WorldWideScience

Sample records for quantum theory

  1. Quantum potential theory

    CERN Document Server

    Schürmann, Michael

    2008-01-01

    This volume contains the revised and completed notes of lectures given at the school "Quantum Potential Theory: Structure and Applications to Physics," held at the Alfried-Krupp-Wissenschaftskolleg in Greifswald from February 26 to March 10, 2007. Quantum potential theory studies noncommutative (or quantum) analogs of classical potential theory. These lectures provide an introduction to this theory, concentrating on probabilistic potential theory and it quantum analogs, i.e. quantum Markov processes and semigroups, quantum random walks, Dirichlet forms on C* and von Neumann algebras, and boundary theory. Applications to quantum physics, in particular the filtering problem in quantum optics, are also presented.

  2. Quantum decision theory as quantum theory of measurement

    International Nuclear Information System (INIS)

    Yukalov, V.I.; Sornette, D.

    2008-01-01

    We present a general theory of quantum information processing devices, that can be applied to human decision makers, to atomic multimode registers, or to molecular high-spin registers. Our quantum decision theory is a generalization of the quantum theory of measurement, endowed with an action ring, a prospect lattice and a probability operator measure. The algebra of probability operators plays the role of the algebra of local observables. Because of the composite nature of prospects and of the entangling properties of the probability operators, quantum interference terms appear, which make actions noncommutative and the prospect probabilities nonadditive. The theory provides the basis for explaining a variety of paradoxes typical of the application of classical utility theory to real human decision making. The principal advantage of our approach is that it is formulated as a self-consistent mathematical theory, which allows us to explain not just one effect but actually all known paradoxes in human decision making. Being general, the approach can serve as a tool for characterizing quantum information processing by means of atomic, molecular, and condensed-matter systems

  3. Quantum theory of measurements as quantum decision theory

    International Nuclear Information System (INIS)

    Yukalov, V I; Sornette, D

    2015-01-01

    Theory of quantum measurements is often classified as decision theory. An event in decision theory corresponds to the measurement of an observable. This analogy looks clear for operationally testable simple events. However, the situation is essentially more complicated in the case of composite events. The most difficult point is the relation between decisions under uncertainty and measurements under uncertainty. We suggest a unified language for describing the processes of quantum decision making and quantum measurements. The notion of quantum measurements under uncertainty is introduced. We show that the correct mathematical foundation for the theory of measurements under uncertainty, as well as for quantum decision theory dealing with uncertain events, requires the use of positive operator-valued measure that is a generalization of projection-valued measure. The latter is appropriate for operationally testable events, while the former is necessary for characterizing operationally uncertain events. In both decision making and quantum measurements, one has to distinguish composite nonentangled events from composite entangled events. Quantum probability can be essentially different from classical probability only for entangled events. The necessary condition for the appearance of an interference term in the quantum probability is the occurrence of entangled prospects and the existence of an entangled strategic state of a decision maker or of an entangled statistical state of a measuring device

  4. Is Quantum Gravity a Super-Quantum Theory?

    OpenAIRE

    Chang, Lay Nam; Lewis, Zachary; Minic, Djordje; Takeuchi, Tatsu

    2013-01-01

    We argue that quantum gravity should be a super-quantum theory, that is, a theory whose non-local correlations are stronger than those of canonical quantum theory. As a super-quantum theory, quantum gravity should display distinct experimentally observable super-correlations of entangled stringy states.

  5. Quantum relativity theory

    International Nuclear Information System (INIS)

    Banai, M.

    1983-11-01

    A quantum relativity theory formulated in terms of Davis' quantum relativity principle is outlined. The first task in this theory as in classical relativity theory is to model space-time, the arena of natural processes. It is argued that the quantum space-time models of Banai introduced in an earlier paper is formulated in terms of Davis' quantum relativity. Then it is shown that the recently proposed classical relativistic quantum theory of Prugovecki and his corresponding classical relativistic quantum model of space-time open the way to introduce in a consistent way the quantum space-time model (the 'canonically quantized Minkowski space') proposed by Banai earlier. The main new aspect of the quantum mechanics of the quantum relativistic particles is, in this model of space-time, that it provides a true mass eigenvalue problem and, that the excited mass states of such particles can be interpreted as classifically relativistic (massive) quantum particles ('elementary particles'). The question of field theory over quantum relativistic models of space-time is also discussed. Finally, it is suggested that 'quarks' should be considered as quantum relativistic particles. (author)

  6. Quantum relativity theory and quantum space-time

    International Nuclear Information System (INIS)

    Banai, M.

    1984-01-01

    A quantum relativity theory formulated in terms of Davis' quantum relativity principle is outlined. The first task in this theory as in classical relativity theory is to model space-time, the arena of natural processes. It is shown that the quantum space-time models of Banai introduced in another paper is formulated in terms of Davis's quantum relativity. The recently proposed classical relativistic quantum theory of Prugovecki and his corresponding classical relativistic quantum model of space-time open the way to introduce, in a consistent way, the quantum space-time model (the quantum substitute of Minkowski space) of Banai proposed in the paper mentioned. The goal of quantum mechanics of quantum relativistic particles living in this model of space-time is to predict the rest mass system properties of classically relativistic (massive) quantum particles (''elementary particles''). The main new aspect of this quantum mechanics is that it provides a true mass eigenvalue problem, and that the excited mass states of quantum relativistic particles can be interpreted as elementary particles. The question of field theory over quantum relativistic model of space-time is also discussed. Finally it is suggested that ''quarks'' should be considered as quantum relativistic particles. (author)

  7. Quantum Theory and Beyond

    Science.gov (United States)

    Bastin, Ted

    2009-07-01

    List of participants; Preface; Part I. Introduction: 1. The function of the colloquium - editorial; 2. The conceptual problem of quantum theory from the experimentalist's point of view O. R. Frisch; Part II. Niels Bohr and Complementarity: The Place of the Classical Language: 3. The Copenhagen interpretation C. F. von Weizsäcker; 4. On Bohr's views concerning the quantum theory D. Bohm; Part III. The Measurement Problem: 5. Quantal observation in statistical interpretation H. J. Groenewold; 6. Macroscopic physics, quantum mechanics and quantum theory of measurement G. M. Prosperi; 7. Comment on the Daneri-Loinger-Prosperi quantum theory of measurement Jeffrey Bub; 8. The phenomenology of observation and explanation in quantum theory J. H. M. Whiteman; 9. Measurement theory and complex systems M. A. Garstens; Part IV. New Directions within Quantum Theory: What does the Quantum Theoretical Formalism Really Tell Us?: 10. On the role of hidden variables in the fundamental structure of physics D. Bohm; 11. Beyond what? Discussion: space-time order within existing quantum theory C. W. Kilmister; 12. Definability and measurability in quantum theory Yakir Aharonov and Aage Petersen; 13. The bootstrap idea and the foundations of quantum theory Geoffrey F. Chew; Part V. A Fresh Start?: 14. Angular momentum: an approach to combinatorial space-time Roger Penrose; 15. A note on discreteness, phase space and cohomology theory B. J. Hiley; 16. Cohomology of observations R. H. Atkin; 17. The origin of half-integral spin in a discrete physical space Ted Bastin; Part VI. Philosophical Papers: 18. The unity of physics C. F. von Weizsäcker; 19. A philosophical obstacle to the rise of new theories in microphysics Mario Bunge; 20. The incompleteness of quantum mechanics or the emperor's missing clothes H. R. Post; 21. How does a particle get from A to B?; Ted Bastin; 22. Informational generalization of entropy in physics Jerome Rothstein; 23. Can life explain quantum mechanics? H. H

  8. Quantum groups, quantum categories and quantum field theory

    CERN Document Server

    Fröhlich, Jürg

    1993-01-01

    This book reviews recent results on low-dimensional quantum field theories and their connection with quantum group theory and the theory of braided, balanced tensor categories. It presents detailed, mathematically precise introductions to these subjects and then continues with new results. Among the main results are a detailed analysis of the representation theory of U (sl ), for q a primitive root of unity, and a semi-simple quotient thereof, a classfication of braided tensor categories generated by an object of q-dimension less than two, and an application of these results to the theory of sectors in algebraic quantum field theory. This clarifies the notion of "quantized symmetries" in quantum fieldtheory. The reader is expected to be familiar with basic notions and resultsin algebra. The book is intended for research mathematicians, mathematical physicists and graduate students.

  9. Quantum theory. 3. ed.

    International Nuclear Information System (INIS)

    Kiefer, C.

    2004-01-01

    The following topics are dealt with: Particles and waves, the superposition principle and probability interpretation, the uncertainty relation, spin, the Schroedinger equation, wave functions, symmetries, the hydrogen atom, atoms with many electrons, Schroedinger's cat and the Einstein-podolsky-Rosen problem, the Bell inequalities, the classical limit, quantum systems in the electromagnetic field, solids and quantum liquids, quantum information, quantum field theory, quantum theory and gravitation, the mathematical formalism of quantum theory. (HSI)

  10. Quantum theory without reduction

    International Nuclear Information System (INIS)

    Cini, Marcello; Levy-Leblond, J.-M.

    1990-01-01

    Quantum theory offers a strange, and perhaps unique, case in the history of science. Although research into its roots has provided important results in recent years, the debate goes on. Some theorists argue that quantum theory is weakened by the inclusion of the so called 'reduction of the state vector' in its foundations. Quantum Theory without Reduction presents arguments in favour of quantum theory as a consistent and complete theory without this reduction, and which is capable of explaining all known features of the measurement problem. This collection of invited contributions defines and explores different aspects of this issue, bringing an old debate into a new perspective, and leading to a more satisfying consensus about quantum theory. (author)

  11. Quantum field theory

    International Nuclear Information System (INIS)

    Ryder, L.H.

    1985-01-01

    This introduction to the ideas and techniques of quantum field theory presents the material as simply as possible and is designed for graduate research students. After a brief survey of particle physics, the quantum theory of scalar and spinor fields and then of gauge fields, is developed. The emphasis throughout is on functional methods, which have played a large part in modern field theory. The book concludes with a bridge survey of ''topological'' objects in field theory and assumes a knowledge of quantum mechanics and special relativity

  12. Quantum biological information theory

    CERN Document Server

    Djordjevic, Ivan B

    2016-01-01

    This book is a self-contained, tutorial-based introduction to quantum information theory and quantum biology. It serves as a single-source reference to the topic for researchers in bioengineering, communications engineering, electrical engineering, applied mathematics, biology, computer science, and physics. The book provides all the essential principles of the quantum biological information theory required to describe the quantum information transfer from DNA to proteins, the sources of genetic noise and genetic errors as well as their effects. Integrates quantum information and quantum biology concepts; Assumes only knowledge of basic concepts of vector algebra at undergraduate level; Provides a thorough introduction to basic concepts of quantum information processing, quantum information theory, and quantum biology; Includes in-depth discussion of the quantum biological channel modelling, quantum biological channel capacity calculation, quantum models of aging, quantum models of evolution, quantum models o...

  13. Algebraic quantum field theory

    International Nuclear Information System (INIS)

    Foroutan, A.

    1996-12-01

    The basic assumption that the complete information relevant for a relativistic, local quantum theory is contained in the net structure of the local observables of this theory results first of all in a concise formulation of the algebraic structure of the superselection theory and an intrinsic formulation of charge composition, charge conjugation and the statistics of an algebraic quantum field theory. In a next step, the locality of massive particles together with their spectral properties are wed for the formulation of a selection criterion which opens the access to the massive, non-abelian quantum gauge theories. The role of the electric charge as a superselection rule results in the introduction of charge classes which in term lead to a set of quantum states with optimum localization properties. Finally, the asymptotic observables of quantum electrodynamics are investigated within the framework of algebraic quantum field theory. (author)

  14. Quaternionic quantum field theory

    International Nuclear Information System (INIS)

    Adler, S.L.

    1986-01-01

    In this paper the author describes a new kind of quantum mechanics or quantum field theory based on quaternions. Quaternionic quantum mechanics has a Schrodinger equation, a Dirac transformation theory, and a functional integral. Quaternionic quantum mechanics does not seem to have (except in the complex quantum mechanics specialization): A correspondence principle, and beyond this a commuting tensor product, asymptotic states, an S-matrix, a canonical formalism, coherent states or a Euclidean continuation. A new kind of quantum mechanics exists. There are many interesting formal questions to study, which should enable one to decide whether quaternionic quantum field theory is relevant for particle physics

  15. Quantum field theory II introductions to quantum gravity, supersymmetry and string theory

    CERN Document Server

    Manoukian, Edouard B

    2016-01-01

    This book takes a pedagogical approach to explaining quantum gravity, supersymmetry and string theory in a coherent way. It is aimed at graduate students and researchers in quantum field theory and high-energy physics. The first part of the book introduces quantum gravity, without requiring previous knowledge of general relativity (GR). The necessary geometrical aspects are derived afresh leading to explicit general Lagrangians for gravity, including that of general relativity. The quantum aspect of gravitation, as described by the graviton, is introduced and perturbative quantum GR is discussed. The Schwinger-DeWitt formalism is developed to compute the one-loop contribution to the theory and renormalizability aspects of the perturbative theory are also discussed. This follows by introducing only the very basics of a non-perturbative, background-independent, formulation of quantum gravity, referred to as “loop quantum gravity”, which gives rise to a quantization of space. In the second part the author in...

  16. Quantum field theory of fluids.

    Science.gov (United States)

    Gripaios, Ben; Sutherland, Dave

    2015-02-20

    The quantum theory of fields is largely based on studying perturbations around noninteracting, or free, field theories, which correspond to a collection of quantum-mechanical harmonic oscillators. The quantum theory of an ordinary fluid is "freer", in the sense that the noninteracting theory also contains an infinite collection of quantum-mechanical free particles, corresponding to vortex modes. By computing a variety of correlation functions at tree and loop level, we give evidence that a quantum perfect fluid can be consistently formulated as a low-energy, effective field theory. We speculate that the quantum behavior is radically different from both classical fluids and quantum fields.

  17. Quantum electronics basic theory

    CERN Document Server

    Fain, V M; Sanders, J H

    1969-01-01

    Quantum Electronics, Volume 1: Basic Theory is a condensed and generalized description of the many research and rapid progress done on the subject. It is translated from the Russian language. The volume describes the basic theory of quantum electronics, and shows how the concepts and equations followed in quantum electronics arise from the basic principles of theoretical physics. The book then briefly discusses the interaction of an electromagnetic field with matter. The text also covers the quantum theory of relaxation process when a quantum system approaches an equilibrium state, and explai

  18. Quantum set theory and applications

    International Nuclear Information System (INIS)

    Rodriguez, E.

    1984-01-01

    The work of von Neumann tells us that the logic of quantum mechanics is not Boolenan. This suggests the formulation of a quantum theory of sets based on quantum logic much as modern set theory is based on Boolean logic. In the first part of this dissertation such a quantum set theory is developed. In the second part, quantum set theory is proposed as a universal language for physics. A quantum topology and the beginnings of a quantum geometry are developed in this language. Finally, a toy model is studied. It gives indications of possible lines for progress in this program

  19. Effective quantum field theories

    International Nuclear Information System (INIS)

    Georgi, H.M.

    1993-01-01

    The most appropriate description of particle interactions in the language of quantum field theory depends on the energy at which the interactions are studied; the description is in terms of an ''effective field theory'' that contains explicit reference only to those particles that are actually important at the energy being studied. The various themes of the article are: local quantum field theory, quantum electrodynamics, new physics, dimensional parameters and renormalizability, socio-dynamics of particle theory, spontaneously broken gauge theories, scale dependence, grand unified and effective field theories. 2 figs

  20. Studies in quantum field theory

    International Nuclear Information System (INIS)

    Bender, C.M.; Mandula, J.E.; Shrauner, J.E.

    1982-01-01

    Washington University is currently conducting research in many areas of high energy theoretical and mathematical physics. These areas include: strong-coupling approximation; classical solutions of non-Abelian gauge theories; mean-field approximation in quantum field theory; path integral and coherent state representations in quantum field theory; lattice gauge calculations; the nature of perturbation theory in large orders; quark condensation in QCD; chiral symmetry breaking; the l/N expansion in quantum field theory; effective potential and action in quantum field theories, including QCD

  1. Towards a quantum theory without 'quantization'

    International Nuclear Information System (INIS)

    Deutsch, D.; Texas Univ., Austin

    1984-01-01

    The paper argues the case for a quantum formulism without a reference to classical theory, in order to make progress with quantum theory. Quantum theory without classical theory; some elaboration of the pure quantum theory; and perturbation theory and the correspondence principle; are all discussed. (U.K.)

  2. Discrete quantum theories

    International Nuclear Information System (INIS)

    Hanson, Andrew J; Sabry, Amr; Ortiz, Gerardo; Tai, Yu-Tsung

    2014-01-01

    We explore finite-field frameworks for quantum theory and quantum computation. The simplest theory, defined over unrestricted finite fields, is unnaturally strong. A second framework employs only finite fields with no solution to x 2 + 1 = 0, and thus permits an elegant complex representation of the extended field by adjoining i=√(−1). Quantum theories over these fields recover much of the structure of conventional quantum theory except for the condition that vanishing inner products arise only from null states; unnaturally strong computational power may still occur. Finally, we are led to consider one more framework, with further restrictions on the finite fields, that recovers a local transitive order and a locally-consistent notion of inner product with a new notion of cardinal probability. In this framework, conventional quantum mechanics and quantum computation emerge locally (though not globally) as the size of the underlying field increases. Interestingly, the framework allows one to choose separate finite fields for system description and for measurement: the size of the first field quantifies the resources needed to describe the system and the size of the second quantifies the resources used by the observer. This resource-based perspective potentially provides insights into quantitative measures for actual computational power, the complexity of quantum system definition and evolution, and the independent question of the cost of the measurement process. (paper)

  3. Quantum Link Models and Quantum Simulation of Gauge Theories

    International Nuclear Information System (INIS)

    Wiese, U.J.

    2015-01-01

    This lecture is about Quantum Link Models and Quantum Simulation of Gauge Theories. The lecture consists out of 4 parts. The first part gives a brief history of Computing and Pioneers of Quantum Computing and Quantum Simulations of Quantum Spin Systems are introduced. The 2nd lecture is about High-Temperature Superconductors versus QCD, Wilson’s Lattice QCD and Abelian Quantum Link Models. The 3rd lecture deals with Quantum Simulators for Abelian Lattice Gauge Theories and Non-Abelian Quantum Link Models. The last part of the lecture discusses Quantum Simulators mimicking ‘Nuclear’ physics and the continuum limit of D-Theorie models. (nowak)

  4. History of quantum theory

    International Nuclear Information System (INIS)

    Hund, F.

    1980-01-01

    History of quantum theory from quantum representations (1900) to the formation of quantum mechanics is systematically stated in the monograph. A special attention is paid to the development of ideas of quantum physics, given are schemes of this development. Quantum theory is abstractly presented as the teaching about a role, which value h characterizing elementary quantum of action, plays in the nature: in statistics - as a unit for calculating the number of possible states; in corpuscular-wave dualism for light - as a value determining the interaction of light and substance and as a component of atom dynamics; in corpuscular-wave dualism for substance. Accordingly, history of the quantum theory development is considered in the following sequence: h discovery; history of quantum statistics, history of light quanta and initial atom dynamics; crysis of this dynamics and its settlement; substance waves and in conclusion - the completion of quantum mechanics including applications and its further development

  5. Quantum mechanics theory and experiment

    CERN Document Server

    Beck, Mark

    2012-01-01

    This textbook presents quantum mechanics at the junior/senior undergraduate level. It is unique in that it describes not only quantum theory, but also presents five laboratories that explore truly modern aspects of quantum mechanics. These laboratories include "proving" that light contains photons, single-photon interference, and tests of local realism. The text begins by presenting the classical theory of polarization, moving on to describe the quantum theory of polarization. Analogies between the two theories minimize conceptual difficulties that students typically have when first presented with quantum mechanics. Furthermore, because the laboratories involve studying photons, using photon polarization as a prototypical quantum system allows the laboratory work to be closely integrated with the coursework. Polarization represents a two-dimensional quantum system, so the introduction to quantum mechanics uses two-dimensional state vectors and operators. This allows students to become comfortable with the mat...

  6. Morse theory interpretation of topological quantum field theories

    International Nuclear Information System (INIS)

    Labastida, J.M.F.

    1989-01-01

    Topological quantum field theories are interpreted as a generalized form of Morse theory. This interpretation is applied to formulate the simplest topological quantum field theory: Topological quantum mechanics. The only non-trivial topological invariant corresponding to this theory is computed and identified with the Euler characteristic. Using field theoretical methods this topological invariant is calculated in different ways and in the process a proof of the Gauss-Bonnet-Chern-Avez formula as well as some results of degenerate Morse theory are obtained. (orig.)

  7. Applications of quantum information theory to quantum gravity

    International Nuclear Information System (INIS)

    Smolin, L.

    2005-01-01

    Full text: I describe work by and with Fotini Markopoulou and Olaf Dreyeron the application of quantum information theory to quantum gravity. A particular application to black hole physics is described, which treats the black hole horizon as an open system, in interaction with an environment, which are the degrees of freedom in the bulk spacetime. This allows us to elucidate which quantum states of a general horizon contribute to the entropy of a Schwarzchild black hole. This case serves as an example of how methods from quantum information theory may help to elucidate how the classical limit emerges from a background independent quantum theory of gravity. (author)

  8. Compatible quantum theory

    International Nuclear Information System (INIS)

    Friedberg, R; Hohenberg, P C

    2014-01-01

    Formulations of quantum mechanics (QM) can be characterized as realistic, operationalist, or a combination of the two. In this paper a realistic theory is defined as describing a closed system entirely by means of entities and concepts pertaining to the system. An operationalist theory, on the other hand, requires in addition entities external to the system. A realistic formulation comprises an ontology, the set of (mathematical) entities that describe the system, and assertions, the set of correct statements (predictions) the theory makes about the objects in the ontology. Classical mechanics is the prime example of a realistic physical theory. A straightforward generalization of classical mechanics to QM is hampered by the inconsistency of quantum properties with classical logic, a circumstance that was noted many years ago by Birkhoff and von Neumann. The present realistic formulation of the histories approach originally introduced by Griffiths, which we call ‘compatible quantum theory (CQT)’, consists of a ‘microscopic’ part (MIQM), which applies to a closed quantum system of any size, and a ‘macroscopic’ part (MAQM), which requires the participation of a large (ideally, an infinite) system. The first (MIQM) can be fully formulated based solely on the assumption of a Hilbert space ontology and the noncontextuality of probability values, relying in an essential way on Gleason's theorem and on an application to dynamics due in large part to Nistico. Thus, the present formulation, in contrast to earlier ones, derives the Born probability formulas and the consistency (decoherence) conditions for frameworks. The microscopic theory does not, however, possess a unique corpus of assertions, but rather a multiplicity of contextual truths (‘c-truths’), each one associated with a different framework. This circumstance leads us to consider the microscopic theory to be physically indeterminate and therefore incomplete, though logically coherent. The

  9. Quantum field theory

    CERN Document Server

    Mandl, Franz

    2010-01-01

    Following on from the successful first (1984) and revised (1993) editions, this extended and revised text is designed as a short and simple introduction to quantum field theory for final year physics students and for postgraduate students beginning research in theoretical and experimental particle physics. The three main objectives of the book are to: Explain the basic physics and formalism of quantum field theory To make the reader proficient in theory calculations using Feynman diagrams To introduce the reader to gauge theories, which play a central role in elementary particle physic

  10. Reconstruction of abstract quantum theory

    International Nuclear Information System (INIS)

    Drieschner, M.; Goernitz, T.; von Weizsaecker, C.F.

    1988-01-01

    Understanding quantum theory as a general theory of prediction, we reconstruct abstract quantum theory. Abstract means the general frame of quantum theory, without reference to a three-dimensional position space, to concepts like particle or field, or to special laws of dynamics. Reconstruction is the attempt to do this by formulating simple and plausible postulates on prediction in order to derive the basic concepts of quantum theory from them. Thereby no law of classical physics is presupposed which would then have to be quantized. We briefly discuss the relationship of theory and interpretation in physics and the fundamental role of time as a basic concept for physics. Then a number of assertions are given, formulated as succinctly as possible in order to make them easily quotable and comparable. The assertations are arranged in four groups: heuristic principles, verbal definitions of some terms, three basic postulates, and consequences. The three postulates of separable alternatives, indeterminism, and kinematics are the central points of this work. These brief assertions are commented upon, and their relationship with the interpretation of quantum theory is discussed. Also given are an outlook on the further development into concrete quantum theory and some philosophical reflections

  11. Quantum symmetry in quantum theory

    International Nuclear Information System (INIS)

    Schomerus, V.

    1993-02-01

    Symmetry concepts have always been of great importance for physical problems like explicit calculations, classification or model building. More recently, new 'quantum symmetries' ((quasi) quantum groups) attracted much interest in quantum theory. It is shown that all these quantum symmetries permit a conventional formulation as symmetry in quantum mechanics. Symmetry transformations can act on the Hilbert space H of physical states such that the ground state is invariant and field operators transform covariantly. Models show that one must allow for 'truncation' in the tensor product of representations of a quantum symmetry. This means that the dimension of the tensor product of two representations of dimension σ 1 and σ 2 may be strictly smaller than σ 1 σ 2 . Consistency of the transformation law of field operators local braid relations leads us to expect, that (weak) quasi quantum groups are the most general symmetries in local quantum theory. The elements of the R-matrix which appears in these local braid relations turn out to be operators on H in general. It will be explained in detail how examples of field algebras with weak quasi quantum group symmetry can be obtained. Given a set of observable field with a finite number of superselection sectors, a quantum symmetry together with a complete set of covariant field operators which obey local braid relations are constructed. A covariant transformation law for adjoint fields is not automatic but will follow when the existence of an appropriate antipode is assumed. At the example of the chiral critical Ising model, non-uniqueness of the quantum symmetry will be demonstrated. Generalized quantum symmetries yield examples of gauge symmetries in non-commutative geometry. Quasi-quantum planes are introduced as the simplest examples of quasi-associative differential geometry. (Weak) quasi quantum groups can act on them by generalized derivations much as quantum groups do in non-commutative (differential-) geometry

  12. Quantum Field Theory A Modern Perspective

    CERN Document Server

    Parameswaran Nair, V

    2005-01-01

    Quantum field theory, which started with Paul Dirac’s work shortly after the discovery of quantum mechanics, has produced an impressive and important array of results. Quantum electrodynamics, with its extremely accurate and well-tested predictions, and the standard model of electroweak and chromodynamic (nuclear) forces are examples of successful theories. Field theory has also been applied to a variety of phenomena in condensed matter physics, including superconductivity, superfluidity and the quantum Hall effect. The concept of the renormalization group has given us a new perspective on field theory in general and on critical phenomena in particular. At this stage, a strong case can be made that quantum field theory is the mathematical and intellectual framework for describing and understanding all physical phenomena, except possibly for a quantum theory of gravity. Quantum Field Theory: A Modern Perspective presents Professor Nair’s view of certain topics in field theory loosely knit together as it gr...

  13. Philosophy of physics quantum theory

    CERN Document Server

    Maudlin, Tim

    2019-01-01

    In this book, Tim Maudlin, one of the world’s leading philosophers of physics, offers a sophisticated, original introduction to the philosophy of quantum mechanics. The briefest, clearest, and most refined account of his influential approach to the subject, the book will be invaluable to all students of philosophy and physics. Quantum mechanics holds a unique place in the history of physics. It has produced the most accurate predictions of any scientific theory, but, more astonishing, there has never been any agreement about what the theory implies about physical reality. Maudlin argues that the very term “quantum theory” is a misnomer. A proper physical theory should clearly describe what is there and what it does—yet standard textbooks present quantum mechanics as a predictive recipe in search of a physical theory. In contrast, Maudlin explores three proper theories that recover the quantum predictions: the indeterministic wavefunction collapse theory of Ghirardi, Rimini, and Weber; the deterministic ...

  14. Modular groups in quantum field theory

    International Nuclear Information System (INIS)

    Borchers, H.-J.

    2000-01-01

    The author discusses the connection of Lagrangean quantum field theory, perturbation theory, the Lehmann-Symanzik-Zimmermann theory, Wightman's quantum field theory, the Euclidean quantum field theory, and the Araki-Haag-Kastler theory of local observables with modular groups. In this connection he considers the PCT-theorem, and the tensor product decomposition. (HSI)

  15. Quantum information theory

    CERN Document Server

    Wilde, Mark M

    2017-01-01

    Developing many of the major, exciting, pre- and post-millennium developments from the ground up, this book is an ideal entry point for graduate students into quantum information theory. Significant attention is given to quantum mechanics for quantum information theory, and careful studies of the important protocols of teleportation, superdense coding, and entanglement distribution are presented. In this new edition, readers can expect to find over 100 pages of new material, including detailed discussions of Bell's theorem, the CHSH game, Tsirelson's theorem, the axiomatic approach to quantum channels, the definition of the diamond norm and its interpretation, and a proof of the Choi–Kraus theorem. Discussion of the importance of the quantum dynamic capacity formula has been completely revised, and many new exercises and references have been added. This new edition will be welcomed by the upcoming generation of quantum information theorists and the already established community of classical information theo...

  16. Braided quantum field theories and their symmetries

    International Nuclear Information System (INIS)

    Sasai, Yuya; Sasakura, Naoki

    2007-01-01

    Braided quantum field theories, proposed by Oeckl, can provide a framework for quantum field theories that possess Hopf algebra symmetries. In quantum field theories, symmetries lead to non-perturbative relations among correlation functions. We study Hopf algebra symmetries and such relations in the context of braided quantum field theories. We give the four algebraic conditions among Hopf algebra symmetries and braided quantum field theories that are required for the relations to hold. As concrete examples, we apply our analysis to the Poincare symmetries of two examples of noncommutative field theories. One is the effective quantum field theory of three-dimensional quantum gravity coupled to spinless particles formulated by Freidel and Livine, and the other is noncommutative field theory on the Moyal plane. We also comment on quantum field theory in κ-Minkowski spacetime. (author)

  17. Quantum kinetic theory

    CERN Document Server

    Bonitz, Michael

    2016-01-01

    This book presents quantum kinetic theory in a comprehensive way. The focus is on density operator methods and on non-equilibrium Green functions. The theory allows to rigorously treat nonequilibrium dynamics in quantum many-body systems. Of particular interest are ultrafast processes in plasmas, condensed matter and trapped atoms that are stimulated by rapidly developing experiments with short pulse lasers and free electron lasers. To describe these experiments theoretically, the most powerful approach is given by non-Markovian quantum kinetic equations that are discussed in detail, including computational aspects.

  18. [Studies in quantum field theory

    International Nuclear Information System (INIS)

    1990-01-01

    During the period 4/1/89--3/31/90 the theoretical physics group supported by Department of Energy Contract No. AC02-78ER04915.A015 and consisting of Professors Bender and Shrauner, Associate Professor Papanicolaou, Assistant Professor Ogilvie, and Senior Research Associate Visser has made progress in many areas of theoretical and mathematical physics. Professors Bender and Shrauner, Associate Professor Papanicolaou, Assistant Professor Ogilvie, and Research Associate Visser are currently conducting research in many areas of high energy theoretical and mathematical physics. These areas include: strong-coupling approximation; classical solutions of non-Abelian gauge theories; mean-field approximation in quantum field theory; path integral and coherent state representations in quantum field theory; lattice gauge calculations; the nature of perturbation theory in large order; quark condensation in QCD; chiral symmetry breaking; the 1/N expansion in quantum field theory; effective potential and action in quantum field theories, including OCD; studies of the early universe and inflation, and quantum gravity

  19. Theory of interacting quantum fields

    International Nuclear Information System (INIS)

    Rebenko, Alexei L.

    2012-01-01

    This monograph is devoted to the systematic presentation of foundations of the quantum field theory. Unlike numerous monographs devoted to this topic, a wide range of problems covered in this book are accompanied by their sufficiently clear interpretations and applications. An important significant feature of this monograph is the desire of the author to present mathematical problems of the quantum field theory with regard to new methods of the constructive and Euclidean field theory that appeared in the last thirty years of the 20 th century and are based on the rigorous mathematical apparatus of functional analysis, the theory of operators, and the theory of generalized functions. The monograph is useful for students, post-graduate students, and young scientists who desire to understand not only the formality of construction of the quantum field theory but also its essence and connection with the classical mechanics, relativistic classical field theory, quantum mechanics, group theory, and the theory of path integral formalism.

  20. Probabilistic structure of quantum theory

    International Nuclear Information System (INIS)

    Burzynski, A.

    1989-01-01

    The fundamental ideas of quantum theory are presented. It is shown that two approaches to quantum theory: Heisenberg's matrix mechanics and Schroedinger's wave mechanics, can be formulated by means of the theory of operators in Hilbert space. Some remarks on Hilbert spaces, diadic and projection operators are done. States, probabilities and observables of quantum systems are discussed and time evolution of quantum states is analysed. Some remarks on two-component systems and symmetries are given. 21 refs. (M.F.W.)

  1. Consistent Quantum Theory

    Science.gov (United States)

    Griffiths, Robert B.

    2001-11-01

    Quantum mechanics is one of the most fundamental yet difficult subjects in physics. Nonrelativistic quantum theory is presented here in a clear and systematic fashion, integrating Born's probabilistic interpretation with Schrödinger dynamics. Basic quantum principles are illustrated with simple examples requiring no mathematics beyond linear algebra and elementary probability theory. The quantum measurement process is consistently analyzed using fundamental quantum principles without referring to measurement. These same principles are used to resolve several of the paradoxes that have long perplexed physicists, including the double slit and Schrödinger's cat. The consistent histories formalism used here was first introduced by the author, and extended by M. Gell-Mann, J. Hartle and R. Omnès. Essential for researchers yet accessible to advanced undergraduate students in physics, chemistry, mathematics, and computer science, this book is supplementary to standard textbooks. It will also be of interest to physicists and philosophers working on the foundations of quantum mechanics. Comprehensive account Written by one of the main figures in the field Paperback edition of successful work on philosophy of quantum mechanics

  2. Stochastic processes and quantum theory

    International Nuclear Information System (INIS)

    Klauder, J.R.

    1975-01-01

    The author analyses a variety of stochastic processes, namely real time diffusion phenomena, which are analogues of imaginary time quantum theory and convariant imaginary time quantum field theory. He elaborates some standard properties involving probability measures and stochastic variables and considers a simple class of examples. Finally he develops the fact that certain stochastic theories actually exhibit divergences that simulate those of covariant quantum field theory and presents examples of both renormaizable and unrenormalizable behavior. (V.J.C.)

  3. A first course in topos quantum theory

    International Nuclear Information System (INIS)

    Flori, Cecilia

    2013-01-01

    Written by a leading researcher in the field. Concise course-tested textbook. Includes worked-out problems In the last five decades various attempts to formulate theories of quantum gravity have been made, but none has fully succeeded in becoming the quantum theory of gravity. One possible explanation for this failure might be the unresolved fundamental issues in quantum theory as it stands now. Indeed, most approaches to quantum gravity adopt standard quantum theory as their starting point, with the hope that the theory's unresolved issues will get solved along the way. However, these fundamental issues may need to be solved before attempting to define a quantum theory of gravity. The present text adopts this point of view, addressing the following basic questions: What are the main conceptual issues in quantum theory? How can these issues be solved within a new theoretical framework of quantum theory? A possible way to overcome critical issues in present-day quantum physics - such as a priori assumptions about space and time that are not compatible with a theory of quantum gravity, and the impossibility of talking about systems without reference to an external observer - is through a reformulation of quantum theory in terms of a different mathematical framework called topos theory. This course-tested primer sets out to explain to graduate students and newcomers to the field alike, the reasons for choosing topos theory to resolve the above-mentioned issues and how it brings quantum physics back to looking more like a ''neo-realist'' classical physics theory again.

  4. Intrinsic irreversibility in quantum theory

    International Nuclear Information System (INIS)

    Prigogine, I.; Petrosky, T.Y.

    1987-01-01

    Quantum theory has a dual structure: while solutions of the Schroedinger equation evolve in a deterministic and time reversible way, measurement introduces irreversibility and stochasticity. This presents a contrast to Bohr-Sommerfeld-Einstein theory, in which transitions between quantum states are associated with spontaneous and induced transitions, defined in terms of stochastic processes. A new form of quantum theory is presented here, which contains an intrinsic form of irreversibility, independent of observation. This new form applies to situations corresponding to a continuous spectrum and to quantum states with finite life time. The usual non-commutative algebra associated to quantum theory is replaced by more general algebra, in which operators are also non-distributive. Our approach leads to a number of predictions, which hopefully may be verified or refuted in the next years. (orig.)

  5. Introduction to quantum field theory

    CERN Document Server

    Alvarez-Gaumé, Luís

    1994-01-01

    The purpose of this lecture is to review some elementary aspects of Quantum Field Theory. From the necessity to introduce quantum fields once quantum mechanics and special relativity are put together, to some of the basic practical computational tools in the subject, including the canonical quantization of simple field theories, the derivation of Feynman rules, computation of cross sections and decay rates, some introductory remarks on the treatment of unstable states and the possible realization of symmetries in a general field theory. The audience is required to have a working knowledge of quantum mechanics and special relativity and it would also be desirable to know the rudiments of relativistic quantum mechanics.

  6. Quantum group gauge theory on quantum spaces

    International Nuclear Information System (INIS)

    Brzezinski, T.; Majid, S.

    1993-01-01

    We construct quantum group-valued canonical connections on quantum homogeneous spaces, including a q-deformed Dirac monopole on the quantum sphere of Podles quantum differential coming from the 3-D calculus of Woronowicz on SU q (2). The construction is presented within the setting of a general theory of quantum principal bundles with quantum group (Hopf algebra) fiber, associated quantum vector bundles and connection one-forms. Both the base space (spacetime) and the total space are non-commutative algebras (quantum spaces). (orig.)

  7. Nonequilibrium quantum field theories

    International Nuclear Information System (INIS)

    Niemi, A.J.

    1988-01-01

    Combining the Feynman-Vernon influence functional formalism with the real-time formulation of finite-temperature quantum field theories we present a general approach to relativistic quantum field theories out of thermal equilibrium. We clarify the physical meaning of the additional fields encountered in the real-time formulation of quantum statistics and outline diagrammatic rules for perturbative nonequilibrium computations. We derive a generalization of Boltzmann's equation which gives a complete characterization of relativistic nonequilibrium phenomena. (orig.)

  8. Towards quantum gravity via quantum field theory. Problems and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Fredenhagen, Klaus [II. Institut fuer Theoretische Physik, Universitaet Hamburg (Germany)

    2016-07-01

    General Relativity is a classical field theory; the standard methods for constructing a corresponding quantum field theory, however, meet severe difficulties, in particular perturbative non-renormalizability and the problem of background independence. Nevertheless, modern approaches to quantum field theory have significantly lowered these obstacles. On the side of non-renormalizability, this is the concept of effective theories, together with indications for better non-perturbative features of the renormalization group flow. On the side of background independence the main progress comes from an improved understanding of quantum field theories on generic curved spacetimes. Combining these informations, a promising approach to quantum gravity is an expansion around a classical solution which then is a quantum field theory on a given background, augmented by an identity which expresses independence against infinitesimal shifts of the background. The arising theory is expected to describe small corrections to classical general relativity. Inflationary cosmology is expected to arise as a lowest order approximation.

  9. Proceedings of quantum field theory, quantum mechanics, and quantum optics

    International Nuclear Information System (INIS)

    Dodonov, V.V.; Man; ko, V.I.

    1991-01-01

    This book contains papers presented at the XVIII International Colloquium on Group Theoretical Methods in Physics held in Moscow on June 4-9, 1990. Topics covered include; applications of algebraic methods in quantum field theory, quantum mechanics, quantum optics, spectrum generating groups, quantum algebras, symmetries of equations, quantum physics, coherent states, group representations and space groups

  10. Quantum information theory and quantum statistics

    International Nuclear Information System (INIS)

    Petz, D.

    2008-01-01

    Based on lectures given by the author, this book focuses on providing reliable introductory explanations of key concepts of quantum information theory and quantum statistics - rather than on results. The mathematically rigorous presentation is supported by numerous examples and exercises and by an appendix summarizing the relevant aspects of linear analysis. Assuming that the reader is familiar with the content of standard undergraduate courses in quantum mechanics, probability theory, linear algebra and functional analysis, the book addresses graduate students of mathematics and physics as well as theoretical and mathematical physicists. Conceived as a primer to bridge the gap between statistical physics and quantum information, a field to which the author has contributed significantly himself, it emphasizes concepts and thorough discussions of the fundamental notions to prepare the reader for deeper studies, not least through the selection of well chosen exercises. (orig.)

  11. Quantum information and relativity theory

    International Nuclear Information System (INIS)

    Peres, Asher; Terno, Daniel R.

    2004-01-01

    This article discusses the intimate relationship between quantum mechanics, information theory, and relativity theory. Taken together these are the foundations of present-day theoretical physics, and their interrelationship is an essential part of the theory. The acquisition of information from a quantum system by an observer occurs at the interface of classical and quantum physics. The authors review the essential tools needed to describe this interface, i.e., Kraus matrices and positive-operator-valued measures. They then discuss how special relativity imposes severe restrictions on the transfer of information between distant systems and the implications of the fact that quantum entropy is not a Lorentz-covariant concept. This leads to a discussion of how it comes about that Lorentz transformations of reduced density matrices for entangled systems may not be completely positive maps. Quantum field theory is, of course, necessary for a consistent description of interactions. Its structure implies a fundamental tradeoff between detector reliability and localizability. Moreover, general relativity produces new and counterintuitive effects, particularly when black holes (or, more generally, event horizons) are involved. In this more general context the authors discuss how most of the current concepts in quantum information theory may require a reassessment

  12. The development of elementary quantum theory

    CERN Document Server

    Capellmann, Herbert

    2017-01-01

    This book traces the evolution of the ideas that eventually resulted in the elementary quantum theory in 1925/26. Further, it discusses the essential differences between the fundamental equations of Quantum Theory derived by Born and Jordan, logically comprising Quantum Mechanics and Quantum Optics, and the traditional view of the development of Quantum Mechanics. Drawing on original publications and letters written by the main protagonists of that time, it shows that Einstein’s contributions from 1905 to 1924 laid the essential foundations for the development of Quantum Theory. Einstein introduced quantization of the radiation field; Born added quantized mechanical behavior. In addition, Born recognized that Quantum Mechanics necessarily required Quantum Optics; his radical concept of truly discontinuous and statistical quantum transitions (“quantum leaps”) was directly based on Einstein’s physical concepts.

  13. Interferometric Computation Beyond Quantum Theory

    Science.gov (United States)

    Garner, Andrew J. P.

    2018-03-01

    There are quantum solutions for computational problems that make use of interference at some stage in the algorithm. These stages can be mapped into the physical setting of a single particle travelling through a many-armed interferometer. There has been recent foundational interest in theories beyond quantum theory. Here, we present a generalized formulation of computation in the context of a many-armed interferometer, and explore how theories can differ from quantum theory and still perform distributed calculations in this set-up. We shall see that quaternionic quantum theory proves a suitable candidate, whereas box-world does not. We also find that a classical hidden variable model first presented by Spekkens (Phys Rev A 75(3): 32100, 2007) can also be used for this type of computation due to the epistemic restriction placed on the hidden variable.

  14. Fundamental Principle for Quantum Theory

    OpenAIRE

    Khrennikov, Andrei

    2002-01-01

    We propose the principle, the law of statistical balance for basic physical observables, which specifies quantum statistical theory among all other statistical theories of measurements. It seems that this principle might play in quantum theory the role that is similar to the role of Einstein's relativity principle.

  15. Hyperfunction quantum field theory

    International Nuclear Information System (INIS)

    Nagamachi, S.; Mugibayashi, N.

    1976-01-01

    The quantum field theory in terms of Fourier hyperfunctions is constructed. The test function space for hyperfunctions does not contain C infinitely functios with compact support. In spite of this defect the support concept of H-valued Fourier hyperfunctions allows to formulate the locality axiom for hyperfunction quantum field theory. (orig.) [de

  16. Quantum Field Theory in (0 + 1) Dimensions

    Science.gov (United States)

    Boozer, A. D.

    2007-01-01

    We show that many of the key ideas of quantum field theory can be illustrated simply and straightforwardly by using toy models in (0 + 1) dimensions. Because quantum field theory in (0 + 1) dimensions is equivalent to quantum mechanics, these models allow us to use techniques from quantum mechanics to gain insight into quantum field theory. In…

  17. Reality, Causality, and Probability, from Quantum Mechanics to Quantum Field Theory

    Science.gov (United States)

    Plotnitsky, Arkady

    2015-10-01

    These three lectures consider the questions of reality, causality, and probability in quantum theory, from quantum mechanics to quantum field theory. They do so in part by exploring the ideas of the key founding figures of the theory, such N. Bohr, W. Heisenberg, E. Schrödinger, or P. A. M. Dirac. However, while my discussion of these figures aims to be faithful to their thinking and writings, and while these lectures are motivated by my belief in the helpfulness of their thinking for understanding and advancing quantum theory, this project is not driven by loyalty to their ideas. In part for that reason, these lectures also present different and even conflicting ways of thinking in quantum theory, such as that of Bohr or Heisenberg vs. that of Schrödinger. The lectures, most especially the third one, also consider new physical, mathematical, and philosophical complexities brought in by quantum field theory vis-à-vis quantum mechanics. I close by briefly addressing some of the implications of the argument presented here for the current state of fundamental physics.

  18. Intermediate spectral theory and quantum dynamics

    CERN Document Server

    de Oliveira, Cesar R

    2008-01-01

    The spectral theory of linear operators plays a key role in the mathematical formulation of quantum theory. Furthermore, such a rigorous mathematical foundation leads to a more profound insight into the nature of quantum mechanics. This textbook provides a concise and comprehensible introduction to the spectral theory of (unbounded) self-adjoint operators and its application in quantum dynamics. The book places emphasis on the symbiotic relationship of these two domains by (1) presenting the basic mathematics of nonrelativistic quantum mechanics of one particle, i.e., developing the spectral theory of self-adjoint operators in infinite-dimensional Hilbert spaces from the beginning, and (2) giving an overview of many of the basic functional aspects of quantum theory, from its physical principles to the mathematical models. The book is intended for graduate (or advanced undergraduate) students and researchers interested in mathematical physics. It starts with linear operator theory, spectral questions and self-...

  19. M(atrix) theory: matrix quantum mechanics as a fundamental theory

    International Nuclear Information System (INIS)

    Taylor, Washington

    2001-01-01

    This article reviews the matrix model of M theory. M theory is an 11-dimensional quantum theory of gravity that is believed to underlie all superstring theories. M theory is currently the most plausible candidate for a theory of fundamental physics which reconciles gravity and quantum field theory in a realistic fashion. Evidence for M theory is still only circumstantial -- no complete background-independent formulation of the theory exists as yet. Matrix theory was first developed as a regularized theory of a supersymmetric quantum membrane. More recently, it has appeared in a different guise as the discrete light-cone quantization of M theory in flat space. These two approaches to matrix theory are described in detail and compared. It is shown that matrix theory is a well-defined quantum theory that reduces to a supersymmetric theory of gravity at low energies. Although its fundamental degrees of freedom are essentially pointlike, higher-dimensional fluctuating objects (branes) arise through the non-Abelian structure of the matrix degrees of freedom. The problem of formulating matrix theory in a general space-time background is discussed, and the connections between matrix theory and other related models are reviewed

  20. Particles, fields and quantum theory

    International Nuclear Information System (INIS)

    Bongaarts, P.J.M.

    1982-01-01

    The author gives an introduction to the development of gauge theories of the fundamental interactions. Starting from classical mechanics and quantum mechanics the development of quantum electrodynamics and non-abelian gauge theories is described. (HSI)

  1. Causal quantum theory and the collapse locality loophole

    International Nuclear Information System (INIS)

    Kent, Adrian

    2005-01-01

    Causal quantum theory is an umbrella term for ordinary quantum theory modified by two hypotheses: state vector reduction is a well-defined process, and strict local causality applies. The first of these holds in some versions of Copenhagen quantum theory and need not necessarily imply practically testable deviations from ordinary quantum theory. The second implies that measurement events which are spacelike separated have no nonlocal correlations. To test this prediction, which sharply differs from standard quantum theory, requires a precise definition of state vector reduction. Formally speaking, any precise version of causal quantum theory defines a local hidden variable theory. However, causal quantum theory is most naturally seen as a variant of standard quantum theory. For that reason it seems a more serious rival to standard quantum theory than local hidden variable models relying on the locality or detector efficiency loopholes. Some plausible versions of causal quantum theory are not refuted by any Bell experiments to date, nor is it evident that they are inconsistent with other experiments. They evade refutation via a neglected loophole in Bell experiments--the collapse locality loophole--which exists because of the possible time lag between a particle entering a measurement device and a collapse taking place. Fairly definitive tests of causal versus standard quantum theory could be made by observing entangled particles separated by ≅0.1 light seconds

  2. Interpreting quantum theory a therapeutic approach

    CERN Document Server

    Friederich, S

    2014-01-01

    Is it possible to approach quantum theory in a 'therapeutic' vein that sees its foundational problems as arising from mistaken conceptual presuppositions? The book explores the prospects for this project and, in doing so, discusses such fascinating issues as the nature of quantum states, explanation in quantum theory, and 'quantum non-locality'.

  3. A philosophical approach to quantum field theory

    CERN Document Server

    Öttinger, Hans Christian

    2015-01-01

    This text presents an intuitive and robust mathematical image of fundamental particle physics based on a novel approach to quantum field theory, which is guided by four carefully motivated metaphysical postulates. In particular, the book explores a dissipative approach to quantum field theory, which is illustrated for scalar field theory and quantum electrodynamics, and proposes an attractive explanation of the Planck scale in quantum gravity. Offering a radically new perspective on this topic, the book focuses on the conceptual foundations of quantum field theory and ontological questions. It also suggests a new stochastic simulation technique in quantum field theory which is complementary to existing ones. Encouraging rigor in a field containing many mathematical subtleties and pitfalls this text is a helpful companion for students of physics and philosophers interested in quantum field theory, and it allows readers to gain an intuitive rather than a formal understanding.

  4. Dual field theories of quantum computation

    International Nuclear Information System (INIS)

    Vanchurin, Vitaly

    2016-01-01

    Given two quantum states of N q-bits we are interested to find the shortest quantum circuit consisting of only one- and two- q-bit gates that would transfer one state into another. We call it the quantum maze problem for the reasons described in the paper. We argue that in a large N limit the quantum maze problem is equivalent to the problem of finding a semiclassical trajectory of some lattice field theory (the dual theory) on an N+1 dimensional space-time with geometrically flat, but topologically compact spatial slices. The spatial fundamental domain is an N dimensional hyper-rhombohedron, and the temporal direction describes transitions from an arbitrary initial state to an arbitrary target state and so the initial and final dual field theory conditions are described by these two quantum computational states. We first consider a complex Klein-Gordon field theory and argue that it can only be used to study the shortest quantum circuits which do not involve generators composed of tensor products of multiple Pauli Z matrices. Since such situation is not generic we call it the Z-problem. On the dual field theory side the Z-problem corresponds to massless excitations of the phase (Goldstone modes) that we attempt to fix using Higgs mechanism. The simplest dual theory which does not suffer from the massless excitation (or from the Z-problem) is the Abelian-Higgs model which we argue can be used for finding the shortest quantum circuits. Since every trajectory of the field theory is mapped directly to a quantum circuit, the shortest quantum circuits are identified with semiclassical trajectories. We also discuss the complexity of an actual algorithm that uses a dual theory prospective for solving the quantum maze problem and compare it with a geometric approach. We argue that it might be possible to solve the problem in sub-exponential time in 2 N , but for that we must consider the Klein-Gordon theory on curved spatial geometry and/or more complicated (than N

  5. Finite quantum field theories

    International Nuclear Information System (INIS)

    Lucha, W.; Neufeld, H.

    1986-01-01

    We investigate the relation between finiteness of a four-dimensional quantum field theory and global supersymmetry. To this end we consider the most general quantum field theory and analyse the finiteness conditions resulting from the requirement of the absence of divergent contributions to the renormalizations of the parameters of the theory. In addition to the gauge bosons, both fermions and scalar bosons turn out to be a necessary ingredient in a non-trivial finite gauge theory. In all cases discussed, the supersymmetric theory restricted by two well-known constraints on the dimensionless couplings proves to be the unique solution of the finiteness conditions. (Author)

  6. A second course in topos quantum theory

    CERN Document Server

    Flori, Cecilia

    2018-01-01

    This advanced course, a sequel to the first volume of this lecture series on topos quantum theory, delves deeper into the theory, addressing further technical aspects and recent advances. These include, but are not limited to, the development of physical quantities and self-adjoint operators; insights into the quantization process; the description of an alternative, covariant version of topos quantum theory; and last but not least, the development of a new concept of spacetime. The book builds on the concepts introduced in the first volume (published as Lect. Notes Phys. 868), which presents the main building blocks of the theory and how it could provide solutions to interpretational problems in quantum theory, such as: What are the main conceptual issues in quantum theory? And how can these issues be solved within a new theoretical framework of quantum theory? These two volumes together provide a complete, basic course on topos quantum theory, offering a set of mathematical tools to readers interested in tac...

  7. Nonlocal quantum field theory and stochastic quantum mechanics

    International Nuclear Information System (INIS)

    Namsrai, K.

    1986-01-01

    This volume presents a systematic development of the implications to both quantum mechanics and quantum field theory of the hypothesis of a stochastic structure of space-time. Some applications to elementary particle physics are also considered. Part 1 is concerned with nonlocal quantum field theory and, among other topics, deals with quantized fields, electromagnetic and weak processes, the Schroedinger equation, and functional methods and their applications. Part 2 presents an introduction to stochastic mechanics and many specific problems of interest are discussed. (Auth.)

  8. Effective quantum field theories

    International Nuclear Information System (INIS)

    Georgi, H.M.

    1989-01-01

    Certain dimensional parameters play a crucial role in the understanding of weak and strong interactions based on SU(2) x U(1) and SU(3) symmetry group theories and of grand unified theories (GUT's) based on SU(5). These parameters are the confinement scale of quantum chromodynamics and the breaking scales of SU(2) x U(1) and SU(5). The concepts of effective quantum field theories and renormalisability are discussed with reference to the economics and ethics of research. (U.K.)

  9. Measurement theory in quantum mechanics

    International Nuclear Information System (INIS)

    Klein, G.

    1980-01-01

    It is assumed that consciousness, memory and liberty (within the limits of the quantum mechanics indeterminism) are fundamental properties of elementary particles. Then, using this assumption it is shown how measurements and observers may be introduced in a natural way in the quantum mechanics theory. There are no longer fundamental differences between macroscopic and microscopic objects, between classical and quantum objects, between observer and object. Thus, discrepancies and paradoxes have disappeared from the conventional quantum mechanics theory. One consequence of the cumulative memory of the particles is that the sum of negentropy plus information is a constant. Using this theory it is also possible to explain the 'paranormal' phenomena and what is their difference from the 'normal' ones [fr

  10. Quantum chemistry simulation on quantum computers: theories and experiments.

    Science.gov (United States)

    Lu, Dawei; Xu, Boruo; Xu, Nanyang; Li, Zhaokai; Chen, Hongwei; Peng, Xinhua; Xu, Ruixue; Du, Jiangfeng

    2012-07-14

    It has been claimed that quantum computers can mimic quantum systems efficiently in the polynomial scale. Traditionally, those simulations are carried out numerically on classical computers, which are inevitably confronted with the exponential growth of required resources, with the increasing size of quantum systems. Quantum computers avoid this problem, and thus provide a possible solution for large quantum systems. In this paper, we first discuss the ideas of quantum simulation, the background of quantum simulators, their categories, and the development in both theories and experiments. We then present a brief introduction to quantum chemistry evaluated via classical computers followed by typical procedures of quantum simulation towards quantum chemistry. Reviewed are not only theoretical proposals but also proof-of-principle experimental implementations, via a small quantum computer, which include the evaluation of the static molecular eigenenergy and the simulation of chemical reaction dynamics. Although the experimental development is still behind the theory, we give prospects and suggestions for future experiments. We anticipate that in the near future quantum simulation will become a powerful tool for quantum chemistry over classical computations.

  11. Knots, topology and quantum field theories

    International Nuclear Information System (INIS)

    Lusanna, L.

    1989-01-01

    The title of the workshop, Knots, Topology and Quantum Field Theory, accurate reflected the topics discussed. There have been important developments in mathematical and quantum field theory in the past few years, which had a large impact on physicist thinking. It is historically unusual and pleasing that these developments are taking place as a result of an intense interaction between mathematical physicists and mathematician. On the one hand, topological concepts and methods are playing an increasingly important lead to novel mathematical concepts: for instance, the study of quantum groups open a new chapter in the deformation theory of Lie algebras. These developments at present will lead to new insights into the theory of elementary particles and their interactions. In essence, the talks dealt with three, broadly defined areas of theoretical physics. One was topological quantum field theories, the other the problem of quantum groups and the third one certain aspects of more traditional field theories, such as, for instance, quantum gravity. These topics, however, are interrelated and the general theme of the workshop defies rigid classification; this was evident from the cross references to be found in almo all the talks

  12. Quantum field theory in gravitational background

    International Nuclear Information System (INIS)

    Narnhofer, H.

    1986-01-01

    The author suggests ignoring the influence of the quantum field on the gravitation as the first step to combine quantum field theory and gravitation theory, but to consider the gravitational field as fixed and thus study quantum field theory on a manifold. This subject evoked interest when thermal radiation of a black hole was predicted. The author concentrates on the free quantum field and can split the problem into two steps: the Weyl-algebra of the free field and the Wightman functional on the tangent space

  13. The birth and growth of quantum theory. From quantum hypothesis to quantum mechanics

    International Nuclear Information System (INIS)

    Peng Huanwu

    2001-01-01

    The short history covers the birth and early growth of quantum theory from 1900 to 1928, beginning with Planck's formula and the quantum hypothesis for the black-body radiation. After a description of the rise and decline of the old quantum theory in connection with its application in spectroscopy, two paths based on the rigorous formulation of the correspondence principle leading to matrix mechanics (1925) and Dirac's non-commuting q-numbers (1925) are explained. Another path based on the generalization of the wave-particle aspect of light quanta is then shown to lead to wave mechanics (1926). Among the works during the early growth of quantum mechanics in 1927-1928, representation theory, the uncertainty principle, two-electron problems, and Dirac's relativistic theory of electrons are discussed

  14. Relativity, symmetry and the structure of quantum theory

    CERN Document Server

    Klink, William H; Schweiger, Wolfgang

    Quantum theory is one of the most successful of all physical theories. Our everyday world is dominated by devices that function because of knowledge of the quantum world. Yet many, physicists and non-physicists alike, find the theory which explains the behavior of the quantum world baffling and strange. This book is the first in a series of three that argues that relativity and symmetry determine the structure of quantum theory. That is to say, the structure of quantum theory is what it is because of relativity and symmetry. There are different types of relativity, each leading to a particular type of quantum theory. This book deals specifically with what we call Newton relativity, the form of relativity built into Newtonian mechanics, and the quantum theory to which it gives rise, which we call Galilean (often misleadingly called non-relativistic) quantum theory. Key Features: • Meaning and significance of the term of relativity; discussion of the principle of relativity. • Relation of symmetry to relati...

  15. Guide to mathematical concepts of quantum theory

    International Nuclear Information System (INIS)

    Heinosaari, T.; Ziman, M.

    2008-01-01

    Quantum Theory is one of the pillars of modern science developed over the last hundred years. In this review we introduce, step by step, the quantum theory understood as a mathematical model describing quantum experiments. We start with splitting the experiment into two parts: a preparation process and a measurement process leading to a registration of a particular outcome. These two ingredients of the experiment are represented by states and effects, respectively. Further, the whole picture of quantum measurement will be developed and concepts of observables, instruments and measurement models representing the three different descriptions on experiments will be introduced. In the second stage, we enrich the model of the experiment by introducing the concept of quantum channel describing the system changes between preparations and measurements. At the very end we review the elementary properties of quantum entanglement. The text contains many examples and exercise covering also many topics from quantum information theory and quantum measurement theory. The goal is to give a mathematically clear and self-containing explanation of the main concepts of the modern language of quantum theory (Authors)

  16. Guide to mathematical concepts of quantum theory

    International Nuclear Information System (INIS)

    Heinosaari, T.; Ziman, M.

    2008-01-01

    Quantum Theory is one of the pillars of modern science developed over the last hundred years. In this review paper we introduce, step by step, the quantum theory understood as a mathematical model describing quantum experiments. We start with splitting the experiment into two parts: a preparation process and a measurement process leading to a registration of a particular outcome. These two ingredients of the experiment are represented by states and effects, respectively. Further, the whole picture of quantum measurement will be developed and concepts of observables, instruments and measurement models representing the three different descriptions on experiments will be introduced. In the second stage, we enrich the model of the experiment by introducing the concept of quantum channel describing the system changes between preparations and measurements. At the very end we review the elementary properties of quantum entanglement. The text contains many examples and exercise covering also many topics from quantum information theory and quantum measurement theory. The goal is to give a mathematically clear and self-containing explanation of the main concepts of the modern language of quantum theory. (author)

  17. Fundamental principles of quantum theory

    International Nuclear Information System (INIS)

    Bugajski, S.

    1980-01-01

    After introducing general versions of three fundamental quantum postulates - the superposition principle, the uncertainty principle and the complementarity principle - the question of whether the three principles are sufficiently strong to restrict the general Mackey description of quantum systems to the standard Hilbert-space quantum theory is discussed. An example which shows that the answer must be negative is constructed. An abstract version of the projection postulate is introduced and it is demonstrated that it could serve as the missing physical link between the general Mackey description and the standard quantum theory. (author)

  18. The quantum double in integrable quantum field theory

    International Nuclear Information System (INIS)

    Bernard, D.; LeClair, A.

    1993-01-01

    Various aspects of recent works on affine quantum group symmetry of integrable 2D quantum field theory are reviewed and further clarified. A geometrical meaning is given to the quantum double, and other properties of quantum groups. The S-matrix is identified with the universal R-matrix. Multiplicative presentations of the yangian double are analyzed. (orig.)

  19. A general theory of quantum relativity

    International Nuclear Information System (INIS)

    Minic, Djordje; Tze, C.-H.

    2004-01-01

    The geometric form of standard quantum mechanics is compatible with the two postulates: (1) the laws of physics are invariant under the choice of experimental setup and (2) every quantum observation or event is intrinsically statistical. These postulates remain compatible within a background independent extension of quantum theory with a local intrinsic time implying the relativity of the concept of a quantum event. In this extension the space of quantum events becomes dynamical and only individual quantum events make sense observationally. At the core of such a general theory of quantum relativity is the three-way interplay between the symplectic form, the dynamical metric and non-integrable almost complex structure of the space of quantum events. Such a formulation provides a missing conceptual ingredient in the search for a background independent quantum theory of gravity and matter. The crucial new technical element in our scheme derives from a set of recent mathematical results on certain infinite-dimensional almost Kahler manifolds which replace the complex projective spaces of standard quantum mechanics

  20. Features of finite quantum field theories

    International Nuclear Information System (INIS)

    Boehm, M.; Denner, A.

    1987-01-01

    We analyse general features of finite quantum field theories. A quantum field theory is considered to be finite, if the corresponding renormalization constants evaluated in the dimensional regularization scheme are free from divergences in all orders of perturbation theory. We conclude that every finite renormalizable quantum field theory with fields of spin one or less must contain both scalar fields and fermion fields and nonabelian gauge fields. Some secific nonsupersymmetric models are found to be finite at the one- and two-loop level. (orig.)

  1. Bell-type quantum field theories

    International Nuclear Information System (INIS)

    Duerr, Detlef; Goldstein, Sheldon; Tumulka, Roderich; Zanghi, Nino

    2005-01-01

    In his paper (1986 Beables for quantum field theory Phys. Rep. 137 49-54) John S Bell proposed how to associate particle trajectories with a lattice quantum field theory, yielding what can be regarded as a vertical bar Ψ vertical bar 2 -distributed Markov process on the appropriate configuration space. A similar process can be defined in the continuum, for more or less any regularized quantum field theory; we call such processes Bell-type quantum field theories. We describe methods for explicitly constructing these processes. These concern, in addition to the definition of the Markov processes, the efficient calculation of jump rates, how to obtain the process from the processes corresponding to the free and interaction Hamiltonian alone, and how to obtain the free process from the free Hamiltonian or, alternatively, from the one-particle process by a construction analogous to 'second quantization'. As an example, we consider the process for a second quantized Dirac field in an external electromagnetic field. (topical review)

  2. Einstein and the quantum theory

    International Nuclear Information System (INIS)

    Pais, A.

    1979-01-01

    The following topics are discussed: The light-quantum hypothesis and its gradual evolution into the photon concept. Early history of the photoelectric effect. The theoretical and experimental reasons why the resistance to the photon was stronger and more protracted than for any other particle proposed to date. Einstein's position regarding the Bohr--Kramers--Slater suggestion, the last bastion of resistance to the photon. Einstein's analysis of fluctuations around thermal equilibrium and his proposal of a duality between particles and waves, in 1909 for electromagnetic radiation (the first time this duality was ever stated) and in January 1925 for matter (prior to quantum mechanics and for reasons independent of those given earlier by de Broglie). His demonstration that long-known specific heat anomalies are quantum effects. His role in the evolution of the third law of thermodynamics. His new derivation of Planck's law in 1917 which also marks the beginning of his concern with the failure of classical causality. His role as one of the founders of quantum statistics and his discovery of the first example of a phase transition derived by using purely statistical methods. His position as a critic of quantum mechanics. Initial doubts on the consistency of quantum mechanics (1926--1930). His view maintained from 1930 until the end of his life: quantum mechanics is logically consistent and quite successful but it is incomplete. His attitude toward success. His criterion of objective reality. Differences in the roles relativity and quantum theory played in Einstein's life. His vision regarding quantum theory in the context of a unified field theory. His last autobiographical sketch, written a few months before his death, concluding with a statement about the quantum theory, a subject to which (by his own account) he had given more thought than even to general relativity

  3. Quantum processes: A Whiteheadian interpretation of quantum field theory

    Science.gov (United States)

    Bain, Jonathan

    Quantum processes: A Whiteheadian interpretation of quantum field theory is an ambitious and thought-provoking exercise in physics and metaphysics, combining an erudite study of the very complex metaphysics of A.N. Whitehead with a well-informed discussion of contemporary issues in the philosophy of algebraic quantum field theory. Hättich's overall goal is to construct an interpretation of quantum field theory. He does this by translating key concepts in Whitehead's metaphysics into the language of algebraic quantum field theory. In brief, this Hättich-Whitehead (H-W, hereafter) interpretation takes "actual occasions" as the fundamental ontological entities of quantum field theory. An actual occasion is the result of two types of processes: a "transition process" in which a set of initial possibly-possessed properties for the occasion (in the form of "eternal objects") is localized to a space-time region; and a "concrescence process" in which a subset of these initial possibly-possessed properties is selected and actualized to produce the occasion. Essential to these processes is the "underlying activity", which conditions the way in which properties are initially selected and subsequently actualized. In short, under the H-W interpretation of quantum field theory, an initial set of possibly-possessed eternal objects is represented by a Boolean sublattice of the lattice of projection operators determined by a von Neumann algebra R (O) associated with a region O of Minkowski space-time, and the underlying activity is represented by a state on R (O) obtained by conditionalizing off of the vacuum state. The details associated with the H-W interpretation involve imposing constraints on these representations motivated by principles found in Whitehead's metaphysics. These details are spelled out in the three sections of the book. The first section is a summary and critique of Whitehead's metaphysics, the second section introduces the formalism of algebraic quantum field

  4. Weak Quantum Theory: Formal Framework and Selected Applications

    International Nuclear Information System (INIS)

    Atmanspacher, Harald; Filk, Thomas; Roemer, Hartmann

    2006-01-01

    Two key concepts of quantum theory, complementarity and entanglement, are considered with respect to their significance in and beyond physics. An axiomatically formalized, weak version of quantum theory, more general than the ordinary quantum theory of physical systems, is described. Its mathematical structure generalizes the algebraic approach to ordinary quantum theory. The crucial formal feature leading to complementarity and entanglement is the non-commutativity of observables.The ordinary Hilbert space quantum mechanics can be recovered by stepwise adding the necessary features. This provides a hierarchy of formal frameworks of decreasing generality and increasing specificity. Two concrete applications, more specific than weak quantum theory and more general than ordinary quantum theory, are discussed: (i) complementarity and entanglement in classical dynamical systems, and (ii) complementarity and entanglement in the bistable perception of ambiguous stimuli

  5. Abelian Chern endash Simons theory. I. A topological quantum field theory

    International Nuclear Information System (INIS)

    Manoliu, M.

    1998-01-01

    We give a construction of the Abelian Chern endash Simons gauge theory from the point of view of a 2+1-dimensional topological quantum field theory. The definition of the quantum theory relies on geometric quantization ideas that have been previously explored in connection to the non-Abelian Chern endash Simons theory [J. Diff. Geom. 33, 787 endash 902 (1991); Topology 32, 509 endash 529 (1993)]. We formulate the topological quantum field theory in terms of the category of extended 2- and 3-manifolds introduced in a preprint by Walker in 1991 and prove that it satisfies the axioms of unitary topological quantum field theories formulated by Atiyah [Publ. Math. Inst. Hautes Etudes Sci. Pans 68, 175 endash 186 (1989)]. copyright 1998 American Institute of Physics

  6. Quantum optical effective-medium theory and transformation quantum optics for metamaterials

    DEFF Research Database (Denmark)

    Wubs, Martijn; Amooghorban, Ehsan; Zhang, Jingjing

    2016-01-01

    electrodynamics of media with both loss and gain. In the second part of this paper, we present a new application of transformation optics whereby local spontaneous-emission rates of quantum emitters can be designed. This follows from an analysis how electromagnetic Green functions transform under coordinate......While typically designed to manipulate classical light, metamaterials have many potential applications for quantum optics as well. We argue why a quantum optical effective-medium theory is needed. We present such a theory for layered metamaterials that is valid for light propagation in all spatial...... directions, thereby generalizing earlier work for one-dimensional propagation. In contrast to classical effective-medium theory there is an additional effective parameter that describes quantum noise. Our results for metamaterials are based on a rather general Lagrangian theory for the quantum...

  7. Mathematical aspects of quantum field theory

    CERN Document Server

    de Faria, Edson

    2010-01-01

    Over the last century quantum field theory has made a significant impact on the formulation and solution of mathematical problems and inspired powerful advances in pure mathematics. However, most accounts are written by physicists, and mathematicians struggle to find clear definitions and statements of the concepts involved. This graduate-level introduction presents the basic ideas and tools from quantum field theory to a mathematical audience. Topics include classical and quantum mechanics, classical field theory, quantization of classical fields, perturbative quantum field theory, renormalization, and the standard model. The material is also accessible to physicists seeking a better understanding of the mathematical background, providing the necessary tools from differential geometry on such topics as connections and gauge fields, vector and spinor bundles, symmetries and group representations.

  8. From quantum gravity to quantum field theory via noncommutative geometry

    International Nuclear Information System (INIS)

    Aastrup, Johannes; Grimstrup, Jesper Møller

    2014-01-01

    A link between canonical quantum gravity and fermionic quantum field theory is established in this paper. From a spectral triple construction, which encodes the kinematics of quantum gravity, we construct semi-classical states which, in a semi-classical limit, give a system of interacting fermions in an ambient gravitational field. The emergent interaction involves flux tubes of the gravitational field. In the additional limit, where all gravitational degrees of freedom are turned off, a free fermionic quantum field theory emerges. (paper)

  9. Introduction to quantum field theory

    International Nuclear Information System (INIS)

    Kazakov, D.I.

    1988-01-01

    The lectures appear to be a continuation to the introduction to elementary principles of the quantum field theory. The work is aimed at constructing the formalism of standard particle interaction model. Efforts are made to exceed the limits of the standard model in the quantum field theory context. Grand unification models including strong and electrical weak interactions, supersymmetric generalizations of the standard model and grand unification theories and, finally, supergravitation theories including gravitation interaction to the universal scheme, are considered. 3 refs.; 19 figs.; 2 tabs

  10. 1. Vienna central european seminar on particle physics and quantum field theory. Advances in quantum field theory. Program

    International Nuclear Information System (INIS)

    Hueffel, H.

    2004-01-01

    The new seminar series 'Vienna central European seminar on particle physics and quantum field theory' has been created 2004 and is intended to provide interactions between leading researchers and junior physicists. This year 'Advances in quantum field theory' has been chosen as subject and is centred on field theoretic aspects of string dualities. The lectures mainly focus on these aspects of string dualities. Further lectures regarding supersymmetric gauge theories, quantum gravity and noncommutative field theory are presented. The vast field of research concerning string dualities justifies special attention to their effects on field theory. (author)

  11. Topics in quantum field theory

    International Nuclear Information System (INIS)

    Svaiter, N.F.

    2006-11-01

    This paper presents some important aspects on quantum field theory, covering the following aspects: the triumph and limitations of the quantum field theory; the field theory in curved spaces - Hawking and Unruh-Davies effects; the problem of divergent theory of the zero-point; the problem of the spinning detector and the Trocheries-Takeno vacuum; the field theory at finite temperature - symmetry breaking and phase transition; the problem of the summability of the perturbative series and the perturbative expansion for the strong coupling; quantized fields in presence of classical macroscopic structures; the Parisi-Wu stochastic quantization method

  12. Entropy, Topological Theories and Emergent Quantum Mechanics

    Directory of Open Access Journals (Sweden)

    D. Cabrera

    2017-02-01

    Full Text Available The classical thermostatics of equilibrium processes is shown to possess a quantum mechanical dual theory with a finite dimensional Hilbert space of quantum states. Specifically, the kernel of a certain Hamiltonian operator becomes the Hilbert space of quasistatic quantum mechanics. The relation of thermostatics to topological field theory is also discussed in the context of the approach of the emergence of quantum theory, where the concept of entropy plays a key role.

  13. The quantum theory of measurement

    CERN Document Server

    Busch, Paul; Mittelstaedt, Peter

    1996-01-01

    The amazing accuracy in verifying quantum effects experimentally has recently renewed interest in quantum mechanical measurement theory. In this book the authors give within the Hilbert space formulation of quantum mechanics a systematic exposition of the quantum theory of measurement. Their approach includes the concepts of unsharp objectification and of nonunitary transformations needed for a unifying description of various detailed investigations. The book addresses advanced students and researchers in physics and philosophy of science. In this second edition Chaps. II-IV have been substantially rewritten. In particular, an insolubility theorem for the objectification problem has been formulated in full generality, which includes unsharp object observables and unsharp pointers.

  14. Learning quantum field theory from elementary quantum mechanics

    International Nuclear Information System (INIS)

    Gosdzinsky, P.; Tarrach, R.

    1991-01-01

    The study of the Dirac delta potentials in more than one dimension allows the introduction within the framework of elementary quantum mechanics of many of the basic concepts of modern quantum field theory: regularization, renormalization group, asymptotic freedom, dimensional transmutation, triviality, etc. It is also interesting, by itself, as a nonstandard quantum mechanical problem

  15. Extension of PT-symmetric quantum mechanics to quantum field theory with cubic interaction

    International Nuclear Information System (INIS)

    Bender, Carl M.; Brody, Dorje C.; Jones, Hugh F.

    2004-01-01

    It has recently been shown that a non-Hermitian Hamiltonian H possessing an unbroken PT symmetry (i) has a real spectrum that is bounded below, and (ii) defines a unitary theory of quantum mechanics with positive norm. The proof of unitarity requires a linear operator C, which was originally defined as a sum over the eigenfunctions of H. However, using this definition to calculate C is cumbersome in quantum mechanics and impossible in quantum field theory. An alternative method is devised here for calculating C directly in terms of the operator dynamical variables of the quantum theory. This method is general and applies to a variety of quantum mechanical systems having several degrees of freedom. More importantly, this method is used to calculate the C operator in quantum field theory. The C operator is a time-independent observable in PT-symmetric quantum field theory

  16. Quantum measurement and algebraic quantum field theories

    International Nuclear Information System (INIS)

    DeFacio, B.

    1976-01-01

    It is shown that the physics and semantics of quantum measurement provide a natural interpretation of the weak neighborhoods of the states on observable algebras without invoking any ideas of ''a reading error'' or ''a measured range.'' Then the state preparation process in quantum measurement theory is shown to give the normal (or locally normal) states on the observable algebra. Some remarks are made concerning the physical implications of normal state for systems with an infinite number of degrees of freedom, including questions on open and closed algebraic theories

  17. Einstein's strugges with quantum theory a reappraisal

    CERN Document Server

    Home, Dipankar

    2007-01-01

    Einstein’s Struggles with Quantum Theory: A Reappraisal by Dipankar Home and Andrew Whitaker provides a detailed account of Albert Einstein’s thinking in regard to quantum physics. Until recently, most of Einstein’s views on quantum physics were dismissed and even ridiculed; some critics even suggested that Einstein was not able to grasp the complexities of the formalism of quantum theory and subtleties of the standard interpretation of this theory known as the Copenhagen interpretation put forward by Niels Bohr and his colleagues. But was that true? Modern scholarship argues otherwise, insist Drs. Home and Whitaker, who painstakingly explain the questions Einstein raised as well as offer a detailed discussion of Einstein’s position and major contributions to quantum theory, connecting them with contemporary studies on fundamental aspects of this theory. This unique book presents a mathematical as well as a non-mathematical route through the theories, controversies, and investigations, making the disc...

  18. Theories of quantum gravity: Pt. 1

    International Nuclear Information System (INIS)

    Aragone, C.

    1990-01-01

    Superstrings continue to be a source of inspiration for the basic understanding of quantum gravity. They seem to provide a more fundamental arena than quantum field theory. Even though we still do not have a theory of everything, string concepts bring a new theoretical richness to research in quantum and classical gravity. Papers presented at the session on this subject are reviewed. (author)

  19. Interference and inequality in quantum decision theory

    International Nuclear Information System (INIS)

    Cheon, Taksu; Takahashi, Taiki

    2010-01-01

    The quantum decision theory is examined in its simplest form of two-condition two-choice setting. A set of inequalities to be satisfied by any quantum conditional probability describing the decision process is derived. Experimental data indicating the breakdown of classical explanations are critically examined with quantum theory using the full set of quantum phases.

  20. Interference and inequality in quantum decision theory

    Energy Technology Data Exchange (ETDEWEB)

    Cheon, Taksu, E-mail: taksu.cheon@kochi-tech.ac.j [Laboratory of Physics, Kochi University of Technology, Tosa Yamada, Kochi 782-8502 (Japan); Takahashi, Taiki, E-mail: ttakahashi@lynx.let.hokudai.ac.j [Laboratory of Social Psychology, Department of Behavioral Science, Faculty of Letters, Hokkaido University, N.10, W.7, Kita-ku, Sapporo 060-0810 (Japan)

    2010-12-01

    The quantum decision theory is examined in its simplest form of two-condition two-choice setting. A set of inequalities to be satisfied by any quantum conditional probability describing the decision process is derived. Experimental data indicating the breakdown of classical explanations are critically examined with quantum theory using the full set of quantum phases.

  1. The theory of quantum information

    CERN Document Server

    Watrous, John

    2018-01-01

    This largely self-contained book on the theory of quantum information focuses on precise mathematical formulations and proofs of fundamental facts that form the foundation of the subject. It is intended for graduate students and researchers in mathematics, computer science, and theoretical physics seeking to develop a thorough understanding of key results, proof techniques, and methodologies that are relevant to a wide range of research topics within the theory of quantum information and computation. The book is accessible to readers with an understanding of basic mathematics, including linear algebra, mathematical analysis, and probability theory. An introductory chapter summarizes these necessary mathematical prerequisites, and starting from this foundation, the book includes clear and complete proofs of all results it presents. Each subsequent chapter includes challenging exercises intended to help readers to develop their own skills for discovering proofs concerning the theory of quantum information.

  2. Pilot-wave approaches to quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Struyve, Ward, E-mail: Ward.Struyve@fys.kuleuven.be [Institute of Theoretical Physics, K.U.Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Institute of Philosophy, K.U.Leuven, Kardinaal Mercierplein 2, B-3000 Leuven (Belgium)

    2011-07-08

    The purpose of this paper is to present an overview of recent work on pilot-wave approaches to quantum field theory. In such approaches, systems are not only described by their wave function, as in standard quantum theory, but also by some additional variables. In the non-relativistic pilot-wave theory of deBroglie and Bohm those variables are particle positions. In the context of quantum field theory, there are two natural choices, namely particle positions and fields. The incorporation of those variables makes it possible to provide an objective description of nature in which rather ambiguous notions such as 'measurement' and 'observer' play no fundamental role. As such, the theory is free of the conceptual difficulties, such as the measurement problem, that plague standard quantum theory.

  3. Fundamental aspects of quantum theory

    International Nuclear Information System (INIS)

    Gorini, V.; Frigerio, A.

    1986-01-01

    This book presents information on the following topics: general problems and crucial experiments; the classical behavior of measuring instruments; quantum interference effect for two atoms radiating a single photon; quantization and stochastic processes; quantum Markov processes driven by Bose noise; chaotic behavior in quantum mechanics; quantum ergodicity and chaos; microscopic and macroscopic levels of description; fundamental properties of the ground state of atoms and molecules; n-level systems interacting with Bosons - semiclassical limits; general aspects of gauge theories; adiabatic phase shifts for neutrons and photons; the spins of cyons and dyons; round-table discussion the the Aharonov-Bohm effect; gravity in quantum mechanics; the gravitational phase transition; anomalies and their cancellation; a new gauge without any ghost for Yang-Mills Theory; and energy density and roughening in the 3-D Ising ferromagnet

  4. Propensity, Probability, and Quantum Theory

    Science.gov (United States)

    Ballentine, Leslie E.

    2016-08-01

    Quantum mechanics and probability theory share one peculiarity. Both have well established mathematical formalisms, yet both are subject to controversy about the meaning and interpretation of their basic concepts. Since probability plays a fundamental role in QM, the conceptual problems of one theory can affect the other. We first classify the interpretations of probability into three major classes: (a) inferential probability, (b) ensemble probability, and (c) propensity. Class (a) is the basis of inductive logic; (b) deals with the frequencies of events in repeatable experiments; (c) describes a form of causality that is weaker than determinism. An important, but neglected, paper by P. Humphreys demonstrated that propensity must differ mathematically, as well as conceptually, from probability, but he did not develop a theory of propensity. Such a theory is developed in this paper. Propensity theory shares many, but not all, of the axioms of probability theory. As a consequence, propensity supports the Law of Large Numbers from probability theory, but does not support Bayes theorem. Although there are particular problems within QM to which any of the classes of probability may be applied, it is argued that the intrinsic quantum probabilities (calculated from a state vector or density matrix) are most naturally interpreted as quantum propensities. This does not alter the familiar statistical interpretation of QM. But the interpretation of quantum states as representing knowledge is untenable. Examples show that a density matrix fails to represent knowledge.

  5. Quantum theory from questions

    Energy Technology Data Exchange (ETDEWEB)

    Hoehn, Philipp [Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Vienna (Austria); Wever, Christopher [Institute for Theoretical Particle Physics, Karlsruhe (Germany)

    2016-07-01

    In contrast to relativity, quantum theory has evaded a commonly accepted apprehension, in part because of the lack of physical statements that fully characterize it. In an attempt to remedy the situation, we summarize a novel reconstruction of the explicit formalism of quantum theory (for arbitrarily many qubits) from elementary rules on an observer's information acquisition. Our approach is purely operational: we consider an observer O interrogating a system S with binary questions and define S's state as O's ''catalogue of knowledge'' about S; no ontic assumptions are necessary. From the rules, one can derive, among other things, the state spaces, the unitary group, the von Neumann evolution and show that the binary questions correspond to Pauli operators. The reconstruction also offers new structural insights in the form of novel informational charges and informational complementarity relations which define the state spaces and the unitary group. This reconstruction permits a new perspective on quantum theory.

  6. What If Quantum Theory Violates All Mathematics?

    Science.gov (United States)

    Rosinger, Elemér Elad

    2017-09-01

    It is shown by using a rather elementary argument in Mathematical Logic that if indeed, quantum theory does violate the famous Bell Inequalities, then quantum theory must inevitably also violate all valid mathematical statements, and in particular, such basic algebraic relations like 0 = 0, 1 = 1, 2 = 2, 3 = 3, … and so on … An interest in that result is due to the following three alternatives which it imposes upon both Physics and Mathematics: Quantum Theory is inconsistent. Quantum Theory together with Mathematics are inconsistent. Mathematics is inconsistent. In this regard one should recall that, up until now, it is not known whether Mathematics is indeed consistent.

  7. Spectral theory and quantum mechanics mathematical foundations of quantum theories, symmetries and introduction to the algebraic formulation

    CERN Document Server

    Moretti, Valter

    2017-01-01

    This book discusses the mathematical foundations of quantum theories. It offers an introductory text on linear functional analysis with a focus on Hilbert spaces, highlighting the spectral theory features that are relevant in physics. After exploring physical phenomenology, it then turns its attention to the formal and logical aspects of the theory. Further, this Second Edition collects in one volume a number of useful rigorous results on the mathematical structure of quantum mechanics focusing in particular on von Neumann algebras, Superselection rules, the various notions of Quantum Symmetry and Symmetry Groups, and including a number of fundamental results on the algebraic formulation of quantum theories. Intended for Master's and PhD students, both in physics and mathematics, the material is designed to be self-contained: it includes a summary of point-set topology and abstract measure theory, together with an appendix on differential geometry. The book also benefits established researchers by organizing ...

  8. Quantum-field theories as representations of a single $^\\ast$-algebra

    OpenAIRE

    Raab, Andreas

    2013-01-01

    We show that many well-known quantum field theories emerge as representations of a single $^\\ast$-algebra. These include free quantum field theories in flat and curved space-times, lattice quantum field theories, Wightman quantum field theories, and string theories. We prove that such theories can be approximated on lattices, and we give a rigorous definition of the continuum limit of lattice quantum field theories.

  9. Quantum theory from first principles an informational approach

    CERN Document Server

    D'Ariano, Giacomo Mauro; Perinotti, Paolo

    2017-01-01

    Quantum theory is the soul of theoretical physics. It is not just a theory of specific physical systems, but rather a new framework with universal applicability. This book shows how we can reconstruct the theory from six information-theoretical principles, by rebuilding the quantum rules from the bottom up. Step by step, the reader will learn how to master the counterintuitive aspects of the quantum world, and how to efficiently reconstruct quantum information protocols from first principles. Using intuitive graphical notation to represent equations, and with shorter and more efficient derivations, the theory can be understood and assimilated with exceptional ease. Offering a radically new perspective on the field, the book contains an efficient course of quantum theory and quantum information for undergraduates. The book is aimed at researchers, professionals, and students in physics, computer science and philosophy, as well as the curious outsider seeking a deeper understanding of the theory.

  10. Quantum paradoxes quantum theory for the perplexed

    CERN Document Server

    Aharonov, Yakir

    2005-01-01

    A Guide through the Mysteries of Quantum Physics!Yakir Aharonov is one of the pioneers in measuring theory, the nature of quantum correlations, superselection rules, and geometric phases and has been awarded numerous scientific honors. The author has contributed monumental concepts to theoretical physics, especially the Aharonov-Bohm effect and the Aharonov-Casher effect. Together with Daniel Rohrlich of the Weizmann Institute, Israel, he has written a pioneering work on the remaining mysteries of quantum mechanics. From the perspective of a preeminent researcher in the fundamental aspects of quantum mechanics, the text combines mathematical rigor with penetrating and concise language

  11. Quantum Field Theory

    CERN Document Server

    Zeidler, Eberhard

    This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists ranging from advanced undergraduate students to professional scientists. The book tries to bridge the existing gap between the different languages used by mathematicians and physicists. For students of mathematics it is shown that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which is beyond the usual curriculum in physics. It is the author's goal to present the state of the art of realizing Einstein's dream of a unified theory for the four fundamental forces in the universe (gravitational, electromagnetic, strong, and weak interaction). From the reviews: "… Quantum field theory is one of the great intellectual edifices in the history of human thought. … This volume differs from othe...

  12. Conceptual Foundations of Quantum Mechanics:. the Role of Evidence Theory, Quantum Sets, and Modal Logic

    Science.gov (United States)

    Resconi, Germano; Klir, George J.; Pessa, Eliano

    Recognizing that syntactic and semantic structures of classical logic are not sufficient to understand the meaning of quantum phenomena, we propose in this paper a new interpretation of quantum mechanics based on evidence theory. The connection between these two theories is obtained through a new language, quantum set theory, built on a suggestion by J. Bell. Further, we give a modal logic interpretation of quantum mechanics and quantum set theory by using Kripke's semantics of modal logic based on the concept of possible worlds. This is grounded on previous work of a number of researchers (Resconi, Klir, Harmanec) who showed how to represent evidence theory and other uncertainty theories in terms of modal logic. Moreover, we also propose a reformulation of the many-worlds interpretation of quantum mechanics in terms of Kripke's semantics. We thus show how three different theoriesquantum mechanics, evidence theory, and modal logic — are interrelated. This opens, on one hand, the way to new applications of quantum mechanics within domains different from the traditional ones, and, on the other hand, the possibility of building new generalizations of quantum mechanics itself.

  13. Quantum field theory of point particles and strings

    CERN Document Server

    Hatfield, Brian

    1992-01-01

    The purpose of this book is to introduce string theory without assuming any background in quantum field theory. Part I of this book follows the development of quantum field theory for point particles, while Part II introduces strings. All of the tools and concepts that are needed to quantize strings are developed first for point particles. Thus, Part I presents the main framework of quantum field theory and provides for a coherent development of the generalization and application of quantum field theory for point particles to strings.Part II emphasizes the quantization of the bosonic string.

  14. Wilson lines in quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Cherednikov, Igor Olegovich [Antwerpen Univ., Antwerp (Belgium). Fysica Dept.; Joint Institute of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics; Mertens, Tom; Veken, Frederik F. van der [Antwerpen Univ., Antwerp (Belgium). Fysica Dept.

    2014-07-01

    Wilson lines (also known as gauge links or eikonal lines) can be introduced in any gauge field theory. Although the concept of the Wilson exponentials finds an enormously wide range of applications in a variety of branches of modern quantum field theory, from condensed matter and lattice simulations to quantum chromodynamics, high-energy effective theories and gravity, there are surprisingly few books or textbooks on the market which contain comprehensive pedagogical introduction and consecutive exposition of the subject. The objective of this book is to get the potential reader acquainted with theoretical and mathematical foundations of the concept of the Wilson loops in the context of modern quantum field theory, to teach him/her to perform independently some elementary calculations with Wilson lines, and to familiarize him/her with the recent development of the subject in different important areas of research. The target audience of the book consists of graduate and postgraduate students working in various areas of quantum field theory, as well as researchers from other fields.

  15. Wilson lines in quantum field theory

    International Nuclear Information System (INIS)

    Cherednikov, Igor Olegovich; Joint Institute of Nuclear Research, Moscow; Mertens, Tom; Veken, Frederik F. van der

    2014-01-01

    Wilson lines (also known as gauge links or eikonal lines) can be introduced in any gauge field theory. Although the concept of the Wilson exponentials finds an enormously wide range of applications in a variety of branches of modern quantum field theory, from condensed matter and lattice simulations to quantum chromodynamics, high-energy effective theories and gravity, there are surprisingly few books or textbooks on the market which contain comprehensive pedagogical introduction and consecutive exposition of the subject. The objective of this book is to get the potential reader acquainted with theoretical and mathematical foundations of the concept of the Wilson loops in the context of modern quantum field theory, to teach him/her to perform independently some elementary calculations with Wilson lines, and to familiarize him/her with the recent development of the subject in different important areas of research. The target audience of the book consists of graduate and postgraduate students working in various areas of quantum field theory, as well as researchers from other fields.

  16. General covariance and quantum theory

    International Nuclear Information System (INIS)

    Mashhoon, B.

    1986-01-01

    The extension of the principle of relativity to general coordinate systems is based on the hypothesis that an accelerated observer is locally equivalent to a hypothetical inertial observer with the same velocity as the noninertial observer. This hypothesis of locality is expected to be valid for classical particle phenomena as well as for classical wave phenomena but only in the short-wavelength approximation. The generally covariant theory is therefore expected to be in conflict with the quantum theory which is based on wave-particle duality. This is explicitly demonstrated for the frequency of electromagnetic radiation measured by a uniformly rotating observer. The standard Doppler formula is shown to be valid only in the geometric optics approximation. A new definition for the frequency is proposed, and the resulting formula for the frequency measured by the rotating observer is shown to be consistent with expectations based on the classical theory of electrons. A tentative quantum theory is developed on the basis of the generalization of the Bohr frequency condition to include accelerated observers. The description of the causal sequence of events is assumed to be independent of the motion of the observer. Furthermore, the quantum hypothesis is supposed to be valid for all observers. The implications of this theory are critically examined. The new formula for frequency, which is still based on the hypothesis of locality, leads to the observation of negative energy quanta by the rotating observer and is therefore in conflict with the quantum theory

  17. An Introduction to Quantum Theory

    Science.gov (United States)

    Greensite, Jeff

    2017-02-01

    Written in a lucid and engaging style, the author takes readers from an overview of classical mechanics and the historical development of quantum theory through to advanced topics. The mathematical aspects of quantum theory necessary for a firm grasp of the subject are developed in the early chapters, but an effort is made to motivate that formalism on physical grounds. Including animated figures and their respective Mathematica® codes, this book provides a complete and comprehensive text for students in physics, maths, chemistry and engineering needing an accessible introduction to quantum mechanics. Supplementary Mathematica codes available within Book Information

  18. The future (and past) of quantum theory after the Higgs boson: a quantum-informational viewpoint.

    Science.gov (United States)

    Plotnitsky, Arkady

    2016-05-28

    Taking as its point of departure the discovery of the Higgs boson, this article considers quantum theory, including quantum field theory, which predicted the Higgs boson, through the combined perspective of quantum information theory and the idea of technology, while also adopting anon-realistinterpretation, in 'the spirit of Copenhagen', of quantum theory and quantum phenomena themselves. The article argues that the 'events' in question in fundamental physics, such as the discovery of the Higgs boson (a particularly complex and dramatic, but not essentially different, case), are made possible by the joint workings of three technologies: experimental technology, mathematical technology and, more recently, digital computer technology. The article will consider the role of and the relationships among these technologies, focusing on experimental and mathematical technologies, in quantum mechanics (QM), quantum field theory (QFT) and finite-dimensional quantum theory, with which quantum information theory has been primarily concerned thus far. It will do so, in part, by reassessing the history of quantum theory, beginning with Heisenberg's discovery of QM, in quantum-informational and technological terms. This history, the article argues, is defined by the discoveries of increasingly complex configurations of observed phenomena and the emergence of the increasingly complex mathematical formalism accounting for these phenomena, culminating in the standard model of elementary-particle physics, defining the current state of QFT. © 2016 The Author(s).

  19. Nuclear Quantum Gravitation - The Correct Theory

    Science.gov (United States)

    Kotas, Ronald

    2016-03-01

    Nuclear Quantum Gravitation provides a clear, definitive Scientific explanation of Gravity and Gravitation. It is harmonious with Newtonian and Quantum Mechanics, and with distinct Scientific Logic. Nuclear Quantum Gravitation has 10 certain, Scientific proofs and 21 more good indications. With this theory the Physical Forces are obviously Unified. See: OBSCURANTISM ON EINSTEIN GRAVITATION? http://www.santilli- Foundation.org/inconsistencies-gravitation.php and Einstein's Theory of Relativity versus Classical Mechanics http://www.newtonphysics.on.ca/einstein/

  20. On the relation of the theoretical foundations of quantum theory and general relativity theory

    International Nuclear Information System (INIS)

    Kober, Martin

    2010-01-01

    The specific content of the present thesis is presented in the following way. First the most important contents of quantum theory and general relativity theory are presented. In connection with the general relativity theory the mathematical property of the diffeomorphism invariance plays the deciding role, while concerning the quantum theory starting from the Copenhagen interpretation first the measurement problem is treated, before basing on the analysis of concrete phenomena and the mathematical apparatus of quantum theory the nonlocality is brought into focus as an important property. This means that both theories suggest a relationalistic view of the nature of the space. This analysis of the theoretical foundations of quantum theory and general relativity theory in relation to the nature of the space obtains only under inclusion of Kant's philosophy and his analysis of the terms space and time as fundamental forms of perception its full persuasive power. Then von Weizsaeckers quantum theory of the ur-alternatives is presented. Finally attempts are made to apply the obtained knowledge to the question of the quantum-theoretical formulation of general relativity theory.

  1. The informationally-complete quantum theory

    OpenAIRE

    Chen, Zeng-Bing

    2014-01-01

    Quantum mechanics is a cornerstone of our current understanding of nature and extremely successful in describing physics covering a huge range of scales. However, its interpretation remains controversial since the early days of quantum mechanics. What does a quantum state really mean? Is there any way out of the so-called quantum measurement problem? Here we present an informationally-complete quantum theory (ICQT) and the trinary property of nature to beat the above problems. We assume that ...

  2. Quantum Information Theory - an Invitation

    Science.gov (United States)

    Werner, Reinhard F.

    Quantum information and quantum computers have received a lot of public attention recently. Quantum computers have been advertised as a kind of warp drive for computing, and indeed the promise of the algorithms of Shor and Grover is to perform computations which are extremely hard or even provably impossible on any merely ``classical'' computer.In this article I shall give an account of the basic concepts of quantum information theory is given, staying as much as possible in the area of general agreement.The article is divided into two parts. The first (up to the end of Sect. 2.5) is mostly in plain English, centered around the exploration of what can or cannot be done with quantum systems as information carriers. The second part, Sect. 2.6, then gives a description of the mathematical structures and of some of the tools needed to develop the theory.

  3. Quantum theory as an emergent phenomenon the statistical mechanics of matrix models as the precursor of quantum field theory

    CERN Document Server

    Adler, Stephen L

    2004-01-01

    Quantum mechanics is our most successful physical theory. However, it raises conceptual issues that have perplexed physicists and philosophers of science for decades. This 2004 book develops an approach, based on the proposal that quantum theory is not a complete, final theory, but is in fact an emergent phenomenon arising from a deeper level of dynamics. The dynamics at this deeper level are taken to be an extension of classical dynamics to non-commuting matrix variables, with cyclic permutation inside a trace used as the basic calculational tool. With plausible assumptions, quantum theory is shown to emerge as the statistical thermodynamics of this underlying theory, with the canonical commutation/anticommutation relations derived from a generalized equipartition theorem. Brownian motion corrections to this thermodynamics are argued to lead to state vector reduction and to the probabilistic interpretation of quantum theory, making contact with phenomenological proposals for stochastic modifications to Schr�...

  4. On the embedding of quantum field theory on curved spacetimes into loop quantum gravity

    International Nuclear Information System (INIS)

    Stottmeister, Alexander

    2015-01-01

    The main theme of this thesis is an investigation into possible connections between loop quantum gravity and quantum field theory on curved spacetimes: On the one hand, we aim for the formulation of a general framework that allows for a derivation of quantum field theory on curved spacetimes in a semi-classical limit. On the other hand, we discuss representation-theoretical aspects of loop quantum gravity and quantum field theory on curved spacetimes as both of the latter presumably influence each other in the aforesaid semi-classical limit. Regarding the first point, we investigate the possible implementation of the Born-Oppenheimer approximation in the sense of space-adiabatic perturbation theory in models of loop quantum gravity-type. In the course of this, we argue for the need of a Weyl quantisation and an associated symbolic calculus for loop quantum gravity, which we then successfully define, at least to a certain extent. The compactness of the Lie groups, which models a la loop quantum gravity are based on, turns out to be a main obstacle to a fully satisfactory definition of a Weyl quantisation. Finally, we apply our findings to some toy models of linear scalar quantum fields on quantum cosmological spacetimes and discuss the implementation of space-adiabatic perturbation theory therein. In view of the second point, we start with a discussion of the microlocal spectrum condition for quantum fields on curved spacetimes and how it might be translated to a background-independent Hamiltonian quantum theory of gravity, like loop quantum gravity. The relevance of this lies in the fact that the microlocal spectrum condition selects a class of physically relevant states of the quantum matter fields and is, therefore, expected to play an important role in the aforesaid semi-classical limit of gravity-matter systems. Following this, we switch our perspective and analyse the representation theory of loop quantum gravity. We find some intriguing relations between the

  5. Digestible quantum field theory

    CERN Document Server

    Smilga, Andrei

    2017-01-01

    This book gives an intermediate level treatment of quantum field theory, appropriate to a reader with a first degree in physics and a working knowledge of special relativity and quantum mechanics. It aims to give the reader some understanding of what QFT is all about, without delving deep into actual calculations of Feynman diagrams or similar. The author serves up a seven‐course menu, which begins with a brief introductory Aperitif. This is followed by the Hors d'oeuvres, which set the scene with a broad survey of the Universe, its theoretical description, and how the ideas of QFT developed during the last century. In the next course, the Art of Cooking, the author recaps on some basic facts of analytical mechanics, relativity, quantum mechanics and also presents some nutritious “extras” in mathematics (group theory at the elementary level) and in physics (theory of scattering). After these preparations, the reader should have a good appetite for the Entrées ‐ the central par t of the book where the...

  6. Spectral methods in quantum field theory

    International Nuclear Information System (INIS)

    Graham, Noah; Quandt, Markus; Weigel, Herbert

    2009-01-01

    This concise text introduces techniques from quantum mechanics, especially scattering theory, to compute the effects of an external background on a quantum field in general, and on the properties of the quantum vacuum in particular. This approach can be succesfully used in an increasingly large number of situations, ranging from the study of solitons in field theory and cosmology to the determination of Casimir forces in nano-technology. The method introduced and applied in this book is shown to give an unambiguous connection to perturbation theory, implementing standard renormalization conditions even for non-perturbative backgrounds. It both gives new theoretical insights, for example illuminating longstanding questions regarding Casimir stresses, and also provides an efficient analytic and numerical tool well suited to practical calculations. Last but not least, it elucidates in a concrete context many of the subtleties of quantum field theory, such as divergences, regularization and renormalization, by connecting them to more familiar results in quantum mechanics. While addressed primarily at young researchers entering the field and nonspecialist researchers with backgrounds in theoretical and mathematical physics, introductory chapters on the theoretical aspects of the method make the book self-contained and thus suitable for advanced graduate students. (orig.)

  7. Topics in quantum theory

    International Nuclear Information System (INIS)

    Yuille, A.L.

    1980-11-01

    Topics in the Yang-Mills theories of strong interactions and the quantum theories of gravity are examined, using the path integral approach, including; Yang-Mills instantons in curved spacetimes, Israel-Wilson metrics, Kaehler spacetimes, instantons and anti-instantons. (U.K.)

  8. Quantum field theory for the gifted amateur

    CERN Document Server

    Lancaster, Tom

    2014-01-01

    Quantum field theory is arguably the most far-reaching and beautiful physical theory ever constructed, with aspects more stringently tested and verified to greater precision than any other theory in physics. Unfortunately, the subject has gained a notorious reputation for difficulty, with forbidding looking mathematics and a peculiar diagrammatic language described in an array of unforgiving, weighty textbooks aimed firmly at aspiring professionals. However, quantum field theory is too important, too beautiful, and too engaging to be restricted to the professionals. This book on quantum field theory is designed to be different. It is written by experimental physicists and aims to provide the interested amateur with a bridge from undergraduate physics to quantum field theory. The imagined reader is a gifted amateur, possessing a curious and adaptable mind, looking to be told an entertaining and intellectually stimulating story, but who will not feel patronised if a few mathematical niceties are spelled out in ...

  9. Probabilistic and Statistical Aspects of Quantum Theory

    CERN Document Server

    Holevo, Alexander S

    2011-01-01

    This book is devoted to aspects of the foundations of quantum mechanics in which probabilistic and statistical concepts play an essential role. The main part of the book concerns the quantitative statistical theory of quantum measurement, based on the notion of positive operator-valued measures. During the past years there has been substantial progress in this direction, stimulated to a great extent by new applications such as Quantum Optics, Quantum Communication and high-precision experiments. The questions of statistical interpretation, quantum symmetries, theory of canonical commutation re

  10. Introduction to classical and quantum field theory

    International Nuclear Information System (INIS)

    Ng, Tai-Kai

    2009-01-01

    This is the first introductory textbook on quantum field theory to be written from the point of view of condensed matter physics. As such, it presents the basic concepts and techniques of statistical field theory, clearly explaining how and why they are integrated into modern quantum (and classical) field theory, and includes the latest developments. Written by an expert in the field, with a broad experience in teaching and training, it manages to present such substantial topics as phases and phase transitions or solitons and instantons in an accessible and concise way. Divided into three parts, the first part covers fundamental physics and the mathematics background needed by students in order to enter the field, while the second part introduces more advanced concepts and techniques. Part III discusses applications of quantum field theory to a few basic problems. The emphasis here lies on how modern concepts of quantum field theory are embedded in these approaches, and also on the limitations of standard quantum field theory techniques in facing, 'real' physics problems. Throughout there are numerous end-of-chapter problems, and a free solutions manual is available for lecturers. (orig.)

  11. Algebraic quantum field theory, perturbation theory, and the loop expansion

    International Nuclear Information System (INIS)

    Duetsch, M.; Fredenhagen, K.

    2001-01-01

    The perturbative treatment of quantum field theory is formulated within the framework of algebraic quantum field theory. We show that the algebra of interacting fields is additive, i.e. fully determined by its subalgebras associated to arbitrary small subregions of Minkowski space. We also give an algebraic formulation of the loop expansion by introducing a projective system A (n) of observables ''up to n loops'', where A (0) is the Poisson algebra of the classical field theory. Finally we give a local algebraic formulation for two cases of the quantum action principle and compare it with the usual formulation in terms of Green's functions. (orig.)

  12. Consistent histories and operational quantum theory

    International Nuclear Information System (INIS)

    Rudolph, O.

    1996-01-01

    In this work a generalization of the consistent histories approach to quantum mechanics is presented. We first critically review the consistent histories approach to nonrelativistic quantum mechanics in a mathematically rigorous way and give some general comments about it. We investigate to what extent the consistent histories scheme is compatible with the results of the operational formulation of quantum mechanics. According to the operational approach, nonrelativistic quantum mechanics is most generally formulated in terms of effects, states, and operations. We formulate a generalized consistent histories theory using the concepts and the terminology which have proven useful in the operational formulation of quantum mechanics. The logical rule of the logical interpretation of quantum mechanics is generalized to the present context. The algebraic structure of the generalized theory is studied in detail

  13. Einstein and interpretation of quantum field theory

    International Nuclear Information System (INIS)

    Kashlyun, F.

    1982-01-01

    The main problems of the quantum theory, the basis of which was laid by Planck in 1900 as a result of the discovery of elementary quantum of action, are examined. The most important Einstein contributions to the quantum theory are enumerated. The Einstein work about the light quanta, proved wave-particle dualism, stated one of the most complicated problems to the physics. The work on the specific heat capacity of solids shows that the quantum theory should be beyond the limits of the narrow range of the problems on black radiation. The works on the equilibrium of radiation have convincingly demonstrates statistical character of the radiation processes and have marked the way to Heizenberg form of the quantum mechanics. Einstein generalized the idea of wave-particle dualism to the ordinary gas. It helped to prepare the Schroedinger form of quantum mechanics

  14. Representation Theory of Algebraic Groups and Quantum Groups

    CERN Document Server

    Gyoja, A; Shinoda, K-I; Shoji, T; Tanisaki, Toshiyuki

    2010-01-01

    Invited articles by top notch expertsFocus is on topics in representation theory of algebraic groups and quantum groupsOf interest to graduate students and researchers in representation theory, group theory, algebraic geometry, quantum theory and math physics

  15. On single-time reduction in quantum field theory

    International Nuclear Information System (INIS)

    Arkhipov, A.A.

    1984-01-01

    It is shown, how the causality and spectrality properties in qUantum field theory may help one to carry out a single-time reduction of the Bethe-Salpeter wave fUnction. The single-time reduction technique is not based on any concrete model of the quantum field theory. Axiomatic formulations underline the quantum field theory

  16. Quantum field theory

    CERN Document Server

    Sadovskii, Michael V

    2013-01-01

    This book discusses the main concepts of the Standard Model of elementary particles in a compact and straightforward way. The work illustrates the unity of modern theoretical physics by combining approaches and concepts of the quantum field theory and modern condensed matter theory. The inductive approach allows a deep understanding of ideas and methods used for solving problems in this field.

  17. Stochastic theories of quantum mechanics

    International Nuclear Information System (INIS)

    De la Pena, L.; Cetto, A.M.

    1991-01-01

    The material of this article is organized into five sections. In Sect. I the basic characteristics of quantum systems are briefly discussed, with emphasis on their stochastic properties. In Sect. II a version of stochastic quantum mechanics is presented, to conclude that the quantum formalism admits an interpretation in terms of stochastic processes. In Sect. III the elements of stochastic electrodynamics are described, and its possibilities and limitations as a fundamental theory of quantum systems are discussed. Section IV contains a recent reformulation that overcomes the limitations of the theory discussed in the foregoing section. Finally, in Sect. V the theorems of EPR, Von Neumann and Bell are discussed briefly. The material is pedagogically presented and includes an ample list of references, but the details of the derivations are generally omitted. (Author)

  18. Some remarks on general covariance of quantum theory

    International Nuclear Information System (INIS)

    Schmutzer, E.

    1977-01-01

    If one accepts Einstein's general principle of relativity (covariance principle) also for the sphere of microphysics (quantum, mechanics, quantum field theory, theory of elemtary particles), one has to ask how far the fundamental laws of traditional quantum physics fulfil this principle. Attention is here drawn to a series of papers that have appeared during the last years, in which the author criticized the usual scheme of quantum theory (Heisenberg picture, Schroedinger picture etc.) and presented a new foundation of the basic laws of quantum physics, obeying the 'principle of fundamental covariance' (Einstein's covariance principle in space-time and covariance principle in Hilbert space of quantum operators and states). (author)

  19. Quantum control theory and applications: A survey

    OpenAIRE

    Dong, Daoyi; Petersen, Ian R

    2009-01-01

    This paper presents a survey on quantum control theory and applications from a control systems perspective. Some of the basic concepts and main developments (including open-loop control and closed-loop control) in quantum control theory are reviewed. In the area of open-loop quantum control, the paper surveys the notion of controllability for quantum systems and presents several control design strategies including optimal control, Lyapunov-based methodologies, variable structure control and q...

  20. Thermodynamics and the structure of quantum theory

    International Nuclear Information System (INIS)

    Krumm, Marius; Müller, Markus P; Barnum, Howard; Barrett, Jonathan

    2017-01-01

    Despite its enormous empirical success, the formalism of quantum theory still raises fundamental questions: why is nature described in terms of complex Hilbert spaces, and what modifications of it could we reasonably expect to find in some regimes of physics? Here we address these questions by studying how compatibility with thermodynamics constrains the structure of quantum theory. We employ two postulates that any probabilistic theory with reasonable thermodynamic behaviour should arguably satisfy. In the framework of generalised probabilistic theories, we show that these postulates already imply important aspects of quantum theory, like self-duality and analogues of projective measurements, subspaces and eigenvalues. However, they may still admit a class of theories beyond quantum mechanics. Using a thought experiment by von Neumann, we show that these theories admit a consistent thermodynamic notion of entropy, and prove that the second law holds for projective measurements and mixing procedures. Furthermore, we study additional entropy-like quantities based on measurement probabilities and convex decomposition probabilities, and uncover a relation between one of these quantities and Sorkin’s notion of higher-order interference. (paper)

  1. The conceptual framework of quantum field theory

    CERN Document Server

    Duncan, Anthony

    2012-01-01

    The book attempts to provide an introduction to quantum field theory emphasizing conceptual issues frequently neglected in more "utilitarian" treatments of the subject. The book is divided into four parts, entitled respectively "Origins", "Dynamics", "Symmetries", and "Scales". The emphasis is conceptual - the aim is to build the theory up systematically from some clearly stated foundational concepts - and therefore to a large extent anti-historical, but two historical Chapters ("Origins") are included to situate quantum field theory in the larger context of modern physical theories. The three remaining sections of the book follow a step by step reconstruction of this framework beginning with just a few basic assumptions: relativistic invariance, the basic principles of quantum mechanics, and the prohibition of physical action at a distance embodied in the clustering principle. The "Dynamics" section of the book lays out the basic structure of quantum field theory arising from the sequential insertion of quan...

  2. Dirac's equation and the nature of quantum field theory

    International Nuclear Information System (INIS)

    Plotnitsky, Arkady

    2012-01-01

    This paper re-examines the key aspects of Dirac's derivation of his relativistic equation for the electron in order advance our understanding of the nature of quantum field theory. Dirac's derivation, the paper argues, follows the key principles behind Heisenberg's discovery of quantum mechanics, which, the paper also argues, transformed the nature of both theoretical and experimental physics vis-à-vis classical physics and relativity. However, the limit theory (a crucial consideration for both Dirac and Heisenberg) in the case of Dirac's theory was quantum mechanics, specifically, Schrödinger's equation, while in the case of quantum mechanics, in Heisenberg's version, the limit theory was classical mechanics. Dirac had to find a new equation, Dirac's equation, along with a new type of quantum variables, while Heisenberg, to find new theory, was able to use the equations of classical physics, applied to different, quantum-mechanical variables. In this respect, Dirac's task was more similar to that of Schrödinger in his work on his version of quantum mechanics. Dirac's equation reflects a more complex character of quantum electrodynamics or quantum field theory in general and of the corresponding (high-energy) experimental quantum physics vis-à-vis that of quantum mechanics and the (low-energy) experimental quantum physics. The final section examines this greater complexity and its implications for fundamental physics.

  3. Quantum information theory mathematical foundation

    CERN Document Server

    Hayashi, Masahito

    2017-01-01

    This graduate textbook provides a unified view of quantum information theory. Clearly explaining the necessary mathematical basis, it merges key topics from both information-theoretic and quantum- mechanical viewpoints and provides lucid explanations of the basic results. Thanks to this unified approach, it makes accessible such advanced topics in quantum communication as quantum teleportation, superdense coding, quantum state transmission (quantum error-correction) and quantum encryption. Since the publication of the preceding book Quantum Information: An Introduction, there have been tremendous strides in the field of quantum information. In particular, the following topics – all of which are addressed here – made seen major advances: quantum state discrimination, quantum channel capacity, bipartite and multipartite entanglement, security analysis on quantum communication, reverse Shannon theorem and uncertainty relation. With regard to the analysis of quantum security, the present book employs an impro...

  4. Hilbertian quantum theory as the theory of complementarity

    International Nuclear Information System (INIS)

    Lahti, P.J.

    1983-01-01

    It is demonstrated that the notion of complementary physical quantities assumes the possibility of performing ideal first-kind measurements of such quantities. This then leads to an axiomatic reconstruction of the Hilbertian quantum theory based on the complementarity principle and on its connection with the measurement theoretical idealization known as the projection postulate. As the notion of complementary physical quantities does not presuppose the notion of probability, the given axiomatic reconstruction reveals complementarity as an essential reason for the irreducibly probabilistic nature of the quantum theory. (author)

  5. Quantum aspects of black objects in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Hyakutake, Yoshifumi [College of Science, Ibaraki University,Bunkyo 2-1-1, Mito, Ibaraki 310-8512 (Japan)

    2017-01-17

    One of important directions in superstring theory is to reveal the quantum nature of black hole. In this paper we embed Schwarzschild black hole into superstring theory or M-theory, which we call a smeared black hole, and resolve quantum corrections to it. Furthermore we boost the smeared black hole along the 11th direction and construct a smeared quantum black 0-brane in 10 dimensions. Quantum aspects of the thermodynamic for these black objects are investigated in detail. We also discuss radiations of a string and a D0-brane from the smeared quantum black 0-brane.

  6. Theories of Matter, Space and Time, Volume 2; Quantum theories

    Science.gov (United States)

    Evans, N.; King, S. F.

    2018-06-01

    This book and its prequel Theories of Matter Space and Time: Classical Theories grew out of courses that we have both taught as part of the undergraduate degree program in Physics at Southampton University, UK. Our goal was to guide the full MPhys undergraduate cohort through some of the trickier areas of theoretical physics that we expect our undergraduates to master. Here we teach the student to understand first quantized relativistic quantum theories. We first quickly review the basics of quantum mechanics which should be familiar to the reader from a prior course. Then we will link the Schrödinger equation to the principle of least action introducing Feynman's path integral methods. Next, we present the relativistic wave equations of Klein, Gordon and Dirac. Finally, we convert Maxwell's equations of electromagnetism to a wave equation for photons and make contact with quantum electrodynamics (QED) at a first quantized level. Between the two volumes we hope to move a student's understanding from their prior courses to a place where they are ready, beyond, to embark on graduate level courses on quantum field theory.

  7. Quantum: information theory: technological challenge

    International Nuclear Information System (INIS)

    Calixto, M.

    2001-01-01

    The new Quantum Information Theory augurs powerful machines that obey the entangled logic of the subatomic world. Parallelism, entanglement, teleportation, no-cloning and quantum cryptography are typical peculiarities of this novel way of understanding computation. (Author) 24 refs

  8. A categorical framework for quantum theory

    Energy Technology Data Exchange (ETDEWEB)

    Filk, T. [Institute for Physics, University of Freiburg (Germany); Parmenides Center for the Study of Thinking, Muenchen (Germany); Mueller, A. von [Parmenides Center for the Study of Thinking, Muenchen (Germany); Institute for Philosophy, University of Munich (Germany); SISSA, Trieste (Italy)

    2010-11-15

    Underlying any physical theory is a layer of conceptual frames. They connect the mathematical structures used in theoretical models with the phenomena, but they also constitute our fundamental assumptions about reality. Many of the discrepancies between quantum physics and classical physics (including Maxwell's electrodynamics and relativity) can be traced back to these categorical foundations. We argue that classical physics corresponds to the factual aspects of reality and requires a categorical framework which consists of four interdependent components: boolean logic, the linear-sequential notion of time, the principle of sufficient reason, and the dichotomy between observer and observed. None of these can be dropped without affecting the others. However, quantum theory also addresses the ''status nascendi'' of facts, i.e., their coming into being. Therefore, quantum physics requires a different conceptual framework which will be elaborated in this article. It is shown that many of its components are already present in the standard formalisms of quantum physics, but in most cases they are highlighted not so much from a conceptual perspective but more from their mathematical structures. The categorical frame underlying quantum physics includes a profoundly different notion of time which encompasses a crucial role for the present. The article introduces the concept of a categorical apparatus (a framework of interdependent categories), explores the appropriate apparatus for classical and quantum theory, and elaborates in particular on the category of non-sequential time and an extended present which seems to be relevant for a quantum theory of (space)-time. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  9. Quantum theory informational foundations and foils

    CERN Document Server

    Spekkens, Robert

    2016-01-01

    This book provides the first unified overview of the burgeoning research area at the interface between Quantum Foundations and Quantum Information.  Topics include: operational alternatives to quantum theory, information-theoretic reconstructions of the quantum formalism, mathematical frameworks for operational theories, and device-independent features of the set of quantum correlations. Powered by the injection of fresh ideas from the field of Quantum Information and Computation, the foundations of Quantum Mechanics are in the midst of a renaissance. The last two decades have seen an explosion of new results and research directions, attracting broad interest in the scientific community. The variety and number of different approaches, however, makes it challenging for a newcomer to obtain a big picture of the field and of its high-level goals. Here, fourteen original contributions from leading experts in the field cover some of the most promising research directions that have emerged in the new wave of quant...

  10. Quantum field theory in a semiotic perspective

    International Nuclear Information System (INIS)

    Dosch, H.G.

    2005-01-01

    Viewing physical theories as symbolic constructions came to the fore in the middle of the nineteenth century with the emancipation of the classical theory of the electromagnetic field from mechanics; most notably this happened through the work of Helmholtz, Hertz, Poincare, and later Weyl. The epistemological problems that nourished this development are today highlighted within quantum field theory. The present essay starts off with a concise and non-technical outline of the firmly based aspects of relativistic quantum field theory, i.e. the very successful description of subnuclear phenomena. The particular methods, by which these different aspects have to be accessed, then get described as distinct facets of quantum field theory. The authors show how these different facets vary with respect to the relation between quantum fields and associated particles. Thus, by emphasising the respective role of various basic concepts involved, the authors claim that only a very general epistemic approach can properly account for this diversity - an account they trace back to the philosophical writings of the aforementioned physicists and mathematicians. Finally, what they call their semiotic perspective on quantum field theory gets related to recent discussions within the philosophy of science and turns out to act as a counterbalance to, for instance, structural realism. (orig.)

  11. Quantum field theory in a semiotic perspective

    Energy Technology Data Exchange (ETDEWEB)

    Dosch, H.G. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Mueller, V.F. [Technische Univ. Kaiserslautern (Germany). Fachbereich Physik; Sieroka, N. [Zurich Univ. (Switzerland)

    2005-07-01

    Viewing physical theories as symbolic constructions came to the fore in the middle of the nineteenth century with the emancipation of the classical theory of the electromagnetic field from mechanics; most notably this happened through the work of Helmholtz, Hertz, Poincare, and later Weyl. The epistemological problems that nourished this development are today highlighted within quantum field theory. The present essay starts off with a concise and non-technical outline of the firmly based aspects of relativistic quantum field theory, i.e. the very successful description of subnuclear phenomena. The particular methods, by which these different aspects have to be accessed, then get described as distinct facets of quantum field theory. The authors show how these different facets vary with respect to the relation between quantum fields and associated particles. Thus, by emphasising the respective role of various basic concepts involved, the authors claim that only a very general epistemic approach can properly account for this diversity - an account they trace back to the philosophical writings of the aforementioned physicists and mathematicians. Finally, what they call their semiotic perspective on quantum field theory gets related to recent discussions within the philosophy of science and turns out to act as a counterbalance to, for instance, structural realism. (orig.)

  12. Quantum Field Theory in a Semiotic Perspective

    CERN Document Server

    Günter Dosch, Hans; Sieroka, Norman

    2005-01-01

    Viewing physical theories as symbolic constructions came to the fore in the middle of the nineteenth century with the emancipation of the classical theory of the electromagnetic field from mechanics; most notably this happened through the work of Helmholtz, Hertz, Poincaré, and later Weyl. The epistemological problems that nourished this development are today highlighted within quantum field theory. The present essay starts off with a concise and non-technical outline of the firmly based aspects of relativistic quantum field theory, i.e. the very successful description of subnuclear phenomena. The particular methods, by which these different aspects have to be accessed, then get described as distinct facets of quantum field theory. The authors show how these different facets vary with respect to the relation between quantum fields and associated particles. Thus, by emphasising the respective role of various basic concepts involved, the authors claim that only a very general epistemic approach can properly ac...

  13. Hierarchical theory of quantum adiabatic evolution

    International Nuclear Information System (INIS)

    Zhang, Qi; Wu, Biao; Gong, Jiangbin

    2014-01-01

    Quantum adiabatic evolution is a dynamical evolution of a quantum system under slow external driving. According to the quantum adiabatic theorem, no transitions occur between nondegenerate instantaneous energy eigenstates in such a dynamical evolution. However, this is true only when the driving rate is infinitesimally small. For a small nonzero driving rate, there are generally small transition probabilities between the energy eigenstates. We develop a classical mechanics framework to address the small deviations from the quantum adiabatic theorem order by order. A hierarchy of Hamiltonians is constructed iteratively with the zeroth-order Hamiltonian being determined by the original system Hamiltonian. The kth-order deviations are governed by a kth-order Hamiltonian, which depends on the time derivatives of the adiabatic parameters up to the kth-order. Two simple examples, the Landau–Zener model and a spin-1/2 particle in a rotating magnetic field, are used to illustrate our hierarchical theory. Our analysis also exposes a deep, previously unknown connection between classical adiabatic theory and quantum adiabatic theory. (paper)

  14. Hidden variables and locality in quantum theory

    International Nuclear Information System (INIS)

    Shiva, Vandana.

    1978-12-01

    The status of hidden variables in quantum theory has been debated since the 1920s. The author examines the no-hidden-variable theories of von Neumann, Kochen, Specker and Bell, and finds that they all share one basic assumption: averaging over the hidden variables should reproduce the quantum mechanical probabilities. Von Neumann also makes a linearity assumption, Kochen and Specker require the preservation of certain functional relations between magnitudes, and Bell proposes a locality condition. It has been assumed that the extrastatistical requirements are needed to serve as criteria of success for the introduction of hidden variables because the statistical condition is trivially satisfied, and that Bell's result is based on a locality condition that is physically motivated. The author shows that the requirement of weak locality, which is not physically motivated, is enough to give Bell's result. The proof of Bell's inequality works equally well for any pair of commuting magnitudes satisfying a condition called the degeneracy principle. None of the no-hidden-variable proofs apply to a class of hidden variable theories that are not phase-space reconstructions of quantum mechanics. The author discusses one of these theories, the Bohm-Bub theory, and finds that hidden variable theories that re all the quantum statistics, for single and sequential measurements, must introduce a randomization process for the hidden variables after each measurement. The philosophical significance of this theory lies in the role it can play in solving the conceptual puzzles posed by quantum theory

  15. CDT-a entropic theory of quantum gravity

    DEFF Research Database (Denmark)

    Ambjørn, Jan; Görlich, A.; Jurkiewicz, J.

    2010-01-01

    High Energy Physics - Theory (hep-th); General Relativity and Quantum Cosmology (gr-qc); High Energy Physics - Lattice (hep-lat)......High Energy Physics - Theory (hep-th); General Relativity and Quantum Cosmology (gr-qc); High Energy Physics - Lattice (hep-lat)...

  16. Mathematical aspects of quantum field theories

    CERN Document Server

    Strobl, Thomas

    2015-01-01

    Despite its long history and stunning experimental successes, the mathematical foundation of perturbative quantum field theory is still a subject of ongoing research. This book aims at presenting some of the most recent advances in the field, and at reflecting the diversity of approaches and tools invented and currently employed. Both leading experts and comparative newcomers to the field present their latest findings, helping readers to gain a better understanding of not only quantum but also classical field theories. Though the book offers a valuable resource for mathematicians and physicists alike, the focus is more on mathematical developments. This volume consists of four parts: The first Part covers local aspects of perturbative quantum field theory, with an emphasis on the axiomatization of the algebra behind the operator product expansion. The second Part highlights Chern-Simons gauge theories, while the third examines (semi-)classical field theories. In closing, Part 4 addresses factorization homolo...

  17. Quantum field theory

    International Nuclear Information System (INIS)

    Mancini, F.

    1986-01-01

    Theoretical physicists, coming from different countries, working on different areas, gathered at Positano: the Proceedings contain all the lectures delivered as well as contributed papers. Many areas of physics are represented, elementary particles in high energy physics, quantum relativity, quantum geometry, condensed matter physics, statistical mechanics; but all works are concerned with the use of the methods of quantum field theory. The first motivation of the meeting was to pay homage to a great physicist and a great friend; it was also an occasion in which theoretical physicists got together to discuss and to compare results in different fields. The meeting was very intimate; the relaxed atmosphere allowed constructive discussions and contributed to a positive exchange of ideas. (orig.)

  18. Quantum control and representation theory

    International Nuclear Information System (INIS)

    Ibort, A; Perez-Pardo, J M

    2009-01-01

    A new notion of controllability for quantum systems that takes advantage of the linear superposition of quantum states is introduced. We call such a notion von Neumann controllability, and it is shown that it is strictly weaker than the usual notion of pure state and operator controllability. We provide a simple and effective characterization of it by using tools from the theory of unitary representations of Lie groups. In this sense, we are able to approach the problem of control of quantum states from a new perspective, that of the theory of unitary representations of Lie groups. A few examples of physical interest and the particular instances of compact and nilpotent dynamical Lie groups are discussed

  19. Quantum field theory in a nutshell

    CERN Document Server

    Zee, A

    2010-01-01

    Since it was first published, Quantum Field Theory in a Nutshell has quickly established itself as the most accessible and comprehensive introduction to this profound and deeply fascinating area of theoretical physics. Now in this fully revised and expanded edition, A. Zee covers the latest advances while providing a solid conceptual foundation for students to build on, making this the most up-to-date and modern textbook on quantum field theory available. as well as an entirely new section describing recent developments in quantum field theory such as gravitational waves, the helicity spinor formalism, on-shell gluon scattering, recursion relations for amplitudes with complex momenta, and the hidden connection between Yang-Mills theory and Einstein gravity. Zee also provides added exercises, explanations, and examples, as well as detailed appendices, solutions to selected exercises, and suggestions for further reading

  20. Linear response theory for quantum open systems

    OpenAIRE

    Wei, J. H.; Yan, YiJing

    2011-01-01

    Basing on the theory of Feynman's influence functional and its hierarchical equations of motion, we develop a linear response theory for quantum open systems. Our theory provides an effective way to calculate dynamical observables of a quantum open system at its steady-state, which can be applied to various fields of non-equilibrium condensed matter physics.

  1. Observer dependence of quantum states in relativistic quantum field theories

    International Nuclear Information System (INIS)

    Malin, S.

    1982-01-01

    Quantum states can be understood as either (i) describing quantum systems or (ii) representing observers' knowledge about quantum systems. These different meanings are shown to imply different transformation properties in relativistic field theories. The rules for the reduction of quantum states and the transformation properties of quantum states under Lorentz transformations are derived for case (ii). The results obtained are applied to a quantum system recently presented and analyzed by Aharonov and Albert. It is shown that the present results, combined with Aharonov and Albert's, amount to a proof of Bohr's view that quantum states represent observers' knowledge about quantum systems

  2. Exponential complexity and ontological theories of quantum mechanics

    International Nuclear Information System (INIS)

    Montina, A.

    2008-01-01

    Ontological theories of quantum mechanics describe a single system by means of well-defined classical variables and attribute the quantum uncertainties to our ignorance about the underlying reality represented by these variables. We consider the general class of ontological theories describing a quantum system by a set of variables with Markovian (either deterministic or stochastic) evolution. We provide proof that the number of continuous variables cannot be smaller than 2N-2, N being the Hilbert-space dimension. Thus, any ontological Markovian theory of quantum mechanics requires a number of variables which grows exponentially with the physical size. This result is relevant also in the framework of quantum Monte Carlo methods

  3. Quantum field theory in curved space-time

    Energy Technology Data Exchange (ETDEWEB)

    Davies, P C.W. [King' s Coll., London (UK)

    1976-09-30

    It is stated that recent theoretical developments indicate that the presence of gravity (curved space-time) can give rise to important new quantum effects, such as cosmological particle production and black-hole evaporation. These processes suggest intriguing new relations between quantum theory, thermodynamics and space-time structure and encourage the hope that a better understanding of a full quantum theory of gravity may emerge from this approach.

  4. String theory as a quantum theory of gravity

    International Nuclear Information System (INIS)

    Horowitz, G.T.

    1990-01-01

    First, the connection between string theory and gravity is discussed - at first sight the theory of strings seem to have nothing to do with gravity but an intimate connection is shown. Then the quantum perturbation expansion is discussed. Thirdly, string theory is considered as a classical theory of gravity and finally recent speculation about a phase of string theory which is independent of a spacetime metric is discussed. (author)

  5. A Survey of Quantum Learning Theory

    OpenAIRE

    Arunachalam, Srinivasan; de Wolf, Ronald

    2017-01-01

    This paper surveys quantum learning theory: the theoretical aspects of machine learning using quantum computers. We describe the main results known for three models of learning: exact learning from membership queries, and Probably Approximately Correct (PAC) and agnostic learning from classical or quantum examples.

  6.  Topological quantum field theory: 20 years later

    DEFF Research Database (Denmark)

    Reshetikhin, Nicolai

    2008-01-01

    This article is an overview of the developments in topological quantum field theory, and, in particular on the progress in the Chern–Simons theory.......This article is an overview of the developments in topological quantum field theory, and, in particular on the progress in the Chern–Simons theory....

  7. Microcanonical quantum field theory

    International Nuclear Information System (INIS)

    Strominger, A.

    1983-01-01

    Euclidean quantum field theory is equivalent to the equilibrium statistical mechanics of classical fields in 4+1 dimensions at temperature h. It is well known in statistical mechanics that the theory of systems at fixed temperature is embedded within the more general and fundamental theory of systems at fixed energy. We therefore develop, in precise analogy, a fixed action (macrocanonical) formulation of quantum field theory. For the case of ordinary renormalizable field theories, we show (with one exception) that the microcanonical is entirely equivalent to the canonical formulation. That is, for some particular fixed value of the total action, the Green's functions of the microcanonical theory are equal, in the bulk limit, to those of the canonical theory. The microcanonical perturbation expansion is developed in some detail for lambdaphi 4 . The particular value of the action for which the two formulations are equivalent can be calculated to all orders in perturbation theory. We prove, using Lehmann's Theorem, that this value is one-half Planck unit per degree of freedom, if fermionic degrees of freedom are counted negatively. This is the 4+1 dimensional analog of the equipartition theorem. The one exception to this is supersymmetric theories. A microcanonical formulation exists if and only if supersymmetry is broken. In statistical mechanics and in field theory there are systems for which the canonical description is pathological, but the microcanonical is not. An example of such a field theory is found in one dimension. A semiclassical expansion of the microcanonical theory is well defined, while an expansion of the canonical theory is hoplessly divergent

  8. A Quantum Version of Wigner's Transition State Theory

    NARCIS (Netherlands)

    Schubert, R.; Waalkens, H.; Wiggins, S.

    A quantum version of a recent realization of Wigner's transition state theory in phase space is presented. The theory developed builds on a quantum normal form which locally decouples the quantum dynamics near the transition state to any desired order in (h) over bar. This leads to an explicit

  9. Group field theory and simplicial quantum gravity

    International Nuclear Information System (INIS)

    Oriti, D

    2010-01-01

    We present a new group field theory for 4D quantum gravity. It incorporates the constraints that give gravity from BF theory and has quantum amplitudes with the explicit form of simplicial path integrals for first-order gravity. The geometric interpretation of the variables and of the contributions to the quantum amplitudes is manifest. This allows a direct link with other simplicial gravity approaches, like quantum Regge calculus, in the form of the amplitudes of the model, and dynamical triangulations, which we show to correspond to a simple restriction of the same.

  10. Progress in the axiomatic quantum field theory

    International Nuclear Information System (INIS)

    Vladimirov, V.S.; Polivanov, M.K.

    1975-01-01

    The authors consider the development of mathematical methods of solving quantum field theory problems from attempts of simple perfection of usual methods of quantum mechanics by elaborating the methods of perturbation theory and S-matrix, by working out the perturbation theory for quantum electrodynamics, and by applying dispersion relations and S-matrix for strong interactions. The method of dispersion relations results in the majority of radically new ways of describing the scattering amplitude. The grave disadvantage of all the methods is that they little define the dynamics of processes. The dynamic theory in the Heisenberg representation may be constructed on the basis of the axiomatic theory of S-matrix with the casuality condition. Another axiomatic direction has been recently developed; that is the so-called algebraic axiomatics which makes use of methods of Csup(*)-algebras

  11. Relativity, Symmetry, and the Structure of Quantum Theory, Volume 2; Point form relativistic quantum mechanics

    Science.gov (United States)

    Klink, William H.; Schweiger, Wolfgang

    2018-03-01

    This book covers relativistic quantum theory from the point of view of a particle theory, based on the irreducible representations of the Poincaré group, the group that expresses the symmetry of Einstein relativity. There are several ways of formulating such a theory; this book develops what is called relativistic point form quantum mechanics, which, unlike quantum field theory, deals with a fixed number of particles in a relativistically invariant way. A chapter is devoted to applications of point form quantum mechanics to nuclear physics.

  12. Topological quantum field theory and four manifolds

    CERN Document Server

    Marino, Marcos

    2005-01-01

    The present book is the first of its kind in dealing with topological quantum field theories and their applications to topological aspects of four manifolds. It is not only unique for this reason but also because it contains sufficient introductory material that it can be read by mathematicians and theoretical physicists. On the one hand, it contains a chapter dealing with topological aspects of four manifolds, on the other hand it provides a full introduction to supersymmetry. The book constitutes an essential tool for researchers interested in the basics of topological quantum field theory, since these theories are introduced in detail from a general point of view. In addition, the book describes Donaldson theory and Seiberg-Witten theory, and provides all the details that have led to the connection between these theories using topological quantum field theory. It provides a full account of Witten’s magic formula relating Donaldson and Seiberg-Witten invariants. Furthermore, the book presents some of the ...

  13. Structural aspects of quantum field theory and noncommutative geometry

    CERN Document Server

    Grensing, Gerhard

    2013-01-01

    This book is devoted to the subject of quantum field theory. It is divided into two volumes. The first can serve as a textbook on the main techniques and results of quantum field theory, while the second treats more recent developments, in particular the subject of quantum groups and noncommutative geometry, and their interrelation. The first volume is directed at graduate students who want to learn the basic facts about quantum field theory. It begins with a gentle introduction to classical field theory, including the standard model of particle physics, general relativity, and also supergravity. The transition to quantized fields is performed with path integral techniques, by means of which the one-loop renormalization of a self-interacting scalar quantum field, of quantum electrodynamics, and the asymptotic freedom of quantum chromodynamics is treated. In the last part of the first volume, the application of path integral methods to systems of quantum statistical mechanics is covered. The book ends with a r...

  14. The conceptual basis of Quantum Field Theory

    NARCIS (Netherlands)

    Hooft, G. 't

    2005-01-01

    Relativistic Quantum Field Theory is a mathematical scheme to describe the sub-atomic particles and forces. The basic starting point is that the axioms of Special Relativity on the one hand and those of Quantum Mechanics on the other, should be combined into one theory. The fundamental

  15. Recoverability in quantum information theory

    Science.gov (United States)

    Wilde, Mark

    The fact that the quantum relative entropy is non-increasing with respect to quantum physical evolutions lies at the core of many optimality theorems in quantum information theory and has applications in other areas of physics. In this work, we establish improvements of this entropy inequality in the form of physically meaningful remainder terms. One of the main results can be summarized informally as follows: if the decrease in quantum relative entropy between two quantum states after a quantum physical evolution is relatively small, then it is possible to perform a recovery operation, such that one can perfectly recover one state while approximately recovering the other. This can be interpreted as quantifying how well one can reverse a quantum physical evolution. Our proof method is elementary, relying on the method of complex interpolation, basic linear algebra, and the recently introduced Renyi generalization of a relative entropy difference. The theorem has a number of applications in quantum information theory, which have to do with providing physically meaningful improvements to many known entropy inequalities. This is based on arXiv:1505.04661, now accepted for publication in Proceedings of the Royal Society A. I acknowledge support from startup funds from the Department of Physics and Astronomy at LSU, the NSF under Award No. CCF-1350397, and the DARPA Quiness Program through US Army Research Office award W31P4Q-12-1-0019.

  16. Quantum field theory and the standard model

    CERN Document Server

    Schwartz, Matthew D

    2014-01-01

    Providing a comprehensive introduction to quantum field theory, this textbook covers the development of particle physics from its foundations to the discovery of the Higgs boson. Its combination of clear physical explanations, with direct connections to experimental data, and mathematical rigor make the subject accessible to students with a wide variety of backgrounds and interests. Assuming only an undergraduate-level understanding of quantum mechanics, the book steadily develops the Standard Model and state-of-the-art calculation techniques. It includes multiple derivations of many important results, with modern methods such as effective field theory and the renormalization group playing a prominent role. Numerous worked examples and end-of-chapter problems enable students to reproduce classic results and to master quantum field theory as it is used today. Based on a course taught by the author over many years, this book is ideal for an introductory to advanced quantum field theory sequence or for independe...

  17. Introduction to quantum field theory

    CERN Document Server

    Chang, Shau-Jin

    1990-01-01

    This book presents in a short volume the basics of quantum field theory and many body physics. The first part introduces the perturbative techniques without sophisticated apparatus and applies them to numerous problems including quantum electrodynamics (renormalization), Fermi and Bose gases, the Brueckner theory of nuclear system, liquid Helium and classical systems with noise. The material is clear, illustrative and the important points are stressed to help the reader get the understanding of what is crucial without overwhelming him with unnecessary detours or comments. The material in the s

  18. Fractional statistics and quantum theory

    CERN Document Server

    Khare, Avinash

    1997-01-01

    This book explains the subtleties of quantum statistical mechanics in lower dimensions and their possible ramifications in quantum theory. The discussion is at a pedagogical level and is addressed to both graduate students and advanced research workers with a reasonable background in quantum and statistical mechanics. The main emphasis will be on explaining new concepts. Topics in the first part of the book includes the flux tube model of anyons, the braid group and quantum and statistical mechanics of noninteracting anyon gas. The second part of the book provides a detailed discussion about f

  19. Generalizing Prototype Theory: A Formal Quantum Framework

    Directory of Open Access Journals (Sweden)

    Diederik eAerts

    2016-03-01

    Full Text Available Theories of natural language and concepts have been unable to model the flexibility, creativity, context-dependence, and emergence, exhibited by words, concepts and their combinations. The mathematical formalism of quantum theory has instead been successful in capturing these phenomena such as graded membership, situational meaning, composition of categories, and also more complex decision making situations, which cannot be modeled in traditional probabilistic approaches. We show how a formal quantum approach to concepts and their combinations can provide a powerful extension of prototype theory. We explain how prototypes can interfere in conceptual combinations as a consequence of their contextual interactions, and provide an illustration of this using an intuitive wave-like diagram. This quantum-conceptual approach gives new life to original prototype theory, without however making it a privileged concept theory, as we explain at the end of our paper.

  20. Generalizing Prototype Theory: A Formal Quantum Framework

    Science.gov (United States)

    Aerts, Diederik; Broekaert, Jan; Gabora, Liane; Sozzo, Sandro

    2016-01-01

    Theories of natural language and concepts have been unable to model the flexibility, creativity, context-dependence, and emergence, exhibited by words, concepts and their combinations. The mathematical formalism of quantum theory has instead been successful in capturing these phenomena such as graded membership, situational meaning, composition of categories, and also more complex decision making situations, which cannot be modeled in traditional probabilistic approaches. We show how a formal quantum approach to concepts and their combinations can provide a powerful extension of prototype theory. We explain how prototypes can interfere in conceptual combinations as a consequence of their contextual interactions, and provide an illustration of this using an intuitive wave-like diagram. This quantum-conceptual approach gives new life to original prototype theory, without however making it a privileged concept theory, as we explain at the end of our paper. PMID:27065436

  1. Topics in string theory and quantum gravity

    CERN Document Server

    Alvarez-Gaume, Luis

    1992-01-01

    These are the lecture notes for the Les Houches Summer School on Quantum Gravity held in July 1992. The notes present some general critical assessment of other (non-string) approaches to quantum gravity, and a selected set of topics concerning what we have learned so far about the subject from string theory. Since these lectures are long (133 A4 pages), we include in this abstract the table of contents, which should help the user of the bulletin board in deciding whether to latex and print the full file. 1-FIELD THEORETICAL APPROACH TO QUANTUM GRAVITY: Linearized gravity; Supergravity; Kaluza-Klein theories; Quantum field theory and classical gravity; Euclidean approach to Quantum Gravity; Canonical quantization of gravity; Gravitational Instantons. 2-CONSISTENCY CONDITIONS: ANOMALIES: Generalities about anomalies; Spinors in 2n dimensions; When can we expect to find anomalies?; The Atiyah-Singer Index Theorem and the computation of anomalies; Examples: Green-Schwarz cancellation mechanism and Witten's SU(2) ...

  2. Picturing quantum processes a first course in quantum theory and diagrammatic reasoning

    CERN Document Server

    Coecke, Bob

    2017-01-01

    The unique features of the quantum world are explained in this book through the language of diagrams, setting out an innovative visual method for presenting complex theories. Requiring only basic mathematical literacy, this book employs a unique formalism that builds an intuitive understanding of quantum features while eliminating the need for complex calculations. This entirely diagrammatic presentation of quantum theory represents the culmination of ten years of research, uniting classical techniques in linear algebra and Hilbert spaces with cutting-edge developments in quantum computation and foundations. Written in an entertaining and user-friendly style and including more than one hundred exercises, this book is an ideal first course in quantum theory, foundations, and computation for students from undergraduate to PhD level, as well as an opportunity for researchers from a broad range of fields, from physics to biology, linguistics, and cognitive science, to discover a new set of tools for studying proc...

  3. Quantum fermions and quantum field theory from classical statistics

    International Nuclear Information System (INIS)

    Wetterich, Christof

    2012-01-01

    An Ising-type classical statistical ensemble can describe the quantum physics of fermions if one chooses a particular law for the time evolution of the probability distribution. It accounts for the time evolution of a quantum field theory for Dirac particles in an external electromagnetic field. This yields in the non-relativistic one-particle limit the Schrödinger equation for a quantum particle in a potential. Interference or tunneling arise from classical probabilities.

  4. Can decoherence make quantum theories unfalsifiable? Understanding the quantum-to-classical transition without it

    International Nuclear Information System (INIS)

    Oriols, X.

    2016-01-01

    Exact predictions for most quantum systems are computationally inaccessible. This is the so-called many body problem, which is present in most common interpretations of quantum mechanics. Therefore, predictions of natural quantum phenomena have to rely on some approximations (assumptions or simplifications). In the literature, there are different types of approximations, ranging from those whose justification is basically based on theoretical developments to those whose justification lies on the agreement with experiments. This last type of approximations can convert a quantum theory into an “unfalsifiable” quantum theory, true by construction. On the practical side, converting some part of a quantum theory into an “unfalsifiable” one ensures a successful modeling (i.e. compatible with experiments) for quantum engineering applications. An example of including irreversibility and dissipation in the Bohmian modeling of open systems is presented. On the ontological level, however, the present-day foundational problems related to controversial quantum phenomena have to avoid (if possible) being contaminated by the unfalsifiability originated from the many body problem. An original attempt to show how the Bohmian theory itself (minimizing the role of many body approximations) explains the transitions from a microscopic quantum system towards a macroscopic classical one is presented. (paper)

  5. Neutrix calculus and finite quantum field theory

    International Nuclear Information System (INIS)

    Ng, Y Jack; Dam, H van

    2005-01-01

    In general, quantum field theories (QFT) require regularizations and infinite renormalizations due to ultraviolet divergences in their loop calculations. Furthermore, perturbation series in theories like quantum electrodynamics are not convergent series, but are asymptotic series. We apply neutrix calculus, developed in connection with asymptotic series and divergent integrals, to QFT, obtaining finite renormalizations. While none of the physically measurable results in renormalizable QFT is changed, quantum gravity is rendered more manageable in the neutrix framework. (letter to the editor)

  6. Between general relativity and quantum theory

    International Nuclear Information System (INIS)

    Rayski, J.

    1982-01-01

    Some possibilities of reconciling general relativity with quantum theory are discussed. The procedure of quantization is certainly not unique, but depends upon the choice of the coordinate conditions. Most versions of quantization predict the existence of gravitons, but it is also possible to formulate a quantum theory with a classical gravity whereby the expectation values of Tsub(μν) constitute the sources of the classical metric field. (author)

  7. Numerical calculations in quantum field theories

    International Nuclear Information System (INIS)

    Rebbi, C.

    1984-01-01

    Four lecture notes are included: (1) motivation for numerical calculations in Quantum Field Theory; (2) numerical simulation methods; (3) Monte Carlo studies of Quantum Chromo Dynamics; and (4) systems with fermions. 23 references

  8. Quantum dissipation theory and applications to quantum transport and quantum measurement in mesoscopic systems

    Science.gov (United States)

    Cui, Ping

    The thesis comprises two major themes of quantum statistical dynamics. One is the development of quantum dissipation theory (QDT). It covers the establishment of some basic relations of quantum statistical dynamics, the construction of several nonequivalent complete second-order formulations, and the development of exact QDT. Another is related to the applications of quantum statistical dynamics to a variety of research fields. In particular, unconventional but novel theories of the electron transfer in Debye solvents, quantum transport, and quantum measurement are developed on the basis of QDT formulations. The thesis is organized as follows. In Chapter 1, we present some background knowledge in relation to the aforementioned two themes of this thesis. The key quantity in QDT is the reduced density operator rho(t) ≡ trBrho T(t); i.e., the partial trace of the total system and bath composite rhoT(t) over the bath degrees of freedom. QDT governs the evolution of reduced density operator, where the effects of bath are treated in a quantum statistical manner. In principle, the reduced density operator contains all dynamics information of interest. However, the conventional quantum transport theory is formulated in terms of nonequilibrium Green's function. The newly emerging field of quantum measurement in relation to quantum information and quantum computing does exploit a sort of QDT formalism. Besides the background of the relevant theoretical development, some representative experiments on molecular nanojunctions are also briefly discussed. In chapter 2, we outline some basic (including new) relations that highlight several important issues on QDT. The content includes the background of nonequilibrium quantum statistical mechanics, the general description of the total composite Hamiltonian with stochastic system-bath interaction, a novel parameterization scheme for bath correlation functions, a newly developed exact theory of driven Brownian oscillator (DBO

  9. A relativistic theory for continuous measurement of quantum fields

    International Nuclear Information System (INIS)

    Diosi, L.

    1990-04-01

    A formal theory for the continuous measurement of relativistic quantum fields is proposed. The corresponding scattering equations were derived. The proposed formalism reduces to known equations in the Markovian case. Two recent models for spontaneous quantum state reduction have been recovered in the framework of this theory. A possible example of the relativistic continuous measurement has been outlined in standard Quantum Electrodynamics. The continuous measurement theory possesses an alternative formulation in terms of interacting quantum and stochastic fields. (author) 23 refs

  10. High energy approximations in quantum field theory

    International Nuclear Information System (INIS)

    Orzalesi, C.A.

    1975-01-01

    New theoretical methods in hadron physics based on a high-energy perturbation theory are discussed. The approximated solutions to quantum field theory obtained by this method appear to be sufficiently simple and rich in structure to encourage hadron dynamics studies. Operator eikonal form for field - theoretic Green's functions is derived and discussion is held on how the eikonal perturbation theory is to be renormalized. This method is extended to massive quantum electrodynamics of scalar charged bosons. Possible developments and applications of this theory are given [pt

  11. Quantum theory in vector bundles

    International Nuclear Information System (INIS)

    Mayer, M.E.

    1986-01-01

    This paper describes a framework capable of accomodating quantum gauge theory (QGT), based on recent insights on the cohomological interpretation of ghosts, BRS-transformations, anomalies, and Schwinger terms. The hope is that the approach will lead to a trial marriage of quantum theory and gravity. Some points that are stressed are: nonabelian QGT is subtler than QED; in spite of their BRS-variance, the Yang-Mills potential together with the ghost-form are needed in addition to the field theory; the ghost form together with their Lagrange multiplier in a Lagrangian formalism makes its appearance through the BRS cohomology; and, in QGT one can treat the connection form, the curvature form and the ghost form in one of several ways

  12. Contiguity and quantum theory of measurement

    Energy Technology Data Exchange (ETDEWEB)

    Green, H.S. [Adelaide Univ., SA (Australia). Dept. of Mathematical Physics]|[Adelaide Univ., SA (Australia). Dept. of Physics

    1995-12-31

    This paper presents a comprehensive treatment of the problem of measurement in microscopic physics, consistent with the indeterministic Copenhagen interpretation of quantum mechanics and information theory. It is pointed out that there are serious difficulties in reconciling the deterministic interpretations of quantum mechanics, based on the concepts of a universal wave function or hidden variables, with the principle of contiguity. Quantum mechanics is reformulated entirely in terms of observables, represented by matrices, including the statistical matrix, and the utility of information theory is illustrated by a discussion of the EPR paradox. The principle of contiguity is satisfied by all conserved quantities. A theory of the operation of macroscopic measuring devices is given in the interaction representation, and the attenuation of the indeterminacy of a microscopic observable in the process of measurement is related to observable changes of entropy. 28 refs.

  13. Contiguity and quantum theory of measurement

    International Nuclear Information System (INIS)

    Green, H.S.; Adelaide Univ., SA

    1995-01-01

    This paper presents a comprehensive treatment of the problem of measurement in microscopic physics, consistent with the indeterministic Copenhagen interpretation of quantum mechanics and information theory. It is pointed out that there are serious difficulties in reconciling the deterministic interpretations of quantum mechanics, based on the concepts of a universal wave function or hidden variables, with the principle of contiguity. Quantum mechanics is reformulated entirely in terms of observables, represented by matrices, including the statistical matrix, and the utility of information theory is illustrated by a discussion of the EPR paradox. The principle of contiguity is satisfied by all conserved quantities. A theory of the operation of macroscopic measuring devices is given in the interaction representation, and the attenuation of the indeterminacy of a microscopic observable in the process of measurement is related to observable changes of entropy. 28 refs

  14. Radiation reaction in nonrelativistic quantum theory

    International Nuclear Information System (INIS)

    Sharp, D.H.

    1979-01-01

    Some recent work is reviewed on the quantum theory of radiation reaction. The starting point is the Heisenberg operator equation of motion for a nonrelativistic point electron coupled to the quantized electromagnetic field. It is shown that this equation, in contrast to its classical counterpart, leads to a finite value for the electrostatic self-energy of a point electron and, for values of the fine structure constant α approximately less than 1, admits neither runaway behavior nor noncausal motion. Furthermore, the correspondence limit of the solution to the quantum mechanical equation of motion agrees with that of the Lorentz--Dirac theory in the classical regime, but without the imposition of additional conditions and with no possibility of observable noncausality. Thus, a consistent picture of a classical point electron emerges in the correspondence limit of the quantum mechanical theory. 17 references

  15. Is there a quantum theory of gravity

    International Nuclear Information System (INIS)

    Strominger, A.

    1984-01-01

    The paper concerns attempts to construct a unitary, renormalizable quantum field theory of gravity. Renormalizability and unitarity in quantum gravity; the 1/N expansion; 1/D expansions; and quantum gravity and particle physics; are all discussed. (U.K.)

  16. [Discussion on quantum entanglement theory and acupuncture].

    Science.gov (United States)

    Wang, Jun; Wu, Bin; Chen, Sheng

    2017-11-12

    The quantum entanglement is a new discovery of modern physics and has drawn a widely attention in the world. After learning the quantum entanglement, the authors have found that many characteristics of quantum are reflected in TCM, acupuncture theory and clinical practice. For example, the quantum entanglement phenomenon is mutually verified with the holism, yinyang doctrine, the theory of primary, secondary, root and knot in TCM, etc. It can be applied to interpret the clinical situations which is difficult to be explained in clinical practice, such as the instant effect of acupuncture, multi-point stimulation in one disorder and the points with specific effects. On the basis of the discovery above, the quantum entanglement theory achieved the mutual treatment among the relatives in acupuncture clinical practice and the therapeutic effects were significant. The results suggest that the coupling relationship in quantum entanglement presents between the diseases and the acupoints in the direct relative. The authors believe that the discovery in this study contributes to the exploration on the approaches to the acupuncture treatment in clinical practice and enrich the ideas on the disease prevention.

  17. Quantum Theories of Self-Localization

    Science.gov (United States)

    Bernstein, Lisa Joan

    In the classical dynamics of coupled oscillator systems, nonlinearity leads to the existence of stable solutions in which energy remains localized for all time. Here the quantum-mechanical counterpart of classical self-localization is investigated in the context of two model systems. For these quantum models, the terms corresponding to classical nonlinearities modify a subset of the stationary quantum states to be particularly suited to the creation of nonstationary wavepackets that localize energy for long times. The first model considered here is the Quantized Discrete Self-Trapping model (QDST), a system of anharmonic oscillators with linear dispersive coupling used to model local modes of vibration in polyatomic molecules. A simple formula is derived for a particular symmetry class of QDST systems which gives an analytic connection between quantum self-localization and classical local modes. This formula is also shown to be useful in the interpretation of the vibrational spectra of some molecules. The second model studied is the Frohlich/Einstein Dimer (FED), a two-site system of anharmonically coupled oscillators based on the Frohlich Hamiltonian and motivated by the theory of Davydov solitons in biological protein. The Born-Oppenheimer perturbation method is used to obtain approximate stationary state wavefunctions with error estimates for the FED at the first excited level. A second approach is used to reduce the first excited level FED eigenvalue problem to a system of ordinary differential equations. A simple theory of low-energy self-localization in the FED is discussed. The quantum theories of self-localization in the intrinsic QDST model and the extrinsic FED model are compared.

  18. 3D quantum gravity and effective noncommutative quantum field theory.

    Science.gov (United States)

    Freidel, Laurent; Livine, Etera R

    2006-06-09

    We show that the effective dynamics of matter fields coupled to 3D quantum gravity is described after integration over the gravitational degrees of freedom by a braided noncommutative quantum field theory symmetric under a kappa deformation of the Poincaré group.

  19. Integrable structures in quantum field theory

    International Nuclear Information System (INIS)

    Negro, Stefano

    2016-01-01

    This review was born as notes for a lecture given at the Young Researchers Integrability School (YRIS) school on integrability in Durham, in the summer of 2015. It deals with a beautiful method, developed in the mid-nineties by Bazhanov, Lukyanov and Zamolodchikov and, as such, called BLZ. This method can be interpreted as a field theory version of the quantum inverse scattering, also known as the algebraic Bethe ansatz. Starting with the case of conformal field theories (CFTs) we show how to build the field theory analogues of commuting transfer T matrices and Baxter Q -operators of integrable lattice models. These objects contain the complete information of the integrable structure of the theory, viz. the integrals of motion, and can be used, as we will show, to derive the thermodynamic Bethe ansatz and nonlinear integral equations. This same method can be easily extended to the description of integrable structures of certain particular massive deformations of CFTs; these, in turn, can be described as quantum group reductions of the quantum sine-Gordon model and it is an easy step to include this last theory in the framework of BLZ approach. Finally we show an interesting and surprising connection of the BLZ structures with classical objects emerging from the study of classical integrable models via the inverse scattering transform method. This connection goes under the name of ODE/IM correspondence and we will present it for the specific case of quantum sine-Gordon model only. (topical review)

  20. Are Quantum Theory Questions Epistemic?

    Directory of Open Access Journals (Sweden)

    Viviana Yaccuzzi Polisena

    2013-12-01

    Full Text Available How to displace-move quantum theory [Ǭ] questions-problems to philosophy? Seeing the collapse of our society’s cultural-intellectual-morals, the philosophy of the 21st century has to contribute to the formation of new principles-formalisms: the big task of the contemporary philosophy ©] is to innovate, to transform the building of the knowledge! Which is the role of the contemporary philosopher? (Noam Chomsky. Building science so that it is more human, out of the scientific mercantilism so that it does not continue transgressing that which is most precious: the thought-life. The ideas that I propose demand a deep cultural-epistemiologicscientific-philosophical-ethical rethinking that goes from quantum entities up to life in society. The starting idea is «the quantum [Ǭ], the paradigm of the contemporary science ©]» (Bernard D’Espagnat. I propose to displace-move questions of the quantum theory [Ǭ]: spin, measure, layering to the field of philosophy (φ to build generic symbols. Can the contemporary episteme model the collapse of the ? For a philosopher, can understanding the importance and the behaviour of the spin bring something new to philosophy ? Can information of the states of the spin be used to observe in a holographic way the pattern energy-information contained in the quantum entities? Is quantum [Ǭ] physics mechanical?

  1. Reasonable fermionic quantum information theories require relativity

    International Nuclear Information System (INIS)

    Friis, Nicolai

    2016-01-01

    We show that any quantum information theory based on anticommuting operators must be supplemented by a superselection rule deeply rooted in relativity to establish a reasonable notion of entanglement. While quantum information may be encoded in the fermionic Fock space, the unrestricted theory has a peculiar feature: the marginals of bipartite pure states need not have identical entropies, which leads to an ambiguous definition of entanglement. We solve this problem, by proving that it is removed by relativity, i.e., by the parity superselection rule that arises from Lorentz invariance via the spin-statistics connection. Our results hence unveil a fundamental conceptual inseparability of quantum information and the causal structure of relativistic field theory. (paper)

  2. Factorization algebras in quantum field theory

    CERN Document Server

    Costello, Kevin

    2017-01-01

    Factorization algebras are local-to-global objects that play a role in classical and quantum field theory which is similar to the role of sheaves in geometry: they conveniently organize complicated information. Their local structure encompasses examples like associative and vertex algebras; in these examples, their global structure encompasses Hochschild homology and conformal blocks. In this first volume, the authors develop the theory of factorization algebras in depth, but with a focus upon examples exhibiting their use in field theory, such as the recovery of a vertex algebra from a chiral conformal field theory and a quantum group from Abelian Chern-Simons theory. Expositions of the relevant background in homological algebra, sheaves and functional analysis are also included, thus making this book ideal for researchers and graduates working at the interface between mathematics and physics.

  3. Topos quantum theory on quantization-induced sheaves

    International Nuclear Information System (INIS)

    Nakayama, Kunji

    2014-01-01

    In this paper, we construct a sheaf-based topos quantum theory. It is well known that a topos quantum theory can be constructed on the topos of presheaves on the category of commutative von Neumann algebras of bounded operators on a Hilbert space. Also, it is already known that quantization naturally induces a Lawvere-Tierney topology on the presheaf topos. We show that a topos quantum theory akin to the presheaf-based one can be constructed on sheaves defined by the quantization-induced Lawvere-Tierney topology. That is, starting from the spectral sheaf as a state space of a given quantum system, we construct sheaf-based expressions of physical propositions and truth objects, and thereby give a method of truth-value assignment to the propositions. Furthermore, we clarify the relationship to the presheaf-based quantum theory. We give translation rules between the sheaf-based ingredients and the corresponding presheaf-based ones. The translation rules have “coarse-graining” effects on the spaces of the presheaf-based ingredients; a lot of different proposition presheaves, truth presheaves, and presheaf-based truth-values are translated to a proposition sheaf, a truth sheaf, and a sheaf-based truth-value, respectively. We examine the extent of the coarse-graining made by translation

  4. Probing noncommutative theories with quantum optical experiments

    Directory of Open Access Journals (Sweden)

    Sanjib Dey

    2017-11-01

    Full Text Available One of the major difficulties of modern science underlies at the unification of general relativity and quantum mechanics. Different approaches towards such theory have been proposed. Noncommutative theories serve as the root of almost all such approaches. However, the identification of the appropriate passage to quantum gravity is suffering from the inadequacy of experimental techniques. It is beyond our ability to test the effects of quantum gravity thorough the available scattering experiments, as it is unattainable to probe such high energy scale at which the effects of quantum gravity appear. Here we propose an elegant alternative scheme to test such theories by detecting the deformations emerging from the noncommutative structures. Our protocol relies on the novelty of an opto-mechanical experimental setup where the information of the noncommutative oscillator is exchanged via the interaction with an optical pulse inside an optical cavity. We also demonstrate that our proposal is within the reach of current technology and, thus, it could uncover a feasible route towards the realization of quantum gravitational phenomena thorough a simple table-top experiment.

  5. What If Quantum Theory Violates All Mathematics?

    Directory of Open Access Journals (Sweden)

    Rosinger Elemér Elad

    2017-09-01

    Full Text Available It is shown by using a rather elementary argument in Mathematical Logic that if indeed, quantum theory does violate the famous Bell Inequalities, then quantum theory must inevitably also violate all valid mathematical statements, and in particular, such basic algebraic relations like 0 = 0, 1 = 1, 2 = 2, 3 = 3, … and so on …

  6. Quantum golden field theory - Ten theorems and various conjectures

    International Nuclear Information System (INIS)

    El Naschie, M.S.

    2008-01-01

    Ten theorems and few conjectures related to quantum field theory as applied to high energy physics are presented. The work connects classical quantum field theory with the golden mean renormalization groups of non-linear dynamics and E-Infinity theory

  7. Quantum theory and human perception of the macro-world.

    Science.gov (United States)

    Aerts, Diederik

    2014-01-01

    We investigate the question of 'why customary macroscopic entities appear to us humans as they do, i.e., as bounded entities occupying space and persisting through time', starting from our knowledge of quantum theory, how it affects the behavior of such customary macroscopic entities, and how it influences our perception of them. For this purpose, we approach the question from three perspectives. Firstly, we look at the situation from the standard quantum angle, more specifically the de Broglie wavelength analysis of the behavior of macroscopic entities, indicate how a problem with spin and identity arises, and illustrate how both play a fundamental role in well-established experimental quantum-macroscopical phenomena, such as Bose-Einstein condensates. Secondly, we analyze how the question is influenced by our result in axiomatic quantum theory, which proves that standard quantum theory is structurally incapable of describing separated entities. Thirdly, we put forward our new 'conceptual quantum interpretation', including a highly detailed reformulation of the question to confront the new insights and views that arise with the foregoing analysis. At the end of the final section, a nuanced answer is given that can be summarized as follows. The specific and very classical perception of human seeing-light as a geometric theory-and human touching-only ruled by Pauli's exclusion principle-plays a role in our perception of macroscopic entities as ontologically stable entities in space. To ascertain quantum behavior in such macroscopic entities, we will need measuring apparatuses capable of its detection. Future experimental research will have to show if sharp quantum effects-as they occur in smaller entities-appear to be ontological aspects of customary macroscopic entities. It remains a possibility that standard quantum theory is an incomplete theory, and hence incapable of coping ultimately with separated entities, meaning that a more general theory will be needed.

  8. Quantum Theory and Human Perception of the Macro-World

    Directory of Open Access Journals (Sweden)

    Diederik eAerts

    2014-06-01

    Full Text Available We investigate the question of 'why customary macroscopic entities appear to us humans as they do, i.e. as bounded entities occupying space and persisting through time', starting from our knowledge of quantum theory, how it affects the behavior of such customary macroscopic entities, and how it influences our perception of them. For this purpose, we approach the question from three perspectives. Firstly, we look at the situation from the standard quantum angle, more specifically the de Broglie wavelength analysis of the behavior of macroscopic entities, indicate how a problem with spin and identity arises, and illustrate how both play a fundamental role in well-established experimental quantum-macroscopical phenomena, such as Bose-Einstein condensates. Secondly, we analyze how the question is influenced by our result in axiomatic quantum theory, which proves that standard quantum theory is structurally incapable of describing separated entities. Thirdly, we put forward our new `conceptual quantum interpretation', including a highly detailed reformulation of the question to confront the new insights and views that arise with the foregoing analysis. At the end of the final section, a nuanced answer is given that can be summarized as follows. The specific and very classical perception of human seeing -- light as a geometric theory -- and human touching -- only ruled by Pauli's exclusion principle -- plays a role in our perception of macroscopic entities as ontologically stable objects in space. To ascertain quantum behavior in such macroscopic entities, we will need measuring apparatuses capable of its detection. Future experimental research will have to show if sharp quantum effects -- as they occur in smaller entities -- appear to be ontological aspects of customary macroscopic entities. It remains a possibility that standard quantum theory is an incomplete theory, and hence incapable of coping with separated entities, meaning that a more general

  9. Quantum theory in complex Hilbert space

    International Nuclear Information System (INIS)

    Sharma, C.S.

    1988-01-01

    The theory of complexification of a real Hilbert space as developed by the author is scrutinized with the aim of explaining why quantum theory should be done in a complex Hilbert space in preference to real Hilbert space. It is suggested that, in order to describe periodic motions in stationary states of a quantum system, the mathematical object modelling a state of a system should have enough points in it to be able to describe explicit time dependence of a periodic motion without affecting the probability distributions of observables. Heuristic evidence for such an assumption comes from Dirac's theory of interaction between radiation and matter. If the assumption is adopted as a requirement on the mathematical model for a quantum system, then a real Hilbert space is ruled out in favour of a complex Hilbert space for a possible model for such a system

  10. Some remarks on quantum coherence theory

    International Nuclear Information System (INIS)

    Burzynski, A.

    1982-01-01

    This paper is devoted to the basic topics connected with coherence in quantum mechanics and quantum theory of radiation. In particular the formalism of the normal ordered coherence functions in cases of one and many degrees of freedom is described in detail. A few examples illustrate the analysis of the coherence properties of the various quantum states of the field of radiation. (author)

  11. Quantum Field Theory at non zero temperature

    International Nuclear Information System (INIS)

    Alvarez-Estrada, R.

    1989-01-01

    The formulations of the Φ 4 Quantum Field Theory and of Quantum Electrodynamics in I+d dimensions (d spatial dimensions) at non-zero temperature are reviewed. The behaviours of all those theories in the regime of large distances and high temperatures are surveyed. Only results are reported, all technicalities being omitted. The leading high-temperature contributions to correlation functions, to all perturbative orders, in those theories turn out to be also given by simpler theories, having much milder (superrenormalizable) ultraviolet behaviour and special mass renormalizations. In particular, the triviality/non-triviality issue for the Φ 4 theory in 1+3 dimensions is discussed briefly. (Author)

  12. The Global Approach to Quantum Field Theory

    International Nuclear Information System (INIS)

    Folacci, Antoine; Jensen, Bruce

    2003-01-01

    Thanks to its impressive success in the second half of the 20th century, both in high-energy physics and in critical phenomena, quantum field theory has enjoyed an abundant literature. We therefore greet yet another book on this subject with caution: what can a monograph on quantum field theory bring now that is new, either conceptually or pedagogically? But when it is written by a physicist such as Bryce DeWitt, who has made his own contribution to the collection of field theory books with The Global Approach to Quantum Field Theory, all suspicion is naturally abandoned. DeWitt has made a formidable contribution to various areas of physics: general relativity, the interpretation of quantum mechanics, and most of all the quantization of non-Abelian gauge theories and quantum gravity. In addition, his pedagogical publications, especially the Les Houches schools of 1963 and 1983, have had a great impact on quantum field theory. We must begin by alerting the potential readers of this book that it cannot be compared to any other book in the field. This uniqueness applies to both the scientific content and the way the ideas are presented. For DeWitt, a central concept of field theory is that of 'space of histories'. For a field varphi i defined on a given spacetime M, the set of all varphi i (x) for all x in all charts of M defines its history. It is the space Phi of all possible histories (dynamically allowed or not) of the fields defined on M which is called the 'pace of histories' by DeWitt. If only bosonic fields are considered, the space of histories is an infinite-dimensional manifold and if fermionic fields are also present, it must be viewed as an infinite-dimensional supermanifold. The fields can then be regarded as coordinates on these structures, and the geometrical notions of differentiation, metric, connections, measure, as well as the geodesics which can be defined on it, are of fundamental importance in the development of the formalism of quantum field

  13. Entanglement in non-Hermitian quantum theory

    Indian Academy of Sciences (India)

    hope that the entanglement in PT -symmetric quantum theory may provide new ways of processing information in the quantum world. We conclude our .... Similarly, if we have a two-level atom, then an arbitrary superposition of the ground state ...

  14. New foundation of quantum theory

    International Nuclear Information System (INIS)

    Schmutzer, E.

    1976-01-01

    A new foundation of quantum theory is given on the basis of the formulated 'Principle of Fundamental Covariance', combining the 'Principle of General Relativity' (coordinate-covariance in space-time) and the 'Principle of Operator-Covariance' (in Hilbert space). The fundamental quantum laws proposed are: (1) time-dependent simultaneous laws of motion for the operators, general states and eigenstates, (2) commutation relations, (3) time-dependent eigenvalue equations. All these laws fulfill the Principle of Fundamental Covariance (in non-relativistic quantum mechanics with restricted coordinate transformations). (author)

  15. Foundations of quantum mechanics an exploration of the physical meaning of quantum theory

    CERN Document Server

    Norsen, Travis

    2017-01-01

    Authored by an acclaimed teacher of quantum physics and philosophy, this textbook pays special attention to the aspects that many courses sweep under the carpet. Traditional courses in quantum mechanics teach students how to use the quantum formalism to make calculations. But even the best students - indeed, especially the best students - emerge rather confused about what, exactly, the theory says is going on, physically, in microscopic systems. This supplementary textbook is designed to help such students understand that they are not alone in their confusions (luminaries such as Albert Einstein, Erwin Schroedinger, and John Stewart Bell having shared them), to sharpen their understanding of the most important difficulties associated with interpreting quantum theory in a realistic manner, and to introduce them to the most promising attempts to formulate the theory in a way that is physically clear and coherent. The text is acces sible to students with at least one semester of prior exposure to quantum (or...

  16. Progress in the axiomatic quantum field theory. [Review

    Energy Technology Data Exchange (ETDEWEB)

    Vladimirov, V S; Polivanov, M K

    1975-01-01

    The authors consider the development of mathematical methods of solving quantum field theory problems from attempts of simple perfection of usual methods of quantum mechanics by elaborating the methods of perturbation theory and S-matrix, by working out the perturbation theory for quantum electrodynamics, and by applying dispersion relations and S-matrix for strong interactions. The method of dispersion relations results in the majority of radically new ways of describing the scattering amplitude. The grave disadvantage of all the methods is that they little define the dynamics of processes. The dynamic theory in the Heisenberg representation may be constructed on the basis of the axiomatic theory of S-matrix with the casuality condition. Another axiomatic direction has been recently developed; that is the so-called algebraic axiomatics which makes use of methods of Csup(*)-algebras.

  17. Metric quantum field theory: A preliminary look

    International Nuclear Information System (INIS)

    Watson, W.N.

    1988-01-01

    Spacetime coordinates are involved in uncertainty relations; spacetime itself appears to exhibit curvature. Could the continua associated with field variables exhibit curvature? This question, as well as the ideas that (a) difficulties with quantum theories of gravitation may be due to their formulation in an incorrect analogy with other quantum field theories, (b) spacetime variables should not be any more basic than others for describing physical phenomena, and (c) if field continua do not exhibit curvature, the reasons would be of interest, motivated the formulation of a theory of variable curvature and torsion in the electromagnetic four-potential's reciprocal space. Curvature and torsion equation completely analogous to those for a gauge theory of gravitation (the Einstein-Cartan-Sciama-Kibble theory) are assumed for this continuum. The interaction-Hamiltonian density of this theory, to a first approximation, implies that in addition to the Maxwell-Dirac field interaction of ordinary quantum electrodynamics, there should also be an interaction between Dirac-field vector and pseudovector currents unmediated by photons, as well as other interactions involving two or three Dirac-field currents interacting with the Maxwell field at single spacetime events. Calculations expressing Bhabha-scattering cross sections for incident beams with parallel spins differ from those of unmodified quantum electrodynamics by terms of first order in the gravitational constant of the theory, but the corresponding cross section for unpolarized incident beams differs from that of the unmodified theory only by terms of higher order in that constant. Undesirable features of the present theory include its nonrenormalizability, the obscurity of the meaning of its inverse field operator, and its being based on electrodynamics rather than electroweak dynamics

  18. A Quantum Version of Wigner’s Transition State Theory

    NARCIS (Netherlands)

    Schubert, R.; Waalkens, H.; Wiggins, S.

    2009-01-01

    A quantum version of a recent realization of Wigner’s transition state theory in phase space is presented. The theory developed builds on a quantum normal form which locally decouples the quantum dynamics near the transition state to any desired order in ħ. This leads to an explicit algorithm to

  19. How far are we from the quantum theory of gravity?

    International Nuclear Information System (INIS)

    Woodard, R P

    2009-01-01

    I give a pedagogical explanation of what it is about quantization that makes general relativity go from being a nearly perfect classical theory to a very problematic quantum one. I also explain why some quantization of gravity is unavoidable, why quantum field theories have divergences, why the divergences of quantum general relativity are worse than those of the other forces, what physicists think this means and what they might do with a consistent theory of quantum gravity if they had one. Finally, I discuss the quantum gravitational data that have recently become available from cosmology.

  20. Quantum theory of the solid state part B

    CERN Document Server

    Callaway, Joseph

    1974-01-01

    Quantum Theory of the Solid State, Part B describes the concepts and methods of the central problems of the quantum theory of solids. This book discusses the developed machinery applied to impurities, disordered systems, effects of external fields, transport phenomena, and superconductivity. The representation theory, low field diamagnetic susceptibility, electron-phonon interaction, and Landau theory of fermi liquids are also deliberated. This text concludes with an introduction to many-body theory and some applications. This publication is a suitable textbook for students who have completed

  1. Why do we need quantum theory?

    International Nuclear Information System (INIS)

    Ballo, P.; Racko, J.; Harmatha, L.

    2014-01-01

    A good starting point of this consideration can be a question 'Why do we need quantum theory?'. What is wrong with just using the methods of classical mechanics or electrodynamics. Although there are a number of arguments for quantum theory, many people still accept the quantum theory as an intellectual achievement having many arguments for own truth. Many of them are based on superstition of elegance of classical theory. As said Ludwig Boltzmann 'Elegance should be left to shoemakers and tailors, we should keep the law of mathematics'. The aim of this paper is to discuss some arguments for quantum mechanics which are mostly technical and maybe mathematical rigorous. Whereas some mathematics overstate the beginning let's are start with a little theory. In this discussion we will use the interaction representation (also known as the Dirac picture) which is an interactive picture between the Schroedinger and the Heisenberg picture. Although it sounds ominously, it is a very effective tool in cases where the influences of disturbance simultaneously changing both the wave function and observed variable. In this case the solution is to use with the aim to express many-body solution of the Schroedinger equation. The interaction representation constructs the solution of Schroedinger equation as the solution of the free particle problem plus some unknown interaction part. In our discussion we will use a hypothetical system (not very far from reality) which contains a mixture of dissipative and other (yet unknown) subsystems with very different qualities. It has been shown that right in this configuration the interaction representation is very useful. (authors)

  2. A general action for topological quantum field theories

    International Nuclear Information System (INIS)

    Dayi, O.F.

    1989-03-01

    Topological field theories can be formulated by beginning from a higher dimensional action. The additional dimension is an unphysical time parameter and the action is the derivative of a functional W with respect to this variable. In the d = 4 case, it produces actions which are shown to give topological quantum field theory after gauge fixing. In d = 3 this action leads to the Hamiltonian, which yields the Floer groups if the additional parameter is treated as physical when W is the pure Chern-Simons action. This W can be used to define a topological quantum field theory in d = 3 by treating the additional parameter as unphysical. The BFV-BRST operator quantization of this theory yields to an enlarged system which has only first class constraints. This is not identical to the previously introduced d = 3 topological quantum field theory, even if it is shown that the latter theory also gives the theory which we began with, after a partial gauge fixing. (author). 18 refs

  3. Quantum Yang-Mills theory of Riemann surfaces and conformal field theory

    International Nuclear Information System (INIS)

    Killingback, T.P.

    1989-01-01

    It is shown that Yang-Mills theory on a smooth surface, when suitably quantized, is a topological quantum field theory. This topological gauge theory is intimately related to two-dimensional conformal field theory. It is conjectured that all conformal field theories may be obtained from Yang-Mills theory on smooth surfaces. (orig.)

  4. Superconducting quantum circuits theory and application

    Science.gov (United States)

    Deng, Xiuhao

    Superconducting quantum circuit models are widely used to understand superconducting devices. This thesis consists of four studies wherein the superconducting quantum circuit is used to illustrate challenges related to quantum information encoding and processing, quantum simulation, quantum signal detection and amplification. The existence of scalar Aharanov-Bohm phase has been a controversial topic for decades. Scalar AB phase, defined as time integral of electric potential, gives rises to an extra phase factor in wavefunction. We proposed a superconducting quantum Faraday cage to detect temporal interference effect as a consequence of scalar AB phase. Using the superconducting quantum circuit model, the physical system is solved and resulting AB effect is predicted. Further discussion in this chapter shows that treating the experimental apparatus quantum mechanically, spatial scalar AB effect, proposed by Aharanov-Bohm, can't be observed. Either a decoherent interference apparatus is used to observe spatial scalar AB effect, or a quantum Faraday cage is used to observe temporal scalar AB effect. The second study involves protecting a quantum system from losing coherence, which is crucial to any practical quantum computation scheme. We present a theory to encode any qubit, especially superconducting qubits, into a universal quantum degeneracy point (UQDP) where low frequency noise is suppressed significantly. Numerical simulations for superconducting charge qubit using experimental parameters show that its coherence time is prolong by two orders of magnitude using our universal degeneracy point approach. With this improvement, a set of universal quantum gates can be performed at high fidelity without losing too much quantum coherence. Starting in 2004, the use of circuit QED has enabled the manipulation of superconducting qubits with photons. We applied quantum optical approach to model coupled resonators and obtained a four-wave mixing toolbox to operate photons

  5. The structure of states and maps in quantum theory

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 73; Issue 3. The structure of states and maps in quantum theory. Sudhavathani Simon S P ... The structure of statistical state spaces in the classical and quantum theories are compared in an interesting and novel manner. Quantum state spaces and maps on them ...

  6. History and future. In commemoration of quantum theory's centenary

    International Nuclear Information System (INIS)

    Zhou Guangzhao

    2001-01-01

    The history of the discovery of quantum theory and the debate around its interpretation is reviewed. The strong influence of quantum mechanics on the development of science ad philosophy is emphasized and its impact on social technological and economic development is discussed. Possible directions for further development of quantum theory are also mentioned

  7. Characterization of particle states in relativistic classical quantum theory

    International Nuclear Information System (INIS)

    Horwitz, L.P.; Rabin, Y.

    1977-02-01

    Classical and quantum relativistic mechanics are studied. The notion of a ''particle'' is defined in the classical case and the interpretation of mechanics in space-time is clarified. These notions are carried over to the quantum theory, as much as possible. The relation between the results of Feyman's path integral approach and the theory of Horwitz and Piron is discussed. The ''particle'' interpretation is shown to imply an asymptotic condition for scattering. A general method of constructing the dynamical mass spectrum of composite ''particle'' states is discussed. An interference experiment is proposed to affirm the interpretation and applicability of Stueckelberg type wave functions for actual physical phenomena. Some discussion of the relation of this relativistic quantum theory to Feynman's approach to quantum field theory is also given

  8. Elements of quantum computing history, theories and engineering applications

    CERN Document Server

    Akama, Seiki

    2015-01-01

    A quantum computer is a computer based on a computational model which uses quantum mechanics, which is a subfield of physics to study phenomena at the micro level. There has been a growing interest on quantum computing in the 1990's, and some quantum computers at the experimental level were recently implemented. Quantum computers enable super-speed computation, and can solve some important problems whose solutions were regarded impossible or intractable with traditional computers. This book provides a quick introduction to quantum computing for readers who have no backgrounds of both theory of computation and quantum mechanics. “Elements of Quantum Computing” presents the history, theories, and engineering applications of quantum computing. The book is suitable to computer scientists, physicist, and software engineers.

  9. Quantum field theory a tourist guide for mathematicians

    CERN Document Server

    Folland, Gerald B

    2008-01-01

    Quantum field theory has been a great success for physics, but it is difficult for mathematicians to learn because it is mathematically incomplete. Folland, who is a mathematician, has spent considerable time digesting the physical theory and sorting out the mathematical issues in it. Fortunately for mathematicians, Folland is a gifted expositor. The purpose of this book is to present the elements of quantum field theory, with the goal of understanding the behavior of elementary particles rather than building formal mathematical structures, in a form that will be comprehensible to mathematicians. Rigorous definitions and arguments are presented as far as they are available, but the text proceeds on a more informal level when necessary, with due care in identifying the difficulties. The book begins with a review of classical physics and quantum mechanics, then proceeds through the construction of free quantum fields to the perturbation-theoretic development of interacting field theory and renormalization theor...

  10. Introducing quantum theory a graphic guide

    CERN Document Server

    McEvoy, J P

    2013-01-01

    Quantum theory confronts us with bizarre paradoxes which contradict the logic of classical physics. At the subatomic level, one particle seems to know what the others are doing, and according to Heisenberg's "uncertainty principle", there is a limit on how accurately nature can be observed. And yet the theory is amazingly accurate and widely applied, explaining all of chemistry and most of physics. "Introducing Quantum Theory" takes us on a step-by-step tour with the key figures, including Planck, Einstein, Bohr, Heisenberg and Schrodinger. Each contributed at least one crucial concept to the theory. The puzzle of the wave-particle duality is here, along with descriptions of the two questions raised against Bohr's "Copenhagen Interpretation" - the famous "dead and alive cat" and the EPR paradox. Both remain unresolved.

  11. Quantum theory of scattering

    CERN Document Server

    Wu Ta You

    1962-01-01

    This volume addresses the broad formal aspects and applications of the quantum theory of scattering in atomic and nuclear collisions. An encyclopedic source of pioneering work, it serves as a text for students and a reference for professionals in the fields of chemistry, physics, and astrophysics. The self-contained treatment begins with the general theory of scattering of a particle by a central field. Subsequent chapters explore particle scattering by a non-central field, collisions between composite particles, the time-dependent theory of scattering, and nuclear reactions. An examinati

  12. Perturbative algebraic quantum field theory at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lindner, Falk

    2013-08-15

    We present the algebraic approach to perturbative quantum field theory for the real scalar field in Minkowski spacetime. In this work we put a special emphasis on the inherent state-independence of the framework and provide a detailed analysis of the state space. The dynamics of the interacting system is constructed in a novel way by virtue of the time-slice axiom in causal perturbation theory. This method sheds new light in the connection between quantum statistical dynamics and perturbative quantum field theory. In particular it allows the explicit construction of the KMS and vacuum state for the interacting, massive Klein-Gordon field which implies the absence of infrared divergences of the interacting theory at finite temperature, in particular for the interacting Wightman and time-ordered functions.

  13. Perturbative algebraic quantum field theory at finite temperature

    International Nuclear Information System (INIS)

    Lindner, Falk

    2013-08-01

    We present the algebraic approach to perturbative quantum field theory for the real scalar field in Minkowski spacetime. In this work we put a special emphasis on the inherent state-independence of the framework and provide a detailed analysis of the state space. The dynamics of the interacting system is constructed in a novel way by virtue of the time-slice axiom in causal perturbation theory. This method sheds new light in the connection between quantum statistical dynamics and perturbative quantum field theory. In particular it allows the explicit construction of the KMS and vacuum state for the interacting, massive Klein-Gordon field which implies the absence of infrared divergences of the interacting theory at finite temperature, in particular for the interacting Wightman and time-ordered functions.

  14. Realism and Antirealism in Informational Foundations of Quantum Theory

    Directory of Open Access Journals (Sweden)

    Tina Bilban

    2014-08-01

    Full Text Available Zeilinger-Brukner's informational foundations of quantum theory, a theory based on Zeilinger's foundational principle for quantum mechanics that an elementary system carried one bit of information, explains seemingly unintuitive quantum behavior with simple theoretical framework. It is based on the notion that distinction between reality and information cannot be made, therefore they are the same. As the critics of informational foundations of quantum theory show, this antirealistic move captures the theory in tautology, where information only refers to itself, while the relationships outside the information with the help of which the nature of information would be defined are lost and the questions "Whose information? Information about what?" cannot be answered. The critic's solution is a return to realism, where the observer's effects on the information are neglected. We show that radical antirealism of informational foundations of quantum theory is not necessary and that the return to realism is not the only way forward. A comprehensive approach that exceeds mere realism and antirealism is also possible: we can consider both sources of the constraints on the information, those coming from the observer and those coming from the observed system/nature/reality. The information is always the observer's information about the observed. Such a comprehensive philosophical approach can still support the theoretical framework of informational foundations of quantum theory: If we take that one bit is the smallest amount of information in the form of which the observed reality can be grasped by the observer, we can say that an elementary system (grasped and defined as such by the observer correlates to one bit of information. Our approach thus explains all the features of the quantum behavior explained by informational foundations of quantum theory: the wave function and its collapse, entanglement, complementarity and quantum randomness. However, it does

  15. Quantum work relations and response theory in parity-time-symmetric quantum systems

    Science.gov (United States)

    Wei, Bo-Bo

    2018-01-01

    In this work, we show that a universal quantum work relation for a quantum system driven arbitrarily far from equilibrium extends to a parity-time- (PT -) symmetric quantum system with unbroken PT symmetry, which is a consequence of microscopic reversibility. The quantum Jarzynski equality, linear response theory, and Onsager reciprocal relations for the PT -symmetric quantum system are recovered as special cases of the universal quantum work relation in a PT -symmetric quantum system. In the regime of broken PT symmetry, the universal quantum work relation does not hold because the norm is not preserved during the dynamics.

  16. Quantum field theory in curved spacetime and black hole thermodynamics

    CERN Document Server

    Wald, Robert M

    1994-01-01

    In this book, Robert Wald provides a coherent, pedagogical introduction to the formulation of quantum field theory in curved spacetime. He begins with a treatment of the ordinary one-dimensional quantum harmonic oscillator, progresses through the construction of quantum field theory in flat spacetime to possible constructions of quantum field theory in curved spacetime, and, ultimately, to an algebraic formulation of the theory. In his presentation, Wald disentangles essential features of the theory from inessential ones (such as a particle interpretation) and clarifies relationships between various approaches to the formulation of the theory. He also provides a comprehensive, up-to-date account of the Unruh effect, the Hawking effect, and some of its ramifications. In particular, the subject of black hole thermodynamics, which remains an active area of research, is treated in depth. This book will be accessible to students and researchers who have had introductory courses in general relativity and quantum f...

  17. Theory and application of quantum molecular dynamics

    CERN Document Server

    Zeng Hui Zhang, John

    1999-01-01

    This book provides a detailed presentation of modern quantum theories for treating the reaction dynamics of small molecular systems. Its main focus is on the recent development of successful quantum dynamics theories and computational methods for studying the molecular reactive scattering process, with specific applications given in detail for a number of benchmark chemical reaction systems in the gas phase and the gas surface. In contrast to traditional books on collision in physics focusing on abstract theory for nonreactive scattering, this book deals with both the development and the appli

  18. Excluding joint probabilities from quantum theory

    Science.gov (United States)

    Allahverdyan, Armen E.; Danageozian, Arshag

    2018-03-01

    Quantum theory does not provide a unique definition for the joint probability of two noncommuting observables, which is the next important question after the Born's probability for a single observable. Instead, various definitions were suggested, e.g., via quasiprobabilities or via hidden-variable theories. After reviewing open issues of the joint probability, we relate it to quantum imprecise probabilities, which are noncontextual and are consistent with all constraints expected from a quantum probability. We study two noncommuting observables in a two-dimensional Hilbert space and show that there is no precise joint probability that applies for any quantum state and is consistent with imprecise probabilities. This contrasts with theorems by Bell and Kochen-Specker that exclude joint probabilities for more than two noncommuting observables, in Hilbert space with dimension larger than two. If measurement contexts are included into the definition, joint probabilities are not excluded anymore, but they are still constrained by imprecise probabilities.

  19. Operational quantum theory without predefined time

    International Nuclear Information System (INIS)

    Oreshkov, Ognyan; Cerf, Nicolas J

    2016-01-01

    The standard formulation of quantum theory assumes a predefined notion of time. This is a major obstacle in the search for a quantum theory of gravity, where the causal structure of space-time is expected to be dynamical and fundamentally probabilistic in character. Here, we propose a generalized formulation of quantum theory without predefined time or causal structure, building upon a recently introduced operationally time-symmetric approach to quantum theory. The key idea is a novel isomorphism between transformations and states which depends on the symmetry transformation of time reversal. This allows us to express the time-symmetric formulation in a time-neutral form with a clear physical interpretation, and ultimately drop the assumption of time. In the resultant generalized formulation, operations are associated with regions that can be connected in networks with no directionality assumed for the connections, generalizing the standard circuit framework and the process matrix framework for operations without global causal order. The possible events in a given region are described by positive semidefinite operators on a Hilbert space at the boundary, while the connections between regions are described by entangled states that encode a nontrivial symmetry and could be tested in principle. We discuss how the causal structure of space-time could be understood as emergent from properties of the operators on the boundaries of compact space-time regions. The framework is compatible with indefinite causal order, timelike loops, and other acausal structures. (paper)

  20. On the consistency of quantum geometrodynamics and quantum field theories in the Bohm-de Broglie Interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Pinto-Neto, N.; Santini, E. Sergio. E-mail: nelsonpn@lafex.cbpf.br; santini@lafex.cbpf.br

    2000-12-01

    We consider quantum geometrodynamics and parametrized quantum field theories in the frame-work of the Bohm-de Broglie interpretation. In the first case, and following the lines of our previous work, where a Hamiltonian formalism for the bohmian trajectories was constructed, we show the consistency of the theory for any quantum potential, completing the scenarios for canonical quantum cosmology presented there. In the latter case, we prove the consistency of scalar field theory in Minkowski spacetime for any quantum potential, and we show, using this alternative Hamiltonian method, a concrete example already known in the literature where Lorentz invariance of individual events is broken. (author)

  1. Bohmian mechanics. The physics and mathematics of quantum theory

    International Nuclear Information System (INIS)

    Duerr, Detlef; Teufel, Stefan

    2009-01-01

    Bohmian Mechanics was formulated in 1952 by David Bohm as a complete theory of quantum phenomena based on a particle picture. It was promoted some decades later by John S. Bell, who, intrigued by the manifestly nonlocal structure of the theory, was led to his famous Bell's inequalities. Experimental tests of the inequalities verified that nature is indeed nonlocal. Bohmian mechanics has since then prospered as the straightforward completion of quantum mechanics. This book provides a systematic introduction to Bohmian mechanics and to the mathematical abstractions of quantum mechanics, which range from the self-adjointness of the Schroedinger operator to scattering theory. It explains how the quantum formalism emerges when Boltzmann's ideas about statistical mechanics are applied to Bohmian mechanics. The book is self-contained, mathematically rigorous and an ideal starting point for a fundamental approach to quantum mechanics. It will appeal to students and newcomers to the field, as well as to established scientists seeking a clear exposition of the theory. (orig.)

  2. Bohmian mechanics. The physics and mathematics of quantum theory

    Energy Technology Data Exchange (ETDEWEB)

    Duerr, Detlef [Muenchen Univ. (Germany). Fakultaet Mathematik; Teufel, Stefan [Tuebingen Univ. (Germany). Mathematisches Inst.

    2009-07-01

    Bohmian Mechanics was formulated in 1952 by David Bohm as a complete theory of quantum phenomena based on a particle picture. It was promoted some decades later by John S. Bell, who, intrigued by the manifestly nonlocal structure of the theory, was led to his famous Bell's inequalities. Experimental tests of the inequalities verified that nature is indeed nonlocal. Bohmian mechanics has since then prospered as the straightforward completion of quantum mechanics. This book provides a systematic introduction to Bohmian mechanics and to the mathematical abstractions of quantum mechanics, which range from the self-adjointness of the Schroedinger operator to scattering theory. It explains how the quantum formalism emerges when Boltzmann's ideas about statistical mechanics are applied to Bohmian mechanics. The book is self-contained, mathematically rigorous and an ideal starting point for a fundamental approach to quantum mechanics. It will appeal to students and newcomers to the field, as well as to established scientists seeking a clear exposition of the theory. (orig.)

  3. Transformation & uncertainty : some thoughts on quantum probability theory, quantum statistics, and natural bundles

    NARCIS (Netherlands)

    Janssens, B.

    2010-01-01

    This PHD thesis is concerned partly with uncertainty relations in quantum probability theory, partly with state estimation in quantum stochastics, and partly with natural bundles in differential geometry. The laws of quantum mechanics impose severe restrictions on the performance of measurement.

  4. Proceedings of the international colloquium on modern quantum field theory II

    International Nuclear Information System (INIS)

    Das, S.R.; Mandal, G.; Mukhi, S.; Wadia, S.R.

    1995-01-01

    In the second International Colloquium on Modern Quantum Field Theory an attempt was made to cover a broad spectrum of topics in theoretical physics that included string theory, quantum gravity, statistical mechanics, condensed matter theory, complexity, lattice gauge theory and epistemological aspects of quantum mechanics. Papers relevant to INIS in the published proceedings are indexed separately

  5. Time-dependent quantum fluid density functional theory of hydrogen ...

    Indian Academy of Sciences (India)

    WINTEC

    density functional theory; quantum fluid dynamics. 1. Introduction ... dynamics of strongly non-linear interaction of atoms with intense ... theory and quantum fluid dynamics in real space. .... clear evidence of bond softening since density in the.

  6. Diffusion, quantum theory, and radically elementary mathematics (MN-47)

    CERN Document Server

    Faris, William G

    2014-01-01

    Diffusive motion--displacement due to the cumulative effect of irregular fluctuations--has been a fundamental concept in mathematics and physics since Einstein''s work on Brownian motion. It is also relevant to understanding various aspects of quantum theory. This book explains diffusive motion and its relation to both nonrelativistic quantum theory and quantum field theory. It shows how diffusive motion concepts lead to a radical reexamination of the structure of mathematical analysis. The book''s inspiration is Princeton University mathematics professor Edward Nelson''s influential work in

  7. Operational resource theory of total quantum coherence

    Science.gov (United States)

    Yang, Si-ren; Yu, Chang-shui

    2018-01-01

    Quantum coherence is an essential feature of quantum mechanics and is an important physical resource in quantum information. Recently, the resource theory of quantum coherence has been established parallel with that of entanglement. In the resource theory, a resource can be well defined if given three ingredients: the free states, the resource, the (restricted) free operations. In this paper, we study the resource theory of coherence in a different light, that is, we consider the total coherence defined by the basis-free coherence maximized among all potential basis. We define the distillable total coherence and the total coherence cost and in both the asymptotic regime and the single-copy regime show the reversible transformation between a state with certain total coherence and the state with the unit reference total coherence. Extensively, we demonstrate that the total coherence can also be completely converted to the total correlation with the equal amount by the free operations. We also provide the alternative understanding of the total coherence, respectively, based on the entanglement and the total correlation in a different way.

  8. Foundations of quantum theory and thermodynamics

    International Nuclear Information System (INIS)

    Olkhov, Victor

    1998-01-01

    Physical reasons to support the statement that Quantum theory (Quantum Gravity in particular as well as Classical Gravity) loose applicability due to Thermodynamical effects are presented. The statement is based on several points: 1. N.Bohr requirement that measuring units must have macro size is one of common fundamentals of Quantum theory. 2. The Reference System--the base notion of Classical and Quantum theory and of any observation process as well, must be protected from any external Thermal influence to provide precise measurements of Time and Distance. 3. No physical screen or process, that can reduce or reflect the action of Gravity is known and hence nothing can cool or protect the measuring units of the Reference System from heating by Thermal Gravity fluctuations. 4. Thermal Gravity fluctuations--Thermal fluctuations of Gravity free fall acceleration, are induced by Thermal behavior of matter and Thermal properties of Electromagnetic fields, but usually are neglected as near zero values. Matter heat Gravity and Gravity heat Matter. Thermal fluctuations of Gravity free fall acceleration act as a Universal Heater on any kind of Matter or Field. 5. Nevertheless the usual Thermal properties of Gravity are negligible, they can be dramatically increased by Gravity Blue Shift (near Gravitational Radius) or usual Doppler effects. 6. If Thermal action of Gravity become significant all measurements of Time and Distance that determine the Reference System notion, must depend on the Thermal properties of Gravity, like Temperature or Entropy, and that violate applicability of the Reference System notion and Quantum and Classical theories as well. If so, Thermal notions, like Temperature or Entropy, become more fundamental than common Time and Distance characters. The definition of the Temperature of the Gravity fluctuations and it's possible measurements are suggested

  9. Quantum Measurement Theory in Gravitational-Wave Detectors

    Directory of Open Access Journals (Sweden)

    Stefan L. Danilishin

    2012-04-01

    Full Text Available The fast progress in improving the sensitivity of the gravitational-wave detectors, we all have witnessed in the recent years, has propelled the scientific community to the point at which quantum behavior of such immense measurement devices as kilometer-long interferometers starts to matter. The time when their sensitivity will be mainly limited by the quantum noise of light is around the corner, and finding ways to reduce it will become a necessity. Therefore, the primary goal we pursued in this review was to familiarize a broad spectrum of readers with the theory of quantum measurements in the very form it finds application in the area of gravitational-wave detection. We focus on how quantum noise arises in gravitational-wave interferometers and what limitations it imposes on the achievable sensitivity. We start from the very basic concepts and gradually advance to the general linear quantum measurement theory and its application to the calculation of quantum noise in the contemporary and planned interferometric detectors of gravitational radiation of the first and second generation. Special attention is paid to the concept of the Standard Quantum Limit and the methods of its surmounting.

  10. Quantum Measurement Theory in Gravitational-Wave Detectors.

    Science.gov (United States)

    Danilishin, Stefan L; Khalili, Farid Ya

    2012-01-01

    The fast progress in improving the sensitivity of the gravitational-wave detectors, we all have witnessed in the recent years, has propelled the scientific community to the point at which quantum behavior of such immense measurement devices as kilometer-long interferometers starts to matter. The time when their sensitivity will be mainly limited by the quantum noise of light is around the corner, and finding ways to reduce it will become a necessity. Therefore, the primary goal we pursued in this review was to familiarize a broad spectrum of readers with the theory of quantum measurements in the very form it finds application in the area of gravitational-wave detection. We focus on how quantum noise arises in gravitational-wave interferometers and what limitations it imposes on the achievable sensitivity. We start from the very basic concepts and gradually advance to the general linear quantum measurement theory and its application to the calculation of quantum noise in the contemporary and planned interferometric detectors of gravitational radiation of the first and second generation. Special attention is paid to the concept of the Standard Quantum Limit and the methods of its surmounting.

  11. BQP-completeness of scattering in scalar quantum field theory

    Directory of Open Access Journals (Sweden)

    Stephen P. Jordan

    2018-01-01

    Full Text Available Recent work has shown that quantum computers can compute scattering probabilities in massive quantum field theories, with a run time that is polynomial in the number of particles, their energy, and the desired precision. Here we study a closely related quantum field-theoretical problem: estimating the vacuum-to-vacuum transition amplitude, in the presence of spacetime-dependent classical sources, for a massive scalar field theory in (1+1 dimensions. We show that this problem is BQP-hard; in other words, its solution enables one to solve any problem that is solvable in polynomial time by a quantum computer. Hence, the vacuum-to-vacuum amplitude cannot be accurately estimated by any efficient classical algorithm, even if the field theory is very weakly coupled, unless BQP=BPP. Furthermore, the corresponding decision problem can be solved by a quantum computer in a time scaling polynomially with the number of bits needed to specify the classical source fields, and this problem is therefore BQP-complete. Our construction can be regarded as an idealized architecture for a universal quantum computer in a laboratory system described by massive phi^4 theory coupled to classical spacetime-dependent sources.

  12. Construction of relativistic quantum theory: a progress report

    International Nuclear Information System (INIS)

    Noyes, H.P.

    1986-06-01

    We construct the particulate states of quantum physics using a recursive computer program that incorporates non-determinism by means of locally arbitrary choices. Quantum numbers and coupling constants arise from the construction via the unique 4-level combinatorial hierarchy. The construction defines indivisible quantum events with the requisite supraluminal correlations, yet does not allow supraluminal communication. Measurement criteria incorporate c, h-bar and m/sub p/ or (not ''and'') G, connected to laboratory events via finite particle number scattering theory and the counter paradigm. The resulting theory is discrete throughout, contains no infinities, and, as far as we have developed it, is in agreement with quantum mechanical and cosmological fact

  13. Introductory lectures on quantum field theory

    International Nuclear Information System (INIS)

    Alvarez-Gaume, L.; Vasquez-Mozo, M.A.

    2011-01-01

    In these lectures we present a few topics in quantum field theory in detail. Some of them are conceptual and some more practical. They have been selected because they appear frequently in current applications to particle physics and string theory. (author)

  14. Geometric continuum regularization of quantum field theory

    International Nuclear Information System (INIS)

    Halpern, M.B.

    1989-01-01

    An overview of the continuum regularization program is given. The program is traced from its roots in stochastic quantization, with emphasis on the examples of regularized gauge theory, the regularized general nonlinear sigma model and regularized quantum gravity. In its coordinate-invariant form, the regularization is seen as entirely geometric: only the supermetric on field deformations is regularized, and the prescription provides universal nonperturbative invariant continuum regularization across all quantum field theory. 54 refs

  15. What have we learned from quantum field theory in curved space-time

    International Nuclear Information System (INIS)

    Fulling, S.A.

    1984-01-01

    The paper reviews the quantum field theory in curved space-time. Field quantization in gravitational backgrounds; particle creation by black holes; Hawking radiation; quantum field theory in curved space-time; covariant renormalization of the stress-energy-momentum tensor; quantum field theory and quantum gravity; are all discussed. (U.K.)

  16. Random walks, critical phenomena, and triviality in quantum field theory

    International Nuclear Information System (INIS)

    Fernandez, R.; Froehlich, J.; Sokal, A.D.

    1992-01-01

    The subject of this book is equilibrium statistical mechanics - in particular the theory of critical phenomena - and quantum field theory. A general review of the theory of critical phenomena in spin systems, field theories, and random-walk and random-surface models is presented. Among the more technical topics treated in this book, the central theme is the use of random-walk representations as a tool to derive correlation inequalities. The consequences of these inequalities for critical-exponent theory and the triviality question in quantum field theory are expounded in detail. The book contains some previously unpublished results. It addresses both the researcher and the graduate student in modern statistical mechanics and quantum field theory. (orig.)

  17. Aspects of Nonlocality in Quantum Field Theory, Quantum Gravity and Cosmology

    CERN Document Server

    Barvinsky, A O

    2015-01-01

    This paper contains a collection of essays on nonlocal phenomena in quantum field theory, gravity and cosmology. Mechanisms of nonlocal contributions to the quantum effective action are discussed within the covariant perturbation expansion in field strengths and spacetime curvatures and the nonperturbative method based on the late time asymptotics of the heat kernel. Euclidean version of the Schwinger-Keldysh technique for quantum expectation values is presented as a special rule of obtaining the nonlocal effective equations of motion for the mean quantum field from the Euclidean effective action. This rule is applied to a new model of ghost free nonlocal cosmology which can generate the de Sitter stage of cosmological evolution at an arbitrary value of $\\varLambda$ -- a model of dark energy with its scale played by the dynamical variable that can be fixed by a kind of a scaling symmetry breaking mechanism. This model is shown to interpolate between the superhorizon phase of gravity theory mediated by a scala...

  18. Quantum theory of multiscale coarse-graining.

    Science.gov (United States)

    Han, Yining; Jin, Jaehyeok; Wagner, Jacob W; Voth, Gregory A

    2018-03-14

    Coarse-grained (CG) models serve as a powerful tool to simulate molecular systems at much longer temporal and spatial scales. Previously, CG models and methods have been built upon classical statistical mechanics. The present paper develops a theory and numerical methodology for coarse-graining in quantum statistical mechanics, by generalizing the multiscale coarse-graining (MS-CG) method to quantum Boltzmann statistics. A rigorous derivation of the sufficient thermodynamic consistency condition is first presented via imaginary time Feynman path integrals. It identifies the optimal choice of CG action functional and effective quantum CG (qCG) force field to generate a quantum MS-CG (qMS-CG) description of the equilibrium system that is consistent with the quantum fine-grained model projected onto the CG variables. A variational principle then provides a class of algorithms for optimally approximating the qMS-CG force fields. Specifically, a variational method based on force matching, which was also adopted in the classical MS-CG theory, is generalized to quantum Boltzmann statistics. The qMS-CG numerical algorithms and practical issues in implementing this variational minimization procedure are also discussed. Then, two numerical examples are presented to demonstrate the method. Finally, as an alternative strategy, a quasi-classical approximation for the thermal density matrix expressed in the CG variables is derived. This approach provides an interesting physical picture for coarse-graining in quantum Boltzmann statistical mechanics in which the consistency with the quantum particle delocalization is obviously manifest, and it opens up an avenue for using path integral centroid-based effective classical force fields in a coarse-graining methodology.

  19. Quantum theory of multiscale coarse-graining

    Science.gov (United States)

    Han, Yining; Jin, Jaehyeok; Wagner, Jacob W.; Voth, Gregory A.

    2018-03-01

    Coarse-grained (CG) models serve as a powerful tool to simulate molecular systems at much longer temporal and spatial scales. Previously, CG models and methods have been built upon classical statistical mechanics. The present paper develops a theory and numerical methodology for coarse-graining in quantum statistical mechanics, by generalizing the multiscale coarse-graining (MS-CG) method to quantum Boltzmann statistics. A rigorous derivation of the sufficient thermodynamic consistency condition is first presented via imaginary time Feynman path integrals. It identifies the optimal choice of CG action functional and effective quantum CG (qCG) force field to generate a quantum MS-CG (qMS-CG) description of the equilibrium system that is consistent with the quantum fine-grained model projected onto the CG variables. A variational principle then provides a class of algorithms for optimally approximating the qMS-CG force fields. Specifically, a variational method based on force matching, which was also adopted in the classical MS-CG theory, is generalized to quantum Boltzmann statistics. The qMS-CG numerical algorithms and practical issues in implementing this variational minimization procedure are also discussed. Then, two numerical examples are presented to demonstrate the method. Finally, as an alternative strategy, a quasi-classical approximation for the thermal density matrix expressed in the CG variables is derived. This approach provides an interesting physical picture for coarse-graining in quantum Boltzmann statistical mechanics in which the consistency with the quantum particle delocalization is obviously manifest, and it opens up an avenue for using path integral centroid-based effective classical force fields in a coarse-graining methodology.

  20. Quantum communication, reference frames, and gauge theory

    International Nuclear Information System (INIS)

    Enk, S. J. van

    2006-01-01

    We consider quantum communication in the case that the communicating parties not only do not share a reference frame but use imperfect quantum communication channels, in that each channel applies some fixed but unknown unitary rotation to each qubit. We discuss similarities and differences between reference frames within that quantum communication model and gauge fields in gauge theory. We generalize the concept of refbits and analyze various quantum communication protocols within the communication model

  1. Gauge-fields and integrated quantum-classical theory

    International Nuclear Information System (INIS)

    Stapp, H.P.

    1986-01-01

    Physical situations in which quantum systems communicate continuously to their classically described environment are not covered by contemporary quantum theory, which requires a temporary separation of quantum degrees of freedom from classical ones. A generalization would be needed to cover these situations. An incomplete proposal is advanced for combining the quantum and classical degrees of freedom into a unified objective description. It is based on the use of certain quantum-classical structures of light that arise from gauge invariance to coordinate the quantum and classical degrees of freedom. Also discussed is the question of where experimenters should look to find phenomena pertaining to the quantum-classical connection. 17 refs

  2. Atomic Quantum Simulations of Abelian and non-Abelian Gauge Theories

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    Using a Fermi-Bose mixture of ultra-cold atoms in an optical lattice, in a collaboration of atomic and particle physicists, we have constructed a quantum simulator for a U(1) gauge theory coupled to fermionic matter. The construction is based on quantum link models which realize continuous gauge symmetry with discrete quantum variables. At low energies, quantum link models with staggered fermions emerge from a Hubbard-type model which can be quantum simulated. This allows investigations of string breaking as well as the real-time evolution after a quench in gauge theories, which are inaccessible to classical simulation methods. Similarly, using ultracold alkaline-earth atoms in optical lattices, we have constructed a quantum simulator for U(N) and SU(N) lattice gauge theories with fermionic matter based on quantum link models. These systems share qualitative features with QCD, including chiral symmetry breaking and restoration at non-zero temperature or baryon density. Unlike classical simulations, a quantum ...

  3. The grammar and syntax of quantum theory

    International Nuclear Information System (INIS)

    Peres, A.

    1990-01-01

    Quantum theory is expressed in a language using the vocabulary of classical physics. However, new meanings are attached to various words, and phrases which make sense in a classical situation become utterly meaningless in a quantum context. (author)

  4. Necessity of negativity in quantum theory

    International Nuclear Information System (INIS)

    Ferrie, Christopher; Morris, Ryan; Emerson, Joseph

    2010-01-01

    A unification of the set of quasiprobability representations using the mathematical theory of frames was recently developed for quantum systems with finite-dimensional Hilbert spaces, in which it was proven that such representations require negative probability in either the states or the effects. In this article we extend those results to Hilbert spaces of infinite dimension, for which the celebrated Wigner function is a special case. Hence, this article presents a unified framework for describing the set of possible quasiprobability representations of quantum theory, and a proof that the presence of negativity is a necessary feature of such representations.

  5. Quantum effects from a purely geometrical relativity theory

    International Nuclear Information System (INIS)

    Ellis, Homer G

    2005-01-01

    A purely geometrical relativity theory results from a construction that produces from three-dimensional space a happy unification of Kaluza's five-dimensional theory and Weyl's conformal theory. The theory can provide geometrical explanations for the following observed phenomena, among others: (a) visibility lifetimes of elementary particles of lengths inversely proportional to their rest masses; (b) the equality of charge magnitude among all charged particles interacting at an event; (c) the propensity of electrons in atoms to be seen in discretely spaced orbits; and (d) 'quantum jumps' between those orbits. This suggests the possibility that the theory can provide a deterministic underpinning of quantum mechanics like that provided to thermodynamics by the molecular theory of gases

  6. Group field theories for all loop quantum gravity

    Science.gov (United States)

    Oriti, Daniele; Ryan, James P.; Thürigen, Johannes

    2015-02-01

    Group field theories represent a second quantized reformulation of the loop quantum gravity state space and a completion of the spin foam formalism. States of the canonical theory, in the traditional continuum setting, have support on graphs of arbitrary valence. On the other hand, group field theories have usually been defined in a simplicial context, thus dealing with a restricted set of graphs. In this paper, we generalize the combinatorics of group field theories to cover all the loop quantum gravity state space. As an explicit example, we describe the group field theory formulation of the KKL spin foam model, as well as a particular modified version. We show that the use of tensor model tools allows for the most effective construction. In order to clarify the mathematical basis of our construction and of the formalisms with which we deal, we also give an exhaustive description of the combinatorial structures entering spin foam models and group field theories, both at the level of the boundary states and of the quantum amplitudes.

  7. Quantum theory. 2. rev. ed.

    International Nuclear Information System (INIS)

    Mitter, H.

    1979-01-01

    This book is an introduction into quantum mechanics. After a general introduction the algebraic calculus of quantum mechanics in the framework of the Dirac brackets is described, whereby the probabilistic interpretation is introduced. Then some simple examples are described in this framework. After a description of the wave representation the general formalism of quantum mechanics is described. Then the Schroedinger equation is introduced. The angular momentum in quantum mechanics is then explicitely discussed. After a treatment of simple one- and two-body problems the parity and the probability current are discussed. Then the approximation methods are described. Finally some applications in atomic physics, simples many-body problems, and the scattering theory are dealed with. In the appendix the delta-function, orthogonal functions, the higher symmetry of the hydrogen problem, and the Galilei transformation in quantum mechanics are described. Every chapter conteins exercise problems. (HSI) [de

  8. The coevent formulation of quantum theory

    International Nuclear Information System (INIS)

    Wallden, Petros

    2013-01-01

    Understanding quantum theory has been a subject of debate from its birth. Many different formulations and interpretations have been proposed. Here we examine a recent novel formulation, namely the coevents formulation. It is a histories formulation and has as starting point the Feynman path integral and the decoherence functional. The new ontology turns out to be that of a coarse-grained history. We start with a quantum measure defined on the space of histories, and the existence of zero covers rules out single-history as potential reality (the Kochen Specker theorem casted in histories form is a special case of a zero cover). We see that allowing coarse-grained histories as potential realities avoids the previous paradoxes, maintains deductive non-contextual logic (alas non-Boolean) and gives rise to a unique classical domain. Moreover, we can recover the probabilistic predictions of quantum theory with the use of the Cournot's principle. This formulation, being both a realist formulation and based on histories, is well suited conceptually for the purposes of quantum gravity and cosmology.

  9. Topics in Theories of Quantum Gravity

    International Nuclear Information System (INIS)

    Perelstein, M.

    2005-01-01

    In this thesis, the author addresses several issues involving gravity. The first half of the thesis is devoted to studying quantum properties of Einstein gravity and its supersymmetric extensions in the perturbative regime. String theory suggests that perturbative scattering amplitudes in the theories of gravity are related to the amplitudes in gauge theories. This connection has been studied at classical (tree) level by Kawai, Lewellen and Tye. Here, they will explore the relationship between gravity and gauge theory at quantum (loop) level. This relationship, together with the cut-based approach to computing loop amplitudes, allow us to obtain new non-trivial results for quantum gravity. IN particular, they present two infinite sequences of one-loop n-graviton scattering amplitudes: the maximally helicity violating amplitudes in N = 8 supergravity, and the ''all-plus'' helicity amplitudes in Einstein gravity with any minimally coupled massless matter content. The results for n (le) 6 will be obtained by an explicit calculation, while those for n > 6 is inferred from the soft and collinear properties of the amplitudes. They also present an explicit expression for the two-loop contribution to the four-particle scattering amplitude in N = 8 supergravity, and observe a simple relation between this result and its counterpart in N = 4 super-Yang-Mills theory. Furthermore, the simple structure of the two-particle unitarity cuts in these theories suggests that similar relations exist to all loop orders. If this is the case, the first ultraviolet divergence in N = 8 supergravity should appear at five loops, contrary to the earlier expectation of a three-loop counterterm

  10. Cosmological perturbation theory and quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Brunetti, Romeo [Dipartimento di Matematica, Università di Trento,Via Sommarive 14, 38123 Povo TN (Italy); Fredenhagen, Klaus [II Institute für Theoretische Physik, Universität Hamburg,Luruper Chaussee 149, 22761 Hamburg (Germany); Hack, Thomas-Paul [Institute für Theoretische Physik, Universität Leipzig,Brüderstr. 16, 04103 Leipzig (Germany); Pinamonti, Nicola [Dipartimento di Matematica, Università di Genova,Via Dodecaneso 35, 16146 Genova (Italy); INFN, Sezione di Genova,Via Dodecaneso 33, 16146 Genova (Italy); Rejzner, Katarzyna [Department of Mathematics, University of York,Heslington, York YO10 5DD (United Kingdom)

    2016-08-04

    It is shown how cosmological perturbation theory arises from a fully quantized perturbative theory of quantum gravity. Central for the derivation is a non-perturbative concept of gauge-invariant local observables by means of which perturbative invariant expressions of arbitrary order are generated. In particular, in the linearised theory, first order gauge-invariant observables familiar from cosmological perturbation theory are recovered. Explicit expressions of second order quantities are presented as well.

  11. Density functional theory, natural bond orbital and quantum theory of ...

    Indian Academy of Sciences (India)

    Density functional theory, natural bond orbital and quantum theory of atoms in molecule analyses on the hydrogen bonding interactions in tryptophan-water complexes. XIQIAN NIU, ZHENGGUO HUANG. ∗. , LINGLING MA, TINGTING SHEN and LINGFEI GUO. Tianjin Key Laboratory of Structure and Performance for ...

  12. Correlation inequalities for the Yukawa2 quantum field theory

    International Nuclear Information System (INIS)

    Rosen, L.

    1981-01-01

    Correlation inequalities have been useful in statistical mechanics and quantum field theory. In particular, in the case of strongly coupled bose quantum field models such as P(phi) 2 , correlation inequalities provide the best control of the infinite volume limit. The author reports on work in which the FKG inequality was established in the Yukawa 2 quantum field theory. An elementary proof of the first Griffiths inequality is also given. (Auth.)

  13. An ontological basis for the quantum theory. Pt. 1

    International Nuclear Information System (INIS)

    Bohm, D.; Hiley, B.J.; Kaloyerou, P.N.

    1987-01-01

    In this paper we systematically develop an ontology that is consistent with the quantum theory. We start with the causal interpretation of the quantum theory, which assumes that the electron is a particle always accompanied by a wave satisfying Schroedinger's equation. This wave determines a quantum potential, which has several qualitatively new features, that account for the difference between classical theory and quantum theory. Firstly, it depends only on the form of the wave function and not on its amplitude, so that its effect does not necessarily fall off with the distance. From this, it follows that a system may not be separable from distant features of its environment, and may be non-locally connected to other systems that are quite far away from it. Secondly, in a many-body system, the quantum potential depends on the overall quantum state in a way that cannot be expressed as a preassigned interaction among the particles. These two features of the quantum potential together imply a certain new quality of quantum wholeness which is brought out in some detail in this article. Thirdly, the quantum potential can develop unstable bifurcation points, which separate classes of particle trajectories according to the ''channels'' into which they eventually enter and within which they stay. This explains how measurement is possible without ''collapse'' of the wave function, and how all sorts of quantum processes, such as transitions between states, fusion of two systems into one and fission of one system into two, are able to take place without the need for a human observer. Finally, we show how the classical limit is approached in a simple way, whenever the quantum potential is small compared with the contributions to the energy that would be present classically. (orig.)

  14. The significance of classical structures in quantum theories

    International Nuclear Information System (INIS)

    Lowe, M.J.

    1978-09-01

    The implications for the quantum theory of the presence of non-linear classical solutions of the equations of motion are investigated in various model systems under the headings: (1) Canonical quantisation of the soliton in lambdaphi 4 theory in two dimensions. (2) Bound for soliton masses in two dimensional field theories. (3) The canonical quantisation of a soliton like solution in the non-linear schrodinger equation. (4) The significance of the instanton classical solution in a quantum mechanical system. (U.K.)

  15. Construction of relativistic quantum theory: a progress report

    Energy Technology Data Exchange (ETDEWEB)

    Noyes, H.P.

    1986-06-01

    We construct the particulate states of quantum physics using a recursive computer program that incorporates non-determinism by means of locally arbitrary choices. Quantum numbers and coupling constants arise from the construction via the unique 4-level combinatorial hierarchy. The construction defines indivisible quantum events with the requisite supraluminal correlations, yet does not allow supraluminal communication. Measurement criteria incorporate c, h-bar and m/sub p/ or (not ''and'') G, connected to laboratory events via finite particle number scattering theory and the counter paradigm. The resulting theory is discrete throughout, contains no infinities, and, as far as we have developed it, is in agreement with quantum mechanical and cosmological fact.

  16. "Scars" connect classical and quantum theory

    CERN Multimedia

    Monteiro, T

    1990-01-01

    Chaotic systems are unstable and extremely sensitive to initial condititions. So far, scientists have been unable to demonstrate that the same kind of behaviour exists in quantum or microscopic systems. New connections have been discovered though between classical and quantum theory. One is the phenomena of 'scars' which cut through the wave function of a particle (1 page).

  17. Foundations of quantum theory from classical concepts to operator algebras

    CERN Document Server

    Landsman, Klaas

    2017-01-01

    This book studies the foundations of quantum theory through its relationship to classical physics. This idea goes back to the Copenhagen Interpretation (in the original version due to Bohr and Heisenberg), which the author relates to the mathematical formalism of operator algebras originally created by von Neumann. The book therefore includes comprehensive appendices on functional analysis and C*-algebras, as well as a briefer one on logic, category theory, and topos theory. Matters of foundational as well as mathematical interest that are covered in detail include symmetry (and its "spontaneous" breaking), the measurement problem, the Kochen-Specker, Free Will, and Bell Theorems, the Kadison-Singer conjecture, quantization, indistinguishable particles, the quantum theory of large systems, and quantum logic, the latter in connection with the topos approach to quantum theory. This book is Open Access under a CC BY licence.

  18. The g-theorem and quantum information theory

    Energy Technology Data Exchange (ETDEWEB)

    Casini, Horacio; Landea, Ignacio Salazar; Torroba, Gonzalo [Centro Atómico Bariloche and CONICET,S.C. de Bariloche, Río Negro, R8402AGP (Argentina)

    2016-10-25

    We study boundary renormalization group flows between boundary conformal field theories in 1+1 dimensions using methods of quantum information theory. We define an entropic g-function for theories with impurities in terms of the relative entanglement entropy, and we prove that this g-function decreases along boundary renormalization group flows. This entropic g-theorem is valid at zero temperature, and is independent from the g-theorem based on the thermal partition function. We also discuss the mutual information in boundary RG flows, and how it encodes the correlations between the impurity and bulk degrees of freedom. Our results provide a quantum-information understanding of (boundary) RG flow as increase of distinguishability between the UV fixed point and the theory along the RG flow.

  19. Jauch-Piron property (everywhere!) in the logicoalgebraic foundation of quantum theories

    Science.gov (United States)

    Pták, Pavel

    1993-10-01

    The Jauch-Piron property of states on a quantum logic is seen to be of considerable importance within the foundation of quantum theories. In this survey we summarize and comment on recent results on the Jauch-Piron property. We also pose a few open problems whose solution may help in further developing quantum theories and noncommutative measure theory.

  20. Clifford algebra in finite quantum field theories

    International Nuclear Information System (INIS)

    Moser, M.

    1997-12-01

    We consider the most general power counting renormalizable and gauge invariant Lagrangean density L invariant with respect to some non-Abelian, compact, and semisimple gauge group G. The particle content of this quantum field theory consists of gauge vector bosons, real scalar bosons, fermions, and ghost fields. We assume that the ultimate grand unified theory needs no cutoff. This yields so-called finiteness conditions, resulting from the demand for finite physical quantities calculated by the bare Lagrangean. In lower loop order, necessary conditions for finiteness are thus vanishing beta functions for dimensionless couplings. The complexity of the finiteness conditions for a general quantum field theory makes the discussion of non-supersymmetric theories rather cumbersome. Recently, the F = 1 class of finite quantum field theories has been proposed embracing all supersymmetric theories. A special type of F = 1 theories proposed turns out to have Yukawa couplings which are equivalent to generators of a Clifford algebra representation. These algebraic structures are remarkable all the more than in the context of a well-known conjecture which states that finiteness is maybe related to global symmetries (such as supersymmetry) of the Lagrangean density. We can prove that supersymmetric theories can never be of this Clifford-type. It turns out that these Clifford algebra representations found recently are a consequence of certain invariances of the finiteness conditions resulting from a vanishing of the renormalization group β-function for the Yukawa couplings. We are able to exclude almost all such Clifford-like theories. (author)

  1. Feynman's thesis: A new approach to quantum theory

    International Nuclear Information System (INIS)

    Das, Ashok

    2007-01-01

    It is not usual for someone to write a book on someone else's Ph.D. thesis, but then Feynman was not a usual physicist. He was without doubt one of the most original physicists of the twentieth century, who has strongly influenced the developments in quantum field theory through his many ingenious contributions. Path integral approach to quantum theories is one such contribution which pervades almost all areas of physics. What is astonishing is that he developed this idea as a graduate student for his Ph.D. thesis which has been printed, for the first time, in the present book along with two other related articles. The early developments in quantum theory, by Heisenberg and Schroedinger, were based on the Hamiltonian formulation, where one starts with the Hamiltonian description of a classical system and then promotes the classical observables to noncommuting quantum operators. However, Dirac had already stressed in an article in 1932 (this article is also reproduced in the present book) that the Lagrangian is more fundamental than the Hamiltonian, at least from the point of view of relativistic invariance and he wondered how the Lagrangian may enter into the quantum description. He had developed this idea through his 'transformation matrix' theory and had even hinted on how the action of the classical theory may enter such a description. However, although the brief paper by Dirac contained the basic essential ideas, it did not fully develop the idea of a Lagrangian description in detail in the functional language. Feynman, on the other hand, was interested in the electromagnetic interactions of the electron from a completely different point of view rooted in a theory involving action-at-a-distance. His theory (along with John Wheeler) did not have a Hamiltonian description and, in order to quantize such a theory, he needed an alternative formulation of quantum mechanics. When the article by Dirac was brought to his attention, he immediately realized what he was

  2. The Global Approach to Quantum Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Folacci, Antoine; Jensen, Bruce [Faculte des Sciences, Universite de Corse (France); Department of Mathematics, University of Southampton (United Kingdom)

    2003-12-12

    Thanks to its impressive success in the second half of the 20th century, both in high-energy physics and in critical phenomena, quantum field theory has enjoyed an abundant literature. We therefore greet yet another book on this subject with caution: what can a monograph on quantum field theory bring now that is new, either conceptually or pedagogically? But when it is written by a physicist such as Bryce DeWitt, who has made his own contribution to the collection of field theory books with The Global Approach to Quantum Field Theory, all suspicion is naturally abandoned. DeWitt has made a formidable contribution to various areas of physics: general relativity, the interpretation of quantum mechanics, and most of all the quantization of non-Abelian gauge theories and quantum gravity. In addition, his pedagogical publications, especially the Les Houches schools of 1963 and 1983, have had a great impact on quantum field theory. We must begin by alerting the potential readers of this book that it cannot be compared to any other book in the field. This uniqueness applies to both the scientific content and the way the ideas are presented. For DeWitt, a central concept of field theory is that of 'space of histories'. For a field varphi{sup i} defined on a given spacetime M, the set of all varphi{sup i}(x) for all x in all charts of M defines its history. It is the space Phi of all possible histories (dynamically allowed or not) of the fields defined on M which is called the 'pace of histories' by DeWitt. If only bosonic fields are considered, the space of histories is an infinite-dimensional manifold and if fermionic fields are also present, it must be viewed as an infinite-dimensional supermanifold. The fields can then be regarded as coordinates on these structures, and the geometrical notions of differentiation, metric, connections, measure, as well as the geodesics which can be defined on it, are of fundamental importance in the development of the

  3. Boundary effects on quantum field theories

    International Nuclear Information System (INIS)

    Lee, Tae Hoon

    1991-01-01

    Quantum field theory in the S 1 *R 3 space-time is simply described by the imaginary time formalism. We generalize Schwinger-DeWitt proper-time technique which is very useful in zero temperature field theories to this case. As an example we calculate the one-loop effective potential of the finite temperature scala field theory by this technique.(Author)

  4. Axiomatic Quantum Field Theory in Terms of Operator Product Expansions: General Framework, and Perturbation Theory via Hochschild Cohomology

    Directory of Open Access Journals (Sweden)

    Stefan Hollands

    2009-09-01

    Full Text Available In this paper, we propose a new framework for quantum field theory in terms of consistency conditions. The consistency conditions that we consider are ''associativity'' or ''factorization'' conditions on the operator product expansion (OPE of the theory, and are proposed to be the defining property of any quantum field theory. Our framework is presented in the Euclidean setting, and is applicable in principle to any quantum field theory, including non-conformal ones. In our framework, we obtain a characterization of perturbations of a given quantum field theory in terms of a certain cohomology ring of Hochschild-type. We illustrate our framework by the free field, but our constructions are general and apply also to interacting quantum field theories. For such theories, we propose a new scheme to construct the OPE which is based on the use of non-linear quantized field equations.

  5. The emergent multiverse quantum theory according to the Everett interpretation

    CERN Document Server

    Wallace, David

    2014-01-01

    The Emergent Multiverse presents a striking new account of the 'many worlds' approach to quantum theory. The point of science, it is generally accepted, is to tell us how the world works and what it is like. But quantum theory seems to fail to do this: taken literally as a theory of the world, it seems to make crazy claims: particles are in two places at once; cats are alive and dead at the same time. So physicists and philosophers have often been led either to give up on the idea that quantum theory describes reality, or to modify or augment the theory. The Everett interpretation of quantum mechanics takes the apparent craziness seriously, and asks, 'what would it be like if particles really were in two places at once, if cats really were alive and dead at the same time'? The answer, it turns out, is that if the world were like that-if it were as quantum theory claims-it would be a world that, at the macroscopic level, was constantly branching into copies-hence the more sensationalist name for the Everett in...

  6. Theoretical physics vol. 2. Quantum mechanics, relativistic quantum mechanics, quantum field theory, elementar-particle theory, thermodynamics and statistics

    International Nuclear Information System (INIS)

    Rebhan, E.

    2005-01-01

    The present second volume treats quantum mechanics, relativistic quantum mechanics, the foundations of quantum-field and elementary-particle theory as well as thermodynamics and statistics. Both volumes comprehend all fields, which are usually offered in a course about theoretical physics. In all treated fields a very careful introduction to the basic natural laws forms the starting point, whereby it is thoroughly analysed, which of them is based on empirics, which is logically deducible, and which role play basic definitions. Extendingly the matter extend of the corresponding courses starting from the relativistic quantum theory an introduction to the elementary particles is developed. All problems are very thoroughly and such extensively studied, that each step is singularly reproducible. On motivation and good understandability is cared much about. The mixing of mathematical difficulties with problems of physical nature often obstructive in the learning is so circumvented, that important mathematical methods are presented in own chapters (for instance Hilbert spaces, Lie groups). By means of many examples and problems (for a large part with solutions) the matter worked out is deepened and exercised. Developments, which are indeed important, but seem for the first approach abandonable, are pursued in excurses. This book starts from courses, which the author has held at the Heinrich-Heine university in Duesseldorf, and was in many repetitions fitted to the requirements of the students. It is conceived in such a way, that it is also after the study suited as dictionary or for the regeneration

  7. Non-perturbative aspects of quantum field theory. From the quark-gluon plasma to quantum gravity

    International Nuclear Information System (INIS)

    Christiansen, Nicolai

    2015-01-01

    In this dissertation we investigate several aspects of non-perturbative quantum field theory. Two main parts of the thesis are concerned with non-perturbative renormalization of quantum gravity within the asymptotic safety scenario. This framework is based on a non-Gaussian ultraviolet fixed point and provides a well-defined theory of quantized gravity. We employ functional renormalization group (FRG) techniques that allow for the study of quantum fields even in strongly coupled regimes. We construct a setup for the computation of graviton correlation functions and analyze the ultraviolet completion of quantum gravity in terms of the properties of the two- and three point function of the graviton. Moreover, the coupling of gravity to Yang-Mills theories is discussed. In particular, we study the effects of graviton induced interactions on asymptotic freedom on the one hand, and the role of gluonic fluctuations in the gravity sector on the other hand. The last subject of this thesis is the physics of the quark-gluon plasma. We set-up a general non-perturbative strategy for the computation of transport coefficients in non-Abelian gauge theories. We determine the viscosity over entropy ratio η/s in SU(3) Yang-Mills theory as a function of temperature and estimate its behavior in full quantum chromodynamics (QCD).

  8. Quantum field theory in 2+1 dimensions

    International Nuclear Information System (INIS)

    Marino, E.C.

    1998-01-01

    An introductory review is made of many outstanding features of Quantum Field Theory formulated in three-dimensional spacetime. These include topological properties, the Huygens Principle, the Coulomb potential, topological excitations like vortices and skyrmions, dynamical mass generation, fractional spin and statistics, duality nd bosonization. Theories including the Maxwell-Chern-Simons, Abelian Higgs and C P 1 -Nonlinear Sigma Model are used to illustrate the different features. Applications to High-T c Superconductivity and to the Quantum Hall Effect are also presented. (author)

  9. Lectures on algebraic quantum field theory and operator algebras

    International Nuclear Information System (INIS)

    Schroer, Bert

    2001-04-01

    In this series of lectures directed towards a mainly mathematically oriented audience I try to motivate the use of operator algebra methods in quantum field theory. Therefore a title as why mathematicians are/should be interested in algebraic quantum field theory would be equally fitting. besides a presentation of the framework and the main results of local quantum physics these notes may serve as a guide to frontier research problems in mathematical. (author)

  10. Quantum tunneling and field electron emission theories

    CERN Document Server

    Liang, Shi-Dong

    2013-01-01

    Quantum tunneling is an essential issue in quantum physics. Especially, the rapid development of nanotechnology in recent years promises a lot of applications in condensed matter physics, surface science and nanodevices, which are growing interests in fundamental issues, computational techniques and potential applications of quantum tunneling. The book involves two relevant topics. One is quantum tunneling theory in condensed matter physics, including the basic concepts and methods, especially for recent developments in mesoscopic physics and computational formulation. The second part is the f

  11. The pure phases, the irreducible quantum fields, and dynamical symmetry breaking in Symanzik--Nelson positive quantum field theories

    International Nuclear Information System (INIS)

    Frohlich, J.

    1976-01-01

    We prove that a Symanzik--Nelson positive quantum field theory, i.e., a quantum field theory derived from a Euclidean field theory, has a unique decomposition into pure phases which preserves Symanzik--Nelson positivity and Poincare covariance. We derive useful sufficient conditions for the breakdown of an internal symmetry of such a theory in its pure phases, for the self-adjointness and nontrivially (in the sense of Borchers classes) of its quantum fields, and the existence of time-ordered and retarded products. All these general results are then applied to the P (phi) 2 and the phi 3 4 quantum field models

  12. Quantum integrable models of field theory

    International Nuclear Information System (INIS)

    Faddeev, L.D.

    1979-01-01

    Fundamental features of the classical method of the inverse problem have been formulated in the form which is convenient for its quantum reformulation. Typical examples are studied which may help to formulate the quantum method of the inverse problem. Examples are considered for interaction with both attraction and repulsion at a final density. The sine-Gordon model and the XYZ model from the quantum theory of magnetics are examined in short. It is noted that all the achievements of the one-dimensional mathematical physics as applied to exactly solvable quantum models may be put to an extent within the framework of the quantum method of the inverse problem. Unsolved questions are enumerated and perspectives of applying the inverse problem method are shown

  13. Quantum theory, groups and representations an introduction

    CERN Document Server

    Woit, Peter

    2017-01-01

    This text systematically presents the basics of quantum mechanics, emphasizing the role of Lie groups, Lie algebras, and their unitary representations. The mathematical structure of the subject is brought to the fore, intentionally avoiding significant overlap with material from standard physics courses in quantum mechanics and quantum field theory. The level of presentation is attractive to mathematics students looking to learn about both quantum mechanics and representation theory, while also appealing to physics students who would like to know more about the mathematics underlying the subject. This text showcases the numerous differences between typical mathematical and physical treatments of the subject. The latter portions of the book focus on central mathematical objects that occur in the Standard Model of particle physics, underlining the deep and intimate connections between mathematics and the physical world. While an elementary physics course of some kind would be helpful to the reader, no specific ...

  14. Quantum information theory with Gaussian systems

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, O.

    2006-04-06

    This thesis applies ideas and concepts from quantum information theory to systems of continuous-variables such as the quantum harmonic oscillator. The focus is on three topics: the cloning of coherent states, Gaussian quantum cellular automata and Gaussian private channels. Cloning was investigated both for finite-dimensional and for continuous-variable systems. We construct a private quantum channel for the sequential encryption of coherent states with a classical key, where the key elements have finite precision. For the case of independent one-mode input states, we explicitly estimate this precision, i.e. the number of key bits needed per input state, in terms of these parameters. (orig.)

  15. Quantum information theory with Gaussian systems

    International Nuclear Information System (INIS)

    Krueger, O.

    2006-01-01

    This thesis applies ideas and concepts from quantum information theory to systems of continuous-variables such as the quantum harmonic oscillator. The focus is on three topics: the cloning of coherent states, Gaussian quantum cellular automata and Gaussian private channels. Cloning was investigated both for finite-dimensional and for continuous-variable systems. We construct a private quantum channel for the sequential encryption of coherent states with a classical key, where the key elements have finite precision. For the case of independent one-mode input states, we explicitly estimate this precision, i.e. the number of key bits needed per input state, in terms of these parameters. (orig.)

  16. Some relations of parameters in quantum field theory

    International Nuclear Information System (INIS)

    Ishikawa, K.

    1986-01-01

    Two schemes of parameter relations, linear relation and non-linear relation are discussed. The linear relation of coupling constants is derived directly from an underlying symmetry of the classical theory and is preserved usually in the quantum theory. The non-linear relation is not derived by a same manner but is derived by more involved way which is intrinsically connected with quantum theory. An underlying symmetry which leads the linear relation is shown to be essential in the non-linear relation too. Some extension is also discussed

  17. Beyond WKB quantum corrections to Hamilton-Jacobi theory

    International Nuclear Information System (INIS)

    Jurisch, Alexander

    2007-01-01

    In this paper, we develop quantum mechanics of quasi-one-dimensional systems upon the framework of the quantum-mechanical Hamilton-Jacobi theory. We will show that the Schroedinger point of view and the Hamilton-Jacobi point of view are fully equivalent in their description of physical systems, but differ in their descriptive manner. As a main result of this, a wavefunction in Hamilton-Jacobi theory can be decomposed into travelling waves in any point in space, not only asymptotically. Using the quasi-linearization technique, we derive quantum correction functions in every order of h-bar. The quantum correction functions will remove the turning-point singularity that plagues the WKB-series expansion already in zeroth order and thus provide an extremely good approximation to the full solution of the Schroedinger equation. In the language of quantum action it is also possible to elegantly solve the connection problem without asymptotic approximations. The use of quantum action further allows us to derive an equation by which the Maslov index is directly calculable without any approximations. Stationary quantum trajectories will also be considered and thoroughly discussed

  18. New gravitational forces from quantum theory

    International Nuclear Information System (INIS)

    Nieto, M.M.; Goldman, T.; Hughes, R.J.

    1988-01-01

    When a classical theory is quantized, new physical effects result. The prototypical example is the Lamb Shift of quantum electrodynamics. Even though this phenomenon could be parametrized by the ''Uehling Potential,'' it was always realized that it was a quantum aspect of electromagnetism, not a ''new force'' of nature. So, too, with theories of quantum gravity. Generically they predict that there will be spin-1 (graviphoton) and spin-0 (graviscalar) partners of the spin-2 graviton. At some level, these partners will generate new effects. Among them are (1) non-Newtonian gravitational forces and (2) substance dependance (violation of the Principle of Equivalence). We discuss these ideas in the context of recent experiments. (Experiments usually test only one of the above effects, which could be distinct.) We contrast these ideas with the alternative point of view, that there actually may be a ''fifth force'' of nature. 20 refs

  19. Perturbative quantum field theory in the framework of the fermionic projector

    International Nuclear Information System (INIS)

    Finster, Felix

    2014-01-01

    We give a microscopic derivation of perturbative quantum field theory, taking causal fermion systems and the framework of the fermionic projector as the starting point. The resulting quantum field theory agrees with standard quantum field theory on the tree level and reproduces all bosonic loop diagrams. The fermion loops are described in a different formalism in which no ultraviolet divergences occur

  20. Perturbative Quantum Field Theory in the Framework of the Fermionic Projector

    OpenAIRE

    Finster, Felix

    2013-01-01

    We give a microscopic derivation of perturbative quantum field theory, taking causal fermion systems and the framework of the fermionic projector as the starting point. The resulting quantum field theory agrees with standard quantum field theory on the tree level and reproduces all bosonic loop diagrams. The fermion loops are described in a different formalism in which no ultraviolet divergences occur.

  1. Perturbative quantum field theory in the framework of the fermionic projector

    Energy Technology Data Exchange (ETDEWEB)

    Finster, Felix, E-mail: finster@ur.de [Fakultät für Mathematik, Universität Regensburg, D-93040 Regensburg (Germany)

    2014-04-15

    We give a microscopic derivation of perturbative quantum field theory, taking causal fermion systems and the framework of the fermionic projector as the starting point. The resulting quantum field theory agrees with standard quantum field theory on the tree level and reproduces all bosonic loop diagrams. The fermion loops are described in a different formalism in which no ultraviolet divergences occur.

  2. Perturbative quantum field theory in the framework of the fermionic projector

    Science.gov (United States)

    Finster, Felix

    2014-04-01

    We give a microscopic derivation of perturbative quantum field theory, taking causal fermion systems and the framework of the fermionic projector as the starting point. The resulting quantum field theory agrees with standard quantum field theory on the tree level and reproduces all bosonic loop diagrams. The fermion loops are described in a different formalism in which no ultraviolet divergences occur.

  3. Schroedinger representation in quantum field theory

    International Nuclear Information System (INIS)

    Luescher, M.

    1985-01-01

    Until recently, the Schroedinger representation in quantum field theory had not received much attention, even more so because there were reasons to believe that in the presence of interactions it did not exist in a mathematically well-defined sense. When Symanzik set out to solve this problem, he was motivated by a special 2-dimensional case, the relativistic string model, in which the Schroedinger wave functionals are the primary objects of physical interest. Also, he knew that if it were possible to demonstrate the existence of the Schroedinger representation, the (then unproven) ultraviolet finiteness of the Casimir force in renormalizable quantum field theories would probably follow. (orig./HSI)

  4. Cosmology from group field theory formalism for quantum gravity.

    Science.gov (United States)

    Gielen, Steffen; Oriti, Daniele; Sindoni, Lorenzo

    2013-07-19

    We identify a class of condensate states in the group field theory (GFT) formulation of quantum gravity that can be interpreted as macroscopic homogeneous spatial geometries. We then extract the dynamics of such condensate states directly from the fundamental quantum GFT dynamics, following the procedure used in ordinary quantum fluids. The effective dynamics is a nonlinear and nonlocal extension of quantum cosmology. We also show that any GFT model with a kinetic term of Laplacian type gives rise, in a semiclassical (WKB) approximation and in the isotropic case, to a modified Friedmann equation. This is the first concrete, general procedure for extracting an effective cosmological dynamics directly from a fundamental theory of quantum geometry.

  5. Statistical quasi-particle theory for open quantum systems

    Science.gov (United States)

    Zhang, Hou-Dao; Xu, Rui-Xue; Zheng, Xiao; Yan, YiJing

    2018-04-01

    This paper presents a comprehensive account on the recently developed dissipaton-equation-of-motion (DEOM) theory. This is a statistical quasi-particle theory for quantum dissipative dynamics. It accurately describes the influence of bulk environments, with a few number of quasi-particles, the dissipatons. The novel dissipaton algebra is then followed, which readily bridges the Schrödinger equation to the DEOM theory. As a fundamental theory of quantum mechanics in open systems, DEOM characterizes both the stationary and dynamic properties of system-and-bath interferences. It treats not only the quantum dissipative systems of primary interest, but also the hybrid environment dynamics that could be experimentally measurable. Examples are the linear or nonlinear Fano interferences and the Herzberg-Teller vibronic couplings in optical spectroscopies. This review covers the DEOM construction, the underlying dissipaton algebra and theorems, the physical meanings of dynamical variables, the possible identifications of dissipatons, and some recent advancements in efficient DEOM evaluations on various problems. The relations of the present theory to other nonperturbative methods are also critically presented.

  6. Topics in Theories of Quantum Gravity

    Energy Technology Data Exchange (ETDEWEB)

    Perelstein, M.

    2005-04-05

    In this thesis, the author addresses several issues involving gravity. The first half of the thesis is devoted to studying quantum properties of Einstein gravity and its supersymmetric extensions in the perturbative regime. String theory suggests that perturbative scattering amplitudes in the theories of gravity are related to the amplitudes in gauge theories. This connection has been studied at classical (tree) level by Kawai, Lewellen and Tye. Here, they will explore the relationship between gravity and gauge theory at quantum (loop) level. This relationship, together with the cut-based approach to computing loop amplitudes, allow us to obtain new non-trivial results for quantum gravity. IN particular, they present two infinite sequences of one-loop n-graviton scattering amplitudes: the maximally helicity violating amplitudes in N = 8 supergravity, and the ''all-plus'' helicity amplitudes in Einstein gravity with any minimally coupled massless matter content. The results for n {le} 6 will be obtained by an explicit calculation, while those for n > 6 is inferred from the soft and collinear properties of the amplitudes. They also present an explicit expression for the two-loop contribution to the four-particle scattering amplitude in N = 8 supergravity, and observe a simple relation between this result and its counterpart in N = 4 super-Yang-Mills theory. Furthermore, the simple structure of the two-particle unitarity cuts in these theories suggests that similar relations exist to all loop orders. If this is the case, the first ultraviolet divergence in N = 8 supergravity should appear at five loops, contrary to the earlier expectation of a three-loop counterterm.

  7. Remarks on twisted noncommutative quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Zahn, J. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2006-04-15

    We review recent results on twisted noncommutative quantum field theory by embedding it into a general framework for the quantization of systems with a twisted symmetry. We discuss commutation relations in this setting and show that the twisted structure is so rigid that it is hard to derive any predictions, unless one gives up general principles of quantum theory. It is also shown that the twisted structure is not responsible for the presence or absence of UV/IR-mixing, as claimed in the literature. (Orig.)

  8. Perturbative algebraic quantum field theory an introduction for mathematicians

    CERN Document Server

    Rejzner, Kasia

    2016-01-01

    Perturbative Algebraic Quantum Field Theory (pAQFT), the subject of this book, is a complete and mathematically rigorous treatment of perturbative quantum field theory (pQFT) that doesn’t require the use of divergent quantities. We discuss in detail the examples of scalar fields and gauge theories and generalize them to QFT on curved spacetimes. pQFT models describe a wide range of physical phenomena and have remarkable agreement with experimental results. Despite this success, the theory suffers from many conceptual problems. pAQFT is a good candidate to solve many, if not all of these conceptual problems. Chapters 1-3 provide some background in mathematics and physics. Chapter 4 concerns classical theory of the scalar field, which is subsequently quantized in chapters 5 and 6. Chapter 7 covers gauge theory and chapter 8 discusses QFT on curved spacetimes and effective quantum gravity. The book aims to be accessible researchers and graduate students interested in the mathematical foundations of pQFT are th...

  9. Duality and braiding in twisted quantum field theory

    International Nuclear Information System (INIS)

    Riccardi, Mauro; Szabo, Richard J.

    2008-01-01

    We re-examine various issues surrounding the definition of twisted quantum field theories on flat noncommutative spaces. We propose an interpretation based on nonlocal commutative field redefinitions which clarifies previously observed properties such as the formal equivalence of Green's functions in the noncommutative and commutative theories, causality, and the absence of UV/IR mixing. We use these fields to define the functional integral formulation of twisted quantum field theory. We exploit techniques from braided tensor algebra to argue that the twisted Fock space states of these free fields obey conventional statistics. We support our claims with a detailed analysis of the modifications induced in the presence of background magnetic fields, which induces additional twists by magnetic translation operators and alters the effective noncommutative geometry seen by the twisted quantum fields. When two such field theories are dual to one another, we demonstrate that only our braided physical states are covariant under the duality

  10. Quantum mechanics as total physical theory

    International Nuclear Information System (INIS)

    Slavnov, D.A.

    2002-01-01

    It is shown that the principles of the total physical theory and conclusions of the standard quantum mechanics are not at such an antagonistic variance as it is usually accepted. The axioms, which make it possible to plot the renewed mathematical scheme of the quantum mechanics are formulated within the frames of the algebraic approach. The above scheme includes the standard mathematical apparatus of the quantum mechanics. Simultaneously there exists the mathematical object, which adequately describes the individual experiment. The examples of applying the proposed scheme is presented [ru

  11. Anomalous quantum numbers and topological properties of field theories

    International Nuclear Information System (INIS)

    Polychronakos, A.P.

    1987-01-01

    We examine the connection between anomalous quantum numbers, symmetry breaking patterns and topological properties of some field theories. The main results are the following: In three dimensions the vacuum in the presence of abelian magnetic field configurations behaves like a superconductor. Its quantum numbers are exactly calculable and are connected with the Atiyah-Patodi-Singer index theorem. Boundary conditions, however, play a nontrivial role in this case. Local conditions were found to be physically preferable than the usual global ones. Due to topological reasons, only theories for which the gauge invariant photon mass in three dimensions obeys a quantization condition can support states of nonzero magnetic flux. For similar reasons, this mass induces anomalous angular momentum quantum numbers to the states of the theory. Parity invariance and global flavor symmetry were shown to be incompatible in such theories. In the presence of mass less flavored fermions, parity will always break for an odd number of fermion flavors, while for even fermion flavors it may not break but only at the expense of maximally breaking the flavor symmetry. Finally, a connection between these theories and the quantum Hall effect was indicated

  12. The topology of moduli space and quantum field theory

    International Nuclear Information System (INIS)

    Montano, D.; Sonnenschein, J.

    1989-01-01

    We show how an SO(2,1) gauge theory with a fermionic symmetry may be used to describe the topology of the moduli space of curves. The observables of the theory correspond to the generators of the cohomology of moduli space. This is an extension of the topological quantum field theory introduced by Witten to investigate the cohomology of Yang-Mills instanton moduli space. We explore the basic structure of topological quantum field theories, examine a toy U(1) model, and then realize a full theory of moduli space topology. We also discuss why a pure gravity theory, as attempted in previous work, could not succeed. (orig.)

  13. Information theory, spectral geometry, and quantum gravity.

    Science.gov (United States)

    Kempf, Achim; Martin, Robert

    2008-01-18

    We show that there exists a deep link between the two disciplines of information theory and spectral geometry. This allows us to obtain new results on a well-known quantum gravity motivated natural ultraviolet cutoff which describes an upper bound on the spatial density of information. Concretely, we show that, together with an infrared cutoff, this natural ultraviolet cutoff beautifully reduces the path integral of quantum field theory on curved space to a finite number of ordinary integrations. We then show, in particular, that the subsequent removal of the infrared cutoff is safe.

  14. [Studies in quantum field theory: Progress report, April 1, 1991--March 31, 1992

    International Nuclear Information System (INIS)

    Bender, C.M.

    1992-01-01

    Professors Bender, Bernard, and Shrauner, Assistant Professors Ogilvie and Goltermann, Research Assistant Professors Visser and Petcher, and Research Associate Rivas are currently conducting research in many areas of high energy theoretical and mathematical physics. These areas include: lattice gauge calculations of masses and weak matrix elements; strong-coupling approximation; low-energy effective field theories; classical solutions of non-Abelian gauge theories; mean-field approximation in quantum field theory; path integral and coherent state representations in quantum field theory; the nature of perturbation theory in large order; quark condensation in QCD; chiral fermion theories on the lattice; the 1/N expansion in quantum field theory; effective potential and action in quantum field theories, including QCD; studies of the early universe and inflation; quantum gravity. This work is described in detail in the body of this proposal

  15. Correspondence between quantum gauge theories without ghost fields and their covariantly quantized theories with ghost fields

    International Nuclear Information System (INIS)

    Cheng Hung; Tsai Ercheng

    1986-01-01

    We give a correspondence formula which equates transition amplitudes in a quantum gauge field theory without ghost fields to those in a quantum theory with the gauge fields covariantly quantized and coupled to ghost fields. (orig.)

  16. Basic quantum theory and measurement from the viewpoint of local quantum physics

    International Nuclear Information System (INIS)

    Schroer, Bert

    1999-04-01

    Several aspects of the manifestation of the causality principle in LQP (local quantum physics) are reviewed or presented. Particular emphasis is given to those properties which are typical for LQP in the sense that they do go beyond the structure of general quantum theory and even escape the Lagrangian quantization methods of standard QFT. The most remarkable are those relating causality to the modular Tomita-Takesaki theory, since they bring in the basic concepts of antiparticles, charge superselections as well as internal and external (geometric and hidden) symmetries. (author)

  17. Processing Information in Quantum Decision Theory

    OpenAIRE

    Yukalov, V. I.; Sornette, D.

    2008-01-01

    A survey is given summarizing the state of the art of describing information processing in Quantum Decision Theory, which has been recently advanced as a novel variant of decision making, based on the mathematical theory of separable Hilbert spaces. This mathematical structure captures the effect of superposition of composite prospects, including many incorporated intended actions. The theory characterizes entangled decision making, non-commutativity of subsequent decisions, and intention int...

  18. Statistical approach to quantum field theory. An introduction

    International Nuclear Information System (INIS)

    Wipf, Andreas

    2013-01-01

    Based on course-tested notes and pedagogical in style. Authored by a leading researcher in the field. Contains end-of-chapter problems and listings of short, useful computer programs. Authored by a leading researcher in the field. Contains end-of-chapter problems and listings of short, useful computer programs. Contains end-of-chapter problems and listings of short, useful computer programs. Over the past few decades the powerful methods of statistical physics and Euclidean quantum field theory have moved closer together, with common tools based on the use of path integrals. The interpretation of Euclidean field theories as particular systems of statistical physics has opened up new avenues for understanding strongly coupled quantum systems or quantum field theories at zero or finite temperatures. Accordingly, the first chapters of this book contain a self-contained introduction to path integrals in Euclidean quantum mechanics and statistical mechanics. The resulting high-dimensional integrals can be estimated with the help of Monte Carlo simulations based on Markov processes. The most commonly used algorithms are presented in detail so as to prepare the reader for the use of high-performance computers as an ''experimental'' tool for this burgeoning field of theoretical physics. Several chapters are then devoted to an introduction to simple lattice field theories and a variety of spin systems with discrete and continuous spins, where the ubiquitous Ising model serves as an ideal guide for introducing the fascinating area of phase transitions. As an alternative to the lattice formulation of quantum field theories, variants of the flexible renormalization group methods are discussed in detail. Since, according to our present-day knowledge, all fundamental interactions in nature are described by gauge theories, the remaining chapters of the book deal with gauge theories without and with matter. This text is based on course-tested notes for graduate students and, as

  19. Quantum Theory finally reconciled with Special Relativity

    OpenAIRE

    Tommasini, Daniele

    2001-01-01

    In 1935 Einstein, Podolsky and Rosen (EPR) pointed out that Quantum Mechanics apparently implied some mysterious, instantaneous action at a distance. This paradox is supposed to be related to the probabilistic nature of the theory, but since deterministic alternatives involving "Hidden Variables" hardly agree with the experiments, the scientific community is now accepting this ``quantum nonlocality" as if it were a reality. However, I have argued recently that Quantum Electrodynamics is free ...

  20. The Misapplication of Probability Theory in Quantum Mechanics

    Science.gov (United States)

    Racicot, Ronald

    2014-03-01

    This article is a revision of two papers submitted to the APS in the past two and a half years. In these papers, arguments and proofs are summarized for the following: (1) The wrong conclusion by EPR that Quantum Mechanics is incomplete, perhaps requiring the addition of ``hidden variables'' for completion. Theorems that assume such ``hidden variables,'' such as Bell's theorem, are also wrong. (2) Quantum entanglement is not a realizable physical phenomenon and is based entirely on assuming a probability superposition model for quantum spin. Such a model directly violates conservation of angular momentum. (3) Simultaneous multiple-paths followed by a quantum particle traveling through space also cannot possibly exist. Besides violating Noether's theorem, the multiple-paths theory is based solely on probability calculations. Probability calculations by themselves cannot possibly represent simultaneous physically real events. None of the reviews of the submitted papers actually refuted the arguments and evidence that was presented. These analyses should therefore be carefully evaluated since the conclusions reached have such important impact in quantum mechanics and quantum information theory.

  1. Quantum background independence in string theory

    International Nuclear Information System (INIS)

    Witten, E.

    1994-01-01

    Not only in physical string theories, but also in some highly simplified situations, background independence has been difficult to understand. It is argued that the ''holomorphic anomaly'' of Bershadsky, Cecotti, Ooguri and Vafa gives a fundamental explanation of some of the problems. Moreover, their anomaly equation can be interpreted in terms of a rather peculiar quantum version of background independence: in systems afflicted by the anomaly, background independence does not hold order by order in perturbation theory, but the exact partition function as a function of the coupling constants has a background independent interpretation as a state in an auxiliary quantum Hilbert space. The significance of this auxiliary space is otherwise unknown. (author). 23 refs

  2. Wavelet-Based Quantum Field Theory

    Directory of Open Access Journals (Sweden)

    Mikhail V. Altaisky

    2007-11-01

    Full Text Available The Euclidean quantum field theory for the fields $phi_{Delta x}(x$, which depend on both the position $x$ and the resolution $Delta x$, constructed in SIGMA 2 (2006, 046, on the base of the continuous wavelet transform, is considered. The Feynman diagrams in such a theory become finite under the assumption there should be no scales in internal lines smaller than the minimal of scales of external lines. This regularisation agrees with the existing calculations of radiative corrections to the electron magnetic moment. The transition from the newly constructed theory to a standard Euclidean field theory is achieved by integration over the scale arguments.

  3. Moessbauer neutrinos in quantum mechanics and quantum field theory

    International Nuclear Information System (INIS)

    Kopp, Joachim

    2009-01-01

    We demonstrate the correspondence between quantum mechanical and quantum field theoretical descriptions of Moessbauer neutrino oscillations. First, we compute the combined rate Γ of Moessbauer neutrino emission, propagation, and detection in quantum field theory, treating the neutrino as an internal line of a tree level Feynman diagram. We include explicitly the effect of homogeneous line broadening due to fluctuating electromagnetic fields in the source and detector crystals and show that the resulting formula for Γ is identical to the one obtained previously [1] for the case of inhomogeneous line broadening. We then proceed to a quantum mechanical treatment of Moessbauer neutrinos and show that the oscillation, coherence, and resonance terms from the field theoretical result can be reproduced if the neutrino is described as a superposition of Lorentz-shaped wave packet with appropriately chosen energies and widths. On the other hand, the emission rate and the detection cross section, including localization and Lamb-Moessbauer terms, cannot be predicted in quantum mechanics and have to be put in by hand.

  4. The quantum harmonic oscillator on a circle and a deformed quantum field theory

    International Nuclear Information System (INIS)

    Rego-Monteiro, M.A.

    2001-05-01

    We construct a deformed free quantum field theory with an standard Hilbert space based on a deformed Heisenberg algebra. This deformed algebra is a Heisenberg-type algebra describing the first levels of the quantum harmonic oscillator on a circle of large length L. The successive energy levels of this quantum harmonic oscillator on a circle of large length L are interpreted, similarly to the standard quantum one-dimensional harmonic oscillator on an infinite line, as being obtained by the creation of a quantum particle of frequency w at very high energies. (author)

  5. Hamiltonian approach to GR. Pt. 2. Covariant theory of quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Cremaschini, Claudio [Faculty of Philosophy and Science, Silesian University in Opava, Institute of Physics and Research Center for Theoretical Physics and Astrophysics, Opava (Czech Republic); Tessarotto, Massimo [University of Trieste, Department of Mathematics and Geosciences, Trieste (Italy); Faculty of Philosophy and Science, Silesian University in Opava, Institute of Physics, Opava (Czech Republic)

    2017-05-15

    A non-perturbative quantum field theory of General Relativity is presented which leads to a new realization of the theory of covariant quantum gravity (CQG-theory). The treatment is founded on the recently identified Hamiltonian structure associated with the classical space-time, i.e., the corresponding manifestly covariant Hamilton equations and the related Hamilton-Jacobi theory. The quantum Hamiltonian operator and the CQG-wave equation for the corresponding CQG-state and wave function are realized in 4-scalar form. The new quantum wave equation is shown to be equivalent to a set of quantum hydrodynamic equations which warrant the consistency with the classical GR Hamilton-Jacobi equation in the semiclassical limit. A perturbative approximation scheme is developed, which permits the adoption of the harmonic oscillator approximation for the treatment of the Hamiltonian potential. As an application of the theory, the stationary vacuum CQG-wave equation is studied, yielding a stationary equation for the CQG-state in terms of the 4-scalar invariant-energy eigenvalue associated with the corresponding approximate quantum Hamiltonian operator. The conditions for the existence of a discrete invariant-energy spectrum are pointed out. This yields a possible estimate for the graviton mass together with a new interpretation about the quantum origin of the cosmological constant. (orig.)

  6. Keldysh field theory for driven open quantum systems.

    Science.gov (United States)

    Sieberer, L M; Buchhold, M; Diehl, S

    2016-09-01

    Recent experimental developments in diverse areas-ranging from cold atomic gases to light-driven semiconductors to microcavity arrays-move systems into the focus which are located on the interface of quantum optics, many-body physics and statistical mechanics. They share in common that coherent and driven-dissipative quantum dynamics occur on an equal footing, creating genuine non-equilibrium scenarios without immediate counterpart in equilibrium condensed matter physics. This concerns both their non-thermal stationary states and their many-body time evolution. It is a challenge to theory to identify novel instances of universal emergent macroscopic phenomena, which are tied unambiguously and in an observable way to the microscopic drive conditions. In this review, we discuss some recent results in this direction. Moreover, we provide a systematic introduction to the open system Keldysh functional integral approach, which is the proper technical tool to accomplish a merger of quantum optics and many-body physics, and leverages the power of modern quantum field theory to driven open quantum systems.

  7. Generalized Lagrangian Path Approach to Manifestly-Covariant Quantum Gravity Theory

    Directory of Open Access Journals (Sweden)

    Massimo Tessarotto

    2018-03-01

    Full Text Available A trajectory-based representation for the quantum theory of the gravitational field is formulated. This is achieved in terms of a covariant Generalized Lagrangian-Path (GLP approach which relies on a suitable statistical representation of Bohmian Lagrangian trajectories, referred to here as GLP-representation. The result is established in the framework of the manifestly-covariant quantum gravity theory (CQG-theory proposed recently and the related CQG-wave equation advancing in proper-time the quantum state associated with massive gravitons. Generally non-stationary analytical solutions for the CQG-wave equation with non-vanishing cosmological constant are determined in such a framework, which exhibit Gaussian-like probability densities that are non-dispersive in proper-time. As a remarkable outcome of the theory achieved by implementing these analytical solutions, the existence of an emergent gravity phenomenon is proven to hold. Accordingly, it is shown that a mean-field background space-time metric tensor can be expressed in terms of a suitable statistical average of stochastic fluctuations of the quantum gravitational field whose quantum-wave dynamics is described by GLP trajectories.

  8. Intuitive understanding of nonlocality as implied by quantum theory

    International Nuclear Information System (INIS)

    Bohm, D.G.; Hiley, B.J.

    1975-01-01

    The fact is brought out that the essential new quality implied by the quantum theory is nonlocality; i.e., that a system cannot be analyzed into parts whose basic properties do not depend on the state of the whole system. This is done in terms of the causal interpretation of the quantum theory, proposed by one of us (D.B.) in 2952, involving the introduction of the ''quantum potential.'' It is shown that this approach implies a new universal type of description, in which the standard or canonical form is always supersystem-system-subsystem; and this leads to the radically new notion of unbroken wholeness of the entire universe. Finally, some of the implications of extending these notions to the relativity domain, and in so doing, a novel concept of time, in terms of which relativity and quantum theory may eventually be brought together, is indicated

  9. Algebraic Topology Foundations of Supersymmetry and Symmetry Breaking in Quantum Field Theory and Quantum Gravity: A Review

    Directory of Open Access Journals (Sweden)

    Ion C. Baianu

    2009-04-01

    Full Text Available A novel algebraic topology approach to supersymmetry (SUSY and symmetry breaking in quantum field and quantum gravity theories is presented with a view to developing a wide range of physical applications. These include: controlled nuclear fusion and other nuclear reaction studies in quantum chromodynamics, nonlinear physics at high energy densities, dynamic Jahn-Teller effects, superfluidity, high temperature superconductors, multiple scattering by molecular systems, molecular or atomic paracrystal structures, nanomaterials, ferromagnetism in glassy materials, spin glasses, quantum phase transitions and supergravity. This approach requires a unified conceptual framework that utilizes extended symmetries and quantum groupoid, algebroid and functorial representations of non-Abelian higher dimensional structures pertinent to quantized spacetime topology and state space geometry of quantum operator algebras. Fourier transforms, generalized Fourier-Stieltjes transforms, and duality relations link, respectively, the quantum groups and quantum groupoids with their dual algebraic structures; quantum double constructions are also discussed in this context in relation to quasi-triangular, quasi-Hopf algebras, bialgebroids, Grassmann-Hopf algebras and higher dimensional algebra. On the one hand, this quantum algebraic approach is known to provide solutions to the quantum Yang-Baxter equation. On the other hand, our novel approach to extended quantum symmetries and their associated representations is shown to be relevant to locally covariant general relativity theories that are consistent with either nonlocal quantum field theories or local bosonic (spin models with the extended quantum symmetry of entangled, 'string-net condensed' (ground states.

  10. Quantum theory at the crossroads reconsidering the 1927 Solvay conference

    CERN Document Server

    Bacciagaluppi, Guido

    2009-01-01

    We reconsider the crucial 1927 Solvay conference in the context of current research in the foundations of quantum theory. Contrary to folklore, the interpretation question was not settled at this conference and no consensus was reached; instead, a range of sharply conflicting views were presented and extensively discussed. Today, there is no longer an established or dominant interpretation of quantum theory, so it is important to re-evaluate the historical sources and keep the interpretation debate open. In this spirit, we provide a complete English translation of the original proceedings (lectures and discussions), and give background essays on the three main interpretations presented: de Broglie's pilot-wave theory, Born and Heisenberg's quantum mechanics, and Schroedinger's wave mechanics. We provide an extensive analysis of the lectures and discussions that took place, in the light of current debates about the meaning of quantum theory. The proceedings contain much unexpected material, including extensive...

  11. Quantum theory for 1D X-ray free electron laser

    Science.gov (United States)

    Anisimov, Petr M.

    2018-06-01

    Classical 1D X-ray Free Electron Laser (X-ray FEL) theory has stood the test of time by guiding FEL design and development prior to any full-scale analysis. Future X-ray FELs and inverse-Compton sources, where photon recoil approaches an electron energy spread value, push the classical theory to its limits of applicability. After substantial efforts by the community to find what those limits are, there is no universally agreed upon quantum approach to design and development of future X-ray sources. We offer a new approach to formulate the quantum theory for 1D X-ray FELs that has an obvious connection to the classical theory, which allows for immediate transfer of knowledge between the two regimes. We exploit this connection in order to draw quantum mechanical conclusions about the quantum nature of electrons and generated radiation in terms of FEL variables.

  12. Implementation of quantum game theory simulations using Python

    Science.gov (United States)

    Madrid S., A.

    2013-05-01

    This paper provides some examples about quantum games simulated in Python's programming language. The quantum games have been developed with the Sympy Python library, which permits solving quantum problems in a symbolic form. The application of these methods of quantum mechanics to game theory gives us more possibility to achieve results not possible before. To illustrate the results of these methods, in particular, there have been simulated the quantum battle of the sexes, the prisoner's dilemma and card games. These solutions are able to exceed the classic bottle neck and obtain optimal quantum strategies. In this form, python demonstrated that is possible to do more advanced and complicated quantum games algorithms.

  13. Studies in the Theory of Quantum Games

    Science.gov (United States)

    Iqbal, Azhar

    2005-03-01

    Theory of quantum games is a new area of investigation that has gone through rapid development during the last few years. Initial motivation for playing games, in the quantum world, comes from the possibility of re-formulating quantum communication protocols, and algorithms, in terms of games between quantum and classical players. The possibility led to the view that quantum games have a potential to provide helpful insight into working of quantum algorithms, and even in finding new ones. This thesis analyzes and compares some interesting games when played classically and quantum mechanically. A large part of the thesis concerns investigations into a refinement notion of the Nash equilibrium concept. The refinement, called an evolutionarily stable strategy (ESS), was originally introduced in 1970s by mathematical biologists to model an evolving population using techniques borrowed from game theory. Analysis is developed around a situation when quantization changes ESSs without affecting corresponding Nash equilibria. Effects of quantization on solution-concepts other than Nash equilibrium are presented and discussed. For this purpose the notions of value of coalition, backwards-induction outcome, and subgame-perfect outcome are selected. Repeated games are known to have different information structure than one-shot games. Investigation is presented into a possible way where quantization changes the outcome of a repeated game. Lastly, two new suggestions are put forward to play quantum versions of classical matrix games. The first one uses the association of De Broglie's waves, with travelling material objects, as a resource for playing a quantum game. The second suggestion concerns an EPR type setting exploiting directly the correlations in Bell's inequalities to play a bi-matrix game.

  14. The Quantum Mechanics Solver How to Apply Quantum Theory to Modern Physics

    CERN Document Server

    Basdevant, Jean-Louis

    2006-01-01

    The Quantum Mechanics Solver grew from topics which are part of the final examination in quantum theory at the Ecole Polytechnique at Palaiseau near Paris, France. The aim of the text is to guide the student towards applying quantum mechanics to research problems in fields such as atomic and molecular physics, condensed matter physics, and laser physics. Advanced undergraduates and graduate students will find a rich and challenging source for improving their skills in this field.

  15. Quantum game theory based on the Schmidt decomposition

    International Nuclear Information System (INIS)

    Ichikawa, Tsubasa; Tsutsui, Izumi; Cheon, Taksu

    2008-01-01

    We present a novel formulation of quantum game theory based on the Schmidt decomposition, which has the merit that the entanglement of quantum strategies is manifestly quantified. We apply this formulation to 2-player, 2-strategy symmetric games and obtain a complete set of quantum Nash equilibria. Apart from those available with the maximal entanglement, these quantum Nash equilibria are extensions of the Nash equilibria in classical game theory. The phase structure of the equilibria is determined for all values of entanglement, and thereby the possibility of resolving the dilemmas by entanglement in the game of Chicken, the Battle of the Sexes, the Prisoners' Dilemma, and the Stag Hunt, is examined. We find that entanglement transforms these dilemmas with each other but cannot resolve them, except in the Stag Hunt game where the dilemma can be alleviated to a certain degree

  16. The utility of quantum field theory

    International Nuclear Information System (INIS)

    Dine, Michael

    2001-01-01

    This talk surveys a broad range of applications of quantum field theory, as well as some recent developments. The stress is on the notion of effective field theories. Topics include implications of neutrino mass and a possible small value of sin(2β), supersymmetric extensions of the standard model, the use of field theory to understand fundamental issues in string theory (the problem of multiple ground states and the question: does string theory predict low energy supersymmetry), and the use of string theory to solve problems in field theory. Also considered are a new type of field theory, and indications from black hole physics and the cosmological constant problem that effective field theories may not completely describe theories of gravity. (author)

  17. Infrared difficulties with thermal quantum field theories

    International Nuclear Information System (INIS)

    Grandou, T.

    1997-01-01

    Reviewing briefly the two main difficulties encountered in thermal quantum field theories at finite temperature when dealing with the Braaten-Pisarski (BP) resummation program, the motivation is introduced of an analysis relying on the bare perturbation theory, right from the onset. (author)

  18. On a formulation of qubits in quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Calmet, Jacques, E-mail: calmet@ira.uka.de [Karlsruhe Institute of Technology (KIT), Institute for Cryptography and Security, Am Fasanengarten 5, 76131 Karlsruhe (Germany); Calmet, Xavier, E-mail: x.calmet@sussex.ac.uk [Physics and Astronomy, University of Sussex, Falmer, Brighton, BN1 9QH (United Kingdom)

    2012-01-30

    Qubits have been designed in the framework of quantum mechanics. Attempts to formulate the problem in the language of quantum field theory have been proposed already. In this short Letter we refine the meaning of qubits within the framework of quantum field theory. We show that the notion of gauge invariance naturally leads to a generalization of qubits to QFTbits which are then the fundamental carriers of information from the quantum field theoretical point of view. The goal of this Letter is to stress the availability of such a generalized concept of QFTbits. -- Highlights: ► Gauge invariant qubits are proposed. ► Non-linear QFT effects are discussed. ► Entanglement of qubits in QFT.

  19. Quantum information theory. Mathematical foundation. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Masahito [Nagoya Univ. (Japan). Graduate School of Mathematics

    2017-07-01

    This graduate textbook provides a unified view of quantum information theory. Clearly explaining the necessary mathematical basis, it merges key topics from both information-theoretic and quantum- mechanical viewpoints and provides lucid explanations of the basic results. Thanks to this unified approach, it makes accessible such advanced topics in quantum communication as quantum teleportation, superdense coding, quantum state transmission (quantum error-correction) and quantum encryption. Since the publication of the preceding book Quantum Information: An Introduction, there have been tremendous strides in the field of quantum information. In particular, the following topics - all of which are addressed here - made seen major advances: quantum state discrimination, quantum channel capacity, bipartite and multipartite entanglement, security analysis on quantum communication, reverse Shannon theorem and uncertainty relation. With regard to the analysis of quantum security, the present book employs an improved method for the evaluation of leaked information and identifies a remarkable relation between quantum security and quantum coherence. Taken together, these two improvements allow a better analysis of quantum state transmission. In addition, various types of the newly discovered uncertainty relation are explained. Presenting a wealth of new developments, the book introduces readers to the latest advances and challenges in quantum information. To aid in understanding, each chapter is accompanied by a set of exercises and solutions.

  20. Quantum information theory. Mathematical foundation. 2. ed.

    International Nuclear Information System (INIS)

    Hayashi, Masahito

    2017-01-01

    This graduate textbook provides a unified view of quantum information theory. Clearly explaining the necessary mathematical basis, it merges key topics from both information-theoretic and quantum- mechanical viewpoints and provides lucid explanations of the basic results. Thanks to this unified approach, it makes accessible such advanced topics in quantum communication as quantum teleportation, superdense coding, quantum state transmission (quantum error-correction) and quantum encryption. Since the publication of the preceding book Quantum Information: An Introduction, there have been tremendous strides in the field of quantum information. In particular, the following topics - all of which are addressed here - made seen major advances: quantum state discrimination, quantum channel capacity, bipartite and multipartite entanglement, security analysis on quantum communication, reverse Shannon theorem and uncertainty relation. With regard to the analysis of quantum security, the present book employs an improved method for the evaluation of leaked information and identifies a remarkable relation between quantum security and quantum coherence. Taken together, these two improvements allow a better analysis of quantum state transmission. In addition, various types of the newly discovered uncertainty relation are explained. Presenting a wealth of new developments, the book introduces readers to the latest advances and challenges in quantum information. To aid in understanding, each chapter is accompanied by a set of exercises and solutions.

  1. The quantum symmetry of rational field theories

    International Nuclear Information System (INIS)

    Fuchs, J.

    1993-12-01

    The quantum symmetry of a rational quantum field theory is a finite-dimensional multi-matrix algebra. Its representation category, which determines the fusion rules and braid group representations of superselection sectors, is a braided monoidal C*-category. Various properties of such algebraic structures are described, and some ideas concerning the classification programme are outlined. (orig.)

  2. Perturbation Theory for Open Two-Level Nonlinear Quantum Systems

    International Nuclear Information System (INIS)

    Zhang Zhijie; Jiang Dongguang; Wang Wei

    2011-01-01

    Perturbation theory is an important tool in quantum mechanics. In this paper, we extend the traditional perturbation theory to open nonlinear two-level systems, treating decoherence parameter γ as a perturbation. By this virtue, we give a perturbative solution to the master equation, which describes a nonlinear open quantum system. The results show that for small decoherence rate γ, the ratio of the nonlinear rate C to the tunneling coefficient V (i.e., r = C/V) determines the validity of the perturbation theory. For small ratio r, the perturbation theory is valid, otherwise it yields wrong results. (general)

  3. Hard Thermal Loop approximation in the Light Front Quantum Field Theory

    International Nuclear Information System (INIS)

    Silva, Charles da Rocha; Perez, Silvana

    2011-01-01

    Full text: In this paper we generalize the Hard Thermal Loop approximation (HTL) for the Thermal Light Front Quantum Field Theory. This technique was developed by Braaten e Pisarski [PRL. 63 (1989) 1129, Nucl. Phys. B337 (1990) 569], for the Thermal Quantum Field Theory at equal time and is particularly useful to solve problems of convergence of the amplitudes within Quantum Chromodynamics, caused by the inherently nonperturbative behavior. The HTL approximation satisfies simple Ward identities, is ultraviolet finite and gauge independent. Here we use the light front generalized coordinates (GLFC) proposed by one of us (V. S. Alves, Ashok Das, e Silvana Perez [PRD. 66, (2002) 125008]) and analyze the one loop amplitudes for the λφ3 theory and the Quantum Electrodynamics in (3+1) dimensions at finite temperature in the HTL approximation. For the scalar theory, we evaluate the two-point function, recovering the usual dispersion relations. We also analyze the rotational invariance of the model. We then consider the Quantum Electrodynamics in (3+1) dimensions and calculate the polarization tensor and the vertex function at finite temperature in the HTL approximation. In future, our interest will be to apply the Generalized Light Front formalism to understand the confinement mechanism which occurs in the Quantum Chromodynamics. There is an expectation that the Light Front Quantum Field Theory formalism is more appropriate to study this problems. (author)

  4. Hard Thermal Loop approximation in the Light Front Quantum Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Charles da Rocha [Instituto Federal de Educacao, Ciencia e Tecnologia do Para (IFPA), Belem, PA (Brazil); Universidade Federal do Para (UFPA), Belem, PA (Brazil); Perez, Silvana [Universidade Federal do Para (UFPA), Belem, PA (Brazil)

    2011-07-01

    Full text: In this paper we generalize the Hard Thermal Loop approximation (HTL) for the Thermal Light Front Quantum Field Theory. This technique was developed by Braaten e Pisarski [PRL. 63 (1989) 1129, Nucl. Phys. B337 (1990) 569], for the Thermal Quantum Field Theory at equal time and is particularly useful to solve problems of convergence of the amplitudes within Quantum Chromodynamics, caused by the inherently nonperturbative behavior. The HTL approximation satisfies simple Ward identities, is ultraviolet finite and gauge independent. Here we use the light front generalized coordinates (GLFC) proposed by one of us (V. S. Alves, Ashok Das, e Silvana Perez [PRD. 66, (2002) 125008]) and analyze the one loop amplitudes for the {lambda}{phi}3 theory and the Quantum Electrodynamics in (3+1) dimensions at finite temperature in the HTL approximation. For the scalar theory, we evaluate the two-point function, recovering the usual dispersion relations. We also analyze the rotational invariance of the model. We then consider the Quantum Electrodynamics in (3+1) dimensions and calculate the polarization tensor and the vertex function at finite temperature in the HTL approximation. In future, our interest will be to apply the Generalized Light Front formalism to understand the confinement mechanism which occurs in the Quantum Chromodynamics. There is an expectation that the Light Front Quantum Field Theory formalism is more appropriate to study this problems. (author)

  5. Workshop on low-dimensional quantum field theory and its applications

    International Nuclear Information System (INIS)

    Yamamoto, Hisashi

    1990-02-01

    The workshop on 'Low-Dimensional Quantum Field Theory and its Applications' was held at INS on December 18 - 20, 1989 with about seventy participants. Some pedagogical reviews and the latest results were delivered on the recent topics related to both solid-state and particle physics. Among them are quantum Hall effect, high T c superconductivity and related topics in low-dimensional quantum field theory. Many active discussions were made on these issues. (J.P.N.)

  6. Quantum double actions on operator algebras and orbifold quantum field theories

    International Nuclear Information System (INIS)

    Mueger, M.

    1996-06-01

    Starting from a local quantum field theory with an unbroken compact symmetry group G in 1+1 dimensional spacetime we construct disorder fields implementing gauge transformations on the fields (order variables) localized in a wedge region. Enlarging the local algebras by these disorder fields we obtain a nonlocal field theory, the fixpoint algebras of which under the appropriately extended action of the group G are shown to satisfy Haag duality in every simple sector. The specifically 1+1 dimensional phenomenon of violation of Haag duality of fixpoint nets is thereby clarified. In the case of a finite group G the extended theory is acted upon in a completely canonical way by the quantum double D(G) and satisfies R-matrix commutation relations as well as a Verlinde algebra. Furthermore, our methods are suitable for a concise and transparent approach to bosonization. The main technical ingredient is a strengthened version of the split property which should hold in all reasonable massive theories. In the appendices (part of) the results are extended to arbitary locally compact groups and our methods are adapted to chiral theories on the circle. (orig.)

  7. Is quantum theory a form of statistical mechanics?

    Science.gov (United States)

    Adler, S. L.

    2007-05-01

    We give a review of the basic themes of my recent book: Adler S L 2004 Quantum Theory as an Emergent Phenomenon (Cambridge: Cambridge University Press). We first give motivations for considering the possibility that quantum mechanics is not exact, but is instead an accurate asymptotic approximation to a deeper level theory. For this deeper level, we propose a non-commutative generalization of classical mechanics, that we call "trace dynamics", and we give a brief survey of how it works, considering for simplicity only the bosonic case. We then discuss the statistical mechanics of trace dynamics and give our argument that with suitable approximations, the Ward identities for trace dynamics imply that ensemble averages in the canonical ensemble correspond to Wightman functions in quantum field theory. Thus, quantum theory emerges as the statistical thermodynamics of trace dynamics. Finally, we argue that Brownian motion corrections to this thermodynamics lead to stochastic corrections to the Schrödinger equation, of the type that have been much studied in the "continuous spontaneous localization" model of objective state vector reduction. In appendices to the talk, we give details of the existence of a conserved operator in trace dynamics that encodes the structure of the canonical algebra, of the derivation of the Ward identities, and of the proof that the stochastically-modified Schrödinger equation leads to state vector reduction with Born rule probabilities.

  8. Classical and quantum contents of solvable game theory on Hilbert space

    International Nuclear Information System (INIS)

    Cheon, Taksu; Tsutsui, Izumi

    2006-01-01

    A simple and general formulation of the quantum game theory is presented, accommodating all possible strategies in the Hilbert space for the first time. The theory is solvable for the two strategy quantum game, which is shown to be equivalent to a family of classical games supplemented by quantum interference. Our formulation gives a clear perspective to understand why and how quantum strategies outmaneuver classical strategies. It also reveals novel aspects of quantum games such as the stone-scissor-paper phase sub-game and the fluctuation-induced moderation

  9. Quantum entanglement in non-local games, graph parameters and zero-error information theory

    NARCIS (Netherlands)

    Scarpa, G.

    2013-01-01

    We study quantum entanglement and some of its applications in graph theory and zero-error information theory. In Chapter 1 we introduce entanglement and other fundamental concepts of quantum theory. In Chapter 2 we address the question of how much quantum correlations generated by entanglement can

  10. Modern quantum kinetic theory and spectral line shapes

    International Nuclear Information System (INIS)

    Monchick, L.

    1991-01-01

    The modern quantum kinetic theory of spectral line shapes is outlined and a typical calculation of a Raman scattered line shape described. The distinguishing feature of this calculation is that it was completely ab initio and therefore constituted a test of modern quantum kinetic theory, the state of the art in computing molecular-scattering cross sections, and novel methods of solving kinetic equations. The computation employed a large assortment of tools: group theory, finite-element methods, classic methods of solving coupled sets of ordinary differential equations, graph methods of combining angular momenta, and matrix methods of solving integral equations. Agreement with experimental results was excellent. 13 refs

  11. Quantum chromodynamics: A theory of the nuclear force

    International Nuclear Information System (INIS)

    Craigie, N.S.

    1980-06-01

    A brief outline is given of a possible theory of the nuclear force and the strong interactions between elementary particles, which is supposed responsible for nuclear matter. The theory is known as quantum chromodynamics because of its association with a new kind of nuclear charge called colour and its resemblance to quantum electrodynamics. Early ideas on the nuclear force and the emergence of the quark model and the QCD Lagrangian are described first. Then properties of this theory and the problem of quark confinement, the perturbative phase of QCD, and the non-perturbative or confinement phase of QCD and the description of hadrons and their interactions are discussed

  12. Entropy in quantum information theory - Communication and cryptography

    DEFF Research Database (Denmark)

    Majenz, Christian

    in quantum Shannon theory. While immensely more entanglement-consuming, the variant of port based teleportation is interesting for applications like instantaneous non-local computation and attacks on quantum position-based cryptography. Port based teleportation cannot be implemented perfectly......, for vanishing error. As a byproduct, a new lower bound for the size of the program register for an approximate universal programmable quantum processor is derived. Finally, the mix is completed with a result in quantum cryptography. While quantum key distribution is the most well-known quantum cryptographic...... protocol, there has been increased interest in extending the framework of symmetric key cryptography to quantum messages. We give a new denition for information-theoretic quantum non-malleability, strengthening the previous denition by Ambainis et al. We show that quantum non-malleability implies secrecy...

  13. Operator approximant problems arising from quantum theory

    CERN Document Server

    Maher, Philip J

    2017-01-01

    This book offers an account of a number of aspects of operator theory, mainly developed since the 1980s, whose problems have their roots in quantum theory. The research presented is in non-commutative operator approximation theory or, to use Halmos' terminology, in operator approximants. Focusing on the concept of approximants, this self-contained book is suitable for graduate courses.

  14. Finiteness of quantum field theories and supersymmetry

    International Nuclear Information System (INIS)

    Lucha, W.; Neufeld, H.

    1986-01-01

    We study the consequences of finiteness for a general renormalizable quantum field theory by analysing the finiteness conditions resulting from the requirement of absence of divergent contributions to the renormalizations of the parameters of an arbitrary gauge theory. In all cases considered, the well-known two-loop finite supersymmetric theories prove to be the unique solution of the finiteness criterion. (Author)

  15. Topics in quantum field theory

    NARCIS (Netherlands)

    Dams, C.J.F.

    2006-01-01

    In this PhD-thesis some topics in quantum field theory are considered. The first chapter gives a background to these topics. The second chapter discusses renormalization. In particular it is shown how loop calculations can be performed when using the axial gauge fixing. Fermion creation and

  16. A Cohomological Perspective on Algebraic Quantum Field Theory

    Science.gov (United States)

    Hawkins, Eli

    2018-05-01

    Algebraic quantum field theory is considered from the perspective of the Hochschild cohomology bicomplex. This is a framework for studying deformations and symmetries. Deformation is a possible approach to the fundamental challenge of constructing interacting QFT models. Symmetry is the primary tool for understanding the structure and properties of a QFT model. This perspective leads to a generalization of the algebraic quantum field theory framework, as well as a more general definition of symmetry. This means that some models may have symmetries that were not previously recognized or exploited. To first order, a deformation of a QFT model is described by a Hochschild cohomology class. A deformation could, for example, correspond to adding an interaction term to a Lagrangian. The cohomology class for such an interaction is computed here. However, the result is more general and does not require the undeformed model to be constructed from a Lagrangian. This computation leads to a more concrete version of the construction of perturbative algebraic quantum field theory.

  17. Concepts in quantum field theory a practitioner's toolkit

    CERN Document Server

    Ilisie, Victor

    2015-01-01

    This book uses less strict yet still formal mathematical language to clarify a variety of concepts in Quantum Field Theory that remain somewhat “fuzzy” in many books designed for undergraduates and fresh graduates. The aim is not to replace formal books on Quantum Field Theory, but rather to offer a helpful complementary tool for beginners in the field. Features include a reader-friendly introduction to tensor calculus and the concept of manifolds; a simple and robust treatment for dimensional regularization; a consistent explanation of the renormalization procedure, step by step and in a transparent manner at all orders, using the QED Lagrangian; and extensive treatment of infrared as well as ultraviolet divergences. The most general (Lorentz invariant) form of Noether's theorem is presented and applied to a few simple yet relevant examples in Quantum Field Theory. These and further interesting topics are addressed in a way that will be accessible for the target readership. Some familiarity with basic no...

  18. A Cohomological Perspective on Algebraic Quantum Field Theory

    Science.gov (United States)

    Hawkins, Eli

    2018-02-01

    Algebraic quantum field theory is considered from the perspective of the Hochschild cohomology bicomplex. This is a framework for studying deformations and symmetries. Deformation is a possible approach to the fundamental challenge of constructing interacting QFT models. Symmetry is the primary tool for understanding the structure and properties of a QFT model. This perspective leads to a generalization of the algebraic quantum field theory framework, as well as a more general definition of symmetry. This means that some models may have symmetries that were not previously recognized or exploited. To first order, a deformation of a QFT model is described by a Hochschild cohomology class. A deformation could, for example, correspond to adding an interaction term to a Lagrangian. The cohomology class for such an interaction is computed here. However, the result is more general and does not require the undeformed model to be constructed from a Lagrangian. This computation leads to a more concrete version of the construction of perturbative algebraic quantum field theory.

  19. A Quantum Theory of Magnetism

    Directory of Open Access Journals (Sweden)

    Gift S.

    2009-01-01

    Full Text Available In this paper, a new Quantum Theory of Magnetic Interaction is proposed. This is done under a relaxation of the requirement of covariance for Lorentz Boost Transformations. A modified form of local gauge invariance in which fermion field phase is allowed to vary with each space point but not each time point, leads to the introduction of a new compensatory field different from the electromagnetic field associated with the photon. This new field is coupled to the magnetic flux of the fermions and has quanta called magnatons, which are massless spin 1 particles. The associated equation of motion yields the Poisson equation for magnetostatic potentials. The magnatons mediate the magnetic interaction between magnetic dipoles including magnets and provide plausi- ble explanations for the Pauli exclusion principle, Chemical Reactivity and Chemical Bonds. This new interaction has been confirmed by numerical experiments. It estab- lishes magnetism as a force entirely separate from the electromagnetic interaction and converts all of classical magnetism into a quantum theory.

  20. Knot theory and a physical state of quantum gravity

    International Nuclear Information System (INIS)

    Liko, Tomas; Kauffman, Louis H

    2006-01-01

    We discuss the theory of knots, and describe how knot invariants arise naturally in gravitational physics. The focus of this review is to delineate the relationship between knot theory and the loop representation of non-perturbative canonical quantum general relativity (loop quantum gravity). This leads naturally to a discussion of the Kodama wavefunction, a state which is conjectured to be the ground state of the gravitational field with positive cosmological constant. This review can serve as a self-contained introduction to loop quantum gravity and related areas. Our intent is to make the paper accessible to a wider audience that may include topologists, knot theorists, and other persons innocent of the physical background to this approach to quantum gravity. (topical review)

  1. Numerical approach of the quantum circuit theory

    Energy Technology Data Exchange (ETDEWEB)

    Silva, J.J.B., E-mail: jaedsonfisica@hotmail.com; Duarte-Filho, G.C.; Almeida, F.A.G.

    2017-03-15

    In this paper we develop a numerical method based on the quantum circuit theory to approach the coherent electronic transport in a network of quantum dots connected with arbitrary topology. The algorithm was employed in a circuit formed by quantum dots connected each other in a shape of a linear chain (associations in series), and of a ring (associations in series, and in parallel). For both systems we compute two current observables: conductance and shot noise power. We find an excellent agreement between our numerical results and the ones found in the literature. Moreover, we analyze the algorithm efficiency for a chain of quantum dots, where the mean processing time exhibits a linear dependence with the number of quantum dots in the array.

  2. Numerical approach of the quantum circuit theory

    International Nuclear Information System (INIS)

    Silva, J.J.B.; Duarte-Filho, G.C.; Almeida, F.A.G.

    2017-01-01

    In this paper we develop a numerical method based on the quantum circuit theory to approach the coherent electronic transport in a network of quantum dots connected with arbitrary topology. The algorithm was employed in a circuit formed by quantum dots connected each other in a shape of a linear chain (associations in series), and of a ring (associations in series, and in parallel). For both systems we compute two current observables: conductance and shot noise power. We find an excellent agreement between our numerical results and the ones found in the literature. Moreover, we analyze the algorithm efficiency for a chain of quantum dots, where the mean processing time exhibits a linear dependence with the number of quantum dots in the array.

  3. Numerical approach of the quantum circuit theory

    Science.gov (United States)

    Silva, J. J. B.; Duarte-Filho, G. C.; Almeida, F. A. G.

    2017-03-01

    In this paper we develop a numerical method based on the quantum circuit theory to approach the coherent electronic transport in a network of quantum dots connected with arbitrary topology. The algorithm was employed in a circuit formed by quantum dots connected each other in a shape of a linear chain (associations in series), and of a ring (associations in series, and in parallel). For both systems we compute two current observables: conductance and shot noise power. We find an excellent agreement between our numerical results and the ones found in the literature. Moreover, we analyze the algorithm efficiency for a chain of quantum dots, where the mean processing time exhibits a linear dependence with the number of quantum dots in the array.

  4. The quantum symmetry of rational conformal field theories

    Directory of Open Access Journals (Sweden)

    César Gómez

    1991-04-01

    Full Text Available The quantum group symmetry of the c ˇ1 Rational Conformal Field Theory, in its Coulomb gas version, is formulated in terms of a new type of screened vertex operators, which define the representation spaces of a quantum group Q. The conformal properties of these operators show a deep interplay between the quantum group Q and the Virasoro algebra.The R-matrix, the comultiplication rules and the quantum Clebsch-Gordan coefficients of Q are obtained using contour deformation techniques. Finally, the relation between the chiral vertex operators and the quantum Clebsch-Gordan coefficients is shown.

  5. Duality Theory and Categorical Universal Logic: With Emphasis on Quantum Structures

    Directory of Open Access Journals (Sweden)

    Yoshihiro Maruyama

    2014-12-01

    Full Text Available Categorical Universal Logic is a theory of monad-relativised hyperdoctrines (or fibred universal algebras, which in particular encompasses categorical forms of both first-order and higher-order quantum logics as well as classical, intuitionistic, and diverse substructural logics. Here we show there are those dual adjunctions that have inherent hyperdoctrine structures in their predicate functor parts. We systematically investigate into the categorical logics of dual adjunctions by utilising Johnstone-Dimov-Tholen's duality-theoretic framework. Our set-theoretical duality-based hyperdoctrines for quantum logic have both universal and existential quantifiers (and higher-order structures, giving rise to a universe of Takeuti-Ozawa's quantum sets via the tripos-to-topos construction by Hyland-Johnstone-Pitts. The set-theoretical hyperdoctrinal models of quantum logic, as well as all quantum hyperdoctrines with cartesian base categories, turn out to give sound and complete semantics for Faggian-Sambin's first-order quantum sequent calculus over cartesian type theory; in addition, quantum hyperdoctrines with monoidal base categories are sound and complete for the calculus over linear type theory. We finally consider how to reconcile Birkhoff-von Neumann's quantum logic and Abramsky-Coecke's categorical quantum mechanics (which is modernised quantum logic as an antithesis to the traditional one via categorical universal logic.

  6. Quantum mean-field theory of collective dynamics and tunneling

    International Nuclear Information System (INIS)

    Negele, J.W.

    1981-01-01

    A fundamental problem in quantum many-body theory is formulation of a microscopic theory of collective motion. For self-bound, saturating systems like finite nuclei described in the context of nonrelativistic quantum mechanics with static interactions, the essential problem is how to formulate a systematic quantal theory in which the relevant collective variables and their dynamics arise directly and naturally from the Hamiltonian and the system under consideration. Significant progress has been made recently in formulating the quantum many-body problem in terms of an expansion about solutions to time-dependent mean-field equations. The essential ideas, principal results, and illustrative examples are summarized. An exact expression for an observable of interest is written using a functional integral representation for the evolution operator, and tractable time-dependent mean field equations are obtained by application of the stationary-phase approximation (SPA) to the functional integral. Corrections to the lowest-order theory may be systematically enumerated. 6 figures

  7. Rigorous results in quantum theory of stimulated Raman scattering

    International Nuclear Information System (INIS)

    Rupasov, V.I.

    1993-01-01

    The modern theory of stimulated Raman scattering (SRS) of light in resonant media is based on the investigations of appropriate integrable models of the classical field theory by means of the inverse problem method. But, strictly speaking, Raman scattering is a pure spontaneous process and, hence, it is necessary to take into account a quantum nature of the phenomenon. Moreover, there are some questions and problems, for example, the problem of scattered photons statistics, which can be studied only within the framework of the quantum field theory. We have developed an exact quantum theory of SRS for the case of point-like geometry of resonant media (two-level atoms or harmonic oscillators) of the radius r much-lt λ 0 , where λ 0 is the typical wavelength of the light, but all our results are also valid for the case of short extended medium of the length L much-lt l p (l p is the typical size of pulses) when the spatially homogeneous approximation is valid

  8. Quantum holonomy theory and Hilbert space representations

    Energy Technology Data Exchange (ETDEWEB)

    Aastrup, Johannes [Mathematisches Institut, Universitaet Hannover (Germany); Moeller Grimstrup, Jesper [QHT Gruppen, Copenhagen Area (Denmark)

    2016-11-15

    We present a new formulation of quantum holonomy theory, which is a candidate for a non-perturbative and background independent theory of quantum gravity coupled to matter and gauge degrees of freedom. The new formulation is based on a Hilbert space representation of the QHD(M) algebra, which is generated by holonomy-diffeomorphisms on a 3-dimensional manifold and by canonical translation operators on the underlying configuration space over which the holonomy-diffeomorphisms form a non-commutative C*-algebra. A proof that the state that generates the representation exist is left for later publications. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Topics in quantum field theory and cosmology

    International Nuclear Information System (INIS)

    Brandenberger, R.H.

    1983-01-01

    This thesis contains a study of topics in quantum field theory and cosmology in the context of the new inflationary universe scenario. It presents a review of the quantum field theory methods used in the new cosmological models. The following chapters are a detailed study of energy density fluctuations in the early universe. Hawking radiation is derived as the source of initial perturbations in two complementary ways. The following section presents a new gauge invariant framework to study the growth of fluctuations outside the horizon. This framework is applied to the new inflationary universe in the final chapter. The introduction gives a brief outline of the new cosmological models

  10. Lectures on classical and quantum theory of fields

    International Nuclear Information System (INIS)

    Arodz, Henryk; Hadasz, Leszek

    2010-01-01

    This textbook on classical and quantum theory of fields addresses graduate students starting to specialize in theoretical physics. It provides didactic introductions to the main topics in the theory of fields, while taking into account the contemporary view of the subject. The student will find concise explanations of basic notions essential for applications of the theory of fields as well as for frontier research in theoretical physics. One third of the book is devoted to classical fields. Each chapter contains exercises of varying degree of difficulty with hints or solutions, plus summaries and worked examples as useful. The textbook is based on lectures delivered to students of theoretical physics at Jagiellonian University. It aims to deliver a unique combination of classical and quantum field theory in one compact course. (orig.)

  11. Lectures on Classical and Quantum Theory of Fields

    CERN Document Server

    Arodź, Henryk

    2010-01-01

    This textbook on classical and quantum theory of fields addresses graduate students starting to specialize in theoretical physics. It provides didactic introductions to the main topics in the theory of fields, while taking into account the contemporary view of the subject. The student will find concise explanations of basic notions essential for applications of the theory of fields as well as for frontier research in theoretical physics. One third of the book is devoted to classical fields. Each chapter contains exercises of varying degree of difficulty with hints or solutions, plus summaries and worked examples as useful. The textbook is based on lectures delivered to students of theoretical physics at Jagiellonian University. It aims to deliver a unique combination of classical and quantum field theory in one compact course.

  12. Lectures on classical and quantum theory of fields

    Energy Technology Data Exchange (ETDEWEB)

    Arodz, Henryk; Hadasz, Leszek [Jagiellonian Univ., Krakow (Poland). Inst. Physics

    2010-07-01

    This textbook on classical and quantum theory of fields addresses graduate students starting to specialize in theoretical physics. It provides didactic introductions to the main topics in the theory of fields, while taking into account the contemporary view of the subject. The student will find concise explanations of basic notions essential for applications of the theory of fields as well as for frontier research in theoretical physics. One third of the book is devoted to classical fields. Each chapter contains exercises of varying degree of difficulty with hints or solutions, plus summaries and worked examples as useful. The textbook is based on lectures delivered to students of theoretical physics at Jagiellonian University. It aims to deliver a unique combination of classical and quantum field theory in one compact course. (orig.)

  13. Quantum field theory II: quantum electrodynamics. A bridge between mathematicians and physicists

    International Nuclear Information System (INIS)

    Zeidler, Eberhard

    2009-01-01

    This is the second volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists ranging from advanced undergraduate students to professional scientists. This book seeks to bridge the existing gap between the different languages used by mathematicians and physicists. For students of mathematics it is shown that detailed knowledge of the physical background helps to discover interesting interrelationships between quite diverse mathematical topics. For students of physics fairly advanced mathematics, beyond that included in the usual curriculum in physics, is presented. The present volume concerns a detailed study of the mathematical and physical aspects of the quantum theory of light. (orig.)

  14. Quantum field theory II: quantum electrodynamics. A bridge between mathematicians and physicists

    Energy Technology Data Exchange (ETDEWEB)

    Zeidler, Eberhard [Max Planck Institute for Mathematics in the Sciences, Leipzig (Germany)

    2009-07-01

    This is the second volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists ranging from advanced undergraduate students to professional scientists. This book seeks to bridge the existing gap between the different languages used by mathematicians and physicists. For students of mathematics it is shown that detailed knowledge of the physical background helps to discover interesting interrelationships between quite diverse mathematical topics. For students of physics fairly advanced mathematics, beyond that included in the usual curriculum in physics, is presented. The present volume concerns a detailed study of the mathematical and physical aspects of the quantum theory of light. (orig.)

  15. Elementary theory of quantum Hall effect

    Directory of Open Access Journals (Sweden)

    Keshav N. Shrivastava

    2008-04-01

    Full Text Available The Hall effect is the generation of a current perpendicular to both the direction of the applied electric as well as magnetic field in a metal or in a semiconductor. It is used to determine the concentration of electrons. The quantum Hall effect with integer quantization was discovered by von Klitzing and fractionally charged states were found by Tsui, Stormer and Gossard. Robert Laughlin explained the quantization of Hall current by using “flux quantization” and introduced incompressibility to obtain the fractional charge. We have developed the theory of the quantum Hall effect by using the theory of angular momentum. Our predicted fractions are in accord with those measured. We emphasize our explanation of the observed phenomena. We use spin to explain the fractional charge and hence we discover spin-charge locking.

  16. Quantum backreaction in string theory

    International Nuclear Information System (INIS)

    Evnin, O.

    2012-01-01

    There are situations in string theory when a finite number of string quanta induce a significant backreaction upon the background and render the perturbation theory infrared-divergent. The simplest example is D0-brane recoil under an impact by closed strings. A more physically interesting case is backreaction on the evolution of a totally compact universe due to closed string gas. Such situations necessitate qualitative amendments to the traditional formulation of string theory in a fixed classical background. In this contribution to the proceedings of the XVII European Workshop on String Theory in Padua, I review solved problems and current investigations in relation to this kind of quantum backreaction effects. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Whiteheadian approach to quantum theory and the generalized bell's theorem

    International Nuclear Information System (INIS)

    Stapp, H.P.

    1979-01-01

    The model of the world proposed by Whitehead provides a natural theoretical framework in which to imbed quantum theory. This model accords with the ontological ideas of Heisenberg, and also with Einstein's view that physical theories should refer nominally to the objective physical situation, rather than our knowledge of that system. Whitehead imposed on his model the relativistic requirement that what happens in any given spacetime region be determined only by what has happened in its absolute past, i.e., in the backward light-cone drawn from that region. This requirement must be modified, for it is inconsistent with the implications of quantum theory expressed by a generalized version of Bell's theorem. Revamping the causal spacetime structure of the Whitehead-Heisenberg ontology to bring it into accord with the generalized Bell's theorem creates the possibility of a nonlocal causal covariant theory that accords with the statistical prediction of quantum theory

  18. Quantum field theory on higher-genus Riemann surfaces, 2

    International Nuclear Information System (INIS)

    Kubo, Reijiro; Ojima, Shuichi.

    1990-08-01

    Quantum field theory for closed bosonic string systems is formulated on arbitrary higher-genus Riemann surfaces in global operator formalism. Canonical commutation relations between bosonic string field X μ and their conjugate momenta P ν are derived in the framework of conventional quantum field theory. Problems arising in quantizing bosonic systems are considered in detail. Applying the method exploited in the preceding paper we calculate Ward-Takahashi identities. (author)

  19. Can quantum theory and special relativity peacefully coexist?

    NARCIS (Netherlands)

    Seevinck, M.P.

    This white paper aims to identify an open problem in ‘Quantum Physics and the Nature of Reality’—namely whether quantum theory and special relativity are formally compatible—, to indicate what the underlying issues are, and put forward ideas about how the problem might be addressed.

  20. Can quantum theory and special relativity peacefully coexist?

    NARCIS (Netherlands)

    Seevinck, M.P.; Briggs, A.

    2010-01-01

    This white paper aims to identify an open problem in ‘Quantum Physics and the Nature of Reality’—namely whether quantum theory and special relativity are formally compatible—, to indicate what the underlying issues are, and put forward ideas about how the problem might be addressed.

  1. The principles of quantum theory, from Planck's quanta to the Higgs boson the nature of quantum reality and the spirit of Copenhagen

    CERN Document Server

    Plotnitsky, Arkady

    2016-01-01

    The book considers foundational thinking in quantum theory, focusing on the role the fundamental principles and principle thinking there, including thinking that leads to the invention of new principles, which is, the book contends, one of the ultimate achievements of theoretical thinking in physics and beyond. The focus on principles, prominent during the rise and in the immediate aftermath of quantum theory, has been uncommon in more recent discussions and debates concerning it. The book argues, however, that exploring the fundamental principles and principle thinking is exceptionally helpful in addressing the key issues at stake in quantum foundations and the seemingly interminable debates concerning them. Principle thinking led to major breakthroughs throughout the history of quantum theory, beginning with the old quantum theory and quantum mechanics, the first definitive quantum theory, which it remains within its proper (nonrelativistic) scope. It has, the book also argues, been equally important in qua...

  2. Quantum theory a two-time success story

    CERN Document Server

    Struppa, Daniele C

    2013-01-01

    Yakir Aharonov is one of the leading figures in the foundations of quantum physics. His contributions range from the celebrated Aharonov-Bohm effect (1959), to the more recent theory of weak measurements (whose experimental confirmations were recently ranked as the two most important results of physics in 2011). This volume will contain 27 original articles, contributed by the most important names in quantum physics, in honor of Aharonov's 80-th birthday.Sections include 'Quantum mechanics and reality,' with contributions from Nobel Laureates David Gross and Sir Anthony Leggett and Yakir Aharo

  3. Evolutionary quantum game theory in the context of socio-economic systems

    International Nuclear Information System (INIS)

    Hanauske, Matthias

    2011-01-01

    The evolution of socio-economic systems depend on the interdependent decision processes of its underlying system components. The mathematical model to describe the strategic decision of players within a socio-economic game is ''game theory''. ''Quantum game theory'' is a mathematical and conceptual amplification of classical game theory. The space of all conceivable decision paths is extended from the purely rational, measurable space in the Hilbert-space of complex numbers - which is the mathematical space where quantum theory is formulated. By the concept of a potential entanglement of the imaginary quantum strategy parts, it is possible to include cooperate decision path, caused by cultural or moral standards. If this strategy entanglement is large enough, then additional Nash equilibria can occur, previously present dominant strategies could become nonexistent and new evolutionary stable strategies do appear for some game classes. Within this PhD thesis the main results of classical and quantum games are summarized and all of the possible game classes of evolutionary (2 player)-(2 strategy) games are extended to quantum games. It is shown that the quantum extension of classical games with an underlying dilemma-like structure give different results, if the strength of strategic entanglement is above a certain barrier. After the German summary and the introduction paper, five different applications of the theory are discussed within the thesis. (orig.)

  4. Density functional theory in quantum chemistry

    CERN Document Server

    Tsuneda, Takao

    2014-01-01

    This book examines density functional theory based on the foundation of quantum chemistry. Unconventional in approach, it reviews basic concepts, then describes the physical meanings of state-of-the-art exchange-correlation functionals and their corrections.

  5. Three-dimensional loop quantum gravity: towards a self-gravitating quantum field theory

    International Nuclear Information System (INIS)

    Noui, Karim

    2007-01-01

    In a companion paper, we have emphasized the role of the Drinfeld double DSU(2) in the context of three-dimensional Riemannian loop quantum gravity coupled to massive spinless point particles. We make use of this result to propose a model for a self-gravitating quantum field theory (massive spinless non-causal scalar field) in three-dimensional Riemannian space. We start by constructing the Fock space of the free self-gravitating field: the vacuum is the unique DSU(2) invariant state, one-particle states correspond to DSU(2) unitary irreducible simple representations and any multi-particles states are obtained as the symmetrized tensor product between simple representations. The associated quantum field is defined by the usual requirement of covariance under DSU(2). Then, we introduce a DSU(2)-invariant self-interacting potential (the obtained model is a group field theory) and explicitly compute the lowest order terms (in the self-interaction coupling constant λ) of the propagator and of the three-point function. Finally, we compute the lowest order quantum gravity corrections (in the Newton constant G) to the propagator and to the three-point function

  6. Unification of General Relativity with Quantum Field Theory

    International Nuclear Information System (INIS)

    Ni Jun

    2011-01-01

    In the frame of quantum field theory, instead of using the action principle, we deduce the Einstein equation from purely the general covariant principle and the homogeneity of spacetime. The Einstein equation is shown to be the gauge equation to guarantee the local symmetry of spacetime translation. Gravity is an apparent force due to the curvature of spacetime resulted from the conservation of energy-momentum. In the action of quantum field theory, only electroweak-strong interactions should be considered with the curved spacetime metric determined by the Einstein equation. (general)

  7. Induced gravity in quantum theory in a curved space

    International Nuclear Information System (INIS)

    Etim, E.

    1983-01-01

    The reason for interest in the unorthodox view of first order (about R(x)) gravity as a matter-induced quantum effect is really to find an argument not to quantise it. According to this view quantum gravity should be constructed with an action which is, at least, quadratic in the scalar curvature R(x). Such a theory will not contain a dimensional parameter, like Newton's constant, and would probably be renormalisable. This lecture is intended to acquaint the non-expert with the phenomenon of induction of the scalar curvature term in the matter Lagrangian in a curved space in both relativistic and non-relativistic quantum theories

  8. Quantum theory and the flight from realism philosophical responses to quantum mechanics

    CERN Document Server

    Norris, Christopher

    2002-01-01

    This book is a critical introduction to the long-standing debate concerning the conceptual foundations of quantum mechanics and the problems it has posed for physicists and philosophers from Einstein to the present. Quantum theory has been a major infulence on postmodernism, and presents significant problems for realists. Keeping his own realist position in check, Christopher Norris subjects a wide range of key opponents and supporters of realism to a high and equal level of scrutiny. With a characteristic combination of rigour and intellectual generosity, he draws out the merits and weaknesses from opposing arguments. In a sequence of closely argued chapters, Norris examines the premises of orthodox quantum theory, as developed most influentially by Bohr and Heisenberg, and its impact on varous philosophical developments. These include the ideas developed by W.V Quine, Thomas Kuhn, Michael Dummett, Bas van Fraassen, and Hilary Puttnam. In each case, Norris argues, these thinkers have been influenced by the...

  9. Quantum Information Biology: From Theory of Open Quantum Systems to Adaptive Dynamics

    Science.gov (United States)

    Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro

    This chapter reviews quantum(-like) information biology (QIB). Here biology is treated widely as even covering cognition and its derivatives: psychology and decision making, sociology, and behavioral economics and finances. QIB provides an integrative description of information processing by bio-systems at all scales of life: from proteins and cells to cognition, ecological and social systems. Mathematically QIB is based on the theory of adaptive quantum systems (which covers also open quantum systems). Ideologically QIB is based on the quantum-like (QL) paradigm: complex bio-systems process information in accordance with the laws of quantum information and probability. This paradigm is supported by plenty of statistical bio-data collected at all bio-scales. QIB re ects the two fundamental principles: a) adaptivity; and, b) openness (bio-systems are fundamentally open). In addition, quantum adaptive dynamics provides the most generally possible mathematical representation of these principles.

  10. Aspects of a representation of quantum theory in terms of classical probability theory by means of integration in Hilbert space

    International Nuclear Information System (INIS)

    Bach, A.

    1981-01-01

    A representation of quantum mechanics in terms of classical probability theory by means of integration in Hilbert space is discussed. This formal hidden-variables representation is analysed in the context of impossibility proofs concerning hidden-variables theories. The structural analogy of this formulation of quantum theory with classical statistical mechanics is used to elucidate the difference between classical mechanics and quantum mechanics. (author)

  11. Quantum field theory III. Gauge theory. A bridge between mathematicians and physicists

    International Nuclear Information System (INIS)

    Zeidler, Eberhard

    2011-01-01

    In this third volume of his modern introduction to quantum field theory, Eberhard Zeidler examines the mathematical and physical aspects of gauge theory as a principle tool for describing the four fundamental forces which act in the universe: gravitative, electromagnetic, weak interaction and strong interaction. Volume III concentrates on the classical aspects of gauge theory, describing the four fundamental forces by the curvature of appropriate fiber bundles. This must be supplemented by the crucial, but elusive quantization procedure. The book is arranged in four sections, devoted to realizing the universal principle force equals curvature: Part I: The Euclidean Manifold as a Paradigm Part II: Ariadne's Thread in Gauge Theory Part III: Einstein's Theory of Special Relativity Part IV: Ariadne's Thread in Cohomology For students of mathematics the book is designed to demonstrate that detailed knowledge of the physical background helps to reveal interesting interrelationships among diverse mathematical topics. Physics students will be exposed to a fairly advanced mathematics, beyond the level covered in the typical physics curriculum. Quantum Field Theory builds a bridge between mathematicians and physicists, based on challenging questions about the fundamental forces in the universe (macrocosmos), and in the world of elementary particles (microcosmos). (orig.)

  12. The theory of quantum liquids

    CERN Document Server

    Nozières, Philippe

    1999-01-01

    Originally published as two separate volumes, The Theory of Quantum Liquids is a classic text that attempts to describe the qualitative and unifying aspects of an extremely broad and diversified field. Volume I deals with 'normal' Fremi liquids, such as 3He and electrons in metals. Volume II consists of a detailed treatment of Bose condensation and liquid 4He, including the development of a Bose liquid theory and a microscopic basis for the two-fluid model, and the description of the elementary excitations of liquid HeII.

  13. Bookshelf (The Quantum Theory of Fields, La lumiere des neutrinos)

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1995-10-15

    The Quantum Theory of Fields Volume 1: Foundations by Steven Weinberg, Cambridge University Press, 1995: Steven Weinberg is celebrated for his many contributions to quantum field theory and its applications to elementary particle physics - most notably, for developing the electroweak theory, the unified model of the electromagnetic and weak forces that forms part of the Standard Model that has explained essentially all accelerator data on the behaviour of elementary particles. This is the culmination of the developments in quantum field theory that started in the early days of quantum mechanics and came to maturity with the development of quantum electrodynamics in the late 1940s. Quantum field theory is the basic theoretical framework for research in particle physics as well as in many areas of condensed matter physics. No wonder the community has been waiting with anticipation for Weinberg's exposition of the subject in the form of a two-volume textbook - the more so since, despite the existence of many textbooks, few of them are written with the insight and detail that are needed for a thorough understanding. The community will not be disappointed, at least on the basis of this first volume - Volume 2 is due to appear next year. Volume 1 is 600 pages of meticulous exposition of the fundamentals of the subject, starting from a historical introduction and the canonical formulation of quantum field theory to modern path integral methods applied to the quantization of electrodynamics and a first discussion of renormaiization. In addition to a superb treatment of all the conventional topics there are numerous sections covering areas that are not normally emphasized, such as the subject of field redefinitions, higher-rank tensor fields and an unusually clear and thorough treatment of infrared effects. This is only the basics - Volume 2 promises to develop the subjects at the cutting edge of modern research such as Yang-Mills theory, the renormalization group, symmetry

  14. Towards Noncommutative Topological Quantum Field Theory – Hodge theory for cyclic cohomology

    International Nuclear Information System (INIS)

    Zois, I P

    2014-01-01

    Some years ago we initiated a program to define Noncommutative Topological Quantum Field Theory (see [1]). The motivation came both from physics and mathematics: On the one hand, as far as physics is concerned, following the well-known holography principle of 't Hooft (which in turn appears essentially as a generalisation of the Hawking formula for black hole entropy), quantum gravity should be a topological quantum field theory. On the other hand as far as mathematics is concerned, the motivation came from the idea to replace the moduli space of flat connections with the Gabai moduli space of codim-1 taut foliations for 3 dim manifolds. In most cases the later is finite and much better behaved and one might use it to define some version of Donaldson-Floer homology which, hopefully, would be easier to compute. The use of foliations brings noncommutative geometry techniques immediately into the game. The basic tools are two: Cyclic cohomology of the corresponding foliation C*-algebra and the so called ''tangential cohomology'' of the foliation. A necessary step towards this goal is to develop some sort of Hodge theory both for cyclic (and Hochschild) cohomology and for tangential cohomology. Here we present a method to develop a Hodge theory for cyclic and Hochschild cohomology for the corresponding C*-algebra of a foliation

  15. From Entropic Dynamics to Quantum Theory

    International Nuclear Information System (INIS)

    Caticha, Ariel

    2009-01-01

    Non-relativistic quantum theory is derived from information codified into an appropriate statistical model. The basic assumption is that there is an irreducible uncertainty in the location of particles so that the configuration space is a statistical manifold. The dynamics then follows from a principle of inference, the method of Maximum Entropy. The concept of time is introduced as a convenient way to keep track of change. The resulting theory resembles both Nelson's stochastic mechanics and general relativity. The statistical manifold is a dynamical entity: its geometry determines the evolution of the probability distribution which, in its turn, reacts back and determines the evolution of the geometry. There is a new quantum version of the equivalence principle: 'osmotic' mass equals inertial mass. Mass and the phase of the wave function are explained as features of purely statistical origin.

  16. Theory of fractional quantum hall effect

    International Nuclear Information System (INIS)

    Kostadinov, I.Z.

    1985-08-01

    A theory of the Fractional Quantum Hall Effect is constructed based on magnetic flux fractionization, which lead to instability of the system against selfcompression. A theorem is proved stating that arbitrary potentials fail to lift a specific degeneracy of the Landau level. For the case of 1/3 fractional filling a model 3-particles interaction is constructed breaking the symmetry. The rigid 3-particles wave function plays the role of order parameter. In a BCS type of theory the gap in the single particles spectrum is produced by the 3-particles interaction. The mean field critical behaviour and critical parameters are determined as well as the Ginsburg-Landau equation coefficients. The Hall conductivity is calculated from the first principles and its temperature dependence is found. The simultaneous tunnelling of 3,5,7 etc. electrons and quantum interference effects are predicted. (author)

  17. Introduction to modern theoretical physics. Volume II. Quantum theory and statistical physics

    International Nuclear Information System (INIS)

    Harris, E.G.

    1975-01-01

    The topics discussed include the history and principles, some solvable problems, and symmetry in quantum mechanics, interference phenomena, approximation methods, some applications of nonrelativistic quantum mechanics, relativistic wave equations, quantum theory of radiation, second quantization, elementary particles and their interactions, thermodynamics, equilibrium statistical mechanics and its applications, the kinetic theory of gases, and collective phenomena

  18. State vector reduction - 1: Dynamical reduction theories; changing quantum theory so the statevector represents reality

    International Nuclear Information System (INIS)

    Ghirardi, G.C.; Pearle, P.

    1991-02-01

    The propositions, that what we see around us is real and that reality should be represented by the statevector, conflict with quantum theory. In quantum theory, the statevector can readily become a sum of states of comparable norm, each state representing a different reality. In this paper we present the Continuous Spontaneous Localization (CSL) theory, in which a modified Schroedinger equation, while scarcely affecting the dynamics of a microscopic system, rapidly ''reduces'' the statevector of a macroscopic system to a state appropriate for representing individual reality. (author). Refs

  19. Emergence of classical theories from quantum mechanics

    International Nuclear Information System (INIS)

    Hájícek, P

    2012-01-01

    Three problems stand in the way of deriving classical theories from quantum mechanics: those of realist interpretation, of classical properties and of quantum measurement. Recently, we have identified some tacit assumptions that lie at the roots of these problems. Thus, a realist interpretation is hindered by the assumption that the only properties of quantum systems are values of observables. If one simply postulates the properties to be objective that are uniquely defined by preparation then all difficulties disappear. As for classical properties, the wrong assumption is that there are arbitrarily sharp classical trajectories. It turns out that fuzzy classical trajectories can be obtained from quantum mechanics by taking the limit of high entropy. Finally, standard quantum mechanics implies that any registration on a quantum system is disturbed by all quantum systems of the same kind existing somewhere in the universe. If one works out systematically how quantum mechanics must be corrected so that there is no such disturbance, one finds a new interpretation of von Neumann's 'first kind of dynamics', and so a new way to a solution of the quantum measurement problem. The present paper gives a very short review of this work.

  20. Classical trajectories and quantum field theory

    International Nuclear Information System (INIS)

    Vitiello, Giuseppe; Istituto Nazionale di Fisica Nucleare, Salerno

    2005-01-01

    The density matrix and the Wigner function formalism requires the doubling of the degrees of freedom in quantum mechanics (QM) and quantum field theory (QFT). The doubled degrees of freedom play the role of the thermal bath or environment degrees of freedom and are entangled with the system degrees of freedom. They also account for quantum noise in the fluctuating random forces in the system-environment coupling. The algebraic structure of QFT turns out to be the one of the deformed Hopf algebra. In such a frame, the trajectories in the space of the unitarily inequivalent representations of the canonical commutation relations turn out to be classical trajectories and, under convenient conditions, they may exhibit properties typical of classical chaotic trajectories in nonlinear dynamics. The quantum Brownian motion and the two-slit experiment in QM are discussed in connection with the doubling of the degrees of freedom. (author)

  1. The foliation operator in history quantum field theory

    International Nuclear Information System (INIS)

    Isham, C.J.; Savvidou, K.

    2002-01-01

    As a preliminary to discussing the quantization of the foliation in a history form of general relativity, we show how the discussion in an earlier work [J. Math. Phys. 43, 3053 (2002)] of a history version of free, scalar quantum field theory can be augmented in such a way as to include the quantization of the unit-length, timelike vector that determines a Lorentzian foliation of Minkowski space-time. We employ a Hilbert bundle construction that is motivated by (i) discussing the role of the external Lorentz group in the existing history quantum field theory [J. Math. Phys. 43, 3053 (2002)] and (ii) considering a specific representation of the extended history algebra obtained from the multi-symplectic representation of scalar field theory

  2. A possible realization of Einstein's causal theory underlying quantum mechanics

    International Nuclear Information System (INIS)

    Yussouff, M.

    1979-06-01

    It is shown that a new microscopic mechanics formulated earlier can be looked upon as a possible causal theory underlying quantum mechanics, which removes Einstein's famous objections against quantum theory. This approach is free from objections raised against Bohm's hidden variable theory and leads to a clear physical picture in terms of familiar concepts, if self interactions are held responsible for deviations from classical behaviour. The new level of physics unfolded by this approach may reveal novel frontiers in high-energy physics. (author)

  3. Quantum optimal control theory in the linear response formalism

    International Nuclear Information System (INIS)

    Castro, Alberto; Tokatly, I. V.

    2011-01-01

    Quantum optimal control theory (QOCT) aims at finding an external field that drives a quantum system in such a way that optimally achieves some predefined target. In practice, this normally means optimizing the value of some observable, a so-called merit function. In consequence, a key part of the theory is a set of equations, which provides the gradient of the merit function with respect to parameters that control the shape of the driving field. We show that these equations can be straightforwardly derived using the standard linear response theory, only requiring a minor generalization: the unperturbed Hamiltonian is allowed to be time dependent. As a result, the aforementioned gradients are identified with certain response functions. This identification leads to a natural reformulation of QOCT in terms of the Keldysh contour formalism of the quantum many-body theory. In particular, the gradients of the merit function can be calculated using the diagrammatic technique for nonequilibrium Green's functions, which should be helpful in the application of QOCT to computationally difficult many-electron problems.

  4. On generally covariant quantum field theory and generalized causal and dynamical structures

    International Nuclear Information System (INIS)

    Bannier, U.

    1988-01-01

    We give an example of a generally covariant quasilocal algebra associated with the massive free field. Maximal, two-sided ideals of this algebra are algebraic representatives of external metric fields. In some sense, this algebra may be regarded as a concrete realization of Ekstein's ideas of presymmetry in quantum field theory. Using ideas from our example and from usual algebraic quantum field theory, we discuss a generalized scheme, in which maximal ideals are viewed as algebraic representatives of dynamical equations or Lagrangians. The considered frame is no quantum gravity, but may lead to further insight into the relation between quantum theory and space-time geometry. (orig.)

  5. Some connections between relativistic classical mechanics, statistical mechanics, and quantum field theory

    International Nuclear Information System (INIS)

    Remler, E.A.

    1977-01-01

    A gauge-invariant version of the Wigner representation is used to relate relativistic mechanics, statistical mechanics, and quantum field theory in the context of the electrodynamics of scalar particles. A unified formulation of quantum field theory and statistical mechanics is developed which clarifies the physics interpretation of the single-particle Wigner function. A covariant form of Ehrenfest's theorem is derived. Classical electrodynamics is derived from quantum field theory after making a random-phase approximation. The validity of this approximation is discussed

  6. Instantons and large N an introduction to non-perturbative methods in quantum field theory

    CERN Document Server

    Marino, Marcos

    2015-01-01

    This highly pedagogical textbook for graduate students in particle, theoretical and mathematical physics, explores advanced topics of quantum field theory. Clearly divided into two parts; the first focuses on instantons with a detailed exposition of instantons in quantum mechanics, supersymmetric quantum mechanics, the large order behavior of perturbation theory, and Yang-Mills theories, before moving on to examine the large N expansion in quantum field theory. The organised presentation style, in addition to detailed mathematical derivations, worked examples and applications throughout, enables students to gain practical experience with the tools necessary to start research. The author includes recent developments on the large order behaviour of perturbation theory and on large N instantons, and updates existing treatments of classic topics, to ensure that this is a practical and contemporary guide for students developing their understanding of the intricacies of quantum field theory.

  7. Study on a phase space representation of quantum theory

    International Nuclear Information System (INIS)

    Ranaivoson, R.T.R; Raoelina Andriambololona; Hanitriarivo, R.; Raboanary, R.

    2013-01-01

    A study on a method for the establishment of a phase space representation of quantum theory is presented. The approach utilizes the properties of Gaussian distribution, the properties of Hermite polynomials, Fourier analysis and the current formulation of quantum mechanics which is based on the use of Hilbert space and linear operators theory. Phase space representation of quantum states and wave functions in phase space are introduced using properties of a set of functions called harmonic Gaussian functions. Then, new operators called dispersion operators are defined and identified as the operators which admit as eigenstates the basis states of the phase space representation. Generalization of the approach for multidimensional cases is shown. Examples of applications are given.

  8. Quantum field theories on algebraic curves. I. Additive bosons

    International Nuclear Information System (INIS)

    Takhtajan, Leon A

    2013-01-01

    Using Serre's adelic interpretation of cohomology, we develop a 'differential and integral calculus' on an algebraic curve X over an algebraically closed field k of constants of characteristic zero, define algebraic analogues of additive multi-valued functions on X and prove the corresponding generalized residue theorem. Using the representation theory of the global Heisenberg algebra and lattice Lie algebra, we formulate quantum field theories of additive and charged bosons on an algebraic curve X. These theories are naturally connected with the algebraic de Rham theorem. We prove that an extension of global symmetries (Witten's additive Ward identities) from the k-vector space of rational functions on X to the vector space of additive multi-valued functions uniquely determines these quantum theories of additive and charged bosons.

  9. Quantum theory needs no 'Interpretation'

    International Nuclear Information System (INIS)

    Fuchs, Christopher A.; Peres, Asher

    2000-01-01

    Purpose of this article is to stress the fact that Quantum Theory does not need an interpretation other than being an algorithm for computing probabilities associated with macroscopic phenomena and measurements. It does not ''describ'' reality, and the wave function is not objective entity, it only gives the evolution of our probabilities for the outcomes potential experiments. (AIP) (c)

  10. Quantum theory of noncommutative fields

    International Nuclear Information System (INIS)

    Carmona, J.M.; Cortes, J.L.; Gamboa, J.; Mendez, F.

    2003-01-01

    Generalizing the noncommutative harmonic oscillator construction, we propose a new extension of quantum field theory based on the concept of 'noncommutative fields'. Our description permits to break the usual particle-antiparticle degeneracy at the dispersion relation level and introduces naturally an ultraviolet and an infrared cutoff. Phenomenological bounds for these new energy scales are given. (author)

  11. Advanced quantum theory and its applications through Feynman diagrams

    International Nuclear Information System (INIS)

    Scadron, M.D.

    1979-01-01

    The two themes of scattering diagrams and the fundamental forces characterize this book. Transformation theory is developed to review the concepts of nonrelativistic quantum mechanics and to formulate the relativistic Klein-Gordon, Maxwell, and Dirac wave equations for relativistic spin-0, massless spin-1, and spin-1/2 particles, respectively. The language of group theory is used to write relativistic Lorentz transformations in a form similar to ordinary rotations and to describe the important discrete symmetries of C, P, and T. Then quantum mechanics is reformulated in the language of scattering theory, with the momentum-space S matrix replacing the coordinate-space hamiltonian as the central dynamical operator. Nonrelativistic perturbation scattering diagrams are then developed, and simple applications given for nuclear, atomic, and solid-state scattering problems. Next, relativistic scattering diagrams built up from covariant Feynman propagators and vertices in a manner consistent with the CPT theorem are considered. The theory is systematically applied to the lowest-order fundamental electromagnetic, strong, weak, and gravitational interactions. Finally, the use of higher-order Feynman diagrams to explain more detailed aspects of quantum electrodynamics (QED) and strong-interaction elementary-particle physics is surveyed. Throughout, the notion of currents is used to exploit the underlying symmetries and dynamical interactions of the various quantum forces. 258 references, 77 figures, 1 table

  12. Density-functional theory simulation of large quantum dots

    Science.gov (United States)

    Jiang, Hong; Baranger, Harold U.; Yang, Weitao

    2003-10-01

    Kohn-Sham spin-density functional theory provides an efficient and accurate model to study electron-electron interaction effects in quantum dots, but its application to large systems is a challenge. Here an efficient method for the simulation of quantum dots using density-function theory is developed; it includes the particle-in-the-box representation of the Kohn-Sham orbitals, an efficient conjugate-gradient method to directly minimize the total energy, a Fourier convolution approach for the calculation of the Hartree potential, and a simplified multigrid technique to accelerate the convergence. We test the methodology in a two-dimensional model system and show that numerical studies of large quantum dots with several hundred electrons become computationally affordable. In the noninteracting limit, the classical dynamics of the system we study can be continuously varied from integrable to fully chaotic. The qualitative difference in the noninteracting classical dynamics has an effect on the quantum properties of the interacting system: integrable classical dynamics leads to higher-spin states and a broader distribution of spacing between Coulomb blockade peaks.

  13. String theory and quantum gravity '92

    International Nuclear Information System (INIS)

    Harvey, J.; Iengo, R.; Narain, K.S.; Randjbar Daemi, S.; Verlinde, H.

    1993-01-01

    These proceedings of the 1992 Trieste Spring School and Workshop on String Theory and Quantum Gravity contains introductions and overviews of recent work on the use of two-dimensional string inspired models in the study of black holes, a lecture on gravitational scattering at planckian energies, another on the physical properties of higher-dimensional black holes and black strings in string theory, a discussion on N=2 superconformal field theories, a lecture about the application of matrix model techniques to the study of string theory in two dimensions, and an overview of the current status and developments in string field theory. Connections with models in statistical mechanics are also discussed. These proceedings contain seven lectures and ten contributions. Refs and figs

  14. Testing the master constraint programme for loop quantum gravity: V. Interacting field theories

    International Nuclear Information System (INIS)

    Dittrich, B; Thiemann, T

    2006-01-01

    This is the fifth and final paper in our series of five in which we test the master constraint programme for solving the Hamiltonian constraint in loop quantum gravity. Here we consider interacting quantum field theories, specifically we consider the non-Abelian Gauss constraints of Einstein-Yang-Mills theory and 2 + 1 gravity. Interestingly, while Yang-Mills theory in 4D is not yet rigorously defined as an ordinary (Wightman) quantum field theory on Minkowski space, in background-independent quantum field theories such as loop quantum gravity (LQG) this might become possible by working in a new, background-independent representation. While for the Gauss constraint the master constraint can be solved explicitly, for the 2 + 1 theory we are only able to rigorously define the master constraint operator. We show that the, by other methods known, physical Hilbert is contained in the kernel of the master constraint, however, to systematically derive it by only using spectral methods is as complicated as for 3 + 1 gravity and we therefore leave the complete analysis for 3 + 1 gravity

  15. Decoherence and the Appearance of a Classical World in Quantum Theory

    International Nuclear Information System (INIS)

    Alicki, R

    2004-01-01

    In the last decade decoherence has become a very popular topic mainly due to the progress in experimental techniques which allow monitoring of the process of decoherence for single microscopic or mesoscopic systems. The other motivation is the rapid development of quantum information and quantum computation theory where decoherence is the main obstacle in the implementation of bold theoretical ideas. All that makes the second improved and extended edition of this book very timely. Despite the enormous efforts of many authors decoherence with its consequences still remains a rather controversial subject. It touches on, namely, the notoriously confusing issues of quantum measurement theory and interpretation of quantum mechanics. The existence of different points of view is reflected by the structure and content of the book. The first three authors (Joos, Zeh and Kiefer) accept the standard formalism of quantum mechanics but seem to reject orthodox Copenhagen interpretation, Giulini and Kupsch stick to both while Stamatescu discusses models which go beyond the standard quantum theory. Fortunately, most of the presented results are independent of the interpretation and the mathematical formalism is common for the (meta)physically different approaches. After a short introduction by Joos followed by a more detailed review of the basic concepts by Zeh, chapter 3 (the longest chapter) by Joos is devoted to the environmental decoherence. Here the author considers mostly rather 'down to earth' and well-motivated mechanisms of decoherence through collisions with atoms or molecules and the processes of emission, absorption and scattering of photons. The issues of decoherence induced superselection rules and localization of objects including the possible explanation of the molecular structure are discussed in details. Many other topics are also reviewed in this chapter, e.g., the so-called Zeno effect, relationships between quantum chaos and decoherence, the role of

  16. An introduction to relativistic quantum field theory

    CERN Document Server

    Schweber, Silvan S

    1961-01-01

    Complete, systematic, and self-contained, this text introduces modern quantum field theory. "Combines thorough knowledge with a high degree of didactic ability and a delightful style." - Mathematical Reviews. 1961 edition.

  17. C*-algebraic scattering theory and explicitly solvable quantum field theories

    International Nuclear Information System (INIS)

    Warchall, H.A.

    1985-01-01

    A general theoretical framework is developed for the treatment of a class of quantum field theories that are explicitly exactly solvable, but require the use of C*-algebraic techniques because time-dependent scattering theory cannot be constructed in any one natural representation of the observable algebra. The purpose is to exhibit mechanisms by which inequivalent representations of the observable algebra can arise in quantum field theory, in a setting free of other complications commonly associated with the specification of dynamics. One of two major results is the development of necessary and sufficient conditions for the concurrent unitary implementation of two automorphism groups in a class of quasifree representations of the algebra of the canonical commutation relations (CCR). The automorphism groups considered are induced by one-parameter groups of symplectic transformations on the classical phase space over which the Weyl algebra of the CCR is built; each symplectic group is conjugate by a fixed symplectic transformation to a one-parameter unitary group. The second result, an analog to the Birman--Belopol'skii theorem in two-Hilbert-space scattering theory, gives sufficient conditions for the existence of Moller wave morphisms in theories with time-development automorphism groups of the above type. In a paper which follows, this framework is used to analyze a particular model system for which wave operators fail to exist in any natural representation of the observable algebra, but for which wave morphisms and an associated S matrix are easily constructed

  18. Quantum Lie theory a multilinear approach

    CERN Document Server

    Kharchenko, Vladislav

    2015-01-01

    This is an introduction to the mathematics behind the phrase “quantum Lie algebra”. The numerous attempts over the last 15-20 years to define a quantum Lie algebra as an elegant algebraic object with a binary “quantum” Lie bracket have not been widely accepted. In this book, an alternative approach is developed that includes multivariable operations. Among the problems discussed are the following: a PBW-type theorem; quantum deformations of Kac--Moody algebras; generic and symmetric quantum Lie operations; the Nichols algebras; the Gurevich--Manin  Lie algebras;  and Shestakov--Umirbaev  operations for the Lie theory of nonassociative products.  Opening with an introduction for beginners and continuing as a textbook for graduate students in physics and mathematics, the book can also be used as a reference by more advanced readers. With the exception of the introductory chapter, the content of this monograph has not previously appeared in book form.

  19. Quantum conserved charges in N=1 and N=2 supersymmetric sine-Gordon theories

    International Nuclear Information System (INIS)

    Kobayashi, Ken-ichiro; Uematsu, Tsuneo; Yu Yangzheng

    1993-01-01

    We investigate quantum conservation laws in the N=1 and N=2 supersymmetric sine-Gordon theories. We study conserved charges at the quantum level based on perturbation theory formulated in superspace. It will turn out that there exist extra conserved charges of the vertex operator type at the quantum level and they generate a quantum group symmetry in supersymmetric sine-Gordon systems. We also discuss the implication of the quantum group symmetry on the S-matrix structure. (orig.)

  20. On the algebraic theory of kink sectors: Application to quantum field theory models and collision theory

    International Nuclear Information System (INIS)

    Schlingemann, D.

    1996-10-01

    Several two dimensional quantum field theory models have more than one vacuum state. An investigation of super selection sectors in two dimensions from an axiomatic point of view suggests that there should be also states, called soliton or kink states, which interpolate different vacua. Familiar quantum field theory models, for which the existence of kink states have been proven, are the Sine-Gordon and the φ 4 2 -model. In order to establish the existence of kink states for a larger class of models, we investigate the following question: Which are sufficient conditions a pair of vacuum states has to fulfill, such that an interpolating kink state can be constructed? We discuss the problem in the framework of algebraic quantum field theory which includes, for example, the P(φ) 2 -models. We identify a large class of vacuum states, including the vacua of the P(φ) 2 -models, the Yukawa 2 -like models and special types of Wess-Zumino models, for which there is a natural way to construct an interpolating kink state. In two space-time dimensions, massive particle states are kink states. We apply the Haag-Ruelle collision theory to kink sectors in order to analyze the asymptotic scattering states. We show that for special configurations of n kinks the scattering states describe n freely moving non interacting particles. (orig.)

  1. Noncommutative gravity and quantum field theory on noncummutative curved spacetimes

    International Nuclear Information System (INIS)

    Schenkel, Alexander

    2011-01-01

    The purpose of the first part of this thesis is to understand symmetry reduction in noncommutative gravity, which then allows us to find exact solutions of the noncommutative Einstein equations. We propose an extension of the usual symmetry reduction procedure, which is frequently applied to the construction of exact solutions of Einstein's field equations, to noncommutative gravity and show that this leads to preferred choices of noncommutative deformations of a given symmetric system. We classify in the case of abelian Drinfel'd twists all consistent deformations of spatially flat Friedmann-Robertson-Walker cosmologies and of the Schwarzschild black hole. The deformed symmetry structure allows us to obtain exact solutions of the noncommutative Einstein equations in many of our models, for which the noncommutative metric field coincides with the classical one. In the second part we focus on quantum field theory on noncommutative curved spacetimes. We develop a new formalism by combining methods from the algebraic approach to quantum field theory with noncommutative differential geometry. The result is an algebra of observables for scalar quantum field theories on a large class of noncommutative curved spacetimes. A precise relation to the algebra of observables of the corresponding undeformed quantum field theory is established. We focus on explicit examples of deformed wave operators and find that there can be noncommutative corrections even on the level of free field theories, which is not the case in the simplest example of the Moyal-Weyl deformed Minkowski spacetime. The convergent deformation of simple toy-models is investigated and it is shown that these quantum field theories have many new features compared to formal deformation quantization. In addition to the expected nonlocality, we obtain that the relation between the deformed and the undeformed quantum field theory is affected in a nontrivial way, leading to an improved behavior of the noncommutative

  2. Noncommutative gravity and quantum field theory on noncummutative curved spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Schenkel, Alexander

    2011-10-24

    The purpose of the first part of this thesis is to understand symmetry reduction in noncommutative gravity, which then allows us to find exact solutions of the noncommutative Einstein equations. We propose an extension of the usual symmetry reduction procedure, which is frequently applied to the construction of exact solutions of Einstein's field equations, to noncommutative gravity and show that this leads to preferred choices of noncommutative deformations of a given symmetric system. We classify in the case of abelian Drinfel'd twists all consistent deformations of spatially flat Friedmann-Robertson-Walker cosmologies and of the Schwarzschild black hole. The deformed symmetry structure allows us to obtain exact solutions of the noncommutative Einstein equations in many of our models, for which the noncommutative metric field coincides with the classical one. In the second part we focus on quantum field theory on noncommutative curved spacetimes. We develop a new formalism by combining methods from the algebraic approach to quantum field theory with noncommutative differential geometry. The result is an algebra of observables for scalar quantum field theories on a large class of noncommutative curved spacetimes. A precise relation to the algebra of observables of the corresponding undeformed quantum field theory is established. We focus on explicit examples of deformed wave operators and find that there can be noncommutative corrections even on the level of free field theories, which is not the case in the simplest example of the Moyal-Weyl deformed Minkowski spacetime. The convergent deformation of simple toy-models is investigated and it is shown that these quantum field theories have many new features compared to formal deformation quantization. In addition to the expected nonlocality, we obtain that the relation between the deformed and the undeformed quantum field theory is affected in a nontrivial way, leading to an improved behavior of the

  3. The generally covariant locality principle - a new paradigm for local quantum field theory

    International Nuclear Information System (INIS)

    Brunetti, R.; Fredenhagen, K.; Verch, R.

    2002-05-01

    A new approach to the model-independent description of quantum field theories will be introduced in the present work. The main feature of this new approach is to incorporate in a local sense the principle of general covariance of general relativity, thus giving rise to the concept of a locally covariant quantum field theory. Such locally covariant quantum field theories will be described mathematically in terms of covariant functors between the categories, on one side, of globally hyperbolic spacetimes with isometric embeddings as morphisms and, on the other side, of *-algebras with unital injective *-endomorphisms as morphisms. Moreover, locally covariant quantum fields can be described in this framework as natural transformations between certain functors. The usual Haag-Kastler framework of nets of operator-algebras over a fixed spacetime background-manifold, together with covariant automorphic actions of the isometry-group of the background spacetime, can be re-gained from this new approach as a special case. Examples of this new approach are also outlined. In case that a locally covariant quantum field theory obeys the time-slice axiom, one can naturally associate to it certain automorphic actions, called ''relative Cauchy-evolutions'', which describe the dynamical reaction of the quantum field theory to a local change of spacetime background metrics. The functional derivative of a relative Cauchy-evolution with respect to the spacetime metric is found to be a divergence-free quantity which has, as will be demonstrated in an example, the significance of an energy-momentum tensor for the locally covariant quantum field theory. Furthermore, we discuss the functorial properties of state spaces of locally covariant quantum field theories that entail the validity of the principle of local definiteness. (orig.)

  4. Noncommutative time in quantum field theory

    International Nuclear Information System (INIS)

    Salminen, Tapio; Tureanu, Anca

    2011-01-01

    We analyze, starting from first principles, the quantization of field theories, in order to find out to which problems a noncommutative time would possibly lead. We examine the problem in the interaction picture (Tomonaga-Schwinger equation), the Heisenberg picture (Yang-Feldman-Kaellen equation), and the path integral approach. They all indicate inconsistency when time is taken as a noncommutative coordinate. The causality issue appears as the key aspect, while the unitarity problem is subsidiary. These results are consistent with string theory, which does not admit a time-space noncommutative quantum field theory as its low-energy limit, with the exception of lightlike noncommutativity.

  5. CAUSAL DYNAMICAL TRIANGULATIONS AND THE SEARCH FOR A THEORY OF QUANTUM GRAVITY

    DEFF Research Database (Denmark)

    Ambjørn, Jan; Görlich, Andrzej; Jurkiewicz, J.

    2013-01-01

    High Energy Physics - Theory (hep-th); General Relativity and Quantum Cosmology (gr-qc); High Energy Physics - Lattice (hep-lat)......High Energy Physics - Theory (hep-th); General Relativity and Quantum Cosmology (gr-qc); High Energy Physics - Lattice (hep-lat)...

  6. Quantum no-scale regimes in string theory

    Science.gov (United States)

    Coudarchet, Thibaut; Fleming, Claude; Partouche, Hervé

    2018-05-01

    We show that in generic no-scale models in string theory, the flat, expanding cosmological evolutions found at the quantum level can be attracted to a "quantum no-scale regime", where the no-scale structure is restored asymptotically. In this regime, the quantum effective potential is dominated by the classical kinetic energies of the no-scale modulus and dilaton. We find that this natural preservation of the classical no-scale structure at the quantum level occurs when the initial conditions of the evolutions sit in a subcritical region of their space. On the contrary, supercritical initial conditions yield solutions that have no analogue at the classical level. The associated intrinsically quantum universes are sentenced to collapse and their histories last finite cosmic times. Our analysis is done at 1-loop, in perturbative heterotic string compactified on tori, with spontaneous supersymmetry breaking implemented by a stringy version of the Scherk-Schwarz mechanism.

  7. 3 minutes to understand the 50 greatest theories of quantum physics

    International Nuclear Information System (INIS)

    Clegg, Brian; Ball, Philip; Clifford, Leon; Close, Frank; Hebden, Sophie; Hellemans, Alexander; Holgate, Sharon Ann; May, Andrew; Martinez, Rachel; Dubois, Richard

    2015-01-01

    This book aims at using 2 pages, 300 words and 1 image to explain each of the 50 most important theories of quantum physics. After a first part addressing the origins of the theory (Planck quanta, the photoelectric effect according to Einstein, the predictable Balmer series, the Bohr's atom, the wave/particle duality, the matter waves of De Broglie, the double quantum slit), the chapters address basic notions (quantum spin, matrix mechanics, Schroedinger's equation and cat, the Heisenberg uncertainty principle, the wave function reduction, the decoherence), light and matter physics, quantum effects and their interpretation, quantum entanglement, quantum applications, and quantum extremes. Each chapter proposes a glossary, a presentation of specific issues according to the adopted format, and a portrait of a scientist involved in the addressed topics (Niels Bohr, Erwin Schroedinger, Paul Dirac, David Bohm, John Bell, Brian Josephson, and Satyendra Nath Bose)

  8. The thermodynamics of quantum Yang–Mills theory theory and applications

    CERN Document Server

    Hofmann, Ralf

    2012-01-01

    This book aims to provide advanced students and researchers with the text on a nonperturbative, thermodynamically grounded, and largely analytical approach to four-dimensional Quantum Gauge Theory. The terrestrial, astrophysical, and cosmological applications, mostly within the realm of low-temperature photon physics, are treated.

  9. Bookshelf (The Quantum Theory of Fields, La lumiere des neutrinos)

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The Quantum Theory of Fields Volume 1: Foundations by Steven Weinberg, Cambridge University Press, 1995: Steven Weinberg is celebrated for his many contributions to quantum field theory and its applications to elementary particle physics - most notably, for developing the electroweak theory, the unified model of the electromagnetic and weak forces that forms part of the Standard Model that has explained essentially all accelerator data on the behaviour of elementary particles. This is the culmination of the developments in quantum field theory that started in the early days of quantum mechanics and came to maturity with the development of quantum electrodynamics in the late 1940s. Quantum field theory is the basic theoretical framework for research in particle physics as well as in many areas of condensed matter physics. No wonder the community has been waiting with anticipation for Weinberg's exposition of the subject in the form of a two-volume textbook - the more so since, despite the existence of many textbooks, few of them are written with the insight and detail that are needed for a thorough understanding. The community will not be disappointed, at least on the basis of this first volume - Volume 2 is due to appear next year. Volume 1 is 600 pages of meticulous exposition of the fundamentals of the subject, starting from a historical introduction and the canonical formulation of quantum field theory to modern path integral methods applied to the quantization of electrodynamics and a first discussion of renormaiization. In addition to a superb treatment of all the conventional topics there are numerous sections covering areas that are not normally emphasized, such as the subject of field redefinitions, higher-rank tensor fields and an unusually clear and thorough treatment of infrared effects. This is only the basics - Volume 2 promises to develop the subjects at the cutting edge of modern research such as Yang-Mills theory, the renormalization group

  10. Nonlocal quantum field theory

    International Nuclear Information System (INIS)

    Efimov, G.V.

    1976-01-01

    The basic ideas for creating the theory of nonlocal interactions of a scalar one-component field are presented. Lagrangian describing a non-interacting field is the ordinary one so that non-interacting particles are described by standard methods of the Fock space. Form factors introduced have been chosen from a class of analytic functionals and quantized. Conditions of microcausality have been considered in detail. The convergence of all integrals corresponding to the arbitrary Feynman diagrams in spinor electrodynamics is guaranteed in the frame of the rules formulated. It is noted in conclusion that the spinor electrodynamics with nonlocal interaction contains no ultraviolet divergencies and satisfies all the requirements of the quantum field theory; in this sense it is mathematically more consistent than its local version

  11. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer

    Science.gov (United States)

    Martinez, Esteban A.; Muschik, Christine A.; Schindler, Philipp; Nigg, Daniel; Erhard, Alexander; Heyl, Markus; Hauke, Philipp; Dalmonte, Marcello; Monz, Thomas; Zoller, Peter; Blatt, Rainer

    2016-06-01

    Gauge theories are fundamental to our understanding of interactions between the elementary constituents of matter as mediated by gauge bosons. However, computing the real-time dynamics in gauge theories is a notorious challenge for classical computational methods. This has recently stimulated theoretical effort, using Feynman’s idea of a quantum simulator, to devise schemes for simulating such theories on engineered quantum-mechanical devices, with the difficulty that gauge invariance and the associated local conservation laws (Gauss laws) need to be implemented. Here we report the experimental demonstration of a digital quantum simulation of a lattice gauge theory, by realizing (1 + 1)-dimensional quantum electrodynamics (the Schwinger model) on a few-qubit trapped-ion quantum computer. We are interested in the real-time evolution of the Schwinger mechanism, describing the instability of the bare vacuum due to quantum fluctuations, which manifests itself in the spontaneous creation of electron-positron pairs. To make efficient use of our quantum resources, we map the original problem to a spin model by eliminating the gauge fields in favour of exotic long-range interactions, which can be directly and efficiently implemented on an ion trap architecture. We explore the Schwinger mechanism of particle-antiparticle generation by monitoring the mass production and the vacuum persistence amplitude. Moreover, we track the real-time evolution of entanglement in the system, which illustrates how particle creation and entanglement generation are directly related. Our work represents a first step towards quantum simulation of high-energy theories using atomic physics experiments—the long-term intention is to extend this approach to real-time quantum simulations of non-Abelian lattice gauge theories.

  12. Quantum field theory III. Gauge theory. A bridge between mathematicians and physicists

    Energy Technology Data Exchange (ETDEWEB)

    Zeidler, Eberhard [Max Planck Institute for Mathematics in the Sciences, Leipzig (Germany)

    2011-07-01

    In this third volume of his modern introduction to quantum field theory, Eberhard Zeidler examines the mathematical and physical aspects of gauge theory as a principle tool for describing the four fundamental forces which act in the universe: gravitative, electromagnetic, weak interaction and strong interaction. Volume III concentrates on the classical aspects of gauge theory, describing the four fundamental forces by the curvature of appropriate fiber bundles. This must be supplemented by the crucial, but elusive quantization procedure. The book is arranged in four sections, devoted to realizing the universal principle force equals curvature: Part I: The Euclidean Manifold as a Paradigm Part II: Ariadne's Thread in Gauge Theory Part III: Einstein's Theory of Special Relativity Part IV: Ariadne's Thread in Cohomology For students of mathematics the book is designed to demonstrate that detailed knowledge of the physical background helps to reveal interesting interrelationships among diverse mathematical topics. Physics students will be exposed to a fairly advanced mathematics, beyond the level covered in the typical physics curriculum. Quantum Field Theory builds a bridge between mathematicians and physicists, based on challenging questions about the fundamental forces in the universe (macrocosmos), and in the world of elementary particles (microcosmos). (orig.)

  13. A new perturbative approximation applied to supersymmetric quantum field theory

    International Nuclear Information System (INIS)

    Bender, C.M.; Milton, K.A.; Pinsky, S.S.; Simmons, L.M. Jr.; Los Alamos National Lab.

    1988-01-01

    We show that a recently proposed graphical perturbative calculational scheme in quantum field theory is consistent with global supersymmetry invariance. We examine a two-dimensional supersymmetric quantum field theory in which we do not known of any other means for doing analytical calculations. We illustrate the power of this new technique by computing the ground-state energy density E to second order in this new perturbation theory. We show that there is a beautiful and delicate cancellation between infinite classes of graphs which leads to the result that E=0. (orig.)

  14. Black Holes and Quantum Theory: The Fine Structure Constant Connection

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2006-10-01

    Full Text Available The new dynamical theory of space is further confirmed by showing that the effective “black hole” masses M BH in 19 spherical star systems, from globular clusters to galaxies, with masses M , satisfy the prediction that M BH = α 2 M , where α is the fine structure constant. As well the necessary and unique generalisations of the Schr ̈ odinger and Dirac equations permit the first derivation of gravity from a deeper theory, showing that gravity is a quantum effect of quantum matter interacting with the dynamical space. As well the necessary generalisation of Maxwell’s equations displays the observed light bending effects. Finally it is shown from the generalised Dirac equation where the spacetime mathematical formalism, and the accompanying geodesic prescription for matter trajectories, comes from. The new theory of space is non-local and we see many parallels between this and quantum theory, in addition to the fine structure constant manifesting in both, so supporting the argument that space is a quantum foam system, as implied by the deeper information-theoretic theory known as Process Physics. The spatial dynamics also provides an explanation for the “dark matter” effect and as well the non-locality of the dynamics provides a mechanism for generating the uniformity of the universe, so explaining the cosmological horizon problem.

  15. Topics in quantum field theory; Topicos em teoria quantica dos campos

    Energy Technology Data Exchange (ETDEWEB)

    Svaiter, N.F

    2006-11-15

    This paper presents some important aspects on quantum field theory, covering the following aspects: the triumph and limitations of the quantum field theory; the field theory in curved spaces - Hawking and Unruh-Davies effects; the problem of divergent theory of the zero-point; the problem of the spinning detector and the Trocheries-Takeno vacuum; the field theory at finite temperature - symmetry breaking and phase transition; the problem of the summability of the perturbative series and the perturbative expansion for the strong coupling; quantized fields in presence of classical macroscopic structures; the Parisi-Wu stochastic quantization method.

  16. Molecular quantum dynamics from theory to applications

    CERN Document Server

    Gatti, Fabien

    2014-01-01

    Emphasizing fundamental educational concepts, this book offers an accessible introduction that covers eigenstates, wave packets, quantum mechanical resonances and more. Examples show that high-level experiments and theory must work closely together.

  17. Symposium on Decoherence and No-Signalling : Current Interpretational Problems of Quantum Theory

    CERN Document Server

    Wüthrich, Adrian; New vistas on old problems : recent approaches to the foundations of quantum mechanics

    2017-01-01

    Quantum theory has been a subject of interpretational debates ever since its inception. The Einstein-Podolsky-Rosen paradox, the empirical violation of Bell's inequalities, and recent activities to exploit quantum entanglement for technological innovation only exacerbate a long-standing philosophical debate. Despite no-signaling theorems and theories of decoherence, deep- rooted conflicts between special relativistic principles and observed quantum correlations as well as between definite measurement outcomes and quantum theoretical superpositions persist. This collection of papers, first presented at an international symposium at the University of Bern in 2011, highlights some recent approaches to the old problems of a philosophy of quantum mechanics. The authors address the issues from a variety of perspectives, ranging from variations of causal theory and system theoretic interpretations of the observer to an empirical test of whether entanglement itself can be entangled. The essays demonstrate that the di...

  18. Quantum Field Theoretic Derivation of the Einstein Weak Equivalence Principle Using Emqg Theory

    OpenAIRE

    Ostoma, Tom; Trushyk, Mike

    1999-01-01

    We provide a quantum field theoretic derivation of Einstein's Weak Equivalence Principle of general relativity using a new quantum gravity theory proposed by the authors called Electro-Magnetic Quantum Gravity or EMQG (ref. 1). EMQG is based on a new theory of inertia (ref. 5) proposed by R. Haisch, A. Rueda, and H. Puthoff (which we modified and called Quantum Inertia). Quantum Inertia states that classical Newtonian Inertia is a property of matter due to the strictly local electrical force ...

  19. Dynamic localization in quantum dots: Analytical theory

    International Nuclear Information System (INIS)

    Basko, D.M.; Skvortsov, M.A.; Kravtsov, V.E.

    2003-02-01

    We analyze the response of a complex quantum-mechanical system (e.g., a quantum dot) to a time-dependent perturbation φ(t). Assuming the dot to be described by random matrix theory for GOE we find the quantum correction to the energy absorption rate as a function of the dephasing time t φ . If φ(t) is a sum of d harmonics with incommensurate frequencies, the correction behaves similarly to that to the conductivity δσ d (t φ ) in the d-dimensional Anderson model of the orthogonal symmetry class. For a generic periodic perturbation the leading quantum correction is absent as in the systems of the unitary symmetry class, unless φ(-t+τ)=φ(t+τ) for some τ, which falls into the quasi-1d orthogonal universality class. (author)

  20. Quantum interference of probabilities and hidden variable theories

    International Nuclear Information System (INIS)

    Srinivas, M.D.

    1984-01-01

    One of the fundamental contributions of Louis de Broglie, which does not get cited often, has been his analysis of the basic difference between the calculus of the probabilities as predicted by quantum theory and the usual calculus of probabilities - the one employed by most mathematicians, in its standard axiomatised version due to Kolmogorov. This paper is basically devoted to a discussion of the 'quantum interference of probabilities', discovered by de Broglie. In particular, it is shown that it is this feature of the quantum theoretic probabilities which leads to some serious constraints on the possible 'hidden-variable formulations' of quantum mechanics, including the celebrated theorem of Bell. (Auth.)

  1. Quantum Hamiltonian reduction and conformal field theories

    International Nuclear Information System (INIS)

    Bershadsky, M.

    1991-01-01

    It is proved that irreducible representation of the Virasoro algebra can be extracted from an irreducible representation space of the SL (2, R) current algebra by putting a constraint on the latter using the BRST formalism. Thus there is a SL(2, R) symmetry in the Virasoro algebra which is gauged and hidden. This construction of the Virasoro algebra is the quantum analog of the Hamiltonian reduction. The author then naturally leads to consider an SL(2, R) Wess-Zumino-Witten model. This system is related to the quantum field theory of the coadjoint orbit of the Virasoro group. Based on this result he presents the canonical derivation of the SL(2, R) current algebra in Polyakov's theory of two dimensional gravity; it is manifestation of the SL(2, R) symmetry in the conformal field theory hidden by the quantum Hamiltonian reduction. He discusses the quantum Hamiltonian reduction of the SL(n, R) current algebra for the general type of constraints labeled by index 1 ≤ l ≤ (n - 1) and claim that it leads to the new extended conformal algebras W n l . For l = 1 he recovers the well known W n algebra introduced by A. Zamolodchikov. For SL(3, R) Wess-Zumino-Witten model there are two different possibilities of constraining it. The first possibility gives the W 3 algebra, while the second leads to the new chiral algebra W 3 2 generated by the stress-energy tensor, two bosonic supercurrents with spins 3/2 and the U(1) current. He conjectures a Kac formula that describes the highly reducible representation for this algebra. He also makes some speculations concerning the structure of W gravity

  2. Quantum computing without wavefunctions: time-dependent density functional theory for universal quantum computation.

    Science.gov (United States)

    Tempel, David G; Aspuru-Guzik, Alán

    2012-01-01

    We prove that the theorems of TDDFT can be extended to a class of qubit Hamiltonians that are universal for quantum computation. The theorems of TDDFT applied to universal Hamiltonians imply that single-qubit expectation values can be used as the basic variables in quantum computation and information theory, rather than wavefunctions. From a practical standpoint this opens the possibility of approximating observables of interest in quantum computations directly in terms of single-qubit quantities (i.e. as density functionals). Additionally, we also demonstrate that TDDFT provides an exact prescription for simulating universal Hamiltonians with other universal Hamiltonians that have different, and possibly easier-to-realize two-qubit interactions. This establishes the foundations of TDDFT for quantum computation and opens the possibility of developing density functionals for use in quantum algorithms.

  3. Aspects of quantum field theory in curved space-time

    International Nuclear Information System (INIS)

    Fulling, S.A.

    1989-01-01

    The theory of quantum fields on curved spacetimes has attracted great attention since the discovery, by Stephen Hawking, of black-hole evaporation. It remains an important subject for the understanding of such contemporary topics as inflationary cosmology, quantum gravity and superstring theory. The topics covered include normal-mode expansions for a general elliptic operator, Fock space, the Casimir effect, the Klein 'paradox', particle definition and particle creation in expanding universes, asymptotic expansion of Green's functions and heat kernels, and renormalization of the stress tensor. (author)

  4. Introduction to a Quantum Theory over a Galois Field

    Directory of Open Access Journals (Sweden)

    Felix M. Lev

    2010-11-01

    Full Text Available We consider a quantum theory based on a Galois field. In this approach infinities cannot exist, the cosmological constant problem does not arise, and one irreducible representation (IR of the symmetry algebra splits into independent IRs describing a particle an its antiparticle only in the approximation when de Sitter energies are much less than the characteristic of the field. As a consequence, the very notions of particles and antiparticles are only approximate and such additive quantum numbers as the electric, baryon and lepton charges are conserved only in this approximation. There can be no neutral elementary particles and the spin-statistics theorem can be treated simply as a requirement that standard quantum theory should be based on complex numbers.

  5. Mathematical methods of many-body quantum field theory

    CERN Document Server

    Lehmann, Detlef

    2004-01-01

    Mathematical Methods of Many-Body Quantum Field Theory offers a comprehensive, mathematically rigorous treatment of many-body physics. It develops the mathematical tools for describing quantum many-body systems and applies them to the many-electron system. These tools include the formalism of second quantization, field theoretical perturbation theory, functional integral methods, bosonic and fermionic, and estimation and summation techniques for Feynman diagrams. Among the physical effects discussed in this context are BCS superconductivity, s-wave and higher l-wave, and the fractional quantum Hall effect. While the presentation is mathematically rigorous, the author does not focus solely on precise definitions and proofs, but also shows how to actually perform the computations.Presenting many recent advances and clarifying difficult concepts, this book provides the background, results, and detail needed to further explore the issue of when the standard approximation schemes in this field actually work and wh...

  6. K theoretical approach to the fusion rules of conformal quantum field theories

    International Nuclear Information System (INIS)

    Recknagel, A.

    1993-09-01

    Conformally invariant quantum field theories are investigated using concepts of the algebraic approach to quantum field theory as well as techniques from the theory of operator algebras. Arguments from the study of statistical lattice models in one and two dimensions, from recent developments in algebraic quantum field theory, and from other sources suggest that there exists and intimate connection between conformal field theories and a special class of C*-algebras, the so-called AF-algebras. For a series of Virasoro minimal models, this correspondence is made explicit by constructing path representations of the irreducible highest weight modules. We then focus on the K 0 -invariant of these path AF-algebras and show how its functorial properties allow to exploit the abstract theory of superselection sectors in order to derive the fusion rules of the W-algebras hidden in the Virasoro minimal models. (orig.)

  7. Local algebras in Euclidean quantum field theory

    International Nuclear Information System (INIS)

    Guerra, Francesco.

    1975-06-01

    The general structure of the local observable algebras of Euclidean quantum field theory is described, considering the very simple examples of the free scalar field, the vector meson field, and the electromagnetic field. The role of Markov properties, and the relations between Euclidean theory and Hamiltonian theory in Minkowski space-time are especially emphasized. No conflict appears between covariance (in the Euclidean sense) and locality (in the Markov sense) on one hand and positive definiteness of the metric on the other hand [fr

  8. The preparation problem in nonlinear extensions of quantum theory

    OpenAIRE

    Cavalcanti, Eric G.; Menicucci, Nicolas C.; Pienaar, Jacques L.

    2012-01-01

    Nonlinear modifications to the laws of quantum mechanics have been proposed as a possible way to consistently describe information processing in the presence of closed timelike curves. These have recently generated controversy due to possible exotic information-theoretic effects, including breaking quantum cryptography and radically speeding up both classical and quantum computers. The physical interpretation of such theories, however, is still unclear. We consider a large class of operationa...

  9. Classical quantum theory of wobbling modes

    International Nuclear Information System (INIS)

    Onishi, Naoki

    1986-01-01

    Wobbling modes are studied extensively in terms of time-dependent variational theory. Quantum states and their energies are determined by the Bohr-Sommerfeld rule of classical quantization. Numerical calculations are performed for states of 166 Er with vertical strokejvertical stroke=30-40 (h/2π). (orig.)

  10. Theory of “Weak Value" and Quantum Mechanical Measurements

    OpenAIRE

    Shikano, Yutaka

    2012-01-01

    Comment: to be published from "Measurements in Quantum Mechanics", edited by M. R. Pahlavani (InTech, 2012) Chapter 4 page 75. Yutaka Shikano (2012). ISBN: 978-953-51-0058-4 Available from: http://www.intechopen.com/articles/show/title/theory-of-weak-value-and-quantum-mechanical-measurement

  11. Lower Bound on the Energy Density in Classical and Quantum Field Theories.

    Science.gov (United States)

    Wall, Aron C

    2017-04-14

    A novel method for deriving energy conditions in stable field theories is described. In a local classical theory with one spatial dimension, a local energy condition always exists. For a relativistic field theory, one obtains the dominant energy condition. In a quantum field theory, there instead exists a quantum energy condition, i.e., a lower bound on the energy density that depends on information-theoretic quantities. Some extensions to higher dimensions are briefly discussed.

  12. The amplitude of quantum field theory

    International Nuclear Information System (INIS)

    Medvedev, B.V.; Pavlov, V.P.; Polivanov, M.K.; Sukhanov, A.D.

    1989-01-01

    General properties of the transition amplitude in axiomatic quantum field theory are discussed. Bogolyubov's axiomatic method is chosen as the variant of the theory. The axioms of this method are analyzed. In particular, the significance of the off-shell extension and of the various forms of the causality condition are examined. A complete proof is given of the existence of a single analytic function whose boundary values are the amplitudes of all channels of a process with given particle number

  13. Optically levitating dielectrics in the quantum regime: Theory and protocols

    International Nuclear Information System (INIS)

    Romero-Isart, O.; Pflanzer, A. C.; Cirac, J. I.; Juan, M. L.; Quidant, R.; Kiesel, N.; Aspelmeyer, M.

    2011-01-01

    We provide a general quantum theory to describe the coupling of light with the motion of a dielectric object inside a high-finesse optical cavity. In particular, we derive the total Hamiltonian of the system as well as a master equation describing the state of the center-of-mass mode of the dielectric and the cavity-field mode. In addition, a quantum theory of elasticity is used to study the coupling of the center-of-mass motion with internal vibrational excitations of the dielectric. This general theory is applied to the recent proposal of using an optically levitating nanodielectric as a cavity optomechanical system [see Romero-Isart et al., New J. Phys. 12, 033015 (2010); Chang et al., Proc. Natl. Acad. Sci. USA 107, 1005 (2010)]. On this basis, we also design a light-mechanics interface to prepare non-Gaussian states of the mechanical motion, such as quantum superpositions of Fock states. Finally, we introduce a direct mechanical tomography scheme to probe these genuine quantum states by time-of- flight experiments.

  14. Extension of Loop Quantum Gravity to Metric Theories beyond General Relativity

    International Nuclear Information System (INIS)

    Ma Yongge

    2012-01-01

    The successful background-independent quantization of Loop Quantum Gravity relies on the key observation that classical General Relativity can be cast into the connection-dynamical formalism with the structure group of SU(2). Due to this particular formalism, Loop Quantum Gravity was generally considered as a quantization scheme that applies only to General Relativity. However, we will show that the nonperturbative quantization procedure of Loop Quantum Gravity can be extended to a rather general class of metric theories of gravity, which have received increased attention recently due to motivations coming form cosmology and astrophysics. In particular, we will first introduce how to reformulate the 4-dimensional metric f(R) theories of gravity, as well as Brans-Dicke theory, into connection-dynamical formalism with real SU(2) connections as configuration variables. Through these formalisms, we then outline the nonpertubative canonical quantization of the f(R) theories and Brans-Dicke theory by extending the loop quantization scheme of General Relativity.

  15. Towards Noncommutative Topological Quantum Field Theory: New invariants for 3-manifolds

    International Nuclear Information System (INIS)

    Zois, I.P.

    2016-01-01

    We present some ideas for a possible Noncommutative Topological Quantum Field Theory (NCTQFT for short) and Noncommutative Floer Homology (NCFH for short). Our motivation is two-fold and it comes both from physics and mathematics: On the one hand we argue that NCTQFT is the correct mathematical framework for a quantum field theory of all known interactions in nature (including gravity). On the other hand we hope that a possible NCFH will apply to practically every 3-manifold (and not only to homology 3-spheres as ordinary Floer Homology currently does). The two motivations are closely related since, at least in the commutative case, Floer Homology Groups constitute the space of quantum observables of (3+1)-dim Topological Quantum Field Theory. Towards this goal we define some new invariants for 3-manifolds using the space of taut codim-1 foliations modulo coarse isotopy along with various techniques from noncommutative geometry. (paper)

  16. Aspects of quantum field theory in curved space-time

    Energy Technology Data Exchange (ETDEWEB)

    Fulling, S.A. (Texas A and M Univ., College Station, TX (USA). Dept. of Mathematics)

    1989-01-01

    The theory of quantum fields on curved spacetimes has attracted great attention since the discovery, by Stephen Hawking, of black-hole evaporation. It remains an important subject for the understanding of such contemporary topics as inflationary cosmology, quantum gravity and superstring theory. The topics covered include normal-mode expansions for a general elliptic operator, Fock space, the Casimir effect, the Klein 'paradox', particle definition and particle creation in expanding universes, asymptotic expansion of Green's functions and heat kernels, and renormalization of the stress tensor. (author).

  17. Analytic properties of Feynman diagrams in quantum field theory

    CERN Document Server

    Todorov, I T

    1971-01-01

    Analytic Properties of Feynman Diagrams in Quantum Field Theory deals with quantum field theory, particularly in the study of the analytic properties of Feynman graphs. This book is an elementary presentation of a self-contained exposition of the majorization method used in the study of these graphs. The author has taken the intermediate position between Eden et al. who assumes the physics of the analytic properties of the S-matrix, containing physical ideas and test results without using the proper mathematical methods, and Hwa and Teplitz, whose works are more mathematically inclined with a

  18. A mathematical theory for deterministic quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Hooft, Gerard ' t [Institute for Theoretical Physics, Utrecht University (Netherlands); Spinoza Institute, Postbox 80.195, 3508 TD Utrecht (Netherlands)

    2007-05-15

    Classical, i.e. deterministic theories underlying quantum mechanics are considered, and it is shown how an apparent quantum mechanical Hamiltonian can be defined in such theories, being the operator that generates evolution in time. It includes various types of interactions. An explanation must be found for the fact that, in the real world, this Hamiltonian is bounded from below. The mechanism that can produce exactly such a constraint is identified in this paper. It is the fact that not all classical data are registered in the quantum description. Large sets of values of these data are assumed to be indistinguishable, forming equivalence classes. It is argued that this should be attributed to information loss, such as what one might suspect to happen during the formation and annihilation of virtual black holes. The nature of the equivalence classes follows from the positivity of the Hamiltonian. Our world is assumed to consist of a very large number of subsystems that may be regarded as approximately independent, or weakly interacting with one another. As long as two (or more) sectors of our world are treated as being independent, they all must be demanded to be restricted to positive energy states only. What follows from these considerations is a unique definition of energy in the quantum system in terms of the periodicity of the limit cycles of the deterministic model.

  19. Microcanonical formulation of quantum field theories

    International Nuclear Information System (INIS)

    Iwazaki, A.

    1984-03-01

    A microcanonical formulation of Euclidean quantum field theories is presented. In the formulation, correlation functions are given by a microcanonical ensemble average of fields. Furthermore, the perturbative equivalence of the formulation and the standard functional formulation is proved and the equipartition low is derived in our formulation. (author)

  20. Quantum gravity with matter and group field theory

    International Nuclear Information System (INIS)

    Krasnov, Kirill

    2007-01-01

    A generalization of the matrix model idea to quantum gravity in three and higher dimensions is known as group field theory (GFT). In this paper we study generalized GFT models that can be used to describe 3D quantum gravity coupled to point particles. The generalization considered is that of replacing the group leading to pure quantum gravity by the twisted product of the group with its dual-the so-called Drinfeld double of the group. The Drinfeld double is a quantum group in that it is an algebra that is both non-commutative and non-cocommutative, and special care is needed to define group field theory for it. We show how this is done, and study the resulting GFT models. Of special interest is a new topological model that is the 'Ponzano-Regge' model for the Drinfeld double. However, as we show, this model does not describe point particles. Motivated by the GFT considerations, we consider a more general class of models that are defined not using GFT, but the so-called chain mail techniques. A general model of this class does not produce 3-manifold invariants, but has an interpretation in terms of point particle Feynman diagrams

  1. Quantum field theory, horizons and thermodynamics

    International Nuclear Information System (INIS)

    Sciama, D.W.; Candelas, P.; Deutsch, D.

    1981-01-01

    The aim of the article is to obtain an intuitive understanding of the recently explored deep connections between thermal physics, quantum field theory and general relativity. A special case in which a detector moves with constant acceleration through a quantum vacuum is examined to clarify the fact that such a detector becomes thermally excited, with a temperature proportional to its acceleration. An elementary physical explanation of this fundamental result is provided. The uniformly accelerated observer finds his space-time manifold bounded by an event horizon and so realizes a 'model' black hole. Real black holes also have thermal properties when quantum effects are taken into account; these are described and the correspondences with the accelerated case are pointed out. In particular, an elementary account is given of the thermal Hawking radiation emitted by the black holes formed by collapsed stars. (author)

  2. Macroscopic quantum waves in non local theories

    International Nuclear Information System (INIS)

    Ventura, I.

    1979-01-01

    By means of an expansion in the density, it is shown that Macroscopic Quantum Waves also appear in non local theories. This result reinforces the conjecture that these waves should exist in liquid 4 He [pt

  3. On the problem of existence of quantum field theory

    International Nuclear Information System (INIS)

    Chaichian, M.; Hayashi, M.; Nelipa, N.F.; Pukhov, E.A.

    1978-01-01

    Existence of quantum field theory is considered for the four-dimensional phi 3 -model. The mathematical tool of contraction mapping principle is used to investigate the question of existence of solution for the infinite system of coupled equations for the Green functions of the theory in the Euclidean region. Formulation of the problem for this model with one divergent part is interesting in itself and provides the first attempt towards the study of other renormalizable quantum field theory models with infinite number of divergent graphs. For sufficiently small values of coupling constant, the theory has a unique solution for the truncated system of equations for the Green functions. However, for the complete, infinite set of equations, the Banach fixed point theorem admits a solution only when the coupling constant tends to zero. Possible reasons for such a result are discussed. (author)

  4. Reconstructing Bohr's Reply to EPR in Algebraic Quantum Theory

    Science.gov (United States)

    Ozawa, Masanao; Kitajima, Yuichiro

    2012-04-01

    Halvorson and Clifton have given a mathematical reconstruction of Bohr's reply to Einstein, Podolsky and Rosen (EPR), and argued that this reply is dictated by the two requirements of classicality and objectivity for the description of experimental data, by proving consistency between their objectivity requirement and a contextualized version of the EPR reality criterion which had been introduced by Howard in his earlier analysis of Bohr's reply. In the present paper, we generalize the above consistency theorem, with a rather elementary proof, to a general formulation of EPR states applicable to both non-relativistic quantum mechanics and algebraic quantum field theory; and we clarify the elements of reality in EPR states in terms of Bohr's requirements of classicality and objectivity, in a general formulation of algebraic quantum theory.

  5. Quantum Uncertainty and Decision-Making in Game Theory

    Science.gov (United States)

    Asano, M.; Ohya, M.; Tanaka, Y.; Khrennikov, A.; Basieva, I.

    2011-01-01

    Recently a few authors pointed to a possibility to apply the mathematical formalism of quantum mechanics to cognitive psychology, in particular, to games of the Prisoners Dilemma (PD) type.6_18 In this paper, we discuss the problem of rationality in game theory and point out that the quantum uncertainty is similar to the uncertainty of knowledge, which a player feels subjectively in his decision-making.

  6. Quantum field theory and statistical mechanics

    International Nuclear Information System (INIS)

    Jegerlehner, F.

    1975-01-01

    At first a heuristic understanding is given how the relation between quantum field theory and statistical mechanics near phase transitions comes about. A long range scale invariant theory is constructed, critical indices are calculated and the relations among them are proved, field theoretical Kadanoff-scale transformations are formulated and scaling corrections calculated. A precise meaning to many of Kadanoffs considerations and a model matching Wegners phenomenological scheme is given. It is shown, that soft parametrization is most transparent for the discussion of scaling behaviour. (BJ) [de

  7. LDRD final report on theory and exploration of quantum-dot optical nonlinearities and coherences

    International Nuclear Information System (INIS)

    Chow, Weng Wah

    2008-01-01

    A microscopic theory for investigating quantum-dot optical properties was developed. The theory incorporated advances on various aspects of quantum-dot physics developed at Sandia and elsewhere. Important components are a non-Markovian treatment of polarization dephasing due to carrier-carrier scattering (developed at Sandia) and a nonperturbative treatment within a polaron picture of the scattering of carriers by longitudinal-optical phonons (developed at Bremen University). A computer code was also developed that provides a detailed accounting of electronic structure influences and a consistent treatment of many-body effects, the latter via the incorporation of results from the microscopic theory. This code was used to explore quantum coherence physics in a quantum-dot system. The investigation furthers the understanding of the underlying differences between atomic quantum coherence and semiconductor quantum coherence, and helps improve the potential of using quantum coherences in quantum computing, coherent control and high-resolution spectroscopy

  8. Quantum theories of the early universe - a critical appraisal

    International Nuclear Information System (INIS)

    Hu, B.L.

    1988-01-01

    A critical appraisal of certain general problems in the study of quantum processes in curved space as applied to the construction of theories of the early universe is presented. Outstanding issues in different cosmological models and the degree of success of different quantum processes in addressing these issues are summarized. (author)

  9. Integrability of a family of quantum field theories related to sigma models

    Energy Technology Data Exchange (ETDEWEB)

    Ridout, David [Australian National Univ., Canberra, ACT (Australia). Dept. of Theoretical Physics; DESY, Hamburg (Germany). Theory Group; Teschner, Joerg [DESY, Hamburg (Germany). Theory Group

    2011-03-15

    A method is introduced for constructing lattice discretizations of large classes of integrable quantum field theories. The method proceeds in two steps: The quantum algebraic structure underlying the integrability of the model is determined from the algebra of the interaction terms in the light-cone representation. The representation theory of the relevant quantum algebra is then used to construct the basic ingredients of the quantum inverse scattering method, the lattice Lax matrices and R-matrices. This method is illustrated with four examples: The Sinh-Gordon model, the affine sl(3) Toda model, a model called the fermionic sl(2 vertical stroke 1) Toda theory, and the N=2 supersymmetric Sine-Gordon model. These models are all related to sigma models in various ways. The N=2 supersymmetric Sine-Gordon model, in particular, describes the Pohlmeyer reduction of string theory on AdS{sub 2} x S{sup 2}, and is dual to a supersymmetric non-linear sigma model with a sausage-shaped target space. (orig.)

  10. Macroscopic quantum waves in non local theories

    International Nuclear Information System (INIS)

    Ventura, I.

    1979-01-01

    By means of an expansion in the density, it is shown that Macroscopic Quantum Waves also apear in non local theories. This result reinforces the conjecture that these waves should exist in liquid 4 He. (Author) [pt

  11. Quantum field theory and multiparticle systems

    International Nuclear Information System (INIS)

    Trlifaj, M.

    1981-01-01

    The use of quantum field theory methods for the investigation of the physical characteristics of the MANY-BODY SYSTEMS is discussed. Mainly discussed is the method of second quantization and the method of the Green functions. Briefly discussed is the method of calculating the Green functions at finite temperatures. (Z.J.)

  12. Quantum: information theory: technological challenge; Computacion Cuantica: un reto tecnologico

    Energy Technology Data Exchange (ETDEWEB)

    Calixto, M.

    2001-07-01

    The new Quantum Information Theory augurs powerful machines that obey the entangled logic of the subatomic world. Parallelism, entanglement, teleportation, no-cloning and quantum cryptography are typical peculiarities of this novel way of understanding computation. (Author) 24 refs.

  13. Quantum Field Theory with a Minimal Length Induced from Noncommutative Space

    International Nuclear Information System (INIS)

    Lin Bing-Sheng; Chen Wei; Heng Tai-Hua

    2014-01-01

    From the inspection of noncommutative quantum mechanics, we obtain an approximate equivalent relation for the energy dependence of the Planck constant in the noncommutative space, which means a minimal length of the space. We find that this relation is reasonable and it can inherit the main properties of the noncommutative space. Based on this relation, we derive the modified Klein—Gordon equation and Dirac equation. We investigate the scalar field and ϕ 4 model and then quantum electrodynamics in our theory, and derive the corresponding Feynman rules. These results may be considered as reasonable approximations to those of noncommutative quantum field theory. Our theory also shows a connection between the space with a minimal length and the noncommutative space. (physics of elementary particles and fields)

  14. Renormalization and Interaction in Quantum Field Theory

    International Nuclear Information System (INIS)

    RATSIMBARISON, H.M.

    2008-01-01

    This thesis works on renormalization in quantum field theory (QFT), in order to show the relevance of some mathematical structures as C*-algebraic and probabilistic structures. Our work begins with a study of the path integral formalism and the Kreimer-Connes approach in perturbative renormalization, which allows to situate the statistical nature of QFT and to appreciate the ultra-violet divergence problem of its partition function. This study is followed by an emphasis of the presence of convolution products in non perturbative renormalisation, through the construction of the Wilson effective action and the Legendre effective action. Thanks to these constructions and the definition of effective theories according J. Polchinski, the non perturbative renormalization shows in particular the general approach of regularization procedure. We begin the following chapter with a C*-algebraic approach of the scale dependence of physical theories by showing the existence of a hierarchy of commutative spaces of states and its compatibility with the fiber bundle formulation of classical field theory. Our Hierarchy also allows us to modelize the notion of states and particles. Finally, we develop a probabilistic construction of interacting theories starting from simple model, a Bernoulli random processes. We end with some arguments on the applicability of our construction -such as the independence between the free and interacting terms and the possibility to introduce a symmetry group wich will select the type of interactions in quantum field theory. [fr

  15. EDITORIAL: Quantum control theory for coherence and information dynamics Quantum control theory for coherence and information dynamics

    Science.gov (United States)

    Viola, Lorenza; Tannor, David

    2011-08-01

    Precisely characterizing and controlling the dynamics of realistic open quantum systems has emerged in recent years as a key challenge across contemporary quantum sciences and technologies, with implications ranging from physics, chemistry and applied mathematics to quantum information processing (QIP) and quantum engineering. Quantum control theory aims to provide both a general dynamical-system framework and a constructive toolbox to meet this challenge. The purpose of this special issue of Journal of Physics B: Atomic, Molecular and Optical Physics is to present a state-of-the-art account of recent advances and current trends in the field, as reflected in two international meetings that were held on the subject over the last summer and which motivated in part the compilation of this volume—the Topical Group: Frontiers in Open Quantum Systems and Quantum Control Theory, held at the Institute for Theoretical Atomic, Molecular and Optical Physics (ITAMP) in Cambridge, Massachusetts (USA), from 1-14 August 2010, and the Safed Workshop on Quantum Decoherence and Thermodynamics Control, held in Safed (Israel), from 22-27 August 2010. Initial developments in quantum control theory date back to (at least) the early 1980s, and have been largely inspired by the well-established mathematical framework for classical dynamical systems. As the above-mentioned meetings made clear, and as the burgeoning body of literature on the subject testifies, quantum control has grown since then well beyond its original boundaries, and has by now evolved into a highly cross-disciplinary field which, while still fast-moving, is also entering a new phase of maturity, sophistication, and integration. Two trends deserve special attention: on the one hand, a growing emphasis on control tasks and methodologies that are specifically motivated by QIP, in addition and in parallel to applications in more traditional areas where quantum coherence is nevertheless vital (such as, for instance

  16. Matrix effective theories of the fractional quantum Hall effect

    International Nuclear Information System (INIS)

    Cappelli, Andrea; Rodriguez, Ivan D

    2009-01-01

    The present understanding of nonperturbative ground states in the fractional quantum Hall effect is based on effective theories of the Jain 'composite fermion' excitations. We review the approach based on matrix variables, i.e. D0 branes, originally introduced by Susskind and Polychronakos. We show that the Maxwell-Chern-Simons matrix gauge theory provides a matrix generalization of the quantum Hall effect, where the composite-fermion construction naturally follows from gauge invariance. The matrix ground states obtained by suitable projections of higher Landau levels are found to be in one-to-one correspondence with the Laughlin and Jain hierarchical states. The matrix theory possesses a physical limit for commuting matrices that could be reachable while staying in the same phase.

  17. Quantum field theory and the internal states of elementary particles

    CSIR Research Space (South Africa)

    Greben, JM

    2011-01-01

    Full Text Available A new application of quantum field theory is developed that gives a description of the internal dynamics of dressed elementary particles and predicts their masses. The fermionic and bosonic quantum fields are treated as interdependent fields...

  18. Boosted quantum black hole and black string in M-theory, and quantum correction to Gregory-Laflamme instability

    Energy Technology Data Exchange (ETDEWEB)

    Hyakutake, Yoshifumi [Faculty of Science, Ibaraki University,Bunkyo 2-1-1, Mito, Ibaraki, 310-8512 (Japan)

    2015-09-11

    We take into account higher derivative R{sup 4} corrections in M-theory and construct quantum black hole and black string solutions in 11 dimensions up to the next leading order. The quantum black string is stretching along the 11th direction and the Gregory-Laflamme instability is examined at the quantum level. Thermodynamics of the boosted quantum black hole and black string are also discussed. Especially we take the near horizon limit of the quantum black string and investigate its instability quantitatively.

  19. Outline of a classical theory of quantum physics and gravitation

    International Nuclear Information System (INIS)

    Gallop, J.W.

    1975-01-01

    It is argued that in the manner in which the Galilean-Newtonian physics may be said to have explained the Ptolemaic-Copernican theories in terms which have since been called classical, so also Milner's theories of the structure of matter may be said to explain present day quantum and relativistic theory. In both cases the former employ the concept of force and the latter, by contrast, are geometrical theories. Milner envisaged space as being stressed, whereas Einstein thought of it as strained. Development of Milner's theory from criticisms and suggestions made by Kilmister has taken it further into the realms of quantum and gravitational physics, where it is found to give a more physically comprehensible explanation of the phenomena. Further, it shows why present day quantum theory is cast in a statistical form. The theory is supported by many predictions such as the ratio of Planck's constant to the mass of the electron, the value of the fine structure constant and reason for apparent variations in past measurements, the magnetic moment of the electron and proton of the stable particles such as the neutron Λ and Σ together with the kaon, and a relation between the universal gravitational constant and Hubble's constant - all within published experimental accuracy. The latest results to be accounted for by the theory are the masses of the newly discovered psi particles and confirmation of the value of the decay of Newton's gravitational constant obtained from lunar measurements. (author)

  20. From c-number to q-numbers the classical analogy in the history of quantum theory

    CERN Document Server

    Darrigol, Olivier

    1992-01-01

    The history of quantum theory is a maze of conceptual problems, through which Olivier Darrigol provides a lucid and learned guide, tracking the role of formal analogies between classical and quantum theory. From Planck's first introduction of the quantum of action to Dirac's formulation of quantum mechanics, Darrigol illuminates not only the history of quantum theory but also the role of analogies in scientific thinking and theory change. Unlike previous works, which have tended to focus on qualitative, global arguments, Darrigol's study follows the lines of mathematical reasoning and symbolizing and so is able to show the motivations of early quantum theorists more precisely—and provocatively—than ever before. Erudite and original, From c-Numbers to q-Numbers sets a new standard as a philosophically perceptive and mathematically precise history of quantum mechanics. For years to come it will influence historical and philosophical discussions of twentieth-century physics.

  1. Operational Meanings of Orders of Observables Defined through Quantum Set Theories with Different Conditionals

    Directory of Open Access Journals (Sweden)

    Masanao Ozawa

    2017-01-01

    Full Text Available In quantum logic there is well-known arbitrariness in choosing a binary operation for conditional. Currently, we have at least three candidates, called the Sasaki conditional, the contrapositive Sasaki conditional, and the relevance conditional. A fundamental problem is to show how the form of the conditional follows from an analysis of operational concepts in quantum theory. Here, we attempt such an analysis through quantum set theory (QST. In this paper, we develop quantum set theory based on quantum logics with those three conditionals, each of which defines different quantum logical truth value assignment. We show that those three models satisfy the transfer principle of the same form to determine the quantum logical truth values of theorems of the ZFC set theory. We also show that the reals in the model and the truth values of their equality are the same for those models. Interestingly, however, the order relation between quantum reals significantly depends on the underlying conditionals. We characterize the operational meanings of those order relations in terms of joint probability obtained by the successive projective measurements of arbitrary two observables. Those characterizations clearly show their individual features and will play a fundamental role in future applications to quantum physics.

  2. BOOK REVIEW: Quantum Field Theory in a Nutshell (2nd edn) Quantum Field Theory in a Nutshell (2nd edn)

    Science.gov (United States)

    Peskin, Michael E.

    2011-04-01

    Anthony Zee is not only a leading theoretical physicist but also an author of popular books on both physics and non-physics topics. I recommend especially `Swallowing Clouds', on Chinese cooking and its folklore. Thus, it is not surprising that his textbook has a unique flavor. Derivations end, not with `QED' but with exclamation points. At the end of one argument, we read `Vive Cauchy!', in another `the theorem practically exudes generality'. This is quantum field theory taught at the knee of an eccentric uncle; one who loves the grandeur of his subject, has a keen eye for a slick argument, and is eager to share his repertoire of anecdotes about Feynman, Fermi, and all of his heroes. A one-page section entitled `Electric Charge' illustrates the depth and tone of the book. In the previous section, Zee has computed the Feynman diagram responsible for vacuum polarization, in which a photon converts briefly to a virtual electron-positron pair. In the first paragraph, he evaluates this expression, giving a concrete formula for the momentum-dependence of the electric charge, an important effect of quantum field theory. Next, he dismisses other possible diagrams that could affect the value of the electric charge. Most authors would give an explicit argument that these diagrams cancel, but for Zee it is more important to make the point that this result is expected and, from the right point of view, obvious. Finally, he discusses the implications for the relative size of the charges of the electron and the proton. If the magnitudes of charges are affected by interactions, and the proton has strong interactions but the electron does not, can it make sense that the charges of the proton and the electron are exactly equal and opposite? The answer is yes, and also that this was the real point of the whole derivation. The book takes on the full range of topics covered in typical graduate course in quantum field theory, and many additional topics: magnetic monopoles, solitons

  3. Quantum scattering theory of a single-photon Fock state in three-dimensional spaces.

    Science.gov (United States)

    Liu, Jingfeng; Zhou, Ming; Yu, Zongfu

    2016-09-15

    A quantum scattering theory is developed for Fock states scattered by two-level systems in three-dimensional free space. It is built upon the one-dimensional scattering theory developed in waveguide quantum electrodynamics. The theory fully quantizes the incident light as Fock states and uses a non-perturbative method to calculate the scattering matrix.

  4. Quantum Conformal Algebras and Closed Conformal Field Theory

    CERN Document Server

    Anselmi, D

    1999-01-01

    We investigate the quantum conformal algebras of N=2 and N=1 supersymmetric gauge theories. Phenomena occurring at strong coupling are analysed using the Nachtmann theorem and very general, model-independent, arguments. The results lead us to introduce a novel class of conformal field theories, identified by a closed quantum conformal algebra. We conjecture that they are the exact solution to the strongly coupled large-N_c limit of the open conformal field theories. We study the basic properties of closed conformal field theory and work out the operator product expansion of the conserved current multiplet T. The OPE structure is uniquely determined by two central charges, c and a. The multiplet T does not contain just the stress-tensor, but also R-currents and finite mass operators. For this reason, the ratio c/a is different from 1. On the other hand, an open algebra contains an infinite tower of non-conserved currents, organized in pairs and singlets with respect to renormalization mixing. T mixes with a se...

  5. Quantum theory of dynamical collective subspace for large-amplitude collective motion

    International Nuclear Information System (INIS)

    Sakata, Fumihiko; Marumori, Toshio; Ogura, Masanori.

    1986-03-01

    By placing emphasis on conceptual correspondence to the ''classical'' theory which has been developed within the framework of the time-dependent Hartree-Fock theory, a full quantum theory appropriate for describing large-amplitude collective motion is proposed. A central problem of the quantum theory is how to determine an optimal representation called a dynamical representation; the representation is specific for the collective subspace where the large-amplitude collective motion is replicated as satisfactorily as possible. As an extension of the classical theory where the concept of an approximate integral surface plays an important role, the dynamical representation is properly characterized by introducing a concept of an approximate invariant subspace of the Hamiltonian. (author)

  6. Topological field theories and quantum mechanics on commutative space

    International Nuclear Information System (INIS)

    Lefrancois, M.

    2005-12-01

    In particle physics, the Standard Model describes the interactions between fundamental particles. However, it was not able till now to unify quantum field theory and general relativity. This thesis focuses on two different unification approaches, though they might show some compatibility: topological field theories and quantum mechanics on non-commutative space. Topological field theories have been introduced some twenty years ago and have a very strong link to mathematics: their observables are topological invariants of the manifold they are defined on. In this thesis, we first give interest to topological Yang-Mills. We develop a superspace formalism and give a systematic method for the determination of the observables. This approach allows, once projected on a particular super gauge (of Wess-Zumino type), to recover the existing results but it also gives a generalisation to the case of an unspecified super-gauge. We have then be able to show that the up-to-now known observables correspond to the most general form of the solutions. This superspace formalism can be applied to more complex models; the case of topological gravity is given here in example. Quantum mechanics on noncommutative space provides an extension of the Heisenberg algebra of ordinary quantum mechanics. What differs here is that the components of the position or momentum operators do not commute with each other anymore. This implies to introduce a fundamental length. The second part of this thesis focuses on the description of the commutation algebra. Applications are made to low-dimensional quantum systems (Landau system, harmonic oscillator...) and to supersymmetric systems. (author)

  7. Convergent perturbation expansions for Euclidean quantum field theory

    International Nuclear Information System (INIS)

    Mack, G.; Pordt, A.

    1984-09-01

    Mayer perturbation theory is designed to provide computable convergent expansions which permit calculation of Greens functions in Euclidean Quantum Field Theory to arbitrary accuracy, including 'nonperturbative' contributions from large field fluctuations. Here we describe the expansions at the example of 3-dimensional lambdaphi 4 -theory (in continuous space). They are not essentially more complicated than standard perturbation theory. The n-th order term is expressed in terms of 0(n)-dimensional integrals, and is of order lambda 4 if 4k-3<=n<=4k. (orig.)

  8. Н(1) Gauge theory as quantum hydrodynamics

    Indian Academy of Sciences (India)

    The Institute of Mathematical Sciences, Taramani, Chennai 600 113, India ... gauge fixing is needed in this approach that is closest to the spirit of the gauge principle. ...... C Itzykson and J B Zuber, Quantum field theory (McGraw Hill, Singapore, ...

  9. An introduction to the general boundary formulation of quantum field theory

    International Nuclear Information System (INIS)

    Colosi, Daniele

    2015-01-01

    We give a brief introduction to the so-called general boundary formulation (GBF) of quantum theory. This new axiomatic formulation provides a description of the quantum dynamics which is manifestly local and does not rely on a metric background structure for its definition. We present the basic ingredients of the GBF, in particular we review the core axioms that assign algebraic structures to geometric ones, the two quantisation schemes so far developed for the GBF and the probability interpretation which generalizes the standard Born rule. Finally we briefly discuss some of the results obtained studying specific quantum field theories within the GBF. (paper)

  10. Macroscopic quantum mechanics: theory and experimental concepts of optomechanics

    International Nuclear Information System (INIS)

    Chen Yanbei

    2013-01-01

    Rapid experimental progress has recently allowed the use of light to prepare macroscopic mechanical objects into nearly pure quantum states. This research field of quantum optomechanics opens new doors towards testing quantum mechanics, and possibly other laws of physics, in new regimes. In the first part of this article, I will review a set of techniques of quantum measurement theory that are often used to analyse quantum optomechanical systems. Some of these techniques were originally designed to analyse how a classical driving force passes through a quantum system, and can eventually be detected with an optimal signal-to-noise ratio—while others focus more on the quantum-state evolution of a mechanical object under continuous monitoring. In the second part of this article, I will review a set of experimental concepts that will demonstrate quantum mechanical behaviour of macroscopic objects—quantum entanglement, quantum teleportation and the quantum Zeno effect. Taking the interplay between gravity and quantum mechanics as an example, I will review a set of speculations on how quantum mechanics can be modified for macroscopic objects, and how these speculations—and their generalizations—might be tested by optomechanics. (invited review)

  11. Radiation perturbation theory in gravity and quantum universe as a hydrogen atom

    International Nuclear Information System (INIS)

    Pervushin, V.N.

    1992-01-01

    In quantum theory of gravity of the (n+1)-dimensional space-time the Faddeev-Popov functional integral is constructed for radiation perturbation theory. In this version the Universe expansion looks as the collective superfluid motion of quantum space, and the vacuum energy density plays the role of the hidden mass. 6 refs

  12. A new approach to quantum field theory and a spacetime quantization

    International Nuclear Information System (INIS)

    Banai, I.

    1982-09-01

    A quantum logical approach to achieve a sound kinematical picture for LQFT (local quantum field theory) is reviewed. Then a general language in the framework of axiomatic set theory is presented, in which the 'local' description of a LQFT can be formulated in almost the same form as quantum mechanics was formulated by von Neumann. The main physical implication of this approach is that, in this framework, the quantization of a CRLFT (classical relativistic local field theory) requires not only the quantization of physical fields over M 4 but the quantization of spacetime M 4 itself, too. The uncertainty priciple is compatible with the Heisenberg uncertainty principle, but it requires the generalization of Poincare symmetries to all unitary symmetries. Some indications show that his approach might be successful in describing low laying hadronic phenomena. (author)

  13. δ expansion for a quantum field theory in the nonperturbative regime

    International Nuclear Information System (INIS)

    Bender, C.M.; Milton, K.A.; Pinsky, S.S.; Simmons, L.M. Jr.

    1990-01-01

    The δ expansion, a recently proposed nonperturbative technique in quantum field theory, is used to calculate the dimensionless renormalized coupling constant of a λ(var-phi 2 ) 1+δ quantum field theory in d-dimensional space-time at the critical point defined by λ→∞ with the renormalized mass held fixed. The calculation is performed to leading order in δ and compared with previous lattice strong-coupling calculations. The numerical results are good and provide new evidence that the theory in four dimensions is free for all δ

  14. On the Schroedinger representation of the Euclidean quantum field theory

    International Nuclear Information System (INIS)

    Semmler, U.

    1987-04-01

    The theme of the present thesis is the Schroedinger representation of the Euclidean quantum field theory: We define the time development of the quantum field states as functional integral in a novel, mathematically precise way. In the following we discuss the consequences which result from this approach to the Euclidean quantum field theory. Chapter 1 introduces the theory of abstract Wiener spaces which is here proved as suitable mathematical tool for the treatment of the physical problems. In chapter 2 the diffusion theory is formulated in the framework of abstract Wiener spaces. In chapter 3 we define the field functional ψ 5 u, t 7 as functional integral, determine the functional differential equation which ψ satisfies (Schroedinger equation), and summarize the consequences resulting from this. Chapter 4 is dedicated to the attempt to determine the kernel of the time-development operator, by the knowledge of which the time development of each initial state is fixed. In chapter 5 the consequences of the theory presented in chapter 3 and 4 are discussed by means of simple examples. In chapter 6 the renormalization which results for the φ 4 potential from the definition of the functional integral in chapter 3 is calculated up to the first-order perturbation theory, and it is shown that the problems in the Symanzik renormalization procedure can be removed. (orig./HSI) [de

  15. Dissipative time-dependent quantum transport theory.

    Science.gov (United States)

    Zhang, Yu; Yam, Chi Yung; Chen, GuanHua

    2013-04-28

    A dissipative time-dependent quantum transport theory is developed to treat the transient current through molecular or nanoscopic devices in presence of electron-phonon interaction. The dissipation via phonon is taken into account by introducing a self-energy for the electron-phonon coupling in addition to the self-energy caused by the electrodes. Based on this, a numerical method is proposed. For practical implementation, the lowest order expansion is employed for the weak electron-phonon coupling case and the wide-band limit approximation is adopted for device and electrodes coupling. The corresponding hierarchical equation of motion is derived, which leads to an efficient and accurate time-dependent treatment of inelastic effect on transport for the weak electron-phonon interaction. The resulting method is applied to a one-level model system and a gold wire described by tight-binding model to demonstrate its validity and the importance of electron-phonon interaction for the quantum transport. As it is based on the effective single-electron model, the method can be readily extended to time-dependent density functional theory.

  16. A critical analysis of the quantum theory of measurement

    International Nuclear Information System (INIS)

    Fer, F.

    1984-01-01

    Keeping strictly in the positivist and probabilistic, hence hilbertian frame of Quantum Mechanics, the author tries to ascertain whether or not Quantum Mechanics, starting from its axioms, reaches the aim of any physical theory, that is, comparison with experiment. The answer is: no, as long as it keeps close to the existing axiomatics, and also to accurate mathematics. (Auth.)

  17. On the consistency of classical and quantum supergravity theories

    Energy Technology Data Exchange (ETDEWEB)

    Hack, Thomas-Paul [II. Institute for Theoretical Physics, University of Hamburg (Germany); Makedonski, Mathias [Department of Mathematical Sciences, University of Copenhagen (Denmark); Schenkel, Alexander [Department of Stochastics, University of Wuppertal (Germany)

    2012-07-01

    It is known that pure N=1 supergravity in d=4 spacetime dimensions is consistent at a classical and quantum level, i.e. that in a particular gauge the field equations assume a hyperbolic form - ensuring causal propagation of the degrees of freedom - and that the associated canonical quantum field theory satisfies unitarity. It seems, however, that it is yet unclear whether these properties persist if one considers the more general and realistic case of N=1, d=4 supergravity theories including arbitrary matter fields. We partially clarify the issue by introducing novel hyperbolic gauges for the gravitino field and proving that they commute with the resulting equations of motion. Moreover, we review recent partial results on the unitarity of these general supergravity theories and suggest first steps towards a comprehensive unitarity proof.

  18. A modern course in the quantum theory of solids

    CERN Document Server

    Han, Fuxiang

    2013-01-01

    This book contains advanced subjects in solid state physics with emphasis on the theoretical exposition of various physical phenomena in solids using quantum theory, hence entitled "A modern course in the quantum theory of solids". The use of the adjective "modern" in the title is to reflect the fact that some of the new developments in condensed matter physics have been included in the book. The new developments contained in the book are mainly in experimental methods (inelastic neutron scattering and photoemission spectroscopy), in magnetic properties of solids (the itinerant magnetism, the superexchange, the Hubbard model, and giant and colossal magnetoresistance), and in optical properties of solids (Raman scattering). Besides the new developments, the Green's function method used in many-body physics and the strong-coupling theory of superconductivity are also expounded in great details.

  19. Towards chaos criterion in quantum field theory

    OpenAIRE

    Kuvshinov, V. I.; Kuzmin, A. V.

    2002-01-01

    Chaos criterion for quantum field theory is proposed. Its correspondence with classical chaos criterion in semi-classical regime is shown. It is demonstrated for real scalar field that proposed chaos criterion can be used to investigate stability of classical solutions of field equations.

  20. On the relation of the theoretical foundations of quantum theory and general relativity theory; Ueber die Beziehung der begrifflichen Grundlagen der Quantentheorie und der Allgemeinen Relativitaetstheorie

    Energy Technology Data Exchange (ETDEWEB)

    Kober, Martin

    2010-07-01

    The specific content of the present thesis is presented in the following way. First the most important contents of quantum theory and general relativity theory are presented. In connection with the general relativity theory the mathematical property of the diffeomorphism invariance plays the deciding role, while concerning the quantum theory starting from the Copenhagen interpretation first the measurement problem is treated, before basing on the analysis of concrete phenomena and the mathematical apparatus of quantum theory the nonlocality is brought into focus as an important property. This means that both theories suggest a relationalistic view of the nature of the space. This analysis of the theoretical foundations of quantum theory and general relativity theory in relation to the nature of the space obtains only under inclusion of Kant's philosophy and his analysis of the terms space and time as fundamental forms of perception its full persuasive power. Then von Weizsaeckers quantum theory of the ur-alternatives is presented. Finally attempts are made to apply the obtained knowledge to the question of the quantum-theoretical formulation of general relativity theory.