dot (TQD) device is realized in a single-crystalline pure-phase InAs nanowire using a local finger gate technique. The electrical measurements show that the charge stability diagram of the TQD can be represented by three kinds of current lines of different slopes and a simulation performed based on a capacitance matrix model confirms the experiment. We show that each current line observable in the charge stability diagram is associated with a case where a QD is on resonance with the Fermi level of the source and drain reservoirs. At a triple point where two current lines of different slopes move together but show anticrossing, two QDs are on resonance with the Fermi level of the reservoirs. We demonstrate that an energetically degenerated quadruple point at which all three QDs are on resonance with the Fermi level of the reservoirs can be built by moving two separated triple points together via sophistically tuning of energy levels in the three QDs. We also demonstrate the achievement of direct coherent electron transfer between the two remote QDs in the TQD, realizing a long-distance coherent quantum bus operation. Such a long-distance coherent coupling could be used to investigate coherent spin teleportation and superexchange effects and to construct a spin qubit with an improved long coherent time and with spin state detection solely by sensing the charge states.

  5. Electronic structure properties of the In(Ga)As/GaAs quantum dot–quantum well tunnel-injection system

    International Nuclear Information System (INIS)

    Sęk, Grzegorz; Andrzejewski, Janusz; Ryczko, Krzysztof; Poloczek, Przemysław; Misiewicz, Jan; Semenova, Elizaveta S; Lemaitre, Aristide; Patriarche, Gilles; Ramdane, Aberrahim

    2009-01-01

    We report on the electronic properties of GaAs-substrate-based structures designed as a tunnel-injection system composed of self-assembled InAs quantum dots and an In 0.3 Ga 0.7 As quantum well separated by a GaAs barrier. We have performed photoluminescence and photoreflectance measurements which have allowed the determination of the optical transitions in the QW–QD tunnel structure and its respective references with just quantum dots or a quantum well. The effective mass calculations of the band structure dependence on the tunnelling barrier thickness have shown that in spite of an expected significant tunnelling between both parts of the system, its strong asymmetry and the strain distribution cause that the quantum-mechanical-coupling-induced energy shift of the optical transitions is almost negligible for the lowest energy states and weakly sensitive to the width of the barrier, which finds confirmation in the existing experimental data

  6. High-efficiency optical pumping of nuclear polarization in a GaAs quantum well

    Science.gov (United States)

    Mocek, R. W.; Korenev, V. L.; Bayer, M.; Kotur, M.; Dzhioev, R. I.; Tolmachev, D. O.; Cascio, G.; Kavokin, K. V.; Suter, D.

    2017-11-01

    The dynamic polarization of nuclear spins by photoexcited electrons is studied in a high quality GaAs/AlGaAs quantum well. We find a surprisingly high efficiency of the spin transfer from the electrons to the nuclei as reflected by a maximum nuclear field of 0.9 T in a tilted external magnetic field of 1 T strength only. This high efficiency is due to a low leakage of spin out of the polarized nuclear system, because mechanisms of spin relaxation other than the hyperfine interaction are strongly suppressed, leading to a long nuclear relaxation time of up to 1000 s. A key ingredient to that end is the low impurity concentration inside the heterostructure, while the electrostatic potential from charged impurities in the surrounding barriers becomes screened through illumination by which the spin relaxation time is increased compared to keeping the system in the dark. This finding indicates a strategy for obtaining high nuclear spin polarization as required for long-lasting carrier spin coherence.

  7. The Double-Well Potential in Quantum Mechanics: A Simple, Numerically Exact Formulation

    Science.gov (United States)

    Jelic, V.; Marsiglio, F.

    2012-01-01

    The double-well potential is arguably one of the most important potentials in quantum mechanics, because the solution contains the notion of a state as a linear superposition of "classical" states, a concept which has become very important in quantum information theory. It is therefore desirable to have solutions to simple double-well potentials…

  8. Collective Behavior of a Spin-Aligned Gas of Interwell Excitons in Double Quantum Wells

    DEFF Research Database (Denmark)

    Larionov, A. V.; Bayer, M.; Hvam, Jørn Märcher

    2005-01-01

    The kinetics of a spin-aligned gas of interwell excitons in GaAs/AlGaAs double quantum wells (n–i–n heterostructure) is studied. The temperature dependence of the spin relaxation time for excitons, in which a photoexcited electron and hole are spatially separated between two adjacent quantum wells...

  9. Analytic methods for field induced tunneling in quantum wells

    Indian Academy of Sciences (India)

    Analytic methods for field induced tunneling in quantum wells with arbitrary potential profiles ... Electric field induced tunneling is studied in three different types of quantum wells by solving time-independent effective mass ... Current Issue : Vol.

  10. Electroreflectance investigations of quantum confined Stark effect in GaN quantum wells

    International Nuclear Information System (INIS)

    Drabinska, A; Pakula, K; Baranowski, J M; Wysmolek, A

    2010-01-01

    In this paper we present room temperature electroreflectance studies of GaN quantum wells (QWs) with different well width. The electroreflectance measurements were performed with external voltage applied to the structure therefore it was possible to tune the electric field inside QW up to its completely screening and furthermore even reversing it. The analysis of QW spectral lines showed the Stark shift dependence on applied voltage and well width reaching about 35 meV for highest voltage and widest well width. It was possible to obtain the condition of zero electric field in QW. Both broadening and amplitude of QW lines are minimal for zero electric field and increases for increasing electric field in QW. The energy transition is maximum for zero electric field and for increasing electric field it decreases due to Stark effect. Neither amplitude and broadening parameter nor energy transition does not depend on the direction of electric field. Only parameter that depends on the direction of electric field in QW is phase of the signal. The analysis of Franz-Keldysh oscillations (FKOs) from AlGaN barriers allowed to calculate the real electric field dependence on applied voltage and therefore to obtain the Stark shift dependence on electric field. The Stark shift reached from -12 meV to -35 meV for 450 kV/cm depending on the well width. This conditions were established for highest forward voltages therefore this is the value of electric field and Stark shift caused only by the intrinsic polarization of nitrides.

  11. Quantum square-well with logarithmic central spike

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav; Semorádová, Iveta

    2018-01-01

    Roč. 33, č. 2 (2018), č. článku 1850009. ISSN 0217-7323 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : state-dependence of interactions * effective Hamiltonians * logarithmic nonlinearities * linearized quantum toy model Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics ( physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 1.165, year: 2016

  12. Attachment comes of age: adolescents' narrative coherence and reflective functioning predict well-being in emerging adulthood.

    Science.gov (United States)

    Borelli, Jessica L; Brugnera, Agostino; Zarbo, Cristina; Rabboni, Massimo; Bondi, Emi; Tasca, Giorgio A; Compare, Angelo

    2018-06-04

    This study investigated the effects of adolescents' attachment security and reflective functioning (RF) (assessed by the adult attachment interview [AAI]) in the prediction of well-being in adulthood. Adolescents (N = 79; M = 14.6 years old; SD = 3.5 years) completed the AAI at Time 1 (T1), which was subsequently coded for inferred attachment experiences, narrative coherence, and RF by three nonoverlapping teams of raters. Participants completed the Psychological General Well-being Index at T1 and 8 years later (Time 2, T2). Analyses showed that (a) both adolescent narrative coherence and RF were significant predictors of almost all indices of well-being at T2 in adulthood; (b) both narrative coherence and RF indirectly linked inferred loving parental care and T2 well-being; (c) when included in the same model, RF was a significant indirect effect linking inferred loving parental care and T2 well-being. These findings contribute to theory in suggesting that both RF and narrative coherence are predictive of subsequent psychological well-being and operate as links between inferred parental care and subsequent adjustment. Possible mechanisms underlying these findings are discussed.

  13. Cardiac Coherence, Self-Regulation, Autonomic Stability and Psychosocial Well-being

    Directory of Open Access Journals (Sweden)

    Rollin eMcCraty

    2014-09-01

    Full Text Available The ability to alter one’s emotional responses is central to overall well-being and to effectively meeting the demands of life. One of the chief symptoms of events such as trauma, that overwhelm our capacities to successfully handle and adapt to them, is a shift in our internal baseline reference such that there ensues a repetitive activation of the traumatic event. This can result in high vigilance and over-sensitivity to environmental signals which are reflected in inappropriate emotional responses and autonomic nervous system dynamics. In this article we discuss the perspective that one’s ability to self-regulate the quality of feeling and emotion of one’s moment-to-moment experience is intimately tied to our physiology, and the reciprocal interactions among physiological, cognitive and emotional systems. These interactions form the basis of information processing networks in which communication between systems occurs through the generation and transmission of rhythms and patterns of activity. Our discussion emphasizes the communication pathways between the heart and brain, as well as how these are related to cognitive and emotional function and self-regulatory capacity. We discuss the hypothesis that self-induced positive emotions increase the coherence in bodily processes, which is reflected in the pattern of the heart’s rhythm. This shift in the heart rhythm in turn plays an important role in facilitating higher cognitive functions, creating emotional stability and facilitating states of calm. Over time, this establishes a new inner-baseline reference, a type of implicit memory that organizes perception, feelings and behavior. Without establishing a new baseline reference, people are at risk of getting stuck in familiar, yet unhealthy emotional and behavioral patterns and living their lives through the automatic filters of past familiar or traumatic experience.

  14. Propagator formalism and computer simulation of restricted diffusion behaviors of inter-molecular multiple-quantum coherences

    International Nuclear Information System (INIS)

    Cai Congbo; Chen Zhong; Cai Shuhui; Zhong Jianhui

    2005-01-01

    In this paper, behaviors of single-quantum coherences and inter-molecular multiple-quantum coherences under restricted diffusion in nuclear magnetic resonance experiments were investigated. The propagator formalism based on the loss of spin phase memory during random motion was applied to describe the diffusion-induced signal attenuation. The exact expression of the signal attenuation under the short gradient pulse approximation for restricted diffusion between two parallel plates was obtained using this propagator method. For long gradient pulses, a modified formalism was proposed. The simulated signal attenuation under the effects of gradient pulses of different width based on the Monte Carlo method agrees with the theoretical predictions. The propagator formalism and computer simulation can provide convenient, intuitive and precise methods for the study of the diffusion behaviors

  15. Design and Fabrication of Multi Quantum well based GaN/InGaN Blue LED

    Science.gov (United States)

    Meel, K.; Mahala, P.; Singh, S.

    2018-03-01

    This paper presents the optimization of the multi-quantum well based Light Emitting Diode (LED) structure. We investigate the electrical and optical properties of the device on several factors like well width, barrier width, the number of quantum wells and then optimize the structure. The device is optimized for a well width and barrier width of 3nm and 6nm respectively, consisting of five quantum wells. Simulations were carried out using Silvaco ATLAS TCAD simulation program (Silvaco International, USA). The optimized structure was grown by MOCVD and fabricated. The I-V characteristic was also measured.

  16. Multicultural identity integration and well-being: a qualitative exploration of variations in narrative coherence and multicultural identification.

    Science.gov (United States)

    Yampolsky, Maya A; Amiot, Catherine E; de la Sablonnière, Roxane

    2013-01-01

    Understanding the experiences of multicultural individuals is vital in our diverse populations. Multicultural people often need to navigate the different norms and values associated with their multiple cultural identities. Recent research on multicultural identification has focused on how individuals with multiple cultural groups manage these different identities within the self, and how this process predicts well-being. The current study built on this research by using a qualitative method to examine the process of configuring one's identities within the self. The present study employed three of the four different multiple identity configurations in Amiot et al. (2007) cognitive-developmental model of social identity integration: categorization, where people identify with one of their cultural groups over others; compartmentalization, where individuals maintain multiple, separate identities within themselves; and integration, where people link their multiple cultural identities. Life narratives were used to investigate the relationship between each of these configurations and well-being, as indicated by narrative coherence. It was expected that individuals with integrated cultural identities would report greater narrative coherence than individuals who compartmentalized and categorized their cultural identities. For all twenty-two participants, identity integration was significantly and positively related to narrative coherence, while compartmentalization was significantly and negatively related to narrative coherence. ANOVAs revealed that integrated and categorized participants reported significantly greater narrative coherence than compartmentalized participants. These findings are discussed in light of previous research on multicultural identity integration.

  17. A quantum chaotic clock and damping of the coherent nuclear rotation in the 28Si+64Ni dissipative collision

    International Nuclear Information System (INIS)

    Kun, S.Y.; Vagov, A.V.

    1997-01-01

    We employ the statistical reactions with memory approach to study oscillating excitation functions in the 28 Si(E lab =120-126.75 MeV)+ 64 Ni strongly dissipative reaction and the time evolution of the collision process. The nonself-averaging of the oscillations in the excitation functions is interpreted as indication of quantum chaos and damping of the coherent nuclear rotation in dissipative heavy-ion collisions. (orig.)

  18. Intercept-resend attacks in the Bennett-Brassard 1984 quantum-key-distribution protocol with weak coherent pulses

    International Nuclear Information System (INIS)

    Curty, Marcos; Luetkenhaus, Norbert

    2005-01-01

    Unconditional security proofs of the Bennett-Brassard 1984 protocol of quantum key distribution have been obtained recently. These proofs cover also practical implementations that utilize weak coherent pulses in the four signal polarizations. Proven secure rates leave open the possibility that new proofs or new public discussion protocols will obtain larger rates over increased distance. In this paper we investigate limits to the error rate and signal losses that can be tolerated by future protocols and proofs

  19. Low field Monte-Carlo calculations in heterojunctions and quantum wells

    NARCIS (Netherlands)

    Hall, van P.J.; Rooij, de R.; Wolter, J.H.

    1990-01-01

    We present results of low-field Monte-Carlo calculations and compare them with experimental results. The negative absolute mobility of minority electrons in p-type quantum wells, as found in recent experiments, is described quite well.

  20. The over-barrier resonant states and multi-channel scattering by a quantum well

    Directory of Open Access Journals (Sweden)

    Alexander F. Polupanov

    2008-06-01

    Full Text Available We demonstrate an explicit numerical method for accurate calculation ofthe analytic continuation of the scattering matrix, describing the multichannelscattering by a quantum well, to the unphysical region of complexvalues of the energy. Results of calculations show that one or severalpoles of the S-matrix exist, corresponding to the over-barrier resonantstates that are critical for the effect of the absolute reflection at scatteringof the heavy hole by a quantum well in the energy range where only theheavy hole may propagate over barriers in a quantum-well structure.Light- and heavy-hole states are described by the Luttinger Hamiltonianmatrix. The qualitative behaviour of the over-barrier scattering andresonant states is the same at variation of the shape of the quantum-wellpotential, however lifetimes of resonant states depend drastically on theshape and depth of a quantum well.