WorldWideScience

Sample records for quantum teleportation

  1. Cascade quantum teleportation

    Institute of Scientific and Technical Information of China (English)

    ZHOU Nan-run; GONG Li-hua; LIU Ye

    2006-01-01

    In this letter a cascade quantum teleportation scheme is proposed. The proposed scheme needs less local quantum operations than those of quantum multi-teleportation. A quantum teleportation scheme based on entanglement swapping is presented and compared with the cascade quantum teleportation scheme. Those two schemes can effectively teleport quantum information and extend the distance of quantum communication.

  2. Quantum Entanglement and Teleportation

    OpenAIRE

    2011-01-01

    Even Einstein has to be wrong sometimes. However, when Einstein was wrong he created a 70 year debate about the strange behavior of quantum mechanics. His debate helped prove topics such as the indeterminacy of particle states, quantum entanglement, and a rather clever use of quantum entanglement known as quantum teleportation.

  3. Channel's Concurrence and Quantum Teleportation

    Institute of Scientific and Technical Information of China (English)

    LING Yin-Sheng

    2005-01-01

    Concurrence can measure the entanglement property of a system. If the channel is a pure state, positive concurrence state can afford the good performance in the teleportation process. If the channel ia a mixed state, positive concurrence state cannot assure the good performance in the teleportation. The conditions of the positive concurrence and the quantum teleportation in the Heisenberg spin ring is derived.

  4. Quantum communications: Teleportation becomes streetwise

    Science.gov (United States)

    Grosshans, Frédéric

    2016-10-01

    Quantum teleportation is at the heart of many quantum information protocols. Two teams have now performed it over several kilometres of metropolitan fibre networks, paving the way for future quantum technologies on the city scale.

  5. Quantum information. Teleportation - cryptography - quantum computer; Quanteninformation. Teleportation - Kryptografie - Quantencomputer

    Energy Technology Data Exchange (ETDEWEB)

    Koenneker, Carsten (comp.)

    2012-11-01

    The following topics are dealt with: Reality in the test facility, quantum teleportation, the reality of quanta, interaction-free quantum measurement, rules for quantum computers, quantum computers with ions, spintronics with diamond, the limits of the quantum computers, a view in the future of quantum optics. (HSI)

  6. Hybrid quantum teleportation: A theoretical model

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Shuntaro; Mizuta, Takahiro; Fuwa, Maria; Yoshikawa, Jun-ichi; Yonezawa, Hidehiro; Furusawa, Akira [Department of Applied Physics, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2014-12-04

    Hybrid quantum teleportation – continuous-variable teleportation of qubits – is a promising approach for deterministically teleporting photonic qubits. We propose how to implement it with current technology. Our theoretical model shows that faithful qubit transfer can be achieved for this teleportation by choosing an optimal gain for the teleporter’s classical channel.

  7. Quantum teleportation without classical channel

    Science.gov (United States)

    Al Amri, M.; Li, Zheng-Hong; Zubairy, M. Suhail

    2016-11-01

    For the first time, we show how quantum teleportation can be achieved without the assistance of classical channels. Our protocol does not need any pre-established entangled photon pairs beforehand. Just by utilizing quantum Zeno effect and couterfactual communication idea, we can achieve two goals; entangling a photon and an atom and also disentangling them by non-local interaction. Information is completely transferred from atom to photon with controllable disentanglement processes. More importantly, there is no need to confirm teleportation results via classical channels.

  8. Quantum teleportation of entangled squeezed vacuum states

    Institute of Scientific and Technical Information of China (English)

    蔡新华

    2003-01-01

    An optical scheme for probabilistic teleporting entangled squeezed vacuum states (SVS) is proposed. In this scheme,the teleported state is a bipartite entangled SVS,and the quantum channel is a tripartite entangled SVS.The process of the teleportation is achieved by using a 50/50 symmetric beamsplitter and photon detectors with the help of classical information.

  9. Quantum teleportation between moving detectors

    CERN Document Server

    Lin, Shih-Yuin; Hu, B L

    2015-01-01

    It is commonly believed that the fidelity of quantum teleportation using localized quantum objects with one party or both accelerated in vacuum would be degraded due to the heat-up by the Unruh effect. In this paper we point out that the Unruh effect is not the whole story in accounting for all the relativistic effects in quantum teleportation. First, there could be degradation of fidelity by a common field environment even when both quantum objects are in inertial motion. Second, relativistic effects entering the description of the dynamics such as frame dependence, time dilation, and Doppler shift, already existent in inertial motion, can compete with or even overwhelm the effect due to uniform acceleration in a quantum field. We show it is not true that larger acceleration of an object would necessarily lead to a faster degradation of fidelity. These claims are based on four cases of quantum teleportation we studied using two Unruh-DeWitt detectors coupled via a common quantum field initially in the Minkow...

  10. Quantum teleportation with continuous measurements

    Science.gov (United States)

    Greplova, Eliska; Mølmer, Klaus; Andersen, Christian Kraglund

    2016-10-01

    We propose a scheme for quantum teleportation between two qubits, coupled sequentially to a cavity field. An implementation of the scheme is analyzed with superconducting qubits and a transmission line resonator, where measurements are restricted to continuous probing of the field leaking from the resonator rather than instantaneous projective Bell state measurement. We show that the past quantum state formalism S. Gammelmark, B. Julsgaard, and K. Mølmer, Phys. Rev. Lett. 111, 160401 (2013), 10.1103/PhysRevLett.111.160401 can be successfully applied to estimate what would have been the most likely Bell measurement outcome conditioned on our continuous signal record. This information determines which local operation on the target qubit yields the optimal teleportation fidelity. Our results emphasize the significance of applying a detailed analysis of quantum measurements in feedforward protocols in nonideal leaky quantum systems.

  11. Quantum teleportation criteria for continuous variables

    CERN Document Server

    Grangier, P; Grangier, Philippe; Grosshans, Frederic

    2000-01-01

    We discuss the criteria presently used for evaluating the efficiency of quantum teleportation schemes for continuous variables. It is argued that the fidelity criterion used so far has some severe drawbacks, and that a fidelity value larger than 2/3 is actually required for successful quantum teleportation. This value has never been reached experimentally so far.

  12. Quantum teleportation of propagating quantum microwaves

    Energy Technology Data Exchange (ETDEWEB)

    Di Candia, R.; Felicetti, S.; Sanz, M. [University of the Basque Country UPV/EHU, Department of Physical Chemistry, Bilbao (Spain); Fedorov, K.G.; Menzel, E.P. [Bayerische Akademie der Wissenschaften, Walther-Meissner-Institut, Garching (Germany); Technische Universitaet Muenchen, Physik-Department, Garching (Germany); Zhong, L.; Deppe, F.; Gross, R. [Bayerische Akademie der Wissenschaften, Walther-Meissner-Institut, Garching (Germany); Technische Universitaet Muenchen, Physik-Department, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Marx, A. [Bayerische Akademie der Wissenschaften, Walther-Meissner-Institut, Garching (Germany); Solano, E. [University of the Basque Country UPV/EHU, Department of Physical Chemistry, Bilbao (Spain); Basque Foundation for Science, IKERBASQUE, Bilbao (Spain)

    2015-12-15

    Propagating quantum microwaves have been proposed and successfully implemented to generate entanglement, thereby establishing a promising platform for the realisation of a quantum communication channel. However, the implementation of quantum teleportation with photons in the microwave regime is still absent. At the same time, recent developments in the field show that this key protocol could be feasible with current technology, which would pave the way to boost the field of microwave quantum communication. Here, we discuss the feasibility of a possible implementation of microwave quantum teleportation in a realistic scenario with losses. Furthermore, we propose how to implement quantum repeaters in the microwave regime without using photodetection, a key prerequisite to achieve long distance entanglement distribution. (orig.)

  13. Teleportation of Two Quantum States via the Quantum Computation

    Institute of Scientific and Technical Information of China (English)

    FENG Mang; ZHU Xi-Wen; FANG Xi-Ming; YAN Min; SHI Lei

    2000-01-01

    A scheme of teleportation of two unknown quantum states via quantum computation is proposed. The comparison with the former proposals shows that our scheme is more in tune with the original teleportation proposal and the effciency is higher. The teleportation of an unknown entangled state is also discussed.

  14. A noise immunity controlled quantum teleportation protocol

    Science.gov (United States)

    Li, Dong-fen; Wang, Rui-jin; Zhang, Feng-li; Baagyere, Edward; Qin, Zhen; Xiong, Hu; Zhan, Huayi

    2016-08-01

    With the advent of the Internet and information and communication technology, quantum teleportation has become an important field in information security and its application areas. This is because quantum teleportation has the ability to attain a timely secret information delivery and offers unconditional security. And as such, the field of quantum teleportation has become a hot research topic in recent years. However, noise has serious effect on the safety of quantum teleportation within the aspects of information fidelity, channel capacity and information transfer. Therefore, the main purpose of this paper is to address these problems of quantum teleportation. Firstly, in order to resist collective noise, we construct a decoherence-free subspace under different noise scenarios to establish a two-dimensional fidelity quantum teleportation models. And also create quantum teleportation of multiple degree of freedom, and these models ensure the accuracy and availability of the exchange of information and in multiple degree of freedom. Secondly, for easy preparation, measurement and implementation, we use super dense coding features to build an entangled quantum secret exchange channel. To improve the channel utilization and capacity, an efficient super dense coding method based on ultra-entanglement exchange is used. Thirdly, continuous variables of the controlled quantum key distribution were designed for quantum teleportation; in addition, we perform Bell-basis measurement under the collective noise and also prepare the storage technology of quantum states to achieve one-bit key by three-photon encoding to improve its security and efficiency. We use these two methods because they conceal information, resist a third party attack and can detect eavesdropping. Our proposed methods, according to the security analysis, are able to solve the problems associated with the quantum teleportation under various noise environments.

  15. A noise immunity controlled quantum teleportation protocol

    Science.gov (United States)

    Li, Dong-fen; Wang, Rui-jin; Zhang, Feng-li; Baagyere, Edward; Qin, Zhen; Xiong, Hu; Zhan, Huayi

    2016-11-01

    With the advent of the Internet and information and communication technology, quantum teleportation has become an important field in information security and its application areas. This is because quantum teleportation has the ability to attain a timely secret information delivery and offers unconditional security. And as such, the field of quantum teleportation has become a hot research topic in recent years. However, noise has serious effect on the safety of quantum teleportation within the aspects of information fidelity, channel capacity and information transfer. Therefore, the main purpose of this paper is to address these problems of quantum teleportation. Firstly, in order to resist collective noise, we construct a decoherence-free subspace under different noise scenarios to establish a two-dimensional fidelity quantum teleportation models. And also create quantum teleportation of multiple degree of freedom, and these models ensure the accuracy and availability of the exchange of information and in multiple degree of freedom. Secondly, for easy preparation, measurement and implementation, we use super dense coding features to build an entangled quantum secret exchange channel. To improve the channel utilization and capacity, an efficient super dense coding method based on ultra-entanglement exchange is used. Thirdly, continuous variables of the controlled quantum key distribution were designed for quantum teleportation; in addition, we perform Bell-basis measurement under the collective noise and also prepare the storage technology of quantum states to achieve one-bit key by three-photon encoding to improve its security and efficiency. We use these two methods because they conceal information, resist a third party attack and can detect eavesdropping. Our proposed methods, according to the security analysis, are able to solve the problems associated with the quantum teleportation under various noise environments.

  16. Evaluating quantum teleportation of coherent states

    CERN Document Server

    Grangier, P

    2000-01-01

    By using an argument based upon EPR non-separability of the entanglement resource, it was recently argued that a fidelity value larger than 2/3 is required for successful quantum teleportation of coherent states (arXiv:quant-ph/0009079). Here we recover this same conclusion from simple considerations about information exchange during the teleportation process.

  17. Quantum logic networks for probabilistic teleportation

    Institute of Scientific and Technical Information of China (English)

    刘金明; 张永生; 郭光灿

    2003-01-01

    By means of the primitive operations consisting of single-qubit gates, two-qubit controlled-not gates, Von Neuman measurement and classically controlled operations, we construct efficient quantum logic networks for implementing probabilistic teleportation of a single qubit, atwo-particle entangled state, and an N-particle entanglement. Based on the quantum networks, we show that after the partially entangled states are concentrated into maximal entanglement,the above three kinds of probabilistic teleportation are the same as the standard teleportation using the corresponding maximally entangled states as the quantum channels.

  18. Quantum logic networks for probabilistic teleportation

    Institute of Scientific and Technical Information of China (English)

    刘金明; 张永生; 等

    2003-01-01

    By eans of the primitive operations consisting of single-qubit gates.two-qubit controlled-not gates,Von Neuman measurement and classically controlled operations.,we construct efficient quantum logic networks for implementing probabilistic teleportation of a single qubit,a two-particle entangled state,and an N-particle entanglement.Based on the quantum networks,we show that after the partially entangled states are concentrated into maximal entanglement,the above three kinds of probabilistic teleportation are the same as the standard teleportation using the corresponding maximally entangled states as the quantum channels.

  19. Teleportation of Quantum States through Mixed Entangled Pairs

    Institute of Scientific and Technical Information of China (English)

    ZHENG Shi-Biao

    2006-01-01

    @@ We describe a protocol for quantum state teleportation via mixed entangled pairs. With the help of an ancilla,near-perfect teleportation might be achieved. For pure entangled pairs, perfect teleportation might be achieved with a certain probability without using an ancilla. The protocol is generalized to teleportation of multiparticle states and quantum secret sharing.

  20. Unitary Transformation in Quantum Teleportation

    Institute of Scientific and Technical Information of China (English)

    WANG Zheng-Chuan

    2006-01-01

    In the well-known treatment of quantum teleportation, the receiver should convert the state of his EPR particle into the replica of the unknown quantum state by one of four possible unitary transformations. However, the importance of these unitary transformations must be emphasized. We will show in this paper that the receiver cannot transform the state of his particle into an exact replica of the unknown state which the sender wants to transfer if he has not a proper implementation of these unitary transformations. In the procedure of converting state, the inevitable coupling between EPR particle and environment which is needed by the implementation of unitary transformations will reduce the accuracy of the replica.

  1. Quantum teleportation over the Swisscom telecommunication network

    CERN Document Server

    Landry, O; Beveratos, A; Zbinden, H; Gisin, Nicolas; Landry, Olivier; Beveratos, Alexios; Zbinden, Hugo; Gisin, Nicolas

    2006-01-01

    We present a quantum teleportation experiment in the quantum relay configuration using the installed telecommunication network of Swisscom. In this experiment, the Bell state measurement occurs well after the entanglement has been distributed, at a point where the photon upon which data is teleported is already far away, and the entangled qubits are photons created from a different crystal and laser pulse than the teleported qubit. A raw fidelity of 0.93+/-0.04 has been achieved using a heralded single-photon source.

  2. Teleportation in an indivisible quantum system

    Directory of Open Access Journals (Sweden)

    Kiktenko E.O.

    2016-01-01

    Full Text Available Teleportation protocol is conventionally treated as a method for quantum state transfer between two spatially separated physical carriers. Recent experimental progress in manipulation with high-dimensional quantum systems opens a new framework for implementation of teleportation protocols. We show that the one-qubit teleportation can be considered as a state transfer between subspaces of the whole Hilbert space of an indivisible eight-dimensional system. We explicitly show all corresponding operations and discuss an alternative way of implementation of similar tasks.

  3. Ground-to-satellite quantum teleportation.

    Science.gov (United States)

    Ren, Ji-Gang; Xu, Ping; Yong, Hai-Lin; Zhang, Liang; Liao, Sheng-Kai; Yin, Juan; Liu, Wei-Yue; Cai, Wen-Qi; Yang, Meng; Li, Li; Yang, Kui-Xing; Han, Xuan; Yao, Yong-Qiang; Li, Ji; Wu, Hai-Yan; Wan, Song; Liu, Lei; Liu, Ding-Quan; Kuang, Yao-Wu; He, Zhi-Ping; Shang, Peng; Guo, Cheng; Zheng, Ru-Hua; Tian, Kai; Zhu, Zhen-Cai; Liu, Nai-Le; Lu, Chao-Yang; Shu, Rong; Chen, Yu-Ao; Peng, Cheng-Zhi; Wang, Jian-Yu; Pan, Jian-Wei

    2017-09-07

    An arbitrary unknown quantum state cannot be measured precisely or replicated perfectly. However, quantum teleportation enables unknown quantum states to be transferred reliably from one object to another over long distances, without physical travelling of the object itself. Long-distance teleportation is a fundamental element of protocols such as large-scale quantum networks and distributed quantum computation. But the distances over which transmission was achieved in previous teleportation experiments, which used optical fibres and terrestrial free-space channels, were limited to about 100 kilometres, owing to the photon loss of these channels. To realize a global-scale 'quantum internet' the range of quantum teleportation needs to be greatly extended. A promising way of doing so involves using satellite platforms and space-based links, which can connect two remote points on Earth with greatly reduced channel loss because most of the propagation path of the photons is in empty space. Here we report quantum teleportation of independent single-photon qubits from a ground observatory to a low-Earth-orbit satellite, through an uplink channel, over distances of up to 1,400 kilometres. To optimize the efficiency of the link and to counter the atmospheric turbulence in the uplink, we use a compact ultra-bright source of entangled photons, a narrow beam divergence and high-bandwidth and high-accuracy acquiring, pointing and tracking. We demonstrate successful quantum teleportation of six input states in mutually unbiased bases with an average fidelity of 0.80 ± 0.01, well above the optimal state-estimation fidelity on a single copy of a qubit (the classical limit). Our demonstration of a ground-to-satellite uplink for reliable and ultra-long-distance quantum teleportation is an essential step towards a global-scale quantum internet.

  4. Optimal conclusive teleportation of quantum states

    CERN Document Server

    Roa, L; Fuentes-Guridi, I

    2003-01-01

    Quantum teleportation of qudits is revisited. In particular, we analyze the case where the quantum channel corresponds to a non-maximally entangled state and show that the success of the protocol is directly related to the problem of distinguishing non-orthogonal quantum states. The teleportation channel can be seen as a coherent superposition of two channels, one of them being a maximally entangled state thus, leading to perfect teleportation and the other, corresponding to a non-maximally entangled state living in a subspace of the d-dimensional Hilbert space. The second channel leads to a teleported state with reduced fidelity. We calculate the average fidelity of the process and show its optimality.

  5. Canonical Quantum Teleportation of Two-Particle Arbitrary State

    Institute of Scientific and Technical Information of China (English)

    HAO Xiang; ZHU Shi-Qun

    2005-01-01

    The canonical quantum teleportation of two-particle arbitrary state is realized by means of phase operator and number operator. The maximally entangled eigenstates between the difference of phase operators and the sum of number operators are considered as the quantum channels. In contrast to the standard quantum teleportation, the different unitary local operation of canonical teleportation can be simplified by a general expression.

  6. Quantum remote control Teleportation of unitary operations

    CERN Document Server

    Huelga, S F; Chefles, A; Plenio, M B

    2001-01-01

    We consider the implementation of an unknown arbitrary unitary operation U upon a distant quantum system. This teleportation of U can be viewed as a quantum remote control. We investigate the protocols which achieve this using local operations, classical communication and shared entanglement (LOCCSE). Lower bounds on the necessary entanglement and classical communication are determined using causality and the linearity of quantum mechanics. We examine in particular detail the resources required if the remote control is to be implemented as a classical black box. Under these circumstances, we prove that the required resources are, necessarily, those needed for implementation by bidirectional state teleportation.

  7. Quantum entanglement and teleportation using statistical correlations

    Indian Academy of Sciences (India)

    Atul Kumar; Mangala Sunder Krishnan

    2009-09-01

    A study of quantum teleportation using two and three-particle correlated density matrix is presented. A criterion based on standard quantum statistical correlations employed in the many-body virial expansion is used to determine the extent of entanglement for a 2-particle system. A relation between the probability and statistical parameters is established using the correlated density matrices for the particles.

  8. Teleportation of the Relativistic Quantum Field

    CERN Document Server

    Laiho, R; Nazin, S S

    2000-01-01

    The process of teleportation of a completely unknown one-particle state of a free relativistic quantum field is considered. In contrast to the non-relativistic quantum mechanics, the teleportation of an unknown state of the quantum field cannot be in principle described in terms of a measurement in a tensor product of two Hilbert spaces to which the unknown state and the state of the EPR-pair belong. The reason is of the existence of a cyclic (vacuum) state common to both the unknown state and the EPR-pair. Due to the common vacuum vector and the microcausality principle (commutation relations for the field operators), the teleportation amplitude contains inevitably contributions which are irrelevant to the teleportation process. Hence in the relativistic theory the teleportation in the sense it is understood in the non-relativistic quantum mechanics proves to be impossible because of the impossibility of the realization of the appropriate measurement as a tensor product of the measurements related to the ind...

  9. Towards Holographic Quantum Energy Teleportation

    CERN Document Server

    Giataganas, Dimitrios; Liu, Pei-Hua

    2016-01-01

    We propose a protocol of quantum energy teleportation (QET) for holographic conformal field theory (CFT) in 3-dimensional anti-de Sitter space with or without black hole. A generic QET protocol contains two steps: (i) Alice injects the energy into ground state by performing local measurement; (ii) the distant Bob extracts energy by performing local operation according to Alice's measurement outcome. In our holographic protocol, we mimic the step (i) by local projection of an interval of CFT ground state into an excited state described by Banados geometry. For the step (ii) we adopt the surface/state duality to evaluate the energy extraction by local deformation of UV surface as the holographic dual of Bob's local unitary operations. Our results show that this protocol always gains energy extraction. Moreover, the ratio of Bob's extraction energy density to the energy density of the excited state after Alice's local projection is a positive semi-definite and bounded function of the UV surface deformation profi...

  10. Controlled quantum teleportation and secure direct communication

    Institute of Scientific and Technical Information of China (English)

    Gao Ting; Yan Feng-Li; Wang Zhi-Xi

    2005-01-01

    We present a controlled quantum teleportation protocol. In the protocol, quantum information of an unknown state of a 2-level particle is faithfully transmitted from a sender Alice to a remote receiver Bob via an initially shared triplet of entangled particles under the control of the supervisor Charlie. The distributed entangled particles shared by Alice, Bob and Charlie function as a quantum information channel for faithful transmission. We also propose a controlled and secure direct communication scheme by means of this teleportation. After ensuring the security of the quantum channel, Alice encodes the secret message directly on a sequence of particle states and transmits them to Bob supervised by Charlie using this controlled quantum teleportation. Bob can read out the encoded message directly by the measurement on his qubit. In this scheme, the controlled quantum teleportation transmits Alice's message without revealing any information to a potential eavesdropper. Because there is not a transmission of the qubit carrying the secret message between Alice and Bob in the public channel, it is completely secure for controlled and direct secret communication if perfect quantum channel is used. The special feature of this scheme is that the communication between two sides depends on the agreement of a third side to co-operate.

  11. Teleportations of Mixed States and Multipartite Quantum States

    Institute of Scientific and Technical Information of China (English)

    YU Chang-Shui; WANG Ya-Hong; SONG He-Shan

    2007-01-01

    In this paper, we propose a protocol to deterministically teleport an unknown mixed state of qubit by utilizing a maximally bipartite entangled state of qubits as quantum channel. Ifa non-maximally entangled bipartite pure state is employed as quantum channel, the unknown mixed quantum state of qubit can be teleported with 1 - √1 - C2 probability, where C is the concurrence of the quantum channel. The protocol can also be generalized to teleport a mixed state of qudit or a multipartite mixed state. More important purpose is that, on the basis of the protocol, the teleportation of an arbitrary multipartite (pure or mixed) quantum state can be decomposed into the teleportation of each subsystem by employing separate entangled states as quantum channels. In the case of deterministic teleportation,Bob only needs to perform unitary transformations on his single particles in order to recover the initial teleported multipartite quantum state.

  12. Tight Reference Frame–Independent Quantum Teleportation

    Directory of Open Access Journals (Sweden)

    Dominic Verdon

    2017-01-01

    Full Text Available We give a tight scheme for teleporting a quantum state between two parties whose reference frames are misaligned by an action of a finite symmetry group. Unlike previously proposed schemes, ours requires no additional tokens or data to be passed between the participants; the same amount of classical information is transferred as for ordinary quantum teleportation, and the Hilbert space of the entangled resource is of the same size. In the terminology of Peres and Scudo, our protocol relies on classical communication of unspeakable information.

  13. Quantum Teleportation circuit using Matlab and Mathematica

    Directory of Open Access Journals (Sweden)

    Ms.Swati Sharma,

    2010-08-01

    Full Text Available This Paper describes a basic Quantum Teleportation circuit using mat lab Qlib tool. Teleportation is a new and exciting field of future communication. We know that security in data communication is a major concern nowadays. Among the encryption technologies that are available at present, shared key is the most reliable which depends on secure key generation and distribution. Teleportation/ ntanglement is a perfect solution for secure key generation and distribution, as for the no cloning theorem of quantum mechanics any attempt to intercept the key by the eavesdropper will be detectable immediately. A program is simulated with successful simulation which give successful transfer of random qubit to output and which governs perfect communication between Alice and Bob.

  14. Quantum teleportation between remote atomic-ensemble quantum memories

    CERN Document Server

    Bao, Xiao-Hui; Li, Che-Ming; Yuan, Zhen-Sheng; Lu, Chao-Yang; Pan, Jian-Wei

    2012-01-01

    Quantum teleportation and quantum memory are two crucial elements for large-scale quantum networks. With the help of prior distributed entanglement as a "quantum channel", quantum teleportation provides an intriguing means to faithfully transfer quantum states among distant locations without actual transmission of the physical carriers. Quantum memory enables controlled storage and retrieval of fast-flying photonic quantum bits with stationary matter systems, which is essential to achieve the scalability required for large-scale quantum networks. Combining these two capabilities, here we realize quantum teleportation between two remote atomic-ensemble quantum memory nodes, each composed of 100 million rubidium atoms and connected by a 150-meter optical fiber. The spinwave state of one atomic ensemble is mapped to a propagating photon, and subjected to Bell-state measurements with another single photon that is entangled with the spinwave state of the other ensemble. Two-photon detection events herald the succe...

  15. Quantum teleportation across a metropolitan fibre network

    Science.gov (United States)

    Valivarthi, Raju; Puigibert, Marcel. Li Grimau; Zhou, Qiang; Aguilar, Gabriel H.; Verma, Varun B.; Marsili, Francesco; Shaw, Matthew D.; Nam, Sae Woo; Oblak, Daniel; Tittel, Wolfgang

    2016-10-01

    If a photon interacts with a member of an entangled photon pair via a Bell-state measurement (BSM), its state is teleported over principally arbitrary distances onto the pair's second member. Since 1997, this puzzling prediction of quantum mechanics has been demonstrated many times. However, with two exceptions, only the photon that received the teleported state, if any, travelled far, while the photons partaking in the BSM were always measured close to where they were created. Here, using the Calgary fibre network, we report quantum teleportation from a telecom photon at 1,532 nm wavelength, interacting with another telecom photon after both have travelled several kilometres and over a combined beeline distance of 8.2 km, onto a photon at 795 nm wavelength. This improves the distance over which teleportation takes place to 6.2 km. Our demonstration establishes an important requirement for quantum repeater-based communications and constitutes a milestone towards a global quantum internet.

  16. Relativistic Quantum Teleportation with superconducting circuits

    CERN Document Server

    Friis, Nicolai; Truong, Kevin; Sabín, Carlos; Solano, Enrique; Johansson, Göran; Fuentes, Ivette

    2012-01-01

    We study the effects of relativistic motion on quantum teleportation and propose a realizable experiment where our results can be tested. We compute bounds on the optimal fidelity of teleportation when one of the observers undergoes non-uniform motion for a finite time. The upper bound to the optimal fidelity is degraded due to the observer's motion however, we discuss how this degradation can be corrected. These effects are observable for experimental parameters that are within reach of cutting-edge superconducting technology.

  17. Quantum teleportation between moving detectors in a quantum field

    CERN Document Server

    Lin, Shih-Yuin; Chou, Chung-Hsien; Hu, B L

    2012-01-01

    We consider the quantum teleportation of continuous variables modeled by Unruh-DeWitt detectors coupled to a common quantum field initially in the Minkowski vacuum. An unknown coherent state of an Unruh-DeWitt detector is teleported from one inertial agent (Alice) to an almost uniformly accelerated agent (Rob, for relativistic motion), using a detector pair initially entangled and shared by these two agents. The averaged physical fidelity of quantum teleportation, which is independent of the observer's frame, always drops below the best fidelity value from classical teleportation before the detector pair becomes disentangled with the measure of entanglement evaluated around the future lightcone of the joint measurement event by Alice. The distortion of the quantum state of the entangled detector pair from the initial state can suppress the fidelity significantly even when the detectors are still strongly entangled around the lightcone. We point out that the dynamics of entanglement of the detector pair observ...

  18. Quantum teleportation of nonclassical wave packets: An effective multimode theory

    Energy Technology Data Exchange (ETDEWEB)

    Benichi, Hugo; Takeda, Shuntaro; Lee, Noriyuki; Furusawa, Akira [Department of Applied Physics, University of Tokyo, Tokyo (Japan)

    2011-07-15

    We develop a simple and efficient theoretical model to understand the quantum properties of broadband continuous variable quantum teleportation. We show that, if stated properly, the problem of multimode teleportation can be simplified to teleportation of a single effective mode that describes the input state temporal characteristic. Using that model, we show how the finite bandwidth of squeezing and external noise in the classical channel affect the output teleported quantum field. We choose an approach that is especially relevant for the case of non-Gaussian nonclassical quantum states and we finally back-test our model with recent experimental results.

  19. Entanglement fidelity of the standard quantum teleportation channel

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gang; Ye, Ming-Yong, E-mail: myye@fjnu.edu.cn; Lin, Xiu-Min

    2013-09-16

    We consider the standard quantum teleportation protocol where a general bipartite state is used as entanglement resource. We use the entanglement fidelity to describe how well the standard quantum teleportation channel transmits quantum entanglement and give a simple expression for the entanglement fidelity when it is averaged on all input states.

  20. Quantum energy teleportation in a quantum Hall system

    Energy Technology Data Exchange (ETDEWEB)

    Yusa, Go; Izumida, Wataru; Hotta, Masahiro [Department of Physics, Tohoku University, Sendai 980-8578 (Japan)

    2011-09-15

    We propose an experimental method for a quantum protocol termed quantum energy teleportation (QET), which allows energy transportation to a remote location without physical carriers. Using a quantum Hall system as a realistic model, we discuss the physical significance of QET and estimate the order of energy gain using reasonable experimental parameters.

  1. Asymptotic teleportation scheme as a universal programmable quantum processor.

    Science.gov (United States)

    Ishizaka, Satoshi; Hiroshima, Tohya

    2008-12-12

    We consider a scheme of quantum teleportation where a receiver has multiple (N) output ports and obtains the teleported state by merely selecting one of the N ports according to the outcome of the sender's measurement. We demonstrate that such teleportation is possible by showing an explicit protocol where N pairs of maximally entangled qubits are employed. The optimal measurement performed by a sender is the square-root measurement, and a perfect teleportation fidelity is asymptotically achieved for a large N limit. Such asymptotic teleportation can be utilized as a universal programmable processor.

  2. Unidirectional Quantum Remote Control:Teleportation of Control-State

    Institute of Scientific and Technical Information of China (English)

    ZHENG Yi-Zhuang; GU Yong-Jian; WU Gui-Chu; GUO Guang-Can

    2003-01-01

    We investigate the problem of teleportation of unitary operations by unidirectional control-state telepor-tation and propose a scheme called unidirectional quantum remote control. The scheme is based on the isomorphismbetween operation and state. It allows us to store a unitary operation in a control state, thereby teleportation of theunitary operation can be implemented by unidirectional teleportation of the control-state. We find that the probabilityof success for implementing an arbitrary unitary operation on arbitrary M-qubit state by unidirectional control-stateteleportation is 4-M, and 2M ebits and 4M cbits are consumed in each teleportation.

  3. Continuous-variable quantum teleportation in bosonic structured environments

    Energy Technology Data Exchange (ETDEWEB)

    He Guangqiang; Zhang Jingtao; Zhu Jun; Zeng Guihua [State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiaotong University, Shanghai 200240 (China)

    2011-09-15

    The effects of dynamics of continuous-variable entanglement under the various kinds of environments on quantum teleportation are quantitatively investigated. Only under assumption of the weak system-reservoir interaction, the evolution of teleportation fidelity is analytically derived and is numerically plotted in terms of environment parameters including reservoir temperature and its spectral density, without Markovian and rotating wave approximations. We find that the fidelity of teleportation is a monotonically decreasing function for Markovian interaction in Ohmic-like environments, while it oscillates for non-Markovian ones. According to the dynamical laws of teleportation, teleportation with better performances can be implemented by selecting the appropriate time.

  4. Information flow in quantum teleportation

    Indian Academy of Sciences (India)

    Andrew Whitaker

    2002-08-01

    The flow of information is discussed in the context of quantum teleportation. Situations are described which use a sequence of systems of particles in which, though there is no claim of faster-than-light signaling, it is plausible to suggest that information about measurement procedures in one wing of the apparatus does reach the other end in a non-local manner. The definition of the term ’parameter dependence’ is discussed.

  5. Multi-state Quantum Teleportation via One Entanglement State

    Institute of Scientific and Technical Information of China (English)

    GUO Ying; ZENG Gui-Hua; Moon Ho Lee

    2008-01-01

    A multi-sender-controlled quantum teleportation scheme is proposed to teleport several secret quan-tum states from different senders to a distance receiver based on only one Einstein-Podolsky-Rosen (EPR) pair with controlled-NOT (CNOT) gates. In the present scheme, several secret single-qubit quantum states are encoded into a multi-qubit entangled quantum state. Two communication modes, i.e., the detecting mode and the message mode, are employed so that the eavesdropping can be detected easily and the teleported message may be recovered efficiently. It has an advantage over teleporting several different quantum states for one scheme run with more efficiency than the previous quantum teleportation schemes.

  6. An Overview of Quantum Teleportation for the Intelligence Community

    Energy Technology Data Exchange (ETDEWEB)

    Humble, Travis S [ORNL

    2007-01-01

    Quantum teleportation is a communication protocol for the exchange of information between remotely separated parties. We survey some prominent applications of quantum teleportation that show potential for collecting and analyzing intelligence. In addition to a background review of the underlying principles, we highlight the use of quantum teleportation in quantum key distribution, long-distance quantum communication networks, and quantum computing. The latter applications are significant for the Intelligence Community as they show promise for cracking conventional public-key encryption systems and providing alternate key distribution systems that are secure against attack.

  7. Quantum state transfer between light and matter via teleportation

    DEFF Research Database (Denmark)

    Krauter, Hanna; Sherson, Jacob; Polzik, Eugene Simon

    2010-01-01

    Quantum teleportation is an interesting feature of quantum mechanics. Entanglement is used as a link between two remote locations to transfer a quantum state without physically sending it - a process that cannot be realized utilizing merely classical tools. Furthermore it has become evident...... that teleportation is also an important element of future quantum networks and it can be an ingredient for quantum computation. This article reports for the first time the teleportation from light to atoms. In the experiment discussed, the quantum state of a light beam is transferred to an atomic ensemble. The key...

  8. Quantum Teleportation of a Three-Particle Entangled State

    Institute of Scientific and Technical Information of China (English)

    刘金明; 郭光灿

    2002-01-01

    We present a scheme for teleporting a three-particle entangled state to three remote particles. In this scheme, three pairs of pure nonmaximally entangled states are considered as quantum channels. It is found that by means of optimal discrimination between two nonorthogonal quantum states, probabilistic teleportation of the three-particle entangled state can be achieved.

  9. Quantum teleportation of one- and two-photon superposition states

    Institute of Scientific and Technical Information of China (English)

    李英; 张天才; 张俊香; 谢常德

    2003-01-01

    Quantum teleportation of one- and two-photon superposition states based on EPR entanglement of continuouswave two-mode squeezed state is discussed. The fidelities of teleportation are deduced for two different input quantum states. The dependence of the fidelity on the parameters of EPR entanglement and the gain of the classical channels are shown numerically. Comparing with the teleportation of Fock state and coherent state, it is pointed out that for given EPR entanglement and classical gain, the higher the nonclassicality of the input state, the lower the accessible fidelity of teleportation.

  10. Unidirectional Quantum Remote Control: Teleportation of Control-State

    Institute of Scientific and Technical Information of China (English)

    ZHENGYi-Zhuang; GUYong-Jian; WUGui-Chu; GUOGuang-Can

    2003-01-01

    We investigate the problem of teleportation of unitary operations by unidirectional control-state telepor-ration and propose a scheme called unidirectional quantum remote control. The scheme is based on the isomorphism between operation and state. It allows us to store a unitary operation in a control state, thereby teleportatSon of the unitary operation can be implemented by unidirectional teleportation of the control-state. We find that the probability of success for implementing an arbitrary unitary operation on arbitrary A~-qubit state by unidirectional control-state teleportation is 4-M, and 2M ebits and 4M cbits are consumed in each teleportation.

  11. Continuous-variable quantum identity authentication based on quantum teleportation

    Science.gov (United States)

    Ma, Hongxin; Huang, Peng; Bao, Wansu; Zeng, Guihua

    2016-06-01

    A continuous-variable quantum identity authentication protocol, which is based on quantum teleportation, is presented by employing two-mode squeezed vacuum state and coherent state. The proposed protocol can verify user's identity efficiently with a new defined fidelity parameter. Update of authentication key can also be implemented in our protocol. Moreover, the analysis shows its feasibility and security under the general Gaussian-cloner attack on authentication key, which is guaranteed by quantum entanglement, insertion of decoy state and random displacement.

  12. Quantum Teleportation of Tripartite Arbitrary State via W State

    Institute of Scientific and Technical Information of China (English)

    XUE Zheng-Yuan; YI You-Min; CAO Zhuo-Liang

    2005-01-01

    A scheme of teleportation of a tripartite state via W state is suggested. The W state serves as quantum channels. Standard Bell-state measurements and Von Neumann measurements are performed. After the sender operates the measurements and informs the receiver her results, he can reconstruct the original state by the corresponding unitary transformation. The probability of the successful teleportation is also obtained.

  13. Quantum teleportation and Birman-Murakami-Wenzl algebra

    Science.gov (United States)

    Zhang, Kun; Zhang, Yong

    2017-02-01

    In this paper, we investigate the relationship of quantum teleportation in quantum information science and the Birman-Murakami-Wenzl (BMW) algebra in low-dimensional topology. For simplicity, we focus on the two spin-1/2 representation of the BMW algebra, which is generated by both the Temperley-Lieb projector and the Yang-Baxter gate. We describe quantum teleportation using the Temperley-Lieb projector and the Yang-Baxter gate, respectively, and study teleportation-based quantum computation using the Yang-Baxter gate. On the other hand, we exploit the extended Temperley-Lieb diagrammatical approach to clearly show that the tangle relations of the BMW algebra have a natural interpretation of quantum teleportation. Inspired by this interpretation, we construct a general representation of the tangle relations of the BMW algebra and obtain interesting representations of the BMW algebra. Therefore, our research sheds a light on a link between quantum information science and low-dimensional topology.

  14. Probabilistic Teleportation via Quantum Channel with Partial Information

    Directory of Open Access Journals (Sweden)

    Desheng Liu

    2015-06-01

    Full Text Available Two novel schemes are proposed to teleport an unknown two-level quantum state probabilistically when the sender and the receiver only have partial information about the quantum channel, respectively. This is distinct from the fact that either the sender or the receiver has entire information about the quantum channel in previous schemes for probabilistic teleportation. Theoretical analysis proves that these schemes are straightforward, efficient and cost-saving. The concrete realization procedures of our schemes are presented in detail, and the result shows that our proposals could extend the application range of probabilistic teleportation.

  15. Controlled Teleportation of Multi-Qudit Quantum Information

    Institute of Scientific and Technical Information of China (English)

    JI Hua; ZHAN Xiao-Gui; ZENG Hao-Sheng

    2007-01-01

    We present a controlled teleportation scheme for teleporting an arbitrary superposition state of an M-qudit quantum system. The scheme employs only one entangled state as quantum channel, which consists of the qudits from Alice, Bob and every agent. The quantum operations used in the teleportation process are a series of qudit Bell measurements, single-qudit projective measurements, qudit H-gates, qudit-Pauli gates and qudit phase gates. It is shown that the original state can be restored by the receiver only on the condition that all the agents collaborate. If any agent does not cooperate, the original state can not be fully recovered.

  16. Teleported State and its Fidelity in Quantum Teleportation of Continuous Variables

    Institute of Scientific and Technical Information of China (English)

    LI Fu-Li; LI Hong-Rong; ZHANG Jun-Xiang; ZHU Shi-Yao

    2003-01-01

    When given an unknown quantum state which may be either a pure or a mixed state in the coherent state representation, we show that explicit expressions for the teleported state and its fidelity in the teleportation process (S. L. Braunstein and H. J. Kimble 1998 Phys. Rev. Lett. 80 869) can be obtained without explicit expansions for the two-mode squeezed vacuum state and the Bell basis in a specified representation.

  17. Quantum Teleportation with an Accelerated Observer and Black Hole Information

    CERN Document Server

    Shiokawa, K

    2009-01-01

    Nonperturbative analysis of quantum entanglement and quantum teleportation protocol using oscillator variables carried by observers in relativistic motion under the continuous influence of the environment is given. The full time evolution of quantum entanglement among static and accelerated observers is studied. The environment plays a dual role. While it creates bipartite and tripartite entanglement among observers even when the initial state is separable, it suppresses the entanglement via decoherence. Motivated by the black hole information problem, we consider quantum teleportation between static and accelerated observers. Acceleration of the observer suppresses fidelity of teleportation. Some of the quantum information escapes outside of the horizon in the form of bipartite and tripartite entanglement during the teleportation process. Explicit calculation of information loss is provided. In addition to the loss due to the interaction with the environment, there is an intrinsic loss originated in a measur...

  18. Teleportation-based continuous variable quantum cryptography

    Science.gov (United States)

    Luiz, F. S.; Rigolin, Gustavo

    2017-03-01

    We present a continuous variable (CV) quantum key distribution (QKD) scheme based on the CV quantum teleportation of coherent states that yields a raw secret key made up of discrete variables for both Alice and Bob. This protocol preserves the efficient detection schemes of current CV technology (no single-photon detection techniques) and, at the same time, has efficient error correction and privacy amplification schemes due to the binary modulation of the key. We show that for a certain type of incoherent attack, it is secure for almost any value of the transmittance of the optical line used by Alice to share entangled two-mode squeezed states with Bob (no 3 dB or 50% loss limitation characteristic of beam splitting attacks). The present CVQKD protocol works deterministically (no postselection needed) with efficient direct reconciliation techniques (no reverse reconciliation) in order to generate a secure key and beyond the 50% loss case at the incoherent attack level.

  19. Quantum teleportation over 143 kilometres using active feed-forward.

    Science.gov (United States)

    Ma, Xiao-Song; Herbst, Thomas; Scheidl, Thomas; Wang, Daqing; Kropatschek, Sebastian; Naylor, William; Wittmann, Bernhard; Mech, Alexandra; Kofler, Johannes; Anisimova, Elena; Makarov, Vadim; Jennewein, Thomas; Ursin, Rupert; Zeilinger, Anton

    2012-09-13

    The quantum internet is predicted to be the next-generation information processing platform, promising secure communication and an exponential speed-up in distributed computation. The distribution of single qubits over large distances via quantum teleportation is a key ingredient for realizing such a global platform. By using quantum teleportation, unknown quantum states can be transferred over arbitrary distances to a party whose location is unknown. Since the first experimental demonstrations of quantum teleportation of independent external qubits, an internal qubit and squeezed states, researchers have progressively extended the communication distance. Usually this occurs without active feed-forward of the classical Bell-state measurement result, which is an essential ingredient in future applications such as communication between quantum computers. The benchmark for a global quantum internet is quantum teleportation of independent qubits over a free-space link whose attenuation corresponds to the path between a satellite and a ground station. Here we report such an experiment, using active feed-forward in real time. The experiment uses two free-space optical links, quantum and classical, over 143 kilometres between the two Canary Islands of La Palma and Tenerife. To achieve this, we combine advanced techniques involving a frequency-uncorrelated polarization-entangled photon pair source, ultra-low-noise single-photon detectors and entanglement-assisted clock synchronization. The average teleported state fidelity is well beyond the classical limit of two-thirds. Furthermore, we confirm the quality of the quantum teleportation procedure without feed-forward by complete quantum process tomography. Our experiment verifies the maturity and applicability of such technologies in real-world scenarios, in particular for future satellite-based quantum teleportation.

  20. Entanglement diversion and quantum teleportation of entangled coherent states

    Institute of Scientific and Technical Information of China (English)

    Cai Xin-Hua; Guo Jie-Rong; Nie Jian-Jun; Jia Jin-Ping

    2006-01-01

    The proposals on entanglement diversion and quantum teleportation of entangled coherent states are presented.In these proposals,the entanglement between two coherent states,|α〉and |-α〉,with the same amplitude but a phase difference of π is utilized as a quantum channel.The processes of the entanglement diversion and the teleportation are achieved by using the 5050 symmetric beam splitters,the phase shifters and the photodetectors with the help of classical information.

  1. A group signature scheme based on quantum teleportation

    Energy Technology Data Exchange (ETDEWEB)

    Wen Xiaojun; Tian Yuan; Ji Liping; Niu Xiamu, E-mail: wxjun36@gmail.co [Information Countermeasure Technique Research Institute, Harbin Institute of Technology, Harbin 150001 (China)

    2010-05-01

    In this paper, we present a group signature scheme using quantum teleportation. Different from classical group signature and current quantum signature schemes, which could only deliver either group signature or unconditional security, our scheme guarantees both by adopting quantum key preparation, quantum encryption algorithm and quantum teleportation. Security analysis proved that our scheme has the characteristics of group signature, non-counterfeit, non-disavowal, blindness and traceability. Our quantum group signature scheme has a foreseeable application in the e-payment system, e-government, e-business, etc.

  2. Multiplexed CV quantum teleportation for high rates in quantum communication

    CERN Document Server

    Christ, Andreas; Silberhorn, Christine

    2012-01-01

    A major challenge of today's quantum communication systems lies in the transmission of quantum information with high rates over long distances in the presence of unavoidable losses. Thereby the achievable quantum communication rate is fundamentally limited by the amount of energy that can be transmitted per use of the channel. It is hence vital to develop quantum communication protocols which encode quantum information as energy efficiently as possible. To this aim we investigate continuous-variable quantum teleportation as a method of distributing quantum information. We explore the possibility to encode information on multiple optical modes and derive upper and lower bounds on the achievable quantum channel capacities. This analysis enables us to benchmark single-mode vs. multi-mode entanglement resources. Our research reveals that multiplexing does not only feature an enhanced energy efficiency, significantly increasing the achievable quantum communication rates in comparison to single-mode coding, but als...

  3. Quantum teleportation with a quantum dot single photon source.

    Science.gov (United States)

    Fattal, D; Diamanti, E; Inoue, K; Yamamoto, Y

    2004-01-23

    We report the experimental demonstration of a quantum teleportation protocol with a semiconductor single photon source. Two qubits, a target and an ancilla, each defined by a single photon occupying two optical modes (dual-rail qubit), were generated independently by the single photon source. Upon measurement of two modes from different qubits and postselection, the state of the two remaining modes was found to reproduce the state of the target qubit. In particular, the coherence between the target qubit modes was transferred to the output modes to a large extent. The observed fidelity is 80%, in agreement with the residual distinguishability between consecutive photons from the source. An improved version of this teleportation scheme using more ancillas is the building block of the recent Knill, Laflamme, and Milburn proposal for efficient linear optics quantum computation.

  4. Opportunistic quantum network coding based on quantum teleportation

    Science.gov (United States)

    Shang, Tao; Du, Gang; Liu, Jian-wei

    2016-04-01

    It seems impossible to endow opportunistic characteristic to quantum network on the basis that quantum channel cannot be overheard without disturbance. In this paper, we propose an opportunistic quantum network coding scheme by taking full advantage of channel characteristic of quantum teleportation. Concretely, it utilizes quantum channel for secure transmission of quantum states and can detect eavesdroppers by means of quantum channel verification. What is more, it utilizes classical channel for both opportunistic listening to neighbor states and opportunistic coding by broadcasting measurement outcome. Analysis results show that our scheme can reduce the times of transmissions over classical channels for relay nodes and can effectively defend against classical passive attack and quantum active attack.

  5. Entanglement and quantum teleportation via decohered tripartite entangled states

    Energy Technology Data Exchange (ETDEWEB)

    Metwally, N., E-mail: nmohamed31@gmail.com

    2014-12-15

    The entanglement behavior of two classes of multi-qubit system, GHZ and GHZ like states passing through a generalized amplitude damping channel is discussed. Despite this channel causes degradation of the entangled properties and consequently their abilities to perform quantum teleportation, one can always improve the lower values of the entanglement and the fidelity of the teleported state by controlling on Bell measurements, analyzer angle and channel’s strength. Using GHZ-like state within a generalized amplitude damping channel is much better than using the normal GHZ-state, where the decay rate of entanglement and the fidelity of the teleported states are smaller than those depicted for GHZ state.

  6. Unity gain and non-unity gain quantum teleportation

    CERN Document Server

    Bowen, W P; Buchler, B C; Schnabel, R; Ralph, T C; Symul, T; Lam, P K

    2003-01-01

    We investigate continuous variable quantum teleportation. We discuss the methods presently used to characterize teleportation in this regime, and propose an extension of the measures proposed by Grangier and Grosshans \\cite{Grangier00}, and Ralph and Lam \\cite{Ralph98}. This new measure, the gain normalized conditional variance product $\\mathcal{M}$, turns out to be highly significant for continuous variable entanglement swapping procedures, which we examine using a necessary and sufficient criterion for entanglement. We elaborate on our recent experimental continuous variable quantum teleportation results \\cite{Bowen03}, demonstrating success over a wide range of teleportation gains. We analyze our results using fidelity; signal transfer, and the conditional variance product; and a measure derived in this paper, the gain normalized conditional variance product.

  7. Quantum teleportation and Kerr-Newman spacetime

    Institute of Scientific and Technical Information of China (English)

    Ge Xian-Hui; Shen You-Gen

    2005-01-01

    We consider the teleportation in the background of Kerr-Newman spacetime. Because of the Hawking effect, the fidelity of the teleportation is reduced. The results also show the fidelity is closely related to the mass, charge and rotating velocity of the black hole: high fidelity can be reached for massive, slowly rotating Kerr-Newman black holes.

  8. Optimal path for a quantum teleportation protocol in entangled networks

    Science.gov (United States)

    di Franco, C.; Ballester, D.

    2012-01-01

    Bellman's optimality principle has been of enormous importance in the development of whole branches of applied mathematics, computer science, optimal control theory, economics, decision making, and classical physics. Examples are numerous: dynamic programming, Markov chains, stochastic dynamics, calculus of variations, and the brachistochrone problem. Here we show that Bellman's optimality principle is violated in a teleportation problem on a quantum network. This implies that finding the optimal fidelity route for teleporting a quantum state between two distant nodes on a quantum network with bipartite entanglement will be a tough problem and will require further investigation.

  9. Quantum Energy Teleportation with Trapped Ions

    CERN Document Server

    Hotta, Masahiro

    2009-01-01

    We analyze a protocol of quantum energy teleportation that transports energy from the left edge of a linear ion crystal to the right edge by local operations and classical communication at a speed much higher than the speed of the phonon in the crystal. A probe qubit is strongly coupled with the phonon fluctuation in the ground state during short time and is projectively measured in order to get information about this phonon fluctuation. During the measurement process, phonons are excited by the time-dependent measurement interaction and energy of the excited phonons must be infused from outside the system. The obtained information is announced to the right edge of the crystal through a classical channel. Even though the phonons excited at the left edge do not arrive at the right edge yet when the information arrives at the right edge, we are able to soon extract energy from the ion at the right edge by using the announced information. Because the intermediate ions of the crystal are not excited during the ex...

  10. Quantum Standard Teleportation Based on the Generic Measurement Bases

    Institute of Scientific and Technical Information of China (English)

    HAO San-Ru; HOU Bo-Yu; XI Xiao-Qiang; YUE Rui-Hong

    2003-01-01

    We study the quantum standard teleportation based on the generic measurement bases. It is shown that the quantum standard teleportation does not depend on the explicit expression of the measurement bases. We have giventhe correspondence relation between the measurement performed by Alice and the unitary transformation performed byBob. We also prove that the single particle unknown states and the two-particle unknown cat-like states can be exactlytransmitted by means of the generic measurement bases and the correspondence unitary transformations.

  11. Quantum Standard Teleportation Based on the Generic Measurement Bases

    Institute of Scientific and Technical Information of China (English)

    HAOSan-Ru; HOUBo-Yu; XIXiao-Qiang; YUERui-Hong

    2003-01-01

    We study the quantum standard teleportation based on the generic measurement bases. It is shown that the quantum standard teleportation does not depend on the explicit expression of the measurement bases. We have given the correspondence relation between the measurement performed by Alice and the unitary transformation performed by Bob. We also prove that the single particle unknown states and the two-particle unknown cat-like states can be exactly transmitted by means of the generic measurement bases and the correspondence unitary transformations.

  12. Quantum teleportation by entanglement swapping with trapped ions

    Institute of Scientific and Technical Information of China (English)

    Zheng Xiao-Juan; Fang Mao-Fa; Cai Jian-Wu; Liao Xiang-Ping

    2006-01-01

    An effective teleportation scheme for an unknown ionic internal state via trapped ions is proposed without joint Bell-state measurement (BSM). In the constructed quantum channel process, we make use of entanglement swapping to avoid decrease in entanglement during the distributing of particles. Thus our scheme provides new prospects for quantum teleportation in a longer distance. The distinct advantage of our scheme is insensitive to the heating of vibrational mode. Furthermore, our scheme has no any individual optical access, and the successful probability also can reach 1.

  13. Network Coding-Based Communications via the Controlled Quantum Teleportation

    Directory of Open Access Journals (Sweden)

    Ying Guo

    2013-02-01

    Full Text Available Inspired by the structure of the network coding over the butterfly network, a framework of quantum network coding scheme is investigated, which transmits two unknown quantum states crossly over the butterfly quantum system with the multi-photon non-maximally entangled GHZ states. In this scheme, it contains certain number of entanglement-qubit source nodes that teleport unknown quantum states to other nodes on the small-scale network where each intermediate node can pass on its received quantum states to others via superdense coding. In order to transmit the unknown states in a deterministic way, the controlled quantum teleportation is adopted on the intermediate node. It makes legal nodes more convenient than any other previous teleportation schemes to transmit unknown quantum states to unknown participants in applications. It shows that the intrinsic efficiency of transmissions approaches 100% in principle. This scheme is secure based on the securely-shared quantum channels between all nodes and the quantum mechanical impossibility of local unitary transformations between non-maximally entangled GHZ states. Moreover, the generalized scheme is proposed for transmitting two multipartite entangled states.

  14. Quantum Entanglement: Separability, Measure, Fidelity of Teleportation, and Distillation

    Directory of Open Access Journals (Sweden)

    Ming Li

    2010-01-01

    Full Text Available Quantum entanglement plays crucial roles in quantum information processing. Quantum entangled states have become the key ingredient in the rapidly expanding field of quantum information science. Although the nonclassical nature of entanglement has been recognized for many years, considerable efforts have been taken to understand and characterize its properties recently. In this review, we introduce some recent results in the theory of quantum entanglement. In particular separability criteria based on the Bloch representation, covariance matrix, normal form and entanglement witness, lower bounds, subadditivity property of concurrence and tangle, fully entangled fraction related to the optimal fidelity of quantum teleportation, and entanglement distillation will be discussed in detail.

  15. Quantum Energy Teleportation with a Linear Harmonic Chain

    CERN Document Server

    Nambu, Yasusada

    2010-01-01

    A protocol of quantum energy teleportation is proposed for a one-dimensional harmonic chain. A coherent-state POVM measurement is performed to coupled oscillators of the chain in the ground state accompanied by energy infusion to the system. This measurement consumes a part of ground state entanglement. Depending on the measurement result, a displacement operation is performed on a distant oscillator accompanied by energy extraction from the zero-point fluctuation of the oscillator. We find that the amount of consumed entanglement is bounded from below by a positive value that is proportional to the amount of teleported energy.

  16. Quantum Teleportation and Grover's Algorithm Without the Wavefunction

    Science.gov (United States)

    Niestegge, Gerd

    2017-01-01

    In the same way as the quantum no-cloning theorem and quantum key distribution in two preceding papers, entanglement-assisted quantum teleportation and Grover's search algorithm are generalized by transferring them to an abstract setting, including usual quantum mechanics as a special case. This again shows that a much more general and abstract access to these quantum mechanical features is possible than commonly thought. A non-classical extension of conditional probability and, particularly, a very special type of state-independent conditional probability are used instead of Hilbert spaces and wavefunctions.

  17. Quantum Teleportation and Grover's Algorithm Without the Wavefunction

    Science.gov (United States)

    Niestegge, Gerd

    2017-02-01

    In the same way as the quantum no-cloning theorem and quantum key distribution in two preceding papers, entanglement-assisted quantum teleportation and Grover's search algorithm are generalized by transferring them to an abstract setting, including usual quantum mechanics as a special case. This again shows that a much more general and abstract access to these quantum mechanical features is possible than commonly thought. A non-classical extension of conditional probability and, particularly, a very special type of state-independent conditional probability are used instead of Hilbert spaces and wavefunctions.

  18. EPR Pairs, Local Projections and Quantum Teleportation in Holography

    CERN Document Server

    Numasawa, Tokiro; Takayanagi, Tadashi; Watanabe, Kento

    2016-01-01

    In this paper we analyze three quantum operations in two dimensional conformal field theories (CFTs): local projection measurements, creations of partial entanglement between two CFTs, and swapping of subsystems between two CFTs. We also give their holographic duals and study time evolutions of entanglement entropy. By combining these operations, we present an analogue of quantum teleportation between two CFTs and give its holographic realization. We introduce a new quantity to probe tripartite entanglement by using local projection measurement.

  19. EPR pairs, local projections and quantum teleportation in holography

    Science.gov (United States)

    Numasawa, Tokiro; Shiba, Noburo; Takayanagi, Tadashi; Watanabe, Kento

    2016-08-01

    In this paper we analyze three quantum operations in two dimensional conformal field theories (CFTs): local projection measurements, creations of partial entanglement between two CFTs, and swapping of subsystems between two CFTs. We also give their holographic duals and study time evolutions of entanglement entropy. By combining these operations, we present an analogue of quantum teleportation between two CFTs and give its holographic realization. We introduce a new quantity to probe tripartite entanglement by using local projection measurement.

  20. Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory

    Energy Technology Data Exchange (ETDEWEB)

    Bussieres, Felix [Group of Applied Physics, University of Geneva (Switzerland)

    2014-07-01

    Quantum teleportation is a cornerstone of quantum information science due to its essential role in several important tasks such as the long-distance transmission of quantum information using quantum repeaters. In this context, a challenge of paramount importance is the distribution of entanglement between remote nodes, and to use this entanglement as a resource for long-distance light-to-matter quantum teleportation. In this talk I will report on the demonstration of quantum teleportation of the polarization state of a telecom-wavelength photon onto the state of a solid-state quantum memory. Entanglement is established between a rare-earth-ion doped crystal storing a single photon that is polarization-entangled with a flying telecom-wavelength photon. The latter is jointly measured with another flying qubit carrying the polarization state to be teleported, which heralds the teleportation. The fidelity of the polarization state of the photon retrieved from the memory is shown to be greater than the maximum fidelity achievable without entanglement, even when the combined distances travelled by the two flying qubits is 25 km of standard optical fibre. This light-to-matter teleportation channel paves the way towards long-distance implementations of quantum networks with solid-state quantum memories.

  1. Probabilistic quantum teleportation in the presence of noise

    Science.gov (United States)

    Fortes, Raphael; Rigolin, Gustavo

    2016-06-01

    We extend the research program initiated in [Phys. Rev. A 92, 012338 (2015), 10.1103/PhysRevA.92.012338] from noisy deterministic teleportation protocols to noisy probabilistic (conditional) protocols. Our main goal now is to study how we can increase the fidelity of the teleported state in the presence of noise by working with probabilistic protocols. We work with several scenarios involving the most common types of noise in realistic implementations of quantum communication tasks and find many cases where adding more noise to the probabilistic protocol increases considerably the fidelity of the teleported state, without decreasing the probability of a successful run of the protocol. Also, there are cases where the entanglement of the channel connecting Alice and Bob leading to the greatest fidelity is not maximal. Moreover, there exist cases where the optimal fidelity for the probabilistic protocols are greater than the maximal fidelity (2 /3 ) achievable by using only classical resources, while the optimal ones for the deterministic protocols under the same conditions lie below this limit. This result clearly illustrates that in some cases we can only get a truly quantum teleportation if we use probabilistic instead of deterministic protocols.

  2. Controlled teleportation of multi-qudit quantum information

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We propose a scheme for realizing a controlled teleportation of random M-qudit quantum information under the control of N agents. The resource consumption includes a prearranged (2M + N + 1)-qudit entangled quantum channel and (2M + N + 1) log2 d-bit classical communication. And the quantum operations used in the teleportation process are a series of generalized Bell-state measurements, single-qudit measurements, qudit H-gates, qudit-Pauli gates and qudit phase gates. It is shown that the original state can be restored by the receiver only on condition that all the agents work in collaboration with each others. If one agent does not cooperate with the other, the original state cannot be fully recovered.

  3. Scheme for teleporting an unknown atomic state to any node in a quantum communication network

    Institute of Scientific and Technical Information of China (English)

    宋克慧; 张为俊; 郭光灿

    2002-01-01

    We propose a scheme for teleporting an unknown atomic state. In order to realize the teleportation to any node ina quantum communication network, an n-atom Greenberger-Horne-Zeilinger (GHZ) state is needed, which is utilizedas the quantum channel. From this n-atom GHZ state, two-node entanglement of processing and receiving teleportedstates can be obtained through the quantum logic gate manipulation. Finally, for the unequally weighted GHZ state,probabilistic teleportation is shown.

  4. Quantum logic networks for controlled teleportation of a single particle via W state

    Institute of Scientific and Technical Information of China (English)

    Yuan Hong-Chun; Qi Kai-Guo

    2005-01-01

    We discuss the scheme for probabilistic and controlled teleportation of an unknown state of one particle using the general three-particle W state as the quantum channel. The feature of this scheme is that teleportation between two sides depends on the agreement of the third side (Charlie), who may participate the process of quantum teleportation as a supervisor. In addition, we also construct efficient quantum logic networks for implementing the new scheme by means of the primitive operations.

  5. Quantum chance nonlocality, teleportation and other quantum marvels

    CERN Document Server

    Gisin, Nicolas

    2014-01-01

    Quantum physics, which offers an explanation of the world on the smallest scale, has fundamental implications that pose a serious challenge to ordinary logic. Particularly counterintuitive is the notion of entanglement, which has been explored for the past 30 years and posits an ubiquitous randomness capable of manifesting itself simultaneously in more than one place. This amazing 'non-locality' is more than just an abstract curiosity or paradox: it has entirely down-to-earth applications in cryptography, serving for example to protect financial information; it also has enabled the demonstration of 'quantum teleportation', whose infinite possibilities even science-fiction writers can scarcely imagine. This delightful and concise exposition does not avoid the deep logical difficulties of quantum physics, but gives the reader the insights needed to appreciate them . From 'Bell's Theorem' to experiments in quantum entanglement, the reader will gain a solid understanding of one of the most fascinating ar...

  6. Quantum multi-signature protocol based on teleportation

    Energy Technology Data Exchange (ETDEWEB)

    Wen Xiao-jun; Liu Yun; Sun Yu [Beijing Jiaotong Univ., Beijing (China). School of Electronic Information Engineering

    2007-03-15

    In this paper, a protocol which can be used in multi-user quantum signature is proposed. The scheme of signature and verification is based on the correlation of Greenberger-Horne-Zeilinger (GHZ) states and the controlled quantum teleportation. Different from the digital signatures, which are based on computational complexity, the proposed protocol has perfect security in the noiseless quantum channels. Compared to previous quantum signature schemes, this protocol can verify the signature independent of an arbitrator as well as realize multi-user signature together. (orig.)

  7. Continuous-variable quantum teleportation of even and odd coherent states through varied gain channels

    Institute of Scientific and Technical Information of China (English)

    Li Ying; Zhang Jing; Zhang Jun-Xiang; Zhang Tian-Cai

    2006-01-01

    This paper has investigated quantum teleportation of even and odd coherent states in terms of the EPR entanglement states for continuous variables. It discusses the relationship between the fidelity and the entanglement of EPR states, which is characterized by the degree of squeezing and the gain of classical channels. It shows that the quality of teleporting quantum states also depends on the characteristics of the states themselves. The properties of teleporting even and odd coherent states at different intensities are investigated. The difference of teleporting two such kinds of quantum states are analysed based on the quantum distance function.

  8. Quantum Logic Networks for Probabilistic and Controlled Teleportation of Unknown Quantum States

    Institute of Scientific and Technical Information of China (English)

    GAO Ting

    2004-01-01

    We present simplification schemes for probabilistic and controlled teleportation of the unknown quantum states of both one particle and two particles and construct efficient quantum logic networks for implementing the new schemes by means of the primitive operations consisting of single-qubit gates, two-qubit controlled-not gates, Von Neumann measurement, and classically controlled operations. In these schemes the teleportation are not always successful but with certain probability.

  9. Monogamy relation in multipartite continuous-variable quantum teleportation

    Science.gov (United States)

    Lee, Jaehak; Ji, Se-Wan; Park, Jiyong; Nha, Hyunchul

    2016-12-01

    Quantum teleportation (QT) is a fundamentally remarkable communication protocol that also finds many important applications for quantum informatics. Given a quantum entangled resource, it is crucial to know to what extent one can accomplish the QT. This is usually assessed in terms of output fidelity, which can also be regarded as an operational measure of entanglement. In the case of multipartite communication when each communicator possesses a part of an N -partite entangled state, not all pairs of communicators can achieve a high fidelity due to the monogamy property of quantum entanglement. We here investigate how such a monogamy relation arises in multipartite continuous-variable (CV) teleportation, particularly when using a Gaussian entangled state. We show a strict monogamy relation, i.e., a sender cannot achieve a fidelity higher than optimal cloning limit with more than one receiver. While this seems rather natural owing to the no-cloning theorem, a strict monogamy relation still holds even if the sender is allowed to individually manipulate the reduced state in collaboration with each receiver to improve fidelity. The local operations are further extended to non-Gaussian operations such as photon subtraction and addition, and we demonstrate that the Gaussian cloning bound cannot be beaten by more than one pair of communicators. Furthermore, we investigate a quantitative form of monogamy relation in terms of teleportation capability, for which we show that a faithful monogamy inequality does not exist.

  10. Quantum teleportation of multiple degrees of freedom of a single photon

    Science.gov (United States)

    Wang, Xi-Lin; Cai, Xin-Dong; Su, Zu-En; Chen, Ming-Cheng; Wu, Dian; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei

    2015-02-01

    Quantum teleportation provides a `disembodied' way to transfer quantum states from one object to another at a distant location, assisted by previously shared entangled states and a classical communication channel. As well as being of fundamental interest, teleportation has been recognized as an important element in long-distance quantum communication, distributed quantum networks and measurement-based quantum computation. There have been numerous demonstrations of teleportation in different physical systems such as photons, atoms, ions, electrons and superconducting circuits. All the previous experiments were limited to the teleportation of one degree of freedom only. However, a single quantum particle can naturally possess various degrees of freedom--internal and external--and with coherent coupling among them. A fundamental open challenge is to teleport multiple degrees of freedom simultaneously, which is necessary to describe a quantum particle fully and, therefore, to teleport it intact. Here we demonstrate quantum teleportation of the composite quantum states of a single photon encoded in both spin and orbital angular momentum. We use photon pairs entangled in both degrees of freedom (that is, hyper-entangled) as the quantum channel for teleportation, and develop a method to project and discriminate hyper-entangled Bell states by exploiting probabilistic quantum non-demolition measurement, which can be extended to more degrees of freedom. We verify the teleportation for both spin-orbit product states and hybrid entangled states, and achieve a teleportation fidelity ranging from 0.57 to 0.68, above the classical limit. Our work is a step towards the teleportation of more complex quantum systems, and demonstrates an increase in our technical control of scalable quantum technologies.

  11. Optimal path for a quantum teleportation protocol in entangled networks

    OpenAIRE

    Di Franco, C.; Ballester, D.

    2010-01-01

    Bellman's optimality principle has been of enormous importance in the development of whole branches of applied mathematics, computer science, optimal control theory, economics, decision making, and classical physics. Examples are numerous: dynamic programming, Markov chains, stochastic dynamics, calculus of variations, and the brachistochrone problem. Here we show that Bellman's optimality principle is violated in a teleportation problem on a quantum network. This implies that finding the opt...

  12. Quantum Teleportation and Superdense Coding via W-Class States

    Institute of Scientific and Technical Information of China (English)

    YAN Jun; WU Huai-Zhi; YANG Zhen-Biao; ZHENG Shi-Biao

    2008-01-01

    According to the protocol of Agrawal et al., we propose a cavity QED scheme for realization of teleportation and dense coding. Instead of using EPR states and GHZ states, our scheme is more insensitive to the loss of one particle by using a W-class state as a quantum channel. Besides, our scheme is immune to thermal field, and does not require the cavity to remain in the vacuum state throughout the procedure.

  13. Continuous variable quantum teleportation with a finite-basis entanglement resource

    CERN Document Server

    Kurzeja, S I J

    2002-01-01

    Entanglement is a crucial resource in quantum information theory. We investigate the use of different forms of entangled states in continuous variable quantum teleportation, specifically the use of a finite-basis entanglement resource. We also consider the continuous variable teleportation of finite-basis states, such as qubits, and present results that point to the possibility of an efficient conditional scheme for continuous variable teleportation of such states with near-unit fidelity using finite-basis entanglement.

  14. Influence of Non-Uniform Magnetic Field on Quantum Teleportation in Heisenberg XY Model

    Institute of Scientific and Technical Information of China (English)

    SHAO Bin; YANG Tie-jian; ZHAO Yue-hong; ZOU Jian

    2007-01-01

    By considering the intrinsic decoherence, the validity of quantum teleportation of a two-qubit 1D Heisenberg XY chain in a non-uniform external magnetic field is studied. The fidelity as the measurement of a possible quantum teleportation is calculated and the effects of the non-uniform magnetic field and the intrinsic decoherence are discussed. It is found that anti-parallel magnetic field is more favorable for teleportation and the fidelity is suppressed by the intrinsic decoherence.

  15. Probabilistic Teleportation of an Arbitrary Two-Particle State and Its Quantum Circuits

    Institute of Scientific and Technical Information of China (English)

    GUO Zhan-Ying; FANG Jian-Xing; ZHU Shi-Qun; QIAN Xue-Min

    2006-01-01

    Two simple schemes for probabilistic teleportation of an arbitrary unknown two-particle state using a non-maximally entangled EPR pair and a non-maximally entangled GHZ state as quantum channels are proposed.After receiving Alice's Bell state measurement results, Bob performs a collective unitary transformation on his inherent particles without introducing the auxiliary qubit. The original state can be probabilistically teleported. Meanwhile,quantum circuits for realization of successful teleportation are also presented.

  16. Application of Bipartite and Tripartite Entangled State Representations in Quantum Teleportation of Continuous Variables

    Institute of Scientific and Technical Information of China (English)

    YUAN Hong-Chun; QI Kai-Guo

    2005-01-01

    We mostly investigate two schemes. One is to teleport a multi-mode W-type entangled coherent state using a peculiar bipartite entangled state as the quantum channel different from other proposals. Based on our formalism,teleporting multi-mode coherent state or squeezed state is also possible. Another is that the tripartite entangled state is used as the quantum channel of controlled teleportation of an arbitrary and unknown continuous variable in the case of three participators.

  17. Quantum teleportation from light beams to vibrational states of a macroscopic diamond

    Science.gov (United States)

    Hou, P.-Y.; Huang, Y.-Y.; Yuan, X.-X.; Chang, X.-Y.; Zu, C.; He, L.; Duan, L.-M.

    2016-05-01

    With the recent development of optomechanics, the vibration in solids, involving collective motion of trillions of atoms, gradually enters into the realm of quantum control. Here, building on the recent remarkable progress in optical control of motional states of diamonds, we report an experimental demonstration of quantum teleportation from light beams to vibrational states of a macroscopic diamond under ambient conditions. Through quantum process tomography, we demonstrate average teleportation fidelity (90.6+/-1.0)%, clearly exceeding the classical limit of 2/3. The experiment pushes the target of quantum teleportation to the biggest object so far, with interesting implications for optomechanical quantum control and quantum information science.

  18. Probabilistic Teleportation of Multi-particle d-Level Quantum State

    Institute of Scientific and Technical Information of China (English)

    CAO Min; ZHU Shi-Qun

    2005-01-01

    The general scheme for teleportation of a multi-particle d-level quantum state is presented when m pairs of partially entangled particles are utilized as quantum channels. The probabilistic teleportation can be achieved with a successful probability of d-1∏N=0(CN0)2/dM,which is determined by the smallest coefficients of each entangled channels.

  19. Teleportation with an Arbitrary Mixed Resource as a Trace-Preserving Quantum Channel

    Institute of Scientific and Technical Information of China (English)

    Sergio Albeverio; FEI Shao-Ming; YANG Wen-Li

    2002-01-01

    General conditions are given in order to perform a perfect teleportation process in the case where theHilbert spaces involved have different dimensions. An explicit expression is obtained for the quantum channel associatedwith the standard teleportation protocol To with an arbitrary mixed state resource. The transmission fidelity of thecorresponding quantum channel is given.

  20. Four-level quantum teleportation, swapping and collective translations of multipartite quantum entanglement

    CERN Document Server

    Zhong, Z Z

    2004-01-01

    In this paper, a new optimal scheme of four-level quantum teleportation and swapping of quantum entanglement is given, i.e. we construct a perfect complete orthogonal basis of the bipartite ququadrit systems, by using of this basis the four-level quantum teleportations and the swapping can be conclusively achieved according to the standard steps. Further, the above bases are associated to the unextendible product bases (UPB) and the exact entanglement bases (EEB), then in the $2\\times 2\\times 2$ systems and in the $3\\times 3$ systems we can achieve the collective translations of multipartite quantum entanglement.

  1. Quantum Teleportation via Completely Anisotropic Heisenberg Chain in Inhomogeneous Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    FU Cheng-Hua; HU Zhan-Ning

    2013-01-01

    The quantum teleportation with the entangled thermal state is investigated based on the completely anisotropic Heisenberg chain in the presence of the externally inhomogeneous magnetic field.The effects of the anisotropy and magnetic field for the quantum fidefity are studied in detail.The zero temperature limit and the features of the nonzero temperature for this nonclassical fidelity are obtained.We find that the quantum teleportation demands more stringent conditions than the thermal entanglement of the resource by investigating the threshold temperature of the thermal concurrence and the critical temperature of the maximal teleportation fidelity.The useful quantum teleportation should avoid the point of the phase transition of the system and the anisotropy of the chain and the external magnetic field can control the applicability of the resource in the quantum teleportation.

  2. Teleportation-based realization of an optical quantum two-qubit entangling gate

    CERN Document Server

    Gao, Wei-Bo; Lu, Chao-Yang; Dai, Han-Ning; Wagenknecht, Claudia; Zhang, Qiang; Zhao, Bo; Peng, Cheng-Zhi; Chen, Zeng-Bing; Chen, Yu-Ao; Pan, Jian-Wei

    2010-01-01

    In recent years, there has been heightened interest in quantum teleportation, which allows for the transfer of unknown quantum states over arbitrary distances. Quantum teleportation not only serves as an essential ingredient in long-distance quantum communication, but also provides enabling technologies for practical quantum computation. Of particular interest is the scheme proposed by Gottesman and Chuang [Nature \\textbf{402}, 390 (1999)], showing that quantum gates can be implemented by teleporting qubits with the help of some special entangled states. Therefore, the construction of a quantum computer can be simply based on some multi-particle entangled states, Bell state measurements and single-qubit operations. The feasibility of this scheme relaxes experimental constraints on realizing universal quantum computation. Using two different methods we demonstrate the smallest non-trivial module in such a scheme---a teleportation-based quantum entangling gate for two different photonic qubits. One uses a high-...

  3. Quantum repeaters using continuous-variable teleportation

    Science.gov (United States)

    Dias, Josephine; Ralph, T. C.

    2017-02-01

    Quantum optical states are fragile and can become corrupted when passed through a lossy communication channel. Unlike for classical signals, optical amplifiers cannot be used to recover quantum signals. Quantum repeaters have been proposed as a way of reducing errors and hence increasing the range of quantum communications. Current protocols target specific discrete encodings, for example quantum bits encoded on the polarization of single photons. We introduce a more general approach that can reduce the effect of loss on any quantum optical encoding, including those based on continuous variables such as the field amplitudes. We show that in principle the protocol incurs a resource cost that scales polynomially with distance. We analyze the simplest implementation and find that while its range is limited it can still achieve useful improvements in the distance over which quantum entanglement of field amplitudes can be distributed.

  4. No-cloning theorem and teleportation criteria for quantum continuous variables

    CERN Document Server

    Grosshans, F; Grosshans, Fr\\'ed\\'eric; Grangier, Philippe

    2000-01-01

    We discuss the criteria presently used for evaluating the efficiency of quantum teleportation schemes for continuous variables. Using an argument based upon the difference between 1-to-2 quantum cloning (quantum duplication) and 1-to-infinity cloning (classical measurement), we show that a fidelity value larger than 2/3 is required for successful quantum teleportation of coherent states. This value has not been reached experimentally so far.

  5. Requirement of optical coherence for continuous-variable quantum teleportation.

    Science.gov (United States)

    Rudolph, T; Sanders, B C

    2001-08-13

    We show that the sender and the receiver each require coherent devices in order to achieve unconditional continuous variable quantum teleportation (CVQT), and this requirement cannot be achieved with conventional laser sources, linear optics, ideal photon detectors, and perfect Fock state sources. The appearance of successful CVQT in recent experiments is due to interpreting the measurement record fallaciously in terms of one preferred ensemble (or decomposition) of the correct density matrix describing the state. Our analysis is unrelated to technical problems such as laser phase drift or finite squeezing bandwidth.

  6. Optimal conclusive teleportation of a d-dimensional two-particle unknown quantum state

    Institute of Scientific and Technical Information of China (English)

    Yang Yu-Guang; Wen Qiao-Yan; Zhu Fu-Chen

    2006-01-01

    A conclusive teleportation protocol of a d-dimensional two-particle unknown quantum state using three ddimensional particles in an arbitrary pure state is proposed. A sender teleports the unknown state conclusively to a receiver by using the positive operator valued measure(POVM) and introducing an ancillary qudit to perform the generalized Bell basis measurement. We calculate the optimal teleportation fidelity. We also discuss and analyse the reason why the information on the teleported state is lost in the course of the protocol.

  7. Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory

    Science.gov (United States)

    Bussières, Félix; Clausen, Christoph; Tiranov, Alexey; Korzh, Boris; Verma, Varun B.; Nam, Sae Woo; Marsili, Francesco; Ferrier, Alban; Goldner, Philippe; Herrmann, Harald; Silberhorn, Christine; Sohler, Wolfgang; Afzelius, Mikael; Gisin, Nicolas

    2014-10-01

    Quantum teleportation is a cornerstone of quantum information science due to its essential role in important tasks such as the long-distance transmission of quantum information using quantum repeaters. This requires the efficient distribution of entanglement between remote nodes of a network. Here, we demonstrate quantum teleportation of the polarization state of a telecom-wavelength photon onto the state of a solid-state quantum memory. Entanglement is established between a rare-earth-ion-doped crystal storing a single photon that is polarization-entangled with a flying telecom-wavelength photon. The latter is jointly measured with another flying polarization qubit to be teleported, which heralds the teleportation. The fidelity of the qubit retrieved from the memory is shown to be greater than the maximum fidelity achievable without entanglement, even when the combined distances travelled by the two flying qubits is 25 km of standard optical fibre. Our results demonstrate the possibility of long-distance quantum networks with solid-state resources.

  8. Quantum Entanglement and Teleportation of Quantum-Dot States in Microcavities

    CERN Document Server

    Miranowicz, A; Liu, Yu-xi; Chimczak, G; Koashi, M; Imoto, N; 10.1380/ejssnt.2007.51

    2009-01-01

    Generation and control of quantum entanglement are studied in an equivalent-neighbor system of spatially-separated semiconductor quantum dots coupled by a single-mode cavity field. Generation of genuinely multipartite entanglement of qubit states realized by conduction-band electron-spin states in quantum dots is discussed. A protocol for quantum teleportation of electron-spin states via cavity decay is briefly described.

  9. A Quantum Proxy Weak Blind Signature Scheme Based on Controlled Quantum Teleportation

    Science.gov (United States)

    Cao, Hai-Jing; Yu, Yao-Feng; Song, Qin; Gao, Lan-Xiang

    2015-04-01

    Proxy blind signature is applied to the electronic paying system, electronic voting system, mobile agent system, security of internet, etc. A quantum proxy weak blind signature scheme is proposed in this paper. It is based on controlled quantum teleportation. Five-qubit entangled state functions as quantum channel. The scheme uses the physical characteristics of quantum mechanics to implement message blinding, so it could guarantee not only the unconditional security of the scheme but also the anonymity of the messages owner.

  10. Quantum Logic Networks for Probabilistic Teleportation of an Arbitrary Three-Particle State

    Institute of Scientific and Technical Information of China (English)

    QIAN Xue-Min; FANG Jian-Xing; ZHU Shi-Qun; XI Yong-Jun

    2005-01-01

    The scheme for probabilistic teleportation of an arbitrary three-particle state is proposed. By using single qubit gate and three two-qubit gates, efficient quantum logic networks for probabilistic teleportation of an arbitrary three-particle state are constructed.

  11. Quantum Teleportation of One-Photon and Two-Photon Superposition States

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ One-photon and two-photon superposition states are the fundamental quantum states, which have shown interesting features, such as squeezing and anti-bunching. In this paper we discuss the quantum teleportation of such quantum states with the continuous-wave EPR states. Fidelity as a function of EPR correlation is obtained. We also compared the results with Fock state and coherent state teleportation.

  12. Quantum versus Classical Domains for Teleportation with Continuous Variables

    CERN Document Server

    Braunstein, S L; Kimble, H J; Van Loock, P; Braunstein, Samuel L.; Fuchs, Christopher A.

    2000-01-01

    Fidelity F{classical} = 1/2 has been established as setting the boundary between classical and quantum domains in the teleportation of coherent states of the electromagnetic field (S. L. Braunstein, C. A. Fuchs, and H. J. Kimble, J. Mod. Opt. 47, 267 (2000)). Two recent papers by P. Grangier and F. Grosshans (quant-ph/0009079 and quant-ph/0010107) introduce alternate criteria for setting this boundary and as a result claim that the appropriate boundary should be F = 2/3. Although larger fidelities would lead to enhanced teleportation capabilities, we show that the new conditions of Grangier and Grosshans are largely unrelated to the questions of entanglement and Bell-inequality violations that they take to be their primary concern. With regard to the quantum-classical boundary, we demonstrate that fidelity F{classical} = 1/2 remains the appropriate point of demarcation. The claims of Grangier and Grosshans to the contrary are simply wrong, as we show by an analysis of the conditions for nonseparability (that ...

  13. Fidelity of Quantum Teleportation for Single-Mode Squeezed State Light

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jun-Xiang; XIE Chang-De; PENG Kun-Chi

    2005-01-01

    @@ The fidelity of quantum teleportation of a single-mode squeezed state of light is calculated based on the general theory of quantum-mechanical measurement in the Schrodinger picture. It is shown that the criterion for the nonclassical state teleportation is different from that for coherent state. F = 1/2 is no longer the rigorous boundary between classical and quantum teleportation for a squeezed state of light. When the quantum entanglement of an Einstein-Podolsky-Rosen (EPR) beam used for teleportation and the parameters of the system are given,the fidelity depends on the squeezing of the input squeezed state. The higher the squeezing is, the smaller the fidelity is, and the lower the classical limitation of fidelity is. The dependence of the optimum gain for teleporting a squeezed vacuum state upon the EPR entanglement is also calculated. The results obtained provide important references for designing experimental systems of teleporting a non-classical state and judging the quality of the teleported quantum state.

  14. Long-distance quantum teleportation assisted with free-space entanglement distribution

    Institute of Scientific and Technical Information of China (English)

    Ren Ji-Gang; Yang Bin; Yi Zhen-Huan; Zhou Fei; Chen Kai; Peng Cheng-Zhi; Pan Jian-Wei

    2009-01-01

    Faithful long-distance quantum teleportation necessitates prior entanglement distribution between two communicated locations.The particle carrying on the unknown quantum information is then combined with one particle of the entangled states for Bell-state measurements,which leads to a transfer of the original quantum information onto the other particle of the entangled states.However in most of the implemented teleportation experiments nowadays,the Bell-state measurements are performed even before successful distribution of entanglement.This leads to an instant collapse of the quantum state for the transmitted particle,which is actually a single-particle transmission thereafter.Thus the true distance for quantum teleportation is,in fact,only in a level of meters.In the present experiment we design a novel scheme which has overcome this limit by utilizing fiber as quantum memory.A complete quantum teleportation is achieved upon successful entanglement distribution over 967 meters in public free space.Active feed-forward control techniques are developed for real-time transfer of quantum information.The overall experimental fidelities for teleported states are better than 89.6%,which signify high-quality teleportation.

  15. Quantum teleportation from light beams to vibrational states of a macroscopic diamond

    Science.gov (United States)

    Hou, Panyu; Huang, Yuanyuan; Yuan, Xinxing; Chang, Xiuying; Zu, Chong; He, Li; Duan, Luming; CenterQuantum Information, IIIS, Tsinghua University, Beijing 100084, PR China Team; Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA Team

    2016-05-01

    Quantum teleportation is an unusual disembodied form of quantum information transfer through pre-shared entanglement and classical communication, which has found important applications for realization of various quantum technologies. It is of both fundamental interest and practical importance to push quantum teleportation towards macroscopic objects. With the recent development of optomechanics, the vibration in solids, involving collective motion of trillions of atoms, gradually enters into the realm of quantum control. Built on the recent remarkable progress in optical control of motional states in diamond, we report an experimental demonstration of quantum teleportation from light beams to vibrational states of a macroscopic diamond under ambient conditions. Through quantum state tomography, we demonstrate an average teleportation fidelity (90.6 +/- 1.0)%, exceeding the classical limit of 2/3. The experiment pushes the target of quantum teleportation to the biggest object so far, with interesting implications for quantum foundational studies, optomechanical quantum control and quantum information science. Center for Quantum Information, IIIS, Tsinghua University.

  16. Quantum Measurements using Diamond Spins: From Fundamental Tests to Long-Distance Teleportation

    NARCIS (Netherlands)

    Hanson, R.

    2014-01-01

    Spin qubits in diamond provide an excellent platform both for fundamental tests and for realizing extended quantum networks . Here we present our latest results, including the deterministic teleportation over three meters.

  17. Quantum broadcast scheme and multi-output quantum teleportation via four-qubit cluster state

    Science.gov (United States)

    Yu, Yan; Zha, Xin Wei; Li, Wei

    2017-02-01

    In this paper, two theoretical schemes of the arbitrary single-qubit states via four-qubit cluster state are proposed. One is three-party quantum broadcast scheme, which realizes the broadcast among three participants. The other is multi-output quantum teleportation. Both allow two distant receivers to simultaneously and deterministically obtain the arbitrary single-qubit states, respectively. Compared with former schemes of an arbitrary single-qubit state, the proposed schemes realize quantum multi-cast communication efficiently, which enables Bob and Charlie to obtain the states simultaneously in the case of just knowing Alice's measurement results. The proposed schemes play an important role in quantum information, specially in secret sharing and quantum teleportation.

  18. Improving the fidelity of continuous-variable quantum teleportation by tuning displacement gain

    Institute of Scientific and Technical Information of China (English)

    Jinming Liu(刘金明); Jian Li(李剑); Guangcan Guo(郭光灿)

    2003-01-01

    The fidelity of teleportation of continuous quantum variables can be improved by tuning the local displace-ment gain. We investigate the optimization of the fidelity for the teleportation of Schrodinger cat states,and of coherent states. It is found that the gain corresponding to the maximum fidelity is not equal to onefor the two input states in the case of the small squeezing degree of the entanglement resource, while unitydisplacement gain is the best choice for teleporting arbitrary quantum states in the case of large squeezing.

  19. Quantum teleportation and information splitting via four-qubit cluster state and a Bell state

    Science.gov (United States)

    Ramírez, Marlon David González; Falaye, Babatunde James; Sun, Guo-Hua; Cruz-Irisson, M.; Dong, Shi-Hai

    2017-10-01

    Quantum teleportation provides a "bodiless" way of transmitting the quantum state from one object to another, at a distant location, using a classical communication channel and a previously shared entangled state. In this paper, we present a tripartite scheme for probabilistic teleportation of an arbitrary single qubit state, without losing the information of the state being teleported, via a fourqubit cluster state of the form | ϕ>1234 = α|0000>+ β|1010>+ γ|0101>- η|1111>, as the quantum channel, where the nonzero real numbers α, β, γ, and η satisfy the relation j αj2 + | β|2 + | γ|2 + | η|2 = 1. With the introduction of an auxiliary qubit with state |0>, using a suitable unitary transformation and a positive-operator valued measure (POVM), the receiver can recreate the state of the original qubit. An important advantage of the teleportation scheme demonstrated here is that, if the teleportation fails, it can be repeated without teleporting copies of the unknown quantum state, if the concerned parties share another pair of entangled qubit. We also present a protocol for quantum information splitting of an arbitrary two-particle system via the aforementioned cluster state and a Bell-state as the quantum channel. Problems related to security attacks were examined for both the cases and it was found that this protocol is secure. This protocol is highly efficient and easy to implement.

  20. Controlled teleportation of high-dimension quantum-states with generalized Bell-state measurement

    Institute of Scientific and Technical Information of China (English)

    Zhan You-Bang

    2007-01-01

    In this paper a scheme for controlled teleportation of arbitrary high-dimensional unknown quantum states is proposed by using the generalized Bell-basis measurement and the generalized Hadamard transformation. As two special cases, two schemes of controlled teleportation of an unknown single-qutrit state and an unknown two-qutrit state are investigated in detail. In the first scheme, a maximally entangled three-qutrit state is used as the quantum channel, while in the second scheme, an entangled two-qutrit state and an entangled three-qutrit state are employed as the quantum channels. In these schemes, an unknown qutrit state can be teleported to either one of two receivers, but only one of them can reconstruct the qutrit state with the help of the other. Based on the case of qutrits, a scheme of controlled teleportation of an unknown qudit state is presented.

  1. Optimal Conclusive Teleportation of an Arbitrary d-Dimensional N-Particle Unknown State via a Partially Entangled Quantum Channel

    Institute of Scientific and Technical Information of China (English)

    HAO San-Ru; HOU Bo-Yu; XI Xiao-Qiang; YUE Rui-Hong

    2003-01-01

    In the paper we generalize the standard teleportation to the conclusive teleportation case which can teleportan arbitrary d-dimensional N-particle unknown state via the partially entangled quantum channel. We show that onlyif the quantum channel satisfies a constraint condition can the most general d-dimensional N-particle unknown state beperfect conclusively teleported. We also present a method for optimal conclusively teleportation of the N-particle statesand for constructing the joint POVM which can discern the quantum states on the sender's (Alice's) side. Two typicalexamples are given so that one can see how our method works.

  2. Quantum teleportation in the spin-orbit variables of photon pairs

    CERN Document Server

    Khoury, A Z

    2011-01-01

    We propose a polarization to orbital angular momentum teleportation scheme using entangled photon pairs generated by spontaneous parametric down conversion. By making a joint detection of the polarization and angular momentum parity of a single photon, we are able to detect all the Bell-states and perform, in principle, perfect teleportation from a discrete to a continuous system using minimal resources. The proposed protocol implementation demands experimental resources that are currently available in quantum optics laboratories.

  3. Scheme for deterministic Bell-state-measurement-free quantum teleportation

    CERN Document Server

    Yang, M; Yang, Ming; Cao, Zhuo-Liang

    2004-01-01

    A deterministic teleportation scheme for unknown atomic states is proposed in cavity QED. The Bell state measurement is not needed in the teleportation process, and the success probability can reach 1.0. In addition, the current scheme is insensitive to the cavity decay and thermal field.

  4. Quantum Energy Teleportation with Electromagnetic Field: Discrete vs. Continuous Variables

    CERN Document Server

    Hotta, Masahiro

    2009-01-01

    Local measurements of quantum fluctuation in the vacuum state of electromagnetic field require energy infusion to the field. The infused energy is diffused to spatial infinity with light velocity and the state of the field soon becomes a local vacuum with zero energy around the measurement area. Of cource we cannot retrieve energy from this measurement area if we do not know the measurement result of the fluctuation. However, if the measurement result is available for us, we are able to extract energy from the local vacuum of the field, applying the protocol of quantum energy teleportation recently proposed. By performing a local unitary operation around the measurement area dependent on the measurement result, the fluctuaion of zero-point oscillation is squeezed and negative energy density appears around the area, accompanied by extraction of positive energy from the field. In this paper, we compare two different protocols of the energy retrieval. In the first protocol, a 1/2 spin is coupled with the fluctua...

  5. Scheme for implementing perfect quantum teleportation with four-qubit entangled states in cavity quantum electrodynamics

    Institute of Scientific and Technical Information of China (English)

    Tang Jing-Wu; Zhao Guan-Xiang; He Xiong-Hui

    2011-01-01

    Recently, Peng et al. [2010 Eur. Phys. J. D 58 403] proposed to teleport an arbitrary two-qubit state with a family of four-qubit entangled states, which simultaneously include the tensor product of two Bell states, linear cluster state and Dicke-class state. This paper proposes to implement their scheme in cavity quantum electrodynamics and then presents a new family of four-qubit entangled state |Ω4)1234. It simultaneously includes all the well-known four-qubit entangled states which can be used to teleport an arbitrary two-qubit state. The distinct advantage of the scheme is that it only needs a single setup to prepare the whole family of four-qubit entangled states, which will be very convenient for experimental realization. After discussing the experimental condition in detail, we show the scheme may be feasible based on present technology in cavity quantum electrodynamics.

  6. Quantum teleportation with independent sources and prior entanglement distribution over a network

    Science.gov (United States)

    Sun, Qi-Chao; Mao, Ya-Li; Chen, Si-Jing; Zhang, Wei; Jiang, Yang-Fan; Zhang, Yan-Bao; Zhang, Wei-Jun; Miki, Shigehito; Yamashita, Taro; Terai, Hirotaka; Jiang, Xiao; Chen, Teng-Yun; You, Li-Xing; Chen, Xian-Feng; Wang, Zhen; Fan, Jing-Yun; Zhang, Qiang; Pan, Jian-Wei

    2016-10-01

    Quantum teleportation faithfully transfers a quantum state between distant nodes in a network, which enables revolutionary information-processing applications. This has motivated a tremendous amount of research activity. However, in the past not a single quantum-teleportation experiment has been realized with independent quantum sources, entanglement distribution prior to the Bell-state measurement (BSM) and feedforward operation simultaneously, even in the laboratory environment. We take the challenge and report the construction of a 30 km optical-fibre-based quantum network distributed over a 12.5 km area. This network is robust against noise in the real world with active stabilization strategies, which allows us to realize quantum teleportation with all the ingredients simultaneously. Both the quantum-state and process-tomography measurements and an independent statistical hypothesis test confirm the quantum nature of the quantum teleportation over this network. Our experiment marks a critical step towards the realization of a global ‘quantum internet’ in the real world.

  7. Reducing Projection Calculation in Quantum Teleportation by Virtue of the IWOP Technique and Schmidt Decomposition of |η〉 State

    Institute of Scientific and Technical Information of China (English)

    FAN Hong-Yi; FAN Yue

    2002-01-01

    By virtue of the technique of integration within an ordered product of operators and the Schmidt decomposition of the entangled state |η〉, we reduce the general projection calculation in the theory of quantum teleportation to a as simple as possible form and present a general formalism for teleportating quantum states of continuous variable.

  8. Quantum teleportation and entanglement. A hybrid approach to optical quantum information procesing

    Energy Technology Data Exchange (ETDEWEB)

    Furusawa, Akira [Tokyo Univ. (Japan). Dept. of Applied Physics; Loock, Peter van [Erlangen-Nuernberg Univ. (Germany). Lehrstuhl fuer Optik

    2011-07-01

    Unique in that it is jointly written by an experimentalist and a theorist, this monograph presents universal quantum computation based on quantum teleportation as an elementary subroutine and multi-party entanglement as a universal resource. Optical approaches to measurement-based quantum computation are also described, including schemes for quantum error correction, with most of the experiments carried out by the authors themselves. Ranging from the theoretical background to the details of the experimental realization, the book describes results and advances in the field, backed by numerous illustrations of the authors' experimental setups. Aimed at researchers, physicists, and graduate and PhD students in physics, theoretical quantum optics, quantum mechanics, and quantum information. (orig.)

  9. Perfect Biparticle Teleportation by Using Multi-particle Quantum Channel with Joint Measurement

    Institute of Scientific and Technical Information of China (English)

    GUO Yan-Qing; NIE Jing; REN Zhong-Zhou; LI Chong; CHEN Yu-Qing; YI Xue-Xi

    2008-01-01

    In this paper, we reinvestigate the faithful quantum teleportation of an arbitrary two-qubit state by a multi-particle channel with multi-particle joint measurements. The relationship between multi-particle quantum channel and the multi-particle joint measurement bases has been found. In addition, we show how to construct the multi-particle joint measurement bases.

  10. Simpler criterion on W state for perfect quantumstate splitting and quantum teleportation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A simpler criterion is presented to judge whether a W state can be taken as quantum channel forperfectly splitting or teleporting an arbitrary single-qubit state. If the W state is usable,the detailed manipulations in the two quantum information processes are amply shown. Moreover,some relevant discussions are made.

  11. Noise-Resistant Quantum Teleportation, Ansibles, and the No-Projector Theorem

    CERN Document Server

    Hedemann, Samuel R

    2016-01-01

    A method is presented for achieving entanglement-free teleportation of a quantum state subject to any quantum noise. We apply this as a light-speed noise-resistant communicator, but also treat the possibility of a quantum ansible, a device for effectively superluminal communication and quantum broadcasting. The results suggest a "no-projector theorem" analogous to the no-cloning theorem. We then show how to build a pseudo-ansible for connection-free light-speed communication.

  12. Teleportation of Atomic States via Cavity Quantum Electrodynamics

    CERN Document Server

    Guerra, E S

    2004-01-01

    In this article we discuss a scheme of teleportation of atomic states. The experimental realization proposed makes use of cavity Quatum Electrodynamics involving the interaction of Rydberg atoms with a micromaser cavity prepared in a coherent state. We start presenting a scheme to prepare atomic Bell states via the interaction of atoms with a cavity. In our scheme the cavity and some atoms play the role of auxiliary systems used to achieve the teleportation.

  13. Multiparty Quantum Communication Using Multiqubit Entanglement and Teleportation

    Directory of Open Access Journals (Sweden)

    S. Ghose

    2014-01-01

    Full Text Available We propose a 2N qubit entangled channel that can be used to teleport N qubits in a network to a single receiver. We describe the structure of this channel and explicitly demonstrate how the protocol works. The channel can be used to implement a scheme in which all parties have to participate in order for the teleportation to be successful. This can be advantageous in various scenarios and we discuss the potential application of this protocol to voting.

  14. Controlled Teleportation of Multi-qutrit Quantum Information by Swapping Entanglement

    Institute of Scientific and Technical Information of China (English)

    LI Yuan; YANG Jie; ZENG Gui-Hua; LIU Jun

    2008-01-01

    We present a scheme for teleporting multi-qutrit quantum information from a sender to a receiver via the control of many agents in a network. Agents's control parameters are obtained via quantum entanglement swapping. In our scheme, Zhang and Man's QSS protocol [Phys. Rev. A 72 (2005) 022303] based on Bell-state entanglement swapping is generalized to a qutrit case. Our scheme owns the advantage of having higher code capacity and better security than the work [Commun. Theor. Phys. 44 (2005) 847] on controlled teleportation for multi-qubit.

  15. Quantum teleportation and entanglement swapping of electron spins in superconducting hybrid structures

    Energy Technology Data Exchange (ETDEWEB)

    Bubanja, Vladimir, E-mail: vladimir.bubanja@callaghaninnovation.govt.nz

    2015-06-15

    We present schemes for quantum teleportation and entanglement swapping of electronic spin states in hybrid superconductor–normal-metal systems. The proposed schemes employ subgap transport whereby the lowest order processes involve Cooper pair-electron and double Cooper-pair cotunneling in quantum teleportation and entanglement swapping protocols, respectively. The competition between elastic cotunneling and Cooper-pair splitting results in the success probability of 25% in both cases. Described implementations of these protocols are within reach of present-day experimental techniques.

  16. Controlled teleportation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this article,we review the recent development of controlled teleportation which can be used for sharing quantum information and has important applications in remote quantum computation.We introduce the principles of a couple of controlled teleportation schemes with maximally entangled quantum channels and those with pure entangled quantum channels (non-maximally entangled states).The schemes based on maximally entangled states have the advantage of having maximal efficiency although there are differences in their implementations in experiment.In the controlled teleportation schemes using non-maximally entangled states as the quantum channels,the receiver can reconstruct the originally unknown state by adding an auxiliary particle and performing a unitary evolution.No matter what the unknown state is (a single qubit state or an m-qudit state),the auxiliary particle required is only a two-level quantum system.

  17. Possibility of Quantum Teleportation and the Reduced Density Matrix

    Institute of Scientific and Technical Information of China (English)

    朱红波; 曾谨言

    2001-01-01

    It is shown that only the maximally entangled two-particle (spin 1/2) states whose one-particle reduced density matrix is p (i) = (1/2)I2 can realize the teleportation of an arbitrary one-particle spin state. Based on this,to teleport an arbitrary k-particle spin state, one must prepare an N-particle entangled state whose k-particle (k < N) reduced density matrix has the structure 2-kI2k (I2k being the 2k × 2k identity matrix). The N-particle Greenberger-Horne-Zeilinger states cannot realize the teleportation of an arbitrary k-particle (N>k≥2) state,except for special states with only two components.

  18. Quantum teleportation of an arbitrary superposition of atomic states

    Institute of Scientific and Technical Information of China (English)

    Chen Qiong; Fang Xi-Ming

    2008-01-01

    This paper proposes a scheme to teleport an arbitrary multi-particle two-level atomic state between two parties or an arbitrary zero- and one-photon entangled state of multi-mode between two high-Q cavities in cavity QED.This scheme is based on the resonant interaction between atom and cavity and does not involve Bell-state measurement.It investigates the fidelity of this scheme and find out the case of this unity fidelity of this teleportation.Considering the practical case of the cavity decay,this paper finds that the condition of the unity fidelity is also valid and obtains the effect of the decay of the cavity on the successful probability of the teleportation.

  19. Probabilistic teleportation of an arbitrary GHZ-class state with a pure entangled two-particle quantum channel and its application in quantum state sharing

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper presents a scheme for probabilistic teleportation of an arbitrary GHZ-class state with a pure entangled two-particle quantum channel. The sender Alice first teleports the coefficients of the unknown state to the receiver Bob, and then Bob reconstructs the state with an auxiliary particle and some unitary operations if the teleportation succeeds. This scheme has the advantage of transmitting much less particles for teleporting an arbitrary GHZ-class state than others. Moreover, it discusses the application of this scheme in quantum state sharing.

  20. Two-state teleportation

    CERN Document Server

    Henderson, L; Vedral, V

    1999-01-01

    Quantum teleportation with additional a priori information about the input state achieves higher fidelity than teleportation of a completely unknown state. However, perfect teleportation of two non-orthogonal input states requires the same amount of entanglement as perfect teleportation of an unknown state, namely one ebit. We analyse how well two-state teleportation can be achieved using every degree of pure-state entanglement, and discuss the fidelity of `teleportation' that can be achieved with only classical communication but no shared entanglement. A two-state telecloning scheme is shown to require less entanglement in a certain sense than universal telecloning.

  1. Realistic continuous-variable quantum teleportation with non-Gaussian resources

    CERN Document Server

    Dell'Anno, Fabio; Illuminati, Fabrizio

    2009-01-01

    We present a comprehensive investigation of nonideal continuous-variable quantum teleportation implemented with entangled non-Gaussian resources. We discuss in a unified framework the main decoherence mechanisms, including imperfect Bell measurements and propagation of optical fields in lossy fibers, applying the formalism of the characteristic function. By exploiting appropriate displacement strategies, we compute analytically the success probability of teleportation for input coherent states, and two classes of non-Gaussian entangled resources: Two-mode squeezed Bell-like states (that include as particular cases photon-added and photon-subtracted de-Gaussified states), and two-mode squeezed cat-like states. We discuss the optimization procedure on the free parameters of the non-Gaussian resources at fixed values of the squeezing and of the experimental quantities determining the inefficiencies of the non-ideal protocol. It is found that non-Gaussian resources enhance significantly the efficiency of teleport...

  2. Teleportation of two-atom entangled state in resonant cavity quantum electrodynamics

    Institute of Scientific and Technical Information of China (English)

    Yang Zhen-Biao

    2007-01-01

    An alternative scheme is presented for teleportation of a two-atom entangled state in cavity quantum electrodynamics (QED). It is based on the resonant atom-cavity field interaction. In the scheme, only one cavity is involved, and the number of the atoms needed to be detected is decreased compared with the previous scheme. Since the resonant atom-cavity field interaction greatly reduces the interaction time, the decoherence effect can be effectively suppressed during the teleportation process. The experimental feasibility of the scheme is discussed. The scheme can easily be generalized to the teleportation of N-atom Greeninger-Horne-Zeilinger (GHZ) entangled states. The number of atoms needed to be detected does not increase as the number of the atoms in the GHZ state increases.

  3. Improvement of a quantum broadcasting multiple blind signature scheme based on quantum teleportation

    Science.gov (United States)

    Zhang, Wei; Qiu, Daowen; Zou, Xiangfu

    2016-06-01

    Recently, a broadcasting multiple blind signature scheme based on quantum teleportation has been proposed for the first time. It is claimed to have unconditional security and properties of quantum multiple signature and quantum blind signature. In this paper, we analyze the security of the protocol and show that each signatory can learn the signed message by a single-particle measurement and the signed message can be modified at random by any attacker according to the scheme. Furthermore, there are some participant attacks and external attacks existing in the scheme. Finally, we present an improved scheme and show that it can resist all of the mentioned attacks. Additionally, the secret keys can be used again and again, making it more efficient and practical.

  4. Quantum Teleportation Schemes of an N-Particle State via Three-Particle General W States

    Institute of Scientific and Technical Information of China (English)

    JI Ying-Hua; XIU Xiao-Ming; DONG Li; GAO Ya-Jun; CHI Feng

    2008-01-01

    Two schemes of teleporting an N-particle arbitrary and unknown state are proposed when N groups of three-particle general W states are utilized as quantum channels. In the first scheme, the quantum channels are shared by the sender and the recipient. After the sender's Bell-state measurements on his (her) particles, the recipient carries out unitary transformations on his (her) particles. And then, the recipient performs computational basis measurements to realize the teleportation. The recipient can recover the state on either of particle sequences with the equal maximal probability of successful teleportation if he (she) performs appropriate unitary transformations. In the second scheme, the quantum channels are shared by the sender, the recipient and the third ones. After the sender's Be11-state measurements and the third ones' computational basis measurements if they agree to cooperate, the recipient will introduce auxiliary particles and carry out appropriate unitary transformations. Finally, the recipient performs computational basis measurements to fulfill the teleportation. The second scheme can be realized if and only if the third ones agree to cooperate with the recipient.

  5. Quantum circuits for realizing deterministic and exact teleportation via two partially entangled pairs of particles

    Institute of Scientific and Technical Information of China (English)

    Li Wen-Dong; Zhang Jian-Li; Gu Yong-Jian

    2006-01-01

    Deterministic and exact teleportation can be achieved via two partially entangled pairs of particles[Gu Y J 2006 Opt.Comm.259 385].The key point of the protocol is a generalized measurement described by a positive operator valued measure, which can be realized by performing a unitary operation in the extended space and a conventional Von Neumann orthogonal measurement.By decomposing the evolution process from the initial state to the final state, we construct the quantum circuits for realizing the unitary operation with quantum Toffoli gates, and thus provide a physical means to realize the teleportation.Our method for constructing quantum circuits differs from the usual methods based on decomposition of unitary matrices, and is convenient for a large class of quantum processes involving generalized measurements.

  6. Experimental realization of quantum teleportation from a photon to the vibration modes of a millimeter-sized diamond

    Science.gov (United States)

    Huang, Yuanyuan; Hou, Panyu; Yuan, Xinxing; Chang, Xiuying; Zu, Chong; He, Li; Duan, Luming; CenterQuantum Information, IIIS, Tsinghua University, Beijing 100084, PR China Team; Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA Team

    2016-05-01

    Quantum teleportation is of great importance to various quantum technologies, and has been realized between light beams, trapped atoms, superconducting qubits, and defect spins in solids. Here we report an experimental demonstration of quantum teleportation from light beams to vibrational states of a macroscopic diamond under ambient conditions. In our experiment, the ultrafast laser technology provides the key tool for fast processing and detection of quantum states within its short life time in macroscopic objects consisting of many strongly interacting atoms that are coupled to the environment, and finally we demonstrate an average teleportation fidelity (90 . 6 +/- 1 . 0) % , clearly exceeding the classical limit of 2/3. Quantum control of the optomechanical coupling may provide efficient ways for realization of transduction of quantum signals, processing of quantum information, and sensing of small mechanical vibrations. Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, PR China.

  7. High teleportation rates using cold-atom-ensemble-based quantum repeaters with Rydberg blockade

    Science.gov (United States)

    Solmeyer, Neal; Li, Xiao; Quraishi, Qudsia

    2016-04-01

    We present a simplified version of a repeater protocol in a cold neutral-atom ensemble with Rydberg excitations optimized for two-node entanglement generation and describe a protocol for quantum teleportation. Our proposal draws from previous proposals [B. Zhao et al., Phys. Rev. A 81, 052329 (2010), 10.1103/PhysRevA.81.052329; Y. Han et al., Phys. Rev. A 81, 052311 (2010), 10.1103/PhysRevA.81.052311] that described efficient and robust protocols for long-distance entanglement with many nodes. Using realistic experimental values, we predict an entanglement generation rate of ˜25 Hz and a teleportation rate of ˜5 Hz . Our predicted rates match the current state-of-the-art experiments for entanglement generation and teleportation between quantum memories. With improved efficiencies we predict entanglement generation and teleportation rates of ˜7.8 and ˜3.6 kHz, respectively, representing a two-order-of-magnitude improvement over the currently realized values. Cold-atom ensembles with Rydberg excitations are promising candidates for repeater nodes because collective effects in the ensemble can be used to deterministically generate a long-lived ground-state memory which may be efficiently mapped onto a directionally emitted single photon.

  8. Disentangling Nonlocality and Teleportation

    CERN Document Server

    Hardy, L

    1999-01-01

    Quantum entanglement can be used to demonstrate nonlocality and to teleport a quantum state from one place to another. The fact that entanglement can be used to do both these things has led people to believe that teleportation is a nonlocal effect. In this paper it is shown that teleportation is conceptually independent of nonlocality. This is done by constructing a toy local theory in which cloning is not possible (without a no-cloning theory teleportation makes limited sense) but teleportation is. Teleportation in this local theory is achieved in an analogous way to the way it is done with quantum theory. This work provides some insight into what type of process teleportation is.

  9. Multi-agent controlled teleportation of multi-qubit quantum information via two-step protocol

    Institute of Scientific and Technical Information of China (English)

    Yang Jie

    2005-01-01

    Utilizing both the general quantum teleportation and the two-step protocol, a new method is presented by which multi-qubit quantum information can be teleported in a much easier way from a sender Alice to a receiver Bob via the control of many agents in a network than by Yang et al's method. In this method, only all the agents collaborate with Bob can the unknown states in Alice's qubits be fully reconstructed in Bob's qubits. Comparisons between the method and Yang et al's method are made. Results show that, in this method, the preparation difficulty of initial states and the identification difficulty of entangled states are considerably reduced, new method is more feasible in technique, and Hadamard operations are not needed at all.

  10. Effect of relativistic acceleration on continuous variable quantum teleportation and dense coding

    OpenAIRE

    Grochowski, Piotr T.; Rajchel, Grzegorz; Kiałka, Filip; Dragan, Andrzej

    2017-01-01

    We investigate how relativistic acceleration of the observers can affect the performance of the quantum teleportation and dense coding for continuous variable states of localized wavepackets. Such protocols are typically optimized for symmetric resources prepared in an inertial frame of reference. A mismatch of the sender and the receiver's accelerations can introduce asymmetry to the shared entanglement, which has an effect on the efficiency of the protocol that goes beyond entanglement degr...

  11. Research on an E-mail Encryption Protocol Based on Quantum Teleportation

    Science.gov (United States)

    Shufen, Xiao; Yumin, Dong; Hongyang, Ma; Libo, Chen

    2016-07-01

    With the rapid development of information technology (IT), E-mail has become an important communication tool between human beings. Meanwhile, E-mail safety becomes increasingly important because of its universal applications. In order to overcome shortages of classical E-mail encryption, an E-mail encryption protocol based on quantum teleportation was proposed. It makes quantum encryption of E-mails during sending and receiving processes by taking advantages of entanglement and nonclonability of quantum, thus ensuring safety and reliability of E-mail transmission.

  12. Research on an E-mail Encryption Protocol Based on Quantum Teleportation

    Science.gov (United States)

    Shufen, Xiao; Yumin, Dong; Hongyang, Ma; Libo, Chen

    2016-11-01

    With the rapid development of information technology (IT), E-mail has become an important communication tool between human beings. Meanwhile, E-mail safety becomes increasingly important because of its universal applications. In order to overcome shortages of classical E-mail encryption, an E-mail encryption protocol based on quantum teleportation was proposed. It makes quantum encryption of E-mails during sending and receiving processes by taking advantages of entanglement and nonclonability of quantum, thus ensuring safety and reliability of E-mail transmission.

  13. Quantum teleportation and entanglement swapping of matter qubits with multiphoton signals

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Juan Mauricio [Institut fuer Angewandte Physik, Technische Universitaet Darmstadt, D-64289 Germany (Germany); Departamento de Investigacion en Fisica, Universidad de Sonora, Hermosillo (Mexico); Bernad, Jozsef Zsolt; Alber, Gernot [Institut fuer Angewandte Physik, Technische Universitaet Darmstadt, D-64289 Germany (Germany)

    2014-07-01

    We introduce a probabilistic Bell measurement of atomic qubits based on two consecutive photonic field measurements of two single mode cavities with which the atoms interact in two separate stages. To this end, we solve the two-atoms Tavis-Cummings model and exploit the property that the antisymmetric Bell state is insensitive to the interaction with the field. We consider implementations for quantum teleportation and for entanglement swapping protocols both of which can be achieved with 25% success probability and with unit fidelity. We emphasize possible applications for hybrid quantum repeaters where the aforementioned quantum protocols play an essential role.

  14. Deterministic quantum teleportation with feed-forward in a solid state system.

    Science.gov (United States)

    Steffen, L; Salathe, Y; Oppliger, M; Kurpiers, P; Baur, M; Lang, C; Eichler, C; Puebla-Hellmann, G; Fedorov, A; Wallraff, A

    2013-08-15

    Engineered macroscopic quantum systems based on superconducting electronic circuits are attractive for experimentally exploring diverse questions in quantum information science. At the current state of the art, quantum bits (qubits) are fabricated, initialized, controlled, read out and coupled to each other in simple circuits. This enables the realization of basic logic gates, the creation of complex entangled states and the demonstration of algorithms or error correction. Using different variants of low-noise parametric amplifiers, dispersive quantum non-demolition single-shot readout of single-qubit states with high fidelity has enabled continuous and discrete feedback control of single qubits. Here we realize full deterministic quantum teleportation with feed-forward in a chip-based superconducting circuit architecture. We use a set of two parametric amplifiers for both joint two-qubit and individual qubit single-shot readout, combined with flexible real-time digital electronics. Our device uses a crossed quantum bus technology that allows us to create complex networks with arbitrary connecting topology in a planar architecture. The deterministic teleportation process succeeds with order unit probability for any input state, as we prepare maximally entangled two-qubit states as a resource and distinguish all Bell states in a single two-qubit measurement with high efficiency and high fidelity. We teleport quantum states between two macroscopic systems separated by 6 mm at a rate of 10(4) s(-1), exceeding other reported implementations. The low transmission loss of superconducting waveguides is likely to enable the range of this and other schemes to be extended to significantly larger distances, enabling tests of non-locality and the realization of elements for quantum communication at microwave frequencies. The demonstrated feed-forward may also find application in error correction schemes.

  15. Several teleportation schemes of an arbitrary unknown multi-particle state via different quantum channels

    Institute of Scientific and Technical Information of China (English)

    Peng Jia-Yin; Mo Zhi-Wen

    2013-01-01

    We first provide four new schemes for two-party quantum teleportation of an arbitrary unknown multi-particle state by using three-,four-,and five-particle states as the quantum channel,respectively.The successful probability and fidelity of the four schemes reach 1.In the first two schemes,the receiver can only apply one of the unitary transformations to reconstruct the original state,making it easier for these two schemes to be directly realized.In the third and fourth schemes,the sender can preform Bell-state measurements instead of multipartite entanglement measurements of the existing similar schemes,which makes real experiments more suitable.It is found that the last three schemes may become tripartite controlled teleportation schemes of teleporting an arbitrary multi-particle state after a simple modification.Finally,we present a new scheme for three-party sharing an arbitrary unknown multi-particle state.In this scheme,the sender first shares three three-particle GHZ states with two agents.After setting up the secure quantum channel,an arbitrary unknown multi-particle state can be perfectly teleported if the sender performs three Bell-state measurements,and either of two receivers operates an appropriate unitary transformation to obtain the original state with the help of other receiver's three single-particle measurements.The successful probability and fidelity of this scheme also reach 1.It is demonstrated that this scheme can be generalized easily to the case of sharing an arbitrary unknown multi-particle state among several agents.

  16. Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator

    CERN Document Server

    Li, Tongcang

    2016-01-01

    Schr\\"odinger's thought experiment to prepare a cat in a superposition of both alive and dead states reveals profound consequences of quantum mechanics and has attracted enormous interests. Here we propose a straightforward method to create quantum superposition states of a living microorganism by putting a small bacterium on top of an electromechanical oscillator. Our proposal is based on recent developments that the center-of-mass oscillation of a 15-$\\mu$m-diameter aluminium membrane has been cooled to its quantum ground state [Nature 475, 359 (2011)], and entangled with a microwave field [Science, 342, 710 (2013)]. A microorganism with a mass much smaller than the mass of the electromechanical membrane will not significantly affect the quality factor of the membrane and can be cooled to the quantum ground state together with the membrane. Quantum superposition and teleportation of its center-of-mass motion state can be realized with the help of superconducting microwave circuits. More importantly, the int...

  17. Teleportation Dream or Reality?

    CERN Document Server

    Vaidman, L

    1999-01-01

    Since its discovery in 1993, we witness an intensive theoretical and experimental effort centered on teleportation. Very recently it was claimed in the press that ``quantum teleportation has been achieved in the laboratory'' (T. Sudbery, Nature, 390, p. 551). Here, I briefly review this research focusing on the connection to nonlocal measurements, and question Sudbery's statement. A philosophical inquiry about the paradoxical meaning of teleportation in the framework of the many-worlds interpretation is added.

  18. Teleportation: Dream or reality?

    Science.gov (United States)

    Vaidman, Lev

    1999-03-01

    Since its discovery in 1993, we witness an intensive theoretical and experimental effort centered on teleportation. Very recently it was claimed in the press that "quantum teleportation has been achieved in the laboratory" (T. Sudbery, Nature 390, 551). Here, I briefly review this research focusing on the connection to nonlocal measurements, and question Sudbery's statement. A philosophical inquiry about the paradoxical meaning of teleportation in the framework of the many-worlds interpretation is added.

  19. Exponentially enhanced quantum communication rate by multiplexing continuous-variable teleportation

    Science.gov (United States)

    Christ, Andreas; Lupo, Cosmo; Silberhorn, Christine

    2012-08-01

    A major challenge of today's quantum communication systems lies in the transmission of quantum information with high rates over long distances in the presence of unavoidable losses. Thereby the achievable quantum communication rate is fundamentally limited by the amount of energy that can be transmitted per use of the channel. It is hence vital to develop quantum communication protocols that encode quantum information as energy efficiently as possible. To this aim we investigate continuous-variable quantum teleportation as a method of distributing quantum information. We explore the possibility to encode information on multiple optical modes and derive upper and lower bounds on the achievable quantum channel capacities. This analysis enables us to benchmark single-mode versus multi-mode entanglement resources. Our research reveals that multiplexing does not only feature an enhanced energy efficiency, leading to an exponential increase in the achievable quantum communication rates in comparison to single-mode coding, but also yields an improved loss resilience. However, as reliable quantum information transfer is only achieved for entanglement values above a certain threshold a careful optimization of the number of coding modes is needed to obtain the optimal quantum channel capacity.

  20. Generating multi-photon W-like states for perfect quantum teleportation and superdense coding

    Science.gov (United States)

    Li, Ke; Kong, Fan-Zhen; Yang, Ming; Ozaydin, Fatih; Yang, Qing; Cao, Zhuo-Liang

    2016-08-01

    An interesting aspect of multipartite entanglement is that for perfect teleportation and superdense coding, not the maximally entangled W states but a special class of non-maximally entangled W-like states are required. Therefore, efficient preparation of such W-like states is of great importance in quantum communications, which has not been studied as much as the preparation of W states. In this paper, we propose a simple optical scheme for efficient preparation of large-scale polarization-based entangled W-like states by fusing two W-like states or expanding a W-like state with an ancilla photon. Our scheme can also generate large-scale W states by fusing or expanding W or even W-like states. The cost analysis shows that in generating large-scale W states, the fusion mechanism achieves a higher efficiency with non-maximally entangled W-like states than maximally entangled W states. Our scheme can also start fusion or expansion with Bell states, and it is composed of a polarization-dependent beam splitter, two polarizing beam splitters and photon detectors. Requiring no ancilla photon or controlled gate to operate, our scheme can be realized with the current photonics technology and we believe it enable advances in quantum teleportation and superdense coding in multipartite settings.

  1. The Grammar of Teleportation

    CERN Document Server

    Timpson, C G

    2005-01-01

    Whilst a straightforward consequence of the formalism of non-relativistic quantum mechanics, the phenomenon of quantum teleportation has given rise to considerable puzzlement. In this paper, the teleportation protocol is reviewed and these puzzles dispelled. It is suggested that they arise from two primary sources: 1) the familiar error of hypostatizing an abstract noun (in this case, `information') and 2) failure to differentiate interpretation dependent from interpretation independent features of quantum mechanics. A subsidiary source of error, the simulation fallacy, is also identified. The resolution presented of the puzzles of teleportation illustrates the benefits of paying due attention to the logical status of `information' as an abstract noun.

  2. Efficient scheme for hybrid teleportation via entangled coherent states in circuit quantum electrodynamics.

    Science.gov (United States)

    Joo, Jaewoo; Ginossar, Eran

    2016-06-01

    We propose a deterministic scheme for teleporting an unknown qubit state through continuous-variable entangled states in superconducting circuits. The qubit is a superconducting two-level system and the bipartite quantum channel is a microwave photonic entangled coherent state between two cavities. A Bell-type measurement performed on the hybrid state of solid and photonic states transfers a discrete-variable unknown electronic state to a continuous-variable photonic cat state in a cavity mode. In order to facilitate the implementation of such complex protocols we propose a design for reducing the self-Kerr nonlinearity in the cavity. The teleporation scheme enables quantum information processing operations with circuit-QED based on entangled coherent states. These include state verification and single-qubit operations with entangled coherent states. These are shown to be experimentally feasible with the state of the art superconducting circuits.

  3. Efficient scheme for hybrid teleportation via entangled coherent states in circuit quantum electrodynamics

    Science.gov (United States)

    Joo, Jaewoo; Ginossar, Eran

    2016-06-01

    We propose a deterministic scheme for teleporting an unknown qubit state through continuous-variable entangled states in superconducting circuits. The qubit is a superconducting two-level system and the bipartite quantum channel is a microwave photonic entangled coherent state between two cavities. A Bell-type measurement performed on the hybrid state of solid and photonic states transfers a discrete-variable unknown electronic state to a continuous-variable photonic cat state in a cavity mode. In order to facilitate the implementation of such complex protocols we propose a design for reducing the self-Kerr nonlinearity in the cavity. The teleporation scheme enables quantum information processing operations with circuit-QED based on entangled coherent states. These include state verification and single-qubit operations with entangled coherent states. These are shown to be experimentally feasible with the state of the art superconducting circuits.

  4. Teleporting a quantum controlled-Not with one target/two targets gate using two partially entangled states

    Institute of Scientific and Technical Information of China (English)

    Chen Li-Bing; Jin Rui-Bo; Lu Hong

    2009-01-01

    This paper considers the teleportation of quantum controlled-Not (CNOT) gate by using partially entangled states. Different from the known probability schemes, it presents a method for teleporting a CNOT gate with unit fidelity and unit probability by using two partially entangled pairs as quantum channel. The method is applicable to any two partially entangled pairs satisfying the condition that their smaller Schmidt coefficients μ and ν are (2μ + 2ν - 2μν - 1)≥0. In this scheme, the sender's local generalized measurement described by a positive operator valued measurement (POVM) lies at the heart. It constructs the required POVM. It also puts forward a scheme for teleporting a CNOT with two targets gate with unit fidelity by using same quantum channel. With assistance of local operations and classical communications, three spatially separated users are able to complete the teleportation of a CNOT with two targets gate with probability of (2μ + 2ν - 1). With a proper value of μ and ν, the probability could reach nearly 1.

  5. High-fidelity teleportation of continuous-variable quantum States using delocalized single photons

    DEFF Research Database (Denmark)

    Andersen, Ulrik L; Ralph, Timothy C

    2013-01-01

    states as in traditional teleportation but on an ensemble of single photon entangled states. We characterize the teleportation scheme with coherent states, mesoscopic superposition states, and two-mode squeezed states and we find several situations in which near-unity teleportation fidelity can...

  6. Multiple teleportation via partially entangled GHZ state

    Science.gov (United States)

    Xiong, Pei-Ying; Yu, Xu-Tao; Zhan, Hai-Tao; Zhang, Zai-Chen

    2016-08-01

    Quantum teleportation is important for quantum communication. We propose a protocol that uses a partially entangled Greenberger-Horne-Zeilinger (GHZ) state for single hop teleportation. Quantum teleportation will succeed if the sender makes a Bell state measurement, and the receiver performs the Hadamard gate operation, applies appropriate Pauli operators, introduces an auxiliary particle, and applies the corresponding unitary matrix to recover the transmitted state.We also present a protocol to realize multiple teleportation of partially entangled GHZ state without an auxiliary particle. We show that the success probability of the teleportation is always 0 when the number of teleportations is odd. In order to improve the success probability of a multihop, we introduce the method used in our single hop teleportation, thus proposing a multiple teleportation protocol using auxiliary particles and a unitary matrix. The final success probability is shown to be improved significantly for the method without auxiliary particles for both an odd or even number of teleportations.

  7. Simplified Scheme for Teleportation of a Multipartite Quantum State Using a Single Entangled Pair

    Institute of Scientific and Technical Information of China (English)

    YAN Li-Hua; GAO Yun-Feng

    2009-01-01

    A simple scheme for teleporting an unknown M-qubit cat-like state is proposed.The steps of this scheme can be summarized simpIy: disentangle-teleport-reconstruct entanglement.If proper unitary operations and measurements from senders are given, the teleportation of an unknown M-qubit cat-like state can be converted into single qubit teleportation.In the meantime, the receiver should also carry out right unitary operations with the introduction of appropriate ancillary qubits to confirm the successful teleportation of the demanded entangled state.The present scheme can be generalized to teleport an unknown M-quNit state, i.e., an M-quNit state can be teleported by a single quNit entangled pair.

  8. Squeezing the limit: quantum benchmarks for the teleportation and storage of squeezed states

    Energy Technology Data Exchange (ETDEWEB)

    Owari, M; Plenio, M B [Institute for Mathematical Sciences, 53 Prince' s Gate, Imperial College London, London SW7 2PG (United Kingdom); Polzik, E S; Wolf, M M [Niels Bohr Institute, Copenhagen University, Blegdamsvej 17, DK-2100 Copenhagen Oe (Denmark); Serafini, A [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)], E-mail: m.owari@imperial.ac.uk

    2008-11-15

    We derive fidelity benchmarks for the quantum storage and teleportation of squeezed states of continuous variable systems, for input ensembles where the degree of squeezing s is fixed, no information about its orientation in phase space is given, and the distribution of phase-space displacements is a Gaussian. In the limit where the latter becomes flat, we prove analytically that the maximal classical achievable fidelity (which is 1/2 without squeezing, for s=1) is given by {radical}s/(1+s), vanishing when the degree of squeezing diverges. For mixed states, as well as for general distributions of displacements, we reduce the determination of the benchmarks to the solution of a finite-dimensional semidefinite program, which yields accurate, certifiable bounds thanks to a rigorous analysis of the truncation error. This approach may be easily adapted to more general ensembles of input states.

  9. Teleportation the impossible leap

    CERN Document Server

    Darling, David

    2005-01-01

    An authoritative, entertaining examination of the ultimate thrill ride Until recently the stuff of sci-fi fiction and Star Trek reruns, teleportation has become a reality-for subatomic particles at least. In this eye-opening book, science author David Darling follows the remarkable evolution of teleportation, visiting the key labs that have cradled this cutting-edge science and relating the all-too-human stories behind its birth. He ties in the fast emerging fields of cryptography and quantum computing, tackles some thorny philosophical questions (for instance, can a soul be teleported?)

  10. Teleportation via decay

    Indian Academy of Sciences (India)

    S Bose; P L Knight; M B Plenio; V Vedral

    2001-02-01

    We present a rare example of a decay mechanism playing a constructive role in quantum information processing. We show how the state of an atom trapped in a cavity can be teleported to a second atom trapped in a distant cavity by the joint detection of photon leakage from the cavities. The scheme, which is probabilistic, requires only a single three level atom in a cavity. We also show how this scheme can be modified to a teleportation with insurance.

  11. Defending Continuous Variable Teleportation: Why a laser is a clock, not a quantum channel

    CERN Document Server

    Wiseman, H M

    2004-01-01

    It has been argued [T. Rudolph and B.C. Sanders, Phys. Rev. Lett. {\\bf 87}, 077903 (2001)] that continuous-variable quantum teleportation at optical frequencies has not been achieved because the source used (a laser) was not `truly coherent'. Van Enk, and Fuchs [Phys. Rev. Lett, {\\bf 88}, 027902 (2002)], while arguing against Rudolph and Sanders, also accept that an `absolute phase' is achievable, even if it has not been achieved yet. I will argue to the contrary that `true coherence' or `absolute phase' is always illusory, as the concept of absolute time (at least for frequencies beyond direct human experience) is meaningless. All we can ever do is to use an agreed time standard. In this context, a laser beam is fundamentally as good a `clock' as any other. I explain in detail why this claim is true, and defend my argument against various objections. In the process I discuss super-selection rules, quantum channels, and the ultimate limits to the performance of a laser as a clock. For this last topic I use so...

  12. Scheme for Teleportation of a Multipartite Quantum State by Using a Single Entangled Pair as Quantum Channel

    Institute of Scientific and Technical Information of China (English)

    WANG Xin-Wen; WANG Zhi-Yong; XIA Li-Xin

    2007-01-01

    We present a theoretical scheme for perfect teleportation of an unknown multipartite two-level state by a single EPR (Einstein-Podolsky-Rosen) pair,and then generalize it to multilevel,i.e.,an N-quNit state can be teleported by a single quNit entangled pair,with additional local unitary operations.The feature of the scheme is that teleporting a multipartite state with a reduced amount of entanglement costs less classical bits.

  13. The decoherence of quantum entanglement and teleportation in Bell-diagonal states

    Institute of Scientific and Technical Information of China (English)

    QIN Meng; LI Yan-Biao; WANG Xiao; BAI Zhong

    2012-01-01

    We study the dynamics of entanglement and teleportation in Bell-diagonal states. Using the concepts of concurrence and fidelity,the analytical expressions of the entanglement,the output entanglement and the average fidelity with decoherence are obtained for this model.We discover a class of initial states in which the output entanglement and the average fidelity are destroyed by decoherence. The quality of teleportation depends on the system parameters and time.

  14. Multiparticle Generalization of Teleportation

    Institute of Scientific and Technical Information of China (English)

    YANG Chui-Ping; GUO Guang-Can

    2000-01-01

    A scheme for teleporting an unknown quantum state of many particles is proposed. The scheme operates es sentially by prearranging the sharing of an Einstein-Podolsky-Rosen-correlated pair of particles every time. We show that after performing a series of Bell-state measurements and single-particle unitary transformations, the unknown state of many particles, which was destroyed at one place, can be reconstructed at another place. Our scheme is actually obtained by generalizing an earlier scheme of Bennett et al. [Phys. Rev. Lett. 70 (1993) 1895; 76 (1996) 722] known as quantum teleportation to the multiparticle case.

  15. Using less Quantum Resource for Probabilistic Controlled Teleportation of a Triplet W State

    Directory of Open Access Journals (Sweden)

    Xian-Ming Wang

    2012-10-01

    Full Text Available In a recent paper [CHIN. PHYS. LETT. Vol.26,No.7(2009070306 ], DONG et al. proposed a scheme for probabilistic controlled teleportation of a triplet W state using combined non-maximally entangled channel of two Einstein–Podolsky–Rosen (EPR states and one Greenberger–Horne–Zeilinger (GHZ state. In this paper ,only using one Einstein–Podolsky–Rosen (EPR state and one Greenberger–Horne–Zeilinger (GHZ state,the scheme for probabilistic controlled teleportation of a triplet W state is presented. Furthermore, Comparing with the widely used Bell-State measurement, Alice performs orthogonal complete basis measurement in the current work. Then Bob can faithfully reconstruct the original state by performing relevant unitary transformations. The total probability of successful teleportation is only dependent on channel coefficients of EPR state and GHZ state.  

  16. Probabilistic Teleportation of a Three-Particle State

    Institute of Scientific and Technical Information of China (English)

    FANG Jian-Xing; ZHU Shi-Qun; ZHANG Rong; CHEN Xian-Feng

    2003-01-01

    A scheme for teleporting a three-particle state is proposed when three pairs of entangled particles are used as quantum channels. Quantum teleportation can be successfully realized with a certain probability if the receiver adopts an appropriate unitary-reduction strategy. The probability of successful teleportation is determined by the smaller coetficients of the three entangled pairs.

  17. Probabilistic Teleportation of a Three-Particle State

    Institute of Scientific and Technical Information of China (English)

    FANGJian-Xing; ZHUShi-Qun; ZHANGRong; CHENXian-Feng

    2003-01-01

    A scheme for teleporting a three-particle state is proposed when three pairs of entangled particles are used as quantum channels. Quantum teleportation can be successfully realized with a certain probability if the receiver adopts an appropriate unitary-reduction strategy. The probability of successful teleportation is determined by the smaller coefficients of the three entangled pairs.

  18. Continuous variable teleportation of single photon states (Proceedings version)

    OpenAIRE

    Ide, Toshiki; Hofmann, Holger F.; Kobayashi, Takayoshi; Furusawa, Akira

    2001-01-01

    We investigate the changes to a single photon state caused by the non-maximal entanglement in continuous variable quantum teleportation. It is shown that the teleportation measurement introduces field coherence in the output.

  19. Star-Trek Teleportation: A Possibility?

    CERN Document Server

    Kho, Kiang Wei

    2011-01-01

    This paper describes a scheme, through which the quantum information as well as the structural information of a time-reversal invariant system can be teleported over a distance. I show that my teleportation scheme can be viewed as a form of reversible purification process by repeated interactions with an auxiliary quantum system.

  20. Teleportation of a three-particle entangled W state

    Institute of Scientific and Technical Information of China (English)

    郑亦庄; 顾永建; 郭光灿

    2002-01-01

    We have investigated the problem of teleporting a three-particle entangled W state and we propose a scheme based on entanglement swapping to complete the teleportation. We also put forward a scheme for the teleportation of a general W state by using nonmaximally entangled quantum channels. The probability of success of the latter scheme is obtained.

  1. Teleportation of Atomic States in a Vacuum-Induced Environment

    Institute of Scientific and Technical Information of China (English)

    LIU Jin; SHAO Bin; XIANG Shao-Hua; ZOU Jian

    2009-01-01

    We present a scheme for teleporting atomic state through a dissipative quantum channel induced by spontaneous emission and investigate the destructive effect of the atomic decay on the success probability and the fidelity of teleportation associated to different channels. It is found that there exists an optimal channel to realize faithful teleportation.

  2. Qudit-Teleportation for photons with linear optics

    CSIR Research Space (South Africa)

    Goyal, SK

    2014-04-01

    Full Text Available Quantum teleportation, the transfer of the state of one quantum system to another without direct interaction between both systems, is an important way to transmit information encoded in quantum states and to generate quantum correlations...

  3. Teleportation of Nonclassical Wave Packets of light

    CERN Document Server

    Lee, Noriyuki; Takeno, Yuishi; Takeda, Shuntaro; Webb, James; Huntington, Elanor; Furusawa, Akira

    2012-01-01

    We report on the experimental quantum teleportation of strongly nonclassical wave packets of light. To perform this full quantum operation while preserving and retrieving the fragile non-classicality of the input state, we have developed a broadband, zero-dispersion teleportation apparatus that works in conjunction with time-resolved state preparation equipment. Our approach brings within experimental reach a whole new set of hybrid protocols involving discrete- and continuous-variable techniques in quantum information processing for optical sciences.

  4. Feasible Teleportation Schemes with Five-Atom Entangled State

    Institute of Scientific and Technical Information of China (English)

    XUE Zheng-Yuan; YI You-Min; CAO Zhuo-Liang

    2006-01-01

    Teleportation schemes with a five-atom entangled state are investigated. In the teleportation scheme Bell state measurements (BSMs) are difficult for physical realization, so we investigate another strategy using separate measurements instead of BSM based on cavity quantum electrodynamics techniques. The scheme of two-atom entangled state teleportation is a controlled and probabilistic one. For the teleportation of the three-atom entangled state, the scheme is a probabilistic one. The fidelity and the probability of the successful teleportation are also obtained.

  5. Teleportation of Multi-qudit Entangled States

    Institute of Scientific and Technical Information of China (English)

    ZHAN Xiao-Gui; LI Hong-Mei; ZENG Hao-Sheng

    2006-01-01

    @@ We propose a method to realize the teleportation of an unknown entangled state that consists of many qudits through a partially entangled-qudit quantum channel with the help of 2 log2 d-bit classical communication. The operations used in the teleportation process include a generalized Bell-state measurement and a series of singlequdit π-measurements performed by Alice, a series of generalized qudit-Pauli gates and two-level unitary gates,as well as a qubit measurement performed by Bob. For a maximally entangled quantum channel, the successful probability of the teleportation becomes unit.

  6. Teleport Generation 3 (Teleport Gen 3)

    Science.gov (United States)

    2016-03-01

    8596 DSN Fax: Date Assigned: September 4, 2014 Program Information Program Name Teleport Generation 3 (Teleport Gen 3) DoD Component DoD The...2015 Approved APB Component Acquisition Executive (CAE) Approved Acquisition Program Baseline (APB) dated June 15, 2015 Teleport Gen 3 2016 MAR...System Network (DISN). The DoD Teleport upgrades selected sites from the Standardized Tactical Entry Point (STEP) program, which only provides reach

  7. Teleporting independent qubits through a 97 km free-space channel

    CERN Document Server

    Yin, Juan; Ren, Ji-Gang; Cao, Yuan; Yong, Hai-Lin; Wu, Yu-Ping; Liu, Chang; Liao, Sheng-Kai; Jiang, Yan; Cai, Xin-Dong; Xu, Ping; Pan, Ge-Sheng; Wang, Jian-Yu; Chen, Yu-Ao; Peng, Cheng-Zhi; Pan, Jian-Wei

    2012-01-01

    With the help of quantum entanglement, quantum communication can be achieved between arbitrarily distant places without passing through intermediate locations by quantum teleportation. In the laboratory, quantum teleportation has been demonstrated over short distance by photonic and atomic qubits. Using fiber links, quantum teleportation has been achieved over kilometer distances. Long distance quantum teleportation is of particular interest and has been one of the holy grails of practical quantum communication. Most recently, quantum teleportation over 16 km free-space link was demonstrated. However, a major restriction in this experiment is that the unknown quantum state cannot directly come from outside. Here, based on an ultra-bright multi-photon entanglement source, we demonstrate quantum teleportation, closely following the original scheme, for any unknown state created outside, between two optical free-space links separated by 97 km. Over a 35-53 dB high-loss quantum channel, an average fidelity of 80....

  8. Teleportation of Squeezed Entangled State

    Institute of Scientific and Technical Information of China (English)

    HU Li-Yun; ZHOU Nan-Run

    2007-01-01

    Based on the coherent entangled state |α, x> we introduce the squeezed entangled state (SES). Then we propose a teleportation protocol for the SES by using Einstein-Podolsky-Rosen entangled state |η>as a quantum channel.The calculation is greatly simplified by virtue of the Schmidt decompositions of both |α, x>and |η>. Any bipartite states that can be expanded in terms of |α, x>may be teleported in this way due to the completeness of |α, x>.

  9. Optimal continuous-variable teleportation under energy constraint

    Science.gov (United States)

    Lee, Jaehak; Park, Jiyong; Nha, Hyunchul

    2017-05-01

    Quantum teleportation is one of the crucial protocols in quantum information processing. It is important to accomplish an efficient teleportation under practical conditions, aiming at a higher fidelity desirably using fewer resources. The continuous-variable (CV) version of quantum teleportation was first proposed using a Gaussian state as a quantum resource, while other attempts were also made to improve performance by applying non-Gaussian operations. We investigate the CV teleportation to find its ultimate fidelity under energy constraint identifying an optimal quantum state. For this purpose, we present a formalism to evaluate teleportation fidelity as an expectation value of an operator. Using this formalism, we prove that the optimal state must be a form of photon-number entangled states. We further show that Gaussian states are near optimal, while non-Gaussian states make a slight improvement and therefore are rigorously optimal, particularly in the low-energy regime.

  10. Research on tensor representation of quantum teleportation%张量表示的量子隐形传态研究

    Institute of Scientific and Technical Information of China (English)

    田秀劳; 胡洋; 符洪姿

    2014-01-01

    通过定义通道参数矩阵X、测量矩阵Tα和传输变换矩阵σα,介绍一种量子隐形传态的张量表示和分析方法,并用此方法来重新表示量子隐形传输、量子网络控制隐形传输、量子概率隐形传输和量子双向隐形传输。量子隐形传态的这种张量表示方法揭示了量子通道和测量方法之间的内在联系,能给出实现隐形传态时选取量子通道的一般判据。该方法使隐形传态的表示简洁明了,处理多粒子态的隐形传态更有优势。%The tensor representation is introduced to study quantum teleportation.Quantum channel parameter matrix X,measurement matrix Tαand transformation matrixσαare definited. With the tensor representation,the quantum telepoatation,the network-controlled telepoatation are reconsidered.This method of tensor representation recovers underlying relationship between the quantum channel and measurement and gives an effective criterion to choose the quantum channel for realizing the quantum telepoatation.The tensor representation can avoid tedious e-quation and complex calculations and make the teleportation processing succincter.

  11. Optimal teleportation with a noisy source

    Energy Technology Data Exchange (ETDEWEB)

    Taketani, Bruno G. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro (Brazil); Physikalisches Institut der Albert-Ludwigs-Universitaet, Freiburg im Breisgau (Germany); Melo, Fernando de [Instituut voor Theoretische Fysica, Katholieke Universiteit Leuven, Leuven, Belgie (Belgium); Physikalisches Institut der Albert-Ludwigs-Universitaet, Freiburg im Breisgau (Germany); Matos Filho, Ruynet L. de [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro (Brazil)

    2012-07-01

    In this work we discuss the role of decoherence in quantum information protocols. Particularly, we study quantum teleportation in the realistic situation where not only the transmission channel is imperfect, but also the preparation of the state to be teleported. The optimal protocol to be applied in this situation is found and we show that taking into account the input state noise leads to sizable gains in teleportation fidelity. It is then evident that sources of noise in the input state preparation must be taken into consideration in order to maximize the teleportation fidelity. The optimization of the protocol can be defined for specific experimental realizations and accessible operations, giving a trade-off between protocol quality and experiment complexity.

  12. Probabilistic Teleportation of an Arbitrary Two-Atom State in Cavity QED

    Institute of Scientific and Technical Information of China (English)

    LIU Jin-Ming

    2007-01-01

    We propose a scheme for the teleportation of an arbitrary two-atom state by using two pairs of two-atom nonmaximally entangled states as the quantum channel in cavity QED.It is shown that no matter whether the arbitrary two-atom pure state to be teleported is entangled or not,our teleportation scheme can always be probabilistically realized.The success probability of teleportation is determined by the smaller coefficients of the two initially entangled atom pairs.

  13. Scheme for secure swapping two unknown states of a photonic qubit and an electron-spin qubit using simultaneous quantum transmission and teleportation via quantum dots inside single-sided optical cavities

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Jino [College of Electrical and Computer Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju (Korea, Republic of); Kang, Min-Sung [Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul, 136-791 (Korea, Republic of); Hong, Chang-Ho [National Security Research Institute, P.O.Box 1, Yuseong, Daejeon, 34188 (Korea, Republic of); Choi, Seong-Gon [College of Electrical and Computer Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju (Korea, Republic of); Hong, Jong-Phil, E-mail: jongph@cbnu.ac.kr [College of Electrical and Computer Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju (Korea, Republic of)

    2017-06-15

    We propose a scheme for swapping two unknown states of a photon and electron spin confined to a charged quantum dot (QD) between two users by transferring a single photon. This scheme simultaneously transfers and teleports an unknown state (electron spin) between two users. For this bidirectional quantum communication, we utilize the interactions between a photonic and an electron-spin qubits of a QD located inside a single-sided optical cavity. Thus, our proposal using QD-cavity systems can obtain a certain success probability with high fidelity. Furthermore, compared to a previous scheme using cross-Kerr nonlinearities and homodyne detections, our scheme (using QD-cavity systems) can improve the feasibility under the decoherence effect in practice. - Highlights: • Design of Simultaneous quantum transmission and teleportation scheme via quantum dots and cavities. • We have developed the experimental feasibility of this scheme compared with the existing scheme. • Analysis of some benefits when our scheme is experimentally implemented using quantum dots and single-sided cavities.

  14. Probabilistic Teleportation of a Four-Particle Entangled State

    Institute of Scientific and Technical Information of China (English)

    ZHAN You-Bang; FU Hao; DONG Zheng-Chao

    2005-01-01

    A Scheme for teleporting an unknown four-particle entangled state is proposed via entangled swapping. In this scheme, four pairs of entangled particles are used as quantum channel. It is shown that, if the four pairs of particles are nonmaximally entangled, the teleportation can be successfully realized with certain probability if a receiver adopts some appropriate unitary transformations.

  15. The dependence of fidelity on the squeezing parameter in teleportation of the squeezed coherent states

    Institute of Scientific and Technical Information of China (English)

    Zhang Jing-Tao; He Guang-Qiang; Ren Li-Jie; Zeng Gui-Hua

    2011-01-01

    This paper investigates an analytical expression of teleportation fidelity in the teleportation scheme of a single mode of electromagnetic field. The fidelity between the original squeezed coherent state and the teleported one is expressed in terms of the squeezing parameter r and the quantum channel parameter (two-mode squeezed state) p. The results of analysis show that the fidelity increases with the increase of the quantum channel parameter p, while the fidelity decreases with the increase of the squeezing parameter r of the squeezed state. Thus the coherent state (r = 0)is the best quantum signal for continuous variable quantum teleportation once the quantum channel is built.

  16. Entanglement Teleportation via a Two-Qubit System with Anisotropic Couplings under a Different Nonuniform Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    QIN Meng

    2013-01-01

    We examine entanglement teleportation,characterized by average fidelity,of two-qubit XY Z spin chain under different nonuniform magnetic field.The entanglement teleportation and the fidelity of entanglement teleportation are investigated separately.We show explicitly that the fidelity of entanglement teleportation can be enhanced by changing the direction of the magnetic field.This means that we can always get optimal fidelity by choosing the directions of magnetic field in the process of quantum teleportation.Moreover,the results show that in some cases the ferromagnetic chain aiso is a quaiified candidate in the process of teleportation protocol.

  17. Dynamical quantum teleportation

    Energy Technology Data Exchange (ETDEWEB)

    Muschik, Christine [ICFO-Institut de Ciencies Fotoniques (Spain); Polzik, Eugene [Niels Bohr Institute (Denmark); Cirac, Ignacio [Max-Planck-Institute (Germany)

    2013-07-01

    We introduce two protocols for inducing non-local dynamics between two separate parties. The first scheme allows for the engineering of an interaction between the two remote systems, while the second protocol induces a dynamics in one of the parties, which is controlled by the other one. Both schemes apply to continuous variable systems, run continuously in time and are based on instantaneous feedback.

  18. A controlled quantum teleportation scheme with identity certification%一种可控量子隐形传态身份认证的方案

    Institute of Scientific and Technical Information of China (English)

    龚敬; 谭晓青

    2013-01-01

    提出了一种实现可控量子隐形传态身份认证的方案.可信第三方Charlie利用纠缠交换原理对接收者Bob进行身份认证,在确定Bob的合法身份并将消息反馈给发送者Alice后,Alice再对量子信息进行传送.本方案能有效解决假冒身份攻击,从而保证量子信息传送的安全性.%This paper proposed a controlled quantum teleportation scheme with identity certification. The receiver Bob was identified by entanglement swapping principle from the trusted Charlie. After the sender Alice gets the feedback from Charlie, and Charlie can make sure the identity of Bob and then send the quantum information to Bob. The scheme could prevent forgery attack effectively to ensure the security of quantum information transmission.

  19. Thermal entanglement and teleportation in a dipolar interacting system

    Energy Technology Data Exchange (ETDEWEB)

    Castro, C.S., E-mail: ccastro@if.uff.br [Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, Gragoatá, 24210-346 Niterói, RJ (Brazil); Centro de Formação de Professores, Universidade Federal do Recôncavo da Bahia, Av. Nestor de Mello Pita, n. 535, 45.300-000 Amargosa, BA (Brazil); Duarte, O.S.; Pires, D.P.; Soares-Pinto, D.O. [Instituto de Física de São Carlos, Universidade de São Paulo, P.O. Box 369, São Carlos, 13560-970 SP (Brazil); Reis, M.S. [Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, Gragoatá, 24210-346 Niterói, RJ (Brazil)

    2016-04-22

    Quantum teleportation, which depends on entangled states, is a fascinating subject and an important branch of quantum information processing. The present work reports the use of a dipolar spin thermal system as a noisy quantum channel to perform quantum teleportation. Non-locality, tested by violation of Bell's inequality and thermal entanglement, measured by negativity, shows that for the present model all entangled states, even those that do not violate Bell's inequality, are useful for teleportation. - Highlights: • The effects of a dipolar interaction between two spins on their degree of entanglement and non-locality is reported. • The model presents some degree of non-locality and entanglement at a given coupling parameters. • It is shown how the magnetic anisotropies can influence the fidelity of teleportation.

  20. Teleportation for an Ionic Entangled Internal State by Entanglement Swapping

    Institute of Scientific and Technical Information of China (English)

    ZHENG Xiao-Juan; FANG Mao-Fa; LIAO Xiang-Ping; CAI Jian-Wu

    2006-01-01

    @@ We present an effective scheme to teleport an unknown ionic entangled internal state via trapped ions without joint Bell-state measurement. In the constructed quantum channel process, we adopt entanglement swapping to avoid decrease of entanglement during the distribution of particles. Thus our scheme provides new prospects for quantum teleportation over longer distance. The distinct advantages of our scheme are that our scheme is insensitive to heating of vibrational mode and can be generalized to teleport an N-ion electronic entangled GHZ class state. Furthermore, in our scheme the success probability can reach 1.

  1. Deterministic Multi-hop Controlled Teleportation of Arbitrary Single-Qubit State

    Science.gov (United States)

    Peng, Jia-yin; Bai, Ming-qiang; Mo, Zhi-wen

    2017-10-01

    Multi-hop teleportation is of great significance due to long-distance delivery of quantum information and wireless quantum communication networks. In existing protocols of multi-hop teleportation, the more nodes, the smaller the success probability. In this paper, fusing the ideas of multi-hop teleportation and controlled teleportation, we put forward a scheme for implementing multi-hop controlled teleportation of single-qubit state. A set of ingenious three-qubit non-maximally entangled states are constructed to serve as the quantum channels. The information is perfectly transmitted hop by hop through teleportation under the control of the supervisors. Unit success probability can be achieved independent of channel's entanglement degree and the number of intermediate nodes. Only Pauli operations, single-qubit rotation, Hadamard gate, controlled-NOT gate, Bell-state measurement and single-qubit measurement are used in our scheme, so this scheme is easily realized in physical experiment.

  2. Notes on teleportation in an expanding space

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jun, E-mail: tsunfeng@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Yang, Wen-Li [Institute of Modern Physics, Northwest University, Xian 710069 (China); Zhang, Yao-Zhong [School of Mathematics and Physics, The University of Queensland, Brisbane, QLD 4072 (Australia); Fan, Heng, E-mail: hfan@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2013-02-26

    We investigate the quantum teleportation between a conformal detector Alice and an inertial detector Bob in de Sitter space in two schemes, (i) one uses free scalar modes and (ii) one utilizes cavity to store qubit. We show that the fidelity of the teleportation is degraded for Bob in both cases. While the fidelity-loss is due to the Gibbons–Hawking effect associated with his cosmological horizon in the scheme (i), the entanglement decreases in the scheme (ii) because the ability to entangle the cavities is reduced by the spacetime curvature. With a cutoff at Planck-scale, comparing with the standard Bunch–Davies choice, we also show that the possible Planckian physics cause extra modifications to the fidelity of the teleportation protocol in both schemes.

  3. Teleportation of a multiqubit state by an entangled qudit channel

    Institute of Scientific and Technical Information of China (English)

    郑亦庄; 顾永建; 吴桂初; 郭光灿

    2003-01-01

    We investigate the problem of teleportation of an M-qubit state by using an entangled qudit pair as a quantum channe; and show that the teleportation of a multiparticle state can correspond to the teleportation of a multidimensional state.We also introduce a quantum-state converter composed of beamspliter arrays,on /off -detectors and coross-Kerr couplers and demonstrate that the stte concersion from an M-qubit to an N-dimensional qudit and vice versa can be implemented with this converter,where N=2M,Based on this ,an experimentallu feasible for the teleportation of an M-qubit via an entangl;ed N-level qudit pair channel is proposed.

  4. Probabilistic teleportation of multi-particle partially entangled state

    Institute of Scientific and Technical Information of China (English)

    Chen Xiu-Bo; Du Jian-Zhong; Wen Qiao-Yan; Zhu Fu-Chen

    2008-01-01

    Utilizing the generalized measurement described by positive operator-valued measure, this paper comes up with a protocol for teleportation of an unknown multi-particle entangled (GHZ) state with a certain probability. The feature of the present protocol is to weaken requirement for the quantum channel initially shared by sender and receiver. All unitary transformations performed by receiver are summarized into a formula. On the other hand, this paper explicitlyconstructs the efficient quantum circuits for implementing the proposed teleportation by means of universal quantum logic operations in quantum computation.

  5. Improving fidelity in atomic state teleportation via cavity decay

    OpenAIRE

    Chimczak, Grzegorz; Tanaś, Ryszard

    2007-01-01

    We propose a modified protocol of atomic state teleportation for the scheme proposed by Bose et al. (Phys. Rev. Lett. 83, 5158 (1999)). The modified protocol involves an additional stage in which quantum information distorted during the first stage is fully recovered by a compensation of the damping factor. The modification makes it possible to obtain a high fidelity of teleported state for cavities that are much worse than that required in the original protocol, i.e., their decay rates can b...

  6. Teleporting squeezing: Optimization using non-Gaussian resources

    CERN Document Server

    Dell'Anno, F; Adesso, G; Illuminati, F

    2010-01-01

    We study the continuous-variable quantum teleportation of states, statistical moments of observables, and scale parameters such as squeezing. We investigate the problem both in ideal and imperfect Vaidman-Braunstein-Kimble protocol setups. We show how the teleportation fidelity is maximized and the difference between output and input variances is minimized by using suitably optimized entangled resources. Specifically, we consider the teleportation of coherent squeezed states, exploiting squeezed Bell states as entangled resources. This class of non-Gaussian states includes photon-added and photon-subtracted squeezed states as special cases. At variance with the case of entangled Gaussian resources, the use of entangled non-Gaussian squeezed Bell resources allows for different optimization procedures that lead to inequivalent results. Performing two independent optimization procedures one can either maximize the state teleportation fidelity, or minimize the difference between input and output quadrature varian...

  7. Two Versions of the Projection Postulate: From EPR Argument to One-Way Quantum Computing and Teleportation

    Directory of Open Access Journals (Sweden)

    Andrei Khrennikov

    2010-01-01

    of the projection postulate (due to von Neumann and Lüders should be taken into account seriously in the analysis of the basic constructions of quantum information theory. This paper is a review devoted to such an analysis.

  8. Teleportation of a two-particle four-component squeezed vacuum state by linear optical elements

    Institute of Scientific and Technical Information of China (English)

    Huina Chen; Jinming Liu

    2009-01-01

    We present a linear optical scheme for achieving a unity fidelity teleportation of a two-particle four component squeezed vacuum state using two entangled squeezed vacuum states as quantum channel.The devices used are beam splitters and ideal photon detectors capable of distinguishing between odd and even photon numbers.Moreover,we also obtain the success probability of the teleportation scheme.

  9. Probabilistic Teleportation of the Three-Particle Entangled State viaEntanglement Swapping

    Institute of Scientific and Technical Information of China (English)

    路洪

    2001-01-01

    A scheme of teleportation of a three-particle entangled state via entanglement swapping is proposed. It is shown that if a two-particle entangled state and a three-particle entangled state (both are not maximum entangled states) are used as quantum channels, probabilistic teleportation of the three-particle entangled state can be realized.

  10. Teleportation via thermally entangled states of a two-qubit Heisenberg XXZ chain

    Institute of Scientific and Technical Information of China (English)

    QIN Meng; TAO Ying-Juan; TIAN Dong-Ping

    2008-01-01

    We investigate quantum teleportation as a tool to study the thermally entangled state of a twoqubit Heisenberg XXZ chain.Our work is mainly to investigate the characteristics of a Heisenberg XXZ chain and get some analytical results of the fully entangled fraction.We also consider the entanglement teleportation via a two-qubit Heisenberg XXZ chain.

  11. Teleportation of N-particle entangled W state via entanglement swapping

    Institute of Scientific and Technical Information of China (English)

    Zhan You-Bang

    2004-01-01

    A scheme for teleporting an unknown N-particle entangled W state is proposed via entanglement swapping. In this scheme, N maximally entangled particle pairs are used as quantum channel. As a special case, the teleportation of an unknown four-particle entangled W state is studied.

  12. Role of syndrome information on a one-way quantum repeater using teleportation-based error correction

    Science.gov (United States)

    Namiki, Ryo; Jiang, Liang; Kim, Jungsang; Lütkenhaus, Norbert

    2016-11-01

    We investigate a quantum repeater scheme for quantum key distribution based on the work by S. Muralidharan et al. [Phys. Rev. Lett. 112, 250501 (2014)], 10.1103/PhysRevLett.112.250501. Our scheme extends that work by making use of error syndrome measurement outcomes available at the repeater stations. We show how to calculate the secret key rates for the case of optimizing the syndrome information, while the known key rate is based on a scenario of coarse graining the syndrome information. We show that these key rates can surpass the Pirandola-Laurenza-Ottaviani-Banchi bound on secret key rates of direct transmission over lossy bosonic channels.

  13. Slow light invisibility, teleportation, and other mysteries of light

    CERN Document Server

    Perkowitz, Sidney

    2011-01-01

    Slow Light is a popular treatment of today's astonishing breakthroughs in the science of light. Even though we don't understand light's quantum mysteries, we can slow it to a stop and speed it up beyond its Einsteinian speed limit, 186,000 miles/sec; use it for quantum telecommunications; teleport it; manipulate it to create invisibility; and perhaps generate hydrogen fusion power with it. All this is lucidly presented for non-scientists who wonder about teleportation, Harry Potter invisibility cloaks, and other fantastic outcomes. Slow Light shows how the real science and the fantasy inspire

  14. Probabilistic Teleportation of a Four-Particle Entangled W State

    Institute of Scientific and Technical Information of China (English)

    ZHAN You-Bang; FU Hao

    2005-01-01

    In this paper, two schemes for teleporting an unknown four-particle entangled W state is proposed. In the first scheme, two partial entangled four-particle states are used as quantum channels, while in the second scheme,four non-maximally entangled particle pairs are considered as quantum channels. It is shown that the teleportation can be successfully realized with certain probability, for both schemes, if a receiver adopts some appropriate unitary transformations. It is also shown that the successful probabilities of these two schemes are different.

  15. Teleportation of an arbitrary three-particle state

    Institute of Scientific and Technical Information of China (English)

    陈立冰

    2002-01-01

    We propose two schemes for teleporting an arbitrary three-particle state. In the first scheme, a two-particle state and a three-particle entangled state (both non-maximally entangled states) are used as quantum channels, while in the second scheme, three non-maximally entangled particle pairs are employed as quantum channels. We show that teleportation can be successfully realized with certain probability if a receiver adopts some appropriate unitary transformations. Their success probabilities and the classical communication costs are different.

  16. Teleporting N-qubit unknown atomic state by utilizing the Ⅴ-type three-level atom

    Institute of Scientific and Technical Information of China (English)

    ZHANG XinHua; YANG ZhiYong; XU PeiPei

    2009-01-01

    Realizing the teleportation of quantum state, especially the teleportation of N-qubit quantum state, is of great importance in quantum information. In this paper, Raman-interaction of the Ⅴ-type degenerate three-level atom and single-mode cavity field is studied by utilizing complete quantum theory. Then a new scheme for teleporting N-qubit unknown atomic state via Raman-interaction of the Ⅴ-type degen-erate three-level atom with a single-mode cavity field is proposed, which is based upon the complete quantum theory mentioned above.

  17. Teleporting N-qubit unknown atomic state by utilizing the V-type three-level atom

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Realizing the teleportation of quantum state, especially the teleportation of N-qubit quantum state, is of great importance in quantum information. In this paper, Raman-interaction of the V-type degenerate three-level atom and single-mode cavity field is studied by utilizing complete quantum theory. Then a new scheme for teleporting N-qubit unknown atomic state via Raman-interaction of the V-type degenerate three-level atom with a single-mode cavity field is proposed, which is based upon the complete quantum theory mentioned above.

  18. Teleportation of entanglement over 143 km

    CERN Document Server

    Herbst, Thomas; Fink, Matthias; Handsteiner, Johannes; Wittmann, Bernhard; Ursin, Rupert; Zeilinger, Anton

    2014-01-01

    As a direct consequence of the no-cloning theorem, the deterministic amplification as in classical communication is impossible for quantum states. This calls for more advanced techniques in a future global quantum network, e.g. for cloud quantum computing. A unique solution is the teleportation of an entangled state, i.e. entanglement swapping, representing the central resource to relay entanglement between distant nodes. Together with entanglement purification and a quantum memory it constitutes a so-called quantum repeater. Since the afore mentioned building blocks have been individually demonstrated in laboratory setups only, the applicability of the required technology in real-world scenarios remained to be proven. Here we present a free-space entanglement-swapping experiment between the Canary Islands of La Palma and Tenerife, verifying the presence of quantum entanglement between two previously independent photons separated by 143 km. We obtained an expectation value for the entanglement-witness operato...

  19. Optimal use of multipartite entanglement for continuous variable teleportation

    CERN Document Server

    Adesso, G; Adesso, Gerardo; Illuminati, Fabrizio

    2004-01-01

    In this work we point out how the continuous variable teleportation protocol takes advantage of the quadrature entanglement in different ways, depending on the preparation of the entangled state. For a given amount of the entanglement resource, we describe the best production scheme for a two-mode Gaussian state, which enables quantum teleportation with optimal fidelity. We extend this study to multiparty entangled Gaussian states and define an operative measure of multipartite entanglement related to the optimal fidelity in a quantum teleportation network experiment. This optimal fidelity is shown to be equivalent to the entanglement of formation for the standard two-user protocol, and to the multipartite localizable entanglement for the multiuser protocol.

  20. Teleportation of an unknown bipartite state via non-maximally entangled two-particle state

    Institute of Scientific and Technical Information of China (English)

    Cao Hai-Jing; Guo Yan-Qing; Song He-Shan

    2006-01-01

    In this paper a new scheme for teleporting an unknown entangled state of two particles is proposed. To weaken the requirement for the quantum channel, without loss of generality, two communicators only share a non-maximally entangled two-particle state. Teleportation can be probabilistically realized if sender performs Bell-state measurements and Hadamard transformation and receiver introduces two auxiliary particles, operates G-not operation, single-qubit measurements and appropriate unitary transformations. The probability of successful teleportation is determined by the smaller one among the coefficients' absolute values of the quantum channel.

  1. Probabilistic Teleportation of an Arbitrary Three-Level Two-Particle State and Classical Communication Cost

    Institute of Scientific and Technical Information of China (English)

    DAIHong-Yi; KUANGLe-Man; LICheng-Zu

    2005-01-01

    We propose a scheme to probabilistically teleport an unknown arbitrary three-level two-particle state by using two partial entangled two-particle states of three-level as the quantum channel. The classical communication cost required in the ideal probabilistic teleportation process is also calculated. This scheme can be directly generalized to teleport an unknown and arbitrary three-level K-particle state by using K partial entangled two-particle states of three-level as the quantum channel.

  2. Teleportation of a Kind of Three-Mode Entangled States of Continuous Variables

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A quantum teleportation scheme to teleport a kind of tripartite entangled states of continuous variables by using a quantum channel composed of three bipartite entangled states is proposed. The joint Bell measurement is feasible because the bipartite entangled states are complete and the squeezed state has a natural representation in the entangled state basis. The calculation is greatly simplified by using the Schmidt decomposition of the entangled states.

  3. Two schemes of perfect teleportation one-particle state by a three-particle general W state

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In teleportation, it can be seen that the probability of success is determined by Alice's measurement and quantum channel. If the Alice's measurement is appropriate, the teleportation can be successfully realized with the maximal probability. In accordance with transformation operator, two schemes are proposed for teleportation of an unknown one-particle state via a general W state, through which the successful probability and the fidelity of both schemes reach 1. Furthermore, two optimal matches of orthogonal complete measurement bases are given for teleporting an unknown one-particle state.

  4. Teleportation of atomic entangled states with a thermal cavity

    Institute of Scientific and Technical Information of China (English)

    Zheng Xiao-Juan; Fang Mao-Fa; Cai Jian-Wu; Liao Xiang-Ping

    2006-01-01

    We propose a most simple and experimentally feasible scheme for teleporting unknown atomic entangled states in driven cavity quantum electrodynamics (QED). In our scheme, the joint Bell-state measurement (BSM) is not required,and the successful probability can reach 1.0. Furthermore, the scheme is insensitive to the cavity decay and the thermal field.

  5. Deterministic teleportation using single-photon entanglement as a resource

    DEFF Research Database (Denmark)

    Björk, Gunnar; Laghaout, Amine; Andersen, Ulrik L.

    2012-01-01

    We outline a proof that teleportation with a single particle is, in principle, just as reliable as with two particles. We thereby hope to dispel the skepticism surrounding single-photon entanglement as a valid resource in quantum information. A deterministic Bell-state analyzer is proposed which...

  6. Enhancing teleportation fidelity by means of weak measurements or reversal

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Liang, E-mail: lqiu@cumt.edu.cn [College of Sciences, China University of Mining and Technology, Xuzhou 221116 (China); Tang, Gang; Yang, Xianqing [College of Sciences, China University of Mining and Technology, Xuzhou 221116 (China); Wang, Anmin [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China)

    2014-11-15

    The enhancement of teleportation fidelity by weak measurement or quantum measurement reversal is investigated. One qubit of a maximally entangled state undergoes the amplitude damping, and the subsequent application of weak measurement or quantum measurement reversal could improve the teleportation fidelity beyond the classical region. The improvement could not be attributed to the increasing of entanglement, quantum discord, classical correlation or total correlation. We declare that it should be owed to the probabilistic nature of the method. - Highlights: • The method’s probabilistic nature should be responsible for the improvement. • Quantum or classical correlation cannot explain the improvement. • The receiver cannot apply weak measurements. • The sender’s quantum measurement reversal is only useful for |Ψ{sup ±}〉.

  7. Teleportation of M-Qubit Unitary Operations

    Institute of Scientific and Technical Information of China (English)

    郑亦庄; 顾永建; 郭光灿

    2002-01-01

    We discuss teleportation of unitary operations on a two-qubit in detail, then generalize the bidirectional state teleportation scheme from one-qubit to M-qubit unitary operations. The resources required for the optimal implementation of teleportation of an M-qubit unitary operation using a bidirectional state teleportation scheme are given.

  8. Probabilistic teleportation of an arbitrary three-particle state

    Institute of Scientific and Technical Information of China (English)

    Lin Xiu; Li Hong-Cai

    2005-01-01

    A scheme for teleporting an arbitrary and unknown three-particle state from a sender to either one of two receivers is proposed. The quantum channel is composed of a two-particle non-maximally entangled state and two three-particle non-maximally entangled W states. An arbitrary three-particle state can be perfectly teleported probabilistically if the sender performs three generalized Bell-state measurements and sends to the two receivers the classical result of these measurements, and either one of the two receivers adopts an appropriate unitary transformation conditioned on the suitable measurement outcomes of the other receiver. All kinds of unitary transformations are given in detail.

  9. Long distance atomic teleportation with as good success as desired

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Manoj K., E-mail: manoj.qit@gmail.com [Physics Department, University of Allahabad (India); Space Applications Centre, Indian Space Research Organization (ISRO), Ahmedabad (India); Prakash, Hari [Physics Department, University of Allahabad (India); Indian Institute of Information Technology, Allahabad (India)

    2015-09-15

    Long distance atomic teleportation (LDAT) is of prime importance in long distance quantum communication. Scheme proposed by Bose et al. (1999) in principle enables us to have LDAT using cavity decay. However it gives message state dependent fidelity and success rate. Here, using interaction of entangled coherent states with atom–cavity systems and a two-step measurement, we show how, LDAT can be achieved with unit fidelity and as good success as desired under ideal conditions. The scheme is unique in that, the first measurement predicts success or failure. If success is predicted then second measurement gives perfect teleportation. If failure is predicted the message-qubit remains conserved therefore a second attempt may be started. We found that even in presence of decoherence due to dissipation of energy our scheme gives message state independent success rate and almost perfect teleportation in single attempt with mean fidelity of teleportation equal to 0.9 at long distances. However if first attempt fails, unlike ideal case where message-qubit remains conserved with unit fidelity, in presence of decoherence the message-qubit remains conserved to some degree, therefore mean fidelity of teleportation can be increased beyond 0.9 by repeating the process.

  10. Polarization enhancement in (d)over-right-arrow((p)over-right-arrow,(n)over-right-arrow)He-2 reaction : nuclear teleportation

    NARCIS (Netherlands)

    Hamieh, S

    2004-01-01

    I show that an experimental technique used in nuclear physics may be successfully applied to quantum teleportation (QT) of spin states of massive matter. A new non-local physical effect, the 'quantum-teleportation effect', is discovered for the nuclear polarization measurement. Enhancement of the ne

  11. Teleportation of a qubit using entangled non-orthogonal states: a comparative study

    Science.gov (United States)

    Sisodia, Mitali; Verma, Vikram; Thapliyal, Kishore; Pathak, Anirban

    2017-03-01

    The effect of non-orthogonality of an entangled non-orthogonal state-based quantum channel is investigated in detail in the context of the teleportation of a qubit. Specifically, average fidelity, minimum fidelity and minimum assured fidelity (MASFI) are obtained for teleportation of a single-qubit state using all the Bell-type entangled non-orthogonal states known as quasi-Bell states. Using Horodecki criterion, it is shown that the teleportation scheme obtained by replacing the quantum channel (Bell state) of the usual teleportation scheme by a quasi-Bell state is optimal. Further, the performance of various quasi-Bell states as teleportation channel is compared in an ideal situation (i.e., in the absence of noise) and under different noise models (e.g., amplitude and phase damping channels). It is observed that the best choice of the quasi-Bell state depends on the amount non-orthogonality, both in noisy and noiseless case. A specific quasi-Bell state, which was found to be maximally entangled in the ideal conditions, is shown to be less efficient as a teleportation channel compared to other quasi-Bell states in particular cases when subjected to noisy channels. It has also been observed that usually the value of average fidelity falls with an increase in the number of qubits exposed to noisy channels (viz., Alice's, Bob's and to be teleported qubits), but the converse may be observed in some particular cases.

  12. Teleportation of N-Particle Entangled GHZ State via Entanglement Swapping

    Institute of Scientific and Technical Information of China (English)

    SHA Jin-Qiao; FANG Jian-Xing; ZHU Shi-Qun; JIANG Wei-Xing; QIAN Xue-Min

    2006-01-01

    In this scheme, N non-maximally entangled particle pairs are used as quantum channel to teleport an unknown N-particle entangled GHZ state via entanglement swapping. In order to realize this teleportation, the sender Alice operates Bell-state measurement on particles belonging to herself. Then she informs the results to the receiver Bob through classical communication. According to the results, Bob operates corresponding transformation to reconstruct the initial state. The advantage of this scheme is that it needs only one common unitary matrix for Alice's different results, which has a more general meaning. As a special case, teleporting an unknown three-particle entangled GHZ state is proposed.

  13. Teleportation of n-Particle State via n Pairs of EPR Channels

    Institute of Scientific and Technical Information of China (English)

    CAO Min; ZHU Shi-Qun; FANG Jian-Xing

    2004-01-01

    The teleportation of an arbitrary n-particle state (n ≥ 1) is proposed if n pairs of identical EPR states are utilized as quantum channels. Independent Bell state measurements are performed for joint measurement. By using a special Latin square of order 2n(n ≥ 1), explicit expressions of outcomes after the Bell state measurements by Alice (sender) and the corresponding unitary transformations by Bob (receiver) can be derived. It is shown that the teleportation of n-particle state can be implemented by a series of single-qubit teleportation.

  14. Demonstrating nonlocality-induced teleportation through Majorana bound states in a semiconductor nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peiyue [Department of Physics, Beijing Normal University, Beijing 100875 (China); Cao, Yunshan [School of Physics, Peking University, Beijing 100871 (China); Kavli Institute of NanoScience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Gong, Ming [Department of Physics and Centre for Quantum Coherence, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong (China); Li, Shu-Shen [State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Li, Xin-Qi, E-mail: lixinqi@bnu.edu.cn [Department of Physics, Beijing Normal University, Beijing 100875 (China)

    2014-02-01

    It was predicted by Tewari et al. (2008) [15] that a teleportation-like electron transfer phenomenon is one of the novel consequences of the existence of Majorana fermion, because of the inherently nonlocal nature. In this work we consider a concrete realization and measurement scheme for this interesting behavior, based on a setup consisting of a pair of quantum dots which are tunnel-coupled to a semiconductor nanowire and are jointly measured by two point-contact detectors. We analyze the teleportation dynamics in the presence of measurement back-action and discuss how the teleportation events can be identified from the current trajectories of strong response detectors.

  15. Quantum computer for dummies (in Russian)

    OpenAIRE

    Grozin, Andrey

    2011-01-01

    An introduction (in Russian) to quantum computers, quantum cryptography, and quantum teleportation for students who have no previous knowledge of these subjects, but know quantum mechanics. Several simple examples are considered in detail using the quantum computer emulator QCL.

  16. Cooperative Communications via Dual-Teleportation with Non-maximally Entanglement Measurements

    Institute of Scientific and Technical Information of China (English)

    毛云; 郭迎; 曾贵华

    2012-01-01

    We investigate a framework of the cooperative quantum teleportation (CQT) based on non-maximally entangled state basis (NB) measurements,instead of maximally entangled state basis (MB) measurements.It is implemented with two consecutive conventional (or direct) quantum telportations (DQT),where unknown quantum states can be transmitted in a point-to-point fashion.The security is based on the quantum-mechanical impossibility of local unitary transformations between non-maximally entangled states.It shows that the CQT can enhance the successful transmissions by self-correcting the errors introduced in the dual-teleportations.

  17. Entanglement concentration and teleportation of multipartite entangled states in an ion trap

    Institute of Scientific and Technical Information of China (English)

    Pan Chang-Ning; Fang Mao-Fa

    2007-01-01

    We propose an effective scheme for the entanglement concentration of a four-particle state via entanglement swapping in an ion trap. Taking the maximally entangled state after concentration as a quantum channel, we can faithfully and determinatively teleport quantum entangled states from Alice to Bob without the joint Bell-state measurement. In the process of constructing the quantum channel, we adopt entanglement swapping to avoid the decrease of entanglement during the distribution of particles. Thus our scheme provides a new prospect for quantum teleportation over a longer distance. Furthermore, the success probability of our scheme is 1.0.

  18. Probabilistic teleportation scheme of two-mode entangled photon states by using linear optic element

    Institute of Scientific and Technical Information of China (English)

    XIANG Shao-hua

    2003-01-01

    A scheme for teleporting two-mode entangled photon states with the successful probability 33.3% is proposed. In the scheme, the teleporte d qubit is two-mode photon entangled states, and two pairs of EPR pair are used as quantum channel between a sender and a receiver. This procedure is achieved by using two 50/50 symmetric beam splitters and four photon number detectors wit h the help of classical information.

  19. Teleportation of entanglement over 143 km.

    Science.gov (United States)

    Herbst, Thomas; Scheidl, Thomas; Fink, Matthias; Handsteiner, Johannes; Wittmann, Bernhard; Ursin, Rupert; Zeilinger, Anton

    2015-11-17

    As a direct consequence of the no-cloning theorem, the deterministic amplification as in classical communication is impossible for unknown quantum states. This calls for more advanced techniques in a future global quantum network, e.g., for cloud quantum computing. A unique solution is the teleportation of an entangled state, i.e., entanglement swapping, representing the central resource to relay entanglement between distant nodes. Together with entanglement purification and a quantum memory it constitutes a so-called quantum repeater. Since the aforementioned building blocks have been individually demonstrated in laboratory setups only, the applicability of the required technology in real-world scenarios remained to be proven. Here we present a free-space entanglement-swapping experiment between the Canary Islands of La Palma and Tenerife, verifying the presence of quantum entanglement between two previously independent photons separated by 143 km. We obtained an expectation value for the entanglement-witness operator, more than 6 SDs beyond the classical limit. By consecutive generation of the two required photon pairs and space-like separation of the relevant measurement events, we also showed the feasibility of the swapping protocol in a long-distance scenario, where the independence of the nodes is highly demanded. Because our results already allow for efficient implementation of entanglement purification, we anticipate our research to lay the ground for a fully fledged quantum repeater over a realistic high-loss and even turbulent quantum channel.

  20. Hybrid quantum information processing

    Energy Technology Data Exchange (ETDEWEB)

    Furusawa, Akira [Department of Applied Physics, School of Engineering, The University of Tokyo (Japan)

    2014-12-04

    I will briefly explain the definition and advantage of hybrid quantum information processing, which is hybridization of qubit and continuous-variable technologies. The final goal would be realization of universal gate sets both for qubit and continuous-variable quantum information processing with the hybrid technologies. For that purpose, qubit teleportation with a continuousvariable teleporter is one of the most important ingredients.

  1. DIY teleport hats - the consolation of technology

    DEFF Research Database (Denmark)

    Hansen, Lone Koefoed

    2009-01-01

    This instructable describes how to make a set of teleport hats. A teleport hat is a crocheted hat which doubles as a device with which you can teleport yourself to a person wearing the same type of hat in case you miss oneanother and want to be together without the hassle of driving, jetting...

  2. Optimization of the transmission of observable expectation values and observable statistics in Continuous Variable Teleportation

    CERN Document Server

    Farias, L Albano

    2010-01-01

    We analyze the statistics of observables in continuous variable quantum teleportation in the formalism of the characteristic function. We derive expressions for average values of output state observables in particular cumulants which are additive in terms of the input state and the resource of teleportation. Working with Squeezed Bell-like states, which may be optimized in a free parameter for better teleportation performance we discuss the relation between resources optimal for fidelity and for different observable averages. We obtain the values of the free parameter which optimize the central momenta and cumulants up to fourth order. For the cumulants the distortion between in and out states due to teleportation depends only on the resource. We obtain optimal parameters for the second and fourth order cumulants which do not depend on the squeezing of the resource. The second order central momenta which is equal to the second order cumulants and the photon number average are optimized by the same resource. W...

  3. Teleportation of squeezing: Optimization using non-Gaussian resources

    Science.gov (United States)

    Dell'Anno, Fabio; de Siena, Silvio; Adesso, Gerardo; Illuminati, Fabrizio

    2010-12-01

    We study the continuous-variable quantum teleportation of states, statistical moments of observables, and scale parameters such as squeezing. We investigate the problem both in ideal and imperfect Vaidman-Braunstein-Kimble protocol setups. We show how the teleportation fidelity is maximized and the difference between output and input variances is minimized by using suitably optimized entangled resources. Specifically, we consider the teleportation of coherent squeezed states, exploiting squeezed Bell states as entangled resources. This class of non-Gaussian states, introduced by Illuminati and co-workers [F. Dell’Anno, S. De Siena, L. Albano, and F. Illuminati, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.76.022301 76, 022301 (2007); F. Dell’Anno, S. De Siena, and F. Illuminati, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.81.012333 81, 012333 (2010)], includes photon-added and photon-subtracted squeezed states as special cases. At variance with the case of entangled Gaussian resources, the use of entangled non-Gaussian squeezed Bell resources allows one to choose different optimization procedures that lead to inequivalent results. Performing two independent optimization procedures, one can either maximize the state teleportation fidelity, or minimize the difference between input and output quadrature variances. The two different procedures are compared depending on the degrees of displacement and squeezing of the input states and on the working conditions in ideal and nonideal setups.

  4. Thermal entanglement and teleportation of a thermally mixed entangled state of a Heisenberg chain through a Werner state

    Institute of Scientific and Technical Information of China (English)

    Huang Li-Yuan; Fang Mao-Fa

    2008-01-01

    The thermal entanglement and teleportation of a thermally mixed entangled state of a two-qubit Heisenberg XXX chain under the Dzyaloshinski-Moriya (DM) anisotropic antisymmetric interaction through a noisy quantum channel given by a Werner state is investigated. The dependences of the thermal entanglement of the teleported state on the DM coupling constant, the temperature and the entanglement of the noisy quantum channel are studied in detail for both the ferromagnetic and the antiferromagnetic cases. The result shows that a minimum entanglement of the noisy quantum channel must be provided in order to realize the entanglement teleportation. The values of fidelity of the teleported state are also studied for these two cases. It is found that under certain conditions, we can transfer an initial state with a better fidelity than that for any classical communication protocol.

  5. Probabilistic Teleportation of an Arbitrary Unknown Two-Qubit State via Positive Operator-Valued Measure and Two Non-maximally Entangled States

    Institute of Scientific and Technical Information of China (English)

    WANG Zhang-Yin; WANG Dong; LIU Jun; SHI Shou-Hua

    2006-01-01

    We present a scheme for probabilistically teleporting an arbitrary unknown two-qubit state through a quantum channel made up of two nonidentical non-maximally entangled states. In this scheme, the probabilistic teleportation is realized by using a proper positive operator-valued measure instead of usual projective measurement.

  6. Deterministic teleportation using single-photon entanglement as a resource

    CERN Document Server

    Björk, Gunnar; Andersen, Ulrik L

    2011-01-01

    We outline a proof that teleportation with a single particle is in principle just as reliable as with two particles. We thereby hope to dispel the skepticism surrounding single-photon entanglement as a valid resource in quantum information. A deterministic Bell state analyzer is proposed which uses only classical resources, namely coherent states, a Kerr non-linearity, and a two-level atom.

  7. Scheme for Realizing Probabilistic Teleportation of Bipartite Photonic States via Linear Optical Elements

    Institute of Scientific and Technical Information of China (English)

    DONG Ping; LIN Ji-Cheng; YANG Ming; CAO Zhuo-Liang

    2006-01-01

    We propose a probabilistic scheme for realizing teleportation of bipartite photonic states using linear optical elements where only requires a two-photon Bell state used as quantum channel. It reduces the requirement of the entanglement of quantum channel, but requires an additional photon and an auxiliary maximally entangled photon pair locally.

  8. Scheme for teleportation of unknown single qubit state via continuous variables entangling channel

    Institute of Scientific and Technical Information of China (English)

    Wang Zhong-Jie; Zhang Kan; Fan Chao-Yang

    2010-01-01

    A new scheme for quantum teleportation of single quantum bit state with using continuous variables entangling channel is presented. In our scheme two entangled light fields are employed. An outstanding characteristic of this scheme is that one atomic state is transmitted directly to another atom without using the third atom as the mediate.

  9. Teleportation attack on the QSDC protocol with a random basis and order

    Institute of Scientific and Technical Information of China (English)

    Gao Fei; Wen Qiao-Yan; Zhu Fu-Chen

    2008-01-01

    The quantum secure direct communication(QSDC)protocol with a random basis and order is analysed and an effective attack,i.e.teleportation attack,is presented.An eavesdropper can obtain half of the transmitted secret bits with the help of this special attack.It is shown that quantum teleportation can be employed to weaken the role of the order-rearrangement encryption at least in a certain circumstance.Meanwhile,a possible improvement on this protocol is proposed,which makes it secure against this kind of attack.

  10. Controlled Probabilistic Teleportation of an Unknown Multi-Particle High-Dimensional Entangled State

    Institute of Scientific and Technical Information of China (English)

    SHI Jin; ZHAN You-Bang

    2009-01-01

    We propose a protocol for controlled probabilistic teleportation of an unknown tripartite qutrit entangled state with two partial tripartite qutrit entangled states as the quantum channel. It is found that teleportation associ-ated with the generalized qutrit Bell-basis measurement, the generalized qutrit π-state measurement and the generalized Hadamard operator in three-dimensional Hilbert space. We generalize the protocol for controlled probabilistic telepor-ration of an unknown k-particle qudit entangled state with a multi-particle qudit entangled state and a tripartite qudit entangled state as the quantum channel. We also calculate the classical communication cost required in both cases.

  11. Experimental realization of optimal asymmetric cloning and telecloning via partial teleportation

    CERN Document Server

    Zhao, Z; Zhou, X Q; Chen, Y A; Lu, C Y; Karlsson, A; Pan, J W; Zhao, Zhi; Zhang, An-Ning; Zhou, Xiao-Qi; Chen, Yu-Ao; Lu, Chao-Yang; Karlsson, Anders; Pan, Jian-Wei

    2004-01-01

    We report an experimental realization of both optimal asymmetric cloning and telecloning of single photons by making use of partial teleportation of an unknown state. In the experiment, we demonstrate that, conditioned on the success of partial teleportation of single photons, not only the optimal asymmetric cloning can be accomplished, but also one of two outputs can be transfered to a distant location, realizing the telecloning. The experimental results represented a novel way to achieve the quantum cloning and may have potential applications in the context of quantum cryptography.

  12. Schemes for Probabilistic Teleportation of an Unknown Three-Particle Three-Level Entangled State

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this paper, two schemes for teleporting an unknown three-particle three-level entangled state are proposed. In the first scheme, two partial three-particle three-level entangled states are used as the quantum channels, while in the second scheme, three two-particle three-level non-maximally entangled states are employed as quantum channels.It is shown that the teleportation can be successfully realized with certain probability, for both two schemes, if a receiver adopts some appropriate unitary transformations. It is shown also that the successful probabilities of these two schemes are different.

  13. Teleportation of a two-atom entangled state using a single EPR pair in cavity QED

    Institute of Scientific and Technical Information of China (English)

    Ji Xin; Li Ke; Zhang Shou

    2006-01-01

    We propose a scheme for teleporting a two-atom entangled state in cavity quantum electrodynamics(QED).In the scheme,we choose a single Einstein-Podolsky-Rosen (EPR) pair as the quantum channel which is shared by the sender and the receiver.By using the atom-cavity-field interaction and introducing an additional atom,we can teleport the two-atom entangled state successfully with a probability of 1.0.Moreover,we show that the scheme is insensitive to cavity decay and thermal field.

  14. Probabilistic Teleportation of an Unknown One-Particle State by a Three-Particle General W State

    Institute of Scientific and Technical Information of China (English)

    XIU Xiao-Ming; DONG Li; GAO Ya-Jun

    2007-01-01

    Two schemes for teleporting an unknown one-particle state are proposed when a general W state is utilized as quantum channel.In the first scheme,after the sender (Alice) makes a Bell-state measurement on her particles,the recipient (Bob) performs a Von Neumann measurement and introduces an auxiliary particle,and carries out a unitary transformation on his particle and the auxiliary particle,and performs a Von Neumann measurement on the auxiliary particle to confirm whether the teleportation succeeds or not.In the second scheme,the recipient (Bob) does not need to perform the first Von Neumann measurement or introduce the auxiliary particle,which is necessary in the first scheme.It is shown that the maximal probabilities of successful teleportation of the two schemes are identical if the recipient (Bob) performs an appropriate unitary transformation and adopts a proper particle on which he recovers the quantum information of state to be teleported.

  15. Improving fidelity in atomic state teleportation via cavity decay

    CERN Document Server

    Chimczak, G; Chimczak, Grzegorz; Tana\\'s, Ryszard

    2007-01-01

    We propose a modified protocol of atomic state teleportation for the scheme proposed by Bose et al. (Phys. Rev. Lett. 83, 5158 (1999)). The modified protocol involves an additional stage in which quantum information distorted during the first stage is fully recovered by a compensation of the damping factor. The modification makes it possible to obtain a high fidelity of teleported state for cavities that are much worse than that required in the original protocol, i.e., their decay rates can be over 25 times larger. The improvement in the fidelity is possible at the expense of lowering the probability of success. We show that the modified protocol is robust against dark counts.

  16. Probabilistic teleportation of a non-symmetric three-particle state

    Institute of Scientific and Technical Information of China (English)

    Chen Xiu-Bo; Wen Qiao-Yan; Zhu Fu-Chen

    2006-01-01

    This paper proposes a scheme for teleporting a kind of essential three-particle non-symmetric entangled state,which is much more valuable than a GHZ and W state for some applications in quantum information processing. In comparison with previous proposal of teleportation, the resources of entangled states as quantum channel and the number of classical messages required by our scheme can be cut down. Moreover, it is shown that there exists a class of transformations which ensure the success of this scheme, because the two-particle transformation performed by the receiver in the course of teleportation may be a generic two-particle operation instead of a control-NOT (CNOT) operation. In addition, all kinds of transformations performed by sender and receiver are given in detail.

  17. DIY teleport hats - the consolation of technology

    DEFF Research Database (Denmark)

    Hansen, Lone Koefoed

    2009-01-01

    This instructable describes how to make a set of teleport hats. A teleport hat is a crocheted hat which doubles as a device with which you can teleport yourself to a person wearing the same type of hat in case you miss oneanother and want to be together without the hassle of driving, jetting or b...... but it works well as a gift for someone you miss or someone who misses another person madly as it provides an opportunity to take some kind of action when ordinary options like driving, jetting or biking are not feasible even if the action is only symbolic.......This instructable describes how to make a set of teleport hats. A teleport hat is a crocheted hat which doubles as a device with which you can teleport yourself to a person wearing the same type of hat in case you miss oneanother and want to be together without the hassle of driving, jetting...

  18. Improving the efficiency of single and multiple teleportation protocols based on the direct use of partially entangled states

    Energy Technology Data Exchange (ETDEWEB)

    Fortes, Raphael; Rigolin, Gustavo, E-mail: rigolin@ifi.unicamp.br

    2013-09-15

    We push the limits of the direct use of partially pure entangled states to perform quantum teleportation by presenting several protocols in many different scenarios that achieve the optimal efficiency possible. We review and put in a single formalism the three major strategies known to date that allow one to use partially entangled states for direct quantum teleportation (no distillation strategies permitted) and compare their efficiencies in real world implementations. We show how one can improve the efficiency of many direct teleportation protocols by combining these techniques. We then develop new teleportation protocols employing multipartite partially entangled states. The three techniques are also used here in order to achieve the highest efficiency possible. Finally, we prove the upper bound for the optimal success rate for protocols based on partially entangled Bell states and show that some of the protocols here developed achieve such a bound. -- Highlights: •Optimal direct teleportation protocols using directly partially entangled states. •We put in a single formalism all strategies of direct teleportation. •We extend these techniques for multipartite partially entangle states. •We give upper bounds for the optimal efficiency of these protocols.

  19. Faithfully probabilistic teleportation of an unknown atomic state and cavity field state with a single measurement

    Institute of Scientific and Technical Information of China (English)

    Yang Zhen-Biao; Wu Huai-Zhi; Su Wan-Jun; Zhong Zhi-Rong; Zheng Shi-Biao

    2007-01-01

    This paper shows that, based on the single-photon JC model depicting the resonant interaction of a two-level atom with a single cavity mode, an unknown atomic state and cavity photon superposition state can be faithfully teleported with only a single measurement. The scheme is probabilistic, its success lies on the event that the sender atom (or the medi-atom, for teleportation of cavity field state) is detected in the higher state. The scheme is in contrast to the previous ones of using a maximally two-particle entangled state as quantum channel.

  20. Teleportation of arbitrary unknown two-atom state with Cluster state via thermal cavity

    Institute of Scientific and Technical Information of China (English)

    Zhang Wen; Liu Yi-Min; Liu Jun; Zhang Zhan-Jun

    2008-01-01

    This paper proposes a scheme for implementing the teleportation of an arbitrary unknown two-atom state by using a cluster state of four identical 2-level atoms as quantum channel in a thermal cavity.The two distinct advantages of the present scheme are:(i)The discrimination of 16 orthonormal cluster states in the standard teleportation protocol is transformed into the discrimination of single-atom states.Consequently,the discrimination difficulty of states is degraded.(ii)The scheme is insensitive to the cavity field state and the cavity decay for the thermal cavity is only virtually excited when atoms interact with it.Thus.the scheme is more feasible.

  1. Probabilistic teleportation of a two-particle entangled state via a partially entangled pair

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiu-bo; LIU Xin-yuan; WEN Qiao-yan; ZHU Fu-chen

    2006-01-01

    A scheme for teleporting an unknown two-particle entangled state is proposed. In comparison with the recent protocol (Cola et al., Phys. Lett. A 337 (2005)), the entangled state as quantum channel required by this scheme is a single,partially entangled pair, which is much easier to prepare and maintain. Furthermore, a positive operator valued measure (POVM) is adopted and all kinds of transformations performed by sender and receiver are given in detail. It is shown that the probability of successful teleportation is twice the modulus square of the smaller Schmidt coefficient of the two-particle entangled state, and the fidelity can reach one.

  2. Spin Squeezing and Entanglement with Room Temperature Atoms for Quantum Sensing and Communication

    DEFF Research Database (Denmark)

    Shen, Heng

    magnetometer at room temperature is reported. Furthermore, using spin-squeezing of atomic ensemble, the sensitivity of magnetometer is improved. Deterministic continuous variable teleportation between two distant atomic ensembles is demonstrated. The fidelity of teleportating dynamically changing sequence...... of spin states surpasses a classical benchmark, demonstrating the true quantum teleportation....

  3. 基于隐形传态的网络流量控制研究%Network traffic control based on quantum teleportation2

    Institute of Scientific and Technical Information of China (English)

    胡晓欢; 周小清; 李智伟; 朱聿蔚

    2016-01-01

    Based on the classical channel to facilitate control indirectly to control quantum channel. By setting up two virtual circuit list amended rules:Rule 1 and Rule 2, to control the virtual circuit list. Control of the information flat of quantum channel by recompose virtual circuit list, to control quantum network traffic.%文章通过对经典信道施加控制间接对量子信道进行控制。通过设立两个虚电路列表修改规则:规则1与规则2,控制节点中虚电路列表的添加与删除。通过虚电路列表控制间接控制量子信道的信息发送平率,从而达到对量子网络的流量进行控制。

  4. Teleportation of the one-qubit state with environment-disturbed recovery operations

    CERN Document Server

    Hu, Ming-Liang

    2011-01-01

    We study standard protocol $\\mathcal{P}_0$ for teleporting the one-qubit state with both the transmission process of the two qubits constitute the quantum channel and the recovery operations performed by Bob disturbed by the decohering environment. The results revealed that Bob's imperfect operations do not eliminate the possibility of nonclassical teleportation fidelity provided he shares an ideal channel state with Alice, while the transmission process is constrained by a critical time $t_{0,c}$ longer than which will result in failure of $\\mathcal{P}_0$ if the two qubits are corrupted by the decohering environment. Moreover, we found that under the condition of the same decoherence rate $\\gamma$, the teleportation protocol is significantly more fragile when it is executed under the influence of the noisy environment than those under the influence of the dissipative and dephasing environments.

  5. A new representation and probabilistic teleportation of an arbitrary and unknown N-particle state

    Institute of Scientific and Technical Information of China (English)

    Dong Li; Xiu Xiao-Ming; Gao Ya-Jun

    2006-01-01

    A new representation of an arbitrary and unknown N-particle state is presented at first. As an application,a scheme for teleporting an arbitrary and unknown N-particle state is proposed when N pairs of two-particle nonmaximally entangled states are utilized as quantum channels. After Alice (sender) makes Bell-state measurement on her particles, Bob (recipient) introduces an auxiliary particle and carries out appropriate unitary transformation on his particle and the auxiliary particle depending on classical information from Alice. Then, yon Neumann measurement that confirms whether the teleportation succeeds or not is performed by Bob on the auxiliary particle. In order to complete the teleportation, another N-1 times operations need to be performed which are similar to the above ones. It can be successfully realized with a certain probability which is determined by the product of the smaller coefficients of non-maximally entangled pairs. All possible unitary transformations are given in detail.

  6. Probabilistic Teleportation of Three-Atom State via Five-Atom Cluster State

    Institute of Scientific and Technical Information of China (English)

    YU Li-Zhi; WU Tao

    2013-01-01

    A scheme for probabilistic teleportation of an unknown three-atom entangled state via a five-atom nonmaximally entangled duster state as quantum channel is proposed.In this scheme,the sender performs two Bell state and a single-atom measurements on the atoms,the receiver can reconstruct the original state with a certain probability by introducing an auxiliary atom and operating appropriate unitary transformations and controlled-not (C-not) operations according to the sender Alice's measurement results.As a result,the probability of successful teleportation is determined by the smallest two of the coefficients' absolute values of the cluster state.The considerable advantage of our scheme is that we employ a non-maximally entangled cluster state as quantum channel in the scheme,which can greatly reduce the amount of entanglement resources and need less classical bits.If we employ a maximally entangled cluster state as quantum channei,the probabilistic teleportation scheme becomes usual teleportation,the successful probability being 100%.

  7. Highly efficient entanglement swapping and teleportation at telecom wavelength

    Science.gov (United States)

    Jin, Rui-Bo; Takeoka, Masahiro; Takagi, Utako; Shimizu, Ryosuke; Sasaki, Masahide

    2015-03-01

    Entanglement swapping at telecom wavelengths is at the heart of quantum networking in optical fiber infrastructures. Although entanglement swapping has been demonstrated experimentally so far using various types of entangled photon sources both in near-infrared and telecom wavelength regions, the rate of swapping operation has been too low to be applied to practical quantum protocols, due to limited efficiency of entangled photon sources and photon detectors. Here we demonstrate drastic improvement of the efficiency at telecom wavelength by using two ultra-bright entangled photon sources and four highly efficient superconducting nanowire single photon detectors. We have attained a four-fold coincidence count rate of 108 counts per second, which is three orders higher than the previous experiments at telecom wavelengths. A raw (net) visibility in a Hong-Ou-Mandel interference between the two independent entangled sources was 73.3 +/- 1.0% (85.1 +/- 0.8%). We performed the teleportation and entanglement swapping, and obtained a fidelity of 76.3% in the swapping test. Our results on the coincidence count rates are comparable with the ones ever recorded in teleportation/swapping and multi-photon entanglement generation experiments at around 800 nm wavelengths. Our setup opens the way to practical implementation of device-independent quantum key distribution and its distance extension by the entanglement swapping as well as multi-photon entangled state generation in telecom band infrastructures with both space and fiber links.

  8. Highly efficient entanglement swapping and teleportation at telecom wavelength.

    Science.gov (United States)

    Jin, Rui-Bo; Takeoka, Masahiro; Takagi, Utako; Shimizu, Ryosuke; Sasaki, Masahide

    2015-03-20

    Entanglement swapping at telecom wavelengths is at the heart of quantum networking in optical fiber infrastructures. Although entanglement swapping has been demonstrated experimentally so far using various types of entangled photon sources both in near-infrared and telecom wavelength regions, the rate of swapping operation has been too low to be applied to practical quantum protocols, due to limited efficiency of entangled photon sources and photon detectors. Here we demonstrate drastic improvement of the efficiency at telecom wavelength by using two ultra-bright entangled photon sources and four highly efficient superconducting nanowire single photon detectors. We have attained a four-fold coincidence count rate of 108 counts per second, which is three orders higher than the previous experiments at telecom wavelengths. A raw (net) visibility in a Hong-Ou-Mandel interference between the two independent entangled sources was 73.3 ± 1.0% (85.1 ± 0.8%). We performed the teleportation and entanglement swapping, and obtained a fidelity of 76.3% in the swapping test. Our results on the coincidence count rates are comparable with the ones ever recorded in teleportation/swapping and multi-photon entanglement generation experiments at around 800 nm wavelengths. Our setup opens the way to practical implementation of device-independent quantum key distribution and its distance extension by the entanglement swapping as well as multi-photon entangled state generation in telecom band infrastructures with both space and fiber links.

  9. Types of quantum information

    OpenAIRE

    Griffiths, Robert B.

    2007-01-01

    Quantum, in contrast to classical, information theory, allows for different incompatible types (or species) of information which cannot be combined with each other. Distinguishing these incompatible types is useful in understanding the role of the two classical bits in teleportation (or one bit in one-bit teleportation), for discussing decoherence in information-theoretic terms, and for giving a proper definition, in quantum terms, of ``classical information.'' Various examples (some updating...

  10. Probabilistic teleportation of an arbitrary three-particle state via a partial entangled four-particle state and a partial entangled pair

    Institute of Scientific and Technical Information of China (English)

    戴宏毅; 李承祖; 陈平行

    2003-01-01

    We present a scheme to probabilistically teleport an arbitrary and unknown three-particle state via a two-particle non-maximally entangled state and a four-particle non-maximally entangled state as the quantum channel. With the help of Bell-state measurements, an arbitrary three-particle state can be perfectly teleported if a receiver introduces a collective unitary transformation. All kinds of unitary transformations are given in greater detail. This scheme can be generalized to the teleportation of an arbitrary and unknown multiparticle state.

  11. Secure quantum communication using classical correlated channel

    Science.gov (United States)

    Costa, D.; de Almeida, N. G.; Villas-Boas, C. J.

    2016-10-01

    We propose a secure protocol to send quantum information from one part to another without a quantum channel. In our protocol, which resembles quantum teleportation, a sender (Alice) and a receiver (Bob) share classical correlated states instead of EPR ones, with Alice performing measurements in two different bases and then communicating her results to Bob through a classical channel. Our secure quantum communication protocol requires the same amount of classical bits as the standard quantum teleportation protocol. In our scheme, as in the usual quantum teleportation protocol, once the classical channel is established in a secure way, a spy (Eve) will never be able to recover the information of the unknown quantum state, even if she is aware of Alice's measurement results. Security, advantages, and limitations of our protocol are discussed and compared with the standard quantum teleportation protocol.

  12. Partial Teleportation of Entanglement Through Natural Thermal Entanglement in Two-Qubit Heisenberg ⅩⅩⅩ Chain

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong; LONG Gui-Lu; WU Yu-Chun; GUO Guang-Can

    2007-01-01

    Natural thermal entanglement between two qubits with ⅩⅩⅩ Heisenberg interaction is studied. For the antiferromagnet, increasing coupling strength or decreasing temperature under critical point increases the entanglement.Based on the thermal entanglement as quantum channel, entanglement and information of an input entangled state are transferred via partial teleportation. We find that the entanglement transferred will be lost during the process, and for the entanglement fidelity the partial teleportation is superior to classical communication as concurrence of entangled channel beyond 1/4. We show that both correlation information in input entangled state and individual information of the teleported particle are linearly dissipated. With more entanglement in quantum channel, more entanglement and correlation information can be transferred.

  13. Comment on "Fractional quantum mechanics" and "Fractional Schroedinger equation"

    CERN Document Server

    Wei, Yuchuan

    2016-01-01

    In this comment, we point out some shortcomings in two papers "Fractional quantum mechanics" [Phys. Rev. E 62, 3135 (2000)] and "Fractional Schroedinger equation" [Phys. Rev. E 66, 056108 (2002)]. We prove that the fractional uncertainty relation does not hold generally. The probability continuity equation in fractional quantum mechanics has a missing source term, which leads to particle teleportation, i.e., a particle can teleport from one place to another. Since the relativistic kinetic energy can be viewed as an approximate realization of the fractional kinetic energy, the particle teleportation should be an observable relativistic effect in quantum mechanics. With the help of this concept, superconductivity could be viewed as the teleportation of electrons from one side of a superconductor to another and superfluidity could be viewed as the teleportation of helium atoms from one end of a capillary tube to the other. We also point out how to teleport a particle to a destination.

  14. Quantum Advantage in Communication Networks

    CERN Document Server

    De, Aditi Sen

    2011-01-01

    Quantum channels are known to provide qualitatively better information transfer capacities over their classical counterparts. Examples include quantum cryptography, quantum dense coding, and quantum teleportation. This is a short review on paradigmatic quantum communication protocols in both bipartite as well as multipartite scenarios.

  15. Teleporting entanglement during black hole evaporation

    Science.gov (United States)

    Brustein, Ram; Medved, A. J. M.

    2016-10-01

    The unitary evaporation of a black hole (BH) in an initially pure state must lead to the eventual purification of the emitted radiation. It follows that the late radiation has to be entangled with the early radiation and, as a consequence, the entanglement among the Hawking pair partners has to decrease continuously from maximal to vanishing during the BH's life span. Starting from the basic premise that both the horizon radius and the center of mass of a finite-mass BH are fluctuating quantum mechanically, we show how this process is realized. First, it is shown that the horizon fluctuations induce a small amount of variance in the total linear momentum of each created pair. This is in contrast to the case of an infinitely massive BH, for which the total momentum of the produced pair vanishes exactly on account of momentum conservation. This variance leads to a random recoil of the BH during each emission and, as a result, the center of mass of the BH undergoes a quantum random walk. Consequently, the uncertainty in its momentum grows as the square root of the number of emissions. We then show that this uncertainty controls the amount of deviation from maximal entanglement of the produced pairs and that this deviation is determined by the ratio of the cumulative number of emitted particles to the initial BH entropy. Thus, the interplay between the horizon and center-of-mass fluctuations provides a mechanism for teleporting entanglement from the pair partners to the BH and the emitted radiation.

  16. Teleporting entanglement during black hole evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Brustein, Ram [Department of Physics, Ben-Gurion University,Beer-Sheva 84105 (Israel); Medved, A.J.M. [Department of Physics & Electronics, Rhodes University,Grahamstown 6140 (South Africa); National Institute for Theoretical Physics (NITheP),Western Cape 7602 (South Africa)

    2016-10-06

    The unitary evaporation of a black hole (BH) in an initially pure state must lead to the eventual purification of the emitted radiation. It follows that the late radiation has to be entangled with the early radiation and, as a consequence, the entanglement among the Hawking pair partners has to decrease continuously from maximal to vanishing during the BH’s life span. Starting from the basic premise that both the horizon radius and the center of mass of a finite-mass BH are fluctuating quantum mechanically, we show how this process is realized. First, it is shown that the horizon fluctuations induce a small amount of variance in the total linear momentum of each created pair. This is in contrast to the case of an infinitely massive BH, for which the total momentum of the produced pair vanishes exactly on account of momentum conservation. This variance leads to a random recoil of the BH during each emission and, as a result, the center of mass of the BH undergoes a quantum random walk. Consequently, the uncertainty in its momentum grows as the square root of the number of emissions. We then show that this uncertainty controls the amount of deviation from maximal entanglement of the produced pairs and that this deviation is determined by the ratio of the cumulative number of emitted particles to the initial BH entropy. Thus, the interplay between the horizon and center-of-mass fluctuations provides a mechanism for teleporting entanglement from the pair partners to the BH and the emitted radiation.

  17. Expected number of quantum channels in quantum networks

    Science.gov (United States)

    Chen, Xi; Wang, He-Ming; Ji, Dan-Tong; Mu, Liang-Zhu; Fan, Heng

    2015-07-01

    Quantum communication between nodes in quantum networks plays an important role in quantum information processing. Here, we proposed the use of the expected number of quantum channels as a measure of the efficiency of quantum communication for quantum networks. This measure quantified the amount of quantum information that can be teleported between nodes in a quantum network, which differs from classical case in that the quantum channels will be consumed if teleportation is performed. We further demonstrated that the expected number of quantum channels represents local correlations depicted by effective circles. Significantly, capacity of quantum communication of quantum networks quantified by ENQC is independent of distance for the communicating nodes, if the effective circles of communication nodes are not overlapped. The expected number of quantum channels can be enhanced through transformations of the lattice configurations of quantum networks via entanglement swapping. Our results can shed lights on the study of quantum communication in quantum networks.

  18. Conditionally Teleported States Using Optical Squeezers and Photon Counting

    Institute of Scientific and Technical Information of China (English)

    FAN Hong-Yi; FAN Yue; CHENG Hai-Ling

    2002-01-01

    By virtue of the neat expression of the two-mode squeezing operator in the Einstein,Podolsky and Rosen entangled state representation,we provide a new approach for discussing the teleportation scheme using optical squeezers and photon counting devices.We derive the explicit form of the teleported states,so that the conditional property of teleportation and teleportation fidelity of this protocol can be scen more clcarly.The derivation is concise.

  19. Quantum Information Technology: Entanglement, Teleportation, and Memory

    Science.gov (United States)

    2005-10-31

    International Conference on Squeezed States and Uncertainty Relations (ICSSUR�), Puebla , Mexico, June 9-13, 2003. X. Li, P. Voss, J E. Sharping...the original vision of a dual-OPA entanglement source [2]. The source output thus ob- tained exhibited collapses and revivals of the Hong-Ou-Mandel

  20. Disentanglement, Bell-nonlocality violation and teleportation capacity of the decaying tripartite states

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Ming-Liang, E-mail: mingliang0301@163.com

    2012-09-15

    Dynamics of disentanglement as measured by the tripartite negativity and Bell nonlocality as measured by the extent of violation of the multipartite Bell-type inequalities are investigated in this work. It is shown definitively that for the initial three-qubit Greenberger-Horne-Zeilinger (GHZ) or W class state preparation, the Bell nonlocality suffers sudden death under the influence of thermal reservoirs. Moreover, all the Bell-nonlocal states are useful for nonclassical teleportation, while there are entangled states that do not violate any Bell-type inequalities, but still yield nonclassical teleportation fidelity. - Highlights: Black-Right-Pointing-Pointer Comparison of different aspects of quantum correlations. Black-Right-Pointing-Pointer Robustness of the initial tripartite GHZ and W class states against decoherence. Black-Right-Pointing-Pointer Bell-nonlocality sudden death under the influence of thermal reservoir. Black-Right-Pointing-Pointer A nonzero minimum tripartite negativity is needed for nonclassical teleportation. Black-Right-Pointing-Pointer All the Bell-nonlocal states yield nonclassical teleportation fidelity.

  1. Remote control of restricted sets of operations Teleportation of Angles

    CERN Document Server

    Huelga, S F; Vaccaro, J A

    2002-01-01

    We study the remote implementation of a unitary transformation on a qubit. We show the existence of non-trivial protocols (i.e., using less resources than bidirectional state teleportation) which allow the perfect remote implementation of certain continuous sets of quantum operations. We prove that, up to a local change of basis, only two subsets exist that can be implemented remotely with a non-trivial protocol: Arbitrary rotations around a fixed direction $\\vec{n}$ and rotations by a fixed angle around an arbitrary direction lying in a plane orthogonal to $\\vec{n}$. The overall classical information and distributed entanglement cost required for the remote implementation depends on whether it is a priori known to which of the two teleportable subsets the transformation belongs to. If it is so, the optimal protocol consumes one e-bit of entanglement and one c-bit in each direction. If the subset is not known, two e-bits of entanglement need to be consumed while the classical channel becomes asymmetric, two c...

  2. Schemes for Probabilistic Teleportation of a Three-Atom GHZ Class State via Cavity QED

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Using a quantum channel composed of a two-atom and a three-atom nonmaximally entangled states,we present two schemes to teleport a three-atom GHZ class state via entanglement swapping in cavity QED with different success probabilities. The schemes can be respectively realized with the large-detuned vacuum cavities and with the large-detuned thermal cavities by separate atomic measurements after we choose appropriate atom-cavity-field interaction time.

  3. Teleportation of an arbitrary unknown N-qubit entangled state under the controlling of M controllers

    Institute of Scientific and Technical Information of China (English)

    LIU Yu-ling; MAN Zhong-xiao; XIA Yun-jie

    2008-01-01

    A new quantum protocol to teleport an arbitrary unknown N-qubit entangled state from a sender to a fixed receiver under M controllers(M < N) is proposed. The quantum resources required are M non-maximally entangled Greenberger-Home-Zeilinger (GHZ) state and N-M non-maximally entangled Einstein-Podolsky-Rosen (EPR) pairs. The sender performs N generalized Bell-state measurements on the 2N particles. Controllers take M single-particle measurement along x-axis, and the receiver needs to introduce one auxiliary two-level particle to extract quantum information probabilistically with the fidelity unit if controllers cooperate with it.

  4. Effects of Dzyaloshinski-Moriya interaction and intrinsic decoherence on teleportation via a two-qubit Heisenberg XYZ model

    Institute of Scientific and Technical Information of China (English)

    Hu Xiao-Mian; Liu Jin-Ming

    2009-01-01

    Quantum teleportation via the entangled channel composed of a two-qubit Heisenberg XYZ model with Dzyaloshinski-Moriya (DM) interaction in the presence of intrinsic decoherenee has been investigated. We find that the initial state of the channel plays an important role in the teleported state and the average fidelity of teleportation. When the initial channel is in the state [ψ1(0)>=a|00> + b|11>, the average fidelity is equal to 1/3 constantly, which is independent of the DM interaction and the intrinsic decoherence effect. But when the channel is initially in the state [ψ2(0)> = c|01) + d|10>, the average fidelity is always larger than 2/3. Moreover, under a certain condition, the average fidelity can be enhanced by adjusting the DM interaction, and the intrinsic decoherence leads to a suppression of the fluctuation of the average fidelity.

  5. Quantum: information theory: technological challenge; Computacion Cuantica: un reto tecnologico

    Energy Technology Data Exchange (ETDEWEB)

    Calixto, M.

    2001-07-01

    The new Quantum Information Theory augurs powerful machines that obey the entangled logic of the subatomic world. Parallelism, entanglement, teleportation, no-cloning and quantum cryptography are typical peculiarities of this novel way of understanding computation. (Author) 24 refs.

  6. Influence of parameters entanglement on the quantum algorithms

    Directory of Open Access Journals (Sweden)

    Alexey V. Kasarkin

    2012-05-01

    Full Text Available The article we consider the influence of parameters entanglement on the quantum algorithms, in particular influence of partial entanglement for quantum teleportation. The simulation results presented in chart form.

  7. Application of Quantum Process Calculus to Higher Dimensional Quantum Protocols

    Directory of Open Access Journals (Sweden)

    Simon J. Gay

    2014-07-01

    Full Text Available We describe the use of quantum process calculus to describe and analyze quantum communication protocols, following the successful field of formal methods from classical computer science. We have extended the quantum process calculus to describe d-dimensional quantum systems, which has not been done before. We summarise the necessary theory in the generalisation of quantum gates and Bell states and use the theory to apply the quantum process calculus CQP to quantum protocols, namely qudit teleportation and superdense coding.

  8. Quantum Computing

    CERN Document Server

    Steane, A M

    1998-01-01

    The subject of quantum computing brings together ideas from classical information theory, computer science, and quantum physics. This review aims to summarise not just quantum computing, but the whole subject of quantum information theory. It turns out that information theory and quantum mechanics fit together very well. In order to explain their relationship, the review begins with an introduction to classical information theory and computer science, including Shannon's theorem, error correcting codes, Turing machines and computational complexity. The principles of quantum mechanics are then outlined, and the EPR experiment described. The EPR-Bell correlations, and quantum entanglement in general, form the essential new ingredient which distinguishes quantum from classical information theory, and, arguably, quantum from classical physics. Basic quantum information ideas are described, including key distribution, teleportation, data compression, quantum error correction, the universal quantum computer and qua...

  9. Teleportation of a ququart system using hyperentangled photons assisted by atomic-ensemble memories

    Science.gov (United States)

    Luo, Ming-Xing; Li, Hui-Ran; Lai, Hong; Wang, Xiaojun

    2016-01-01

    A single photon encoded in both the spin and the orbital angular momentum has recently been experimentally demonstrated [X.-L. Wang et al., Nature 518, 516 (2015)], 10.1038/nature14246 with linear optics using the hyperentangled state, which can be viewed as a bipartite four-dimensional (ququart) entanglement. Here, we investigate this process from a general point of view. By exploring a controlled phase flip induced by atomic ensembles in one-side optical microcavities, we propose teleportations of general ququart systems including a two-atomic-ensemble system, a two-polarized-photon system, one photon with the polarization and spatial degrees of freedom (DOFs), and a hybrid photon-ensemble system using two hyperentangled photons. The output information may also be encoded by different physical systems up to the special requirements of a receiver. These schemes are also adapted to teleportation of a ququart system with only phases or real probability amplitudes, which is beyond previous superdense teleportation [Nature Commun. 6, 7185 (2015)], 10.1038/ncomms8185. With these restrictions, half of the classical communication cost may be saved and experimental complexities are also reduced. Our theoretical schemes are feasible in modern physics and show the possibilities of transferring complex quantum systems for scalable quantum applications.

  10. Teleportation of an Arbitrary Multipartite GHZ-Class State by One EPR Pair

    Institute of Scientific and Technical Information of China (English)

    WANG Ya-Hong; YU Chang-Shui; SONG He-Shan

    2006-01-01

    We present a scheme for perfectly teleporting an arbitrary and unknown N-particle GHZ-class state from a sender to a receiver. We just need one quantum channel composed of two or three particles in the maximally entangled state. The sender performs one Bell-state measurement on two of her particles and N - 1 Hadamard operations and N- 1 von Neumann measurements on the rest N- 1 particles. The receiver adopts one corresponding unitary transformation on his particles shared with the sender. After that, the receiver can obtain the original N-particle GHZ-class state by introducing N - 1 ancillary particles and carrying out N - 1 controlled-NOT operations. We also generalize the scheme to the case of controlled teleportation.

  11. Bibliographic guide to the foundations of quantum mechanics and quantum information

    CERN Document Server

    Cabello, A

    2000-01-01

    This is a collection of references (papers, books, preprints, book reviews, Ph. D. thesis, patents, etc.), sorted alphabetically and (some of them) classified by subject, on foundations of quantum mechanics and quantum information. Specifically, it covers hidden variables (``no-go'' theorems, experiments), interpretations of quantum mechanics, entanglement, quantum effects (quantum Zeno effect, quantum erasure, ``interaction-free'' measurements, quantum ``non-demolition'' measurements), quantum information (cryptography, cloning, dense coding, teleportation), and quantum computation.

  12. Quantum Entropy and Its Applications to Quantum Communication and Statistical Physics

    Directory of Open Access Journals (Sweden)

    Masanori Ohya

    2010-05-01

    Full Text Available Quantum entropy is a fundamental concept for quantum information recently developed in various directions. We will review the mathematical aspects of quantum entropy (entropies and discuss some applications to quantum communication, statistical physics. All topics taken here are somehow related to the quantum entropy that the present authors have been studied. Many other fields recently developed in quantum information theory, such as quantum algorithm, quantum teleportation, quantum cryptography, etc., are totally discussed in the book (reference number 60.

  13. An algorithm for minimization of quantum cost

    OpenAIRE

    Banerjee, Anindita; Pathak, Anirban

    2009-01-01

    A new algorithm for minimization of quantum cost of quantum circuits has been designed. The quantum cost of different quantum circuits of particular interest (eg. circuits for EPR, quantum teleportation, shor code and different quantum arithmetic operations) are computed by using the proposed algorithm. The quantum costs obtained using the proposed algorithm is compared with the existing results and it is found that the algorithm has produced minimum quantum cost in all cases.

  14. Probabilistic Teleportation of an Arbitrary Two-particle State

    Institute of Scientific and Technical Information of China (English)

    顾永建; 郑亦庄; 郭光灿

    2001-01-01

    A scheme for the teleportation of an arbitrary two-particle state via two non-maximally entangled particle pairsis proposed. We show that teleportation can be successfully realized with a certain probability if the receiveradopts an appropriate unitary-reduction strategy. A specific strategy is provided in detail The probability of successful teleportation is determined by the smaller coefficients of the two entangled pairs.

  15. Teleportation of an arbitrary mixture of diagonal states of multiqudit

    Institute of Scientific and Technical Information of China (English)

    Du Qian-Hua; Lin Xiu-Min; Chen Zhi-Hua; Lin Gong-Wei; Chen Li-Bo; Gu Yong-Jian

    2008-01-01

    This paper proposes a scheme to teleport an arbitrary mixture of diagonal states of multiqutrit via classical correlation and classical communication. To teleport an arbitrary mixture of diagonal states of N qutrits, N classically correlated pairs of two qutrits are used as channel. The sender (Alice) makes Fourier transform and conditional gate (i.e., XOR(3) gate) on her qutrits and does measurement in appropriate computation bases. Then she sends N ctrits to the receiver (Bob). Based on the received information, Bob performs the corresponding unitary transformation on his qutrits and obtains the teleported state. Teleportation of an arbitrary mixture of diagonal states of multiqudit is also discussed.

  16. Teleportation with Tripartite Entangled State via Thermal Cavity

    Institute of Scientific and Technical Information of China (English)

    XUE Zheng-Yuan; YI You-Min; CAO Zhuo-Liang

    2006-01-01

    Teleportation schemes with a tripartite entangled state in cavity QED are investigated. The schemes do not need Bell state measurements and the successful probabilities reach optimality. In addition, the schemes are insensitive to both the cavity decay and the thermal field. We first consider two teleportation schemes via a tripartite GHZ state.The first one is a controlled one for an unknown single-qubit state. The second scheme is teleportation of unknown two-atom entangled state. Then we consider teleporting of single-qubit arbitrary state via a tripartite W state.

  17. Communication via an entangled coherent quantum network

    Energy Technology Data Exchange (ETDEWEB)

    El Allati, A; Hassouni, Y [Faculte des Sciences, Departement de Physique, Laboratoire de Physique Theorique URAC 13, Universite Mohammed V Agdal Rabat, Avenue Ibn Battouta, B.P. 1014, Rabat (Morocco); Metwally, N, E-mail: Nmetwally@gmail.com [Mathematics Department, College of Science, University of Bahrain, PO Box 32038 (Bahrain)

    2011-06-01

    A quantum network (QN) is constructed via maximum entangled coherent states. The possibility of using this network to achieve quantum communication between multi-participants is investigated. We showed that the probability of the successful teleportation of an unknown state depends on the size of the used network. As the number of participants increases, the success probability does not depend on the intensity of the field. Implementing a quantum teleportation protocol via a noisy QN is discussed. The unknown state can be teleported perfectly with small values of the field intensity and larger values of the noise strength. The success probability of this suggested protocol increases abruptly for larger values of the noise strength and gradually for small values. For small-size QNs, the fidelity of the teleported state decreases smoothly, whereas it decreases abruptly for larger-sized networks.

  18. Teleportation of an arbitrary two-qudit state based on the non-maximally four-qudit cluster state

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Two different schemes are presented for quantum teleportation of an arbitrary two-qudit state using a non-maximally four-qudit cluster state as the quantum channel. The first scheme is based on the Bell-basis measurements and the re-ceiver may probabilistically reconstruct the original state by performing proper transformation on her particles and an auxiliary two-level particle; the second scheme is based on the generalized Bell-basis measurements and the probability of successfully teleporting the unknown state depends on those measurements which are adjusted by Alice. A comparison of the two schemes shows that the latter has a smaller probability than that of the former and contrary to the former, the channel information and auxiliary qubit are not necessary for the receiver in the latter.

  19. TELEPORTATION OF A TWO-PARTICLE ENTANGLED STATE

    Institute of Scientific and Technical Information of China (English)

    叶柳; 姚春梅; 郭光灿

    2001-01-01

    A scheme for teleporting a two-particle entangled state via a three-particle entangled state is proposed. It is shown that the probability of successful teleportation is twice the modulus square of the smaller Schmidt coefficient of the entangled three-particle state.

  20. Teleportation of Unknown Superpositions of Collective Atomic Coherent States

    Institute of Scientific and Technical Information of China (English)

    ZHENG ShiBiao

    2001-01-01

    We propose a scheme to teleport an unknown superposition of two atomic coherent states with different phases. Our scheme is based on resonant and dispersive atom-field interaction. Our scheme provides a possibility of teleporting macroscopic superposition states of many atoms first time.``

  1. Probabilistic Teleportation of an Arbitrary n-Particle Entangled State

    Institute of Scientific and Technical Information of China (English)

    XI Yong-Jun; FANG Jian-Xing; ZHU Shi-Qun; GUO Zhan-Ying

    2005-01-01

    A scheme for teleporting an arbitrary n-particle entangled state via n pairs of non-maximally entangled states is proposed. The probability of successful teleportation is determined only by the smaller coefficients of the partially entangled pairs. The method is very easy to be realized.

  2. Teleportation of Two-Particle Entangled State via Cluster State

    Institute of Scientific and Technical Information of China (English)

    LI Da-Chuang; CAO Zhuo-Liang

    2007-01-01

    In this paper,two schemes for teleporting an unknown two-particle entangled state from the sender (Alice)to the receiver (Bob) via a four-particle entangled cluster state are proposed.In these two schemes,the unknown twoparticle entangled state can be teleported perfectly.The successful probabilities and fidelities of the schemes can reach unity.

  3. Probabilistic Teleportation of the Three-Particle Entangled State by the Partial Three-Particle Entangled State and the Three-Particle Entangled W State

    Institute of Scientific and Technical Information of China (English)

    戴宏毅; 李承祖; 陈平形

    2003-01-01

    We present a scheme to teleport an unknown three-particle entangled state from a sender to either one of two receivers. The partial three-particle entangled state and the three-particle entangled W state are considered as the quantum channels. An unknown three-particle entangled state can be perfectly teleported probabilistically by performing two generalized Bell measurements and the Hadamard operation at the sender's side and introducing an appropriate unitary transformation in each receiver's laboratory conditioned on the simple measurement outcome of the other. All kinds of unitary transformations are given in details. This scheme can be directly generalized to teleport an unknown three-particle entangled state from a sender to any one of N receivers by the partial three-particle entangled state and the (N + 1)-particle entangled W state.

  4. Quantum information transmission in the quantum wireless multihop network based on Werner state

    Science.gov (United States)

    Shi, Li-Hui; Yu, Xu-Tao; Cai, Xiao-Fei; Gong, Yan-Xiao; Zhang, Zai-Chen

    2015-05-01

    Many previous studies about teleportation are based on pure state. Study of quantum channel as mixed state is more realistic but complicated as pure states degenerate into mixed states by interaction with environment, and the Werner state plays an important role in the study of the mixed state. In this paper, the quantum wireless multihop network is proposed and the information is transmitted hop by hop through teleportation. We deduce a specific expression of the recovered state not only after one-hop teleportation but also across multiple intermediate nodes based on Werner state in a quantum wireless multihop network. We also obtain the fidelity of multihop teleportation. Project supported by the Prospective Future Network Project of Jiangsu Province, China (Grant No. BY2013095-1-18) and the Independent Project of State Key Laboratory of Millimeter Waves (Grant No. Z201504).

  5. Probabilistically Controlled Teleportation of an Arbitrary Two-Qubit State via Positive Operator-Valued Measure

    Institute of Scientific and Technical Information of China (English)

    XU Hai-Feng; HAN Lian-Fang

    2013-01-01

    We propose a tripartite scheme for probabilistically teleporting an arbitrary two-qubit state with a fourqubit duster-class state and a Bell-class state as the quantum channels.In the scheme,the sender and the controller make Bell-state measurements (BSMs) on their respective qubit pairs.With their measurement results,the receiver can reconstruct the original state probabilistically by introducing two auxiliary particles and making appropriate unitary operations and positive operator-valued measure (POVM) instead of usual projective measurement.Moreover,the total success probability and classical communication cost of the present protocol are also worked out.

  6. Quantum entanglement

    CERN Document Server

    Horodecki, R; Horodecki, M; Horodecki, K; Horodecki, Ryszard; Horodecki, Pawel; Horodecki, Michal; Horodecki, Karol

    2007-01-01

    All our former experience with application of quantum theory seems to say: {\\it what is predicted by quantum formalism must occur in laboratory}. But the essence of quantum formalism - entanglement, recognized by Einstein, Podolsky, Rosen and Schr\\"odinger - waited over 70 years to enter to laboratories as a new resource as real as energy. This holistic property of compound quantum systems, which involves nonclassical correlations between subsystems, is a potential for many quantum processes, including ``canonical'' ones: quantum cryptography, quantum teleportation and dense coding. However, it appeared that this new resource is very complex and difficult to detect. Being usually fragile to environment, it is robust against conceptual and mathematical tools, the task of which is to decipher its rich structure. This article reviews basic aspects of entanglement including its characterization, detection, distillation and quantifying. In particular, the authors discuss various manifestations of entanglement via ...

  7. Coherent communication with continuous quantum variables

    Science.gov (United States)

    Wilde, Mark M.; Krovi, Hari; Brun, Todd A.

    2007-06-01

    The coherent bit (cobit) channel is a resource intermediate between classical and quantum communication. It produces coherent versions of teleportation and superdense coding. We extend the cobit channel to continuous variables by providing a definition of the coherent nat (conat) channel. We construct several coherent protocols that use both a position-quadrature and a momentum-quadrature conat channel with finite squeezing. Finally, we show that the quality of squeezing diminishes through successive compositions of coherent teleportation and superdense coding.

  8. Scheme for teleportation of unknown states of trapped ion

    Institute of Scientific and Technical Information of China (English)

    Chen Mei-Feng; Ma Song-She

    2008-01-01

    A scheme is presented for teleporting an unknown state in a trapped ion system.The scheme only requires a single laser beam.It allows the trap to be in any state with a few phonons,e.g.a thermal motion.Furthermore,it works in the regime,where the Rabi frequency of the laser is on the order of the trap frequency.Thus,the teleportation speed is greatly increased,which is important for decreasing the decoherence effect.This idea can also be used to teleport an unknown ionic entangled state.

  9. Quantum Information Theory - an Invitation

    OpenAIRE

    Werner, R. F.

    2001-01-01

    We give a non-technical introduction of the basic concepts of Quantum Information Theory along the distinction between possible and impossible machines. We then proceed to describe the mathematical framework of Quantum Information Theory. The capacities of a quantum channel for classical and for quantum information are defined in a unified scheme, and a mathematical characterization of all teleportation and dense coding schemes is given.

  10. Quantum information causality.

    Science.gov (United States)

    Pitalúa-García, Damián

    2013-05-24

    How much information can a transmitted physical system fundamentally communicate? We introduce the principle of quantum information causality, which states the maximum amount of quantum information that a quantum system can communicate as a function of its dimension, independently of any previously shared quantum physical resources. We present a new quantum information task, whose success probability is upper bounded by the new principle, and show that an optimal strategy to perform it combines the quantum teleportation and superdense coding protocols with a task that has classical inputs.

  11. Backward Evolving Quantum States

    CERN Document Server

    Vaidman, L

    2006-01-01

    The basic concept of the two-state vector formalism, which is the time symmetric approach to quantum mechanics, is the backward evolving quantum state. However, due to the time asymmetry of the memory's arrow of time, the possible ways to manipulate a backward evolving quantum state differ from those for a standard, forward evolving quantum state. The similarities and the differences between forward and backward evolving quantum states regarding the no-cloning theorem, nonlocal measurements, and teleportation are discussed. The results are relevant not only in the framework of the two-state vector formalism, but also in the framework of retrodictive quantum theory.

  12. Towards a quantum internet

    Science.gov (United States)

    Dür, Wolfgang; Lamprecht, Raphael; Heusler, Stefan

    2017-07-01

    A long-range quantum communication network is among the most promising applications of emerging quantum technologies. We discuss the potential of such a quantum internet for the secure transmission of classical and quantum information, as well as theoretical and experimental approaches and recent advances to realize them. We illustrate the involved concepts such as error correction, teleportation or quantum repeaters and consider an approach to this topic based on catchy visualizations as a context-based, modern treatment of quantum theory at high school.

  13. Routing protocol for wireless quantum multi-hop mesh backbone network based on partially entangled GHZ state

    Science.gov (United States)

    Xiong, Pei-Ying; Yu, Xu-Tao; Zhang, Zai-Chen; Zhan, Hai-Tao; Hua, Jing-Yu

    2017-08-01

    Quantum multi-hop teleportation is important in the field of quantum communication. In this study, we propose a quantum multi-hop communication model and a quantum routing protocol with multihop teleportation for wireless mesh backbone networks. Based on an analysis of quantum multi-hop protocols, a partially entangled Greenberger-Horne-Zeilinger (GHZ) state is selected as the quantum channel for the proposed protocol. Both quantum and classical wireless channels exist between two neighboring nodes along the route. With the proposed routing protocol, quantum information can be transmitted hop by hop from the source node to the destination node. Based on multi-hop teleportation based on the partially entangled GHZ state, a quantum route established with the minimum number of hops. The difference between our routing protocol and the classical one is that in the former, the processes used to find a quantum route and establish quantum channel entanglement occur simultaneously. The Bell state measurement results of each hop are piggybacked to quantum route finding information. This method reduces the total number of packets and the magnitude of air interface delay. The deduction of the establishment of a quantum channel between source and destination is also presented here. The final success probability of quantum multi-hop teleportation in wireless mesh backbone networks was simulated and analyzed. Our research shows that quantum multi-hop teleportation in wireless mesh backbone networks through a partially entangled GHZ state is feasible.

  14. Efficient simultaneous dense coding and teleportation with two-photon four-qubit cluster states

    Science.gov (United States)

    Zhang, Cai; Situ, Haozhen; Li, Qin; He, Guang Ping

    2016-08-01

    We firstly propose a simultaneous dense coding protocol with two-photon four-qubit cluster states in which two receivers can simultaneously get their respective classical information sent by a sender. Because each photon has two degrees of freedom, the protocol will achieve a high transmittance. The security of the simultaneous dense coding protocol has also been analyzed. Secondly, we investigate how to simultaneously teleport two different quantum states with polarization and path degree of freedom using cluster states to two receivers, respectively, and discuss its security. The preparation and transmission of two-photon four-qubit cluster states is less difficult than that of four-photon entangled states, and it has been experimentally generated with nearly perfect fidelity and high generation rate. Thus, our protocols are feasible with current quantum techniques.

  15. Experimental entanglement distillation of mesoscopic quantum states

    DEFF Research Database (Denmark)

    Dong, Ruifang; Lassen, Mikael Østergaard; Heersink, Joel

    2008-01-01

    The distribution of entangled states between distant parties in an optical network is crucial for the successful implementation of various quantum communication protocols such as quantum cryptography, teleportation and dense coding(1-3). However, owing to the unavoidable loss in any real optical...

  16. Quantum Entanglement of Quantum Dot Spin Using Flying Qubits

    Science.gov (United States)

    2015-05-01

    SPDC photon is teleported to a single quantum dot spin by a projective measurement using a Hong Ou Mandel (HOM) interferometer. The SPDC source...photo diode B: Blue CW: Continuous wave DBR: Distributed Bragg reflector EOM: Electro-optics modulator H: Horizontal HOM: Hong-Ou- Mandel InAs

  17. Quantum Information An Introduction

    CERN Document Server

    Hayashi, Masahito

    2006-01-01

    Recently, quantum information theory has been developing through a fusion of results from various research fields. This requires that understanding of basic results on diverse topics, and derived from different disciplinary perspectives, is required for appreciating the overall picture. Intended to merge key topics from both the information-theoretic and quantum- mechanical viewpoints, this graduate-level textbook provides a unified viewpoint of quantum information theory and lucid explanations of those basic results, so that the reader fundamentally grasps advances and challenges. For example, advanced topics in quantum communication such as quantum teleportation, superdense coding, quantum state transmission (quantum error-correction), and quantum encryption especially benefit from this unified approach. Unlike earlier treatments, the text requires knowledge of only linear algebra, probability theory, and quantum mechanics, while it treats the topics of quantum hypothesis testing and the discrimination of q...

  18. Enhanced sensing and communication via quantum networks

    Science.gov (United States)

    Smith, James F.

    2017-05-01

    A network based on quantum information has been developed to improve sensing and communications capabilities. Quantum teleportation offers features for communicating information not found in classical procedures. It is fundamental to the quantum network approach. A version of quantum teleportation based on hyper-entanglement is used to bring about these improvements. Recently invented methods of improving sensing and communication via quantum information based on hyper-entanglement are discussed. These techniques offer huge improvements in the SNR, signal to interference ratio, and time-on-target of various sensors including RADAR and LADAR. Hyper-entanglement refers to quantum entanglement in more than one degree of freedom, e.g. polarization, energy-time, orbital angular momentum (OAM), etc. The quantum network makes use of quantum memory located in each node of the network, thus the network forms a quantum repeater. The quantum repeater facilitates the use of quantum teleportation, and superdense coding. Superdense coding refers to the ability to incorporate more than one classical bit into each transmitted qubit. The network of sensors and/or communication devices has an enhanced resistance to interference sources. The repeater has the potential for greatly reducing loss in communications and sensor systems related to the effect of the atmosphere on fragile quantum states. Measures of effectiveness (MOEs) are discussed that show the utility of the network for improving sensing and communications in the presence of loss and noise. The quantum repeater will reduce overall size, weight, power and cost (SWAPC) of fielded components of systems.

  19. Quantum information and computing

    CERN Document Server

    Ohya, M; Watanabe, N

    2006-01-01

    The main purpose of this volume is to emphasize the multidisciplinary aspects of this very active new line of research in which concrete technological and industrial realizations require the combined efforts of experimental and theoretical physicists, mathematicians and engineers. Contents: Coherent Quantum Control of ?-Atoms through the Stochastic Limit (L Accardi et al.); Recent Advances in Quantum White Noise Calculus (L Accardi & A Boukas); Joint Extension of States of Fermion Subsystems (H Araki); Fidelity of Quantum Teleportation Model Using Beam Splittings (K-H Fichtner et al.); Quantum

  20. Quantum information theory mathematical foundation

    CERN Document Server

    Hayashi, Masahito

    2017-01-01

    This graduate textbook provides a unified view of quantum information theory. Clearly explaining the necessary mathematical basis, it merges key topics from both information-theoretic and quantum- mechanical viewpoints and provides lucid explanations of the basic results. Thanks to this unified approach, it makes accessible such advanced topics in quantum communication as quantum teleportation, superdense coding, quantum state transmission (quantum error-correction) and quantum encryption. Since the publication of the preceding book Quantum Information: An Introduction, there have been tremendous strides in the field of quantum information. In particular, the following topics – all of which are addressed here – made seen major advances: quantum state discrimination, quantum channel capacity, bipartite and multipartite entanglement, security analysis on quantum communication, reverse Shannon theorem and uncertainty relation. With regard to the analysis of quantum security, the present book employs an impro...

  1. Teleportation of one ququat encoded in single mode superposition of coherent states

    CERN Document Server

    Prakash, Hari

    2012-01-01

    Superposition of optical coherent states (SCS) Ket(plus/minus alpha), possessing opposite phases, plays an important role as qubits in quantum information processing tasks like quantum computation, teleportation, cryptography etc. and are of fundamental importance in testing quantum mechanics. Recently, ququats and qutrits defined in four and three dimensional (D) Hilbert space, respectively, have attracted much more attention as they present advantage in secure quantum communication and also in researches on the foundation of quantum mechanics. Here, we show that superposition of four non-orthogonal coherent states Ket(plus/minus alpha) and Ket(plus/minus i alpha), that are 90 degrees out of phase, can be employed for encoding one ququat defined in a 4D Hilbert space spanned by four newly defined multi-photonic states, Ket(alpha subscript j) with 4n+j numbers of photons, where, j= 0, 1, 2, 3. We propose a scheme which generates states Ket(alpha subscript j). When these states fall on a 50-50 beam splitter, t...

  2. Quantum information: primitive notions and quantum correlations

    CERN Document Server

    Scarani, Valerio

    2009-01-01

    This series of introductory lectures consists of two parts. In the first part, I rapidly review the basic notions of quantum physics and many primitives of quantum information (i.e. notions that one must be somehow familiar with in the field, like cloning, teleportation, state estimation...). The second part is devoted to a detailed introduction to the topic of quantum correlations, covering the evidence for failure of alternative theories, some aspects of the formalism of no-signaling probability distributions and some hints towards some current research topics in the field.

  3. Perfect Entanglement Teleportation via Two Parallel W State Channels

    Institute of Scientific and Technical Information of China (English)

    WANG Mei-Yu; YAN Feng-Li

    2011-01-01

    We present a scheme for perfectly teleporting a two-qubit entangled state via two parallel W state channels. The scheme consists of a positive operator valued measurement (POVM), classical communication and the corresponding local unitary operation. How to realize the POVM using unitary operation and projective measurement is explicitly designed.%@@ We present a scheme for perfectly teleporting a two-qubit entangled state via two parallel W state channels.The scheme consists of a positive operator valued measurement (POVM), classical communication and the corre- sponding local unitary operation.How to realize the POVM using unitary operation and projective measurement is explicitly designed.

  4. Teleportation of Atomic States for Atoms in a Lambda Configuration

    CERN Document Server

    Guerra, E S

    2004-01-01

    In this article we discuss a scheme of teleportation of atomic states making use of three-level lambda atoms. The experimental realization proposed makes use of cavity QED involving the interaction of Rydberg atoms with a micromaser cavity prepared in a coherent state. We start presenting a scheme to prepare atomic EPR states involving two-level atoms via the interaction of these atoms with a cavity. In our scheme the cavity and some atoms play the role of auxiliary systems used to achieve the teleportation.

  5. Teleportation of an Arbitrary Two-qubit State *

    Institute of Scientific and Technical Information of China (English)

    庞霖; 严瑛白; 金国藩; 韦辉; 郭履容

    2001-01-01

    A scheme to teleport an unknown two-qubit state from Alice (the sender) to Bob (the receiver) using two Einstein-Podolsky-Rosen (EPR) pairs is presented, each EPR pair being shared by both Alice and Bob. Firstly, Alice combines each of the two particles in the teleported state with an EPR particle and makes Bell state measurement on each combination. Then she transmits the outcomes of her measurements to Bob classically. According to Alice′s measurement results, Bob can perform appropriate unitary operations on his two EPR particles to retrieve the initial state.

  6. Probabilistic teleportation of an arbitrary pure state of two atoms

    Institute of Scientific and Technical Information of China (English)

    Yang Zhen-Biao; Wu Huai-Zhi; Su Wan-Jun

    2007-01-01

    In the context of microwave cavity QED, this paper proposes a new scheme for teleportation of an arbitrary pure state of two atoms. The scheme is very different from the previous ones which achieve the integrated state measurement,it deals in a probabilistic but simplified way. In the scheme, no additional atoms are involved and thus only two atoms are required to be detected. The scheme can also be used for the teleportation of arbitrary pure states of many atoms or two-mode cavities.

  7. A Feasible Scheme for Teleportation of Multi-atom Cat-like States in Thermal Cavities

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    An experimentally feasible scheme for implementing teleportation of multi-atom cat-like states in cavity QED is proposed. In the scheme the atoms interact simultaneously with a highly detuned cavity mode and are driven by a strong classical field, and the atomic state evolution is independent of cavity field state. Thus the scheme is insensitive to both the cavity decay and the thermal field, which is of importance from the experimental point of view. All the orthogonal and complete multi-atom GHZ states can be exactly distinguished only by one step, so our scheme can also be used for other purposes such as dense coding using multi-atom GHZ states as quantum channels.

  8. A study of Quantum Correlations in Open Quantum Systems

    CERN Document Server

    Chakrabarty, Indranil; Siddharth, Nana

    2010-01-01

    In this work, we study quantum correlations in mixed states. The states studied are modelled by a two-qubit system interacting with its environment via a quantum nondemolition (purely dephasing) as well as dissipative type of interaction. The entanglement dynamics of this two qubit system is analyzed and the existence of entangled states which do not violate Bell's inequality, but can still be useful as a potential resource for teleportation are reported. In addition, a comparative study of various measures of quantum correlations, like Concurrence, Bell's inequality, Discord and Teleportation fidelity, is made on these states, generated by the above evolutions. Interestingly, examples are found, of states, where entanglement is vanishing, but discord is non-vanishing, bringing out the fact that entanglement is a subset of quantum correlations.

  9. Cavity quantum networks for quantum information processing in decoherence-free subspace

    Institute of Scientific and Technical Information of China (English)

    Hua WEI; Zhi-jiao DENG; Wan-li YANG; Fei ZHOU

    2009-01-01

    We give a brief review on the quantum infor- mation processing in decoherence-free subspace (DFS). We show how to realize the initialization of the entangled quantum states, information transfer and teleportation of quantum states, two-qubit Grover search and how to construct the quantum network in DFS, within the cav- ity QED regime based on a cavity-assisted interaction by single-photon pulses.

  10. Quantum engineering of continuous variable quantum states

    Energy Technology Data Exchange (ETDEWEB)

    Sabuncu, Metin

    2009-10-29

    Quantum information with continuous variables is a field attracting increasing attention recently. In continuous variable quantum information one makes use of the continuous information encoded into the quadrature of a quantized light field instead of binary quantities such as the polarization state of a single photon. This brand new research area is witnessing exciting theoretical and experimental achievements such as teleportation, quantum computation and quantum error correction. The rapid development of the field is mainly due higher optical data rates and the availability of simple and efficient manipulation tools in continuous-variable quantum information processing. We in this thesis extend the work in continuous variable quantum information processing and report on novel experiments on amplification, cloning, minimal disturbance and noise erasure protocols. The promising results we obtain in these pioneering experiments indicate that the future of continuous variable quantum information is bright and many advances can be foreseen. (orig.)

  11. Testing Quantum Devices: Practical Entanglement Verification in Bipartite Optical Systems

    OpenAIRE

    Häseler, Hauke; Moroder, Tobias; Lütkenhaus, Norbert

    2007-01-01

    We present a method to test quantum behavior of quantum information processing devices, such as quantum memories, teleportation devices, channels and quantum key distribution protocols. The test of quantum behavior can be phrased as the verification of effective entanglement. Necessary separability criteria are formulated in terms of a matrix of expectation values in conjunction with the partial transposition map. Our method is designed to reduce the resources for entanglement verification. A...

  12. Coherent Communication with Continuous Quantum Variables

    CERN Document Server

    Wilde, M M; Krovi, H; Brun, Todd A.; Krovi, Hari; Wilde, Mark M.

    2006-01-01

    The coherent bit (cobit) channel is a resource intermediate between classical communication and quantum communication. The cobit channel produces coherent versions of the teleportation and superdense coding protocols. We extend the cobit channel to the continuous variables of quantum optics. We provide a general definition of the ``coherent nat'' (conat) channel when only finite-squeezing resources are available. Coherent teleportation provides sufficient conditions and coherent superdense coding provides necessary conditions for a channel to be a finite-squeezing approximation to an ideal conat channel. We illustrate several protocols that use both a position-quadrature and a momentum-quadrature conat channel. Finally, we address the reversibility of coherent teleportation and coherent superdense coding with only finite-squeezing resources.

  13. Teleportation of Cavity Field States via Cavity QED

    CERN Document Server

    Guerra, E S

    2004-01-01

    In this article we discuss two schemes of teleportation of cavity field states. In the first scheme we consider cavities prepared in a coherent state and in the second scheme we consider cavities prepared in a superposition of zero and one Fock states.

  14. Teleportation of atomic states with a weak coherent cavity field

    Institute of Scientific and Technical Information of China (English)

    Zheng Shi-Biao

    2005-01-01

    A scheme is proposed for the teleportation of an unknown atomic state. The scheme is based on the resonant interaction of atoms with a coherent cavity field. The mean photon-number of the cavity field is much smaller than one and thus the cavity decay can be effectively suppressed. Another adwntage of the scheme is that only one cavity is required.

  15. Teleportation of an Unknown Atomic State via Adiabatic Passage

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We propose a scheme for teleporting an unknown atomic state via adiabatic passage. Taking advantage of adiabatic passage, the atom has no probability of being excited and thus the atomic spontaneous emission is suppressed.We also show that the fidelity can reach 1 under certain condition.

  16. Contract Signature Using Quantum Information

    CERN Document Server

    De Sousa, P B M; Ramos, Rubens Viana; Sousa, Paulo Benicio Melo de

    2006-01-01

    This paper describes how to perform contract signature in a fair way using quantum information. The protocol proposed permits two partners, users of a communication network, to exchange their signatures with non-repudiation. For this, we assume that there is a trustable arbitrator, responsible for the authentication of the signers and that performs a central task in a quantum teleportation protocol of the XOR function between two classical bits.

  17. Problems and solutions in quantum computing and quantum information

    CERN Document Server

    Steeb, Willi-Hans

    2012-01-01

    Quantum computing and quantum information are two of the fastest growing and most exciting research fields in physics. Entanglement, teleportation and the possibility of using the non-local behavior of quantum mechanics to factor integers in random polynomial time have also added to this new interest. This book supplies a huge collection of problems in quantum computing and quantum information together with their detailed solutions, which will prove to be invaluable to students as well as researchers in these fields. All the important concepts and topics such as quantum gates and quantum circuits, product Hilbert spaces, entanglement and entanglement measures, deportation, Bell states, Bell inequality, Schmidt decomposition, quantum Fourier transform, magic gate, von Neumann entropy, quantum cryptography, quantum error corrections, number states and Bose operators, coherent states, squeezed states, Gaussian states, POVM measurement, quantum optics networks, beam splitter, phase shifter and Kerr Hamilton opera...

  18. Quantum weirdness

    CERN Document Server

    Mullin, William J

    2017-01-01

    Quantum mechanics allows a remarkably accurate description of nature and powerful predictive capabilities. The analyses of quantum systems and their interpretation lead to many surprises, for example, the ability to detect the characteristics of an object without ever touching it in any way, via "interaction-free measurement," or the teleportation of an atomic state over large distances. The results can become downright bizarre. Quantum mechanics is a subtle subject that usually involves complicated mathematics -- calculus, partial differential equations, etc., for complete understanding. Most texts for general audiences avoid all mathematics. The result is that the reader misses almost all deep understanding of the subject, much of which can be probed with just high-school level algebra and trigonometry. Thus, readers with that level of mathematics can learn so much more about this fundamental science. The book starts with a discussion of the basic physics of waves (an appendix reviews some necessary class...

  19. Young Quantum Meetings

    CERN Document Server

    Aerts, Sven; Ronde, Christian de; Probing the Meaning of Quantum Mechanics : Physical, Philosophical, and Logical Perspectives

    2014-01-01

    This book provides a new original perspective on one of the most fascinating and important open questions in science: What is quantum mechanics talking about? Quantum theory is perhaps our best confirmed physical theory. However, in spite of its great empirical effectiveness and the subsequent technological developments that it gave rise to in the 20th century, from the interpretation of the periodic table of elements to CD players, holograms and quantum state teleportation, it stands even today without a universally accepted interpretation. The novelty of the book comes from the multiple view

  20. Explorations in quantum computing

    CERN Document Server

    Williams, Colin P

    2011-01-01

    By the year 2020, the basic memory components of a computer will be the size of individual atoms. At such scales, the current theory of computation will become invalid. ""Quantum computing"" is reinventing the foundations of computer science and information theory in a way that is consistent with quantum physics - the most accurate model of reality currently known. Remarkably, this theory predicts that quantum computers can perform certain tasks breathtakingly faster than classical computers -- and, better yet, can accomplish mind-boggling feats such as teleporting information, breaking suppos

  1. Quantum entanglement and teleportation in pulsed cavity optomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Hofer, Sebastian G. [Vienna Center for Quantum Science and Technology, Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna (Austria); Institute for Theoretical Physics, Institute for Gravitational Physics, Leibniz University Hannover, Callinstrasse 38, 30167 Hannover (Germany); Wieczorek, Witlef; Aspelmeyer, Markus [Vienna Center for Quantum Science and Technology, Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna (Austria); Hammerer, Klemens [Institute for Theoretical Physics, Institute for Gravitational Physics, Leibniz University Hannover, Callinstrasse 38, 30167 Hannover (Germany)

    2011-11-15

    Entangling a mechanical oscillator with an optical mode is an enticing and yet a very challenging goal in cavity optomechanics. Here we consider a pulsed scheme to create Einstein-Podolsky-Rosen-type entanglement between a traveling-wave light pulse and a mechanical oscillator. The entanglement can be verified unambiguously by a pump-probe sequence of pulses. In contrast to schemes that work in a steady-state regime under a continuous-wave drive, this protocol is not subject to stability requirements that normally limit the strength of achievable entanglement. We investigate the protocol's performance under realistic conditions, including mechanical decoherence, in full detail. We discuss the relevance of a high mechanical Qf product for entanglement creation and provide a quantitative statement on which magnitude of the Qf product is necessary for a successful realization of the scheme. We determine the optimal parameter regime for its operation and show it to work in current state-of-the-art systems.

  2. Equivalence between entanglement and the optimal fidelity of continuous variable teleportation.

    Science.gov (United States)

    Adesso, Gerardo; Illuminati, Fabrizio

    2005-10-07

    We devise the optimal form of Gaussian resource states enabling continuous-variable teleportation with maximal fidelity. We show that a nonclassical optimal fidelity of N-user teleportation networks is necessary and sufficient for N-party entangled Gaussian resources, yielding an estimator of multipartite entanglement. The entanglement of teleportation is equivalent to the entanglement of formation in a two-user protocol, and to the localizable entanglement in a multiuser one. Finally, we show that the continuous-variable tangle, quantifying entanglement sharing in three-mode Gaussian states, is defined operationally in terms of the optimal fidelity of a tripartite teleportation network.

  3. Teleportation of a Coherent Superposition State Via a nonmaximally Entangled Coherent Xhannel

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ We investigate the problemm of teleportation of a superposition coherent state with nonmaximally entangled coherent channel. Two strategies are considered to complete the task. The first one uses entanglement concentration to purify the channel to a maximally entangled one. The second one teleports the state through the nonmaximally entangled coherent channel directly. We find that the probabilities of successful teleportations for the two strategies are depend on the amplitudes of the coherent states and the mean fidelity of teleportation using the first strategy is always less than that of the second strategy.

  4. Long-Distance Quantum Communication with Neutral Atoms

    CERN Document Server

    Razavi, M; Razavi, Mohsen; Shapiro, Jeffrey H.

    2005-01-01

    The architecture proposed by Duan, Lukin, Cirac, and Zoller (DLCZ) for long-distance quantum communication with atomic ensembles is analyzed. Its fidelity and throughput in entanglement distribution, entanglement swapping, and quantum teleportation is derived within a framework that accounts for multiple excitations in the ensembles as well as loss and asymmetries in the channel. The DLCZ performance metrics that are obtained are compared to the corresponding results for the trapped-atom quantum communication architecture that has been proposed by a team from the Massachusetts Institute of Technology and Northwestern University (MIT/NU). Both systems are found to be capable of high-fidelity entanglement distribution. However, the DLCZ scheme only provides conditional teleportation and repeater operation, whereas the MIT/NU architecture affords full Bell-state measurements on its trapped atoms. Moreover, it is shown that achieving unity conditional fidelity in DLCZ teleportation and repeater operation requires...

  5. Ultrafast Long-Distance Quantum Communication with Static Linear Optics

    Science.gov (United States)

    Ewert, Fabian; Bergmann, Marcel; van Loock, Peter

    2016-11-01

    We propose a projection measurement onto encoded Bell states with a static network of linear optical elements. By increasing the size of the quantum error correction code, both Bell measurement efficiency and photon-loss tolerance can be made arbitrarily high at the same time. As a main application, we show that all-optical quantum communication over large distances with communication rates similar to those of classical communication is possible solely based on local state teleportations using optical sources of encoded Bell states, fixed arrays of beam splitters, and photon detectors. As another application, generalizing state teleportation to gate teleportation for quantum computation, we find that in order to achieve universality the intrinsic loss tolerance must be sacrificed and a minimal amount of feedforward has to be added.

  6. Advanced Visual Quantum Mechanics

    CERN Document Server

    Thaller, Bernd

    2005-01-01

    Advanced Visual Quantum Mechanics is a systematic effort to investigate and to teach quantum mechanics with the aid of computer-generated animations. It is a self-contained textbook that combines selected topics from atomic physics (spherical symmetry, the hydrogen atom, and particles with spin) with an introduction to quantum information theory (qubits, EPR paradox, teleportation, quantum computers). It explores relativistic quantum mechanics and the strange behavior of Dirac equation solutions. A series of appendices covers important topics from perturbation and scattering theory. The book places an emphasis on ideas and concepts, with a fair to moderate amount of mathematical rigor. Though this book stands alone, it can also be paired with Thaller Visual Quantum Mechanics to form a comprehensive course in quantum mechanics. The software for the first book earned the European Academic Software Award 2000 for outstanding innovation in its field.

  7. Arbitrated quantum signature scheme based on cluster states

    Science.gov (United States)

    Yang, Yu-Guang; Lei, He; Liu, Zhi-Chao; Zhou, Yi-Hua; Shi, Wei-Min

    2016-06-01

    Cluster states can be exploited for some tasks such as topological one-way computation, quantum error correction, teleportation and dense coding. In this paper, we investigate and propose an arbitrated quantum signature scheme with cluster states. The cluster states are used for quantum key distribution and quantum signature. The proposed scheme can achieve an efficiency of 100 %. Finally, we also discuss its security against various attacks.

  8. Tampering detection system using quantum-mechanical systems

    Energy Technology Data Exchange (ETDEWEB)

    Humble, Travis S [Knoxville, TN; Bennink, Ryan S [Knoxville, TN; Grice, Warren P [Oak Ridge, TN

    2011-12-13

    The use of quantum-mechanically entangled photons for monitoring the integrity of a physical border or a communication link is described. The no-cloning principle of quantum information science is used as protection against an intruder's ability to spoof a sensor receiver using a `classical` intercept-resend attack. Correlated measurement outcomes from polarization-entangled photons are used to protect against quantum intercept-resend attacks, i.e., attacks using quantum teleportation.

  9. Quantum communication between remote mechanical resonators

    Science.gov (United States)

    Felicetti, S.; Fedortchenko, S.; Rossi, R.; Ducci, S.; Favero, I.; Coudreau, T.; Milman, P.

    2017-02-01

    Mechanical resonators represent one of the most promising candidates to mediate the interaction between different quantum technologies, bridging the gap between efficient quantum computation and long-distance quantum communication. Here, we introduce an interferometric scheme where the interaction of a mechanical resonator with input-output quantum pulses is controlled by an independent classical drive. We design protocols for state teleportation and direct quantum state transfer, between distant mechanical resonators. The proposed device, feasible with state-of-the-art technology, can serve as a building block for the implementation of long-distance quantum networks of mechanical resonators.

  10. Probabilistic Teleportation of Two-Particle State of General Formation

    Institute of Scientific and Technical Information of China (English)

    YAN Feng-Li; TAN Hong-Ge; YANG Lin-Guang

    2002-01-01

    A scheme for probabilistic teleporting an unknown two-particle state of general formation by partly pure entangled four-particle state is proposed. It is shown that after performing two Bell state measurements, proper unitary transformation and the measurement on an auxiliary qubit, the unknown two-particle state of general formation, which was destroyed at one place, can be reconstructed at another place with certain probability.

  11. fairCASH based on Loss resistant Teleportation

    OpenAIRE

    Kreft, Heinz

    2010-01-01

    This work contributes technical to the field of fair exchange protocols by proposing a new way to move safeguarded secrets between cryptographically secure endpoints excluding the possibility of duplication. After a brief introduction and presentation of an overview of the subject matter, the problem areas of creating a way to teleport secrets with the help of tamper-resistant hardware are defined. Objects like the CASTOR (a HSM element), eCoins (the secrets) and a copy-less transportation (t...

  12. Limitations on quantum key repeaters.

    Science.gov (United States)

    Bäuml, Stefan; Christandl, Matthias; Horodecki, Karol; Winter, Andreas

    2015-04-23

    A major application of quantum communication is the distribution of entangled particles for use in quantum key distribution. Owing to noise in the communication line, quantum key distribution is, in practice, limited to a distance of a few hundred kilometres, and can only be extended to longer distances by use of a quantum repeater, a device that performs entanglement distillation and quantum teleportation. The existence of noisy entangled states that are undistillable but nevertheless useful for quantum key distribution raises the question of the feasibility of a quantum key repeater, which would work beyond the limits of entanglement distillation, hence possibly tolerating higher noise levels than existing protocols. Here we exhibit fundamental limits on such a device in the form of bounds on the rate at which it may extract secure key. As a consequence, we give examples of states suitable for quantum key distribution but unsuitable for the most general quantum key repeater protocol.

  13. Quantum information theory

    CERN Document Server

    Wilde, Mark M

    2017-01-01

    Developing many of the major, exciting, pre- and post-millennium developments from the ground up, this book is an ideal entry point for graduate students into quantum information theory. Significant attention is given to quantum mechanics for quantum information theory, and careful studies of the important protocols of teleportation, superdense coding, and entanglement distribution are presented. In this new edition, readers can expect to find over 100 pages of new material, including detailed discussions of Bell's theorem, the CHSH game, Tsirelson's theorem, the axiomatic approach to quantum channels, the definition of the diamond norm and its interpretation, and a proof of the Choi–Kraus theorem. Discussion of the importance of the quantum dynamic capacity formula has been completely revised, and many new exercises and references have been added. This new edition will be welcomed by the upcoming generation of quantum information theorists and the already established community of classical information theo...

  14. Feasible Scheme for Teleportation of an Arbitrary N-Atom State with Thermal Cavity

    Institute of Scientific and Technical Information of China (English)

    TAN Xiao-Hui; FANG Xi-Ming; WANG Guo-You

    2007-01-01

    We present a scheme for teleportation of an arbitrary N-atom state without Bell state measurement in thermal cavity QED, and show the feasibility in experiment. Our scheme is also insensitive to both cavity decay and thermal field, and the fidelity of teleportation is only slightly affected by the experimental errors. In addition,the success probability reaches 1.0.

  15. Realization of Perfect Teleportation with W-States in Cavity QED

    Institute of Scientific and Technical Information of China (English)

    YUAN Hao; HE Juan; SONG Jun; YE Liu; HE Qin; MA Chi; HAN Lian-Fang; LIU Qi; HOU Kui; NI Zhi-Xiang; HU Xiao-Yuan; SHI Shou-Hua

    2008-01-01

    We put forward an experimentally feasible protocol for realizing a perfect teleportation by using a class of W-state in QED. The simple way of generating the entangled channel and distinguishing the measurement bases is the distinct feature of our scheme. In addition, the probability of teleportation is up to 100%. The scheme can be implemented by the present cavity QED techniques.

  16. High-Dimensional Multi-particle Cat-Like State Teleportation

    Institute of Scientific and Technical Information of China (English)

    ZENG Bei; LIU Xiao-Shu; LI Yan-Song; LONG Gui-Lu

    2002-01-01

    Two kinds of M-particle d-dimensional Schmidt-form entangled state teleportation protocols are presented.In the first protocol, the teleportation is achieved by d-dimensional Bell-basis measurements, while in the second protocolit is realized by d-dimensional GHZ-basis measurement.

  17. Scheme for Deterministic BSM-Free Controlled Teleportation of Unknown Atomic States

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We propose a controlled scheme for teleportation of an arbitrary one or two atomic state via a driven QED cavity. The scheme does not involve the joint Bell-state-measurement BSM and the probability of successful teleportation is 1. We show that the original atomic state cannot be perfectly restored by the receiver without all the agents collaborate and classical communication.

  18. A New Quantum Proxy Multi-signature Scheme Using Maximally Entangled Seven-Qubit States

    Science.gov (United States)

    Cao, Hai-Jing; Zhang, Jia-Fu; Liu, Jian; Li, Zeng-You

    2016-02-01

    In this paper, we propose a new secure quantum proxy multi-signature scheme using seven-qubit entangled quantum state as quantum channels, which may have applications in e-payment system, e-government, e-business, etc. This scheme is based on controlled quantum teleportation. The scheme uses the physical characteristics of quantum mechanics to guarantee its anonymity, verifiability, traceability, unforgetability and undeniability.

  19. Software-defined network abstractions and configuration interfaces for building programmable quantum networks

    Energy Technology Data Exchange (ETDEWEB)

    Dasari, Venkat [U.S. Army Research Laboratory, Aberdeen Proving Ground, MD; Sadlier, Ronald J [ORNL; Geerhart, Mr. Billy [U.S. Army Research Laboratory, Aberdeen Proving Ground, MD; Snow, Nikolai [U.S. Army Research Laboratory, Aberdeen Proving Ground, MD; Williams, Brian P [ORNL; Humble, Travis S [ORNL

    2017-01-01

    Well-defined and stable quantum networks are essential to realize functional quantum applications. Quantum networks are complex and must use both quantum and classical channels to support quantum applications like QKD, teleportation, and superdense coding. In particular, the no-cloning theorem prevents the reliable copying of quantum signals such that the quantum and classical channels must be highly coordinated using robust and extensible methods. We develop new network abstractions and interfaces for building programmable quantum networks. Our approach leverages new OpenFlow data structures and table type patterns to build programmable quantum networks and to support quantum applications.

  20. Software-defined network abstractions and configuration interfaces for building programmable quantum networks

    Science.gov (United States)

    Dasari, Venkat R.; Sadlier, Ronald J.; Geerhart, Billy E.; Snow, Nikolai A.; Williams, Brian P.; Humble, Travis S.

    2017-05-01

    Well-defined and stable quantum networks are essential to realize functional quantum communication applications. Quantum networks are complex and must use both quantum and classical channels to support quantum applications like QKD, teleportation, and superdense coding. In particular, the no-cloning theorem prevents the reliable copying of quantum signals such that the quantum and classical channels must be highly coordinated using robust and extensible methods. In this paper, we describe new network abstractions and interfaces for building programmable quantum networks. Our approach leverages new OpenFlow data structures and table type patterns to build programmable quantum networks and to support quantum applications.

  1. Remote preparation of quantum states

    CERN Document Server

    Bennett, C H; Leung, D W; Shor, P W; Winter, A; Bennett, Charles H; Hayden, Patrick; Leung, Debbie W.; Shor, Peter W.; Winter, Andreas

    2003-01-01

    Remote state preparation is the variant of quantum state teleportation in which the sender knows the quantum state to be communicated. The original paper introducing teleportation established minimal requirements for classical communication and entanglement but the corresponding limits for remote state preparation have remained unknown until now: previous work has shown, however, that it not only requires less classical communication but also gives rise to a trade-off between these two resources in the appropriate setting. We discuss this problem from first principles, including the various choices one may follow in the definitions of the actual resources. Our main result is a general method of remote state preparation for arbitrary states of many qubits, at a cost of 1 bit of classical communication and 1 bit of entanglement per qubit sent. In this "universal" formulation, these ebit and cbit requirements are shown to be simultaneously optimal by exhibiting a dichotomy. This then yields the exact trade-off c...

  2. Entangled network and quantum communication

    Energy Technology Data Exchange (ETDEWEB)

    Metwally, Nasser, E-mail: Nmetwally@gmail.com [Math. Dept., Faculty of Science, South Valley University, Aswan (Egypt); Math. Dept., College of Science, University of Bahrain, P.O. Box 32038 (Bahrain)

    2011-11-21

    A theoretical scheme is introduced to generate entangled network via Dzyaloshinskii–Moriya (DM) interaction. The dynamics of entanglement between different nodes, which is generated by direct or indirect interaction, is investigated. It is shown that, the direction of (DM) interaction and the locations of the nodes have a sensational effect on the degree of entanglement. The minimum entanglement generated between all the nodes is quantified. The upper and lower bounds of the entanglement depend on the direction of DM interaction, and the repetition of the behavior depends on the strength of DM. The generated entangled nodes are used as quantum channel to perform quantum teleportation, where it is shown that the fidelity of teleporting unknown information between the network members depends on the locations of the members.

  3. Quantum Logic Between Distant Trapped Ions

    CERN Document Server

    Olmschenk, S; Matsukevich, D N; Maunz, P; Moehring, D L; Monroe, C

    2009-01-01

    Trapped atomic ions have proven to be one of the most promising candidates for the realization of quantum computation due to their long trapping times, excellent coherence properties, and exquisite control of the internal atomic states. Integrating ions (quantum memory) with photons (distance link) offers a unique path to large-scale quantum computation and long-distance quantum communication. In this article, we present a detailed review of the experimental implementation of a heralded photon-mediated quantum gate between remote ions, and the employment of this gate to perform a teleportation protocol between two ions separated by a distance of about one meter.

  4. Approximate Teleportation of an Unknown Atomic-Entangled State with Dissipative Atom-Cavity Resonant Jaynes-Cummings Model

    Institute of Scientific and Technical Information of China (English)

    LIU Zong-Liang; LI Shao-Hua; CHEN Chang-Yong

    2008-01-01

    We propose a scheme for approximately and conditionally teleporting an unknown atomic-entangled state in dissipative cavity QED.It is the further development of the scheme of [Phys.Rev.A 69 (2004) 064302],where the cavity mode decay has not been considered and the state teleportated is an unknown atomic state.In this paper,we investigate the influence of the decay on the approximate and conditional teleportation of the unknown atomic-entangled state,which is different from that teleportated in [Phys.Rev.A 69 (2004) 064302] and then give the fidelity of the teleportation,which depends on the cavity mode decay.The scheme may be generalized to not only the teleportation of the cavity-mode-entangled-state by means of a single atom but also the teleportation of the unknown trapped-ion-entangled-state in a linear ion trap.

  5. Comment on "Fractional quantum mechanics" and "Fractional Schrödinger equation"

    Science.gov (United States)

    Wei, Yuchuan

    2016-06-01

    In this Comment we point out some shortcomings in two papers [N. Laskin, Phys. Rev. E 62, 3135 (2000), 10.1103/PhysRevE.62.3135; N. Laskin, Phys. Rev. E 66, 056108 (2002), 10.1103/PhysRevE.66.056108]. We prove that the fractional uncertainty relation does not hold generally. The probability continuity equation in fractional quantum mechanics has a missing source term, which leads to particle teleportation, i.e., a particle can teleport from a place to another. Since the relativistic kinetic energy can be viewed as an approximate realization of the fractional kinetic energy, the particle teleportation should be an observable relativistic effect in quantum mechanics. With the help of this concept, superconductivity could be viewed as the teleportation of electrons from one side of a superconductor to another and superfluidity could be viewed as the teleportation of helium atoms from one end of a capillary tube to the other. We also point out how to teleport a particle to an arbitrary destination.

  6. Comment on "Fractional quantum mechanics" and "Fractional Schrödinger equation".

    Science.gov (United States)

    Wei, Yuchuan

    2016-06-01

    In this Comment we point out some shortcomings in two papers [N. Laskin, Phys. Rev. E 62, 3135 (2000)10.1103/PhysRevE.62.3135; N. Laskin, Phys. Rev. E 66, 056108 (2002)10.1103/PhysRevE.66.056108]. We prove that the fractional uncertainty relation does not hold generally. The probability continuity equation in fractional quantum mechanics has a missing source term, which leads to particle teleportation, i.e., a particle can teleport from a place to another. Since the relativistic kinetic energy can be viewed as an approximate realization of the fractional kinetic energy, the particle teleportation should be an observable relativistic effect in quantum mechanics. With the help of this concept, superconductivity could be viewed as the teleportation of electrons from one side of a superconductor to another and superfluidity could be viewed as the teleportation of helium atoms from one end of a capillary tube to the other. We also point out how to teleport a particle to an arbitrary destination.

  7. Bananaworld quantum mechanics for primates

    CERN Document Server

    Bub, Jeffrey

    2016-01-01

    What on earth do bananas have to do with quantum mechanics? From a modern perspective, quantum mechanics is about strangely counterintuitive correlations between separated systems, which can be exploited in feats like quantum teleportation, unbreakable cryptographic schemes, and computers with enormously enhanced computing power. Schro?dinger coined the term "entanglement" to describe these bizarre correlations. Bananaworld -- an imaginary island with "entangled" bananas -- brings to life the fascinating discoveries of the new field of quantum information without the mathematical machinery of quantum mechanics. The connection with quantum correlations is fully explained in sections written for the non-physicist reader with a serious interest in understanding the mysteries of the quantum world. The result is a subversive but entertaining book that is accessible and interesting to a wide range of readers, with the novel thesis that quantum mechanics is about the structure of information. What we have discovered...

  8. Quantum Computing over Finite Fields

    CERN Document Server

    James, Roshan P; Sabry, Amr

    2011-01-01

    In recent work, Benjamin Schumacher and Michael~D. Westmoreland investigate a version of quantum mechanics which they call "modal quantum theory" but which we prefer to call "discrete quantum theory". This theory is obtained by instantiating the mathematical framework of Hilbert spaces with a finite field instead of the field of complex numbers. This instantiation collapses much the structure of actual quantum mechanics but retains several of its distinguishing characteristics including the notions of superposition, interference, and entanglement. Furthermore, discrete quantum theory excludes local hidden variable models, has a no-cloning theorem, and can express natural counterparts of quantum information protocols such as superdense coding and teleportation. Our first result is to distill a model of discrete quantum computing from this quantum theory. The model is expressed using a monadic metalanguage built on top of a universal reversible language for finite computations, and hence is directly implementab...

  9. Mixed quantum states in higher categories

    Directory of Open Access Journals (Sweden)

    Chris Heunen

    2014-12-01

    Full Text Available There are two ways to describe the interaction between classical and quantum information categorically: one based on completely positive maps between Frobenius algebras, the other using symmetric monoidal 2-categories. This paper makes a first step towards combining the two. The integrated approach allows a unified description of quantum teleportation and classical encryption in a single 2-category, as well as a universal security proof applicable simultaneously to both scenarios.

  10. Undetectable quantum transfer through a continuum

    Energy Technology Data Exchange (ETDEWEB)

    Ping, Jing; Ye, Yin [State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Xu, Luting [Department of Physics, Beijing Normal University, Beijing 100875 (China); Li, Xin-Qi, E-mail: xqli@red.semi.ac.cn [State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Department of Physics, Beijing Normal University, Beijing 100875 (China); Yan, YiJing [Department of Chemistry, Hong Kong University of Science and Technology, Kowloon (Hong Kong); Gurvitz, Shmuel [Beijing Computational Science Research Center, Beijing 100084 (China); Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel)

    2013-03-15

    We demonstrate that a quantum particle, initially prepared in a quantum well, can propagate through a reservoir with a continuous spectrum and reappear in a distant well without being registered in the reservoir. It is shown that such a passage through the reservoir takes place even if the latter is continuously monitored. We discuss a possible experimental realization of such a teleportation phenomenon in mesoscopic systems.

  11. Quantum networks based on cavity QED

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, Stephan; Bochmann, Joerg; Figueroa, Eden; Hahn, Carolin; Kalb, Norbert; Muecke, Martin; Neuzner, Andreas; Noelleke, Christian; Reiserer, Andreas; Uphoff, Manuel; Rempe, Gerhard [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching (Germany)

    2014-07-01

    Quantum repeaters require an efficient interface between stationary quantum memories and flying photons. Single atoms in optical cavities are ideally suited as universal quantum network nodes that are capable of sending, storing, retrieving, and even processing quantum information. We demonstrate this by presenting an elementary version of a quantum network based on two identical nodes in remote, independent laboratories. The reversible exchange of quantum information and the creation of remote entanglement are achieved by exchange of a single photon. Quantum teleportation is implemented using a time-resolved photonic Bell-state measurement. Quantum control over all degrees of freedom of the single atom also allows for the nondestructive detection of flying photons and the implementation of a quantum gate between the spin state of the atom and the polarization of a photon upon its reflection from the cavity. Our approach to quantum networking offers a clear perspective for scalability and provides the essential components for the realization of a quantum repeater.

  12. A family of quantum protocols

    CERN Document Server

    Devetak, I; Winter, A

    2003-01-01

    We introduce two dual, purely quantum protocols: for entanglement distillation assisted by quantum communication (``mother'' protocol) and for entanglement assisted quantum communication (``father'' protocol). We show how a large class of ``children'' protocols (including many previously known ones) can be derived from the two by direct application of teleportation or super-dense coding. Furthermore, the parent may be recovered from most of the children protocols by making them ``coherent''. We also summarize the various resource trade-offs these protocols give rise to.

  13. Hybrid protocol of remote implementations of quantum operations

    Science.gov (United States)

    Zhao, Ning Bo; Wang, An Min

    2007-12-01

    We propose a protocol of remote implementations of quantum operations by hybridizing bidirectional quantum-state teleportation (BQST) [Huelga , Phys. Rev. A 63, 042303 (2001)] and the Wang protocol [Wang, Phys. Rev. A 74, 032317 (2006)]. The protocol is available for remote implementations of quantum operations in the restricted sets specified in the paper. We also give a proof of the protocol and point out its optimization. As an extension, this hybrid protocol can be reduced to the BQST and Wang protocols.

  14. Nearly deterministic Bell measurement using quantum communication bus

    Science.gov (United States)

    Wang, Jia-Ming; Zhu, Meng-zheng; Wang, Dong; Ye, Liu

    2017-03-01

    We present a scheme to implement Bell states measurement for an arbitrary number of photons by using robust continuous variable coherent modes, called as quantum communication bus (qubus) and weak cross-Kerr nonlinearities. Remarkably, the success probability of our scheme is close to unity, and our scheme does not require any ancillary resource entanglement. Our scheme is likely to yield versatile applications for quantum computation and quantum teleportation.

  15. Efficient scheme for two-atom entanglement and quantum information processing in cavity QED

    Science.gov (United States)

    Zheng; Guo

    2000-09-11

    A scheme is proposed for the generation of two-atom maximally entangled states and realization of quantum logic gates and teleportation with cavity QED. The scheme does not require the transfer of quantum information between the atoms and cavity. In the scheme the cavity is only virtually excited and thus the requirement on the quality factor of the cavities is greatly loosened.

  16. Approximate and Conditional Teleportation of an Unknown Atomic-Entangled State Without Bell-State Measurement

    Institute of Scientific and Technical Information of China (English)

    CHEN Chang-Yong; LI Shao-Hua

    2007-01-01

    A scheme for approximately and conditionally teleporting an unknown atomic-entangled state in cavity QED is proposed.It is the novel extension of the scheme of [Phys.Rev.A 69 (2004) 064302],where the state to be teleported is an unknown atomic state and where only a time point of system evolution and the corresponding fidelity implementing the teleportation are given.In fact,there exists multi-time points and the corresponding fidclities,which are shown in this paper and then are used to realize the approximate and conditional teleportation of the unknown atomic-entangled state.Naturally,our scheme does not involve the Bell-state measurement or an additional atom,which is required in the Bell-state measurement,only requiring one single-mode cavity.The scheme may be generalized to not only the teleportation of the cavity-mode-entangled-state by means of a single atom but also the teleportation of the unknown trapped-ion-entangled-state in a linear ion trap and the teleportation of the multi-atomic entangled states included in generalized GHZ states.

  17. Enhancing robustness of multiparty quantum correlations using weak measurement

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Uttam, E-mail: uttamsingh@hri.res.in [Quantum Information and Computation Group, Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211 019 (India); Mishra, Utkarsh, E-mail: utkarsh@hri.res.in [Quantum Information and Computation Group, Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211 019 (India); Dhar, Himadri Shekhar, E-mail: dhar.himadri@gmail.com [School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067 (India)

    2014-11-15

    Multipartite quantum correlations are important resources for the development of quantum information and computation protocols. However, the resourcefulness of multipartite quantum correlations in practical settings is limited by its fragility under decoherence due to environmental interactions. Though there exist protocols to protect bipartite entanglement under decoherence, the implementation of such protocols for multipartite quantum correlations has not been sufficiently explored. Here, we study the effect of local amplitude damping channel on the generalized Greenberger–Horne–Zeilinger state, and use a protocol of optimal reversal quantum weak measurement to protect the multipartite quantum correlations. We observe that the weak measurement reversal protocol enhances the robustness of multipartite quantum correlations. Further it increases the critical damping value that corresponds to entanglement sudden death. To emphasize the efficacy of the technique in protection of multipartite quantum correlation, we investigate two proximately related quantum communication tasks, namely, quantum teleportation in a one sender, many receivers setting and multiparty quantum information splitting, through a local amplitude damping channel. We observe an increase in the average fidelity of both the quantum communication tasks under the weak measurement reversal protocol. The method may prove beneficial, for combating external interactions, in other quantum information tasks using multipartite resources. - Highlights: • Extension of weak measurement reversal scheme to protect multiparty quantum correlations. • Protection of multiparty quantum correlation under local amplitude damping noise. • Enhanced fidelity of quantum teleportation in one sender and many receivers setting. • Enhanced fidelity of quantum information splitting protocol.

  18. Introduction to quantum information science

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Masahito [Nagoya Univ. (Japan). Graduate School of Mathematics; Ishizaka, Satoshi [Hiroshima Univ., Higashi-Hiroshima (Japan). Graduate School of Integrated Arts and Sciences; Kawachi, Akinori [Tokyo Institute of Technology (Japan). Dept. of Mathematical and Computing Sciences; Kimura, Gen [Shibaura Institute of Technology, Saitama (Japan). College of Systems Engineering and Science; Ogawa, Tomohiro [Univ. of Electro-Communications, Tokyo (Japan). Graduate School of Information Systems

    2015-04-01

    Presents the mathematical foundation for quantum information in a very didactic way. Summarizes all required mathematical knowledge in linear algebra. Supports teaching and learning with more than 100 exercises with solutions. Includes brief descriptions to recent results with references. This book presents the basics of quantum information, e.g., foundation of quantum theory, quantum algorithms, quantum entanglement, quantum entropies, quantum coding, quantum error correction and quantum cryptography. The required knowledge is only elementary calculus and linear algebra. This way the book can be understood by undergraduate students. In order to study quantum information, one usually has to study the foundation of quantum theory. This book describes it from more an operational viewpoint which is suitable for quantum information while traditional textbooks of quantum theory lack this viewpoint. The current book bases on Shor's algorithm, Grover's algorithm, Deutsch-Jozsa's algorithm as basic algorithms. To treat several topics in quantum information, this book covers several kinds of information quantities in quantum systems including von Neumann entropy. The limits of several kinds of quantum information processing are given. As important quantum protocols,this book contains quantum teleportation, quantum dense coding, quantum data compression. In particular conversion theory of entanglement via local operation and classical communication are treated too. This theory provides the quantification of entanglement, which coincides with von Neumann entropy. The next part treats the quantum hypothesis testing. The decision problem of two candidates of the unknown state are given. The asymptotic performance of this problem is characterized by information quantities. Using this result, the optimal performance of classical information transmission via noisy quantum channel is derived. Quantum information transmission via noisy quantum channel by quantum error

  19. Quantum information density and network

    Institute of Scientific and Technical Information of China (English)

    Qiao BI; Jin-qing FANG; Gui-ping LIU

    2009-01-01

    We present a quantum information network in which quantum information density is used for per- forming quantum computing or teleportation. The pho- tons are entangled in quantum channels and play a role of flying ebit to transmit interaction among the nodes. A particular quantum Gaussian channel is constructed; it permits photon-encoded information to transmit quan- tum signals with certain quantum parallelism. The cor- responding quantum dynamical mutual information is discussed, and the controlling nodes connectivity by driv- ing the network is studied. With regard to different driving functions, the connectivity distribution of the network is complicated. They obey positive or negative power law, and also influence the assortativity coefficient or the dynamical property of the network.

  20. General benchmarks for quantum repeaters

    CERN Document Server

    Pirandola, Stefano

    2015-01-01

    Using a technique based on quantum teleportation, we simplify the most general adaptive protocols for key distribution, entanglement distillation and quantum communication over a wide class of quantum channels in arbitrary dimension. Thanks to this method, we bound the ultimate rates for secret key generation and quantum communication through single-mode Gaussian channels and several discrete-variable channels. In particular, we derive exact formulas for the two-way assisted capacities of the bosonic quantum-limited amplifier and the dephasing channel in arbitrary dimension, as well as the secret key capacity of the qubit erasure channel. Our results establish the limits of quantum communication with arbitrary systems and set the most general and precise benchmarks for testing quantum repeaters in both discrete- and continuous-variable settings.

  1. Quantum

    CERN Document Server

    Al-Khalili, Jim

    2003-01-01

    In this lively look at quantum science, a physicist takes you on an entertaining and enlightening journey through the basics of subatomic physics. Along the way, he examines the paradox of quantum mechanics--beautifully mathematical in theory but confoundingly unpredictable in the real world. Marvel at the Dual Slit experiment as a tiny atom passes through two separate openings at the same time. Ponder the peculiar communication of quantum particles, which can remain in touch no matter how far apart. Join the genius jewel thief as he carries out a quantum measurement on a diamond without ever touching the object in question. Baffle yourself with the bizzareness of quantum tunneling, the equivalent of traveling partway up a hill, only to disappear then reappear traveling down the opposite side. With its clean, colorful layout and conversational tone, this text will hook you into the conundrum that is quantum mechanics.

  2. Entropy in quantum information theory - Communication and cryptography

    DEFF Research Database (Denmark)

    Majenz, Christian

    to density matrices, the von Neumann entropy behaves dierently. The latter does not, for example, have the monotonicity property that the latter possesses: When adding another quantum system, the entropy can decrease. A long-standing open question is, whether there are quantum analogues of unconstrained non......Entropies have been immensely useful in information theory. In this Thesis, several results in quantum information theory are collected, most of which use entropy as the main mathematical tool. The rst one concerns the von Neumann entropy. While a direct generalization of the Shannon entropy...... in quantum Shannon theory. While immensely more entanglement-consuming, the variant of port based teleportation is interesting for applications like instantaneous non-local computation and attacks on quantum position-based cryptography. Port based teleportation cannot be implemented perfectly...

  3. FUNDAMENTAL AREAS OF PHENOMENOLOGY (INCLUDING APPLICATIONS): Teleportation of Entangled States through Divorce of Entangled Pair Mediated by a Weak Coherent Field in a High-Q Cavity

    Science.gov (United States)

    Cardoso B., W.; Almeida G. de, N.

    2008-07-01

    We propose a scheme to partially teleport an unknown entangled atomic state. A high-Q cavity, supporting one mode of a weak coherent state, is needed to accomplish this process. By partial teleportation we mean that teleportation will occur by changing one of the partners of the entangled state to be teleported. The entangled state to be teleported is composed by one pair of particles, we called this surprising characteristic of maintaining the entanglement, even when one of the particle of the entangled pair being teleported is changed, of divorce of entangled states.

  4. Teleportation of Entangled States through Divorce of Entangled Pair Mediated by a Weak Coherent Field in a High-Q Cavity

    Institute of Scientific and Technical Information of China (English)

    W. B. Cardosol; N. G. de Almeida

    2008-01-01

    We propose a scheme to partially teleport an unknown entangled atomic state. A high-Q cavity, supporting one mode of a weak coherent state, is needed to accomplish this process. By partial teleportation we mean that teleportation will occur by changing one of the partners of the entangled state to be teleported. The entangled state to be teleported is composed by one pair of particles, we called this surprising characteristic of maintaining the entanglement, even when one of the particle of the entangled pair being teleported is changed, of divorce of entangled states.

  5. The Locality Problem in Quantum Measurements

    CERN Document Server

    Slavnov, D A

    2010-01-01

    The locality problem of quantum measurements is considered in the framework of the algebraic approach. It is shown that contrary to the currently widespread opinion one can reconcile the mathematical formalism of the quantum theory with the assumption of the existence of a local physical reality determining the results of local measurements. The key quantum experiments: double-slit experiment on electron scattering, Wheeler's delayed-choice experiment, the Einstein-Podolsky-Rosen paradox, and quantum teleportation are discussed from the locality-problem point of view. A clear physical interpretation for these experiments, which does not contradict the classical ideas, is given.

  6. Entangled Systems New Directions in Quantum Physics

    CERN Document Server

    Audretsch, Jürgen

    2007-01-01

    An introductory textbook for advanced students of physics, chemistry and computer science, covering an area of physics that has lately witnessed rapid expansion. The topics treated here include quantum information, quantum communication, quantum computing, teleportation and hidden parameters, thus imparting not only a well-founded understanding of quantum theory as such, but also a solid basis of knowledge from which readers can follow the rapid development of the topic or delve deeper into a more specialized branch of research. Commented recommendations for further reading as well as end-of-chapter problems help the reader to quickly access the theoretical basics of future key technologies

  7. Aggregating quantum repeaters for the quantum internet

    Science.gov (United States)

    Azuma, Koji; Kato, Go

    2017-09-01

    The quantum internet holds promise for accomplishing quantum teleportation and unconditionally secure communication freely between arbitrary clients all over the globe, as well as the simulation of quantum many-body systems. For such a quantum internet protocol, a general fundamental upper bound on the obtainable entanglement or secret key has been derived [K. Azuma, A. Mizutani, and H.-K. Lo, Nat. Commun. 7, 13523 (2016), 10.1038/ncomms13523]. Here we consider its converse problem. In particular, we present a universal protocol constructible from any given quantum network, which is based on running quantum repeater schemes in parallel over the network. For arbitrary lossy optical channel networks, our protocol has no scaling gap with the upper bound, even based on existing quantum repeater schemes. In an asymptotic limit, our protocol works as an optimal entanglement or secret-key distribution over any quantum network composed of practical channels such as erasure channels, dephasing channels, bosonic quantum amplifier channels, and lossy optical channels.

  8. Approximate and Conditional Teleportation of an Unknown Atomic State with Dissipative Jaynes-Cummings Model

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yu-Rong; CHEN Chang-Yong; PAN Hui-Mei; GUO Feng; PANG Xiao-Feng

    2008-01-01

    A scheme for approximately and conditionally teleporting an unknown atomic state in dissipative cavity QED is proposed. It is the extension of the scheme of [Phys. Rev. A 69 (2004) 064302], where the cavity mode decay has not been considered and only a time point of system evolution and the corresponding fidelity implementing the teleportation are given. In fact, the cavity mode decay exists really and must be delt with. In this paper, we investigate the influence from the cavity mode decay on the implementation of the approximate and conditional teleportation by means of the dissipative Jaynes Cummings model and then show the analytical expression of the fidelity of realization of the teleportation, Alternatively, our scheme does not involve an additional atom, only requiring two atoms and one single-mode cavity.

  9. Scheme for teleportation of an unknown atomic state without the Bell-state measurement

    Science.gov (United States)

    Ye, Liu; Guo, Guang-Can

    2004-11-01

    We propose a scheme for teleporting an unknown atomic state in cavity QED. Our scheme does not involve the Bell-state measurement. During the interaction between atom and cavity, the cavity is only virtually excited and thus the scheme is insensitive to the cavity field states and cavity decay. The idea can also be used in the case of teleporting an unknown atomic entangled state.

  10. Measures and applications of quantum correlations

    CERN Document Server

    Adesso, Gerardo; Cianciaruso, Marco

    2016-01-01

    Quantum information theory is built upon the realisation that quantum resources like coherence and entanglement can be exploited for novel or enhanced ways of transmitting and manipulating information, such as quantum cryptography, teleportation, and quantum computing. We now know that there is potentially much more than entanglement behind the power of quantum information processing. There exist more general forms of non-classical correlations, stemming from fundamental principles such as the necessary disturbance induced by a local measurement, or the persistence of quantum coherence in all possible local bases. These signatures can be identified and are resilient in almost all quantum states, and have been linked to the enhanced performance of certain quantum protocols over classical ones in noisy conditions. Their presence represents, among other things, one of the most essential manifestations of quantumness in cooperative systems, from the subatomic to the macroscopic domain. In this work we give an ove...

  11. Automated Design of Quantum Circuits

    Science.gov (United States)

    Williams, Colin P.; Gray, Alexander G.

    2000-01-01

    In order to design a quantum circuit that performs a desired quantum computation, it is necessary to find a decomposition of the unitary matrix that represents that computation in terms of a sequence of quantum gate operations. To date, such designs have either been found by hand or by exhaustive enumeration of all possible circuit topologies. In this paper we propose an automated approach to quantum circuit design using search heuristics based on principles abstracted from evolutionary genetics, i.e. using a genetic programming algorithm adapted specially for this problem. We demonstrate the method on the task of discovering quantum circuit designs for quantum teleportation. We show that to find a given known circuit design (one which was hand-crafted by a human), the method considers roughly an order of magnitude fewer designs than naive enumeration. In addition, the method finds novel circuit designs superior to those previously known.

  12. Quantum mechanics II advanced topics

    CERN Document Server

    Rajasekar, S

    2015-01-01

    Quantum Mechanics II: Advanced Topics uses more than a decade of research and the authors’ own teaching experience to expound on some of the more advanced topics and current research in quantum mechanics. A follow-up to the authors introductory book Quantum Mechanics I: The Fundamentals, this book begins with a chapter on quantum field theory, and goes on to present basic principles, key features, and applications. It outlines recent quantum technologies and phenomena, and introduces growing topics of interest in quantum mechanics. The authors describe promising applications that include ghost imaging, detection of weak amplitude objects, entangled two-photon microscopy, detection of small displacements, lithography, metrology, and teleportation of optical images. They also present worked-out examples and provide numerous problems at the end of each chapter.

  13. Quantum mechanics a modern development

    CERN Document Server

    Ballentine, Leslie E

    2015-01-01

    Although there are many textbooks that deal with the formal apparatus of quantum mechanics (QM) and its application to standard problems, none take into account the developments in the foundations of the subject which have taken place in the last few decades. There are specialized treatises on various aspects of the foundations of QM, but none that integrate those topics with the standard material. This book aims to remove that unfortunate dichotomy, which has divorced the practical aspects of the subject from the interpretation and broader implications of the theory. In this edition a new chapter on quantum information is added. As the topic is still in a state of rapid development, a comprehensive treatment is not feasible. The emphasis is on the fundamental principles and some key applications, including quantum cryptography, teleportation of states, and quantum computing. The impact of quantum information theory on the foundations of quantum mechanics is discussed. In addition, there are minor revisions ...

  14. Quantum physics and linguistics a compositional, diagrammatic discourse

    CERN Document Server

    Grefenstette, Edward; Heunen, Chris

    2013-01-01

    New scientific paradigms typically consist of an expansion of the conceptual language with which we describe the world. Over the past decade, theoretical physics and quantum information theory have turned to category theory to model and reason about quantum protocols. This new use of categorical and algebraic tools allows a more conceptual and insightful expression of elementary events such as measurements, teleportation and entanglement operations, that were obscured in previous formalisms.

  15. Quantum-Dot-Based Telecommunication-Wavelength Quantum Relay

    Science.gov (United States)

    Huwer, J.; Stevenson, R. M.; Skiba-Szymanska, J.; Ward, M. B.; Shields, A. J.; Felle, M.; Farrer, I.; Ritchie, D. A.; Penty, R. V.

    2017-08-01

    The development of quantum relays for long-haul and attack-proof quantum communication networks operating with weak coherent laser pulses requires entangled photon sources at telecommunication wavelengths with intrinsic single-photon emission for most practical implementations. Using a semiconductor quantum dot emitting entangled photon pairs in the telecommunication O band, we demonstrate a quantum relay fulfilling both of these conditions. The system achieves a maximum fidelity of 94.5% for implementation of a standard four-state protocol with input states generated by a laser. We further investigate robustness against frequency detuning of the narrow-band input and perform process tomography of the teleporter, revealing operation for arbitrary pure input states, with an average gate fidelity of 83.6%. The results highlight the potential of semiconductor light sources for compact and robust quantum-relay technology that is compatible with existing communication infrastructures.

  16. Locality of quantum entanglement

    CERN Document Server

    Guowen, W

    2005-01-01

    This article presents a local realistic interpretation of quantum entanglement. The entanglement is explained as innate interference between the non-empty state associated with the peaked piece of one particle and the empty states associated with the non-peaked pieces of the others of entangled particles, which inseparably join together. The correlation of the results of measurements on the ensemble of composite entangled systems is related to this kind of interference. Consequently, there is no nonlocal influence between entangled particles in measurements. Particularly, this explanation thus rules out the possibility of quantum teleportation which is nowadays considered as one of cornerstones of quantum information processing. Besides, likewise, communication and computation schemes based on alleged spooky action at a distance are unlikely to be promising.

  17. Holographic Software for Quantum Networks

    CERN Document Server

    Jaffe, Arthur; Wozniakowski, Alex

    2016-01-01

    We introduce diagrammatic protocols and holographic software for quantum information. We give a dictionary to translate between diagrammatic protocols and the usual algebraic protocols. In particular we describe the intuitive diagrammatic protocol for teleportation. We introduce the string Fourier transform $\\mathfrak{F}_{s}$ in quantum information, which gives a topological quantum computer. We explain why the string Fourier transform maps the zero particle state to the multiple-qudit resource state, which maximizes the entanglement entropy. We give a protocol to construct this $n$-qudit resource state $|Max \\rangle$, which uses minimal cost. We study Pauli $X,Y,Z$ matrices, and their relation with diagrammatic protocols. This work provides bridges between the new theory of planar para algebras and quantum information, especially in questions involving communication in quantum networks.

  18. Pulsed energy-time entangled twin-photon source for quantum communication

    CERN Document Server

    Brendel, J; Tittel, W; Zbinden, H

    1999-01-01

    A pulsed source of energy-time entangled photon pairs pumped by a standard laser diode is proposed and demonstrated. The basic states can be distinguished by their time of arrival. This greatly simplifies the realization of 2-photon quantum cryptography, Bell state analyzers, quantum teleportation, dense coding, entanglement swapping, GHZ-states sources, etc. Moreover the entanglement is well protected during photon propagation in telecom optical fibers, opening the door to few-photon applications of quantum communication over long distances.

  19. Effects of Dzyaloshinski-Moriya Interaction on Entanglement and Teleportation in a Two-Qubit Ising System with Intrinsic Cecoherence

    Institute of Scientific and Technical Information of China (English)

    QIAN Li; FANG Jian-Xing

    2009-01-01

    We study the effects of Dzyaloshinski-Moriya(DM)interaction on entanglement and teleportation in a two-qubit Ising system with intrinsic decoherence taken into account.It is found that for the unentangled state,DM interaction is a benefit for entanglement and teleportation.

  20. A scheme for teleporting Schrdinger-cat states via the dispersive atom-cavity-field interaction

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A proposal is presented for teleporting Schrding-cat states. The process of the teleportation is achieved through the dispersive atom-cavity-field interaction. In this proposal, only measurement on the cavity field and on the singlet atomic states are used.

  1. Approximate and Conditional Teleportation of an Unknown Atomic State Without Bell-State Measurement with Two-Photon Interaction

    Institute of Scientific and Technical Information of China (English)

    CHEN Chang-Yong

    2006-01-01

    A scheme for approximately and conditionally teleporting an unknown atomic state via two-photon interaction in cavity QED is proposed. It is the extension of the scheme of Ref. [11] [Phys. Rev. A 69 (2004) 064302], which is based on Jaynes-Cummings model in QED and where only a time point of system evolution and the corresponding fidelity implementing the teleportation are given. In our scheme, the two-photon interaction Jaynes-Cummings model is used to realize the approximate and conditional teleportation. Our scheme does not involve the Bell-state measurement and an additional atom, only requiring two atoms and one single-mode cavity. The fidelity of the scheme is higher than that of Ref. [11]. The scheme may be generalized to not only the teleportation of the state of a cavity mode to another mode by means of a single atom but also the teleportation of the state of a trapped ion.

  2. Ultimate precision of adaptive quantum metrology

    CERN Document Server

    Pirandola, Stefano

    2016-01-01

    We consider the problem of estimating a classical parameter encoded in a quantum channel, assuming the most general strategy allowed by quantum mechanics. This strategy is based on the exploitation of an unlimited amount of pre-shared entanglement plus the use of adaptive probings, where the input of the channel is interactively updated during the protocol. We show that, for the wide class of teleportation-stretchable channels in finite dimension, including all Pauli channels and erasure channels, the quantum Fisher information cannot exceed an ultimate bound given by the Choi matrix of the encoding channel. We also extend our methods and results to quantum channel discrimination, finding a corresponding ultimate bound for the minimum error probability. Thus, our findings establish the ultimate precision limits that are achievable in quantum metrology and quantum discrimination for the most basic models of discrete-variable quantum channels.

  3. ER=EPR, GHZ, and the Consistency of Quantum Measurements

    CERN Document Server

    Susskind, Leonard

    2014-01-01

    This paper illustrates various aspects of the ER=EPR conjecture.It begins with a brief heuristic argument, using the Ryu-Takayanagi correspondence, for why entanglement between black holes implies the existence of Einstein-Rosen bridges. The main part of the paper addresses a fundamental question: Is ER=EPR consistent with the standard postulates of quantum mechanics? Naively it seems to lead to an inconsistency between observations made on entangled systems by different observers. The resolution of the paradox lies in the properties of multiple black holes, entangled in the Greenberger-Horne-Zeilinger pattern. The last part of the paper is about entanglement as a resource for quantum communication. ER=EPR provides a way to visualize protocols like quantum teleportation. In some sense teleportation takes place through the wormhole, but as usual, classical communication is necessary to complete the protocol.

  4. ER=EPR, GHZ, and the consistency of quantum measurements

    Energy Technology Data Exchange (ETDEWEB)

    Susskind, Leonard [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA (United States)

    2016-01-15

    This paper illustrates various aspects of the ER=EPR conjecture. It begins with a brief heuristic argument, using the Ryu-Takayanagi correspondence, for why entanglement between black holes implies the existence of Einstein-Rosen bridges. The main part of the paper addresses a fundamental question: Is ER=EPR consistent with the standard postulates of quantum mechanics? Naively it seems to lead to an inconsistency between observations made on entangled systems by different observers. The resolution of the paradox lies in the properties of multiple black holes, entangled in the Greenberger-Horne-Zeilinger pattern. The last part of the paper is about entanglement as a resource for quantum communication. ER=EPR provides a way to visualize protocols like quantum teleportation. In some sense teleportation takes place through the wormhole, but as usual, classical communication is necessary to complete the protocol. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Quantum tele-amplification with a continuous-variable superposition state

    DEFF Research Database (Denmark)

    Neergaard-Nielsen, Jonas S.; Eto, Yujiro; Lee, Chang-Woo

    2013-01-01

    demonstrate a basic CSQC protocol, where a cat state is used as an entanglement resource for teleporting a coherent state with an amplitude gain. We also show how this can be extended to a loss-tolerant quantum relay of multi-ary phase-shift keyed coherent states. These protocols could be useful in both...

  6. Multiple-valued logic-protected coding for an optical non-quantum communication line

    NARCIS (Netherlands)

    Antipov, A. L.; Bykovsky, A. Yu.; Vasiliev, N. A.; Egorov, A. A.

    2006-01-01

    A simple and cheap method of secret coding in an optical line is proposed based on multiple-valued logic. This method is shown to have very high cryptography resources and is designated for bidirectional information exchange in a team of mobile robots, where quantum teleportation coding cannot yet b

  7. Information-theoretic approach to quantum error correction and reversible measurement

    CERN Document Server

    Nielsen, M A; Schumacher, B; Barnum, H N; Caves, Carlton M.; Schumacher, Benjamin; Barnum, Howard

    1997-01-01

    Quantum operations provide a general description of the state changes allowed by quantum mechanics. The reversal of quantum operations is important for quantum error-correcting codes, teleportation, and reversing quantum measurements. We derive information-theoretic conditions and equivalent algebraic conditions that are necessary and sufficient for a general quantum operation to be reversible. We analyze the thermodynamic cost of error correction and show that error correction can be regarded as a kind of ``Maxwell demon,'' for which there is an entropy cost associated with information obtained from measurements performed during error correction. A prescription for thermodynamically efficient error correction is given.

  8. Proposal of many-party controlled teleportation for multi-qubit entangled W state

    Institute of Scientific and Technical Information of China (English)

    Huang Zhi-Ping; Li Hong-Cai

    2005-01-01

    A scheme of M-party controlled teleportation for one N-qubit entangled W state via (N-1) Einstein-PodolskyRosen (EPR) pairs and one (M+2)-qubit Greenberger-Horne-Zeilinger (GHZ) state is proposed. We achieve the teleportation in such a way that M agents can execute the Hadamard transformation, perform the measurement on their qubits and inform the receiver of their measurements. Then we discuss that the receiver cannot fully recover the state from the sender if one agent does not co-operate with him.

  9. Multiphoton quantum optics and quantum state engineering

    Energy Technology Data Exchange (ETDEWEB)

    Dell' Anno, Fabio [Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, CNISM and CNR-INFM Coherentia, and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, I-84081 Baronissi (Saudi Arabia) (Italy)]. E-mail: dellanno@sa.infn.it; De Siena, Silvio [Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, CNISM and CNR-INFM Coherentia, and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, I-84081 Baronissi (SA) (Italy)]. E-mail: desiena@sa.infn.it; Illuminati, Fabrizio [Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, CNISM and CNR-INFM Coherentia, and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, I-84081 Baronissi (SA) (Italy)]. E-mail: illuminati@sa.infn.it

    2006-05-15

    We present a review of theoretical and experimental aspects of multiphoton quantum optics. Multiphoton processes occur and are important for many aspects of matter-radiation interactions that include the efficient ionization of atoms and molecules, and, more generally, atomic transition mechanisms; system-environment couplings and dissipative quantum dynamics; laser physics, optical parametric processes, and interferometry. A single review cannot account for all aspects of such an enormously vast subject. Here we choose to concentrate our attention on parametric processes in nonlinear media, with special emphasis on the engineering of nonclassical states of photons and atoms that are relevant for the conceptual investigations as well as for the practical applications of forefront aspects of modern quantum mechanics. We present a detailed analysis of the methods and techniques for the production of genuinely quantum multiphoton processes in nonlinear media, and the corresponding models of multiphoton effective interactions. We review existing proposals for the classification, engineering, and manipulation of nonclassical states, including Fock states, macroscopic superposition states, and multiphoton generalized coherent states. We introduce and discuss the structure of canonical multiphoton quantum optics and the associated one- and two-mode canonical multiphoton squeezed states. This framework provides a consistent multiphoton generalization of two-photon quantum optics and a consistent Hamiltonian description of multiphoton processes associated to higher-order nonlinearities. Finally, we discuss very recent advances that by combining linear and nonlinear optical devices allow to realize multiphoton entangled states of the electromagnetic field, either in discrete or in continuous variables, that are relevant for applications to efficient quantum computation, quantum teleportation, and related problems in quantum communication and information.

  10. Resource-efficient linear optical quantum computation.

    Science.gov (United States)

    Browne, Daniel E; Rudolph, Terry

    2005-07-01

    We introduce a scheme for linear optics quantum computation, that makes no use of teleported gates, and requires stable interferometry over only the coherence length of the photons. We achieve a much greater degree of efficiency and a simpler implementation than previous proposals. We follow the "cluster state" measurement based quantum computational approach, and show how cluster states may be efficiently generated from pairs of maximally polarization entangled photons using linear optical elements. We demonstrate the universality and usefulness of generic parity measurements, as well as introducing the use of redundant encoding of qubits to enable utilization of destructive measurements--both features of use in a more general context.

  11. Copenhagen vs Everett, teleportation, and ER=EPR

    Energy Technology Data Exchange (ETDEWEB)

    Susskind, Leonard [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA (United States)

    2016-06-15

    Quantum gravity may have as much to tell us about the foundations and interpretation of quantum mechanics as it does about gravity. The Copenhagen interpretation of quantum mechanics and Everett's Relative State Formulation are complementary descriptions which in a sense are dual to one another. My purpose here is to discuss this duality in the light of the of ER=EPR conjecture. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Optically simulated universal quantum computation

    Science.gov (United States)

    Francisco, D.; Ledesma, S.

    2008-04-01

    Recently, classical optics based systems to emulate quantum information processing have been proposed. The analogy is based on the possibility of encoding a quantum state of a system with a 2N-dimensional Hilbert space as an image in the input of an optical system. The probability amplitude of each state of a certain basis is associated with the complex amplitude of the electromagnetic field in a given slice of the laser wavefront. Temporal evolution is represented as the change of the complex amplitude of the field when the wavefront pass through a certain optical arrangement. Different modules that represent universal gates for quantum computation have been implemented. For instance, unitary operations acting on the qbits space (or U(2) gates) are represented by means of two phase plates, two spherical lenses and a phase grating in a typical image processing set up. In this work, we present CNOT gates which are emulated by means of a cube prism that splits a pair of adjacent rays incoming from the input image. As an example of application, we present an optical module that can be used to simulate the quantum teleportation process. We also show experimental results that illustrate the validity of the analogy. Although the experimental results obtained are promising and show the capability of the system for simulate the real quantum process, we must take into account that any classical simulation of quantum phenomena, has as fundamental limitation the impossibility of representing non local entanglement. In this classical context, quantum teleportation has only an illustrative interpretation.

  13. Total teleportation of zero- and one-photon entangled states in running waves

    Institute of Scientific and Technical Information of China (English)

    W.B.Cardoso; A.T.Avelar; B.Baseia; N.G.de Almeida

    2008-01-01

    Inspired by a recent paper [2002 J.Opt.B 4 316] we present an alternative scheme to teleport an entanglement of zero- and one-photon states of a running-wave field.The scheme employs only linear optical elements plus single-photon sources and detectors.

  14. The states of W-class as shared resources for perfect teleportation and superdense coding

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lvzhou; Qiu, Daowen [Department of Computer Science, Zhongshan University, Guangzhou 510275 (China)

    2007-08-31

    As we know, the states of triqubit systems have two important classes: GHZ-class and W-class. In this paper, the states of W-class are considered for teleportation and superdense coding, and they are generalized to multi-particle systems. First we describe two transformations on the shared resources for teleportation and superdense coding. With these transformations, we obtain a sufficient and necessary condition for a state of W-class being suitable for perfect teleportation and superdense coding. For the state vertical bar W>{sub 123} = 1/2 (vertical bar 100>{sub 123} + vertical bar 010>{sub 123} + {radical}2 vertical bar 001>{sub 123}) which was thought to be not suitable for sending three classical bits by sending two qubits by Agrawal and Pati (2006 Phys. Rev. A 74 062320), we show that it may be used to fulfil that task, if entangled unitary operations on two qubits are allowed. We generalize the states of W-class to multi-qubit systems and multi-particle systems with higher dimension. We propose two protocols for teleportation and superdense coding by using W-states of multi-qubit systems that generalize the protocols by using |W){sub 123} proposed by Agrawal and Pati. We obtain an optimal way to partition some W-states of multi-qubit systems into two subsystems, such that the entanglement between them achieves maximum value.

  15. Optimal controlled teleportation via several kinds of three-qubit states

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The probability of successful controlled teleportation of an unknown qubit using a general three-particle state is investigated. The analytic expressions of maximal probabilities via several kinds of tripartite states are given, including a tripartite Greenberger-Horne-Zeilinger state and a tripartite W-state.

  16. Teleportation of an Arbitrary Two-Atom Entangled State via Thermal Cavity

    Institute of Scientific and Technical Information of China (English)

    WANG Dong; LIU Yi-Min; GAO Gan; SHI Shou-Hua; ZHANG Zhan-Jun

    2007-01-01

    We present an experimentally feasible scheme for teleportation of an arbitrary unknown two-atom entangled state by using two-atom Bell states in driven thermal cavities.In this scheme,the effects of thermal field and cavity decay can be all eliminated.Moreover,the present scheme is feasible according to current technologies.

  17. Robust Scheme for Long-Distance Teleportation of an Unknown Atomic State

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A scheme is presented for the long-distance teleportation of an unknown atomic state between two separated cavities. The scheme is based on the Raman coupling and cavity decay. In the scheme, the effective atom-cavity coupling strength is much smaller than the cavity decay rate and thus cavities of high quality factor are unnecesssary.

  18. The study of entanglement and teleportation of the harmonic oscillator bipartite coherent states

    Directory of Open Access Journals (Sweden)

    A Rabeie and

    2015-01-01

    Full Text Available In this paper, we reproduce the harmonic oscillator bipartite coherent states with imperfect cloning of coherent states. We show that if these entangled coherent states are embedded in a vacuum environment, their entanglement is degraded but not totally lost . Also, the optimal fidelity of these states is worked out for investigating their teleportation

  19. Teleportation of a Superposition of Three Orthogonal States of an Atom via Photon Interference

    Institute of Scientific and Technical Information of China (English)

    ZHENG Shi-Biao

    2006-01-01

    We propose a scheme to teleport a superposition of three states of an atom trapped in a cavity to a second atom trapped in a remote cavity. The scheme is based on the detection of photons leaking from the cavities after the atom-cavity interaction.

  20. Nonlocal Measurements in the Time-Symmetric Quantum Mechanics

    CERN Document Server

    Vaidman, L; Vaidman, Lev; Nevo, Izhar

    2005-01-01

    Although nondemolition, reliable, and instantaneous quantum measurements of some nonlocal variables are impossible, demolition reliable instantaneous measurements are possible for all variables. It is shown that this is correct also in the framework of the time-symmetric quantum formalism, i.e. nonlocal variables of composite quantum systems with quantum states evolving both forward and backward in time are measurable in a demolition way. The result follows from the possibility to reverse with certainty the time direction of a backward evolving quantum state. Demolition measurements of nonlocal backward evolving quantum states require remarkably small resources. This is so because the combined operation of time reversal and teleportation of a local backward evolving quantum state requires only a single quantum channel and no transmission of classical information.

  1. Preparation of multi-atom specially entangled W-class state and splitting quantum information

    Institute of Scientific and Technical Information of China (English)

    WANG YaHong; SONG HeShan

    2009-01-01

    We give a protocol to prepare specially entangled W-class state of multi-atom which can be used to exactly teleport an arbitrarily unknown two-level two-atom state.During the process,the quantum information is split into n parts and the original quantum information can be sent to anyone of the n recipients with the other n-1 recipients' collaboration.In addition,we will give a suggestion to realize this scheme via QED cavity.

  2. A Quantum Logic Array Microarchitecture: Scalable Quantum Data Movement and Computation

    CERN Document Server

    Metodi, T S; Cross, A W; Chong, F T; Chuang, I L; Metodi, Tzvetan S.; Thaker, Darshan D.; Cross, Andrew W.; Chong, Frederic T.; Chuang, Isaac L.

    2005-01-01

    Recent experimental advances have demonstrated technologies capable of supporting scalable quantum computation. A critical next step is how to put those technologies together into a scalable, fault-tolerant system that is also feasible. We propose a Quantum Logic Array (QLA) microarchitecture that forms the foundation of such a system. The QLA focuses on the communication resources necessary to efficiently support fault-tolerant computations. We leverage the extensive groundwork in quantum error correction theory and provide analysis that shows that our system is both asymptotically and empirically fault tolerant. Specifically, we use the QLA to implement a hierarchical, array-based design and a logarithmic expense quantum-teleportation communication protocol. Our goal is to overcome the primary scalability challenges of reliability, communication, and quantum resource distribution that plague current proposals for large-scale quantum computing.

  3. Distributed measurement-based quantum computation

    CERN Document Server

    Danos, V; Kashefi, E; Panangaden, P; Danos, Vincent; Hondt, Ellie D'; Kashefi, Elham; Panangaden, Prakash

    2005-01-01

    We develop a formal model for distributed measurement-based quantum computations, adopting an agent-based view, such that computations are described locally where possible. Because the network quantum state is in general entangled, we need to model it as a global structure, reminiscent of global memory in classical agent systems. Local quantum computations are described as measurement patterns. Since measurement-based quantum computation is inherently distributed, this allows us to extend naturally several concepts of the measurement calculus, a formal model for such computations. Our goal is to define an assembly language, i.e. we assume that computations are well-defined and we do not concern ourselves with verification techniques. The operational semantics for systems of agents is given by a probabilistic transition system, and we define operational equivalence in a way that it corresponds to the notion of bisimilarity. With this in place, we prove that teleportation is bisimilar to a direct quantum channe...

  4. Quantum fidelity for arbitrary Gaussian states

    CERN Document Server

    Banchi, Leonardo; Pirandola, Stefano

    2015-01-01

    We derive a computable analytical formula for the quantum fidelity between two arbitrary multimode Gaussian states which is simply expressed in terms of their first- and second-order statistical moments. We also show how such a formula can be written in terms of symplectic invariants and used to derive closed forms for a variety of basic quantities and tools, such as the Bures metric, the quantum Fisher information and various fidelity-based bounds. Our result can be used to extend the study of continuous-variable protocols, such as quantum teleportation and cloning, beyond the current one-mode or two-mode analyses, and paves the way to solve general problems in quantum metrology and quantum hypothesis testing with arbitrary multimode Gaussian resources.

  5. Quantum Teamwork for Unconditional Multiparty Communication with Gaussian States

    Science.gov (United States)

    Zhang, Jing; Adesso, Gerardo; Xie, Changde; Peng, Kunchi

    2009-08-01

    We demonstrate the capability of continuous variable Gaussian states to communicate multipartite quantum information. A quantum teamwork protocol is presented according to which an arbitrary possibly entangled multimode state can be faithfully teleported between two teams each comprising many cooperative users. We prove that N-mode Gaussian weighted graph states exist for arbitrary N that enable unconditional quantum teamwork implementations for any arrangement of the teams. These perfect continuous variable maximally multipartite entangled resources are typical among pure Gaussian states and are unaffected by the entanglement frustration occurring in multiqubit states.

  6. Formalization of Quantum Protocols using Coq

    Directory of Open Access Journals (Sweden)

    Jaap Boender

    2015-11-01

    Full Text Available Quantum Information Processing, which is an exciting area of research at the intersection of physics and computer science, has great potential for influencing the future development of information processing systems. The building of practical, general purpose Quantum Computers may be some years into the future. However, Quantum Communication and Quantum Cryptography are well developed. Commercial Quantum Key Distribution systems are easily available and several QKD networks have been built in various parts of the world. The security of the protocols used in these implementations rely on information-theoretic proofs, which may or may not reflect actual system behaviour. Moreover, testing of implementations cannot guarantee the absence of bugs and errors. This paper presents a novel framework for modelling and verifying quantum protocols and their implementations using the proof assistant Coq. We provide a Coq library for quantum bits (qubits, quantum gates, and quantum measurement. As a step towards verifying practical quantum communication and security protocols such as Quantum Key Distribution, we support multiple qubits, communication and entanglement. We illustrate these concepts by modelling the Quantum Teleportation Protocol, which communicates the state of an unknown quantum bit using only a classical channel.

  7. What is quantum information?

    Science.gov (United States)

    Lombardi, Olimpia; Holik, Federico; Vanni, Leonardo

    2016-11-01

    In the present article we address the question 'What is quantum information?' from a conceptual viewpoint. In particular, we argue that there seems to be no sufficiently good reasons to accept that quantum information is qualitatively different from classical information. The view that, in the communicational context, there is only one kind of information, physically neutral, which can be encoded by means of classical or quantum states has, in turn, interesting conceptual advantages. First, it dissolves the widely discussed puzzles of teleportation without the need to assume a particular interpretation of information. Second, and from a more general viewpoint, it frees the attempts to reconstruct quantum mechanics on the basis of informational constraints from any risk of circularity; furthermore, it endows them with a strong conceptual appealing and, derivatively, opens the way to the possibility of a non-reductive unification of physics. Finally, in the light of the idea of the physical neutrality of information, the wide field of research about classical models for quantum information acquires a particular conceptual and philosophical interest.

  8. Highly efficient entanglement swapping and teleportation at telecom wavelength

    OpenAIRE

    Jin, Rui-Bo; Takeoka, Masahiro; Takagi, Utako; Shimizu, Ryosuke; Sasaki, Masahide

    2014-01-01

    Entanglement swapping at telecom wavelengths is at the heart of quantum networking in optical fiber infrastructures. Although entanglement swapping has been demonstrated experimentally so far using various types of entangled photon sources both in near-infrared and telecom wavelength regions, the rate of swapping operation has been too low to be applied to practical quantum protocols, due to limited efficiency of entangled photon sources and photon detectors. Here we demonstrate drastic impro...

  9. Quantum information does not exist

    Science.gov (United States)

    Duwell, Armond

    Some physicists seem to believe that quantum information theory requires a new concept of information (Jozsa, 1998, Quantum information and its properties. In: Hoi-Kwong Lo, S. Popescu, T. Spiller (Eds.), Introduction to Quantum Computation and Information, World Scientific, Singapore, (pp. 49-75); Deutsch & Hayden, 1999, Information flow in entangled quantum subsystems, preprint quant-ph/9906007). I will argue that no new concept is necessary. Shannon's concept of information is sufficient for quantum information theory. Properties that are cited to contrast quantum information and classical information (i.e., Shannon information) actually point to differences in our ability to manipulate, access, and transfer information depending on whether quantum systems, opposed to classical systems, are used in a communication system. I also demonstrate that conceptually puzzling phenomena in quantum information theory, such as dense coding, teleportation, and Schumacher coding, all of which are cited as evidence that a new concept of information is required, do not have to be regarded as such.

  10. Decomposition of Unitary Matrices for Finding Quantum Circuits

    CERN Document Server

    Daskin, Anmer

    2010-01-01

    Constructing appropriate unitary matrix operators for new quantum algorithms and finding the minimum cost gate sequences for the implementation of these unitary operators is of fundamental importance in the field of quantum information and quantum computation. Here, we use the group leaders optimization algorithm, which is an effective and simple global optimization algorithm, to decompose a given unitary matrix into a proper-minimum cost quantum gate sequence. Using this procedure, we present new circuit designs for the simulation of the Toffoli gate, the amplification step of the Grover search algorithm, the quantum Fourier transform, the sender part of the quantum teleportation and the Hamiltonian for the Hydrogen molecule. In addition, we give two algorithmic methods for the construction of unitary matrices with respect to the different types of the quantum control gates. Our results indicate that the procedure is effective, general, and easy to implement.

  11. Mathematical Foundations of Quantum Information and Computation and Its Applications to Nano- and Bio-systems

    CERN Document Server

    Ohya, Masanori

    2011-01-01

    This monograph provides a mathematical foundation  to  the theory of quantum information and computation, with applications to various open systems including nano and bio systems. It includes introductory material on algorithm, functional analysis, probability theory, information theory, quantum mechanics and quantum field theory. Apart from standard material on quantum information like quantum algorithm and teleportation, the authors discuss findings on the theory of entropy in C*-dynamical systems, space-time dependence of quantum entangled states, entangling operators, adaptive dynamics, relativistic quantum information, and a new paradigm for quantum computation beyond the usual quantum Turing machine. Also, some important applications of information theory to genetics and life sciences, as well as recent experimental and theoretical discoveries in quantum photosynthesis are described.

  12. Bidirectional and Asymmetric Controlled Quantum Information Transmission via Five-qubit Brown State

    Science.gov (United States)

    Fang, Sheng-hui; Jiang, Min

    2017-02-01

    We put forward a new protocol of deterministic controlled bidirectional quantum information transmission, using a five-qubit Brown state. That is to say Alice wants to teleport an arbitrary single-qubit state to Bob and Bob wants to remotely prepare a known state for Alice via the control of the supervisor Charlie. In terms of physical implementations, only a CNOT gate, one Bell-state measurement and one qubit measurement are used in our protocol. Compared with previous study for solely bidirectional quantum teleportation and solely bidirectional remote state preparation schemes, our protocol is a kind of hybrid approach of information communication which makes the quantum channel multipurpose, i.e., no matter whether the transmitted state is known or unknown, the state information can be transmitted with each other via a five-qubit Brown state under the control of the third party as a supervisor.

  13. Measures and applications of quantum correlations

    Science.gov (United States)

    Adesso, Gerardo; Bromley, Thomas R.; Cianciaruso, Marco

    2016-11-01

    Quantum information theory is built upon the realisation that quantum resources like coherence and entanglement can be exploited for novel or enhanced ways of transmitting and manipulating information, such as quantum cryptography, teleportation, and quantum computing. We now know that there is potentially much more than entanglement behind the power of quantum information processing. There exist more general forms of non-classical correlations, stemming from fundamental principles such as the necessary disturbance induced by a local measurement, or the persistence of quantum coherence in all possible local bases. These signatures can be identified and are resilient in almost all quantum states, and have been linked to the enhanced performance of certain quantum protocols over classical ones in noisy conditions. Their presence represents, among other things, one of the most essential manifestations of quantumness in cooperative systems, from the subatomic to the macroscopic domain. In this work we give an overview of the current quest for a proper understanding and characterisation of the frontier between classical and quantum correlations (QCs) in composite states. We focus on various approaches to define and quantify general QCs, based on different yet interlinked physical perspectives, and comment on the operational significance of the ensuing measures for quantum technology tasks such as information encoding, distribution, discrimination and metrology. We then provide a broader outlook of a few applications in which quantumness beyond entanglement looks fit to play a key role.

  14. Topological quantum buses: coherent quantum information transfer between topological and conventional qubits

    CERN Document Server

    Bonderson, Parsa

    2010-01-01

    We propose computing bus devices that enable quantum information to be coherently transferred between topological and conventional qubits. We describe a concrete realization of such a topological quantum bus acting between a topological qubit in a Majorana wire network and a conventional semiconductor double quantum dot qubit. Specifically, this device measures the joint (fermion) parity of these two different qubits by using the Aharonov-Casher effect in conjunction with an ancilliary superconducting flux qubit that facilitates the measurement. Such a parity measurement, together with the ability to apply Hadamard gates to the two qubits, allows one to produce states in which the topological and conventional qubits are maximally entangled and to teleport quantum states between the topological and conventional quantum systems.

  15. Topological Quantum Buses: Coherent Quantum Information Transfer between Topological and Conventional Qubits

    Science.gov (United States)

    Bonderson, Parsa; Lutchyn, Roman M.

    2011-04-01

    We propose computing bus devices that enable quantum information to be coherently transferred between topological and conventional qubits. We describe a concrete realization of such a topological quantum bus acting between a topological qubit in a Majorana wire network and a conventional semiconductor double quantum dot qubit. Specifically, this device measures the joint (fermion) parity of these two different qubits by using the Aharonov-Casher effect in conjunction with an ancilliary superconducting flux qubit that facilitates the measurement. Such a parity measurement, together with the ability to apply Hadamard gates to the two qubits, allows one to produce states in which the topological and conventional qubits are maximally entangled and to teleport quantum states between the topological and conventional quantum systems.

  16. Quantum tagging: Authenticating location via quantum information and relativistic signaling constraints

    Energy Technology Data Exchange (ETDEWEB)

    Kent, Adrian; Munro, William J.; Spiller, Timothy P. [Centre for Quantum Information and Foundations, DAMTP, University of Cambridge, Cambridge, United Kingdom and Perimeter Institute for Theoretical Physics, Waterloo, Ontario (Canada); NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi-shi, Kanagawa 243-0198 (Japan); Quantum Information Science, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2011-07-15

    We define the task of quantum tagging, that is, authenticating the classical location of a classical tagging device by sending and receiving quantum signals from suitably located distant sites, in an environment controlled by an adversary whose quantum information processing and transmitting power is unbounded. We define simple security models for this task and briefly discuss alternatives. We illustrate the pitfalls of naive quantum cryptographic reasoning in this context by describing several protocols which at first sight appear unconditionally secure but which, as we show, can in fact be broken by teleportation-based attacks. We also describe some protocols which cannot be broken by these specific attacks, but do not prove they are unconditionally secure. We review the history of quantum tagging protocols, and show that protocols previously proposed by Malaney and Chandran et al. are provably insecure.

  17. Alternative Scheme for Teleportation of Two-Atom Entangled State in Cavity QED

    Institute of Scientific and Technical Information of China (English)

    YANG Zhen-Biao

    2006-01-01

    We have proposed an alternative scheme for teleportation of two-atom entangled state in cavity QED. It is based on the degenerate Raman interaction of a single-mode cavity field with a ∧-type three-level atom. The prominent feature of the scheme is that only one cavity is required, which is prior to the previous one. Moreover, the atoms need to be detected are reduced compared with the previous scheme. The experimental feasibility of the scheme is discussed.The scheme can easily be generalized for teleportation of N-atom GHZ entangled states. The number of the atoms needed to be detected does not increase as the number of the atoms in GHZ state increases.

  18. Relativistic quantum information

    Science.gov (United States)

    Mann, R. B.; Ralph, T. C.

    2012-11-01

    Over the past few years, a new field of high research intensity has emerged that blends together concepts from gravitational physics and quantum computing. Known as relativistic quantum information, or RQI, the field aims to understand the relationship between special and general relativity and quantum information. Since the original discoveries of Hawking radiation and the Unruh effect, it has been known that incorporating the concepts of quantum theory into relativistic settings can produce new and surprising effects. However it is only in recent years that it has become appreciated that the basic concepts involved in quantum information science undergo significant revision in relativistic settings, and that new phenomena arise when quantum entanglement is combined with relativity. A number of examples illustrate that point. Quantum teleportation fidelity is affected between observers in uniform relative acceleration. Entanglement is an observer-dependent property that is degraded from the perspective of accelerated observers moving in flat spacetime. Entanglement can also be extracted from the vacuum of relativistic quantum field theories, and used to distinguish peculiar motion from cosmological expansion. The new quantum information-theoretic framework of quantum channels in terms of completely positive maps and operator algebras now provides powerful tools for studying matters of causality and information flow in quantum field theory in curved spacetimes. This focus issue provides a sample of the state of the art in research in RQI. Some of the articles in this issue review the subject while others provide interesting new results that will stimulate further research. What makes the subject all the more exciting is that it is beginning to enter the stage at which actual experiments can be contemplated, and some of the articles appearing in this issue discuss some of these exciting new developments. The subject of RQI pulls together concepts and ideas from

  19. Scheme for Teleportation of Four-Level Atomic States in Thermal Cavities

    Institute of Scientific and Technical Information of China (English)

    WANG Xin-Wen; LIU Xiang; FANG Mao-Fa

    2007-01-01

    We propose a scheme for teleportation of four-level atomic states in thermal cavities. The scheme does not involve the generalized Bell-state or generalized GHZ-state measurement, which is difficult in practice. Another feature of the scheme is that it does not require individual addressing of atoms in cavity and is insensitive to both cavity decay and thermal field, which is of importance in point of experiment.

  20. Scheme for teleportation of entangled states without Bell-state measurement by using one atom

    Energy Technology Data Exchange (ETDEWEB)

    Qiang Wenchao; Zhang Lei; Zhang Aiping [Faculty of Science, Xi' an University of Architecture and Technology, Xi' an 710055 (China); Dong Shihai, E-mail: qwcqj@163.com [Departamento de Fisica, Esc. Sup de Fisica y Matematicas, Instituto Politecnico Nacional, Edificio 9, Unidad Profesional Adolfo Lopez Mateos, Mexico, DF 07738 (Mexico)

    2011-07-01

    We propose a scheme for approximately and conditionally teleporting an entanglement of zero- and one-photon states from a cavity with left- and right-polarized modes to another similar one, with a fidelity exceeding 99%. Instead of using the Bell-state measurement, only one atom is used in our scheme. The time spent, the success probability and the feasibility of the proposed scheme are also discussed.

  1. Non-Markovian Reactivation of Quantum Relays

    CERN Document Server

    Pirandola, Stefano; Jacobsen, Christian S; Spedalieri, Gaetana; Braunstein, Samuel L; Gehring, Tobias; Andersen, Ulrik L

    2015-01-01

    We consider a quantum relay which is used by two parties to perform several continuous-variable protocols: Entanglement swapping, distillation, quantum teleportation, and quantum key distribution. The theory of these protocols is extended to a non-Markovian model of decoherence characterized by correlated Gaussian noise. Even if bipartite entanglement is completely lost at the relay, we show that the various protocols can progressively be reactivated by the separable noise-correlations of the environment. In fact, above a critical amount, these correlations are able to restore the distribution of quadripartite entanglement, which can be localized into an exploitable bipartite form by the action of the relay. Our findings are confirmed by a proof-of-principle experiment and show the potential advantages of non-Markovian effects in a quantum network architecture.

  2. A reversible optical to microwave quantum interface

    CERN Document Server

    Barzanjeh, Sh; Milburn, G J; Tombesi, P; Vitali, D

    2011-01-01

    Quantum technology, like many mature classical technologies, will ultimately integrate distinct modules to achieve a function that transcends the capability of any one of them. We describe a reversible quantum interface between an optical and a microwave photon using a hybrid device based on the common interaction of microwave and optical fields with a nano-mechanical resonator in a superconducting circuit, which is one of the major challenges in the field. The scheme provides a path for generating a traveling microwave field strongly entangled with an optical mode, thus bridging the gap between quantum optical and solid state implementations of quantum information. This is an effective source of (bright) two-mode squeezing with an optical idler (signal) and a microwave signal (idler) and as such enables a continuous variable teleportation protocol.

  3. Automated Verification of Quantum Protocols using MCMAS

    Directory of Open Access Journals (Sweden)

    F. Belardinelli

    2012-07-01

    Full Text Available We present a methodology for the automated verification of quantum protocols using MCMAS, a symbolic model checker for multi-agent systems The method is based on the logical framework developed by D'Hondt and Panangaden for investigating epistemic and temporal properties, built on the model for Distributed Measurement-based Quantum Computation (DMC, an extension of the Measurement Calculus to distributed quantum systems. We describe the translation map from DMC to interpreted systems, the typical formalism for reasoning about time and knowledge in multi-agent systems. Then, we introduce dmc2ispl, a compiler into the input language of the MCMAS model checker. We demonstrate the technique by verifying the Quantum Teleportation Protocol, and discuss the performance of the tool.

  4. Comment on ''Teleportation of two-mode squeezed states''

    Energy Technology Data Exchange (ETDEWEB)

    He Guangqiang; Zhang Jingtao [State Key Lab of Advanced Optical Communication Systems and Networks Department of Electronic Engineering, Shanghai Jiaotong University, Shanghai 200030 (China)

    2011-10-15

    We investigate the teleportation scheme of two-mode squeezed states proposed by Adhikari et al.[S. Adhikari et al., Phys. Rev. A 77, 012337 (2008)]. It uses four-mode entangled states to teleport two-mode squeezed states. The fidelity between the original two-mode squeezed states and teleported ones is calculated. The maximal fidelity value of Adhikari's protocol is 0.38, which is incompatible with the fidelity definition with the maximal value 1. In our opinion, one reason is that they calculate the fidelity for multimodes Gaussian states using the fidelity formula for single-mode ones. Another reason is that the covariance matrix of output states should be what is obtained after applying the linear unitary Bogoliubov operations (two cascaded Fourier transformations) on the covariance matrix given in Eq. (12) in their paper. These two reasons result in the incomparable results. In addition, Adhikari's protocol can be simplified to be easily implemented.

  5. The Effect of Walking and Teleportation on Spatial Updating in Virtual and Real Scenes

    Directory of Open Access Journals (Sweden)

    J Vuong

    2013-10-01

    Full Text Available Intuitively, it seems as if we should be able to point accurately to the location of a target object within a room even if we were teleported to a different location and the object removed from view. We measured the precision of pointing to a previously-seen object in a real room, a virtual room with same dimensions (presented in immersive virtual reality and a sparse virtual scene consisting only of long thin poles at the same locations as the target object and room corners. Participants viewed the target object from one location, walked to another so that the object passed out of view, then turned in complete darkness to point at the location of the previously-viewed target. In a separate experiment, participants viewed a sparse scene consisting of long thin poles (including a target and had to point to the location of the absent target after teleportation to a new location within the scene. Pointing precision in this case was dramatically reduced (σ ≈ 34° compared to the conditions in which participants walked in the real room, virtual room or sparse scene. In the latter three conditions, pointing precision was very similar (σ ≈ 15° despite the removal of prominent distance cues in the sparse condition. Our results show that spatial updating after teleportation is substantially poorer than when walking between two locations. [Supported by Microsoft Research and Wellcome Trust

  6. Probabilistic Teleportation of an Unknown Two-Particle State with a Four-Particle Pure Entangled State and Positive Operator Valued Measure

    Institute of Scientific and Technical Information of China (English)

    YAN Feng-Li; DING He-Wei

    2006-01-01

    We propose a scheme for probabilistic teleportation of an unknown two-particle state with a four-particle pure entangled state and positive operator valued measure (POVM). In this scheme the teleportation of an unknown two-particle state can be realized with certain probability by performing two Bell state measurements, a proper POVM and a unitary transformation.

  7. Lectures on quantum mechanics with problems, exercises and their solutions

    CERN Document Server

    Basdevant, Jean-Louis

    2016-01-01

    The new edition of this remarkable text offers the reader a conceptually strong introduction to quantum mechanics, but goes beyond this to present a fascinating tour of modern theoretical physics. Beautifully illustrated and engagingly written, it starts with a brief overview of diverse topics across physics including nanotechnology, statistical physics, materials science, astrophysics, and cosmology. The core of the book covers both established and emerging aspects of quantum mechanics. A concise introduction to traditional quantum mechanics covers the Schrödinger equation, Hilbert space, the algebra of observables, hydrogen atom, spin and Pauli principle. Modern features of the field are presented by exploring entangled states, Bell's inequality, quantum cryptography, quantum teleportation and quantum mechanics in the universe. This new edition has been enchanced through the addition of numerous problems with detailed solutions, an introduction to the mathematical tools needed and expanded discussion of th...

  8. Programmable multi-node quantum network design and simulation

    Science.gov (United States)

    Dasari, Venkat R.; Sadlier, Ronald J.; Prout, Ryan; Williams, Brian P.; Humble, Travis S.

    2016-05-01

    Software-defined networking offers a device-agnostic programmable framework to encode new network functions. Externally centralized control plane intelligence allows programmers to write network applications and to build functional network designs. OpenFlow is a key protocol widely adopted to build programmable networks because of its programmability, flexibility and ability to interconnect heterogeneous network devices. We simulate the functional topology of a multi-node quantum network that uses programmable network principles to manage quantum metadata for protocols such as teleportation, superdense coding, and quantum key distribution. We first show how the OpenFlow protocol can manage the quantum metadata needed to control the quantum channel. We then use numerical simulation to demonstrate robust programmability of a quantum switch via the OpenFlow network controller while executing an application of superdense coding. We describe the software framework implemented to carry out these simulations and we discuss near-term efforts to realize these applications.

  9. An Online Banking System Based on Quantum Cryptography Communication

    Science.gov (United States)

    Zhou, Ri-gui; Li, Wei; Huan, Tian-tian; Shen, Chen-yi; Li, Hai-sheng

    2014-07-01

    In this paper, an online banking system has been built. Based on quantum cryptography communication, this system is proved unconditional secure. Two sets of GHZ states are applied, which can ensure the safety of purchase and payment, respectively. In another word, three trading participants in each triplet state group form an interdependent and interactive relationship. In the meantime, trading authorization and blind signature is introduced by means of controllable quantum teleportation. Thus, an effective monitor is practiced on the premise that the privacy of trading partners is guaranteed. If there is a dispute or deceptive behavior, the system will find out the deceiver immediately according to the relationship mentioned above.

  10. Quantum mechanics, common sense and the black hole information paradox

    CERN Document Server

    Danielsson, U H; Danielsson, Ulf H.; Schiffer, Marcelo

    1993-01-01

    The purpose of this paper is to analyse, in the light of information theory and with the arsenal of (elementary) quantum mechanics (EPR correlations, copying machines, teleportation, mixing produced in sub-systems owing to a trace operation, etc.) the scenarios available on the market to resolve the so-called black-hole information paradox. We shall conclude that the only plausible ones are those where either the unitary evolution of quantum mechanics is given up, in which information leaks continuously in the course of black-hole evaporation through non-local processes, or those in which the world is polluted by an infinite number of meta-stable remnants.

  11. Quantum mechanics, common sense, and the black hole information paradox

    Science.gov (United States)

    Danielsson, Ulf H.; Schiffer, Marcelo

    1993-11-01

    The purpose of this paper is to analyze, in the light of information theory and with the arsenal of (elementary) quantum mechanics (EPR, correlations, copying machines, teleportation, mixing produced in subsystems owing to a trace operation, etc.) the scenarios available on the market to resolve the so-called black hole information paradox. We shall conclude that the only plausible ones are those where either the unitary evolution of quantum mechanics is given up, in which information leaks continuously in the course of black hole evaporation through nonlocal processes, or those in which the world is polluted by an infinite number of metastable remnants.

  12. Three-party quantum secure direct communication against collective noise

    Science.gov (United States)

    He, Ye-Feng; Ma, Wen-Ping

    2017-10-01

    Based on logical quantum states, two three-party quantum secure direct communication protocols are proposed, which can realize the exchange of the secret messages between three parties with the help of the measurement correlation property of six-particle entangled states. These two protocols can be immune to the collective-dephasing noise and the collective-rotation noise, respectively; neither of them has information leakage problem. The one-way transmission mode ensures that they can congenitally resist against the Trojan horse attacks and the teleportation attack. Furthermore, these two protocols are secure against other active attacks because of the use of the decoy state technology.

  13. Bringing quantum mechanics to life: from Schr\\"{o}dinger's cat to Schr\\"{o}dinger's microbe

    CERN Document Server

    Yin, Zhang-qi

    2016-01-01

    The question whether quantum mechanics is complete and the nature of the transition between quantum mechanics and classical mechanics have intrigued physicists for decades. There have been many experimental breakthroughs in creating larger and larger quantum superposition and entangled states since Erwin Schr\\"{o}dinger proposed his famous thought experiment of putting a cat in a superposition of both alive and dead states in 1935. Remarkably, recent developments in quantum optomechanics and electromechanics may lead to the realization of quantum superposition of living microbes soon. Recent evidences also suggest that quantum coherence may play an important role in several biological processes. In this review, we first give a brief introduction to basic concepts in quantum mechanics and the Schr\\"{o}dinger's cat thought experiment. We then review developments in creating quantum superposition and entangled states and the realization of quantum teleportation. Non-trivial quantum effects in photosynthetic ligh...

  14. Quantum information processing with optical vortices

    Energy Technology Data Exchange (ETDEWEB)

    Khoury, Antonio Z. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2012-07-01

    Full text: In this work we discuss several proposals for quantum information processing using the transverse structure of paraxial beams. Different techniques for production and manipulation of optical vortices have been employed and combined with polarization transformations in order to investigate fundamental properties of quantum entanglement as well as to propose new tools for quantum information processing. As an example, we have recently proposed and demonstrated a controlled NOT (CNOT) gate based on a Michelson interferometer in which the photon polarization is the control bit and the first order transverse mode is the target. The device is based on a single lens design for an astigmatic mode converter that transforms the transverse mode of paraxial optical beams. In analogy with Bell's inequality for two-qubit quantum states, we propose an inequality criterion for the non-separability of the spin-orbit degrees of freedom of a laser beam. A definition of separable and non-separable spin-orbit modes is used in consonance with the one presented in Phys. Rev. Lett. 99, 2007. As the usual Bell's inequality can be violated for entangled two-qubit quantum states, we show both theoretically and experimentally that the proposed spin-orbit inequality criterion can be violated for non-separable modes. The inequality is discussed both in the classical and quantum domains. We propose a polarization to orbital angular momentum teleportation scheme using entangled photon pairs generated by spontaneous parametric down conversion. By making a joint detection of the polarization and angular momentum parity of a single photon, we are able to detect all the Bell-states and perform, in principle, perfect teleportation from a discrete to a continuous system using minimal resources. The proposed protocol implementation demands experimental resources that are currently available in quantum optics laboratories. (author)

  15. Toward an Information-based Interpretation of Quantum Mechanics and the Quantum-Classical Transition

    CERN Document Server

    Roederer, Juan G

    2011-01-01

    I will show how an objective definition of the concept of information and the consideration of recent results about information-processing in the human brain help clarify some fundamental and often counter-intuitive aspects of quantum mechanics. In particular, I will discuss entanglement, teleportation, non-interaction measurements and decoherence in the light of the fact that pragmatic information, the one our brain handles, can only be defined in the classical macroscopic domain; it does not operate in the quantum domain. This justifies viewing quantum mechanics as a discipline dealing with mathematical models and procedures aimed exclusively at predicting possible macroscopic changes and their likelihood that a given quantum system may cause when it interacts with its environment, including man-made devices such as measurement instruments. I will discuss the informational and neurobiological reasons of why counter-intuitive aspects arise whenever we attempt to construct mental images of the "inner workings...

  16. Manipulating atom and photon entanglement from 'thought experiments' to quantum information processing

    CERN Document Server

    CERN. Geneva. Audiovisual Unit

    2002-01-01

    Composite quantum systems cannot generally be analysed as a juxtaposition of separate entities, each described by its own wave function. They are described instead by a global entangled state. Entanglement appears thus as an essential concept, lying at the heart of quantum physics. At a fundamental level it is closely related to non-locality, quantum measurement, complementarity and decoherence, concepts that the founding fathers of quantum physics have analysed in various 'thought experiments'. At a more applied level, the engineering of entanglement in systems of increasing complexity could in principle open the way to various kinds of fascinating quantum information processing applications (quantum cryptography, teleportation, quantum computation). The study of entanglement has recently evolved as a very competitive field of research, both theoretical and experimental. In quantum optics, entanglement has been studied with twin-photon beams, trapped ions and with atoms and photons in cavities. After a gener...

  17. Discovery Mondays: Quantum physics - incredible but true

    CERN Multimedia

    2006-01-01

    Physicists use two main theories to describe the world around us - the general theory of relativity to describe the infinitely large and quantum theory to describe the infinitesimally small, at the scale of the atom and its constituent parts. Quantum physics is as fascinating as it is bewildering. And yet it's used in many practical applications - medical imaging, lasers and computers, to name but a few. Over the course of the evening, you'll become acquainted with strange phenomena such as super-fluidity, teleportation and quantum cryptography. And through some amazing sleights-of-hand and experiments, you'll be taken on a journey into the mysteries of the infinitesimally small... The event will be conducted in French. Come to Microcosm, (Reception Building 33, Meyrin site), on Monday 3 July from 7.30 p.m. to 9.00 p.m. Entrance is free http://www.cern.ch/LundisDecouverte/

  18. Optimal Performance of a Quantum Network

    CERN Document Server

    Pirandola, Stefano

    2016-01-01

    We show that the most general protocol of quantum communication between two end-points of a quantum network with arbitrary topology can be reduced to an ensemble of Choi matrices subject to local operations and classical communication. This is found by using a teleportation-based technique which applies to a wide range of quantum channels both in discrete- and continuous-variable settings, including lossy channels, quantum-limited amplifiers, dephasing and erasure channels. Thanks to this reduction, we compute the optimal rates (capacities) at which two end-points of a quantum network can transmit quantum information, distil entanglement, or distribute secret keys. These capacities are all bounded or equal to a single quantity, that we call the entanglement flux of the quantum network. As a particular case, we derive these optimal rates for the basic paradigm of a linear chain of quantum repeaters. Thus our results establish the ultimate rates for repeater-based and network-assisted quantum communications und...

  19. Fault-tolerant quantum computation with asymmetric Bacon-Shor codes

    Science.gov (United States)

    Brooks, Peter; Preskill, John

    2013-03-01

    We develop a scheme for fault-tolerant quantum computation based on asymmetric Bacon-Shor codes, which works effectively against highly biased noise dominated by dephasing. We find the optimal Bacon-Shor block size as a function of the noise strength and the noise bias, and estimate the logical error rate and overhead cost achieved by this optimal code. Our fault-tolerant gadgets, based on gate teleportation, are well suited for hardware platforms with geometrically local gates in two dimensions.

  20. International Conference on Laser Physics and Quantum Optics

    CERN Document Server

    Xie, Shengwu; Zhu, Shi-Yao; Scully, Marlan

    2000-01-01

    Since the advent of the laser about 40 years ago, the field of laser physics and quantum optics have evolved into a major discipline. The early studies included the optical coherence theory and the semiclassical and quantum mechanical theories of the laser. More recently many new and interesting effects have been predicted. These include the role of coherent atomic effects in lasing without inversion and electromagnetically induced transparency, atom optics, laser cooling and trapping, teleportation, the single-atom micromaser and its role in quantum measurement theory, to name a few. The International Conference on Laser Physics and Quantum Optics was held in Shanghai from August 25 to August 28, 1999, to discuss these and many other exciting developments in laser physics and quantum optics. The international character of the conference was manifested by the fact that scientists from over 13 countries participated and lectured at the conference. There were four keynote lectures delivered by Nobel laureate Wi...

  1. Quantum mechanics. A modern and concise introductory course. 3. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Bes, Daniel R. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina)

    2012-07-01

    The presentation in the new edition of this well-reviewed textbook is clear and goes to the core of the questions. The balance between principles, concepts and applications is optimal. The material presented is touching active areas of physics. Supplies new views on decoherence, entanglement and path integral formulation of quantum mechanics. Gives background needed to understand quantum cryptography, teleportation and computation. Starting from basic principles, the book covers a wide variety of topics, ranging from Heisenberg, Schroedinger, second quantization, density matrix and path integral formulations of quantum mechanics, to applications that are (or will be) corner stones of present and future technologies. The emphasis is on spin waves, quantum information, recent tests of quantum physics and decoherence. The book provides a large amount of information without unbalancing the flow of the main ideas by laborious detail.

  2. The Security Analysis and Improvement of Some Novel Quantum Proxy Signature Schemes

    Science.gov (United States)

    Zhang, Long; Zhang, Hai-Yan; Zhang, Ke-Jia; Wang, Qing-Le

    2017-06-01

    In recent years, some quantum proxy signature schemes based on controlled teleportation are proposed by Cao et al.. In these schemes, the properties of quantum mechanics are directly applied to ensure the security. In this paper, we have summarized a general model from the quantum proxy signature schemes. Furthermore, it can be seen that there exist some loopholes which have not been considered in the previous analysis. Specifically, the receiver can forge a valid signature. And these schemes can not be immune to collusive attack. To overcome these loopholes, some improved ideas are presented in this paper.

  3. Probabilistic Teleportation of One-Particle State of S-level

    Institute of Scientific and Technical Information of China (English)

    YAN Feng-Li; BAI Yan-Kui

    2003-01-01

    A scheme for probabilistically teleporting an unknown one-particle state of S-level by a group of pairs ofpartially entangled 2-level particle state is proposed. In this scheme unitary transformation and local measurement takethe place of Bell state measurement, then proper unitary transformation and the measurement on an auxiliary qubitwith the aid of classical communication are performed. In this way the unknown one-particle state of S-level can betransferred onto a group of remote 2-level particles with certain probability. Furthermore, the receiver can recover theinitial signalstate on an S-level particle at his hand.

  4. Improving the fidelity of teleportation through noisy channels using weak measurement

    Energy Technology Data Exchange (ETDEWEB)

    Pramanik, T., E-mail: tanu.pram99@bose.res.in; Majumdar, A.S., E-mail: archan@bose.res.in

    2013-12-13

    We employ the technique of weak measurement in order to enable preservation of teleportation fidelity for two-qubit noisy channels. We consider one or both qubits of a maximally entangled state to undergo amplitude damping, and show that the application of weak measurement and a subsequent reverse operation could lead to a fidelity greater than 2/3 for any value of the decoherence parameter. The success probability of the protocol decreases with the strength of weak measurement, and is lower when both the qubits are affected by decoherence. Finally, our protocol is shown to work for the Werner state too.

  5. Quantum Communication Using Coherent Rejection Sampling

    Science.gov (United States)

    Anshu, Anurag; Devabathini, Vamsi Krishna; Jain, Rahul

    2017-09-01

    Compression of a message up to the information it carries is key to many tasks involved in classical and quantum information theory. Schumacher [B. Schumacher, Phys. Rev. A 51, 2738 (1995), 10.1103/PhysRevA.51.2738] provided one of the first quantum compression schemes and several more general schemes have been developed ever since [M. Horodecki, J. Oppenheim, and A. Winter, Commun. Math. Phys. 269, 107 (2007); , 10.1007/s00220-006-0118-xI. Devetak and J. Yard, Phys. Rev. Lett. 100, 230501 (2008); , 10.1103/PhysRevLett.100.230501A. Abeyesinghe, I. Devetak, P. Hayden, and A. Winter, Proc. R. Soc. A 465, 2537 (2009), 10.1098/rspa.2009.0202]. However, the one-shot characterization of these quantum tasks is still under development, and often lacks a direct connection with analogous classical tasks. Here we show a new technique for the compression of quantum messages with the aid of entanglement. We devise a new tool that we call the convex split lemma, which is a coherent quantum analogue of the widely used rejection sampling procedure in classical communication protocols. As a consequence, we exhibit new explicit protocols with tight communication cost for quantum state merging, quantum state splitting, and quantum state redistribution (up to a certain optimization in the latter case). We also present a port-based teleportation scheme which uses a fewer number of ports in the presence of information about input.

  6. Fundamental limits of repeaterless quantum communications.

    Science.gov (United States)

    Pirandola, Stefano; Laurenza, Riccardo; Ottaviani, Carlo; Banchi, Leonardo

    2017-04-26

    Quantum communications promises reliable transmission of quantum information, efficient distribution of entanglement and generation of completely secure keys. For all these tasks, we need to determine the optimal point-to-point rates that are achievable by two remote parties at the ends of a quantum channel, without restrictions on their local operations and classical communication, which can be unlimited and two-way. These two-way assisted capacities represent the ultimate rates that are reachable without quantum repeaters. Here, by constructing an upper bound based on the relative entropy of entanglement and devising a dimension-independent technique dubbed 'teleportation stretching', we establish these capacities for many fundamental channels, namely bosonic lossy channels, quantum-limited amplifiers, dephasing and erasure channels in arbitrary dimension. In particular, we exactly determine the fundamental rate-loss tradeoff affecting any protocol of quantum key distribution. Our findings set the limits of point-to-point quantum communications and provide precise and general benchmarks for quantum repeaters.

  7. Quantum Physics A First Encounter Interference, Entanglement, and Reality

    CERN Document Server

    Scarani, Valerio

    2006-01-01

    The essential features of quantum physics, largely debated since its discovery, are presented in this book, through the description (without mathematics) of recent experiments. Putting the accent on physical phenomena, this book clarifies the historical issues (delocalisation, interferences) and reaches out to modern topics (quantum cryptography, non-locality and teleportation); the debate on interpretations is serenely reviewed. - ;Quantum physics is often perceived as a weird and abstract theory, which physicists must use in order to make correct predictions. But many recent experiments have shown that the weirdness of the theory simply mirrors the weirdness of phenomena: it is Nature itself, and not only our description of it, that behaves in an astonishing way. This book selects those, among these typical quantum phenomena, whose rigorous description requires neither the formalism, nor an important. background in physics. The first part of the book deals with the phenomenon of single-particle interference...

  8. Quantum auctions: Facts and myths

    Science.gov (United States)

    Piotrowski, Edward W.; Sładkowski, Jan

    2008-06-01

    Quantum game theory, whatever opinions may be held due to its abstract physical formalism, have already found various applications even outside the orthodox physics domain. In this paper we introduce the concept of a quantum auction, its advantages and drawbacks. Then we describe the models that have already been put forward. A general model involves Wigner formalism and infinite dimensional Hilbert spaces - we envisage that the implementation might not be an easy task. But a restricted model advocated by the Hewlett-Packard group (Hogg et al.) seems to be much easier to implement. We focus on problems related to combinatorial auctions and technical assumptions that are made. Powerful quantum algorithms for finding solutions would extend the range of possible applications. Quantum strategies, being qubits, can be teleported but are immune from cloning - therefore extreme privacy of the agent’s activity could in principle be guaranteed. Then we point out some key problems that have to be solved before commercial use would be possible. With present technology, optical networks, single photon sources and detectors seems to be sufficient for an experimental realization in the near future.

  9. Scalable quantum information processing with photons and atoms

    Science.gov (United States)

    Pan, Jian-Wei

    Over the past three decades, the promises of super-fast quantum computing and secure quantum cryptography have spurred a world-wide interest in quantum information, generating fascinating quantum technologies for coherent manipulation of individual quantum systems. However, the distance of fiber-based quantum communications is limited due to intrinsic fiber loss and decreasing of entanglement quality. Moreover, probabilistic single-photon source and entanglement source demand exponentially increased overheads for scalable quantum information processing. To overcome these problems, we are taking two paths in parallel: quantum repeaters and through satellite. We used the decoy-state QKD protocol to close the loophole of imperfect photon source, and used the measurement-device-independent QKD protocol to close the loophole of imperfect photon detectors--two main loopholes in quantum cryptograph. Based on these techniques, we are now building world's biggest quantum secure communication backbone, from Beijing to Shanghai, with a distance exceeding 2000 km. Meanwhile, we are developing practically useful quantum repeaters that combine entanglement swapping, entanglement purification, and quantum memory for the ultra-long distance quantum communication. The second line is satellite-based global quantum communication, taking advantage of the negligible photon loss and decoherence in the atmosphere. We realized teleportation and entanglement distribution over 100 km, and later on a rapidly moving platform. We are also making efforts toward the generation of multiphoton entanglement and its use in teleportation of multiple properties of a single quantum particle, topological error correction, quantum algorithms for solving systems of linear equations and machine learning. Finally, I will talk about our recent experiments on quantum simulations on ultracold atoms. On the one hand, by applying an optical Raman lattice technique, we realized a two-dimensional spin-obit (SO

  10. Problems in quantum mechanics with solutions

    CERN Document Server

    d'Emilio, Emilio

    2017-01-01

    This second edition of an extremely well-received book presents more than 250 nonrelativistic quantum mechanics problems of varying difficulty with the aim of providing students didactic material of proven value, allowing them to test their comprehension and mastery of each subject. The coverage is extremely broad, from themes related to the crisis of classical physics through achievements within the framework of modern atomic physics to lively debated, intriguing aspects relating to, for example, the EPR paradox, the Aharonov-Bohm effect, and quantum teleportation. Compared with the first edition, a variety of improvements have been made and additional topics of interest included, especially focusing on elementary potential scattering. The problems themselves range from standard and straightforward ones to those that are complex but can be considered essential because they address questions of outstanding importance or aspects typically overlooked in primers. The book offers students both an excellent tool f...

  11. The quantum divide why Schrödinger's cat is either dead or alive

    CERN Document Server

    Gerry, Christopher C

    2013-01-01

    Using a selection of key experiments performed over the past 30 years or so, we present a discussion of the strikingly counter-intuitive phenomena of the quantum world that defy explanation in terms of everyday "common sense" reasoning, and we provide the corresponding quantum mechanical explanations with a very elementary use of associated formalism. Most, but certainly not all, of the experiments we describe are optical experiments involving a very small number of photons (particles of light). We begin with experiments on the wave-particle duality of electrons, proceed to experiments on the particle nature of light and single photon interference, delayed choice experiments and interaction-free detection, then go on to experiments involving the interference of two photons, quantum entanglement and Bell's Theorem, quantum teleportation, large-scale quantum effects and the divide between the classical and quantum worlds, addressing the question as to whether or not there is such a divide.

  12. An entangled-LED-driven quantum relay over 1 km

    Science.gov (United States)

    Varnava, Christiana; Stevenson, R. Mark; Nilsson, Jonas; Skiba-Szymanska, Joanna; Dzurňák, Branislav; Lucamarini, Marco; Penty, Richard V.; Farrer, Ian; Ritchie, David A.; Shields, Andrew J.

    2016-03-01

    Quantum cryptography allows confidential information to be communicated between two parties, with secrecy guaranteed by the laws of nature alone. However, upholding guaranteed secrecy over networks poses a further challenge, as classical receive-and-resend routing nodes can only be used conditional of trust by the communicating parties, which arguably diminishes the value of the underlying quantum cryptography. Quantum relays offer a potential solution by teleporting qubits from a sender to a receiver, without demanding additional trust from end users. Here we demonstrate the operation of a quantum relay over 1 km of optical fibre, which teleports a sequence of photonic quantum bits to a receiver by utilising entangled photons emitted by a semiconductor light-emitting diode. The average relay fidelity of the link is 0.90±0.03, exceeding the classical bound of 0.75 for the set of states used, and sufficiently high to allow error correction. The fundamentally low multiphoton emission statistics and the integration potential of the source present an appealing platform for future quantum networks.

  13. Long-distance entanglement and quantum communication in coupled cavity arrays

    CERN Document Server

    Giampaolo, S M

    2009-01-01

    We introduce quantum spin models that allow for long-distance end-to-end entanglement and long-distance, high-fidelity teleportation, even at moderately high temperatures. We show how these models, that realize an optimal compromise between scalability and resilience to decoherence, can be implemented in simply engineered arrays of coupled optical cavities. We demonstrate how the latter can be used to realize a quasi-deterministic scheme of long-distance quantum communication with high success rate, without direct projection on Bell states and Bell measurements.

  14. Splitting of quantum information in travelling wave fields using only linear optical elements

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, W B; De Almeida, N G; Avelar, A T; Baseia, B [Instituto de Fisica, Universidade Federal de Goias, 74.001-970, Goiania-GO (Brazil)

    2011-02-28

    In this paper we present a feasible post-selection scheme to split quantum information in the realm of travelling waves with success probability of 50%. Taking advantage of this scheme we have also proposed the generation of a class of W states useful for perfect teleportation and superdense coding. The scheme employs only linear optical elements as beam splitters (BS) and phase shifters, plus two photon counters and a source of two spontaneous parametric down-conversion photons. It is shown that splitting of quantum information with high fidelity is possible, even when using inefficient detectors and photoabsorption BS.

  15. An Arbitrated Quantum Signature with Bell States

    Science.gov (United States)

    Liu, Feng; Qin, Su-Juan; Huang, Wei

    2014-05-01

    Entanglement is the main resource in quantum communication. The main aims of the arbitrated quantum signature (AQS) scheme are to present an application of the entanglement in cryptology and to prove the possibility of the quantum signature. More specifically, the main function of quantum entangled states in the existing AQS schemes is to assist the signatory to transfer quantum states to the receiver. However, teleportation and the Leung quantum one-time pad (L-QOTP) algorithm are not enough to design a secure AQS scheme. For example, Pauli operations commute or anticommute with each other, which makes the implementation of attacks easily from the aspects of forgery and disavowal. To conquer this shortcoming, we construct an improved AQS scheme using a new QOTP algorithm. This scheme has three advantages: it randomly uses the Hadamard operation in the new QOTP to resist attacks by using the anticommutativity of nontrivial Pauli operators and it preserves almost all merits in the existing AQS schemes; even in the process of handling disputes, no party has chance to change the message and its signature without being discovered; the receiver can verify the integrity of the signature and discover the disavow of the signatory even in the last step of verification.

  16. How quantum are non-negative wavefunctions?

    Energy Technology Data Exchange (ETDEWEB)

    Hastings, M. B. [Station Q, Microsoft Research, Santa Barbara, California 93106-6105, USA and Quantum Architectures and Computation Group, Microsoft Research, Redmond, Washington 98052 (United States)

    2016-01-15

    We consider wavefunctions which are non-negative in some tensor product basis. We study what possible teleportation can occur in such wavefunctions, giving a complete answer in some cases (when one system is a qubit) and partial answers elsewhere. We use this to show that a one-dimensional wavefunction which is non-negative and has zero correlation length can be written in a “coherent Gibbs state” form, as explained later. We conjecture that such holds in higher dimensions. Additionally, some results are provided on possible teleportation in general wavefunctions, explaining how Schmidt coefficients before measurement limit the possible Schmidt coefficients after measurement, and on the absence of a “generalized area law” [D. Aharonov et al., in Proceedings of Foundations of Computer Science (FOCS) (IEEE, 2014), p. 246; e-print arXiv.org:1410.0951] even for Hamiltonians with no sign problem. One of the motivations for this work is an attempt to prove a conjecture about ground state wavefunctions which have an “intrinsic” sign problem that cannot be removed by any quantum circuit. We show a weaker version of this, showing that the sign problem is intrinsic for commuting Hamiltonians in the same phase as the double semion model under the technical assumption that TQO-2 holds [S. Bravyi et al., J. Math. Phys. 51, 093512 (2010)].

  17. Preparation of genuine Yeo-Chua entangled state and teleportation of two-atom state via cavity QED

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We first propose a scheme for preparing the genuine Yeo-Chua 4-qubit entangled state via cavity QED. Using the genuine Yeo-Chua atomic state, we further propose a cavity QED scheme for teleporting an arbitrary two-atom state. In two schemes the large-detuning is chosen and the necessary time is designed to be much shorter than Rydberg-atom’s lifespan. Both schemes share the distinct advantage that cavity decay and atom decay can be neglected. As for the interaction manipulation, our preparation scheme is more feasible than a recent similar one. Compared with the Yeo and Chua’s scheme, our teleportation scheme has significantly reduced the measuring difficulty.

  18. Teleportation of Atomic States via Cavity QED for a Cavity Prepared in a Superposition of Zero and One Fock States

    CERN Document Server

    Guerra, E S

    2004-01-01

    In this article we discuss two schemes of teleportation of atomic states. In the first scheme we consider atoms in a three-level cascade configuration and in the second scheme we consider atoms in a three-level lambda configuration. The experimental realization proposed makes use of cavity Quatum Electrodynamics involving the interaction of Rydberg atoms with a micromaser cavity prepared in a state $|\\psi >_{C}=(|0> +|1>)/\\sqrt{2}$

  19. Quantum Secure Direct Communication with Five-Qubit Entangled State

    Institute of Scientific and Technical Information of China (English)

    LIN Song; GAO Fei; LIU Xiao-Fen

    2011-01-01

    Recently, a genuine five-qubit entangled state has been achieved by Brown et al.[J. Phys. A 38(2005)1119]. Later it was indicated that this state can be used for quantum teleportation and quantum state sharing. Here we build a quantum secure direct communication protocol with this state, and prove that it is secure in ideal conditions.In the protocol, the sender performs unitary transformations to encode a secret message on his/her particles and sends them to the receiver. The receiver then performs projective determinate measurement to decode the secret message directly.Fhrthermore, this protocol utilizes superdense coding to achieve a high intrinsic efficiency and source capacity.

  20. QDENSITY—A Mathematica quantum computer simulation

    Science.gov (United States)

    Juliá-Díaz, Bruno; Burdis, Joseph M.; Tabakin, Frank

    2009-03-01

    This Mathematica 6.0 package is a simulation of a Quantum Computer. The program provides a modular, instructive approach for generating the basic elements that make up a quantum circuit. The main emphasis is on using the density matrix, although an approach using state vectors is also implemented in the package. The package commands are defined in Qdensity.m which contains the tools needed in quantum circuits, e.g., multiqubit kets, projectors, gates, etc. New version program summaryProgram title: QDENSITY 2.0 Catalogue identifier: ADXH_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXH_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 26 055 No. of bytes in distributed program, including test data, etc.: 227 540 Distribution format: tar.gz Programming language: Mathematica 6.0 Operating system: Any which supports Mathematica; tested under Microsoft Windows XP, Macintosh OS X, and Linux FC4 Catalogue identifier of previous version: ADXH_v1_0 Journal reference of previous version: Comput. Phys. Comm. 174 (2006) 914 Classification: 4.15 Does the new version supersede the previous version?: Offers an alternative, more up to date, implementation Nature of problem: Analysis and design of quantum circuits, quantum algorithms and quantum clusters. Solution method: A Mathematica package is provided which contains commands to create and analyze quantum circuits. Several Mathematica notebooks containing relevant examples: Teleportation, Shor's Algorithm and Grover's search are explained in detail. A tutorial, Tutorial.nb is also enclosed. Reasons for new version: The package has been updated to make it fully compatible with Mathematica 6.0 Summary of revisions: The package has been updated to make it fully compatible with Mathematica 6.0 Running time: Most examples

  1. Manipulation of multi-photon-entanglement. Applications in quantum information processing

    Energy Technology Data Exchange (ETDEWEB)

    Goebel, Alexander Matthias

    2008-07-16

    Over the last twenty years the field of quantum information processing (QIP) has attracted the attention of many scientists, due to the promise of impressive improvements in the areas of computational speed, communication security and the ability to simulate nature on the micro scale. This thesis describes an experimental work on the physics of multi-photon entanglement and its application in the field of QIP. We have thoroughly developed the necessary techniques to generate multipartite entanglement between up to six photons. By exploiting the developed six-photon interferometer, in this thesis we report for the first time the experimental quantum teleportation of a two-qubit composite system, the realization of multi-stage entanglement swapping, the implementation of a teleportation-based controlled-NOT gate for fault-tolerant quantum computation, the first generation of entanglement in sixpartite photonic graph states and the realization of 'one-way' quantum computation with two-photon four-qubit cluster states. The methods developed in these experiments are of great significance both for exploring the field of QIP and for future experiments on the fundamental tests of quantum mechanics. (orig.)

  2. Generation of a macroscopic entangled coherent state using quantum memories in circuit QED

    Science.gov (United States)

    Liu, Tong; Su, Qi-Ping; Xiong, Shao-Jie; Liu, Jin-Ming; Yang, Chui-Ping; Nori, Franco

    2016-01-01

    W-type entangled states can be used as quantum channels for, e.g., quantum teleportation, quantum dense coding, and quantum key distribution. In this work, we propose a way to generate a macroscopic W-type entangled coherent state using quantum memories in circuit QED. The memories considered here are nitrogen-vacancy center ensembles (NVEs), each located in a different cavity. This proposal does not require initially preparing each NVE in a coherent state instead of a ground state, which should significantly reduce its experimental difficulty. For most of the operation time, each cavity remains in a vacuum state, thus decoherence caused by the cavity decay and the unwanted inter-cavity crosstalk are greatly suppressed. Moreover, only one external-cavity coupler qubit is needed, which simplifies the circuit. PMID:27562055

  3. Simulation of n-qubit quantum systems. III. Quantum operations

    Science.gov (United States)

    Radtke, T.; Fritzsche, S.

    2007-05-01

    During the last decade, several quantum information protocols, such as quantum key distribution, teleportation or quantum computation, have attracted a lot of interest. Despite the recent success and research efforts in quantum information processing, however, we are just at the beginning of understanding the role of entanglement and the behavior of quantum systems in noisy environments, i.e. for nonideal implementations. Therefore, in order to facilitate the investigation of entanglement and decoherence in n-qubit quantum registers, here we present a revised version of the FEYNMAN program for working with quantum operations and their associated (Jamiołkowski) dual states. Based on the implementation of several popular decoherence models, we provide tools especially for the quantitative analysis of quantum operations. Apart from the implementation of different noise models, the current program extension may help investigate the fragility of many quantum states, one of the main obstacles in realizing quantum information protocols today. Program summaryTitle of program: Feynman Catalogue identifier: ADWE_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWE_v3_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: None Operating systems: Any system that supports MAPLE; tested under Microsoft Windows XP, SuSe Linux 10 Program language used:MAPLE 10 Typical time and memory requirements: Most commands that act upon quantum registers with five or less qubits take ⩽10 seconds of processor time (on a Pentium 4 processor with ⩾2 GHz or equivalent) and 5-20 MB of memory. Especially when working with symbolic expressions, however, the memory and time requirements critically depend on the number of qubits in the quantum registers, owing to the exponential dimension growth of the associated Hilbert space. For example, complex (symbolic) noise models (with several Kraus operators) for multi-qubit systems

  4. Fundamental rate-loss trade-off for the quantum internet

    Science.gov (United States)

    Azuma, Koji; Mizutani, Akihiro; Lo, Hoi-Kwong

    2016-11-01

    The quantum internet holds promise for achieving quantum communication--such as quantum teleportation and quantum key distribution (QKD)--freely between any clients all over the globe, as well as for the simulation of the evolution of quantum many-body systems. The most primitive function of the quantum internet is to provide quantum entanglement or a secret key to two points efficiently, by using intermediate nodes connected by optical channels with each other. Here we derive a fundamental rate-loss trade-off for a quantum internet protocol, by generalizing the Takeoka-Guha-Wilde bound to be applicable to any network topology. This trade-off has essentially no scaling gap with the quantum communication efficiencies of protocols known to be indispensable to long-distance quantum communication, such as intercity QKD and quantum repeaters. Our result--putting a practical but general limitation on the quantum internet--enables us to grasp the potential of the future quantum internet.

  5. Fundamental rate-loss trade-off for the quantum internet.

    Science.gov (United States)

    Azuma, Koji; Mizutani, Akihiro; Lo, Hoi-Kwong

    2016-11-25

    The quantum internet holds promise for achieving quantum communication-such as quantum teleportation and quantum key distribution (QKD)-freely between any clients all over the globe, as well as for the simulation of the evolution of quantum many-body systems. The most primitive function of the quantum internet is to provide quantum entanglement or a secret key to two points efficiently, by using intermediate nodes connected by optical channels with each other. Here we derive a fundamental rate-loss trade-off for a quantum internet protocol, by generalizing the Takeoka-Guha-Wilde bound to be applicable to any network topology. This trade-off has essentially no scaling gap with the quantum communication efficiencies of protocols known to be indispensable to long-distance quantum communication, such as intercity QKD and quantum repeaters. Our result-putting a practical but general limitation on the quantum internet-enables us to grasp the potential of the future quantum internet.

  6. Long-distance quantum networks using ultra-cold atoms

    Science.gov (United States)

    Solmeyer, Neal; Li, Xiao; Quraishi, Qudsia

    2016-05-01

    The generation of entanglement between distantly located quantum memories via frequency converted single photons could enable many applications in quantum networking, including quantum teleportation, distributed quantum computing and potentially distributed precision timing. A quantum network with three or more nodes has yet to be demonstrated and moreover hybrid networks leverage advantages of different platforms. With an existing memory at the Army Research Laboratory (ARL), based on weak Raman scattering in a Rb magneto-optical trap, we are building a second node at the Joint Quantum Institute (JQI), connected to ARL by a 13 km optical fiber. The second node will be a higher photon-rate node based on Rydberg excitations of a Rb ensemble in an optical dipole trap (N. Solmeyer et al., arXiv:1511.00025) and the first node will be upgraded to a Rydberg system soon. In the near term, we plan to generate entanglement between the second and a third node, based on a similar experimental setup, 100 m away at the JQI. For the ARL-JQI link we are presently working on quantum frequency conversion from IR photons to telecom wavelengths. Separately, we are pursuing frequency conversion from 493 nm photons to 780 nm to be used in a hybrid quantum network between ions and neutral atoms.

  7. On the quantum information processing in nuclear magnetic resonance quantum computing experiments

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, E.R. de; Bonk, F.A.; Vidoto, E.L.G.; Bonagamba, T.J. [Universidade de Sao Paulo (IFSC/USP), Sao Carlos, SP (Brazil). Inst. de Fisica; Sarthour, R.S.; Guimaraes, A.P.; Oliveira, I.S. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Freitas, J.C.C. [Universidade Federal do Espirito Santo (UFES), Vitoria, ES (Brazil). Dept. de Fisica

    2003-07-01

    Full text: Nuclear Magnetic Resonance appeared in the late nineties to be the most promising candidate to run quantum computing algorithms. An impressive number of experiments demonstrating the implementation of all logic gates and quantum algorithms in systems with a small number of qubits stimulated the general excitement about the technique, and greatly promoted the field. Particularly important were those experiments where entanglement of particles were aimed at. Entanglement is the most fundamental (and weird !) aspect of quantum systems, and is at the basis of quantum teleportation and quantum cryptography, yet impossible to prove in NMR experiments. The hardcore of NMR quantum computing are the so-called pseudo-pure states, upon which radiofrequency (RF) pulses act to implement quantum mechanical unitary transformations, promoting changes in both, Zeeman level populations and coherences in the density matrix. Whereas pseudo-pure states are special non-equilibrium diagonal states, coherences encode information about superposition states. Now, one could safely say that the whole business of quantum computing goes about controlling relative ket phases. In spite of the impossibility to univocally associating a given quantum state to a NMR spectrum, it is possible to demonstrate the phase action of RF pulses over relative ket phases, even if no population changes take place. In this talk these issues will be addressed, and we will show experimental results of our own where this is done in the two-qubit quadrupole nuclei {sup 23}Na in C{sub 10}H{sub 21}NaO{sub 4}S liquid crystal. We demonstrate the reversibility of the Hadamard gate, and of a quantum circuit which generates pseudo-Bell states. The success of the operation reaches almost 100% in the case of the state |01+|10, 80% in the cases of |00> + |01> and |10> + |11>, and 65% for the cat-state |00> + |11>. (author)

  8. A Quantum Computational Semantics for Epistemic Logical Operators. Part I: Epistemic Structures

    Science.gov (United States)

    Beltrametti, Enrico; Dalla Chiara, Maria Luisa; Giuntini, Roberto; Leporini, Roberto; Sergioli, Giuseppe

    2014-10-01

    Some critical open problems of epistemic logics can be investigated in the framework of a quantum computational approach. The basic idea is to interpret sentences like "Alice knows that Bob does not understand that π is irrational" as pieces of quantum information (generally represented by density operators of convenient Hilbert spaces). Logical epistemic operators ( to understand, to know…) are dealt with as (generally irreversible) quantum operations, which are, in a sense, similar to measurement-procedures. This approach permits us to model some characteristic epistemic processes, that concern both human and artificial intelligence. For instance, the operation of "memorizing and retrieving information" can be formally represented, in this framework, by using a quantum teleportation phenomenon.

  9. Quantum Discord and Entanglement of Quasi-Werner States Based on Bipartite Entangled Coherent States

    Science.gov (United States)

    Mishra, Manoj K.; Maurya, Ajay K.; Prakash, Hari

    2016-06-01

    Present work is an attempt to compare quantum discord and quantum entanglement of quasi-Werner states formed with the four bipartite entangled coherent states (ECS) used recently for quantum teleportation of a qubit encoded in superposed coherent state. Out of these, the quasi-Werner states based on maximally ECS due to its invariant nature under local operation is independent of measurement basis and mean photon numbers, while for quasi-Werner states based on non-maximally ECS, it depends upon measurement basis as well as on mean photon number. However, for large mean photon numbers since non-maximally ECS becomes almost maximally entangled therefore dependence of quantum discord for non-maximally ECS based quasi-Werner states on the measurement basis disappears.

  10. Distance and Coupling Dependence of Entanglement in the Presence of a Quantum Field

    CERN Document Server

    Hsiang, Jen-Tsung

    2015-01-01

    We study the entanglement between two coupled detectors, whose internal degrees of freedom are modeled by harmonic oscillators, interacting with a common quantum field, paying special attention to two less studied yet important features: finite separation and direct coupling. Distance dependence is essential in quantum teleportation and relativistic quantum information considerations. The presence of a quantum field as the environment accords an indirect interaction between the two oscillators at finite separation of a non-Markovian nature which competes with the direct coupling between them. The interplay between these two factors results in a rich variety of interesting entanglement behaviors at late times. We show that the entanglement behavior reported in prior work assuming no separation between the detectors can at best be a transient effect at very short times, and claims that such behaviors represent late time entanglement are misplaced. Entanglement between the detectors with direct coupling enters i...

  11. Software-defined Quantum Networking Ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    The software enables a user to perform modeling and simulation of software-defined quantum networks. The software addresses the problem of how to synchronize transmission of quantum and classical signals through multi-node networks and to demonstrate quantum information protocols such as quantum teleportation. The software approaches this problem by generating a graphical model of the underlying network and attributing properties to each node and link in the graph. The graphical model is then simulated using a combination of discrete-event simulators to calculate the expected state of each node and link in the graph at a future time. A user interacts with the software by providing an initial network model and instantiating methods for the nodes to transmit information with each other. This includes writing application scripts in python that make use of the software library interfaces. A user then initiates the application scripts, which invokes the software simulation. The user then uses the built-in diagnostic tools to query the state of the simulation and to collect statistics on synchronization.

  12. Continuous-variable quantum network coding for coherent states

    Science.gov (United States)

    Shang, Tao; Li, Ke; Liu, Jian-wei

    2017-04-01

    As far as the spectral characteristic of quantum information is concerned, the existing quantum network coding schemes can be looked on as the discrete-variable quantum network coding schemes. Considering the practical advantage of continuous variables, in this paper, we explore two feasible continuous-variable quantum network coding (CVQNC) schemes. Basic operations and CVQNC schemes are both provided. The first scheme is based on Gaussian cloning and ADD/SUB operators and can transmit two coherent states across with a fidelity of 1/2, while the second scheme utilizes continuous-variable quantum teleportation and can transmit two coherent states perfectly. By encoding classical information on quantum states, quantum network coding schemes can be utilized to transmit classical information. Scheme analysis shows that compared with the discrete-variable paradigms, the proposed CVQNC schemes provide better network throughput from the viewpoint of classical information transmission. By modulating the amplitude and phase quadratures of coherent states with classical characters, the first scheme and the second scheme can transmit 4{log _2}N and 2{log _2}N bits of information by a single network use, respectively.

  13. Quantum communication for satellite-to-ground networks with partially entangled states

    Science.gov (United States)

    Chen, Na; Quan, Dong-Xiao; Pei, Chang-Xing; Yang-Hong

    2015-02-01

    To realize practical wide-area quantum communication, a satellite-to-ground network with partially entangled states is developed in this paper. For efficiency and security reasons, the existing method of quantum communication in distributed wireless quantum networks with partially entangled states cannot be applied directly to the proposed quantum network. Based on this point, an efficient and secure quantum communication scheme with partially entangled states is presented. In our scheme, the source node performs teleportation only after an end-to-end entangled state has been established by entanglement swapping with partially entangled states. Thus, the security of quantum communication is guaranteed. The destination node recovers the transmitted quantum bit with the help of an auxiliary quantum bit and specially defined unitary matrices. Detailed calculations and simulation analyses show that the probability of successfully transferring a quantum bit in the presented scheme is high. In addition, the auxiliary quantum bit provides a heralded mechanism for successful communication. Based on the critical components that are presented in this article an efficient, secure, and practical wide-area quantum communication can be achieved. Project supported by the National Natural Science Foundation of China (Grant Nos. 61072067 and 61372076), the 111 Project (Grant No. B08038), the Fund from the State Key Laboratory of Integrated Services Networks (Grant No. ISN 1001004), and the Fundamental Research Funds for the Central Universities (Grant Nos. K5051301059 and K5051201021).

  14. Quantum communication for satellite-to-ground networks with partially entangled states

    Institute of Scientific and Technical Information of China (English)

    陈娜; 权东晓; 裴昌幸; 杨宏

    2015-01-01

    To realize practical wide-area quantum communication, a satellite-to-ground network with partially entangled states is developed in this paper. For efficiency and security reasons, the existing method of quantum communication in distributed wireless quantum networks with partially entangled states cannot be applied directly to the proposed quantum network. Based on this point, an efficient and secure quantum communication scheme with partially entangled states is presented. In our scheme, the source node performs teleportation only after an end-to-end entangled state has been established by entanglement swapping with partially entangled states. Thus, security of quantum communication is guaranteed. The destination node recovers the transmitted quantum bit with the help of auxiliary quantum bit and specially defined unitary matrices. Detailed calculations and simulation analyses show that in the presented scheme, the probability of successfully transferring a quantum bit is high. In addition, the auxiliary quantum bit provides a heralded mechanism for successful communication. Based on these critical components presented in this article, an efficient, secure, and practical wide-area quantum communication can be achieved.

  15. Superdense Coding with GHZ and Quantum Key Distribution with W in the ZX-calculus

    Directory of Open Access Journals (Sweden)

    Anne Hillebrand

    2012-10-01

    Full Text Available Quantum entanglement is a key resource in many quantum protocols, such as quantum teleportation and quantum cryptography. Yet entanglement makes protocols presented in Dirac notation difficult to verify. This is why Coecke and Duncan have introduced a diagrammatic language for quantum protocols, called the ZX-calculus. This diagrammatic notation is both intuitive and formally rigorous. It is a simple, graphical, high level language that emphasises the composition of systems and naturally captures the essentials of quantum mechanics. In the author's MSc thesis it has been shown for over 25 quantum protocols that the ZX-calculus provides a relatively easy and more intuitive presentation. Moreover, the author embarked on the task to apply categorical quantum mechanics on quantum security; earlier works did not touch anything but Bennett and Brassard's quantum key distribution protocol, BB84. Superdense coding with the Greenberger-Horne-Zeilinger state and quantum key distribution with the W-state are presented in the ZX-calculus in this paper.

  16. Universal quantum computation using all-optical hybrid encoding

    Institute of Scientific and Technical Information of China (English)

    郭奇; 程留永; 王洪福; 张寿

    2015-01-01

    By employing displacement operations, single-photon subtractions, and weak cross-Kerr nonlinearity, we propose an alternative way of implementing several universal quantum logical gates for all-optical hybrid qubits encoded in both single-photon polarization state and coherent state. Since these schemes can be straightforwardly implemented only using local operations without teleportation procedure, therefore, less physical resources and simpler operations are required than the existing schemes. With the help of displacement operations, a large phase shift of the coherent state can be obtained via currently available tiny cross-Kerr nonlinearity. Thus, all of these schemes are nearly deterministic and feasible under current technology conditions, which makes them suitable for large-scale quantum computing.

  17. A single photoelectron transistor for quantum optical communications

    CERN Document Server

    Kosaka, H; Robinson, H D; Bandaru, P; Makita, K; Yablonovitch, E B; Kosaka, Hideo; Rao, Deepak S.; Robinson, Hans D.; Bandaru, Prabhakar; Makita, Kikuo; Yablonovitch, Eli

    2003-01-01

    A single photoelectron can be trapped and its photoelectric charge detected by a source/drain channel in a transistor. Such a transistor photodetector can be useful for flagging the safe arrival of a photon in a quantum repeater. The electron trap can be photo-ionized and repeatedly reset for the arrival of successive individual photons. This single photoelectron transistor (SPT) operating at the lambda = 1.3 mu m tele-communication band, was demonstrated by using a windowed-gate double-quantum-well InGaAs/InAlAs/InP heterostructure that was designed to provide near-zero electron g-factor. The g-factor engineering allows selection rules that would convert a photon's polarization to an electron spin polarization. The safe arrival of the photo-electric charge would trigger the commencement of the teleportation algorithm.

  18. Implementation of quantum controlled phase gate and preparation of multiparticle entanglement in cavity QED

    Institute of Scientific and Technical Information of China (English)

    Wu Xi; Chen Zhi-Hua; Zhang Yong; Chen Yue-Hua; Ye Ming-Yong; Lin Xiu-Min

    2011-01-01

    Schemes are presented for realizing quantum controlled phase gate and preparing an N-qubit W-like state, which are based on the large-detuned interaction among three-state atoms, dual-mode cavity and a classical pulse. In particular, a class of W states that can be used for perfect teleportation and superdense coding is generated by only one step.Compared with the previous schemes, cavity decay is largely suppressed because the cavity is only virtually excited and always in the vacuum state and the atomic spontaneous emission is strongly restrained due to a large atom-field detuning.

  19. Quantum Cloning of an Unknown 2-Atom State via Entangled Cluster States

    Science.gov (United States)

    Yu, L.-z.; Zhong, F.

    2016-06-01

    This paper presented a scheme for cloning a 2-atom state in the QED cavity with the help of Victor who is the state's preparer. The cloning scheme has two steps. In the first step, the scheme requires probabilistic teleportation of a 2-atom state that is unknown in advance, and uses a 4-atom cluster state as quantum channel. In the second step, perfect copies of the 2-atom entangled state may be realized with the assistance of Victor. The finding is that our scheme has two outstanding advantages: it is not sensitive to the cavity decay, and Bell state is easy to identify.

  20. Comparison and Analysis of the Control Power Between Two Different Perfect Controlled Teleportation Schemes Using Four-particle Cluster State

    Science.gov (United States)

    Jiang, Yu-ting; Mo, Zhi-wen

    2017-07-01

    Control power is used to discuss about the controller's measurable authority. It's a new index to describe the controlled teleportation schemes from the point of view of the controller. In this paper, we introduce two perfect controlled teleportation schemes and calculate the control power under different control particles. In scheme 1, the controller just controls one particle, which is particle 2. And in scheme 2, the controller controls the particles 2 and 3. They both use the cluster state |ψ \\rangle _{1234}={1/2}(|0000\\rangle +|0011\\rangle +|1100\\rangle -|1111\\rangle )_{1234} as communication channel. By calculating the control power between two schemes, the control power of scheme 1 is 1/3, which is the minimal value of control power. On the contrary, the control power of scheme 2 is maximal, 1/2. Scheme 2 which controls two particles successfully promotes the control power comparing with scheme 1. It's evidently that controlling particle 2 is a necessary condition. And controlling particle 3 can gain the control power but the controller cannot control it solely.