Multiparticle quantum mechanics obeying fractional statistics
International Nuclear Information System (INIS)
Wu, Y.
1984-01-01
We obtain the rule governing many-body wave functions for particles obeying fractional statistics in two (space) dimensions. It generalizes and continuously interpolates the usual symmetrization and antisymmetrization. Quantum mechanics of more than two particles is discussed and some new features are found
International Nuclear Information System (INIS)
Grendel, M.
1981-01-01
Boundary conditions for distribution functions of quasiparticles scattered by an interface between two crystalline grains are presented. Contrary to former formulations where Maxwell-Boltzmann statistics was considered, the present boundary conditions take into account the quantum statistics (Fermi-Dirac or Bose-Einstein) of quasiparticles. Provided that small deviations only from thermodynamic equilibrium are present, the boundary conditions are linearized, and then their ''renormalization'' is investigated in case of elastic scattering. The final results of the renormalization, which are obtained for a simplified model of an interface, sugo.est that the portion of the Fermi (Bose)-quasiparticles reflected or transmitted specularly is decreased (increased) in comparison with the case of quasiparticles obeying Maxwell-Boltzmann statistics. (author)
International Nuclear Information System (INIS)
Sevilla, F J; Olivares-Quiroz, L
2012-01-01
In this work, we address the concept of the chemical potential μ in classical and quantum gases towards the calculation of the equation of state μ = μ(n, T) where n is the particle density and T the absolute temperature using the methods of equilibrium statistical mechanics. Two cases seldom discussed in elementary textbooks are presented with detailed calculations. The first one refers to the explicit calculation of μ for the interacting classical gas exemplified by van der Waals gas. For this purpose, we used the method described by van Kampen (1961 Physica 27 783). The second one refers to the calculation of μ for ideal quantum gases that obey a generalized Pauli's exclusion principle that leads to statistics that go beyond the Bose-Einstein and Fermi-Dirac cases. The audience targeted in this work corresponds mainly to advanced undergraduates and graduate students in the physical-chemical sciences but it is not restricted to them. In regard of this, we have put a special emphasis on showing some additional details of calculations that usually do not appear explicitly in textbooks. (paper)
International Nuclear Information System (INIS)
Nemnes, G A; Anghel, D V
2010-01-01
We present a stochastic method for the simulation of the time evolution in systems which obey generalized statistics, namely fractional exclusion statistics and Gentile's statistics. The transition rates are derived in the framework of canonical ensembles. This approach introduces a tool for describing interacting fermionic and bosonic systems in non-equilibrium as ideal FES systems, in a computationally efficient manner. The two types of statistics are analyzed comparatively, indicating their intrinsic thermodynamic differences and revealing key aspects related to the species size
Sevilla, F. J.; Olivares-Quiroz, L.
2012-01-01
In this work, we address the concept of the chemical potential [mu] in classical and quantum gases towards the calculation of the equation of state [mu] = [mu](n, T) where n is the particle density and "T" the absolute temperature using the methods of equilibrium statistical mechanics. Two cases seldom discussed in elementary textbooks are…
On how AI & Law can help autonomous systems obey the law: a position paper
Prakken, Hendrik
2016-01-01
In this position paper I discuss to what extent current and past AI & law research is relevant for research on autonomous intelligent systems that exhibit legally relevant behaviour. After a brief review of the history of AI & law, I will compare the problems faced by autonomous intelligent systems
Waszyk-Nowaczyk, Magdalena; Simon, Marek; Matwij, Karolina
2012-01-01
The pharmacist is an expert with the knowledge of drugs, who has a possibility to follow the patient's individual pharmacotherapy, which is the basis of the pharmaceutical care programme. The implementation of the Individual Medication Management System (IMMS) may be one of the proposals which will enable an analysis of the course of pharmacotherapy and elimination of drug problems, which are the chief goals of pharmaceutical care. In order to determine community pharmacy patients' degree of interest in the IMMS and to evaluate the degree of patients' discipline concerning the application of doctors' recommendations they were given an anonymous questionnaire. The research was done from August 2009 to May 2010 on a sample of 179 people selected at random. They were patients of community pharmacies in Poznań, where 70% were women and 30% were men, all of them aged between 20 and 85 years. The individual age groups were: 20-40 years--27.0%, 41-50 years--10.8%, 51-64 years--43.6%, 65 years or more--18.6%. The patients' education was as follows: primary--4.7%, vocational--8.0%, secondary--31.0%, incomplete university--12.0% and university--44.3%. The chi2 and Fisher-Freeman-Halton tests were used for statistical analysis of the results. Each time the level of statistical significance was assumed at p system. However, it was mostly women and respondents with university education that were the most interested in it. More than 50% of the patients aged 20-40 years and those aged over 65 years indicate the purposefulness of the systems. It is mainly the group aged 20-40 years that confirms facilitation in following the doctor's recommendations (p = 0.02). The respondents indicated their interest and confirmed the purposefulness of the IMMS mainly due to the fact that it helps to avoid drug-related problems resulting from omitting doses and helps to keep the dosage time and frequency in a long-term therapy. The research confirms the fact that individualized therapy will
On the obligation to obey the law
Directory of Open Access Journals (Sweden)
Zekavica Radomir G.
2016-01-01
Full Text Available The paper considers the question of a general obligation to obey the law. The author presents and analyzes the most significant views and arguments in support of the thesis that there is a general obligation to obey the law, as well as those understandings which are refuse this thesis. In concluding remarks the author presents a critical review of some key issues about general obligation to obey the law. In addition, the author outlines a hypothetical model of society and the legal system under which such an obligation is possible and has also asserted the basic assumptions and principles upon which it can be justified and reasonable. .
Elstad, Eyvind; Turmo, Are
2011-01-01
As education systems around the world move towards increased accountability based on performance measures, it is important to investigate the unintended effects of accountability systems. This article seeks to explore the extent to which head teachers in a large Norwegian municipality may resort to gaming the incentive system to boost their…
Quantum-like behavior without quantum physics I : Kinematics of neural-like systems.
Selesnick, S A; Rawling, J P; Piccinini, Gualtiero
2017-09-01
Recently there has been much interest in the possible quantum-like behavior of the human brain in such functions as cognition, the mental lexicon, memory, etc., producing a vast literature. These studies are both empirical and theoretical, the tenets of the theory in question being mainly, and apparently inevitably, those of quantum physics itself, for lack of other arenas in which quantum-like properties are presumed to obtain. However, attempts to explain this behavior on the basis of actual quantum physics going on at the atomic or molecular level within some element of brain or neuronal anatomy (other than the ordinary quantum physics that underlies everything), do not seem to survive much scrutiny. Moreover, it has been found empirically that the usual physics-like Hilbert space model seems not to apply in detail to human cognition in the large. In this paper we lay the groundwork for a theory that might explain the provenance of quantum-like behavior in complex systems whose internal structure is essentially hidden or inaccessible. The approach is via the logic obeyed by these systems which is similar to, but not identical with, the logic obeyed by actual quantum systems. The results reveal certain effects in such systems which, though quantum-like, are not identical to the kinds of quantum effects found in physics. These effects increase with the size of the system.
Quantum correlations in multipartite quantum systems
Jafarizadeh, M. A.; Heshmati, A.; Karimi, N.; Yahyavi, M.
2018-03-01
Quantum entanglement is the most famous type of quantum correlation between elements of a quantum system that has a basic role in quantum communication protocols like quantum cryptography, teleportation and Bell inequality detection. However, it has already been shown that various applications in quantum information theory do not require entanglement. Quantum discord as a new kind of quantum correlations beyond entanglement, is the most popular candidate for general quantum correlations. In this paper, first we find the entanglement witness in a particular multipartite quantum system which consists of a N-partite system in 2 n -dimensional space. Then we give an exact analytical formula for the quantum discord of this system. At the end of the paper, we investigate the additivity relation of the quantum correlation and show that this relation is satisfied for a N-partite system with 2 n -dimensional space.
Quantum coherence and correlations in quantum system
Xi, Zhengjun; Li, Yongming; Fan, Heng
2015-01-01
Criteria of measure quantifying quantum coherence, a unique property of quantum system, are proposed recently. In this paper, we first give an uncertainty-like expression relating the coherence and the entropy of quantum system. This finding allows us to discuss the relations between the entanglement and the coherence. Further, we discuss in detail the relations among the coherence, the discord and the deficit in the bipartite quantum system. We show that, the one-way quantum deficit is equal to the sum between quantum discord and the relative entropy of coherence of measured subsystem. PMID:26094795
Weiss, Ulrich
2008-01-01
Major advances in the quantum theory of macroscopic systems, in combination with stunning experimental achievements, have brightened the field and brought it to the attention of the general community in natural sciences. Today, working knowledge of dissipative quantum mechanics is an essential tool for many physicists. This book - originally published in 1990 and republished in 1999 as an enlarged second edition - delves much deeper than ever before into the fundamental concepts, methods, and applications of quantum dissipative systems, including the most recent developments. In this third edi
Finite and profinite quantum systems
Vourdas, Apostolos
2017-01-01
This monograph provides an introduction to finite quantum systems, a field at the interface between quantum information and number theory, with applications in quantum computation and condensed matter physics. The first major part of this monograph studies the so-called `qubits' and `qudits', systems with periodic finite lattice as position space. It also discusses the so-called mutually unbiased bases, which have applications in quantum information and quantum cryptography. Quantum logic and its applications to quantum gates is also studied. The second part studies finite quantum systems, where the position takes values in a Galois field. This combines quantum mechanics with Galois theory. The third part extends the discussion to quantum systems with variables in profinite groups, considering the limit where the dimension of the system becomes very large. It uses the concepts of inverse and direct limit and studies quantum mechanics on p-adic numbers. Applications of the formalism include quantum optics and ...
International Nuclear Information System (INIS)
Narnhofer, H.; Thirring, W.
1988-01-01
We generalize the classical notion of a K-system to a non-commutative dynamical system by requiring that an invariantly defined memory loss be 100%. We give some examples of quantum K-systems and show that they cannot contain any quasi-periodic subsystem. 13 refs. (Author)
Quantum Cybernetics and Complex Quantum Systems Science - A Quantum Connectionist Exploration
Gonçalves, Carlos Pedro
2014-01-01
Quantum cybernetics and its connections to complex quantum systems science is addressed from the perspective of complex quantum computing systems. In this way, the notion of an autonomous quantum computing system is introduced in regards to quantum artificial intelligence, and applied to quantum artificial neural networks, considered as autonomous quantum computing systems, which leads to a quantum connectionist framework within quantum cybernetics for complex quantum computing systems. Sever...
Energy Technology Data Exchange (ETDEWEB)
Micheli, Fiorenza de [Centro de Estudios Cientificos, Arturo Prat 514, Valdivia (Chile); Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso (Chile); Zanelli, Jorge [Centro de Estudios Cientificos, Arturo Prat 514, Valdivia (Chile); Universidad Andres Bello, Av. Republica 440, Santiago (Chile)
2012-10-15
A degenerate dynamical system is characterized by a symplectic structure whose rank is not constant throughout phase space. Its phase space is divided into causally disconnected, nonoverlapping regions in each of which the rank of the symplectic matrix is constant, and there are no classical orbits connecting two different regions. Here the question of whether this classical disconnectedness survives quantization is addressed. Our conclusion is that in irreducible degenerate systems-in which the degeneracy cannot be eliminated by redefining variables in the action-the disconnectedness is maintained in the quantum theory: there is no quantum tunnelling across degeneracy surfaces. This shows that the degeneracy surfaces are boundaries separating distinct physical systems, not only classically, but in the quantum realm as well. The relevance of this feature for gravitation and Chern-Simons theories in higher dimensions cannot be overstated.
International Nuclear Information System (INIS)
Vourdas, A
2005-01-01
A finite quantum system in which the position and momentum take values in the Galois field GF(p l ) is constructed from a smaller quantum system in which the position and momentum take values in Z p , using field extension. The Galois trace is used in the definition of the Fourier transform. The Heisenberg-Weyl group of displacements and the Sp(2, GF(p l )) group of symplectic transformations are studied. A class of transformations inspired by the Frobenius maps in Galois fields is introduced. The relationship of this 'Galois quantum system' with its subsystems in which the position and momentum take values in subfields of GF(p l ) is discussed
Anions, quantum particles in planar systems
International Nuclear Information System (INIS)
Monerat, Germano Amaral
2000-03-01
Our purpose here is to present a general review of the non-relativistic quantum-mechanical description of excitations that do not obey neither the Fermi-Dirac nor the Bose-Einstein statistics; they rather fulfill an intermediate statistics, the we called 'any-statistics'. As we shall see, this is a peculiarity of (1+1) and (1+2) dimensions, due to the fact that, in two space dimensions, the spin is not quantised, once the rotation group is Abelian. The relevance of studying theories in (1+2) dimensions is justified by the evidence that, in condensed matter physics, there are examples of planar systems, for which everything goes as if the third spatial dimension is frozen. (author)
Scheme of thinking quantum systems
International Nuclear Information System (INIS)
Yukalov, V I; Sornette, D
2009-01-01
A general approach describing quantum decision procedures is developed. The approach can be applied to quantum information processing, quantum computing, creation of artificial quantum intelligence, as well as to analyzing decision processes of human decision makers. Our basic point is to consider an active quantum system possessing its own strategic state. Processing information by such a system is analogous to the cognitive processes associated to decision making by humans. The algebra of probability operators, associated with the possible options available to the decision maker, plays the role of the algebra of observables in quantum theory of measurements. A scheme is advanced for a practical realization of decision procedures by thinking quantum systems. Such thinking quantum systems can be realized by using spin lattices, systems of magnetic molecules, cold atoms trapped in optical lattices, ensembles of quantum dots, or multilevel atomic systems interacting with electromagnetic field
Quantum algorithm for simulating the dynamics of an open quantum system
International Nuclear Information System (INIS)
Wang Hefeng; Ashhab, S.; Nori, Franco
2011-01-01
In the study of open quantum systems, one typically obtains the decoherence dynamics by solving a master equation. The master equation is derived using knowledge of some basic properties of the system, the environment, and their interaction: One basically needs to know the operators through which the system couples to the environment and the spectral density of the environment. For a large system, it could become prohibitively difficult to even write down the appropriate master equation, let alone solve it on a classical computer. In this paper, we present a quantum algorithm for simulating the dynamics of an open quantum system. On a quantum computer, the environment can be simulated using ancilla qubits with properly chosen single-qubit frequencies and with properly designed coupling to the system qubits. The parameters used in the simulation are easily derived from the parameters of the system + environment Hamiltonian. The algorithm is designed to simulate Markovian dynamics, but it can also be used to simulate non-Markovian dynamics provided that this dynamics can be obtained by embedding the system of interest into a larger system that obeys Markovian dynamics. We estimate the resource requirements for the algorithm. In particular, we show that for sufficiently slow decoherence a single ancilla qubit could be sufficient to represent the entire environment, in principle.
Decoherence in open quantum systems
International Nuclear Information System (INIS)
Isar, A.
2005-01-01
In the framework of the Lindblad theory for open quantum systems we determine the degree of quantum decoherence of a harmonic oscillator interacting with a thermal bath. In the present paper we have studied QD with the Markovian equation of Lindblad in order to understand the quantum to classical transition for a system consisting of an one-dimensional harmonic oscillator in interaction with a thermal bath in the framework of the theory of open quantum systems based on quantum dynamical semigroups. The role of QD became relevant in many interesting physical problems from field theory, atomic physics, quantum optics and quantum information processing, to which we can add material science, heavy ion collisions, quantum gravity and cosmology, condensed matter physics. Just to mention only a few of them: to understand the way in which QD enhances the quantum to classical transition of density fluctuations; to study systems of trapped and cold atoms (or ions) which may offer the possibility of engineering the environment, like trapped atoms inside cavities, relation between decoherence and other cavity QED effects (such as Casimir effect); on mesoscopic scale, decoherence in the context of Bose-Einstein condensation. In many cases physicists are interested in understanding the specific causes of QD just because they want to prevent decoherence from damaging quantum states and to protect the information stored in quantum states from the degrading effect of the interaction with the environment. Thus, decoherence is responsible for washing out the quantum interference effects which are desirable to be seen as signals in some experiments. QD has a negative influence on many areas relying upon quantum coherence effects, such as quantum computation and quantum control of atomic and molecular processes. The physics of information and computation is such a case, where decoherence is an obvious major obstacle in the implementation of information-processing hardware that takes
Quantum Effects in Biological Systems
2016-01-01
Since the last decade the study of quantum mechanical phenomena in biological systems has become a vibrant field of research. Initially sparked by evidence of quantum effects in energy transport that is instrumental for photosynthesis, quantum biology asks the question of how methods and models from quantum theory can help us to understand fundamental mechanisms in living organisms. This approach entails a paradigm change challenging the related disciplines: The successful framework of quantum theory is taken out of its low-temperature, microscopic regimes and applied to hot and dense macroscopic environments, thereby extending the toolbox of biology and biochemistry at the same time. The Quantum Effects in Biological Systems conference is a platform for researchers from biology, chemistry and physics to present and discuss the latest developments in the field of quantum biology. After meetings in Lisbon (2009), Harvard (2010), Ulm (2011), Berkeley (2012), Vienna (2013), Singapore (2014) and Florence (2015),...
Asymptotically open quantum systems
International Nuclear Information System (INIS)
Westrich, M.
2008-04-01
In the present thesis we investigate the structure of time-dependent equations of motion in quantum mechanics.We start from two coupled systems with an autonomous equation of motion. A limit, in which the dynamics of one of the two systems has a decoupled evolution and imposes a non-autonomous evolution for the second system is identified. A result due to K. Hepp that provides a classical limit for dynamics turns out to be part and parcel for this limit and is generalized in our work. The method introduced by J.S. Howland for the solution of the time-dependent Schroedinger equation is interpreted as such a limit. Moreover, we associate our limit with the modern theory of quantization. (orig.)
Iqbal, A.; Toor, A. H.
2002-03-01
We investigate the role of quantum mechanical effects in the central stability concept of evolutionary game theory, i.e., an evolutionarily stable strategy (ESS). Using two and three-player symmetric quantum games we show how the presence of quantum phenomenon of entanglement can be crucial to decide the course of evolutionary dynamics in a population of interacting individuals.
Quantum technologies with hybrid systems
Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg
2015-03-01
An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.
Quantum technologies with hybrid systems
Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg
2015-01-01
An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field. PMID:25737558
Quantum technologies with hybrid systems.
Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg
2015-03-31
An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.
Entanglement in open quantum systems
International Nuclear Information System (INIS)
Isar, A.
2007-01-01
In the framework of the theory of open systems based on quantum dynamical semigroups, we solve the master equation for two independent bosonic oscillators interacting with an environment in the asymptotic long-time regime. We give a description of the continuous-variable entanglement in terms of the covariance matrix of the quantum states of the considered system for an arbitrary Gaussian input state. Using the Peres-Simon necessary and sufficient condition for separability of two-mode Gaussian states, we show that the two non-interacting systems immersed in a common environment and evolving under a Markovian, completely positive dynamics become asymptotically entangled for certain environments, so that their non-local quantum correlations exist in the long-time regime. (author) Key words: quantum information theory, open systems, quantum entanglement, inseparable states
Quantum models of classical systems
International Nuclear Information System (INIS)
Hájíček, P
2015-01-01
Quantum statistical methods that are commonly used for the derivation of classical thermodynamic properties are extended to classical mechanical properties. The usual assumption that every real motion of a classical mechanical system is represented by a sharp trajectory is not testable and is replaced by a class of fuzzy models, the so-called maximum entropy (ME) packets. The fuzzier are the compared classical and quantum ME packets, the better seems to be the match between their dynamical trajectories. Classical and quantum models of a stiff rod will be constructed to illustrate the resulting unified quantum theory of thermodynamic and mechanical properties. (paper)
Noncommutative mathematics for quantum systems
Franz, Uwe
2016-01-01
Noncommutative mathematics is a significant new trend of mathematics. Initially motivated by the development of quantum physics, the idea of 'making theory noncommutative' has been extended to many areas of pure and applied mathematics. This book is divided into two parts. The first part provides an introduction to quantum probability, focusing on the notion of independence in quantum probability and on the theory of quantum stochastic processes with independent and stationary increments. The second part provides an introduction to quantum dynamical systems, discussing analogies with fundamental problems studied in classical dynamics. The desire to build an extension of the classical theory provides new, original ways to understand well-known 'commutative' results. On the other hand the richness of the quantum mathematical world presents completely novel phenomena, never encountered in the classical setting. This book will be useful to students and researchers in noncommutative probability, mathematical physi...
International Nuclear Information System (INIS)
Chirikov, B.V.
1991-01-01
The overview of recent developments in the theory of quantum chaos is presented with the special emphasis on a number of unsolved problems and current apparent contradictions. The relation between dynamical quantum chaos and statistical random matrix theory is discussed. 97 refs
Quantum transport in complex system
International Nuclear Information System (INIS)
Kusnezov, D.; Bulgac, A.; DoDang, G.
1998-01-01
We derive the influence function and the effective dynamics of a quantum systems coupled to a chaotic environment, using very general parametric and banded random matrices to describe the quantum properties of a chaotic bath. We find that only in certain limits the thermalization can result from the environment. We study the general transport problems including escape, fusion and tunneling (fission). (author)
A prototype quantum cryptography system
Energy Technology Data Exchange (ETDEWEB)
Surasak, Chiangga
1998-07-01
In this work we have constructed a new secure quantum key distribution system based on the BB84 protocol. Many current state-of-the-art quantum cryptography systems encounter major problems concerning low bit rate, synchronization, and stabilization. Our quantum cryptography system utilizes only laser diodes and standard passive optical components, to enhance the stability and also to decrease the space requirements. The development of this demonstration for a practical quantum key distribution system is a consequence of our previous work on the quantum cryptographic system using optical fiber components for the transmitter and receiver. There we found that the optical fiber couplers should not be used due to the problems with space, stability and alignment. The goal of the synchronization is to use as little transmission capacities as possible. The experimental results of our quantum key distribution system show the feasibility of getting more than 90 % transmission capacities with the approaches developed in this work. Therefore it becomes feasible to securely establish a random key sequence at a rate of 1 to {approx} 5K bit/s by using our stable, compact, cheap, and user-friendly modules for quantum cryptography. (author)
A prototype quantum cryptography system
International Nuclear Information System (INIS)
Chiangga Surasak
1998-07-01
In this work we have constructed a new secure quantum key distribution system based on the BB84 protocol. Many current state-of-the-art quantum cryptography systems encounter major problems concerning low bit rate, synchronization, and stabilization. Our quantum cryptography system utilizes only laser diodes and standard passive optical components, to enhance the stability and also to decrease the space requirements. The development of this demonstration for a practical quantum key distribution system is a consequence of our previous work on the quantum cryptographic system using optical fiber components for the transmitter and receiver. There we found that the optical fiber couplers should not be used due to the problems with space, stability and alignment. The goal of the synchronization is to use as little transmission capacities as possible. The experimental results of our quantum key distribution system show the feasibility of getting more than 90 % transmission capacities with the approaches developed in this work. Therefore it becomes feasible to securely establish a random key sequence at a rate of 1 to ∼ 5K bit/s by using our stable, compact, cheap, and user-friendly modules for quantum cryptography. (author)
Quantum Transport in Mesoscopic Systems
Indian Academy of Sciences (India)
voltage bias, the tunneling of the electron from the lead to the dot and vice versa will happen very rarely. Then two successive ..... A typical mesoscopic quantum dot system (a small drop- .... dynamical behavior of the distribution function of the.
Universal blind quantum computation for hybrid system
Huang, He-Liang; Bao, Wan-Su; Li, Tan; Li, Feng-Guang; Fu, Xiang-Qun; Zhang, Shuo; Zhang, Hai-Long; Wang, Xiang
2017-08-01
As progress on the development of building quantum computer continues to advance, first-generation practical quantum computers will be available for ordinary users in the cloud style similar to IBM's Quantum Experience nowadays. Clients can remotely access the quantum servers using some simple devices. In such a situation, it is of prime importance to keep the security of the client's information. Blind quantum computation protocols enable a client with limited quantum technology to delegate her quantum computation to a quantum server without leaking any privacy. To date, blind quantum computation has been considered only for an individual quantum system. However, practical universal quantum computer is likely to be a hybrid system. Here, we take the first step to construct a framework of blind quantum computation for the hybrid system, which provides a more feasible way for scalable blind quantum computation.
Quantum Dot Systems : A versatile platform for quantum simulations
Barthelemy, P.J.C.; Vandersypen, L.M.K.
2013-01-01
Quantum mechanics often results in extremely complex phenomena, especially when the quantum system under consideration is composed of many interacting particles. The states of these many-body systems live in a space so large that classical numerical calculations cannot compute them. Quantum
Quantum Dot Systems: a versatile platform for quantum simulations
International Nuclear Information System (INIS)
Barthelemy, Pierre; Vandersypen, Lieven M.K.
2013-01-01
Quantum mechanics often results in extremely complex phenomena, especially when the quantum system under consideration is composed of many interacting particles. The states of these many-body systems live in a space so large that classical numerical calculations cannot compute them. Quantum simulations can be used to overcome this problem: complex quantum problems can be solved by studying experimentally an artificial quantum system operated to simulate the desired hamiltonian. Quantum dot systems have shown to be widely tunable quantum systems, that can be efficiently controlled electrically. This tunability and the versatility of their design makes them very promising quantum simulators. This paper reviews the progress towards digital quantum simulations with individually controlled quantum dots, as well as the analog quantum simulations that have been performed with these systems. The possibility to use large arrays of quantum dots to simulate the low-temperature Hubbard model is also discussed. The main issues along that path are presented and new ideas to overcome them are proposed. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Quantum speed limits in open system dynamics
del Campo, A.; Egusquiza, I. L.; Plenio, M. B.; Huelga, S. F.
2012-01-01
Bounds to the speed of evolution of a quantum system are of fundamental interest in quantum metrology, quantum chemical dynamics and quantum computation. We derive a time-energy uncertainty relation for open quantum systems undergoing a general, completely positive and trace preserving (CPT) evolution which provides a bound to the quantum speed limit. When the evolution is of the Lindblad form, the bound is analogous to the Mandelstam-Tamm relation which applies in the unitary case, with the ...
Design of coherent quantum observers for linear quantum systems
International Nuclear Information System (INIS)
Vuglar, Shanon L; Amini, Hadis
2014-01-01
Quantum versions of control problems are often more difficult than their classical counterparts because of the additional constraints imposed by quantum dynamics. For example, the quantum LQG and quantum H ∞ optimal control problems remain open. To make further progress, new, systematic and tractable methods need to be developed. This paper gives three algorithms for designing coherent quantum observers, i.e., quantum systems that are connected to a quantum plant and their outputs provide information about the internal state of the plant. Importantly, coherent quantum observers avoid measurements of the plant outputs. We compare our coherent quantum observers with a classical (measurement-based) observer by way of an example involving an optical cavity with thermal and vacuum noises as inputs. (paper)
Contextual logic for quantum systems
International Nuclear Information System (INIS)
Domenech, Graciela; Freytes, Hector
2005-01-01
In this work we build a quantum logic that allows us to refer to physical magnitudes pertaining to different contexts from a fixed one without the contradictions with quantum mechanics expressed in no-go theorems. This logic arises from considering a sheaf over a topological space associated with the Boolean sublattices of the ortholattice of closed subspaces of the Hilbert space of the physical system. Different from standard quantum logics, the contextual logic maintains a distributive lattice structure and a good definition of implication as a residue of the conjunction
Duality quantum algorithm efficiently simulates open quantum systems
Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu
2016-01-01
Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d3) in contrast to O(d4) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm. PMID:27464855
Quantum dynamics in open quantum-classical systems.
Kapral, Raymond
2015-02-25
Often quantum systems are not isolated and interactions with their environments must be taken into account. In such open quantum systems these environmental interactions can lead to decoherence and dissipation, which have a marked influence on the properties of the quantum system. In many instances the environment is well-approximated by classical mechanics, so that one is led to consider the dynamics of open quantum-classical systems. Since a full quantum dynamical description of large many-body systems is not currently feasible, mixed quantum-classical methods can provide accurate and computationally tractable ways to follow the dynamics of both the system and its environment. This review focuses on quantum-classical Liouville dynamics, one of several quantum-classical descriptions, and discusses the problems that arise when one attempts to combine quantum and classical mechanics, coherence and decoherence in quantum-classical systems, nonadiabatic dynamics, surface-hopping and mean-field theories and their relation to quantum-classical Liouville dynamics, as well as methods for simulating the dynamics.
Quantum energy teleportation in a quantum Hall system
Energy Technology Data Exchange (ETDEWEB)
Yusa, Go; Izumida, Wataru; Hotta, Masahiro [Department of Physics, Tohoku University, Sendai 980-8578 (Japan)
2011-09-15
We propose an experimental method for a quantum protocol termed quantum energy teleportation (QET), which allows energy transportation to a remote location without physical carriers. Using a quantum Hall system as a realistic model, we discuss the physical significance of QET and estimate the order of energy gain using reasonable experimental parameters.
Quantum systems and symmetric spaces
International Nuclear Information System (INIS)
Olshanetsky, M.A.; Perelomov, A.M.
1978-01-01
Certain class of quantum systems with Hamiltonians related to invariant operators on symmetric spaces has been investigated. A number of physical facts have been derived as a consequence. In the classical limit completely integrable systems related to root systems are obtained
The quantum Hall effect in quantum dot systems
International Nuclear Information System (INIS)
Beltukov, Y M; Greshnov, A A
2014-01-01
It is proposed to use quantum dots in order to increase the temperatures suitable for observation of the integer quantum Hall effect. A simple estimation using Fock-Darwin spectrum of a quantum dot shows that good part of carriers localized in quantum dots generate the intervals of plateaus robust against elevated temperatures. Numerical calculations employing local trigonometric basis and highly efficient kernel polynomial method adopted for computing the Hall conductivity reveal that quantum dots may enhance peak temperature for the effect by an order of magnitude, possibly above 77 K. Requirements to potentials, quality and arrangement of the quantum dots essential for practical realization of such enhancement are indicated. Comparison of our theoretical results with the quantum Hall measurements in InAs quantum dot systems from two experimental groups is also given
Quantum Dynamics in Biological Systems
Shim, Sangwoo
In the first part of this dissertation, recent efforts to understand quantum mechanical effects in biological systems are discussed. Especially, long-lived quantum coherences observed during the electronic energy transfer process in the Fenna-Matthews-Olson complex at physiological condition are studied extensively using theories of open quantum systems. In addition to the usual master equation based approaches, the effect of the protein structure is investigated in atomistic detail through the combined application of quantum chemistry and molecular dynamics simulations. To evaluate the thermalized reduced density matrix, a path-integral Monte Carlo method with a novel importance sampling approach is developed for excitons coupled to an arbitrary phonon bath at a finite temperature. In the second part of the thesis, simulations of molecular systems and applications to vibrational spectra are discussed. First, the quantum dynamics of a molecule is simulated by combining semiclassical initial value representation and density funcitonal theory with analytic derivatives. A computationally-tractable approximation to the sum-of-states formalism of Raman spectra is subsequently discussed.
Dynamics of complex quantum systems
Akulin, Vladimir M
2014-01-01
This book gathers together a range of similar problems that can be encountered in different fields of modern quantum physics and that have common features with regard to multilevel quantum systems. The main motivation was to examine from a uniform standpoint various models and approaches that have been developed in atomic, molecular, condensed matter, chemical, laser and nuclear physics in various contexts. The book should help senior-level undergraduate, graduate students and researchers putting particular problems in these fields into a broader scientific context and thereby taking advantage of well-established techniques used in adjacent fields. This second edition has been expanded to include substantial new material (e.g. new sections on Dynamic Localization and on Euclidean Random Matrices and new chapters on Entanglement, Open Quantum Systems, and Coherence Protection). It is based on the author’s lectures at the Moscow Institute of Physics and Technology, at the CNRS Aimé Cotton Laboratory, and on ...
On quantum mechanics for macroscopic systems
International Nuclear Information System (INIS)
Primas, H.
1992-01-01
The parable of Schroedinger's cat may lead to several up-to date questions: how to treat open systems in quantum theory, how to treat thermodynamically irreversible processes in the quantum mechanics framework, how to explain, following the quantum theory, the existence, phenomenologically evident, of classical observables, what implies the predicted existence by the quantum theory of non localized macroscopic material object ?
Quantum tomography and classical propagator for quadratic quantum systems
International Nuclear Information System (INIS)
Man'ko, O.V.
1999-03-01
The classical propagator for tomographic probability (which describes the quantum state instead of wave function or density matrix) is presented for quadratic quantum systems and its relation to the quantum propagator is considered. The new formalism of quantum mechanics, based on the probability representation of the state, is applied to particular quadratic systems - the harmonic oscillator, particle's free motion, problems of an ion in a Paul trap and in asymmetric Penning trap, and to the process of stimulated Raman scattering. The classical propagator for these systems is written in an explicit form. (author)
Negele, John W
1988-01-01
This book explains the fundamental concepts and theoretical techniques used to understand the properties of quantum systems having large numbers of degrees of freedom. A number of complimentary approaches are developed, including perturbation theory; nonperturbative approximations based on functional integrals; general arguments based on order parameters, symmetry, and Fermi liquid theory; and stochastic methods.
Properties of quantum Markovian master equations
International Nuclear Information System (INIS)
Gorini, V.; Frigerio, A.; Verri, M.; Kossakowski, A.; Sudarshan, E.C.G.
1976-11-01
An essentially self-contained account is given of some general structural properties of the dynamics of quantum open Markovian systems. Some recent results regarding the problem of the classification of quantum Markovian master equations and the limiting conditions under which the dynamical evolution of a quantum open system obeys an exact semigroup law (weak coupling limit and singular coupling limit are reviewed). A general form of quantum detailed balance and its relation to thermal relaxation and to microreversibility is discussed
QUANTUM AND CLASSICAL CORRELATIONS IN GAUSSIAN OPEN QUANTUM SYSTEMS
Directory of Open Access Journals (Sweden)
Aurelian ISAR
2015-01-01
Full Text Available In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous-variable quantum correlations (quantum entanglement and quantum discord for a system consisting of two noninteracting bosonic modes embedded in a thermal environment. We solve the Kossakowski-Lindblad master equation for the time evolution of the considered system and describe the entanglement and discord in terms of the covariance matrix for Gaussian input states. For all values of the temperature of the thermal reservoir, an initial separable Gaussian state remains separable for all times. We study the time evolution of logarithmic negativity, which characterizes the degree of entanglement, and show that in the case of an entangled initial squeezed thermal state, entanglement suppression takes place for all temperatures of the environment, including zero temperature. We analyze the time evolution of the Gaussian quantum discord, which is a measure of all quantum correlations in the bipartite state, including entanglement, and show that it decays asymptotically in time under the effect of the thermal bath. This is in contrast with the sudden death of entanglement. Before the suppression of the entanglement, the qualitative evolution of quantum discord is very similar to that of the entanglement. We describe also the time evolution of the degree of classical correlations and of quantum mutual information, which measures the total correlations of the quantum system.
Open quantum system model of the one-dimensional Burgers equation with tunable shear viscosity
International Nuclear Information System (INIS)
Yepez, Jeffrey
2006-01-01
Presented is an analysis of an open quantum model of the time-dependent evolution of a flow field governed by the nonlinear Burgers equation in one spatial dimension. The quantum model is a system of qubits where there exists a minimum time interval in the time-dependent dynamics. Each temporally discrete unitary quantum-mechanical evolution is followed by state reduction of the quantum state. The mesoscopic behavior of this quantum model is described by a quantum Boltzmann equation with a naturally emergent entropy function and H theorem and the model obeys the detailed balance principle. The macroscopic-scale effective field theory for the quantum model is derived using a perturbative Chapman-Enskog expansion applied to the linearized quantum Boltzmann equation. The entropy function is consistent with the quantum-mechanical collision process and a Fermi-Dirac single-particle distribution function for the occupation probabilities of the qubit's energy eigenstates. Comparisons are presented between analytical predictions and numerical predictions and the agreement is excellent, indicating that the nonlinear Burgers equation with a tunable shear viscosity is the operative macroscopic scale effective field theory
Plate with a hole obeys the averaged null energy condition
International Nuclear Information System (INIS)
Graham, Noah; Olum, Ken D.
2005-01-01
The negative energy density of Casimir systems appears to violate general relativity energy conditions. However, one cannot test the averaged null energy condition (ANEC) using standard calculations for perfectly reflecting plates, because the null geodesic would have to pass through the plates, where the calculation breaks down. To avoid this problem, we compute the contribution to ANEC for a geodesic that passes through a hole in a single plate. We consider both Dirichlet and Neumann boundary conditions in two and three space dimensions. We use a Babinet's principle argument to reduce the problem to a complementary finite disk correction to the perfect mirror result, which we then compute using scattering theory in elliptical and spheroidal coordinates. In the Dirichlet case, we find that the positive correction due to the hole overwhelms the negative contribution of the infinite plate. In the Neumann case, where the infinite plate gives a positive contribution, the hole contribution is smaller in magnitude, so again ANEC is obeyed. These results can be extended to the case of two plates in the limits of large and small hole radii. This system thus provides another example of a situation where ANEC turns out to be obeyed when one might expect it to be violated
Quantum Computing in Solid State Systems
Ruggiero, B; Granata, C
2006-01-01
The aim of Quantum Computation in Solid State Systems is to report on recent theoretical and experimental results on the macroscopic quantum coherence of mesoscopic systems, as well as on solid state realization of qubits and quantum gates. Particular attention has been given to coherence effects in Josephson devices. Other solid state systems, including quantum dots, optical, ion, and spin devices which exhibit macroscopic quantum coherence are also discussed. Quantum Computation in Solid State Systems discusses experimental implementation of quantum computing and information processing devices, and in particular observations of quantum behavior in several solid state systems. On the theoretical side, the complementary expertise of the contributors provides models of the various structures in connection with the problem of minimizing decoherence.
Perturbative approach to Markovian open quantum systems.
Li, Andy C Y; Petruccione, F; Koch, Jens
2014-05-08
The exact treatment of Markovian open quantum systems, when based on numerical diagonalization of the Liouville super-operator or averaging over quantum trajectories, is severely limited by Hilbert space size. Perturbation theory, standard in the investigation of closed quantum systems, has remained much less developed for open quantum systems where a direct application to the Lindblad master equation is desirable. We present such a perturbative treatment which will be useful for an analytical understanding of open quantum systems and for numerical calculation of system observables which would otherwise be impractical.
Quantum systems, channels, information. A mathematical introduction
Energy Technology Data Exchange (ETDEWEB)
Holevo, Alexander S.
2012-07-01
The subject of this book is theory of quantum system presented from information science perspective. The central role is played by the concept of quantum channel and its entropic and information characteristics. Quantum information theory gives a key to understanding elusive phenomena of quantum world and provides a background for development of experimental techniques that enable measuring and manipulation of individual quantum systems. This is important for the new efficient applications such as quantum computing, communication and cryptography. Research in the field of quantum informatics, including quantum information theory, is in progress in leading scientific centers throughout the world. This book gives an accessible, albeit mathematically rigorous and self-contained introduction to quantum information theory, starting from primary structures and leading to fundamental results and to exiting open problems.
Quantum-information processing in disordered and complex quantum systems
International Nuclear Information System (INIS)
Sen, Aditi; Sen, Ujjwal; Ahufinger, Veronica; Briegel, Hans J.; Sanpera, Anna; Lewenstein, Maciej
2006-01-01
We study quantum information processing in complex disordered many body systems that can be implemented by using lattices of ultracold atomic gases and trapped ions. We demonstrate, first in the short range case, the generation of entanglement and the local realization of quantum gates in a disordered magnetic model describing a quantum spin glass. We show that in this case it is possible to achieve fidelities of quantum gates higher than in the classical case. Complex systems with long range interactions, such as ions chains or dipolar atomic gases, can be used to model neural network Hamiltonians. For such systems, where both long range interactions and disorder appear, it is possible to generate long range bipartite entanglement. We provide an efficient analytical method to calculate the time evolution of a given initial state, which in turn allows us to calculate its quantum correlations
Eigenfunctions in chaotic quantum systems
Energy Technology Data Exchange (ETDEWEB)
Baecker, Arnd
2007-07-01
The structure of wavefunctions of quantum systems strongly depends on the underlying classical dynamics. In this text a selection of articles on eigenfunctions in systems with fully chaotic dynamics and systems with a mixed phase space is summarized. Of particular interest are statistical properties like amplitude distribution and spatial autocorrelation function and the implication of eigenfunction structures on transport properties. For systems with a mixed phase space the separation into regular and chaotic states does not always hold away from the semiclassical limit, such that chaotic states may completely penetrate into the region of the regular island. The consequences of this flooding are discussed and universal aspects highlighted. (orig.)
Eigenfunctions in chaotic quantum systems
International Nuclear Information System (INIS)
Baecker, Arnd
2007-01-01
The structure of wavefunctions of quantum systems strongly depends on the underlying classical dynamics. In this text a selection of articles on eigenfunctions in systems with fully chaotic dynamics and systems with a mixed phase space is summarized. Of particular interest are statistical properties like amplitude distribution and spatial autocorrelation function and the implication of eigenfunction structures on transport properties. For systems with a mixed phase space the separation into regular and chaotic states does not always hold away from the semiclassical limit, such that chaotic states may completely penetrate into the region of the regular island. The consequences of this flooding are discussed and universal aspects highlighted. (orig.)
Logical entropy of quantum dynamical systems
Directory of Open Access Journals (Sweden)
Ebrahimzadeh Abolfazl
2016-01-01
Full Text Available This paper introduces the concepts of logical entropy and conditional logical entropy of hnite partitions on a quantum logic. Some of their ergodic properties are presented. Also logical entropy of a quantum dynamical system is dehned and ergodic properties of dynamical systems on a quantum logic are investigated. Finally, the version of Kolmogorov-Sinai theorem is proved.
Quantum control of optomechanical systems
International Nuclear Information System (INIS)
Hofer, S.
2015-01-01
This thesis explores the prospects of entanglement-enhanced quantum control of optomechanical systems. We first discuss several pulsed schemes in which the radiation-pressure interaction is used to generate EPR entanglement between the mechanical mode of a cavity-optomechanical system and a travelling-wave light pulse. The entanglement created in this way can be used as a resource for mechanical state preparation. On the basis of this protocol, we introduce an optomechanical teleportation scheme to transfer an arbitrary light state onto the mechanical system. Furthermore, we describe how one can create a mechanical non-classical state (i.e., a state with a negative Wigner function) by single-photon detection, and, in a similar protocol, how optomechanical systems can be used to demonstrate the violation of a Bell inequality. The second part of the thesis is dedicated to time-continuous quantum control protocols. Making use of optimal-control techniques, we analyse measurement-based feedback cooling of a mechanical oscillator and demonstrate that ground-state cooling is achievable in the sideband-resolved, blue-detuned regime. We then extend this homodyne-detection based setup and introduce the notion of a time-continuous Bell measurement---a generalisation of the standard continuous variable Bell measurement to a continuous measurement setting. Combining this concept with continuous feedback we analyse the generation of a squeezed mechanical steady state via time-continuous teleportation, and the creation of bipartite mechanical entanglement by entanglement swapping. Finally we discuss an experiment demonstrating the evaluation of the conditional optomechanical quantum state by Kalman filtering, constituting a important step towards time-continuous quantum control of optomechanical systems and the possible realisation of the protocols presented in this thesis. (author) [de
Loss energy states of nonstationary quantum systems
International Nuclear Information System (INIS)
Dodonov, V.V.; Man'ko, V.I.
1978-01-01
The concept of loss energy states is introduced. The loss energy states of the quantum harmonic damping oscillator are considered in detail. The method of constructing the loss energy states for general multidimensional quadratic nonstationary quantum systems is briefly discussed
Molecular Robots Obeying Asimov's Three Laws of Robotics.
Kaminka, Gal A; Spokoini-Stern, Rachel; Amir, Yaniv; Agmon, Noa; Bachelet, Ido
2017-01-01
Asimov's three laws of robotics, which were shaped in the literary work of Isaac Asimov (1920-1992) and others, define a crucial code of behavior that fictional autonomous robots must obey as a condition for their integration into human society. While, general implementation of these laws in robots is widely considered impractical, limited-scope versions have been demonstrated and have proven useful in spurring scientific debate on aspects of safety and autonomy in robots and intelligent systems. In this work, we use Asimov's laws to examine these notions in molecular robots fabricated from DNA origami. We successfully programmed these robots to obey, by means of interactions between individual robots in a large population, an appropriately scoped variant of Asimov's laws, and even emulate the key scenario from Asimov's story "Runaround," in which a fictional robot gets into trouble despite adhering to the laws. Our findings show that abstract, complex notions can be encoded and implemented at the molecular scale, when we understand robots on this scale on the basis of their interactions.
Quantum state engineering in hybrid open quantum systems
Joshi, Chaitanya; Larson, Jonas; Spiller, Timothy P.
2016-04-01
We investigate a possibility to generate nonclassical states in light-matter coupled noisy quantum systems, namely, the anisotropic Rabi and Dicke models. In these hybrid quantum systems, a competing influence of coherent internal dynamics and environment-induced dissipation drives the system into nonequilibrium steady states (NESSs). Explicitly, for the anisotropic Rabi model, the steady state is given by an incoherent mixture of two states of opposite parities, but as each parity state displays light-matter entanglement, we also find that the full state is entangled. Furthermore, as a natural extension of the anisotropic Rabi model to an infinite spin subsystem, we next explored the NESS of the anisotropic Dicke model. The NESS of this linearized Dicke model is also an inseparable state of light and matter. With an aim to enrich the dynamics beyond the sustainable entanglement found for the NESS of these hybrid quantum systems, we also propose to combine an all-optical feedback strategy for quantum state protection and for establishing quantum control in these systems. Our present work further elucidates the relevance of such hybrid open quantum systems for potential applications in quantum architectures.
Simulation of n-qubit quantum systems. III. Quantum operations
Radtke, T.; Fritzsche, S.
2007-05-01
During the last decade, several quantum information protocols, such as quantum key distribution, teleportation or quantum computation, have attracted a lot of interest. Despite the recent success and research efforts in quantum information processing, however, we are just at the beginning of understanding the role of entanglement and the behavior of quantum systems in noisy environments, i.e. for nonideal implementations. Therefore, in order to facilitate the investigation of entanglement and decoherence in n-qubit quantum registers, here we present a revised version of the FEYNMAN program for working with quantum operations and their associated (Jamiołkowski) dual states. Based on the implementation of several popular decoherence models, we provide tools especially for the quantitative analysis of quantum operations. Apart from the implementation of different noise models, the current program extension may help investigate the fragility of many quantum states, one of the main obstacles in realizing quantum information protocols today. Program summaryTitle of program: Feynman Catalogue identifier: ADWE_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWE_v3_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: None Operating systems: Any system that supports MAPLE; tested under Microsoft Windows XP, SuSe Linux 10 Program language used:MAPLE 10 Typical time and memory requirements: Most commands that act upon quantum registers with five or less qubits take ⩽10 seconds of processor time (on a Pentium 4 processor with ⩾2 GHz or equivalent) and 5-20 MB of memory. Especially when working with symbolic expressions, however, the memory and time requirements critically depend on the number of qubits in the quantum registers, owing to the exponential dimension growth of the associated Hilbert space. For example, complex (symbolic) noise models (with several Kraus operators) for multi-qubit systems
Quantum state engineering in hybrid open quantum systems
Joshi, Chaitanya; Larson, Jonas; Spiller, Timothy P.
2015-01-01
We investigate a possibility to generate nonclassical states in light-matter coupled noisy quantum systems, namely, the anisotropic Rabi and Dicke models. In these hybrid quantum systems, a competing influence of coherent internal dynamics and environment-induced dissipation drives the system into nonequilibrium steady states (NESSs). Explicitly, for the anisotropic Rabi model, the steady state is given by an incoherent mixture of two states of opposite parities, but as each parity state disp...
Repeated interactions in open quantum systems
Energy Technology Data Exchange (ETDEWEB)
Bruneau, Laurent, E-mail: laurent.bruneau@u-cergy.fr [Laboratoire AGM, Université de Cergy-Pontoise, Site Saint-Martin, BP 222, 95302 Cergy-Pontoise (France); Joye, Alain, E-mail: Alain.Joye@ujf-grenoble.fr [Institut Fourier, UMR 5582, CNRS-Université Grenoble I, BP 74, 38402 Saint-Martin d’Hères (France); Merkli, Marco, E-mail: merkli@mun.ca [Department of Mathematics and Statistics Memorial University of Newfoundland, St. John' s, NL Canada A1C 5S7 (Canada)
2014-07-15
Analyzing the dynamics of open quantum systems has a long history in mathematics and physics. Depending on the system at hand, basic physical phenomena that one would like to explain are, for example, convergence to equilibrium, the dynamics of quantum coherences (decoherence) and quantum correlations (entanglement), or the emergence of heat and particle fluxes in non-equilibrium situations. From the mathematical physics perspective, one of the main challenges is to derive the irreversible dynamics of the open system, starting from a unitary dynamics of the system and its environment. The repeated interactions systems considered in these notes are models of non-equilibrium quantum statistical mechanics. They are relevant in quantum optics, and more generally, serve as a relatively well treatable approximation of a more difficult quantum dynamics. In particular, the repeated interaction models allow to determine the large time (stationary) asymptotics of quantum systems out of equilibrium.
Global quantum discord in multipartite systems
Energy Technology Data Exchange (ETDEWEB)
Rulli, C. C.; Sarandy, M. S. [Instituto de Fisica, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, Gragoata, 24210-346 Niteroi, RJ (Brazil)
2011-10-15
We propose a global measure for quantum correlations in multipartite systems, which is obtained by suitably recasting the quantum discord in terms of relative entropy and local von Neumann measurements. The measure is symmetric with respect to subsystem exchange and is shown to be nonnegative for an arbitrary state. As an illustration, we consider tripartite correlations in the Werner-GHZ (Greenberger-Horne-Zeilinger) state and multipartite correlations at quantum criticality. In particular, in contrast with the pairwise quantum discord, we show that the global quantum discord is able to characterize the infinite-order quantum phase transition in the Ashkin-Teller spin chain.
Past Quantum States of a Monitored System
DEFF Research Database (Denmark)
Gammelmark, Søren; Julsgaard, Brian; Mølmer, Klaus
2013-01-01
A density matrix ρ(t) yields probabilistic information about the outcome of measurements on a quantum system. We introduce here the past quantum state, which, at time T, accounts for the state of a quantum system at earlier times t...(t) and E(t), conditioned on the dynamics and the probing of the system until t and in the time interval [t, T], respectively. The past quantum state is characterized by its ability to make better predictions for the unknown outcome of any measurement at t than the conventional quantum state at that time....... On the one hand, our formalism shows how smoothing procedures for estimation of past classical signals by a quantum probe [M. Tsang, Phys. Rev. Lett. 102 250403 (2009)] apply also to describe the past state of the quantum system itself. On the other hand, it generalizes theories of pre- and postselected...
Entangling transformations in composite finite quantum systems
International Nuclear Information System (INIS)
Vourdas, A
2003-01-01
Phase space methods are applied in the context of finite quantum systems. 'Galois quantum systems' (with a dimension which is a power of a prime number) are considered, and symplectic Sp(2,Z(d)) transformations are studied. Composite systems comprising two finite quantum systems are also considered. Symplectic Sp(4,Z(d)) transformations are classified into local and entangling ones and the necessary matrices which perform such transformations are calculated numerically
Thermodynamics of Weakly Measured Quantum Systems.
Alonso, Jose Joaquin; Lutz, Eric; Romito, Alessandro
2016-02-26
We consider continuously monitored quantum systems and introduce definitions of work and heat along individual quantum trajectories that are valid for coherent superposition of energy eigenstates. We use these quantities to extend the first and second laws of stochastic thermodynamics to the quantum domain. We illustrate our results with the case of a weakly measured driven two-level system and show how to distinguish between quantum work and heat contributions. We finally employ quantum feedback control to suppress detector backaction and determine the work statistics.
The Dynamical Invariant of Open Quantum System
Wu, S. L.; Zhang, X. Y.; Yi, X. X.
2015-01-01
The dynamical invariant, whose expectation value is constant, is generalized to open quantum system. The evolution equation of dynamical invariant (the dynamical invariant condition) is presented for Markovian dynamics. Different with the dynamical invariant for the closed quantum system, the evolution of the dynamical invariant for the open quantum system is no longer unitary, and the eigenvalues of it are time-dependent. Since any hermitian operator fulfilling dynamical invariant condition ...
Quantum entanglement and quantum information in biological systems (DNA)
Hubač, Ivan; Švec, Miloslav; Wilson, Stephen
2017-12-01
Recent studies of DNA show that the hydrogen bonds between given base pairs can be treated as diabatic systems with spin-orbit coupling. For solid state systems strong diabaticity and spin-orbit coupling the possibility of forming Majorana fermions has been discussed. We analyze the hydrogen bonds in the base pairs in DNA from this perspective. Our analysis is based on a quasiparticle supersymmetric transformation which couples electronic and vibrational motion and includes normal coordinates and the corresponding momenta. We define qubits formed by Majorana fermions in the hydrogen bonds and also discuss the entangled states in base pairs. Quantum information and quantum entropy are introduced. In addition to the well-known classical information connected with the DNA base pairs, we also consider quantum information and show that the classical and quantum information are closely connected.
Quantum mechanics in complex systems
Hoehn, Ross Douglas
This document should be considered in its separation; there are three distinct topics contained within and three distinct chapters within the body of works. In a similar fashion, this abstract should be considered in three parts. Firstly, we explored the existence of multiply-charged atomic ions by having developed a new set of dimensional scaling equations as well as a series of relativistic augmentations to the standard dimensional scaling procedure and to the self-consistent field calculations. Secondly, we propose a novel method of predicting drug efficacy in hopes to facilitate the discovery of new small molecule therapeutics by modeling the agonist-protein system as being similar to the process of Inelastic Electron Tunneling Spectroscopy. Finally, we facilitate the instruction in basic quantum mechanical topics through the use of quantum games; this method of approach allows for the generation of exercises with the intent of conveying the fundamental concepts within a first year quantum mechanics classroom. Furthermore, no to be mentioned within the body of the text, yet presented in appendix form, certain works modeling the proliferation of cells types within the confines of man-made lattices for the purpose of facilitating artificial vascular transplants. In Chapter 2, we present a theoretical framework which describes multiply-charged atomic ions, their stability within super-intense laser fields, also lay corrections to the systems due to relativistic effects. Dimensional scaling calculations with relativistic corrections for systems: H, H-, H 2-, He, He-, He2-, He3- within super-intense laser fields were completed. Also completed were three-dimensional self consistent field calculations to verify the dimensionally scaled quantities. With the aforementioned methods the system's ability to stably bind 'additional' electrons through the development of multiple isolated regions of high potential energy leading to nodes of high electron density is shown
Dissipation and decoherence in quantum systems
International Nuclear Information System (INIS)
Menskii, Mikhail B
2003-01-01
The theory of dissipative quantum systems and its relation to the quantum theory of continuous measurements are reviewed. Constructing a correct theory of a dissipative quantum system requires that the system's interaction with its environment (reservoir) be taken into account. Since information about the system is 'recorded' in the state of the reservoir, the quantum theory of continuous measurements can be used to account for the influence of the reservoir. If based on the use of restricted path integrals, this theory does not require an explicit reservoir model and is therefore much simpler technically. (reviews of topical problems)
Quantum speed limits in open system dynamics.
del Campo, A; Egusquiza, I L; Plenio, M B; Huelga, S F
2013-02-01
Bounds to the speed of evolution of a quantum system are of fundamental interest in quantum metrology, quantum chemical dynamics, and quantum computation. We derive a time-energy uncertainty relation for open quantum systems undergoing a general, completely positive, and trace preserving evolution which provides a bound to the quantum speed limit. When the evolution is of the Lindblad form, the bound is analogous to the Mandelstam-Tamm relation which applies in the unitary case, with the role of the Hamiltonian being played by the adjoint of the generator of the dynamical semigroup. The utility of the new bound is exemplified in different scenarios, ranging from the estimation of the passage time to the determination of precision limits for quantum metrology in the presence of dephasing noise.
Quantum open system theory: bipartite aspects.
Yu, T; Eberly, J H
2006-10-06
We demonstrate in straightforward calculations that even under ideally weak noise the relaxation of bipartite open quantum systems contains elements not previously encountered in quantum noise physics. While additivity of decay rates is known to be generic for decoherence of a single system, we demonstrate that it breaks down for bipartite coherence of even the simplest composite systems.
Hybrid quantum systems: Outsourcing superconducting qubits
Cleland, Andrew
Superconducting qubits offer excellent prospects for manipulating quantum information, with good qubit lifetimes, high fidelity single- and two-qubit gates, and straightforward scalability (admittedly with multi-dimensional interconnect challenges). One interesting route for experimental development is the exploration of hybrid systems, i.e. coupling superconducting qubits to other systems. I will report on our group's efforts to develop approaches that will allow interfacing superconducting qubits in a quantum-coherent fashion to spin defects in solids, to optomechanical devices, and to resonant nanomechanical structures. The longer term goals of these efforts include transferring quantum states between different qubit systems; generating and receiving ``flying'' acoustic phonon-based as well as optical photon-based qubits; and ultimately developing systems that can be used for quantum memory, quantum computation and quantum communication, the last in both the microwave and fiber telecommunications bands. Work is supported by Grants from AFOSR, ARO, DOE and NSF.
Macroscopic quantum systems and gravitational phenomena
International Nuclear Information System (INIS)
Pikovski, I.
2014-01-01
Low-energy quantum systems are studied theoretically in light of possible experiments to test the interplay between quantum theory and general relativity. The research focus in this thesis is on quantum systems which can be controlled with very high precision and which allow for tests of quantum theory at novel scales in terms of mass and size. The pulsed regime of opto-mechanics is explored and it is shown how short optical pulses can be used to prepare and characterize quantum states of a massive mechanical resonator, and how some phenomenological models of quantum gravity can be probed. In addition, quantum interferometry with photons and matter-waves in the presence of gravitational time dilation is considered. It is shown that time dilation causes entanglement between internal states and the center-of-mass position and that it leads to decoherence of all composite quantum systems. The results of the thesis show that the interplay between quantum theory and general relativity affects even low-energy quantum systems and that it offers novel phenomena which can be probed in experiments. (author) [de
Controllable Subspaces of Open Quantum Dynamical Systems
International Nuclear Information System (INIS)
Zhang Ming; Gong Erling; Xie Hongwei; Hu Dewen; Dai Hongyi
2008-01-01
This paper discusses the concept of controllable subspace for open quantum dynamical systems. It is constructively demonstrated that combining structural features of decoherence-free subspaces with the ability to perform open-loop coherent control on open quantum systems will allow decoherence-free subspaces to be controllable. This is in contrast to the observation that open quantum dynamical systems are not open-loop controllable. To a certain extent, this paper gives an alternative control theoretical interpretation on why decoherence-free subspaces can be useful for quantum computation.
Capacity on wireless quantum cellular communication system
Zhou, Xiang-Zhen; Yu, Xu-Tao; Zhang, Zai-Chen
2018-03-01
Quantum technology is making excellent prospects in future communication networks. Entanglement generation and purification are two major components in quantum networks. Combining these two techniques with classical cellular mobile communication, we proposed a novel wireless quantum cellular(WQC) communication system which is possible to realize commercial mobile quantum communication. In this paper, the architecture and network topology of WQC communication system are discussed, the mathematical model of WQC system is extracted and the serving capacity, indicating the ability to serve customers, is defined and calculated under certain circumstances.
Manipulating Quantum Coherence in Solid State Systems
Flatté, Michael E; The NATO Advanced Study Institute "Manipulating Quantum Coherence in Solid State Systems"
2007-01-01
The NATO Advanced Study Institute "Manipulating Quantum Coherence in Solid State Systems", in Cluj-Napoca, Romania, August 29-September 9, 2005, presented a fundamental introduction to solid-state approaches to achieving quantum computation. This proceedings volume describes the properties of quantum coherence in semiconductor spin-based systems and the behavior of quantum coherence in superconducting systems. Semiconductor spin-based approaches to quantum computation have made tremendous advances in the past several years. Coherent populations of spins can be oriented, manipulated and detected experimentally. Rapid progress has been made towards performing the same tasks on individual spins (nuclear, ionic, or electronic) with all-electrical means. Superconducting approaches to quantum computation have demonstrated single qubits based on charge eigenstates as well as flux eigenstates. These topics have been presented in a pedagogical fashion by leading researchers in the fields of semiconductor-spin-based qu...
Energy balance for a dissipative quantum system
International Nuclear Information System (INIS)
Kumar, Jishad
2014-01-01
The role of random force in maintaining equilibrium in a dissipative quantum system is studied here. We compute the instantaneous power supplied by the fluctuating (random) force, which provides information about the work done by the random force on the quantum subsystem of interest. The quantum Langevin equation formalism is used here to verify that, at equilibrium, the work done by the fluctuating force balances the energy lost by the quantum subsystem to the heat bath. The quantum subsystem we choose to couple to the heat bath is the charged oscillator in a magnetic field. We perform the calculations using the Drude regularized spectral density of bath oscillators instead of using a strict ohmic spectral density that gives memoryless damping. We also discuss the energy balance for our dissipative quantum system and in this regard it is to be understood that the physical system is the charged magneto-oscillator coupled to the heat bath, not the uncoupled charged magneto-oscillator. (paper)
Relativistic Quantum Transport in Graphene Systems
2015-07-09
dimensional Dirac material systems. 2 List of Publications 1. X. Ni, L. Huang, Y.-C. Lai, and L. M. Pecora, “Effect of chaos on relativistic quantum...development of relativistic quantum devices based on graphene or alternative two-dimensional Dirac material systems. In the project period, we studied
Dynamical entropy for infinite quantum systems
International Nuclear Information System (INIS)
Hudetz, T.
1990-01-01
We review the recent physical application of the so-called Connes-Narnhofer-Thirring entropy, which is the successful quantum mechanical generalization of the classical Kolmogorov-Sinai entropy and, by its very conception, is a dynamical entropy for infinite quantum systems. We thus comparingly review also the physical applications of the classical dynamical entropy for infinite classical systems. 41 refs. (Author)
Linear response theory for quantum open systems
Wei, J. H.; Yan, YiJing
2011-01-01
Basing on the theory of Feynman's influence functional and its hierarchical equations of motion, we develop a linear response theory for quantum open systems. Our theory provides an effective way to calculate dynamical observables of a quantum open system at its steady-state, which can be applied to various fields of non-equilibrium condensed matter physics.
Controlling the Shannon Entropy of Quantum Systems
Xing, Yifan; Wu, Jun
2013-01-01
This paper proposes a new quantum control method which controls the Shannon entropy of quantum systems. For both discrete and continuous entropies, controller design methods are proposed based on probability density function control, which can drive the quantum state to any target state. To drive the entropy to any target at any prespecified time, another discretization method is proposed for the discrete entropy case, and the conditions under which the entropy can be increased or decreased are discussed. Simulations are done on both two- and three-dimensional quantum systems, where division and prediction are used to achieve more accurate tracking. PMID:23818819
Controlling the Shannon Entropy of Quantum Systems
Directory of Open Access Journals (Sweden)
Yifan Xing
2013-01-01
Full Text Available This paper proposes a new quantum control method which controls the Shannon entropy of quantum systems. For both discrete and continuous entropies, controller design methods are proposed based on probability density function control, which can drive the quantum state to any target state. To drive the entropy to any target at any prespecified time, another discretization method is proposed for the discrete entropy case, and the conditions under which the entropy can be increased or decreased are discussed. Simulations are done on both two- and three-dimensional quantum systems, where division and prediction are used to achieve more accurate tracking.
Quantum information theory with Gaussian systems
Energy Technology Data Exchange (ETDEWEB)
Krueger, O.
2006-04-06
This thesis applies ideas and concepts from quantum information theory to systems of continuous-variables such as the quantum harmonic oscillator. The focus is on three topics: the cloning of coherent states, Gaussian quantum cellular automata and Gaussian private channels. Cloning was investigated both for finite-dimensional and for continuous-variable systems. We construct a private quantum channel for the sequential encryption of coherent states with a classical key, where the key elements have finite precision. For the case of independent one-mode input states, we explicitly estimate this precision, i.e. the number of key bits needed per input state, in terms of these parameters. (orig.)
Quantum information theory with Gaussian systems
International Nuclear Information System (INIS)
Krueger, O.
2006-01-01
This thesis applies ideas and concepts from quantum information theory to systems of continuous-variables such as the quantum harmonic oscillator. The focus is on three topics: the cloning of coherent states, Gaussian quantum cellular automata and Gaussian private channels. Cloning was investigated both for finite-dimensional and for continuous-variable systems. We construct a private quantum channel for the sequential encryption of coherent states with a classical key, where the key elements have finite precision. For the case of independent one-mode input states, we explicitly estimate this precision, i.e. the number of key bits needed per input state, in terms of these parameters. (orig.)
International Nuclear Information System (INIS)
Garbaczewski, P.
1981-01-01
Both quantum and classical sine--Gordon fields can be built out of the fundamental free neutral massive excitations, which quantally obey the Bose--Einstein statistics. At the roots of the ''boson-fermion reciprocity'' invented by Coleman, lies the spin 1/2 approximation of the underlying Bose system. By generalizing the coherent state methods to incorporate non-Fock quantum structures and to give account of the so-called boson transformation theory, we construct the carrier Hilbert space H/sub SG/ for quantum soliton operators. The h→0 limit of state expectation values of these operators among pure coherentlike states in H/sub SG/ reproduces the classical sine--Gordon field. The related (classical and quantum) spin 1/2 xyz Heisenberg model field is built out of the fundamental sine--Gordon excitations, and hence can be consistently defined on the appropriate subset of the quantum soliton Hilbert space H/sub x/yz . A correct classical limit is here shown to arise for the Heisenberg system: phase manifolds of the classical Heisenberg and sine--Gordon systems cannot be then viewed independently as a consequence of the quantum relation
Quantum equilibria for macroscopic systems
International Nuclear Information System (INIS)
Grib, A; Khrennikov, A; Parfionov, G; Starkov, K
2006-01-01
Nash equilibria are found for some quantum games with particles with spin-1/2 for which two spin projections on different directions in space are measured. Examples of macroscopic games with the same equilibria are given. Mixed strategies for participants of these games are calculated using probability amplitudes according to the rules of quantum mechanics in spite of the macroscopic nature of the game and absence of Planck's constant. A possible role of quantum logical lattices for the existence of macroscopic quantum equilibria is discussed. Some examples for spin-1 cases are also considered
Quantum equilibria for macroscopic systems
Energy Technology Data Exchange (ETDEWEB)
Grib, A [Department of Theoretical Physics and Astronomy, Russian State Pedagogical University, St. Petersburg (Russian Federation); Khrennikov, A [Centre for Mathematical Modelling in Physics and Cognitive Sciences Vaexjoe University (Sweden); Parfionov, G [Department of Mathematics, St. Petersburg State University of Economics and Finances (Russian Federation); Starkov, K [Department of Mathematics, St. Petersburg State University of Economics and Finances (Russian Federation)
2006-06-30
Nash equilibria are found for some quantum games with particles with spin-1/2 for which two spin projections on different directions in space are measured. Examples of macroscopic games with the same equilibria are given. Mixed strategies for participants of these games are calculated using probability amplitudes according to the rules of quantum mechanics in spite of the macroscopic nature of the game and absence of Planck's constant. A possible role of quantum logical lattices for the existence of macroscopic quantum equilibria is discussed. Some examples for spin-1 cases are also considered.
Interaction between classical and quantum systems
International Nuclear Information System (INIS)
Sherry, T.N.; Sudarshan, E.C.G.
1977-10-01
An unconventional approach to the measurement problem in quantum mechanics is considered--the apparatus is treated as a classical system, belonging to the macro-world. In order to have a measurement the apparatus must interact with the quantum system. As a first step, the classical apparatus is embedded into a large quantum mechanical structure, making use of a superselection principle. The apparatus and system are coupled such that the apparatus remains classical (principle of integrity), and unambiguous information of the values of a quantum observable are transferred to the variables of the apparatus. Further measurement of the classical apparatus can be done, causing no problems of principle. Thus interactions causing pointers to move (which are not treated) can be added. The restrictions placed by the principle of integrity on the form of the interaction between classical and quantum systems are examined and illustration is given by means of a simple example in which one sees the principle of integrity at work
Non-perturbative description of quantum systems
Feranchuk, Ilya; Le, Van-Hoang; Ulyanenkov, Alexander
2015-01-01
This book introduces systematically the operator method for the solution of the Schrödinger equation. This method permits to describe the states of quantum systems in the entire range of parameters of Hamiltonian with a predefined accuracy. The operator method is unique compared with other non-perturbative methods due to its ability to deliver in zeroth approximation the uniformly suitable estimate for both ground and excited states of quantum system. The method has been generalized for the application to quantum statistics and quantum field theory. In this book, the numerous applications of operator method for various physical systems are demonstrated. Simple models are used to illustrate the basic principles of the method which are further used for the solution of complex problems of quantum theory for many-particle systems. The results obtained are supplemented by numerical calculations, presented as tables and figures.
Synchronization in Quantum Key Distribution Systems
Directory of Open Access Journals (Sweden)
Anton Pljonkin
2017-10-01
Full Text Available In the description of quantum key distribution systems, much attention is paid to the operation of quantum cryptography protocols. The main problem is the insufficient study of the synchronization process of quantum key distribution systems. This paper contains a general description of quantum cryptography principles. A two-line fiber-optic quantum key distribution system with phase coding of photon states in transceiver and coding station synchronization mode was examined. A quantum key distribution system was built on the basis of the scheme with automatic compensation of polarization mode distortions. Single-photon avalanche diodes were used as optical radiation detecting devices. It was estimated how the parameters used in quantum key distribution systems of optical detectors affect the detection of the time frame with attenuated optical pulse in synchronization mode with respect to its probabilistic and time-domain characteristics. A design method was given for the process that detects the time frame that includes an optical pulse during synchronization. This paper describes the main quantum communication channel attack methods by removing a portion of optical emission. This paper describes the developed synchronization algorithm that takes into account the time required to restore the photodetector’s operation state after the photon has been registered during synchronization. The computer simulation results of the developed synchronization algorithm were analyzed. The efficiency of the developed algorithm with respect to synchronization process protection from unauthorized gathering of optical emission is demonstrated herein.
Mixing and entropy increase in quantum systems
International Nuclear Information System (INIS)
Narnhofer, H.; Pflug, A.; Thirring, W.
1989-01-01
This paper attempts to explain the key feature of deterministic chaotic classical systems and how they can be translated to quantum systems. To do so we develop the appropriate algebraic language for the non-specialist. 22 refs. (Author)
Quantum work relations and response theory in parity-time-symmetric quantum systems
Wei, Bo-Bo
2018-01-01
In this work, we show that a universal quantum work relation for a quantum system driven arbitrarily far from equilibrium extends to a parity-time- (PT -) symmetric quantum system with unbroken PT symmetry, which is a consequence of microscopic reversibility. The quantum Jarzynski equality, linear response theory, and Onsager reciprocal relations for the PT -symmetric quantum system are recovered as special cases of the universal quantum work relation in a PT -symmetric quantum system. In the regime of broken PT symmetry, the universal quantum work relation does not hold because the norm is not preserved during the dynamics.
Yanagisawa, Masahiro
2007-01-01
We provide a control theoretical method for a computational lower bound of quantum algorithms based on quantum walks of a finite time horizon. It is shown that given a quantum network, there exists a control theoretical expression of the quantum system and the transition probability of the quantum walk is related to a norm of the associated transfer function.
Classical system underlying a diffracting quantum billiard
Indian Academy of Sciences (India)
Manan Jain
2018-01-05
Jan 5, 2018 ... Wave equation; rays; quantum chaos. PACS Nos 03.65.Ge; 05.45.Mt; 42.25.Fx. 1. Introduction. Diffraction [1] is a complex wave phenomenon which manifests classically and quantum mechanically. Among a wide range of systems where diffraction becomes important, there is an interesting situation of.
Quantum contextuality in N-boson systems
International Nuclear Information System (INIS)
Benatti, Fabio; Floreanini, Roberto; Genovese, Marco; Olivares, Stefano
2011-01-01
Quantum contextuality in systems of identical bosonic particles is explicitly exhibited via the maximum violation of a suitable inequality of Clauser-Horne-Shimony-Holt type. Unlike the approaches considered so far, which make use of single-particle observables, our analysis involves collective observables constructed using multiboson operators. An exemplifying scheme to test this violation with a quantum optical setup is also discussed.
Equilibration and thermalization in finite quantum systems
International Nuclear Information System (INIS)
Yukalov, V I
2011-01-01
Experiments with trapped atomic gases have opened novel possibilities for studying the evolution of nonequilibrium finite quantum systems, which revived the necessity of reconsidering and developing the theory of such processes. This review analyzes the basic approaches to describing the phenomena of equilibration, thermalization, and decoherence in finite quantum systems. Isolated, nonisolated, and quasi-isolated quantum systems are considered. The relations between equilibration, decoherence, and the existence of time arrow are emphasized. The possibility for the occurrence of rare events, preventing complete equilibration, are mentioned
Limit cycles in quantum systems
Energy Technology Data Exchange (ETDEWEB)
Niemann, Patrick
2015-04-27
In this thesis we investigate Limit Cycles in Quantum Systems. Limit cycles are a renormalization group (RG) topology. When degrees of freedom are integrated out, the coupling constants flow periodically in a closed curve. The presence of limit cycles is restricted by the necessary condition of discrete scale invariance. A signature of discrete scale invariance and limit cycles is log-periodic behavior. The first part of this thesis is concerned with the study of limit cycles with the similarity renormalization group (SRG). Limit cycles are mainly investigated within conventional renormalization group frameworks, where degrees of freedom, which are larger than a given cutoff, are integrated out. In contrast, in the SRG potentials are unitarily transformed and thereby obtain a band-diagonal structure. The width of the band structure can be regarded as an effective cutoff. We investigate the appearance of limit cycles in the SRG evolution. Our aim is to extract signatures as well as the scaling factor of the limit cycle. We consider the 1/R{sup 2}-potential in a two-body system and a three-body system with large scattering lengths. Both systems display a limit cycle. Besides the frequently used kinetic energy generator we apply the exponential and the inverse generator. In the second part of this thesis, Limit Cycles at Finite Density, we examine the pole structure of the scattering amplitude for distinguishable fermions at zero temperature in the medium. Unequal masses and a filled Fermi sphere for each fermion species are considered. We focus on negative scattering lengths and the unitary limit. The properties of the three-body spectrum in the medium and implications for the phase structure of ultracold Fermi gases are discussed.
DEFF Research Database (Denmark)
Aramburu, José Antonio; García-Fernández, Pablo; García Lastra, Juan Maria
2016-01-01
that the anomalous positive g∥ shift (g∥−g0=0.065) measured at T=20 K obeys the superposition of the |3 z2−r2⟩ and |x2−y2⟩ states driven by quantum effects associated with the zero-point motion, a mechanism first put forward by O'Brien for static Jahn–Teller systems and later extended by Ham to the dynamic Jahn...... of the calculated energy barriers for different Jahn–Teller systems allowed us to explain the origin of the compressed geometry observed for CaO:Ni+....
Open quantum systems and error correction
Shabani Barzegar, Alireza
Quantum effects can be harnessed to manipulate information in a desired way. Quantum systems which are designed for this purpose are suffering from harming interaction with their surrounding environment or inaccuracy in control forces. Engineering different methods to combat errors in quantum devices are highly demanding. In this thesis, I focus on realistic formulations of quantum error correction methods. A realistic formulation is the one that incorporates experimental challenges. This thesis is presented in two sections of open quantum system and quantum error correction. Chapters 2 and 3 cover the material on open quantum system theory. It is essential to first study a noise process then to contemplate methods to cancel its effect. In the second chapter, I present the non-completely positive formulation of quantum maps. Most of these results are published in [Shabani and Lidar, 2009b,a], except a subsection on geometric characterization of positivity domain of a quantum map. The real-time formulation of the dynamics is the topic of the third chapter. After introducing the concept of Markovian regime, A new post-Markovian quantum master equation is derived, published in [Shabani and Lidar, 2005a]. The section of quantum error correction is presented in three chapters of 4, 5, 6 and 7. In chapter 4, we introduce a generalized theory of decoherence-free subspaces and subsystems (DFSs), which do not require accurate initialization (published in [Shabani and Lidar, 2005b]). In Chapter 5, we present a semidefinite program optimization approach to quantum error correction that yields codes and recovery procedures that are robust against significant variations in the noise channel. Our approach allows us to optimize the encoding, recovery, or both, and is amenable to approximations that significantly improve computational cost while retaining fidelity (see [Kosut et al., 2008] for a published version). Chapter 6 is devoted to a theory of quantum error correction (QEC
Coherence protection in coupled quantum systems
Cammack, H. M.; Kirton, P.; Stace, T. M.; Eastham, P. R.; Keeling, J.; Lovett, B. W.
2018-02-01
The interaction of a quantum system with its environment causes decoherence, setting a fundamental limit on its suitability for quantum information processing. However, we show that if the system consists of coupled parts with different internal energy scales then the interaction of one part with a thermal bath need not lead to loss of coherence from the other. Remarkably, we find that the protected part can remain coherent for longer when the coupling to the bath becomes stronger or the temperature is raised. Our theory will enable the design of decoherence-resistant hybrid quantum computers.
System and method for making quantum dots
Bakr, Osman; Pan, Jun; El-Ballouli, Ala'a O.; Knudsen, Kristian Rahbek; Abdelhady, Ahmed L.
2015-01-01
Embodiments of the present disclosure provide for methods of making quantum dots (QDs) (passivated or unpassivated) using a continuous flow process, systems for making QDs using a continuous flow process, and the like. In one or more embodiments
Stabilization of classic and quantum systems
International Nuclear Information System (INIS)
Buts, V.A.
2012-01-01
It is shown that the mechanism of quantum whirligig can be successfully used for stabilization of classical systems. In particular, the conditions for stabilization of charged particles and radiation fluxes in plasma are found.
Ground states of quantum spin systems
International Nuclear Information System (INIS)
Bratteli, Ola; Kishimoto, Akitaka; Robinson, D.W.
1978-07-01
The authors prove that ground states of quantum spin systems are characterized by a principle of minimum local energy and that translationally invariant ground states are characterized by the principle of minimum energy per unit volume
Quantum Phenomena in Low-Dimensional Systems
Geller, Michael R.
2001-01-01
A brief summary of the physics of low-dimensional quantum systems is given. The material should be accessible to advanced physics undergraduate students. References to recent review articles and books are provided when possible.
Quantum fluctuations in mesoscopic and macroscopic systems
International Nuclear Information System (INIS)
Cerdeira, H.A.; Guinea Lopez, F.; Weiss, U.
1991-01-01
The conference presentations have been grouped in three chapters; Quantum Transport (4 papers), Dissipation in Discrete Systems (7 papers) and Mesoscopic Junction, Rings and Arrays (6 papers). A separate abstract was prepared for each paper. Refs and figs
Approach to equilibrium in infinite quantum systems
International Nuclear Information System (INIS)
Haag, R.
1975-01-01
Ergodic theory of infinite quantum systems is discussed. The framework of this theory is based in an algebra of quasi-local observables. Nonrelativistic situation, i.e., Galilei invariance and Clifford algebra, is used [pt
International Nuclear Information System (INIS)
Zhu, Ka-Di; Li, Wai-Sang
2003-01-01
The quantum coherent oscillations in a coherently driven quantum dot-cavity system with the presence of strong exciton-phonon interactions are investigated theoretically in a fully quantum treatment. It is shown that even at zero temperature, the strong exciton-phonon interactions still affect the quantum coherent oscillations significantly
The fractional dynamics of quantum systems
Lu, Longzhao; Yu, Xiangyang
2018-05-01
The fractional dynamic process of a quantum system is a novel and complicated problem. The establishment of a fractional dynamic model is a significant attempt that is expected to reveal the mechanism of fractional quantum system. In this paper, a generalized time fractional Schrödinger equation is proposed. To study the fractional dynamics of quantum systems, we take the two-level system as an example and derive the time fractional equations of motion. The basic properties of the system are investigated by solving this set of equations in the absence of light field analytically. Then, when the system is subject to the light field, the equations are solved numerically. It shows that the two-level system described by the time fractional Schrödinger equation we proposed is a confirmable system.
Exotic quantum order in low-dimensional systems
Girvin, S. M.
1998-08-01
Strongly correlated quantum systems in low dimensions often exhibit novel quantum ordering. This ordering is sometimes hidden and can be revealed only by examining new "dual" types of correlations. Such ordering leads to novel collection modes and fractional quantum numbers. Examples will be presented from quantum spin chains and the quantum Hall effect.
CIME School on Quantum Many Body Systems
Rivasseau, Vincent; Solovej, Jan Philip; Spencer, Thomas
2012-01-01
The book is based on the lectures given at the CIME school "Quantum many body systems" held in the summer of 2010. It provides a tutorial introduction to recent advances in the mathematics of interacting systems, written by four leading experts in the field: V. Rivasseau illustrates the applications of constructive Quantum Field Theory to 2D interacting electrons and their relation to quantum gravity; R. Seiringer describes a proof of Bose-Einstein condensation in the Gross-Pitaevski limit and explains the effects of rotating traps and the emergence of lattices of quantized vortices; J.-P. Solovej gives an introduction to the theory of quantum Coulomb systems and to the functional analytic methods used to prove their thermodynamic stability; finally, T. Spencer explains the supersymmetric approach to Anderson localization and its relation to the theory of random matrices. All the lectures are characterized by their mathematical rigor combined with physical insights.
Isoperiodic classical systems and their quantum counterparts
International Nuclear Information System (INIS)
Asorey, M.; Carinena, J.F.; Marmo, G.; Perelomov, A.
2007-01-01
One-dimensional isoperiodic classical systems have been first analyzed by Abel. Abel's characterization can be extended for singular potentials and potentials which are not defined on the whole real line. The standard shear equivalence of isoperiodic potentials can also be extended by using reflection and inversion transformations. We provide a full characterization of isoperiodic rational potentials showing that they are connected by translations, reflections or Joukowski transformations. Upon quantization many of these isoperiodic systems fail to exhibit identical quantum energy spectra. This anomaly occurs at order O(h 2 ) because semiclassical corrections of energy levels of order O(h) are identical for all isoperiodic systems. We analyze families of systems where this quantum anomaly occurs and some special systems where the spectral identity is preserved by quantization. Conversely, we point out the existence of isospectral quantum systems which do not correspond to isoperiodic classical systems
Dynamics and thermodynamics of linear quantum open systems.
Martinez, Esteban A; Paz, Juan Pablo
2013-03-29
We analyze the evolution of the quantum state of networks of quantum oscillators coupled with arbitrary external environments. We show that the reduced density matrix of the network always obeys a local master equation with a simple analytical solution. We use this to study the emergence of thermodynamical laws in the long time regime demonstrating two main results: First, we show that it is impossible to build a quantum absorption refrigerator using linear networks (thus, nonlinearity is an essential resource for such refrigerators recently studied by Levy and Kosloff [Phys. Rev. Lett. 108, 070604 (2012)] and Levy et al. [Phys. Rev. B 85, 061126 (2012)]). Then, we show that the third law imposes constraints on the low frequency behavior of the environmental spectral densities.
Quantum system lifetimes and measurement perturbations
International Nuclear Information System (INIS)
Najakov, E.
1977-05-01
The recently proposed description of quantum system decay in terms of repeated measurement perturbations is modified. The possibility of retarded reductions to a unique quantum state, due to ineffective localization of the decay products at initial time measurements, is simply taken into account. The exponential decay law is verified again. A modified equation giving the observed lifetime in terms of unperturbed quantum decay law, measurement frequency and reduction law is derived. It predicts deviations of the observed lifetime from the umperturbed one, together with a dependence on experimental procedures. The influence of different model unperturbed decay laws and reduction laws on this effect is studied
Noise management to achieve superiority in quantum information systems
Nemoto, Kae; Devitt, Simon; Munro, William J.
2017-06-01
Quantum information systems are expected to exhibit superiority compared with their classical counterparts. This superiority arises from the quantum coherences present in these quantum systems, which are obviously absent in classical ones. To exploit such quantum coherences, it is essential to control the phase information in the quantum state. The phase is analogue in nature, rather than binary. This makes quantum information technology fundamentally different from our classical digital information technology. In this paper, we analyse error sources and illustrate how these errors must be managed for the system to achieve the required fidelity and a quantum superiority. This article is part of the themed issue 'Quantum technology for the 21st century'.
Conductance in double quantum well systems
International Nuclear Information System (INIS)
Hasbun, J E
2003-01-01
The object of this paper is to review the electronic conductance in double quantum well systems. These are quantum well structures in which electrons are confined in the z direction by large band gap material barrier layers, yet form a free two-dimensional Fermi gas within the sandwiched low band gap material layers in the x-y plane. Aspects related to the conductance in addition to the research progress made since the inception of such systems are included. While the review focuses on the tunnelling conductance properties of double quantum well devices, the longitudinal conductance is also discussed. Double quantum well systems are a more recent generation of structures whose precursors are the well known double-barrier resonant tunnelling systems. Thus, they have electronic signatures such as negative differential resistance, in addition to resonant tunnelling, whose behaviours depend on the wavefunction coupling between the quantum wells. As such, the barrier which separates the quantum wells can be tailored in order to provide better control of the device's electronic properties over their single well ancestors. (topical review)
Quantum optical properties in plasmonic systems
Energy Technology Data Exchange (ETDEWEB)
Ooi, C. H. Raymond [Department of Physics, University of Malaya, 50603, Kuala Lumpur (Malaysia)
2015-04-24
Plasmonic metallic particle (MP) can affect the optical properties of a quantum system (QS) in a remarkable way. We develop a general quantum nonlinear formalism with exact vectorial description for the scattered photons by the QS. The formalism enables us to study the variations of the dielectric function and photon spectrum of the QS with the particle distance between QS and MP, exciting laser direction, polarization and phase in the presence of surface plasmon resonance (SPR) in the MP. The quantum formalism also serves as a powerful tool for studying the effects of these parameters on the nonclassical properties of the scattered photons. The plasmonic effect of nanoparticles has promising possibilities as it provides a new way for manipulating quantum optical properties of light in nanophotonic systems.
Quantum statistics of many-particle systems
International Nuclear Information System (INIS)
Kraeft, W.D.; Ebeling, W.; Kremp, D.; Ropke, G.
1986-01-01
This paper presents the elements of quantum statistics and discusses the quantum mechanics of many-particle systems. The method of second quantization is discussed and the Bogolyubov hierarchy is examined. The general properties of the correlation function and one-particle Green's function are examined. The paper presents dynamical and thermodynamical information contained in the spectral function. An equation of motion is given for the one-particle Green's function. T-matrix and thermodynamic properties in binary collision approximation are discussed
Wigner Functions for Arbitrary Quantum Systems.
Tilma, Todd; Everitt, Mark J; Samson, John H; Munro, William J; Nemoto, Kae
2016-10-28
The possibility of constructing a complete, continuous Wigner function for any quantum system has been a subject of investigation for over 50 years. A key system that has served to illustrate the difficulties of this problem has been an ensemble of spins. Here we present a general and consistent framework for constructing Wigner functions exploiting the underlying symmetries in the physical system at hand. The Wigner function can be used to fully describe any quantum system of arbitrary dimension or ensemble size.
Transitivity and ergodicity of quantum systems
International Nuclear Information System (INIS)
Narnhofer, H.; Thirring, W.; Wiklicky, H.
1987-01-01
First we try to generalize the notion of a topological transitive or a topologically mixing system for quantum mechanical systems in a consistent way. Furthermore we compare these ergodic properties with the classical results. Finaly we deal with some aspects of nearly abelian systems and investigate some relations between these notions. 11 refs. (Author)
Classical Boolean logic gates with quantum systems
International Nuclear Information System (INIS)
Renaud, N; Joachim, C
2011-01-01
An analytical method is proposed to implement any classical Boolean function in a small quantum system by taking the advantage of its electronic transport properties. The logical input, α = {α 1 , ..., α N }, is used to control well-identified parameters of the Hamiltonian of the system noted H 0 (α). The logical output is encoded in the tunneling current intensity passing through the quantum system when connected to conducting electrodes. It is demonstrated how to implement the six symmetric two-input/one-output Boolean functions in a quantum system. This system can be switched from one logic function to another by changing its structural parameters. The stability of the logic gates is discussed, perturbing the Hamiltonian with noise sources and studying the effect of decoherence.
Lorentz-force equations as Heisenberg equations for a quantum system in the euclidean space
International Nuclear Information System (INIS)
Rodriguez D, R.
2007-01-01
In an earlier work, the dynamic equations for a relativistic charged particle under the action of electromagnetic fields were formulated by R. Yamaleev in terms of external, as well as internal momenta. Evolution equations for external momenta, the Lorentz-force equations, were derived from the evolution equations for internal momenta. The mapping between the observables of external and internal momenta are related by Viete formulae for a quadratic polynomial, the characteristic polynomial of the relativistic dynamics. In this paper we show that the system of dynamic equations, can be cast into the Heisenberg scheme for a four-dimensional quantum system. Within this scheme the equations in terms of internal momenta play the role of evolution equations for a state vector, whereas the external momenta obey the Heisenberg equation for an operator evolution. The solutions of the Lorentz-force equation for the motion inside constant electromagnetic fields are presented via pentagonometric functions. (Author)
Incoherent control of locally controllable quantum systems
International Nuclear Information System (INIS)
Dong Daoyi; Zhang Chenbin; Rabitz, Herschel; Pechen, Alexander; Tarn, T.-J.
2008-01-01
An incoherent control scheme for state control of locally controllable quantum systems is proposed. This scheme includes three steps: (1) amplitude amplification of the initial state by a suitable unitary transformation, (2) projective measurement of the amplified state, and (3) final optimization by a unitary controlled transformation. The first step increases the amplitudes of some desired eigenstates and the corresponding probability of observing these eigenstates, the second step projects, with high probability, the amplified state into a desired eigenstate, and the last step steers this eigenstate into the target state. Within this scheme, two control algorithms are presented for two classes of quantum systems. As an example, the incoherent control scheme is applied to the control of a hydrogen atom by an external field. The results support the suggestion that projective measurements can serve as an effective control and local controllability information can be used to design control laws for quantum systems. Thus, this scheme establishes a subtle connection between control design and controllability analysis of quantum systems and provides an effective engineering approach in controlling quantum systems with partial controllability information.
On the Velocity of Moving Relativistic Unstable Quantum Systems
Directory of Open Access Journals (Sweden)
K. Urbanowski
2015-01-01
Full Text Available We study properties of moving relativistic quantum unstable systems. We show that in contrast to the properties of classical particles and quantum stable objects the velocity of freely moving relativistic quantum unstable systems cannot be constant in time. We show that this new quantum effect results from the fundamental principles of the quantum theory and physics: it is a consequence of the principle of conservation of energy and of the fact that the mass of the quantum unstable system is not defined. This effect can affect the form of the decay law of moving relativistic quantum unstable systems.
Localization in a quantum spin Hall system.
Onoda, Masaru; Avishai, Yshai; Nagaosa, Naoto
2007-02-16
The localization problem of electronic states in a two-dimensional quantum spin Hall system (that is, a symplectic ensemble with topological term) is studied by the transfer matrix method. The phase diagram in the plane of energy and disorder strength is exposed, and demonstrates "levitation" and "pair annihilation" of the domains of extended states analogous to that of the integer quantum Hall system. The critical exponent nu for the divergence of the localization length is estimated as nu congruent with 1.6, which is distinct from both exponents pertaining to the conventional symplectic and the unitary quantum Hall systems. Our analysis strongly suggests a different universality class related to the topology of the pertinent system.
Quantum games in open systems using biophysical Hamiltonians
International Nuclear Information System (INIS)
Faber, Jean; Portugal, Renato; Rosa, Luiz Pinguelli
2006-01-01
We analyze the necessary physical conditions to model an open quantum system as a quantum game. By applying the formalism of quantum operations on a particular system, we use Kraus operators as quantum strategies. The physical interpretation is a conflict among different configurations of the environment. The resolution of the conflict displays regimes of minimum loss of information
Quantum games in open systems using biophysical Hamiltonians
Energy Technology Data Exchange (ETDEWEB)
Faber, Jean [National Laboratory of Scientific Computing (LNCC), Av. Getulio Vargas 333, Quitandinha 25651-075, Petropolis, RJ (Brazil)]. E-mail: faber@lncc.br; Portugal, Renato [National Laboratory of Scientific Computing (LNCC), Av. Getulio Vargas 333, Quitandinha 25651-075, Petropolis, RJ (Brazil)]. E-mail: portugal@lncc.br; Rosa, Luiz Pinguelli [Federal University of Rio de Janeiro, COPPE-UFRJ, RJ (Brazil)]. E-mail: lpr@adc.coppe.ufrj.br
2006-09-25
We analyze the necessary physical conditions to model an open quantum system as a quantum game. By applying the formalism of quantum operations on a particular system, we use Kraus operators as quantum strategies. The physical interpretation is a conflict among different configurations of the environment. The resolution of the conflict displays regimes of minimum loss of information.
Quantum phase transition in strongly correlated many-body system
You, Wenlong
The past decade has seen a substantial rejuvenation of interest in the study of quantum phase transitions (QPTs), driven by experimental advance on the cuprate superconductors, the heavy fermion materials, organic conductors, Quantum Hall effect, Fe-As based superconductors and other related compounds. It is clear that strong electronic interactions play a crucial role in the systems of current interest, and simple paradigms for the behavior of such systems near quantum critical points remain unclear. Furthermore, the rapid progress in Feshbach resonance and optical lattice provides a flexible platform to study QPT. Quantum Phase Transition (QPT) describes the non-analytic behaviors of the ground-state properties in a many-body system by varying a physical parameter at absolute zero temperature - such as magnetic field or pressure, driven by quantum fluctuations. Such quantum phase transitions can be first-order phase transition or continuous. The phase transition is usually accompanied by a qualitative change in the nature of the correlations in the ground state, and describing this change shall clearly be one of our major interests. We address this issue from three prospects in a few strong correlated many-body systems in this thesis, i.e., identifying the ordered phases, studying the properties of different phases, characterizing the QPT points. In chapter 1, we give an introduction to QPT, and take one-dimensional XXZ model as an example to illustrate the QPT therein. Through this simple example, we would show that when the tunable parameter is varied, the system evolves into different phases, across two quantum QPT points. The distinct phases exhibit very different behaviors. Also a schematic phase diagram is appended. In chapter 2, we are engaged in research on ordered phases. Originating in the work of Landau and Ginzburg on second-order phase transition, the spontaneous symmetry breaking induces nonzero expectation of field operator, e.g., magnetization M
Scattering theory for open quantum systems
International Nuclear Information System (INIS)
Behrndt, Jussi
2006-01-01
Quantum systems which interact with their environment are often modeled by maximal dissipative operators or so-called Pseudo-Hamiltonians. In this paper the scattering theory for such open systems is considered. First it is assumed that a single maximal dissipative operator A D in a Hilbert space H is used to describe an open quantum system. In this case the minimal self-adjoint dilation K of A D can be regarded as the Hamiltonian of a closed system which contains the open system {A D ,h}, but since K is necessarily not semibounded from below, this model is difficult to interpret from a physical point of view. In the second part of the paper an open quantum system is modeled with a family {A(μ)} of maximal dissipative operators depending on energy μ, and it is shown that the open system can be embedded into a closed system where the Hamiltonian is semibounded. Surprisingly it turns out that the corresponding scattering matrix can be completely recovered from scattering matrices of single Pseudo-Hamiltonians as in the first part of the paper. The general results are applied to a class of Sturm-Liouville operators arising in dissipative and quantum transmitting Schroedinger-Poisson systems. (orig.)
Scattering theory for open quantum systems
Energy Technology Data Exchange (ETDEWEB)
Behrndt, Jussi [Technische Univ. Berlin (Germany). Inst. fuer Mathematik; Malamud, Mark M. [Donetsk National University (Ukraine). Dept. of Mathematics; Neidhardt, Hagen [Weierstrass-Institut fuer Angewandte Analysis und Stochastik (WIAS) im Forschungsverbund Berlin e.V. (Germany)
2006-07-01
Quantum systems which interact with their environment are often modeled by maximal dissipative operators or so-called Pseudo-Hamiltonians. In this paper the scattering theory for such open systems is considered. First it is assumed that a single maximal dissipative operator A{sub D} in a Hilbert space H is used to describe an open quantum system. In this case the minimal self-adjoint dilation K of A{sub D} can be regarded as the Hamiltonian of a closed system which contains the open system {l_brace}A{sub D},h{r_brace}, but since K is necessarily not semibounded from below, this model is difficult to interpret from a physical point of view. In the second part of the paper an open quantum system is modeled with a family {l_brace}A({mu}){r_brace} of maximal dissipative operators depending on energy {mu}, and it is shown that the open system can be embedded into a closed system where the Hamiltonian is semibounded. Surprisingly it turns out that the corresponding scattering matrix can be completely recovered from scattering matrices of single Pseudo-Hamiltonians as in the first part of the paper. The general results are applied to a class of Sturm-Liouville operators arising in dissipative and quantum transmitting Schroedinger-Poisson systems. (orig.)
Recent advances in quantum integrable systems
Energy Technology Data Exchange (ETDEWEB)
Amico, L.; Belavin, A.; Buffenoir, E.; Castro Alvaredo, A.; Caudrelier, V.; Chakrabarti, A.; Corrig, E.; Crampe, N.; Deguchi, T.; Dobrev, V.K.; Doikou, A.; Doyon, B.; Feher, L.; Fioravanti, D.; Gohmann, F.; Hallnas, M.; Jimbo, M.; Konno, N.C.H.; Korchemsky, G.; Kulish, P.; Lassalle, M.; Maillet, J.M.; McCoy, B.; Mintchev, M.; Pakuliak, S.; Quano, F.Y.Z.; Ragnisco, R.; Ravanini, F.; Rittenberg, V.; Rivasseau, V.; Rossi, M.; Satta, G.; Sedrakyan, T.; Shiraishi, J.; Suzuki, N.C.J.; Yamada, Y.; Zamolodchikov, A.; Ishimoto, Y.; Nagy, Z.; Posta, S.; Sedra, M.B.; Zuevskiy, A.; Gohmann, F
2005-07-01
This meeting was dedicated to different aspects of the theory of quantum integrable systems. The organizers have intended to concentrate on topics related to the study of correlation functions, to systems with boundaries and to models at roots of unity. This document gathers the abstracts of 32 contributions, most of the contributions are accompanied by the set of transparencies.
Recent advances in quantum integrable systems
International Nuclear Information System (INIS)
Amico, L.; Belavin, A.; Buffenoir, E.; Castro Alvaredo, A.; Caudrelier, V.; Chakrabarti, A.; Corrig, E.; Crampe, N.; Deguchi, T.; Dobrev, V.K.; Doikou, A.; Doyon, B.; Feher, L.; Fioravanti, D.; Gohmann, F.; Hallnas, M.; Jimbo, M.; Konno, N.C.H.; Korchemsky, G.; Kulish, P.; Lassalle, M.; Maillet, J.M.; McCoy, B.; Mintchev, M.; Pakuliak, S.; Quano, F.Y.Z.; Ragnisco, R.; Ravanini, F.; Rittenberg, V.; Rivasseau, V.; Rossi, M.; Satta, G.; Sedrakyan, T.; Shiraishi, J.; Suzuki, N.C.J.; Yamada, Y.; Zamolodchikov, A.; Ishimoto, Y.; Nagy, Z.; Posta, S.; Sedra, M.B.; Zuevskiy, A.; Gohmann, F.
2005-01-01
This meeting was dedicated to different aspects of the theory of quantum integrable systems. The organizers have intended to concentrate on topics related to the study of correlation functions, to systems with boundaries and to models at roots of unity. This document gathers the abstracts of 32 contributions, most of the contributions are accompanied by the set of transparencies
Epidemic Dynamics in Open Quantum Spin Systems
Pérez-Espigares, Carlos; Marcuzzi, Matteo; Gutiérrez, Ricardo; Lesanovsky, Igor
2017-10-01
We explore the nonequilibrium evolution and stationary states of an open many-body system that displays epidemic spreading dynamics in a classical and a quantum regime. Our study is motivated by recent experiments conducted in strongly interacting gases of highly excited Rydberg atoms where the facilitated excitation of Rydberg states competes with radiative decay. These systems approximately implement open quantum versions of models for population dynamics or disease spreading where species can be in a healthy, infected or immune state. We show that in a two-dimensional lattice, depending on the dominance of either classical or quantum effects, the system may display a different kind of nonequilibrium phase transition. We moreover discuss the observability of our findings in laser driven Rydberg gases with particular focus on the role of long-range interactions.
Criticality and entanglement in random quantum systems
International Nuclear Information System (INIS)
Refael, G; Moore, J E
2009-01-01
We review studies of entanglement entropy in systems with quenched randomness, concentrating on universal behavior at strongly random quantum critical points. The disorder-averaged entanglement entropy provides insight into the quantum criticality of these systems and an understanding of their relationship to non-random ('pure') quantum criticality. The entanglement near many such critical points in one dimension shows a logarithmic divergence in subsystem size, similar to that in the pure case but with a different universal coefficient. Such universal coefficients are examples of universal critical amplitudes in a random system. Possible measurements are reviewed along with the one-particle entanglement scaling at certain Anderson localization transitions. We also comment briefly on higher dimensions and challenges for the future.
Adiabatic Theorem for Quantum Spin Systems
Bachmann, S.; De Roeck, W.; Fraas, M.
2017-08-01
The first proof of the quantum adiabatic theorem was given as early as 1928. Today, this theorem is increasingly applied in a many-body context, e.g., in quantum annealing and in studies of topological properties of matter. In this setup, the rate of variation ɛ of local terms is indeed small compared to the gap, but the rate of variation of the total, extensive Hamiltonian, is not. Therefore, applications to many-body systems are not covered by the proofs and arguments in the literature. In this Letter, we prove a version of the adiabatic theorem for gapped ground states of interacting quantum spin systems, under assumptions that remain valid in the thermodynamic limit. As an application, we give a mathematical proof of Kubo's linear response formula for a broad class of gapped interacting systems. We predict that the density of nonadiabatic excitations is exponentially small in the driving rate and the scaling of the exponent depends on the dimension.
Develop of a quantum electromechanical hybrid system
Hao, Yu; Rouxinol, Francisco; Brito, Frederico; Caldeira, Amir; Irish, Elinor; Lahaye, Matthew
In this poster, we will show our results from measurements of a hybrid quantum system composed of a superconducting transmon qubit-coupled and ultra-high frequency nano-mechanical resonator, embedded in a superconducting cavity. The transmon is capacitively coupled to a 3.4GHz nanoresonator and a T-filter-biased high-Q transmission line cavity. Single-tone and two-tone transmission spectroscopy measurements are used to probe the interactions between the cavity, qubit and mechanical resonator. These measurements are in good agreement with numerical simulations based upon a master equation for the tripartite system including dissipation. The results indicate that this system may be developed to serve as a platform for more advanced measurements with nanoresonators, including quantum state measurement, the exploration of nanoresonator quantum noise, and reservoir engineering.
Time dilation in quantum systems and decoherence
International Nuclear Information System (INIS)
Pikovski, Igor; Zych, Magdalena; Costa, Fabio; Brukner, Časlav
2017-01-01
Both quantum mechanics and general relativity are based on principles that defy our daily intuitions, such as time dilation, quantum interference and entanglement. Because the regimes where the two theories are typically tested are widely separated, their foundational principles are rarely jointly studied. Recent works have found that novel phenomena appear for quantum particles with an internal structure in the presence of time dilation, which can take place at low energies and in weak gravitational fields. Here we briefly review the effects of time dilation on quantum interference and generalize the results to a variety of systems. In addition, we provide an extended study of the basic principles of quantum theory and relativity that are of relevance for the effects and also address several questions that have been raised, such as the description in different reference frames, the role of the equivalence principle and the effective irreversibility of the decoherence. The manuscript clarifies some of the counterintuitive aspects arising when quantum phenomena and general relativistic effects are jointly considered. (paper)
Josephson tunneling in bilayer quantum Hall system
International Nuclear Information System (INIS)
Ezawa, Z.F.; Tsitsishvili, G.; Sawada, A.
2012-01-01
A Bose–Einstein condensation is formed by composite bosons in the quantum Hall state. A composite boson carries the fundamental charge (−e). We investigate Josephson tunneling of such charges in the bilayer quantum Hall system at the total filling ν=1. We show the existence of the critical current for the tunneling current to be coherent and dissipationless. Our results explain recent experiments due to [L. Tiemann, Y. Yoon, W. Dietsche, K. von Klitzing, W. Wegscheider, Phys. Rev. B 80 (2009) 165120] and due to [Y. Yoon, L. Tiemann, S. Schmult, W. Dietsche, K. von Klitzing, Phys. Rev. Lett. 104 (2010) 116802]. We predict also how the critical current changes as the sample is tilted in the magnetic field. -- Highlights: ► Composite bosons undergo Bose–Einstein condensation to form the bilayer quantum Hall state. ► A composite boson is a single electron bound to a flux quantum and carries one unit charge. ► Quantum coherence develops due to the condensation. ► Quantum coherence drives the supercurrent in each layer and the tunneling current. ► There exists the critical input current so that the tunneling current is coherent and dissipationless.
Teleportation in an indivisible quantum system
Directory of Open Access Journals (Sweden)
Kiktenko E.O.
2016-01-01
Full Text Available Teleportation protocol is conventionally treated as a method for quantum state transfer between two spatially separated physical carriers. Recent experimental progress in manipulation with high-dimensional quantum systems opens a new framework for implementation of teleportation protocols. We show that the one-qubit teleportation can be considered as a state transfer between subspaces of the whole Hilbert space of an indivisible eight-dimensional system. We explicitly show all corresponding operations and discuss an alternative way of implementation of similar tasks.
Tunneling with dissipation in open quantum systems
International Nuclear Information System (INIS)
Adamyan, G.G.; Antonenko, N.V.; Scheid, W.
1997-01-01
Based on the general form of the master equation for open quantum systems the tunneling is considered. Using the path integral technique a simple closed form expression for the tunneling rate through a parabolic barrier is obtained. The tunneling in the open quantum systems strongly depends on the coupling with environment. We found the cases when the dissipation prohibits tunneling through the barrier but decreases the crossing of the barrier for the energies above the barrier. As a particular application, the case of decay from the metastable state is considered
Theoretical modelling of quantum circuit systems
International Nuclear Information System (INIS)
Stiffell, Peter Barry
2002-01-01
The work in this thesis concentrates on the interactions between circuit systems operating in the quantum regime. The main thrust of this work involves the use of a new model for investigating the way in which different components in such systems behave when coupled together. This is achieved by utilising the matrix representation of quantum mechanics, in conjunction with a number of other theoretical techniques (such as Wigner functions and entanglement entropies). With these tools in place it then becomes possible to investigate and review different quantum circuit systems. These investigations cover systems ranging from simple electromagnetic (cm) field oscillators in isolation to coupled SQUID rings in more sophisticated multi-component arrangements. Primarily, we look at the way SQUID rings couple to em fields, and how the ring-field interaction can be mediated by the choice of external flux, Φ x , applied to the SQUID ring. A lot of interest is focused on the transfer of energy between the system modes. However, we also investigate the statistical properties of the system, including squeezing, entropy and entanglement. Among the phenomena uncovered in this research we note the ability to control coupling in SQUID rings via the external flux, the capacity for entanglement between quantum circuit modes, frequency conversions of photons, flux squeezing and the existence of Schroedinger Cat states. (author)
Quantum eigenstates of a strongly chaotic system and the scar phenomenon
International Nuclear Information System (INIS)
Aurich, R.; Steiner, F.
1993-04-01
The quantum eigenstates of a strongly chaotic system (hyperbolic octagon) are studied with special emphasis on the scar phenomenon. The dynamics of a localized wavepacket is discussed which travels along a short periodic orbit yielding a test for the scar model developed by Heller. The autocorrelation function C(t) and the smeared weighted spectral density S τ (E) are in accordance with this model, but the conclusion that this implies the existence of scarred eigenstates is not confirmed. A random wavefunction model generates with the same probability intensity structures being localized near short periodic orbits as the wavefunctions obeying the Schroedinger equation. Although there are some eigenstates which are localized near a periodic orbit, the conclusion that their intensities differ significantly from the statistically expected ones cannot be drawn. Thus the scar phenomenon seems to be absent in the case of hyperbolic octagons. (orig.)
Anions, quantum particles in planar systems; Anions, particulas quanticas em sistemas planares
Energy Technology Data Exchange (ETDEWEB)
Monerat, Germano Amaral [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Inst. de Fisica]. E-mail: monerat@if.uff.br
2000-03-01
Our purpose here is to present a general review of the non-relativistic quantum-mechanical description of excitations that do not obey neither the Fermi-Dirac nor the Bose-Einstein statistics; they rather fulfill an intermediate statistics, the we called 'any-statistics'. As we shall see, this is a peculiarity of (1+1) and (1+2) dimensions, due to the fact that, in two space dimensions, the spin is not quantised, once the rotation group is Abelian. The relevance of studying theories in (1+2) dimensions is justified by the evidence that, in condensed matter physics, there are examples of planar systems, for which everything goes as if the third spatial dimension is frozen. (author)
Towards practical characterization of quantum systems with quantum Hamiltonian learning
Santagati, R.; Wang, J.; Paesani, S.; Knauer, S.; Gentile, A. A.; Wiebe, N.; Petruzzella, M.; O'Brien, J. L.; Rarity, J. G.; Laing, A.; Thompson, M. G.
2017-01-01
Here we show the first experimental implementation of quantum Hamiltonian Learning, where a silicon-on-insulator quantum photonic simulator is used to learn the dynamics of an electron-spin in an NV center in diamond.
Quantum dynamics of classical stochastic systems
Energy Technology Data Exchange (ETDEWEB)
Casati, G
1983-01-01
It is shown that one hand Quantum Mechanics introduces limitations to the manifestations of chaotic motion resulting, for the case of the periodically kicked rotator, in the limitation of energy growth; also, as it is confirmed by numerical experiments, phenomena like the exponential instability of orbits, inherent to strongly chaotic systems, are absent here and therefore Quantum Mechanics appear to be more stable and predictable than Classical Mechanics. On the other hand, we have seen that nonrecurrent behavior may arise in Quantum Systems and it is connected to the presence of singular continuous spectrum. We conjecture that the classical chaotic behavior is reflected, at least partially, in the nature of the spectrum and the singular-continuity of the latter may possess a self-similar structure typical of classical chaos.
Quantum information and continuous variable systems
International Nuclear Information System (INIS)
Giedke, G.K.
2001-08-01
This thesis treats several questions concerning quantum information theory of infinite dimensional continuous variable (CV) systems. We investigate the separability properties of Gaussian states of such systems. Both the separability and the distillability problem for bipartite Gaussian states are solved by deriving operational criteria for these properties. We consider multipartite Gaussian states and obtain a necessary and sufficient condition that allows the complete classification of three-mode tripartite states according to their separability properties. Moreover we study entanglement distillation protocols. We show that the standard protocols for qubits are robust against imperfect implementation of the required quantum operations. For bipartite Gaussian states we find a universal scheme to distill all distillable states and propose a concrete quantum optical realization. (author)
Correlation Functions in Open Quantum-Classical Systems
Hsieh, Chang-Yu; Kapral, Raymond
2013-01-01
Quantum time correlation functions are often the principal objects of interest in experimental investigations of the dynamics of quantum systems. For instance, transport properties, such as diffusion and reaction rate coefficients, can be obtained by integrating these functions. The evaluation of such correlation functions entails sampling from quantum equilibrium density operators and quantum time evolution of operators. For condensed phase and complex systems, where quantum dynamics is diff...
Quantum Computing in Condensed Matter Systems
National Research Council Canada - National Science Library
Privman, V
1997-01-01
Specific theoretical calculations of Hamiltonians corresponding to several quantum logic gates, including the NOT gate, quantum signal splitting, and quantum copying, were obtained and prepared for publication...
Quantum frustrated and correlated electron systems
Directory of Open Access Journals (Sweden)
P Thalmeier
2008-06-01
Full Text Available Quantum phases and fluctuations in correlated electron systems with frustration and competing interactions are reviewed. In the localized moment case the S=1/2 J1 - J2 - model on a square lattice exhibits a rich phase diagram with magnetic as well as exotic hidden order phases due to the interplay of frustration and quantum fluctuations. Their signature in magnetocaloric quantities and the high field magnetization are surveyed. The possible quantum phase transitions are discussed and applied to layered vanadium oxides. In itinerant electron systems frustration is an emergent property caused by electron correlations. It leads to enhanced spin fluctuations in a very large region of momentum space and therefore may cause heavy fermion type low temperature anomalies as in the 3d spinel compound LiV2O4 . Competing on-site and inter-site electronic interactions in Kondo compounds are responsible for the quantum phase transition between nonmagnetic Kondo singlet phase and magnetic phase such as observed in many 4f compounds. They may be described by Kondo lattice and simplified Kondo necklace type models. Their quantum phase transitions are investigated by numerical exact diagonalization and analytical bond operator methods respectively.
Genuine quantum correlations in quantum many-body systems: a review of recent progress.
De Chiara, Gabriele; Sanpera, Anna
2018-04-19
Quantum information theory has considerably helped in the understanding of quantum many-body systems. The role of quantum correlations and in particular, bipartite entanglement, has become crucial to characterise, classify and simulate quantum many body systems. Furthermore, the scaling of entanglement has inspired modifications to numerical techniques for the simulation of many-body systems leading to the, now established, area of tensor networks. However, the notions and methods brought by quantum information do not end with bipartite entanglement. There are other forms of correlations embedded in the ground, excited and thermal states of quantum many-body systems that also need to be explored and might be utilised as potential resources for quantum technologies. The aim of this work is to review the most recent developments regarding correlations in quantum many-body systems focussing on multipartite entanglement, quantum nonlocality, quantum discord, mutual information but also other non classical measures of correlations based on quantum coherence. Moreover, we also discuss applications of quantum metrology in quantum many-body systems. © 2018 IOP Publishing Ltd.
Classical system boundaries cannot be determined within quantum Darwinism
Fields, Chris
Multiple observers who interact with environmental encodings of the states of a macroscopic quantum system S as required by quantum Darwinism cannot demonstrate that they are jointly observing S without a joint a priori assumption of a classical boundary separating S from its environment E. Quantum Darwinism cannot, therefore, be regarded as providing a purely quantum-mechanical explanation of the "emergence" of classicality.
Riccati and Ermakov Equations in Time-Dependent and Time-Independent Quantum Systems
Directory of Open Access Journals (Sweden)
Dieter Schuch
2008-05-01
Full Text Available The time-evolution of the maximum and the width of exact analytic wave packet (WP solutions of the time-dependent Schrödinger equation (SE represents the particle and wave aspects, respectively, of the quantum system. The dynamics of the maximum, located at the mean value of position, is governed by the Newtonian equation of the corresponding classical problem. The width, which is directly proportional to the position uncertainty, obeys a complex nonlinear Riccati equation which can be transformed into a real nonlinear Ermakov equation. The coupled pair of these equations yields a dynamical invariant which plays a key role in our investigation. It can be expressed in terms of a complex variable that linearizes the Riccati equation. This variable also provides the time-dependent parameters that characterize the Green's function, or Feynman kernel, of the corresponding problem. From there, also the relation between the classical and quantum dynamics of the systems can be obtained. Furthermore, the close connection between the Ermakov invariant and the Wigner function will be shown. Factorization of the dynamical invariant allows for comparison with creation/annihilation operators and supersymmetry where the partner potentials fulfil (real Riccati equations. This provides the link to a nonlinear formulation of time-independent quantum mechanics in terms of an Ermakov equation for the amplitude of the stationary state wave functions combined with a conservation law. Comparison with SUSY and the time-dependent problems concludes our analysis.
Cui, Ping
The thesis comprises two major themes of quantum statistical dynamics. One is the development of quantum dissipation theory (QDT). It covers the establishment of some basic relations of quantum statistical dynamics, the construction of several nonequivalent complete second-order formulations, and the development of exact QDT. Another is related to the applications of quantum statistical dynamics to a variety of research fields. In particular, unconventional but novel theories of the electron transfer in Debye solvents, quantum transport, and quantum measurement are developed on the basis of QDT formulations. The thesis is organized as follows. In Chapter 1, we present some background knowledge in relation to the aforementioned two themes of this thesis. The key quantity in QDT is the reduced density operator rho(t) ≡ trBrho T(t); i.e., the partial trace of the total system and bath composite rhoT(t) over the bath degrees of freedom. QDT governs the evolution of reduced density operator, where the effects of bath are treated in a quantum statistical manner. In principle, the reduced density operator contains all dynamics information of interest. However, the conventional quantum transport theory is formulated in terms of nonequilibrium Green's function. The newly emerging field of quantum measurement in relation to quantum information and quantum computing does exploit a sort of QDT formalism. Besides the background of the relevant theoretical development, some representative experiments on molecular nanojunctions are also briefly discussed. In chapter 2, we outline some basic (including new) relations that highlight several important issues on QDT. The content includes the background of nonequilibrium quantum statistical mechanics, the general description of the total composite Hamiltonian with stochastic system-bath interaction, a novel parameterization scheme for bath correlation functions, a newly developed exact theory of driven Brownian oscillator (DBO
EDITORIAL: CAMOP: Quantum Non-Stationary Systems CAMOP: Quantum Non-Stationary Systems
Dodonov, Victor V.; Man'ko, Margarita A.
2010-09-01
Although time-dependent quantum systems have been studied since the very beginning of quantum mechanics, they continue to attract the attention of many researchers, and almost every decade new important discoveries or new fields of application are made. Among the impressive results or by-products of these studies, one should note the discovery of the path integral method in the 1940s, coherent and squeezed states in the 1960-70s, quantum tunneling in Josephson contacts and SQUIDs in the 1960s, the theory of time-dependent quantum invariants in the 1960-70s, different forms of quantum master equations in the 1960-70s, the Zeno effect in the 1970s, the concept of geometric phase in the 1980s, decoherence of macroscopic superpositions in the 1980s, quantum non-demolition measurements in the 1980s, dynamics of particles in quantum traps and cavity QED in the 1980-90s, and time-dependent processes in mesoscopic quantum devices in the 1990s. All these topics continue to be the subject of many publications. Now we are witnessing a new wave of interest in quantum non-stationary systems in different areas, from cosmology (the very first moments of the Universe) and quantum field theory (particle pair creation in ultra-strong fields) to elementary particle physics (neutrino oscillations). A rapid increase in the number of theoretical and experimental works on time-dependent phenomena is also observed in quantum optics, quantum information theory and condensed matter physics. Time-dependent tunneling and time-dependent transport in nano-structures are examples of such phenomena. Another emerging direction of study, stimulated by impressive progress in experimental techniques, is related to attempts to observe the quantum behavior of macroscopic objects, such as mirrors interacting with quantum fields in nano-resonators. Quantum effects manifest themselves in the dynamics of nano-electromechanical systems; they are dominant in the quite new and very promising field of circuit
Quantum nonlocality does not exist.
Tipler, Frank J
2014-08-05
Quantum nonlocality is shown to be an artifact of the Copenhagen interpretation, in which each observed quantity has exactly one value at any instant. In reality, all physical systems obey quantum mechanics, which obeys no such rule. Locality is restored if observed and observer are both assumed to obey quantum mechanics, as in the many-worlds interpretation (MWI). Using the MWI, I show that the quantum side of Bell's inequality, generally believed nonlocal, is really due to a series of three measurements (not two as in the standard, oversimplified analysis), all three of which have only local effects. Thus, experiments confirming "nonlocality" are actually confirming the MWI. The mistaken interpretation of nonlocality experiments depends crucially on a question-begging version of the Born interpretation, which makes sense only in "collapse" versions of quantum theory, about the meaning of the modulus of the wave function, so I use the interpretation based on the MWI, namely that the wave function is a world density amplitude, not a probability amplitude. This view allows the Born interpretation to be derived directly from the Schrödinger equation, by applying the Schrödinger equation to both the observed and the observer.
Birkhoffian Symplectic Scheme for a Quantum System
International Nuclear Information System (INIS)
Su Hongling
2010-01-01
In this paper, a classical system of ordinary differential equations is built to describe a kind of n-dimensional quantum systems. The absorption spectrum and the density of the states for the system are defined from the points of quantum view and classical view. From the Birkhoffian form of the equations, a Birkhoffian symplectic scheme is derived for solving n-dimensional equations by using the generating function method. Besides the Birkhoffian structure-preserving, the new scheme is proven to preserve the discrete local energy conservation law of the system with zero vector f. Some numerical experiments for a 3-dimensional example show that the new scheme can simulate the general Birkhoffian system better than the implicit midpoint scheme, which is well known to be symplectic scheme for Hamiltonian system. (general)
An impurity-induced gap system as a quantum data bus for quantum state transfer
International Nuclear Information System (INIS)
Chen, Bing; Li, Yong; Song, Z.; Sun, C.-P.
2014-01-01
We introduce a tight-binding chain with a single impurity to act as a quantum data bus for perfect quantum state transfer. Our proposal is based on the weak coupling limit of the two outermost quantum dots to the data bus, which is a gapped system induced by the impurity. By connecting two quantum dots to two sites of the data bus, the system can accomplish a high-fidelity and long-distance quantum state transfer. Numerical simulations for finite system show that the numerical and analytical results of the effective coupling strength agree well with each other. Moreover, we study the robustness of this quantum communication protocol in the presence of disorder in the couplings between the nearest-neighbor quantum dots. We find that the gap of the system plays an important role in robust quantum state transfer
SUSY anomaly in quantum-mechanical systems
International Nuclear Information System (INIS)
Smilga, A.V.
1987-01-01
Explicit examples of supersymmetric systems involving finite numbers of degrees of freedom where quantum supersymmetry algebra cannot be preserved on the classical level, are constructed. Resolving the ordering ambiguities in different ways leads either to a modified algebra or to a reduced algebra, or totally destroys supersymmetry
System and method for making quantum dots
Bakr, Osman M.
2015-05-28
Embodiments of the present disclosure provide for methods of making quantum dots (QDs) (passivated or unpassivated) using a continuous flow process, systems for making QDs using a continuous flow process, and the like. In one or more embodiments, the QDs produced using embodiments of the present disclosure can be used in solar photovoltaic cells, bio-imaging, IR emitters, or LEDs.
Quantum distribution function of nonequilibrium system
International Nuclear Information System (INIS)
Sogo, Kiyoshi; Fujimoto, Yasushi.
1990-03-01
A path integral representation is derived for the Wigner distribution function of a nonequilibrium system coupled with heat bath. Under appropriate conditions, the Wigner distribution function approaches an equilibrium distribution, which manifests shifting and broadening of spectral lines due to the interaction with heat bath. It is shown that the equilibrium distribution becomes the quantum canonical distribution in the vanishing coupling constant limit. (author)
Quantum dissipation of a simple conservative system
International Nuclear Information System (INIS)
Ibeh, G. J.; Mshelia, E. D.
2014-01-01
A model of quantum dissipative system is presented. Here dissipation of energy is demonstrated as based on the coupling of a free translational motion of a centre of mass to a harmonic oscillator. The two-dimensional arrangement of two coupled particles of different masses is considered.
Quantum field theory and multiparticle systems
International Nuclear Information System (INIS)
Trlifaj, M.
1981-01-01
The use of quantum field theory methods for the investigation of the physical characteristics of the MANY-BODY SYSTEMS is discussed. Mainly discussed is the method of second quantization and the method of the Green functions. Briefly discussed is the method of calculating the Green functions at finite temperatures. (Z.J.)
Exceptional points in open quantum systems
International Nuclear Information System (INIS)
Mueller, Markus; Rotter, Ingrid
2008-01-01
Open quantum systems are embedded in the continuum of scattering wavefunctions and are naturally described by non-Hermitian Hamilton operators. In the complex energy plane, exceptional points appear at which two (or more) eigenvalues of the Hamilton operator coalesce. Although they are a countable set of single points in the complex energy plane and therefore of measure zero, they determine decisively the dynamics of open quantum systems. A powerful method for the description of open quantum systems is the Feshbach projection operator formalism. It is used in the present paper as a basic tool for the study of exceptional points and of the role they play for the dynamics of open quantum systems. Among others, the topological structure of the exceptional points, the rigidity of the phases of the eigenfunctions in their vicinity, the enhancement of observable values due to the reduced phase rigidity and the appearance of phase transitions are considered. The results are compared with existing experimental data on microwave cavities. In the last section, some questions being still unsolved, are considered
Coherent control in simple quantum systems
Prants, Sergey V.
1995-01-01
Coherent dynamics of two, three, and four-level quantum systems, simultaneously driven by concurrent laser pulses of arbitrary and different forms, is treated by using a nonperturbative, group-theoretical approach. The respective evolution matrices are calculated in an explicit form. General aspects of controllability of few-level atoms by using laser fields are treated analytically.
Optimal control of complex atomic quantum systems.
van Frank, S; Bonneau, M; Schmiedmayer, J; Hild, S; Gross, C; Cheneau, M; Bloch, I; Pichler, T; Negretti, A; Calarco, T; Montangero, S
2016-10-11
Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit - the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations.
Correlation effects in superconducting quantum dot systems
Pokorný, Vladislav; Žonda, Martin
2018-05-01
We study the effect of electron correlations on a system consisting of a single-level quantum dot with local Coulomb interaction attached to two superconducting leads. We use the single-impurity Anderson model with BCS superconducting baths to study the interplay between the proximity induced electron pairing and the local Coulomb interaction. We show how to solve the model using the continuous-time hybridization-expansion quantum Monte Carlo method. The results obtained for experimentally relevant parameters are compared with results of self-consistent second order perturbation theory as well as with the numerical renormalization group method.
Group Theoretical Approach for Controlled Quantum Mechanical Systems
National Research Council Canada - National Science Library
Tarn, Tzyh-Jong
2007-01-01
The aim of this research is the study of controllability of quantum mechanical systems and feedback control of de-coherence in order to gain an insight on the structure of control of quantum systems...
Symmetry and stability of open quantum systems
International Nuclear Information System (INIS)
Scutaru, H.
1979-01-01
The presentation of the thesis involves an introduction and six chapters. Chapter 1 presents notions and results used in the other chpaters. Chapters 2-6 present our results which are focused on two notions: generalized observable and dynamic semigroup. These notions characterize a specific research domain (set up during the last 10 years) which is currently called quantum mechanics of open systems. The two notions (generalized observable and dynamic semigroup) are mathematically correlated. They belong to the set of completely positive linear applications among observable algebras. This fact, associated with that formulation of quantum mechanics according to which it is a special case of quantum mechanics namely, that for which the observable algebra is commutative, help to understand the similar essence of the results presented in chapter 2-6. Thus, the natural mathematical background has been achieved for our results; it is represented by that category whose objects are the observable algebras and whose morphisms are completely positive linear contractions generating unity within unity. These ideas are extensively presented in the introduction. The fact that the relations between classical mechanics and quantum mechanics can be rigorously treated as positive linear applications between classical observable algebras commutative and quantum observable algebras non-commutative, which are automatically fully positive, has been initially shown in our paper. (author)
The brachistochrone problem in open quantum systems
International Nuclear Information System (INIS)
Rotter, Ingrid
2007-01-01
Recently, the quantum brachistochrone problem has been discussed in the literature by using non-Hermitian Hamilton operators of different types. Here, it is demonstrated that the passage time is tunable in realistic open quantum systems due to the biorthogonality of the eigenfunctions of the non-Hermitian Hamilton operator. As an example, the numerical results obtained by Bulgakov et al for the transmission through microwave cavities of different shapes are analyzed from the point of view of the brachistochrone problem. The passage time is shortened in the crossover from the weak-coupling to the strong-coupling regime where the resonance states overlap and many branch points (exceptional points) in the complex plane exist. The effect can not be described in the framework of the standard quantum mechanics with the Hermitian Hamilton operator and consideration of S matrix poles
Quantum information entropies of ultracold atomic gases in a ...
Indian Academy of Sciences (India)
bosonic systems and a ≃ 1.982 and b = 1 for ideal fermionic systems. These results obey the entropic uncertainty relation given by Beckner, Bialynicki-Birula and Myceilski. Keywords. Ultracold atomic gases; information entropy; foundations of quantum mechanics. PACS Nos 67.85.−d; 89.70.Cf; 03.65.Ta. 1. Introduction.
Information Graph Flow: A Geometric Approximation of Quantum and Statistical Systems
Vanchurin, Vitaly
2018-05-01
Given a quantum (or statistical) system with a very large number of degrees of freedom and a preferred tensor product factorization of the Hilbert space (or of a space of distributions) we describe how it can be approximated with a very low-dimensional field theory with geometric degrees of freedom. The geometric approximation procedure consists of three steps. The first step is to construct weighted graphs (we call information graphs) with vertices representing subsystems (e.g., qubits or random variables) and edges representing mutual information (or the flow of information) between subsystems. The second step is to deform the adjacency matrices of the information graphs to that of a (locally) low-dimensional lattice using the graph flow equations introduced in the paper. (Note that the graph flow produces very sparse adjacency matrices and thus might also be used, for example, in machine learning or network science where the task of graph sparsification is of a central importance.) The third step is to define an emergent metric and to derive an effective description of the metric and possibly other degrees of freedom. To illustrate the procedure we analyze (numerically and analytically) two information graph flows with geometric attractors (towards locally one- and two-dimensional lattices) and metric perturbations obeying a geometric flow equation. Our analysis also suggests a possible approach to (a non-perturbative) quantum gravity in which the geometry (a secondary object) emerges directly from a quantum state (a primary object) due to the flow of the information graphs.
Dissipation Assisted Quantum Memory with Coupled Spin Systems
Jiang, Liang; Verstraete, Frank; Cirac, Ignacio; Lukin, Mikhail
2009-05-01
Dissipative dynamics often destroys quantum coherences. However, one can use dissipation to suppress decoherence. A well-known example is the so-called quantum Zeno effect, in which one can freeze the evolution using dissipative processes (e.g., frequently projecting the system to its initial state). Similarly, the undesired decoherence of quantum bits can also be suppressed using controlled dissipation. We propose and analyze the use of this generalization of quantum Zeno effect for protecting the quantum information encoded in the coupled spin systems. This new approach may potentially enhance the performance of quantum memories, in systems such as nitrogen-vacancy color-centers in diamond.
Security of practical quantum key distribution systems
Energy Technology Data Exchange (ETDEWEB)
Jain, Nitin
2015-02-24
This thesis deals with practical security aspects of quantum key distribution (QKD) systems. At the heart of the theoretical model of any QKD system lies a quantum-mechanical security proof that guarantees perfect secrecy of messages - based on certain assumptions. However, in practice, deviations between the theoretical model and the physical implementation could be exploited by an attacker to break the security of the system. These deviations may arise from technical limitations and operational imperfections in the physical implementation and/or unrealistic assumptions and insufficient constraints in the theoretical model. In this thesis, we experimentally investigate in depth several such deviations. We demonstrate the resultant vulnerabilities via proof-of-principle attacks on a commercial QKD system from ID Quantique. We also propose countermeasures against the investigated loopholes to secure both existing and future QKD implementations.
Hybrid quantum systems of ions and atoms
Sias, Carlo; Köhl, Michael
2014-01-01
In this chapter we review the progress in experiments with hybrid systems of trapped ions and ultracold neutral atoms. We give a theoretical overview over the atom-ion interactions in the cold regime and give a summary of the most important experimental results. We conclude with an overview of remaining open challenges and possible applications in hybrid quantum systems of ions and neutral atoms.
Quantum Annealing and Quantum Fluctuation Effect in Frustrated Ising Systems
Tanaka, Shu; Tamura, Ryo
2012-01-01
Quantum annealing method has been widely attracted attention in statistical physics and information science since it is expected to be a powerful method to obtain the best solution of optimization problem as well as simulated annealing. The quantum annealing method was incubated in quantum statistical physics. This is an alternative method of the simulated annealing which is well-adopted for many optimization problems. In the simulated annealing, we obtain a solution of optimization problem b...
Irreversible processes in quantum mechanical systems
International Nuclear Information System (INIS)
Talkner, P.
1979-01-01
Although the information provided by the evolution of the density matrix of a quantum system is equivalent with the knowledge of all observables at a given time, it turns out ot be insufficient to answer certain questions in quantum optics or linear response theory where the commutator of certain observables at different space-time points is needed. In this doctoral thesis we prove the existence of density matrices for common probabilities at multiple times and discuss their properties and their characterization independent of a special representation. We start with a compilation of definitions and properties of classical common probabilities and correlation functions. In the second chapter we give the definition of a quantum mechanical Markov process and derive the properties of propagators, generators and conditional probabilities as well as their mutual relations. The third chapter is devoted to a treatment of quantum mechanical systems in thermal equilibrium for which the principle of detailed balance holds as a consequence of microreversibility. We work out the symmetry properties of the two-sided correlation functions which turn out to be analogous to those in classical processes. In the final chapter we use the Gaussian behavior of the stationary correlation function of an oscillator and determine a class of Markov processes which are characterized by dissipative Lionville operators. We succeed in obtaining the canonical representation in a purely algebraic way by means of similarity transformations. Starting from this representation it is particularly easy to calculate the propagator and the correlation function. (HJ) 891 HJ/HJ 892 MKO
Mathematical Structure in Quantum Systems and applications
International Nuclear Information System (INIS)
Cavero-Pelaez, I.; Clemente-Gallardo, J.; Marmo, G.; Muñoz--Castañeda, J.M.
2013-01-01
This volume contains most of the contributions presented at the Conference 'Mathematical Structures in Quantum Systems and applications', held at the Centro de Ciencias de Benasque 'Pedro Pascual', Benasque (Spain) from 8-14 July 2012. The aim of the Conference was to bring together physicists working on different applications of mathematical methods to quantum systems in order to enable the different communities to become acquainted with other approaches and techniques that could be used in their own fields of expertise. We concentrated on three main subjects: – the geometrical description of Quantum Mechanics; – the Casimir effect and its mathematical implications; – the Quantum Zeno Effect and Open system dynamics. Each of these topics had a set of general lectures, aimed at presenting a global view on the subject, and other more technical seminars. We would like to thank all participants for their contribution to creating a wonderful scientific atmosphere during the Conference. We would especially like to thank the speakers and the authors of the papers contained in this volume, the members of the Scientific Committee for their guidance and support and, of course, the referees for their generous work. Special thanks are also due to the staff of the Centro de Ciencias de Benasque 'Pedro Pascual' who made this successful meeting possible. On behalf of the organising committee and the authors we would also like to acknowledge the partial support provided by the ESF-CASIMIR network ('New Trends and Applications of the Casimir Effect'), the QUITEMAD research Project (“Quantum technologies at Madrid”, Ref. Comunidad de Madrid P2009/ESP-1594), the MICINN Project (MTM2011-16027-E) and the Government from Arag´on (DGA) (DGA, Department of Industry and Innovation and the European Social Fund, DGA-Grant 24/1) who made the Conference and this Proceedings volume possible.
Multiple-state quantum Otto engine, 1D box system
Energy Technology Data Exchange (ETDEWEB)
Latifah, E., E-mail: enylatifah@um.ac.id [Laboratory of Theoretical Physics and Natural Philosophy, Physics Department, Institut Teknologi Sepuluh Nopember, ITS, Surabaya, Indonesia and Physics Department, Malang State University (Indonesia); Purwanto, A. [Laboratory of Theoretical Physics and Natural Philosophy, Physics Department, Institut Teknologi Sepuluh Nopember, ITS, Surabaya (Indonesia)
2014-03-24
Quantum heat engines produce work using quantum matter as their working substance. We studied adiabatic and isochoric processes and defined the general force according to quantum system. The processes and general force are used to evaluate a quantum Otto engine based on multiple-state of one dimensional box system and calculate the efficiency. As a result, the efficiency depends on the ratio of initial and final width of system under adiabatic processes.
Controllability of multi-partite quantum systems and selective excitation of quantum dots
International Nuclear Information System (INIS)
Schirmer, S G; Pullen, I C H; Solomon, A I
2005-01-01
We consider the degrees of controllability of multi-partite quantum systems, as well as necessary and sufficient criteria for each case. The results are applied to the problem of simultaneous control of an ensemble of quantum dots with a single laser pulse. Finally, we apply optimal control techniques to demonstrate selective excitation of individual dots for a simultaneously controllable ensemble of quantum dots
Quantum Monte Carlo approaches for correlated systems
Becca, Federico
2017-01-01
Over the past several decades, computational approaches to studying strongly-interacting systems have become increasingly varied and sophisticated. This book provides a comprehensive introduction to state-of-the-art quantum Monte Carlo techniques relevant for applications in correlated systems. Providing a clear overview of variational wave functions, and featuring a detailed presentation of stochastic samplings including Markov chains and Langevin dynamics, which are developed into a discussion of Monte Carlo methods. The variational technique is described, from foundations to a detailed description of its algorithms. Further topics discussed include optimisation techniques, real-time dynamics and projection methods, including Green's function, reptation and auxiliary-field Monte Carlo, from basic definitions to advanced algorithms for efficient codes, and the book concludes with recent developments on the continuum space. Quantum Monte Carlo Approaches for Correlated Systems provides an extensive reference ...
Excess Entropy Production in Quantum System: Quantum Master Equation Approach
Nakajima, Satoshi; Tokura, Yasuhiro
2017-12-01
For open systems described by the quantum master equation (QME), we investigate the excess entropy production under quasistatic operations between nonequilibrium steady states. The average entropy production is composed of the time integral of the instantaneous steady entropy production rate and the excess entropy production. We propose to define average entropy production rate using the average energy and particle currents, which are calculated by using the full counting statistics with QME. The excess entropy production is given by a line integral in the control parameter space and its integrand is called the Berry-Sinitsyn-Nemenman (BSN) vector. In the weakly nonequilibrium regime, we show that BSN vector is described by ln \\breve{ρ }_0 and ρ _0 where ρ _0 is the instantaneous steady state of the QME and \\breve{ρ }_0 is that of the QME which is given by reversing the sign of the Lamb shift term. If the system Hamiltonian is non-degenerate or the Lamb shift term is negligible, the excess entropy production approximately reduces to the difference between the von Neumann entropies of the system. Additionally, we point out that the expression of the entropy production obtained in the classical Markov jump process is different from our result and show that these are approximately equivalent only in the weakly nonequilibrium regime.
On Mathematical Modeling Of Quantum Systems
International Nuclear Information System (INIS)
Achuthan, P.; Narayanankutty, Karuppath
2009-01-01
The world of physical systems at the most fundamental levels is replete with efficient, interesting models possessing sufficient ability to represent the reality to a considerable extent. So far, quantum mechanics (QM) forming the basis of almost all natural phenomena, has found beyond doubt its intrinsic ingenuity, capacity and robustness to stand the rigorous tests of validity from and through appropriate calculations and experiments. No serious failures of quantum mechanical predictions have been reported, yet. However, Albert Einstein, the greatest theoretical physicist of the twentieth century and some other eminent men of science have stated firmly and categorically that QM, though successful by and large, is incomplete. There are classical and quantum reality models including those based on consciousness. Relativistic quantum theoretical approaches to clearly understand the ultimate nature of matter as well as radiation have still much to accomplish in order to qualify for a final theory of everything (TOE). Mathematical models of better, suitable character as also strength are needed to achieve satisfactory explanation of natural processes and phenomena. We, in this paper, discuss some of these matters with certain apt illustrations as well.
Process tomography via sequential measurements on a single quantum system
CSIR Research Space (South Africa)
Bassa, H
2015-09-01
Full Text Available The authors utilize a discrete (sequential) measurement protocol to investigate quantum process tomography of a single two-level quantum system, with an unknown initial state, undergoing Rabi oscillations. The ignorance of the dynamical parameters...
Quantum scaling in many-body systems an approach to quantum phase transitions
Continentino, Mucio
2017-01-01
Quantum phase transitions are strongly relevant in a number of fields, ranging from condensed matter to cold atom physics and quantum field theory. This book, now in its second edition, approaches the problem of quantum phase transitions from a new and unifying perspective. Topics addressed include the concepts of scale and time invariance and their significance for quantum criticality, as well as brand new chapters on superfluid and superconductor quantum critical points, and quantum first order transitions. The renormalisation group in real and momentum space is also established as the proper language to describe the behaviour of systems close to a quantum phase transition. These phenomena introduce a number of theoretical challenges which are of major importance for driving new experiments. Being strongly motivated and oriented towards understanding experimental results, this is an excellent text for graduates, as well as theorists, experimentalists and those with an interest in quantum criticality.
Quantum Information Biology: From Theory of Open Quantum Systems to Adaptive Dynamics
Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro
This chapter reviews quantum(-like) information biology (QIB). Here biology is treated widely as even covering cognition and its derivatives: psychology and decision making, sociology, and behavioral economics and finances. QIB provides an integrative description of information processing by bio-systems at all scales of life: from proteins and cells to cognition, ecological and social systems. Mathematically QIB is based on the theory of adaptive quantum systems (which covers also open quantum systems). Ideologically QIB is based on the quantum-like (QL) paradigm: complex bio-systems process information in accordance with the laws of quantum information and probability. This paradigm is supported by plenty of statistical bio-data collected at all bio-scales. QIB re ects the two fundamental principles: a) adaptivity; and, b) openness (bio-systems are fundamentally open). In addition, quantum adaptive dynamics provides the most generally possible mathematical representation of these principles.
Mixing properties of quantum systems
International Nuclear Information System (INIS)
Narnhofer, H.; Thirring, W.
1988-01-01
We generalize the classical notion of topological mixing for automorphisms of C * -algebras in two ways. We show that for Galilean invariant Fermi systems the weaker form of mixing is satisfied. With some additional requirement on the range of the interaction we can also demonstrate the stronger mixing property. (Author)
Noise management to achieve superiority in quantum information systems.
Nemoto, Kae; Devitt, Simon; Munro, William J
2017-08-06
Quantum information systems are expected to exhibit superiority compared with their classical counterparts. This superiority arises from the quantum coherences present in these quantum systems, which are obviously absent in classical ones. To exploit such quantum coherences, it is essential to control the phase information in the quantum state. The phase is analogue in nature, rather than binary. This makes quantum information technology fundamentally different from our classical digital information technology. In this paper, we analyse error sources and illustrate how these errors must be managed for the system to achieve the required fidelity and a quantum superiority.This article is part of the themed issue 'Quantum technology for the 21st century'. © 2017 The Author(s).
Quantum: information theory: technological challenge
International Nuclear Information System (INIS)
Calixto, M.
2001-01-01
The new Quantum Information Theory augurs powerful machines that obey the entangled logic of the subatomic world. Parallelism, entanglement, teleportation, no-cloning and quantum cryptography are typical peculiarities of this novel way of understanding computation. (Author) 24 refs
Using a quantum dot system to realize perfect state transfer
International Nuclear Information System (INIS)
Li Ji; Wu Shi-Hai; Zhang Wen-Wen; Xi Xiao-Qiang
2011-01-01
There are some disadvantages to Nikolopoulos et al.'s protocol [Nikolopoulos G M, Petrosyan D and Lambropoulos P 2004 Europhys. Lett. 65 297] where a quantum dot system is used to realize quantum communication. To overcome these disadvantages, we propose a protocol that uses a quantum dot array to construct a four-qubit spin chain to realize perfect quantum state transfer (PQST). First, we calculate the interaction relation for PQST in the spin chain. Second, we review the interaction between the quantum dots in the Heitler—London approach. Third, we present a detailed program for designing the proper parameters of a quantum dot array to realize PQST. (general)
Colloquium: Non-Markovian dynamics in open quantum systems
Breuer, Heinz-Peter; Laine, Elsi-Mari; Piilo, Jyrki; Vacchini, Bassano
2016-04-01
The dynamical behavior of open quantum systems plays a key role in many applications of quantum mechanics, examples ranging from fundamental problems, such as the environment-induced decay of quantum coherence and relaxation in many-body systems, to applications in condensed matter theory, quantum transport, quantum chemistry, and quantum information. In close analogy to a classical Markovian stochastic process, the interaction of an open quantum system with a noisy environment is often modeled phenomenologically by means of a dynamical semigroup with a corresponding time-independent generator in Lindblad form, which describes a memoryless dynamics of the open system typically leading to an irreversible loss of characteristic quantum features. However, in many applications open systems exhibit pronounced memory effects and a revival of genuine quantum properties such as quantum coherence, correlations, and entanglement. Here recent theoretical results on the rich non-Markovian quantum dynamics of open systems are discussed, paying particular attention to the rigorous mathematical definition, to the physical interpretation and classification, as well as to the quantification of quantum memory effects. The general theory is illustrated by a series of physical examples. The analysis reveals that memory effects of the open system dynamics reflect characteristic features of the environment which opens a new perspective for applications, namely, to exploit a small open system as a quantum probe signifying nontrivial features of the environment it is interacting with. This Colloquium further explores the various physical sources of non-Markovian quantum dynamics, such as structured environmental spectral densities, nonlocal correlations between environmental degrees of freedom, and correlations in the initial system-environment state, in addition to developing schemes for their local detection. Recent experiments addressing the detection, quantification, and control of
Quantum communications system with integrated photonic devices
Nordholt, Jane E.; Peterson, Charles Glen; Newell, Raymond Thorson; Hughes, Richard John
2017-11-14
Security is increased in quantum communication (QC) systems lacking a true single-photon laser source by encoding a transmitted optical signal with two or more decoy-states. A variable attenuator or amplitude modulator randomly imposes average photon values onto the optical signal based on data input and the predetermined decoy-states. By measuring and comparing photon distributions for a received QC signal, a single-photon transmittance is estimated. Fiber birefringence is compensated by applying polarization modulation. A transmitter can be configured to transmit in conjugate polarization bases whose states of polarization (SOPs) can be represented as equidistant points on a great circle on the Poincare sphere so that the received SOPs are mapped to equidistant points on a great circle and routed to corresponding detectors. Transmitters are implemented in quantum communication cards and can be assembled from micro-optical components, or transmitter components can be fabricated as part of a monolithic or hybrid chip-scale circuit.
Engineering quantum hyperentangled states in atomic systems
Nawaz, Mehwish; -Islam, Rameez-ul; Abbas, Tasawar; Ikram, Manzoor
2017-11-01
Hyperentangled states have boosted many quantum informatics tasks tremendously due to their high information content per quantum entity. Until now, however, the engineering and manipulation of such states were limited to photonic systems only. In present article, we propose generating atomic hyperentanglement involving atomic internal states as well as atomic external momenta states. Hypersuperposition, hyperentangled cluster, Bell and Greenberger-Horne-Zeilinger states are engineered deterministically through resonant and off-resonant Bragg diffraction of neutral two-level atoms. Based on the characteristic parameters of the atomic Bragg diffraction, such as comparatively large interaction times and spatially well-separated outputs, such decoherence resistant states are expected to exhibit good overall fidelities and offer the evident benefits of full controllability, along with extremely high detection efficiency, over the counterpart photonic states comprised entirely of flying qubits.
Quantum entanglement in inhomogeneous 1D systems
Ramírez, Giovanni
2018-04-01
The entanglement entropy of the ground state of a quantum lattice model with local interactions usually satisfies an area law. However, in 1D systems some violations may appear in inhomogeneous systems or in random systems. In our inhomogeneous system, the inhomogeneity parameter, h, allows us to tune different regimes where a volumetric violation of the area law appears. We apply the strong disorder renormalization group to describe the maximally entangled state of the system in a strong inhomogeneity regime. Moreover, in a weak inhomogeneity regime, we use a continuum approximation to describe the state as a thermo-field double in a conformal field theory with an effective temperature which is proportional to the inhomogeneity parameter of the system. The latter description also shows that the universal scaling features of this model are captured by a massless Dirac fermion in a curved space-time with constant negative curvature R = h2, providing another example of the relation between quantum entanglement and space-time geometry. The results we discuss here were already published before, but here we present a more didactic exposure of basic concepts of the rainbow system for the students attending the Latin American School of Physics "Marcos Moshinsky" 2017.
Murashita, Yûto; Gong, Zongping; Ashida, Yuto; Ueda, Masahito
2017-10-01
The thermodynamics of quantum coherence has attracted growing attention recently, where the thermodynamic advantage of quantum superposition is characterized in terms of quantum thermodynamics. We investigate the thermodynamic effects of quantum coherent driving in the context of the fluctuation theorem. We adopt a quantum-trajectory approach to investigate open quantum systems under feedback control. In these systems, the measurement backaction in the forward process plays a key role, and therefore the corresponding time-reversed quantum measurement and postselection must be considered in the backward process, in sharp contrast to the classical case. The state reduction associated with quantum measurement, in general, creates a zero-probability region in the space of quantum trajectories of the forward process, which causes singularly strong irreversibility with divergent entropy production (i.e., absolute irreversibility) and hence makes the ordinary fluctuation theorem break down. In the classical case, the error-free measurement ordinarily leads to absolute irreversibility, because the measurement restricts classical paths to the region compatible with the measurement outcome. In contrast, in open quantum systems, absolute irreversibility is suppressed even in the presence of the projective measurement due to those quantum rare events that go through the classically forbidden region with the aid of quantum coherent driving. This suppression of absolute irreversibility exemplifies the thermodynamic advantage of quantum coherent driving. Absolute irreversibility is shown to emerge in the absence of coherent driving after the measurement, especially in systems under time-delayed feedback control. We show that absolute irreversibility is mitigated by increasing the duration of quantum coherent driving or decreasing the delay time of feedback control.
Note on transmitted complexity for quantum dynamical systems
Watanabe, Noboru; Muto, Masahiro
2017-10-01
Transmitted complexity (mutual entropy) is one of the important measures for quantum information theory developed recently in several ways. We will review the fundamental concepts of the Kossakowski, Ohya and Watanabe entropy and define a transmitted complexity for quantum dynamical systems. This article is part of the themed issue `Second quantum revolution: foundational questions'.
Effective operator formalism for open quantum systems
DEFF Research Database (Denmark)
Reiter, Florentin; Sørensen, Anders Søndberg
2012-01-01
We present an effective operator formalism for open quantum systems. Employing perturbation theory and adiabatic elimination of excited states for a weakly driven system, we derive an effective master equation which reduces the evolution to the ground-state dynamics. The effective evolution...... involves a single effective Hamiltonian and one effective Lindblad operator for each naturally occurring decay process. Simple expressions are derived for the effective operators which can be directly applied to reach effective equations of motion for the ground states. We compare our method...
Seniority in quantum many-body systems
International Nuclear Information System (INIS)
Van Isacker, P.
2010-01-01
The use of the seniority quantum number in many-body systems is reviewed. A brief summary is given of its introduction by Racah in the context of atomic spectroscopy. Several extensions of Racah's original idea are discussed: seniority for identical nucleons in a single-j shell, its extension to the case of many, non-degenerate j shells and to systems with neutrons and protons. To illustrate its usefulness to this day, a recent application of seniority is presented in Bose-Einstein condensates of atoms with spin.
Low-rank driving in quantum systems
International Nuclear Information System (INIS)
Burkey, R.S.
1989-01-01
A new property of quantum systems called low-rank driving is introduced. Numerous simplifications in the solution of the time-dependent Schroedinger equation are pointed out for systems having this property. These simplifications are in the areas of finding eigenvalues, taking the Laplace transform, converting Schroedinger's equation to an integral form, discretizing the continuum, generalizing the Weisskopf-Wigner approximation, band-diagonalizing the Hamiltonian, finding new exact solutions to Schroedinger's equation, and so forth. The principal physical application considered is the phenomenon of coherent populations-trapping in continuum-continuum interactions
Quantum chaos in a fermion system
International Nuclear Information System (INIS)
Pal, Santanu
1992-01-01
With the growing realisation that the dynamics of a system with a few degrees of freedom is chaotic more as a rule than an exception, the relevance of quantum chaos in nuclear single-particle motion is now receiving closer scrutinisation. This on one hand is helping to gain a deeper understanding of dissipative processes in nuclear dynamics as well as revealing certain interesting features of a fermion system on the other. In the present talk, we would discuss the chaotic features of the single-particle motion in a di nucleus with a view to study the signatures of an effective underlying classical dynamics in the system. As the present day understanding of quantum chaos relies quite heavily on the existence of classical trajectories, it is rather interesting to study how far such considerations can be pushed for systems which do not have a obvious classical analogue such as the spin-orbit interaction in our system. This question has been further investigated for a relativistic fermion system, similar to the Bogoliubov bag. This model is particularly suited as spin, without a classical analogue, has its natural place in the Dirac equation. The results of this study have been presented in the talk. (author). 25 refs., 14 figs
Quantum integrable systems related to lie algebras
International Nuclear Information System (INIS)
Olshanetsky, M.A.; Perelomov, A.M.
1983-01-01
Some quantum integrable finite-dimensional systems related to Lie algebras are considered. This review continues the previous review of the same authors (1981) devoted to the classical aspects of these systems. The dynamics of some of these systems is closely related to free motion in symmetric spaces. Using this connection with the theory of symmetric spaces some results such as the forms of spectra, wave functions, S-matrices, quantum integrals of motion are derived. In specific cases the considered systems describe the one-dimensional n-body systems interacting pairwise via potentials g 2 v(q) of the following 5 types: vsub(I)(q)=q - 2 , vsub(II)(q)=sinh - 2 q, vsub(III)(q)=sin - 2 q, vsub(IV)(q)=P(q), vsub(V)(q)=q - 2 +#betta# 2 q 2 . Here P(q) is the Weierstrass function, so that the first three cases are merely subcases on the fourth. The system characterized by the Toda nearest-neighbour potential exp(qsub(j)-qsub(j+1)) is moreover considered. This review presents from a general and universal point of view results obtained mainly over the past fifteen years. Besides, it contains some new results both of physical and mathematical interest. (orig.)
Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System.
He, Yong; Zhu, Ka-Di
2017-06-20
In this paper, we review the investigation for the light-matter interaction between surface plasmon field in metal nanoparticle (MNP) and the excitons in semiconductor quantum dots (SQDs) in hybrid SQD-MNP system under the full quantum description. The exciton-plasmon interaction gives rise to the modified decay rate and the exciton energy shift which are related to the exciton energy by using a quantum transformation method. We illustrate the responses of the hybrid SQD-MNP system to external field, and reveal Fano effect shown in the absorption spectrum. We demonstrate quantum entanglement between two SQD mediated by surface plasmon field. In the absence of a laser field, concurrence of quantum entanglement will disappear after a few ns. If the laser field is present, the steady states appear, so that quantum entanglement produced will reach a steady-state entanglement. Because one of all optical pathways to induce Fano effect refers to the generation of quantum entangled states, It is shown that the concurrence of quantum entanglement can be obtained by observation for Fano effect. In a hybrid system including two MNP and a SQD, because the two Fano quantum interference processes share a segment of all optical pathways, there is correlation between the Fano effects of the two MNP. The investigations for the light-matter interaction in hybrid SQD-MNP system can pave the way for the development of the optical processing devices and quantum information based on the exciton-plasmon interaction.
Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System
Directory of Open Access Journals (Sweden)
Yong He
2017-06-01
Full Text Available In this paper, we review the investigation for the light-matter interaction between surface plasmon field in metal nanoparticle (MNP and the excitons in semiconductor quantum dots (SQDs in hybrid SQD-MNP system under the full quantum description. The exciton-plasmon interaction gives rise to the modified decay rate and the exciton energy shift which are related to the exciton energy by using a quantum transformation method. We illustrate the responses of the hybrid SQD-MNP system to external field, and reveal Fano effect shown in the absorption spectrum. We demonstrate quantum entanglement between two SQD mediated by surface plasmon field. In the absence of a laser field, concurrence of quantum entanglement will disappear after a few ns. If the laser field is present, the steady states appear, so that quantum entanglement produced will reach a steady-state entanglement. Because one of all optical pathways to induce Fano effect refers to the generation of quantum entangled states, It is shown that the concurrence of quantum entanglement can be obtained by observation for Fano effect. In a hybrid system including two MNP and a SQD, because the two Fano quantum interference processes share a segment of all optical pathways, there is correlation between the Fano effects of the two MNP. The investigations for the light-matter interaction in hybrid SQD-MNP system can pave the way for the development of the optical processing devices and quantum information based on the exciton-plasmon interaction.
Strong chaos in one-dimensional quantum system
International Nuclear Information System (INIS)
Yang, C.-D.; Wei, C.-H.
2008-01-01
According to the Poincare-Bendixson theorem, a minimum of three autonomous equations is required to exhibit deterministic chaos. Because a one-dimensional quantum system is described by only two autonomous equations using de Broglie-Bohm's trajectory interpretation, chaos in one-dimensional quantum systems has long been considered impossible. We will prove in this paper that chaos phenomenon does exist in one-dimensional quantum systems, if the domain of quantum motions is extended to complex space by noting that the quantum world is actually characterized by a four-dimensional complex spacetime according to the E (∞) theory. Furthermore, we point out that the interaction between the real and imaginary parts of complex trajectories produces a new chaos phenomenon unique to quantum systems, called strong chaos, which describes the situation that quantum trajectories may emerge and diverge spontaneously without any perturbation in the initial position
Conditional density matrix: systems and subsystems in quantum mechanics
International Nuclear Information System (INIS)
Belokurov, V.V.; Khrustalev, O.A.; Sadovnichij, V.A.; Timofeevskaya, O.D.
2003-01-01
A new quantum mechanical notion - Conditional Density Matrix - is discussed and is applied to describe some physical processes. This notion is a natural generalization of von Neumann density matrix for such processes as divisions of quantum systems into subsystems and reunifications of subsystems into new joint systems. Conditional Density Matrix assigns a quantum state to a subsystem of a composite system on condition that another part of the composite system is in some pure state
Description of an open quantum mechanical system
International Nuclear Information System (INIS)
Rotter, I.; Forschungszentrum Rossendorf e.V.
1994-05-01
A model for the description of an open quantum mechanical many-particle system is formulated. It starts from the shell model and treats the continuous states by a coupled channels method. The mixing of the discrete shell model states via the continuum of decay channels results in the genuine decaying states of the system. These states are eigenstates of a non-Hermitean Hamilton operator the eigenvalues of which give both the energies and the widths of the states. All correlations between two particles which are caused by the two-particle residual interaction, are taken into account including those via the continuum. In the formalism describing the open quantum mechanical system, the coupling between the system and its environment appears nonlinearly. If the resonance states start to overlap, a redistribution of the spectroscopic values ('trapping effect') takes place. As a result, the complexity of the system is reduced at high level density, structures in space and time are formed. This redistribution describes, on the one hand, the transition from the well-known nuclear properties at low level density to those at high level density and fits, on the other hand, into the concept of selforganization. (orig.)
Optimal dynamics for quantum-state and entanglement transfer through homogeneous quantum systems
International Nuclear Information System (INIS)
Banchi, L.; Apollaro, T. J. G.; Cuccoli, A.; Vaia, R.; Verrucchi, P.
2010-01-01
The capability of faithfully transmit quantum states and entanglement through quantum channels is one of the key requirements for the development of quantum devices. Different solutions have been proposed to accomplish such a challenging task, which, however, require either an ad hoc engineering of the internal interactions of the physical system acting as the channel or specific initialization procedures. Here we show that optimal dynamics for efficient quantum-state and entanglement transfer can be attained in generic quantum systems with homogeneous interactions by tuning the coupling between the system and the two attached qubits. We devise a general procedure to determine the optimal coupling, and we explicitly implement it in the case of a channel consisting of a spin-(1/2)XY chain. The quality of quantum-state and entanglement transfer is found to be very good and, remarkably, almost independent of the channel length.
The transition to chaos conservative classical systems and quantum manifestations
Reichl, Linda E
2004-01-01
This book provides a thorough and comprehensive discussion of classical and quantum chaos theory for bounded systems and for scattering processes Specific discussions include • Noether’s theorem, integrability, KAM theory, and a definition of chaotic behavior • Area-preserving maps, quantum billiards, semiclassical quantization, chaotic scattering, scaling in classical and quantum dynamics, dynamic localization, dynamic tunneling, effects of chaos in periodically driven systems and stochastic systems • Random matrix theory and supersymmetry The book is divided into several parts Chapters 2 through 4 deal with the dynamics of nonlinear conservative classical systems Chapter 5 and several appendices give a thorough grounding in random matrix theory and supersymmetry techniques Chapters 6 and 7 discuss the manifestations of chaos in bounded quantum systems and open quantum systems respectively Chapter 8 focuses on the semiclassical description of quantum systems with underlying classical chaos, and Chapt...
On quantum chaos, stochastic webs and localization in a quantum mechanical kick system
International Nuclear Information System (INIS)
Engel, U.M.
2007-01-01
In this study quantum chaos is discussed using the kicked harmonic oscillator as a model system. The kicked harmonic oscillator is characterized by an exceptional scenario of weak chaos: In the case of resonance between the frequency of the harmonic oscillator and the frequency of the periodic forcing, stochastic webs in phase space are generated by the classical dynamics. For the quantum dynamics of this system it is shown that the resulting Husimi distributions in quantum phase space exhibit the same web-like structures as the classical webs. The quantum dynamics is characterized by diffusive energy growth - just as the classical dynamics in the channels of the webs. In the case of nonresonance, the classically diffusive dynamics is found to be quantum mechanically suppressed. This bounded energy growth, which corresponds to localization in quantum phase space, is explained analytically by mapping the system onto the Anderson model. In this way, within the context of quantum chaos, the kicked harmonic oscillator is characterized by exhibiting its noteworthy geometrical and dynamical properties both classically and quantum mechanically, while at the same time there are also very distinct quantum deviations from classical properties, the most prominent example being quantum localization. (orig.)
The Conditional Entropy Power Inequality for Bosonic Quantum Systems
DEFF Research Database (Denmark)
de Palma, Giacomo; Trevisan, Dario
2018-01-01
We prove the conditional Entropy Power Inequality for Gaussian quantum systems. This fundamental inequality determines the minimum quantum conditional von Neumann entropy of the output of the beam-splitter or of the squeezing among all the input states where the two inputs are conditionally...... independent given the memory and have given quantum conditional entropies. We also prove that, for any couple of values of the quantum conditional entropies of the two inputs, the minimum of the quantum conditional entropy of the output given by the conditional Entropy Power Inequality is asymptotically...... achieved by a suitable sequence of quantum Gaussian input states. Our proof of the conditional Entropy Power Inequality is based on a new Stam inequality for the quantum conditional Fisher information and on the determination of the universal asymptotic behaviour of the quantum conditional entropy under...
Thermalization and prethermalization in isolated quantum systems: a theoretical overview
Mori, Takashi; Ikeda, Tatsuhiko N.; Kaminishi, Eriko; Ueda, Masahito
2018-06-01
The approach to thermal equilibrium, or thermalization, in isolated quantum systems is among the most fundamental problems in statistical physics. Recent theoretical studies have revealed that thermalization in isolated quantum systems has several remarkable features, which emerge from quantum entanglement and are quite distinct from those in classical systems. Experimentally, well isolated and highly controllable ultracold quantum gases offer an ideal testbed to study the nonequilibrium dynamics in isolated quantum systems, promoting intensive recent theoretical endeavors on this fundamental subject. Besides thermalization, many isolated quantum systems show intriguing behavior in relaxation processes, especially prethermalization. Prethermalization occurs when there is a clear separation of relevant time scales and has several different physical origins depending on individual systems. In this review, we overview theoretical approaches to the problems of thermalization and prethermalization.
Linear dynamical quantum systems analysis, synthesis, and control
Nurdin, Hendra I
2017-01-01
This monograph provides an in-depth treatment of the class of linear-dynamical quantum systems. The monograph presents a detailed account of the mathematical modeling of these systems using linear algebra and quantum stochastic calculus as the main tools for a treatment that emphasizes a system-theoretic point of view and the control-theoretic formulations of quantum versions of familiar problems from the classical (non-quantum) setting, including estimation and filtering, realization theory, and feedback control. Both measurement-based feedback control (i.e., feedback control by a classical system involving a continuous-time measurement process) and coherent feedback control (i.e., feedback control by another quantum system without the intervention of any measurements in the feedback loop) are treated. Researchers and graduates studying systems and control theory, quantum probability and stochastics or stochastic control whether from backgrounds in mechanical or electrical engineering or applied mathematics ...
Quantum revivals and magnetization tunneling in effective spin systems
International Nuclear Information System (INIS)
Krizanac, M; Altwein, D; Vedmedenko, E Y; Wiesendanger, R
2016-01-01
Quantum mechanical objects or nano-objects have been proposed as bits for information storage. While time-averaged properties of magnetic, quantum-mechanical particles have been extensively studied experimentally and theoretically, experimental investigations of the real time evolution of magnetization in the quantum regime were not possible until recent developments in pump–probe techniques. Here we investigate the quantum dynamics of effective spin systems by means of analytical and numerical treatments. Particular attention is paid to the quantum revival time and its relation to the magnetization tunneling. The quantum revival time has been initially defined as the recurrence time of a total wave-function. Here we show that the quantum revivals of wave-functions and expectation values in spin systems may be quite different which gives rise to a more sophisticated definition of the quantum revival within the realm of experimental research. Particularly, the revival times for integer spins coincide which is not the case for half-integer spins. Furthermore, the quantum revival is found to be shortest for integer ratios between the on-site anisotropy and an external magnetic field paving the way to novel methods of anisotropy measurements. We show that the quantum tunneling of magnetization at avoided level crossing is coherent to the quantum revival time of expectation values, leading to a connection between these two fundamental properties of quantum mechanical spins. (paper)
Unstable particles as open quantum systems
International Nuclear Information System (INIS)
Caban, Pawel; Rembielinski, Jakub; Smolinski, Kordian A.; Walczak, Zbigniew
2005-01-01
We present the probability-preserving description of the decaying particle within the framework of quantum mechanics of open systems, taking into account the superselection rule prohibiting the superposition of the particle and vacuum. In our approach the evolution of the system is given by a family of completely positive trace-preserving maps forming a one-parameter dynamical semigroup. We give the Kraus representation for the general evolution of such systems, which allows one to write the evolution for systems with two or more particles. Moreover, we show that the decay of the particle can be regarded as a Markov process by finding explicitly the master equation in the Lindblad form. We also show that there are remarkable restrictions on the possible strength of decoherence
Quantum Zeno effect for exponentially decaying systems
International Nuclear Information System (INIS)
Koshino, Kazuki; Shimizu, Akira
2004-01-01
The quantum Zeno effect - suppression of decay by frequent measurements - was believed to occur only when the response of the detector is so quick that the initial tiny deviation from the exponential decay law is detectable. However, we show that it can occur even for exactly exponentially decaying systems, for which this condition is never satisfied, by considering a realistic case where the detector has a finite energy band of detection. The conventional theories correspond to the limit of an infinite bandwidth. This implies that the Zeno effect occurs more widely than expected thus far
Superconducting system for adiabatic quantum computing
Energy Technology Data Exchange (ETDEWEB)
Corato, V [Dipartimento di Ingegneria dell' Informazione, Second University of Naples, 81031 Aversa (Italy); Roscilde, T [Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484 (Canada); Ruggiero, B [Istituto di Cibernetica ' E.Caianiello' del CNR, I-80078, Pozzuoli (Italy); Granata, C [Istituto di Cibernetica ' E.Caianiello' del CNR, I-80078, Pozzuoli (Italy); Silvestrini, P [Dipartimento di Ingegneria dell' Informazione, Second University of Naples, 81031 Aversa (Italy)
2006-06-01
We study the Hamiltonian of a system of inductively coupled flux qubits, which has been theoretically proposed for adiabatic quantum computation to handle NP problems. We study the evolution of a basic structure consisting of three coupled rf-SQUIDs upon tuning the external flux bias, and we show that the adiabatic nature of the evolution is guaranteed by the presence of the single-SQUID gap. We further propose a scheme and the first realization of an experimental device suitable for verifying the theoretical results.
Quantum-size colloid metal systems
International Nuclear Information System (INIS)
Roldugin, V.I.
2000-01-01
In the review dealing with quantum-dimensional metallic colloid systems the methods of preparation, electronic, optical and thermodynamic properties of metal nanoparticles and thin films are considered, the effect of ionizing radiation on stability of silver colloid sols and existence of a threshold radiation dose affecting loss of stability being discussed. It is shown that sol stability loss stems from particles charge neutralization due to reduction of sorbed silver ions induced by radiation, which results in destruction of double electric layer on colloid particles boundary [ru
Integrability and nonintegrability of quantum systems. II. Dynamics in quantum phase space
Zhang, Wei-Min; Feng, Da Hsuan; Yuan, Jian-Min
1990-12-01
Based on the concepts of integrability and nonintegrability of a quantum system presented in a previous paper [Zhang, Feng, Yuan, and Wang, Phys. Rev. A 40, 438 (1989)], a realization of the dynamics in the quantum phase space is now presented. For a quantum system with dynamical group scrG and in one of its unitary irreducible-representation carrier spaces gerhΛ, the quantum phase space is a 2MΛ-dimensional topological space, where MΛ is the quantum-dynamical degrees of freedom. This quantum phase space is isomorphic to a coset space scrG/scrH via the unitary exponential mapping of the elementary excitation operator subspace of scrg (algebra of scrG), where scrH (⊂scrG) is the maximal stability subgroup of a fixed state in gerhΛ. The phase-space representation of the system is realized on scrG/scrH, and its classical analogy can be obtained naturally. It is also shown that there is consistency between quantum and classical integrability. Finally, a general algorithm for seeking the manifestation of ``quantum chaos'' via the classical analogy is provided. Illustrations of this formulation in several important quantum systems are presented.
Characterizing and quantifying frustration in quantum many-body systems.
Giampaolo, S M; Gualdi, G; Monras, A; Illuminati, F
2011-12-23
We present a general scheme for the study of frustration in quantum systems. We introduce a universal measure of frustration for arbitrary quantum systems and we relate it to a class of entanglement monotones via an exact inequality. If all the (pure) ground states of a given Hamiltonian saturate the inequality, then the system is said to be inequality saturating. We introduce sufficient conditions for a quantum spin system to be inequality saturating and confirm them with extensive numerical tests. These conditions provide a generalization to the quantum domain of the Toulouse criteria for classical frustration-free systems. The models satisfying these conditions can be reasonably identified as geometrically unfrustrated and subject to frustration of purely quantum origin. Our results therefore establish a unified framework for studying the intertwining of geometric and quantum contributions to frustration.
Quantum Oscillator in the Thermostat as a Model in the Thermodynamics of Open Quantum Systems
Sukhanov, Aleksander
2005-01-01
The quantum oscillator in the thermostat is considered as the model of an open quantum system. Our analysis will be heavily founded on the use of the Schroedinger generalized uncertainties relations (SUR). Our first aim is to demonstrate that for the quantum oscillator the state of thermal equilibrium belongs to the correlated coherent states (CCS), which imply the saturation of SUR at any temperature. The obtained results open the perspective for the search of some statistical theory, which ...
Correlation function behavior in quantum systems which are classically chaotic
International Nuclear Information System (INIS)
Berman, G.P.; Kolovsky, A.R.
1983-01-01
The time behavior of a phase correlation function for dynamical quantum systems which are classically chaotic is considered. It is shown that under certain conditions there are three time regions of the quantum correlations behavior; the region of classical stochasticity (exponential decay of quantum correlations); the region of the correlations decay with a power law; the region of the constant level of the quantum correlations. The boundaries of these time regions are presented. The estimation of a remaining level of the quantum correlations is given. (orig.)
Quantum simulation of strongly correlated condensed matter systems
Hofstetter, W.; Qin, T.
2018-04-01
We review recent experimental and theoretical progress in realizing and simulating many-body phases of ultracold atoms in optical lattices, which gives access to analog quantum simulations of fundamental model Hamiltonians for strongly correlated condensed matter systems, such as the Hubbard model. After a general introduction to quantum gases in optical lattices, their preparation and cooling, and measurement techniques for relevant observables, we focus on several examples, where quantum simulations of this type have been performed successfully during the past years: Mott-insulator states, itinerant quantum magnetism, disorder-induced localization and its interplay with interactions, and topological quantum states in synthetic gauge fields.
Asymptotically open quantum systems; Asymptotisch offene Quantensysteme
Energy Technology Data Exchange (ETDEWEB)
Westrich, M.
2008-04-15
In the present thesis we investigate the structure of time-dependent equations of motion in quantum mechanics.We start from two coupled systems with an autonomous equation of motion. A limit, in which the dynamics of one of the two systems has a decoupled evolution and imposes a non-autonomous evolution for the second system is identified. A result due to K. Hepp that provides a classical limit for dynamics turns out to be part and parcel for this limit and is generalized in our work. The method introduced by J.S. Howland for the solution of the time-dependent Schroedinger equation is interpreted as such a limit. Moreover, we associate our limit with the modern theory of quantization. (orig.)
Quantum Accelerators for High-performance Computing Systems
Energy Technology Data Exchange (ETDEWEB)
Humble, Travis S. [ORNL; Britt, Keith A. [ORNL; Mohiyaddin, Fahd A. [ORNL
2017-11-01
We define some of the programming and system-level challenges facing the application of quantum processing to high-performance computing. Alongside barriers to physical integration, prominent differences in the execution of quantum and conventional programs challenges the intersection of these computational models. Following a brief overview of the state of the art, we discuss recent advances in programming and execution models for hybrid quantum-classical computing. We discuss a novel quantum-accelerator framework that uses specialized kernels to offload select workloads while integrating with existing computing infrastructure. We elaborate on the role of the host operating system to manage these unique accelerator resources, the prospects for deploying quantum modules, and the requirements placed on the language hierarchy connecting these different system components. We draw on recent advances in the modeling and simulation of quantum computing systems with the development of architectures for hybrid high-performance computing systems and the realization of software stacks for controlling quantum devices. Finally, we present simulation results that describe the expected system-level behavior of high-performance computing systems composed from compute nodes with quantum processing units. We describe performance for these hybrid systems in terms of time-to-solution, accuracy, and energy consumption, and we use simple application examples to estimate the performance advantage of quantum acceleration.
Features and states of microscopic particles in nonlinear quantum-mechanics systems
Institute of Scientific and Technical Information of China (English)
2008-01-01
In this paper,we present the elementary principles of nonlinear quantum mechanics(NLQM),which is based on some problems in quantum mechanics.We investigate in detail the motion laws and some main properties of microscopic particles in nonlinear quantum systems using these elementary principles.Concretely speaking,we study in this paper the wave-particle duality of the solution of the nonlinear Schr6dinger equation,the stability of microscopic particles described by NLQM,invariances and conservation laws of motion of particles,the Hamiltonian principle of particle motion and corresponding Lagrangian and Hamilton equations,the classical rule of microscopic particle motion,the mechanism and rules of particle collision,the features of reflection and the transmission of particles at interfaces,and the uncertainty relation of particle motion as well as the eigenvalue and eigenequations of particles,and so on.We obtained the invariance and conservation laws of mass,energy and momentum and angular momenturn for the microscopic particles,which are also some elementary and universal laws of matter in the NLQM and give further the methods and ways of solving the above questions.We also find that the laws of motion of microscopic particles in such a case are completely different from that in the linear quantum mechanics(LQM).They have a lot of new properties;for example,the particles possess the real wave-corpuscle duality,obey the classical rule of motion and conservation laws of energy,momentum and mass,satisfy minimum uncertainty relation,can be localized due to the nonlinear interaction,and its position and momentum can also be determined,etc.From these studies,we see clearly that rules and features of microscopic particle motion in NLQM is different from that in LQM.Therefore,the NLQM is a new physical theory,and a necessary result of the development of quantum mechanics and has a correct representation of describing microscopic particles in nonlinear systems,which can
Stationary states of two-level open quantum systems
International Nuclear Information System (INIS)
Gardas, Bartlomiej; Puchala, Zbigniew
2011-01-01
A problem of finding stationary states of open quantum systems is addressed. We focus our attention on a generic type of open system: a qubit coupled to its environment. We apply the theory of block operator matrices and find stationary states of two-level open quantum systems under certain conditions applied on both the qubit and the surrounding.
Repetitive Interrogation of 2-Level Quantum Systems
Prestage, John D.; Chung, Sang K.
2010-01-01
Trapped ion clocks derive information from a reference atomic transition by repetitive interrogations of the same quantum system, either a single ion or ionized gas of many millions of ions. Atomic beam frequency standards, by contrast, measure reference atomic transitions in a continuously replenished "flow through" configuration where initial ensemble atomic coherence is zero. We will describe some issues and problems that can arise when atomic state selection and preparation of the quantum atomic system is not completed, that is, optical pumping has not fully relaxed the coherence and also not fully transferred atoms to the initial state. We present a simple two-level density matrix analysis showing how frequency shifts during the state-selection process can cause frequency shifts of the measured clock transition. Such considerations are very important when a low intensity lamp light source is used for state selection, where there is relatively weak relaxation and re-pumping of ions to an initial state and much weaker 'environmental' relaxation of the atomic coherence set-up in the atomic sample.
Quantum systems related to root systems and radial parts of Laplace operators
Olshanetsky, M. A.; Perelomov, A. M.
2002-01-01
The relation between quantum systems associated to root systems and radial parts of Laplace operators on symmetric spaces is established. From this it follows the complete integrability of some quantum systems.
QuantumOptics.jl: A Julia framework for simulating open quantum systems
Krämer, Sebastian; Plankensteiner, David; Ostermann, Laurin; Ritsch, Helmut
2018-06-01
We present an open source computational framework geared towards the efficient numerical investigation of open quantum systems written in the Julia programming language. Built exclusively in Julia and based on standard quantum optics notation, the toolbox offers speed comparable to low-level statically typed languages, without compromising on the accessibility and code readability found in dynamic languages. After introducing the framework, we highlight its features and showcase implementations of generic quantum models. Finally, we compare its usability and performance to two well-established and widely used numerical quantum libraries.
Realization of quantum state privacy amplification in a nuclear magnetic resonance quantum system
International Nuclear Information System (INIS)
Hao, Liang; Wang, Chuan; Long, Gui Lu
2010-01-01
Quantum state privacy amplification (QSPA) is the quantum analogue of classical privacy amplification. If the state information of a series of single-particle states has some leakage, QSPA reduces this leakage by condensing the state information of two particles into the state of one particle. Recursive applications of the operations will eliminate the quantum state information leakage to a required minimum level. In this paper, we report the experimental implementation of a quantum state privacy amplification protocol in a nuclear magnetic resonance system. The density matrices of the states are constructed in the experiment, and the experimental results agree well with theory.
Conditional quantum entropy power inequality for d-level quantum systems
Jeong, Kabgyun; Lee, Soojoon; Jeong, Hyunseok
2018-04-01
We propose an extension of the quantum entropy power inequality for finite dimensional quantum systems, and prove a conditional quantum entropy power inequality by using the majorization relation as well as the concavity of entropic functions also given by Audenaert et al (2016 J. Math. Phys. 57 052202). Here, we make particular use of the fact that a specific local measurement after a partial swap operation (or partial swap quantum channel) acting only on finite dimensional bipartite subsystems does not affect the majorization relation for the conditional output states when a separable ancillary subsystem is involved. We expect our conditional quantum entropy power inequality to be useful, and applicable in bounding and analyzing several capacity problems for quantum channels.
Quantum field theory in stationary coordinate systems
International Nuclear Information System (INIS)
Pfautsch, J.D.
1981-01-01
Quantum field theory is examined in stationary coordinate systems in Minkowski space. Preliminary to quantization of the scalar field, all of the possible stationary coordinate systems in flat spacetime are classified and explicitly constructed. Six distinct classes of such systems are found. Of these six, three have (identical) event horizons associated with them and five have Killing horizons. Two classes have distinct Killing and event horizons, with an intervening region analogous to the ergosphere in rotating black holes. Particular representatives of each class are selected for subsequent use in the quantum field theory. The scalar field is canonically quantized and a vacuum defined in each of the particular coordinate systems chosen. The vacuum states can be regarded as adapted to the six classes of stationary motions. There are only two vacuum states found, the Minkowski vacuum in those coordinate systems without event horizons and the Fulling vacuum in those with event horizons. The responses of monopole detectors traveling along stationary world lines are calculated in both the Minkowski and Fulling vacuums. The responses for each class of motions are distinct from those for every other class. A vacuum defined by the response of a detector must therefore not be equivalent in general to a vacuum defined by canonical quantization. Quantization of the scalar field within a rotating wedge is examined. It has not been possible to construct mode functions satisfying appropriate boundary conditions on the surface of the wedge. The asymptotic form of the renormalized stress tensor near the surfaces had been calculated and is found to include momentum terms which represent a circulation of energy within the wedge
Architectures and Applications for Scalable Quantum Information Systems
2007-01-01
Gershenfeld and I. Chuang. Quantum computing with molecules. Scientific American, June 1998. [16] A. Globus, D. Bailey, J. Han, R. Jaffe, C. Levit , R...AFRL-IF-RS-TR-2007-12 Final Technical Report January 2007 ARCHITECTURES AND APPLICATIONS FOR SCALABLE QUANTUM INFORMATION SYSTEMS...NUMBER 5b. GRANT NUMBER FA8750-01-2-0521 4. TITLE AND SUBTITLE ARCHITECTURES AND APPLICATIONS FOR SCALABLE QUANTUM INFORMATION SYSTEMS 5c
Projective measurements in quantum and classical optical systems
CSIR Research Space (South Africa)
Roux, FS
2014-09-01
Full Text Available equally well to both classical and quantum optical systems. A projective measurement, in the context of quantum mechanics, is understood to be the process where a projection operator operates on some input state. Often this projection operator is composed...) Projective measurements in quantum and classical optical systems Filippus S. Roux* and Yingwen Zhang CSIR National Laser Centre, P.O. Box 395, Pretoria 0001, South Africa (Received 3 July 2014; published 22 September 2014) Experimental setups for the optical...
Constructing quantum games from a system of Bell's inequalities
International Nuclear Information System (INIS)
Iqbal, Azhar; Abbott, Derek
2010-01-01
We report constructing quantum games directly from a system of Bell's inequalities using Arthur Fine's analysis published in early 1980s. This analysis showed that such a system of inequalities forms a set of both necessary and sufficient conditions required to find a joint distribution function compatible with a given set of joint probabilities, in terms of which the system of Bell's inequalities is usually expressed. Using the setting of a quantum correlation experiment for playing a quantum game, and considering the examples of Prisoners' Dilemma and Matching Pennies, we argue that this approach towards constructing quantum games addresses some of their well-known criticisms.
Quantum uncertainty in critical systems with three spins interaction
International Nuclear Information System (INIS)
Carrijo, Thiago M; Avelar, Ardiley T; Céleri, Lucas C
2015-01-01
In this article we consider two spin-1/2 chains described, respectively, by the thermodynamic limit of the XY model with the usual two site interaction, and an extension of this model (without taking the thermodynamics limit), called XYT, were a three site interaction term is presented. To investigate the critical behaviour of such systems we employ tools from quantum information theory. Specifically, we show that the local quantum uncertainty, a quantity introduced in order to quantify the minimum quantum share of the variance of a local measurement, can be used to indicate quantum phase transitions presented by these models at zero temperature. Due to the connection of this quantity with the quantum Fisher information, the results presented here may be relevant for quantum metrology and quantum thermodynamics. (paper)
Quantum Transport in Strongly Correlated Systems
DEFF Research Database (Denmark)
Bohr, Dan
2007-01-01
the density matrix renormalization group (DMRG) method. We present two DMRG setups for calculating the linear conductance of strongly correlated nanostructures in the infinitesimal source-drain voltage regime. The first setup describes the leads by modified real-space tight-binding chains, whereas the second....... Thus both coherence and correlation effects are important in this model, and the methods applied should be able to handle both these effects rigorously. We present the DMRG setup for this model and benchmark against existing Greens function results for the model. Then we present initial DMRG results...... screening plays a much less significant role than in bulk systems due to the reduced size of the objects, therefore making it necessary to consider the importance of correlations between electrons. The work presented in this thesis deals with quantum transport through strongly correlated systems using...
On the kinetic theory of quantum systems
International Nuclear Information System (INIS)
Calkoen, C.J.
1986-01-01
The contents of this thesis which deals with transport phenomena of specific gases, plasmas and fluids, can be separated into two distinct parts. In the first part a statistical way is suggested to estimate the neutrino mass. Herefore use is made of the fact that massive neutrinos possess a non-zero volume viscosity in contrast with massless neutrinos. The second part deals with kinetic theory of strongly condensed quantum systems of which examples in nature are: liquid Helium, heavy nuclei, electrons in a metal and the interior of stars. In degenerate systems fermions in general interact strongly so that ordinary kinetic theory is not directly applicable. For such cases Landau-Fermi-liquid theory, in which the strongly interacting particles are replaced by much weaker interacting quasiparticles, proved to be very useful. A method is developed in this theory to calculate transport coefficients. Applications of this method on liquid 3 Helium yield surprisingly good agreement with experimental results for thermal conductivities. (Auth.)
Renner, R; Cirac, J I
2009-03-20
We show that the quantum de Finetti theorem holds for states on infinite-dimensional systems, provided they satisfy certain experimentally verifiable conditions. This result can be applied to prove the security of quantum key distribution based on weak coherent states or other continuous variable states against general attacks.
Software Systems for High-performance Quantum Computing
Energy Technology Data Exchange (ETDEWEB)
Humble, Travis S [ORNL; Britt, Keith A [ORNL
2016-01-01
Quantum computing promises new opportunities for solving hard computational problems, but harnessing this novelty requires breakthrough concepts in the design, operation, and application of computing systems. We define some of the challenges facing the development of quantum computing systems as well as software-based approaches that can be used to overcome these challenges. Following a brief overview of the state of the art, we present models for the quantum programming and execution models, the development of architectures for hybrid high-performance computing systems, and the realization of software stacks for quantum networking. This leads to a discussion of the role that conventional computing plays in the quantum paradigm and how some of the current challenges for exascale computing overlap with those facing quantum computing.
Correlation Functions in Open Quantum-Classical Systems
Directory of Open Access Journals (Sweden)
Chang-Yu Hsieh
2013-12-01
Full Text Available Quantum time correlation functions are often the principal objects of interest in experimental investigations of the dynamics of quantum systems. For instance, transport properties, such as diffusion and reaction rate coefficients, can be obtained by integrating these functions. The evaluation of such correlation functions entails sampling from quantum equilibrium density operators and quantum time evolution of operators. For condensed phase and complex systems, where quantum dynamics is difficult to carry out, approximations must often be made to compute these functions. We present a general scheme for the computation of correlation functions, which preserves the full quantum equilibrium structure of the system and approximates the time evolution with quantum-classical Liouville dynamics. Several aspects of the scheme are discussed, including a practical and general approach to sample the quantum equilibrium density, the properties of the quantum-classical Liouville equation in the context of correlation function computations, simulation schemes for the approximate dynamics and their interpretation and connections to other approximate quantum dynamical methods.
Investigating non-Markovian dynamics of quantum open systems
Chen, Yusui
Quantum open system coupled to a non-Markovian environment has recently attracted widespread interest for its important applications in quantum information processing and quantum dissipative systems. New phenomena induced by the non-Markovian environment have been discovered in variety of research areas ranging from quantum optics, quantum decoherence to condensed matter physics. However, the study of the non-Markovian quantum open system is known a difficult problem due to its technical complexity in deriving the fundamental equation of motion and elusive conceptual issues involving non-equilibrium dynamics for a strong coupled environment. The main purpose of this thesis is to introduce several new techniques of solving the quantum open systems including a systematic approach to dealing with non-Markovian master equations from a generic quantum-state diffusion (QSD) equation. In the first part of this thesis, we briefly introduce the non-Markovian quantum-state diffusion approach, and illustrate some pronounced non-Markovian quantum effects through numerical investigation on a cavity-QED model. Then we extend the non-Markovian QSD theory to an interesting model where the environment has a hierarchical structure, and find out the exact non-Markovian QSD equation of this model system. We observe the generation of quantum entanglement due to the interplay between the non-Markovian environment and the cavity. In the second part, we show an innovative method to obtain the exact non-Markovian master equations for a set of generic quantum open systems based on the corresponding non-Markovian QSD equations. Multiple-qubit systems and multilevel systems are discussed in details as two typical examples. Particularly, we derive the exact master equation for a model consisting of a three-level atom coupled to an optical cavity and controlled by an external laser field. Additionally, we discuss in more general context the mathematical similarity between the multiple
Quantum Computing in Fock Space Systems
Berezin, Alexander A.
1997-04-01
Fock space system (FSS) has unfixed number (N) of particles and/or degrees of freedom. In quantum computing (QC) main requirement is sustainability of coherent Q-superpositions. This normally favoured by low noise environment. High excitation/high temperature (T) limit is hence discarded as unfeasible for QC. Conversely, if N is itself a quantized variable, the dimensionality of Hilbert basis for qubits may increase faster (say, N-exponentially) than thermal noise (likely, in powers of N and T). Hence coherency may win over T-randomization. For this type of QC speed (S) of factorization of long integers (with D digits) may increase with D (for 'ordinary' QC speed polynomially decreases with D). This (apparent) paradox rests on non-monotonic bijectivity (cf. Georg Cantor's diagonal counting of rational numbers). This brings entire aleph-null structurality ("Babylonian Library" of infinite informational content of integer field) to superposition determining state of quantum analogue of Turing machine head. Structure of integer infinititude (e.g. distribution of primes) results in direct "Platonic pressure" resembling semi-virtual Casimir efect (presure of cut-off vibrational modes). This "effect", the embodiment of Pythagorean "Number is everything", renders Godelian barrier arbitrary thin and hence FSS-based QC can in principle be unlimitedly efficient (e.g. D/S may tend to zero when D tends to infinity).
Shrinked systems. Quantum physics on new paths
International Nuclear Information System (INIS)
Audretsch, J.
2005-01-01
This introducing textbook for students of higher semesters of physics, chemistry, and informatics treats a in latest time dynamically expanding field of physics. This book deals among others with the themes quantum information theory, quantum communications, quantum computing, teleportation, hidden parameters, which-way-marking, quantum measuring process, POVM, quantum channels and mediates by this not only a deepened understanding of quantum theory but also basic science, in order to follow the fast development of the field respectively to enter a special field of research. Commented recommendations for further literature as well as exercise problems help the reader to find quickly a founded approach to the theoretical foundations of future key technologies. The book can be made to a base of courses and seminars. Because the required basic knowledge in mathematics and quantum theory is presented in introductory chapters, the book is also suited for the self-study
The Conditional Entropy Power Inequality for Bosonic Quantum Systems
De Palma, Giacomo; Trevisan, Dario
2018-06-01
We prove the conditional Entropy Power Inequality for Gaussian quantum systems. This fundamental inequality determines the minimum quantum conditional von Neumann entropy of the output of the beam-splitter or of the squeezing among all the input states where the two inputs are conditionally independent given the memory and have given quantum conditional entropies. We also prove that, for any couple of values of the quantum conditional entropies of the two inputs, the minimum of the quantum conditional entropy of the output given by the conditional Entropy Power Inequality is asymptotically achieved by a suitable sequence of quantum Gaussian input states. Our proof of the conditional Entropy Power Inequality is based on a new Stam inequality for the quantum conditional Fisher information and on the determination of the universal asymptotic behaviour of the quantum conditional entropy under the heat semigroup evolution. The beam-splitter and the squeezing are the central elements of quantum optics, and can model the attenuation, the amplification and the noise of electromagnetic signals. This conditional Entropy Power Inequality will have a strong impact in quantum information and quantum cryptography. Among its many possible applications there is the proof of a new uncertainty relation for the conditional Wehrl entropy.
Quantum Phase Transitions in Conventional Matrix Product Systems
Zhu, Jing-Min; Huang, Fei; Chang, Yan
2017-02-01
For matrix product states(MPSs) of one-dimensional spin-1/2 chains, we investigate a new kind of conventional quantum phase transition(QPT). We find that the system has two different ferromagnetic phases; on the line of the two ferromagnetic phases coexisting equally, the system in the thermodynamic limit is in an isolated mediate-coupling state described by a paramagnetic state and is in the same state as the renormalization group fixed point state, the expectation values of the physical quantities are discontinuous, and any two spin blocks of the system have the same geometry quantum discord(GQD) within the range of open interval (0,0.25) and the same classical correlation(CC) within the range of open interval (0,0.75) compared to any phase having no any kind of correlation. We not only realize the control of QPTs but also realize the control of quantum correlation of quantum many-body systems on the critical line by adjusting the environment parameters, which may have potential application in quantum information fields and is helpful to comprehensively and deeply understand the quantum correlation, and the organization and structure of quantum correlation especially for long-range quantum correlation of quantum many-body systems.
Towards the experimental realization of hybrid quantum systems
International Nuclear Information System (INIS)
Koller, C.
2012-01-01
One of the main interests of quantum physics in this new millennium is the exploitation of quantum mechanical principles in technical applications. One approach here is to use entanglement and superpositions of states to realize powerful algorithms capable of solving challenging computational tasks on a much faster time scale than a classical computer ever could. To find the quantum analogue of a classical bit one needs a quantum mechanical two level system that can be used to store and process quantum information. Most of the current approaches to find such a 'qubit' have the intention to find a single system that is able to fulfill all desirable tasks. But actually most quantum systems are only favorable for very specific tasks (e.g storage, processing, data exchange,..), similar as it is in classical computing. For some qubits the main disadvantages is that their quantum state is very fragile. Those systems loose their 'quantum information' (that is the possibility to store superpositions of their states coherently) easily. They 'decohere' on a timescale that is much shorter then any more involving algorithm. Other systems can keep those superposition states for quite a while, but are so difficult to address that the number of operations that can be made is very limited. The task of a so called hybrid quantum system is now to combine the strengths of these different systems, using e.g. one for manipulation and an other system for storage. Similar to a processor/memory architecture in conventional computers these systems could use a kind of bus system to couple between them. The main task of this thesis was to make steps towards the realization of such a system using two different combinations of quantum systems. Both are planned to use superconducting qubits (transmons) as processor qubit and either atoms (ultra cold rubidium 87 ensembles) or solid state spin systems (Nitrogen Vacancies in diamonds - NV centers) as memory. (author)
Hybrid quantum-classical modeling of quantum dot devices
Kantner, Markus; Mittnenzweig, Markus; Koprucki, Thomas
2017-11-01
The design of electrically driven quantum dot devices for quantum optical applications asks for modeling approaches combining classical device physics with quantum mechanics. We connect the well-established fields of semiclassical semiconductor transport theory and the theory of open quantum systems to meet this requirement. By coupling the van Roosbroeck system with a quantum master equation in Lindblad form, we introduce a new hybrid quantum-classical modeling approach, which provides a comprehensive description of quantum dot devices on multiple scales: it enables the calculation of quantum optical figures of merit and the spatially resolved simulation of the current flow in realistic semiconductor device geometries in a unified way. We construct the interface between both theories in such a way, that the resulting hybrid system obeys the fundamental axioms of (non)equilibrium thermodynamics. We show that our approach guarantees the conservation of charge, consistency with the thermodynamic equilibrium and the second law of thermodynamics. The feasibility of the approach is demonstrated by numerical simulations of an electrically driven single-photon source based on a single quantum dot in the stationary and transient operation regime.
Quantum number theoretic transforms on multipartite finite systems.
Vourdas, A; Zhang, S
2009-06-01
A quantum system composed of p-1 subsystems, each of which is described with a p-dimensional Hilbert space (where p is a prime number), is considered. A quantum number theoretic transform on this system, which has properties similar to those of a Fourier transform, is studied. A representation of the Heisenberg-Weyl group in this context is also discussed.
Quantum-classical correspondence in steady states of nonadiabatic systems
International Nuclear Information System (INIS)
Fujii, Mikiya; Yamashita, Koichi
2015-01-01
We first present nonadiabatic path integral which is exact formulation of quantum dynamics in nonadiabatic systems. Then, by applying the stationary phase approximations to the nonadiabatic path integral, a semiclassical quantization condition, i.e., quantum-classical correspondence, for steady states of nonadiabatic systems is presented as a nonadiabatic trace formula. The present quantum-classical correspondence indicates that a set of primitive hopping periodic orbits, which are invariant under time evolution in the phase space of the slow degree of freedom, should be quantized. The semiclassical quantization is then applied to a simple nonadiabatic model and accurately reproduces exact quantum energy levels
Measures of Quantum Synchronization in Continuous Variable Systems
Mari, A.; Farace, A.; Didier, N.; Giovannetti, V.; Fazio, R.
2013-09-01
We introduce and characterize two different measures which quantify the level of synchronization of coupled continuous variable quantum systems. The two measures allow us to extend to the quantum domain the notions of complete and phase synchronization. The Heisenberg principle sets a universal bound to complete synchronization. The measure of phase synchronization is, in principle, unbounded; however, in the absence of quantum resources (e.g., squeezing) the synchronization level is bounded below a certain threshold. We elucidate some interesting connections between entanglement and synchronization and, finally, discuss an application based on quantum optomechanical systems.
Quantum chromodynamics in few-nucleon systems
International Nuclear Information System (INIS)
Brodsky, S.J.
1983-10-01
One of the most important implications of quantum chromodynamics (QCD) is that nuclear systems and forces can be described at a fundamental level. The theory provides natural explanations for the basic features of hadronic physics: the meson and baryon spectra, quark statistics, the structure of the weak and electromagnetic currents of hadrons, the scale-invariance of hadronic interactions at short distances, and evidently, color (i.e., quark and gluon) confinement at large distances. Many different and diverse tests have confirmed the basic predictions of QCD; however, since tests of quark and gluon interactions must be done within the confines of hadrons there have been few truly quantitative checks. Nevertheless, it appears likely that QCD is the fundamental theory of hadronic and nuclear interactions in the same sense that QED gives a precise description of electrodynamic interctions. Topics discussed include exclusive processes in QCD, the deuteron in QCD, reduced nuclear amplitudes, and limitations of traditional nuclear physics. 32 references
The problems of mapping in quantum systems
International Nuclear Information System (INIS)
Xu Gongou; Wang Wenge; Yang Yadian; Fu Deji
1992-01-01
The mapping from the state of Hamiltonian H(0) to that of H(λ) = H(0) + λ(H-H(0)) is established by means of Wigner-Brillion perturbation formula. An iterative perturbation calculation can be carried out to find the stable points set and to show that under what condition the iterative calculation is divergent(non convergent). Avoided crossing point is really a singularity-point showed clearly in such procedure. The topological invariant subspace endowed by corresponding Hamiltonian H(0) is destroyed after such avoided crossing point. It is similar to the classical invariant tori destruction. A quantum KAM theorem can be established in this manner. Numerical results of certain schematic systems are given as illustration
Relativistic quantum theory of composite systems
International Nuclear Information System (INIS)
Sogami, I.
1978-01-01
A relativistic quantum theory free from the difficulties of tachyons and ghosts is formulated to describe the scattering processes between composite systems of spinless quarks. To evade the complication brewed by introducing gluon fields or strings, valence quarks are effectively assumed to be in the relative motion of harmonic oscillation correlating with the motion of the composite system as a whole. A quark-antiquark system is represented by a bilocal field describing a sequence of mesons and every meson is identified with the composite system in a definite eigenstate of relative motion. The quantization is performed in the interaction picture, so that the microcausal condition is satisfied by local fields which result from the decomposition of bilocal fields. Imposing a weakened macrocausal condition on the whole motion of the extended system, a causal bilocal propagator is defined and a consistent time ordering among bilocal fields is defined. The invariant S-matrix is obtained and the graphical method for the calculation of its elements is developed in parallel with the conventional local field theory. For the (bilocal field) 3 interaction any malignant divergence does not appear excepting those in the renormalizable local field theory. The theory provides one promising and comprehensive phenomenology of hadrons which is suitable especially to describe the hard structure of hadrons. (author)
Quantum Accelerators for High-Performance Computing Systems
Britt, Keith A.; Mohiyaddin, Fahd A.; Humble, Travis S.
2017-01-01
We define some of the programming and system-level challenges facing the application of quantum processing to high-performance computing. Alongside barriers to physical integration, prominent differences in the execution of quantum and conventional programs challenges the intersection of these computational models. Following a brief overview of the state of the art, we discuss recent advances in programming and execution models for hybrid quantum-classical computing. We discuss a novel quantu...
Controlling open quantum systems: Tools, achievements, and limitations
Koch, Christiane P.
2016-01-01
The advent of quantum devices, which exploit the two essential elements of quantum physics, coherence and entanglement, has sparked renewed interest in the control of open quantum systems. Successful implementations face the challenge to preserve the relevant nonclassical features at the level of device operation. A major obstacle is decoherence which is caused by interaction with the environment. Optimal control theory is a tool that can be used to identify control strategies in the presence...
Advanced-Retarded Differential Equations in Quantum Photonic Systems
Alvarez-Rodriguez, Unai; Perez-Leija, Armando; Egusquiza, Iñigo L.; Gräfe, Markus; Sanz, Mikel; Lamata, Lucas; Szameit, Alexander; Solano, Enrique
2017-01-01
We propose the realization of photonic circuits whose dynamics is governed by advanced-retarded differential equations. Beyond their mathematical interest, these photonic configurations enable the implementation of quantum feedback and feedforward without requiring any intermediate measurement. We show how this protocol can be applied to implement interesting delay effects in the quantum regime, as well as in the classical limit. Our results elucidate the potential of the protocol as a promising route towards integrated quantum control systems on a chip. PMID:28230090
Relationship between quantum-mechanical systems with and without monopoles
International Nuclear Information System (INIS)
Mardoyan, Levon; Nersessian, Armen; Yeranyan, Armen
2007-01-01
It is shown that the inclusion of the monopole field in the three- and five-dimensional spherically symmetric quantum-mechanical systems, with the addition of the special centrifugal term, leads to the lift of the range of the total and azimuth quantum numbers only. Meanwhile the functional dependence of the energy spectra on quantum numbers does not undergo any changes. We also present a new integrable model of the spherical oscillator
Otsuki, Michio; Matsukawa, Hiroshi
2013-01-01
In many sliding systems consisting of solid object on a solid substrate under dry condition, the friction force does not depend on the apparent contact area and is proportional to the loading force. This behaviour is called Amontons' law and indicates that the friction coefficient, or the ratio of the friction force to the loading force, is constant. Here, however, using numerical and analytical methods, we show that Amontons' law breaks down systematically under certain conditions for an elastic object experiencing a friction force that locally obeys Amontons' law. The macroscopic static friction coefficient, which corresponds to the onset of bulk sliding of the object, decreases as pressure or system length increases. This decrease results from precursor slips before the onset of bulk sliding, and is consistent with the results of certain previous experiments. The mechanisms for these behaviours are clarified. These results will provide new insight into controlling friction. PMID:23545778
Otsuki, Michio; Matsukawa, Hiroshi
2013-01-01
In many sliding systems consisting of solid object on a solid substrate under dry condition, the friction force does not depend on the apparent contact area and is proportional to the loading force. This behaviour is called Amontons' law and indicates that the friction coefficient, or the ratio of the friction force to the loading force, is constant. Here, however, using numerical and analytical methods, we show that Amontons' law breaks down systematically under certain conditions for an elastic object experiencing a friction force that locally obeys Amontons' law. The macroscopic static friction coefficient, which corresponds to the onset of bulk sliding of the object, decreases as pressure or system length increases. This decrease results from precursor slips before the onset of bulk sliding, and is consistent with the results of certain previous experiments. The mechanisms for these behaviours are clarified. These results will provide new insight into controlling friction.
Non-reversible evolution of quantum chaotic system. Kinetic description
International Nuclear Information System (INIS)
Chotorlishvili, L.; Skrinnikov, V.
2008-01-01
It is well known that the appearance of non-reversibility in classical chaotic systems is connected with a local instability of phase trajectories relatively to a small change of initial conditions and parameters of the system. Classical chaotic systems reveal an exponential sensitivity to these changes. This leads to an exponential growth of initial error with time, and as the result after the statistical averaging over this error, the dynamics of the system becomes non-reversible. In spite of this, the question about the origin of non-reversibility in quantum case remains actual. The point is that the classical notion of instability of phase trajectories loses its sense during quantum consideration. The current work is dedicated to the clarification of the origin of non-reversibility in quantum chaotic systems. For this purpose we study a non-stationary dynamics of the chaotic quantum system. By analogy with classical chaos, we consider an influence of a small unavoidable error of the parameter of the system on the non-reversibility of the dynamics. It is shown in the Letter that due to the peculiarity of chaotic quantum systems, the statistical averaging over the small unavoidable error leads to the non-reversible transition from the pure state into the mixed one. The second part of the Letter is dedicated to the kinematic description of the chaotic quantum-mechanical system. Using the formalism of superoperators, a muster kinematic equation for chaotic quantum system was obtained from Liouville equation under a strict mathematical consideration
Classical and quantum simulations of many-body systems
Energy Technology Data Exchange (ETDEWEB)
Murg, Valentin
2008-04-07
This thesis is devoted to recent developments in the fields of classical and quantum simulations of many-body systems. We describe new classical algorithms that overcome problems apparent in conventional renormalization group and Monte Carlo methods. These algorithms make possible the detailed study of finite temperature properties of 2-D classical and 1-D quantum systems, the investigation of ground states of 2-D frustrated or fermionic systems and the analysis of time evolutions of 2-D quantum systems. Furthermore, we propose new 'analog' quantum simulators that are able to realize interesting models such as a Tonks-Girardeau gas or a frustrated spin-1/2 XY model on a trigonal lattice. These quantum simulators make use of optical lattices and trapped ions and are technically feasible. In fact, the Tonks-Girardeau gas has been realized experimentally and we provide a detailed comparison between the experimental data and the theoretical predictions. (orig.)
Classical and quantum simulations of many-body systems
International Nuclear Information System (INIS)
Murg, Valentin
2008-01-01
This thesis is devoted to recent developments in the fields of classical and quantum simulations of many-body systems. We describe new classical algorithms that overcome problems apparent in conventional renormalization group and Monte Carlo methods. These algorithms make possible the detailed study of finite temperature properties of 2-D classical and 1-D quantum systems, the investigation of ground states of 2-D frustrated or fermionic systems and the analysis of time evolutions of 2-D quantum systems. Furthermore, we propose new ''analog'' quantum simulators that are able to realize interesting models such as a Tonks-Girardeau gas or a frustrated spin-1/2 XY model on a trigonal lattice. These quantum simulators make use of optical lattices and trapped ions and are technically feasible. In fact, the Tonks-Girardeau gas has been realized experimentally and we provide a detailed comparison between the experimental data and the theoretical predictions. (orig.)
The Geometric Phase in Quantum Systems
International Nuclear Information System (INIS)
Pascazio, S
2003-01-01
The discovery of the geometric phase is one of the most interesting and intriguing findings of the last few decades. It led to a deeper understanding of the concept of phase in quantum mechanics and motivated a surge of interest in fundamental quantum mechanical issues, disclosing unexpected applications in very diverse fields of physics. Although the key ideas underlying the existence of a purely geometrical phase had already been proposed in 1956 by Pancharatnam, it was Michael Berry who revived this issue 30 years later. The clarity of Berry's seminal paper, in 1984, was extraordinary. Research on the topic flourished at such a pace that it became difficult for non-experts to follow the many different theoretical ideas and experimental proposals which ensued. Diverse concepts in independent areas of mathematics, physics and chemistry were being applied, for what was (and can still be considered) a nascent arena for theory, experiments and technology. Although collections of papers by different authors appeared in the literature, sometimes with ample introductions, surprisingly, to the best of my knowledge, no specific and exhaustive book has ever been written on this subject. The Geometric Phase in Quantum Systems is the first thorough book on geometric phases and fills an important gap in the physical literature. Other books on the subject will undoubtedly follow. But it will take a fairly long time before other authors can cover that same variety of concepts in such a comprehensive manner. The book is enjoyable. The choice of topics presented is well balanced and appropriate. The appendices are well written, understandable and exhaustive - three rare qualities. I also find it praiseworthy that the authors decided to explicitly carry out most of the calculations, avoiding, as much as possible, the use of the joke 'after a straightforward calculation, one finds...' This was one of the sentences I used to dislike most during my undergraduate studies. A student is
Density matrix of strongly coupled quantum dot - microcavity system
International Nuclear Information System (INIS)
Nguyen Van Hop
2009-01-01
Any two-level quantum system can be used as a quantum bit (qubit) - the basic element of all devices and systems for quantum information and quantum computation. Recently it was proposed to study the strongly coupled system consisting of a two-level quantum dot and a monoenergetic photon gas in a microcavity-the strongly coupled quantum dot-microcavity (QD-MC) system for short, with the Jaynes-Cumming total Hamiltonian, for the application in the quantum information processing. Different approximations were applied in the theoretical study of this system. In this work, on the basis of the exact solution of the Schrodinger equation for this system without dissipation we derive the exact formulae for its density matrix. The realization of a qubit in this system is discussed. The solution of the system of rate equation for the strongly coupled QD-MC system in the presence of the interaction with the environment was also established in the first order approximation with respect to this interaction.
Inequalities detecting quantum entanglement for 2 x d systems
International Nuclear Information System (INIS)
Zhao Mingjing; Wang Zhixi; Ma Teng; Fei Shaoming
2011-01-01
We present a set of inequalities for detecting quantum entanglement of 2 x d quantum states. For 2 x 2 and 2 x 3 systems, the inequalities give rise to sufficient and necessary separability conditions for both pure and mixed states. For the case of d>3, these inequalities are necessary conditions for separability, which detect all entangled states that are not positive under partial transposition and even some entangled states with positive partial transposition. These inequalities are given by mean values of local observables and present an experimental way of detecting the quantum entanglement of 2 x d quantum states and even multiqubit pure states.
Adaptive hybrid optimal quantum control for imprecisely characterized systems.
Egger, D J; Wilhelm, F K
2014-06-20
Optimal quantum control theory carries a huge promise for quantum technology. Its experimental application, however, is often hindered by imprecise knowledge of the input variables, the quantum system's parameters. We show how to overcome this by adaptive hybrid optimal control, using a protocol named Ad-HOC. This protocol combines open- and closed-loop optimal control by first performing a gradient search towards a near-optimal control pulse and then an experimental fidelity estimation with a gradient-free method. For typical settings in solid-state quantum information processing, adaptive hybrid optimal control enhances gate fidelities by an order of magnitude, making optimal control theory applicable and useful.
Anonymous voting for multi-dimensional CV quantum system
International Nuclear Information System (INIS)
Shi Rong-Hua; Xiao Yi; Shi Jin-Jing; Guo Ying; Lee, Moon-Ho
2016-01-01
We investigate the design of anonymous voting protocols, CV-based binary-valued ballot and CV-based multi-valued ballot with continuous variables (CV) in a multi-dimensional quantum cryptosystem to ensure the security of voting procedure and data privacy. The quantum entangled states are employed in the continuous variable quantum system to carry the voting information and assist information transmission, which takes the advantage of the GHZ-like states in terms of improving the utilization of quantum states by decreasing the number of required quantum states. It provides a potential approach to achieve the efficient quantum anonymous voting with high transmission security, especially in large-scale votes. (paper)
Sun, Wen-Yang; Wang, Dong; Fang, Bao-Long; Ye, Liu
2018-03-01
In this letter, the dynamics characteristics of quantum entanglement (negativity) and distinguishability (trace distance), and the flow of information for an open quantum system under relativistic motion are investigated. Explicitly, we propose a scenario that a particle A held by Alice suffers from an amplitude damping (AD) noise in a flat space-time and another particle B by Bob entangled with A travels with a fixed acceleration under a non-inertial frame. The results show that quantum distinguishability and entanglement are very vulnerable and fragile under the collective influence of AD noise and Unruh effect. Both of them will decrease with the growing intensity of the Unruh effect and the AD thermal bath. It means that the abilities of quantum distinguishability and entanglement to suppress the collective decoherence (AD noise and Unruh effect) are very weak. Furthermore, it turns out that the reduced quantum distinguishability of Alice’s system and Bob in the physically accessible region is distributed to another quantum distinguishability for Alice’s environment and Bob in the physically inaccessible region. That is, the information regarding the scenario is that the lost quantum distinguishability, as a fixed information, flows from the systems to the collective decoherence environment.
Quantum dynamics simulation of a small quantum system embedded in a classical environment
International Nuclear Information System (INIS)
Berendsen, H.J.C.; Mavri, J.; Mavri, J.
1996-01-01
The authors wish to consider quantum-dynamical processes that are not restricted to motion on a ground state Born-Oppenheimer surface, but may involve transitions between states. The authors interest is in such processes occurring in a complex environment that modulates the quantum process and interacts with it. In a system containing thousands degrees of freedom, the essential quantum behaviour is generally restricted to a small subsystem containing only a few degrees of freedom, while the environment can be treated classically. The challenge is threefold: 1) to treat the quantum subsystem correctly in a quantum-dynamical sense, 2) to treat the environment correctly in a classical dynamical sense, 3) to couple both systems in such a way that errors in the average or long-term behaviour are minimized. After an exposition of the theory, an insight into quantum-dynamical behaviour by using pictorial analogue, valid for a simple two-level system is given. Then, the authors give a short survey of applications related to collision processes involving quantum levels of one particle, and to proton transfer processes along hydrogen bonds in complex environments. Finally, they conclude with some general remarks on the validity of their approach. (N.T.)
The classical limit of non-integrable quantum systems, a route to quantum chaos
International Nuclear Information System (INIS)
Castagnino, Mario; Lombardi, Olimpia
2006-01-01
The classical limit of non-integrable quantum systems is studied. We define non-integrable quantum systems as those, which have, as their classical limit, a non-integrable classical system. This quantum systems will be the candidates to be the models of quantum chaos. In order to obtain this limit, the self-induced decoherence approach and the corresponding classical limit are generalized from integrable to non-integrable systems. In this approach, the lost of information, usually conceived as the result of a coarse-graining or the trace of an environment, is produced by a particular choice of the algebra of observables and the systematic use of mean values, that project the unitary evolution onto an effective non-unitary one. By means of our method, we can obtain the classical limit of the quantum state of a non-integrable system, which turns out to be a set of unstable, potentially chaotic classical trajectories contained in the Wigner transformation of the quantum state
The classical limit of non-integrable quantum systems, a route to quantum chaos
Energy Technology Data Exchange (ETDEWEB)
Castagnino, Mario [CONICET-UNR-UBA, Institutos de Fisica de Rosario y de Astronomia y Fisica del Espacio, Casilla de Correos 67, Sucursal 28, 1428, Buenos Aires (Argentina)]. E-mail: mariocastagnino@citynet.net.ar; Lombardi, Olimpia [CONICET-Universidad de Buenos Aires-Universidad de Quilmes Rivadavia 2358, 6to. Derecha, Buenos Aires (Argentina)
2006-05-15
The classical limit of non-integrable quantum systems is studied. We define non-integrable quantum systems as those, which have, as their classical limit, a non-integrable classical system. This quantum systems will be the candidates to be the models of quantum chaos. In order to obtain this limit, the self-induced decoherence approach and the corresponding classical limit are generalized from integrable to non-integrable systems. In this approach, the lost of information, usually conceived as the result of a coarse-graining or the trace of an environment, is produced by a particular choice of the algebra of observables and the systematic use of mean values, that project the unitary evolution onto an effective non-unitary one. By means of our method, we can obtain the classical limit of the quantum state of a non-integrable system, which turns out to be a set of unstable, potentially chaotic classical trajectories contained in the Wigner transformation of the quantum state.
The Rabi Oscillation in Subdynamic System for Quantum Computing
Directory of Open Access Journals (Sweden)
Bi Qiao
2015-01-01
Full Text Available A quantum computation for the Rabi oscillation based on quantum dots in the subdynamic system is presented. The working states of the original Rabi oscillation are transformed to the eigenvectors of subdynamic system. Then the dissipation and decoherence of the system are only shown in the change of the eigenvalues as phase errors since the eigenvectors are fixed. This allows both dissipation and decoherence controlling to be easier by only correcting relevant phase errors. This method can be extended to general quantum computation systems.
Alternative Hamiltonian description for quantum systems
International Nuclear Information System (INIS)
Dubrovin, B.A.; Marno, G.; Simoni, A.
1990-01-01
The existence of time-invariant Kahler structures is analyzed in both Classical and Quantum Mechanics. In Quantum Mechanics, a family of such Kahler structures is found, in the finite-dimensional case it is proven that this family is complete
Computational physics simulation of classical and quantum systems
Scherer, Philipp O J
2017-01-01
This textbook presents basic numerical methods and applies them to a large variety of physical models in multiple computer experiments. Classical algorithms and more recent methods are explained. Partial differential equations are treated generally comparing important methods, and equations of motion are solved by a large number of simple as well as more sophisticated methods. Several modern algorithms for quantum wavepacket motion are compared. The first part of the book discusses the basic numerical methods, while the second part simulates classical and quantum systems. Simple but non-trivial examples from a broad range of physical topics offer readers insights into the numerical treatment but also the simulated problems. Rotational motion is studied in detail, as are simple quantum systems. A two-level system in an external field demonstrates elementary principles from quantum optics and simulation of a quantum bit. Principles of molecular dynamics are shown. Modern bounda ry element methods are presented ...
Speed limits for quantum gates in multiqubit systems
Ashhab, S.; De Groot, P.C.; Nori, F.
2012-01-01
We use analytical and numerical calculations to obtain speed limits for various unitary quantum operations in multiqubit systems under typical experimental conditions. The operations that we consider include single-, two-, and three-qubit gates, as well as quantum-state transfer in a chain of
Quantum-Classical Connection for Hydrogen Atom-Like Systems
Syam, Debapriyo; Roy, Arup
2011-01-01
The Bohr-Sommerfeld quantum theory specifies the rules of quantization for circular and elliptical orbits for a one-electron hydrogen atom-like system. This article illustrates how a formula connecting the principal quantum number "n" and the length of the major axis of an elliptical orbit may be arrived at starting from the quantum…
Cryo-CMOS Circuits and Systems for Quantum Computing Applications
Patra, B; Incandela, R.M.; van Dijk, J.P.G.; Homulle, H.A.R.; Song, Lin; Shahmohammadi, M.; Staszewski, R.B.; Vladimirescu, A.; Babaie, M.; Sebastiano, F.; Charbon, E.E.E.
2018-01-01
A fault-tolerant quantum computer with millions of quantum bits (qubits) requires massive yet very precise control electronics for the manipulation and readout of individual qubits. CMOS operating at cryogenic temperatures down to 4 K (cryo-CMOS) allows for closer system integration, thus promising
Photon nonlinear mixing in subcarrier multiplexed quantum key distribution systems.
Capmany, José
2009-04-13
We provide, for the first time to our knowledge, an analysis of the influence of nonlinear photon mixing on the end to end quantum bit error rate (QBER) performance of subcarrier multiplexed quantum key distribution systems. The results show that negligible impact is to be expected for modulation indexes in the range of 2%.
Indirect control of quantum systems via an accessor: pure coherent control without system excitation
International Nuclear Information System (INIS)
Fu, H C; Dong Hui; Sun, C P; Liu, X F
2009-01-01
A pure indirect control of quantum systems via a quantum accessor is investigated. In this control scheme, we do not apply any external classical excitation fields on the controlled system and we control a quantum system via a quantum accessor and classical control fields control the accessor only. Complete controllability is investigated for arbitrary finite-dimensional quantum systems and exemplified by two- and three-dimensional systems. The scheme exhibits some advantages; it uses less qubits in the accessor and does not depend on the energy-level structure of the controlled system
Quantum Markov processes and applications in many-body systems
International Nuclear Information System (INIS)
Temme, P. K.
2010-01-01
This thesis is concerned with the investigation of quantum as well as classical Markov processes and their application in the field of strongly correlated many-body systems. A Markov process is a special kind of stochastic process, which is determined by an evolution that is independent of its history and only depends on the current state of the system. The application of Markov processes has a long history in the field of statistical mechanics and classical many-body theory. Not only are Markov processes used to describe the dynamics of stochastic systems, but they predominantly also serve as a practical method that allows for the computation of fundamental properties of complex many-body systems by means of probabilistic algorithms. The aim of this thesis is to investigate the properties of quantum Markov processes, i.e. Markov processes taking place in a quantum mechanical state space, and to gain a better insight into complex many-body systems by means thereof. Moreover, we formulate a novel quantum algorithm which allows for the computation of the thermal and ground states of quantum many-body systems. After a brief introduction to quantum Markov processes we turn to an investigation of their convergence properties. We find bounds on the convergence rate of the quantum process by generalizing geometric bounds found for classical processes. We generalize a distance measure that serves as the basis for our investigations, the chi-square divergence, to non-commuting probability spaces. This divergence allows for a convenient generalization of the detailed balance condition to quantum processes. We then devise the quantum algorithm that can be seen as the natural generalization of the ubiquitous Metropolis algorithm to simulate quantum many-body Hamiltonians. By this we intend to provide further evidence, that a quantum computer can serve as a fully-fledged quantum simulator, which is not only capable of describing the dynamical evolution of quantum systems, but
Quantum formalism for classical statistics
Wetterich, C.
2018-06-01
In static classical statistical systems the problem of information transport from a boundary to the bulk finds a simple description in terms of wave functions or density matrices. While the transfer matrix formalism is a type of Heisenberg picture for this problem, we develop here the associated Schrödinger picture that keeps track of the local probabilistic information. The transport of the probabilistic information between neighboring hypersurfaces obeys a linear evolution equation, and therefore the superposition principle for the possible solutions. Operators are associated to local observables, with rules for the computation of expectation values similar to quantum mechanics. We discuss how non-commutativity naturally arises in this setting. Also other features characteristic of quantum mechanics, such as complex structure, change of basis or symmetry transformations, can be found in classical statistics once formulated in terms of wave functions or density matrices. We construct for every quantum system an equivalent classical statistical system, such that time in quantum mechanics corresponds to the location of hypersurfaces in the classical probabilistic ensemble. For suitable choices of local observables in the classical statistical system one can, in principle, compute all expectation values and correlations of observables in the quantum system from the local probabilistic information of the associated classical statistical system. Realizing a static memory material as a quantum simulator for a given quantum system is not a matter of principle, but rather of practical simplicity.
Open quantum spin systems in semiconductor quantum dots and atoms in optical lattices
Energy Technology Data Exchange (ETDEWEB)
Schwager, Heike
2012-07-04
In this Thesis, we study open quantum spin systems from different perspectives. The first part is motivated by technological challenges of quantum computation. An important building block for quantum computation and quantum communication networks is an interface between material qubits for storage and data processing and travelling photonic qubits for communication. We propose the realisation of a quantum interface between a travelling-wave light field and the nuclear spins in a quantum dot strongly coupled to a cavity. Our scheme is robust against cavity decay as it uses the decay of the cavity to achieve the coupling between nuclear spins and the travelling-wave light fields. A prerequiste for such a quantum interface is a highly polarized ensemble of nuclear spins. High polarization of the nuclear spin ensemble is moreover highly desirable as it protects the potential electron spin qubit from decoherence. Here we present the theoretical description of an experiment in which highly asymmetric dynamic nuclear spin pumping is observed in a single self-assembled InGaAs quantum dot. The second part of this Thesis is devoted to fundamental studies of dissipative spin systems. We study general one-dimensional spin chains under dissipation and propose a scheme to realize a quantum spin system using ultracold atoms in an optical lattice in which both coherent interaction and dissipation can be engineered and controlled. This system enables the study of non-equilibrium and steady state physics of open and driven spin systems. We find, that the steady state expectation values of different spin models exhibit discontinuous behaviour at degeneracy points of the Hamiltonian in the limit of weak dissipation. This effect can be used to dissipatively probe the spectrum of the Hamiltonian. We moreover study spin models under the aspect of state preparation and show that dissipation drives certain spin models into highly entangled state. Finally, we study a spin chain with
Open quantum spin systems in semiconductor quantum dots and atoms in optical lattices
International Nuclear Information System (INIS)
Schwager, Heike
2012-01-01
In this Thesis, we study open quantum spin systems from different perspectives. The first part is motivated by technological challenges of quantum computation. An important building block for quantum computation and quantum communication networks is an interface between material qubits for storage and data processing and travelling photonic qubits for communication. We propose the realisation of a quantum interface between a travelling-wave light field and the nuclear spins in a quantum dot strongly coupled to a cavity. Our scheme is robust against cavity decay as it uses the decay of the cavity to achieve the coupling between nuclear spins and the travelling-wave light fields. A prerequiste for such a quantum interface is a highly polarized ensemble of nuclear spins. High polarization of the nuclear spin ensemble is moreover highly desirable as it protects the potential electron spin qubit from decoherence. Here we present the theoretical description of an experiment in which highly asymmetric dynamic nuclear spin pumping is observed in a single self-assembled InGaAs quantum dot. The second part of this Thesis is devoted to fundamental studies of dissipative spin systems. We study general one-dimensional spin chains under dissipation and propose a scheme to realize a quantum spin system using ultracold atoms in an optical lattice in which both coherent interaction and dissipation can be engineered and controlled. This system enables the study of non-equilibrium and steady state physics of open and driven spin systems. We find, that the steady state expectation values of different spin models exhibit discontinuous behaviour at degeneracy points of the Hamiltonian in the limit of weak dissipation. This effect can be used to dissipatively probe the spectrum of the Hamiltonian. We moreover study spin models under the aspect of state preparation and show that dissipation drives certain spin models into highly entangled state. Finally, we study a spin chain with
Quantum spin systems on infinite lattices a concise introduction
Naaijkens, Pieter
2017-01-01
This course-based primer offers readers a concise introduction to the description of quantum mechanical systems with infinitely many degrees of freedom – and quantum spin systems in particular – using the operator algebraic approach. Here, the observables are modeled using elements of some operator algebra, usually a C*-algebra. This text introduces readers to the framework and the necessary mathematical tools without assuming much mathematical background, making it more accessible than advanced monographs. The book also highlights the usefulness of the so-called thermodynamic limit of quantum spin systems, which is the limit of infinite system size. For example, this makes it possible to clearly distinguish between local and global properties, without having to keep track of the system size. Together with Lieb-Robinson bounds, which play a similar role in quantum spin systems to that of the speed of light in relativistic theories, this approach allows ideas from relativistic field theories to be implemen...
Efficient tomography of a quantum many-body system
Lanyon, B. P.; Maier, C.; Holzäpfel, M.; Baumgratz, T.; Hempel, C.; Jurcevic, P.; Dhand, I.; Buyskikh, A. S.; Daley, A. J.; Cramer, M.; Plenio, M. B.; Blatt, R.; Roos, C. F.
2017-12-01
Quantum state tomography is the standard technique for estimating the quantum state of small systems. But its application to larger systems soon becomes impractical as the required resources scale exponentially with the size. Therefore, considerable effort is dedicated to the development of new characterization tools for quantum many-body states. Here we demonstrate matrix product state tomography, which is theoretically proven to allow for the efficient and accurate estimation of a broad class of quantum states. We use this technique to reconstruct the dynamical state of a trapped-ion quantum simulator comprising up to 14 entangled and individually controlled spins: a size far beyond the practical limits of quantum state tomography. Our results reveal the dynamical growth of entanglement and describe its complexity as correlations spread out during a quench: a necessary condition for future demonstrations of better-than-classical performance. Matrix product state tomography should therefore find widespread use in the study of large quantum many-body systems and the benchmarking and verification of quantum simulators and computers.
Quantum spectral curves, quantum integrable systems and the geometric Langlands correspondence
Chervov, A.; Talalaev, D.
2006-01-01
The spectral curve is the key ingredient in the modern theory of classical integrable systems. We develop a construction of the ``quantum spectral curve'' and argue that it takes the analogous structural and unifying role on the quantum level also. In the simplest, but essential case the ``quantum spectral curve'' is given by the formula "det"(L(z)-dz) [Talalaev04] (hep-th/0404153). As an easy application of our constructions we obtain the following: quite a universal receipt to define quantu...
Quantum dynamics of a particle in a tracking chamber
International Nuclear Information System (INIS)
Figari, Rodolfo; INFN, Napoli; Teta, Alessandro
2014-01-01
In the original formulation of quantum mechanics the existence of a precise border between a microscopic world, governed by quantum mechanics, and a macroscopic world, described by classical mechanics was assumed. Modern theoretical and experimental physics has moved that border several times, carefully investigating its definition and making available to observation larger and larger quantum systems. The present book examines a paradigmatic case of the transition from quantum to classical behavior: A quantum particle is revealed in a tracking chamber as a trajectory obeying the laws of classical mechanics. The authors provide here a purely quantum-mechanical description of this behavior, thus helping to illuminate the nature of the border between the quantum and the classical.
Quantum dynamics of a particle in a tracking chamber
Figari, Rodolfo
2014-01-01
In the original formulation of quantum mechanics the existence of a precise border between a microscopic world, governed by quantum mechanics, and a macroscopic world, described by classical mechanics was assumed. Modern theoretical and experimental physics has moved that border several times, carefully investigating its definition and making available to observation larger and larger quantum systems. The present book examines a paradigmatic case of the transition from quantum to classical behavior: A quantum particle is revealed in a tracking chamber as a trajectory obeying the laws of classical mechanics. The authors provide here a purely quantum-mechanical description of this behavior, thus helping to illuminate the nature of the border between the quantum and the classical.
Generalization of uncertainty relation for quantum and stochastic systems
Koide, T.; Kodama, T.
2018-06-01
The generalized uncertainty relation applicable to quantum and stochastic systems is derived within the stochastic variational method. This relation not only reproduces the well-known inequality in quantum mechanics but also is applicable to the Gross-Pitaevskii equation and the Navier-Stokes-Fourier equation, showing that the finite minimum uncertainty between the position and the momentum is not an inherent property of quantum mechanics but a common feature of stochastic systems. We further discuss the possible implication of the present study in discussing the application of the hydrodynamic picture to microscopic systems, like relativistic heavy-ion collisions.
Multi-particle correlations in quaternionic quantum systems
International Nuclear Information System (INIS)
Brumby, S.P.; Joshi, G.C.
1994-01-01
The authors investigated the outcomes of measurements on correlated, few-body quantum systems described by a quaternionic quantum mechanics that allows for regions of quaternionic curvature. It was found that a multi particles interferometry experiment using a correlated system of four nonrelativistic, spin-half particles has the potential to detect the presence of quaternionic curvature. Two-body systems, however, are shown to give predictions identical to those of standard quantum mechanics when relative angles are used in the construction of the operators corresponding to measurements of particle spin components. 15 refs
Quantum statistical Monte Carlo methods and applications to spin systems
International Nuclear Information System (INIS)
Suzuki, M.
1986-01-01
A short review is given concerning the quantum statistical Monte Carlo method based on the equivalence theorem that d-dimensional quantum systems are mapped onto (d+1)-dimensional classical systems. The convergence property of this approximate tansformation is discussed in detail. Some applications of this general appoach to quantum spin systems are reviewed. A new Monte Carlo method, ''thermo field Monte Carlo method,'' is presented, which is an extension of the projection Monte Carlo method at zero temperature to that at finite temperatures
Bohmian mechanics, open quantum systems and continuous measurements
Nassar, Antonio B
2017-01-01
This book shows how Bohmian mechanics overcomes the need for a measurement postulate involving wave function collapse. The measuring process plays a very important role in quantum mechanics. It has been widely analyzed within the Copenhagen approach through the Born and von Neumann postulates, with later extension due to Lüders. In contrast, much less effort has been invested in the measurement theory within the Bohmian mechanics framework. The continuous measurement (sharp and fuzzy, or strong and weak) problem is considered here in this framework. The authors begin by generalizing the so-called Mensky approach, which is based on restricted path integral through quantum corridors. The measuring system is then considered to be an open quantum system following a stochastic Schrödinger equation. Quantum stochastic trajectories (in the Bohmian sense) and their role in basic quantum processes are discussed in detail. The decoherence process is thereby described in terms of classical trajectories issuing from th...
Synthetic Topological Qubits in Conventional Bilayer Quantum Hall Systems
Directory of Open Access Journals (Sweden)
Maissam Barkeshli
2014-11-01
Full Text Available The idea of topological quantum computation is to build powerful and robust quantum computers with certain macroscopic quantum states of matter called topologically ordered states. These systems have degenerate ground states that can be used as robust “topological qubits” to store and process quantum information. In this paper, we propose a new experimental setup that can realize topological qubits in a simple bilayer fractional quantum Hall system with proper electric gate configurations. Our proposal is accessible with current experimental techniques, involves well-established topological states, and, moreover, can realize a large class of topological qubits, generalizing the Majorana zero modes studied in recent literature to more computationally powerful possibilities. We propose three tunneling and interferometry experiments to detect the existence and nonlocal topological properties of the topological qubits.
Quantum mechanics from classical statistics
International Nuclear Information System (INIS)
Wetterich, C.
2010-01-01
Quantum mechanics can emerge from classical statistics. A typical quantum system describes an isolated subsystem of a classical statistical ensemble with infinitely many classical states. The state of this subsystem can be characterized by only a few probabilistic observables. Their expectation values define a density matrix if they obey a 'purity constraint'. Then all the usual laws of quantum mechanics follow, including Heisenberg's uncertainty relation, entanglement and a violation of Bell's inequalities. No concepts beyond classical statistics are needed for quantum physics - the differences are only apparent and result from the particularities of those classical statistical systems which admit a quantum mechanical description. Born's rule for quantum mechanical probabilities follows from the probability concept for a classical statistical ensemble. In particular, we show how the non-commuting properties of quantum operators are associated to the use of conditional probabilities within the classical system, and how a unitary time evolution reflects the isolation of the subsystem. As an illustration, we discuss a classical statistical implementation of a quantum computer.
Quantum trajectory approach to the geometric phase: open bipartite systems
International Nuclear Information System (INIS)
Yi, X X; Liu, D P; Wang, W
2005-01-01
Through the quantum trajectory approach, we calculate the geometric phase acquired by a bipartite system subjected to decoherence. The subsystems that compose the bipartite system interact with each other and then are entangled in the evolution. The geometric phase due to the quantum jump for both the bipartite system and its subsystems is calculated and analysed. As an example, we present two coupled spin-1/2 particles to detail the calculations
Does an onlooker stop an evolving quantum system?
International Nuclear Information System (INIS)
Toschek, P E
2007-01-01
The evolution of quantum mechanics has followed the critical analysis of 'gedanken' experiments. Many of these concrete speculations can become implemented today in the laboratory - thanks to now available techniques. A key experiment is concerned with the time evolution of a quantum system under repeated or continuing observation. Here, three problems overlap: 1. The microphysical measurement by a macroscopic device, 2. the system's temporal evolution, and 3. the emergence of macroscopic reality out of the microcosmos. A well-known calculation shows the evolution of a quantum system being slowed down, or even obstructed, when the system is merely observed.An experiment designed to demonstrate this 'quantum Zeno effect' and performed in the late eighties on an ensemble of identical atomic ions confirmed its quantum description, but turned out inconclusive with respect to the very origin of the impediment of evolution. During the past years, experiments on individualelectrodynamically stored and laser-cooled ions have been performed that unequivocally demonstrate the observed system's quantum evolution being impeded. Strategy and results exclude any physical reaction on the measured object, but reveal the effect of the gain of information as put forward by the particular correlation of the ion state with the detected signal. They shed light on the process of measurement as well as on the quantum evolution and allow an epistemological interpretation
Quantum dot systems: artificial atoms with tunable properties
International Nuclear Information System (INIS)
Weis, J.
2005-01-01
Full text: Quantum dots - also called zero-dimensional electron systems or artificial atoms - are physical objects where the constituent electrons are confined in a small spatial region, leading to discrete eigenvalues for the energies of the confined electrons. Large quantum dots offer a dense energy spectrum comparable to that of metallic grains, whereas small quantum dots more closely resemble atoms in their electronic properties. Quantum dots can be linked to leads by tunnel barriers, hence permitting electrical transport measurements: Coulomb blockade and single-electron charging effects are observed due to the repulsive electron electron interaction on the quantum dot site. Usually fabricated by conventional semiconductor growth and processing technology, the advantage is that both simple and also more complex quantum dot systems can be designed to purpose, acting as model systems with in-situ tunable parameters such as the number of confined electrons in the quantum dot and the strength of the tunnel coupling to the leads, electrostatically controlled by the applied voltages to gate electrodes. With increasing the tunnel coupling to the leads, the virtual occupation of the quantum dot from the leads becomes more and more important -- the simple description of electrical transport by single-electron tunneling events breaks down. The basic physics is described by the Kondo physics based on the Anderson impurity model. A system consisting of strongly electrostatically coupled quantum dots with separate leads to each quantum dot represent another realization of the Anderson impurity model. Experiments to verify the analogy are presented. The experimental data embedded within this tutorial have been obtained with Alexander Huebel, Matthias Keller, Joerg Schmid, David Quirion, Armin Welker, Ulf Wilhelm, and Klaus von Klitzing. (author)
Decoherence control in open quantum systems via classical feedback
International Nuclear Information System (INIS)
Ganesan, Narayan; Tarn, Tzyh-Jong
2007-01-01
In this work we propose a strategy using techniques from systems theory to completely eliminate decoherence and also provide conditions under which it can be done. A construction employing an auxiliary system, the bait, which is instrumental to decoupling the system from the environment is presented. Our approach to decoherence control in contrast to other approaches in the literature involves the bilinear input affine model of quantum control system which lends itself to various techniques from classical control theory, but with nontrivial modifications to the quantum regime. The elegance of this approach yields interesting results on open loop decouplability and decoherence free subspaces. Additionally, the feedback control of decoherence may be related to disturbance decoupling for classical input affine systems, which entails careful application of the methods by avoiding all the quantum mechanical pitfalls. In the process of calculating a suitable feedback the system must be restructured due to its tensorial nature of interaction with the environment, which is unique to quantum systems. In the subsequent section we discuss a general information extraction scheme to gain knowledge of the state and the amount of decoherence based on indirect continuous measurement. The analysis of continuous measurement on a decohering quantum system has not been extensively studied before. Finally, a methodology to synthesize feedback parameters itself is given, that technology permitting, could be implemented for practical 2-qubit systems to perform decoherence free quantum computing. The results obtained are qualitatively different and superior to the ones obtained via master equations
Novel optical probe for quantum Hall system
Indian Academy of Sciences (India)
to explore Landau levels of a two-dimensional electron gas (2DEG) in modulation doped ... Keywords. Surface photovoltage spectroscopy; quantum Hall effect; Landau levels; edge states. ... An optical fibre carries light from tunable diode laser.
Quantum versus classical integrability in Calogero-Moser systems
International Nuclear Information System (INIS)
Corrigan, E.; Sasaki, R.
2002-01-01
Calogero-Moser systems are classical and quantum integrable multiparticle dynamics defined for any root system Δ. The quantum Calogero systems having 1/q 2 potential and a confining q 2 potential and the Sutherland systems with 1/sin 2 q potentials have 'integer' energy spectra characterized by the root system Δ. Various quantities of the corresponding classical systems, e.g. minimum energy, frequencies of small oscillations, the eigenvalues of the classical Lax pair matrices etc, at the equilibrium point of the potential are investigated analytically as well as numerically for all root systems. To our surprise, most of these classical data are also 'integers', or they appear to be 'quantized'. To be more precise, these quantities are polynomials of the coupling constant(s) with integer coefficients. The close relationship between quantum and classical integrability in Calogero-Moser systems deserves fuller analytical treatment, which would lead to better understanding of these systems and of integrable systems in general. (author)
Closed-Loop and Robust Control of Quantum Systems
Directory of Open Access Journals (Sweden)
Chunlin Chen
2013-01-01
Full Text Available For most practical quantum control systems, it is important and difficult to attain robustness and reliability due to unavoidable uncertainties in the system dynamics or models. Three kinds of typical approaches (e.g., closed-loop learning control, feedback control, and robust control have been proved to be effective to solve these problems. This work presents a self-contained survey on the closed-loop and robust control of quantum systems, as well as a brief introduction to a selection of basic theories and methods in this research area, to provide interested readers with a general idea for further studies. In the area of closed-loop learning control of quantum systems, we survey and introduce such learning control methods as gradient-based methods, genetic algorithms (GA, and reinforcement learning (RL methods from a unified point of view of exploring the quantum control landscapes. For the feedback control approach, the paper surveys three control strategies including Lyapunov control, measurement-based control, and coherent-feedback control. Then such topics in the field of quantum robust control as H∞ control, sliding mode control, quantum risk-sensitive control, and quantum ensemble control are reviewed. The paper concludes with a perspective of future research directions that are likely to attract more attention.
Closed-loop and robust control of quantum systems.
Chen, Chunlin; Wang, Lin-Cheng; Wang, Yuanlong
2013-01-01
For most practical quantum control systems, it is important and difficult to attain robustness and reliability due to unavoidable uncertainties in the system dynamics or models. Three kinds of typical approaches (e.g., closed-loop learning control, feedback control, and robust control) have been proved to be effective to solve these problems. This work presents a self-contained survey on the closed-loop and robust control of quantum systems, as well as a brief introduction to a selection of basic theories and methods in this research area, to provide interested readers with a general idea for further studies. In the area of closed-loop learning control of quantum systems, we survey and introduce such learning control methods as gradient-based methods, genetic algorithms (GA), and reinforcement learning (RL) methods from a unified point of view of exploring the quantum control landscapes. For the feedback control approach, the paper surveys three control strategies including Lyapunov control, measurement-based control, and coherent-feedback control. Then such topics in the field of quantum robust control as H(∞) control, sliding mode control, quantum risk-sensitive control, and quantum ensemble control are reviewed. The paper concludes with a perspective of future research directions that are likely to attract more attention.
Theory and simulation of cavity quantum electro-dynamics in multi-partite quantum complex systems
Energy Technology Data Exchange (ETDEWEB)
Alidoosty Shahraki, Moslem; Khorasani, Sina; Aram, Mohammad Hasan [Sharif University of Technology, School of Electrical Engineering, Tehran (Iran, Islamic Republic of)
2014-05-15
The cavity quantum electrodynamics of various complex systems is here analyzed using a general versatile code developed in this research. Such quantum multi-partite systems normally consist of an arbitrary number of quantum dots in interaction with an arbitrary number of cavity modes. As an example, a nine-partition system is simulated under different coupling regimes, consisting of eight emitters interacting with one cavity mode. Two-level emitters (e.g. quantum dots) are assumed to have an arrangement in the form of a linear chain, defining the mutual dipole-dipole interactions. It was observed that plotting the system trajectory in the phase space reveals a chaotic behavior in the so-called ultrastrong-coupling regime. This result is mathematically confirmed by detailed calculation of the Kolmogorov entropy, as a measure of chaotic behavior. In order to study the computational complexity of our code, various multi-partite systems consisting of one to eight quantum dots in interaction with one cavity mode were solved individually. Computation run times and the allocated memory for each system were measured. (orig.)
Equivalence relations between deterministic and quantum mechanical systems
International Nuclear Information System (INIS)
Hooft, G.
1988-01-01
Several quantum mechanical models are shown to be equivalent to certain deterministic systems because a basis can be found in terms of which the wave function does not spread. This suggests that apparently indeterministic behavior typical for a quantum mechanical world can be the result of locally deterministic laws of physics. We show how certain deterministic systems allow the construction of a Hilbert space and a Hamiltonian so that at long distance scales they may appear to behave as quantum field theories, including interactions but as yet no mass term. These observations are suggested to be useful for building theories at the Planck scale
Wave-packet revivals for quantum systems with nondegenerate energies
International Nuclear Information System (INIS)
Bluhm, R.; Tudose, B.
1996-01-01
The revival structure of wave packets is examined for quantum systems having energies that depend on two nondegenerate quantum numbers. For such systems, the evolution of the wave packet is controlled by two classical periods and three revival times. These wave packets exhibit quantum beats in the initial motion as well as new types of long-term revivals. The issue of whether fractional revivals can form is addressed. We present an analytical proof showing that at certain times equal to rational fractions of the revival times the wave packet can reform as a sum of subsidiary waves and that both conventional and new types of fractional revivals can occur. (orig.)
Einstein-Podolsky-Rosen paradox and measurement of quantum system
Kladko, Konstantin
1999-01-01
Einstein-Podolsky-Rosen (EPR) paradox is considered in a relation to a measurement of an arbitrary quantum system . It is shown that the EPR paradox always appears in a gedanken experiment with two successively joined measuring devices.
Ordering due to disorder in frustrated quantum magnetic system
International Nuclear Information System (INIS)
Yildirim, T.
1999-01-01
The phenomenon of order by disorder in frustrated magnetic systems is reviewed. Disorder (thermal or quantum fluctuations) may sometimes give rise to long range ordering in systems with frustration, where one must often consider the selection among classically degenerate ground states which are not equivalent by any symmetry. The lowest order effects of quantum fluctuations in such frustrated systems usually resolves the continues degeneracy of the ground state manifold into discrete Ising-type degeneracy. A unique ground state selection out of this Ising degenerate manifold then occurs due to higher order effects of quantum fluctuations. For systems such as face-centered cubic and body-centered tetragonal antiferromagnets where the number of Ising parameters to describe the ground state manifold is not macroscopic, we show that quantum fluctuations choose a unique ground state at the first order in 1/S
Integrated System Technologies for Modular Trapped Ion Quantum Information Processing
Crain, Stephen G.
Although trapped ion technology is well-suited for quantum information science, scalability of the system remains one of the main challenges. One of the challenges associated with scaling the ion trap quantum computer is the ability to individually manipulate the increasing number of qubits. Using micro-mirrors fabricated with micro-electromechanical systems (MEMS) technology, laser beams are focused on individual ions in a linear chain and steer the focal point in two dimensions. Multiple single qubit gates are demonstrated on trapped 171Yb+ qubits and the gate performance is characterized using quantum state tomography. The system features negligible crosstalk to neighboring ions (technologies demonstrated in this thesis can be integrated to form a single quantum register with all of the necessary resources to perform local gates as well as high fidelity readout and provide a photon link to other systems.
Geodesic paths and topological charges in quantum systems
Grangeiro Souza Barbosa Lima, Tiago Aecio
This dissertation focuses on one question: how should one drive an experimentally prepared state of a generic quantum system into a different target-state, simultaneously minimizing energy dissipation and maximizing the fidelity between the target and evolved-states? We develop optimal adiabatic driving protocols for general quantum systems, and show that these are geodesic paths. Geometric ideas have always played a fundamental role in the understanding and unification of physical phenomena, and the recent discovery of topological insulators has drawn great interest to topology from the field of condensed matter physics. Here, we discuss the quantum geometric tensor, a mathematical object that encodes geometrical and topological properties of a quantum system. It is related to the fidelity susceptibility (an important quantity regarding quantum phase transitions) and to the Berry curvature, which enables topological characterization through Berry phases. A refined understanding of the interplay between geometry and topology in quantum mechanics is of direct relevance to several emergent technologies, such as quantum computers, quantum cryptography, and quantum sensors. As a demonstration of how powerful geometric and topological ideas can become when combined, we present the results of an experiment that we recently proposed. This experimental work was done at the Google Quantum Lab, where researchers were able to visualize the topological nature of a two-qubit system in sharp detail, a startling contrast with earlier methods. To achieve this feat, the optimal protocols described in this dissertation were used, allowing for a great improvement on the experimental apparatus, without the need for technical engineering advances. Expanding the existing literature on the quantum geometric tensor using notions from differential geometry and topology, we build on the subject nowadays known as quantum geometry. We discuss how slowly changing a parameter of a quantum
Quantum correlations for bipartite continuous-variable systems
Ma, Ruifen; Hou, Jinchuan; Qi, Xiaofei; Wang, Yangyang
2018-04-01
Two quantum correlations Q and Q_P for (m+n)-mode continuous-variable systems are introduced in terms of average distance between the reduced states under the local Gaussian positive operator-valued measurements, and analytical formulas of these quantum correlations for bipartite Gaussian states are provided. It is shown that the product states do not contain these quantum correlations, and conversely, all (m+n)-mode Gaussian states with zero quantum correlations are product states. Generally, Q≥ Q_{P}, but for the symmetric two-mode squeezed thermal states, these quantum correlations are the same and a computable formula is given. In addition, Q is compared with Gaussian geometric discord for symmetric squeezed thermal states.
Quantum Hall Ferroelectrics and Nematics in Multivalley Systems
Sodemann, Inti; Zhu, Zheng; Fu, Liang
2017-10-01
We study broken symmetry states at integer Landau-level fillings in multivalley quantum Hall systems whose low-energy dispersions are anisotropic. When the Fermi surface of individual pockets lacks twofold rotational symmetry, like in bismuth (111) [Feldman et al. , Observation of a Nematic Quantum Hall Liquid on the Surface of Bismuth, Science 354, 316 (2016), 10.1126/science.aag1715] and in Sn1 -xPbxSe (001) [Dziawa et al., Topological Crystalline Insulator States in Pb1 -xSnxSe , Nat. Mater. 11, 1023 (2012), 10.1038/nmat3449] surfaces, interactions tend to drive the formation of quantum Hall ferroelectric states. We demonstrate that the dipole moment in these states has an intimate relation to the Fermi surface geometry of the parent metal. In quantum Hall nematic states, like those arising in AlAs quantum wells, we demonstrate the existence of unusually robust Skyrmion quasiparticles.
N-Level Quantum Systems and Legendre Functions
Mazurenko, A. S.; Savva, V. A.
2001-01-01
An excitation dynamics of new quantum systems of N equidistant energy levels in a monochromatic field has been investigated. To obtain exact analytical solutions of dynamic equations an analytical method based on orthogonal functions of a real argument has been proposed. Using the orthogonal Legendre functions we have found an exact analytical expression for a population probability amplitude of the level n. Various initial conditions for the excitation of N-level quantum systems have been co...
Quantum phase transitions of strongly correlated electron systems
International Nuclear Information System (INIS)
Imada, Masatoshi
1998-01-01
Interacting electrons in solids undergo various quantum phase transitions driven by quantum fluctuations. The quantum transitions take place at zero temperature by changing a parameter to control quantum fluctuations rather than thermal fluctuations. In contrast to classical phase transitions driven by thermal fluctuations, the quantum transitions have many different features where quantum dynamics introduces a source of intrinsic fluctuations tightly connected with spatial correlations and they have been a subject of recent intensive studies as we see below. Interacting electron systems cannot be fully understood without deep analyses of the quantum phase transitions themselves, because they are widely seen and play essential roles in many phenomena. Typical and important examples of the quantum phase transitions include metal-insulator transitions, (2, 3, 4, 5, 6, 7, 8, 9) metal-superconductor transitions, superconductor-insulator transitions, magnetic transitions to antiferromagnetic or ferromagnetic phases in metals as well as in Mott insulators, and charge ordering transitions. Here, we focus on three different types of transitions
Building logical qubits in a superconducting quantum computing system
Gambetta, Jay M.; Chow, Jerry M.; Steffen, Matthias
2017-01-01
The technological world is in the midst of a quantum computing and quantum information revolution. Since Richard Feynman's famous `plenty of room at the bottom' lecture (Feynman, Engineering and Science23, 22 (1960)), hinting at the notion of novel devices employing quantum mechanics, the quantum information community has taken gigantic strides in understanding the potential applications of a quantum computer and laid the foundational requirements for building one. We believe that the next significant step will be to demonstrate a quantum memory, in which a system of interacting qubits stores an encoded logical qubit state longer than the incorporated parts. Here, we describe the important route towards a logical memory with superconducting qubits, employing a rotated version of the surface code. The current status of technology with regards to interconnected superconducting-qubit networks will be described and near-term areas of focus to improve devices will be identified. Overall, the progress in this exciting field has been astounding, but we are at an important turning point, where it will be critical to incorporate engineering solutions with quantum architectural considerations, laying the foundation towards scalable fault-tolerant quantum computers in the near future.
Electron-phonon interaction in quantum transport through quantum dots and molecular systems
Ojeda, J. H.; Duque, C. A.; Laroze, D.
2016-12-01
The quantum transport and effects of decoherence properties are studied in quantum dots systems and finite homogeneous chains of aromatic molecules connected to two semi-infinite leads. We study these systems based on the tight-binding approach through Green's function technique within a real space renormalization and polaron transformation schemes. In particular, we calculate the transmission probability following the Landauer-Büttiker formalism, the I - V characteristics and the noise power of current fluctuations taken into account the decoherence. Our results may explain the inelastic effects through nanoscopic systems.
A cost-effective measurement-device-independent quantum key distribution system for quantum networks
Valivarthi, Raju; Zhou, Qiang; John, Caleb; Marsili, Francesco; Verma, Varun B.; Shaw, Matthew D.; Nam, Sae Woo; Oblak, Daniel; Tittel, Wolfgang
2017-12-01
We experimentally realize a measurement-device-independent quantum key distribution (MDI-QKD) system. It is based on cost-effective and commercially available hardware such as distributed feedback lasers and field-programmable gate arrays that enable time-bin qubit preparation and time-tagging, and active feedback systems that allow for compensation of time-varying properties of photons after transmission through deployed fiber. We examine the performance of our system, and conclude that its design does not compromise performance. Our demonstration paves the way for MDI-QKD-based quantum networks in star-type topology that extend over more than 100 km distance.
Quantum Control of Open Systems and Dense Atomic Ensembles
DiLoreto, Christopher
Controlling the dynamics of open quantum systems; i.e. quantum systems that decohere because of interactions with the environment, is an active area of research with many applications in quantum optics and quantum computation. My thesis expands the scope of this inquiry by seeking to control open systems in proximity to an additional system. The latter could be a classical system such as metal nanoparticles, or a quantum system such as a cluster of similar atoms. By modelling the interactions between the systems, we are able to expand the accessible state space of the quantum system in question. For a single, three-level quantum system, I examine isolated systems that have only normal spontaneous emission. I then show that intensity-intensity correlation spectra, which depend directly on the density matrix of the system, can be used detect whether transitions share a common energy level. This detection is possible due to the presence of quantum interference effects between two transitions if they are connected. This effect allows one to asses energy level structure diagrams in complex atoms/molecules. By placing an open quantum system near a nanoparticle dimer, I show that the spontaneous emission rate of the system can be changed "on demand" by changing the polarization of an incident, driving field. In a three-level, Lambda system, this allows a qubit to both retain high qubit fidelity when it is operating, and to be rapidly initialized to a pure state once it is rendered unusable by decoherence. This type of behaviour is not possible in a single open quantum system; therefore adding a classical system nearby extends the overall control space of the quantum system. An open quantum system near identical neighbours in a dense ensemble is another example of how the accessible state space can be expanded. I show that a dense ensemble of atoms rapidly becomes disordered with states that are not directly excited by an incident field becoming significantly populated
Quantum correlation of high dimensional system in a dephasing environment
Ji, Yinghua; Ke, Qiang; Hu, Juju
2018-05-01
For a high dimensional spin-S system embedded in a dephasing environment, we theoretically analyze the time evolutions of quantum correlation and entanglement via Frobenius norm and negativity. The quantum correlation dynamics can be considered as a function of the decoherence parameters, including the ratio between the system oscillator frequency ω0 and the reservoir cutoff frequency ωc , and the different environment temperature. It is shown that the quantum correlation can not only measure nonclassical correlation of the considered system, but also perform a better robustness against the dissipation. In addition, the decoherence presents the non-Markovian features and the quantum correlation freeze phenomenon. The former is much weaker than that in the sub-Ohmic or Ohmic thermal reservoir environment.
Smooth controllability of infinite-dimensional quantum-mechanical systems
International Nuclear Information System (INIS)
Wu, Re-Bing; Tarn, Tzyh-Jong; Li, Chun-Wen
2006-01-01
Manipulation of infinite-dimensional quantum systems is important to controlling complex quantum dynamics with many practical physical and chemical backgrounds. In this paper, a general investigation is casted to the controllability problem of quantum systems evolving on infinite-dimensional manifolds. Recognizing that such problems are related with infinite-dimensional controllability algebras, we introduce an algebraic mathematical framework to describe quantum control systems possessing such controllability algebras. Then we present the concept of smooth controllability on infinite-dimensional manifolds, and draw the main result on approximate strong smooth controllability. This is a nontrivial extension of the existing controllability results based on the analysis over finite-dimensional vector spaces to analysis over infinite-dimensional manifolds. It also opens up many interesting problems for future studies
Symmetry in quantum system theory: Rules for quantum architecture design
Energy Technology Data Exchange (ETDEWEB)
Schulte-Herbrueggen, Thomas; Sander, Uwe [Technical University of Munich, Garching (Germany). Dept. Chem.
2010-07-01
We investigate universality in the sense of controllability and observability, of multi-qubit systems in architectures of various symmetries of coupling type and topology. By determining the respective dynamic system Lie algebras, explicit reachability sets under symmetry constraints are provided. Thus for a given (possibly symmetric) experimental coupling architecture several decision problems can be solved in a unified way: (i) can a target Hamiltonian be simulated? (ii) can a target gate be synthesised? (iii) to which extent is the system observable by a given set of detection operators? and, as a special case of the latter, (iv) can an underlying system Hamiltonian be identified with a given set of detection operators? Finally, in turn, the absence of symmetry provides a convenient necessary condition for full controllability. Though often easier to assess than the well-established Lie-algebra rank condition, this is not sufficient unless the candidate dynamic simple Lie algebra can be pre-identified uniquely. Thus for architectures with various Ising and Heisenberg coupling types we give design rules sufficient to ensure full controllability. In view of follow-up studies, we relate the unification of necessary and sufficient conditions for universality to filtering simple Lie subalgebras of su(N) comprising classical and exceptional types.
Decohering histories and open quantum systems
International Nuclear Information System (INIS)
Chisolm, Eric D
2009-01-01
I briefly review the 'decohering histories' or 'consistent histories' formulation of quantum theory, due to Griffiths, Omnes, and Gell-Mann and Hartle (and the subject of my graduate work with George Sudarshan). I also sift through the many meanings that have been attached to decohering histories, with an emphasis on the most basic one: Decoherence of appropriate histories is needed to establish that quantum mechanics has the correct classical limit. Then I will describe efforts to find physical mechanisms that do this. Since most work has focused on density matrix versions of decoherence, I'll consider the relation between the two formulations, which historically has not been straightforward. Finally, I'll suggest a line of research that would use recent results by Sudarshan to illuminate this aspect of the classical limit of quantum theory.
Decohering histories and open quantum systems
Energy Technology Data Exchange (ETDEWEB)
Chisolm, Eric D, E-mail: echisolm@lanl.go [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)
2009-11-01
I briefly review the 'decohering histories' or 'consistent histories' formulation of quantum theory, due to Griffiths, Omnes, and Gell-Mann and Hartle (and the subject of my graduate work with George Sudarshan). I also sift through the many meanings that have been attached to decohering histories, with an emphasis on the most basic one: Decoherence of appropriate histories is needed to establish that quantum mechanics has the correct classical limit. Then I will describe efforts to find physical mechanisms that do this. Since most work has focused on density matrix versions of decoherence, I'll consider the relation between the two formulations, which historically has not been straightforward. Finally, I'll suggest a line of research that would use recent results by Sudarshan to illuminate this aspect of the classical limit of quantum theory.
Approaches to open quantum systems: Decoherence, localisation and all that
International Nuclear Information System (INIS)
Yu Ting
1998-01-01
This thesis is mainly concerned with issues in quantum open systems and the foundations of quantum theory. Chapter I introduces the aim, background and main results which take place in the following chapters. Chapters II and III are used to study and compare the decoherent histories approach, the environment-induced decoherence and the localisation properties of the solutions to the stochastic Schrodinger equation in quantum jump simulation and quantum state diffusion approaches, for a quantum two-level system model. We show, in particular, that there is a close connection between the decoherent histories and the quantum jump simulation, complementing a connection with the quantum state diffusion approach noted earlier by Diosi, Gisin, Halliwell and Percival. In the case of the decoherent histories analysis, the degree of approximate decoherence is discussed in detail. As by-product, by using the von Neumann entropy, we also discuss the predictability and its relation to the upper bounds of degree of decoherence. In Chapter IV, we give an alternative and elementary derivation of the Hu-Paz-Ghang master equation for quantum Brownian motion in a general environment, which involves tracing the evolution equation for the Wigner function. We also discuss the master equation in some special cases. This master equation provides a very useful tool to study the decoherence of a quantum system due to the interaction with its environment. In Chapter V, a derivation of the parameter-based uncertainty relation between position and momentum is given. This uncertainty relation can be regarded as an exact counterpart of the time-energy uncertainty relation. The final chapter is a rather brief summary of the thesis. (author)
Deterministic constant-temperature dynamics for dissipative quantum systems
International Nuclear Information System (INIS)
Sergi, Alessandro
2007-01-01
A novel method is introduced in order to treat the dissipative dynamics of quantum systems interacting with a bath of classical degrees of freedom. The method is based upon an extension of the Nose-Hoover chain (constant temperature) dynamics to quantum-classical systems. Both adiabatic and nonadiabatic numerical calculations on the relaxation dynamics of the spin-boson model show that the quantum-classical Nose-Hoover chain dynamics represents the thermal noise of the bath in an accurate and simple way. Numerical comparisons, both with the constant-energy calculation and with the quantum-classical Brownian motion treatment of the bath, show that the quantum-classical Nose-Hoover chain dynamics can be used to introduce dissipation in the evolution of a quantum subsystem even with just one degree of freedom for the bath. The algorithm can be computationally advantageous in modelling, within computer simulation, the dynamics of a quantum subsystem interacting with complex molecular environments. (fast track communication)
Wu, Nan; Zhang, Cong; Jin, Xing Ri; Zhang, Ying Qiao; Lee, YoungPak
2018-02-19
Unidirectional reflectionless phenomena are investigated theoretically in a non-Hermitian quantum system composed of several quantum dots and a plasmonic waveguide. By adjusting the phase shifts between quantum dots, single- and dual-band unidirectional reflectionlessnesses are realized at exceptional points based on two and three quantum dots coupled to a plasmonic waveguide, respectively. In addition, single- and dual-band unidirectional perfect absorptions with high quality factors are obtained at the vicinity of exceptional points.
Detection of fractional solitons in quantum spin Hall systems
Fleckenstein, C.; Traverso Ziani, N.; Trauzettel, B.
2018-03-01
We propose two experimental setups that allow for the implementation and the detection of fractional solitons of the Goldstone-Wilczek type. The first setup is based on two magnetic barriers at the edge of a quantum spin Hall system for generating the fractional soliton. If then a quantum point contact is created with the other edge, the linear conductance shows evidence of the fractional soliton. The second setup consists of a single magnetic barrier covering both edges and implementing a long quantum point contact. In this case, the fractional soliton can unambiguously be detected as a dip in the conductance without the need to control the magnetization of the barrier.
Experimental demonstration of subcarrier multiplexed quantum key distribution system.
Mora, José; Ruiz-Alba, Antonio; Amaya, Waldimar; Martínez, Alfonso; García-Muñoz, Víctor; Calvo, David; Capmany, José
2012-06-01
We provide, to our knowledge, the first experimental demonstration of the feasibility of sending several parallel keys by exploiting the technique of subcarrier multiplexing (SCM) widely employed in microwave photonics. This approach brings several advantages such as high spectral efficiency compatible with the actual secure key rates, the sharing of the optical fainted pulse by all the quantum multiplexed channels reducing the system complexity, and the possibility of upgrading with wavelength division multiplexing in a two-tier scheme, to increase the number of parallel keys. Two independent quantum SCM channels featuring a sifted key rate of 10 Kb/s/channel over a link with quantum bit error rate <2% is reported.
Tampering detection system using quantum-mechanical systems
Humble, Travis S [Knoxville, TN; Bennink, Ryan S [Knoxville, TN; Grice, Warren P [Oak Ridge, TN
2011-12-13
The use of quantum-mechanically entangled photons for monitoring the integrity of a physical border or a communication link is described. The no-cloning principle of quantum information science is used as protection against an intruder's ability to spoof a sensor receiver using a `classical` intercept-resend attack. Correlated measurement outcomes from polarization-entangled photons are used to protect against quantum intercept-resend attacks, i.e., attacks using quantum teleportation.
Tampering detection system using quantum-mechanical systems
Energy Technology Data Exchange (ETDEWEB)
Humble, Travis S [Knoxville, TN; Bennink, Ryan S [Knoxville, TN; Grice, Warren P [Oak Ridge, TN
2011-12-13
The use of quantum-mechanically entangled photons for monitoring the integrity of a physical border or a communication link is described. The no-cloning principle of quantum information science is used as protection against an intruder's ability to spoof a sensor receiver using a `classical` intercept-resend attack. Correlated measurement outcomes from polarization-entangled photons are used to protect against quantum intercept-resend attacks, i.e., attacks using quantum teleportation.
Radtke, T.; Fritzsche, S.
2008-11-01
Entanglement is known today as a key resource in many protocols from quantum computation and quantum information theory. However, despite the successful demonstration of several protocols, such as teleportation or quantum key distribution, there are still many open questions of how entanglement affects the efficiency of quantum algorithms or how it can be protected against noisy environments. The investigation of these and related questions often requires a search or optimization over the set of quantum states and, hence, a parametrization of them and various other objects. To facilitate this kind of studies in quantum information theory, here we present an extension of the FEYNMAN program that was developed during recent years as a toolbox for the simulation and analysis of quantum registers. In particular, we implement parameterizations of hermitian and unitary matrices (of arbitrary order), pure and mixed quantum states as well as separable states. In addition to being a prerequisite for the study of many optimization problems, these parameterizations also provide the necessary basis for heuristic studies which make use of random states, unitary matrices and other objects. Program summaryProgram title: FEYNMAN Catalogue identifier: ADWE_v4_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWE_v4_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 24 231 No. of bytes in distributed program, including test data, etc.: 1 416 085 Distribution format: tar.gz Programming language: Maple 11 Computer: Any computer with Maple software installed Operating system: Any system that supports Maple; program has been tested under Microsoft Windows XP, Linux Classification: 4.15 Does the new version supersede the previous version?: Yes Nature of problem: During the last decades
A geometric Hamiltonian description of composite quantum systems and quantum entanglement
Pastorello, Davide
2015-05-01
Finite-dimensional Quantum Mechanics can be geometrically formulated as a proper classical-like Hamiltonian theory in a projective Hilbert space. The description of composite quantum systems within the geometric Hamiltonian framework is discussed in this paper. As summarized in the first part of this work, in the Hamiltonian formulation the phase space of a quantum system is the Kähler manifold given by the complex projective space P(H) of the Hilbert space H of the considered quantum theory. However the phase space of a bipartite system must be P(H1 ⊗ H2) and not simply P(H1) × P(H2) as suggested by the analogy with Classical Mechanics. A part of this paper is devoted to manage this problem. In the second part of the work, a definition of quantum entanglement and a proposal of entanglement measure are given in terms of a geometrical point of view (a rather studied topic in recent literature). Finally two known separability criteria are implemented in the Hamiltonian formalism.
Coherent versus Measurement Feedback: Linear Systems Theory for Quantum Information
Directory of Open Access Journals (Sweden)
Naoki Yamamoto
2014-11-01
Full Text Available To control a quantum system via feedback, we generally have two options in choosing a control scheme. One is the coherent feedback, which feeds the output field of the system, through a fully quantum device, back to manipulate the system without involving any measurement process. The other one is measurement-based feedback, which measures the output field and performs a real-time manipulation on the system based on the measurement results. Both schemes have advantages and disadvantages, depending on the system and the control goal; hence, their comparison in several situations is important. This paper considers a general open linear quantum system with the following specific control goals: backaction evasion, generation of a quantum nondemolished variable, and generation of a decoherence-free subsystem, all of which have important roles in quantum information science. Some no-go theorems are proven, clarifying that those goals cannot be achieved by any measurement-based feedback control. On the other hand, it is shown that, for each control goal there exists a coherent feedback controller accomplishing the task. The key idea to obtain all the results is system theoretic characterizations of the above three notions in terms of controllability and observability properties or transfer functions of linear systems, which are consistent with their standard definitions.
Scalar material reference systems and loop quantum gravity
International Nuclear Information System (INIS)
Giesel, K; Thiemann, T
2015-01-01
In the past, the possibility to employ (scalar) material reference systems in order to describe classical and quantum gravity directly in terms of gauge invariant (Dirac) observables has been emphasized frequently. This idea has been picked up more recently in loop quantum gravity with the aim to perform a reduced phase space quantization of the theory, thus possibly avoiding problems with the (Dirac) operator constraint quantization method for a constrained system. In this work, we review the models that have been studied on the classical and/or the quantum level and parametrize the space of theories considered so far. We then describe the quantum theory of a model that, to the best of our knowledge, has only been considered classically so far. This model could arguably be called the optimal one in this class of models considered as it displays the simplest possible true Hamiltonian, while at the same time reducing all constraints of general relativity. (paper)
Quantum key distribution for composite dimensional finite systems
Shalaby, Mohamed; Kamal, Yasser
2017-06-01
The application of quantum mechanics contributes to the field of cryptography with very important advantage as it offers a mechanism for detecting the eavesdropper. The pioneering work of quantum key distribution uses mutually unbiased bases (MUBs) to prepare and measure qubits (or qudits). Weak mutually unbiased bases (WMUBs) have weaker properties than MUBs properties, however, unlike MUBs, a complete set of WMUBs can be constructed for systems with composite dimensions. In this paper, we study the use of weak mutually unbiased bases (WMUBs) in quantum key distribution for composite dimensional finite systems. We prove that the security analysis of using a complete set of WMUBs to prepare and measure the quantum states in the generalized BB84 protocol, gives better results than using the maximum number of MUBs that can be constructed, when they are analyzed against the intercept and resend attack.
Typical equilibrium state of an embedded quantum system.
Ithier, Grégoire; Ascroft, Saeed; Benaych-Georges, Florent
2017-12-01
We consider an arbitrary quantum system coupled nonperturbatively to a large arbitrary and fully quantum environment. In the work by Ithier and Benaych-Georges [Phys. Rev. A 96, 012108 (2017)2469-992610.1103/PhysRevA.96.012108] the typicality of the dynamics of such an embedded quantum system was established for several classes of random interactions. In other words, the time evolution of its quantum state does not depend on the microscopic details of the interaction. Focusing on the long-time regime, we use this property to calculate analytically a partition function characterizing the stationary state and involving the overlaps between eigenvectors of a bare and a dressed Hamiltonian. This partition function provides a thermodynamical ensemble which includes the microcanonical and canonical ensembles as particular cases. We check our predictions with numerical simulations.
Enhancing quantum effects via periodic modulations in optomechanical systems
Farace, Alessandro; Giovannetti, Vittorio
2012-07-01
Parametrically modulated optomechanical systems have been recently proposed as a simple and efficient setting for the quantum control of a micromechanical oscillator: relevant possibilities include the generation of squeezing in the oscillator position (or momentum) and the enhancement of entanglement between mechanical and radiation modes. In this paper we further investigate this modulation regime, considering an optomechanical system with one or more parameters being modulated over time. We first apply a sinusoidal modulation of the mechanical frequency and characterize the optimal regime in which the visibility of purely quantum effects is maximal. We then introduce a second modulation on the input laser intensity and analyze the interplay between the two. We find that an interference pattern shows up, so that different choices of the relative phase between the two modulations can either enhance or cancel the desired quantum effects, opening new possibilities for optimal quantum control strategies.
Global optimization for quantum dynamics of few-fermion systems
Li, Xikun; Pecak, Daniel; Sowiński, Tomasz; Sherson, Jacob; Nielsen, Anne E. B.
2018-03-01
Quantum state preparation is vital to quantum computation and quantum information processing tasks. In adiabatic state preparation, the target state is theoretically obtained with nearly perfect fidelity if the control parameter is tuned slowly enough. As this, however, leads to slow dynamics, it is often desirable to be able to carry out processes more rapidly. In this work, we employ two global optimization methods to estimate the quantum speed limit for few-fermion systems confined in a one-dimensional harmonic trap. Such systems can be produced experimentally in a well-controlled manner. We determine the optimized control fields and achieve a reduction in the ramping time of more than a factor of four compared to linear ramping. We also investigate how robust the fidelity is to small variations of the control fields away from the optimized shapes.
Experimental quantum computing to solve systems of linear equations.
Cai, X-D; Weedbrook, C; Su, Z-E; Chen, M-C; Gu, Mile; Zhu, M-J; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei
2013-06-07
Solving linear systems of equations is ubiquitous in all areas of science and engineering. With rapidly growing data sets, such a task can be intractable for classical computers, as the best known classical algorithms require a time proportional to the number of variables N. A recently proposed quantum algorithm shows that quantum computers could solve linear systems in a time scale of order log(N), giving an exponential speedup over classical computers. Here we realize the simplest instance of this algorithm, solving 2×2 linear equations for various input vectors on a quantum computer. We use four quantum bits and four controlled logic gates to implement every subroutine required, demonstrating the working principle of this algorithm.
Relativistic quantum Darwinism in Dirac fermion and graphene systems
Ni, Xuan; Huang, Liang; Lai, Ying-Cheng; Pecora, Louis
2012-02-01
We solve the Dirac equation in two spatial dimensions in the setting of resonant tunneling, where the system consists of two symmetric cavities connected by a finite potential barrier. The shape of the cavities can be chosen to yield both regular and chaotic dynamics in the classical limit. We find that certain pointer states about classical periodic orbits can exist, which are signatures of relativistic quantum Darwinism (RQD). These localized states suppress quantum tunneling, and the effect becomes less severe as the underlying classical dynamics in the cavity is chaotic, leading to regularization of quantum tunneling. Qualitatively similar phenomena have been observed in graphene. A physical theory is developed to explain relativistic quantum Darwinism and its effects based on the spectrum of complex eigenenergies of the non-Hermitian Hamiltonian describing the open cavity system.
Controlling open quantum systems: tools, achievements, and limitations
International Nuclear Information System (INIS)
Koch, Christiane P
2016-01-01
The advent of quantum devices, which exploit the two essential elements of quantum physics, coherence and entanglement, has sparked renewed interest in the control of open quantum systems. Successful implementations face the challenge of preserving relevant nonclassical features at the level of device operation. A major obstacle is decoherence, which is caused by interaction with the environment. Optimal control theory is a tool that can be used to identify control strategies in the presence of decoherence. Here we review recent advances in optimal control methodology that allow typical tasks in device operation for open quantum systems to be tackled and discuss examples of relaxation-optimized dynamics. Optimal control theory is also a useful tool to exploit the environment for control. We discuss examples and point out possible future extensions. (topical review)
Quantum and classical behavior in interacting bosonic systems
Energy Technology Data Exchange (ETDEWEB)
Hertzberg, Mark P. [Institute of Cosmology & Department of Physics and Astronomy, Tufts University,Medford, MA 02155 (United States)
2016-11-21
It is understood that in free bosonic theories, the classical field theory accurately describes the full quantum theory when the occupancy numbers of systems are very large. However, the situation is less understood in interacting theories, especially on time scales longer than the dynamical relaxation time. Recently there have been claims that the quantum theory deviates spectacularly from the classical theory on this time scale, even if the occupancy numbers are extremely large. Furthermore, it is claimed that the quantum theory quickly thermalizes while the classical theory does not. The evidence for these claims comes from noticing a spectacular difference in the time evolution of expectation values of quantum operators compared to the classical micro-state evolution. If true, this would have dramatic consequences for many important phenomena, including laboratory studies of interacting BECs, dark matter axions, preheating after inflation, etc. In this work we critically examine these claims. We show that in fact the classical theory can describe the quantum behavior in the high occupancy regime, even when interactions are large. The connection is that the expectation values of quantum operators in a single quantum micro-state are approximated by a corresponding classical ensemble average over many classical micro-states. Furthermore, by the ergodic theorem, a classical ensemble average of local fields with statistical translation invariance is the spatial average of a single micro-state. So the correlation functions of the quantum and classical field theories of a single micro-state approximately agree at high occupancy, even in interacting systems. Furthermore, both quantum and classical field theories can thermalize, when appropriate coarse graining is introduced, with the classical case requiring a cutoff on low occupancy UV modes. We discuss applications of our results.
Quantum Gravity as a Dissipative Deterministic System
Hooft, G. 't
1999-01-01
It is argued that the so-called holographic principle will obstruct attempts to produce physically realistic models for the unification of general relativity with quantum mechanics, unless determinism in the latter is restored. The notion of time in GR is so different from the usual one in
Photoluminescence of hybrid quantum dot systems
Czech Academy of Sciences Publication Activity Database
Král, Karel; Menšík, Miroslav
2015-01-01
Roč. 7, č. 4 (2015), 347-349 ISSN 2164-6627 R&D Projects: GA MŠk LH12236; GA MŠk LH12186 Institutional support: RVO:68378271 ; RVO:61389013 Keywords : quantum dots * energy transfer * electron-phonon interaction Subject RIV: BM - Solid Matter Physics ; Magnetism
Controlled Quantum Operations of a Semiconductor Three-Qubit System
Li, Hai-Ou; Cao, Gang; Yu, Guo-Dong; Xiao, Ming; Guo, Guang-Can; Jiang, Hong-Wen; Guo, Guo-Ping
2018-02-01
In a specially designed semiconductor device consisting of three capacitively coupled double quantum dots, we achieve strong and tunable coupling between a target qubit and two control qubits. We demonstrate how to completely switch on and off the target qubit's coherent rotations by presetting two control qubits' states. A Toffoli gate is, therefore, possible based on these control effects. This research paves a way for realizing full quantum-logic operations in semiconductor multiqubit systems.
Computer simulation of mixed classical-quantum systems
International Nuclear Information System (INIS)
Kalia, R.K.; Vashishta, P.
1988-11-01
We briefly review three important methods that are currently used in the simulation of mixed systems. Two of these techniques, path integral Monte Carlo or molecular dynamics and dynamical simulated annealing, have the limitation that they can only describe the structural properties in the ground state. The third so-called quantum molecular dynamics (QMD) method can provide not only the static properties but also the real-time dynamics of a quantum particle at finite temperatures. 10 refs
Linear Quantum Systems: Non-Classical States and Robust Stability
2016-06-29
modulation and entanglement in a compound gradient echo memory, Physical Review A 93(2) 023809 2016. We present a theoretical model for a Kerr...Carvalho, M. Hedges and M R James, Analysis of the operation of gradient echo memories using a quantum input-output model, New Journal of Physics , 15...new structured uncertainty methods that ensure robust stability of quantum systems based on nominal linear models, and (v) physical realizability
Solvable model of quantum microcanonical states
International Nuclear Information System (INIS)
Bender, Carl M; Brody, Dorje C; Hook, Daniel W
2005-01-01
This letter examines the consequences of a recently proposed modification of the postulate of equal a priori probability in quantum statistical mechanics. This modification, called the quantum microcanonical postulate (QMP), asserts that for a system in microcanonical equilibrium all pure quantum states having the same energy expectation value are realized with equal probability. A simple model of a quantum system that obeys the QMP and that has a nondegenerate spectrum with equally spaced energy eigenvalues is studied. This model admits a closed-form expression for the density of states in terms of the energy eigenvalues. It is shown that in the limit as the number of energy levels approaches infinity, the expression for the density of states converges to a δ function centred at the intermediate value (E max + E min )/2 of the energy. Determining this limit requires an elaborate asymptotic study of an infinite sum whose terms alternate in sign. (letter to the editor)
Quantum coherence and entanglement control for atom-cavity systems
Shu, Wenchong
Coherence and entanglement play a significant role in the quantum theory. Ideal quantum systems, "closed" to the outside world, remain quantum forever and thus manage to retain coherence and entanglement. Real quantum systems, however, are open to the environment and are therefore susceptible to the phenomenon of decoherence and disentanglement which are major hindrances to the effectiveness of quantum information processing tasks. In this thesis we have theoretically studied the evolution of coherence and entanglement in quantum systems coupled to various environments. We have also studied ways and means of controlling the decay of coherence and entanglement. We have studied the exact qubit entanglement dynamics of some interesting initial states coupled to a high-Q cavity containing zero photon, one photon, two photons and many photons respectively. We have found that an initially correlated environmental state can serve as an enhancer for entanglement decay or generation processes. More precisely, we have demonstrated that the degree of entanglement, including its collapse as well as its revival times, can be significantly modified by the correlated structure of the environmental modes. We have also studied dynamical decoupling (DD) technique --- a prominent strategy of controlling decoherence and preserving entanglement in open quantum systems. We have analyzed several DD control methods applied to qubit systems that can eliminate the system-environment coupling and prolong the quantum coherence time. Particularly, we have proposed a new DD sequence consisting a set of designed control operators that can universally protected an unknown qutrit state against colored phase and amplitude environment noises. In addition, in a non-Markovian regime, we have reformulated the quantum state diffusion (QSD) equation to incorporate the effect of the external control fields. Without any assumptions on the system-environment coupling and the size of environment, we have
Tan, Ru-Chao; Lei, Tong; Zhao, Qing-Min; Gong, Li-Hua; Zhou, Zhi-Hong
2016-12-01
To improve the slow processing speed of the classical image encryption algorithms and enhance the security of the private color images, a new quantum color image encryption algorithm based on a hyper-chaotic system is proposed, in which the sequences generated by the Chen's hyper-chaotic system are scrambled and diffused with three components of the original color image. Sequentially, the quantum Fourier transform is exploited to fulfill the encryption. Numerical simulations show that the presented quantum color image encryption algorithm possesses large key space to resist illegal attacks, sensitive dependence on initial keys, uniform distribution of gray values for the encrypted image and weak correlation between two adjacent pixels in the cipher-image.
Quantum demolition filtering and optimal control of unstable systems.
Belavkin, V P
2012-11-28
A brief account of the quantum information dynamics and dynamical programming methods for optimal control of quantum unstable systems is given to both open loop and feedback control schemes corresponding respectively to deterministic and stochastic semi-Markov dynamics of stable or unstable systems. For the quantum feedback control scheme, we exploit the separation theorem of filtering and control aspects as in the usual case of quantum stable systems with non-demolition observation. This allows us to start with the Belavkin quantum filtering equation generalized to demolition observations and derive the generalized Hamilton-Jacobi-Bellman equation using standard arguments of classical control theory. This is equivalent to a Hamilton-Jacobi equation with an extra linear dissipative term if the control is restricted to Hamiltonian terms in the filtering equation. An unstable controlled qubit is considered as an example throughout the development of the formalism. Finally, we discuss optimum observation strategies to obtain a pure quantum qubit state from a mixed one.
Open quantum maps from complex scaling of kicked scattering systems
Mertig, Normann; Shudo, Akira
2018-04-01
We derive open quantum maps from periodically kicked scattering systems and discuss the computation of their resonance spectra in terms of theoretically grounded methods, such as complex scaling and sufficiently weak absorbing potentials. In contrast, we also show that current implementations of open quantum maps, based on strong absorptive or even projective openings, fail to produce the resonance spectra of kicked scattering systems. This comparison pinpoints flaws in current implementations of open quantum maps, namely, the inability to separate resonance eigenvalues from the continuum as well as the presence of diffraction effects due to strong absorption. The reported deviations from the true resonance spectra appear, even if the openings do not affect the classical trapped set, and become appreciable for shorter-lived resonances, e.g., those associated with chaotic orbits. This makes the open quantum maps, which we derive in this paper, a valuable alternative for future explorations of quantum-chaotic scattering systems, for example, in the context of the fractal Weyl law. The results are illustrated for a quantum map model whose classical dynamics exhibits key features of ionization and a trapped set which is organized by a topological horseshoe.
Quantum-statistical kinetic equations
International Nuclear Information System (INIS)
Loss, D.; Schoeller, H.
1989-01-01
Considering a homogeneous normal quantum fluid consisting of identical interacting fermions or bosons, the authors derive an exact quantum-statistical generalized kinetic equation with a collision operator given as explicit cluster series where exchange effects are included through renormalized Liouville operators. This new result is obtained by applying a recently developed superoperator formalism (Liouville operators, cluster expansions, symmetrized projectors, P q -rule, etc.) to nonequilibrium systems described by a density operator ρ(t) which obeys the von Neumann equation. By means of this formalism a factorization theorem is proven (being essential for obtaining closed equations), and partial resummations (leading to renormalized quantities) are performed. As an illustrative application, the quantum-statistical versions (including exchange effects due to Fermi-Dirac or Bose-Einstein statistics) of the homogeneous Boltzmann (binary collisions) and Choh-Uhlenbeck (triple collisions) equations are derived
Dynamics of a Simple Quantum System in a Complex Environment
Bulgac, A; Kusnezov, D; Bulgac, Aurel; Dang, Gui Do; Kusnezov, Dimitri
1998-01-01
We present a theory for the dynamical evolution of a quantum system coupled to a complex many-body intrinsic system/environment. By modelling the intrinsic many-body system with parametric random matrices, we study the types of effective stochastic models which emerge from random matrix theory. Using the Feynman-Vernon path integral formalism, we derive the influence functional and obtain either analytical or numerical solutions for the time evolution of the entire quantum system. We discuss thoroughly the structure of the solutions for some representative cases and make connections to well known limiting results, particularly to Brownian motion, Kramers classical limit and the Caldeira-Leggett approach.
From few- to many-body quantum systems
Schiulaz, Mauro; Távora, Marco; Santos, Lea F.
2018-01-01
How many particles are necessary to make a many-body quantum system? To answer this question, we take as reference for the many-body limit a quantum system at half-filling and compare its properties with those of a system with $N$ particles, gradually increasing $N$ from 1. We show that the convergence of the static properties of the system with few particles to the many-body limit is fast. For $N \\gtrsim 4$, the density of states is already very close to Gaussian and signatures of many-body ...
Quantum and classical eigenfunctions in Calogero and Sutherland systems
International Nuclear Information System (INIS)
Loris, I; Sasaki, R
2004-01-01
An interesting observation was reported by Corrigan-Sasaki that all the frequencies of small oscillations around equilibrium are 'quantized' for Calogero and Sutherland (CS) systems, typical integrable multi-particle dynamics. We present an analytic proof by applying recent results. Explicit forms of 'classical' and quantum eigenfunctions are presented for CS systems based on any root system
A quantum information perspective of fermionic quantum many-body systems
Energy Technology Data Exchange (ETDEWEB)
Kraus, Christina V.
2009-11-02
In this Thesis fermionic quantum many-body system are theoretically investigated from a quantum information perspective. Quantum correlations in fermionic many-body systems, though central to many of the most fascinating effects of condensed matter physics, are poorly understood from a theoretical perspective. Even the notion of ''paired'' fermions which is widely used in the theory of superconductivity and has a clear physical meaning there, is not a concept of a systematic and mathematical theory so far. Applying concepts and tools from entanglement theory, we close this gap, developing a pairing theory allowing to unambiguously characterize paired states. We develop methods for the detection and quantification of pairing according to our definition which are applicable to current experimental setups. Pairing is shown to be a quantum correlation distinct from any notion of entanglement proposed for fermionic systems, giving further understanding of the structure of highly correlated quantum states. In addition, we show the resource character of paired states for precision metrology, proving that BCS-states allow phase measurements at the Heisenberg limit. Next, the power of fermionic systems is considered in the context of quantum simulations, where we study the possibility to simulate Hamiltonian time evolutions on a cubic lattice under the constraint of translational invariance. Given a set of translationally invariant local Hamiltonians and short range interactions we determine time evolutions which can and those which can not be simulated. Bosonic and finite-dimensional quantum systems (''spins'') are included in our investigations. Furthermore, we develop new techniques for the classical simulation of fermionic many-body systems. First, we introduce a new family of states, the fermionic Projected Entangled Pair States (fPEPS) on lattices in arbitrary spatial dimension. These are the natural generalization of the PEPS
A quantum information perspective of fermionic quantum many-body systems
International Nuclear Information System (INIS)
Kraus, Christina V.
2009-01-01
In this Thesis fermionic quantum many-body system are theoretically investigated from a quantum information perspective. Quantum correlations in fermionic many-body systems, though central to many of the most fascinating effects of condensed matter physics, are poorly understood from a theoretical perspective. Even the notion of ''paired'' fermions which is widely used in the theory of superconductivity and has a clear physical meaning there, is not a concept of a systematic and mathematical theory so far. Applying concepts and tools from entanglement theory, we close this gap, developing a pairing theory allowing to unambiguously characterize paired states. We develop methods for the detection and quantification of pairing according to our definition which are applicable to current experimental setups. Pairing is shown to be a quantum correlation distinct from any notion of entanglement proposed for fermionic systems, giving further understanding of the structure of highly correlated quantum states. In addition, we show the resource character of paired states for precision metrology, proving that BCS-states allow phase measurements at the Heisenberg limit. Next, the power of fermionic systems is considered in the context of quantum simulations, where we study the possibility to simulate Hamiltonian time evolutions on a cubic lattice under the constraint of translational invariance. Given a set of translationally invariant local Hamiltonians and short range interactions we determine time evolutions which can and those which can not be simulated. Bosonic and finite-dimensional quantum systems (''spins'') are included in our investigations. Furthermore, we develop new techniques for the classical simulation of fermionic many-body systems. First, we introduce a new family of states, the fermionic Projected Entangled Pair States (fPEPS) on lattices in arbitrary spatial dimension. These are the natural generalization of the PEPS known for spin systems, and they
Quantum entropy of systems described by non-Hermitian Hamiltonians
International Nuclear Information System (INIS)
Sergi, Alessandro; Zloshchastiev, Konstantin G
2016-01-01
We study the quantum entropy of systems that are described by general non-Hermitian Hamiltonians, including those which can model the effects of sinks or sources. We generalize the von Neumann entropy to the non-Hermitian case and find that one needs both the normalized and non-normalized density operators in order to properly describe irreversible processes. It turns out that such a generalization monitors the onset of disorder in quantum dissipative systems. We give arguments for why one can consider the generalized entropy as the informational entropy describing the flow of information between the system and the bath. We illustrate the theory by explicitly studying few simple models, including tunneling systems with two energy levels and non-Hermitian detuning. (paper: quantum statistical physics, condensed matter, integrable systems)
Method for adding nodes to a quantum key distribution system
Grice, Warren P
2015-02-24
An improved quantum key distribution (QKD) system and method are provided. The system and method introduce new clients at intermediate points along a quantum channel, where any two clients can establish a secret key without the need for a secret meeting between the clients. The new clients perform operations on photons as they pass through nodes in the quantum channel, and participate in a non-secret protocol that is amended to include the new clients. The system and method significantly increase the number of clients that can be supported by a conventional QKD system, with only a modest increase in cost. The system and method are compatible with a variety of QKD schemes, including polarization, time-bin, continuous variable and entanglement QKD.
Wang, Shengtao
The ability to precisely and coherently control atomic systems has improved dramatically in the last two decades, driving remarkable advancements in quantum computation and simulation. In recent years, atomic and atom-like systems have also been served as a platform to study topological phases of matter and non-equilibrium many-body physics. Integrated with rapid theoretical progress, the employment of these systems is expanding the realm of our understanding on a range of physical phenomena. In this dissertation, I draw on state-of-the-art experimental technology to develop several new ideas for controlling and applying atomic systems. In the first part of this dissertation, we propose several novel schemes to realize, detect, and probe topological phases in atomic and atom-like systems. We first theoretically study the intriguing properties of Hopf insulators, a peculiar type of topological insulators beyond the standard classification paradigm of topological phases. Using a solid-state quantum simulator, we report the first experimental observation of Hopf insulators. We demonstrate the Hopf fibration with fascinating topological links in the experiment, showing clear signals of topological phase transitions for the underlying Hamiltonian. Next, we propose a feasible experimental scheme to realize the chiral topological insulator in three dimensions. They are a type of topological insulators protected by the chiral symmetry and have thus far remained unobserved in experiment. We then introduce a method to directly measure topological invariants in cold-atom experiments. This detection scheme is general and applicable to probe of different topological insulators in any spatial dimension. In another study, we theoretically discover a new type of topological gapless rings, dubbed a Weyl exceptional ring, in three-dimensional dissipative cold atomic systems. In the second part of this dissertation, we focus on the application of atomic systems in quantum computation
Numerical approaches to complex quantum, semiclassical and classical systems
Energy Technology Data Exchange (ETDEWEB)
Schubert, Gerald
2008-11-03
In this work we analyse the capabilities of several numerical techniques for the description of different physical systems. Thereby, the considered systems range from quantum over semiclassical to classical and from few- to many-particle systems. In chapter 1 we investigate the behaviour of a single quantum particle in the presence of an external disordered background (static potentials). Starting from the quantum percolation problem, we address the fundamental question of a disorder induced (Anderson-) transition from extended to localised single-particle eigenstates. Distinguishing isolating from conducting states by applying a local distribution approach for the local density of states (LDOS), we detect the quantum percolation threshold in two- and three-dimensions. Extending the quantum percolation model to a quantum random resistor model, we comment on the possible relevance of our results to the influence of disorder on the conductivity in graphene sheets. For the calculation of the LDOS as well as for the Chebyshev expansion of the time evolution operator, the kernel polynomial method (KPM) is the key numerical technique. In chapter 2 we examine how a single quantum particle is influenced by retarded bosonic fields that are inherent to the system. Within the Holstein model, these bosonic degrees of freedom (phonons) give rise to an infinite dimensional Hilbert space, posing a true many-particle problem. Constituting a minimal model for polaron formation, the Holstein model allows us to study the optical absorption and activated transport in polaronic systems. Using a two-dimensional variant of the KPM, we calculate for the first time quasi-exactly the optical absorption and dc-conductivity as a function of temperature. In chapter 3 we come back to the time evolution of a quantum particle in an external, static potential and investigate the capability of semiclassical approximations to it. We address basic quantum effects as tunneling, interference and
Numerical approaches to complex quantum, semiclassical and classical systems
International Nuclear Information System (INIS)
Schubert, Gerald
2008-01-01
In this work we analyse the capabilities of several numerical techniques for the description of different physical systems. Thereby, the considered systems range from quantum over semiclassical to classical and from few- to many-particle systems. In chapter 1 we investigate the behaviour of a single quantum particle in the presence of an external disordered background (static potentials). Starting from the quantum percolation problem, we address the fundamental question of a disorder induced (Anderson-) transition from extended to localised single-particle eigenstates. Distinguishing isolating from conducting states by applying a local distribution approach for the local density of states (LDOS), we detect the quantum percolation threshold in two- and three-dimensions. Extending the quantum percolation model to a quantum random resistor model, we comment on the possible relevance of our results to the influence of disorder on the conductivity in graphene sheets. For the calculation of the LDOS as well as for the Chebyshev expansion of the time evolution operator, the kernel polynomial method (KPM) is the key numerical technique. In chapter 2 we examine how a single quantum particle is influenced by retarded bosonic fields that are inherent to the system. Within the Holstein model, these bosonic degrees of freedom (phonons) give rise to an infinite dimensional Hilbert space, posing a true many-particle problem. Constituting a minimal model for polaron formation, the Holstein model allows us to study the optical absorption and activated transport in polaronic systems. Using a two-dimensional variant of the KPM, we calculate for the first time quasi-exactly the optical absorption and dc-conductivity as a function of temperature. In chapter 3 we come back to the time evolution of a quantum particle in an external, static potential and investigate the capability of semiclassical approximations to it. We address basic quantum effects as tunneling, interference and
Nexus: A modular workflow management system for quantum simulation codes
Krogel, Jaron T.
2016-01-01
The management of simulation workflows represents a significant task for the individual computational researcher. Automation of the required tasks involved in simulation work can decrease the overall time to solution and reduce sources of human error. A new simulation workflow management system, Nexus, is presented to address these issues. Nexus is capable of automated job management on workstations and resources at several major supercomputing centers. Its modular design allows many quantum simulation codes to be supported within the same framework. Current support includes quantum Monte Carlo calculations with QMCPACK, density functional theory calculations with Quantum Espresso or VASP, and quantum chemical calculations with GAMESS. Users can compose workflows through a transparent, text-based interface, resembling the input file of a typical simulation code. A usage example is provided to illustrate the process.
Quantum oscillations in nodal line systems
Yang, Hui; Moessner, Roderich; Lim, Lih-King
2018-04-01
We study signatures of magnetic quantum oscillations in three-dimensional nodal line semimetals at zero temperature. The extended nature of the degenerate bands can result in a Fermi surface geometry with topological genus one, as well as a Fermi surface of electron and hole pockets encapsulating the nodal line. Moreover, the underlying two-band model to describe a nodal line is not unique, in that there are two classes of Hamiltonian with distinct band topology giving rise to the same Fermi-surface geometry. After identifying the extremal cyclotron orbits in various magnetic field directions, we study their concomitant Landau levels and resulting quantum oscillation signatures. By Landau-fan-diagram analyses, we extract the nontrivial π Berry phase signature for extremal orbits linking the nodal line.
Statistical mechanics for a class of quantum statistics
International Nuclear Information System (INIS)
Isakov, S.B.
1994-01-01
Generalized statistical distributions for identical particles are introduced for the case where filling a single-particle quantum state by particles depends on filling states of different momenta. The system of one-dimensional bosons with a two-body potential that can be solved by means of the thermodynamic Bethe ansatz is shown to be equivalent thermodynamically to a system of free particles obeying statistical distributions of the above class. The quantum statistics arising in this way are completely determined by the two-particle scattering phases of the corresponding interacting systems. An equation determining the statistical distributions for these statistics is derived
Fluorescence from a quantum dot and metallic nanosphere hybrid system
Energy Technology Data Exchange (ETDEWEB)
Schindel, Daniel G. [Department of Mathematics and Statistics, University of Winnipeg, 515 Portage Avenue, Winnipeg, MB, R3B 2E9 (Canada); Singh, Mahi R. [Department of Physics and Astronomy, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 3K7 (Canada)
2014-03-31
We present energy absorption and interference in a quantum dot-metallic nanosphere system embedded on a dielectric substrate. A control field is applied to induce dipole moments in the nanosphere and the quantum dot, and a probe field is applied to monitor absorption. Dipole moments in the quantum dot or the metal nanosphere are induced, both by the external fields and by each other's dipole fields. Thus, in addition to direct polarization, the metal nanosphere and the quantum dot will sense one another via the dipole-dipole interaction. The density matrix method was used to show that the absorption spectrum can be split from one peak to two peaks by the control field, and this can also be done by placing the metal sphere close to the quantum dot. When the two are extremely close together, a self-interaction in the quantum dot produces an asymmetry in the absorption peaks. In addition, the fluorescence efficiency can be quenched by the addition of a metal nanosphere. This hybrid system could be used to create ultra-fast switching and sensing nanodevices.
Hydrogen atom as a quantum-classical hybrid system
International Nuclear Information System (INIS)
Zhan, Fei; Wu, Biao
2013-01-01
Hydrogen atom is studied as a quantum-classical hybrid system, where the proton is treated as a classical object while the electron is regarded as a quantum object. We use a well known mean-field approach to describe this hybrid hydrogen atom; the resulting dynamics for the electron and the proton is compared to their full quantum dynamics. The electron dynamics in the hybrid description is found to be only marginally different from its full quantum counterpart. The situation is very different for the proton: in the hybrid description, the proton behaves like a free particle; in the fully quantum description, the wave packet center of the proton orbits around the center of mass. Furthermore, we find that the failure to describe the proton dynamics properly can be regarded as a manifestation of the fact that there is no conservation of momentum in the mean-field hybrid approach. We expect that such a failure is a common feature for all existing approaches for quantum-classical hybrid systems of Born-Oppenheimer type.
Quantum Processes and Dynamic Networks in Physical and Biological Systems.
Dudziak, Martin Joseph
Quantum theory since its earliest formulations in the Copenhagen Interpretation has been difficult to integrate with general relativity and with classical Newtonian physics. There has been traditionally a regard for quantum phenomena as being a limiting case for a natural order that is fundamentally classical except for microscopic extrema where quantum mechanics must be applied, more as a mathematical reconciliation rather than as a description and explanation. Macroscopic sciences including the study of biological neural networks, cellular energy transports and the broad field of non-linear and chaotic systems point to a quantum dimension extending across all scales of measurement and encompassing all of Nature as a fundamentally quantum universe. Theory and observation lead to a number of hypotheses all of which point to dynamic, evolving networks of fundamental or elementary processes as the underlying logico-physical structure (manifestation) in Nature and a strongly quantized dimension to macroscalar processes such as are found in biological, ecological and social systems. The fundamental thesis advanced and presented herein is that quantum phenomena may be the direct consequence of a universe built not from objects and substance but from interacting, interdependent processes collectively operating as sets and networks, giving rise to systems that on microcosmic or macroscopic scales function wholistically and organically, exhibiting non-locality and other non -classical phenomena. The argument is made that such effects as non-locality are not aberrations or departures from the norm but ordinary consequences of the process-network dynamics of Nature. Quantum processes are taken to be the fundamental action-events within Nature; rather than being the exception quantum theory is the rule. The argument is also presented that the study of quantum physics could benefit from the study of selective higher-scale complex systems, such as neural processes in the brain
Work extraction and thermodynamics for individual quantum systems
Skrzypczyk, Paul; Short, Anthony J.; Popescu, Sandu
2014-06-01
Thermodynamics is traditionally concerned with systems comprised of a large number of particles. Here we present a framework for extending thermodynamics to individual quantum systems, including explicitly a thermal bath and work-storage device (essentially a ‘weight’ that can be raised or lowered). We prove that the second law of thermodynamics holds in our framework, and gives a simple protocol to extract the optimal amount of work from the system, equal to its change in free energy. Our results apply to any quantum system in an arbitrary initial state, in particular including non-equilibrium situations. The optimal protocol is essentially reversible, similar to classical Carnot cycles, and indeed, we show that it can be used to construct a quantum Carnot engine.
A generalization of Fermat's principle for classical and quantum systems
Elsayed, Tarek A.
2014-09-01
The analogy between dynamics and optics had a great influence on the development of the foundations of classical and quantum mechanics. We take this analogy one step further and investigate the validity of Fermat's principle in many-dimensional spaces describing dynamical systems (i.e., the quantum Hilbert space and the classical phase and configuration space). We propose that if the notion of a metric distance is well defined in that space and the velocity of the representative point of the system is an invariant of motion, then a generalized version of Fermat's principle will hold. We substantiate this conjecture for time-independent quantum systems and for a classical system consisting of coupled harmonic oscillators. An exception to this principle is the configuration space of a charged particle in a constant magnetic field; in this case the principle is valid in a frame rotating by half the Larmor frequency, not the stationary lab frame.
An Online Banking System Based on Quantum Cryptography Communication
Zhou, Ri-gui; Li, Wei; Huan, Tian-tian; Shen, Chen-yi; Li, Hai-sheng
2014-07-01
In this paper, an online banking system has been built. Based on quantum cryptography communication, this system is proved unconditional secure. Two sets of GHZ states are applied, which can ensure the safety of purchase and payment, respectively. In another word, three trading participants in each triplet state group form an interdependent and interactive relationship. In the meantime, trading authorization and blind signature is introduced by means of controllable quantum teleportation. Thus, an effective monitor is practiced on the premise that the privacy of trading partners is guaranteed. If there is a dispute or deceptive behavior, the system will find out the deceiver immediately according to the relationship mentioned above.
Scattering Theory for Open Quantum Systems with Finite Rank Coupling
International Nuclear Information System (INIS)
Behrndt, Jussi; Malamud, Mark M.; Neidhardt, Hagen
2007-01-01
Quantum systems which interact with their environment are often modeled by maximal dissipative operators or so-called Pseudo-Hamiltonians. In this paper the scattering theory for such open systems is considered. First it is assumed that a single maximal dissipative operator A D in a Hilbert space is used to describe an open quantum system. In this case the minimal self-adjoint dilation of A D can be regarded as the Hamiltonian of a closed system which contains the open system, but since K-tilde is necessarily not semibounded from below, this model is difficult to interpret from a physical point of view. In the second part of the paper an open quantum system is modeled with a family {A(μ)} of maximal dissipative operators depending on energy μ, and it is shown that the open system can be embedded into a closed system where the Hamiltonian is semibounded. Surprisingly it turns out that the corresponding scattering matrix can be completely recovered from scattering matrices of single pseudo-Hamiltonians as in the first part of the paper. The general results are applied to a class of Sturm-Liouville operators arising in dissipative and quantum transmitting Schroedinger-Poisson systems
Quantum: information theory: technological challenge; Computacion Cuantica: un reto tecnologico
Energy Technology Data Exchange (ETDEWEB)
Calixto, M.
2001-07-01
The new Quantum Information Theory augurs powerful machines that obey the entangled logic of the subatomic world. Parallelism, entanglement, teleportation, no-cloning and quantum cryptography are typical peculiarities of this novel way of understanding computation. (Author) 24 refs.
Experimental non-classicality of an indivisible quantum system.
Lapkiewicz, Radek; Li, Peizhe; Schaeff, Christoph; Langford, Nathan K; Ramelow, Sven; Wieśniak, Marcin; Zeilinger, Anton
2011-06-22
In contrast to classical physics, quantum theory demands that not all properties can be simultaneously well defined; the Heisenberg uncertainty principle is a manifestation of this fact. Alternatives have been explored--notably theories relying on joint probability distributions or non-contextual hidden-variable models, in which the properties of a system are defined independently of their own measurement and any other measurements that are made. Various deep theoretical results imply that such theories are in conflict with quantum mechanics. Simpler cases demonstrating this conflict have been found and tested experimentally with pairs of quantum bits (qubits). Recently, an inequality satisfied by non-contextual hidden-variable models and violated by quantum mechanics for all states of two qubits was introduced and tested experimentally. A single three-state system (a qutrit) is the simplest system in which such a contradiction is possible; moreover, the contradiction cannot result from entanglement between subsystems, because such a three-state system is indivisible. Here we report an experiment with single photonic qutrits which provides evidence that no joint probability distribution describing the outcomes of all possible measurements--and, therefore, no non-contextual theory--can exist. Specifically, we observe a violation of the Bell-type inequality found by Klyachko, Can, Binicioğlu and Shumovsky. Our results illustrate a deep incompatibility between quantum mechanics and classical physics that cannot in any way result from entanglement.
Linear and nonlinear optical susceptibilities in a laterally coupled quantum-dot–quantum-ring system
International Nuclear Information System (INIS)
Zeng, Zaiping; Garoufalis, Christos S.; Baskoutas, Sotirios
2014-01-01
Linear and nonlinear optical susceptibilities in a laterally coupled quantum-dot–quantum-ring system have been theoretically studied. In general, we find that the structure parameters of the coupled system significantly affect the optical susceptibilities. The enhancement of the coupling effects between the dot and ring is found to increase considerably the optical susceptibilities and redshift drastically the transition energies. Comparing to the linear susceptibility, the nonlinear optical susceptibility is found to be more sensitive to the variation of the structure parameters. A comprehensive analysis of the electron probability density movement with respect to the modification of the structure parameters is provided, which offers a unique perspective of the ground-state localization. - Highlights: • Optical susceptibilities in a quantum-dot–quantum-ring system are studied. • The structure parameters significantly affect the optical susceptibilities. • The enhancement of the coupling effects increases the optical susceptibilities. • The nonlinear susceptibility is more sensitive to the change in structure parameters. • A comprehensive analysis of the electron probability density movement is provided
Hidden symmetry of the quantum Calogero-Moser system
DEFF Research Database (Denmark)
Kuzentsov, Vadim b
1996-01-01
The hidden symmetry of the quantum Calogero-Moser system with an inverse-square potential is algebraically demonstrated making use of Dunkl's operators. We find the underlying algebra explaining the super-integrability phenomenon for this system. Applications to related multi-variable Bessel...... functions are also discussed....
Multistate and multihypothesis discrimination with open quantum systems
Kiilerich, Alexander Holm; Mølmer, Klaus
2018-05-01
We show how an upper bound for the ability to discriminate any number N of candidates for the Hamiltonian governing the evolution of an open quantum system may be calculated by numerically efficient means. Our method applies an effective master-equation analysis to evaluate the pairwise overlaps between candidate full states of the system and its environment pertaining to the Hamiltonians. These overlaps are then used to construct an N -dimensional representation of the states. The optimal positive-operator valued measure (POVM) and the corresponding probability of assigning a false hypothesis may subsequently be evaluated by phrasing optimal discrimination of multiple nonorthogonal quantum states as a semidefinite programming problem. We provide three realistic examples of multihypothesis testing with open quantum systems.
Controllable quantum information network with a superconducting system
International Nuclear Information System (INIS)
Zhang, Feng-yang; Liu, Bao; Chen, Zi-hong; Wu, Song-lin; Song, He-shan
2014-01-01
We propose a controllable and scalable architecture for quantum information processing using a superconducting system network, which is composed of current-biased Josephson junctions (CBJJs) as tunable couplers between the two superconducting transmission line resonators (TLRs), each coupling to multiple superconducting qubits (SQs). We explicitly demonstrate that the entangled state, the phase gate, and the information transfer between any two selected SQs can be implemented, respectively. Lastly, numerical simulation shows that our scheme is robust against the decoherence of the system. -- Highlights: •An architecture for quantum information processing is proposed. •The quantum information transfer between any two selected SQs is implemented. •This proposal is robust against the decoherence of the system. •This architecture can be fabricated on a chip down to the micrometer scale
Quadratic algebra approach to relativistic quantum Smorodinsky-Winternitz systems
International Nuclear Information System (INIS)
Marquette, Ian
2011-01-01
There exists a relation between the Klein-Gordon and the Dirac equations with scalar and vector potentials of equal magnitude and the Schroedinger equation. We obtain the relativistic energy spectrum for the four relativistic quantum Smorodinsky-Winternitz systems from their quasi-Hamiltonian and the quadratic algebras studied by Daskaloyannis in the nonrelativistic context. We also apply the quadratic algebra approach directly to the initial Dirac equation for these four systems and show that the quadratic algebras obtained are the same than those obtained from the quasi-Hamiltonians. We point out how results obtained in context of quantum superintegrable systems and their polynomial algebras can be applied to the quantum relativistic case.
Adiabatic passage and ensemble control of quantum systems
International Nuclear Information System (INIS)
Leghtas, Z; Sarlette, A; Rouchon, P
2011-01-01
This paper considers population transfer between eigenstates of a finite quantum ladder controlled by a classical electric field. Using an appropriate change of variables, we show that this setting can be set in the framework of adiabatic passage, which is known to facilitate ensemble control of quantum systems. Building on this insight, we present a mathematical proof of robustness for a control protocol-chirped pulse-practised by experimentalists to drive an ensemble of quantum systems from the ground state to the most excited state. We then propose new adiabatic control protocols using a single chirped and amplitude-shaped pulse, to robustly perform any permutation of eigenstate populations, on an ensemble of systems with unknown coupling strengths. These adiabatic control protocols are illustrated by simulations on a four-level ladder.
Analyzing a stochastic time series obeying a second-order differential equation.
Lehle, B; Peinke, J
2015-06-01
The stochastic properties of a Langevin-type Markov process can be extracted from a given time series by a Markov analysis. Also processes that obey a stochastically forced second-order differential equation can be analyzed this way by employing a particular embedding approach: To obtain a Markovian process in 2N dimensions from a non-Markovian signal in N dimensions, the system is described in a phase space that is extended by the temporal derivative of the signal. For a discrete time series, however, this derivative can only be calculated by a differencing scheme, which introduces an error. If the effects of this error are not accounted for, this leads to systematic errors in the estimation of the drift and diffusion functions of the process. In this paper we will analyze these errors and we will propose an approach that correctly accounts for them. This approach allows an accurate parameter estimation and, additionally, is able to cope with weak measurement noise, which may be superimposed to a given time series.
International Nuclear Information System (INIS)
Petrosyan, Lyudvig S
2016-01-01
We study coherent transport in a system of periodic linear chain of quantum dots situated between two parallel quantum wires. We show that the resonant-tunneling conductance between the wires exhibits a Rabi splitting of the resonance peak as a function of Fermi energy in the wires. This effect is an electron transport analogue of the Rabi splitting in optical spectra of two interacting systems. The conductance peak splitting originates from the anticrossing of Bloch bands in a periodic system that is caused by a strong coupling between the electron states in the quantum dot chain and quantum wires. (paper)
Functional methods and mappings of dissipative quantum systems
International Nuclear Information System (INIS)
Baur, H.
2006-01-01
In the first part of this work we extract the algebraic structure behind the method of the influence functional in the context of dissipative quantum mechanics. Special emphasis was put on the transition from a quantum mechanical description to a classical one, since it allows a deeper understanding of the measurement-process. This is tightly connected with the transition from a microscopic to a macroscopic world where the former one is described by the rules of quantum mechanics whereas the latter follows the rules of classical mechanics. In addition we show how the results of the influence functional method can be interpreted as a stochastical process, which in turn allows an easy comparison with the well known time development of a quantum mechanical system by use of the Schroedinger equation. In the following we examine the tight-binding approximation of models of which their hamiltionian shows discrete eigenstates in position space and where transitions between those states are suppressed so that propagation either is described by tunneling or by thermal activation. In the framework of dissipative quantum mechanics this leads to a tremendous simplification of the effective description of the system since instead of looking at the full history of all paths in the path integral description, we only have to look at all possible jump times and the possible corresponding set of weights for the jump direction, which is much easier to handle both analytically and numerically. In addition we deal with the mapping and the connection of dissipative quantum mechanical models with ones in quantum field theory and in particular models in statistical field theory. As an example we mention conformal invariance in two dimensions which always becomes relevant if a statistical system only has local interaction and is invariant under scaling. (orig.)
Quantum thermodynamics. Emergence of thermodynamic behavior within composite quantum systems. 2. ed.
International Nuclear Information System (INIS)
Gemmer, Jochen; Michel, M.; Mahler, Guenter
2009-01-01
This introductory text treats thermodynamics as an incomplete description of quantum systems with many degrees of freedom. Its main goal is to show that the approach to equilibrium -with equilibrium characterized by maximum ignorance about the open system of interest- neither requires that many particles nor is the precise way of partitioning, relevant for the salient features of equilibrium and equilibration. Furthermore, the text depicts that it is indeed quantum effects that are at work in bringing about thermodynamic behavior of modest-sized open systems, thus making Von Neumann's concept of entropy appear much more widely useful than sometimes feared, far beyond truly macroscopic systems in equilibrium. This significantly revised and expanded second edition pays more attention to the growing number of applications, especially non-equilibrium phenomena and thermodynamic processes of the nano-domain. In addition, to improve readability and reduce unneeded technical details, a large portion of this book has been thoroughly rewritten. (orig.)
Sign rules for anisotropic quantum spin systems
International Nuclear Information System (INIS)
Bishop, R. F.; Farnell, D. J. J.; Parkinson, J. B.
2000-01-01
We present exact ''sign rules'' for various spin-s anisotropic spin-lattice models. It is shown that, after a simple transformation which utilizes these sign rules, the ground-state wave function of the transformed Hamiltonian is positive definite. Using these results exact statements for various expectation values of off-diagonal operators are presented, and transitions in the behavior of these expectation values are observed at particular values of the anisotropy. Furthermore, the importance of such sign rules in variational calculations and quantum Monte Carlo calculations is emphasized. This is illustrated by a simple variational treatment of a one-dimensional anisotropic spin model
Keldysh field theory for driven open quantum systems.
Sieberer, L M; Buchhold, M; Diehl, S
2016-09-01
Recent experimental developments in diverse areas-ranging from cold atomic gases to light-driven semiconductors to microcavity arrays-move systems into the focus which are located on the interface of quantum optics, many-body physics and statistical mechanics. They share in common that coherent and driven-dissipative quantum dynamics occur on an equal footing, creating genuine non-equilibrium scenarios without immediate counterpart in equilibrium condensed matter physics. This concerns both their non-thermal stationary states and their many-body time evolution. It is a challenge to theory to identify novel instances of universal emergent macroscopic phenomena, which are tied unambiguously and in an observable way to the microscopic drive conditions. In this review, we discuss some recent results in this direction. Moreover, we provide a systematic introduction to the open system Keldysh functional integral approach, which is the proper technical tool to accomplish a merger of quantum optics and many-body physics, and leverages the power of modern quantum field theory to driven open quantum systems.
Perturbation expansions of stochastic wavefunctions for open quantum systems
Ke, Yaling; Zhao, Yi
2017-11-01
Based on the stochastic unravelling of the reduced density operator in the Feynman path integral formalism for an open quantum system in touch with harmonic environments, a new non-Markovian stochastic Schrödinger equation (NMSSE) has been established that allows for the systematic perturbation expansion in the system-bath coupling to arbitrary order. This NMSSE can be transformed in a facile manner into the other two NMSSEs, i.e., non-Markovian quantum state diffusion and time-dependent wavepacket diffusion method. Benchmarked by numerically exact results, we have conducted a comparative study of the proposed method in its lowest order approximation, with perturbative quantum master equations in the symmetric spin-boson model and the realistic Fenna-Matthews-Olson complex. It is found that our method outperforms the second-order time-convolutionless quantum master equation in the whole parameter regime and even far better than the fourth-order in the slow bath and high temperature cases. Besides, the method is applicable on an equal footing for any kind of spectral density function and is expected to be a powerful tool to explore the quantum dynamics of large-scale systems, benefiting from the wavefunction framework and the time-local appearance within a single stochastic trajectory.
Simulation of quantum systems by the tomography Monte Carlo method
International Nuclear Information System (INIS)
Bogdanov, Yu I
2007-01-01
A new method of statistical simulation of quantum systems is presented which is based on the generation of data by the Monte Carlo method and their purposeful tomography with the energy minimisation. The numerical solution of the problem is based on the optimisation of the target functional providing a compromise between the maximisation of the statistical likelihood function and the energy minimisation. The method does not involve complicated and ill-posed multidimensional computational procedures and can be used to calculate the wave functions and energies of the ground and excited stationary sates of complex quantum systems. The applications of the method are illustrated. (fifth seminar in memory of d.n. klyshko)
Dynamical singularities of glassy systems in a quantum quench.
Obuchi, Tomoyuki; Takahashi, Kazutaka
2012-11-01
We present a prototype of behavior of glassy systems driven by quantum dynamics in a quenching protocol by analyzing the random energy model in a transverse field. We calculate several types of dynamical quantum amplitude and find a freezing transition at some critical time. The behavior is understood by the partition-function zeros in the complex temperature plane. We discuss the properties of the freezing phase as a dynamical chaotic phase, which are contrasted to those of the spin-glass phase in the static system.
Perturbation Theory for Open Two-Level Nonlinear Quantum Systems
International Nuclear Information System (INIS)
Zhang Zhijie; Jiang Dongguang; Wang Wei
2011-01-01
Perturbation theory is an important tool in quantum mechanics. In this paper, we extend the traditional perturbation theory to open nonlinear two-level systems, treating decoherence parameter γ as a perturbation. By this virtue, we give a perturbative solution to the master equation, which describes a nonlinear open quantum system. The results show that for small decoherence rate γ, the ratio of the nonlinear rate C to the tunneling coefficient V (i.e., r = C/V) determines the validity of the perturbation theory. For small ratio r, the perturbation theory is valid, otherwise it yields wrong results. (general)
Bayesian parameter inference from continuously monitored quantum systems
DEFF Research Database (Denmark)
Gammelmark, Søren; Mølmer, Klaus
2013-01-01
We review the introduction of likelihood functions and Fisher information in classical estimation theory, and we show how they can be defined in a very similar manner within quantum measurement theory. We show that the stochastic master equations describing the dynamics of a quantum system subject...... to a definite set of measurements provides likelihood functions for unknown parameters in the system dynamics, and we show that the estimation error, given by the Fisher information, can be identified by stochastic master equation simulations. For large parameter spaces we describe and illustrate the efficient...
Quantum Discord in Two-Qubit System Constructed from the Yang—Baxter Equation
International Nuclear Information System (INIS)
Gou Li-Dan; Wang Xiao-Qian; Sun Yuan-Yuan; Xu Yu-Mei
2014-01-01
Quantum correlations among parts of a composite quantum system are a fundamental resource for several applications in quantum information. In general, quantum discord can measure quantum correlations. In that way, we investigate the quantum discord of the two-qubit system constructed from the Yang—Baxter Equation. The density matrix of this system is generated through the unitary Yang—Baxter matrix R. The analytical expression and numerical result of quantum discord and geometric measure of quantum discord are obtained for the Yang—Baxter system. These results show that quantum discord and geometric measure of quantum discord are only connect with the parameter θ, which is the important spectral parameter in Yang—Baxter equation. (general)
Hacking commercial quantum cryptography systems by tailored bright illumination
Lydersen, Lars; Wiechers, Carlos; Wittmann, Christoffer; Elser, Dominique; Skaar, Johannes; Makarov, Vadim
2010-10-01
The peculiar properties of quantum mechanics allow two remote parties to communicate a private, secret key, which is protected from eavesdropping by the laws of physics. So-called quantum key distribution (QKD) implementations always rely on detectors to measure the relevant quantum property of single photons. Here we demonstrate experimentally that the detectors in two commercially available QKD systems can be fully remote-controlled using specially tailored bright illumination. This makes it possible to tracelessly acquire the full secret key; we propose an eavesdropping apparatus built from off-the-shelf components. The loophole is likely to be present in most QKD systems using avalanche photodiodes to detect single photons. We believe that our findings are crucial for strengthening the security of practical QKD, by identifying and patching technological deficiencies.
Quantum synchronization in an optomechanical system based on Lyapunov control.
Li, Wenlin; Li, Chong; Song, Heshan
2016-06-01
We extend the concepts of quantum complete synchronization and phase synchronization, which were proposed in A. Mari et al., Phys. Rev. Lett. 111, 103605 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.103605, to more widespread quantum generalized synchronization. Generalized synchronization can be considered a necessary condition or a more flexible derivative of complete synchronization, and its criterion and synchronization measure are proposed and analyzed in this paper. As examples, we consider two typical generalized synchronizations in a designed optomechanical system. Unlike the effort to construct a special coupling synchronization system, we purposefully design extra control fields based on Lyapunov control theory. We find that the Lyapunov function can adapt to more flexible control objectives, which is more suitable for generalized synchronization control, and the control fields can be achieved simply with a time-variant voltage. Finally, the existence of quantum entanglement in different generalized synchronizations is also discussed.
Dielectric response of periodic systems from quantum Monte Carlo calculations.
Umari, P; Willamson, A J; Galli, Giulia; Marzari, Nicola
2005-11-11
We present a novel approach that allows us to calculate the dielectric response of periodic systems in the quantum Monte Carlo formalism. We employ a many-body generalization for the electric-enthalpy functional, where the coupling with the field is expressed via the Berry-phase formulation for the macroscopic polarization. A self-consistent local Hamiltonian then determines the ground-state wave function, allowing for accurate diffusion quantum Monte Carlo calculations where the polarization's fixed point is estimated from the average on an iterative sequence, sampled via forward walking. This approach has been validated for the case of an isolated hydrogen atom and then applied to a periodic system, to calculate the dielectric susceptibility of molecular-hydrogen chains. The results found are in excellent agreement with the best estimates obtained from the extrapolation of quantum-chemistry calculations.
Theoretical discussion for quantum computation in biological systems
Baer, Wolfgang
2010-04-01
Analysis of the brain as a physical system, that has the capacity of generating a display of every day observed experiences and contains some knowledge of the physical reality which stimulates those experiences, suggests the brain executes a self-measurement process described by quantum theory. Assuming physical reality is a universe of interacting self-measurement loops, we present a model of space as a field of cells executing such self-measurement activities. Empty space is the observable associated with the measurement of this field when the mass and charge density defining the material aspect of the cells satisfy the least action principle. Content is the observable associated with the measurement of the quantum wave function ψ interpreted as mass-charge displacements. The illusion of space and its content incorporated into cognitive biological systems is evidence of self-measurement activity that can be associated with quantum operations.
Al-Khalili, Jim
2003-01-01
In this lively look at quantum science, a physicist takes you on an entertaining and enlightening journey through the basics of subatomic physics. Along the way, he examines the paradox of quantum mechanics--beautifully mathematical in theory but confoundingly unpredictable in the real world. Marvel at the Dual Slit experiment as a tiny atom passes through two separate openings at the same time. Ponder the peculiar communication of quantum particles, which can remain in touch no matter how far apart. Join the genius jewel thief as he carries out a quantum measurement on a diamond without ever touching the object in question. Baffle yourself with the bizzareness of quantum tunneling, the equivalent of traveling partway up a hill, only to disappear then reappear traveling down the opposite side. With its clean, colorful layout and conversational tone, this text will hook you into the conundrum that is quantum mechanics.
Detailed Balance of Thermalization Dynamics in Rydberg-Atom Quantum Simulators.
Kim, Hyosub; Park, YeJe; Kim, Kyungtae; Sim, H-S; Ahn, Jaewook
2018-05-04
Dynamics of large complex systems, such as relaxation towards equilibrium in classical statistical mechanics, often obeys a master equation that captures essential information from the complexities. Here, we find that thermalization of an isolated many-body quantum state can be described by a master equation. We observe sudden quench dynamics of quantum Ising-like models implemented in our quantum simulator, defect-free single-atom tweezers in conjunction with Rydberg-atom interaction. Saturation of their local observables, a thermalization signature, obeys a master equation experimentally constructed by monitoring the occupation probabilities of prequench states and imposing the principle of the detailed balance. Our experiment agrees with theories and demonstrates the detailed balance in a thermalization dynamics that does not require coupling to baths or postulated randomness.
Detailed Balance of Thermalization Dynamics in Rydberg-Atom Quantum Simulators
Kim, Hyosub; Park, YeJe; Kim, Kyungtae; Sim, H.-S.; Ahn, Jaewook
2018-05-01
Dynamics of large complex systems, such as relaxation towards equilibrium in classical statistical mechanics, often obeys a master equation that captures essential information from the complexities. Here, we find that thermalization of an isolated many-body quantum state can be described by a master equation. We observe sudden quench dynamics of quantum Ising-like models implemented in our quantum simulator, defect-free single-atom tweezers in conjunction with Rydberg-atom interaction. Saturation of their local observables, a thermalization signature, obeys a master equation experimentally constructed by monitoring the occupation probabilities of prequench states and imposing the principle of the detailed balance. Our experiment agrees with theories and demonstrates the detailed balance in a thermalization dynamics that does not require coupling to baths or postulated randomness.
The Quantum-to-Classical Transition in Strongly Interacting Nanoscale Systems
Benatov, Latchezar Latchezarov
This thesis comprises two separate but related studies, dealing with two strongly interacting nanoscale systems on the border between the quantum and classical domains. In Part 1, we use a Born-Markov approximated master equation approach to study the symmetrized-in-frequency current noise spectrum and the oscillator steady state of a nanoelectromechanical system where a nanoscale resonator is coupled linearly via its momentum to a quantum point contact (QPC). Our current noise spectra exhibit clear signatures of the quantum correlations between the QPC current and the back-action force on the oscillator at a value of the relative tunneling phase where such correlations are expected to be maximized. We also show that the steady state of the oscillator obeys a classical Fokker-Planck equation, but can experience thermomechanical noise squeezing in the presence of a momentum-coupled detector bath and a position-coupled environmental bath. Besides, the full master equation clearly shows that half of the detector back-action is correlated with electron tunneling, indicating a departure from the model of the detector as an effective bath and suggesting that a future calculation valid at lower bias voltage, stronger tunneling and/or stronger coupling might reveal interesting quantum effects in the oscillator dynamics. In the second part of the thesis, we study the subsystem dynamics and thermalization of an oscillator-spin star model, where a nanomechanical resonator is coupled to a few two-level systems (TLS's). We use a fourth-order Runge-Kutta numerical algorithm to integrate the Schrodinger equation for the system and obtain our results. We find that the oscillator reaches a Boltzmann steady state when the TLS bath is initially in a thermal state at a temperature higher than the oscillator phonon energy. This occurs in both chaotic and integrable systems, and despite the small number of spins (only six) and the lack of couplings between them. At the same time, pure
Ohya, Masanori
2011-01-01
This monograph provides a mathematical foundation to the theory of quantum information and computation, with applications to various open systems including nano and bio systems. It includes introductory material on algorithm, functional analysis, probability theory, information theory, quantum mechanics and quantum field theory. Apart from standard material on quantum information like quantum algorithm and teleportation, the authors discuss findings on the theory of entropy in C*-dynamical systems, space-time dependence of quantum entangled states, entangling operators, adaptive dynamics, relativistic quantum information, and a new paradigm for quantum computation beyond the usual quantum Turing machine. Also, some important applications of information theory to genetics and life sciences, as well as recent experimental and theoretical discoveries in quantum photosynthesis are described.
Large quantum systems: a mathematical and numerical perspective
International Nuclear Information System (INIS)
Lewin, M.
2009-06-01
This thesis is devoted to the mathematical study of variational models for large quantum systems. The mathematical methods are that of nonlinear analysis, calculus of variations, partial differential equations, spectral theory, and numerical analysis. The first part contains some results on finite systems. We study several approximations of the N-body Schroedinger equation for electrons in an atom or a molecule, and then the so-called Hartree-Fock- Bogoliubov model for a system of fermions interacting via the gravitational force. In a second part, we propose a new method allowing to prove the existence of the thermodynamic limit of Coulomb quantum systems. Then, we construct two Hartree-Fock-type models for infinite systems. The first is a relativistic theory deduced from Quantum Electrodynamics, allowing to describe the behavior of electrons, coupled to that of Dirac's vacuum which can become polarized. The second model describes a nonrelativistic quantum crystal in the presence of a charged defect. A new numerical method is also proposed. The last part of the thesis is devoted to spectral pollution, a phenomenon which is observed when trying to approximate eigenvalues in a gap of the essential spectrum of a self-adjoint operator, for instance for periodic Schroedinger operators or Dirac operators. (author)
On a quantum system with memory
International Nuclear Information System (INIS)
Loeffelholz, J.
1989-01-01
We consider the integro-differential equation for the classical trajectory of an oscillator coupled to another one. On the quantum level the elimination of the coordinate A of the 'unvisible' oscillator leads to an effective path integral (Χ, Ξ, μ) for the associated imaginary time stochastic process t is an element of (-∞, ∞) → x(t). We prove reflection positivity of the measure dμ ∼ F · dξ, where dξ governes the free oscillator x and F is the counterpart of Feynman's influence functional. Finally, realizing the Hamiltonian semigroup exp(-tH), t ≥ 0, in the physical Hilbert space H = L 2 (Χ, Γ, μ), where Γ is contained in or Ξ + , we try to understand what is memory. (author)
Vortex rings in classical and quantum systems
International Nuclear Information System (INIS)
Barenghi, C F; Donnelly, R J
2009-01-01
The study of vortex rings has been pursued for decades and is a particularly difficult subject. However, the discovery of quantized vortex rings in superfluid helium has greatly increased interest in vortex rings with very thin cores. While rapid progress has been made in the simulation of quantized vortex rings, there has not been comparable progress in laboratory studies of vortex rings in a viscous fluid such as water. This article overviews the history and current frontiers of classical and quantum vortex rings. After introducing the classical results, this review discusses thin-cored vortex rings in superfluid helium in section 2, and recent progress in understanding vortex rings of very thin cores propagating in water in section 3. (invited paper)
A quantum CISC compiler and scalable assembler for quantum computing on large systems
Energy Technology Data Exchange (ETDEWEB)
Schulte-Herbrueggen, Thomas; Spoerl, Andreas; Glaser, Steffen [Dept. Chemistry, Technical University of Munich (TUM), 85747 Garching (Germany)
2008-07-01
Using the cutting edge high-speed parallel cluster HLRB-II (with a total LINPACK performance of 63.3 TFlops/s) we present a quantum CISC compiler into time-optimised or decoherence-protected complex instruction sets. They comprise effective multi-qubit interactions with up to 10 qubits. We show how to assemble these medium-sized CISC-modules in a scalable way for quantum computation on large systems. Extending the toolbox of universal gates by optimised complex multi-qubit instruction sets paves the way to fight decoherence in realistic Markovian and non-Markovian settings. The advantage of quantum CISC compilation over standard RISC compilations into one- and two-qubit universal gates is demonstrated inter alia for the quantum Fourier transform (QFT) and for multiply-controlled NOT gates. The speed-up is up to factor of six thus giving significantly better performance under decoherence. - Implications for upper limits to time complexities are also derived.
Testing the Quantum-Classical Boundary and Dimensionality of Quantum Systems
Shun, Poh Hou
Quantum theory introduces a cut between the observer and the observed system [1], but does not provide a definition of what is an observer [2]. Based on an informational def- inition of the observer, Grinbaum has recently [3] predicted an upper bound on bipartite correlations in the Clauser-Horne-Shimony-Holt (CHSH) Bell scenario equal to 2.82537, which is slightly smaller than the Tsirelson bound [4] of standard quantum theory, but is consistent with all the available experimental results [5--17]. Not being able to exceed Grin- baum's limit would support that quantum theory is only an effective description of a more fundamental theory and would have a deep impact in physics and quantum information processing. In this thesis, we present a test of the CHSH inequality on photon pairs in maximally entangled states of polarization in which a value 2.8276 +/- 0.00082 is observed, violating Grinbaum's bound by 2.72 standard deviations and providing the smallest distance with respect to Tsirelson's bound ever reported, namely, 0.0008 +/- 0.00082. (Abstract shortened by UMI.).
Quantum confinement effects in low-dimensional systems
Indian Academy of Sciences (India)
2015-06-03
Jun 3, 2015 ... Quantum confinement effects in low-dimensional systems. Figure 5. (a) Various cuts of the three-dimensional data showing energy vs. momen- tum dispersion relations for Ag film of 17 ML thickness on Ge(111). (b) Photo- emission intensity maps along ¯M– ¯ – ¯K direction. (c) Substrate bands replotted ...
Nonlinear von Neumann equations for quantum dissipative systems
International Nuclear Information System (INIS)
Messer, J.; Baumgartner, B.
1978-01-01
For pure states nonlinear Schroedinger equations, the so-called Schroedinger-Langevin equations are well-known to model quantum dissipative systems of the Langevin type. For mixtures it is shown that these wave equations do not extend to master equations, but to corresponding nonlinear von Neumann equations. Solutions for the damped harmonic oscillator are discussed. (Auth.)
Nonlinear von Neumann equations for quantum dissipative systems
International Nuclear Information System (INIS)
Messer, J.; Baumgartner, B.
For pure states nonlinear Schroedinger equations, the so-called Schroedinger-Langevin equations are well-known to model quantum dissipative systems of the Langevin type. For mixtures it is shown that these wave equations do not extend to master equations, but to corresponding nonlinear von Neumann equations. Solutions for the damped harmonic oscillator are discussed. (Author)
Chaotic Dynamics and Transport in Classical and Quantum Systems
International Nuclear Information System (INIS)
2003-01-01
The aim of this summer school is to provide a set of extended and pedagogical lectures, on the major present-day topics in dynamical systems and statistical mechanics including applications. Some articles are dedicated to chaotic transport in plasma turbulence and to quantum chaos. This document gathers the summaries of some presentations
A quantum spin system with random interactions I
Indian Academy of Sciences (India)
. In order to study the dynamics of a quantum spin glass we model it as a .... Next we construct a family of strongly continuous one-parameter groups of c-auto- morphisms which determine the evolution of the spin system. To this end, we have ...
Dynamics of electrically charged extended bodies: classical and quantum systems
International Nuclear Information System (INIS)
Aaberge, T.
1987-01-01
The author present generalizations of classical mechanics and quantum mechanics that make it possible to describe N charged extended bodies.In particular, we are able to write down a set of coupled equations for the system of N bodies plus field. The theory is based on a theory for the description of N charged chemical fluid components
Classical and quantum mechanics of complex Hamiltonian systems ...
Indian Academy of Sciences (India)
Vol. 73, No. 2. — journal of. August 2009 physics pp. 287–297. Classical and quantum mechanics of complex. Hamiltonian systems: An extended complex phase space ... 1Department of Physics, Ramjas College (University Enclave), University of Delhi,. Delhi 110 ... 1.1 Motivation behind the study of complex Hamiltonians.
Dynamical entropy, quantum K-systems and clustering
International Nuclear Information System (INIS)
Narnhofer, H.
1989-01-01
The two possibilities to define a quantum K-system, either using algebraic relations or using properties of the dynamical entropy, are compared. It is shown that under the additional assumption of strong asymptotic abelianess the algebraic relations imply the properties of the dynamical entropy. 14 refs. (Author)
Classical and quantum mechanics of complex Hamiltonian systems
Indian Academy of Sciences (India)
Certain aspects of classical and quantum mechanics of complex Hamiltonian systems in one dimension investigated within the framework of an extended complex phase space approach, characterized by the transformation = 1 + 2, = 1 + 2, are revisited. It is argued that Carl Bender inducted P T symmetry in ...
On the complete system of observables in quantum mechanics
de Oliveira, César R.
1990-10-01
This paper contains a series of remarks about the concept of Complete System of Observables (CSO) in quantum mechanics and a discussion of two definitions of CSO, one given by Jauch [Helv. Phys. Acta 33, 711 (1960)] and the other by Prugovecki [Can. J. Phys. 47, 1083 (1968)].
Chaotic Dynamics and Transport in Classical and Quantum Systems
Energy Technology Data Exchange (ETDEWEB)
NONE
2003-07-01
The aim of this summer school is to provide a set of extended and pedagogical lectures, on the major present-day topics in dynamical systems and statistical mechanics including applications. Some articles are dedicated to chaotic transport in plasma turbulence and to quantum chaos. This document gathers the summaries of some presentations.
Optimal control of quantum systems: a projection approach
International Nuclear Information System (INIS)
Cheng, C.-J.; Hwang, C.-C.; Liao, T.-L.; Chou, G.-L.
2005-01-01
This paper considers the optimal control of quantum systems. The controlled quantum systems are described by the probability-density-matrix-based Liouville-von Neumann equation. Using projection operators, the states of the quantum system are decomposed into two sub-spaces, namely the 'main state' space and the 'remaining state' space. Since the control energy is limited, a solution for optimizing the external control force is proposed in which the main state is brought to the desired main state at a certain target time, while the population of the remaining state is simultaneously suppressed in order to diminish its effects on the final population of the main state. The optimization problem is formulated by maximizing a general cost functional of states and control force. An efficient algorithm is developed to solve the optimization problem. Finally, using the hydrogen fluoride (HF) molecular population transfer problem as an illustrative example, the effectiveness of the proposed scheme for a quantum system initially in a mixed state or in a pure state is investigated through numerical simulations
Solution of quantum integrable systems from quiver gauge theories
Energy Technology Data Exchange (ETDEWEB)
Dorey, Nick [Department of Applied Mathematics and Theoretical Physics, University of Cambridge,Cambridge (United Kingdom); Zhao, Peng [Simons Center for Geometry and Physics, Stony Brook University,Stony Brook (United States)
2017-02-23
We construct new integrable systems describing particles with internal spin from four-dimensional N = 2 quiver gauge theories. The models can be quantized and solved exactly using the quantum inverse scattering method and also using the Bethe/Gauge correspondence.
Ultrafast quantum computation in ultrastrongly coupled circuit QED systems
Wang, Yimin; Guo, Chu; Zhang, Guo-Qiang; Wang, Gangcheng; Wu, Chunfeng
2017-01-01
The latest technological progress of achieving the ultrastrong-coupling regime in circuit quantum electrodynamics (QED) systems has greatly promoted the developments of quantum physics, where novel quantum optics phenomena and potential computational benefits have been predicted. Here, we propose a scheme to accelerate the nontrivial two-qubit phase gate in a circuit QED system, where superconducting flux qubits are ultrastrongly coupled to a transmission line resonator (TLR), and two more TLRs are coupled to the ultrastrongly-coupled system for assistant. The nontrivial unconventional geometric phase gate between the two flux qubits is achieved based on close-loop displacements of the three-mode intracavity fields. Moreover, as there are three resonators contributing to the phase accumulation, the requirement of the coupling strength to realize the two-qubit gate can be reduced. Further reduction in the coupling strength to achieve a specific controlled-phase gate can be realized by adding more auxiliary resonators to the ultrastrongly-coupled system through superconducting quantum interference devices. We also present a study of our scheme with realistic parameters considering imperfect controls and noisy environment. Our scheme possesses the merits of ultrafastness and noise-tolerance due to the advantages of geometric phases. PMID:28281654
Optimized Perturbation Theory for Wave Functions of Quantum Systems
International Nuclear Information System (INIS)
Hatsuda, T.; Tanaka, T.; Kunihiro, T.
1997-01-01
The notion of the optimized perturbation, which has been successfully applied to energy eigenvalues, is generalized to treat wave functions of quantum systems. The key ingredient is to construct an envelope of a set of perturbative wave functions. This leads to a condition similar to that obtained from the principle of minimal sensitivity. Applications of the method to the quantum anharmonic oscillator and the double well potential show that uniformly valid wave functions with correct asymptotic behavior are obtained in the first-order optimized perturbation even for strong couplings. copyright 1997 The American Physical Society
Conjugate dynamical systems: classical analogue of the quantum energy translation
International Nuclear Information System (INIS)
Torres-Vega, Gabino
2012-01-01
An aspect of quantum mechanics that has not been fully understood is the energy shift generated by the time operator. In this study, we introduce the use of the eigensurfaces of dynamical variables and commutators in classical mechanics to study the classical analogue of the quantum translation of energy. We determine that there is a conjugate dynamical system that is conjugate to Hamilton's equations of motion, and then we generate the analogue of the time operator and use it in the translation of points along the energy direction, i.e. the classical analogue of the Pauli theorem. The theory is illustrated with a nonlinear oscillator model. (paper)
Computational Physics Simulation of Classical and Quantum Systems
Scherer, Philipp O. J
2010-01-01
This book encapsulates the coverage for a two-semester course in computational physics. The first part introduces the basic numerical methods while omitting mathematical proofs but demonstrating the algorithms by way of numerous computer experiments. The second part specializes in simulation of classical and quantum systems with instructive examples spanning many fields in physics, from a classical rotor to a quantum bit. All program examples are realized as Java applets ready to run in your browser and do not require any programming skills.
Mean field dynamics of some open quantum systems.
Merkli, Marco; Rafiyi, Alireza
2018-04-01
We consider a large number N of quantum particles coupled via a mean field interaction to another quantum system (reservoir). Our main result is an expansion for the averages of observables, both of the particles and of the reservoir, in inverse powers of [Formula: see text]. The analysis is based directly on the Dyson series expansion of the propagator. We analyse the dynamics, in the limit [Formula: see text], of observables of a fixed number n of particles, of extensive particle observables and their fluctuations, as well as of reservoir observables. We illustrate our results on the infinite mode Dicke model and on various energy-conserving models.
Mean field dynamics of some open quantum systems
Merkli, Marco; Rafiyi, Alireza
2018-04-01
We consider a large number N of quantum particles coupled via a mean field interaction to another quantum system (reservoir). Our main result is an expansion for the averages of observables, both of the particles and of the reservoir, in inverse powers of √{N }. The analysis is based directly on the Dyson series expansion of the propagator. We analyse the dynamics, in the limit N →∞ , of observables of a fixed number n of particles, of extensive particle observables and their fluctuations, as well as of reservoir observables. We illustrate our results on the infinite mode Dicke model and on various energy-conserving models.
Computational physics. Simulation of classical and quantum systems
Energy Technology Data Exchange (ETDEWEB)
Scherer, Philipp O.J. [TU Muenchen (Germany). Physikdepartment T38
2010-07-01
This book encapsulates the coverage for a two-semester course in computational physics. The first part introduces the basic numerical methods while omitting mathematical proofs but demonstrating the algorithms by way of numerous computer experiments. The second part specializes in simulation of classical and quantum systems with instructive examples spanning many fields in physics, from a classical rotor to a quantum bit. All program examples are realized as Java applets ready to run in your browser and do not require any programming skills. (orig.)
Entropy of open quantum systems and the Poisson distribution
International Nuclear Information System (INIS)
Bashkirov, A.G.; Sukhanov, A.D.
2000-01-01
The entropy of the harmonic oscillator and the Klein-Gordan-Fock quantum field with a static source, located in a coherent state, is considered. The expressions for the entropy in both cases coincide with the accuracy up to the numerical multiplier with the entropy for a black hole. Such a coincidence along with the known property of the gravitational field to provide for a decoherence of the quantum system, placed therein, makes it possible to suppose that the vacuum in the black hole vicinity is in a coherent state [ru
Quantum control of topological defects in magnetic systems
Takei, So; Mohseni, Masoud
2018-02-01
Energy-efficient classical information processing and storage based on topological defects in magnetic systems have been studied over the past decade. In this work, we introduce a class of macroscopic quantum devices in which a quantum state is stored in a topological defect of a magnetic insulator. We propose noninvasive methods to coherently control and read out the quantum state using ac magnetic fields and magnetic force microscopy, respectively. This macroscopic quantum spintronic device realizes the magnetic analog of the three-level rf-SQUID qubit and is built fully out of electrical insulators with no mobile electrons, thus eliminating decoherence due to the coupling of the quantum variable to an electronic continuum and energy dissipation due to Joule heating. For a domain wall size of 10-100 nm and reasonable material parameters, we estimate qubit operating temperatures in the range of 0.1-1 K, a decoherence time of about 0.01-1 μ s , and the number of Rabi flops within the coherence time scale in the range of 102-104 .
Phase space view of quantum mechanical systems and Fisher information
International Nuclear Information System (INIS)
Nagy, Á.
2016-01-01
Highlights: • Phase-space Fisher information coming from the canonical distribution is derived for the ground state of quantum mechanical systems. • Quantum mechanical phase-space Fisher information contains an extra term due to the position dependence of the temperature. • A complete analogy to the classical case is demonstrated for the linear harmonic oscillator. - Abstract: Pennini and Plastino showed that the form of the Fisher information generated by the canonical distribution function reflects the intrinsic structure of classical mechanics. Now, a quantum mechanical generalization of the Pennini–Plastino theory is presented based on the thermodynamical transcription of the density functional theory. Comparing to the classical case, the phase-space Fisher information contains an extra term due to the position dependence of the temperature. However, for the special case of constant temperature, the expression derived bears resemblance to the classical one. A complete analogy to the classical case is demonstrated for the linear harmonic oscillator.
An information theory model for dissipation in open quantum systems
Rogers, David M.
2017-08-01
This work presents a general model for open quantum systems using an information game along the lines of Jaynes’ original work. It is shown how an energy based reweighting of propagators provides a novel moment generating function at each time point in the process. Derivatives of the generating function give moments of the time derivatives of observables. Aside from the mathematically helpful properties, the ansatz reproduces key physics of stochastic quantum processes. At high temperature, the average density matrix follows the Caldeira-Leggett equation. Its associated Langevin equation clearly demonstrates the emergence of dissipation and decoherence time scales, as well as an additional diffusion due to quantum confinement. A consistent interpretation of these results is that decoherence and wavefunction collapse during measurement are directly related to the degree of environmental noise, and thus occur because of subjective uncertainty of an observer.
Phase space view of quantum mechanical systems and Fisher information
Energy Technology Data Exchange (ETDEWEB)
Nagy, Á., E-mail: anagy@madget.atomki.hu
2016-06-17
Highlights: • Phase-space Fisher information coming from the canonical distribution is derived for the ground state of quantum mechanical systems. • Quantum mechanical phase-space Fisher information contains an extra term due to the position dependence of the temperature. • A complete analogy to the classical case is demonstrated for the linear harmonic oscillator. - Abstract: Pennini and Plastino showed that the form of the Fisher information generated by the canonical distribution function reflects the intrinsic structure of classical mechanics. Now, a quantum mechanical generalization of the Pennini–Plastino theory is presented based on the thermodynamical transcription of the density functional theory. Comparing to the classical case, the phase-space Fisher information contains an extra term due to the position dependence of the temperature. However, for the special case of constant temperature, the expression derived bears resemblance to the classical one. A complete analogy to the classical case is demonstrated for the linear harmonic oscillator.
Dissipation-driven quantum phase transitions in collective spin systems
International Nuclear Information System (INIS)
Morrison, S; Parkins, A S
2008-01-01
We consider two different collective spin systems subjected to strong dissipation-on the same scale as interaction strengths and external fields-and show that either continuous or discontinuous dissipative quantum phase transitions can occur as the dissipation strength is varied. First, we consider a well-known model of cooperative resonance fluorescence that can exhibit a second-order quantum phase transition, and analyse the entanglement properties near the critical point. Next, we examine a dissipative version of the Lipkin-Meshkov-Glick interacting collective spin model, where we find that either first- or second-order quantum phase transitions can occur, depending only on the ratio of the interaction and external field parameters. We give detailed results and interpretation for the steady-state entanglement in the vicinity of the critical point, where it reaches a maximum. For the first-order transition we find that the semiclassical steady states exhibit a region of bistability. (fast track communication)
Quantum Entanglement of Matter and Geometry in Large Systems
Energy Technology Data Exchange (ETDEWEB)
Hogan, Craig J.
2014-12-04
Standard quantum mechanics and gravity are used to estimate the mass and size of idealized gravitating systems where position states of matter and geometry become indeterminate. It is proposed that well-known inconsistencies of standard quantum field theory with general relativity on macroscopic scales can be reconciled by nonstandard, nonlocal entanglement of field states with quantum states of geometry. Wave functions of particle world lines are used to estimate scales of geometrical entanglement and emergent locality. Simple models of entanglement predict coherent fluctuations in position of massive bodies, of Planck scale origin, measurable on a laboratory scale, and may account for the fact that the information density of long lived position states in Standard Model fields, which is determined by the strong interactions, is the same as that determined holographically by the cosmological constant.
Experimental probes of emergent symmetries in the quantum Hall system
Lutken, C A
2011-01-01
Experiments studying renormalization group flows in the quantum Hall system provide significant evidence for the existence of an emergent holomorphic modular symmetry Gamma(0)(2). We briefly review this evidence and show that, for the lowest temperatures, the experimental determination of the position of the quantum critical points agrees to the parts per mille level with the prediction from Gamma(0)(2). We present evidence that experiments giving results that deviate substantially from the symmetry predictions are not cold enough to be in the quantum critical domain. We show how the modular symmetry extended by a non-holomorphic particle hole duality leads to an extensive web of dualities related to those in plateau insulator transitions, and we derive a formula relating dual pairs (B, B(d)) of magnetic field strengths across any transition. The experimental data obtained for the transition studied so far is in excellent agreement with the duality relations following from this emergent symmetry, and rule out...
Trojan-horse attacks on quantum-key-distribution systems
International Nuclear Information System (INIS)
Gisin, N.; Fasel, S.; Kraus, B.; Zbinden, H.; Ribordy, G.
2006-01-01
General Trojan-horse attacks on quantum-key-distribution systems, i.e., attacks on Alice or Bob's system via the quantum channel, are analyzed. We illustrate the power of such attacks with today's technology and conclude that all systems must implement active counter measures. In particular, all systems must include an auxiliary detector that monitors any incoming light. We show that such counter measures can be efficient, provided that enough additional privacy amplification is applied to the data. We present a practical way to reduce the maximal information gain that an adversary can gain using Trojan-horse attacks. This does reduce the security analysis of the two-way plug-and-play implementation to those of the standard one-way systems
Quantum cloning machines and their implementation in physical systems
International Nuclear Information System (INIS)
Wu Tao; Ye Liu; Fang Bao-Long
2013-01-01
We review the basic theory of approximate quantum cloning for discrete variables and some schemes for implementing quantum cloning machines. Several types of approximate quantum clones and their expansive quantum clones are introduced. As for the implementation of quantum cloning machines, we review some design methods and recent experimental results. (topical review - quantum information)
Local exclusion principle for identical particles obeying intermediate and fractional statistics
DEFF Research Database (Denmark)
Lundholm, Douglas; Solovej, Jan Philip
2013-01-01
A local exclusion principle is observed for identical particles obeying intermediate and fractional exchange statistics in one and two dimensions, leading to bounds for the kinetic energy in terms of the density. This has implications for models of Lieb-Liniger and Calogero-Sutherland type...
Quantum and classical dynamics in biologically inspired systems
International Nuclear Information System (INIS)
Guerreschi, G.
2012-01-01
Quantum biology is an emerging field in which traditional believes and paradigms are under examination. Typically, quantum effects are witnessed inside quantum optics or atomic physics laboratories in systems which are kept under control and isolated from any noise source by means of very advanced technology. Biological systems exhibit opposite characteristics: They are usually constituted of macromolecules continuously exposed to a warm and wet environment, well beyond our control; but at the same time, they operate far away from equilibrium. Recently, the experimental observation of excitonic coherence in photosynthetic complexes has con firmed that, in non-equilibrium scenarios, quantum phenomena can survive even in presence of a noisy environment. The challenge faced by the ongoing research is twofold: On one side, considering biological molecules as effective nanomachines, one has to address questions of principle regarding their design and functioning; on the other side, one has to investigate real systems which are experimentally accessible and identify such features in these concrete scenarios. The present thesis contributes to both of these aspects. In Part I, we demonstrate how entanglement can be persistently generated even under unfavorable environmental conditions. The physical mechanism is modeled after the idea of conformational changes, and it relies on the interplay of classical oscillations of large structures with the quantum dynamics of a few interacting degrees of freedom. In a similar context, we show that the transfer of an excitation through a linear chain of sites can be enhanced when the inter-site distances oscillate periodically. This enhancement is present even in comparison with the static con figuration which is optimal in the classical case and, therefore, it constitutes a clear signature of the underlying quantum dynamics. In Part II of this thesis, we study the radical pair mechanism from the perspective of quantum control and
Aspelmeyer, Markus; Schwab, Keith
2008-09-01
The last five years have witnessed an amazing development in the field of nano- and micromechanics. What was widely considered fantasy ten years ago is about to become an experimental reality: the quantum regime of mechanical systems is within reach of current experiments. Two factors (among many) have contributed significantly to this situation. As part of the widespread effort into nanoscience and nanofabrication, it is now possible to produce high-quality nanomechanical and micromechanical resonators, spanning length scales of millimetres to nanometres, and frequencies from kilohertz to gigahertz. Researchers coupled these mechanical elements to high-sensitivity actuation and readout systems such as single-electron transistors, quantum dots, atomic point contacts, SQUID loops, high-finesse optical or microwave-cavities etc. Some of these ultra-sensitive readout schemes are in principle capable of detection at the quantum limit and a large part of the experimental effort is at present devoted to achieving this. On the other hand, the fact that the groups working in the field come from various different physics backgrounds—the authors of this editorial are a representative sample—has been a constant source of inspiration for helpful theoretical and experimental tools that have been adapted from other fields to the mechanical realm. To name just one example: ideas from quantum optics have led to the recent demonstration (both in theory and experiment) that coupling a mechanical resonator to a high-finesse optical cavity can be fully analogous to the well-known sideband-resolved laser cooling of ions and hence is capable in principle of cooling a mechanical mode into its quantum ground state. There is no doubt that such interdisciplinarity has been a crucial element for the development of the field. It is interesting to note that a very similar sociological phenomenon occurred earlier in the quantum information community, an area which is deeply enriched by the
International Nuclear Information System (INIS)
Chand, F.
2010-01-01
Exact fourth-order constants of motion are investigated for three-dimensional classical and quantum Hamiltonian systems. The rationalization method is utilized to obtain constants of motion for classical systems. Constants of motion for quantum systems are obtained by adding quantum correction terms, computed using Moyal's bracket, to the corresponding classical counterparts. (author)
International Nuclear Information System (INIS)
Yeon, Kyu Hwang; Hong, Suc Kyoung; Um, Chung In; George, Thomas F.
2006-01-01
With quantum operators corresponding to functions of the canonical variables, Schroedinger equations are constructed for systems corresponding to classical systems connected by a general point canonical transformation. Using the operator connecting quantum states between systems before and after the transformation, the quantum correction term and ordering parameter are obtained
Information-theoretical approach to control of quantum-mechanical systems
International Nuclear Information System (INIS)
Kawabata, Shiro
2003-01-01
Fundamental limits on the controllability of quantum mechanical systems are discussed in the light of quantum information theory. It is shown that the amount of entropy-reduction that can be extracted from a quantum system by feedback controller is upper bounded by a sum of the decrease of entropy achievable in open-loop control and the mutual information between the quantum system and the controller. This upper bound sets a fundamental limit on the performance of any quantum controllers whose designs are based on the possibilities to attain low entropy states. An application of this approach pertaining to quantum error correction is also discussed
Entanglement renormalization, quantum error correction, and bulk causality
Energy Technology Data Exchange (ETDEWEB)
Kim, Isaac H. [IBM T.J. Watson Research Center,1101 Kitchawan Rd., Yorktown Heights, NY (United States); Kastoryano, Michael J. [NBIA, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen (Denmark)
2017-04-07
Entanglement renormalization can be viewed as an encoding circuit for a family of approximate quantum error correcting codes. The logical information becomes progressively more well-protected against erasure errors at larger length scales. In particular, an approximate variant of holographic quantum error correcting code emerges at low energy for critical systems. This implies that two operators that are largely separated in scales behave as if they are spatially separated operators, in the sense that they obey a Lieb-Robinson type locality bound under a time evolution generated by a local Hamiltonian.
Quantum logical states and operators for Josephson-like systems
International Nuclear Information System (INIS)
Faoro, Lara; Raffa, Francesco A; Rasetti, Mario
2006-01-01
We give a formal algebraic description of Josephson-type quantum dynamical systems, i.e., Hamiltonian systems with a cos θ-like potential term. The two-boson Heisenberg algebra plays for such systems the role that the h(1) algebra does for the harmonic oscillator. A single Josephson junction is selected as a representative of Josephson systems. We construct both logical states (codewords) and logical (gate) operators in the superconductive regime. The codewords are the even and odd coherent states of the two-boson algebra: they are shift-resistant and robust, due to squeezing. The logical operators acting on the qubit codewords are expressed in terms of operators in the enveloping of the two-boson algebra. Such a scheme appears to be relevant for quantum information applications. (letter to the editor)
Optical response in a laser-driven quantum pseudodot system
Energy Technology Data Exchange (ETDEWEB)
Kilic, D. Gul [Physics Department, Graduate School of Natural and Applied Sciences, Dokuz Eylül University, 35390 Izmir (Turkey); Sakiroglu, S., E-mail: serpil.sakiroglu@deu.edu.tr [Physics Department, Faculty of Science, Dokuz Eylül University, 35390 Izmir (Turkey); Ungan, F.; Yesilgul, U. [Department of Optical Engineering, Faculty of Technology, Cumhuriyet University, 58140 Sivas (Turkey); Kasapoglu, E. [Physics Department, Faculty of Science, Cumhuriyet University, 58140 Sivas (Turkey); Sari, H. [Department of Primary Education, Faculty of Education, Cumhuriyet University, 58140 Sivas (Turkey); Sokmen, I. [Physics Department, Faculty of Science, Dokuz Eylül University, 35390 Izmir (Turkey)
2017-03-15
We investigate theoretically the intense laser-induced optical absorption coefficients and refractive index changes in a two-dimensional quantum pseudodot system under an uniform magnetic field. The effects of non-resonant, monochromatic intense laser field upon the system are treated within the framework of high-frequency Floquet approach in which the system is supposed to be governed by a laser-dressed potential. Linear and nonlinear absorption coefficients and relative changes in the refractive index are obtained by means of the compact-density matrix approach and iterative method. The results of numerical calculations for a typical GaAs quantum dot reveal that the optical response depends strongly on the magnitude of external magnetic field and characteristic parameters of the confinement potential. Moreover, we have demonstrated that the intense laser field modifies the confinement and thereby causes remarkable changes in the linear and nonlinear optical properties of the system.
Optical response in a laser-driven quantum pseudodot system
International Nuclear Information System (INIS)
Kilic, D. Gul; Sakiroglu, S.; Ungan, F.; Yesilgul, U.; Kasapoglu, E.; Sari, H.; Sokmen, I.
2017-01-01
We investigate theoretically the intense laser-induced optical absorption coefficients and refractive index changes in a two-dimensional quantum pseudodot system under an uniform magnetic field. The effects of non-resonant, monochromatic intense laser field upon the system are treated within the framework of high-frequency Floquet approach in which the system is supposed to be governed by a laser-dressed potential. Linear and nonlinear absorption coefficients and relative changes in the refractive index are obtained by means of the compact-density matrix approach and iterative method. The results of numerical calculations for a typical GaAs quantum dot reveal that the optical response depends strongly on the magnitude of external magnetic field and characteristic parameters of the confinement potential. Moreover, we have demonstrated that the intense laser field modifies the confinement and thereby causes remarkable changes in the linear and nonlinear optical properties of the system.
Generalized thermalization for integrable system under quantum quench.
Muralidharan, Sushruth; Lochan, Kinjalk; Shankaranarayanan, S
2018-01-01
We investigate equilibration and generalized thermalization of the quantum Harmonic chain under local quantum quench. The quench action we consider is connecting two disjoint harmonic chains of different sizes and the system jumps between two integrable settings. We verify the validity of the generalized Gibbs ensemble description for this infinite-dimensional Hilbert space system and also identify equilibration between the subsystems as in classical systems. Using Bogoliubov transformations, we show that the eigenstates of the system prior to the quench evolve toward the Gibbs Generalized Ensemble description. Eigenstates that are more delocalized (in the sense of inverse participation ratio) prior to the quench, tend to equilibrate more rapidly. Further, through the phase space properties of a generalized Gibbs ensemble and the strength of stimulated emission, we identify the necessary criterion on the initial states for such relaxation at late times and also find out the states that would potentially not be described by the generalized Gibbs ensemble description.
Heat transfer operators associated with quantum operations
International Nuclear Information System (INIS)
Aksak, C; Turgut, S
2011-01-01
Any quantum operation applied on a physical system is performed as a unitary transformation on a larger extended system. If the extension used is a heat bath in thermal equilibrium, the concomitant change in the state of the bath necessarily implies a heat exchange with it. The dependence of the average heat transferred to the bath on the initial state of the system can then be found from the expectation value of a Hermitian operator, which is named as the heat transfer operator (HTO). The purpose of this paper is to investigate the relation between the HTOs and the associated quantum operations. Since any given quantum operation on a system can be realized by different baths and unitaries, many different HTOs are possible for each quantum operation. On the other hand, there are also strong restrictions on the HTOs which arise from the unitarity of the transformations. The most important of these is the Landauer erasure principle. This paper is concerned with the question of finding a complete set of restrictions on the HTOs that are associated with a given quantum operation. An answer to this question has been found only for a subset of quantum operations. For erasure operations, these characterizations are equivalent to the generalized Landauer erasure principle. For the case of generic quantum operations, however, it appears that the HTOs obey further restrictions which cannot be obtained from the entropic restrictions of the generalized Landauer erasure principle.
Energy Technology Data Exchange (ETDEWEB)
Ding, L.J., E-mail: dinglinjie82@126.com; Zhong, Y.
2017-07-15
Highlights: • The quantum critical scaling is investigated by Green’s function theory. • The obtained power-law critical exponents (β, δ and α) obey the critical scaling relation α + β(1 + δ) = 2. • The scaling hypothesis equations are proposed to verify the scaling analysis. - Abstract: The quantum phase transition and thermodynamics of a periodic Anderson-like polymer chain in a magnetic field are investigated by Green’s function theory. The T-h phase diagram is explored, wherein a crossover temperature T{sup ∗} denoting the gapless phase crossover into quantum critical regimes, smoothly connects near the critical fields to the universal linear line T{sup ∗} ∼ (h − h{sub c,s}), and ends at h{sub c,s}, providing a new route to capture quantum critical point (QCP). The quantum critical scaling around QCPs is demonstrated by analyzing magnetization, specific heat and Grüneisen parameter Γ{sub h}, which provide direct access to distill the power-law critical exponents (β, δ and α) obeying the critical scaling relation α + β(1 + δ) = 2, analogous to the quantum spin system. Furthermore, scaling hypothesis equations are proposed to check the scaling analysis, for which all the data collapse onto a single curve or two independent branches for the plot against an appropriate scaling variable, indicating the self-consistency and reliability of the obtained critical exponents.
Czech Academy of Sciences Publication Activity Database
De Roeck, W.; Maes, C.; Netočný, Karel; Schütz, M.
2015-01-01
Roč. 56, č. 2 (2015), "023301-1"-"023301-30" ISSN 0022-2488 Institutional support: RVO:68378271 Keywords : quantum systems * quantum large deviations * entanglement * cluster expansions Subject RIV: BE - Theoretical Physics Impact factor: 1.234, year: 2015
Quantum Difference Langevin System with Nonlocal q-Derivative Conditions
Directory of Open Access Journals (Sweden)
Surang Sitho
2016-01-01
Full Text Available We introduce a new class of boundary value problems for Langevin quantum difference systems. Some new existence and uniqueness results for coupled systems are obtained by using fixed point theorems. The existence and uniqueness of solutions are established by Banach’s contraction mapping principle, while the existence of solutions is derived by using Leray-Schauder’s alternative. The obtained results are well illustrated with the aid of examples.
Theory of ground state factorization in quantum cooperative systems.
Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio
2008-05-16
We introduce a general analytic approach to the study of factorization points and factorized ground states in quantum cooperative systems. The method allows us to determine rigorously the existence, location, and exact form of separable ground states in a large variety of, generally nonexactly solvable, spin models belonging to different universality classes. The theory applies to translationally invariant systems, irrespective of spatial dimensionality, and for spin-spin interactions of arbitrary range.
Quantum system under periodic perturbation: Effect of environment
International Nuclear Information System (INIS)
Hotta, M.; Joichi, I.; Matsumoto, S.; Yoshimura, M.
1997-01-01
In many physical situations the behavior of a quantum system is affected by interaction with a larger environment. We develop, using the method of an influence functional, how to deduce the density matrix of the quantum system incorporating the effect of environment. After introducing the characterization of the environment by spectral weight, we first devise schemes to approximate the spectral weight, and then a perturbation method in field theory models, in order to approximately describe the environment. All of these approximate models may be classified as extended Ohmic models of dissipation whose differences are in the high frequency part. The quantum system we deal with in the present work is a general class of harmonic oscillators with an arbitrary time-dependent frequency. The late time behavior of the system is well described by an approximation that employs a localized friction in the dissipative part of the correlation function appearing in the influence functional. The density matrix of the quantum system is then determined in terms of a single classical solution obtained with the time-dependent frequency. With this one can compute the entropy, the energy distribution function, and other physical quantities of the system in a closed form. A specific application is made to the case of a periodically varying frequency. This dynamical system has a remarkable property when the environmental interaction is switched off: The effect of the parametric resonance gives rise to an exponential growth of the populated number in higher excitation levels, or particle production in field theory models. The effect of the environment is investigated for this dynamical system and it is demonstrated that there exists a critical strength of the friction for the parametric effect. (Abstract Truncated)
Levitation and percolation in quantum Hall systems with correlated disorder
Song, Hui; Maruyama, Isao; Hatsugai, Yasuhiro
2007-01-01
We investigate the integer quantum Hall system in a two dimensional lattice model with spatially correlated disorder by using the efficient method to calculate the Chern number proposed by Fukui et al. [J. Phys. Soc. Jpn. 74, 1674 (2005)]. Distribution of charge density indicates that the extended states at the center of each Landau band have percolating current paths, which are topologically equivalent to the edge states that exist in a system with boundaries. As increasing the strength of d...
The pointer basis and the feedback stabilization of quantum systems
International Nuclear Information System (INIS)
Li, L; Chia, A; Wiseman, H M
2014-01-01
The dynamics for an open quantum system can be ‘unravelled’ in infinitely many ways, depending on how the environment is monitored, yielding different sorts of conditioned states, evolving stochastically. In the case of ideal monitoring these states are pure, and the set of states for a given monitoring forms a basis (which is overcomplete in general) for the system. It has been argued elsewhere (Atkins et al 2005 Europhys. Lett. 69 163) that the ‘pointer basis’ as introduced by Zurek et al (1993 Phys. Rev. Lett. 70 1187), should be identified with the unravelling-induced basis which decoheres most slowly. Here we show the applicability of this concept of pointer basis to the problem of state stabilization for quantum systems. In particular we prove that for linear Gaussian quantum systems, if the feedback control is assumed to be strong compared to the decoherence of the pointer basis, then the system can be stabilized in one of the pointer basis states with a fidelity close to one (the infidelity varies inversely with the control strength). Moreover, if the aim of the feedback is to maximize the fidelity of the unconditioned system state with a pure state that is one of its conditioned states, then the optimal unravelling for stabilizing the system in this way is that which induces the pointer basis for the conditioned states. We illustrate these results with a model system: quantum Brownian motion. We show that even if the feedback control strength is comparable to the decoherence, the optimal unravelling still induces a basis very close to the pointer basis. However if the feedback control is weak compared to the decoherence, this is not the case. (paper)
Quantum mechanical simulation methods for studying biological systems
International Nuclear Information System (INIS)
Bicout, D.; Field, M.
1996-01-01
Most known biological mechanisms can be explained using fundamental laws of physics and chemistry and a full understanding of biological processes requires a multidisciplinary approach in which all the tools of biology, chemistry and physics are employed. An area of research becoming increasingly important is the theoretical study of biological macromolecules where numerical experimentation plays a double role of establishing a link between theoretical models and predictions and allowing a quantitative comparison between experiments and models. This workshop brought researchers working on different aspects of the development and application of quantum mechanical simulation together, assessed the state-of-the-art in the field and highlighted directions for future research. Fourteen lectures (theoretical courses and specialized seminars) deal with following themes: 1) quantum mechanical calculations of large systems, 2) ab initio molecular dynamics where the calculation of the wavefunction and hence the energy and forces on the atoms for a system at a single nuclear configuration are combined with classical molecular dynamics algorithms in order to perform simulations which use a quantum mechanical potential energy surface, 3) quantum dynamical simulations, electron and proton transfer processes in proteins and in solutions and finally, 4) free seminars that helped to enlarge the scope of the workshop. (N.T.)
Classical Information Storage in an n-Level Quantum System
Frenkel, Péter E.; Weiner, Mihály
2015-12-01
A game is played by a team of two—say Alice and Bob—in which the value of a random variable x is revealed to Alice only, who cannot freely communicate with Bob. Instead, she is given a quantum n-level system, respectively a classical n-state system, which she can put in possession of Bob in any state she wishes. We evaluate how successfully they managed to store and recover the value of x by requiring Bob to specify a value z and giving a reward of value f ( x, z) to the team. We show that whatever the probability distribution of x and the reward function f are, when using a quantum n-level system, the maximum expected reward obtainable with the best possible team strategy is equal to that obtainable with the use of a classical n-state system. The proof relies on mixed discriminants of positive matrices and—perhaps surprisingly—an application of the Supply-Demand Theorem for bipartite graphs. As a corollary, we get an infinite set of new, dimension dependent inequalities regarding positive operator valued measures and density operators on complex n-space. As a further corollary, we see that the greatest value, with respect to a given distribution of x, of the mutual information I ( x; z) that is obtainable using an n-level quantum system equals the analogous maximum for a classical n-state system.
Effective time-independent analysis for quantum kicked systems
Bandyopadhyay, Jayendra N.; Guha Sarkar, Tapomoy
2015-03-01
We present a mapping of potentially chaotic time-dependent quantum kicked systems to an equivalent approximate effective time-independent scenario, whereby the system is rendered integrable. The time evolution is factorized into an initial kick, followed by an evolution dictated by a time-independent Hamiltonian and a final kick. This method is applied to the kicked top model. The effective time-independent Hamiltonian thus obtained does not suffer from spurious divergences encountered if the traditional Baker-Cambell-Hausdorff treatment is used. The quasienergy spectrum of the Floquet operator is found to be in excellent agreement with the energy levels of the effective Hamiltonian for a wide range of system parameters. The density of states for the effective system exhibits sharp peaklike features, pointing towards quantum criticality. The dynamics in the classical limit of the integrable effective Hamiltonian shows remarkable agreement with the nonintegrable map corresponding to the actual time-dependent system in the nonchaotic regime. This suggests that the effective Hamiltonian serves as a substitute for the actual system in the nonchaotic regime at both the quantum and classical level.
Autonomous quantum Maxwell's demon based on two exchange-coupled quantum dots
Ptaszyński, Krzysztof
2018-01-01
I study an autonomous quantum Maxwell's demon based on two exchange-coupled quantum dots attached to the spin-polarized leads. The principle of operation of the demon is based on the coherent oscillations between the spin states of the system which act as a quantum iSWAP gate. Due to the operation of the iSWAP gate, one of the dots acts as a feedback controller which blocks the transport with the bias in the other dot, thus inducing the electron pumping against the bias; this leads to the locally negative entropy production. Operation of the demon is associated with the information transfer between the dots, which is studied quantitatively by mapping the analyzed setup onto the thermodynamically equivalent auxiliary system. The calculated entropy production in a single subsystem and information flow between the subsystems are shown to obey a local form of the second law of thermodynamics, similar to the one previously derived for classical bipartite systems.
Tomograms for open quantum systems: In(finite) dimensional optical and spin systems
International Nuclear Information System (INIS)
Thapliyal, Kishore; Banerjee, Subhashish; Pathak, Anirban
2016-01-01
Tomograms are obtained as probability distributions and are used to reconstruct a quantum state from experimentally measured values. We study the evolution of tomograms for different quantum systems, both finite and infinite dimensional. In realistic experimental conditions, quantum states are exposed to the ambient environment and hence subject to effects like decoherence and dissipation, which are dealt with here, consistently, using the formalism of open quantum systems. This is extremely relevant from the perspective of experimental implementation and issues related to state reconstruction in quantum computation and communication. These considerations are also expected to affect the quasiprobability distribution obtained from experimentally generated tomograms and nonclassicality observed from them. -- Highlights: •Tomograms are constructed for open quantum systems. •Finite and infinite dimensional quantum systems are studied. •Finite dimensional systems (phase states, single & two qubit spin states) are studied. •A dissipative harmonic oscillator is considered as an infinite dimensional system. •Both pure dephasing as well as dissipation effects are studied.
Tomograms for open quantum systems: In(finite) dimensional optical and spin systems
Energy Technology Data Exchange (ETDEWEB)
Thapliyal, Kishore, E-mail: tkishore36@yahoo.com [Jaypee Institute of Information Technology, A-10, Sector-62, Noida, UP-201307 (India); Banerjee, Subhashish, E-mail: subhashish@iitj.ac.in [Indian Institute of Technology Jodhpur, Jodhpur 342011 (India); Pathak, Anirban, E-mail: anirban.pathak@gmail.com [Jaypee Institute of Information Technology, A-10, Sector-62, Noida, UP-201307 (India)
2016-03-15
Tomograms are obtained as probability distributions and are used to reconstruct a quantum state from experimentally measured values. We study the evolution of tomograms for different quantum systems, both finite and infinite dimensional. In realistic experimental conditions, quantum states are exposed to the ambient environment and hence subject to effects like decoherence and dissipation, which are dealt with here, consistently, using the formalism of open quantum systems. This is extremely relevant from the perspective of experimental implementation and issues related to state reconstruction in quantum computation and communication. These considerations are also expected to affect the quasiprobability distribution obtained from experimentally generated tomograms and nonclassicality observed from them. -- Highlights: •Tomograms are constructed for open quantum systems. •Finite and infinite dimensional quantum systems are studied. •Finite dimensional systems (phase states, single & two qubit spin states) are studied. •A dissipative harmonic oscillator is considered as an infinite dimensional system. •Both pure dephasing as well as dissipation effects are studied.
Entanglement and thermodynamics after a quantum quench in integrable systems.
Alba, Vincenzo; Calabrese, Pasquale
2017-07-25
Entanglement and entropy are key concepts standing at the foundations of quantum and statistical mechanics. Recently, the study of quantum quenches revealed that these concepts are intricately intertwined. Although the unitary time evolution ensuing from a pure state maintains the system at zero entropy, local properties at long times are captured by a statistical ensemble with nonzero thermodynamic entropy, which is the entanglement accumulated during the dynamics. Therefore, understanding the entanglement evolution unveils how thermodynamics emerges in isolated systems. Alas, an exact computation of the entanglement dynamics was available so far only for noninteracting systems, whereas it was deemed unfeasible for interacting ones. Here, we show that the standard quasiparticle picture of the entanglement evolution, complemented with integrability-based knowledge of the steady state and its excitations, leads to a complete understanding of the entanglement dynamics in the space-time scaling limit. We thoroughly check our result for the paradigmatic Heisenberg chain.
Understanding Hawking radiation in the framework of open quantum systems
International Nuclear Information System (INIS)
Yu Hongwei; Zhang Jialin
2008-01-01
We study the Hawking radiation in the framework of open quantum systems by examining the time evolution of a detector (modeled by a two-level atom) interacting with vacuum massless scalar fields. The dynamics of the detector is governed by a master equation obtained by tracing over the field degrees of freedom from the complete system. The nonunitary effects are studied by analyzing the time behavior of a particular observable of the detector, i.e., its admissible state, in the Unruh, Hartle-Hawking, as well as Boulware vacua outside a Schwarzschild black hole. We find that the detector in both the Unruh and Hartle-Hawking vacua would spontaneously excite with a nonvanishing probability the same as what one would obtain if there is thermal radiation at the Hawking temperature from the black hole, thus reproducing the basic results concerning the Hawking effect in the framework of open quantum systems
Quantum theory of the nonconservative system II
International Nuclear Information System (INIS)
Yeon, K.H.
1984-01-01
Utilizing the propagator for a damped harmonic oscillator in nonconservative system, we show the corresponding wave function, energy expectation value, transition amplitude and uncertainty relation. (Author)
Quantum symmetry in quantum theory
International Nuclear Information System (INIS)
Schomerus, V.
1993-02-01
Symmetry concepts have always been of great importance for physical problems like explicit calculations, classification or model building. More recently, new 'quantum symmetries' ((quasi) quantum groups) attracted much interest in quantum theory. It is shown that all these quantum symmetries permit a conventional formulation as symmetry in quantum mechanics. Symmetry transformations can act on the Hilbert space H of physical states such that the ground state is invariant and field operators transform covariantly. Models show that one must allow for 'truncation' in the tensor product of representations of a quantum symmetry. This means that the dimension of the tensor product of two representations of dimension σ 1 and σ 2 may be strictly smaller than σ 1 σ 2 . Consistency of the transformation law of field operators local braid relations leads us to expect, that (weak) quasi quantum groups are the most general symmetries in local quantum theory. The elements of the R-matrix which appears in these local braid relations turn out to be operators on H in general. It will be explained in detail how examples of field algebras with weak quasi quantum group symmetry can be obtained. Given a set of observable field with a finite number of superselection sectors, a quantum symmetry together with a complete set of covariant field operators which obey local braid relations are constructed. A covariant transformation law for adjoint fields is not automatic but will follow when the existence of an appropriate antipode is assumed. At the example of the chiral critical Ising model, non-uniqueness of the quantum symmetry will be demonstrated. Generalized quantum symmetries yield examples of gauge symmetries in non-commutative geometry. Quasi-quantum planes are introduced as the simplest examples of quasi-associative differential geometry. (Weak) quasi quantum groups can act on them by generalized derivations much as quantum groups do in non-commutative (differential-) geometry
Nematic and Valley Ordering in Anisotropic Quantum Hall Systems
Parameswaran, S. A.; Abanin, D. A.; Kivelson, S. A.; Sondhi, S. L.
2010-03-01
We consider a multi-valley two dimensional electron system in the quantum Hall effect (QHE) regime. We focus on QHE states that arise due to spontaneous breaking of the valley symmetry by the Coulomb interactions. We show that the anisotropy of the Fermi surface in each valley, which is generally present in such systems, favors states where all the electrons reside in one of the valleys. In a clean system, the valley ordering occurs via a finite temperature Ising-like phase transition, which, owing to the Fermi surface anisotropy, is accompanied by the onset of nematic order. In a disordered system, domains of opposite polarization are formed, and therefore long-range valley order is destroyed, however, the resulting state is still compressible. We discuss the transport properties in ordered and disordered regimes, and point out the possible relation of our results to recent experiments in AlAs [1]. [1] Y. P. Shkolnikov, S. Misra, N. C. Bishop, E. P. De Poortere, and M. Shayegan, Observation of Quantum Hall ``Valley Skyrmions", Phys. Rev. Lett. 95, 068809 (2005)[2] D.A. Abanin, S.A. Parameswaran, S.A. Kivelson and S.L. Sondhi, Nematic and Valley Ordering in Anisotropic Quantum Hall Systems, to be published.
International Nuclear Information System (INIS)
Sęk, Grzegorz; Andrzejewski, Janusz; Ryczko, Krzysztof; Poloczek, Przemysław; Misiewicz, Jan; Semenova, Elizaveta S; Lemaitre, Aristide; Patriarche, Gilles; Ramdane, Aberrahim
2009-01-01
We report on the electronic properties of GaAs-substrate-based structures designed as a tunnel-injection system composed of self-assembled InAs quantum dots and an In 0.3 Ga 0.7 As quantum well separated by a GaAs barrier. We have performed photoluminescence and photoreflectance measurements which have allowed the determination of the optical transitions in the QW–QD tunnel structure and its respective references with just quantum dots or a quantum well. The effective mass calculations of the band structure dependence on the tunnelling barrier thickness have shown that in spite of an expected significant tunnelling between both parts of the system, its strong asymmetry and the strain distribution cause that the quantum-mechanical-coupling-induced energy shift of the optical transitions is almost negligible for the lowest energy states and weakly sensitive to the width of the barrier, which finds confirmation in the existing experimental data
Universality in driven-dissipative quantum many-body systems
International Nuclear Information System (INIS)
Sieberer, L.M.
2015-01-01
Recent experimental investigations of condensation phenomena in driven-dissipative quantum many-body systems raise the question of what kind of novel universal behavior can emerge under non-equilibrium conditions. We explore various aspects of universality in this context. Our results are of relevance for a variety of open quantum systems on the interface of quantum optics and condensed matter physics, ranging from exciton-polariton condensates to cold atomic gases. In Part I we characterize the dynamical critical behavior at the Bose-Einstein condensation phase transition in driven open quantum systems in three spatial dimensions. Although thermodynamic equilibrium conditions are emergent at low frequencies, the approach to this thermalized low-frequency regime is described by a critical exponent which is specific to the non-equilibrium transition, and places the latter beyond the standard classification of equilibrium dynamical critical behavior. Our theoretical approach is based on the functional renormalization group within the framework of Keldysh non-equilibrium field theory, which is equivalent to a microscopic description of the open system dynamics in terms of a many-body quantum master equation. Universal behavior in the coherence properties of driven-dissipative condensates in reduced dimensions is investigated in Part II. We show that driven two-dimensional Bose systems cannot exhibit algebraic order as in thermodynamic equilibrium, unless they are sufficiently anisotropic. However, we find evidence that even isotropic systems may have a finite superfluidity fraction. In one-dimensional systems, non-equilibrium conditions are traceable in the behavior of the autocorrelation function. We obtain these results by mapping the long-wavelength condensate dynamics onto the Kardar-Parisi-Zhang equation. In Part III we show that systems in thermodynamic equilibrium have a specific symmetry, which makes them distinct from generic driven open systems. The novel
Quantum Optics with Nanomechanical and Solid State Systems
International Nuclear Information System (INIS)
Jaehne, K.
2009-01-01
This thesis presents theoretical studies in an interfacing field of quantum optics, nanomechanics and mesoscopic solid state physics and proposes new methods for the generation of particular quantum states and quantum state transfer for selected hybrid systems. The first part of this thesis focuses on the quantum limit of a macroscopic object, a nanomechanical resonator. This is studied for two different physical systems. The first one is a nanomechanical beam incorporated in a superconducting circuit, in particular a loop-shaped Cooper pair box (CPB) - circuit. We present a scheme for ground state cooling of the flexural mode of the nanomechanical beam. Via the Lorentz force coupling of the beam motion to circulating CPB-circuit currents, energy is transferred to the CPB qubit which acts as a dissipative two-level system. The cooling process is driven by a detuned gate-voltage drive acting on the CPB. We analyze the cooling force spectrum and present analytical expressions for the cooling rate and final occupation number for a wide parameter regime. In particular, we find that cooling is optimized in a strong drive regime, and we present the necessary conditions for ground-state cooling. In a second system, we investigate the creation of squeezed states of a mechanical oscillator (a vibrating membrane or a movable mirror) in an optomechanical setup. An optical cavity is driven by squeezed light and couples via radiation pressure to the mechanical oscillator, effectively providing a squeezed heat-bath for the mechanical oscillator. Under the conditions of laser cooling to the ground state, we find an efficient transfer of squeezing with roughly 60% of light squeezing conveyed to the mechanical oscillator (on a dB scale). We determine the requirements on the carrier frequency and the bandwidth of squeezed light. Beyond the conditions for ground state cooling, we predict mechanical squashing to be observable in current systems. The second part of the thesis is
Sequential Bethe vectors and the quantum Ernst system
International Nuclear Information System (INIS)
Niedermaier, M.; Samtleben, H.
2000-01-01
We give a brief review on the use of Bethe Ansatz techniques to construct solutions of recursive functional equations which emerged in a bootstrap approach to the quantum Ernst system. The construction involves two particular limits of a rational Bethe Ansatz system with complex inhomogeneities. First, we pinch two insertions to the critical value. This links Bethe systems with different number of insertions and leads to the concept of sequential Bethe vectors. Second, we study the semiclassical limit of the system in which the scale parameter of the insertions tends to infinity. (author)
Local decoherence-resistant quantum states of large systems
Energy Technology Data Exchange (ETDEWEB)
Mishra, Utkarsh; Sen, Aditi; Sen, Ujjwal, E-mail: ujjwal@hri.res.in
2015-02-06
We identify an effectively decoherence-free class of quantum states, each of which consists of a “minuscule” and a “large” sector, against local noise. In particular, the content of entanglement and other quantum correlations in the minuscule to large partition is independent of the number of particles in their large sectors, when all the particles suffer passage through local amplitude and phase damping channels. The states of the large sectors are distinct in terms of markedly different amounts of violation of Bell inequality. In case the large sector is macroscopic, such states are akin to the Schrödinger cat. - Highlights: • We identify an effectively decoherence-free class of quantum states of large systems. • We work with local noise models. • Decay of entanglement as well as information-theoretic quantum correlations considered. • The states are of the form of the Schrödinger cats, with minuscule and large sectors. • The states of the large sector are distinguishable by their violation of Bell inequality.
Two-qubit logical operations in three quantum dots system.
Łuczak, Jakub; Bułka, Bogdan R
2018-06-06
We consider a model of two interacting always-on, exchange-only qubits for which controlled phase (CPHASE), controlled NOT (CNOT), quantum Fourier transform (QFT) and SWAP operations can be implemented only in a few electrical pulses in a nanosecond time scale. Each qubit is built of three quantum dots (TQD) in a triangular geometry with three electron spins which are always kept coupled by exchange interactions only. The qubit states are encoded in a doublet subspace and are fully electrically controlled by a voltage applied to gate electrodes. The two qubit quantum gates are realized by short electrical pulses which change the triangular symmetry of TQD and switch on exchange interaction between the qubits. We found an optimal configuration to implement the CPHASE gate by a single pulse of the order 2.3 ns. Using this gate, in combination with single qubit operations, we searched for optimal conditions to perform the other gates: CNOT, QFT and SWAP. Our studies take into account environment effects and leakage processes as well. The results suggest that the system can be implemented for fault tolerant quantum computations.
Quantum interference effects in a cavity QED system
International Nuclear Information System (INIS)
Akram, Uzma; Ficek, Z
2003-01-01
We consider the effect of quantum interference on population distribution and photon statistics of a cavity field interacting with dressed states of a strongly driven three-level atom. We analyse three coupling configurations of the cavity field to the driven atom, with the cavity frequency tuned to the outer Rabi sideband, the inner Rabi sideband and the central frequency of the 'singly dressed' three-level atom. The quantum doubly dressed states for each configuration are identified and the population distribution and photon statistics are interpreted in terms of transitions among these dressed states and their populations. We find that the population distribution depends strongly on quantum interference and the cavity damping. For the cavity field tuned to the outer or inner Rabi sidebands the cavity damping induces transitions between the dressed states which are forbidden for the ordinary spontaneous emission. Moreover, we find that in the case of the cavity field coupled to the inner Rabi sideband the population distribution is almost Poissonian with a large average number of photons that can be controlled by quantum interference. This system can be considered as a one-atom dressed-state laser with controlled intensity
A formula for the Bloch vector of some Lindblad quantum systems
International Nuclear Information System (INIS)
Salgado, D.; Sanchez-Gomez, J.L.
2004-01-01
Using the Bloch representation of an N-dimensional quantum system and immediate results from quantum stochastic calculus, we establish a closed formula for the Bloch vector, hence also for the density operator, of a quantum system following a Lindblad evolution with selfadjoint Lindblad operators
Entanglement dynamics of two-qubit systems in different quantum noises
International Nuclear Information System (INIS)
Pan Chang-Ning; Fang Jian-Shu; Li-Fei; Fang Mao-Fa
2011-01-01
The entanglement dynamics of two-qubit systems in different quantum noises are investigated by means of the operator-sum representation method. We find that, except for the amplitude damping and phase damping quantum noise, the sudden death of entanglement is always observed in different two-qubit systems with generalized amplitude damping and depolarizing quantum noise. (general)
Workshop on quantum stochastic differential equations for the quantum simulation of physical systems
2016-09-22
that would be complimentary to the efforts at ARL. One the other hand, topological quantum field theories have a dual application to topological...Witten provided a path-integral definition of the Jones polynomial using a three-dimensional Chern-Simons quantum field theory (QFT) based on a non...topology, quantum field theory , quantum stochastic differential equations, quantum computing REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT
Conservation law for distributed entanglement of formation and quantum discord
International Nuclear Information System (INIS)
Fanchini, Felipe F.; Cornelio, Marcio F.; Oliveira, Marcos C. de; Caldeira, Amir O.
2011-01-01
We present a direct relation, based upon a monogamic principle, between entanglement of formation (EOF) and quantum discord (QD), showing how they are distributed in an arbitrary tripartite pure system. By extending it to a paradigmatic situation of a bipartite system coupled to an environment, we demonstrate that the EOF and the QD obey conservation relation. By means of this relation we show that in the deterministic quantum computer with one pure qubit the protocol has the ability to rearrange the EOF and the QD, which implies that quantum computation can be understood on a different basis as a coherent dynamics where quantum correlations are distributed between the qubits of the computer. Furthermore, for a tripartite mixed state we show that the balance between distributed EOF and QD results in a stronger version of the strong subadditivity of entropy.
Quantum thermodynamics for driven dissipative bosonic systems
Ochoa, Maicol A.; Zimbovskaya, Natalya; Nitzan, Abraham
2018-02-01
We investigate two prototypical dissipative bosonic systems under slow driving and arbitrary system-bath coupling strength, recovering their dynamic evolution as well as the heat and work rates, and we verify that thermodynamic laws are respected. Specifically, we look at the damped harmonic oscillator and the damped two-level system. For the former, we study independently the slow time-dependent perturbation in the oscillator frequency and in the coupling strength. For the latter, we concentrate on the slow modulation of the energy gap between the two levels. Importantly, we are able to find the entropy production rates for each case without explicitly defining nonequilibrium extensions for the entropy functional. This analysis also permits the definition of phenomenological friction coefficients in terms of structural properties of the system-bath composite.
Quantum chaos and conductivity in disordered systems
International Nuclear Information System (INIS)
Suzuki, A.; Matsutani, S.
2001-01-01
The hopping conductivity in a disordered system which is composed of small (semi-) metallic granules is presented. Due to the irregular shape of each granule, the level statistics of a free electron in granule is expressed by a random matrix, and a formula for the temperature-dependent conductivity (TDC) is obtained for such a disordered system. This TDC shows an apparent metal-insulator transition and is in good agreement with experimental results for disordered carbons
Quantum chaos and thermalization in isolated systems of interacting particles
Energy Technology Data Exchange (ETDEWEB)
Borgonovi, F., E-mail: fausto.borgonovi@unicatt.it [Dipartimento di Matematica e Fisica and Interdisciplinary Laboratories for Advanced Materials Physics, Universitá Cattolica, via Musei 41, 25121 Brescia, and INFN, Sezione di Pavia (Italy); Izrailev, F.M., E-mail: felix.izrailev@gmail.com [Instituto de Física, Universidad Autónoma de Puebla, Apt. Postal J-48, Puebla, Pue., 72570 (Mexico); NSCL and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-1321 (United States); Santos, L.F., E-mail: lsantos2@yu.edu [Department of Physics, Yeshiva University, 245 Lexington Ave, New York, NY 10016 (United States); Zelevinsky, V.G., E-mail: Zelevins@nscl.msu.edu [NSCL and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-1321 (United States)
2016-04-15
This review is devoted to the problem of thermalization in a small isolated conglomerate of interacting constituents. A variety of physically important systems of intensive current interest belong to this category: complex atoms, molecules (including biological molecules), nuclei, small devices of condensed matter and quantum optics on nano- and micro-scale, cold atoms in optical lattices, ion traps. Physical implementations of quantum computers, where there are many interacting qubits, also fall into this group. Statistical regularities come into play through inter-particle interactions, which have two fundamental components: mean field, that along with external conditions, forms the regular component of the dynamics, and residual interactions responsible for the complex structure of the actual stationary states. At sufficiently high level density, the stationary states become exceedingly complicated superpositions of simple quasiparticle excitations. At this stage, regularities typical of quantum chaos emerge and bring in signatures of thermalization. We describe all the stages and the results of the processes leading to thermalization, using analytical and massive numerical examples for realistic atomic, nuclear, and spin systems, as well as for models with random parameters. The structure of stationary states, strength functions of simple configurations, and concepts of entropy and temperature in application to isolated mesoscopic systems are discussed in detail. We conclude with a schematic discussion of the time evolution of such systems to equilibrium.
Split kinetic energy method for quantum systems with competing potentials
International Nuclear Information System (INIS)
Mineo, H.; Chao, Sheng D.
2012-01-01
For quantum systems with competing potentials, the conventional perturbation theory often yields an asymptotic series and the subsequent numerical outcome becomes uncertain. To tackle such a kind of problems, we develop a general solution scheme based on a new energy dissection idea. Instead of dividing the potential energy into “unperturbed” and “perturbed” terms, a partition of the kinetic energy is performed. By distributing the kinetic energy term in part into each individual potential, the Hamiltonian can be expressed as the sum of the subsystem Hamiltonians with respective competing potentials. The total wavefunction is expanded by using a linear combination of the basis sets of respective subsystem Hamiltonians. We first illustrate the solution procedure using a simple system consisting of a particle under the action of double δ-function potentials. Next, this method is applied to the prototype systems of a charged harmonic oscillator in strong magnetic field and the hydrogen molecule ion. Compared with the usual perturbation approach, this new scheme converges much faster to the exact solutions for both eigenvalues and eigenfunctions. When properly extended, this new solution scheme can be very useful for dealing with strongly coupling quantum systems. - Highlights: ► A new basis set expansion method is proposed. ► Split kinetic energy method is proposed to solve quantum eigenvalue problems. ► Significant improvement has been obtained in converging to exact results. ► Extension of such methods is promising and discussed.
Four-level systems and a universal quantum gate
Energy Technology Data Exchange (ETDEWEB)
Baldiotti, M.C.; Gitman, D.M. [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, S.P. (Brazil)
2008-07-15
We discuss the possibility of implementing a universal quantum XOR gate by using two coupled quantum dots subject to external magnetic fields that are parallel and slightly different. We consider this system in two different field configurations. In the first case, parallel external fields with the intensity difference at each spin being proportional to the time-dependent interaction between the spins. A general exact solution describing this system is presented and analyzed to adjust field parameters. Then we consider parallel fields with intensity difference at each spin being constant and the interaction between the spins switching on and off adiabatically. In both cases we adjust characteristics of the external fields (their intensities and duration) in order to have the parallel pulse adequate for constructing the XOR gate. In order to provide a complete theoretical description of all the cases, we derive relations between the spin interaction, the inter-dot distance, and the external field. (Abstract Copyright [2008], Wiley Periodicals, Inc.)
Supersymmetric quantum spin chains and classical integrable systems
International Nuclear Information System (INIS)
Tsuboi, Zengo; Zabrodin, Anton; Zotov, Andrei
2015-01-01
For integrable inhomogeneous supersymmetric spin chains (generalized graded magnets) constructed employing Y(gl(N|M))-invariant R-matrices in finite-dimensional representations we introduce the master T-operator which is a sort of generating function for the family of commuting quantum transfer matrices. Any eigenvalue of the master T-operator is the tau-function of the classical mKP hierarchy. It is a polynomial in the spectral parameter which is identified with the 0-th time of the hierarchy. This implies a remarkable relation between the quantum supersymmetric spin chains and classical many-body integrable systems of particles of the Ruijsenaars-Schneider type. As an outcome, we obtain a system of algebraic equations for the spectrum of the spin chain Hamiltonians.
Ground state of the parallel double quantum dot system.
Zitko, Rok; Mravlje, Jernej; Haule, Kristjan
2012-02-10
We resolve the controversy regarding the ground state of the parallel double quantum dot system near half filling. The numerical renormalization group predicts an underscreened Kondo state with residual spin-1/2 magnetic moment, ln2 residual impurity entropy, and unitary conductance, while the Bethe ansatz solution predicts a fully screened impurity, regular Fermi-liquid ground state, and zero conductance. We calculate the impurity entropy of the system as a function of the temperature using the hybridization-expansion continuous-time quantum Monte Carlo technique, which is a numerically exact stochastic method, and find excellent agreement with the numerical renormalization group results. We show that the origin of the unconventional behavior in this model is the odd-symmetry "dark state" on the dots.
Admissible perturbations and false instabilities in PT -symmetric quantum systems
Znojil, Miloslav
2018-03-01
One of the most characteristic mathematical features of the PT -symmetric quantum mechanics is the explicit Hamiltonian dependence of its physical Hilbert space of states H =H (H ) . Some of the most important physical consequences are discussed, with emphasis on the dynamical regime in which the system is close to phase transition. Consistent perturbation treatment of such a regime is proposed. An illustrative application of the innovated perturbation theory to a non-Hermitian but PT -symmetric user-friendly family of J -parametric "discrete anharmonic" quantum Hamiltonians H =H (λ ⃗) is provided. The models are shown to admit the standard probabilistic interpretation if and only if the parameters remain compatible with the reality of the spectrum, λ ⃗∈D(physical ) . In contradiction to conventional wisdom, the systems are then shown to be stable with respect to admissible perturbations, inside the domain D(physical ), even in the immediate vicinity of the phase-transition boundaries ∂ D(physical ) .
Decoherence in quantum lossy systems: superoperator and matrix techniques
Yazdanpanah, Navid; Tavassoly, Mohammad Kazem; Moya-Cessa, Hector Manuel
2017-06-01
Due to the unavoidably dissipative interaction between quantum systems with their environments, the decoherence flows inevitably into the systems. Therefore, to achieve a better understanding on how decoherence affects on the damped systems, a fundamental investigation of master equation seems to be required. In this regard, finding out the missed information which has been lost due to irreversibly of the dissipative systems, is also of practical importance in quantum information science. Motivating by these facts, in this work we want to use superoperator and matrix techniques, by which we are able to illustrate two methods to obtain the explicit form of density operators corresponding to damped systems at arbitrary temperature T ≥ 0. To establish the potential abilities of the suggested methods, we apply them to deduce the density operator of some practical well-known quantum systems. Using the superoperator techniques, at first we obtain the density operator of a damped system which includes a qubit interacting with a single-mode quantized field within an optical cavity. As the second system, we study the decoherence of a quantized field within an optical damped cavity. We also use our proposed matrix method to study the decoherence of a system which includes two qubits in the interaction with each other via dipole-dipole interaction and at the same time with a quantized field in a lossy cavity. The influences of dissipation on the decoherence of dynamical properties of these systems are also numerically investigated. At last, the advantages of the proposed superoperator techniques in comparison with matrix method are explained.
International Nuclear Information System (INIS)
Xiang Guo-Yong; Guo Guang-Can
2013-01-01
The statistical error is ineluctable in any measurement. Quantum techniques, especially with the development of quantum information, can help us squeeze the statistical error and enhance the precision of measurement. In a quantum system, there are some quantum parameters, such as the quantum state, quantum operator, and quantum dimension, which have no classical counterparts. So quantum metrology deals with not only the traditional parameters, but also the quantum parameters. Quantum metrology includes two important parts: measuring the physical parameters with a precision beating the classical physics limit and measuring the quantum parameters precisely. In this review, we will introduce how quantum characters (e.g., squeezed state and quantum entanglement) yield a higher precision, what the research areas are scientists most interesting in, and what the development status of quantum metrology and its perspectives are. (topical review - quantum information)
Entanglement as a signature of quantum chaos.
Wang, Xiaoguang; Ghose, Shohini; Sanders, Barry C; Hu, Bambi
2004-01-01
We explore the dynamics of entanglement in classically chaotic systems by considering a multiqubit system that behaves collectively as a spin system obeying the dynamics of the quantum kicked top. In the classical limit, the kicked top exhibits both regular and chaotic dynamics depending on the strength of the chaoticity parameter kappa in the Hamiltonian. We show that the entanglement of the multiqubit system, considered for both the bipartite and the pairwise entanglement, yields a signature of quantum chaos. Whereas bipartite entanglement is enhanced in the chaotic region, pairwise entanglement is suppressed. Furthermore, we define a time-averaged entangling power and show that this entangling power changes markedly as kappa moves the system from being predominantly regular to being predominantly chaotic, thus sharply identifying the edge of chaos. When this entangling power is averaged over all states, it yields a signature of global chaos. The qualitative behavior of this global entangling power is similar to that of the classical Lyapunov exponent.
Dike intrusions during rifting episodes obey scaling relationships similar to earthquakes
L., Passarelli; E., Rivalta; A., Shuler
2014-01-01
As continental rifts evolve towards mid-ocean ridges, strain is accommodated by repeated episodes of faulting and magmatism. Discrete rifting episodes have been observed along two subaerial divergent plate boundaries, the Krafla segment of the Northern Volcanic Rift Zone in Iceland and the Manda-Hararo segment of the Red Sea Rift in Ethiopia. In both cases, the initial and largest dike intrusion was followed by a series of smaller intrusions. By performing a statistical analysis of these rifting episodes, we demonstrate that dike intrusions obey scaling relationships similar to earthquakes. We find that the dimensions of dike intrusions obey a power law analogous to the Gutenberg-Richter relation, and the long-term release of geodetic moment is governed by a relationship consistent with the Omori law. Due to the effects of magma supply, the timing of secondary dike intrusions differs from that of the aftershocks. This work provides evidence of self-similarity in the rifting process. PMID:24469260
Mechanical and chemical spinodal instabilities in finite quantum systems
International Nuclear Information System (INIS)
Colonna, M.; Chomaz, Ph.; Ayik, S.
2001-01-01
Self consistent quantum approaches are used to study the instabilities of finite nuclear systems. The frequencies of multipole density fluctuations are determined as a function of dilution and temperature, for several isotopes. The spinodal region of the phase diagrams is determined and it appears reduced by finite size effects. The role of surface and volume instabilities is discussed. Important chemical effects are associated with mechanical disruption and may lead to isospin fractionation. (authors)
Linear Quantum Systems: Non-Classical States and Robust Stability
2016-06-29
has a history going back some 50 years, to the birth of modern control theory with Kalman’s foundational work on filtering and LQG optimal control...realizability conditions. DISTRIBUTION A. Approved for public release: distribution unlimited. 8 Shi Wang, Matthew R James H- Infinity control of...physical model for a quantum measurement-based feedback control system with time delay is presented for the H- infinity control. Luis Augusto
Modelling of multidimensional quantum systems by the numerical functional integration
International Nuclear Information System (INIS)
Lobanov, Yu.Yu.; Zhidkov, E.P.
1990-01-01
The employment of the numerical functional integration for the description of multidimensional systems in quantum and statistical physics is considered. For the multiple functional integrals with respect to Gaussian measures in the full separable metric spaces the new approximation formulas exact on a class of polynomial functionals of a given summary degree are constructed. The use of the formulas is demonstrated on example of computation of the Green function and the ground state energy in multidimensional Calogero model. 15 refs.; 2 tabs