WorldWideScience

Sample records for quantum wave packet

  1. Quantum wave packet revivals

    International Nuclear Information System (INIS)

    Robinett, R.W.

    2004-01-01

    The numerical prediction, theoretical analysis, and experimental verification of the phenomenon of wave packet revivals in quantum systems has flourished over the last decade and a half. Quantum revivals are characterized by initially localized quantum states which have a short-term, quasi-classical time evolution, which then can spread significantly over several orbits, only to reform later in the form of a quantum revival in which the spreading reverses itself, the wave packet relocalizes, and the semi-classical periodicity is once again evident. Relocalization of the initial wave packet into a number of smaller copies of the initial packet ('minipackets' or 'clones') is also possible, giving rise to fractional revivals. Systems exhibiting such behavior are a fundamental realization of time-dependent interference phenomena for bound states with quantized energies in quantum mechanics and are therefore of wide interest in the physics and chemistry communities. We review the theoretical machinery of quantum wave packet construction leading to the existence of revivals and fractional revivals, in systems with one (or more) quantum number(s), as well as discussing how information on the classical period and revival time is encoded in the energy eigenvalue spectrum. We discuss a number of one-dimensional model systems which exhibit revival behavior, including the infinite well, the quantum bouncer, and others, as well as several two-dimensional integrable quantum billiard systems. Finally, we briefly review the experimental evidence for wave packet revivals in atomic, molecular, and other systems, and related revival phenomena in condensed matter and optical systems

  2. Revivals of Quantum Wave Packets

    OpenAIRE

    Bluhm, Robert; Kostelecky, Alan; Porter, James; Tudose, Bogdan

    1997-01-01

    We present a generic treatment of wave-packet revivals for quantum-mechanical systems. This treatment permits a classification of certain ideal revival types. For example, wave packets for a particle in a one-dimensional box are shown to exhibit perfect revivals. We also examine the revival structure of wave packets for quantum systems with energies that depend on two quantum numbers. Wave packets in these systems exhibit quantum beats in the initial motion as well as new types of long-term r...

  3. Dynamics of quantum wave packets

    International Nuclear Information System (INIS)

    Gosnell, T.R.; Taylor, A.J.; Rodriguez, G.; Clement, T.S.

    1998-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to develop ultrafast laser techniques for the creation and measurement of quantum vibrational wave packets in gas phase diatomic molecules. Moreover, the authors sought to manipulate the constitution of these wave packets in terms of harmonic-oscillator basis wavefunctions by manipulating the time-dependent amplitude and phase of the incident ultrashort laser pulse. They specifically investigated gaseous diatomic potassium (K 2 ), and discovered variations in the shape of the wave packets as a result of changing the linear chirp in the ultrashort preparation pulse. In particular, they found evidence for wave-packet compression for a specific degree of chirp. Important ancillary results include development of new techniques for denoising and deconvolution of femtosecond time traces and techniques for diagnosing the phase and amplitude of the electric field of femtosecond laser pulses

  4. The Evolution and Revival Structure of Localized Quantum Wave Packets

    OpenAIRE

    Bluhm, Robert; Kostelecky, Alan; Porter, James

    1995-01-01

    Localized quantum wave packets can be produced in a variety of physical systems and are the subject of much current research in atomic, molecular, chemical, and condensed-matter physics. They are particularly well suited for studying the classical limit of a quantum-mechanical system. The motion of a localized quantum wave packet initially follows the corresponding classical motion. However, in most cases the quantum wave packet spreads and undergoes a series of collapses and revivals. We pre...

  5. Wave-packet revivals for quantum systems with nondegenerate energies

    International Nuclear Information System (INIS)

    Bluhm, R.; Tudose, B.

    1996-01-01

    The revival structure of wave packets is examined for quantum systems having energies that depend on two nondegenerate quantum numbers. For such systems, the evolution of the wave packet is controlled by two classical periods and three revival times. These wave packets exhibit quantum beats in the initial motion as well as new types of long-term revivals. The issue of whether fractional revivals can form is addressed. We present an analytical proof showing that at certain times equal to rational fractions of the revival times the wave packet can reform as a sum of subsidiary waves and that both conventional and new types of fractional revivals can occur. (orig.)

  6. Do Free Quantum-Mechanical Wave Packets Always Spread?

    Science.gov (United States)

    Klein, James R.

    1980-01-01

    The spreading or shrinking of free three-dimensional quantum-mechanical wave packets is addressed. A seeming paradox concerning the time evolution operator and nonspreading wave packets is discussed, and the necessity of taking into account the appropriate mathematical structure of quantum mechanics is emphasized. Teaching implications are given.…

  7. Revivals of quantum wave packets in graphene

    International Nuclear Information System (INIS)

    Krueckl, Viktor; Kramer, Tobias

    2009-01-01

    We investigate the propagation of wave packets on graphene in a perpendicular magnetic field and the appearance of collapses and revivals in the time evolution of an initially localized wave packet. The wave-packet evolution in graphene differs drastically from the one in an electron gas and shows a rich revival structure similar to the dynamics of highly excited Rydberg states. We present a novel numerical wave-packet propagation scheme in order to solve the effective single-particle Dirac-Hamiltonian of graphene and show how the collapse and revival dynamics is affected by the presence of disorder. Our effective numerical method is of general interest for the solution of the Dirac equation in the presence of potentials and magnetic fields.

  8. Wave packet construction in three-dimensional quantum billiards

    Indian Academy of Sciences (India)

    We examine the dynamical evolution of wave packets in a cubical billiard where three quantum numbers (, , ) determine its energy spectrum and consequently its dynamical behaviour. We have constructed the wave packet in the cubical billiard and have observed its time evolution for various closed orbits.

  9. Observation of moving wave packets reveals their quantum state

    International Nuclear Information System (INIS)

    Leonhardt, U.; Raymer, M.G.

    1996-01-01

    We show how to infer the quantum state of a wave packet from position probability distributions measured during the packet close-quote s motion in an arbitrary potential. We assume a nonrelativistic one-dimensional or radial wave packet. Temporal Fourier transformation and spatial sampling with respect to a newly found set of functions project the density-matrix elements out of the probability distributions. The sampling functions are derivatives of products of regular and irregular wave functions. We note that the ability to infer quantum states in this way depends on the structure of the Schroedinger equation. copyright 1996 The American Physical Society

  10. revivals of Rydberg wave packets

    International Nuclear Information System (INIS)

    Bluhm, R.; Kostelecky, V.A.; Tudose, B.

    1998-01-01

    We examine the revival structure of Rydberg wave packets. The effects of quantum defects on wave packets in alkali-metal atoms and a squeezed-state description of the initial wave packets are also described. We then examine the revival structure of Rydberg wave packets in the presence of an external electric field, i.e., the revival structure of Stark wave packets. These wave packets have energies that depend on two quantum numbers and exhibit new types of interference behaviour

  11. Wave-packet dynamics in quantum wells

    DEFF Research Database (Denmark)

    Kuznetsov, A. V.; Sanders, G. D.; Stanton, C. J.

    1995-01-01

    It has been recently recognized that in bulk semiconductors the displacement current caused by ultrafast optical generation of ''polarized pairs'' in the applied de field is an important mechanism of charge transport in addition to the usual transport current. In quantum-well systems, this polari......It has been recently recognized that in bulk semiconductors the displacement current caused by ultrafast optical generation of ''polarized pairs'' in the applied de field is an important mechanism of charge transport in addition to the usual transport current. In quantum-well systems...... that the carriers in a quantum well can behave as an ensemble of classical particles and produce a transport like photocurrent....

  12. Wave packets in quantum cosmology and the cosmological constant

    International Nuclear Information System (INIS)

    Kiefer, C.

    1990-01-01

    Wave packets are constructed explicitly in minisuperspace of quantum gravity corresponding to a Friedmann universe containing a conformally coupled scalar field with and without a cosmological constant. The construction is performed in close analogy to the case of constructing coherent states in quantum mechanics. Various examples are also depicted numerically. The corresponding lorentzian path integrals are evaluated for some cases. It is emphasized that the new concept of time in quantum gravity demands the imposition of a kind of boundary conditions not encountered in quantum gravity demands the imposition of a kind of boundary conditions not encountered in quantum mechanics. Connection is also made to recent investigations predicting a vanishing cosmological constant. It is shown that the fact of whether this result is generic or not depends on where the boundary conditions are imposed in the configuration space. (orig.)

  13. Quantum wave packet study of D+OF reaction

    International Nuclear Information System (INIS)

    Kurban, M.; Karabulut, E.; Tutuk, R.; Goektas, F.

    2010-01-01

    The quantum dynamics of the D+OF reaction on the adiabatic potential energy surface of the ground 1 3 A ' state has been studied by using a time-dependent quantum real wave packet method. The state-to-state and state-to-all reaction probabilities for total angular momentum J = 0 have been calculated. The probabilities for J > 0 have been calculated by J-shifting the J = 0 results by means of capture model. Then, the integral cross sections and initial state selected rate constants have been calculated. The initial state-selected reaction probabilities and reaction cross section show threshold but not manifest any resonances and the initial state selected rate constants are sensitive to the temperature.

  14. Revivals of Rydberg wave packets

    International Nuclear Information System (INIS)

    Bluhm, R.; Kostelecky, V.A.; Tudose, B.

    1998-01-01

    We examine the revival structure of Rydberg wave packets. These wave packets exhibit initial classical periodic motion followed by a sequence of collapse, fractional (or full) revivals, and fractional (or full) superrevivals. The effects of quantum defects on wave packets in alkali-metal atoms and a squeezed-state description of the initial wave packets are also considered. We then examine the revival structure of Rydberg wave packets in the presence of an external electric field - that is, the revival structure of Stark wave packets. These wave packets have energies that depend on two quantum numbers and exhibit new types of interference behavior

  15. Quantum wave packet revival in two-dimensional circular quantum wells with position-dependent mass

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Alexandre G.M. [Departamento de Ciencias Exatas, Polo Universitario de Volta Redonda-Universidade Federal Fluminense, Av. dos Trabalhadores 420, Volta Redonda RJ, CEP 27255-125 (Brazil)], E-mail: agmschmidt@gmail.com; Azeredo, Abel D. [Departamento de Fisica-Universidade Federal de Roraima, Av. Cap. Ene Garcez 2413, Boa Vista RR, CEP 69304-000 (Brazil)], E-mail: aazeredo@gmail.com; Gusso, A. [Departamento de Ciencias Exatas e Tecnologicas-Universidade Estadual de Santa Cruz, km 16 Rodovia Ilheus-Itabuna, Ilheus BA, CEP 45662-000 (Brazil)], E-mail: agusso@uesc.br

    2008-04-14

    We study quantum wave packet revivals on two-dimensional infinite circular quantum wells (CQWs) and circular quantum dots with position-dependent mass (PDM) envisaging a possible experimental realization. We consider CQWs with radially varying mass, addressing particularly the cases where M(r){proportional_to}r{sup w} with w=1,2, or -2. The two PDM Hamiltonians currently allowed by theory were analyzed and we were able to construct a strong theoretical argument favoring one of them.

  16. Quantum wave packet revival in two-dimensional circular quantum wells with position-dependent mass

    International Nuclear Information System (INIS)

    Schmidt, Alexandre G.M.; Azeredo, Abel D.; Gusso, A.

    2008-01-01

    We study quantum wave packet revivals on two-dimensional infinite circular quantum wells (CQWs) and circular quantum dots with position-dependent mass (PDM) envisaging a possible experimental realization. We consider CQWs with radially varying mass, addressing particularly the cases where M(r)∝r w with w=1,2, or -2. The two PDM Hamiltonians currently allowed by theory were analyzed and we were able to construct a strong theoretical argument favoring one of them

  17. Quantum wave-packet revivals in circular billiards

    International Nuclear Information System (INIS)

    Robinett, R.W.; Heppelmann, S.

    2002-01-01

    We examine the long-term time dependence of Gaussian wave packets in a circular infinite well (billiard) system and find that there are approximate revivals. For the special case of purely m=0 states (central wave packets with no momentum) the revival time is T rev (m=0) =8μR 2 /(ℎ/2π)π, where μ is the mass of the particle, and the revivals are almost exact. For all other wave packets, we find that T rev (m≠0) =(π 2 /2)T rev (m=0) ≅5T rev (m=0) and the nature of the revivals becomes increasingly approximate as the average angular momentum or number of m≠0 states is increased. The dependence of the revival structure on the initial position, energy, and angular momentum of the wave packet and the connection to the energy spectrum is discussed in detail. The results are also compared to two other highly symmetrical two-dimensional infinite well geometries with exact revivals, namely, the square and equilateral triangle billiards. We also show explicitly how the classical periodicity for closed orbits in a circular billiard arises from the energy eigenvalue spectrum, using a WKB analysis

  18. Quantum chaos induced by nonadiabatic coupling in wave-packet dynamics

    International Nuclear Information System (INIS)

    Higuchi, Hisashi; Takatsuka, Kazuo

    2002-01-01

    The effect of nonadiabatic coupling due to breakdown of the Born-Oppenheimer approximation on chaos is investigated. A couple of measures (indicators) that detect the extent of chaos in wave-packet dynamics on coupled potential functions are devised. Using them, we show that chaos is indeed induced by a nonadiabatic coupling in individual time-dependent wave-packet dynamics. This chaos is genuinely of quantum nature, since it arises from bifurcation and merging of a wave packet at the quasicrossing region of two coupled potential functions

  19. Apocrypha of standard scattering theory (SST) and quantum mechanics of the de Broglie wave packet

    International Nuclear Information System (INIS)

    Ignatovich, V.K.

    2001-01-01

    It is shown that the Standard Scattering Theory (SST) does not correspond to the principles of Standard Quantum Mechanics (SQM). A more consistent theory is formulated. Some new results are obtained. Reflection and transmission of the de Broglie wave packet by thin layers of matter is considered

  20. Numerical study of the time evolution of a wave packet in quantum mechanics

    International Nuclear Information System (INIS)

    Segura, J.; Fernandez de Cordoba, P.

    1993-01-01

    We solve the Schrodinger equation in order to study the time evolution of a wave packet in different situations of physical interest. This work illustrates, with pedagogical aim, some quantum phenomena which shock our classical conception of the universe: propagation in classically forbidden regions, energy quantization. (Author)

  1. On the Quantum Potential and Pulsating Wave Packet in the Harmonic Oscillator

    International Nuclear Information System (INIS)

    Dubois, Daniel M.

    2008-01-01

    A fundamental mathematical formalism related to the Quantum Potential factor, Q, is presented in this paper. The Schroedinger equation can be transformed to two equations depending on a group velocity and a density of presence of the particle. A factor, in these equations, was called ''Quantum Potential'' by D. Bohm and B. Hiley. In 1999, I demonstrated that this Quantum Potential, Q, can be split in two Quantum Potentials, Q 1 , and Q 2 , for which the relation, Q=Q 1 +Q 2 , holds. These two Quantum Potentials depend on a fundamental new variable, what I called a phase velocity, u, directly related to the probability density of presence of the wave-particle, given by the modulus of the wave function. This paper gives some further developments for explaining the Quantum Potential for oscillating and pulsating Gaussian wave packets in the Harmonic Oscillator. It is shown that the two Quantum Potentials play a central role in the interpretation of quantum mechanics. A breakthrough in the formalism of the Quantum Mechanics could be provoked by the physical properties of these Quantum Potentials. The probability density of presence of the oscillating and pulsating Gaussian wave packets in the Harmonic Oscillator is directly depending on the ratio Q 2 /Q 1 of the two Quantum Potentials. In the general case, the energy of these Gaussian wave packets is not constant, but is oscillating. The energy is given by the sum of the kinetic energy, T, the potential energy, V, and the two Quantum Potentials: E=T+V+Q 1 +Q 2 . For some conditions, given in the paper, the energy can be a constant. The first remarkable result is the fact that the first Quantum Potential, Q 1 , is related to the ground state energy, E 0 , of the Quantum Harmonic Oscillator: Q 1 =h-bar ω/2=E 0 . The second result is related to the property of the second Quantum Potential, Q 2 , which plays the role of an anti-potential, Q 2 =-V(x), where V is the harmonic oscillator potential. This Quantum Potential

  2. Strong quantum violation of the gravitational weak equivalence principle by a non-Gaussian wave packet

    International Nuclear Information System (INIS)

    Chowdhury, P; Majumdar, A S; Sinha, S; Home, D; Mousavi, S V; Mozaffari, M R

    2012-01-01

    The weak equivalence principle of gravity is examined at the quantum level in two ways. First, the position detection probabilities of particles described by a non-Gaussian wave packet projected upwards against gravity around the classical turning point and also around the point of initial projection are calculated. These probabilities exhibit mass dependence at both these points, thereby reflecting the quantum violation of the weak equivalence principle. Second, the mean arrival time of freely falling particles is calculated using the quantum probability current, which also turns out to be mass dependent. Such a mass dependence is shown to be enhanced by increasing the non-Gaussianity parameter of the wave packet, thus signifying a stronger violation of the weak equivalence principle through a greater departure from Gaussianity of the initial wave packet. The mass dependence of both the position detection probabilities and the mean arrival time vanishes in the limit of large mass. Thus, compatibility between the weak equivalence principle and quantum mechanics is recovered in the macroscopic limit of the latter. A selection of Bohm trajectories is exhibited to illustrate these features in the free fall case. (paper)

  3. Quantum spreading of a self-gravitating wave-packet in singularity free gravity

    Energy Technology Data Exchange (ETDEWEB)

    Buoninfante, Luca [Universita di Salerno, Dipartimento di Fisica ' ' E.R. Caianiello' ' , Fisciano (Italy); INFN-Sezione di Napoli, Gruppo Collegato di Salerno, Fisciano (Italy); University of Groningen, Van Swinderen Institute, Groningen (Netherlands); Lambiase, Gaetano [Universita di Salerno, Dipartimento di Fisica ' ' E.R. Caianiello' ' , Fisciano (Italy); INFN-Sezione di Napoli, Gruppo Collegato di Salerno, Fisciano (Italy); Mazumdar, Anupam [University of Groningen, Van Swinderen Institute, Groningen (Netherlands); University of Groningen, Kapteyn Astronomical Institute, Groningen (Netherlands)

    2018-01-15

    In this paper we will study for the first time how the wave-packet of a self-gravitating meso-scopic system spreads in theories beyond Einstein's general relativity. In particular, we will consider a ghost-free infinite derivative gravity, which resolves the 1/r singularity in the potential - such that the gradient of the potential vanishes within the scale of non-locality. We will show that a quantum wave-packet spreads faster for a ghost-free and singularity-free gravity as compared to the Newtonian case, therefore providing us a unique scenario for testing classical and quantum properties of short-distance gravity in a laboratory in the near future. (orig.)

  4. Quantum spreading of a self-gravitating wave-packet in singularity free gravity

    Science.gov (United States)

    Buoninfante, Luca; Lambiase, Gaetano; Mazumdar, Anupam

    2018-01-01

    In this paper we will study for the first time how the wave-packet of a self-gravitating meso-scopic system spreads in theories beyond Einstein's general relativity. In particular, we will consider a ghost-free infinite derivative gravity, which resolves the 1 / r singularity in the potential - such that the gradient of the potential vanishes within the scale of non-locality. We will show that a quantum wave-packet spreads faster for a ghost-free and singularity-free gravity as compared to the Newtonian case, therefore providing us a unique scenario for testing classical and quantum properties of short-distance gravity in a laboratory in the near future.

  5. Wave packet revivals in a graphene quantum dot in a perpendicular magnetic field

    International Nuclear Information System (INIS)

    Torres, J. J.; Romera, E.

    2010-01-01

    We study the time evolution of localized wave packets in graphene quantum dots in a perpendicular magnetic field, focusing on the quasiclassical and revival periodicities, for different values of the magnetic field intensities in a theoretical framework. We have considered contributions of the two inequivalent points in the Brillouin zone. The revival time has been found as an observable that shows the break valley degeneracy.

  6. Quantum teleportation of nonclassical wave packets: An effective multimode theory

    Energy Technology Data Exchange (ETDEWEB)

    Benichi, Hugo; Takeda, Shuntaro; Lee, Noriyuki; Furusawa, Akira [Department of Applied Physics, University of Tokyo, Tokyo (Japan)

    2011-07-15

    We develop a simple and efficient theoretical model to understand the quantum properties of broadband continuous variable quantum teleportation. We show that, if stated properly, the problem of multimode teleportation can be simplified to teleportation of a single effective mode that describes the input state temporal characteristic. Using that model, we show how the finite bandwidth of squeezing and external noise in the classical channel affect the output teleported quantum field. We choose an approach that is especially relevant for the case of non-Gaussian nonclassical quantum states and we finally back-test our model with recent experimental results.

  7. Quantum dynamics of solid Ne upon photo-excitation of a NO impurity: A Gaussian wave packet approach

    International Nuclear Information System (INIS)

    Unn-Toc, W.; Meier, C.; Halberstadt, N.; Uranga-Piña, Ll.; Rubayo-Soneira, J.

    2012-01-01

    A high-dimensional quantum wave packet approach based on Gaussian wave packets in Cartesian coordinates is presented. In this method, the high-dimensional wave packet is expressed as a product of time-dependent complex Gaussian functions, which describe the motion of individual atoms. It is applied to the ultrafast geometrical rearrangement dynamics of NO doped cryogenic Ne matrices after femtosecond laser pulse excitation. The static deformation of the solid due to the impurity as well as the dynamical response after femtosecond excitation are analyzed and compared to reduced dimensionality studies. The advantages and limitations of this method are analyzed in the perspective of future applications to other quantum solids.

  8. Quantum dynamics of solid Ne upon photo-excitation of a NO impurity: A Gaussian wave packet approach

    Energy Technology Data Exchange (ETDEWEB)

    Unn-Toc, W.; Meier, C.; Halberstadt, N. [Laboratoire Collisions Agregats et Reactivite, IRSAMC, UMR CNRS 5589, Universite Paul Sabatier, 31062 Toulouse (France); Uranga-Pina, Ll. [Laboratoire Collisions Agregats et Reactivite, IRSAMC, UMR CNRS 5589, Universite Paul Sabatier, 31062 Toulouse (France); Facultad de Fisica, Universidad de la Habana, San Lazaro y L, Vedado, 10400 La Habana (Cuba); Rubayo-Soneira, J. [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), Ave. Salvador Allende y Luaces, Habana 10600, AP 6163 La Habana (Cuba)

    2012-08-07

    A high-dimensional quantum wave packet approach based on Gaussian wave packets in Cartesian coordinates is presented. In this method, the high-dimensional wave packet is expressed as a product of time-dependent complex Gaussian functions, which describe the motion of individual atoms. It is applied to the ultrafast geometrical rearrangement dynamics of NO doped cryogenic Ne matrices after femtosecond laser pulse excitation. The static deformation of the solid due to the impurity as well as the dynamical response after femtosecond excitation are analyzed and compared to reduced dimensionality studies. The advantages and limitations of this method are analyzed in the perspective of future applications to other quantum solids.

  9. Controlled Quantum Packets

    Science.gov (United States)

    DeMartino, Salvatore; DeSiena, Silvio

    1996-01-01

    We look at time evolution of a physical system from the point of view of dynamical control theory. Normally we solve motion equation with a given external potential and we obtain time evolution. Standard examples are the trajectories in classical mechanics or the wave functions in Quantum Mechanics. In the control theory, we have the configurational variables of a physical system, we choose a velocity field and with a suited strategy we force the physical system to have a well defined evolution. The evolution of the system is the 'premium' that the controller receives if he has adopted the right strategy. The strategy is given by well suited laboratory devices. The control mechanisms are in many cases non linear; it is necessary, namely, a feedback mechanism to retain in time the selected evolution. Our aim is to introduce a scheme to obtain Quantum wave packets by control theory. The program is to choose the characteristics of a packet, that is, the equation of evolution for its centre and a controlled dispersion, and to give a building scheme from some initial state (for example a solution of stationary Schroedinger equation). It seems natural in this view to use stochastic approach to Quantum Mechanics, that is, Stochastic Mechanics [S.M.]. It is a quantization scheme different from ordinary ones only formally. This approach introduces in quantum theory the whole mathematical apparatus of stochastic control theory. Stochastic Mechanics, in our view, is more intuitive when we want to study all the classical-like problems. We apply our scheme to build two classes of quantum packets both derived generalizing some properties of coherent states.

  10. Wave packet construction in three-dimensional quantum billiards ...

    Indian Academy of Sciences (India)

    E-mail: mannu_711@yahoo.co.in. MS received 14 ... The motivation to extend the study to a three-dimensional (3D) system is .... with a GWP centred around the central value of the principle quantum number n0 instead of a GWP ...... Cubical and parallelepiped billiards are the potential candidates for the creation of arti-.

  11. Quantum solitonic wave-packet of a meso-scopic system in singularity free gravity

    Science.gov (United States)

    Buoninfante, Luca; Lambiase, Gaetano; Mazumdar, Anupam

    2018-06-01

    In this paper we will discuss how to localise a quantum wave-packet due to self-gravitating meso-scopic object by taking into account gravitational self-interaction in the Schrödinger equation beyond General Relativity. In particular, we will study soliton-like solutions in infinite derivative ghost free theories of gravity, which resolves the gravitational 1 / r singularity in the potential. We will show a unique feature that the quantum spread of such a gravitational system is larger than that of the Newtonian gravity, therefore enabling us a window of opportunity to test classical and quantum properties of such theories of gravity in the near future at a table-top experiment.

  12. Quantum wave packet dynamics with trajectories: Implementation with distributed approximating functionals

    International Nuclear Information System (INIS)

    Wyatt, Robert E.; Kouri, Donald J.; Hoffman, David K.

    2000-01-01

    The quantum trajectory method (QTM) was recently developed to solve the hydrodynamic equations of motion in the Lagrangian, moving-with-the-fluid, picture. In this approach, trajectories are integrated for N fluid elements (particles) moving under the influence of both the force from the potential surface and from the quantum potential. In this study, distributed approximating functionals (DAFs) are used on a uniform grid to compute the necessary derivatives in the equations of motion. Transformations between the physical grid where the particle coordinates are defined and the uniform grid are handled through a Jacobian, which is also computed using DAFs. A difficult problem associated with computing derivatives on finite grids is the edge problem. This is handled effectively by using DAFs within a least squares approach to extrapolate from the known function region into the neighboring regions. The QTM-DAF is then applied to wave packet transmission through a one-dimensional Eckart potential. Emphasis is placed upon computation of the transmitted density and wave function. A problem that develops when part of the wave packet reflects back into the reactant region is avoided in this study by introducing a potential ramp to sweep the reflected particles away from the barrier region. (c) 2000 American Institute of Physics

  13. Wave packet interferometry and quantum state reconstruction by acousto-optic phase modulation

    International Nuclear Information System (INIS)

    Tekavec, Patrick F.; Dyke, Thomas R.; Marcus, Andrew H.

    2006-01-01

    Studies of wave packet dynamics often involve phase-selective measurements of coherent optical signals generated from sequences of ultrashort laser pulses. In wave packet interferometry (WPI), the separation between the temporal envelopes of the pulses must be precisely monitored or maintained. Here we introduce a new (and easy to implement) experimental scheme for phase-selective measurements that combines acousto-optic phase modulation with ultrashort laser excitation to produce an intensity-modulated fluorescence signal. Synchronous detection, with respect to an appropriately constructed reference, allows the signal to be simultaneously measured at two phases differing by 90 deg. Our method effectively decouples the relative temporal phase from the pulse envelopes of a collinear train of optical pulse pairs. We thus achieve a robust and high signal-to-noise scheme for WPI applications, such as quantum state reconstruction and electronic spectroscopy. The validity of the method is demonstrated, and state reconstruction is performed, on a model quantum system - atomic Rb vapor. Moreover, we show that our measurements recover the correct separation between the absorptive and dispersive contributions to the system susceptibility

  14. Propagation of arbitrary initial wave packets in a quantum parametric oscillator: Instability zones for higher order moments

    Science.gov (United States)

    Biswas, Subhadip; Chattopadhyay, Rohitashwa; Bhattacharjee, Jayanta K.

    2018-05-01

    We consider the dynamics of a particle in a parametric oscillator with a view to exploring any quantum feature of the initial wave packet that shows divergent (in time) behaviour for parameter values where the classical motion dynamics of the mean position is bounded. We use Ehrenfest's theorem to explore the dynamics of nth order moment which reduces exactly to a linear non autonomous differential equation of order n + 1. It is found that while the width and skewness of the packet is unbounded exactly in the zones where the classical motion is unbounded, the kurtosis of an initially non-gaussian wave packet can become infinitely large in certain additional zones. This implies that the shape of the wave packet can change drastically with time in these zones.

  15. Rotating quantum Gaussian packets

    International Nuclear Information System (INIS)

    Dodonov, V V

    2015-01-01

    We study two-dimensional quantum Gaussian packets with a fixed value of mean angular momentum. This value is the sum of two independent parts: the ‘external’ momentum related to the motion of the packet center and the ‘internal’ momentum due to quantum fluctuations. The packets minimizing the mean energy of an isotropic oscillator with the fixed mean angular momentum are found. They exist for ‘co-rotating’ external and internal motions, and they have nonzero correlation coefficients between coordinates and momenta, together with some (moderate) amount of quadrature squeezing. Variances of angular momentum and energy are calculated, too. Differences in the behavior of ‘co-rotating’ and ‘anti-rotating’ packets are shown. The time evolution of rotating Gaussian packets is analyzed, including the cases of a charge in a homogeneous magnetic field and a free particle. In the latter case, the effect of initial shrinking of packets with big enough coordinate-momentum correlation coefficients (followed by the well known expansion) is discovered. This happens due to a competition of ‘focusing’ and ‘de-focusing’ in the orthogonal directions. (paper)

  16. Nondispersive Wave Packets.

    Science.gov (United States)

    Shaarawi, Amr Mohamed

    In this work, nondispersive wavepacket solutions to linear partial differential equations are investigated. These solutions are characterized by infinite energy content; otherwise they are continuous, nonsingular and propagate in free space without spreading out. Examples of such solutions are Berry and Balazs' Airy packet, MacKinnon's wave packet and Brittingham's Focus Wave Mode (FWM). It is demonstrated in this thesis that the infinite energy content is not a basic problem per se and that it can be dealt with in two distinct ways. First these wave packets can be used as bases to construct highly localized, slowly decaying, time-limited pulsed solutions. In the case of the FWMs, this path leads to the formulation of the bidirectional representation, a technique that provides the most natural basis for synthesizing Brittingham-like solutions. This representation is used to derive new exact solutions to the 3-D scalar wave equation. It is also applied to problems involving boundaries, in particular to the propagation of a localized pulse in a infinite acoustic waveguide and to the launchability of such a pulse from the opening of a semi-infinite waveguide. The second approach in dealing with the infinite energy content utilizes the bump-like structure of nondispersive solutions. With an appropriate choice of parameters, these bump fields have very large amplitudes around the centers, in comparison to their tails. In particular, the FWM solutions are used to model massless particles and are capable of providing an interesting interpretation to the results of Young's two slit experiment and to the wave-particle duality of light. The bidirectional representation provides, also, a systematic way of deriving packet solutions to the Klein-Gordon, the Schrodinger and the Dirac equations. Nondispersive solutions of the former two equations are compared to previously derived ones, e.g., the Airy packet and MacKinnon's wave packet.

  17. Review of inelastic losses of UCN and quantum mechanics of the de Broglie wave packet

    International Nuclear Information System (INIS)

    Ignatovich, V.K.; Utsuro, M.

    1998-01-01

    Different inelastic processes of ultracold neutrons (UCN) losses in traps are considered. A hypothesis of the de Broglie singular wave-packet description of the neutron wave-function to explain anomalous losses of UCN is proposed. An experiment to check the hypothesis and its results are discussed

  18. Time-dependent wave packet simulations of transport through Aharanov-Bohm rings with an embedded quantum dot.

    Science.gov (United States)

    Kreisbeck, C; Kramer, T; Molina, R A

    2017-04-20

    We have performed time-dependent wave packet simulations of realistic Aharonov-Bohm (AB) devices with a quantum dot embedded in one of the arms of the interferometer. The AB ring can function as a measurement device for the intrinsic transmission phase through the quantum dot, however, care has to be taken in analyzing the influence of scattering processes in the junctions of the interferometer arms. We consider a harmonic quantum dot and show how the Darwin-Fock spectrum emerges as a unique pattern in the interference fringes of the AB oscillations.

  19. Characterization of a quantum phase transition in Dirac systems by means of the wave-packet dynamics

    Directory of Open Access Journals (Sweden)

    E. Romera

    2012-12-01

    Full Text Available We study the signatures of phase transitions in the time evolution of wave-packets by analyzing two simple model systems: a graphene quantum dot model in a magnetic field and a Dirac oscillator in a magnetic field. We have characterized the phase transitions using the autocorrelation function. Our work also reveals that the description in terms of Shannon entropy of the autocorrelation function is a clear phase transition indicator.

  20. Quantum spreading of a self-gravitating wave-packet in singularity free gravity

    NARCIS (Netherlands)

    Buoninfante, Luca; Lambiase, Gaetano; Mazumdar, Anupam

    In this paper we will study for the first time how the wave-packet of a self-gravitating meso-scopic system spreads in theories beyond Einstein’s general relativity. In particular, we will consider a ghost-free infinite derivative gravity, which resolves the 1 / r singularity in the potential – such

  1. Quantum Mechanics in the Gaussian wave-packet phase space representation: Dynamics

    International Nuclear Information System (INIS)

    Mizrahi, S.S.

    1985-01-01

    The Heisenberg and Liouville dynamical equations are mapped using the Wave-Packet Phase Space Representation. A semiclassical perturbative expansion is introduced - the Quasi-Causal Approximation - for the Green function and an expression for transition probabilities is derived up to the first order. (Author) [pt

  2. Quantum mechanical analysis of the equilateral triangle billiard: Periodic orbit theory and wave packet revivals

    International Nuclear Information System (INIS)

    Doncheski, M.A.; Robinett, R.W.

    2002-01-01

    Using the fact that the energy eigenstates of the equilateral triangle infinite well (or billiard) are available in closed form, we examine the connections between the energy eigenvalue spectrum and the classical closed paths in this geometry, using both periodic orbit theory and the short-term semi-classical behavior of wave packets. We also discuss wave packet revivals and show that there are exact revivals, for all wave packets, at times given by T rev =9μa 2 /4(h/2π) where a and μ are the length of one side and the mass of the point particle, respectively. We find additional cases of exact revivals with shorter revival times for zero-momentum wave packets initially located at special symmetry points inside the billiard. Finally, we discuss simple variations on the equilateral (60 deg. -60 deg. -60 deg. ) triangle, such as the half equilateral (30 deg. -60 deg. -90 deg.) triangle and other 'foldings', which have related energy spectra and revival structures

  3. ‘Superluminal paradox’ in wave packet propagation and its quantum mechanical resolution

    Energy Technology Data Exchange (ETDEWEB)

    Sokolovski, D., E-mail: dgsokol15@gmail.com [Department of Physical Chemistry, University of the Basque Country, Leioa, Bizkaia (Spain); IKERBASQUE, Basque Foundation for Science, 48011, Bilbao (Spain); Akhmatskaya, E. [Basque Center for Applied Mathematics (BCAM), Alameda de Mazarredo, 14 48009, Bilbao Bizkaia (Spain)

    2013-12-15

    We analyse in detail the reshaping mechanism leading to apparently ‘superluminal’ advancement of a wave packet traversing a classically forbidden region. In the coordinate representation, a barrier is shown to act as an effective beamsplitter, recombining envelopes of the freely propagating pulse with various spacial shifts. Causality ensures that none of the constituent envelopes are advanced with respect to free propagation, yet the resulting pulse is advanced due to a peculiar interference effect, similar to the one responsible for ‘anomalous’ values which occur in Aharonov’s ‘weak measurements’. In the momentum space, the effect is understood as a bandwidth phenomenon, where the incident pulse probes local, rather than global, analytical properties of the transmission amplitude T(p). The advancement is achieved when T(p) mimics locally an exponential behaviour, similar to the one occurring in Berry’s ‘superoscillations’. Seen in a broader quantum mechanical context, the ‘paradox’ is but a consequence of an attempt to obtain ‘which way?’ information without destroying the interference between the pathways of interest. This explains, to a large extent, the failure to adequately describe tunnelling in terms of a single ‘tunnelling time’. -- Highlights: •Apparent superluminality is described in the language of quantum measurements. •A barrier acts as a beamsplitter delaying copies of the initial pulse. •In the coordinate space the effect is similar to what occurs in ‘weak measurements’. •In the momentum space it relies on superoscillations in the transmission amplitude. •It is an interference effect, unlikely to be explained in simpler physical terms.

  4. Dispersionless wave packets in Dirac materials

    International Nuclear Information System (INIS)

    Jakubský, Vít; Tušek, Matěj

    2017-01-01

    We show that a wide class of quantum systems with translational invariance can host dispersionless, soliton-like, wave packets. We focus on the setting where the effective, two-dimensional Hamiltonian acquires the form of the Dirac operator. The proposed framework for construction of the dispersionless wave packets is illustrated on silicene-like systems with topologically nontrivial effective mass. Our analytical predictions are accompanied by a numerical analysis and possible experimental realizations are discussed.

  5. Optimal reflection-free complex absorbing potentials for quantum propagation of wave packets

    International Nuclear Information System (INIS)

    Shemer, Oded; Brisker, Daria; Moiseyev, Nimrod

    2005-01-01

    The conditions for optimal reflection-free complex-absorbing potentials (CAPs) are discussed. It is shown that the CAPs as derived from the smooth-exterior-scaling transformation of the Hamiltonian [J. Phys. B 31, 1431 (1998)] serve as optimal reflection-free CAPs (RF CAPs) in wave-packet propagation calculations of open systems. The initial wave packet, Φ(t=0), can be located in the interaction region (as in half collision experiments) where the CAPs have vanished or in the asymptote where V CAP ≠0. As we show, the optimal CAPs can be introduced also in the region where the physical potential has not vanished. The unavoided reflections due to the use of a finite number of grid points (or basis functions) are discussed. A simple way to reduce the 'edge-grid' reflection effect is described

  6. Scattering of accelerated wave packets

    Science.gov (United States)

    Longhi, S.; Horsley, S. A. R.; Della Valle, G.

    2018-03-01

    Wave-packet scattering from a stationary potential is significantly modified when the wave packet is subject to an external time-dependent force during the interaction. In the semiclassical limit, wave-packet motion is simply described by Newtonian equations, and the external force can, for example, cancel the potential force, making a potential barrier transparent. Here we consider wave-packet scattering from reflectionless potentials, where in general the potential becomes reflective when probed by an accelerated wave packet. In the particular case of the recently introduced class of complex Kramers-Kronig potentials we show that a broad class of time-dependent forces can be applied without inducing any scattering, while there is a breakdown of the reflectionless property when there is a broadband distribution of initial particle momentum, involving both positive and negative components.

  7. High Angular Momentum Rydberg Wave Packets

    Science.gov (United States)

    Wyker, Brendan

    2011-12-01

    High angular momentum Rydberg wave packets are studied. Application of carefully tailored electric fields to low angular momentum, high- n (n ˜ 300) Rydberg atoms creates coherent superpositions of Stark states with near extreme values of angular momentum, ℓ. Wave packet components orbit the parent nucleus at rates that depend on their energy, leading to periods of localization and delocalization as the components come into and go out of phase with each other. Monitoring survival probability signals in the presence of position dependent probing leads to observation of characteristic oscillations based on the composition of the wave packet. The discrete nature of electron energy levels is observed through the measurement of quantum revivals in the wave packet localization signal. Time-domain spectroscopy of these signals allows determination of both the population and phase of individual superposition components. Precise manipulation of wave packets is achieved through further application of pulsed electric fields. Decoherence effects due to background gas collisions and electrical noise are also detailed. Quantized classical trajectory Monte-Carlo simulations are introduced and agree remarkably well with experimental results.

  8. Numerical study of the time evolution of a wave packet in quantum mechanics. Estudio numerico de la evolucion de un paquete de ondas en mecanica cuantica

    Energy Technology Data Exchange (ETDEWEB)

    Segura, J.; Fernandez de Cordoba, P.

    1993-01-01

    We solve the Schrodinger equation in order to study the time evolution of a wave packet in different situations of physical interest. This work illustrates, with pedagogical aim, some quantum phenomena which shock our classical conception of the universe: propagation in classically forbidden regions, energy quantization. (Author)

  9. Fractional conductance oscillations in quantum rings: wave packet picture of transport in a few-electron system

    International Nuclear Information System (INIS)

    Chwiej, T; Szafran, B

    2013-01-01

    We study electron transfer across a two-terminal quantum ring using a time-dependent description of the scattering process. For the considered scattering event the quantum ring is initially charged with one or two electrons, with another electron incident to the ring from the input channel. We study the electron transfer probability (T) as a function of the external magnetic field. We determine the periodicity of T for a varied number of electrons confined within the ring. For that purpose we develop a method to describe the wave packet dynamics for a few electrons participating in the scattering process, taking into full account the electron–electron correlations. We find that electron transfer across the quantum ring initially charged by a single electron acquires a distinct periodicity of half of the magnetic flux quantum (Φ 0 /2), corresponding to the formation of a transient two-electron state inside the ring. In the case of a three-electron scattering problem with two electrons initially occupying the ring, a period of Φ 0 /3 for T is formed in the limit of thin channels. The effect of disorder present in the confinement potential of the ring is also discussed. (paper)

  10. Fractional conductance oscillations in quantum rings: wave packet picture of transport in a few-electron system.

    Science.gov (United States)

    Chwiej, T; Szafran, B

    2013-04-17

    We study electron transfer across a two-terminal quantum ring using a time-dependent description of the scattering process. For the considered scattering event the quantum ring is initially charged with one or two electrons, with another electron incident to the ring from the input channel. We study the electron transfer probability (T) as a function of the external magnetic field. We determine the periodicity of T for a varied number of electrons confined within the ring. For that purpose we develop a method to describe the wave packet dynamics for a few electrons participating in the scattering process, taking into full account the electron-electron correlations. We find that electron transfer across the quantum ring initially charged by a single electron acquires a distinct periodicity of half of the magnetic flux quantum (Φ0/2), corresponding to the formation of a transient two-electron state inside the ring. In the case of a three-electron scattering problem with two electrons initially occupying the ring, a period of Φ0/3 for T is formed in the limit of thin channels. The effect of disorder present in the confinement potential of the ring is also discussed.

  11. Attosecond electron wave packet interferometry

    International Nuclear Information System (INIS)

    Remetter, T.; Ruchon, T.; Johnsson, P.; Varju, K.; Gustafsson, E.

    2006-01-01

    Complete test of publication follows. The well controlled generation and characterization of attosecond XUV light pulses provide an unprecedented tool to study electron wave packets (EWPs). Here a train of attosecond pulses is used to create and study the phase of an EWP in momentum space. There is a clear analogy between electronic wave functions and optical fields. In optics, methods like SPIDER or wave front shearing interferometry, allow to measure the spectral or spatial phase of a light wave. These two methods are based on the same principle: an interferogram is produced when recombining two sheared replica of a light pulse, spectrally (SPIDER) or spatially (wave front shearing interferometry). This enables the comparison of two neighbouring different spectral or spatial slices of the original wave packet. In the experiment, a train of attosecond pulses is focused in an Argon atomic gas jet. EWPs are produced from the single XUV photon ionization of Argon atoms. If an IR beam is synchronized to the EWPs, it is possible to introduce a shear in momentum space between two consecutive s wave packets. A Velocity Map Imaging Spectrometer (VMIS) enables us to detect the interference pattern. An analysis of the interferograms will be presented leading to a conclusion about the symmetry of the studied wave packet.

  12. Delay-time distribution in the scattering of time-narrow wave packets (II)—quantum graphs

    Science.gov (United States)

    Smilansky, Uzy; Schanz, Holger

    2018-02-01

    We apply the framework developed in the preceding paper in this series (Smilansky 2017 J. Phys. A: Math. Theor. 50 215301) to compute the time-delay distribution in the scattering of ultra short radio frequency pulses on complex networks of transmission lines which are modeled by metric (quantum) graphs. We consider wave packets which are centered at high wave number and comprise many energy levels. In the limit of pulses of very short duration we compute upper and lower bounds to the actual time-delay distribution of the radiation emerging from the network using a simplified problem where time is replaced by the discrete count of vertex-scattering events. The classical limit of the time-delay distribution is also discussed and we show that for finite networks it decays exponentially, with a decay constant which depends on the graph connectivity and the distribution of its edge lengths. We illustrate and apply our theory to a simple model graph where an algebraic decay of the quantum time-delay distribution is established.

  13. Expansion of a quantum wave packet in a one-dimensional disordered potential in the presence of a uniform bias force

    Science.gov (United States)

    Crosnier de Bellaistre, C.; Trefzger, C.; Aspect, A.; Georges, A.; Sanchez-Palencia, L.

    2018-01-01

    We study numerically the expansion dynamics of an initially confined quantum wave packet in the presence of a disordered potential and a uniform bias force. For white-noise disorder, we find that the wave packet develops asymmetric algebraic tails for any ratio of the force to the disorder strength. The exponent of the algebraic tails decays smoothly with that ratio and no evidence of a critical behavior on the wave density profile is found. Algebraic localization features a series of critical values of the force-to-disorder strength where the m th position moment of the wave packet diverges. Below the critical value for the m th moment, we find fair agreement between the asymptotic long-time value of the m th moment and the predictions of diagrammatic calculations. Above it, we find that the m th moment grows algebraically in time. For correlated disorder, we find evidence of systematic delocalization, irrespective to the model of disorder. More precisely, we find a two-step dynamics, where both the center-of-mass position and the width of the wave packet show transient localization, similar to the white-noise case, at short time and delocalization at sufficiently long time. This correlation-induced delocalization is interpreted as due to the decrease of the effective de Broglie wavelength, which lowers the effective strength of the disorder in the presence of finite-range correlations.

  14. Spontaneous wave packet reduction

    International Nuclear Information System (INIS)

    Ghirardi, G.C.

    1994-06-01

    There are taken into account the main conceptual difficulties met by standard quantum mechanics in dealing with physical processes involving macroscopic system. It is stressed how J.A.Wheeler's remarks and lucid analysis have been relevant to pinpoint and to bring to its extreme consequences the puzzling aspects of quantum phenomena. It is shown how the recently proposed models of spontaneous dynamical reduction represent a consistent way to overcome the conceptual difficulties of the standard theory. Obviously, many nontrivial problems remain open, the first and more relevant one being that of generalizing the model theories considered to the relativistic case. This is the challenge of the dynamical reduction program. 43 refs, 2 figs

  15. Wave packet autocorrelation functions for quantum hard-disk and hard-sphere billiards in the high-energy, diffraction regime.

    Science.gov (United States)

    Goussev, Arseni; Dorfman, J R

    2006-07-01

    We consider the time evolution of a wave packet representing a quantum particle moving in a geometrically open billiard that consists of a number of fixed hard-disk or hard-sphere scatterers. Using the technique of multiple collision expansions we provide a first-principle analytical calculation of the time-dependent autocorrelation function for the wave packet in the high-energy diffraction regime, in which the particle's de Broglie wavelength, while being small compared to the size of the scatterers, is large enough to prevent the formation of geometric shadow over distances of the order of the particle's free flight path. The hard-disk or hard-sphere scattering system must be sufficiently dilute in order for this high-energy diffraction regime to be achievable. Apart from the overall exponential decay, the autocorrelation function exhibits a generally complicated sequence of relatively strong peaks corresponding to partial revivals of the wave packet. Both the exponential decay (or escape) rate and the revival peak structure are predominantly determined by the underlying classical dynamics. A relation between the escape rate, and the Lyapunov exponents and Kolmogorov-Sinai entropy of the counterpart classical system, previously known for hard-disk billiards, is strengthened by generalization to three spatial dimensions. The results of the quantum mechanical calculation of the time-dependent autocorrelation function agree with predictions of the semiclassical periodic orbit theory.

  16. Energetics and Dynamics of GaAs Epitaxial Growth via Quantum Wave Packet Studies

    Science.gov (United States)

    Dzegilenko, Fedor N.; Saini, Subhash (Technical Monitor)

    1998-01-01

    The dynamics of As(sub 2) molecule incorporation into the flat Ga-terminated GaAs(100) surface is studied computationally. The time-dependent Schrodinger equation is solved on a two-dimensional potential energy surface obtained using density functional theory calculations. The probabilities of trapping and subsequent dissociation of the molecular As(sub 2) bond are calculated as a function of beam translational energy and vibrational quantum number of As(sub 2).

  17. On the fly quantum dynamics of electronic and nuclear wave packets

    Science.gov (United States)

    Komarova, Ksenia G.; Remacle, F.; Levine, R. D.

    2018-05-01

    Multielectronic states quantum dynamics on a grid is described in a manner motivated by on the fly classical trajectory computations. Non stationary electronic states are prepared by a few cycle laser pulse. The nuclei respond and begin moving. We solve the time dependent Schrödinger equation for the electronic and nuclear dynamics for excitation from the ground electronic state. A satisfactory accuracy is possible using a localized description on a discrete grid. This enables computing on the fly for both the nuclear and electronic dynamics including non-adiabatic couplings. Attosecond dynamics in LiH is used as an example.

  18. Dispersionless wave packets in Dirac materials

    Czech Academy of Sciences Publication Activity Database

    Jakubský, Vít; Tušek, M.

    2017-01-01

    Roč. 378, MAR (2017), s. 171-182 ISSN 0003-4916 R&D Projects: GA ČR(CZ) GJ15-07674Y; GA ČR GA17-01706S Institutional support: RVO:61389005 Keywords : quantum systems * wave packets * dispersion * dirac materials Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics ( physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 2.465, year: 2016

  19. Spreading of a relativistic wave packet

    International Nuclear Information System (INIS)

    Almeida, C.; Jabs, A.

    1983-01-01

    A simple general proof that the spreading velocity of a relativistic free wave packet of the Broglie waves is limited is presented. For a wide class of packets it is confirmed that the limit is the velocity of light, and it is shown how this limit is approached when the width Δp of the wave packet in momentum space tends to infinity and the minimum width σ(t=o) in ordinary space tends to zero. (Author) [pt

  20. Transfer of a wave packet in double-well potential

    Science.gov (United States)

    Yang, Hai-Feng; Hu, Yao-Hua; Tan, Yong-Gang

    2018-04-01

    Energy potentials with double-well structures are typical in atoms and molecules systems. A manipulation scheme using Half Cycles Pulses (HCPs) is proposed to transfer a Gaussian wave packet between the two wells. On the basis of quantum mechanical simulations, the time evolution and the energy distribution of the wave packet are evaluated. The effect of time parameters, amplitude, and number of HCPs on spatial and energy distribution of the final state and transfer efficiency are investigated. After a carefully tailored HCPs sequence is applied to the initial wave packet localized in one well, the final state is a wave packet localized in the other well and populated at the lower energy levels with narrower distribution. The present scheme could be used to control molecular reactions and to prepare atoms with large dipole moments.

  1. Time evolution of wave packets on nanostructures

    International Nuclear Information System (INIS)

    Prunele, E de

    2005-01-01

    Time evolution of wave packets on nanostructures is studied on the basis of a three-dimensional solvable model with singular interactions (de Prunele 1997 J. Phys. A: Math. Gen. 30 7831). In particular, methods and tools are provided to determine time independent upper bounds for the overlap of the normalized time-dependent wave packet with the time independent normalized wave packet concentrated at an arbitrarily chosen vertex of the nanosystem. The set of upper bounds referring to all initial positions of the wave packet and all overlaps are summarized in a matrix. The analytical formulation allows a detailed study for arbitrary geometrical configurations. Time evolution on truncated quasicrystalline systems has been found to be site selective, depending on the position of the initial wave packet

  2. Scattering of wave packets with phases

    Energy Technology Data Exchange (ETDEWEB)

    Karlovets, Dmitry V. [Department of Physics, Tomsk State University, Lenina Ave. 36, 634050 Tomsk (Russian Federation)

    2017-03-09

    A general problem of 2→N{sub f} scattering is addressed with all the states being wave packets with arbitrary phases. Depending on these phases, one deals with coherent states in (3+1) D, vortex particles with orbital angular momentum, the Airy beams, and their generalizations. A method is developed in which a number of events represents a functional of the Wigner functions of such states. Using width of a packet σ{sub p}/〈p〉 as a small parameter, the Wigner functions, the number of events, and a cross section are represented as power series in this parameter, the first non-vanishing corrections to their plane-wave expressions are derived, and generalizations for beams are made. Although in this regime the Wigner functions turn out to be everywhere positive, the cross section develops new specifically quantum features, inaccessible in the plane-wave approximation. Among them is dependence on an impact parameter between the beams, on phases of the incoming states, and on a phase of the scattering amplitude. A model-independent analysis of these effects is made. Two ways of measuring how a Coulomb phase and a hadronic one change with a transferred momentum t are discussed.

  3. Zeno dynamics in wave-packet diffraction spreading

    Energy Technology Data Exchange (ETDEWEB)

    Porras, Miguel A. [Departamento de Fisica Aplicada, Universidad Politecnica de Madrid, Rios Rosas 21, ES-28003 Madrid (Spain); Luis, Alfredo; Gonzalo, Isabel [Departamento de Optica, Facultad de Ciencias Fisicas, Universidad Complutense, ES-28040 Madrid (Spain); Sanz, Angel S. [Instituto de Fisica Fundamental-CSIC, Serrano 123, ES-28006 Madrid (Spain)

    2011-11-15

    We analyze a simple and feasible practical scheme displaying Zeno, anti-Zeno, and inverse-Zeno effects in the observation of wave-packet spreading caused by free evolution. The scheme is valid both in spatial diffraction of classical optical waves and in time diffraction of a quantum wave packet. In the optical realization, diffraction spreading is observed by placing slits between a light source and a light-power detector. We show that the occurrence of Zeno or anti-Zeno effects depends just on the frequency of observations between the source and detector. These effects are seen to be related to the diffraction mode theory in Fabry-Perot resonators.

  4. Wave packets, Maslov indices, and semiclassical quantization

    International Nuclear Information System (INIS)

    Littlejohn, R.G.

    1989-01-01

    The Bohr-Sommerfeld quantization condition, as refined by Keller and Maslov, reads I=(n+m/4)h, where I is the classical action, n is the quantum number, and where m is the Maslov index, an even integer. The occurrence of the integers n and m in this formula is a reflection of underlying topological features of semiclassical quantization. In particular, the work of Arnold and others has shown that m/2 is a winding number of closed curves on the classical symplectic group manifold, Sp(2N). Wave packets provide a simple and elegant means of establishing the connection between semiclassical quantization and the homotopy classes of Sp(2N), as well as a practical way of calculating Maslov indices in complex problems. Topological methods can also be used to derive general formulas for the Maslov indices of invariant tori in the classical phase space corresponding to resonant motion. (orig.)

  5. State reconstruction of one-dimensional wave packets

    Science.gov (United States)

    Krähmer, D. S.; Leonhardt, U.

    1997-12-01

    We review and analyze the method [U. Leonhardt, M.G. Raymer: Phys. Rev. Lett. 76, 1985 (1996)] for quantum-state reconstruction of one-dimensional non-relativistic wave packets from position observations. We illuminate the theoretical background of the technique and show how to extend the procedure to the continuous part of the spectrum.

  6. On the theory of wave packets

    International Nuclear Information System (INIS)

    Naumov, D.V.

    2013-01-01

    In this paper we discuss some aspects of the theory of wave packets. We consider a popular non-covariant Gaussian model used in various applications and show that it predicts too slow a longitudinal dispersion rate for relativistic particles. We revise this approach by considering a covariant model of Gaussian wave packets, and examine our results by inspecting a wave packet of an arbitrary form. A general formula for the time dependence of the dispersion of a wave packet of an arbitrary form is found. Finally, we give a transparent interpretation of the disappearance of the wave function over time due to the dispersion - a feature often considered undesirable, but which is unavoidable for wave packets. We find, starting with simple examples, proceeding with their generalizations and finally by considering the continuity equation, that the integral over time of both the flux and probability densities is asymptotically proportional to the factor 1/|x| 2 in the rest frame of the wave packet, just as in the case of an ensemble of classical particles

  7. Squeezing a wave packet with an angular-dependent mass

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Alexandre G M [Departamento de Ciencias Exatas, Universidade Federal Fluminense, Av. dos Trabalhadores 420, Volta Redonda RJ, CEP 27255-125 (Brazil)], E-mail: agmschmidt@gmail.com, E-mail: agmschmidt@pq.cnpq.br

    2009-06-19

    We present a new effect of position-dependent mass (PDM) systems: the possibility of creating squeezed wave packets at the partial revival times. We solve exactly the PDM Schroedinger equation for the two-dimensional quantum rotor with two effective masses {mu}({theta}), both free and interacting with a uniform electric field, and present their energy eigenvalues and eigenfunctions in terms of Mathieu functions. For the first one, in order to squeeze the wave packet it is necessary to apply an electric field; for the second one such an effect can be achieved without the field.

  8. Squeezing a wave packet with an angular-dependent mass

    International Nuclear Information System (INIS)

    Schmidt, Alexandre G M

    2009-01-01

    We present a new effect of position-dependent mass (PDM) systems: the possibility of creating squeezed wave packets at the partial revival times. We solve exactly the PDM Schroedinger equation for the two-dimensional quantum rotor with two effective masses μ(θ), both free and interacting with a uniform electric field, and present their energy eigenvalues and eigenfunctions in terms of Mathieu functions. For the first one, in order to squeeze the wave packet it is necessary to apply an electric field; for the second one such an effect can be achieved without the field

  9. Engineering and manipulating exciton wave packets

    Science.gov (United States)

    Zang, Xiaoning; Montangero, Simone; Carr, Lincoln D.; Lusk, Mark T.

    2017-05-01

    When a semiconductor absorbs light, the resulting electron-hole superposition amounts to a uncontrolled quantum ripple that eventually degenerates into diffusion. If the conformation of these excitonic superpositions could be engineered, though, they would constitute a new means of transporting information and energy. We show that properly designed laser pulses can be used to create such excitonic wave packets. They can be formed with a prescribed speed, direction, and spectral make-up that allows them to be selectively passed, rejected, or even dissociated using superlattices. Their coherence also provides a handle for manipulation using active, external controls. Energy and information can be conveniently processed and subsequently removed at a distant site by reversing the original procedure to produce a stimulated emission. The ability to create, manage, and remove structured excitons comprises the foundation for optoexcitonic circuits with application to a wide range of quantum information, energy, and light-flow technologies. The paradigm is demonstrated using both tight-binding and time-domain density functional theory simulations.

  10. Wave packet formulation of the boomerang model for resonant electron--molecule scattering

    International Nuclear Information System (INIS)

    McCurdy, C.W.; Turner, J.L.

    1983-01-01

    A time-dependent formulation of the boomerang model for resonant electron--molecule scattering is presented in terms of a wave packet propagating on the complex potential surface of the metastable anion. The results of calculations using efficient semiclassical techniques for propagating the wave packet are found to be in excellent agreement with full quantum-mechanical calculations of vibrational excitation cross sections in e - --N 2 scattering. The application of the wave packet formulation as a computational and conceptual approach to the problem of resonant collisions with polyatomic molecules is discussed in the light of recent wave packet calculations on polyatomic photodissociation and Raman spectra

  11. Energy and Information Transfer Via Coherent Exciton Wave Packets

    Science.gov (United States)

    Zang, Xiaoning

    Electronic excitons are bound electron-hole states that are generated when light interacts with matter. Such excitations typically entangle with phonons and rapidly decohere; the resulting electronic state dynamics become diffusive as a result. However, if the exciton-phonon coupling can be reduced, it may be possible to construct excitonic wave packets that offer a means of efficiently transmitting information and energy. This thesis is a combined theory/computation investigation to design condensed matter systems which support the requisite coherent transport. Under the idealizing assumption that exciton-phonon entanglement could be completely suppressed, the majority of this thesis focuses on the creation and manipulation of exciton wave packets in quasi-one-dimensional systems. While each site could be a silicon quantum dot, the actual implementation focused on organic molecular assemblies for the sake of computational simplicity, ease of experimental implementation, potential for coherent transport, and promise because of reduced structural uncertainty. A laser design was derived to create exciton wave packets with tunable shape and speed. Quantum interference was then exploited to manipulate these packets to block, pass, and even dissociate excitons based on their energies. These developments allow exciton packets to be considered within the arena of quantum information science. The concept of controllable excitonic wave packets was subsequently extended to consider molecular designs that allow photons with orbital angular momentum to be absorbed to create excitons with a quasi-angular momentum of their own. It was shown that a well-defined measure of topological charge is conserved in such light-matter interactions. Significantly, it was also discovered that such molecules allow photon angular momenta to be combined and later emitted. This amounts to a new way of up/down converting photonic angular momentum without relying on nonlinear optical materials. The

  12. Runge-Lenz wave packet in multichannel Stark photoionization

    International Nuclear Information System (INIS)

    Texier, F.

    2005-01-01

    In a previous slow photoionization experiment, modulations of ionization rings were manifested for Xe in a constant electric field. The present quantum calculation reveals that the modulation is an effect of the multichannel core scattering and of tunneling waves through the Coulomb-Stark potential barrier: the barrier reduces the number of oscillations that is observed relatively to the number of oscillations of the short range wave functions, and the nonhydrogenic core phase shifts modify the position of the ionization rings. We find a hidden difference, in the ionization process, for two close values of the energy depending on the resonance with the barrier. The ionization intensity is interpreted as a Runge-Lenz wave packet; thus, we can relate the quantum modulation to the classical Coulomb-Stark trajectories. The Runge-Lenz wave packet differs from a usual temporal wave packet because its components are eigenstates of the Runge-Lenz vector z projection and its evolution is not temporal but spatial

  13. Turbulent Spot Pressure Fluctuation Wave Packet Model

    Energy Technology Data Exchange (ETDEWEB)

    Dechant, Lawrence J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    Wave packet analysis provides a connection between linear small disturbance theory and subsequent nonlinear turbulent spot flow behavior. The traditional association between linear stability analysis and nonlinear wave form is developed via the method of stationary phase whereby asymptotic (simplified) mean flow solutions are used to estimate dispersion behavior and stationary phase approximation are used to invert the associated Fourier transform. The resulting process typically requires nonlinear algebraic equations inversions that can be best performed numerically, which partially mitigates the value of the approximation as compared to a more complete, e.g. DNS or linear/nonlinear adjoint methods. To obtain a simpler, closed-form analytical result, the complete packet solution is modeled via approximate amplitude (linear convected kinematic wave initial value problem) and local sinusoidal (wave equation) expressions. Significantly, the initial value for the kinematic wave transport expression follows from a separable variable coefficient approximation to the linearized pressure fluctuation Poisson expression. The resulting amplitude solution, while approximate in nature, nonetheless, appears to mimic many of the global features, e.g. transitional flow intermittency and pressure fluctuation magnitude behavior. A low wave number wave packet models also recover meaningful auto-correlation and low frequency spectral behaviors.

  14. Pump-dump iterative squeezing of vibrational wave packets.

    Science.gov (United States)

    Chang, Bo Y; Sola, Ignacio R

    2005-12-22

    The free motion of a nonstationary vibrational wave packet in an electronic potential is a source of interesting quantum properties. In this work we propose an iterative scheme that allows continuous stretching and squeezing of a wave packet in the ground or in an excited electronic state, by switching the wave function between both potentials with pi pulses at certain times. Using a simple model of displaced harmonic oscillators and delta pulses, we derive the analytical solution and the conditions for its possible implementation and optimization in different molecules and electronic states. We show that the main constraining parameter is the pulse bandwidth. Although in principle the degree of squeezing (or stretching) is not bounded, the physical resources increase quadratically with the number of iterations, while the achieved squeezing only increases linearly.

  15. Trajectory description of the quantum–classical transition for wave packet interference

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw

    2016-08-15

    The quantum–classical transition for wave packet interference is investigated using a hydrodynamic description. A nonlinear quantum–classical transition equation is obtained by introducing a degree of quantumness ranging from zero to one into the classical time-dependent Schrödinger equation. This equation provides a continuous description for the transition process of physical systems from purely quantum to purely classical regimes. In this study, the transition trajectory formalism is developed to provide a hydrodynamic description for the quantum–classical transition. The flow momentum of transition trajectories is defined by the gradient of the action function in the transition wave function and these trajectories follow the main features of the evolving probability density. Then, the transition trajectory formalism is employed to analyze the quantum–classical transition of wave packet interference. For the collision-like wave packet interference where the propagation velocity is faster than the spreading speed of the wave packet, the interference process remains collision-like for all the degree of quantumness. However, the interference features demonstrated by transition trajectories gradually disappear when the degree of quantumness approaches zero. For the diffraction-like wave packet interference, the interference process changes continuously from a diffraction-like to collision-like case when the degree of quantumness gradually decreases. This study provides an insightful trajectory interpretation for the quantum–classical transition of wave packet interference.

  16. Gabor Wave Packet Method to Solve Plasma Wave Equations

    International Nuclear Information System (INIS)

    Pletzer, A.; Phillips, C.K.; Smithe, D.N.

    2003-01-01

    A numerical method for solving plasma wave equations arising in the context of mode conversion between the fast magnetosonic and the slow (e.g ion Bernstein) wave is presented. The numerical algorithm relies on the expansion of the solution in Gaussian wave packets known as Gabor functions, which have good resolution properties in both real and Fourier space. The wave packets are ideally suited to capture both the large and small wavelength features that characterize mode conversion problems. The accuracy of the scheme is compared with a standard finite element approach

  17. Geometrical aspects in optical wave-packet dynamics.

    Science.gov (United States)

    Onoda, Masaru; Murakami, Shuichi; Nagaosa, Naoto

    2006-12-01

    We construct a semiclassical theory for propagation of an optical wave packet in a nonconducting medium with a periodic structure of dielectric permittivity and magnetic permeability, i.e., a nonconducting photonic crystal. We employ a quantum-mechanical formalism in order to clarify its link to those of electronic systems. It involves the geometrical phase, i.e., Berry's phase, in a natural way, and describes an interplay between orbital motion and internal rotation. Based on the above theory, we discuss the geometrical aspects of the optical Hall effect. We also consider a reduction of the theory to a system without periodic structure and apply it to the transverse shift of an optical beam at an interface reflection or refraction. For a generic incident beam with an arbitrary polarization, an identical result for the transverse shift of each reflected or transmitted beam is given by the following different approaches: (i) analytic evaluation of wave-packet dynamics, (ii) total angular momentum (TAM) conservation for individual photons, and (iii) numerical simulation of wave-packet dynamics. It is consistent with a result by classical electrodynamics. This means that the TAM conservation for individual photons is already taken into account in wave optics, i.e., classical electrodynamics. Finally, we show an application of our theory to a two-dimensional photonic crystal, and propose an optimal design for the enhancement of the optical Hall effect in photonic crystals.

  18. Accurate Quantum Wave Packet Study of the Deep Well D+ + HD Reaction: Product Ro-vibrational State-Resolved Integral and Differential Cross Sections.

    Science.gov (United States)

    He, Haixiang; Zhu, Weimin; Su, Wenli; Dong, Lihui; Li, Bin

    2018-03-08

    The H + + H 2 reaction and its isotopic variants as the simplest triatomic ion-molecule reactive system have been attracting much interests, however there are few studies on the titled reaction at state-to-state level until recent years. In this work, accurate state-to-state quantum dynamics studies of the titled reaction have been carried out by a reactant Jacobi coordinate-based time-dependent wave packet approach on diabatic potential energy surfaces constructed by Kamisaka et al. Product ro-vibrational state-resolved information has been calculated for collision energies up to 0.2 eV with maximal total angular momentum J = 40. The necessity of including all K-component for accounting the Coriolis coupling for the reaction has been illuminated. Competitions between the two product channels, (D + + HD' → D' + + HD and D + + HD' → H + + DD') were investigated. Total integral cross sections suggest that resonances enhance the reactivity of channel D + + HD'→ H + + DD', however, resonances depress the reactivity of the another channel D + + HD' → D' + + HD. The structures of the differential cross sections are complicated and depend strongly on collision energies of the two channels and also on the product rotational states. All of the product ro-vibrational state-resolved differential cross sections for this reaction do not exhibit rigorous backward-forward symmetry which may indicate that the lifetimes of the intermediate resonance complexes should not be that long. The dynamical observables of this deuterated isotopic reaction are quite different from the reaction of H + + H 2 → H 2 + H + reported previously.

  19. Microwave Ionization of an Atomic Electron Wave Packet

    International Nuclear Information System (INIS)

    Noel, Michael W.; Ko, Lung; Gallagher, T. F.

    2001-01-01

    A short microwave pulse is used to ionize a lithium Rydberg wave packet launched from the core at a well-defined phase of the field. We observe a strong dependence on the relative phase between the motion of the wave packet and the oscillations of the field. This phase dependent ionization is also studied as a function of the relative frequency. Our experimental observations are in good qualitative agreement with a one-dimensional classical model of wave packet ionization

  20. Massachusetts Bay - Internal wave packets digitized from SAR imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This feature class contains internal wave packets digitized from SAR imagery at 1:350,000 scale in Massachusetts Bay. Internal waves are nonsinusoidal waves that...

  1. Manifestations of wave packet revivals in the moments of observables

    International Nuclear Information System (INIS)

    Sudheesh, C.; Lakshmibala, S.; Balakrishnan, V.

    2004-01-01

    Using a generic Hamiltonian that models wave packet propagation in a Kerr-like medium, matter wave field dynamics in Bose-Einstein condensation, etc., we show that distinctive signatures of wave packet revivals and fractional revivals are displayed by the time evolution of the expectation values of appropriate observables, enabling selective identification of different fractional revivals

  2. A time-frequency analysis of wave packet fractional revivals

    International Nuclear Information System (INIS)

    Ghosh, Suranjana; Banerji, J

    2007-01-01

    We show that the time-frequency analysis of the autocorrelation function is, in many ways, a more appropriate tool to resolve fractional revivals of a wave packet than the usual time-domain analysis. This advantage is crucial in reconstructing the initial state of the wave packet when its coherent structure is short-lived and decays before it is fully revived. Our calculations are based on the model example of fractional revivals in a Rydberg wave packet of circular states. We end by providing an analytical investigation which fully agrees with our numerical observations on the utility of time-frequency analysis in the study of wave packet fractional revivals

  3. Collective neutrino oscillations and neutrino wave packets

    Energy Technology Data Exchange (ETDEWEB)

    Akhmedov, Evgeny; Lindner, Manfred [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Kopp, Joachim, E-mail: akhmedov@mpi-hd.mpg.de, E-mail: jkopp@uni-mainz.de, E-mail: lindner@mpi-hd.mpg.de [PRISMA Cluster of Excellence and Mainz Institute for Theoretical Physics, Johannes Gutenberg University, 55099 Mainz (Germany)

    2017-09-01

    Effects of decoherence by wave packet separation on collective neutrino oscillations in dense neutrino gases are considered. We estimate the length of the wave packets of neutrinos produced in core collapse supernovae and the expected neutrino coherence length, and then proceed to consider the decoherence effects within the density matrix formalism of neutrino flavour transitions. First, we demonstrate that for neutrino oscillations in vacuum the decoherence effects are described by a damping term in the equation of motion of the density matrix of a neutrino as a whole (as contrasted to that of the fixed-momentum components of the neutrino density matrix). Next, we consider neutrino oscillations in ordinary matter and dense neutrino backgrounds, both in the adiabatic and non-adiabatic regimes. In the latter case we study two specific models of adiabaticity violation—one with short-term and another with extended non-adiabaticity. It is demonstrated that, while in the adiabatic case a damping term is present in the equation of motion of the neutrino density matrix (just like in the vacuum oscillation case), no such term in general appears in the non-adiabatic regime.

  4. Controlling the spreading of wave packets of a dissociating molecule

    DEFF Research Database (Denmark)

    Tiwari, Ashwani Kumar; Møller, Klaus Braagaard; Henriksen, Niels Engholm

    2007-01-01

    A first-order perturbation theoretic approach within the electric-dipole approximation is used to study the time evolution of wave packets created by linearly chirped laser pulses on a repulsive potential of Br-2. Our calculations show that negatively chirped pulses focus the wave packet in the F...

  5. Electron Rydberg wave packets in one-dimensional atoms

    Indian Academy of Sciences (India)

    produced by the application of a single impulsive kick was explicitly demonstrated. The undulation of ..... In this context, let us divide the wave packet .... wave packet with special attention to the time evolution of its components associ- ated with ...

  6. Exact wave packet decoherence dynamics in a discrete spectrum environment

    International Nuclear Information System (INIS)

    Tu, Matisse W Y; Zhang Weimin

    2008-01-01

    We find an exact analytical solution of the reduced density matrix from the Feynman-Vernon influence functional theory for a wave packet in an environment containing a few discrete modes. We obtain two intrinsic energy scales relating to the time scales of the system and the environment. The different relationship between these two scales alters the overall form of the solution of the system. We also introduce a decoherence measure for a single wave packet which is defined as the ratio of Schroedinger uncertainty over the delocalization extension of the wave packet and characterizes the time-evolution behaviour of the off-diagonal reduced density matrix element. We utilize the exact solution and the decoherence measure to study the wave packet decoherence dynamics. We further demonstrate how the dynamical diffusion of the wave packet leads to non-Markovian decoherence in such a microscopic environment.

  7. Construction of localized atomic wave packets

    International Nuclear Information System (INIS)

    Ranjani, S Sree; Kapoor, A K; Panigrahi, P K

    2010-01-01

    It is shown that highly localized solitons can be created in lower dimensional Bose-Einstein condensates (BECs), trapped in a regular harmonic trap, by temporally varying the trap frequency. A BEC confined in such a trap can be effectively used to construct a pulsed atomic laser emitting coherent atomic wave packets. In addition to having a complete control over the spatio-temporal dynamics of the solitons, we can separate the equation governing the Kohn mode (centre of mass motion). We investigate the effect of the temporal modulation of the trap frequency on the spatio-temporal dynamics of the bright solitons and also on the Kohn mode. The dynamics of the solitons and the variations in the Kohn mode with time are compared with those in a BEC confined in a trap with unmodulated trap frequency.

  8. The pump-probe coupling of matter wave packets to remote lattice states

    DEFF Research Database (Denmark)

    Sherson, Jacob F; Park, Sung Jong; Pedersen, Poul Lindholm

    2012-01-01

    containing a Bose–Einstein condensate. The evolution of these wave packets is monitored in situ and their six-photon reflection at a band gap is observed. In direct analogy with pump–probe spectroscopy, a probe pulse allows for the resonant de-excitation of the wave packet into states localized around...... selected lattice sites at a long, controllable distance of more than 100 lattice sites from the main component. This precise control mechanism for ultra-cold atoms thus enables controlled quantum state preparation and splitting for quantum dynamics, metrology and simulation....

  9. Wave-packet approach to Rydberg resonances in dissociative recombination

    International Nuclear Information System (INIS)

    Morisset, Sabine; Pichl, Lukas; Orel, Ann E.; Schneider, Ioan F.

    2007-01-01

    We report the time-dependent approach to resonant electron capture into Rydberg states in collisions with molecular cations at low impact energy, as an alternative to the method based on multichannel quantum defect theory (MQDT), and present the results for the HD + ion. The propagation of the initial wave function on 13 Rydberg states (besides one valence state) correctly describes the indirect dissociative recombination mechanism in the time domain. Notably, the nonlocal coupling operator between the ionization and dissociation channels is accounted for in the indirect process, extending previous work on the case of direct coupling. The present approach compares to the MQDT framework with remarkable precision: resonant structures in the cross section correctly emerge from the wave-packet propagation; the time-dependent result also forms a cross section envelope for the dense series of ultrafine MQDT resonances corresponding to the quasicontinuous part of the Rydberg state manifold

  10. Three-dimensional electromagnetic strong turbulence. II. Wave packet collapse and structure of wave packets during strong turbulence

    International Nuclear Information System (INIS)

    Graham, D. B.; Robinson, P. A.; Cairns, Iver H.; Skjaeraasen, O.

    2011-01-01

    Large-scale simulations of wave packet collapse are performed by numerically solving the three-dimensional (3D) electromagnetic Zakharov equations, focusing on individual wave packet collapses and on wave packets that form in continuously driven strong turbulence. The collapse threshold is shown to decrease as the electron thermal speed ν e /c increases and as the temperature ratio T i /T e of ions to electrons decreases. Energy lost during wave packet collapse and dissipation is shown to depend on ν e /c. The dynamics of density perturbations after collapse are studied in 3D electromagnetic strong turbulence for a range of T i /T e . The structures of the Langmuir, transverse, and total electric field components of wave packets during strong turbulence are investigated over a range of ν e /c. For ν e /c e /c > or approx. 0.17, transverse modes become trapped in density wells and contribute significantly to the structure of the total electric field. At all ν e /c, the Langmuir energy density contours of wave packets are predominantly oblate (pancake shaped). The transverse energy density contours of wave packets are predominantly prolate (sausage shaped), with the major axis being perpendicular to the major axes of the Langmuir component. This results in the wave packet becoming more nearly spherical as ν e /c increases, and in turn generates more spherical density wells during collapse. The results obtained are compared with previous 3D electrostatic results and 2D electromagnetic results.

  11. Coulomb Final State Interactions for Gaussian Wave Packets

    CERN Document Server

    Wiedemann, Urs Achim; Heinz, Ulrich W

    1999-01-01

    Two-particle like-sign and unlike-sign correlations including Coulomb final state interactions are calculated for Gaussian wave packets emitted from a Gaussian source. We show that the width of the wave packets can be fully absorbed into the spatial and momentum space widths of an effective emission function for plane wave states, and that Coulomb final state interaction effects are sensitive only to the latter, but not to the wave packet width itself. Results from analytical and numerical calculations are compared with recently published work by other authors.

  12. Mesoscopic states in graphene in magnetic field: collapse and revival of wave packets

    International Nuclear Information System (INIS)

    Demikhovskij, V.Ya.; Telezhnikov, A.V.; Frolova, E.V.; Kravets, N.A.

    2013-01-01

    The effects of wave packet collapse and revival in monolayer and bilayer graphene at an external perpendicular magnetic field are described. The evolution of electron wave packets, which are a superposition of the states with quantum numbers n around that of some Landau level n 0 was studied. The probability densities as well as average velocities of the packet center were calculated analytically and then visualized. The initial wave packet consisting only of positive energy decomposed into several subpackets at the moments t = (m/n)T R , where T R is the revival time and m, n are the mutually prime integers. Besides, it is shown that the behavior of a wave packet containing the states of both energy bands (with E n > 0 and E n < 0) is more complicated. Such packet splits into two parts, which rotate with a cyclotron frequency in the opposite directions, and then experience collapse and revival. The structure of multipole electromagnetic radiation of these packets is analyzed.

  13. Hanbury Brown–Twiss Effect with Wave Packets

    Directory of Open Access Journals (Sweden)

    Tabish Qureshi

    2017-11-01

    Full Text Available The Hanbury Brown–Twiss (HBT effect, at the quantum level, is essentially an interference of one particle with another, as opposed to interference of a particle with itself. Conventional treatments of identical particles encounter difficulties while dealing with entanglement. A recently introduced label-free approach to indistinguishable particles is described, and is used to analyze the HBT effect. Quantum wave-packets have been used to provide a better understanding of the quantum interpretation of the HBT effect. The effect is demonstrated for two independent particles governed by Bose–Einstein or Fermi–Dirac statistics. The HBT effect is also analyzed for pairs of entangled particles. Surprisingly, entanglement has almost no effect on the interference seen in the HBT effect. In the light of the results, an old quantum optics experiment is reanalyzed, and it is argued that the interference seen in that experiment is not a consequence of non-local correlations between the photons, as is commonly believed. Quanta 2017; 6: 61–69.

  14. Resonance-assisted decay of nondispersive wave packets

    OpenAIRE

    Wimberger, S.; Schlagheck, P.; Eltschka, C.; Buchleitner, A.

    2006-01-01

    We present a quantitative semiclassical theory for the decay of nondispersive electronic wave packets in driven, ionizing Rydberg systems. Statistically robust quantities are extracted combining resonance assisted tunneling with subsequent transport across chaotic phase space and a final ionization step.

  15. On wave-packet dynamics in a decaying quadratic potential

    DEFF Research Database (Denmark)

    Møller, Klaus Braagaard; Henriksen, Niels Engholm

    1997-01-01

    We consider the time-dependent Schrodinger equation for a quadratic potential with an exponentially decaying force constant. General analytical solutions are presented and we highlight in particular, the signatures of classical mechanics in the wave packet dynamics.......We consider the time-dependent Schrodinger equation for a quadratic potential with an exponentially decaying force constant. General analytical solutions are presented and we highlight in particular, the signatures of classical mechanics in the wave packet dynamics....

  16. Steering dissociation of Br2 molecules with two femtosecond pulses via wave packet interference.

    Science.gov (United States)

    Han, Yong-Chang; Yuan, Kai-Jun; Hu, Wen-Hui; Yan, Tian-Min; Cong, Shu-Lin

    2008-04-07

    The dissociation dynamics of Br2 molecules induced by two femtosecond pump pulses are studied based on the calculation of time-dependent quantum wave packet. Perpendicular transition from X 1Sigma g+ to A 3Pi 1u+ and 1Pi 1u+ and parallel transition from X 1Sigma g+ to B 3Pi 0u+, involving two product channels Br (2P3/2)+Br (2P3/2) and Br (2P3/2)+Br* (2P1/2), respectively, are taken into account. Two pump pulses create dissociating wave packets interfering with each other. By varying laser parameters, the interference of dissociating wave packets can be controlled, and the dissociation probabilities of Br2 molecules on the three excited states can be changed to different degrees. The branching ratio of Br*/(Br+Br*) is calculated as a function of pulse delay time and phase difference.

  17. Phase Structure of Strong-Field Tunneling Wave Packets from Molecules.

    Science.gov (United States)

    Liu, Ming-Ming; Li, Min; Wu, Chengyin; Gong, Qihuang; Staudte, André; Liu, Yunquan

    2016-04-22

    We study the phase structure of the tunneling wave packets from strong-field ionization of molecules and present a molecular quantum-trajectory Monte Carlo model to describe the laser-driven dynamics of photoelectron momentum distributions of molecules. Using our model, we reproduce and explain the alignment-dependent molecular frame photoelectron spectra of strong-field tunneling ionization of N_{2} reported by M. Meckel et al. [Nat. Phys. 10, 594 (2014)]. In addition to modeling the low-energy photoelectron angular distributions quantitatively, we extract the phase structure of strong-field molecular tunneling wave packets, shedding light on its physical origin. The initial phase of the tunneling wave packets at the tunnel exit depends on both the initial transverse momentum distribution and the molecular internuclear distance. We further show that the ionizing molecular orbital has a critical effect on the initial phase of the tunneling wave packets. The phase structure of the photoelectron wave packet is a key ingredient for modeling strong-field molecular photoelectron holography, high-harmonic generation, and molecular orbital imaging.

  18. Airy Wave Packets Accelerating in Space-Time

    Science.gov (United States)

    Kondakci, H. Esat; Abouraddy, Ayman F.

    2018-04-01

    Although diffractive spreading is an unavoidable feature of all wave phenomena, certain waveforms can attain propagation invariance. A lesser-explored strategy for achieving optical self-similar propagation exploits the modification of the spatiotemporal field structure when observed in reference frames moving at relativistic speeds. For such an observer, it is predicted that the associated Lorentz boost can bring to a halt the axial dynamics of a wave packet of an arbitrary profile. This phenomenon is particularly striking in the case of a self-accelerating beam—such as an Airy beam—whose peak normally undergoes a transverse displacement upon free propagation. Here we synthesize an acceleration-free Airy wave packet that travels in a straight line by deforming its spatiotemporal spectrum to reproduce the impact of a Lorentz boost. The roles of the axial spatial coordinate and time are swapped, leading to "time diffraction" manifested in self-acceleration observed in the propagating Airy wave-packet frame.

  19. Time-Dependent Quantum Wave Packet Study of the Si + OH → SiO + H Reaction: Cross Sections and Rate Constants.

    Science.gov (United States)

    Rivero Santamaría, Alejandro; Dayou, Fabrice; Rubayo-Soneira, Jesus; Monnerville, Maurice

    2017-03-02

    The dynamics of the Si( 3 P) + OH(X 2 Π) → SiO(X 1 Σ + ) + H( 2 S) reaction is investigated by means of the time-dependent wave packet (TDWP) approach using an ab initio potential energy surface recently developed by Dayou et al. ( J. Chem. Phys. 2013 , 139 , 204305 ) for the ground X 2 A' electronic state. Total reaction probabilities have been calculated for the first 15 rotational states j = 0-14 of OH(v=0,j) at a total angular momentum J = 0 up to a collision energy of 1 eV. Integral cross sections and state-selected rate constants for the temperature range 10-500 K were obtained within the J-shifting approximation. The reaction probabilities display highly oscillatory structures indicating the contribution of long-lived quasibound states supported by the deep SiOH/HSiO wells. The cross sections behave with collision energies as expected for a barrierless reaction and are slightly sensitive to the initial rotational excitation of OH. The thermal rate constants show a marked temperature dependence below 200 K with a maximum value around 15 K. The TDWP results globally agree with the results of earlier quasi-classical trajectory (QCT) calculations carried out by Rivero-Santamaria et al. ( Chem. Phys. Lett. 2014 , 610-611 , 335 - 340 ) with the same potential energy surface. In particular, the thermal rate constants display a similar temperature dependence, with TDWP values smaller than the QCT ones over the whole temperature range.

  20. Structure of Langmuir and electromagnetic collapsing wave packets in two-dimensional strong plasma turbulence

    International Nuclear Information System (INIS)

    Alinejad, H.; Robinson, P. A.; Cairns, I. H.; Skjaeraasen, O.; Sobhanian, S.

    2007-01-01

    Nucleating and collapsing wave packets relevant to electromagnetic strong plasma turbulence are studied theoretically in two dimensions. Model collapsing Langmuir and transverse potentials are constructed as superpositions of approximate eigenstates of a spherically symmetric density well. Electrostatic and electromagnetic potentials containing only components with azimuthal quantum numbers m=0, 1, 2 are found to give a good representation of the electric fields of nucleating collapsing wave packets in turbulence simulations. The length scales of these trapped states are related to the electron thermal speed v e and the length scale of the density well. It is shown analytically that the electromagnetic trapped states change with v e and that for v e e > or approx. 0.17c, the Langmuir and transverse modes remain coupled during collapse, with autocorrelation lengths in a constant ratio. An investigation of energy transfer to packets localized in density wells shows that the strongest power transfer to the nucleating state occurs for Langmuir waves. Energy transitions between different trapped and free states for collapsing wave packets are studied, and the transition rate from trapped Langmuir to free plane electromagnetic waves is calculated and related to the emission of electromagnetic waves at the plasma frequency

  1. Simulation of the collapse and dissipation of Langmuir wave packets

    International Nuclear Information System (INIS)

    Newman, D.L.; Winglee, R.M.; Robinson, P.A.; Glanz, J.; Goldman, M.V.

    1990-01-01

    The collapse of isolated Langmuir wave packets is studied numerically in two dimensions using both particle-in-cell (PIC) simulations and by integrating the Zakharov partial differential equations (PDE's). The initial state consists of a localized Langmuir wave packet in an ion background that either is uniform or has a profile representative of the density wells in which wave packets form during strong plasma turbulence. Collapse thresholds are determined numerically and compared to analytical estimates. A model in which Langmuir damping is significantly stronger than Landau damping is constructed which, when included in the PDE simulations, yields good agreement with the collapse dynamics observed in PIC simulations for wave packets with initial wave energy densities small compared to the thermal level. For more intense initial Langmuir fields, collapse is arrested in PIC simulations at lower field strengths than in PDE simulations. Neither nonlinear saturation of the density perturbation nor fluid electron nonlinearities can account for the difference between simulation methods in this regime. However, at these wave levels inhomogeneous electron heating and coherent jets of transit-time accelerated electrons in phase space are observed, resulting in further enhancement of wave damping and the consequent reduction of fields in the PIC simulations

  2. Attosecond Electron Wave Packet Dynamics in Strong Laser Fields

    International Nuclear Information System (INIS)

    Johnsson, P.; Remetter, T.; Varju, K.; L'Huillier, A.; Lopez-Martens, R.; Valentin, C.; Balcou, Ph.; Kazamias, S.; Mauritsson, J.; Gaarde, M. B.; Schafer, K. J.; Mairesse, Y.; Wabnitz, H.; Salieres, P.

    2005-01-01

    We use a train of sub-200 attosecond extreme ultraviolet (XUV) pulses with energies just above the ionization threshold in argon to create a train of temporally localized electron wave packets. We study the energy transfer from a strong infrared (IR) laser field to the ionized electrons as a function of the delay between the XUV and IR fields. When the wave packets are born at the zero crossings of the IR field, a significant amount of energy (∼20 eV) is transferred from the field to the electrons. This results in dramatically enhanced above-threshold ionization in conditions where the IR field alone does not induce any significant ionization. Because both the energy and duration of the wave packets can be varied independently of the IR laser, they are valuable tools for studying and controlling strong-field processes

  3. Universal potential-barrier penetration by initially confined wave packets

    International Nuclear Information System (INIS)

    Granot, Er'el; Marchewka, Avi

    2007-01-01

    The dynamics of an initially sharp-boundary wave packet in the presence of an arbitrary potential barrier is investigated. It is shown that the penetration through the barrier is universal in the sense that it depends only on the values of the wave function and its derivatives at the boundary. The dependence on the derivatives vanishes at long distances from the barrier, where the dynamics is governed solely by the initial value of the wave function at the boundary

  4. Universal potential-barrier penetration by initially confined wave packets

    Science.gov (United States)

    Granot, Er'El; Marchewka, Avi

    2007-07-01

    The dynamics of an initially sharp-boundary wave packet in the presence of an arbitrary potential barrier is investigated. It is shown that the penetration through the barrier is universal in the sense that it depends only on the values of the wave function and its derivatives at the boundary. The dependence on the derivatives vanishes at long distances from the barrier, where the dynamics is governed solely by the initial value of the wave function at the boundary.

  5. Following dynamic nuclear wave packets in N2,O2, and CO with few-cycle infrared pulses

    International Nuclear Information System (INIS)

    De, S.; Magrakvelidze, M.; Bocharova, I. A.; Ray, D.; Cao, W.; Li, H.; Wang, Z.; Laurent, G.; Thumm, U.; Ben-Itzhak, I.; Cocke, C. L.; Znakovskaya, I.; Kling, M. F.; Litvinyuk, I. V.

    2011-01-01

    We study the evolution of nuclear wave packets launched in molecular nitrogen, oxygen, and carbon monoxide by intense 8-fs infrared pulses. We use velocity map imaging to measure the momentum of the ion fragments when these wave packets are interrogated by a second such pulse after a variable time delay. Both quasibound and dissociative wave packets are observed. For the former, measurements of bound-state oscillations are used to identify the participating states and, in some cases, extract properties of the relevant potential-energy surfaces. Vibrational structure is resolved in both energy and oscillation frequencies for the cations of oxygen and carbon monoxide, displaying the same quantum wave-packet motion in both energy and time domains. In addition, vibrational structure is seen in the dication of carbon monoxide in a situation where the energy resolution by itself is inadequate to resolve the structure.

  6. Following dynamic nuclear wave packets in N2,O2, and CO with few-cycle infrared pulses

    Science.gov (United States)

    de, S.; Magrakvelidze, M.; Bocharova, I. A.; Ray, D.; Cao, W.; Znakovskaya, I.; Li, H.; Wang, Z.; Laurent, G.; Thumm, U.; Kling, M. F.; Litvinyuk, I. V.; Ben-Itzhak, I.; Cocke, C. L.

    2011-10-01

    We study the evolution of nuclear wave packets launched in molecular nitrogen, oxygen, and carbon monoxide by intense 8-fs infrared pulses. We use velocity map imaging to measure the momentum of the ion fragments when these wave packets are interrogated by a second such pulse after a variable time delay. Both quasibound and dissociative wave packets are observed. For the former, measurements of bound-state oscillations are used to identify the participating states and, in some cases, extract properties of the relevant potential-energy surfaces. Vibrational structure is resolved in both energy and oscillation frequencies for the cations of oxygen and carbon monoxide, displaying the same quantum wave-packet motion in both energy and time domains. In addition, vibrational structure is seen in the dication of carbon monoxide in a situation where the energy resolution by itself is inadequate to resolve the structure.

  7. Angular momentum transport with twisted exciton wave packets

    Science.gov (United States)

    Zang, Xiaoning; Lusk, Mark T.

    2017-10-01

    A chain of cofacial molecules with CN or CN h symmetry supports excitonic states with a screwlike structure. These can be quantified with the combination of an axial wave number and an azimuthal winding number. Combinations of these states can be used to construct excitonic wave packets that spiral down the chain with well-determined linear and angular momenta. These twisted exciton wave packets can be created and annihilated using laser pulses, and their angular momentum can be optically modified during transit. This allows for the creation of optoexcitonic circuits in which information, encoded in the angular momentum of light, is converted into excitonic wave packets that can be manipulated, transported, and then reemitted. A tight-binding paradigm is used to demonstrate the key ideas. The approach is then extended to quantify the evolution of twisted exciton wave packets in a many-body, multilevel time-domain density functional theory setting. In both settings, numerical methods are developed that allow the site-to-site transfer of angular momentum to be quantified.

  8. Time-Dependent Wave Packet Dynamics Calculations of Cross Sections for Ultracold Scattering of Molecules

    Science.gov (United States)

    Huang, Jiayu; Liu, Shu; Zhang, Dong H.; Krems, Roman V.

    2018-04-01

    Because the de Broglie wavelength of ultracold molecules is very large, the cross sections for collisions of molecules at ultracold temperatures are always computed by the time-independent quantum scattering approach. Here, we report the first accurate time-dependent wave packet dynamics calculation for reactive scattering of ultracold molecules. Wave packet dynamics calculations can be applied to molecular systems with more dimensions and provide real-time information on the process of bond rearrangement and/or energy exchange in molecular collisions. Our work thus makes possible the extension of rigorous quantum calculations of ultracold reaction properties to polyatomic molecules and adds a new powerful tool for the study of ultracold chemistry.

  9. Wave packet dynamics, time scales and phase diagram in the IBM-Lipkin-Meshkov-Glick model

    Science.gov (United States)

    Castaños, Octavio; de los Santos, Francisco; Yáñez, Rafael; Romera, Elvira

    2018-02-01

    We derive the phase diagram of a scalar two-level boson model by studying the equilibrium and stability properties of its energy surface. The plane of control parameters is enlarged with respect to previous studies. We then analyze the time evolution of wave packets centered around the ground state at various quantum phase transition boundary lines. In particular, classical and revival times are computed numerically.

  10. Cherenkov Radiation Control via Self-accelerating Wave-packets.

    Science.gov (United States)

    Hu, Yi; Li, Zhili; Wetzel, Benjamin; Morandotti, Roberto; Chen, Zhigang; Xu, Jingjun

    2017-08-18

    Cherenkov radiation is a ubiquitous phenomenon in nature. It describes electromagnetic radiation from a charged particle moving in a medium with a uniform velocity larger than the phase velocity of light in the same medium. Such a picture is typically adopted in the investigation of traditional Cherenkov radiation as well as its counterparts in different branches of physics, including nonlinear optics, spintronics and plasmonics. In these cases, the radiation emitted spreads along a "cone", making it impractical for most applications. Here, we employ a self-accelerating optical pump wave-packet to demonstrate controlled shaping of one type of generalized Cherenkov radiation - dispersive waves in optical fibers. We show that, by tuning the parameters of the wave-packet, the emitted waves can be judiciously compressed and focused at desired locations, paving the way to such control in any physical system.

  11. Understanding the spreading of a Gaussian wave packet using the ...

    Indian Academy of Sciences (India)

    ploiting the machinery of the Bohmian model of quantum mechanics, the way the wave ... inexactness of quantum theory seems to be eliminated by ensuring a ... In this paper, keeping aside the subtle conceptual debates concerning the.

  12. Strongly nonlinear evolution of low-frequency wave packets in a dispersive plasma

    Science.gov (United States)

    Vasquez, Bernard J.

    1993-01-01

    The evolution of strongly nonlinear, strongly modulated wave packets is investigated in a dispersive plasma using a hybrid numerical code. These wave packets have amplitudes exceeding the strength of the external magnetic field, along which they propagate. Alfven (left helicity) wave packets show strong steepening for p Schrodinger (DNLS) equation.

  13. Nonlinear Evolution of Alfvenic Wave Packets

    Science.gov (United States)

    Buti, B.; Jayanti, V.; Vinas, A. F.; Ghosh, S.; Goldstein, M. L.; Roberts, D. A.; Lakhina, G. S.; Tsurutani, B. T.

    1998-01-01

    Alfven waves are a ubiquitous feature of the solar wind. One approach to studying the evolution of such waves has been to study exact solutions to approximate evolution equations. Here we compare soliton solutions of the Derivative Nonlinear Schrodinger evolution equation (DNLS) to solutions of the compressible MHD equations.

  14. Square-integrable wave packets from the Volkov solutions

    International Nuclear Information System (INIS)

    Zakowicz, Stephan

    2005-01-01

    Rigorous mathematical proofs of some properties of the Volkov solutions are presented, which describe the motion of a relativistic charged Dirac particle in a classical, plane electromagnetic wave. The Volkov solutions are first rewritten in a convenient form, which clearly reveals some of the symmetries of the underlying Dirac equation. Assuming continuity and boundedness of the electromagnetic vector potential, it is shown how one may construct square-integrable wave packets from momentum distributions in the space C 0 ∞ (R 3 ) 4 . If, in addition, the vector potential is C 1 and the derivative is bounded, these wave packets decay in space faster than any polynomial and fulfill the Dirac equation. The mapping which takes momentum distributions into wave packets is shown to be isometric with respect to the L 2 (R 3 ) 4 norm and may therefore be continuously extended to a mapping from L 2 (R 3 ) 4 . For a momentum function in L 1 (R 3 ) 4 intersection L 2 (R 3 ) 4 , an integral representation of this extension is presented

  15. Square-Integrable Wave Packets from the Volkov Solutions

    CERN Document Server

    Zakowicz, S

    2004-01-01

    Rigorous mathematical proofs of some properties of the Volkov solutions are presented, which describe the motion of a relativistic charged Dirac particle in a classical, plane electromagnetic wave. The Volkov solutions are first rewritten in a convenient form, which clearly reveals some of the symmetries of the underlying Dirac equation. Assuming continuity and boundedness of the electromagnetic vector potential, it is shown how one may construct square-integrable wave packets from momentum distributions in the space $\\mathcal{C}^{\\infty}_0(\\mathbb{R}^3)^4$. If, in addition, the vector potential is $\\mathcal{C}^1$ and the derivative is bounded, these wave packets decay in space faster than any polynomial and fulfill the Dirac equation. The mapping which takes momentum distributions into wave packets is shown to be isometric with respect to the $L^2(\\mathbb{R}^3)^4$ norm and may therefore be continuously extended to a mapping from $L^2(\\mathbb{R}^3)^4$. For a momen! tum function in $L^1(\\mathbb{R}^3)^4 \\cap L^...

  16. Wave packet dynamics for a system with position and time-dependent effective mass in an infinite square well

    Energy Technology Data Exchange (ETDEWEB)

    Vubangsi, M.; Tchoffo, M.; Fai, L. C. [Mesoscopic and Multilayer Structures Laboratory, Physics Department, University of Dschang, P.O. Box 417 Dschang (Cameroon); Pisma’k, Yu. M. [Department of Theoretical Physics, Saint Petersburg State University, Saint Petersburg (Russian Federation)

    2015-12-15

    The problem of a particle with position and time-dependent effective mass in a one-dimensional infinite square well is treated by means of a quantum canonical formalism. The dynamics of a launched wave packet of the system reveals a peculiar revival pattern that is discussed. .

  17. Theoretical prediction of a rotating magnon wave packet in ferromagnets.

    Science.gov (United States)

    Matsumoto, Ryo; Murakami, Shuichi

    2011-05-13

    We theoretically show that the magnon wave packet has a rotational motion in two ways: a self-rotation and a motion along the boundary of the sample (edge current). They are similar to the cyclotron motion of electrons, but unlike electrons the magnons have no charge and the rotation is not due to the Lorentz force. These rotational motions are caused by the Berry phase in momentum space from the magnon band structure. Furthermore, the rotational motion of the magnon gives an additional correction term to the magnon Hall effect. We also discuss the Berry curvature effect in the classical limit of long-wavelength magnetostatic spin waves having macroscopic coherence length.

  18. Semiclassical wave packet treatment of scattering resonances: application to the delta zero-point energy effect in recombination reactions.

    Science.gov (United States)

    Vetoshkin, Evgeny; Babikov, Dmitri

    2007-09-28

    For the first time Feshbach-type resonances important in recombination reactions are characterized using the semiclassical wave packet method. This approximation allows us to determine the energies, lifetimes, and wave functions of the resonances and also to observe a very interesting correlation between them. Most important is that this approach permits description of a quantum delta-zero-point energy effect in recombination reactions and reproduces the anomalous rates of ozone formation.

  19. On reduction of the wave-packet, decoherence, irreversibility and the second law of thermodynamics

    International Nuclear Information System (INIS)

    Narnhofer, H.; Wreszinski, W.F.

    2014-01-01

    We prove a quantum version of the second law of thermodynamics: the (quantum) Boltzmann entropy increases if the initial (zero time) density matrix decoheres, a condition generally satisfied in Nature. It is illustrated by a model of wave-packet reduction, the Coleman–Hepp model, along the framework introduced by Sewell (2005) in his approach to the quantum measurement problem. Further models illustrate the monotonic-versus-non-monotonic behavior of the quantum Boltzmann entropy in time. As a last closely related topic, decoherence, which was shown by Narnhofer and Thirring (1999) to enforce macroscopic purity in the case of quantum K systems, is analyzed within a different class of quantum chaotic systems, viz. the quantum Anosov models as defined by Emch, Narnhofer, Sewell and Thirring (1994). A review of the concept of quantum Boltzmann entropy, as well as of some of the rigorous approaches to the quantum measurement problem within the framework of Schrödinger dynamics, is given, together with an overview of the C* algebra approach, which encompasses the relevant notions and definitions in a comprehensive way

  20. Nonspreading Wave Packets for Rydberg Electrons in Rotating Molecules with Electric Dipole Moments

    International Nuclear Information System (INIS)

    Bialynicki-Birula, I.; Bialynicka-Birula, Z.

    1996-01-01

    Nonspreading wave packets for Rydberg electrons are predicted in rotating molecules with electric dipole moments. We have named them the Trojan wave packets since their stability is due to the same mechanism that governs the motion of the Trojan asteroids in the Sun-Jupiter system. Unlike all previously predicted Trojan wave packets in atoms, molecular Trojan states do not require external fields for their existence

  1. Riemann zeta function from wave-packet dynamics

    DEFF Research Database (Denmark)

    Mack, R.; Dahl, Jens Peder; Moya-Cessa, H.

    2010-01-01

    We show that the time evolution of a thermal phase state of an anharmonic oscillator with logarithmic energy spectrum is intimately connected to the generalized Riemann zeta function zeta(s, a). Indeed, the autocorrelation function at a time t is determined by zeta (sigma + i tau, a), where sigma...... index of JWKB. We compare and contrast exact and approximate eigenvalues of purely logarithmic potentials. Moreover, we use a numerical method to find a potential which leads to exact logarithmic eigenvalues. We discuss possible realizations of Riemann zeta wave-packet dynamics using cold atoms...

  2. Manipulating the Shape of Electronic Non-Dispersive Wave-Packets in the Hydrogen Atom: Numerical Tests in Realistic Experimental Conditions

    International Nuclear Information System (INIS)

    Delande, D.; Sacha, K.; Zakrzewski, J.

    2002-01-01

    We show that combination of a linearly polarized resonant microwave field and a parallel static electric field may be used to create a non-dispersive electronic wave packet in Rydberg atoms. The static electric field allows for manipulation of the shape of the elliptical trajectory the wave packet is propagating on. Exact quantum numerical calculations for realistic experimental parameters show that the wave packet evolving on a linear orbit can be very easily prepared in a laboratory either by a direct optical excitation or by preparing an atom in an extremal Stark state and then slowly switching on the micro wave field. The latter scheme seems to be very resistant to experimental imperfections. Once the wave packet on the linear orbit is excited, the static field may be used to manipulate the shape of the orbit. (author)

  3. Quantum dynamics through a wave packet method to study electron-hydrogen and atom-dihydrogen collisions; Dynamique quantique par une methode de paquets d'ondes. Etude des collisions electron-hydrogene et atome-dihydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Mouret, L

    2002-11-01

    The thesis concerns the development and implementation of numerical methods for solving the time-dependent Schroedinger equation. We first considered the case of electron-hydrogen scattering. The originality of our method is the use of a non-uniform radial grid defined by a Schwarz interpolation based on a Coulomb reference function. This grid allows many hydrogen bound states and associated matrix elements of various operators to be reproduced to machine accuracy. The wave function is propagated in time using a Split-Operator method. The efficiency of our method allows the wave function to be propagated out to large distances for all partial waves. We obtain excitation and ionization cross sections in excellent agreement with the best experimental and theoretical data. We subsequently adapted the method and the program package to study reactive atom-dihydrogen scattering. The wave packet is described using product Jacobi coordinates on a regular grid of radial coordinates combined with a basis of Legendre polynomials for the angular part (partial wave S). The wave function is analysed using a time-to-energy Fourier transform, which provides results over the energy range covered by the initial wave packet in one calculation. The method was first tested on the quasi-direct (F,H2) reaction and then applied to the indirect (C(1D),H2)reaction. The state-to-state reaction probabilities are in good agreement with those obtained by a time-independent approach. In particular, the strongly resonant structure of the (C(1D),H2) reaction probabilities is well reproduced. (author)

  4. Quantum dynamics through a wave packet method to study electron-hydrogen and atom-dihydrogen collisions; Dynamique quantique par une methode de paquets d'ondes. Etude des collisions electron-hydrogene et atome-dihydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Mouret, L

    2002-11-01

    The thesis concerns the development and implementation of numerical methods for solving the time-dependent Schroedinger equation. We first considered the case of electron-hydrogen scattering. The originality of our method is the use of a non-uniform radial grid defined by a Schwarz interpolation based on a Coulomb reference function. This grid allows many hydrogen bound states and associated matrix elements of various operators to be reproduced to machine accuracy. The wave function is propagated in time using a Split-Operator method. The efficiency of our method allows the wave function to be propagated out to large distances for all partial waves. We obtain excitation and ionization cross sections in excellent agreement with the best experimental and theoretical data. We subsequently adapted the method and the program package to study reactive atom-dihydrogen scattering. The wave packet is described using product Jacobi coordinates on a regular grid of radial coordinates combined with a basis of Legendre polynomials for the angular part (partial wave S). The wave function is analysed using a time-to-energy Fourier transform, which provides results over the energy range covered by the initial wave packet in one calculation. The method was first tested on the quasi-direct (F,H2) reaction and then applied to the indirect (C(1D),H2)reaction. The state-to-state reaction probabilities are in good agreement with those obtained by a time-independent approach. In particular, the strongly resonant structure of the (C(1D),H2) reaction probabilities is well reproduced. (author)

  5. Nonlinear wave-packet dynamics for a generic one-dimensional time-independent system and its application to the hydrogen atom in a weak magnetic field

    International Nuclear Information System (INIS)

    Dupret, K.; Delande, D.

    1996-01-01

    We study the time propagation of an initially localized wave packet for a generic one-dimensional time-independent system, using the open-quote open-quote nonlinear wave-packet dynamics close-quote close-quote [S. Tomsovic and E. J. Heller, Phys. Rev. Lett. 67, 664 (1991)], a semiclassical approximation using a local linearization of the wave packet in the vicinity of classical reference trajectories. Several reference trajectories are needed to describe the behavior of the full wave packet. The introduction of action-angle variables allows us to obtain a simple analytic expression for the autocorrelation function, and to show that a universal behavior (quantum collapses, quantum revivals, etc.) is obtained via interferences between the reference trajectories. A connection with the standard WKB approach is established. Finally, we apply the nonlinear wave-packet dynamics to the case of the hydrogen atom in a weak magnetic field, and show that the semiclassical expressions obtained by nonlinear wave-packet dynamics are extremely accurate. copyright 1996 The American Physical Society

  6. Numerical simulation of the nonlinear dynamics of packets of spiral density waves

    International Nuclear Information System (INIS)

    Korchagin, V.I.

    1987-01-01

    In a numerical experiment, the behavior of nonlinear packets of spiral density waves in a gas disk has been investigated for different initial wave amplitudes. If the amplitude of the density perturbations is small (<5%), the wave packet is drawn toward the center or toward the periphery of the disk in accordance with the linear theory. The behavior of linear packets of waves with wavelength comparable to the disk radius (R/sub d//lambda = 4) exhibits good agreement with the conclusions of the linear theory of tightly wound spiral waves. The dynamics of wave packets with initial density amplitudes 16, 30, 50% demonstrates the nonlinear nature of the behavior. THe behavior is governed by whether or not the nonlinear effects of higher than third order in the wave amplitude play a part. If the wave packet dynamics is determined by the cubic nonlinearity, the results of the numerical experiment are in qualitative and quantitative agreement with the nonlinear theory of short waves, although the characteristic scale of the packet and the wavelength are of the order of the disk radius. In the cases when the nonlinear effects of higher orders in the amplitude play an important part, the behavior of a packet does not differ qualitatively from the behavior predicted by the theory of cubic nonlinearity, but the nonlinear spreading of the packet takes place more rapidly

  7. Magnetic helicity conservation and inverse energy cascade in electron magnetohydrodynamic wave packets.

    Science.gov (United States)

    Cho, Jungyeon

    2011-05-13

    Electron magnetohydrodynamics (EMHD) provides a fluidlike description of small-scale magnetized plasmas. An EMHD wave propagates along magnetic field lines. The direction of propagation can be either parallel or antiparallel to the magnetic field lines. We numerically study propagation of three-dimensional (3D) EMHD wave packets moving in one direction. We obtain two major results. (1) Unlike its magnetohydrodynamic (MHD) counterpart, an EMHD wave packet is dispersive. Because of this, EMHD wave packets traveling in one direction create opposite-traveling wave packets via self-interaction and cascade energy to smaller scales. (2) EMHD wave packets traveling in one direction clearly exhibit inverse energy cascade. We find that the latter is due to conservation of magnetic helicity. We compare inverse energy cascade in 3D EMHD turbulence and two-dimensional (2D) hydrodynamic turbulence.

  8. Magnetic Helicity Conservation and Inverse Energy Cascade in Electron Magnetohydrodynamic Wave Packets

    International Nuclear Information System (INIS)

    Cho, Jungyeon

    2011-01-01

    Electron magnetohydrodynamics (EMHD) provides a fluidlike description of small-scale magnetized plasmas. An EMHD wave propagates along magnetic field lines. The direction of propagation can be either parallel or antiparallel to the magnetic field lines. We numerically study propagation of three-dimensional (3D) EMHD wave packets moving in one direction. We obtain two major results. (1) Unlike its magnetohydrodynamic (MHD) counterpart, an EMHD wave packet is dispersive. Because of this, EMHD wave packets traveling in one direction create opposite-traveling wave packets via self-interaction and cascade energy to smaller scales. (2) EMHD wave packets traveling in one direction clearly exhibit inverse energy cascade. We find that the latter is due to conservation of magnetic helicity. We compare inverse energy cascade in 3D EMHD turbulence and two-dimensional (2D) hydrodynamic turbulence.

  9. The role of ro-vibrational coupling in the revival dynamics of diatomic molecular wave packets

    International Nuclear Information System (INIS)

    Banerji, J; Ghosh, Suranjana

    2006-01-01

    We study the revival and fractional revivals of a diatomic molecular wave packet of circular states whose weighing coefficients are peaked about a vibrational quantum number ν-bar and a rotational quantum number j-bar. Furthermore, we show that the interplay between the rotational and vibrational motion is determined by a parameter γ =√D/C, where D is the dissociation energy and C is inversely proportional to the reduced mass of the two nuclei. Using I 2 and H 2 as examples, we show, both analytically and visually (through animations), that for γ>>ν-bar, j-bar, the rotational and vibrational time scales are so far apart that the ro-vibrational motion gets decoupled and the revival dynamics depends essentially on one time scale. For γ∼ν-bar, j-bar, on the other hand, the evolution of the wave packet depends crucially on both the rotational and vibrational time scales of revival. In the latter case, an interesting rotational-vibrational fractional revival is predicted and explained

  10. Aeroacoustic directivity via wave-packet analysis of mean or base flows

    Science.gov (United States)

    Edstrand, Adam; Schmid, Peter; Cattafesta, Louis

    2017-11-01

    Noise pollution is an ever-increasing problem in society, and knowledge of the directivity patterns of the sound radiation is required for prediction and control. Directivity is frequently determined through costly numerical simulations of the flow field combined with an acoustic analogy. We introduce a new computationally efficient method of finding directivity for a given mean or base flow field using wave-packet analysis (Trefethen, PRSA 2005). Wave-packet analysis approximates the eigenvalue spectrum with spectral accuracy by modeling the eigenfunctions as wave packets. With the wave packets determined, we then follow the method of Obrist (JFM, 2009), which uses Lighthill's acoustic analogy to determine the far-field sound radiation and directivity of wave-packet modes. We apply this method to a canonical jet flow (Gudmundsson and Colonius, JFM 2011) and determine the directivity of potentially unstable wave packets. Furthermore, we generalize the method to consider a three-dimensional flow field of a trailing vortex wake. In summary, we approximate the disturbances as wave packets and extract the directivity from the wave-packet approximation in a fraction of the time of standard aeroacoustic solvers. ONR Grant N00014-15-1-2403.

  11. Dynamics of electron wave packet in a disordered chain with delayed nonlinear response

    International Nuclear Information System (INIS)

    Zhu Hongjun; Xiong Shijie

    2010-01-01

    We investigate the dynamics of one electron wave packet in a linear chain with random on-site energies and a nonadiabatic electron-phonon interaction which is described by a delayed cubic nonlinear term in the time-dependent Schroedinger equation. We show that in the regime where the wave packet is delocalized in the case with only the delayed nonlinearity, the wave packet becomes localized when the disorder is added and the localization is enhanced by increasing the disorder. In the regime where the self-trapping phenomenon occurs in the case with only the delayed nonlinearity, by adding the disorder the general dynamical features of the wave packet do not change if the nonlinearity parameter is small, but the dynamics shows the subdiffusive behavior if the nonlinearity parameter is large. The numerical results demonstrate complicated wave packet dynamics of systems with both the disorder and nonlinearity.

  12. Dynamical behavior of the wave packets on adiabatic potential surfaces observed by femtosecond luminescence spectroscopy

    International Nuclear Information System (INIS)

    Suemoto, Tohru; Nakajima, Makoto; Matsuoka, Taira; Yasukawa, Keizo; Koyama, Takeshi

    2007-01-01

    The wave packet dynamics on adiabatic potential surfaces studied by means of time-resolved luminescence spectroscopy is reviewed and the advantages of this method are discussed. In quasi-one-dimensional bromine-bridged platinum complexes, a movie representing the time evolution of the wave packet motion and shape was constructed. A two-dimensional Lissajous-like motion of the wave packet was suggested in the same material at low temperature. In F-centers in KI, evidence for tunneling of the wave packet between the adjacent adiabatic potential surfaces was found. Selective observation of the wave packet motion on the excited state was demonstrated for F-centers in KBr and compared with the results from pump-and-probe experiments in literature

  13. Heralded wave packet manipulation and storage of a frequency-converted pair photon at telecom wavelength

    Science.gov (United States)

    Kroh, Tim; Ahlrichs, Andreas; Sprenger, Benjamin; Benson, Oliver

    2017-09-01

    Future quantum networks require a hybrid platform of dissimilar quantum systems. Within the platform, joint quantum states have to be mediated either by single photons, photon pairs or entangled photon pairs. The photon wavelength has to lie within the telecommunication band to enable long-distance fibre transmission. In addition, the temporal shape of the photons needs to be tailored to efficiently match the involved quantum systems. Altogether, this requires the efficient coherent wavelength-conversion of arbitrarily shaped single-photon wave packets. Here, we demonstrate the heralded temporal filtering of single photons as well as the synchronisation of state manipulation and detection as key elements in a typical experiment, besides of delaying a photon in a long fibre. All three are realised by utilising commercial telecommunication fibre-optical components which will permit the transition of quantum networks from the lab to real-world applications. The combination of these renders a temporally filtering single-photon storage in a fast switchable fibre loop possible.

  14. Dissipative Bohmian mechanics within the Caldirola–Kanai framework: A trajectory analysis of wave-packet dynamics in viscid media

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, A.S., E-mail: asanz@iff.csic.es [Instituto de Física Fundamental (IFF-CSIC), Serrano 123, 28006 Madrid (Spain); Martínez-Casado, R. [Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom); Peñate-Rodríguez, H.C.; Rojas-Lorenzo, G. [Instituto Superior de Tecnologías y Ciencias Aplicadas, Ave. Salvador Allende y Luaces, Quinta de Los Molinos, Plaza, La Habana 10600 (Cuba); Miret-Artés, S. [Instituto de Física Fundamental (IFF-CSIC), Serrano 123, 28006 Madrid (Spain)

    2014-08-15

    Classical viscid media are quite common in our everyday life. However, we are not used to find such media in quantum mechanics, and much less to analyze their effects on the dynamics of quantum systems. In this regard, the Caldirola–Kanai time-dependent Hamiltonian constitutes an appealing model, accounting for friction without including environmental fluctuations (as it happens, for example, with quantum Brownian motion). Here, a Bohmian analysis of the associated friction dynamics is provided in order to understand how a hypothetical, purely quantum viscid medium would act on a wave packet from a (quantum) hydrodynamic viewpoint. To this purpose, a series of paradigmatic contexts have been chosen, such as the free particle, the motion under the action of a linear potential, the harmonic oscillator, or the superposition of two coherent wave packets. Apart from their analyticity, these examples illustrate interesting emerging behaviors, such as localization by “quantum freezing” or a particular type of quantum–classical correspondence. The reliability of the results analytically determined has been checked by means of numerical simulations, which has served to investigate other problems lacking of such analyticity (e.g., the coherent superpositions). - Highlights: • A dissipative Bohmian approach is developed within the Caldirola–Kanai model. • Some simple yet physically insightful systems are then studied analytically. • Dissipation leads to spatial localization in free-force regimes. • Under the action of linear forces, dissipation leads to uniform motion. • In harmonic potentials, the system decays unavoidable to the well minimum.

  15. Dissipative Bohmian mechanics within the Caldirola–Kanai framework: A trajectory analysis of wave-packet dynamics in viscid media

    International Nuclear Information System (INIS)

    Sanz, A.S.; Martínez-Casado, R.; Peñate-Rodríguez, H.C.; Rojas-Lorenzo, G.; Miret-Artés, S.

    2014-01-01

    Classical viscid media are quite common in our everyday life. However, we are not used to find such media in quantum mechanics, and much less to analyze their effects on the dynamics of quantum systems. In this regard, the Caldirola–Kanai time-dependent Hamiltonian constitutes an appealing model, accounting for friction without including environmental fluctuations (as it happens, for example, with quantum Brownian motion). Here, a Bohmian analysis of the associated friction dynamics is provided in order to understand how a hypothetical, purely quantum viscid medium would act on a wave packet from a (quantum) hydrodynamic viewpoint. To this purpose, a series of paradigmatic contexts have been chosen, such as the free particle, the motion under the action of a linear potential, the harmonic oscillator, or the superposition of two coherent wave packets. Apart from their analyticity, these examples illustrate interesting emerging behaviors, such as localization by “quantum freezing” or a particular type of quantum–classical correspondence. The reliability of the results analytically determined has been checked by means of numerical simulations, which has served to investigate other problems lacking of such analyticity (e.g., the coherent superpositions). - Highlights: • A dissipative Bohmian approach is developed within the Caldirola–Kanai model. • Some simple yet physically insightful systems are then studied analytically. • Dissipation leads to spatial localization in free-force regimes. • Under the action of linear forces, dissipation leads to uniform motion. • In harmonic potentials, the system decays unavoidable to the well minimum

  16. Coherent wave packet dynamics in a double-well potential in cavity

    Science.gov (United States)

    Zheng, Li; Li, Gang; Ding, Ming-Song; Wang, Yong-Liang; Zhang, Yun-Cui

    2018-02-01

    We investigate the coherent wave packet dynamics of a two-level atom trapped in a symmetric double-well potential in a near-resonance cavity. Prepared on one side of the double-well potential, the atom wave packet oscillates between the left and right wells, while recoil induced by the emitted photon from the atom entangles the atomic internal and external degrees of freedom. The collapse and revival of the tunneling occurs. Adjusting the width of the wave packets, one can modify the tunneling frequency and suppress the tunneling.

  17. The nonlinear effects on the characteristics of gravity wave packets: dispersion and polarization relations

    Directory of Open Access Journals (Sweden)

    S.-D. Zhang

    2000-10-01

    Full Text Available By analyzing the results of the numerical simulations of nonlinear propagation of three Gaussian gravity-wave packets in isothermal atmosphere individually, the nonlinear effects on the characteristics of gravity waves are studied quantitatively. The analyses show that during the nonlinear propagation of gravity wave packets the mean flows are accelerated and the vertical wavelengths show clear reduction due to nonlinearity. On the other hand, though nonlinear effects exist, the time variations of the frequencies of gravity wave packets are close to those derived from the dispersion relation and the amplitude and phase relations of wave-associated disturbance components are consistent with the predictions of the polarization relation of gravity waves. This indicates that the dispersion and polarization relations based on the linear gravity wave theory can be applied extensively in the nonlinear region.Key words: Meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides

  18. Coherent control of interfering wave packets in dissociating HD+ molecules: the role of phase and delay time

    International Nuclear Information System (INIS)

    Qin, Chaochao; Zhang, Lili; Zhang, Xianzhou; Liu, Yufang; Qiu, Xuejun

    2016-01-01

    The coherent control of interference between dissociating wave packets of the HD + molecules generated by a pair of time-delayed and phase-locked femtosecond laser pulses is theoretically studied by using the time-dependent quantum wave packet method. The density function in both coordinate and momentum representation are presented and discussed. It is demonstrated that the interference pattern is observed in both coordinate and momentum density functions. The interference undergoes a π-phase shift when the delay time between the two phase-locked femtosecond laser pulses is changed by half an optical period. In particular, the number of interference fringes, the fringe spacing in the R-dependent density distribution |ψ(R)| 2 , and the modulation period of the energy-dependent distribution of the fragments P(E) can be tuned by two phase-locked femtosecond pulses. (paper)

  19. The Liouville equation for flavour evolution of neutrinos and neutrino wave packets

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Rasmus Sloth Lundkvist; Smirnov, Alexei Yu., E-mail: rasmus@mpi-hd.mpg.de, E-mail: smirnov@mpi-hd.mpg.de [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany)

    2016-12-01

    We consider several aspects related to the form, derivation and applications of the Liouville equation (LE) for flavour evolution of neutrinos. To take into account the quantum nature of neutrinos we derive the evolution equation for the matrix of densities using wave packets instead of Wigner functions. The obtained equation differs from the standard LE by an additional term which is proportional to the difference of group velocities. We show that this term describes loss of the propagation coherence in the system. In absence of momentum changing collisions, the LE can be reduced to a single derivative equation over a trajectory coordinate. Additional time and spatial dependence may stem from initial (production) conditions. The transition from single neutrino evolution to the evolution of a neutrino gas is considered.

  20. Wave-packet revival for the Schroedinger equation with position-dependent mass

    International Nuclear Information System (INIS)

    Schmidt, Alexandre G.M.

    2006-01-01

    We study the temporal evolution of solutions of 1D Schroedinger equation with position-dependent mass inside an infinite well. Revival of wave-packet is shown to exist and partial revivals are different from the usual ones

  1. The Generation Mechanism of Airy—Bessel Wave Packets in Free Space

    International Nuclear Information System (INIS)

    Ren Zhi-Jun; Ying Chao-Fu; Fan Chang-Jiang; Wu Qiong

    2012-01-01

    Localized optical Airy—Bessel configuration wave packets were first generated on the basis of a grating-telescope combination [Nat. Photon. 4(2010) 103]. By studying the spatially induced group velocity dispersion effect of ultrashort pulsed Bessel beams during propagation, we find the universal physical foundation of generating Airy—Bessel wave packets (ABWs) in free space. The research results are expected to open up more common channels for generating stable linear localized ABWs

  2. Coherent structural trapping through wave packet dispersion during photoinduced spin state switching

    DEFF Research Database (Denmark)

    Lemke, Henrik T.; Kjær, Kasper Skov; Hartsock, Robert

    2017-01-01

    The description of ultrafast nonadiabatic chemical dynamics during molecular photo-transformations remains challenging because electronic and nuclear configurations impact each other and cannot be treated independently. Here we gain experimental insights, beyond the Born-Oppenheimer approximation...... is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersion of the wave packet along the reaction coordinate reveals details of intramolecular vibronic...

  3. Evolution of a wave packet scattered by a one-dimensional potential

    Energy Technology Data Exchange (ETDEWEB)

    Khachatrian, A Zh; Alexanyan, Al G; Khoetsyan, V A; Alexanyan, N A

    2013-06-30

    We consider the evolution of a wave packet that is made up of a group of the wave functions describing the stationary scattering process and tunnels through a one-dimensional potential of arbitrary form. As the main characteristics of the time difference of the tunnelling process, use is made of the propagation speed of the wave-packet maximum. We show that the known Hartman formula for the tunnelling time corresponds to the wave packet with a wavenumber-uniform spectral composition in the case, when the phase and transmission coefficient modulus dispersions are taken into account only in the linear approximation. The amplitude of the main peak of the transmitted wave intensity is proven to be independent of the tunnelling time and is determined by the transmission coefficient of the spectral component at the carrier frequency and the spectral width of the wave packet. In the limit of an infinitely wide potential barrier the amplitude of the wave-packet maximum is shown to tend to zero slower than the tunnelling time tends to its asymptotic value, i.e., indeed we deal with the paradox of an infinitely large propagation speed of a wave disturbance through the barrier. (propagation of wave fronts)

  4. Evolution of a wave packet scattered by a one-dimensional potential

    International Nuclear Information System (INIS)

    Khachatrian, A Zh; Alexanyan, Al G; Khoetsyan, V A; Alexanyan, N A

    2013-01-01

    We consider the evolution of a wave packet that is made up of a group of the wave functions describing the stationary scattering process and tunnels through a one-dimensional potential of arbitrary form. As the main characteristics of the time difference of the tunnelling process, use is made of the propagation speed of the wave-packet maximum. We show that the known Hartman formula for the tunnelling time corresponds to the wave packet with a wavenumber-uniform spectral composition in the case, when the phase and transmission coefficient modulus dispersions are taken into account only in the linear approximation. The amplitude of the main peak of the transmitted wave intensity is proven to be independent of the tunnelling time and is determined by the transmission coefficient of the spectral component at the carrier frequency and the spectral width of the wave packet. In the limit of an infinitely wide potential barrier the amplitude of the wave-packet maximum is shown to tend to zero slower than the tunnelling time tends to its asymptotic value, i.e., indeed we deal with the paradox of an infinitely large propagation speed of a wave disturbance through the barrier. (propagation of wave fronts)

  5. Antisymmetrized molecular dynamics of wave packets with stochastic incorporation of Vlasov equation

    International Nuclear Information System (INIS)

    Ono, Akira; Horiuchi, Hisashi.

    1996-01-01

    The first purpose of this report is to present an extended AMD model which can generally describe such minor branching processes by removing the restriction on the one-body distribution function. This is done not by generalizing the wave packets to arbitrary single-particle wave functions but by representing the diffused and/or deformed wave packet as an ensemble of Gaussian wave packets. In other words, stochastic displacements are given to the wave packets in phase space so that the ensemble-average of the time evolution of the one-body distribution function is essentially equivalent to the solution of Vlasov equation which does not have any restriction on the shape of wave packets. This new model is called AMD-V. Although AMD-V is equivalent to Vlasov equation in the instantaneous time evolution of the one-body distribution function for an AMD wave function, AMD-V describes the branching into channels and the fluctuation of the mean field which are caused by the spreading or the splitting of the single-particle wave function. The second purpose of this report is to show the drastic effect of this new stochastic process of wave packet splitting on the dynamics of heavy ion collisions, especially in the fragmentation mechanism. We take the 40 Ca + 40 Ca system at the incident energy 35 MeV/nucleon. It will be shown that the reproduction of data by the AMD-V calculation is surprisingly good. We will see that the effect of the wave packet diffusion is crucially important to remove the spurious binary feature of the AMD calculation and to enable the multi-fragment final state. (J.P.N.)

  6. Comparison of a noncausal with a causal relativistic wave-packet evolution

    International Nuclear Information System (INIS)

    Castro, A.N. de; Jabs, A.

    1991-01-01

    In order to study causality violation in more detail we contrast the Klein-Gordon wave packet of Rosenstein und Usher with the Dirac wave packet of Bakke and Wergeland. Both packets are initially localized with exponentially bounded tails but just outside the condition of the general Hegerfeldt theorem for causality violation. It turns out that the wave packet of Bakke and Wergeland exhibits all the features investigated by Rosenstein and Usher, except that it never violates relativistic causality. Thus none of those features, in particular the back- and forerunners emerging from the light cone, can be held responsible for causality violation, and the Ruijsenaars integral is not necessarily a measure of the amount of causality violation. (orig.)

  7. Time-dependent wave-packet study of the direct low-energy dissociative recombination of HD+

    International Nuclear Information System (INIS)

    Orel, A. E.

    2000-01-01

    Wave-packet methods involving the numerical solution of the time-dependent Schroedinger equation have been used with great success in the calculation of cross sections for dissociative recombination of molecular ions by electron impact in the high energy region where the ''boomerang'' model [L. Dube and A. Herzenberg, Phys. Rev. A 11, 1314 (1975)] is valid. We extend this method to study low-energy dissociative recombination where this approximation is no longer appropriate. We apply the method to the ''direct'' low-energy dissociative recombination of HD + . Our results are in excellent agreement with calculations using the multichannel quantum defect method. (c) 2000 The American Physical Society

  8. Production and manipulation of wave packets from ultracold atoms in an optical lattice

    DEFF Research Database (Denmark)

    Pedersen, Poul Lindholm; Gajdacz, Miroslav; Winter, Nils

    2013-01-01

    of the system. The modulation technique also allows for a controllable transfer (deexcitation) of atoms from such wave packets to a state bound by the lattice. Thus, it acts as a beam splitter for matter waves that can selectively address different bands, enabling the preparation of atoms in localized states...

  9. Study of diffusion of wave packets in a square lattice under external fields along the discrete nonlinear Schrödinger equation

    International Nuclear Information System (INIS)

    Brito, P.E. de; Nazareno, H.N.

    2012-01-01

    The object of the present work is to analyze the effect of nonlinearity on wave packet propagation in a square lattice subject to a magnetic and an electric field in the Hall configuration, by using the Discrete Nonlinear Schrödinger Equation (DNLSE). In previous works we have shown that without the nonlinear term, the presence of the magnetic field induces the formation of vortices that remain stationary, while a wave packet is introduced in the system. As for the effect of an applied electric field, it was shown that the vortices propagate in a direction perpendicular to the electric field, similar behavior as presented in the classical treatment, we provide a quantum mechanics explanation for that. We have performed the calculations considering first the action of the magnetic field as well as the nonlinearity. The results indicate that for low values of the nonlinear parameter U the vortices remain stationary while preserving the form. For greater values of the parameter the picture gets distorted, the more so, the greater the nonlinearity. As for the inclusion of the electric field, we note that for small U, the wave packet propagates perpendicular to the applied field, until for greater values of U the wave gets partially localized in a definite region of the lattice. That is, for strong nonlinearity the wave packet gets partially trapped, while the tail of it can propagate through the lattice. Note that this tail propagation is responsible for the over-diffusion for long times of the wave packet under the action of an electric field. We have produced short films that show clearly the time evolution of the wave packet, which can add to the understanding of the dynamics.

  10. Extracting continuum information from Ψ(t) in time-dependent wave-packet calculations

    International Nuclear Information System (INIS)

    Madsen, L. B.; Nikolopoulos, L. A. A.; Kjeldsen, T. K.; Fernandez, J.

    2007-01-01

    The theory of measurement projection operators in grid-based time-dependent wave-packet calculations involving electronic continua in atoms and molecules is discussed. A hierarchy of projection operators relevant in their individual restricted configuration spaces is presented. At asymptotically large distances from the scattering or interaction center the projection operators involve plane waves only. To reach this asymptotic regime, however, large propagation times and large boxes may be required. At somewhat smaller distances from the scattering center, the projection operators are expressed in terms of analytical single-center Coulomb scattering waves with incoming wave boundary conditions. If propagation of the wave packet to these asymptotic regimes is impeded, the projection operators involve the exact scattering states which are not readily available in the wave-packet calculation and hence must be supplied by an additional, typically very demanding, calculation. The present approach suggests an exact way of analyzing the timely problem of the one-electron continuum in nonperturbative calculations. A key feature is that the propagated wave packet includes every interaction of the full Hamiltonian. The practicality of the proposed method is illustrated by the nontrivial example of strong-field ionization of the molecular hydrogen ion. Finally, the extension of the presented ideas to single and double ionization of two-electron systems is discussed

  11. Long-term evolution and revival structure of Rydberg wave packets

    International Nuclear Information System (INIS)

    Bluhm, R.

    1995-01-01

    It is known that, after formation, a Rydberg wave packet undergoes a series of collapses and revivals within a time period called the revival time, t rev , at the end of which it is close to its original shape. We study the behavior of Rydberg wave packets on time scales much greater than t rev . We show that after a few revival cycles the wave packet ceases to reform at multiples of the revival time. Instead, a new series of collapses and revivals commences, culminating after a time period t sr >>t rev with the formation of a wave packet that more closely resembles the initial packet than does the full revival at time t rev . Furthermore, at times that are rational fractions of t sr , the square of the autocorrelation function exhibits large peaks with periodicities that can be expressed as fractions of the revival time t rev . These periodicities indicate a new type of fractional revival occurring for times much greater than t rev . A theoretical explanation of these effects is outlined. ((orig.))

  12. Extended wave-packet model to calculate energy-loss moments of protons in matter

    Science.gov (United States)

    Archubi, C. D.; Arista, N. R.

    2017-12-01

    In this work we introduce modifications to the wave-packet method proposed by Kaneko to calculate the energy-loss moments of a projectile traversing a target which is represented in terms of Gaussian functions for the momentum distributions of electrons in the atomic shells. These modifications are introduced using the Levine and Louie technique to take into account the energy gaps corresponding to the different atomic levels of the target. We use the extended wave-packet model to evaluate the stopping power, the energy straggling, the inverse mean free path, and the ionization cross sections for protons in several targets, obtaining good agreements for all these quantities on an extensive energy range that covers low-, intermediate-, and high-energy regions. The extended wave-packet model proposed here provides a method to calculate in a very straightforward way all the significant terms of the inelastic interaction of light ions with any element of the periodic table.

  13. Isolated drops from capillary jets by means of Gaussian wave packets

    Science.gov (United States)

    Garcia, Francisco Javier; Gonzalez, Heliodoro; Castrejon-Pita, Alfonso Arturo; Castrejon-Pita, Jose Rafael; Gomez-Aguilar, Francisco Jose

    2017-11-01

    The possibility of obtaining isolated drops from a continuous liquid jet through localized velocity perturbations is explored analytically, numerically and experimentally. We show that Gaussian wave packets are appropriate for this goal. A temporal linear analysis predicts the early evolution of these wave packets and provides an estimate of the breakup length of the jet. Non-linear numerical simulations allow us both to corroborate these results and to obtain the shape of the surface of the jet prior to breakup. Finally, we show experimental evidence that stimulating with a Gaussian wave packet can lead to the formation of an isolated drop without disturbing the rest of the jet. The authors acknowledge support from the Spanish Government under Contract No. FIS2014-25161, the Junta de Andalucia under Contract No. P11-FQM-7919, the EPSRC-UK via the Grant EP/P024173/1, and the Royal Society.

  14. On the definition of the momentum of an Alfven wave packet

    International Nuclear Information System (INIS)

    Khudik, V.N.

    1993-01-01

    The different definitions of the momentum of a wave disturbance are considered, corresponding to the invariance of the Lagrangian with respect to different kinds of translation in magnetohydrodynamics. It is shown that the value of the momentum of an Alfven wave packet calculated using the definition accepted in the electrodynamics of continuous media is not the same as the total momentum of the particles in the medium and the electromagnetic field in the region within which the packet is localized. 5 refs., 2 figs

  15. Wave packet fractional revivals in a one-dimensional Rydberg atom

    International Nuclear Information System (INIS)

    Veilande, Rita; Bersons, Imants

    2007-01-01

    We investigate many characteristic features of revival and fractional revival phenomena via derived analytic expressions for an autocorrelation function of a one-dimensional Rydberg atom with weighting probabilities modelled by a Gaussian or a Lorentzian distribution. The fractional revival phenomenon in the ionization probabilities of a one-dimensional Rydberg atom irradiated by two short half-cycle pulses is also studied. When many states are involved in the formation of the wave packet, the revival is lower and broader than the initial wave packet and the fractional revivals overlap and disappear with time

  16. Quantum scattering beyond the plane-wave approximation

    Science.gov (United States)

    Karlovets, Dmitry

    2017-12-01

    While a plane-wave approximation in high-energy physics works well in a majority of practical cases, it becomes inapplicable for scattering of the vortex particles carrying orbital angular momentum, of Airy beams, of the so-called Schrödinger cat states, and their generalizations. Such quantum states of photons, electrons and neutrons have been generated experimentally in recent years, opening up new perspectives in quantum optics, electron microscopy, particle physics, and so forth. Here we discuss the non-plane-wave effects in scattering brought about by the novel quantum numbers of these wave packets. For the well-focused electrons of intermediate energies, already available at electron microscopes, the corresponding contribution can surpass that of the radiative corrections. Moreover, collisions of the cat-like superpositions of such focused beams with atoms allow one to probe effects of the quantum interference, which have never played any role in particle scattering.

  17. Resonant tunneling of spin-wave packets via quantized states in potential wells.

    Science.gov (United States)

    Hansen, Ulf-Hendrik; Gatzen, Marius; Demidov, Vladislav E; Demokritov, Sergej O

    2007-09-21

    We have studied the tunneling of spin-wave pulses through a system of two closely situated potential barriers. The barriers represent two areas of inhomogeneity of the static magnetic field, where the existence of spin waves is forbidden. We show that for certain values of the spin-wave frequency corresponding to the quantized spin-wave states existing in the well formed between the barriers, the tunneling has a resonant character. As a result, transmission of spin-wave packets through the double-barrier structure is much more efficient than the sequent tunneling through two single barriers.

  18. Non-linear wave packet dynamics of coherent states

    Indian Academy of Sciences (India)

    In recent years, the non-linear quantum dynamics of these states have revealed some striking features. It was found that under the action of a Hamil- tonian which is a non-linear function of the photon operator(s) only, an initial coherent state loses its coherent structure quickly due to quantum dephasing induced by the non-.

  19. Wave packet dynamics and photofragmentation in time-dependent quadratic potentials

    DEFF Research Database (Denmark)

    Møller, Klaus Braagaard; Henriksen, Niels Engholm

    1996-01-01

    We study the dynamics of generalized harmonic oscillator states in time-dependent quadratic potentials and derive analytical expressions for the momentum space and the Wigner phase space representation of these wave packets. Using these results we consider a model for the rotational excitation...

  20. Global time asymmetry as a consequence of a wave packets theorem

    International Nuclear Information System (INIS)

    Castagnino, Mario A.; Gueron, Jorge; Ordonez, Adolfo R.

    2002-01-01

    When t→∞ any wave packet in the Liouvillian representation of the density matrices becomes a Hardy class function from below. This fact, in the global frame of the Reichenbach diagram, is used to explain the observed global time asymmetry of the universe

  1. Initial Dynamics of The Norrish Type I Reaction in Acetone: Probing Wave Packet Motion

    DEFF Research Database (Denmark)

    Brogaard, Rasmus Y.; Sølling, Theis I.; Møller, Klaus Braagaard

    2011-01-01

    The Norrish Type I reaction in the S1 (nπ*) state of acetone is a prototype case of ketone photochemistry. On the basis of results from time-resolved mass spectrometry (TRMS) and photoelectron spectroscopy (TRPES) experiments, it was recently suggested that after excitation the wave packet travels...

  2. Effects of delayed nonlinear response on wave packet dynamics in one-dimensional generalized Fibonacci chains

    International Nuclear Information System (INIS)

    Zhang, Jianxin; Zhang, Zhenjun; Tong, Peiqing

    2013-01-01

    We investigate the spreading of an initially localized wave packet in one-dimensional generalized Fibonacci (GF) lattices by solving numerically the discrete nonlinear Schrödinger equation (DNLSE) with a delayed cubic nonlinear term. It is found that for short delay time, the wave packet is self-trapping in first class of GF lattices, that is, the second moment grows with time, but the corresponding participation number does not grow. However, both the second moment and the participation number grow with time for large delay time. This illuminates that the wave packet is delocalized. For the second class of GF lattices, the dynamic behaviors of wave packet depend on the strength of on-site potential. For a weak on-site potential, the results are similar to the case of the first class. For a strong on-site potential, both the second moment and the participation number does not grow with time in the regime of short delay time. In the regime of large delay time, both the second moment and the participation number exhibit stair-like growth

  3. Frame properties of wave packet systes in L^2 (R^d)

    DEFF Research Database (Denmark)

    Christensen, Ole; Rahimi, Asghar

    2008-01-01

    Extending work by Hernandez, Labate and Weiss, we present a sufficent condition for a generalized shift-invariant system to be a Bessel sequence or even a frame forL(2)(R-d). In particular, this leads to a sufficient condition for a wave packet system to form a frame. On the other hand, we show...

  4. Monte Carlo Wave Packet Theory of Dissociative Double Ionization

    DEFF Research Database (Denmark)

    Leth, Henriette Astrup; Madsen, Lars Bojer; Mølmer, Klaus

    2009-01-01

    Nuclear dynamics in strong-field double ionization processes is predicted using a stochastic Monte Carlo wave packet technique. Using input from electronic structure calculations and strong-field electron dynamics the description allows for field-dressed dynamics within a given molecule as well...

  5. Effects of delayed nonlinear response on wave packet dynamics in one-dimensional generalized Fibonacci chains

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianxin; Zhang, Zhenjun [Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023 (China); Tong, Peiqing, E-mail: pqtong@njnu.edu.cn [Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems, Nanjing Normal University, Nanjing 210023 (China)

    2013-07-15

    We investigate the spreading of an initially localized wave packet in one-dimensional generalized Fibonacci (GF) lattices by solving numerically the discrete nonlinear Schrödinger equation (DNLSE) with a delayed cubic nonlinear term. It is found that for short delay time, the wave packet is self-trapping in first class of GF lattices, that is, the second moment grows with time, but the corresponding participation number does not grow. However, both the second moment and the participation number grow with time for large delay time. This illuminates that the wave packet is delocalized. For the second class of GF lattices, the dynamic behaviors of wave packet depend on the strength of on-site potential. For a weak on-site potential, the results are similar to the case of the first class. For a strong on-site potential, both the second moment and the participation number does not grow with time in the regime of short delay time. In the regime of large delay time, both the second moment and the participation number exhibit stair-like growth.

  6. Wave-packet treatment of reactor neutrino oscillation experiments and its implications on determining the neutrino mass hierarchy

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Yat-Long; Chu, M.C.; Xu, Jianyi [The Chinese University of Hong Kong, Department of Physics, Shatin (China); Tsui, Ka Ming [University of Tokyo, RCCN, ICRR, Kashiwa, Chiba (Japan); Wong, Chan Fai [Sun Yat-Sen University, Guangzhou (China)

    2016-06-15

    We derive the neutrino flavor transition probabilities with the neutrino treated as a wave packet. The decoherence and dispersion effects from the wave-packet treatment show up as damping and phase-shifting of the plane-wave neutrino oscillation patterns. If the energy uncertainty in the initial neutrino wave packet is larger than around 0.01 of the neutrino energy, the decoherence and dispersion effects would degrade the sensitivity of reactor neutrino experiments to mass hierarchy measurement to lower than 3 σ confidence level. (orig.)

  7. Study of the wave packet treatment of neutrino oscillation at Daya Bay

    Energy Technology Data Exchange (ETDEWEB)

    An, F.P. [East China Univ. of Science and Technology, Shanghai (China). Inst. of Modern Physics; Balantekin, A.B. [Wisconsin Univ., Madison, WI (United States); Band, H.R. [Yale Univ., New Haven, CT (United States). Dept. of Physics; Collaboration: Daya Bay Collaboration; and others

    2017-09-15

    The disappearance of reactor anti ν{sub e} observed by the Daya Bay experiment is examined in the framework of a model in which the neutrino is described by a wave packet with a relative intrinsic momentum dispersion σ{sub rel}. Three pairs of nuclear reactors and eight antineutrino detectors, each with good energy resolution, distributed among three experimental halls, supply a high-statistics sample of anti ν{sub e} acquired at nine different baselines. This provides a unique platform to test the effects which arise from the wave packet treatment of neutrino oscillation. The modified survival probability formula was used to fit Daya Bay data, providing the first experimental limits: 2.38 x 10{sup -17} < σ{sub rel} < 0.23. Treating the dimensions of the reactor cores and detectors as constraints, the limits are improved: 10{sup -14} or similar 10{sup -11} cm) is obtained. All limits correspond to a 95% C.L. Furthermore, the effect due to the wave packet nature of neutrino oscillation is found to be insignificant for reactor antineutrinos detected by the Daya Bay experiment thus ensuring an unbiased measurement of the oscillation parameters sin{sup 2}2θ{sub 13} and Δm{sup 2}{sub 32} within the plane wave model. (orig.)

  8. Study of the wave packet treatment of neutrino oscillation at Daya Bay

    Science.gov (United States)

    Daya Bay Collaboration

    2017-09-01

    The disappearance of reactor \\bar{ν }_e observed by the Daya Bay experiment is examined in the framework of a model in which the neutrino is described by a wave packet with a relative intrinsic momentum dispersion σ _{rel}. Three pairs of nuclear reactors and eight antineutrino detectors, each with good energy resolution, distributed among three experimental halls, supply a high-statistics sample of \\bar{ν }_e acquired at nine different baselines. This provides a unique platform to test the effects which arise from the wave packet treatment of neutrino oscillation. The modified survival probability formula was used to fit Daya Bay data, providing the first experimental limits: 2.38 × 10^{-17}< σ _{rel} < 0.23. Treating the dimensions of the reactor cores and detectors as constraints, the limits are improved: 10^{-14} ≲ σ _ {rel} < 0.23, and an upper limit of σ _ {rel}<0.20 (which corresponds to σ _x ≳ 10^{-11} {cm }) is obtained. All limits correspond to a 95% C.L. Furthermore, the effect due to the wave packet nature of neutrino oscillation is found to be insignificant for reactor antineutrinos detected by the Daya Bay experiment thus ensuring an unbiased measurement of the oscillation parameters sin ^22θ _{13} and Δ m^2_{32} within the plane wave model.

  9. Monte Carlo wave packet approach to dissociative multiple ionization in diatomic molecules

    DEFF Research Database (Denmark)

    Leth, Henriette Astrup; Madsen, Lars Bojer; Mølmer, Klaus

    2010-01-01

    A detailed description of the Monte Carlo wave packet technique applied to dissociative multiple ionization of diatomic molecules in short intense laser pulses is presented. The Monte Carlo wave packet technique relies on the Born-Oppenheimer separation of electronic and nuclear dynamics...... and provides a consistent theoretical framework for treating simultaneously both ionization and dissociation. By simulating the detection of continuum electrons and collapsing the system onto either the neutral, singly ionized or doubly ionized states in every time step the nuclear dynamics can be solved....... The computational effort is restricted and the model is applicable to any molecular system where electronic Born-Oppenheimer curves, dipole moment functions, and ionization rates as a function of nuclear coordinates can be determined....

  10. Space-time evolution of Gaussian wave packets through superlattices containing left-handed layers

    Energy Technology Data Exchange (ETDEWEB)

    Pereyra, P; Romero-Serrano, M [Departamento de Ciencias Basicas, Universidad Autonoma Metropolitana-Azcapotzalco, Mexico DF (Mexico); Robledo-Martinez, A, E-mail: ppereyra@correo.azc.uam.m, E-mail: a.robledo@mailaps.or [Departamento de EnergIa, Universidad Autonoma Metropolitana-Azcapotzalco, Mexico DF (Mexico)

    2009-05-01

    We study the space-time evolution of Gaussian electromagnetic wave packets moving through (L/R){sup n} superlattices, containing alternating layers of left and right-handed materials. We show that the time spent by the wave packet moving through arbitrary (L/R){sup n} superlattices are well described by the phase time. We show that in the particular case where the thicknesses d{sub L,R} and indices n{sub l,r} of the layers satisfy the condition d{sub L}|n{sub L}| = d{sub R}n{sub R}, the usual band structure becomes a sequence of isolated and equidistant peaks with negative phase times.

  11. Characterizing the astrophysical S factor for 12C+12C fusion with wave-packet dynamics

    Science.gov (United States)

    Diaz-Torres, Alexis; Wiescher, Michael

    2018-05-01

    A quantitative study of the astrophysically important subbarrier fusion of 12C+12C is presented. Low-energy collisions are described in the body-fixed reference frame using wave-packet dynamics within a nuclear molecular picture. A collective Hamiltonian drives the time propagation of the wave packet through the collective potential-energy landscape. The fusion imaginary potential for specific dinuclear configurations is crucial for understanding the appearance of resonances in the fusion cross section. The theoretical subbarrier fusion cross sections explain some observed resonant structures in the astrophysical S factor. These cross sections monotonically decline towards stellar energies. The structures in the data that are not explained are possibly due to cluster effects in the nuclear molecule, which need to be included in the present approach.

  12. Massachusetts Bay - Internal wave packets digitized from SAR imagery and intersected with a bathymetrically derived slope surface

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This feature class contains internal wave packets digitized from SAR imagery and intersected with a bathymetrically derived slope surface for Massachusetts Bay. The...

  13. Delocalization of charge and current in a chiral quasiparticle wave packet

    Science.gov (United States)

    Sarkar, Subhajit

    2018-03-01

    A chiral quasiparticle wave packet (c-QPWP) is defined as a conventional superposition of chiral quasiparticle states corresponding to an interacting electron system in two dimensions (2D) in the presence of Rashba spin-orbit coupling (RSOC). I investigate its internal structure via studying the charge and the current densities within the first-order perturbation in the electron-electron interaction. It is found that the c-QPWP contains a localized charge which is less than the magnitude of the bare charge and the remaining charge resides at the system boundary. The amount of charge delocalized turns out to be inversely proportional to the degenerate Fermi velocity v0(=√{α2+2 μ /m }) when RSOC (with strength α ) is weak, and therefore externally tunable. For strong RSOC, the magnitudes of both the delocalized charge and the current further strongly depend on the direction of propagation of the wave packet. Both the charge and the current densities consist of an anisotropic r-2 tail away from the center of the wave packet. Possible implications of such delocalizations in real systems corresponding to 2D semiconductor heterostructure are also discussed within the context of particle injection experiments.

  14. Initial dynamics of the Norrish Type I reaction in acetone: probing wave packet motion.

    Science.gov (United States)

    Brogaard, Rasmus Y; Sølling, Theis I; Møller, Klaus B

    2011-02-10

    The Norrish Type I reaction in the S(1) (nπ*) state of acetone is a prototype case of ketone photochemistry. On the basis of results from time-resolved mass spectrometry (TRMS) and photoelectron spectroscopy (TRPES) experiments, it was recently suggested that after excitation the wave packet travels toward the S(1) minimum in less than 30 fs and stays there for more than 100 picoseconds [Chem. Phys. Lett.2008, 461, 193]. In this work we present simulated TRMS and TRPES signals based on ab initio multiple spawning simulations of the dynamics during the first 200 fs after excitation, getting quite good agreement with the experimental signals. We can explain the ultrafast decay of the experimental signals in the following manner: the wave packet simply travels, mainly along the deplanarization coordinate, out of the detection window of the ionizing probe. This window is so narrow that subsequent revival of the signal due to the coherent deplanarization vibration is not observed, meaning that from the point of view of the experiment the wave packets travels directly to the S(1) minimum. This result stresses the importance of pursuing a closer link to the experimental signal when using molecular dynamics simulations in interpreting experimental results.

  15. Energy-flux characterization of conical and space-time coupled wave packets

    International Nuclear Information System (INIS)

    Lotti, A.; Couairon, A.; Faccio, D.; Trapani, P. Di

    2010-01-01

    We introduce the concept of energy density flux as a characterization tool for the propagation of ultrashort laser pulses with spatiotemporal coupling. In contrast with calculations for the Poynting vector, those for energy density flux are derived in the local frame moving at the velocity of the envelope of the wave packet under examination and do not need knowledge of the magnetic field. We show that the energy flux defined from a paraxial propagation equation follows specific geometrical connections with the phase front of the optical wave packet, which demonstrates that the knowledge of the phase fronts amounts to the measurement of the energy flux. We perform a detailed numerical study of the energy density flux in the particular case of conical waves, with special attention paid to stationary-envelope conical waves (X or O waves). A full characterization of linear conical waves is given in terms of their energy flux. We extend the definition of this concept to the case of nonlinear propagation in Kerr media with nonlinear losses.

  16. Particle in a uniform magnetic field under the symmetric gauge: the eigenfunctions and the time evolution of wave packets

    International Nuclear Information System (INIS)

    Brito, P E de; Nazareno, H N

    2007-01-01

    In the present work we treat the problem of a particle in a uniform magnetic field along the symmetric gauge, so chosen since the wavefunctions present the required cylindrical symmetry. It is our understanding that by means of this work we can make a contribution to the teaching of the present subject, as well as encourage students to use computer algebra systems in solving problems of quantum mechanics. We obtained the degeneracy of the spectrum of eigenvalues in a very clear way. Through the use of a computer algebra system we show graphs of the probability density associated with different eigenvalues as well as compare such functions for some degenerate states, which helps us to visualize the physics of the problem. We also present a semiclassical model which gives a physical insight regarding the paradoxical fact that eigenfunctions associated with opposite angular momenta and different energy eigenvalues have the same probability density. Finally, by solving the time-dependent Schroedinger equation we obtain the time evolution of a wave packet that at time zero was considered to be localized in a definite region of the lattice. The centroid of such a packet performs an orbit similar to that obtained in the classical treatment of a particle in a magnetic field

  17. Generic short-time propagation of sharp-boundaries wave packets

    Science.gov (United States)

    Granot, E.; Marchewka, A.

    2005-11-01

    A general solution to the "shutter" problem is presented. The propagation of an arbitrary initially bounded wave function is investigated, and the general solution for any such function is formulated. It is shown that the exact solution can be written as an expression that depends only on the values of the function (and its derivatives) at the boundaries. In particular, it is shown that at short times (t << 2mx2/hbar, where x is the distance to the boundaries) the wave function propagation depends only on the wave function's values (or its derivatives) at the boundaries of the region. Finally, we generalize these findings to a non-singular wave function (i.e., for wave packets with finite-width boundaries) and suggest an experimental verification.

  18. Mean flow generated by an internal wave packet impinging on the interface between two layers of fluid with continuous density

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, John P. [The University of New Hampshire, Department of Mechanical Engineering, Kingsbury Hall, Durham, NH (United States)

    2008-04-15

    Internal waves propagating in an idealized two-layer atmosphere are studied numerically. The governing equations are the inviscid anelastic equations for a perfect gas atmosphere. The numerical formulation eliminates all variables in the linear terms except vertical velocity, which are then treated implicitly. Nonlinear terms are treated explicitly. The basic state is a two-layer flow with continuous density at the interface. Each layer has a unique constant for the Brunt-Vaeisaelae frequency. Waves are forced at the bottom of the domain, are periodic in the horizontal direction, and form a finite wave packet in the vertical. The results show that the wave packet forms a mean flow that is confined to the interface region that persists long after the wave packet has moved away. Large-amplitude waves are forced to break beneath the interface. (orig.)

  19. Possibility to Probe Negative Values of a Wigner Function in Scattering of a Coherent Superposition of Electronic Wave Packets by Atoms.

    Science.gov (United States)

    Karlovets, Dmitry V; Serbo, Valeriy G

    2017-10-27

    Within a plane-wave approximation in scattering, an incoming wave packet's Wigner function stays positive everywhere, which obscures such purely quantum phenomena as nonlocality and entanglement. With the advent of the electron microscopes with subnanometer-sized beams, one can enter a genuinely quantum regime where the latter effects become only moderately attenuated. Here we show how to probe negative values of the Wigner function in scattering of a coherent superposition of two Gaussian packets with a nonvanishing impact parameter between them (a Schrödinger's cat state) by atomic targets. For hydrogen in the ground 1s state, a small parameter of the problem, a ratio a/σ_{⊥} of the Bohr radius a to the beam width σ_{⊥}, is no longer vanishing. We predict an azimuthal asymmetry of the scattered electrons, which is found to be up to 10%, and argue that it can be reliably detected. The production of beams with the not-everywhere-positive Wigner functions and the probing of such quantum effects can open new perspectives for noninvasive electron microscopy, quantum tomography, particle physics, and so forth.

  20. Dynamics of an atomic wave packet in a standing-wave cavity field: A cavity-assisted single-atom detection

    International Nuclear Information System (INIS)

    Chough, Young-Tak; Nha, Hyunchul; Kim, Sang Wook; An, Kyungwon; Youn, Sun-Hyun

    2002-01-01

    We investigate the single-atom detection system using an optical standing-wave cavity, from the viewpoint of the quantized center-of-mass motion of the atomic wave packet. We show that since the atom-field coupling strength depends upon the overlap integral of the atomic wave packet and the field mode function, the effect of the wave-packet spreading via the momentum exchange process brings about a significant effect in the detection efficiency. We find that, as a result, the detection efficiency is not sensitive to the individual atomic trajectory for reasonably slow atoms. We also address an interesting phenomenon of the atomic wave-packet splitting occurring when an atom passes through a node of the cavity field

  1. Determining the wavelength of Langmuir wave packets at the Earth's bow shock

    Directory of Open Access Journals (Sweden)

    V. V. Krasnoselskikh

    2011-03-01

    Full Text Available The propagation of Langmuir waves in plasmas is known to be sensitive to density fluctuations. Such fluctuations may lead to the coexistence of wave pairs that have almost opposite wave-numbers in the vicinity of their reflection points. Using high frequency electric field measurements from the WIND satellite, we determine for the first time the wavelength of intense Langmuir wave packets that are generated upstream of the Earth's electron foreshock by energetic electron beams. Surprisingly, the wavelength is found to be 2 to 3 times larger than the value expected from standard theory. These values are consistent with the presence of strong inhomogeneities in the solar wind plasma rather than with the effect of weak beam instabilities.

  2. Finite-measuring approximation of operators of scattering theory in representation of wave packets

    International Nuclear Information System (INIS)

    Kukulin, V.I.; Rubtsova, O.A.

    2004-01-01

    Several types of the packet quantization of the continuos spectrum in the scattering theory quantum problems are considered. Such a quantization leads to the convenient finite-measuring (i.e. matrix) approximation of the integral operators in the scattering theory and it makes it possible to reduce the solution of the singular integral equations, complying with the scattering theory, to the convenient purely algebraic equations on the analytical basis, whereby all the singularities are separated in the obvious form. The main attention is paid to the problems of the method practical realization [ru

  3. Nonlinear saturation of wave packets excited by low-energy electron horseshoe distributions.

    Science.gov (United States)

    Krafft, C; Volokitin, A

    2013-05-01

    Horseshoe distributions are shell-like particle distributions that can arise in space and laboratory plasmas when particle beams propagate into increasing magnetic fields. The present paper studies the stability and the dynamics of wave packets interacting resonantly with electrons presenting low-energy horseshoe or shell-type velocity distributions in a magnetized plasma. The linear instability growth rates are determined as a function of the ratio of the plasma to the cyclotron frequencies, of the velocity and the opening angle of the horseshoe, and of the relative thickness of the shell. The nonlinear stage of the instability is investigated numerically using a symplectic code based on a three-dimensional Hamiltonian model. Simulation results show that the dynamics of the system is mainly governed by wave-particle interactions at Landau and normal cyclotron resonances and that the high-order normal cyclotron resonances play an essential role. Specific features of the dynamics of particles interacting simultaneously with two or more waves at resonances of different natures and orders are discussed, showing that such complex processes determine the main characteristics of the wave spectrum's evolution. Simulations with wave packets presenting quasicontinuous spectra provide a full picture of the relaxation of the horseshoe distribution, revealing two main phases of the evolution: an initial stage of wave energy growth, characterized by a fast filling of the shell, and a second phase of slow damping of the wave energy, accompanied by final adjustments of the electron distribution. The influence of the density inhomogeneity along the horseshoe on the wave-particle dynamics is also discussed.

  4. Attosecond ionization gating for isolated attosecond electron wave packet and broadband attosecond xuv pulses

    International Nuclear Information System (INIS)

    Lan Pengfei; Lu Peixiang; Cao Wei; Li Yuhua; Wang Xinlin

    2007-01-01

    An attosecond ionization gating is achieved using a few-cycle laser pulse in combination with its second harmonic. With this gating, the generation of the electron wave packet (EWP) is coherently controlled, and an isolated EWP of about 270 as is generated. An isolated broadband attosecond extreme ultraviolet pulse with a bandwidth of about 75 eV can also be generated using this gating, which can be used for EWP measurements as efficiently as a 50-as pulse, allowing one to measure a wide range of ultrafast dynamics not normally accessible before

  5. Probability distribution of wave packet delay time for strong overlapping of resonance levels

    International Nuclear Information System (INIS)

    Lyuboshits, V.L.

    1983-01-01

    Time behaviour of nuclear reactions in the case of high level densities is investigated basing on the theory of overlapping resonances. In the framework of a model of n equivalent channels an analytical expression is obtained for the probability distribution function for wave packet delay time at the compound nucleus production. It is shown that at strong overlapping of the resonance levels the relative fluctuation of the delay time is small at the stage of compound nucleus production. A possible increase in the duration of nuclear reactions with the excitation energy rise is discussed

  6. The coupled three-dimensional wave packet approach to reactive scattering

    Science.gov (United States)

    Marković, Nikola; Billing, Gert D.

    1994-01-01

    A recently developed scheme for time-dependent reactive scattering calculations using three-dimensional wave packets is applied to the D+H2 system. The present method is an extension of a previously published semiclassical formulation of the scattering problem and is based on the use of hyperspherical coordinates. The convergence requirements are investigated by detailed calculations for total angular momentum J equal to zero and the general applicability of the method is demonstrated by solving the J=1 problem. The inclusion of the geometric phase is also discussed and its effect on the reaction probability is demonstrated.

  7. Quantum mechanics of lattice gas automata: One-particle plane waves and potentials

    International Nuclear Information System (INIS)

    Meyer, D.A.

    1997-01-01

    Classical lattice gas automata effectively simulate physical processes, such as diffusion and fluid flow (in certain parameter regimes), despite their simplicity at the microscale. Motivated by current interest in quantum computation we recently defined quantum lattice gas automata; in this paper we initiate a project to analyze which physical processes these models can effectively simulate. Studying the single particle sector of a one-dimensional quantum lattice gas we find discrete analogs of plane waves and wave packets, and then investigate their behavior in the presence of inhomogeneous potentials. copyright 1997 The American Physical Society

  8. Spectro-spatial analysis of wave packet propagation in nonlinear acoustic metamaterials

    Science.gov (United States)

    Zhou, W. J.; Li, X. P.; Wang, Y. S.; Chen, W. Q.; Huang, G. L.

    2018-01-01

    The objective of this work is to analyze wave packet propagation in weakly nonlinear acoustic metamaterials and reveal the interior nonlinear wave mechanism through spectro-spatial analysis. The spectro-spatial analysis is based on full-scale transient analysis of the finite system, by which dispersion curves are generated from the transmitted waves and also verified by the perturbation method (the L-P method). We found that the spectro-spatial analysis can provide detailed information about the solitary wave in short-wavelength region which cannot be captured by the L-P method. It is also found that the optical wave modes in the nonlinear metamaterial are sensitive to the parameters of the nonlinear constitutive relation. Specifically, a significant frequency shift phenomenon is found in the middle-wavelength region of the optical wave branch, which makes this frequency region behave like a band gap for transient waves. This special frequency shift is then used to design a direction-biased waveguide device, and its efficiency is shown by numerical simulations.

  9. Detecting strain wave propagation through quantum dots by pump-probe spectroscopy: A theoretical analysis

    International Nuclear Information System (INIS)

    Huneke, J; Kuhn, T; Axt, V M

    2010-01-01

    The influence of strain waves traveling across a quantum dot structure on its optical response is studied for two different situations: First, a strain wave is created by the optical excitation of a single quantum dot near a surface which, after reflection at the surface, reenters the dot; second, a phonon wave packet is emitted by the excitation of a nearby second dot and then travels across the quantum dot. Pump-probe type excitations are simulated for quantum dots in the strong confinement limit. We show that the optical signals allow us to monitor crossing strain waves for both structures in the real-time response as well as in the corresponding pump-probe spectra. In the time-derivative of the phase of the polarization a distinct trace reflects the instantaneous shifts of the transition energy during the passage while in the spectra pronounced oscillations reveal the passage of the strain waves.

  10. Preparing isolated vibrational wave packets with light-induced molecular potentials by chirped laser pulses

    Science.gov (United States)

    Vatasescu, Mihaela

    2012-05-01

    We consider a specific wave packet preparation arising from the control of tunneling in the 0g-(6s,6p3/2) double well potential of a Cs2 cold molecule with chirped laser pulses. Such a possibility to manipulate the population dynamics in the 0g-(6s,6p3/2) potential appears in a pump-dump scheme designed to form cold molecules by photoassociation of two cold cesium atoms. The initial population in the 0g-(6s,6p3/2) double well is a wave packet prepared in the outer well at large interatomic distances (94 a0) by a photoassociation step with a first chirped pulse, being a superposition of several vibrational states whose energies surround the energy of a tunneling resonance. Our present work is focused on a second delayed chirped pulse, coupling the 0g-(6s,6p3/2) surface with the a3Σu+(6s,6s) one in the zone of the double well barrier (15 a0) and creating deeply bound cold molecules in the a3Σu+(6s,6s) state. We explore the parameters choice (intensity, duration, chirp rate and sign) for this second pulse, showing that picoseconds pulses with a negative chirp can lead to trapping of population in the inner well in strongly bound vibrational states, out of the resonant tunneling able to transfer it back to the outer well.

  11. Steering wave packet dynamics and population transfer between electronic states of the Na2 molecule by femtosecond laser pulses

    International Nuclear Information System (INIS)

    Yuan Kaijun; Sun Zhigang; Cong Shulin; Wang Senming; Yu Jie; Lou Nanquan

    2005-01-01

    An approach used for steering the wave packet dynamics and the population transfer between electronic states of the Na 2 molecule by a pair of femtosecond laser pulses is demonstrated. Four controlling schemes, i.e., four different combinations of time delays (intuitive and counterintuitive sequences) and frequency detunings (positive and negative detunings), are discussed in detail. The light-induced potentials are used to describe the wave packet dynamics and population transfer. The numerical results show that the wave packet excited by femtosecond laser pulses oscillates drastically on 2 1 Π g state with time. The efficiency of controlling population transfer from the X 1 Σ g + to2 1 Π g states of Na 2 is nearly 100% for the schemes of the counterintuitive sequence pulses with positive and negative detunings

  12. Time-resolved X-ray scattering by electronic wave packets: analytic solutions to the hydrogen atom

    DEFF Research Database (Denmark)

    Simmermacher, Mats; Henriksen, Niels Engholm; Møller, Klaus Braagaard

    2017-01-01

    Modern pulsed X-ray sources permit time-dependent measurements of dynamical changes in atoms and molecules via non-resonant scattering. The planning, analysis, and interpretation of such experiments, however, require a firm and elaborated theoretical framework. This paper provides a detailed...... description of time-resolved X-ray scattering by non-stationary electronic wave packets in atomic systems. A consistent application of the Waller-Hartree approximation is discussed and different contributions to the total differential scattering signal are identified and interpreted. Moreover......, it is demonstrated how the scattering signal of wave packets in the hydrogen atom can be expressed analytically. This permits simulations without numerical integration and establishes a benchmark for both efficiency and accuracy. Based on that, scattering patterns of an exemplary wave packet in the hydrogen atom...

  13. Spin waves in quantum crystals

    International Nuclear Information System (INIS)

    Kondratenko, P.S.

    1975-01-01

    The paper considers the spectrum of spin waves of a quantum magnetic crystal. It has been assumed that the crystal is characterized by gapless Fermi excitations. The properties of a single-particle Green function for a magnetic crystal are briefly outlined. The dispersion equation system describing the spin wave spectrum has been derived. The spectrum described by the equation system comprises a group of Goldstone modes and a family of spin waves of the zero sound type, associated with the group by an interaction. The maximum number of Goldstone modes in an antiferromagnet is three, whereas in a ferromagnet it is two. At frequencies higher than the characteristic frequencies of magnetic interactions, in an antiferromagnet all three modes have a linear spectrum, whereas in a ferromagnet the longitudinal mode is represented by a linear spectrum and the transverse mode, by a quadratic one. The dynamical susceptibility of a magnetically ordered crystal has been calculated. The thermodynamical potential of the crystal has been proved to vary as a function of the angular crystal orientation in a spin subspace. The results have been obtained by methods of the quantum field theory for the case of zero temperature

  14. Millimeter Wave Modulators Using Quantum Dots

    National Research Council Canada - National Science Library

    Prather, Dennis W

    2008-01-01

    In this effort electro-optic modulators for millimeter wave sensing and imaging were developed and demonstrated via design, fabrication, and experimental characterization of multi layer quantum dot...

  15. Tracking nuclear wave-packet dynamics in molecular oxygen ions with few-cycle infrared laser pulses

    International Nuclear Information System (INIS)

    De, S.; Bocharova, I. A.; Magrakvelidze, M.; Ray, D.; Cao, W.; Thumm, U.; Cocke, C. L.; Bergues, B.; Kling, M. F.; Litvinyuk, I. V.

    2010-01-01

    We have tracked nuclear wave-packet dynamics in doubly charged states of molecular oxygen using few-cycle infrared laser pulses. Bound and dissociating wave packets were launched and subsequently probed via a pair of 8-fs pulses of 790 nm radiation. Ionic fragments from the dissociating molecules were monitored by velocity-map imaging. Pronounced oscillations in the delay-dependent kinetic energy release spectra were observed. The occurrence of vibrational revivals permits us to identify the potential curves of the O 2 dication which are most relevant to the molecular dynamics. These studies show the accessibility to the dynamics of such higher-charged molecules.

  16. Macroscopic quantum waves in non local theories

    International Nuclear Information System (INIS)

    Ventura, I.

    1979-01-01

    By means of an expansion in the density, it is shown that Macroscopic Quantum Waves also apear in non local theories. This result reinforces the conjecture that these waves should exist in liquid 4 He. (Author) [pt

  17. Macroscopic quantum waves in non local theories

    International Nuclear Information System (INIS)

    Ventura, I.

    1979-01-01

    By means of an expansion in the density, it is shown that Macroscopic Quantum Waves also appear in non local theories. This result reinforces the conjecture that these waves should exist in liquid 4 He [pt

  18. Control and dynamics of attosecond electron wave packets in strong laser fields

    International Nuclear Information System (INIS)

    Johnsson, P.; Remetter, T.; Varju, K.; L'Huillier; Lopez-Martens, R.; Valentin, C.; Balcou, P.; Kazamias, S.; Mauritsson, J.; Gaarde, M.B.; Schafer, K.J.; Mairess, Y.; Wabnitz, H.; Boutu, W.; Salieres, P.

    2005-01-01

    Full text: Trains of attosecond pulses, emerging from the phase-locking of high-order harmonics generated in a strong laser field are now being routinely produced and characterized in a few laser laboratories. Attosecond pulse trains (APTs) are flexible attosecond sources, since the amplitude and relative phase of the spectral components (the harmonics) can be tailored, allowing us to vary both the duration and the carrier frequency of the pulses. Attosecond pulses interacting with a gas of atoms generate electron wave packets (EWPs), which are temporally localized with approximately the same duration as the attosecond pulses. In contrast to the tunneling electron wave packets giving rise to processes such as high-order harmonic generation and above-threshold-ionization (ATI), the properties of these EWPs are inherited from the attosecond pulses through the single-photon ionization step. Thus the energy and temporal characteristics of the EWPs can be varied independently of the process under investigation, by controlling the properties of the attosecond pulses. This talk will describe two recent experiments done in Lund. First we report on the generation, compression and delivery on target of ultrashort extreme-ultraviolet light pulses using external amplitude and phase control. The APT is synthesized from the 13 th to 35 th harmonics of a 35 fs Ti:sapphire laser. The harmonics are generated by focusing the laser beam into a window-less gas cell, filled with argon. To achieve the required on-target attosecond pulses, the harmonics are filtered spatially, using a fixed aperture, and spectrally using aluminum filters. The aluminum filters also serve the purpose of compressing the attosecond pulses, using the negative group-delay dispersion of aluminum to compensate for the intrinsic positive chirp of the attosecond pulses. This experiment demonstrates a practical method for the synthesis and control of attosecond waveforms, and in this case the production of pulses

  19. Wave Packet Simulation of Nonadiabatic Dynamics in Highly Excited 1,3-Dibromopropane

    DEFF Research Database (Denmark)

    Brogaard, Rasmus Y.; Møller, Klaus Braagaard; Sølling, Theis Ivan

    2008-01-01

    ]. In the experiment. DBP is excited to a Rydberg state 8 eV above the ground state. The interpretation of the results is that a torsional motion of the bromomethylene groups with a vibrational period of 680 is is activated upon excitation. The Rydberg state decays to a valence state, causing a dissociation of one...... of the carbon bromine bonds oil a time scale of 2.5 ps. Building the theoretical framework for the wave packet propagation around this model of the reaction dynamics, the Simulations reproduce, to a good extent, the time scales observed in the experiment. Furthermore. the Simulations provide insight into how...... the torsion motion influences the bond breakage, and C we can conclude that the mechanism that delays the dissociation is solely the electronic transition from the Rydberg state to the valence state and does not involve, for example, intramolecular vibrational energy redistribution (IVR)....

  20. Wave packet methods for the direct calculation of energy-transfer moments in molecular collisions

    International Nuclear Information System (INIS)

    Bradley, K.S.; Schatz, G.C.; Balint-Kurti, G.G.

    1999-01-01

    The authors present a new wave packet based theory for the direct calculation of energy-transfer moments in molecular collision processes. This theory does not contain any explicit reference to final state information associated with the collision dynamics, thereby avoiding the need for determining vibration-rotation bound states (other than the initial state) for the molecules undergoing collision and also avoiding the calculation of state-to-state transition probabilities. The theory applies to energy-transfer moments of any order, and it generates moments for a wide range of translational energies in a single calculation. Two applications of the theory are made that demonstrate its viability; one is to collinear He + H 2 and the other to collinear He + CS 2 (with two active vibrational modes in CS 2 ). The results of these applications agree well with earlier results based on explicit calculation of transition probabilities

  1. The motion of a Dirac wave packet in a gravitational field

    International Nuclear Information System (INIS)

    Pietropaolo, F.; Toller, M.

    1983-01-01

    It is studied the motion of a test particle provided with spin in a gravitational field with a nonvanishing torsion with the aim of clarifying the relationship between the approach based on the balance equations for energy, momentum and angular momentum and the approach based directly on a semiclassical approximation of the Dirac equation. The balance equations in the pole-dipole approximation are applied to a Dirac wave packet minimally coupled to the gravitational field and it is shown that, in this particular case, it is possible to compute the dipole moments of energy current, which are essential for a correct calculation of the motion of the centre of the particle and of the precession of its spin

  2. From wave mechanics to quantum chemistry

    International Nuclear Information System (INIS)

    Daudel, R.

    1996-01-01

    The origin of wave mechanics, which is now called quantum mechanics, is evoked. The main stages of the birth of quantum chemistry are related as resulting from the application of quantum mechanics to the study of molecular properties and chemical reactions. (author). 14 refs

  3. Magnetized Langmuir wave packets excited by a strong beam-plasma interaction

    International Nuclear Information System (INIS)

    Pelletier, G.; Sol, H.; Asseo, E.

    1988-01-01

    The physics of beam-plasma interaction, which has been investigated for a long time mostly in relation with solar bursts, is now more widely invoked in various astrophysical contexts such as pulsars, active galactic nuclei, close binaries, cataclysmic variables, γ bursters, and so on. In these situations the interaction is more likely in the spirit of strong Langmuir turbulence rather than in the spirit of quasilinear theory. Many investigations have been done for two opposite extremes, namely, in very weak and in very strong magnetic fields. Very few properties of the strong Langmuir turbulence are known in the most usual astrophysical situation where the magnetic field plays a significant role but is not strong enough to force the electrons into one-dimensional motion. For this case, we analyze the dynamics of Langmuir wave packets and provide new results about the stability of the solitons against transverse perturbations. It turns out that both the averaged Lagrangian method and the adiabatic perturbation method derived from the inverse scattering transform give exactly the same results (which is not obvious in soliton perturbation theory). In particular, they predict the stability of the solitons as long as the electron gyrofrequency is greater than the plasma frequency (strong magnetic field) and their instability against transverse self-modulation in the opposite case (weak magnetic field); moreover, they allow one to deduce the self-similar collapsing oblate cavitons in the latter case. The laws governing the collapse of the wave packets determine the relaxation of the beam in the surrounding medium and we derive a useful formula giving the power loss of the beam. We outline the astrophysical consequences of this investigation

  4. On the development and evolution of nonlinear ion acoustic wave packets

    Directory of Open Access Journals (Sweden)

    A. M. Hamza

    2005-09-01

    Full Text Available A simple model of ion fluctuations (ion acoustic and ion cyclotron fluctuations for example driven by an electron current which leads to intermittent fluctuations when the linear growth rate exceeds the wave packet dispersion rate is analized. The normalized fluctuation amplitude eφ0/T can be much larger than the mass ratio (me/mi level predicted by the conventional quasilinear theory or Manheimer's theory (see references in this document, and where φ0 represents the amplitude of the main peak of the ion fluctuations. Although the ion motion is linear, intermittency is produced by the strong nonlinear electron response, which causes the electron momentum input to the ion fluctuations to be spatially localized. We treat the 1-D case because it is especially simple from an intuitive and analytical point of view, but it is readily apparent and one can put forward the conjecture that the effect occurs in a three dimensional magnetized plasma. The 1-D analysis, as shown in this manuscript will clearly help identify the subtle difference between turbulence as conventionally understood and intermittency as it occurs in space and laboratory plasmas. Keywords. Meteorology and atmospheric dynamics (Turbulence – Ionosphere (Wave-particles interactions – Space plasma physics (Waves and instabilities

  5. Self-action of Bessel wave packets in a system of coupled light guides and formation of light bullets

    Energy Technology Data Exchange (ETDEWEB)

    Balakin, A. A., E-mail: balakin.alexey@yandex.ru; Mironov, V. A.; Skobelev, S. A., E-mail: sk.sa1981@gmail.com [Russian Academy of Sciences, Institute of Applied Physics (Russian Federation)

    2017-01-15

    The self-action of two-dimensional and three-dimensional Bessel wave packets in a system of coupled light guides is considered using the discrete nonlinear Schrödinger equation. The features of the self-action of such wave fields are related to their initial strong spatial inhomogeneity. The numerical simulation shows that for the field amplitude exceeding a critical value, the development of an instability typical of a medium with the cubic nonlinearity is observed. Various regimes are studied: the self-channeling of a wave beam in one light guide at powers not strongly exceeding a critical value, the formation of the “kaleidoscopic” picture of a wave packet during the propagation of higher-power radiation along a stratified medium, the formation of light bullets during competition between self-focusing and modulation instabilities in the case of three-dimensional wave packets, etc. In the problem of laser pulse shortening, the situation is considered when the wave-field stratification in the transverse direction dominates. This process is accompanied by the self-compression of laser pulses in well enough separated light guides. The efficiency of conversion of the initial Bessel field distribution to two flying parallel light bullets is about 50%.

  6. A fundamental equation in quantum mechanics

    International Nuclear Information System (INIS)

    Mackinnon, L.

    1981-01-01

    It is pointed out that the nondispersive de Broglie wave packet has a zero d'Alembertian, suggesting the possible reality of de Broglie waves and also that the field wave equation may be fundamental to Quantum Mechanics. (author)

  7. Fisher information, nonclassicality and quantum revivals

    Energy Technology Data Exchange (ETDEWEB)

    Romera, Elvira [Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain); Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain); Santos, Francisco de los, E-mail: dlsantos@onsager.ugr.es [Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain); Departamento de Electromagnetismo y Física de la Materia, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain)

    2013-11-08

    Wave packet revivals and fractional revivals are studied by means of a measure of nonclassicality based on the Fisher information. In particular, we show that the spreading and the regeneration of initially Gaussian wave packets in a quantum bouncer and in the infinite square-well correspond, respectively, to high and low nonclassicality values. This result is in accordance with the physical expectations that at a quantum revival wave packets almost recover their initial shape and the classical motion revives temporarily afterward.

  8. Fisher information, nonclassicality and quantum revivals

    International Nuclear Information System (INIS)

    Romera, Elvira; Santos, Francisco de los

    2013-01-01

    Wave packet revivals and fractional revivals are studied by means of a measure of nonclassicality based on the Fisher information. In particular, we show that the spreading and the regeneration of initially Gaussian wave packets in a quantum bouncer and in the infinite square-well correspond, respectively, to high and low nonclassicality values. This result is in accordance with the physical expectations that at a quantum revival wave packets almost recover their initial shape and the classical motion revives temporarily afterward.

  9. Quantum Fluctuations for Gravitational Impulsive Waves

    OpenAIRE

    Enginer, Y.; Hortacsu, M.; Ozdemir, N.

    1998-01-01

    Quantum fluctuations for a massless scalar field in the background metric of spherical impulsive gravitational waves through Minkowski and de Sitter spaces are investigated. It is shown that there exist finite fluctuations for de Sitter space.

  10. Circuit quantum acoustodynamics with surface acoustic waves.

    Science.gov (United States)

    Manenti, Riccardo; Kockum, Anton F; Patterson, Andrew; Behrle, Tanja; Rahamim, Joseph; Tancredi, Giovanna; Nori, Franco; Leek, Peter J

    2017-10-17

    The experimental investigation of quantum devices incorporating mechanical resonators has opened up new frontiers in the study of quantum mechanics at a macroscopic level. It has recently been shown that surface acoustic waves (SAWs) can be piezoelectrically coupled to superconducting qubits, and confined in high-quality Fabry-Perot cavities in the quantum regime. Here we present measurements of a device in which a superconducting qubit is coupled to a SAW cavity, realising a surface acoustic version of cavity quantum electrodynamics. We use measurements of the AC Stark shift between the two systems to determine the coupling strength, which is in agreement with a theoretical model. This quantum acoustodynamics architecture may be used to develop new quantum acoustic devices in which quantum information is stored in trapped on-chip acoustic wavepackets, and manipulated in ways that are impossible with purely electromagnetic signals, due to the 10 5 times slower mechanical waves.In this work, Manenti et al. present measurements of a device in which a tuneable transmon qubit is piezoelectrically coupled to a surface acoustic wave cavity, realising circuit quantum acoustodynamic architecture. This may be used to develop new quantum acoustic devices.

  11. Dissociative double ionization of H2 and D2: Comparison between experiment and Monte Carlo wave packet calculations

    DEFF Research Database (Denmark)

    Leth, Henriette Astrup; Madsen, Lars Bojer; Mølmer, Klaus

    2010-01-01

    Theoretical calculations on dissociative double ionization of H2 and D2 in short intense laser pulses using the Monte Carlo wave packet technique are presented for several different field intensities, wavelengths, and pulse durations. We find convincing agreement between theory and experimental...... results for the kinetic energy release spectra of the nuclei. Besides the correctly predicted spectra the Monte Carlo wave packet method offers insight into the nuclear dynamics during the pulse and makes it possible to address the origin of different structures observed in the spectra. Three......-photon resonances in the singly ionized molecule and charge-resonance-enhanced ionization are shown to be the main processes responsible for the observed nuclear energy distributions....

  12. Fast-forward scaling theory for phase imprinting on a BEC: creation of a wave packet with uniform momentum density and loading to Bloch states without disturbance

    Science.gov (United States)

    Masuda, Shumpei; Nakamura, Katsuhiro; Nakahara, Mikio

    2018-02-01

    We study phase imprinting on Bose-Einstein condensates (BECs) with the fast-forward scaling theory revealing a nontrivial scaling property in quantum dynamics. We introduce a wave packet with uniform momentum density (WPUM) which has peculiar properties but is short-lived. The fast-forward scaling theory is applied to derive the driving potential for creation of the WPUMs in a predetermined time. Fast manipulation is essential for the creation of WPUMs because of the instability of the state. We also study loading of a BEC into a predetermined Bloch state in the lowest band from the ground state of a periodic potential. Controlled linear potential is not sufficient for creation of the Bloch state with large wavenumber because the change in the amplitude of the order parameter is not negligible. We derive the exact driving potential for creation of predetermined Bloch states using the obtained theory.

  13. Wave packet study of the secondary emission of negatively charged, monoatomic ions from sputtered metals

    Energy Technology Data Exchange (ETDEWEB)

    Sindona, A. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy) and Istituto Nazionale di Fisica Nucleare (INFN), Gruppo collegato di Cosenza, Via P. Bucci 31C, 87036 Rende (Italy)]. E-mail: sindona@fis.unical.it; Riccardi, P. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Gruppo collegato di Cosenza, Via P. Bucci 31C, 87036 Rende (Italy); Maletta, S. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy); Rudi, S.A. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Gruppo collegato di Cosenza, Via P. Bucci 31C, 87036 Rende (Italy); Falcone, G. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Gruppo collegato di Cosenza, Via P. Bucci 31C, 87036 Rende (Italy)

    2007-05-15

    Secondary emission of Ag{sup -} and Au{sup -} particles, following the sputtering of clean Ag(1 0 0) and Au(1 0 0) targets, respectively, is studied with a Crank-Nicholson wave-packet propagation method. A one-electron pseudo-potential is used to describe the plane metal surface, with a projected band gap, the ejected ion, whose charge state is investigated, and its nearest-neighbor substrate ion, put in motion by the collision cascade generated by the primary ion beam. Time-dependent Schroedinger equation is solved backwards in time to determine the evolution of the affinity orbital of the negative particles from an instant when they are unperturbed, at distances of the order of {approx}10{sup 2} a.u. from the surface, to the instant of ejection. The probability that a band electron will be eventually detected in affinity state of the ejected particle is, thus, calculated and compared with the result of another method based on the spectral decomposition of the one-electron Hamiltonian.

  14. Tunnel ionization of H2 in a low-frequency laser field: A wave-packet approach

    International Nuclear Information System (INIS)

    Nguyen-Dang, T.; Chateauneuf, F.; Manoli, S.; Atabek, O.; Keller, A.

    1997-01-01

    The dynamics of multielectron dissociative ionization (MEDI) of H 2 in an intense IR laser pulse are investigated using a wave-packet propagation scheme. The electron tunneling processes corresponding to the successive ionizations of H 2 are expressed in terms of field-free Born-Oppenheimer (BO) potential energy surfaces (PES) by transforming the tunnel shape resonance picture into a Feshbach resonance problem. This transformation is achieved by defining a new, time-dependent electronic basis in which the bound electrons are still described by field-free BO electronic states while the ionized ones are described by Airy functions. In the adiabatic, quasistatic approximation, these functions describe free electrons under the influence of the instantaneous electric field of the laser and such an ionized electron can have a negative total energy. As a consequence, when dressed by the continuous ejected electron energy, the BO PES of an ionic channel can be brought into resonance with states of the parent species. This construction gives a picture in which wave packets are to be propagated on a continuum of coupled electronic manifolds. A reduction of the wave-packet propagation scheme to an effective five-channel problem has been obtained for the description of the first dissociative ionization process in H 2 by using Fano's formalism [U. Fano, Phys. Rev. 124, 1866 (1961)] to analytically diagonalize the infinite, continuous interaction potential matrix and by using the properties of Fano's solutions. With this algorithm, the effect that continuous ionization of H 2 has on the dissociation dynamics of the H 2 + ion has been investigated. In comparison with results that would be obtained if the first ionization of H 2 was impulsive, the wave-packet dynamics of the H 2 + ion prepared continuously by tunnel ionization are markedly nonadiabatic. (Abstract Truncated)

  15. Theoretical study of the influence of intense femtosecond laser field on the evolution of the wave packet and the population of NaRb molecule

    International Nuclear Information System (INIS)

    Ning, Ma; Mei-Shan, Wang; Chuan-Lu, Yang; Xiao-Guang, Ma; De-Hua, Wang

    2010-01-01

    Employing the two-state model and the time-dependent wave packet method, we have investigated the influences of the parameters of the intense femtosecond laser field on the evolution of the wave packet, as well as the population of ground and double-minimum electronic states of the NaRb molecule. For the different laser wavelengths, the evolution of the wave packet of 6 1 σ + state with time and internuclear distance is different, and the different laser intensity brings different influences on the population of the electronic states of the NaRb molecule. One can control the evolutions of wave packet and the population in each state by varying the laser parameters appropriately, which will be a benefit for the light manipulation of atomic and molecular processes. (atomic and molecular physics)

  16. Time-resolved dynamics of two-channel molecular systems in cw laser fields: Wave-packet construction in the Floquet formalism

    International Nuclear Information System (INIS)

    Nguyen-Dang, T.T.; Chateauneuf, F.; Atabek, O.; He, X.

    1995-01-01

    The description of the wave-packet time-resolved dynamics in a two-channel molecular system driven by a cw laser field is considered within the time-independent Floquet representation. It is shown that, at high field intensity, the wave-packet motions are governed solely by the pair of adiabatic dressed potential-energy surfaces (PES's) associated with a single Brillouin zone. The same expressions of the wave-packet motions in terms of the adiabatic PES's are obtained within a short-time approximation, thereby furnishing a new numerical algorithm for the wave-packet propagation in a laser-driven two-channel system at any intensity. Numerical tests of this algorithm are presented. The numerical results establish unambiguously the adiabaticity of nuclear motions at high field intensities

  17. Spin waves and spin instabilities in quantum plasmas

    OpenAIRE

    Andreev, P. A.; Kuz'menkov, L. S.

    2014-01-01

    We describe main ideas of method of many-particle quantum hydrodynamics allows to derive equations for description of quantum plasma evolution. We also present definitions of collective quantum variables suitable for quantum plasmas. We show that evolution of magnetic moments (spins) in quantum plasmas leads to several new branches of wave dispersion: spin-electromagnetic plasma waves and self-consistent spin waves. Propagation of neutron beams through quantum plasmas is also considered. Inst...

  18. Experimental study of turbulent-jet wave packets and their acoustic efficiency

    Science.gov (United States)

    Breakey, David E. S.; Jordan, Peter; Cavalieri, André V. G.; Nogueira, Petrônio A.; Léon, Olivier; Colonius, Tim; Rodríguez, Daniel

    2017-12-01

    This paper details the statistical and time-resolved analysis of the relationship between the near-field pressure fluctuations of unforced, subsonic free jets (0.4 ≤M ≤0.6 ) and their far-field sound emissions. Near-field and far-field microphone measurements were taken on a conical array close to the jets and an azimuthal ring at 20∘ to the jet axis, respectively. Recent velocity and pressure measurements indicate the presence of linear wave packets in the near field by closely matching predictions from the linear homogenous parabolized stability equations, but the agreement breaks down both beyond the end of the potential core and when considering higher order statistical moments, such as the two-point coherence. Proper orthogonal decomposition (POD), interpreted in terms of inhomogeneous linear models using the resolvent framework allows us to understand these discrepancies. A new technique is developed for projecting time-domain pressure measurements onto a statistically obtained POD basis, yielding the time-resolved activity of each POD mode and its correlation with the far field. A single POD mode, interpreted as an optimal high-gain structure that arises due to turbulent forcing, captures the salient near-field-far-field correlation signature; further, the signatures of the next two modes, understood as suboptimally forced structures, suggest that these POD modes represent higher order, acoustically important near-field behavior. An existing Green's-function-based technique is used to make far-field predictions, and results are interpreted in terms of POD/resolvent modes, indicating the acoustic importance of this higher order behavior. The technique is extended to provide time-domain far-field predictions.

  19. The Wave Function and Quantum Reality

    International Nuclear Information System (INIS)

    Gao Shan

    2011-01-01

    We investigate the meaning of the wave function by analyzing the mass and charge density distributions of a quantum system. According to protective measurement, a charged quantum system has effective mass and charge density distributing in space, proportional to the square of the absolute value of its wave function. In a realistic interpretation, the wave function of a quantum system can be taken as a description of either a physical field or the ergodic motion of a particle. The essential difference between a field and the ergodic motion of a particle lies in the property of simultaneity; a field exists throughout space simultaneously, whereas the ergodic motion of a particle exists throughout space in a time-divided way. If the wave function is a physical field, then the mass and charge density will be distributed in space simultaneously for a charged quantum system, and thus there will exist gravitational and electrostatic self-interactions of its wave function. This not only violates the superposition principle of quantum mechanics but also contradicts experimental observations. Thus the wave function cannot be a description of a physical field but be a description of the ergodic motion of a particle. For the later there is only a localized particle with mass and charge at every instant, and thus there will not exist any self-interaction for the wave function. It is further argued that the classical ergodic models, which assume continuous motion of particles, cannot be consistent with quantum mechanics. Based on the negative result, we suggest that the wave function is a description of the quantum motion of particles, which is random and discontinuous in nature. On this interpretation, the square of the absolute value of the wave function not only gives the probability of the particle being found in certain locations, but also gives the probability of the particle being there. The suggested new interpretation of the wave function provides a natural realistic

  20. Quantum Emulation of Gravitational Waves.

    Science.gov (United States)

    Fernandez-Corbaton, Ivan; Cirio, Mauro; Büse, Alexander; Lamata, Lucas; Solano, Enrique; Molina-Terriza, Gabriel

    2015-07-14

    Gravitational waves, as predicted by Einstein's general relativity theory, appear as ripples in the fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of electromagnetic states. We use this result to propose the use of entangled photons to emulate the evolution of gravitational waves in curved spacetimes by means of experimental electromagnetic setups featuring metamaterials.

  1. Dynamics of coupled plasmon polariton wave packets excited at a subwavelength slit in optically thin metal films

    Science.gov (United States)

    Wang, Lei-Ming; Zhang, Lingxiao; Seideman, Tamar; Petek, Hrvoje

    2012-10-01

    We study by numerical simulations the excitation and propagation dynamics of coupled surface plasmon polariton (SPP) wave packets (WPs) in optically thin Ag films and a bulk Ag/vacuum interface under the illumination of a subwavelength slit by 400 nm continuous wave (cw) and femtosecond pulsed light. The generated surface fields include contributions from both SPPs and quasicylindrical waves, which dominate in different regimes. We explore aspects of the coupled SPP modes in Ag thin films, including symmetry, propagation, attenuation, and the variation of coupling with incident angle and film thickness. Simulations of the electromagnetic transients initiated with femtosecond pulses reveal new features of coupled SPP WP generation and propagation in thin Ag films. Our results show that, under pulsed excitation, the SPP modes in an Ag thin film break up into two distinct bound surface wave packets characterized by marked differences in symmetries, group velocities, attenuation lengths, and dispersion properties. The nanometer spatial and femtosecond temporal scale excitation and propagation dynamics of the coupled SPP WPs are revealed in detail by movies recording the evolution of their transient field distributions.

  2. Quantum biological gravitational wave detectors

    International Nuclear Information System (INIS)

    Kopvillem, U.Kh.

    1985-01-01

    A possibility of producing biological detectors of gravitational waves is considered. High sensitivity of biological systems to outer effects can be ensured by existence of molecule subgroups in Dicke states. Existence of clusters in Dicke state-giant electric dipoles (GED) is supposed in the Froehlich theory. Comparison of biological and physical detectors shows that GED systems have unique properties for detection of gravitational waves if the reception range is narrow

  3. The probability distribution of the delay time of a wave packet in strong overlap of resonance levels

    International Nuclear Information System (INIS)

    Lyuboshitz, V.L.

    1982-01-01

    The time development of nuclear reactions at a large density of levels is investigated using the theory of overlapping resonances. The analytical expression for the function describing the time delay probability distribution of a wave packet is obtained in the framework of the model of n equi - valent channels. It is shown that a relative fluctuation of the time delay at the stage of the compound nucleus is snall. The possibility is discussed of increasing the duration of nuclear raactions with rising excitation energy

  4. Wave-packet continuum-discretization approach to ion-atom collisions including rearrangement: Application to differential ionization in proton-hydrogen scattering

    Science.gov (United States)

    Abdurakhmanov, I. B.; Bailey, J. J.; Kadyrov, A. S.; Bray, I.

    2018-03-01

    In this work, we develop a wave-packet continuum-discretization approach to ion-atom collisions that includes rearrangement processes. The total scattering wave function is expanded using a two-center basis built from wave-packet pseudostates. The exact three-body Schrödinger equation is converted into coupled-channel differential equations for time-dependent expansion coefficients. In the asymptotic region these time-dependent coefficients represent transition amplitudes for all processes including elastic scattering, excitation, ionization, and electron capture. The wave-packet continuum-discretization approach is ideal for differential ionization studies as it allows one to generate pseudostates with arbitrary energies and distribution. The approach is used to calculate the double differential cross section for ionization in proton collisions with atomic hydrogen. Overall good agreement with experiment is obtained for all considered cases.

  5. A Wave-guide Model for Packetized Media Streaming in Lossless Networks

    NARCIS (Netherlands)

    Konstantas, D.; Widya, I.A.

    2002-01-01

    Optimal operation of network based multimedia applications requires a precise specification of the network parameters. Different models have been used in the past in calculating the behavior of the network and defining parameters like throughput and delays of packets, using among others fluid

  6. Controlled quantum-state transfer in a spin chain

    International Nuclear Information System (INIS)

    Gong, Jiangbin; Brumer, Paul

    2007-01-01

    Control of the transfer of quantum information encoded in quantum wave packets moving along a spin chain is demonstrated. Specifically, based on a relationship with control in a paradigm of quantum chaos, it is shown that wave packets with slow dispersion can automatically emerge from a class of initial superposition states involving only a few spins, and that arbitrary unspecified traveling wave packets can be nondestructively stopped and later relaunched with perfection. The results establish an interesting application of quantum chaos studies in quantum information science

  7. Photodissociation of water. II. Wave packet calculations for the photofragmentation of H2O and D2O in the B˜ band

    Science.gov (United States)

    van Harrevelt, Rob; van Hemert, Marc C.

    2000-04-01

    A complete three-dimensional quantum mechanical description of the photodissociation of water in the B˜ band, starting from its rotational ground state, is presented. In order to include B˜-X˜ vibronic coupling and the B˜-Ã Renner-Teller coupling, diabatic electronic states have been constructed from adiabatic electronic states and matrix elements of the electronic angular momentum operators, following the procedure developed by A. J. Dobbyn and P. J. Knowles [Mol. Phys. 91, 1107 (1997)], using the ab initio results discussed in the preceding paper. The dynamics is studied using wave packet methods, and the evolution of the time-dependent wave function is discussed in detail. Results for the H2O and D2O absorption spectra, OH(A)/OH(X) and OD(A)/OD(X) branching ratios, and rovibrational distributions of the OH and OD fragments are presented and compared with available experimental data. The present theoretical results agree at least qualitatively with the experiments. The calculations show that the absorption spectrum and the product state distributions are strongly influenced by long-lived resonances on the adiabatic B˜ state. It is also shown that molecular rotation plays an important role in the photofragmentation process, due to both the Renner-Teller B˜-X˜ mixing, and the strong effect of out-of-plane molecular rotations (K>0) on the dynamics at near linear HOH and HHO geometries.

  8. Distance measurement and wave dispersion in a Liouville-string approach to quantum gravity

    CERN Document Server

    Amelino-Camelia, G; Mavromatos, Nikolaos E; Nanopoulos, Dimitri V

    1997-01-01

    Within a Liouville approach to non-critical string theory, we discuss space-time foam effects on the propagation of low-energy particles. We find an induced frequency-dependent dispersion in the propagation of a wave packet, and observe that this would affect the outcome of measurements involving low-energy particles as probes. In particular, the maximum possible order of magnitude of the space-time foam effects would give rise to an error in the measurement of distance comparable to that independently obtained in some recent heuristic quantum-gravity analyses. We also briefly compare these error estimates with the precision of astrophysical measurements.

  9. High-order-harmonic generation from solids: The contributions of the Bloch wave packets moving at the group and phase velocities

    Science.gov (United States)

    Du, Tao-Yuan; Huang, Xiao-Huan; Bian, Xue-Bin

    2018-01-01

    We study numerically the Bloch electron wave-packet dynamics in periodic potentials to simulate laser-solid interactions. We introduce an alternative perspective in the coordinate space combined with the motion of the Bloch electron wave packets moving at group and phase velocities under the laser fields. This model interprets the origins of the two contributions (intra- and interband transitions) in the high-order harmonic generation (HHG) processes by investigating the local and global behaviours of the wave packets. It also elucidates the underlying physical picture of the HHG intensity enhancement by means of carrier-envelope phase, chirp, and inhomogeneous fields. It provides a deep insight into the emission of high-order harmonics from solids. This model is instructive for experimental measurements and provides an alternative avenue to distinguish mechanisms of the HHG from solids in different laser fields.

  10. Quantum metrology for gravitational wave astronomy.

    Science.gov (United States)

    Schnabel, Roman; Mavalvala, Nergis; McClelland, David E; Lam, Ping K

    2010-11-16

    Einstein's general theory of relativity predicts that accelerating mass distributions produce gravitational radiation, analogous to electromagnetic radiation from accelerating charges. These gravitational waves (GWs) have not been directly detected to date, but are expected to open a new window to the Universe once the detectors, kilometre-scale laser interferometers measuring the distance between quasi-free-falling mirrors, have achieved adequate sensitivity. Recent advances in quantum metrology may now contribute to provide the required sensitivity boost. The so-called squeezed light is able to quantum entangle the high-power laser fields in the interferometer arms, and could have a key role in the realization of GW astronomy.

  11. Phase and group velocity tracing analysis of projected wave packet motion along oblique radar beams – qualitative analysis of QP echoes

    Directory of Open Access Journals (Sweden)

    F. S. Kuo

    2007-02-01

    Full Text Available The wave packets of atmospheric gravity waves were numerically generated, with a given characteristic wave period, horizontal wave length and projection mean wind along the horizontal wave vector. Their projection phase and group velocities along the oblique radar beam (vpr and vgr, with different zenith angle θ and azimuth angle φ, were analyzed by the method of phase- and group-velocity tracing. The results were consistent with the theoretical calculations derived by the dispersion relation, reconfirming the accuracy of the method of analysis. The RTI plot of the numerical wave packets were similar to the striation patterns of the QP echoes from the FAI irregularity region. We propose that the striation range rate of the QP echo is equal to the radial phase velocity vpr, and the slope of the energy line across the neighboring striations is equal to the radial group velocity vgr of the wave packet; the horizontal distance between two neighboring striations is equal to the characteristic wave period τ. Then, one can inversely calculate all the properties of the gravity wave responsible for the appearance of the QP echoes. We found that the possibility of some QP echoes being generated by the gravity waves originated from lower altitudes cannot be ruled out.

  12. Molecular orientation via a dynamically induced pulse-train: Wave packet dynamics of NaI in a static electric field

    DEFF Research Database (Denmark)

    Marquetand, P.; Materny, A.; Henriksen, Niels Engholm

    2004-01-01

    We regard the rovibrational wave packet dynamics of NaI in a static electric field after femtosecond excitation to its first electronically excited state. The following quasibound nuclear wave packet motion is accompanied by a bonding situation changing from covalent to ionic. At times when...... the charge separation is present, i.e., when the bond-length is large, a strong dipole moment exists and rotational excitation takes place. Upon bond contraction, the then covalently bound molecule does not experience the external field. This scenario repeats itself periodically. Thus, the vibrational...

  13. The Quantum World Unveiled by Electron Waves

    International Nuclear Information System (INIS)

    Akira Tonomura

    1998-08-01

    This book emphasizes the experimental aspects of the author's own laboratory. Instead of merely presenting a dry collection of knowledge, the author unfolds to the readers his vivid experiences of enthusiasm, sheer pleasure, and yet frustrations in the course of his own research. In this way, the book aims to arouse the reader's curiosity in the strange behaviors of electrons in the microscopic world, which differ significantly from our common sense and daily experiences of the macroscopic world. The fields of physics explored in the book are quantum mechanics, superconductivity, electron microscopy, holography, magnetism, and unified theory - areas of the author's study using electron waves. A world-renowned expert in electron holography, the author promises the interested reader a fascinating ride through the quantum world of electron waves, accompanied by many colorful illustrations that delight the senses and captivate the imagination

  14. Fundamentals of quantum mechanics

    CERN Document Server

    Erkoc, Sakir

    2006-01-01

    HISTORICAL EXPERIMENTS AND THEORIESDates of Important Discoveries and Events Blackbody RadiationPhotoelectrice Effect Quantum Theory of Spectra TheComptone Effect Matterwaves, the de Broglie HypothesisThe Davisson -Germer Experiment Heisenberg's Uncertainity PrincipleDifference Between Particles and Waves Interpretation of the Wavefunction AXIOMATIC STRUCTURE OF QUANTUM MECHANICSThe Necessity of Quantum TheoryFunction Spaces Postulates of Quantum Mechanics The Kronecker Delta and the Dirac Delta Function Dirac Notation OBSERVABLES AND SUPERPOSITIONFree Particle Particle In A Box Ensemble Average Hilbert -Space Interpretation The Initial Square Wave Particle Beam Superposition and Uncertainty Degeneracy of States Commutators and Uncertainty TIME DEVELOPMENT AND CONSERVATION THEOREMSTime Development of State Functions, The Discrete Case The Continuous Case, Wave Packets Particle Beam Gaussian Wave Packet Free Particle Propagator The Limiting Cases of the Gaussian Wave Packets Time Development of Expectation Val...

  15. A comparison of three time-dependent wave packet methods for calculating electron--atom elastic scattering cross sections

    International Nuclear Information System (INIS)

    Judson, R.S.; McGarrah, D.B.; Sharafeddin, O.A.; Kouri, D.J.; Hoffman, D.K.

    1991-01-01

    We compare three time-dependent wave packet methods for performing elastic scattering calculations from screened Coulomb potentials. The three methods are the time-dependent amplitude density method (TDADM), what we term a Cayley-transform method (CTM), and the Chebyshev propagation method of Tal-Ezer and Kosloff. Both the TDADM and the CTM are based on a time-dependent integral equation for the wave function. In the first, we propagate the time-dependent amplitude density, |ζ(t)right-angle=U|ψ(t)right-angle, where U is the interaction potential and |ψ(t)right-angle is the usual time-dependent wave function. In the other two, the wave function is propagated. As a numerical example, we calculate phase shifts and cross sections using a screened Coulomb, Yukawa type potential over the range 200--1000 eV. One of the major advantages of time-dependent methods such as these is that we get scattering information over this entire range of energies from one propagation. We find that in most cases, all three methods yield comparable accuracy and are about equally efficient computationally. However for l=0, where the Coulomb well is not screened by the centrifugal potential, the TDADM requires smaller grid spacings to maintain accuracy

  16. Terahertz wave generation in coupled quantum dots

    International Nuclear Information System (INIS)

    Ma Yu-Rong; Guo Shi-Fang; Duan Su-Qing

    2012-01-01

    Based on coupled quantum dots, we present an interesting optical effect in a four-level loop coupled system. Both the two upper levels and the two lower levels are designed to be almost degenerate, which induces a considerable dipole moment. The terahertz wave is obtained from the low-frequency component of the photon emission spectrum. The frequency of the terahertz wave can be controlled by tuning the energy levels via designing the nanostructure appropriately or tuning the driving laser field. A terahertz wave with adjustable frequency and considerable intensity (100 times higher than that of the Rayleigh line) can be obtained. It provides an effective scheme for a terahertz source. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  17. Femtosecond Electron Wave Packet Propagation and Diffraction: Towards Making the ``Molecular Movie"

    Science.gov (United States)

    Miller, R. J. Dwayne

    2003-03-01

    Time-resolved electron diffraction harbors great promise for achieving atomic resolution of the fastest chemical processes. The generation of sufficiently short electron pulses to achieve this real time view of a chemical reaction has been limited by problems in maintaining short electron pulses with realistic electron densities to the sample. The propagation dynamics of femtosecond electron packets in the drift region of a photoelectron gun are investigated with an N-body numerical simulation and mean-field model. This analyis shows that the redistribution of electrons inside the packet, arising from space-charge and dispersion contributions, changes the pulse envelope and leads to the development of a spatially linear axial velocity distribution. These results have been used in the design of femtosecond photoelectron guns with higher time resolution and novel electron-optical methods of pulse characterization that are approaching 100 fs timescales. Time-resolved diffraction studies with electron pulses of approximately 500 femtoseconds have focused on solid-liquid phase transitions under far from equilibrium conditions. This work gives a microscopic description of the melting process and illustrates the promise of atomically resolving transition state processes.

  18. Langmuir wave-packet generation from an electron beam propagating in the inhomogeneous solar wind

    International Nuclear Information System (INIS)

    Zaslavsky, A.; Maksimovic, M.; Volokitin, A. S.; Krasnoselskikh, V. V.; Bale, S. D.

    2010-01-01

    Recent in-situ observations by the TDS instrument equipping the STEREO spacecraft revealed that large amplitude spatially localized Langmuir waves are frequent in the solar wind, and correlated with the presence of suprathermal electron beams during type III events or close to the electron foreshock. We briefly present the new theoretical model used to perform the study of these localized electrostatic waves, and show first results of simulations of the destabilization of Langmuir waves by a beam propagating in the inhomogeneous solar wind. The main results are that the destabilized waves are mainly focalized near the minima of the density profiles, and that the nonlinear interaction of the waves with the resonant particles enhances this focalization compared to a situation in which the only propagation effects are taken into account.

  19. Dynamics of wave packets in two-dimensional random systems with anisotropic disorder.

    Science.gov (United States)

    Samelsohn, Gregory; Gruzdev, Eugene

    2008-09-01

    A theoretical model is proposed to describe narrowband pulse dynamics in two-dimensional systems with arbitrary correlated disorder. In anisotropic systems with elongated cigarlike inhomogeneities, fast propagation is predicted in the direction across the structure where the wave is exponentially localized and tunneling of evanescent modes plays a dominant role in typical realizations. Along the structure, where the wave is channeled as in a waveguide, the motion of the wave energy is relatively slow. Numerical simulations performed for ultra-wide-band pulses show that even at the initial stage of wave evolution, the radiation diffuses predominantly in the direction along the major axis of the correlation ellipse. Spectral analysis of the results relates the long tail of the wave observed in the transverse direction to a number of frequency domain "lucky shots" associated with the long-living resonant modes localized inside the sample.

  20. Instability of nonplanar modulated dust acoustic wave packets in a strongly coupled nonthermal dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    El-Labany, S. K., E-mail: skellabany@hotmail.com; Zedan, N. A., E-mail: nesreenplasma@yahoo.com [Department of Physics, Faculty of Science, Damietta University, New Damietta, P.O. 34517 (Egypt); El-Taibany, W. F., E-mail: eltaibany@hotmail.com, E-mail: eltaibany@du.edu.eg [Department of Physics, Faculty of Science, Damietta University, New Damietta, P.O. 34517 (Egypt); Department of Physics, College of Science for Girls in Abha, King Khalid University, P.O. 960 Abha (Saudi Arabia)

    2015-07-15

    Cylindrical and spherical amplitude modulations of dust acoustic (DA) solitary wave envelopes in a strongly coupled dusty plasma containing nonthermal distributed ions are studied. Employing a reductive perturbation technique, a modified nonlinear Schrödinger equation including the geometrical effect is derived. The influences of nonthermal ions, polarization force, and the geometries on the modulational instability conditions are analyzed and the possible rogue wave structures are discussed in detail. It is found that the spherical DA waves are more structurally stable to perturbations than the cylindrical ones. Possible applications of these theoretical findings are briefly discussed.

  1. Energy dissipation of Alfven wave packets deformed by irregular magnetic fields in solar-coronal arches

    Science.gov (United States)

    Similon, Philippe L.; Sudan, R. N.

    1989-01-01

    The importance of field line geometry for shear Alfven wave dissipation in coronal arches is demonstrated. An eikonal formulation makes it possible to account for the complicated magnetic geometry typical in coronal loops. An interpretation of Alfven wave resonance is given in terms of gradient steepening, and dissipation efficiencies are studied for two configurations: the well-known slab model with a straight magnetic field, and a new model with stochastic field lines. It is shown that a large fraction of the Alfven wave energy flux can be effectively dissipated in the corona.

  2. Molecular quantum dynamics from theory to applications

    CERN Document Server

    Gatti, Fabien

    2014-01-01

    Emphasizing fundamental educational concepts, this book offers an accessible introduction that covers eigenstates, wave packets, quantum mechanical resonances and more. Examples show that high-level experiments and theory must work closely together.

  3. Determination of the effective transverse coherence of the neutron wave packet as employed in reflectivity investigations of condensed-matter structures. II. Analysis of elastic scattering using energy-gated wave packets with an application to neutron reflection from ruled gratings

    Science.gov (United States)

    Berk, N. F.

    2014-03-01

    We present a general approach to analyzing elastic scattering for those situations where the incident beam is prepared as an incoherent ensemble of wave packets of a given arbitrary shape. Although wave packets, in general, are not stationary solutions of the Schrödinger equation, the analysis of elastic scattering data treats the scattering as a stationary-state problem. We thus must gate the wave packet, coherently distorting its shape in a manner consistent with the elastic condition. The resulting gated scattering amplitudes (e.g., reflection coefficients) thus are weighted coherent sums of the constituent plane-wave scattering amplitudes, with the weights determined by the shape of the incident wave packet as "filtered" by energy gating. We develop the gating formalism in general and apply it to the problem of neutron scattering from ruled gratings described by Majkrzak et al. in a companion paper. The required exact solution of the associated problem of plane-wave reflection from gratings also is derived.

  4. Quantum ion-acoustic solitary waves in weak relativistic plasma

    Indian Academy of Sciences (India)

    Abstract. Small amplitude quantum ion-acoustic solitary waves are studied in an unmagnetized two- species relativistic quantum plasma system, comprised of electrons and ions. The one-dimensional quantum hydrodynamic model (QHD) is used to obtain a deformed Korteweg–de Vries (dKdV) equation by reductive ...

  5. On-demand semiconductor source of 780-nm single photons with controlled temporal wave packets

    Science.gov (United States)

    Béguin, Lucas; Jahn, Jan-Philipp; Wolters, Janik; Reindl, Marcus; Huo, Yongheng; Trotta, Rinaldo; Rastelli, Armando; Ding, Fei; Schmidt, Oliver G.; Treutlein, Philipp; Warburton, Richard J.

    2018-05-01

    We report on a fast, bandwidth-tunable single-photon source based on an epitaxial GaAs quantum dot. Exploiting spontaneous spin-flip Raman transitions, single photons at 780 nm are generated on demand with tailored temporal profiles of durations exceeding the intrinsic quantum dot lifetime by up to three orders of magnitude. Second-order correlation measurements show a low multiphoton emission probability [g2(0 ) ˜0.10 -0.15 ] at a generation rate up to 10 MHz. We observe Raman photons with linewidths as low as 200 MHz, which is narrow compared to the 1.1-GHz linewidth measured in resonance fluorescence. The generation of such narrow-band single photons with controlled temporal shapes at the rubidium wavelength is a crucial step towards the development of an optimized hybrid semiconductor-atom interface.

  6. Microscopic model of quasiparticle wave packets in superfluids, superconductors, and paired Hall states.

    Science.gov (United States)

    Parameswaran, S A; Kivelson, S A; Shankar, R; Sondhi, S L; Spivak, B Z

    2012-12-07

    We study the structure of Bogoliubov quasiparticles, bogolons, the fermionic excitations of paired superfluids that arise from fermion (BCS) pairing, including neutral superfluids, superconductors, and paired quantum Hall states. The naive construction of a stationary quasiparticle in which the deformation of the pair field is neglected leads to a contradiction: it carries a net electrical current even though it does not move. However, treating the pair field self-consistently resolves this problem: in a neutral superfluid, a dipolar current pattern is associated with the quasiparticle for which the total current vanishes. When Maxwell electrodynamics is included, as appropriate to a superconductor, this pattern is confined over a penetration depth. For paired quantum Hall states of composite fermions, the Maxwell term is replaced by a Chern-Simons term, which leads to a dipolar charge distribution and consequently to a dipolar current pattern.

  7. Horizon wave function for single localized particles: GUP and quantum black-hole decay

    International Nuclear Information System (INIS)

    Casadio, Roberto; Scardigli, Fabio

    2014-01-01

    A localized particle in Quantum Mechanics is described by a wave packet in position space, regardless of its energy. However, from the point of view of General Relativity, if the particle's energy density exceeds a certain threshold, it should be a black hole. To combine these two pictures, we introduce a horizon wave function determined by the particle wave function in position space, which eventually yields the probability that the particle is a black hole. The existence of a minimum mass for black holes naturally follows, albeit not in the form of a sharp value around the Planck scale, but rather like a vanishing probability that a particle much lighter than the Planck mass may be a black hole. We also show that our construction entails an effective generalized uncertainty principle (GUP), simply obtained by adding the uncertainties coming from the two wave functions associated with a particle. Finally, the decay of microscopic (quantum) black holes is also described in agreement with what the GUP predicts. (orig.)

  8. Bicovariant differential calculus on quantum groups and wave mechanics

    International Nuclear Information System (INIS)

    Carow-Watamura, U.; Watamura, S.; Hebecker, A.; Schlieker, M.; Weich, W.

    1992-01-01

    The bicovariant differential calculus on quantum groups defined by Woronowicz and later worked out explicitly by Carow-Watamura et al. and Jurco for the real quantum groups SU q (N) and SO q (N) through a systematic construction of the bicovariant bimodules of these quantum groups, is reviewed for SU q (2) and SO q (N). The resulting vector fields build representations of the quantized universal enveloping algebras acting as covariant differential operators on the quantum groups and their associated quantum spaces. As an application, a free particle stationary wave equation on quantum space is formulated and solved in terms of a complete set of energy eigenfunctions. (author) 15 refs

  9. Probing the ionization wave packet and recollision dynamics with an elliptically polarized strong laser field in the nondipole regime

    Science.gov (United States)

    Maurer, J.; Willenberg, B.; Daněk, J.; Mayer, B. W.; Phillips, C. R.; Gallmann, L.; Klaiber, M.; Hatsagortsyan, K. Z.; Keitel, C. H.; Keller, U.

    2018-01-01

    We explore ionization and rescattering in strong mid-infrared laser fields in the nondipole regime over the full range of polarization ellipticity. In three-dimensional photoelectron momentum distributions (3D PMDs) measured with velocity map imaging spectroscopy, we observe the appearance of a sharp ridge structure along the major polarization axis. Within a certain range of ellipticity, the electrons in this ridge are clearly separated from the two lobes that commonly appear in the PMD with elliptically polarized laser fields. In contrast to the well-known lobes of direct electrons, the sharp ridge is created by Coulomb focusing of the softly recolliding electrons. These ridge electrons are directly related to a counterintuitive shift of the PMD peak opposite to the laser beam propagation direction when the dipole approximation breaks down. The ellipticity-dependent 3D PMDs give access to different ionization and recollision dynamics with appropriate filters in the momentum space. For example, we can extract information about the spread of the initial wave packet and the Coulomb momentum transfer of the rescattering electrons.

  10. Quantum Darwinism

    Science.gov (United States)

    Zurek, Wojciech Hubert

    2009-03-01

    Quantum Darwinism describes the proliferation, in the environment, of multiple records of selected states of a quantum system. It explains how the quantum fragility of a state of a single quantum system can lead to the classical robustness of states in their correlated multitude; shows how effective `wave-packet collapse' arises as a result of the proliferation throughout the environment of imprints of the state of the system; and provides a framework for the derivation of Born's rule, which relates the probabilities of detecting states to their amplitudes. Taken together, these three advances mark considerable progress towards settling the quantum measurement problem.

  11. On the propagation velocity of a wave packet in an amplifying medium

    International Nuclear Information System (INIS)

    Bukhman, N S

    2001-01-01

    It is shown that the delay time of a weak signal propagating in an amplifying medium on the wings of the spectral amplification line may be shorter than the time of propagation of the signal with the velocity of light in vacuum. It is found that in this case, the time dependence of the signal is exactly 'reconstructed' at the point of detection, and the detection of the signal continues even if it is abruptly terminated at the point of transmission. It is also shown that using the complex time of group delay of the signal, it is possible to improve the accuracy of the results in the first order of dispersion theory within this approximation. (physical foundations of quantum electronics)

  12. Phase-space description of wave packet approach to electronic transport in nanoscale systems

    International Nuclear Information System (INIS)

    Szydłowski, D; Wołoszyn, M; Spisak, B J

    2013-01-01

    The dynamics of conduction electrons in resonant tunnelling nanosystems is studied within the phase-space approach based on the Wigner distribution function. The time evolution of the distribution function is calculated from the time-dependent quantum kinetic equation for which an effective numerical method is presented. Calculations of the transport properties of a double-barrier resonant tunnelling diode are performed to illustrate the proposed techniques. Additionally, analysis of the transient effects in the nanosystem is carried out and it is shown that for some range of the bias voltage the temporal variations of electronic current can take negative values. The explanation of this effect is based on the analysis of the time changes of the Wigner distribution function. The decay time of the temporal current oscillations in the nanosystem as a function of the bias voltage is determined. (paper)

  13. Distortion of gravitational-wave packets due to their self-gravity

    International Nuclear Information System (INIS)

    Kocsis, Bence; Loeb, Abraham

    2007-01-01

    When a source emits a gravity-wave (GW) pulse over a short period of time, the leading edge of the GW signal is redshifted more than the inner boundary of the pulse. The GW pulse is distorted by the gravitational effect of the self-energy residing in between these shells. We illustrate this distortion for GW pulses from the final plunge of black hole binaries, leading to the evolution of the GW profile as a function of the radial distance from the source. The distortion depends on the total GW energy released ε and the duration of the emission τ, scaled by the total binary mass M. The effect should be relevant in finite box simulations where the waveforms are extracted within a radius of 2 M. For characteristic emission parameters at the final plunge between binary black holes of arbitrary spins, this effect could distort the simulated GW templates for LIGO and LISA by a fraction of 10 -3 . Accounting for the wave distortion would significantly decrease the waveform extraction errors in numerical simulations

  14. Ion-acoustic cnoidal waves in a quantum plasma

    International Nuclear Information System (INIS)

    Mahmood, S.; Haas, F.

    2014-01-01

    Nonlinear ion-acoustic cnoidal wave structures are studied in an unmagnetized quantum plasma. Using the reductive perturbation method, a Korteweg-de Vries equation is derived for appropriate boundary conditions and nonlinear periodic wave solutions are obtained. The corresponding analytical solution and numerical plots of the ion-acoustic cnoidal waves and solitons in the phase plane are presented using the Sagdeev pseudo-potential approach. The variations in the nonlinear potential of the ion-acoustic cnoidal waves are studied at different values of quantum parameter H e which is the ratio of electron plasmon energy to electron Fermi energy defined for degenerate electrons. It is found that both compressive and rarefactive ion-acoustic cnoidal wave structures are formed depending on the value of the quantum parameter. The dependence of the wavelength and frequency on nonlinear wave amplitude is also presented

  15. Quantum physics. 8. ed.

    International Nuclear Information System (INIS)

    Gasiorowicz, S.

    2002-01-01

    The following topics are dealt with: wave packets and uncertainty relation, Schroedinger equation, eigenfunctions and eigenvalues, one-dimensional potentials, wave mechanics, quantum operators, angular momentum, hydrogen atom, interaction of electrons with electromagnetic fields, operators, matrices and spin, perturbation theory, helium atom, molecules, atomic radiation, radiation theory, collision processes

  16. Impulse response and spatio-temporal wave-packets: The common feature of rogue waves, tsunami, and transition to turbulence

    Science.gov (United States)

    Bhaumik, Swagata; Sengupta, Tapan K.

    2017-12-01

    Here, we present the impulse response of the canonical zero pressure gradient boundary layer from the dynamical system approach. The fundamental physical mechanism of the impulse response is in creation of a spatio-temporal wave-front (STWF) by a localized, time-impulsive wall excitation of the boundary layer. The present research is undertaken to explain the unit process of diverse phenomena in geophysical fluid flows and basic hydrodynamics. Creation of a tsunami has been attributed to localized events in the ocean-bed caused by earthquakes, landslides, or volcanic eruptions, whose manifestation is in the run up to the coast by surface waves of massive amplitude but of very finite fetch. Similarly rogue waves have often been noted; a coherent account of the same is yet to appear, although some explanations have been proposed. Our studies in both two- and three-dimensional frameworks in Sengupta and Bhaumik ["Onset of turbulence from the receptivity stage of fluid flows," Phys. Rev. Lett. 107(15), 154501 (2011)] and Bhaumik and Sengupta ["Precursor of transition to turbulence: Spatiotemporal wave front," Phys. Rev. E 89(4), 043018 (2014)] have shown that the STWF provides the central role for causing transition to turbulence by reproducing carefully conducted transition experiments. Here, we furthermore relax the condition of time behavior and use a Dirac-delta wall excitation for the impulse response. The present approach is not based on any simplification of the governing Navier-Stokes equation (NSE), which is unlike solving a nonlinear shallow water equation and/or nonlinear Schrödinger equation. The full nonlinear Navier-Stokes equation (NSE) is solved here using high accuracy dispersion relation preserving numerical schemes and using appropriate formulation of the NSE which minimizes error. The adopted numerical methods and formulation have been extensively validated with respect to various external and internal 2D and 3D flow problems. We also present

  17. Quantum effects on propagation of bulk and surface waves in a thin quantum plasma film

    International Nuclear Information System (INIS)

    Moradi, Afshin

    2015-01-01

    The propagation of bulk and surface plasma waves in a thin quantum plasma film is investigated, taking into account the quantum effects. The generalized bulk and surface plasma dispersion relation due to quantum effects is derived, using the quantum hydrodynamic dielectric function and applying appropriate additional boundary conditions. The quantum mechanical and film geometric effects on the bulk and surface modes are discussed. It is found that quantum effects become important for a thin film of small thickness. - Highlights: • New bulk and surface plasma dispersion relations due to quantum effects are derived, in a thin quantum plasma film. • It is found that quantum effects become important for a thin quantum film of small thickness

  18. Complex Langevin simulation of real time quantum evolution

    International Nuclear Information System (INIS)

    Ilgenfritz, E.M.; Kripfganz, J.

    1986-07-01

    Complex Langevin methods are used to study the time evolution of quantum mechanical wave packets. We do not need any Feynman ε regularization for the numerical evaluation of the double time path integral. (author)

  19. Quantum mechanics and faster-than-light communication: methodological considerations

    International Nuclear Information System (INIS)

    Ghirardi, G.C.; Weber, T.

    1983-06-01

    A detailed quantum mechanical analysis of a recent proposal of faster than light communication through wave packet reduction is performed. The discussion allows us to focus on some methodological problems about critical investigations in physical theories. (author)

  20. On quantum mechanical phase-space wave functions

    DEFF Research Database (Denmark)

    Wlodarz, Joachim J.

    1994-01-01

    An approach to quantum mechanics based on the notion of a phase-space wave function is proposed within the Weyl-Wigner-Moyal representation. It is shown that the Schrodinger equation for the phase-space wave function is equivalent to the quantum Liouville equation for the Wigner distribution...... function. The relationship to the recent results by Torres-Vega and Frederick [J. Chem. Phys. 98, 3103 (1993)] is also discussed....

  1. Theory of superfluidity macroscopic quantum waves

    International Nuclear Information System (INIS)

    Ventura, I.

    1978-10-01

    A new description of superfluidity is proposed, based upon the fact that Bogoliubov's theory of superfluidity exhibits some so far unsuspected macroscopic quantum waves (MQWs), which have a topological nature and travel within the fluid at subsonic velocities. To quantize the bounded quasi-particles the field theoretic version of the Bohr-Sommerfeld quantization rule, is employed and also resort to a variational computation. In an instantaneous configuration the MQWs cut the condensate into blocks of phase, providing, by analogy with ferromagnetism, a nice explanation of what could be the lambda-transition. A crude estimate of the critical temperature gives T sub(c) approximately equal to 2-4K. An attempt is made to understand Tisza's two-fluid model in terms of the MQWs, and we rise the conjecture that they play an important role in the motion of second. We present also a qualitative prediction concerning to the behavior of the 'phononroton' peak below 1.0K, and propose two experiments to look for MQWs [pt

  2. Relativistic quantum correlations in bipartite fermionic states

    Indian Academy of Sciences (India)

    The influences of relative motion, the size of the wave packet and the average momentum of the particles on different types of correlations present in bipartite quantum states are investigated. In particular, the dynamics of the quantum mutual information, the classical correlation and the quantum discord on the ...

  3. Quantum mechanics

    CERN Document Server

    Powell, John L

    2015-01-01

    Suitable for advanced undergraduates, this thorough text focuses on the role of symmetry operations and the essentially algebraic structure of quantum-mechanical theory. Based on courses in quantum mechanics taught by the authors, the treatment provides numerous problems that require applications of theory and serve to supplement the textual material.Starting with a historical introduction to the origins of quantum theory, the book advances to discussions of the foundations of wave mechanics, wave packets and the uncertainty principle, and an examination of the Schrödinger equation that includ

  4. Four-Wave Mixing Spectroscopy of Quantum Dot Molecules

    Science.gov (United States)

    Sitek, A.; Machnikowski, P.

    2007-08-01

    We study theoretically the nonlinear four-wave mixing response of an ensemble of coupled pairs of quantum dots (quantum dot molecules). We discuss the shape of the echo signal depending on the parameters of the ensemble: the statistics of transition energies and the degree of size correlations between the dots forming the molecules.

  5. Gravity induced corrections to quantum mechanical wave functions

    International Nuclear Information System (INIS)

    Singh, T.P.

    1990-03-01

    We perform a semiclassical expansion in the Wheeler-DeWitt equation, in powers of the gravitational constant. We then show that quantum gravitational fluctuations can provide a correction to the wave-functions which are solutions of the Schroedinger equation for matter. This also implies a correction to the expectation values of quantum mechanical observables. (author). 6 refs

  6. Beam Splitter for Spin Waves in Quantum Spin Network

    OpenAIRE

    Yang, S.; Song, Z.; Sun, C. P.

    2005-01-01

    We theoretically design and analytically study a controllable beam splitter for the spin wave propagating in a star-shaped (e.g., a $Y$-shaped beam) spin network. Such a solid state beam splitter can display quantum interference and quantum entanglement by the well-aimed controls of interaction on nodes. It will enable an elementary interferometric device for scalable quantum information processing based on the solid system.

  7. Incorporation of quantum statistical features in molecular dynamics

    International Nuclear Information System (INIS)

    Ohnishi, Akira; Randrup, J.

    1995-01-01

    We formulate a method for incorporating quantum fluctuations into molecular-dynamics simulations of many-body systems, such as those employed for energetic nuclear collision processes. Based on Fermi's Golden Rule, we allow spontaneous transitions to occur between the wave packets which are not energy eigenstates. The ensuing diffusive evolution in the space of the wave packet parameters exhibits appealing physical properties, including relaxation towards quantum-statistical equilibrium. (author)

  8. Quantum Phase Spase Representation for Double Well Potential

    OpenAIRE

    Babyuk, Dmytro

    2002-01-01

    A behavior of quantum states (superposition of two lowest eigenstates, Gaussian wave packet) in phase space is studied for one and two dimensional double well potential. Two dimensional potential is constructed from double well potential coupled linearly and quadratically to harmonic potential. Quantum trajectories are compared with classical ones. Preferable tunneling path in phase space is found. An influence of energy of initial Gaussian wave packet and trajectory initial condition on tunn...

  9. The description of dense hydrogen with Wave Packet Molecular Dynamics (WPMD) simulations; Die Beschreibung von dichtem Wasserstoff mit der Methode der Wellenpaket-Molekulardynamik (WPMD)

    Energy Technology Data Exchange (ETDEWEB)

    Jakob, B.

    2006-10-10

    In this work the wave packet molecular dynamics (WPMD) is presented and applied to dense hydrogen. In the WPMD method the electrons are described by a slater determinant of periodic Gaussian wave packets. Each single particle wave function can parametrised through 8 coordinates which can be interpreted as the position and momentum, the width and its conjugate momentum. The equation of motion for these coordinates can be derived from a time depended variational principle. Properties of the equilibrium can be ascertained by a Monte Carlo simulation. With the now completely implemented antisymmetrisation the simulation yields a fundamental different behavior for dense hydrogen compare to earlier simplified models. The results show a phase transition to metallic hydrogen with a higher density than in the molecular phase. This behavior has e.g. a large implication to the physics of giant planets. This work describes the used model and explains in particular the calculation of the energy and forces. The periodicity of the wave function leads to a description in the Fourier space. The antisymmetrisation is done by Matrix operations. Moreover the numerical implementation is described in detail to allow the further development of the code. The results provided in this work show the equation of state in the temperature range 300K - 50000K an density 10{sup 23}-10{sup 24} cm{sup -3}, according a pressure 1 GPa-1000 GPa. In a phase diagram the phase transition to metallic hydrogen can be red off. The electrical conductivity of both phases is destined. (orig.)

  10. Non-Hermitian wave packet approximation for coupled two-level systems in weak and intense fields

    Energy Technology Data Exchange (ETDEWEB)

    Puthumpally-Joseph, Raiju; Charron, Eric [Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay (France); Sukharev, Maxim [Science and Mathematics Faculty, College of Letters and Sciences, Arizona State University, Mesa, Arizona 85212 (United States)

    2016-04-21

    We introduce a non-Hermitian Schrödinger-type approximation of optical Bloch equations for two-level systems. This approximation provides a complete and accurate description of the coherence and decoherence dynamics in both weak and strong laser fields at the cost of losing accuracy in the description of populations. In this approach, it is sufficient to propagate the wave function of the quantum system instead of the density matrix, providing that relaxation and dephasing are taken into account via automatically adjusted time-dependent gain and decay rates. The developed formalism is applied to the problem of scattering and absorption of electromagnetic radiation by a thin layer comprised of interacting two-level emitters.

  11. Nonlinear wave breaking in self-gravitating viscoelastic quantum fluid

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Aniruddha, E-mail: anibabun@gmail.com [Center for Plasma Studies, Department of Instrumentation Science, Jadavpur University, Kolkata, 700 032 (India); Roychoudhury, Rajkumar, E-mail: rajdaju@rediffmail.com [Advanced Centre for Nonlinear and Complex Phenomena, 1175 Survey Park, Kolkata 700075 (India); Department of Mathematics, Bethune College, Kolkata 700006 (India); Bhar, Radhaballav [Center for Plasma Studies, Department of Instrumentation Science, Jadavpur University, Kolkata, 700 032 (India); Khan, Manoranjan, E-mail: mkhan.ju@gmail.com [Center for Plasma Studies, Department of Instrumentation Science, Jadavpur University, Kolkata, 700 032 (India)

    2017-02-12

    The stability of a viscoelastic self-gravitating quantum fluid has been studied. Symmetry breaking instability of solitary wave has been observed through ‘viscosity modified Ostrovsky equation’ in weak gravity limit. In presence of strong gravitational field, the solitary wave breaks into shock waves. Response to a Gaussian perturbation, the system produces quasi-periodic short waves, which in terns predicts the existence of gravito-acoustic quasi-periodic short waves in lower solar corona region. Stability analysis of this dynamical system predicts gravity has the most prominent effect on the phase portraits, therefore, on the stability of the system. The non-existence of chaotic solution has also been observed at long wavelength perturbation through index value theorem. - Highlights: • In weak gravitational field, viscoelastic quantum fluid exhibits symmetry breaking instability. • Gaussian perturbation produces quasi-periodic gravito-acoustic waves into the system. • There exists no chaotic state of the system against long wavelength perturbations.

  12. Pilot-wave approaches to quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Struyve, Ward, E-mail: Ward.Struyve@fys.kuleuven.be [Institute of Theoretical Physics, K.U.Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Institute of Philosophy, K.U.Leuven, Kardinaal Mercierplein 2, B-3000 Leuven (Belgium)

    2011-07-08

    The purpose of this paper is to present an overview of recent work on pilot-wave approaches to quantum field theory. In such approaches, systems are not only described by their wave function, as in standard quantum theory, but also by some additional variables. In the non-relativistic pilot-wave theory of deBroglie and Bohm those variables are particle positions. In the context of quantum field theory, there are two natural choices, namely particle positions and fields. The incorporation of those variables makes it possible to provide an objective description of nature in which rather ambiguous notions such as 'measurement' and 'observer' play no fundamental role. As such, the theory is free of the conceptual difficulties, such as the measurement problem, that plague standard quantum theory.

  13. Optimized Perturbation Theory for Wave Functions of Quantum Systems

    International Nuclear Information System (INIS)

    Hatsuda, T.; Tanaka, T.; Kunihiro, T.

    1997-01-01

    The notion of the optimized perturbation, which has been successfully applied to energy eigenvalues, is generalized to treat wave functions of quantum systems. The key ingredient is to construct an envelope of a set of perturbative wave functions. This leads to a condition similar to that obtained from the principle of minimal sensitivity. Applications of the method to the quantum anharmonic oscillator and the double well potential show that uniformly valid wave functions with correct asymptotic behavior are obtained in the first-order optimized perturbation even for strong couplings. copyright 1997 The American Physical Society

  14. Millimeter-wave interconnects for microwave-frequency quantum machines

    Science.gov (United States)

    Pechal, Marek; Safavi-Naeini, Amir H.

    2017-10-01

    Superconducting microwave circuits form a versatile platform for storing and manipulating quantum information. A major challenge to further scalability is to find approaches for connecting these systems over long distances and at high rates. One approach is to convert the quantum state of a microwave circuit to optical photons that can be transmitted over kilometers at room temperature with little loss. Many proposals for electro-optic conversion between microwave and optics use optical driving of a weak three-wave mixing nonlinearity to convert the frequency of an excitation. Residual absorption of this optical pump leads to heating, which is problematic at cryogenic temperatures. Here we propose an alternative approach where a nonlinear superconducting circuit is driven to interconvert between microwave-frequency (7 ×109 Hz) and millimeter-wave-frequency photons (3 ×1011 Hz). To understand the potential for quantum state conversion between microwave and millimeter-wave photons, we consider the driven four-wave mixing quantum dynamics of nonlinear circuits. In contrast to the linear dynamics of the driven three-wave mixing converters, the proposed four-wave mixing converter has nonlinear decoherence channels that lead to a more complex parameter space of couplings and pump powers that we map out. We consider physical realizations of such converter circuits by deriving theoretically the upper bound on the maximum obtainable nonlinear coupling between any two modes in a lossless circuit, and synthesizing an optimal circuit based on realistic materials that saturates this bound. Our proposed circuit dissipates less than 10-9 times the energy of current electro-optic converters per qubit. Finally, we outline the quantum link budget for optical, microwave, and millimeter-wave connections, showing that our approach is viable for realizing interconnected quantum processors for intracity or quantum data center environments.

  15. Quantum-Wave Equation and Heisenberg Inequalities of Covariant Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Claudio Cremaschini

    2017-07-01

    Full Text Available Key aspects of the manifestly-covariant theory of quantum gravity (Cremaschini and Tessarotto 2015–2017 are investigated. These refer, first, to the establishment of the four-scalar, manifestly-covariant evolution quantum wave equation, denoted as covariant quantum gravity (CQG wave equation, which advances the quantum state ψ associated with a prescribed background space-time. In this paper, the CQG-wave equation is proved to follow at once by means of a Hamilton–Jacobi quantization of the classical variational tensor field g ≡ g μ ν and its conjugate momentum, referred to as (canonical g-quantization. The same equation is also shown to be variational and to follow from a synchronous variational principle identified here with the quantum Hamilton variational principle. The corresponding quantum hydrodynamic equations are then obtained upon introducing the Madelung representation for ψ , which provides an equivalent statistical interpretation of the CQG-wave equation. Finally, the quantum state ψ is proven to fulfill generalized Heisenberg inequalities, relating the statistical measurement errors of quantum observables. These are shown to be represented in terms of the standard deviations of the metric tensor g ≡ g μ ν and its quantum conjugate momentum operator.

  16. A criticism to the fundamental principles of physics: The problem of the quantum measurement (I)

    International Nuclear Information System (INIS)

    Mormontoy Cardenas, Oscar; Marquez Jacome, Mateo

    2008-01-01

    The wave packet model collapse debt to extremely fast fluctuations of quantum field leads to interpreting the phase speed of the harmonic waves that compose the packet, as the speed of time flux. If it consider that harmonics waves keep different phases, the waves packet scattered almost instantly and, as consequence of that, allows the possibility of the quantum system energy it is measure with exactitude absolute in given time. These results induce to think that the time would being a superforce which would determine finally the events of universe and being responsible of the intrinsic pulsations observable in the physics systems. (author)

  17. Rogue waves generated through quantum chaos

    KAUST Repository

    Liu, Changxu

    2013-05-01

    Rouge waves, or freak waves, are extreme events that manifest themselves with the formation of waves with giant amplitude. One of the distinctive features of their appearance is an anomalous amplitude probability distribution, which shows significant deviations from the classical Rayleigh statistics [1]. Initially observed in the context of oceanography, rogue waves have been extensively studied in Optics where their observation has been reported in nonlinear optical fibers [2] and laser systems [3]. © 2013 IEEE.

  18. Rogue waves generated through quantum chaos

    KAUST Repository

    Liu, Changxu; Di Falco, Andrea; Krauss, Thomas F.; Fratalocchi, Andrea

    2013-01-01

    Rouge waves, or freak waves, are extreme events that manifest themselves with the formation of waves with giant amplitude. One of the distinctive features of their appearance is an anomalous amplitude probability distribution, which shows significant deviations from the classical Rayleigh statistics [1]. Initially observed in the context of oceanography, rogue waves have been extensively studied in Optics where their observation has been reported in nonlinear optical fibers [2] and laser systems [3]. © 2013 IEEE.

  19. Relativistic Quantum Revivals

    International Nuclear Information System (INIS)

    Strange, P.

    2010-01-01

    Quantum revivals are now a well-known phenomena within nonrelativistic quantum theory. In this Letter we display the effects of relativity on revivals and quantum carpets. It is generally believed that revivals do not occur within a relativistic regime. Here we show that while this is generally true, it is possible, in principle, to set up wave packets with specific mathematical properties that do exhibit exact revivals within a fully relativistic theory.

  20. Quantum Measurement Theory in Gravitational-Wave Detectors

    Directory of Open Access Journals (Sweden)

    Stefan L. Danilishin

    2012-04-01

    Full Text Available The fast progress in improving the sensitivity of the gravitational-wave detectors, we all have witnessed in the recent years, has propelled the scientific community to the point at which quantum behavior of such immense measurement devices as kilometer-long interferometers starts to matter. The time when their sensitivity will be mainly limited by the quantum noise of light is around the corner, and finding ways to reduce it will become a necessity. Therefore, the primary goal we pursued in this review was to familiarize a broad spectrum of readers with the theory of quantum measurements in the very form it finds application in the area of gravitational-wave detection. We focus on how quantum noise arises in gravitational-wave interferometers and what limitations it imposes on the achievable sensitivity. We start from the very basic concepts and gradually advance to the general linear quantum measurement theory and its application to the calculation of quantum noise in the contemporary and planned interferometric detectors of gravitational radiation of the first and second generation. Special attention is paid to the concept of the Standard Quantum Limit and the methods of its surmounting.

  1. Quantum Measurement Theory in Gravitational-Wave Detectors.

    Science.gov (United States)

    Danilishin, Stefan L; Khalili, Farid Ya

    2012-01-01

    The fast progress in improving the sensitivity of the gravitational-wave detectors, we all have witnessed in the recent years, has propelled the scientific community to the point at which quantum behavior of such immense measurement devices as kilometer-long interferometers starts to matter. The time when their sensitivity will be mainly limited by the quantum noise of light is around the corner, and finding ways to reduce it will become a necessity. Therefore, the primary goal we pursued in this review was to familiarize a broad spectrum of readers with the theory of quantum measurements in the very form it finds application in the area of gravitational-wave detection. We focus on how quantum noise arises in gravitational-wave interferometers and what limitations it imposes on the achievable sensitivity. We start from the very basic concepts and gradually advance to the general linear quantum measurement theory and its application to the calculation of quantum noise in the contemporary and planned interferometric detectors of gravitational radiation of the first and second generation. Special attention is paid to the concept of the Standard Quantum Limit and the methods of its surmounting.

  2. Steering of quantum waves: Demonstration of Y-junction transistors using InAs quantum wires

    Science.gov (United States)

    Jones, Gregory M.; Qin, Jie; Yang, Chia-Hung; Yang, Ming-Jey

    2005-06-01

    In this paper we demonstrate using an InAs quantum wire Y-branch switch that the electron wave can be switched to exit from the two drains by a lateral gate bias. The gating modifies the electron wave functions as well as their interference pattern, causing the anti-correlated, oscillatory transconductances. Our result suggests a new transistor function in a multiple-lead ballistic quantum wire system.

  3. A trajectory-based understanding of quantum interference

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, A S; Miret-Artes, S [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones CientIficas, Serrano 123, 28006 Madrid (Spain)], E-mail: asanz@imaff.cfmac.csic.es, E-mail: s.miret@imaff.cfmac.csic.es

    2008-10-31

    Interference is one of the most fundamental features which characterizes quantum systems. Here we provide an exhaustive analysis of the interfere dynamics associated with wave-packet superpositions from both the standard quantum-mechanical perspective and the Bohmian one. From this analysis, clear and insightful pictures of the physics involved in these kind of processes are obtained, which are of general validity (i.e., regardless of the type of wave packets considered) in the understanding of more complex cases where interference is crucial (e.g., scattering problems, slit diffraction, quantum control scenarios or, even, multipartite interactions). In particular, we show how problems involving wave-packet interference can be mapped onto problems of wave packets scattered off potential barriers.

  4. A wave equation interpolating between classical and quantum mechanics

    Science.gov (United States)

    Schleich, W. P.; Greenberger, D. M.; Kobe, D. H.; Scully, M. O.

    2015-10-01

    We derive a ‘master’ wave equation for a family of complex-valued waves {{Φ }}\\equiv R{exp}[{{{i}}S}({cl)}/{{\\hbar }}] whose phase dynamics is dictated by the Hamilton-Jacobi equation for the classical action {S}({cl)}. For a special choice of the dynamics of the amplitude R which eliminates all remnants of classical mechanics associated with {S}({cl)} our wave equation reduces to the Schrödinger equation. In this case the amplitude satisfies a Schrödinger equation analogous to that of a charged particle in an electromagnetic field where the roles of the scalar and the vector potentials are played by the classical energy and the momentum, respectively. In general this amplitude is complex and thereby creates in addition to the classical phase {S}({cl)}/{{\\hbar }} a quantum phase. Classical statistical mechanics, as described by a classical matter wave, follows from our wave equation when we choose the dynamics of the amplitude such that it remains real for all times. Our analysis shows that classical and quantum matter waves are distinguished by two different choices of the dynamics of their amplitudes rather than two values of Planck’s constant. We dedicate this paper to the memory of Richard Lewis Arnowitt—a pioneer of many-body theory, a path finder at the interface of gravity and quantum mechanics, and a true leader in non-relativistic and relativistic quantum field theory.

  5. Packet reversed packet combining scheme

    International Nuclear Information System (INIS)

    Bhunia, C.T.

    2006-07-01

    The packet combining scheme is a well defined simple error correction scheme with erroneous copies at the receiver. It offers higher throughput combined with ARQ protocols in networks than that of basic ARQ protocols. But packet combining scheme fails to correct errors when the errors occur in the same bit locations of two erroneous copies. In the present work, we propose a scheme that will correct error if the errors occur at the same bit location of the erroneous copies. The proposed scheme when combined with ARQ protocol will offer higher throughput. (author)

  6. Spin-wave utilization in a quantum computer

    Science.gov (United States)

    Khitun, A.; Ostroumov, R.; Wang, K. L.

    2001-12-01

    We propose a quantum computer scheme using spin waves for quantum-information exchange. We demonstrate that spin waves in the antiferromagnetic layer grown on silicon may be used to perform single-qubit unitary transformations together with two-qubit operations during the cycle of computation. The most attractive feature of the proposed scheme is the possibility of random access to any qubit and, consequently, the ability to recognize two qubit gates between any two distant qubits. Also, spin waves allow us to eliminate the use of a strong external magnetic field and microwave pulses. By estimate, the proposed scheme has as high as 104 ratio between quantum system coherence time and the time of a single computational step.

  7. Quantum superchemistry in an output coupler of coherent matter waves

    International Nuclear Information System (INIS)

    Jing, H.; Cheng, J.

    2006-01-01

    We investigate the quantum superchemistry or Bose-enhanced atom-molecule conversions in a coherent output coupler of matter waves, as a simple generalization of the two-color photoassociation. The stimulated effects of molecular output step and atomic revivals are exhibited by steering the rf output couplings. The quantum noise-induced molecular damping occurs near a total conversion in a levitation trap. This suggests a feasible two-trap scheme to make a stable coherent molecular beam

  8. Quantum corrections to nonlinear ion acoustic wave with Landau damping

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Abhik; Janaki, M. S. [Saha Institute of Nuclear Physics, Calcutta (India); Bose, Anirban [Serampore College, West Bengal (India)

    2014-07-15

    Quantum corrections to nonlinear ion acoustic wave with Landau damping have been computed using Wigner equation approach. The dynamical equation governing the time development of nonlinear ion acoustic wave with semiclassical quantum corrections is shown to have the form of higher KdV equation which has higher order nonlinear terms coming from quantum corrections, with the usual classical and quantum corrected Landau damping integral terms. The conservation of total number of ions is shown from the evolution equation. The decay rate of KdV solitary wave amplitude due to the presence of Landau damping terms has been calculated assuming the Landau damping parameter α{sub 1}=√(m{sub e}/m{sub i}) to be of the same order of the quantum parameter Q=ℏ{sup 2}/(24m{sup 2}c{sub s}{sup 2}L{sup 2}). The amplitude is shown to decay very slowly with time as determined by the quantum factor Q.

  9. Quantum Nuclear Extension of Electron Nuclear Dynamics on Folded Effective-Potential Surfaces

    DEFF Research Database (Denmark)

    Hall, B.; Deumens, E.; Ohrn, Y.

    2014-01-01

    A perennial problem in quantum scattering calculations is accurate theoretical treatment of low energy collisions. We propose a method of extracting a folded, nonadiabatic, effective potential energy surface from electron nuclear dynamics (END) trajectories; we then perform nuclear wave packet...

  10. Nonadiabatic quantum wave packet dynamics of the H + H2 reaction ...

    Indian Academy of Sciences (India)

    Administrator

    intersections of the two JT split component states. The energetically ... between the theory and experiment,. 1 there remains ..... overhead raises by a factor of two for each WP .... Herzberg G and Longuet-Higgins H C 1963 Disscuss. Faraday.

  11. Gravity waves from quantum stress tensor fluctuations in inflation

    International Nuclear Information System (INIS)

    Wu, Chun-Hsien; Hsiang, Jen-Tsung; Ford, L. H.; Ng, Kin-Wang

    2011-01-01

    We consider the effects of the quantum stress tensor fluctuations of a conformal field in generating gravity waves in inflationary models. We find a nonscale invariant, non-Gaussian contribution which depends upon the total expansion factor between an initial time and the end of inflation. This spectrum of gravity wave perturbations is an illustration of a negative power spectrum, which is possible in quantum field theory. We discuss possible choices for the initial conditions. If the initial time is taken to be sufficiently early, the fluctuating gravity waves are potentially observable both in the CMB radiation and in gravity wave detectors, and could offer a probe of trans-Planckian physics. The fact that they have not yet been observed might be used to constrain the duration and energy scale of inflation. However, this conclusion is contingent upon including the contribution of modes which were trans-Planckian at the beginning of inflation.

  12. Gravity waves from quantum stress tensor fluctuations in inflation

    Science.gov (United States)

    Wu, Chun-Hsien; Hsiang, Jen-Tsung; Ford, L. H.; Ng, Kin-Wang

    2011-11-01

    We consider the effects of the quantum stress tensor fluctuations of a conformal field in generating gravity waves in inflationary models. We find a nonscale invariant, non-Gaussian contribution which depends upon the total expansion factor between an initial time and the end of inflation. This spectrum of gravity wave perturbations is an illustration of a negative power spectrum, which is possible in quantum field theory. We discuss possible choices for the initial conditions. If the initial time is taken to be sufficiently early, the fluctuating gravity waves are potentially observable both in the CMB radiation and in gravity wave detectors, and could offer a probe of trans-Planckian physics. The fact that they have not yet been observed might be used to constrain the duration and energy scale of inflation. However, this conclusion is contingent upon including the contribution of modes which were trans-Planckian at the beginning of inflation.

  13. Spin-Wave Wave Function for Quantum Spin Models : Condensed Matter and Statistical Physics

    OpenAIRE

    Franjo, FRANJIC; Sandro, SORELLA; Istituto Nazionale di Fisica della Materia International School for Advance Studies; Istituto Nazionale di Fisica della Materia International School for Advance Studies

    1997-01-01

    We present a new approach to determine an accurate variational wave function for general quantum spin models, completely defined by a consistency requirement with the simple and well-known linear spin-wave expansion. With this wave function, it is also possible to obtain the correct behavior of the long distance correlation functions for the 1D S=1/2 antiferromagnet. In 2D the proposed spin-wave wave function represents an excellent approximation to the exact ground state of the S=1.2 XY mode...

  14. Existence of solitary waves in dipolar quantum gases

    KAUST Repository

    Antonelli, Paolo; Sparber, Christof

    2011-01-01

    We study a nonlinear Schrdinger equation arising in the mean field description of dipolar quantum gases. Under the assumption of sufficiently strong dipolar interactions, the existence of standing waves, and hence solitons, is proved together with some of their properties. This gives a rigorous argument for the possible existence of solitary waves in BoseEinstein condensates, which originate solely due to the dipolar interaction between the particles. © 2010 Elsevier B.V. All rights reserved.

  15. Horizon wave-function and the quantum cosmic censorship

    OpenAIRE

    Casadio, RobertoDipartimento di Fisica e Astronomia, Alma Mater Università di Bologna, via Irnerio 46, Bologna, 40126, Italy; Micu, Octavian(Institute of Space Science, Bucharest, P.O. Box MG-23, Bucharest-Magurele, RO-077125, Romania); Stojkovic, Dejan(HEPCOS, Department of Physics, SUNY at Buffalo, Buffalo, NY, 14260-1500, United States)

    2015-01-01

    We investigate the Cosmic Censorship Conjecture by means of the horizon wave-function (HWF) formalism. We consider a charged massive particle whose quantum mechanical state is represented by a spherically symmetric Gaussian wave-function, and restrict our attention to the superxtremal case (with charge-to-mass ratio $\\alpha>1$), which is the prototype of a naked singularity in the classical theory. We find that one can still obtain a normalisable HWF for $\\alpha^2 2$, and the uncertainty in t...

  16. Existence of solitary waves in dipolar quantum gases

    KAUST Repository

    Antonelli, Paolo

    2011-02-01

    We study a nonlinear Schrdinger equation arising in the mean field description of dipolar quantum gases. Under the assumption of sufficiently strong dipolar interactions, the existence of standing waves, and hence solitons, is proved together with some of their properties. This gives a rigorous argument for the possible existence of solitary waves in BoseEinstein condensates, which originate solely due to the dipolar interaction between the particles. © 2010 Elsevier B.V. All rights reserved.

  17. Quantum fluctuations of some gravitational waves

    OpenAIRE

    Enginer, Y.; Hortacsu, M.; Kaya, R.; Ozdemir, N.; Ulker, K.; Yapiskan, B.

    1998-01-01

    We review our previous work on the the calculation of the stress-energy tensor for a scalar particle in the background metric of different types of spherical impulsive, spherical shock and plane impulsive gravitational waves.

  18. Universal Quantum Transducers Based on Surface Acoustic Waves

    NARCIS (Netherlands)

    Schuetz, M.J.A.; Kessler, E.M.; Giedke, G.; Vandersypen, L.M.K.; Lukin, M.D.; Cirac, J.I.

    2015-01-01

    We propose a universal, on-chip quantum transducer based on surface acoustic waves in piezoactive materials. Because of the intrinsic piezoelectric (and/or magnetostrictive) properties of the material, our approach provides a universal platform capable of coherently linking a broad array of qubits,

  19. Quantum field theory in a gravitational shock wave background

    International Nuclear Information System (INIS)

    Klimcik, C.

    1988-01-01

    A scalar massless non-interacting quantum field theory on an arbitrary gravitational shock wave background is exactly solved. S-matrix and expectation values of the energy-momentum tensor are computed for an arbitrarily polarized sourceless gravitational shock wave and for a homogeneous infinite planar shell shock wave, all performed in any number of space-time dimensions. Expectation values of the energy density in scattering states exhibit a singularity which lies exactly at the location of the curvature singularity found in the infinite shell collision. (orig.)

  20. Wave function of the quantum black hole

    International Nuclear Information System (INIS)

    Brustein, Ram; Hadad, Merav

    2012-01-01

    We show that the Wald Noether-charge entropy is canonically conjugate to the opening angle at the horizon. Using this canonical relation, we extend the Wheeler-DeWitt equation to a Schrödinger equation in the opening angle, following Carlip and Teitelboim. We solve the equation in the semiclassical approximation by using the correspondence principle and find that the solutions are minimal uncertainty wavefunctions with a continuous spectrum for the entropy and therefore also of the area of the black hole horizon. The fact that the opening angle fluctuates away from its classical value of 2π indicates that the quantum black hole is a superposition of horizonless states. The classical geometry with a horizon serves only to evaluate quantum expectation values in the strict classical limit.

  1. Low frequency waves in streaming quantum dusty plasmas

    Science.gov (United States)

    Rozina, Ch.; Jamil, M.; Khan, Arroj A.; Zeba, I.; Saman, J.

    2017-09-01

    The influence of quantum effects on the excitation of two instabilities, namely quantum dust-acoustic and quantum dust-lower-hybrid waves due to the free streaming of ion/dust particles in uniformly magnetized dusty plasmas has been investigated using a quantum hydrodynamic model. We have obtained dispersion relations under some particular conditions applied on streaming ions and two contrastreaming dust particle beams at equilibrium and have analyzed the growth rates graphically. We have shown that with the increase of both the electron number density and the streaming speed of ion there is enhancement in the instability due to the fact that the dense plasma particle system with more energetic species having a high speed results in the increase of the growth rate in the electrostatic mode. The application of this work has been pointed out for laboratory as well as for space dusty plasmas.

  2. Bohm potential effect on the propagation of electrostatic surface wave in semi-bounded quantum plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung-Jae [Department of Physics, Hanyang University, Seoul 04763 (Korea, Republic of); Research Institute for Natural Sciences, Hanyang University, Seoul 04763 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588 (Korea, Republic of); Department of Electrical and Computer Engineering, MC 0407, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0407 (United States)

    2017-02-12

    High frequency electrostatic wave propagation in a dense and semi-bounded electron quantum plasma is investigated with consideration of the Bohm potential. The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. We found that the quantum effect enhances the frequency of the wave especially in the high wave number regime. However, the frequency of surface wave is found to be always lower than that of the bulk wave for the same quantum wave number. The group velocity of the surface wave for various quantum wave number is also obtained. - Highlights: • High frequency electrostatic wave propagation is investigated in a dense semi-bounded quantum plasma. • The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. • The quantum effect enhances the frequency of the wave especially in the high wave number regime. • The frequency of surface wave is found to be always lower than that of the bulk wave. • The group velocity of the surface wave for various quantum wave number is also obtained.

  3. Localization of Waves in Fractals : Spatial Behavior

    NARCIS (Netherlands)

    Vries, Pedro de; Raedt, Hans De; Lagendijk, Ad

    1989-01-01

    Localization of a quantum particle on two-dimensional percolating networks is investigated numerically. Solving the time-dependent Schrödinger equation for particular initial wave packets we study the spatial behavior of eigenstates for two tight-binding models: the quantum percolation model and the

  4. Quantum control of multi-wave mixing

    CERN Document Server

    Zhang, Yanpeng; Xiao, Min

    2013-01-01

    Multi-wave mixing gives rise to new frequency components due to the interaction of light signals with a suitable nonlinear medium. In this book a systematic framework for the control of these processes is used to lead readers through a plethora of related effects and techniques.

  5. On the direct observability of quantum waves

    International Nuclear Information System (INIS)

    Selleri, F.

    1984-01-01

    Fundamental experiments on the dual nature of atomic entities can be interpreted in terms of ''empty'' waves not carrying energy and momentum. Similar points of view were advanced in famous papers by Einstein, de Broglie, Bohr, and Born. Recent proposals could lead to experimental tests of this idea, using low intensity photon beams, thanks to modern experimental apparatus. (author)

  6. The Picture Book of Quantum Mechanics

    CERN Document Server

    Brandt, Siegmund

    2012-01-01

    The aim of this book is to explain the basic concepts and phenomena of quantum mechanics by means of visualization. Computer-generated illustrations in color are used extensively throughout the text, helping to establish the relation between quantum mechanics—wave functions, interference, atomic structure, and so forth—and classical physics—point mechanics, statistical mechanics, and wave optics. Even more important, by studying the pictures in parallel with the text, readers develop an intuition for such notoriously abstract phenomena as • the tunnel effect • excitation and decay of metastable states • wave-packet motion within a well • systems of distinguishable and indistinguishable particles • free wave packets and scattering in 3 dimensions • angular-momentum decomposition • stationary bound states in various 3-dimensional potentials • hybrid states • Kepler motion of wave packets in the Coulomb field • spin and magnetic resonance Illustrations from experiments in a variety of f...

  7. Chameleon fields, wave function collapse and quantum gravity

    International Nuclear Information System (INIS)

    Zanzi, A

    2015-01-01

    Chameleon fields are quantum (usually scalar) fields, with a density-dependent mass. In a high-density environment, the mass of the chameleon is large. On the contrary, in a small-density environment (e.g. on cosmological distances), the chameleon is very light. A model where the collapse of the wave function is induced by chameleon fields is presented. During this analysis, a Chameleonic Equivalence Principle (CEP) will be formulated: in this model, quantum gravitation is equivalent to a conformal anomaly. Further research efforts are necessary to verify whether this proposal is compatible with phenomeno logical constraints. (paper)

  8. A catastrophe in quantum mechanics

    International Nuclear Information System (INIS)

    Ignatovich, V.K.

    2004-01-01

    The standard scattering theory (SST) in nonrelativistic quantum mechanics (QM) is analyzed. Self-contradictions of SST are deconstructed. A direct way to calculate scattering probability without introduction of a finite volume is discussed. Substantiation of SST in textbooks with the help of wave packets is shown to be incomplete. A complete theory of wave packet scattering on a fixed center is presented, and its similarity to the plane wave scattering is demonstrated. The neutron scattering on a monatomic gas is investigated, and several problems are pointed out. A catastrophic ambiguity of the cross section is revealed, and a way to resolve this ambiguity is discussed

  9. Extensible packet processing architecture

    Science.gov (United States)

    Robertson, Perry J.; Hamlet, Jason R.; Pierson, Lyndon G.; Olsberg, Ronald R.; Chun, Guy D.

    2013-08-20

    A technique for distributed packet processing includes sequentially passing packets associated with packet flows between a plurality of processing engines along a flow through data bus linking the plurality of processing engines in series. At least one packet within a given packet flow is marked by a given processing engine to signify by the given processing engine to the other processing engines that the given processing engine has claimed the given packet flow for processing. A processing function is applied to each of the packet flows within the processing engines and the processed packets are output on a time-shared, arbitered data bus coupled to the plurality of processing engines.

  10. Horizon wave-function and the quantum cosmic censorship

    Directory of Open Access Journals (Sweden)

    Roberto Casadio

    2015-07-01

    Full Text Available We investigate the Cosmic Censorship Conjecture by means of the horizon wave-function (HWF formalism. We consider a charged massive particle whose quantum mechanical state is represented by a spherically symmetric Gaussian wave-function, and restrict our attention to the superextremal case (with charge-to-mass ratio α>1, which is the prototype of a naked singularity in the classical theory. We find that one can still obtain a normalisable HWF for α22, and the uncertainty in the location of the horizon blows up at α2=2, signalling that such an object is no more well-defined. This perhaps implies that a quantum Cosmic Censorship might be conjectured by stating that no black holes with charge-to-mass ratio greater than a critical value (of the order of 2 can exist.

  11. Let the trajectories tell a quantum story: Post-entangling the SHARC scheme

    International Nuclear Information System (INIS)

    Ruiz, Pablo Sampedro; Sola, Ignacio R; González-Vázquez, Jesús

    2015-01-01

    A new method is proposed to perform Quantum Wave Packet Nuclear Dynamics on large systems, by making use of information obtained by Semi-Classical Quantum Dynamics. The key of the method resides in expressing the nuclear wave function of the system in a basis set determined by the positions of multiple trajectories at each time. (paper)

  12. Testing the quantum superposition principle: matter waves and beyond

    Science.gov (United States)

    Ulbricht, Hendrik

    2015-05-01

    New technological developments allow to explore the quantum properties of very complex systems, bringing the question of whether also macroscopic systems share such features, within experimental reach. The interest in this question is increased by the fact that, on the theory side, many suggest that the quantum superposition principle is not exact, departures from it being the larger, the more macroscopic the system. Testing the superposition principle intrinsically also means to test suggested extensions of quantum theory, so-called collapse models. We will report on three new proposals to experimentally test the superposition principle with nanoparticle interferometry, optomechanical devices and by spectroscopic experiments in the frequency domain. We will also report on the status of optical levitation and cooling experiments with nanoparticles in our labs, towards an Earth bound matter-wave interferometer to test the superposition principle for a particle mass of one million amu (atomic mass unit).

  13. Fine structure and analytical quantum-defect wave functions

    International Nuclear Information System (INIS)

    Kostelecky, V.A.; Nieto, M.M.; Truax, D.R.

    1988-01-01

    We investigate the domain of validity of previously proposed analytical wave functions for atomic quantum-defect theory. This is done by considering the fine-structure splitting of alkali-metal and singly ionized alkaline-earth atoms. The Lande formula is found to be naturally incorporated. A supersymmetric-type integer is necessary for finite results. Calculated splittings correctly reproduce the principal features of experimental values for alkali-like atoms

  14. Imaging electron wave functions inside open quantum rings.

    Science.gov (United States)

    Martins, F; Hackens, B; Pala, M G; Ouisse, T; Sellier, H; Wallart, X; Bollaert, S; Cappy, A; Chevrier, J; Bayot, V; Huant, S

    2007-09-28

    Combining scanning gate microscopy (SGM) experiments and simulations, we demonstrate low temperature imaging of the electron probability density |Psi|(2)(x,y) in embedded mesoscopic quantum rings. The tip-induced conductance modulations share the same temperature dependence as the Aharonov-Bohm effect, indicating that they originate from electron wave function interferences. Simulations of both |Psi|(2)(x,y) and SGM conductance maps reproduce the main experimental observations and link fringes in SGM images to |Psi|(2)(x,y).

  15. Comment on "Rovibrational quantum interferometers and gravitational waves"

    OpenAIRE

    Khriplovich, I. B.; Lamoreaux, S. K.; Sushkov, A. O.; Sushkov, O. P.

    2009-01-01

    In a recent paper, Wicht, L\\"ammerzahl, Lorek, and Dittus [Phys. Rev. {\\bf A 78}, 013610 (2008)] come to the conclusion that a molecular rotational-vibrational quantum interferometer may possess the sensitivity necessary to detect gravitational waves. We do not agree with their results and demonstrate here that the true sensitivity of such interferometer is many orders of magnitude worse than that claimed in the mentioned paper. In the present comment we estimate the expected energy shifts an...

  16. Quantum steering in cascaded four-wave mixing processes.

    Science.gov (United States)

    Wang, Li; Lv, Shuchao; Jing, Jietai

    2017-07-24

    Quantum steering is used to describe the "spooky action-at-a-distance" nonlocality raised in the Einstein-Podolsky-Rosen (EPR) paradox, which is important for understanding entanglement distribution and constructing quantum networks. Here, in this paper, we study an experimentally feasible scheme for generating quantum steering based on cascaded four-wave-mixing (FWM) processes in hot rubidium (Rb) vapor. Quantum steering, including bipartite steering and genuine tripartite steering among the output light fields, is theoretically analyzed. We find the corresponding gain regions in which the bipartite and tripartite steering exist. The results of bipartite steering can be used to establish a hierarchical steering model in which one beam can steer the other two beams in the whole gain region; however, the other two beams cannot steer the first beam simultaneously. Moreover, the other two beams cannot steer with each other in the whole gain region. More importantly, we investigate the gain dependence of the existence of the genuine tripartite steering and we find that the genuine tripartite steering exists in most of the whole gain region in the ideal case. Also we discuss the effect of losses on the genuine tripartite steering. Our results pave the way to experimental demonstration of quantum steering in cascaded FWM process.

  17. Quantum dust magnetosonic waves with spin and exchange correlation effects

    Energy Technology Data Exchange (ETDEWEB)

    Maroof, R.; Qamar, A. [Department of Physics, University of Peshawar, Peshawar 25000 (Pakistan); Mushtaq, A. [Department of Physics, Abdul Wali Khan University, Mardan 23200 (Pakistan); National Center for Physics, Shahdra Valley Road, Islamabad 44000 (Pakistan)

    2016-01-15

    Dust magnetosonic waves are studied in degenerate dusty plasmas with spin and exchange correlation effects. Using the fluid equations of magnetoplasma with quantum corrections due to the Bohm potential, temperature degeneracy, spin magnetization energy, and exchange correlation, a generalized dispersion relation is derived. Spin effects are incorporated via spin force and macroscopic spin magnetization current. The exchange-correlation potentials are used, based on the adiabatic local-density approximation, and can be described as a function of the electron density. For three different values of angle, the dispersion relation is reduced to three different modes under the low frequency magnetohydrodynamic assumptions. It is found that the effects of quantum corrections in the presence of dust concentration significantly modify the dispersive properties of these modes. The results are useful for understanding numerous collective phenomena in quantum plasmas, such as those in compact astrophysical objects (e.g., the cores of white dwarf stars and giant planets) and in plasma-assisted nanotechnology (e.g., quantum diodes, quantum free-electron lasers, etc.)

  18. Quantum dust magnetosonic waves with spin and exchange correlation effects

    Science.gov (United States)

    Maroof, R.; Mushtaq, A.; Qamar, A.

    2016-01-01

    Dust magnetosonic waves are studied in degenerate dusty plasmas with spin and exchange correlation effects. Using the fluid equations of magnetoplasma with quantum corrections due to the Bohm potential, temperature degeneracy, spin magnetization energy, and exchange correlation, a generalized dispersion relation is derived. Spin effects are incorporated via spin force and macroscopic spin magnetization current. The exchange-correlation potentials are used, based on the adiabatic local-density approximation, and can be described as a function of the electron density. For three different values of angle, the dispersion relation is reduced to three different modes under the low frequency magnetohydrodynamic assumptions. It is found that the effects of quantum corrections in the presence of dust concentration significantly modify the dispersive properties of these modes. The results are useful for understanding numerous collective phenomena in quantum plasmas, such as those in compact astrophysical objects (e.g., the cores of white dwarf stars and giant planets) and in plasma-assisted nanotechnology (e.g., quantum diodes, quantum free-electron lasers, etc.).

  19. On the interpretation of wave function overlaps in quantum dots

    DEFF Research Database (Denmark)

    Stobbe, Søren; Hvam, Jørn Märcher; Lodahl, Peter

    2011-01-01

    The spontaneous emission rate of excitons strongly confined in quantum dots (QDs) is proportional to the overlap integral of electron and hole envelope wave functions. A common and intuitive interpretation of this result is that the spontaneous emission rate is proportional to the probability...... that the electron and the hole are located at the same point or region in space, i.e., they must coincide spatially to recombine. Here, we show that this interpretation is not correct even loosely speaking. By general mathematical considerations we compare the envelope wave function overlap, the exchange overlap...... integral, and the probability of electrons and holes coinciding, and find that the frequency dependence of the envelope wave function overlap integral is very different from that expected from the common interpretation. We show that these theoretical considerations lead to predictions for measurements. We...

  20. Elements of sub-quantum thermodynamics: quantum motion as ballistic diffusion

    International Nuclear Information System (INIS)

    Groessing, G; Fussy, S; Pascasio, J Mesa; Schwabl, H

    2011-01-01

    By modelling quantum systems as emerging from a (classical) sub-quantum thermodynamics, the quantum mechanical 'decay of the wave packet' is shown to simply result from sub-quantum diffusion with a specific diffusion coefficient varying in time due to a particle's changing thermal environment. It is thereby proven that free quantum motion strictly equals ballistic diffusion. The exact quantum mechanical trajectory distributions and the velocity field of the Gaussian wave packet are thus derived solely from classical physics. Moreover, also quantum motion in a linear (e.g., gravitational) potential is shown to equal said ballistic diffusion. Quantitative statements on the trajectories' characteristic behaviours are obtained which provide a detailed 'micro-causal' explanation in full accordance with momentum conservation.

  1. On Heisenberg Uncertainty Relationship, Its Extension, and the Quantum Issue of Wave-Particle Duality

    Directory of Open Access Journals (Sweden)

    Mihai V. Putz

    2010-10-01

    Full Text Available Within the path integral Feynman formulation of quantum mechanics, the fundamental Heisenberg Uncertainty Relationship (HUR is analyzed in terms of the quantum fluctuation influence on coordinate and momentum estimations. While introducing specific particle and wave representations, as well as their ratio, in quantifying the wave-to-particle quantum information, the basic HUR is recovered in a close analytical manner for a large range of observable particle-wave Copenhagen duality, although with the dominant wave manifestation, while registering its progressive modification with the factor √1-n2, in terms of magnitude n ε [0,1] of the quantum fluctuation, for the free quantum evolution around the exact wave-particle equivalence. The practical implications of the present particle-to-wave ratio as well as of the free-evolution quantum picture are discussed for experimental implementation, broken symmetry and the electronic localization function.

  2. Strong quantum scarring by local impurities

    Science.gov (United States)

    Luukko, Perttu J. J.; Drury, Byron; Klales, Anna; Kaplan, Lev; Heller, Eric J.; Räsänen, Esa

    2016-11-01

    We discover and characterise strong quantum scars, or quantum eigenstates resembling classical periodic orbits, in two-dimensional quantum wells perturbed by local impurities. These scars are not explained by ordinary scar theory, which would require the existence of short, moderately unstable periodic orbits in the perturbed system. Instead, they are supported by classical resonances in the unperturbed system and the resulting quantum near-degeneracy. Even in the case of a large number of randomly scattered impurities, the scars prefer distinct orientations that extremise the overlap with the impurities. We demonstrate that these preferred orientations can be used for highly efficient transport of quantum wave packets across the perturbed potential landscape. Assisted by the scars, wave-packet recurrences are significantly stronger than in the unperturbed system. Together with the controllability of the preferred orientations, this property may be very useful for quantum transport applications.

  3. Chaos and the classical limit of quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Hogg, T; Huberman, B A [Xerox Palo Alto Research Center, CA (USA)

    1984-10-01

    The authors discuss the question of whether experiments can be designed to test the existence of quantum chaos. In particular, they show that high energies are not sufficient to guarantee that an initially localized wave packet will behave classically for long times. Computer simulations illustrating these ideas are presented and the question whether experiments can be designed to observe quantum chaos is commented on.

  4. Negative values of quasidistributions and quantum wave and number statistics

    Science.gov (United States)

    Peřina, J.; Křepelka, J.

    2018-04-01

    We consider nonclassical wave and number quantum statistics, and perform a decomposition of quasidistributions for nonlinear optical down-conversion processes using Bessel functions. We show that negative values of the quasidistribution do not directly represent probabilities; however, they directly influence measurable number statistics. Negative terms in the decomposition related to the nonclassical behavior with negative amplitudes of probability can be interpreted as positive amplitudes of probability in the negative orthogonal Bessel basis, whereas positive amplitudes of probability in the positive basis describe classical cases. However, probabilities are positive in all cases, including negative values of quasidistributions. Negative and positive contributions of decompositions to quasidistributions are estimated. The approach can be adapted to quantum coherence functions.

  5. Quantum information processing with a travelling wave of light

    Science.gov (United States)

    Serikawa, Takahiro; Shiozawa, Yu; Ogawa, Hisashi; Takanashi, Naoto; Takeda, Shuntaro; Yoshikawa, Jun-ichi; Furusawa, Akira

    2018-02-01

    We exploit quantum information processing on a traveling wave of light, expecting emancipation from thermal noise, easy coupling to fiber communication, and potentially high operation speed. Although optical memories are technically challenging, we have an alternative approach to apply multi-step operations on traveling light, that is, continuous-variable one-way computation. So far our achievement includes generation of a one-million-mode entangled chain in time-domain, mode engineering of nonlinear resource states, and real-time nonlinear feedforward. Although they are implemented with free space optics, we are also investigating photonic integration and performed quantum teleportation with a passive liner waveguide chip as a demonstration of entangling, measurement, and feedforward. We also suggest a loop-based architecture as another model of continuous-variable computing.

  6. Optimal laser control of molecular wave packet dynamics under the influence of dissipation: possibility of isotope separation

    International Nuclear Information System (INIS)

    Ohtsuki, Yukiyoshi

    2004-01-01

    Possibility of fs-laser-pulse isotope separation is numerically investigated using optimal control theory. Optimal pulses that separate the 1:1 mixture of 79 Br 2 and 28 1 Br 2 are calculated. Quantum interferences induced by the optimally designed fs pulse efficiently enhance the isotope shifts through multiple electronic transitions, which results in a high enrichment factor. When utilizing vibrational multi-photon transitions (a virtual model), an optimal pulse can transfer the two isotopes to specified different vibrational states with almost 100% probability. In the presence of colored noises, the optimal pulse achieves the control with minimum loss of product yields within the bath correlation time. (author)

  7. Trajectory-based understanding of the quantum-classical transition for barrier scattering

    Science.gov (United States)

    Chou, Chia-Chun

    2018-06-01

    The quantum-classical transition of wave packet barrier scattering is investigated using a hydrodynamic description in the framework of a nonlinear Schrödinger equation. The nonlinear equation provides a continuous description for the quantum-classical transition of physical systems by introducing a degree of quantumness. Based on the transition equation, the transition trajectory formalism is developed to establish the connection between classical and quantum trajectories. The quantum-classical transition is then analyzed for the scattering of a Gaussian wave packet from an Eckart barrier and the decay of a metastable state. Computational results for the evolution of the wave packet and the transmission probabilities indicate that classical results are recovered when the degree of quantumness tends to zero. Classical trajectories are in excellent agreement with the transition trajectories in the classical limit, except in some regions where transition trajectories cannot cross because of the single-valuedness of the transition wave function. As the computational results demonstrate, the process that the Planck constant tends to zero is equivalent to the gradual removal of quantum effects originating from the quantum potential. This study provides an insightful trajectory interpretation for the quantum-classical transition of wave packet barrier scattering.

  8. Experimental tests of the properties of the quantum mechanical wave function

    International Nuclear Information System (INIS)

    Tarozzi, G.

    1985-01-01

    A new experimental proposal on the wave-particle dualism is discussed, unifying the two different classes of experiments recently advanced to detect the physical properties of quantum waves of producing interference or stimulated emission

  9. Wave chaos in quantum systems with point interaction

    International Nuclear Information System (INIS)

    Albeverio, S.; Seba, P.

    1991-01-01

    The authors study perturbations H of the quantized version H 0 of integrable Hamiltonian systems by point interactions. They relate the eigenvalues of H to the zeros of a certain meromorphic function ξ. Assuming the eigenvalues of H 0 are Poisson distributed, they get detailed information on the joint distribution of the zeros of ξ and give bounds on the probability density for the spacings of eigenvalues of H. Their results confirm the wave chaos phenomenon, as different from the quantum chaos phenomenon predicted by random matrix theory

  10. Beyond Born-Oppenheimer theory for ab initio constructed diabatic potential energy surfaces of singlet H3+ to study reaction dynamics using coupled 3D time-dependent wave-packet approach.

    Science.gov (United States)

    Ghosh, Sandip; Mukherjee, Saikat; Mukherjee, Bijit; Mandal, Souvik; Sharma, Rahul; Chaudhury, Pinaki; Adhikari, Satrajit

    2017-08-21

    The workability of beyond Born-Oppenheimer theory to construct diabatic potential energy surfaces (PESs) of a charge transfer atom-diatom collision process has been explored by performing scattering calculations to extract accurate integral cross sections (ICSs) and rate constants for comparison with most recent experimental quantities. We calculate non-adiabatic coupling terms among the lowest three singlet states of H 3 + system (1 1 A ' , 2 1 A ' , and 3 1 A ' ) using MRCI level of calculation and solve the adiabatic-diabatic transformation equation to formulate the diabatic Hamiltonian matrix of the same process [S. Mukherjee et al., J. Chem. Phys. 141, 204306 (2014)] for the entire region of nuclear configuration space. The nonadiabatic effects in the D + + H 2 reaction has been studied by implementing the coupled 3D time-dependent wave packet formalism in hyperspherical coordinates [S. Adhikari and A. J. C. Varandas, Comput. Phys. Commun. 184, 270 (2013)] with zero and non-zero total angular momentum (J) on such newly constructed accurate (ab initio) diabatic PESs of H 3 + . We have depicted the convergence profiles of reaction probabilities for the reactive non-charge transfer, non-reactive charge transfer, and reactive charge transfer processes for different collisional energies with respect to the helicity (K) and total angular momentum (J) quantum numbers. Finally, total and state-to-state ICSs are calculated as a function of collision energy for the initial rovibrational state (v = 0, j = 0) of the H 2 molecule, and consequently, those quantities are compared with previous theoretical and experimental results.

  11. Continuous wave room temperature external ring cavity quantum cascade laser

    Energy Technology Data Exchange (ETDEWEB)

    Revin, D. G., E-mail: d.revin@sheffield.ac.uk; Hemingway, M.; Vaitiekus, D.; Cockburn, J. W. [Physics and Astronomy Department, The University of Sheffield, S3 7RH Sheffield (United Kingdom); Hempler, N.; Maker, G. T.; Malcolm, G. P. A. [M Squared Lasers Ltd., G20 0SP Glasgow (United Kingdom)

    2015-06-29

    An external ring cavity quantum cascade laser operating at ∼5.2 μm wavelength in a continuous-wave regime at the temperature of 15 °C is demonstrated. Out-coupled continuous-wave optical powers of up to 23 mW are observed for light of one propagation direction with an estimated total intra-cavity optical power flux in excess of 340 mW. The uni-directional regime characterized by the intensity ratio of more than 60 for the light propagating in the opposite directions was achieved. A single emission peak wavelength tuning range of 90 cm{sup −1} is realized by the incorporation of a diffraction grating into the cavity.

  12. Continuous wave room temperature external ring cavity quantum cascade laser

    International Nuclear Information System (INIS)

    Revin, D. G.; Hemingway, M.; Vaitiekus, D.; Cockburn, J. W.; Hempler, N.; Maker, G. T.; Malcolm, G. P. A.

    2015-01-01

    An external ring cavity quantum cascade laser operating at ∼5.2 μm wavelength in a continuous-wave regime at the temperature of 15 °C is demonstrated. Out-coupled continuous-wave optical powers of up to 23 mW are observed for light of one propagation direction with an estimated total intra-cavity optical power flux in excess of 340 mW. The uni-directional regime characterized by the intensity ratio of more than 60 for the light propagating in the opposite directions was achieved. A single emission peak wavelength tuning range of 90 cm −1 is realized by the incorporation of a diffraction grating into the cavity

  13. Quantum Chemistry on Quantum Computers: A Polynomial-Time Quantum Algorithm for Constructing the Wave Functions of Open-Shell Molecules.

    Science.gov (United States)

    Sugisaki, Kenji; Yamamoto, Satoru; Nakazawa, Shigeaki; Toyota, Kazuo; Sato, Kazunobu; Shiomi, Daisuke; Takui, Takeji

    2016-08-18

    Quantum computers are capable to efficiently perform full configuration interaction (FCI) calculations of atoms and molecules by using the quantum phase estimation (QPE) algorithm. Because the success probability of the QPE depends on the overlap between approximate and exact wave functions, efficient methods to prepare accurate initial guess wave functions enough to have sufficiently large overlap with the exact ones are highly desired. Here, we propose a quantum algorithm to construct the wave function consisting of one configuration state function, which is suitable for the initial guess wave function in QPE-based FCI calculations of open-shell molecules, based on the addition theorem of angular momentum. The proposed quantum algorithm enables us to prepare the wave function consisting of an exponential number of Slater determinants only by a polynomial number of quantum operations.

  14. Monte Carlo wave-packet approach to trace nuclear dynamics in molecular excited states by XUV-pump-IR-probe spectroscopy

    Science.gov (United States)

    Jing, Qingli; Bello, Roger Y.; Martín, Fernando; Palacios, Alicia; Madsen, Lars Bojer

    2018-04-01

    Recent research interests have been raised in uncovering and controlling ultrafast dynamics in excited neutral molecules. In this work we generalize the Monte Carlo wave packet (MCWP) approach to XUV-pump-IR-probe schemes to simulate the process of dissociative double ionization of H2 where singly excited states in H2 are involved. The XUV pulse is chosen to resonantly excite the initial ground state of H2 to the lowest excited electronic state of 1Σu + symmetry in H2 within the Franck-Condon region. The delayed intense IR pulse couples the excited states of 1Σu + symmetry with the nearby excited states of 1Σg + symmetry. It also induces the first ionization from H2 to H2 + and the second ionization from H2 + to H++H+. To reduce the computational costs in the MCWP approach, a sampling method is proposed to determine in time the dominant ionization events from H2 to H2+. By conducting a trajectory analysis, which is a unique possibility within the MCWP approach, the origins of the characteristic features in the nuclear kinetic energy release spectra are identified for delays ranging from 0 to 140 fs and the nuclear dynamics in the singly excited states in H2 is mapped out.

  15. Theoretical analysis of four wave mixing in quantum dot optical amplifiers

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper

    2003-01-01

    The four wave mixing properties of semiconductor quantum dot amplifiers have been investigated. The combination of strong non-equilibrium depletion of dot levels and a small linewidth enhancement factor results in efficient and symmetric four wave mixing.......The four wave mixing properties of semiconductor quantum dot amplifiers have been investigated. The combination of strong non-equilibrium depletion of dot levels and a small linewidth enhancement factor results in efficient and symmetric four wave mixing....

  16. Reality of a bounce motion model of the wave packets of Pc1 geomagnetic pulsations in the Earth's magnetosphere

    Czech Academy of Sciences Publication Activity Database

    Feygin, F. Z.; Prikner, Karel; Nekrasov, A. K.

    2003-01-01

    Roč. 43, č. 6 (2003), s. 701-707 ISSN 0016-7932 R&D Projects: GA AV ČR KSK3012103 Grant - others:INTAS(XE) 99-0335; RFFR(RU) 02-05-64610; RFFR(RU) 02-05-64612 Institutional research plan: CEZ:AV0Z3012916 Keywords : Pc1 bounce effect * inosphere reflection coefficient * EMIC-wave Poynting vector Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.342, year: 2003

  17. Gravitational wave echoes from macroscopic quantum gravity effects

    Energy Technology Data Exchange (ETDEWEB)

    Barceló, Carlos [Instituto de Astrofísica de Andalucía (IAA-CSIC),Glorieta de la Astronomía, 18008 Granada (Spain); Carballo-Rubio, Raúl [The Cosmology & Gravity Group and the Laboratory for Quantum Gravity & Strings,Department of Mathematics & Applied Mathematics, University of Cape Town,Private Bag, Rondebosch 7701 (South Africa); Garay, Luis J. [Departamento de Física Teórica II,Universidad Complutense de Madrid, 28040 Madrid (Spain); Instituto de Estructura de la Materia (IEM-CSIC),Serrano 121, 28006 Madrid (Spain)

    2017-05-10

    New theoretical approaches developed in the last years predict that macroscopic quantum gravity effects in black holes should lead to modifications of the gravitational wave signals expected in the framework of classical general relativity, with these modifications being characterized in certain scenarios by the existence of dampened repetitions of the primary signal. Here we use the fact that non-perturbative corrections to the near-horizon external geometry of black holes are necessary for these modifications to exist, in order to classify different proposals and paradigms with respect to this criterion and study in a neat and systematic way their phenomenology. Proposals that lead naturally to the existence of echoes in the late-time ringdown of gravitational wave signals from black hole mergers must share the replacement of black holes by horizonless configurations with a physical surface showing reflective properties in the relevant range of frequencies. On the other hand, proposals or paradigms that restrict quantum gravity effects on the external geometry to be perturbative, such as black hole complementarity or the closely related firewall proposal, do not display echoes. For the sake of completeness we exploit the interplay between the timescales associated with the formation of firewalls and the mechanism behind the existence of echoes in order to conclude that even unconventional distortions of the firewall concept (such as naked firewalls) do not lead to this phenomenon.

  18. Quantum analysis of the direct measurement of light waves

    International Nuclear Information System (INIS)

    Saldanha, Pablo L

    2014-01-01

    In a beautiful experiment performed about a decade ago, Goulielmakis et al (2004 Science 305 1267–69) made a direct measurement of the electric field of light waves. However, they used a laser source to produce the light field, whose quantum state has a null expectation value for the electric field operator, so how was it possible to measure this electric field? Here we present a quantum treatment for the f:2f interferometer used to calibrate the carrier–envelope phase of the light pulses in the experiment. We show how the special nonlinear features of the f:2f interferometer can change the quantum state of the electromagnetic field inside the laser cavity to a state with a definite oscillating electric field, explaining how the ‘classical’ electromagnetic field emerges in the experiment. We discuss that this experiment was, to our knowledge, the first demonstration of an absolute coherent superposition of different photon number states in the optical regime. (paper)

  19. Dispersion of linearly polarized electromagnetic wave in magnetized quantum plasma

    International Nuclear Information System (INIS)

    Singh, Abhisek Kumar; Kumar, Punit

    2015-01-01

    The generation of harmonic radiation is significant in terms of laser-plasma interaction and has brought interesting notice due to the diversity of its applications. The odd harmonics of laser frequency are generated in the majority of laser interactions with homogenous plasma. It has been remarked that second harmonic generation takes place in the presence of density gradient which gives rise to perturbation in the electron density at the laser frequency. The density perturbation coupled with the quiver motion of the electrons produces a source current at the second harmonic frequency. Second harmonic generation has also been related with filamentation. In the present paper, a study of second harmonic generation by propagation of a linearly polarized electromagnetic wave through homogeneous high density quantum plasma in the presence of transverse magnetic field. The nonlinear current density and dispersion relations for the fundamental and second harmonic frequencies have been obtained using the recently developed quantum hydrodynamic (QHD) model. The effect of quantum Bohm potential, Fermi pressure and the electron spin have been taken into account. The second harmonic is found to be less dispersed than the first. (author)

  20. Teaching the Common Aspects in Mechanical, Electromagnetic and Quantum Waves at Interfaces and Waveguides

    Science.gov (United States)

    Rojas, R.; Robles, P.

    2011-01-01

    We discuss common features in mechanical, electromagnetic and quantum systems, supporting identical results for the transmission and reflection coefficients of waves arriving perpendicularly at a plane interface. Also, we briefly discuss the origin of special notions such as refractive index in quantum mechanics, massive photons in wave guides and…

  1. Determining influence of four-wave mixing effect on quantum key distribution

    International Nuclear Information System (INIS)

    Vavulin, D N; Egorov, V I; Gleim, A V; Chivilikhin, S A

    2014-01-01

    We consider the possibility of multiplexing the classical and quantum signals in a quantum cryptography system with optical fiber used as a transmission medium. If the quantum signal is located at a frequency close to the frequency of classical signals, a set of nonlinear effects such as FWM (four-wave mixing) and Raman scattering is observed. The impact of four-wave mixing (FWM) effect on error level is described and analyzed in this work in case of large frequency diversity between classical and quantum signals. It is shown that the influence of FWM is negligible for convenient quantum key distribution

  2. Mode-locking dynamics in a quantum-dash Fabry-Pérot laser diode for packet based clock recovery applications

    NARCIS (Netherlands)

    Maldonado-Basilio, R.; Parra-Cetina, J.; Latkowski, S.; Landais, P.; Calabretta, N.

    2012-01-01

    We experimentally investigate the locking/unlocking dynamics of a mode-locked QDash laser diode for packet-based clock-recovery applications. Results show 20 ns locking times for the passively and externally synchronized mode-locking mechanisms.

  3. Convergence of repeated quantum nondemolition measurements and wave-function collapse

    International Nuclear Information System (INIS)

    Bauer, Michel; Bernard, Denis

    2011-01-01

    Motivated by recent experiments on quantum trapped fields, we give a rigorous proof that repeated indirect quantum nondemolition (QND) measurements converge to the collapse of the wave function as predicted by the postulates of quantum mechanics for direct measurements. We also relate the rate of convergence toward the collapsed wave function to the relative entropy of each indirect measurement, a result which makes contact with information theory.

  4. Small amplitude waves and linear firehose and mirror instabilities in rotating polytropic quantum plasma

    Science.gov (United States)

    Bhakta, S.; Prajapati, R. P.; Dolai, B.

    2017-08-01

    The small amplitude quantum magnetohydrodynamic (QMHD) waves and linear firehose and mirror instabilities in uniformly rotating dense quantum plasma have been investigated using generalized polytropic pressure laws. The QMHD model and Chew-Goldberger-Low (CGL) set of equations are used to formulate the basic equations of the problem. The general dispersion relation is derived using normal mode analysis which is discussed in parallel, transverse, and oblique wave propagations. The fast, slow, and intermediate QMHD wave modes and linear firehose and mirror instabilities are analyzed for isotropic MHD and CGL quantum fluid plasmas. The firehose instability remains unaffected while the mirror instability is modified by polytropic exponents and quantum diffraction parameter. The graphical illustrations show that quantum corrections have a stabilizing influence on the mirror instability. The presence of uniform rotation stabilizes while quantum corrections destabilize the growth rate of the system. It is also observed that the growth rate stabilizes much faster in parallel wave propagation in comparison to the transverse mode of propagation. The quantum corrections and polytropic exponents also modify the pseudo-MHD and reverse-MHD modes in dense quantum plasma. The phase speed (Friedrichs) diagrams of slow, fast, and intermediate wave modes are illustrated for isotropic MHD and double adiabatic MHD or CGL quantum plasmas, where the significant role of magnetic field and quantum diffraction parameters on the phase speed is observed.

  5. Quantum-classical correspondence for the inverted oscillator

    Science.gov (United States)

    Maamache, Mustapha; Ryeol Choi, Jeong

    2017-11-01

    While quantum-classical correspondence for a system is a very fundamental problem in modern physics, the understanding of its mechanism is often elusive, so the methods used and the results of detailed theoretical analysis have been accompanied by active debate. In this study, the differences and similarities between quantum and classical behavior for an inverted oscillator have been analyzed based on the description of a complete generalized Airy function-type quantum wave solution. The inverted oscillator model plays an important role in several branches of cosmology and particle physics. The quantum wave packet of the system is composed of many sub-packets that are localized at different positions with regular intervals between them. It is shown from illustrations of the probability density that, although the quantum trajectory of the wave propagation is somewhat different from the corresponding classical one, the difference becomes relatively small when the classical excitation is sufficiently high. We have confirmed that a quantum wave packet moving along a positive or negative direction accelerates over time like a classical wave. From these main interpretations and others in the text, we conclude that our theory exquisitely illustrates quantum and classical correspondence for the system, which is a crucial concept in quantum mechanics. Supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1A09919503)

  6. Effects of reagent rotational excitation on the H + CHD3 → H2 + CD3 reaction: A seven dimensional time-dependent wave packet study

    International Nuclear Information System (INIS)

    Zhang, Zhaojun; Zhang, Dong H.

    2014-01-01

    Seven-dimensional time-dependent wave packet calculations have been carried out for the title reaction to obtain reaction probabilities and cross sections for CHD 3 in J 0 = 1, 2 rotationally excited initial states with k 0 = 0 − J 0 (the projection of CHD 3 rotational angular momentum on its C 3 axis). Under the centrifugal sudden (CS) approximation, the initial states with the projection of the total angular momentum on the body fixed axis (K 0 ) equal to k 0 are found to be much more reactive, indicating strong dependence of reactivity on the orientation of the reagent CHD 3 with respect to the relative velocity between the reagents H and CHD 3 . However, at the coupled-channel (CC) level this dependence becomes much weak although in general the K 0 specified cross sections for the K 0 = k 0 initial states remain primary to the overall cross sections, implying the Coriolis coupling is important to the dynamics of the reaction. The calculated CS and CC integral cross sections obtained after K 0 averaging for the J 0 = 1, 2 initial states with all different k 0 are essentially identical to the corresponding CS and CC results for the J 0 = 0 initial state, meaning that the initial rotational excitation of CHD 3 up to J 0 = 2, regardless of its initial k 0 , does not have any effect on the total cross sections for the title reaction, and the errors introduced by the CS approximation on integral cross sections for the rotationally excited J 0 = 1, 2 initial states are the same as those for the J 0 = 0 initial state

  7. Conceptual foundations of quantum mechanics

    International Nuclear Information System (INIS)

    Shimony, A.

    1989-01-01

    Radical innovation in the quantum mechanical framework such as objective indefiniteness, objective chance, objective probability, potentiality, entanglement and quantum nonlocality are discussed and related to the standard formalism. Examples are given which though problematic in classical mechanics are simply explained with these new concepts. Evidence is presented that the conceptual innovations of quantum mechanics cannot be separated from its predictive power. Proposals for solving ''the reduction of the wave packet'' anomaly are presented. Further radical innovations in quantum mechanics are anticipated. (U.K.)

  8. Radiative corrections to the Coulomb law and model of dense quantum plasmas: Dispersion of longitudinal waves in magnetized quantum plasmas

    Science.gov (United States)

    Andreev, Pavel A.

    2018-04-01

    Two kinds of quantum electrodynamic radiative corrections to electromagnetic interactions and their influence on the properties of highly dense quantum plasmas are considered. Linear radiative correction to the Coulomb interaction is considered. Its contribution in the spectrum of the Langmuir waves is presented. The second kind of radiative corrections are related to the nonlinearity of the Maxwell equations for the strong electromagnetic field. Their contribution in the spectrum of transverse waves of magnetized plasmas is briefly discussed. At the consideration of the Langmuir wave spectrum, we included the effect of different distributions of the spin-up and spin-down electrons revealing in the Fermi pressure shift.

  9. The meaning of the wave function in search of the ontology of quantum mechanics

    CERN Document Server

    Gao, Shan

    2017-01-01

    At the heart of quantum mechanics lies the wave function, a powerful but mysterious mathematical object which has been a hot topic of debate from its earliest stages. Covering much of the recent debate and providing a comprehensive and critical review of competing approaches, this ambitious text provides new, decisive proof of the reality of the wave function. Aiming to make sense of the wave function in quantum mechanics and to find the ontological content of the theory, this book explores new ontological interpretations of the wave function in terms of random discontinuous motion of particles. Finally, the book investigates whether the suggested quantum ontology is complete in solving the measurement problem and if it should be revised in the relativistic domain. A timely addition to the literature on the foundations of quantum mechanics, this book is of value to students and researchers with an interest in the philosophy of physics. Presents a concise introduction to quantum mechanics, including the c...

  10. De Broglie wavelets versus Schroedinger wave functions: A ribbon model approach to quantum theory and the mechanisms of quantum interference

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jau

    1996-02-01

    As an alternative to better physical explanations of the mechanisms of quantum interference and the origins of uncertainty broadening, a linear hopping model is proposed with ``color-varying`` dynamics to reflect fast exchange between time-reversed states. Intricate relations between this model, particle-wave dualism, and relativity are discussed. The wave function is shown to possess dual characteristics of a stable, localized ``soliton-like`` de Broglie wavelet and a delocalized, interfering Schroedinger carrier wave function.

  11. Experimental characterization of quantum correlated triple beams generated by cascaded four-wave mixing processes

    Science.gov (United States)

    Qin, Zhongzhong; Cao, Leiming; Jing, Jietai

    2015-05-01

    Quantum correlations and entanglement shared among multiple modes are fundamental ingredients of most continuous-variable quantum technologies. Recently, a method used to generate multiple quantum correlated beams using cascaded four-wave mixing (FWM) processes was theoretically proposed and experimentally realized by our group [Z. Qin et al., Phys. Rev. Lett. 113, 023602 (2014)]. Our study of triple-beam quantum correlation paves the way to showing the tripartite entanglement in our system. Our system also promises to find applications in quantum information and precision measurement such as the controlled quantum communications, the generation of multiple quantum correlated images, and the realization of a multiport nonlinear interferometer. For its applications, the degree of quantum correlation is a crucial figure of merit. In this letter, we experimentally study how various parameters, such as the cell temperatures, one-photon, and two-photon detunings, influence the degree of quantum correlation between the triple beams generated from the cascaded two-FWM configuration.

  12. Quantum mechanics with spontaneous localization and the quantum theory of measurement

    International Nuclear Information System (INIS)

    Benatti, F.; Ghirardi, G.C.; Rimini, A.; Weber, T.

    1986-10-01

    Recently a modification of quantum dynamics allowing a unified description of microscopic and macroscopic systems has been introduced. We investigate here the consequences of this approach for the measurement problem. We show that in this way one gets a consistent and objective solution of the problem of the wave packet reduction. (author)

  13. Parametric study of nonlinear electrostatic waves in two-dimensional quantum dusty plasmas

    International Nuclear Information System (INIS)

    Ali, S; Moslem, W M; Kourakis, I; Shukla, P K

    2008-01-01

    The nonlinear properties of two-dimensional cylindrical quantum dust-ion-acoustic (QDIA) and quantum dust-acoustic (QDA) waves are studied in a collisionless, unmagnetized and dense (quantum) dusty plasma. For this purpose, the reductive perturbation technique is employed to the quantum hydrodynamical equations and the Poisson equation, obtaining the cylindrical Kadomtsev-Petviashvili (CKP) equations. The effects of quantum diffraction, as well as quantum statistical and geometric effects on the profiles of QDIA and QDA solitary waves are examined. It is found that the amplitudes and widths of the nonplanar QDIA and QDA waves are significantly affected by the quantum electron tunneling effect. The addition of a dust component to a quantum plasma is seen to affect the propagation characteristics of localized QDIA excitations. In the case of low-frequency QDA waves, this effect is even stronger, since the actual form of the potential solitary waves, in fact, depends on the dust charge polarity (positive/negative) itself (allowing for positive/negative potential forms, respectively). The relevance of the present investigation to metallic nanostructures is highlighted

  14. Stimulated scattering of electromagnetic waves carrying orbital angular momentum in quantum plasmas.

    Science.gov (United States)

    Shukla, P K; Eliasson, B; Stenflo, L

    2012-07-01

    We investigate stimulated scattering instabilities of coherent circularly polarized electromagnetic (CPEM) waves carrying orbital angular momentum (OAM) in dense quantum plasmas with degenerate electrons and nondegenerate ions. For this purpose, we employ the coupled equations for the CPEM wave vector potential and the driven (by the ponderomotive force of the CPEM waves) equations for the electron and ion plasma oscillations. The electrons are significantly affected by the quantum forces (viz., the quantum statistical pressure, the quantum Bohm potential, as well as the electron exchange and electron correlations due to electron spin), which are included in the framework of the quantum hydrodynamical description of the electrons. Furthermore, our investigation of the stimulated Brillouin instability of coherent CPEM waves uses the generalized ion momentum equation that includes strong ion coupling effects. The nonlinear equations for the coupled CPEM and quantum plasma waves are then analyzed to obtain nonlinear dispersion relations which exhibit stimulated Raman, stimulated Brillouin, and modulational instabilities of CPEM waves carrying OAM. The present results are useful for understanding the origin of scattered light off low-frequency density fluctuations in high-energy density plasmas where quantum effects are eminent.

  15. Packet Tracer network simulator

    CERN Document Server

    Jesin, A

    2014-01-01

    A practical, fast-paced guide that gives you all the information you need to successfully create networks and simulate them using Packet Tracer.Packet Tracer Network Simulator is aimed at students, instructors, and network administrators who wish to use this simulator to learn how to perform networking instead of investing in expensive, specialized hardware. This book assumes that you have a good amount of Cisco networking knowledge, and it will focus more on Packet Tracer rather than networking.

  16. Modulational instability, solitons and periodic waves in a model of quantum degenerate boson-fermion mixtures

    International Nuclear Information System (INIS)

    Belmonte-Beitia, Juan; Perez-Garcia, Victor M.; Vekslerchik, Vadym

    2007-01-01

    In this paper, we study a system of coupled nonlinear Schroedinger equations modelling a quantum degenerate mixture of bosons and fermions. We analyze the stability of plane waves, give precise conditions for the existence of solitons and write explicit solutions in the form of periodic waves. We also check that the solitons observed previously in numerical simulations of the model correspond exactly to our explicit solutions and see how plane waves destabilize to form periodic waves

  17. In- and outbound spreading of a free-particle s-wave

    DEFF Research Database (Denmark)

    Bialynicki-Birula, i.; Cirone, M. A.; Dahl, Jens Peder

    2002-01-01

    We show that a free quantum particle in two dimensions with zero angular momentum (s wave) in the form of a ring-shaped wave packet feels an attraction towards the center of the ring, leading first to a contraction followed by an expansion. An experiment to demonstrate this effect is also outlined....

  18. Quantum teleportation. New wave of applications of quantum mechanics based on quantum entanglement: non-trivial transfer of quantum information

    International Nuclear Information System (INIS)

    Andrej, L.; Bednar, M.; Cernansky, M.

    1999-01-01

    The phenomenon of quantum teleportation is discussed with emphasis on its physical aspects. A brief introduction into the Einstein-Podolsky-Rosen (EPR) paradox is followed by Bohm's reformulation of the EPR paradox for the case of a physical system of two spins in the singlet state. A description of Bell's entangled spin states of two-particle systems of standard fermions as well as polarized photons is also given. In view of the fact that quantum teleportation has been realized experimentally mainly on photons, the next part of the paper is devoted to problems of generation and detection of two-photon Bell's entangled states. A detailed description of the process of quantum teleportation exploiting quantum entangled states follows. A classical formulation of the EPR paradox is given in the Appendix. (Z.J.)

  19. Nonconservative Forces via Quantum Reservoir Engineering

    Science.gov (United States)

    Vuglar, Shanon L.; Zhdanov, Dmitry V.; Cabrera, Renan; Seideman, Tamar; Jarzynski, Christopher; Bondar, Denys I.

    2018-06-01

    A systematic approach is given for engineering dissipative environments that steer quantum wave packets along desired trajectories. The methodology is demonstrated with several illustrative examples: environment-assisted tunneling, trapping, effective mass assignment, and pseudorelativistic behavior. Nonconservative stochastic forces do not inevitably lead to decoherence—we show that purity can be well preserved. These findings highlight the flexibility offered by nonequilibrium open quantum dynamics.

  20. A universal quantum frequency converter via four-wave-mixing processes

    Science.gov (United States)

    Cheng, Mingfei; Fang, Jinghuai

    2016-06-01

    We present a convenient and flexible way to realize a universal quantum frequency converter by using nondegenerate four-wave-mixing processes in the ladder-type three-level atomic system. It is shown that quantum state exchange between two fields with large frequency difference can be readily achieved, where one corresponds to the atomic resonant transition in the visible spectral region for quantum memory and the other to the telecommunication range wavelength (1550 nm) for long-distance transmission over optical fiber. This method would bring great facility in realistic quantum information processing protocols with atomic ensembles as quantum memory and low-loss optical fiber as transmission channel.

  1. Quantum recurrence and fractional dynamic localization in ac-driven perfect state transfer Hamiltonians

    International Nuclear Information System (INIS)

    Longhi, Stefano

    2014-01-01

    Quantum recurrence and dynamic localization are investigated in a class of ac-driven tight-binding Hamiltonians, the Krawtchouk quantum chain, which in the undriven case provides a paradigmatic Hamiltonian model that realizes perfect quantum state transfer and mirror inversion. The equivalence between the ac-driven single-particle Krawtchouk Hamiltonian H -hat (t) and the non-interacting ac-driven bosonic junction Hamiltonian enables to determine in a closed form the quasi energy spectrum of H -hat (t) and the conditions for exact wave packet reconstruction (dynamic localization). In particular, we show that quantum recurrence, which is predicted by the general quantum recurrence theorem, is exact for the Krawtchouk quantum chain in a dense range of the driving amplitude. Exact quantum recurrence provides perfect wave packet reconstruction at a frequency which is fractional than the driving frequency, a phenomenon that can be referred to as fractional dynamic localization

  2. Spinor-electron wave guided modes in coupled quantum wells structures by solving the Dirac equation

    International Nuclear Information System (INIS)

    Linares, Jesus; Nistal, Maria C.

    2009-01-01

    A quantum analysis based on the Dirac equation of the propagation of spinor-electron waves in coupled quantum wells, or equivalently coupled electron waveguides, is presented. The complete optical wave equations for Spin-Up (SU) and Spin-Down (SD) spinor-electron waves in these electron guides couplers are derived from the Dirac equation. The relativistic amplitudes and dispersion equations of the spinor-electron wave-guided modes in a planar quantum coupler formed by two coupled quantum wells, or equivalently by two coupled slab electron waveguides, are exactly derived. The main outcomes related to the spinor modal structure, such as the breaking of the non-relativistic degenerate spin states, the appearance of phase shifts associated with the spin polarization and so on, are shown.

  3. Tunneling time distribution by means of Nelson's quantum mechanics and wave-particle duality

    International Nuclear Information System (INIS)

    Hara, Koh'ichiro; Ohba, Ichiro

    2003-01-01

    We calculate a tunneling time distribution by means of Nelson's quantum mechanics and investigate its statistical properties. The relationship between the average and deviation of tunneling time suggests the existence of 'wave-particle duality' in the tunneling phenomena

  4. Quantum Frequency Conversion by Four-wave Mixing Using Bragg Scattering

    DEFF Research Database (Denmark)

    Andersen, Lasse Mejling; Rottwitt, Karsten; McKinstrie, C. J.

    2012-01-01

    Two theoretical models for frequency conversion (FC) using nondegenerate four-wave mixing are compared, and their range of validity are discussed. Quantum-statepreserving FC allows for arbitrary reshaping of states for an appropriate pump selection.......Two theoretical models for frequency conversion (FC) using nondegenerate four-wave mixing are compared, and their range of validity are discussed. Quantum-statepreserving FC allows for arbitrary reshaping of states for an appropriate pump selection....

  5. D-Wave's Approach to Quantum Computing: 1000-qubits and Counting!

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    In this talk I will describe D-Wave's approach to quantum computing, including the system architecture of our 1000-qubit D-Wave 2X, its programming model, and performance benchmarks. Furthermore, I will describe how the native optimization and sampling capabilities of the quantum processor can be exploited to tackle problems in a variety of fields including medicine, machine learning, physics, and computational finance.

  6. Quantum singularities in the FRW universe revisited

    International Nuclear Information System (INIS)

    Letelier, Patricio S.; Pitelli, Joao Paulo M.

    2010-01-01

    The components of the Riemann tensor in the tetrad basis are quantized and, through the Einstein equation, we find the local expectation value in the ontological interpretation of quantum mechanics of the energy density and pressure of a perfect fluid with equation of state p=(1/3)ρ in the flat Friedmann-Robertson-Walker quantum cosmological model. The quantum behavior of the equation of state and energy conditions are then studied, and it is shown that the energy conditions are violated since the singularity is removed with the introduction of quantum cosmology, but in the classical limit both the equation of state and the energy conditions behave as in the classical model. We also calculate the expectation value of the scale factor for several wave packets in the many-worlds interpretation in order to show the independence of the nonsingular character of the quantum cosmological model with respect to the wave packet representing the wave function of the Universe. It is also shown that, with the introduction of nonnormalizable wave packets, solutions of the Wheeler-DeWitt equation, the singular character of the scale factor, can be recovered in the ontological interpretation.

  7. Bohmian Conditional Wave Functions (and the status of the quantum state)

    International Nuclear Information System (INIS)

    Norsen, Travis

    2016-01-01

    The de Broglie - Bohm pilot-wave theory - uniquely among realistic candidate quantum theories - allows a straightforward and simple definition of the wave function of a subsystem of some larger system (such as the entire universe). Such sub-system wave functions are called “Conditional Wave Functions” (CWFs). Here we explain this concept and indicate the CWF's role in the Bohmian explanation of the usual quantum formalism, and then develop (and motivate) the more speculative idea that something like single-particle wave functions could replace the (ontologically problematical) universal wave function in some future, empirically adequate, pilot-wave-type theory. Throughout the presentation is pedagogical and points are illustrated with simple toy models. (paper)

  8. Destruction of coherence in nondemolition monitoring: quantum 'watchdog effect' in gravity wave detectors

    International Nuclear Information System (INIS)

    Zurek, W.H.

    1984-01-01

    The author shows that nondemolition monitoring of a Weber bar may prevent changes of the number of phonons, and thus influence the sensitivity of quantum-counting gravity wave detectors. This effect is similar to the Watchdog Effect which is predicted to delay decays of the monitored, unstable quantum system. Relations between watchdog effect and Environment-Induced Superselection Rules as well as its connections to the fundamental questions of the quantum theory of measurement are briefly considered. (Auth.)

  9. Optical packet switched networks

    DEFF Research Database (Denmark)

    Hansen, Peter Bukhave

    1999-01-01

    Optical packet switched networks are investigated with emphasis on the performance of the packet switch blocks. Initially, the network context of the optical packet switched network is described showing that a packet network will provide transparency, flexibility and bridge the granularity gap...... in interferometric wavelength converters is investigated showing that a 10 Gbit/s 19 4x4 swich blocks can be cascaded at a BER of 10-14. An analytical traffic model enables the calculation of the traffice performance of a WDM packet network. Hereby the importance of WDM and wavelegth conversion in the switch blocks...... is established as a flexible means to reduce the optical buffer, e.g., the number of fibre delay lines for a 16x16 switch block is reduced from 23 to 6 by going from 2 to 8 wavelength channels pr. inlet. Additionally, a component count analysis is carried out to illustrate the trade-offs in the switch block...

  10. Longitudinal wave function control in single quantum dots with an applied magnetic field

    Science.gov (United States)

    Cao, Shuo; Tang, Jing; Gao, Yunan; Sun, Yue; Qiu, Kangsheng; Zhao, Yanhui; He, Min; Shi, Jin-An; Gu, Lin; Williams, David A.; Sheng, Weidong; Jin, Kuijuan; Xu, Xiulai

    2015-01-01

    Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function control in single quantum dots with a magnetic field. For a pure InAs quantum dot with a shape of pyramid or truncated pyramid, the hole wave function always occupies the base because of the less confinement at base, which induces a permanent dipole oriented from base to apex. With applying magnetic field along the base-apex direction, the hole wave function shrinks in the base plane. Because of the linear changing of the confinement for hole wave function from base to apex, the center of effective mass moves up during shrinking process. Due to the uniform confine potential for electrons, the center of effective mass of electrons does not move much, which results in a permanent dipole moment change and an inverted electron-hole alignment along the magnetic field direction. Manipulating the wave function longitudinally not only provides an alternative way to control the charge distribution with magnetic field but also a new method to tune electron-hole interaction in single quantum dots. PMID:25624018

  11. Longitudinal wave function control in single quantum dots with an applied magnetic field.

    Science.gov (United States)

    Cao, Shuo; Tang, Jing; Gao, Yunan; Sun, Yue; Qiu, Kangsheng; Zhao, Yanhui; He, Min; Shi, Jin-An; Gu, Lin; Williams, David A; Sheng, Weidong; Jin, Kuijuan; Xu, Xiulai

    2015-01-27

    Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function control in single quantum dots with a magnetic field. For a pure InAs quantum dot with a shape of pyramid or truncated pyramid, the hole wave function always occupies the base because of the less confinement at base, which induces a permanent dipole oriented from base to apex. With applying magnetic field along the base-apex direction, the hole wave function shrinks in the base plane. Because of the linear changing of the confinement for hole wave function from base to apex, the center of effective mass moves up during shrinking process. Due to the uniform confine potential for electrons, the center of effective mass of electrons does not move much, which results in a permanent dipole moment change and an inverted electron-hole alignment along the magnetic field direction. Manipulating the wave function longitudinally not only provides an alternative way to control the charge distribution with magnetic field but also a new method to tune electron-hole interaction in single quantum dots.

  12. Instantaneous amplitude and frequency dynamics of coherent wave mixing in semiconductor quantum wells

    International Nuclear Information System (INIS)

    Chemla, D.S.

    1993-01-01

    This article reviews recent investigations of nonlinear optical processes in semiconductors. Section II discusses theory of coherent wave mixing in semiconductors, with emphasis on resonant excitation with only one exciton state. Section III reviews recent experimental investigations of amplitude and phase of coherent wave-mixing resonant with quasi-2d excitons in GaAs quantum wells

  13. Quantum X waves with orbital angular momentum in nonlinear dispersive media

    Science.gov (United States)

    Ornigotti, Marco; Conti, Claudio; Szameit, Alexander

    2018-06-01

    We present a complete and consistent quantum theory of generalised X waves with orbital angular momentum in dispersive media. We show that the resulting quantised light pulses are affected by neither dispersion nor diffraction and are therefore resilient against external perturbations. The nonlinear interaction of quantised X waves in quadratic and Kerr nonlinear media is also presented and studied in detail.

  14. Influence of wetting layer wave functions on carrier capture in quantum dots

    DEFF Research Database (Denmark)

    Markussen, Troels; Kristensen, Philip; Tromborg, Bjarne

    2005-01-01

    This work numerically solves the effective mass Schrodinger equation and shows that the capture times are strongly influenced by details of the continuum states not accounted for by the approximate wave functions. Results show that calculations of capture time for phonon mediated carrier capture...... from a wetting layer into a quantum dot depend critically on the approximations used for the wetting layer wave functions....

  15. Observation of squeezed light and quantum description of the macroscopical body movement

    International Nuclear Information System (INIS)

    Bykov, V.P.

    1992-01-01

    The possibility of a nondemolition measurement (observation) of macroscopical objects in widely distributed quantum mechanical states arises from the fact of the squezzed light observation. Macroscopical bodies -bodies of classical mechanics - are usually in states with narrow wave packets. It is shown that the absence of macroscopical bodies in widely distributed states is due to the focusing influence of the body's gravity field on its wave packet. An evidence that the gravity is essential in the classic limit of quantum mechanics is given. (author). 14 refs, 7 figs

  16. Analytic calculations of trial wave functions of the fractional quantum Hall effect on the sphere

    Energy Technology Data Exchange (ETDEWEB)

    Souza Batista, C.L. de [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Dingping Li [Perugia Univ. (Italy). Dipt. di Fisica

    1996-07-01

    We present a framework for the analytic calculations of the hierarchical wave functions and the composite fermion wave functions in the fractional quantum Hall effect on the sphere by using projective coordinates. Then we calculate the overlaps between these two wave functions at various fillings and small numbers of electrons. We find that the overlaps are most equal to one. This gives a further evidence that two theories of the fractional quantum Hall effect, the hierarchical theory, are physically equivalent. (author). 31 refs., 2 tabs.

  17. The parametric decay of dust ion acoustic waves in non-uniform quantum dusty magnetoplasmas

    International Nuclear Information System (INIS)

    Jamil, M.; Ali, Waris; Shah, H. A.; Shahid, M.; Murtaza, G.; Salimullah, M.

    2011-01-01

    The parametric decay instability of a dust ion acoustic wave into low-frequency electrostatic dust-lower-hybrid and electromagnetic shear Alfven waves has been investigated in detail in an inhomogeneous cold quantum dusty plasma in the presence of external/ambient uniform magnetic field. The quantum magnetohydrodynamic model of plasmas with quantum effect arising through the Bohm potential and Fermi degenerate pressure has been employed in order to find the linear and nonlinear responses of the plasma particles for three-wave nonlinear coupling in a dusty magnetoplasma. A relatively high frequency electrostatic dust ion acoustic wave has been taken as the pump wave. It couples with two other low-frequency internal possible modes of the dusty magnetoplasma, viz., the dust-lower-hybrid and shear Alfven waves. The nonlinear dispersion relation of the dust-lower-hybrid wave has been solved to obtain the growth rate of the parametric decay instability. The growth rate is at a maximum for a small value of the external magnetic field B 0 . It is noted that the growth rate is proportional to the unperturbed electron number density n oe and is independent of inhomogeneity beyond L e =2 cm. An extraordinary growth rate is observed with the quantum effect.

  18. Quantum dynamics on potential energy surfaces. Simpler states and simpler dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Johannes Friedrich

    2015-09-25

    In this dissertation we analyze and simplify wave functions and observables in the context of quantum molecular dynamics. The two main topics we discuss are the structure of Hagedorn wave packets in position and phase space, and semiclassical approximations for the propagation of quantum expectations with nonnegative phase space densities. We provide algorithmic discretizations for these approximations and illustrate their validity and applicability by means of numerical experiments.

  19. Modulation of a compressional electromagnetic wave in a magnetized electron-positron quantum plasma.

    Science.gov (United States)

    Amin, M R

    2015-09-01

    Amplitude modulation of a compressional electromagnetic wave in a strongly magnetized electron-positron pair plasma is considered in the quantum magnetohydrodynamic regime. The important ingredients of this study are the inclusion of the external strong magnetic field, Fermi quantum degeneracy pressure, particle exchange potential, quantum diffraction effects via the Bohm potential, and dissipative effect due to collision of the charged carriers. A modified-nonlinear Schödinger equation is developed for the compressional magnetic field of the electromagnetic wave by employing the standard reductive perturbation technique. The linear and nonlinear dispersions of the electromagnetic wave are discussed in detail. For some parameter ranges, relevant to dense astrophysical objects such as the outer layers of white dwarfs, neutron stars, and magnetars, etc., it is found that the compressional electromagnetic wave is modulationally unstable and propagates as a dissipated electromagnetic wave. It is also found that the quantum effects due to the particle exchange potential and the Bohm potential are negligibly small in comparison to the effects of the Fermi quantum degeneracy pressure. The numerical results on the growth rate of the modulation instability is also presented.

  20. Gravitational wave detection using laser interferometry beyond the standard quantum limit

    Science.gov (United States)

    Heurs, M.

    2018-05-01

    Interferometric gravitational wave detectors (such as advanced LIGO) employ high-power solid-state lasers to maximize their detection sensitivity and hence their reach into the universe. These sophisticated light sources are ultra-stabilized with regard to output power, emission frequency and beam geometry; this is crucial to obtain low detector noise. However, even when all laser noise is reduced as far as technically possible, unavoidable quantum noise of the laser still remains. This is a consequence of the Heisenberg Uncertainty Principle, the basis of quantum mechanics: in this case, it is fundamentally impossible to simultaneously reduce both the phase noise and the amplitude noise of a laser to arbitrarily low levels. This fact manifests in the detector noise budget as two distinct noise sources-photon shot noise and quantum radiation pressure noise-which together form a lower boundary for current-day gravitational wave detector sensitivities, the standard quantum limit of interferometry. To overcome this limit, various techniques are being proposed, among them different uses of non-classical light and alternative interferometer topologies. This article explains how quantum noise enters and manifests in an interferometric gravitational wave detector, and gives an overview of some of the schemes proposed to overcome this seemingly fundamental limitation, all aimed at the goal of higher gravitational wave event detection rates. This article is part of a discussion meeting issue `The promises of gravitational-wave astronomy'.

  1. Waveform and packet structure of lion roars

    Directory of Open Access Journals (Sweden)

    W. Baumjohann

    Full Text Available The Equator-S magnetometer is very sensitive and has a sampling rate of normally 128 Hz. The high sampling rate allows for the first time fluxgate magnetometer measurements of ELF waves between the ion cyclotron and the lower hybrid frequencies in the equatorial dayside magnetosheath. The so-called lion roars, typically seen by the Equator-S magnetometer at the bottom of the magnetic troughs of magnetosheath mirror waves, are near-monochromatic packets of electron whistler waves lasting for a few wave cycles only, typically 0.25 s. They are right-hand circularly polarized waves with typical amplitudes of 0.5–1 nT at around one tenth of the electron gyrofrequency. The cone angle between wave vector and ambient field is usually smaller than 1.5°.

    Key words. Interplanetary physics (MHD waves and turbulence; plasma waves and turbulence

  2. Waveform and packet structure of lion roars

    Directory of Open Access Journals (Sweden)

    W. Baumjohann

    1999-12-01

    Full Text Available The Equator-S magnetometer is very sensitive and has a sampling rate of normally 128 Hz. The high sampling rate allows for the first time fluxgate magnetometer measurements of ELF waves between the ion cyclotron and the lower hybrid frequencies in the equatorial dayside magnetosheath. The so-called lion roars, typically seen by the Equator-S magnetometer at the bottom of the magnetic troughs of magnetosheath mirror waves, are near-monochromatic packets of electron whistler waves lasting for a few wave cycles only, typically 0.25 s. They are right-hand circularly polarized waves with typical amplitudes of 0.5–1 nT at around one tenth of the electron gyrofrequency. The cone angle between wave vector and ambient field is usually smaller than 1.5°.Key words. Interplanetary physics (MHD waves and turbulence; plasma waves and turbulence

  3. Terahertz Plasma Waves in Two Dimensional Quantum Electron Gas with Electron Scattering

    International Nuclear Information System (INIS)

    Zhang Liping

    2015-01-01

    We investigate the Terahertz (THz) plasma waves in a two-dimensional (2D) electron gas in a nanometer field effect transistor (FET) with quantum effects, the electron scattering, the thermal motion of electrons and electron exchange-correlation. We find that, while the electron scattering, the wave number along y direction and the electron exchange-correlation suppress the radiation power, but the thermal motion of electrons and the quantum effects can amplify the radiation power. The radiation frequency decreases with electron exchange-correlation contributions, but increases with quantum effects, the wave number along y direction and thermal motion of electrons. It is worth mentioning that the electron scattering has scarce influence on the radiation frequency. These properties could be of great help to the realization of practical THz plasma oscillations in nanometer FET. (paper)

  4. Quantum mechanics

    International Nuclear Information System (INIS)

    Ghatak, A.K.; Lokanathan, S.

    1975-01-01

    This textbook on quantum mechanics is intended for students at the graduate and post-graduate level. A balanced account of theory and applications is presented. Emphasis is laid on making results plausible and methods to be followed in solving problems. The various chapters in the book are devoted to the following: (1) Wave particle duality and uncertainty principle (2) Wave packets and time-dependent Schroedinger equation (3) Simple solutions of Schroedinger equation (4) Vector spaces and linear operators : Dirac notation (5) Angular momentum and spin (6) Addition of angular momenta (7) Time independent perturbation theory (8) The variational method (9) The WKB approximation (10) Elementary theory of scattering (11) Time-dependent perturbation theory (12) Motion in a magnetic field (13) Interaction of radiation with matter and (14) Relativistic theory. (A.K.)

  5. Quantum properties of a parametric four-wave mixing in a Raman type atomic system

    Directory of Open Access Journals (Sweden)

    Sharypov A.V.

    2017-01-01

    Full Text Available We present a study of the quantum properties of two light fields used to parametric four-wave mixing in a Raman type atomic system. The system realizes an effective Hamiltonian of beamsplitter type coupling between the light fields, which allows to control squeezing and amplitude distribution of the light fields, as well as realizing their entanglement. The scheme can be feasibly applied to engineer the quantum properties of two single-mode light fields in properly chosen input states.

  6. Implementation of multiplexing in a subcarrier-wave quantum cryptography system

    International Nuclear Information System (INIS)

    Chistyakov, V V; Gleim, A V; Egorov, V I; Nazarov, Yu V

    2014-01-01

    Quantum cryptography allows distributing secure keys in a way that any eavesdropping in the channel is inevitably detected. This work is dedicated to introducing wavelength division multiplexing in a subcarrier-wave quantum cryptography system. Compared to other existing schemes, the resulting device is able to achieve higher bitrates (up to 2.26 Mbit/s at 20 km), is robust against external conditions and compatible with standard telecommunication fibres in multi-user environment

  7. Wave function, spectrum and effective mass of holes in 2 D quantum antiferromagnet

    Science.gov (United States)

    Su, Zhao-bin; Ll, Yan-min; Lai, Wu-yan; Yu, Lu

    1989-12-01

    A new quantum Bogoliubov-de Gennes (BdeG) formalism is developed to study the self-consistent motion of holes on an quantum antiferromagnetic (QAFM) background within the generalized t- J model. The local distortion of spin configurations and the renormalization of the hole motion due to virtual excitations of the distorted spin background are treated on an equal footing. The hole wave function and its spectrum, as well as the effective mass for a propagating hole are calculated explicitly.

  8. Coherent versus incoherent dynamics in InAs quantum-dot active wave guides

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, W.; Hvam, Jørn Märcher

    2001-01-01

    Coherent dynamics measured by time-resolved four-wave mixing is compared to incoherent population dynamics measured by differential transmission spectroscopy on the ground-state transition at room temperature of two types of InAs-based quantum dots with different confinement energies. The measure....... The measurements are performed with heterodyne detection on quantum-dot active wave guides to enhance the light-matter interaction length. An elastic nature of the measured dephasing is revealed which is independent of the dot energy level scheme....

  9. A Dirac sea pilot-wave model for quantum field theory

    International Nuclear Information System (INIS)

    Colin, S; Struyve, W

    2007-01-01

    We present a pilot-wave model for quantum field theory in which the Dirac sea is taken seriously. The model ascribes particle trajectories to all the fermions, including the fermions filling the Dirac sea. The model is deterministic and applies to the regime in which fermion number is superselected. This work is a further elaboration of work by Colin, in which a Dirac sea pilot-wave model is presented for quantum electrodynamics. We extend his work to non-electromagnetic interactions, we discuss a cut-off regularization of the pilot-wave model and study how it reproduces the standard quantum predictions. The Dirac sea pilot-wave model can be seen as a possible continuum generalization of a lattice model by Bell. It can also be seen as a development and generalization of the ideas by Bohm, Hiley and Kaloyerou, who also suggested the use of the Dirac sea for the development of a pilot-wave model for quantum electrodynamics

  10. Four-wave mixing in InAlGaAs quantum dots

    DEFF Research Database (Denmark)

    Leosson, Kristjan; Birkedal, Dan; Hvam, Jørn Märcher

    2001-01-01

    broadening strongly reduce the interaction with the electromagnetic field. Until now, four-wave mixing (FWM) in III-V quantum dots has only been reported in optical amplifiers at room temperature, where the interaction length is increased by waveguiding in the quantum dot plane. We have carried out...... degenerate FWM experiments in a slab geometry on a sample containing 10 layers of MBE-grown In0.5Al0.04Ga0.46As quantum dots (QDs) with 50-nm Al0.08Ga0.92As barriers. Ground state photoluminescence emission was measured....

  11. Neutron interferometry lessons in experimental quantum mechanics, wave-particle duality, and entanglement

    CERN Document Server

    Rauch, Helmut

    2015-01-01

    The quantum interference of de Broglie matter waves is probably one of the most startling and fundamental aspects of quantum mechanics. It continues to tax our imaginations and leads us to new experimental windows on nature. Quantum interference phenomena are vividly displayed in the wide assembly of neutron interferometry experiments, which have been carried out since the first demonstration of a perfect silicon crystal interferometer in 1974. Since the neutron experiences all four fundamental forces of nature (strong, weak, electromagnetic, and gravitational), interferometry with neutrons provides a fertile testing ground for theory and precision measurements. Many Gedanken experiments of quantum mechanics have become real due to neutron interferometry. Quantum mechanics is a part of physics where experiment and theory are inseparably intertwined. This general theme permeates the second edition of this book. It discusses more than 40 neutron interferometry experiments along with their theoretical motivation...

  12. Shear Alfvén Wave with Quantum Exchange-Correlation Effects in Plasmas

    Science.gov (United States)

    Mir, Zahid; Jamil, M.; Rasheed, A.; Asif, M.

    2017-09-01

    The dust shear Alfvén wave is studied in three species dusty quantum plasmas. The quantum effects are incorporated through the Fermi degenerate pressure, tunneling potential, and in particular the exchange-correlation potential. The significance of exchange-correlation potential is pointed out by a graphical description of the dispersion relation, which shows that the exchange potential magnifies the phase speed. The low-frequency shear Alfvén wave is studied while considering many variables. The shear Alfvén wave gains higher phase speed at the range of small angles for the upper end of the wave vector spectrum. The increasing dust charge and the external magnetic field reflect the increasing tendency of phase speed. This study may explain many natural mechanisms associated with long wavelength radiations given in the summary.

  13. What's the Matter with Waves?; An introduction to techniques and applications of quantum mechanics

    Science.gov (United States)

    Parkinson, William

    2017-12-01

    Like rocket science or brain surgery, quantum mechanics is pigeonholed as a daunting and inaccessible topic, which is best left to an elite or peculiar few. This classification was not earned without some degree of merit. Depending on perspective; quantum mechanics is a discipline or philosophy, a convention or conundrum, an answer or question. Authors have run the gamut from hand waving to heavy handed in the hope to dispel the common beliefs about quantum mechanics, but perhaps they continue to promulgate the stigma. The focus of this particular effort is to give the reader an introduction, if not at least an appreciation, of the role that linear algebra techniques play in the practical application of quantum mechanical methods. It interlaces aspects of the classical and quantum picture, including a number of both worked and parallel applications. Students with no prior experience in quantum mechanics, motivated graduate students, or researchers in other areas attempting to gain some introduction to quantum theory will find particular interest in this book. Part of Series on wave phenomena in the physical sciences

  14. Semiconductor Quantum Electron Wave Transport, Diffraction, and Interference: Analysis, Device, and Measurement.

    Science.gov (United States)

    Henderson, Gregory Newell

    Semiconductor device dimensions are rapidly approaching a fundamental limit where drift-diffusion equations and the depletion approximation are no longer valid. In this regime, quantum effects can dominate device response. To increase further device density and speed, new devices must be designed that use these phenomena to positive advantage. In addition, quantum effects provide opportunities for a new class of devices which can perform functions previously unattainable with "conventional" semiconductor devices. This thesis has described research in the analysis of electron wave effects in semiconductors and the development of methods for the design, fabrication, and characterization of quantum devices based on these effects. First, an exact set of quantitative analogies are presented which allow the use of well understood optical design and analysis tools for the development of electron wave semiconductor devices. Motivated by these analogies, methods are presented for modeling electron wave grating diffraction using both an exact rigorous coupled-wave analysis and approximate analyses which are useful for grating design. Example electron wave grating switch and multiplexer designs are presented. In analogy to thin-film optics, the design and analysis of electron wave Fabry-Perot interference filters are also discussed. An innovative technique has been developed for testing these (and other) electron wave structures using Ballistic Electron Emission Microscopy (BEEM). This technique uses a liquid-helium temperature scanning tunneling microscope (STM) to perform spectroscopy of the electron transmittance as a function of electron energy. Experimental results show that BEEM can resolve even weak quantum effects, such as the reflectivity of a single interface between materials. Finally, methods are discussed for incorporating asymmetric electron wave Fabry-Perot filters into optoelectronic devices. Theoretical and experimental results show that such structures could

  15. Quantum measurement information as a key to energy extraction from local vacuums

    International Nuclear Information System (INIS)

    Hotta, Masahiro

    2008-01-01

    In this paper, a protocol is proposed in which energy extraction from local vacuum states is possible by using quantum measurement information for the vacuum state of quantum fields. In the protocol, Alice, who stays at a spatial point, excites the ground state of the fields by a local measurement. Consequently, wave packets generated by Alice's measurement propagate the vacuum to spatial infinity. Let us assume that Bob stays away from Alice and fails to catch the excitation energy when the wave packets pass in front of him. Next Alice announces her local measurement result to Bob by classical communication. Bob performs a local unitary operation depending on the measurement result. In this process, positive energy is released from the fields to Bob's apparatus of the unitary operation. In the field systems, wave packets are generated with negative energy around Bob's location. Soon afterwards, the negative-energy wave packets begin to chase after the positive-energy wave packets generated by Alice and form loosely bound states.

  16. Wave-Style Token Machines and Quantum Lambda Calculi

    Directory of Open Access Journals (Sweden)

    Ugo Dal Lago

    2015-02-01

    Full Text Available Particle-style token machines are a way to interpret proofs and programs, when the latter are written following the principles of linear logic. In this paper, we show that token machines also make sense when the programs at hand are those of a simple quantum lambda-calculus with implicit qubits. This, however, requires generalising the concept of a token machine to one in which more than one particle travel around the term at the same time. The presence of multiple tokens is intimately related to entanglement and allows us to give a simple operational semantics to the calculus, coherently with the principles of quantum computation.

  17. Bouncing droplets, pilot-waves, and quantum mechanics

    DEFF Research Database (Denmark)

    Bohr, Tomas; Andersen, Anders Peter; Lautrup, Benny

    2016-01-01

    Bouncing droplets on a fluid surface have recently been shown to provide a surprising analogy to quantum behaviour. Here we discuss the limitation of this analogy in the context of the double-slit experiment, which our colleagues and we have analysed in a recent paper [Phys. Rev. E 92, 013006 (20...

  18. Intermode traces - fundamental interference phenomenon in quantum and wave physics

    NARCIS (Netherlands)

    Kaplan, A.E.; Stifter, P.; Leeuwen, van K.A.H.; Lamb, W.E.; Schleich, W.P.

    1998-01-01

    Highly regular spatio-temporal or multi-dimensional patterns in the quantum mechanical probability or classical field intensity distributions can appear due to pair interference between individual eigen-modes of the system forming the so called intermode traces. These patterns are strongly

  19. Quantum Monte Carlo studies of a metallic spin-density wave transition

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, Max Henner

    2017-01-20

    Plenty experimental evidence indicates that quantum critical phenomena give rise to much of the rich physics observed in strongly correlated itinerant electron systems such as the high temperature superconductors. A quantum critical point of particular interest is found at the zero-temperature onset of spin-density wave order in two-dimensional metals. The appropriate low-energy theory poses an exceptionally hard problem to analytic theory, therefore the unbiased and controlled numerical approach pursued in this thesis provides important contributions on the road to comprehensive understanding. After discussing the phenomenology of quantum criticality, a sign-problem-free determinantal quantum Monte Carlo approach is introduced and an extensive toolbox of numerical methods is described in a self-contained way. By the means of large-scale computer simulations we have solved a lattice realization of the universal effective theory of interest. The finite-temperature phase diagram, showing both a quasi-long-range spin-density wave ordered phase and a d-wave superconducting dome, is discussed in its entirety. Close to the quantum phase transition we find evidence for unusual scaling of the order parameter correlations and for non-Fermi liquid behavior at isolated hot spots on the Fermi surface.

  20. Transient four-wave mixing in T-shaped GaAs quantum wires

    DEFF Research Database (Denmark)

    Langbein, Wolfgang Werner; Gislason, Hannes; Hvam, Jørn Märcher

    1999-01-01

    The binding energy of excitons and biexcitons and the exciton dephasing in T-shaped GaAs quantum wires is investigated by transient four-wave mixing. The T-shaped structure is fabricated by cleaved-edge overgrowth, and its geometry is engineered to optimize the one-dimensional confinement. In thi...

  1. Continuous wave terahertz radiation from an InAs/GaAs quantum-dot photomixer device

    Science.gov (United States)

    Kruczek, T.; Leyman, R.; Carnegie, D.; Bazieva, N.; Erbert, G.; Schulz, S.; Reardon, C.; Reynolds, S.; Rafailov, E. U.

    2012-08-01

    Generation of continuous wave radiation at terahertz (THz) frequencies from a heterodyne source based on quantum-dot (QD) semiconductor materials is reported. The source comprises an active region characterised by multiple alternating photoconductive and QD carrier trapping layers and is pumped by two infrared optical signals with slightly offset wavelengths, allowing photoconductive device switching at the signals' difference frequency ˜1 THz.

  2. A gravitational wave detector operating beyond the quantum shot-noise limit: Squeezed light in application

    Directory of Open Access Journals (Sweden)

    Schnabel Roman

    2013-08-01

    Full Text Available This contribution reviews our recent progress on the generation of squeezed light [1], and also the recent squeezed-light enhancement of the gravitational wave detector GEO 600 [2]. GEO 600 is currently the only GW observatory operated by the LIGO Scientific Collaboration in its search for gravitational waves. With the help of squeezed states of light it now operates with its best ever sensitivity, which not only proves the qualification of squeezed light as a key technology for future gravitational wave astronomy but also the usefulness of quantum entanglement.

  3. Influence of wetting-layer wave functions on phonon-mediated carrier capture into self-assembled quantum dots

    DEFF Research Database (Denmark)

    Markussen, Troels; Kristensen, Philip Trøst; Tromborg, Bjarne

    2006-01-01

    Models of carrier dynamics in quantum dots rely strongly on adequate descriptions of the carrier wave functions. In this work we numerically solve the one-band effective mass Schrodinger equation to calculate the capture times of phonon-mediated carrier capture into self-assembled quantum dots. C....... Comparing with results obtained using approximate carrier wave functions, we demonstrate that the capture times are strongly influenced by properties of the wetting layer wave functions not accounted for by earlier theoretical analyses....

  4. Dynamical pruning of static localized basis sets in time-dependent quantum dynamics

    NARCIS (Netherlands)

    McCormack, D.A.

    2006-01-01

    We investigate the viability of dynamical pruning of localized basis sets in time-dependent quantum wave packet methods. Basis functions that have a very small population at any given time are removed from the active set. The basis functions themselves are time independent, but the set of active

  5. The internal waves and Rayleigh-Taylor instability in compressible quantum plasmas

    International Nuclear Information System (INIS)

    Lu, H. L.; Qiu, X. M.

    2011-01-01

    In this paper, we investigate the quantum effect on internal waves and Rayleigh-Taylor (RT) instability in compressible quantum plasmas. First of all, let us consider the case of the limit of short wavelength perturbations. In the case, the dispersion relation including quantum and compressibility effects and the RT instability growth rate can be derived using Wentzel-Kramers-Brillouin method. The results show that the internal waves can propagate along the transverse direction due to the quantum effect, which was first pointed out by Bychkov et al.[Phys. Lett. A 372, 3042 (2008)], and the coupling between it and compressibility effect, which is found out in this paper. Then, without making the approximation assumption of short wavelength limit, we examine the linearized perturbation equation following Qiu et al.'s solving process [Phys. Plasmas 10, 2956 (2003)]. It is found that the quantum effect always stabilizes the RT instability in either incompressible or compressible quantum plasmas. Moreover, in the latter case, the coupling between it and compressibility effect makes this stabilization further enhance.

  6. Quantum and classical dissipation of charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Ibarra-Sierra, V.G. [Departamento de Física, Universidad Autónoma Metropolitana at Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 México D.F. (Mexico); Anzaldo-Meneses, A.; Cardoso, J.L.; Hernández-Saldaña, H. [Área de Física Teórica y Materia Condensada, Universidad Autónoma Metropolitana at Azcapotzalco, Av. San Pablo 180, Col. Reynosa-Tamaulipas, Azcapotzalco, 02200 México D.F. (Mexico); Kunold, A., E-mail: akb@correo.azc.uam.mx [Área de Física Teórica y Materia Condensada, Universidad Autónoma Metropolitana at Azcapotzalco, Av. San Pablo 180, Col. Reynosa-Tamaulipas, Azcapotzalco, 02200 México D.F. (Mexico); Roa-Neri, J.A.E. [Área de Física Teórica y Materia Condensada, Universidad Autónoma Metropolitana at Azcapotzalco, Av. San Pablo 180, Col. Reynosa-Tamaulipas, Azcapotzalco, 02200 México D.F. (Mexico)

    2013-08-15

    A Hamiltonian approach is presented to study the two dimensional motion of damped electric charges in time dependent electromagnetic fields. The classical and the corresponding quantum mechanical problems are solved for particular cases using canonical transformations applied to Hamiltonians for a particle with variable mass. Green’s function is constructed and, from it, the motion of a Gaussian wave packet is studied in detail. -- Highlights: •Hamiltonian of a damped charged particle in time dependent electromagnetic fields. •Exact Green’s function of a charged particle in time dependent electromagnetic fields. •Time evolution of a Gaussian wave packet of a damped charged particle. •Classical and quantum dynamics of a damped electric charge.

  7. Quantum and classical dissipation of charged particles

    International Nuclear Information System (INIS)

    Ibarra-Sierra, V.G.; Anzaldo-Meneses, A.; Cardoso, J.L.; Hernández-Saldaña, H.; Kunold, A.; Roa-Neri, J.A.E.

    2013-01-01

    A Hamiltonian approach is presented to study the two dimensional motion of damped electric charges in time dependent electromagnetic fields. The classical and the corresponding quantum mechanical problems are solved for particular cases using canonical transformations applied to Hamiltonians for a particle with variable mass. Green’s function is constructed and, from it, the motion of a Gaussian wave packet is studied in detail. -- Highlights: •Hamiltonian of a damped charged particle in time dependent electromagnetic fields. •Exact Green’s function of a charged particle in time dependent electromagnetic fields. •Time evolution of a Gaussian wave packet of a damped charged particle. •Classical and quantum dynamics of a damped electric charge

  8. Quantum arrival time formula from decoherent histories

    International Nuclear Information System (INIS)

    Halliwell, J.J.; Yearsley, J.M.

    2009-01-01

    We use the decoherent histories approach to quantum mechanics to compute the probability for a wave packet to cross the origin during a given time interval. We define class operators (sums of strings of projectors) characterizing quantum-mechanical crossing and simplify them using a semiclassical approximation. Using these class operators we find that histories crossing the origin during different time intervals are approximately decoherent for a variety of initial states. Probabilities may therefore be assigned and coincide with the flux of the wave packet (the standard semiclassical formula), and are positive. The known initial states for which the flux is negative (backflow states) are shown to correspond to non-decoherent sets of histories, so probabilities may not be assigned.

  9. An improved packet structure

    KAUST Repository

    Bader, Ahmed

    2014-01-01

    A multihop network transmits a packet including a RACH area and a hop number. The RACH area includes a list of subcarriers. A source node in the network dynamically determines the size of the RACH area. A node in the network performs an open-loop transmit power control.

  10. Election '88: Teacher Packet.

    Science.gov (United States)

    North Carolina State Dept. of Public Instruction, Raleigh. Div. of Social Studies Education.

    This materials packet contains information on teaching about the electoral process and the elections of 1988, and on participation in a mock election for students whose schools would take part in the 1988 North Carolina Mock Election. Suggestions for teachers' preparations are given, including a classroom skit and a mock candidates' election…

  11. An improved packet structure

    KAUST Repository

    Bader, Ahmed

    2014-05-22

    A multihop network transmits a packet including a RACH area and a hop number. The RACH area includes a list of subcarriers. A source node in the network dynamically determines the size of the RACH area. A node in the network performs an open-loop transmit power control.

  12. Matter-Wave Entanglement and Teleportation by Molecular Dissociation and Collisions

    Science.gov (United States)

    Opatrný, T.; Kurizki, G.

    2001-04-01

    We propose dissociation of cold diatomic molecules as a source of atom pairs with highly correlated (entangled) positions and momenta, approximating the original quantum state introduced by Einstein, Podolsky, and Rosen (EPR) [Phys. Rev. 47, 777 (1935)]. Wave packet teleportation is shown to be achievable by its collision with one of the EPR correlated atoms and manipulation of the other atom in the pair.

  13. Matter-wave entanglement and teleportation by molecular dissociation and collisions.

    Science.gov (United States)

    Opatrný, T; Kurizki, G

    2001-04-02

    We propose dissociation of cold diatomic molecules as a source of atom pairs with highly correlated (entangled) positions and momenta, approximating the original quantum state introduced by Einstein, Podolsky, and Rosen (EPR) [Phys. Rev. 47, 777 (1935)]. Wave packet teleportation is shown to be achievable by its collision with one of the EPR correlated atoms and manipulation of the other atom in the pair.

  14. Quantum snake walk on graphs

    International Nuclear Information System (INIS)

    Rosmanis, Ansis

    2011-01-01

    I introduce a continuous-time quantum walk on graphs called the quantum snake walk, the basis states of which are fixed-length paths (snakes) in the underlying graph. First, I analyze the quantum snake walk on the line, and I show that, even though most states stay localized throughout the evolution, there are specific states that most likely move on the line as wave packets with momentum inversely proportional to the length of the snake. Next, I discuss how an algorithm based on the quantum snake walk might potentially be able to solve an extended version of the glued trees problem, which asks to find a path connecting both roots of the glued trees graph. To the best of my knowledge, no efficient quantum algorithm solving this problem is known yet.

  15. Double-slit experiment with single wave-driven particles and its relation to quantum mechanics.

    Science.gov (United States)

    Andersen, Anders; Madsen, Jacob; Reichelt, Christian; Rosenlund Ahl, Sonja; Lautrup, Benny; Ellegaard, Clive; Levinsen, Mogens T; Bohr, Tomas

    2015-07-01

    In a thought-provoking paper, Couder and Fort [Phys. Rev. Lett. 97, 154101 (2006)] describe a version of the famous double-slit experiment performed with droplets bouncing on a vertically vibrated fluid surface. In the experiment, an interference pattern in the single-particle statistics is found even though it is possible to determine unambiguously which slit the walking droplet passes. Here we argue, however, that the single-particle statistics in such an experiment will be fundamentally different from the single-particle statistics of quantum mechanics. Quantum mechanical interference takes place between different classical paths with precise amplitude and phase relations. In the double-slit experiment with walking droplets, these relations are lost since one of the paths is singled out by the droplet. To support our conclusions, we have carried out our own double-slit experiment, and our results, in particular the long and variable slit passage times of the droplets, cast strong doubt on the feasibility of the interference claimed by Couder and Fort. To understand theoretically the limitations of wave-driven particle systems as analogs to quantum mechanics, we introduce a Schrödinger equation with a source term originating from a localized particle that generates a wave while being simultaneously guided by it. We show that the ensuing particle-wave dynamics can capture some characteristics of quantum mechanics such as orbital quantization. However, the particle-wave dynamics can not reproduce quantum mechanics in general, and we show that the single-particle statistics for our model in a double-slit experiment with an additional splitter plate differs qualitatively from that of quantum mechanics.

  16. Double-slit experiment with single wave-driven particles and its relation to quantum mechanics

    Science.gov (United States)

    Andersen, Anders; Madsen, Jacob; Reichelt, Christian; Rosenlund Ahl, Sonja; Lautrup, Benny; Ellegaard, Clive; Levinsen, Mogens T.; Bohr, Tomas

    2015-07-01

    In a thought-provoking paper, Couder and Fort [Phys. Rev. Lett. 97, 154101 (2006), 10.1103/PhysRevLett.97.154101] describe a version of the famous double-slit experiment performed with droplets bouncing on a vertically vibrated fluid surface. In the experiment, an interference pattern in the single-particle statistics is found even though it is possible to determine unambiguously which slit the walking droplet passes. Here we argue, however, that the single-particle statistics in such an experiment will be fundamentally different from the single-particle statistics of quantum mechanics. Quantum mechanical interference takes place between different classical paths with precise amplitude and phase relations. In the double-slit experiment with walking droplets, these relations are lost since one of the paths is singled out by the droplet. To support our conclusions, we have carried out our own double-slit experiment, and our results, in particular the long and variable slit passage times of the droplets, cast strong doubt on the feasibility of the interference claimed by Couder and Fort. To understand theoretically the limitations of wave-driven particle systems as analogs to quantum mechanics, we introduce a Schrödinger equation with a source term originating from a localized particle that generates a wave while being simultaneously guided by it. We show that the ensuing particle-wave dynamics can capture some characteristics of quantum mechanics such as orbital quantization. However, the particle-wave dynamics can not reproduce quantum mechanics in general, and we show that the single-particle statistics for our model in a double-slit experiment with an additional splitter plate differs qualitatively from that of quantum mechanics.

  17. Strong Measurements Give a Better Direct Measurement of the Quantum Wave Function.

    Science.gov (United States)

    Vallone, Giuseppe; Dequal, Daniele

    2016-01-29

    Weak measurements have thus far been considered instrumental in the so-called direct measurement of the quantum wave function [4J. S. Lundeen, Nature (London) 474, 188 (2011).]. Here we show that a direct measurement of the wave function can be obtained by using measurements of arbitrary strength. In particular, in the case of strong measurements, i.e., those in which the coupling between the system and the measuring apparatus is maximum, we compared the precision and the accuracy of the two methods, by showing that strong measurements outperform weak measurements in both for arbitrary quantum states in most cases. We also give the exact expression of the difference between the original and reconstructed wave function obtained by the weak measurement approach; this will allow one to define the range of applicability of such a method.

  18. Single-electron transport driven by surface acoustic waves: Moving quantum dots versus short barriers

    DEFF Research Database (Denmark)

    Utko, Pawel; Hansen, Jørn Bindslev; Lindelof, Poul Erik

    2007-01-01

    We have investigated the response of the acoustoelectric-current driven by a surface-acoustic wave through a quantum point contact in the closed-channel regime. Under proper conditions, the current develops plateaus at integer multiples of ef when the frequency f of the surface-acoustic wave...... or the gate voltage V-g of the point contact is varied. A pronounced 1.1 MHz beat period of the current indicates that the interference of the surface-acoustic wave with reflected waves matters. This is supported by the results obtained after a second independent beam of surface-acoustic wave was added......, traveling in opposite direction. We have found that two sub-intervals can be distinguished within the 1.1 MHz modulation period, where two different sets of plateaus dominate the acoustoelectric-current versus gate-voltage characteristics. In some cases, both types of quantized steps appeared simultaneously...

  19. Quantum Image Processing and Storage with Four Wave Mixing

    Science.gov (United States)

    2016-08-10

    information. 15. SUBJECT TERMS. Key words or phrases identifying major concepts in the report. 16. SECURITY CLASSIFICATION. Enter security...Such detectors are often used in the detection of squeezed light or other non- classical states of light, or in quantum key distribution (QKD) systems...efficiency, then we can insert a (noiseless) gain of 2 PSA in front of the homodyne system to partially compensate for this. The reason that the

  20. Exact wave functions of two-electron quantum rings.

    Science.gov (United States)

    Loos, Pierre-François; Gill, Peter M W

    2012-02-24

    We demonstrate that the Schrödinger equation for two electrons on a ring, which is the usual paradigm to model quantum rings, is solvable in closed form for particular values of the radius. We show that both polynomial and irrational solutions can be found for any value of the angular momentum and that the singlet and triplet manifolds, which are degenerate, have distinct geometric phases. We also study the nodal structure associated with these two-electron states.

  1. Experimental investigation of the optical injection locking dynamics in single section quantum-dash Fabry-Pérot laser diode for packet based clock recovery applications

    NARCIS (Netherlands)

    Maldonado-Basilio, R.; Parra-Cetina, J.; Latkowski, S.; Calabretta, N.; Landais, P.

    2012-01-01

    An experimental study of the dynamics of a quantum-dash Fabry-Pérot passively mode-locked laser diode is presented. Firstly, the switching on and off characteristic times of the mode-locking mechanism with pulsed biasing current are assessed. Secondly, the locking and unlocking characteristic times

  2. Renninger's Gedankenexperiment, the collapse of the wave function in a rigid quantum metamaterial and the reality of the quantum state vector.

    Science.gov (United States)

    Savel'ev, Sergey E; Zagoskin, Alexandre M

    2018-06-25

    A popular interpretation of the "collapse" of the wave function is as being the result of a local interaction ("measurement") of the quantum system with a macroscopic system ("detector"), with the ensuing loss of phase coherence between macroscopically distinct components of its quantum state vector. Nevetheless as early as in 1953 Renninger suggested a Gedankenexperiment, in which the collapse is triggered by non-observation of one of two mutually exclusive outcomes of the measurement, i.e., in the absence of interaction of the quantum system with the detector. This provided a powerful argument in favour of "physical reality" of (nonlocal) quantum state vector. In this paper we consider a possible version of Renninger's experiment using the light propagation through a birefringent quantum metamaterial. Its realization would provide a clear visualization of a wave function collapse produced by a "non-measurement", and make the concept of a physically real quantum state vector more acceptable.

  3. Vacuum source-field correlations and advanced waves in quantum optics

    Directory of Open Access Journals (Sweden)

    Adam Stokes

    2018-01-01

    Full Text Available The solution to the wave equation as a Cauchy problem with prescribed fields at an initial time $t=0$ is purely retarded. Similarly, in the quantum theory of radiation the specification of Heisenberg picture photon annihilation and creation operators at time $t \\gt 0$ in terms of operators at $t=0$ automatically yields purely retarded source-fields. However, we show that two-time quantum correlations between the retarded source-fields of a stationary dipole and the quantum vacuum-field possess advanced wave-like contributions. Despite their advanced nature, these correlations are perfectly consistent with Einstein causality. It is shown that while they do not significantly contribute to photo-detection amplitudes in the vacuum state, they do effect the statistics of measurements involving the radiative force experienced by a point charge in the field of the dipole. Specifically, the dispersion in the charge's momentum is found to increase with time. This entails the possibility of obtaining direct experimental evidence for the existence of advanced waves in physical reality, and provides yet another signature of the quantum nature of the vacuum.

  4. Wave-particle duality and Bohr's complementarity principle in quantum mechanics

    International Nuclear Information System (INIS)

    Sen, D.; Basu, A.N.; Sengupta, S.

    1995-01-01

    Interest on Bohr's complementarity principle has recently been revived particularly because of several thought experiments and some actually performed experiments to test the validity of mutual exclusiveness of wave and particle properties. A critical review of the situation is undertaken and it is pointed out that the problem with mutual exclusiveness arises because of some vagueness in the conventional formulation. An attempt is made to remove this vagueness by connecting the origin of mutual exclusiveness to some principles of quantum mechanics. Accordingly, it becomes obvious that to contradict complementarity principle without contradicting quantum mechanics would be impossible. Some of the recent experiments are critically analysed. (author). 31 refs., 3 ills

  5. Splitting of quantum information in travelling wave fields using only linear optical elements

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, W B; De Almeida, N G; Avelar, A T; Baseia, B [Instituto de Fisica, Universidade Federal de Goias, 74.001-970, Goiania-GO (Brazil)

    2011-02-28

    In this paper we present a feasible post-selection scheme to split quantum information in the realm of travelling waves with success probability of 50%. Taking advantage of this scheme we have also proposed the generation of a class of W states useful for perfect teleportation and superdense coding. The scheme employs only linear optical elements as beam splitters (BS) and phase shifters, plus two photon counters and a source of two spontaneous parametric down-conversion photons. It is shown that splitting of quantum information with high fidelity is possible, even when using inefficient detectors and photoabsorption BS.

  6. Tunneling time in space fractional quantum mechanics

    Science.gov (United States)

    Hasan, Mohammad; Mandal, Bhabani Prasad

    2018-02-01

    We calculate the time taken by a wave packet to travel through a classically forbidden region of space in space fractional quantum mechanics. We obtain the close form expression of tunneling time from a rectangular barrier by stationary phase method. We show that tunneling time depends upon the width b of the barrier for b → ∞ and therefore Hartman effect doesn't exist in space fractional quantum mechanics. Interestingly we found that the tunneling time monotonically reduces with increasing b. The tunneling time is smaller in space fractional quantum mechanics as compared to the case of standard quantum mechanics. We recover the Hartman effect of standard quantum mechanics as a special case of space fractional quantum mechanics.

  7. Quantum tunneling with friction

    Science.gov (United States)

    Tokieda, M.; Hagino, K.

    2017-05-01

    Using the phenomenological quantum friction models introduced by P. Caldirola [Nuovo Cimento 18, 393 (1941), 10.1007/BF02960144] and E. Kanai [Prog. Theor. Phys. 3, 440 (1948), 10.1143/ptp/3.4.440], M. D. Kostin [J. Chem. Phys. 57, 3589 (1972), 10.1063/1.1678812], and K. Albrecht [Phys. Lett. B 56, 127 (1975), 10.1016/0370-2693(75)90283-X], we study quantum tunneling of a one-dimensional potential in the presence of energy dissipation. To this end, we calculate the tunneling probability using a time-dependent wave-packet method. The friction reduces the tunneling probability. We show that the three models provide similar penetrabilities to each other, among which the Caldirola-Kanai model requires the least numerical effort. We also discuss the effect of energy dissipation on quantum tunneling in terms of barrier distributions.

  8. Unravelling the role of quantum interference in the weak-field laser phase modulation control of photofragment distributions

    DEFF Research Database (Denmark)

    García-Vela, Alberto; Henriksen, Niels Engholm

    2016-01-01

    The role played by quantum interference in the laser phase modulation coherent control of photofragment distributions in the weak-field regime is investigated in detail in this work. The specific application involves realistic wave packet calculations of the transient vibrational populations of t...

  9. Quantum description of microscopic and macroscopic systems: Old problems and recent investigations

    International Nuclear Information System (INIS)

    Ghirardi, G.C.

    1986-04-01

    We review some open problems and some proposed solutions which are encountered in the quantum description of the microscopic systems, of the macroscopic ones, and of the interactions between these two types of objects. We describe a recent attempt allowing a unified description of all phenomena, reproducing the quantum mechanical situation for microscopic systems and inducing in a completely consistent way the classical behaviour of macro object and the phenomena of wave packet reduction in the system-apparatus interaction. (author)

  10. Quantum Stephani exact cosmological solutions and the selection of time variable

    International Nuclear Information System (INIS)

    Pedram, P; Jalalzadeh, S; Gousheh, S S

    2007-01-01

    We study a perfect fluid Stephani quantum cosmological model. In the present work, the Schutz's variational formalism which recovers the notion of time is applied. This gives rise to a Wheeler-DeWitt equation for the scale factor. We use the eigenfunctions in order to construct wave packets for each case. We study the time-dependent behavior of the expectation value of the scale factor, using many-worlds and de Broglie-Bohm interpretations of quantum mechanics

  11. Linear and nonlinear dust ion acoustic solitary waves in a quantum dusty electron-positron-ion plasma

    Energy Technology Data Exchange (ETDEWEB)

    Emadi, E.; Zahed, H. [Physics Department, Faculty of Science, Sahand University of Technology, 51335–1996 Tabriz (Iran, Islamic Republic of)

    2016-08-15

    The behavior of linear and nonlinear dust ion acoustic (DIA) solitary waves in an unmagnetized quantum dusty plasma, including inertialess electrons and positrons, ions, and mobile negative dust grains, are studied. Reductive perturbation and Sagdeev pseudopotential methods are employed for small and large amplitude DIA solitary waves, respectively. A minimum value of the Mach number obtained for the existence of solitary waves using the analytical expression of the Sagdeev potential. It is observed that the variation on the values of the plasma parameters such as different values of Mach number M, ion to electron Fermi temperature ratio σ, and quantum diffraction parameter H can lead to the creation of compressive solitary waves.

  12. Reciprocity in quantum, electromagnetic and other wave scattering

    International Nuclear Information System (INIS)

    Deák, L.; Fülöp, T.

    2012-01-01

    The reciprocity principle is that, when an emitted wave gets scattered on an object, the scattering transition amplitude does not change if we interchange the source and the detector—in other words, if incoming waves are interchanged with appropriate outgoing ones. Reciprocity is sometimes confused with time reversal invariance, or with invariance under the rotation that interchanges the location of the source and the location of the detector. Actually, reciprocity covers the former as a special case, and is fundamentally different from–but can be usefully combined with–the latter. Reciprocity can be proved as a theorem in many situations and is found violated in other cases. The paper presents a general treatment of reciprocity, discusses important examples, shows applications in the field of photon (Mössbauer) scattering, and establishes a fruitful connection with a recently developing area of mathematics. - Highlights: ► A frame independent generalized reciprocity theorem of scattering theory is given. ► Reciprocity for two spin/polarization degrees of freedom is detailed. ► Relationship of reciprocity to time reversal and to 180 degree rotation is discussed. ► Reciprocal and nonreciprocal settings in Mossbauer spectroscopy are studied. ► The symmetry of diffuse omega-scans is explained with the aid of reciprocity.

  13. Control of quantum interference of an excitonic wave in a chlorophyll chain with a chlorophyll ring

    International Nuclear Information System (INIS)

    Hong, Suc-Kyoung; Nam, Seog-Woo; Yeon, Kyu-Hwang

    2010-01-01

    The quantum interference of an excitonic wave and its coherent control in a nanochain with a nanoring are studied. The nanochain is comprised of six chlorophylls, where four chlorophylls compose the nanoring and two chlorophylls are attached at two opposite sites on the nanoring. The exciton dynamics and the correlation of the excitation between chlorophylls are analyzed for a given configurational arrangement and dipolar orientation of the chlorophylls. The results of this study show that the excitation at specified chlorophylls is suppressed or enhanced by destructive or constructive interference of the excitonic wave in the chlorophyll nanochain.

  14. Quantum theory of single events: Localized de Broglie-wavelets, Schroedinger waves and classical trajectories

    International Nuclear Information System (INIS)

    Barut, A.O.

    1990-06-01

    For an arbitrary potential V with classical trajectories x-vector=g-vector(t) we construct localized oscillating three-dimensional wave lumps ψ(x-vector,t,g-vector) representing a single quantum particle. The crest of the envelope of the ripple follows the classical orbit g-vector(t) slightly modified due to potential V and ψ(x-vector,t;g-vector) satisfies the Schroedinger equation. The field energy, momentum and angular momentum calculated as integrals over all space are equal to particle energy, momentum and angular momentum. The relation to coherent states and to Schroedinger waves are also discussed. (author). 6 refs

  15. Security of subcarrier wave quantum key distribution against the collective beam-splitting attack.

    Science.gov (United States)

    Miroshnichenko, G P; Kozubov, A V; Gaidash, A A; Gleim, A V; Horoshko, D B

    2018-04-30

    We consider a subcarrier wave quantum key distribution (QKD) system, where quantum encoding is carried out at weak sidebands generated around a coherent optical beam as a result of electro-optical phase modulation. We study security of two protocols, B92 and BB84, against one of the most powerful attacks for this class of systems, the collective beam-splitting attack. Our analysis includes the case of high modulation index, where the sidebands are essentially multimode. We demonstrate numerically and experimentally that a subcarrier wave QKD system with realistic parameters is capable of distributing cryptographic keys over large distances in presence of collective attacks. We also show that BB84 protocol modification with discrimination of only one state in each basis performs not worse than the original BB84 protocol in this class of QKD systems, thus significantly simplifying the development of cryptographic networks using the considered QKD technique.

  16. Interaction of two solitary waves in quantum electron-positron-ion plasma

    International Nuclear Information System (INIS)

    Xu Yanxia; Lin Maimai; Shi Yuren; Duan Wenshan; Liu Zongming; Chen Jianmin

    2011-01-01

    The collision between two ion-acoustic solitary waves with arbitrary colliding angle θ in an unmagnetized, ultracold quantum three-component e-p-i plasma has been investigated. By using the extended Poincare-Lighthill-Kuo (PLK) perturbation method, we obtain the KdV equations and the analytical phase shifts after the collision of two solitary waves in this three-component plasma. The effects of the quantum parameter H, the ratio of Fermi positron temperature to Fermi electron temperature σ, the ratio of Fermi positron number density to Fermi electron number density μ, and the ratio of Fermi ion temperature to Fermi electron temperature ρ on the phase shifts are studied. It is found that these parameters can significantly influence the phase shifts of the solitons.

  17. Bloch-wave engineering of quantum dot-micropillars for cavity quantum electrodynamics experiments

    DEFF Research Database (Denmark)

    Lermer, Matthias; Gregersen, Niels; Dunzer, Florian

    2012-01-01

    scattering loss leads to record-high visibility of the strong coupling in MPs with modest oscillator strength quantum dots. A quality factor of 13,600 and a Rabi splitting of 85 \\mueV with an estimated visibility v of 0.38 are observed for a small mode volume MP with a diameter dc of 850 nm....

  18. Double-slit experiment with single wave-driven particles and its relation to quantum mechanics

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Madsen, Jacob; Reichelt, Christian Günther

    2015-01-01

    even though it is possible to determine unambiguously which slit the walking droplet passes. Here we argue, however, that the single-particle statistics in such an experiment will be fundamentally different from the single-particle statistics of quantum mechanics. Quantum mechanical interference takes...... place between different classical paths with precise amplitude and phase relations. In the double-slit experiment with walking droplets, these relations are lost since one of the paths is singled out by the droplet. To support our conclusions, we have carried out our own double-slit experiment, and our...... results, in particular the long and variable slit passage times of the droplets, cast strong doubt on the feasibility of the interference claimed by Couder and Fort. To understand theoretically the limitations of wave-driven particle systems as analogs to quantum mechanics, we introduce a Schro...

  19. The quantum dual string wave functional in Yang-Mills theories

    International Nuclear Information System (INIS)

    Gervais, J.-L.; Neveu, A.

    1979-01-01

    From any solution of the classical Yang-Mills equations, a string wave functional based on the Wilson loop integral is defined. Its precise definition is given by replacing the string by a finite set of N points, and taking the limit N → infinity. It is shown that this functional satisfies the Schroedinger equation of the relativistic dual string to leading order in N. The relevance of this object to the quantum problem is speculated. (Auth.)

  20. Quantum and wave dynamical chaos in superconducting microwave billiards.

    Science.gov (United States)

    Dietz, B; Richter, A

    2015-09-01

    Experiments with superconducting microwave cavities have been performed in our laboratory for more than two decades. The purpose of the present article is to recapitulate some of the highlights achieved. We briefly review (i) results obtained with flat, cylindrical microwave resonators, so-called microwave billiards, concerning the universal fluctuation properties of the eigenvalues of classically chaotic systems with no, a threefold and a broken symmetry; (ii) summarize our findings concerning the wave-dynamical chaos in three-dimensional microwave cavities; (iii) present a new approach for the understanding of the phenomenon of dynamical tunneling which was developed on the basis of experiments that were performed recently with unprecedented precision, and finally, (iv) give an insight into an ongoing project, where we investigate universal properties of (artificial) graphene with superconducting microwave photonic crystals that are enclosed in a microwave resonator, i.e., so-called Dirac billiards.

  1. Linear and nonlinear ion-acoustic waves in nonrelativistic quantum plasmas with arbitrary degeneracy

    Science.gov (United States)

    Haas, Fernando; Mahmood, Shahzad

    2015-11-01

    Linear and nonlinear ion-acoustic waves are studied in a fluid model for nonrelativistic, unmagnetized quantum plasma with electrons with an arbitrary degeneracy degree. The equation of state for electrons follows from a local Fermi-Dirac distribution function and applies equally well both to fully degenerate and classical, nondegenerate limits. Ions are assumed to be cold. Quantum diffraction effects through the Bohm potential are also taken into account. A general coupling parameter valid for dilute and dense plasmas is proposed. The linear dispersion relation of the ion-acoustic waves is obtained and the ion-acoustic speed is discussed for the limiting cases of extremely dense or dilute systems. In the long-wavelength limit, the results agree with quantum kinetic theory. Using the reductive perturbation method, the appropriate Korteweg-de Vries equation for weakly nonlinear solutions is obtained and the corresponding soliton propagation is analyzed. It is found that soliton hump and dip structures are formed depending on the value of the quantum parameter for the degenerate electrons, which affect the phase velocities in the dispersive medium.

  2. Space-charge waves in magnetized and collisional quantum plasma columns confined in carbon nanotubes

    International Nuclear Information System (INIS)

    Bagheri, Mehran; Abdikian, Alireza

    2014-01-01

    We study the dispersion relation of electrostatic waves propagating in a column of quantum magnetized collisional plasma embraced completely by a metallic single-walled carbon nanotubes. The analysis is based on the quantum linearized hydrodynamic formalism of collective excitations within the quasi-static approximation. It is shown when the electronic de Broglie's wavelength of the plasma is comparable in the order of magnitude to the radius of the nanotube, the quantum effects are quite meaningful and our model anticipates one acoustical and two optical space-charge waves which are positioned into three propagating bands. With increasing the nanotube radius, the features of the acoustical branch remain unchanged, yet two distinct optical branches are degenerated and the classical behavior is recovered. This study might provide a platform to create new finite transverse cross section quantum magnetized plasmas and to devise nanometer dusty plasmas based on the metallic carbon nanotubes in the absence of either a drift or a thermal electronic velocity and their existence could be experimentally examined

  3. Modified Aggressive Packet Combining Scheme

    International Nuclear Information System (INIS)

    Bhunia, C.T.

    2010-06-01

    In this letter, a few schemes are presented to improve the performance of aggressive packet combining scheme (APC). To combat error in computer/data communication networks, ARQ (Automatic Repeat Request) techniques are used. Several modifications to improve the performance of ARQ are suggested by recent research and are found in literature. The important modifications are majority packet combining scheme (MjPC proposed by Wicker), packet combining scheme (PC proposed by Chakraborty), modified packet combining scheme (MPC proposed by Bhunia), and packet reversed packet combining (PRPC proposed by Bhunia) scheme. These modifications are appropriate for improving throughput of conventional ARQ protocols. Leung proposed an idea of APC for error control in wireless networks with the basic objective of error control in uplink wireless data network. We suggest a few modifications of APC to improve its performance in terms of higher throughput, lower delay and higher error correction capability. (author)

  4. Potential energy surfaces for electron dynamics modeled by floating and breathing Gaussian wave packets with valence-bond spin-coupling: An analysis of high-harmonic generation spectrum

    Science.gov (United States)

    Ando, Koji

    2018-03-01

    A model of localized electron wave packets (EWPs), floating and breathing Gaussians with non-orthogonal valence-bond spin-coupling, is applied to compute the high-harmonic generation (HHG) spectrum from a LiH molecule induced by an intense laser pulse. The characteristic features of the spectrum, a plateau up to 50 harmonic-order and a cutoff, agreed well with those from the previous time-dependent complete active-space self-consistent-field calculation [T. Sato and K. L. Ishikawa, Phys. Rev. A 91, 023417 (2015)]. In contrast to the conventional molecular orbital picture in which the Li 2s and H 1s atomic orbitals are strongly mixed, the present calculation indicates that an incoherent sum of responses of single electrons reproduces the HHG spectrum, in which the contribution from the H 1s electron dominates the plateau and cutoff, whereas the Li 2s electron contributes to the lower frequency response. The results are comprehensive in terms of the shapes of single-electron potential energy curves constructed from the localized EWP model.

  5. A mechanical wave system to show waveforms similar to quantum mechanical wavefunctions in a potential

    International Nuclear Information System (INIS)

    Faletič, Sergej

    2015-01-01

    Interviews with students suggest that even though they understand the formalism and the formal nature of quantum theory, they still often desire a mental picture of what the equations describe and some tangible experience with the wavefunctions. Here we discuss a mechanical wave system capable of reproducing correctly a mechanical equivalent of a quantum system in a potential, and the resulting waveforms in principle of any form. We have successfully reproduced the finite potential well, the potential barrier and the parabolic potential. We believe that these mechanical waveforms can provide a valuable experience base for introductory students to start from. We aim to show that mechanical systems that are described with the same mathematics as quantum mechanical, indeed behave in the same way. We believe that even if treated purely as a wave phenomenon, the system provides much insight into wave mechanics. This can be especially useful for physics teachers and others who often need to resort to concepts and experience rather than mathematics when explaining physical phenomena. (paper)

  6. On the Quantum Mechanical Wave Function as a Link Between Cognition and the Physical World A Role for Psychology

    CERN Document Server

    Snyder, D

    2002-01-01

    A straightforward explanation of fundamental tenets of quantum mechanics concerning the wave function results in the thesis that the quantum mechanical wave function is a link between human cognition and the physical world. The reticence on the part of physicists to adopt this thesis is discussed. A comparison is made to the behaviorists' consideration of mind, and the historical roots of how the problem concerning the quantum mechanical wave function arose are discussed. The basis for an empirical demonstration that the wave function is a link between human cognition and the physical world is provided through developing an experiment using methodology from psychology and physics. Based on research in psychology and physics that relied on this methodology, it is likely that Einstein, Podolsky, and Rosen's theoretical result that mutually exclusive wave functions can simultaneously apply to the same concrete physical circumstances can be implemented on an empirical level.

  7. Quantum fields interacting with colliding plane waves: the stress-energy tensor and backreaction

    International Nuclear Information System (INIS)

    Dorca, M.; Verdaguer, E.

    1997-01-01

    Following a previous work on the quantization of a massless scalar field in a space-time representing the head on collision of two plane waves which focus into a Killing-Cauchy horizon, we compute the renormalized expectation value of the stress-energy tensor of the quantum field near that horizon in the physical state which corresponds to the Minkowski vacuum before the collision of the waves. It is found that for minimally coupled and conformally coupled scalar fields the respective stress-energy tensors are unbounded in the horizon. The specific form of the divergences suggests that when the semiclassical Einstein equations describing the backreaction of the quantum fields on the space-time geometry are taken into account, the horizon will acquire a curvature singularity. Thus the Killing-Cauchy horizon which is known to be unstable under ''generic'' classical perturbations is also unstable by vacuum polarization. The calculation is done following the point-splitting regularization technique. The dynamical colliding wave space-time has four quite distinct space-time regions, namely, one flat region, two single plane wave regions, and one interaction region. Exact mode solutions of the quantum field equation cannot be found exactly, but the blueshift suffered by the initial modes in the plane wave and interaction regions makes the use of the WKB expansion a suitable method of solution. To ensure the correct regularization of the stress-energy tensor, the initial flat modes propagated into the interaction region must be given to a rather high adiabatic order of approximation. (orig.)

  8. A small trip in the quantum world

    International Nuclear Information System (INIS)

    Klein, E.

    2004-01-01

    In 1905 a new physics was born: quantum mechanics that opened the way to the infinitely small made of atoms, particles and their interactions. For the first time in the history of sciences a discipline has required a thorough work of interpretation before being understood and applied. The author reviews the different interpretations and their inferences that have been postulated since the very beginning of quantum physics. Despite endless discussions about the true nature of quantum physics, this branch of physics remains an extraordinarily efficient tool to explain the world and has produced promising applications from laser to cryptography and to computers. The author describes all the challenges that have faced physicists concerning quantum physics among them: the wave-particle duality, the concept of reality, the significance of measuring or the collapse of the wave packet. (A.C.)

  9. Technology Corner: Internet Packet Sniffers

    Directory of Open Access Journals (Sweden)

    Nick Flor

    2011-03-01

    Full Text Available A packet sniffer is a piece of software that allows a person to eavesdrop on computer communications over the internet.  A packet sniffer can be used as a diagnostic tool by network administrators or as a spying tool by hackers who can use it to steal passwords and other private information from computer users.  Whether you are a network administrator or information assurance specialist, it helps to have a detailed understanding of how packet sniffers work.  And one of the best ways to acquire such an understanding is to build and modify an actual packet sniffer.

  10. Quantum elastic net and the traveling salesman problem

    International Nuclear Information System (INIS)

    Kostenko, B.F.; Pribis, J.; Yur'ev, M.Z.

    2009-01-01

    Theory of computer calculations strongly depends on the nature of elements the computer is made of. Quantum interference allows one to formulate the Shor factorization algorithm turned out to be more effective than any one written for classical computers. Similarly, quantum wave packet reduction allows one to devise the Grover search algorithm which outperforms any classical one. In the present paper we argue that the quantum incoherent tunneling can be used for elaboration of new algorithms able to solve some NP-hard problems, such as the traveling Salesman Problem, considered to be intractable in the classical theory of computer computations

  11. Two-tone nonlinear electrostatic waves in the quantum electron–hole plasma of semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Dubinov, A. E., E-mail: dubinov-ae@yandex.ru; Kitayev, I. N. [Russian Federal Nuclear Center–All-Russia Scientific and Research Institute of Experimental Physics (RFNC–VNIIEF) (Russian Federation)

    2017-01-15

    Longitudinal electrostatic waves in the quantum electron–hole plasma of semiconductors are considered taking into account the degeneracy of electrons and holes and the exchange interaction. It is found in the framework of linear theory that the dispersion curve of longitudinal waves has two branches: plasmon and acoustic. An expression for the critical cutoff frequency for plasma oscillations and an expression for the speed of sound for acoustic vibrations are derived. It is shown that the plasma wave always exists in the form of a superposition of two components, characterized by different periods and wavelengths. Two nonlinear solutions are obtained within nonlinear theory: one in the form of a simple superposition of two tones and the other in the form of beats.

  12. Electronic structure and correlated wave functions of a few electron quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Sako, Tokuei [Laboratory of Physics, College of Science and Technology, Nihon University, 7-24-1 Narashinodai, Funabashi, Chiba 274-8501 (Japan); Ishida, Hiroshi [College of Humanities and Sciences, Nihon University, Tokyo 156-8550 (Japan); Fujikawa, Kazuo [Institute of Quantum Science, College of Science and Technology, Nihon University, Chiyoda-ku, Tokyo 101-8308 (Japan)

    2015-01-22

    The energy spectra and wave functions of a few electrons confined by a quasi-one-dimensional harmonic and anharmonic potentials have been studied by using a full configuration interaction method employing a Cartesian anisotropic Gaussian basis set. The energy spectra are classified into three regimes of the strength of confinement, namely, large, medium and small. The polyad quantum number defined by a total number of nodes in the wave functions is shown to be a key ingredient to interpret the energy spectra for the whole range of the confinement strength. The nodal pattern of the wave functions exhibits normal modes for the harmonic confining potential, indicating collective motions of electrons. These normal modes are shown to undergo a transition to local modes for an anharmonic potential with large anharmonicity.

  13. Wave Function and Emergent SU(2) Symmetry in the ν_{T}=1 Quantum Hall Bilayer.

    Science.gov (United States)

    Lian, Biao; Zhang, Shou-Cheng

    2018-02-16

    We propose a trial wave function for the quantum Hall bilayer system of total filling factor ν_{T}=1 at a layer distance d to magnetic length ℓ ratio d/ℓ=κ_{c1}≈1.1, where the lowest charged excitation is known to have a level crossing. The wave function has two-particle correlations, which fit well with those in previous numerical studies, and can be viewed as a Bose-Einstein condensate of free excitons formed by composite bosons and anticomposite bosons in different layers. We show the free nature of these excitons indicating an emergent SU(2) symmetry for the composite bosons at d/ℓ=κ_{c1}, which leads to the level crossing in low-lying charged excitations. We further show the overlap between the trial wave function, and the ground state of a small size exact diagonalization is peaked near d/ℓ=κ_{c1}, which supports our theory.

  14. Tropical Animal Tour Packet. Metro.

    Science.gov (United States)

    Metro Washington Park Zoo, Portland, OR. Educational Services Div.

    This packet is designed to assist teachers in creating a tropical animals lesson plan that centers around a visit to the zoo. A teacher packet is divided into eight parts: (1) goals and objectives; (2) what to expect at the zoo; (3) student activities (preparatory activities, on-site activities, and follow-up activities); (4) background…

  15. Quantum-Classical correspondence in nonlinear multidimensional systems: enhanced di usion through soliton wave-particles

    KAUST Repository

    Brambila, Danilo

    2012-05-01

    Quantum chaos has emerged in the half of the last century with the notorious problem of scattering of heavy nuclei. Since then, theoreticians have developed powerful techniques to approach disordered quantum systems. In the late 70\\'s, Casati and Chirikov initiated a new field of research by studying the quantum counterpart of classical problems that are known to exhibit chaos. Among the several quantum-classical chaotic systems studied, the kicked rotor stimulated a lot of enthusiasm in the scientific community due to its equivalence to the Anderson tight binding model. This equivalence allows one to map the random Anderson model into a set of fully deterministic equations, making the theoretical analysis of Anderson localization considerably simpler. In the one-dimensional linear regime, it is known that Anderson localization always prevents the diffusion of the momentum. On the other hand, for higher dimensions it was demonstrated that for certain conditions of the disorder parameter, Anderson localized modes can be inhibited, allowing then a phase transition from localized (insulating) to delocalized (metallic) states. In this thesis we will numerically and theoretically investigate the properties of a multidimensional quantum kicked rotor in a nonlinear medium. The presence of nonlinearity is particularly interesting as it raises the possibility of having soliton waves as eigenfunctions of the systems. We keep the generality of our approach by using an adjustable diffusive nonlinearity, which can describe several physical phenomena. By means of Variational Calculus we develop a chaotic map which fully describes the soliton dynamics. The analysis of such a map shows a rich physical scenario that evidences the wave-particle behavior of a soliton. Through the nonlinearity, we trace a correspondence between quantum and classical mechanics, which has no equivalent in linearized systems. Matter waves experiments provide an ideal environment for studying Anderson

  16. A possible scheme for measuring gravitational waves by using a spinful quantum fluid

    Directory of Open Access Journals (Sweden)

    Cheng Yao

    2014-06-01

    Full Text Available A method is proposed for measuring gravitational waves (GWs from the collective electromagnetic (EM response of a spinful quantum fluid, based on recent studies of the long-lived Mössbauer state 93mNb in a pure Nb crystal. A pronounced EM response was found for the geometric phase by rotating the sample in a magnetic field, suggesting that GWs could also be detected. It was recently suggested that the macroscopic wave functions confined in two twisted nonspherical superconductors would give a geometrical phase oscillation induced by GWs. The sensitivity to GWs would be inversely proportional to the square of the bound length, which is the detector size. The proposed sensitivity to GWs would be dramatically enhanced by changing the characteristic size, i.e., using the microscopic size of a non-spherical particle instead of the macroscopic detector size of a scalar quantum fluid. The collective EM response from the quantum fluid would allow the macroscopic geometrical phase to be read from microscopic particles. GWs in the millihertz range, with amplitude of 10−22, would be detectable.

  17. Sagnac interferometer as a speed-meter-type, quantum-nondemolition gravitational-wave detector

    International Nuclear Information System (INIS)

    Chen Yanbei

    2003-01-01

    According to quantum measurement theory, 'speed meters' - devices that measure the momentum, or speed, of free test masses - are immune to the standard quantum limit (SQL). It is shown that a Sagnac-interferometer gravitational-wave detector is a speed meter and therefore in principle it can beat the SQL by large amounts over a wide band of frequencies. It is shown, further, that, when one ignores optical losses, a signal-recycled Sag nac interferometer with Fabry-Perot arm cavities has precisely the same performance, for the same circulating light power, as the Michelson speed-meter interferometer recently invented and studied by Purdue and the author. The influence of optical losses is not studied, but it is plausible that they be fairly unimportant for the Sag nac interferometer, as for other speed meters. With squeezed vacuum (squeeze factor e -2R =0.1) injected into its dark port, the recycled Sag nac interferometer can beat the SQL by a factor √(10)≅3 over the frequency band 10 Hz c ∼820 kw as is to be used by the (quantum limited) second-generation Advanced LIGO interferometers--if other noise sources are made sufficiently small. It is concluded that the Sag nac optical configuration, with signal recycling and squeezed-vacuum injection, is an attractive candidate for third-generation interferometric gravitational-wave detectors (LIGO-III and EURO)

  18. Sagnac interferometer as a speed-meter-type, quantum-nondemolition gravitational-wave detector

    Science.gov (United States)

    Chen, Yanbei

    2003-06-01

    According to quantum measurement theory, “speed meters”—devices that measure the momentum, or speed, of free test masses—are immune to the standard quantum limit (SQL). It is shown that a Sagnac-interferometer gravitational-wave detector is a speed meter and therefore in principle it can beat the SQL by large amounts over a wide band of frequencies. It is shown, further, that, when one ignores optical losses, a signal-recycled Sagnac interferometer with Fabry-Perot arm cavities has precisely the same performance, for the same circulating light power, as the Michelson speed-meter interferometer recently invented and studied by Purdue and the author. The influence of optical losses is not studied, but it is plausible that they be fairly unimportant for the Sagnac interferometer, as for other speed meters. With squeezed vacuum (squeeze factor e-2R=0.1) injected into its dark port, the recycled Sagnac interferometer can beat the SQL by a factor (10)≃3 over the frequency band 10 Hz≲f≲150 Hz using the same circulating power Ic˜820 kW as is to be used by the (quantum limited) second-generation Advanced LIGO interferometers—if other noise sources are made sufficiently small. It is concluded that the Sagnac optical configuration, with signal recycling and squeezed-vacuum injection, is an attractive candidate for third-generation interferometric gravitational-wave detectors (LIGO-III and EURO).

  19. Quantum mechanical systems interacting with different polarizations of gravitational waves in noncommutative phase space

    Science.gov (United States)

    Saha, Anirban; Gangopadhyay, Sunandan; Saha, Swarup

    2018-02-01

    Owing to the extreme smallness of any noncommutative scale that may exist in nature, both in the spatial and momentum sector of the quantum phase space, a credible possibility of their detection lies in the gravitational wave (GW) detection scenario, where one effectively probes the relative length-scale variations ˜O [10-20-10-23] . With this motivation, we have theoretically constructed how a free particle and a harmonic oscillator will respond to linearly and circularly polarized gravitational waves if their quantum mechanical phase space has a noncommutative structure. We critically analyze the formal solutions which show resonance behavior in the responses of both free particle and HO systems to GW with both kind of polarizations. We discuss the possible implications of these solutions in detecting noncommutativity in a GW detection experiment. We use the currently available upper-bound estimates on various noncommutative parameters to anticipate the relative importance of various terms in the solutions. We also argue how the quantum harmonic oscillator system we considered here can be very relevant in the context of the resonant bar detectors of GW which are already operational.

  20. Schrödinger–Langevin equation with quantum trajectories for photodissociation dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw

    2017-02-15

    The Schrödinger–Langevin equation is integrated to study the wave packet dynamics of quantum systems subject to frictional effects by propagating an ensemble of quantum trajectories. The equations of motion for the complex action and quantum trajectories are derived from the Schrödinger–Langevin equation. The moving least squares approach is used to evaluate the spatial derivatives of the complex action required for the integration of the equations of motion. Computational results are presented and analyzed for the evolution of a free Gaussian wave packet, a two-dimensional barrier model, and the photodissociation dynamics of NOCl. The absorption spectrum of NOCl obtained from the Schrödinger–Langevin equation displays a redshift when frictional effects increase. This computational result agrees qualitatively with the experimental results in the solution-phase photochemistry of NOCl.

  1. Bohmian mechanics with complex action: A new trajectory-based formulation of quantum mechanics

    International Nuclear Information System (INIS)

    Goldfarb, Yair; Degani, Ilan; Tannor, David J.

    2006-01-01

    In recent years there has been a resurgence of interest in Bohmian mechanics as a numerical tool because of its local dynamics, which suggest the possibility of significant computational advantages for the simulation of large quantum systems. However, closer inspection of the Bohmian formulation reveals that the nonlocality of quantum mechanics has not disappeared--it has simply been swept under the rug into the quantum force. In this paper we present a new formulation of Bohmian mechanics in which the quantum action, S, is taken to be complex. This leads to a single equation for complex S, and ultimately complex x and p but there is a reward for this complexification - a significantly higher degree of localization. The quantum force in the new approach vanishes for Gaussian wave packet dynamics, and its effect on barrier tunneling processes is orders of magnitude lower than that of the classical force. In fact, the current method is shown to be a rigorous extension of generalized Gaussian wave packet dynamics to give exact quantum mechanics. We demonstrate tunneling probabilities that are in virtually perfect agreement with the exact quantum mechanics down to 10 -7 calculated from strictly localized quantum trajectories that do not communicate with their neighbors. The new formulation may have significant implications for fundamental quantum mechanics, ranging from the interpretation of non-locality to measures of quantum complexity

  2. Bounds on quantum collapse models from matter-wave interferometry: calculational details

    Science.gov (United States)

    Toroš, Marko; Bassi, Angelo

    2018-03-01

    We present a simple derivation of the interference pattern in matter-wave interferometry predicted by a class of quantum master equations. We apply the obtained formulae to the following collapse models: the Ghirardi-Rimini-Weber (GRW) model, the continuous spontaneous localization (CSL) model together with its dissipative (dCSL) and non-Markovian generalizations (cCSL), the quantum mechanics with universal position localization (QMUPL), and the Diósi-Penrose (DP) model. We discuss the separability of the dynamics of the collapse models along the three spatial directions, the validity of the paraxial approximation, and the amplification mechanism. We obtain analytical expressions both in the far field and near field limits. These results agree with those already derived in the Wigner function formalism. We compare the theoretical predictions with the experimental data from two recent matter-wave experiments: the 2012 far-field experiment of Juffmann T et al (2012 Nat. Nanotechnol. 7 297-300) and the 2013 Kapitza-Dirac-Talbot-Lau (KDTL) near-field experiment of Eibenberger et al (2013 Phys. Chem. Chem. Phys. 15 14696-700). We show the region of the parameter space for each collapse model that is excluded by these experiments. We show that matter-wave experiments provide model-insensitive bounds that are valid for a wide family of dissipative and non-Markovian generalizations.

  3. Quantum-limited detection of millimeter waves using superconducting tunnel junctions

    International Nuclear Information System (INIS)

    Mears, C.A.

    1991-09-01

    The quasiparticle tunneling current in a superconductor-insulator- superconductor (SIS) tunnel junction is highly nonlinear. Such a nonlinearity can be used to mix two millimeter wave signals to produce a signal at a much lower intermediate frequency. We have constructed several millimeter and sub-millimeter wave SIS mixers in order to study high frequency response of the quasiparticle tunneling current and the physics of high frequency mixing. We have made the first measurement of the out-of-phase tunneling currents in an SIS tunnel junction. We have developed a method that allows us to determine the parameters of the high frequency embedding circuit by studying the details of the pumped I-V curve. We have constructed a 80--110 GHz waveguide-based mixer test apparatus that allows us to accurately measure the gain and added noise of the SIS mixer under test. Using extremely high quality tunnel junctions, we have measured an added mixer noise of 0.61 ± 0.36 quanta, which is within 25 percent of the quantum limit imposed by the Heisenberg uncertainty principle. This measured performance is in excellent agreement with that predicted by Tucker's theory of quantum mixing. We have also studied quasioptically coupled millimeter- and submillimeter-wave mixers using several types of integrated tuning elements. 83 refs

  4. Quantum scattering theory on the momentum lattice

    International Nuclear Information System (INIS)

    Rubtsova, O. A.; Pomerantsev, V. N.; Kukulin, V. I.

    2009-01-01

    A new approach based on the wave-packet continuum discretization method recently developed by the present authors for solving quantum-mechanical scattering problems for atomic and nuclear scattering processes and few-body physics is described. The formalism uses the complete continuum discretization scheme in terms of the momentum stationary wave-packet basis, which leads to formulation of the scattering problem on a lattice in the momentum space. The solution of the few-body scattering problem can be found in the approach from linear matrix equations with nonsingular matrix elements, averaged on energy over lattice cells. The developed approach is illustrated by the solution of numerous two- and three-body scattering problems with local and nonlocal potentials below and well above the three-body breakup threshold.

  5. Analogy between electromagnetic potentials and wave-like dynamic variables with connections to quantum theory

    Science.gov (United States)

    Yang, Chen

    2018-05-01

    The transitions from classical theories to quantum theories have attracted many interests. This paper demonstrates the analogy between the electromagnetic potentials and wave-like dynamic variables with their connections to quantum theory for audiences at advanced undergraduate level and above. In the first part, the counterpart relations in the classical electrodynamics (e.g. gauge transform and Lorenz condition) and classical mechanics (e.g. Legendre transform and free particle condition) are presented. These relations lead to similar governing equations of the field variables and dynamic variables. The Lorenz gauge, scalar potential and vector potential manifest a one-to-one similarity to the action, Hamiltonian and momentum, respectively. In the second part, the connections between the classical pictures of electromagnetic field and particle to quantum picture are presented. By characterising the states of electromagnetic field and particle via their (corresponding) variables, their evolution pictures manifest the same algebraic structure (isomorphic). Subsequently, pictures of the electromagnetic field and particle are compared to the quantum picture and their interconnections are given. A brief summary of the obtained results are presented at the end of the paper.

  6. Quantum noise in laser-interferometer gravitational-wave detectors with a heterodyne readout scheme

    International Nuclear Information System (INIS)

    Buonanno, Alessandra; Chen Yanbei; Mavalvala, Nergis

    2003-01-01

    We analyze and discuss the quantum noise in signal-recycled laser interferometer gravitational-wave detectors, such as Advanced LIGO, using a heterodyne readout scheme and taking into account the optomechanical dynamics. Contrary to homodyne detection, a heterodyne readout scheme can simultaneously measure more than one quadrature of the output field, providing an additional way of optimizing the interferometer sensitivity, but at the price of additional noise. Our analysis provides the framework needed to evaluate whether a homodyne or heterodyne readout scheme is more optimal for second generation interferometers from an astrophysical point of view. As a more theoretical outcome of our analysis, we show that as a consequence of the Heisenberg uncertainty principle the heterodyne scheme cannot convert conventional interferometers into (broadband) quantum non-demolition interferometers

  7. General time-dependent formulation of quantum scattering theory

    International Nuclear Information System (INIS)

    Althorpe, Stuart C.

    2004-01-01

    We derive and explain the key ideas behind a time-dependent formulation of quantum scattering theory, applicable generally to systems with a finite-range scattering potential. The scattering is initiated and probed by plane wave packets, which are localized just outside the range of the potential. The asymptotic limits of conventional scattering theory (initiation in the remote past; detection in the remote future) are not taken. Instead, the differential cross section (DCS) is obtained by projecting the scattered wave packet onto the probe plane wave packets. The projection also yields a time-dependent version of the DCS. Cuts through the wave packet, just as it exits the scattering potential, yield time-dependent and time-independent angular distributions that give a close-up picture of the scattering which complements the DCS. We have previously applied the theory to interpret experimental cross sections of chemical reactions [e.g., S. C. Althorpe, F. Fernandez-Alonso, B. D. Bean, J. D. Ayers, A. E. Pomerantz, R. N. Zare, and E. Wrede, Nature (London) 416, 67 (2002)]. This paper gives the derivation of the theory, and explains its relation to conventional scattering theory. For clarity, the derivation is restricted to spherical-particle scattering, though it may readily be extended to general multichannel systems. We illustrate the theory using a simple application to hard-sphere scattering

  8. Quantum variational measurement and the optical lever intracavity topology of gravitational-wave detectors

    International Nuclear Information System (INIS)

    Khalili, F. Ya.

    2007-01-01

    The intracavity topologies of laser gravitational-wave detectors proposed several years ago are the promising way to obtain sensitivity of these devices significantly better than the Standard Quantum Limit (SQL). In essence, the intracavity detector is a two-stage device where the end mirrors displacement created by the gravitational wave is transferred to the displacement of an additional local mirror by means of the optical rigidity. The local mirror positions have to be monitored by an additional local meter. It is evident that the local meter precision defines the sensitivity of the detector. To overcome the SQL, the quantum variational measurement can be used in the local meter. In this method a frequency-dependent correlation between the meter backaction noise and measurement noise is introduced, which allows us to eliminate the backaction noise component from the meter output signal. This correlation is created by means of an additional filter cavity. In this article the sensitivity limitations of this scheme imposed by the optical losses both in the local meter itself and in the filter cavity are estimated. It is shown that the main sensitivity limitation stems from the filter cavity losses. In order to overcome it, it is necessary to increase the filter cavity length. In a preliminary prototype experiment, an approximate 10 m long filter cavity can be used to obtain sensitivity approximately 2-3 times better than the SQL. For future Quantum Non-Demolition (QND) gravitational-wave detectors with sensitivity about 10 times better than the SQL, the filter cavity length should be within kilometer range

  9. Propagation of nonlinear ion acoustic wave with generation of long-wavelength waves

    International Nuclear Information System (INIS)

    Ohsawa, Yukiharu; Kamimura, Tetsuo

    1978-01-01

    The nonlinear propagation of the wave packet of an ion acoustic wave with wavenumber k 0 asymptotically equals k sub(De) (the electron Debye wavenumber) is investigated by computer simulations. From the wave packet of the ion acoustic wave, waves with long wavelengths are observed to be produced within a few periods for the amplitude oscillation of the original wave packet. These waves are generated in the region where the original wave packet exists. Their characteristic wavelength is of the order of the length of the wave packet, and their propagation velocity is almost equal to the ion acoustic speed. The long-wavelength waves thus produced strongly affect the nonlinear evolution of the original wave packet. (auth.)

  10. Quantum Optics in Phase Space

    Science.gov (United States)

    Schleich, Wolfgang P.

    2001-04-01

    Quantum Optics in Phase Space provides a concise introduction to the rapidly moving field of quantum optics from the point of view of phase space. Modern in style and didactically skillful, Quantum Optics in Phase Space prepares students for their own research by presenting detailed derivations, many illustrations and a large set of workable problems at the end of each chapter. Often, the theoretical treatments are accompanied by the corresponding experiments. An exhaustive list of references provides a guide to the literature. Quantum Optics in Phase Space also serves advanced researchers as a comprehensive reference book. Starting with an extensive review of the experiments that define quantum optics and a brief summary of the foundations of quantum mechanics the author Wolfgang P. Schleich illustrates the properties of quantum states with the help of the Wigner phase space distribution function. His description of waves ala WKB connects semi-classical phase space with the Berry phase. These semi-classical techniques provide deeper insight into the timely topics of wave packet dynamics, fractional revivals and the Talbot effect. Whereas the first half of the book deals with mechanical oscillators such as ions in a trap or atoms in a standing wave the second half addresses problems where the quantization of the radiation field is of importance. Such topics extensively discussed include optical interferometry, the atom-field interaction, quantum state preparation and measurement, entanglement, decoherence, the one-atom maser and atom optics in quantized light fields. Quantum Optics in Phase Space presents the subject of quantum optics as transparently as possible. Giving wide-ranging references, it enables students to study and solve problems with modern scientific literature. The result is a remarkably concise yet comprehensive and accessible text- and reference book - an inspiring source of information and insight for students, teachers and researchers alike.

  11. dc Resistivity of Quantum Critical, Charge Density Wave States from Gauge-Gravity Duality

    Science.gov (United States)

    Amoretti, Andrea; Areán, Daniel; Goutéraux, Blaise; Musso, Daniele

    2018-04-01

    In contrast to metals with weak disorder, the resistivity of weakly pinned charge density waves (CDWs) is not controlled by irrelevant processes relaxing momentum. Instead, the leading contribution is governed by incoherent, diffusive processes which do not drag momentum and can be evaluated in the clean limit. We compute analytically the dc resistivity for a family of holographic charge density wave quantum critical phases and discuss its temperature scaling. Depending on the critical exponents, the ground state can be conducting or insulating. We connect our results to dc electrical transport in underdoped cuprate high Tc superconductors. We conclude by speculating on the possible relevance of unstable, semilocally critical CDW states to the strange metallic region.

  12. dc Resistivity of Quantum Critical, Charge Density Wave States from Gauge-Gravity Duality.

    Science.gov (United States)

    Amoretti, Andrea; Areán, Daniel; Goutéraux, Blaise; Musso, Daniele

    2018-04-27

    In contrast to metals with weak disorder, the resistivity of weakly pinned charge density waves (CDWs) is not controlled by irrelevant processes relaxing momentum. Instead, the leading contribution is governed by incoherent, diffusive processes which do not drag momentum and can be evaluated in the clean limit. We compute analytically the dc resistivity for a family of holographic charge density wave quantum critical phases and discuss its temperature scaling. Depending on the critical exponents, the ground state can be conducting or insulating. We connect our results to dc electrical transport in underdoped cuprate high T_{c} superconductors. We conclude by speculating on the possible relevance of unstable, semilocally critical CDW states to the strange metallic region.

  13. Relativistic n-body wave equations in scalar quantum field theory

    International Nuclear Information System (INIS)

    Emami-Razavi, Mohsen

    2006-01-01

    The variational method in a reformulated Hamiltonian formalism of Quantum Field Theory (QFT) is used to derive relativistic n-body wave equations for scalar particles (bosons) interacting via a massive or massless mediating scalar field (the scalar Yukawa model). Simple Fock-space variational trial states are used to derive relativistic n-body wave equations. The equations are shown to have the Schroedinger non-relativistic limits, with Coulombic interparticle potentials in the case of a massless mediating field and Yukawa interparticle potentials in the case of a massive mediating field. Some examples of approximate ground state solutions of the n-body relativistic equations are obtained for various strengths of coupling, for both massive and massless mediating fields

  14. Quantum oscillation amplification of the ultrasound polarization parameters in tungsten during coupling with the spiral wave

    International Nuclear Information System (INIS)

    Gudkov, V.V.; Zhevstovskikh, I.V.; Zimbovskaya, N.A.; Okulov, V.I.

    1991-01-01

    The quantum oscillations are studied of ellipcity, the rotation angle of the ultrasound polarization plane, the velocity and absorption of waves polarized circularly at the 196 MHz frequency in a tungsten single crystal in magnetic field of 30-80 kOe at temperature 1,8 K. The oscillation amplitudes of ellipticity and rotation angle of the ultrasound polarization plane beyond the Doppler-shifted cyclotron resonance are found to vary nonmonotonously with field and to be large enough, so that they are not described by the simple expressions for high fields. The explanation for the oscillation amplification of the polarization parameters is given within the theory involving the ultrasound-spiral wave coupling predicted by Kaner and Skobov. The quantitative comparison in details demonstrates a good agreement in the theory and experimental data and allows to find the numerical values of new parameters characterizing the Fermi surface, electron relaxation frequency, and deformation potential

  15. Electromagnetic quantum waves and their effect on the low temperature magnetoacoustic response of a quasi-two-dimensional metal

    International Nuclear Information System (INIS)

    Zimbovskaya, Natalya A

    2011-01-01

    We theoretically analyze weakly attenuated electromagnetic waves in quasi-two-dimensional (Q2D) metals in high magnetic fields. Within the chosen geometry, the magnetic field is directed perpendicular to the conducting layers of a Q2D conductor. We have shown that longitudinal collective modes could propagate along the magnetic field provided that the Fermi surface is moderately corrugated. The considered wave speeds strongly depend on the magnetic field magnitude. Also, we have analyzed interactions of these quantum waves with sound waves of suitable polarization and propagation direction, and we have shown that such interaction may bring significant changes to the low temperature magnetoacoustic response of Q2D conductors.

  16. Suppression of the four-wave-mixing background noise in a quantum memory retrieval process by channel blocking

    Science.gov (United States)

    Zhang, Kai; Guo, Jinxian; Chen, L. Q.; Yuan, Chunhua; Ou, Z. Y.; Zhang, Weiping

    2014-09-01

    In a quantum memory scheme with the Raman process, the read process encounters noise from four-wave mixing (FWM), which can destroy the nonclassical properties of the generated quantum fields. Here we demonstrate experimentally that the noise from FWM can be greatly suppressed by simply reducing the FWM transition channels with a circularly polarized read beam while at the same time retaining relatively high retrieval efficiency.

  17. Continuous wave power scaling in high power broad area quantum cascade lasers

    Science.gov (United States)

    Suttinger, M.; Leshin, J.; Go, R.; Figueiredo, P.; Shu, H.; Lyakh, A.

    2018-02-01

    Experimental and model results for high power broad area quantum cascade lasers are presented. Continuous wave power scaling from 1.62 W to 2.34 W has been experimentally demonstrated for 3.15 mm-long, high reflection-coated 5.6 μm quantum cascade lasers with 15 stage active region for active region width increased from 10 μm to 20 μm. A semi-empirical model for broad area devices operating in continuous wave mode is presented. The model uses measured pulsed transparency current, injection efficiency, waveguide losses, and differential gain as input parameters. It also takes into account active region self-heating and sub-linearity of pulsed power vs current laser characteristic. The model predicts that an 11% improvement in maximum CW power and increased wall plug efficiency can be achieved from 3.15 mm x 25 μm devices with 21 stages of the same design but half doping in the active region. For a 16-stage design with a reduced stage thickness of 300Å, pulsed roll-over current density of 6 kA/cm2 , and InGaAs waveguide layers; optical power increase of 41% is projected. Finally, the model projects that power level can be increased to 4.5 W from 3.15 mm × 31 μm devices with the baseline configuration with T0 increased from 140 K for the present design to 250 K.

  18. On the quantum inverse problem for a new type of nonlinear Schroedinger equation for Alfven waves in plasma

    International Nuclear Information System (INIS)

    Sen, S.; Roy Chowdhury, A.

    1989-06-01

    The nonlinear Alfven waves are governed by the Vector Derivative nonlinear Schroedinger (VDNLS) equation, which for parallel or quasi parallel propagation reduces to the Derivative Nonlinear Schroedinger (DNLS) equation for the circularly polarized waves. We have formulated the Quantum Inverse problem for a new type of Nonlinear Schroedinger Equation which has many properties similar to the usual NLS problem but the structure of classical and quantum R matrix are distinctly different. The commutation rules of the scattering data are obtained and the Algebraic Bethe Ansatz is formulated to derive the eigenvalue equation for the energy of the excited states. 10 refs

  19. Expectation values of r sup q between Dirac and quasirelativistic wave functions in the quantum-defect approximation

    CERN Document Server

    Kwato-Njock, K

    2002-01-01

    A search is conducted for the determination of expectation values of r sup q between Dirac and quasirelativistic radial wave functions in the quantum-defect approximation. The phenomenological and supersymmetry-inspired quantum-defect models which have proven so far to yield accurate results are used. The recursive structure of formulae derived on the basis of the hypervirial theorem enables us to develop explicit relations for arbitrary values of q. Detailed numerical calculations concerning alkali-metal-like ions of the Li-, Na- and Cu-iso electronic sequences confirm the superiority of supersymmetry-based quantum-defect theory over quantum-defect orbital and exact orbital quantum number approximations. It is also shown that relativistic rather than quasirelativistic treatment may be used for consistent inclusion of relativistic effects.

  20. Expectation values of $r^{q}$ between Dirac and quasirelativistic wave functions in the quantum-defect approximation

    CERN Document Server

    Kwato-Njock, M G; Oumarou, B

    2002-01-01

    A search is conducted for the determination of expectation values of $r^q$ between Dirac and quasirelativistic radial wave functions in the quantum-defect approximation. The phenomenological and supersymmetry-inspired quantum-defect models which have proven so far to yield accurate results are used. The recursive structure of formulae derived on the basis of the hypervirial theorem enables us to develop explicit relations for arbitrary values of $q$. Detailed numerical calculations concerning alkali-metal-like ions of the Li-, Na- and Cu-iso electronic sequences confirm the superiority of supersymmetry-based quantum-defect theory over quantum-defect orbital and exact orbital quantum number approximations. It is also shown that relativistic rather than quasirelativistic treatment may be used for consistent inclusion of relativistic effects.

  1. Elliptically polarized electromagnetic waves in a magnetized quantum electron-positron plasma with effects of exchange-correlation

    Energy Technology Data Exchange (ETDEWEB)

    Shahmansouri, M., E-mail: mshmansouri@gmail.com [Department of Physics, Faculty of Science, Arak University, Arak 38156-8 8349 (Iran, Islamic Republic of); Misra, A. P., E-mail: apmisra@visva-bharati.ac.in, E-mail: apmisra@gmail.com [Department of Mathematics, Siksha Bhavana, Visva-Bharati University, Santiniketan 731 235, West Bengal (India)

    2016-07-15

    The dispersion properties of elliptically polarized electromagnetic waves in a magnetized electron-positron-pair (EP-pair) plasma are studied with the effects of particle dispersion associated with the Bohm potential, the Fermi degenerate pressure, and the exchange-correlation force. Two possible modes of the extraordinary or X wave, modified by these quantum effects, are identified and their propagation characteristics are investigated numerically. It is shown that the upper-hybrid frequency and the cutoff and resonance frequencies are no longer constants but are dispersive due to these quantum effects. It is found that the particle dispersion and the exchange-correlation force can have different dominating roles on each other depending on whether the X waves are of short or long wavelengths (in comparison with the Fermi Debye length). The present investigation should be useful for understanding the collective behaviors of EP plasma oscillations and the propagation of extraordinary waves in magnetized dense EP-pair plasmas.

  2. Angularly resolved electron wave packet interferences

    International Nuclear Information System (INIS)

    Varju, K; Johnsson, P; Mauritsson, J; Remetter, T; Ruchon, T; Ni, Y; Lepine, F; Kling, M; Khan, J; Schafer, K J; Vrakking, M J J; L'Huillier, A

    2006-01-01

    We study experimentally the ionization of argon atoms by a train of attosecond pulses in the presence of a strong infrared laser field, using a velocity map imaging technique. The recorded momentum distribution strongly depends on the delay between the attosecond pulses and the laser field. We interpret the interference patterns observed for different delays using numerical and analytical calculations within the strong field approximation

  3. Angularly resolved electron wave packet interferences

    Energy Technology Data Exchange (ETDEWEB)

    Varju, K [Department of Physics, Lund University, PO Box 118, SE-221 00 Lund (Sweden); Johnsson, P [Department of Physics, Lund University, PO Box 118, SE-221 00 Lund (Sweden); Mauritsson, J [Department of Physics, Lund University, PO Box 118, SE-221 00 Lund (Sweden); Remetter, T [Department of Physics, Lund University, PO Box 118, SE-221 00 Lund (Sweden); Ruchon, T [Department of Physics, Lund University, PO Box 118, SE-221 00 Lund (Sweden); Ni, Y [FOM-Institute AMOLF, Kruislaan 407, 1098 SJ Amsterdam (Netherlands); Lepine, F [FOM-Institute AMOLF, Kruislaan 407, 1098 SJ Amsterdam (Netherlands); Kling, M [FOM-Institute AMOLF, Kruislaan 407, 1098 SJ Amsterdam (Netherlands); Khan, J [FOM-Institute AMOLF, Kruislaan 407, 1098 SJ Amsterdam (Netherlands); Schafer, K J [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States); Vrakking, M J J [FOM-Institute AMOLF, Kruislaan 407, 1098 SJ Amsterdam (Netherlands); L' Huillier, A [Department of Physics, Lund University, PO Box 118, SE-221 00 Lund (Sweden)

    2006-09-28

    We study experimentally the ionization of argon atoms by a train of attosecond pulses in the presence of a strong infrared laser field, using a velocity map imaging technique. The recorded momentum distribution strongly depends on the delay between the attosecond pulses and the laser field. We interpret the interference patterns observed for different delays using numerical and analytical calculations within the strong field approximation.

  4. Nonlinear approximation with general wave packets

    DEFF Research Database (Denmark)

    Borup, Lasse; Nielsen, Morten

    2005-01-01

    We study nonlinear approximation in the Triebel-Lizorkin spaces with dictionaries formed by dilating and translating one single function g. A general Jackson inequality is derived for best m-term approximation with such dictionaries. In some special cases where g has a special structure, a complete...

  5. Nonlocality of a free atomic wave packet

    International Nuclear Information System (INIS)

    Haug, F.; Freyberger, M.; Wodkiewicz, K.

    2004-01-01

    A simple model allows us to study the nonclassical behavior of slowly moving atoms interacting with a quantized field. Atom and field become entangled and their joint state can be identified as a mesoscopic 'Schroedinger cat'. By introducing appropriate observables for atom and field and by analyzing correlations between them based on a Bell-type inequality we can show the corresponding nonclassical behavior

  6. Does the Finite Size of Electrons Affect Quantum Noise in Electronic Devices?

    International Nuclear Information System (INIS)

    Colomés, E; Marian, D; Oriols, X

    2015-01-01

    Quantum transport is commonly studied with the use of quasi-particle infinite- extended states. This leads to a powerful formalism, the scattering-states theory, able to capture in compact formulas quantities of interest, such as average current, noise, etc.. However, when investigating the spatial size-dependence of quasi-particle wave packets in quantum noise with exchange and tunneling, unexpected new terms appear in the quantum noise expression. For this purpose, the two particle transmission and reflection probabilities for two initial one-particle wave packets (with opposite central momentums) spatially localized at each side of a potential barrier are studied. After the interaction, each wave packet splits into a transmitted and a reflected component. It can be shown that the probability of detecting two (identically injected) electrons at the same side of the barrier is different from zero in very common (single or double barrier) scenarios. This originates an increase of quantum noise which cannot be obtained through the scattering states formalism. (paper)

  7. Solving ground eigenvalue and eigenfunction of spheroidal wave equation at low frequency by supersymmetric quantum mechanics method

    Institute of Scientific and Technical Information of China (English)

    Tang Wen-Lin; Tian Gui-Hua

    2011-01-01

    The spheroidal wave functions are found to have extensive applications in many branches of physics and mathematics. We use the perturbation method in supersymmetric quantum mechanics to obtain the analytic ground eigenvalue and the ground eigenfunction of the angular spheroidal wave equation at low frequency in a series form. Using this approach, the numerical determinations of the ground eigenvalue and the ground eigenfunction for small complex frequencies are also obtained.

  8. Electron acoustic waves and parametric instabilities in a 4-component relativistic quantum plasma with Thomas-Fermi distributed electrons

    Science.gov (United States)

    Ikramullah, Ahmad, Rashid; Sharif, Saqib; Khattak, Fida Younus

    2018-01-01

    The interaction of Circularly Polarized Electro-Magnetic (CPEM) waves with a 4-component relativistic quantum plasma is studied. The plasma constituents are: relativistic-degenerate electrons and positrons, dynamic degenerate ions, and Thomas-Fermi distributed electrons in the background. We have employed the Klein-Gordon equations for the electrons as well as for the positrons, while the ions are represented by the Schrödinger equation. The Maxwell and Poisson equations are used for electromagnetic waves. Three modes are observed: one of the modes is associated with the electron acoustic wave, a second mode at frequencies greater than the electron acoustic wave mode could be associated with the positrons, and the third one at the lowest frequencies could be associated with the ions. Furthermore, Stimulated Raman Scattering (SRS), Modulational, and Stimulated Brillouin Scattering (SBS) instabilities are studied. It is observed that the growth rates of both the SRS and SBS instabilities decrease with increase in the quantum parameter of the plasma. It is also observed that the scattering spectra in both the SRS and SBS get restricted to very small wavenumber regions. It is shown that for low amplitude CPEM wave interaction with the quantum plasma, the positron concentration has no effect on the SRS and SBS spectra. In the case of large amplitude CPEM wave interaction, however, one observes spectral changes with varying positron concentrations. An increase in the positron concentration also enhances the scattering instability growth rates. Moreover, the growth rate first increases and then decreases with increasing intensity of the CPEM wave, indicating an optimum value of the CPEM wave intensity for the growth of these scattering instabilities. The modulational instability also shows dependence on the quantum parameter as well as on the positron concentration.

  9. Quantum physics of entangled systems: wave-particle duality and atom-photon molecules

    International Nuclear Information System (INIS)

    Rempe, G.

    2000-01-01

    One of the cornerstones of quantum physics is the wave nature of matter. It explains experimentally observed effects like interference and diffraction, occurring when an object moves from one place to another along several indistinguishable ways simultaneously. The wave nature disappears when the individual ways are distinguishable. In this case, the particle nature of the object becomes visible. To determine the particle nature quantitatively, the way of the object has to be measured. Here, large progress has been made recently with new techniques, enabling one to investigate single moving atoms in a controlled manner. Two examples are discussed in the following two sections. The first experiment describes an atom interferometer, where the way of the atom is entangled with its internal state. This allows one to explore the origin of wave-particle duality and perform a quantitative test of this fundamental principle. The second experiment reports on the observation of an atom-photon molecule, a bound state between an atom and a single photon. A fascinating aspect of this system is that it makes possible to monitor the motion of a single neutral atom in real time. (orig.)

  10. Coping with the node problem in quantum hydrodynamics: The covering function method

    International Nuclear Information System (INIS)

    Babyuk, Dmytro; Wyatt, Robert E.

    2004-01-01

    A conceptually simple approach, the covering function method (CFM), is developed to cope with the node problem in the hydrodynamic formulation of quantum mechanics. As nodes begin to form in a scattering wave packet (detected by a monitor function), a nodeless covering wave function is added to it yielding a total function that is also nodeless. Both local and global choices for the covering function are described. The total and covering functions are then propagated separately in the hydrodynamic picture. At a later time, the actual wave function is recovered from the two propagated functions. The results obtained for Eckart barrier scattering in one dimension are in excellent agreement with exact results, even for very long propagation times t=1.2 ps. The capability of the CFM is also demonstrated for multidimensional propagation of a vibrationally excited wave packet

  11. How one can construct a consistent relativistic quantum mechanics on the base of a relativistic wave equation

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, S.P. [Universidade Federal de Sergipe (UFS), Aracaju, SE (Brazil); Gitman, D.M. [Sao Paulo Univ. (USP), SP (Brazil). Inst. de Fisica

    2000-07-01

    Full text follows: There is a common opinion that the construction of a consistent relativistic quantum mechanics on the base of a relativistic wave equation meets well-known difficulties related to the existence of infinite number of negative energy levels, to the existence of negative vector norms, and so on, which may be only solved in a second-quantized theory, see, for example, two basic papers devoted to the problem L.Foldy, S.Wouthuysen, Phys. Rep.78 (1950) 29; H.Feshbach, F.Villars, Rev. Mod. Phys. 30 (1958) 24, whose arguments are repeated in all handbooks in relativistic quantum theory. Even Dirac trying to solve the problem had turned last years to infinite-component relativistic wave equations, see P.A.M. Dirac, Proc. R. Soc. London, A328 (1972) 1. We believe that a consistent relativistic quantum mechanics may be constructed on the base of an extended (charge symmetric) equation, which unite both a relativistic wave equation for a particle and for an antiparticle. We present explicitly the corresponding construction, see for details hep-th/0003112. We support such a construction by two demonstrations: first, in course of a careful canonical quantization of the corresponding classical action of a relativistic particle we arrive just to such a consistent quantum mechanics; second, we demonstrate that a reduction of the QFT of a corresponding field (scalar, spinor, etc.) to one-particle sector, if such a reduction may be done, present namely this quantum mechanics. (author)

  12. 320-to-40-Gb/s optical demultiplexing using four-wave mixing in a quantum-dot soa

    NARCIS (Netherlands)

    Matsuura, M.; Gomez-Agis, F.; Calabretta, N.; Raz, O.; Dorren, H.J.S.

    2012-01-01

    We report, for the first time, the optical demultiplexing of a 320-Gb/s intensity-modulated signal using four-wave mixing in a quantum-dot semiconductor optical amplifier. Error-free operations were successfully achieved for all the 40-Gb/s channels extracted by the optical demultiplexer.

  13. On disentanglement of quantum wave functions: Answer to a comment on ''Unified dynamics for microscopic and macroscopic systems''

    International Nuclear Information System (INIS)

    Ghirardi, G.C.; Rimini, A.; Weber, T.

    1987-06-01

    It is shown that the assumption of a stochastic localization process for the quantum wave function is essentially different from the suppression of coherence over macroscopic distances arising from the interaction with the environment and allows for a conceptually complete derivation of the classical behaviour of macroscopic bodies. (author). 4 refs

  14. Nanoroughness localization of excitons in GaAs multiple quantum wells studied by transient four-wave mixing

    DEFF Research Database (Denmark)

    Birkedal, Dan; Vadim, Lyssenko; Pantke, Karl-Heinz

    1995-01-01

    The interface roughness on a nanometer scale plays a decisive role in dephasing of excitons in GaAs multiple quantum wells. The excitonic four-wave mixing signal shows a free polarization decay and a corresponding homogeneously broadened line from areas with interface roughness on a scale larger...

  15. Multi-level quantum monte Carlo wave functions for complex reactions: The decomposition of α-hydroxy-dimethylnitrosamine

    NARCIS (Netherlands)

    Fracchia, F.; Filippi, Claudia; Amovilli, C.

    2014-01-01

    We present here several novel features of our recently proposed Jastrow linear generalized valence bond (J-LGVB) wave functions, which allow a consistently accurate description of complex potential energy surfaces (PES) of medium-large systems within quantum Monte Carlo (QMC). In particular, we

  16. Modeling of open quantum dots and wave billiards using imaginary potentials for the source and the sink

    International Nuclear Information System (INIS)

    Berggren, Karl-Fredrik; Yakimenko, Irina I; Hakanen, Jani

    2010-01-01

    A heuristic model for particle states and current flow in open ballistic two-dimensional (2D) quantum dots/wave billiards is proposed. The model makes use of complex potentials first introduced in phenomenological nuclear inelastic scattering theory (the optical model). Here we assume that external input and output leads connecting the system to the source and the drain regions may be represented by complex potentials. In this way, a current may be set up between the two 'pseudo-leads'. Probability densities and current flows for an open quantum dot are analyzed here numerically and the results are compared with the microwave measurements used to emulate the system. The model is of conceptual as well as practical interest. In addition to quantum billiards, it may be used as a tool per se to analyze transport in classical wave analogues, such as microwave resonators, acoustic resonators, effects of leakage on such systems, etc.

  17. High intersubband absorption in long-wave quantum well infrared photodetector based on waveguide resonance

    Science.gov (United States)

    Zheng, Yuanliao; Chen, Pingping; Ding, Jiayi; Yang, Heming; Nie, Xiaofei; Zhou, Xiaohao; Chen, Xiaoshuang; Lu, Wei

    2018-06-01

    A hybrid structure consisting of periodic gold stripes and an overlaying gold film has been proposed as the optical coupler of a long-wave quantum well infrared photodetector. Absorption spectra and field distributions of the structure at back-side normal incidence are calculated by the finite difference time-domain method. The results indicate that the intersubband absorption can be greatly enhanced based on the waveguide resonance as well as the surface plasmon polariton (SPP) mode. With the optimized structural parameters of the periodic gold stripes, the maximal intersubband absorption can exceed 80%, which is much higher than the SPP-enhanced intersubband absorption (the one of the standard device. The relationship between the structural parameters and the waveguide resonant wavelength is derived. Other advantages of the efficient optical coupling based on waveguide resonance are also discussed.

  18. Dilatonic Brans-Dicke Anisotropic Collapsing Fluid Sphere And de Broglie Quantum Wave Motion

    International Nuclear Information System (INIS)

    Ghaffarnejad, Hossein

    2016-01-01

    Two dimensional (2D) analogue of vacuum sector of the Brans Dicke (BD) gravity [1] is studied to obtain dynamics of anisotropic spherically symmetric perfect fluid. Our obtained static solutions behave as dark matter with state equation but in non-static regimes behave as regular perfect fluid with barotropic index ϒ > 0. Positivity property of total mass of the fluid causes that the BD parameter to be ω >2/3 and/or ω 0 the apparent horizon is covered by event horizon where the cosmic censorship hypothesis is still valid. According to the model [1], we obtain de Broglie pilot wave of our metric solution which describes particles ensemble which become distinguishable via different values of ω . Incident current density of particles ensemble on the horizons is evaluated which describe the ‘Hawking radiation’. The de Brogle-Bohm quantum potential effect is calculated also on the event (apparent) horizon which is independent (dependent) to values of ω . (paper)

  19. Fully nonlinear heavy ion-acoustic solitary waves in astrophysical degenerate relativistic quantum plasmas

    Science.gov (United States)

    Sultana, S.; Schlickeiser, R.

    2018-05-01

    Fully nonlinear features of heavy ion-acoustic solitary waves (HIASWs) have been investigated in an astrophysical degenerate relativistic quantum plasma (ADRQP) containing relativistically degenerate electrons and non-relativistically degenerate light ion species, and non-degenerate heavy ion species. The pseudo-energy balance equation is derived from the fluid dynamical equations by adopting the well-known Sagdeev-potential approach, and the properties of arbitrary amplitude HIASWs are examined. The small amplitude limit for the propagation of HIASWs is also recovered. The basic features (width, amplitude, polarity, critical Mach number, speed, etc.) of HIASWs are found to be significantly modified by the relativistic effect of the electron species, and also by the variation of the number density of electron, light ion, and heavy ion species. The basic properties of HIASWs, that may propagated in some realistic astrophysical plasma systems (e.g., in white dwarfs), are briefly discussed.

  20. Transmission time of a particle in the reflectionless Sech-squared potential: Quantum clock approach

    International Nuclear Information System (INIS)

    Park, Chang-Soo

    2011-01-01

    We investigate the time for a particle to pass through the reflectionless Sech-squared potential. Using the Salecker-Wigner and Peres quantum clock an average transmission time of a Gaussian wave packet representing the particle is explicitly evaluated in terms of average momentum and travel distance. The average transmission time is shown to be shorter than the time of free-particle motion and very close to the classical time for wave packets with well-localized momentum states. Since the clock measures the duration of scattering process the average transmission time can be interpreted as the average dwell time. -- Highlights: → We examine the scattering of a particle in the Sech-squared potential. → We use quantum clock to find an average transmission time. → It is very close to the classical time. → It is shorter than the time of free particle. → It is interpreted as the average dwell time.