Quantum models of classical systems
International Nuclear Information System (INIS)
Hájíček, P
2015-01-01
Quantum statistical methods that are commonly used for the derivation of classical thermodynamic properties are extended to classical mechanical properties. The usual assumption that every real motion of a classical mechanical system is represented by a sharp trajectory is not testable and is replaced by a class of fuzzy models, the so-called maximum entropy (ME) packets. The fuzzier are the compared classical and quantum ME packets, the better seems to be the match between their dynamical trajectories. Classical and quantum models of a stiff rod will be constructed to illustrate the resulting unified quantum theory of thermodynamic and mechanical properties. (paper)
Theoretical modelling of quantum circuit systems
International Nuclear Information System (INIS)
Stiffell, Peter Barry
2002-01-01
The work in this thesis concentrates on the interactions between circuit systems operating in the quantum regime. The main thrust of this work involves the use of a new model for investigating the way in which different components in such systems behave when coupled together. This is achieved by utilising the matrix representation of quantum mechanics, in conjunction with a number of other theoretical techniques (such as Wigner functions and entanglement entropies). With these tools in place it then becomes possible to investigate and review different quantum circuit systems. These investigations cover systems ranging from simple electromagnetic (cm) field oscillators in isolation to coupled SQUID rings in more sophisticated multi-component arrangements. Primarily, we look at the way SQUID rings couple to em fields, and how the ring-field interaction can be mediated by the choice of external flux, Φ x , applied to the SQUID ring. A lot of interest is focused on the transfer of energy between the system modes. However, we also investigate the statistical properties of the system, including squeezing, entropy and entanglement. Among the phenomena uncovered in this research we note the ability to control coupling in SQUID rings via the external flux, the capacity for entanglement between quantum circuit modes, frequency conversions of photons, flux squeezing and the existence of Schroedinger Cat states. (author)
On Mathematical Modeling Of Quantum Systems
International Nuclear Information System (INIS)
Achuthan, P.; Narayanankutty, Karuppath
2009-01-01
The world of physical systems at the most fundamental levels is replete with efficient, interesting models possessing sufficient ability to represent the reality to a considerable extent. So far, quantum mechanics (QM) forming the basis of almost all natural phenomena, has found beyond doubt its intrinsic ingenuity, capacity and robustness to stand the rigorous tests of validity from and through appropriate calculations and experiments. No serious failures of quantum mechanical predictions have been reported, yet. However, Albert Einstein, the greatest theoretical physicist of the twentieth century and some other eminent men of science have stated firmly and categorically that QM, though successful by and large, is incomplete. There are classical and quantum reality models including those based on consciousness. Relativistic quantum theoretical approaches to clearly understand the ultimate nature of matter as well as radiation have still much to accomplish in order to qualify for a final theory of everything (TOE). Mathematical models of better, suitable character as also strength are needed to achieve satisfactory explanation of natural processes and phenomena. We, in this paper, discuss some of these matters with certain apt illustrations as well.
Quantum Oscillator in the Thermostat as a Model in the Thermodynamics of Open Quantum Systems
Sukhanov, Aleksander
2005-01-01
The quantum oscillator in the thermostat is considered as the model of an open quantum system. Our analysis will be heavily founded on the use of the Schroedinger generalized uncertainties relations (SUR). Our first aim is to demonstrate that for the quantum oscillator the state of thermal equilibrium belongs to the correlated coherent states (CCS), which imply the saturation of SUR at any temperature. The obtained results open the perspective for the search of some statistical theory, which ...
An information theory model for dissipation in open quantum systems
Rogers, David M.
2017-08-01
This work presents a general model for open quantum systems using an information game along the lines of Jaynes’ original work. It is shown how an energy based reweighting of propagators provides a novel moment generating function at each time point in the process. Derivatives of the generating function give moments of the time derivatives of observables. Aside from the mathematically helpful properties, the ansatz reproduces key physics of stochastic quantum processes. At high temperature, the average density matrix follows the Caldeira-Leggett equation. Its associated Langevin equation clearly demonstrates the emergence of dissipation and decoherence time scales, as well as an additional diffusion due to quantum confinement. A consistent interpretation of these results is that decoherence and wavefunction collapse during measurement are directly related to the degree of environmental noise, and thus occur because of subjective uncertainty of an observer.
Modelling of multidimensional quantum systems by the numerical functional integration
International Nuclear Information System (INIS)
Lobanov, Yu.Yu.; Zhidkov, E.P.
1990-01-01
The employment of the numerical functional integration for the description of multidimensional systems in quantum and statistical physics is considered. For the multiple functional integrals with respect to Gaussian measures in the full separable metric spaces the new approximation formulas exact on a class of polynomial functionals of a given summary degree are constructed. The use of the formulas is demonstrated on example of computation of the Green function and the ground state energy in multidimensional Calogero model. 15 refs.; 2 tabs
Model for calorimetric measurements in an open quantum system
Donvil, Brecht; Muratore-Ginanneschi, Paolo; Pekola, Jukka P.; Schwieger, Kay
2018-05-01
We investigate the experimental setup proposed in New J. Phys. 15, 115006 (2013), 10.1088/1367-2630/15/11/115006 for calorimetric measurements of thermodynamic indicators in an open quantum system. As a theoretical model we consider a periodically driven qubit coupled with a large yet finite electron reservoir, the calorimeter. The calorimeter is initially at equilibrium with an infinite phonon bath. As time elapses, the temperature of the calorimeter varies in consequence of energy exchanges with the qubit and the phonon bath. We show how under weak-coupling assumptions, the evolution of the qubit-calorimeter system can be described by a generalized quantum jump process including as dynamical variable the temperature of the calorimeter. We study the jump process by numeric and analytic methods. Asymptotically with the duration of the drive, the qubit-calorimeter attains a steady state. In this same limit, we use multiscale perturbation theory to derive a Fokker-Planck equation governing the calorimeter temperature distribution. We inquire the properties of the temperature probability distribution close and at the steady state. In particular, we predict the behavior of measurable statistical indicators versus the qubit-calorimeter coupling constant.
Open-System Quantum Annealing in Mean-Field Models with Exponential Degeneracy*
Directory of Open Access Journals (Sweden)
Kostyantyn Kechedzhi
2016-05-01
Full Text Available Real-life quantum computers are inevitably affected by intrinsic noise resulting in dissipative nonunitary dynamics realized by these devices. We consider an open-system quantum annealing algorithm optimized for such a realistic analog quantum device which takes advantage of noise-induced thermalization and relies on incoherent quantum tunneling at finite temperature. We theoretically analyze the performance of this algorithm considering a p-spin model that allows for a mean-field quasiclassical solution and, at the same time, demonstrates the first-order phase transition and exponential degeneracy of states, typical characteristics of spin glasses. We demonstrate that finite-temperature effects introduced by the noise are particularly important for the dynamics in the presence of the exponential degeneracy of metastable states. We determine the optimal regime of the open-system quantum annealing algorithm for this model and find that it can outperform simulated annealing in a range of parameters. Large-scale multiqubit quantum tunneling is instrumental for the quantum speedup in this model, which is possible because of the unusual nonmonotonous temperature dependence of the quantum-tunneling action in this model, where the most efficient transition rate corresponds to zero temperature. This model calculation is the first analytically tractable example where open-system quantum annealing algorithm outperforms simulated annealing, which can, in principle, be realized using an analog quantum computer.
Quantum Link Models and Quantum Simulation of Gauge Theories
International Nuclear Information System (INIS)
Wiese, U.J.
2015-01-01
This lecture is about Quantum Link Models and Quantum Simulation of Gauge Theories. The lecture consists out of 4 parts. The first part gives a brief history of Computing and Pioneers of Quantum Computing and Quantum Simulations of Quantum Spin Systems are introduced. The 2nd lecture is about High-Temperature Superconductors versus QCD, Wilson’s Lattice QCD and Abelian Quantum Link Models. The 3rd lecture deals with Quantum Simulators for Abelian Lattice Gauge Theories and Non-Abelian Quantum Link Models. The last part of the lecture discusses Quantum Simulators mimicking ‘Nuclear’ physics and the continuum limit of D-Theorie models. (nowak)
Open quantum system model of the one-dimensional Burgers equation with tunable shear viscosity
International Nuclear Information System (INIS)
Yepez, Jeffrey
2006-01-01
Presented is an analysis of an open quantum model of the time-dependent evolution of a flow field governed by the nonlinear Burgers equation in one spatial dimension. The quantum model is a system of qubits where there exists a minimum time interval in the time-dependent dynamics. Each temporally discrete unitary quantum-mechanical evolution is followed by state reduction of the quantum state. The mesoscopic behavior of this quantum model is described by a quantum Boltzmann equation with a naturally emergent entropy function and H theorem and the model obeys the detailed balance principle. The macroscopic-scale effective field theory for the quantum model is derived using a perturbative Chapman-Enskog expansion applied to the linearized quantum Boltzmann equation. The entropy function is consistent with the quantum-mechanical collision process and a Fermi-Dirac single-particle distribution function for the occupation probabilities of the qubit's energy eigenstates. Comparisons are presented between analytical predictions and numerical predictions and the agreement is excellent, indicating that the nonlinear Burgers equation with a tunable shear viscosity is the operative macroscopic scale effective field theory
Exact results for quantum chaotic systems and one-dimensional fermions from matrix models
International Nuclear Information System (INIS)
Simons, B.D.; Lee, P.A.; Altshuler, B.L.
1993-01-01
We demonstrate a striking connection between the universal parametric correlations of the spectra of quantum chaotic systems and a class of integrable quantum hamiltonians. We begin by deriving a non-perturbative expression for the universal m-point correlation function of the spectra of random matrix ensembles in terms of a non-linear supermatrix σ-model. These results are shown to coincide with those from previous studies of weakly disordered metallic systems. We then introduce a continuous matrix model which describes the quantum mechanics of the Sutherland hamiltonian describing particles interacting through an inverse-square pairwise potential. We demonstrate that a field theoretic approach can be employed to determine exact analytical expressions for correlations of the quantum hamiltonian. The results, which are expressed in terms of a non-linear σ-model, are shown to coincide with those for analogous correlation functions of random matrix ensembles after an appropriate change of variables. We also discuss possible generalizations of the matrix model to higher dimensions. These results reveal a common mathematical structure which underlies branches of theoretical physics ranging from continuous matrix models to strongly interacting quantum hamiltonians, and universalities in the spectra of quantum chaotic systems. (orig.)
International Nuclear Information System (INIS)
Augusiak, R; Cucchietti, F M; Lewenstein, M; Haake, F
2010-01-01
In this paper, we introduce a quantum generalization of classical kinetic Ising models (KIM), described by a certain class of quantum many-body master equations. Similarly to KIMs with detailed balance that are equivalent to certain Hamiltonian systems, our models reduce to a set of Hamiltonian systems determining the dynamics of the elements of the many-body density matrix. The ground states of these Hamiltonians are well described by the matrix product, or pair entangled projected states. We discuss critical properties of such Hamiltonians, as well as entanglement properties of their low-energy states.
Modelling Systems of Classical/Quantum Identical Particles by Focusing on Algorithms
Guastella, Ivan; Fazio, Claudio; Sperandeo-Mineo, Rosa Maria
2012-01-01
A procedure modelling ideal classical and quantum gases is discussed. The proposed approach is mainly based on the idea that modelling and algorithm analysis can provide a deeper understanding of particularly complex physical systems. Appropriate representations and physical models able to mimic possible pseudo-mechanisms of functioning and having…
Digital Quantum Simulation of Spin Models with Circuit Quantum Electrodynamics
Salathé, Y.; Mondal, M.; Oppliger, M.; Heinsoo, J.; Kurpiers, P.; Potočnik, A.; Mezzacapo, Antonio; Las Heras García, Urtzi; Lamata Manuel, Lucas; Solano Villanueva, Enrique Leónidas; Filipp, S.; Wallraff, A.
2015-01-01
Systems of interacting quantum spins show a rich spectrum of quantum phases and display interesting many-body dynamics. Computing characteristics of even small systems on conventional computers poses significant challenges. A quantum simulator has the potential to outperform standard computers in calculating the evolution of complex quantum systems. Here, we perform a digital quantum simulation of the paradigmatic Heisenberg and Ising interacting spin models using a two transmon-qubit circuit...
Dynamics of symmetry breaking during quantum real-time evolution in a minimal model system.
Heyl, Markus; Vojta, Matthias
2014-10-31
One necessary criterion for the thermalization of a nonequilibrium quantum many-particle system is ergodicity. It is, however, not sufficient in cases where the asymptotic long-time state lies in a symmetry-broken phase but the initial state of nonequilibrium time evolution is fully symmetric with respect to this symmetry. In equilibrium, one particular symmetry-broken state is chosen as a result of an infinitesimal symmetry-breaking perturbation. From a dynamical point of view the question is: Can such an infinitesimal perturbation be sufficient for the system to establish a nonvanishing order during quantum real-time evolution? We study this question analytically for a minimal model system that can be associated with symmetry breaking, the ferromagnetic Kondo model. We show that after a quantum quench from a completely symmetric state the system is able to break its symmetry dynamically and discuss how these features can be observed experimentally.
Quantum correlations in multipartite quantum systems
Jafarizadeh, M. A.; Heshmati, A.; Karimi, N.; Yahyavi, M.
2018-03-01
Quantum entanglement is the most famous type of quantum correlation between elements of a quantum system that has a basic role in quantum communication protocols like quantum cryptography, teleportation and Bell inequality detection. However, it has already been shown that various applications in quantum information theory do not require entanglement. Quantum discord as a new kind of quantum correlations beyond entanglement, is the most popular candidate for general quantum correlations. In this paper, first we find the entanglement witness in a particular multipartite quantum system which consists of a N-partite system in 2 n -dimensional space. Then we give an exact analytical formula for the quantum discord of this system. At the end of the paper, we investigate the additivity relation of the quantum correlation and show that this relation is satisfied for a N-partite system with 2 n -dimensional space.
Quantum Brownian motion in a bath of parametric oscillators: A model for system-field interactions
International Nuclear Information System (INIS)
Hu, B.L.; Matacz, A.
1994-01-01
The quantum Brownian motion paradigm provides a unified framework where one can see the interconnection of some basic quantum statistical processes such as decoherence, dissipation, particle creation, noise, and fluctuation. The present paper continues the investigation begun in earlier papers on the quantum Brownian motion in a general environment via the influence functional formalism. Here, the Brownian particle is coupled linearly to a bath of the most general time-dependent quadratic oscillators. This bath of parametric oscillators minics a scalar field, while the motion of the Brownian particle modeled by a single oscillator could be used to depict the behavior of a particle detector, a quantum field mode, or the scale factor of the Universe. An important result of this paper is the derivation of the influence functional encompassing the noise and dissipation kernels in terms of the Bogolubov coefficients, thus setting the stage for the influence functional formalism treatment of problems in quantum field theory in curved spacetime. This method enables one to trace the source of statistical processes such as decoherence and dissipation to vacuum fluctuations and particle creation, and in turn impart a statistical mechanical interpretation of quantum field processes. With this result we discuss the statistical mechanical origin of quantum noise and thermal radiance from black holes and from uniformly accelerated observers in Minkowski space as well as from the de Sitter universe discovered by Hawking, Unruh, and Gibbons and Hawking. We also derive the exact evolution operator and master equation for the reduced density matrix of the system interacting with a parametric oscillator bath in an initial squeezed thermal state. These results are useful for decoherence and back reaction studies for systems and processes of interest in semiclassical cosmology and gravity. Our model and results are also expected to be useful for related problems in quantum optics
A System-Level Throughput Model for Quantum Key Distribution
2015-09-17
discrete logarithms in a finite field [35]. Arguably the most popular asymmetric encryption scheme is the RSA algorithm, published a year later in...Theory, vol. 22, no. 6, pp. 644-654, 1976. [36] G. Singh and S. Supriya, ’A Study of Encryption Algorithms ( RSA , DES, 3DES and AES) for Information...xv Dictionary QKD = Quantum Key Distribution OTP = One-Time Pad cryptographic algorithm DES = Data Encryption Standard 3DES
Quantum chromodynamic quark model study of hadron and few hadron systems
International Nuclear Information System (INIS)
Ji, Chueng-Ryong.
1990-10-01
This report details research progress and results obtained during the five month period July 1, 1990 to November 30, 1990. The research project, entitled ''Quantum Chromodynamic Quark Model Study of Hadron and Few Hadron Systems,'' is supported by grant FG05-90ER40589 between North Carolina State University and the United States Department of Energy. This is a research program addressing theoretical investigations of hadron structure and reactions using quantum chromodynamic quark models. The new, significant research results are briefly summarized in the following sections
Collision models in quantum optics
Ciccarello, Francesco
2017-12-01
Quantum collision models (CMs) provide advantageous case studies for investigating major issues in open quantum systems theory, and especially quantum non-Markovianity. After reviewing their general definition and distinctive features, we illustrate the emergence of a CM in a familiar quantum optics scenario. This task is carried out by highlighting the close connection between the well-known input-output formalism and CMs. Within this quantum optics framework, usual assumptions in the CMs' literature - such as considering a bath of noninteracting yet initially correlated ancillas - have a clear physical origin.
Composite quantum collision models
Lorenzo, Salvatore; Ciccarello, Francesco; Palma, G. Massimo
2017-09-01
A collision model (CM) is a framework to describe open quantum dynamics. In its memoryless version, it models the reservoir R as consisting of a large collection of elementary ancillas: the dynamics of the open system S results from successive collisions of S with the ancillas of R . Here, we present a general formulation of memoryless composite CMs, where S is partitioned into the very open system under study S coupled to one or more auxiliary systems {Si} . Their composite dynamics occurs through internal S -{Si} collisions interspersed with external ones involving {Si} and the reservoir R . We show that important known instances of quantum non-Markovian dynamics of S —such as the emission of an atom into a reservoir featuring a Lorentzian, or multi-Lorentzian, spectral density or a qubit subject to random telegraph noise—can be mapped on to such memoryless composite CMs.
Quantum Effects in Biological Systems
2016-01-01
Since the last decade the study of quantum mechanical phenomena in biological systems has become a vibrant field of research. Initially sparked by evidence of quantum effects in energy transport that is instrumental for photosynthesis, quantum biology asks the question of how methods and models from quantum theory can help us to understand fundamental mechanisms in living organisms. This approach entails a paradigm change challenging the related disciplines: The successful framework of quantum theory is taken out of its low-temperature, microscopic regimes and applied to hot and dense macroscopic environments, thereby extending the toolbox of biology and biochemistry at the same time. The Quantum Effects in Biological Systems conference is a platform for researchers from biology, chemistry and physics to present and discuss the latest developments in the field of quantum biology. After meetings in Lisbon (2009), Harvard (2010), Ulm (2011), Berkeley (2012), Vienna (2013), Singapore (2014) and Florence (2015),...
Modeling a space-based quantum link that includes an adaptive optics system
Duchane, Alexander W.; Hodson, Douglas D.; Mailloux, Logan O.
2017-10-01
Quantum Key Distribution uses optical pulses to generate shared random bit strings between two locations. If a high percentage of the optical pulses are comprised of single photons, then the statistical nature of light and information theory can be used to generate secure shared random bit strings which can then be converted to keys for encryption systems. When these keys are incorporated along with symmetric encryption techniques such as a one-time pad, then this method of key generation and encryption is resistant to future advances in quantum computing which will significantly degrade the effectiveness of current asymmetric key sharing techniques. This research first reviews the transition of Quantum Key Distribution free-space experiments from the laboratory environment to field experiments, and finally, ongoing space experiments. Next, a propagation model for an optical pulse from low-earth orbit to ground and the effects of turbulence on the transmitted optical pulse is described. An Adaptive Optics system is modeled to correct for the aberrations caused by the atmosphere. The long-term point spread function of the completed low-earth orbit to ground optical system is explored in the results section. Finally, the impact of this optical system and its point spread function on an overall quantum key distribution system as well as the future work necessary to show this impact is described.
A Nonlinear Schrödinger Model for Many-Particle Quantum Systems
Directory of Open Access Journals (Sweden)
Qiang Zhang
2012-01-01
Full Text Available Considering both effects of the s-wave scattering and the atom-atom interaction rather than only the effect of the s-wave scattering, we establish a nonlinear Schrödinger model for many-particle quantum systems and we prove the global existence of a solution to the model and obtain the expression of the solution. Furthermore, we show that the Hamilton energy and the total particle number both are conservative quantities.
Quantum coherence and correlations in quantum system
Xi, Zhengjun; Li, Yongming; Fan, Heng
2015-01-01
Criteria of measure quantifying quantum coherence, a unique property of quantum system, are proposed recently. In this paper, we first give an uncertainty-like expression relating the coherence and the entropy of quantum system. This finding allows us to discuss the relations between the entanglement and the coherence. Further, we discuss in detail the relations among the coherence, the discord and the deficit in the bipartite quantum system. We show that, the one-way quantum deficit is equal to the sum between quantum discord and the relative entropy of coherence of measured subsystem. PMID:26094795
Quantum energy teleportation in a quantum Hall system
Energy Technology Data Exchange (ETDEWEB)
Yusa, Go; Izumida, Wataru; Hotta, Masahiro [Department of Physics, Tohoku University, Sendai 980-8578 (Japan)
2011-09-15
We propose an experimental method for a quantum protocol termed quantum energy teleportation (QET), which allows energy transportation to a remote location without physical carriers. Using a quantum Hall system as a realistic model, we discuss the physical significance of QET and estimate the order of energy gain using reasonable experimental parameters.
Taherkhani, Mohammand Amin; Navi, Keivan; Van Meter, Rodney
2018-01-01
Quantum aided Byzantine agreement is an important distributed quantum algorithm with unique features in comparison to classical deterministic and randomized algorithms, requiring only a constant expected number of rounds in addition to giving a higher level of security. In this paper, we analyze details of the high level multi-party algorithm, and propose elements of the design for the quantum architecture and circuits required at each node to run the algorithm on a quantum repeater network (QRN). Our optimization techniques have reduced the quantum circuit depth by 44% and the number of qubits in each node by 20% for a minimum five-node setup compared to the design based on the standard arithmetic circuits. These improvements lead to a quantum system architecture with 160 qubits per node, space-time product (an estimate of the required fidelity) {KQ}≈ 1.3× {10}5 per node and error threshold 1.1× {10}-6 for the total nodes in the network. The evaluation of the designed architecture shows that to execute the algorithm once on the minimum setup, we need to successfully distribute a total of 648 Bell pairs across the network, spread evenly between all pairs of nodes. This framework can be considered a starting point for establishing a road-map for light-weight demonstration of a distributed quantum application on QRNs.
Quantum Dot Systems: a versatile platform for quantum simulations
International Nuclear Information System (INIS)
Barthelemy, Pierre; Vandersypen, Lieven M.K.
2013-01-01
Quantum mechanics often results in extremely complex phenomena, especially when the quantum system under consideration is composed of many interacting particles. The states of these many-body systems live in a space so large that classical numerical calculations cannot compute them. Quantum simulations can be used to overcome this problem: complex quantum problems can be solved by studying experimentally an artificial quantum system operated to simulate the desired hamiltonian. Quantum dot systems have shown to be widely tunable quantum systems, that can be efficiently controlled electrically. This tunability and the versatility of their design makes them very promising quantum simulators. This paper reviews the progress towards digital quantum simulations with individually controlled quantum dots, as well as the analog quantum simulations that have been performed with these systems. The possibility to use large arrays of quantum dots to simulate the low-temperature Hubbard model is also discussed. The main issues along that path are presented and new ideas to overcome them are proposed. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Quantum dynamics of hydrogen atoms on graphene. I. System-bath modeling.
Bonfanti, Matteo; Jackson, Bret; Hughes, Keith H; Burghardt, Irene; Martinazzo, Rocco
2015-09-28
An accurate system-bath model to investigate the quantum dynamics of hydrogen atoms chemisorbed on graphene is presented. The system comprises a hydrogen atom and the carbon atom from graphene that forms the covalent bond, and it is described by a previously developed 4D potential energy surface based on density functional theory ab initio data. The bath describes the rest of the carbon lattice and is obtained from an empirical force field through inversion of a classical equilibrium correlation function describing the hydrogen motion. By construction, model building easily accommodates improvements coming from the use of higher level electronic structure theory for the system. Further, it is well suited to a determination of the system-environment coupling by means of ab initio molecular dynamics. This paper details the system-bath modeling and shows its application to the quantum dynamics of vibrational relaxation of a chemisorbed hydrogen atom, which is here investigated at T = 0 K with the help of the multi-configuration time-dependent Hartree method. Paper II deals with the sticking dynamics.
Quantum dynamics of hydrogen atoms on graphene. I. System-bath modeling
Energy Technology Data Exchange (ETDEWEB)
Bonfanti, Matteo, E-mail: matteo.bonfanti@unimi.it [Dipartimento di Chimica, Università degli Studi di Milano, v. Golgi 19, 20133 Milano (Italy); Jackson, Bret [Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003 (United States); Hughes, Keith H. [School of Chemistry, Bangor University, Bangor, Gwynedd LL57 2UW (United Kingdom); Burghardt, Irene [Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main (Germany); Martinazzo, Rocco, E-mail: rocco.martinazzo@unimi.it [Dipartimento di Chimica, Università degli Studi di Milano, v. Golgi 19, 20133 Milano (Italy); Istituto di Scienze e Tecnologie Molecolari, Consiglio Nazionale delle Richerche, v. Golgi 19, 20133 Milano (Italy)
2015-09-28
An accurate system-bath model to investigate the quantum dynamics of hydrogen atoms chemisorbed on graphene is presented. The system comprises a hydrogen atom and the carbon atom from graphene that forms the covalent bond, and it is described by a previously developed 4D potential energy surface based on density functional theory ab initio data. The bath describes the rest of the carbon lattice and is obtained from an empirical force field through inversion of a classical equilibrium correlation function describing the hydrogen motion. By construction, model building easily accommodates improvements coming from the use of higher level electronic structure theory for the system. Further, it is well suited to a determination of the system-environment coupling by means of ab initio molecular dynamics. This paper details the system-bath modeling and shows its application to the quantum dynamics of vibrational relaxation of a chemisorbed hydrogen atom, which is here investigated at T = 0 K with the help of the multi-configuration time-dependent Hartree method. Paper II deals with the sticking dynamics.
Quantum fluctuations in the dressed vacuum of a bosonic model system
International Nuclear Information System (INIS)
Wagner, R E; Su, Q; Grobe, R; Acosta, S; Glasgow, S A
2012-01-01
Quantum fluctuations and the polarizability of the vacuum state are sometimes interpreted in terms of virtual particles that come into and out of existence for a limited amount of time. We study the spatial and temporal properties of these auxiliary particles on a numerical space-time grid for a one-dimensional model system. This approach permits us to compute the average distance between virtual particles and their lifetime. The creation dynamics of the virtual particles from the bare vacuum state is also examined. (paper)
Digital Quantum Simulation of Spin Models with Circuit Quantum Electrodynamics
Directory of Open Access Journals (Sweden)
Y. Salathé
2015-06-01
Full Text Available Systems of interacting quantum spins show a rich spectrum of quantum phases and display interesting many-body dynamics. Computing characteristics of even small systems on conventional computers poses significant challenges. A quantum simulator has the potential to outperform standard computers in calculating the evolution of complex quantum systems. Here, we perform a digital quantum simulation of the paradigmatic Heisenberg and Ising interacting spin models using a two transmon-qubit circuit quantum electrodynamics setup. We make use of the exchange interaction naturally present in the simulator to construct a digital decomposition of the model-specific evolution and extract its full dynamics. This approach is universal and efficient, employing only resources that are polynomial in the number of spins, and indicates a path towards the controlled simulation of general spin dynamics in superconducting qubit platforms.
Quantum secure communication models comparison
Directory of Open Access Journals (Sweden)
Georgi Petrov Bebrov
2017-12-01
Full Text Available The paper concerns the quantum cryptography, more specifically, the quantum secure communication type of schemes. The main focus here is on making a comparison between the distinct secure quantum communication models – quantum secure direct communication and deterministic secure quantum communication, in terms of three parameters: resource efficiency, eavesdropping check efficiency, and security (degree of preserving the confidentiality.
Weiss, Ulrich
2008-01-01
Major advances in the quantum theory of macroscopic systems, in combination with stunning experimental achievements, have brightened the field and brought it to the attention of the general community in natural sciences. Today, working knowledge of dissipative quantum mechanics is an essential tool for many physicists. This book - originally published in 1990 and republished in 1999 as an enlarged second edition - delves much deeper than ever before into the fundamental concepts, methods, and applications of quantum dissipative systems, including the most recent developments. In this third edi
Finite and profinite quantum systems
Vourdas, Apostolos
2017-01-01
This monograph provides an introduction to finite quantum systems, a field at the interface between quantum information and number theory, with applications in quantum computation and condensed matter physics. The first major part of this monograph studies the so-called `qubits' and `qudits', systems with periodic finite lattice as position space. It also discusses the so-called mutually unbiased bases, which have applications in quantum information and quantum cryptography. Quantum logic and its applications to quantum gates is also studied. The second part studies finite quantum systems, where the position takes values in a Galois field. This combines quantum mechanics with Galois theory. The third part extends the discussion to quantum systems with variables in profinite groups, considering the limit where the dimension of the system becomes very large. It uses the concepts of inverse and direct limit and studies quantum mechanics on p-adic numbers. Applications of the formalism include quantum optics and ...
International Nuclear Information System (INIS)
Abyaneh, Morteza; Fleischmann, Martin; Del Giudice, Emilio; Vitiello, Giuseppe
2006-01-01
A question we are asked repeatedly is: 'what are the causes of the opposition to your belief in the reality of 'Cold Fusion?'. This question is normally asked in the context of the statement that Quantum Mechanics shows that this phenomenon is impossible (a view that we share). Our answer is always based on the statement 'but what about the modelling of such systems in terms of QED?' which is always met by the insistence that Quantum Mechanics shows that Cold Fusion is impossible. We conclude that scientists do not understand QED or, if they have some understanding of this subject, then this must be subject to some major misconceptions. This pointless dialogue (perhaps more correctly described as two monologues conducted in parallel) and the insistence on the primacy of Quantum Mechanics in the modelling of systems in the Natural Sciences is unfortunate because it obscures the outcome of the investigations in the more normal fields of the Natural Sciences (more normal than Cold Fusion). A brief outline of the work which has led to the formulation of the concept of coherence will therefore be given under the aegis of the revolutions in our understanding of the Natural Sciences which has taken place since the latter part of the 19. Century. The main illustration of the way we can demonstrate the applicability of these concepts will be based on the study of nucleation and phase growth. The development of micro-electrode substrates allows us to study the statistics of the formation of the first nucleus; it will be shown that these statistics are strictly in line with concepts developed from QED coherence. We conclude that QED coherence is not just a concept to be confined to sub-atomic physics, cosmology etc. but that it pervades the modelling of the whole of the Natural Sciences including that of 'Cold Fusion'. Some of the major steps which have taken place in the development of this subject area will be illustrated
Quantum lattice model solver HΦ
Kawamura, Mitsuaki; Yoshimi, Kazuyoshi; Misawa, Takahiro; Yamaji, Youhei; Todo, Synge; Kawashima, Naoki
2017-08-01
HΦ [aitch-phi ] is a program package based on the Lanczos-type eigenvalue solution applicable to a broad range of quantum lattice models, i.e., arbitrary quantum lattice models with two-body interactions, including the Heisenberg model, the Kitaev model, the Hubbard model and the Kondo-lattice model. While it works well on PCs and PC-clusters, HΦ also runs efficiently on massively parallel computers, which considerably extends the tractable range of the system size. In addition, unlike most existing packages, HΦ supports finite-temperature calculations through the method of thermal pure quantum (TPQ) states. In this paper, we explain theoretical background and user-interface of HΦ. We also show the benchmark results of HΦ on supercomputers such as the K computer at RIKEN Advanced Institute for Computational Science (AICS) and SGI ICE XA (Sekirei) at the Institute for the Solid State Physics (ISSP).
Quantum Computing in Solid State Systems
Ruggiero, B; Granata, C
2006-01-01
The aim of Quantum Computation in Solid State Systems is to report on recent theoretical and experimental results on the macroscopic quantum coherence of mesoscopic systems, as well as on solid state realization of qubits and quantum gates. Particular attention has been given to coherence effects in Josephson devices. Other solid state systems, including quantum dots, optical, ion, and spin devices which exhibit macroscopic quantum coherence are also discussed. Quantum Computation in Solid State Systems discusses experimental implementation of quantum computing and information processing devices, and in particular observations of quantum behavior in several solid state systems. On the theoretical side, the complementary expertise of the contributors provides models of the various structures in connection with the problem of minimizing decoherence.
Repeated interactions in open quantum systems
Energy Technology Data Exchange (ETDEWEB)
Bruneau, Laurent, E-mail: laurent.bruneau@u-cergy.fr [Laboratoire AGM, Université de Cergy-Pontoise, Site Saint-Martin, BP 222, 95302 Cergy-Pontoise (France); Joye, Alain, E-mail: Alain.Joye@ujf-grenoble.fr [Institut Fourier, UMR 5582, CNRS-Université Grenoble I, BP 74, 38402 Saint-Martin d’Hères (France); Merkli, Marco, E-mail: merkli@mun.ca [Department of Mathematics and Statistics Memorial University of Newfoundland, St. John' s, NL Canada A1C 5S7 (Canada)
2014-07-15
Analyzing the dynamics of open quantum systems has a long history in mathematics and physics. Depending on the system at hand, basic physical phenomena that one would like to explain are, for example, convergence to equilibrium, the dynamics of quantum coherences (decoherence) and quantum correlations (entanglement), or the emergence of heat and particle fluxes in non-equilibrium situations. From the mathematical physics perspective, one of the main challenges is to derive the irreversible dynamics of the open system, starting from a unitary dynamics of the system and its environment. The repeated interactions systems considered in these notes are models of non-equilibrium quantum statistical mechanics. They are relevant in quantum optics, and more generally, serve as a relatively well treatable approximation of a more difficult quantum dynamics. In particular, the repeated interaction models allow to determine the large time (stationary) asymptotics of quantum systems out of equilibrium.
Delgado, Francisco
2017-12-01
Quantum information is an emergent area merging physics, mathematics, computer science and engineering. To reach its technological goals, it is requiring adequate approaches to understand how to combine physical restrictions, computational approaches and technological requirements to get functional universal quantum information processing. This work presents the modeling and the analysis of certain general type of Hamiltonian representing several physical systems used in quantum information and establishing a dynamics reduction in a natural grammar for bipartite processing based on entangled states.
Are Quantum Models for Order Effects Quantum?
Moreira, Catarina; Wichert, Andreas
2017-12-01
The application of principles of Quantum Mechanics in areas outside of physics has been getting increasing attention in the scientific community in an emergent disciplined called Quantum Cognition. These principles have been applied to explain paradoxical situations that cannot be easily explained through classical theory. In quantum probability, events are characterised by a superposition state, which is represented by a state vector in a N-dimensional vector space. The probability of an event is given by the squared magnitude of the projection of this superposition state into the desired subspace. This geometric approach is very useful to explain paradoxical findings that involve order effects, but do we really need quantum principles for models that only involve projections? This work has two main goals. First, it is still not clear in the literature if a quantum projection model has any advantage towards a classical projection. We compared both models and concluded that the Quantum Projection model achieves the same results as its classical counterpart, because the quantum interference effects play no role in the computation of the probabilities. Second, it intends to propose an alternative relativistic interpretation for rotation parameters that are involved in both classical and quantum models. In the end, instead of interpreting these parameters as a similarity measure between questions, we propose that they emerge due to the lack of knowledge concerned with a personal basis state and also due to uncertainties towards the state of world and towards the context of the questions.
Integrable quantum impurity models
International Nuclear Information System (INIS)
Eckle, H.P.
1998-01-01
By modifying some of the local L operators of the algebraic form of the Bethe Ansatz inhomogeneous one dimensional quantum lattice models can be constructed. This fact has recently attracted new attention, the inhomogeneities being interpreted as local impurities. The Hamiltonians of the so constructed one-dimensional quantum models have a nearest neighbour structure except in the vicinity of the local impurities which involve three-site interactions. The pertinent feature of these models is the absence of backscattering at the impurities: the impurities are transparent. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)
International Nuclear Information System (INIS)
Narnhofer, H.; Thirring, W.
1988-01-01
We generalize the classical notion of a K-system to a non-commutative dynamical system by requiring that an invariantly defined memory loss be 100%. We give some examples of quantum K-systems and show that they cannot contain any quasi-periodic subsystem. 13 refs. (Author)
Lozada Aguilar, Miguel Ángel; Khrennikov, Andrei; Oleschko, Klaudia
2018-04-01
As was recently shown by the authors, quantum probability theory can be used for the modelling of the process of decision-making (e.g. probabilistic risk analysis) for macroscopic geophysical structures such as hydrocarbon reservoirs. This approach can be considered as a geophysical realization of Hilbert's programme on axiomatization of statistical models in physics (the famous sixth Hilbert problem). In this conceptual paper, we continue development of this approach to decision-making under uncertainty which is generated by complexity, variability, heterogeneity, anisotropy, as well as the restrictions to accessibility of subsurface structures. The belief state of a geological expert about the potential of exploring a hydrocarbon reservoir is continuously updated by outputs of measurements, and selection of mathematical models and scales of numerical simulation. These outputs can be treated as signals from the information environment E. The dynamics of the belief state can be modelled with the aid of the theory of open quantum systems: a quantum state (representing uncertainty in beliefs) is dynamically modified through coupling with E; stabilization to a steady state determines a decision strategy. In this paper, the process of decision-making about hydrocarbon reservoirs (e.g. `explore or not?'; `open new well or not?'; `contaminated by water or not?'; `double or triple porosity medium?') is modelled by using the Gorini-Kossakowski-Sudarshan-Lindblad equation. In our model, this equation describes the evolution of experts' predictions about a geophysical structure. We proceed with the information approach to quantum theory and the subjective interpretation of quantum probabilities (due to quantum Bayesianism). This article is part of the theme issue `Hilbert's sixth problem'.
Lozada Aguilar, Miguel Ángel; Khrennikov, Andrei; Oleschko, Klaudia
2018-04-28
As was recently shown by the authors, quantum probability theory can be used for the modelling of the process of decision-making (e.g. probabilistic risk analysis) for macroscopic geophysical structures such as hydrocarbon reservoirs. This approach can be considered as a geophysical realization of Hilbert's programme on axiomatization of statistical models in physics (the famous sixth Hilbert problem). In this conceptual paper , we continue development of this approach to decision-making under uncertainty which is generated by complexity, variability, heterogeneity, anisotropy, as well as the restrictions to accessibility of subsurface structures. The belief state of a geological expert about the potential of exploring a hydrocarbon reservoir is continuously updated by outputs of measurements, and selection of mathematical models and scales of numerical simulation. These outputs can be treated as signals from the information environment E The dynamics of the belief state can be modelled with the aid of the theory of open quantum systems: a quantum state (representing uncertainty in beliefs) is dynamically modified through coupling with E ; stabilization to a steady state determines a decision strategy. In this paper, the process of decision-making about hydrocarbon reservoirs (e.g. 'explore or not?'; 'open new well or not?'; 'contaminated by water or not?'; 'double or triple porosity medium?') is modelled by using the Gorini-Kossakowski-Sudarshan-Lindblad equation. In our model, this equation describes the evolution of experts' predictions about a geophysical structure. We proceed with the information approach to quantum theory and the subjective interpretation of quantum probabilities (due to quantum Bayesianism).This article is part of the theme issue 'Hilbert's sixth problem'. © 2018 The Author(s).
Quantum state engineering in hybrid open quantum systems
Joshi, Chaitanya; Larson, Jonas; Spiller, Timothy P.
2015-01-01
We investigate a possibility to generate nonclassical states in light-matter coupled noisy quantum systems, namely, the anisotropic Rabi and Dicke models. In these hybrid quantum systems, a competing influence of coherent internal dynamics and environment-induced dissipation drives the system into nonequilibrium steady states (NESSs). Explicitly, for the anisotropic Rabi model, the steady state is given by an incoherent mixture of two states of opposite parities, but as each parity state disp...
Quantum chromodynamic quark model study of hadron and few hadron systems
International Nuclear Information System (INIS)
Ji, Chueng-Ryong.
1991-05-01
This report details research progress and results obtained during the one year period December 1, 1990 to November 30, 1991. The research project, entitled ''Quantum Chromodynamic Quark Model Study of Hadron and Few Hadron Systems,'' is supported by grant FG05-90ER40589 between North Carolina State University and the United States Department of Energy. In compliance with grant requirements the principal investigator, Professor Chueng-Ryong Ji, has conducted a research program addressing theoretical investigations of hadron structure and reactions using quantum chromodynamic quark models. This principal investigator has devoted 50% of his time during the academic year and 100% of his time in the summer. This percent effort will continue for the remaining period of the grant. The new, significant research results are briefly summarized in the following sections. Recent progress has been reported in the renewal/continuation grant proposal just submitted to the Department of Energy. Finally, full, detailed descriptions of completed work can be found in the project publications which are listed at the end of this progress report
International Nuclear Information System (INIS)
Slavcheva, G.; Hess, O.
2005-01-01
We propose and develop a method for theoretical description of circularly (elliptically) polarized optical pulse resonant coherent interactions with two-level atoms. The method is based on the time-evolution equations of a two-level quantum system in the presence of a time-dependent dipole perturbation for electric dipole transitions between states with total angular-momentum projection difference (ΔJ z =±1) excited by a circularly polarized electromagnetic field [Feynman et al., J. Appl. Phys. 28, 49 (1957)]. The adopted real-vector representation approach allows for coupling with the vectorial Maxwell's equations for the optical wave propagation and thus the resulting Maxwell pseudospin equations can be numerically solved in the time domain without any approximations. The model permits a more exact study of the ultrafast coherent pulse propagation effects taking into account the vector nature of the electromagnetic field and hence the polarization state of the optical excitation. We demonstrate self-induced transparency effects and formation of polarized solitons. The model represents a qualitative extension of the well-known optical Maxwell-Bloch equations valid for linearly polarized light and a tool for studying coherent quantum control mechanisms
Quantum state engineering in hybrid open quantum systems
Joshi, Chaitanya; Larson, Jonas; Spiller, Timothy P.
2016-04-01
We investigate a possibility to generate nonclassical states in light-matter coupled noisy quantum systems, namely, the anisotropic Rabi and Dicke models. In these hybrid quantum systems, a competing influence of coherent internal dynamics and environment-induced dissipation drives the system into nonequilibrium steady states (NESSs). Explicitly, for the anisotropic Rabi model, the steady state is given by an incoherent mixture of two states of opposite parities, but as each parity state displays light-matter entanglement, we also find that the full state is entangled. Furthermore, as a natural extension of the anisotropic Rabi model to an infinite spin subsystem, we next explored the NESS of the anisotropic Dicke model. The NESS of this linearized Dicke model is also an inseparable state of light and matter. With an aim to enrich the dynamics beyond the sustainable entanglement found for the NESS of these hybrid quantum systems, we also propose to combine an all-optical feedback strategy for quantum state protection and for establishing quantum control in these systems. Our present work further elucidates the relevance of such hybrid open quantum systems for potential applications in quantum architectures.
Hybrid quantum-classical modeling of quantum dot devices
Kantner, Markus; Mittnenzweig, Markus; Koprucki, Thomas
2017-11-01
The design of electrically driven quantum dot devices for quantum optical applications asks for modeling approaches combining classical device physics with quantum mechanics. We connect the well-established fields of semiclassical semiconductor transport theory and the theory of open quantum systems to meet this requirement. By coupling the van Roosbroeck system with a quantum master equation in Lindblad form, we introduce a new hybrid quantum-classical modeling approach, which provides a comprehensive description of quantum dot devices on multiple scales: it enables the calculation of quantum optical figures of merit and the spatially resolved simulation of the current flow in realistic semiconductor device geometries in a unified way. We construct the interface between both theories in such a way, that the resulting hybrid system obeys the fundamental axioms of (non)equilibrium thermodynamics. We show that our approach guarantees the conservation of charge, consistency with the thermodynamic equilibrium and the second law of thermodynamics. The feasibility of the approach is demonstrated by numerical simulations of an electrically driven single-photon source based on a single quantum dot in the stationary and transient operation regime.
Quantum Cybernetics and Complex Quantum Systems Science - A Quantum Connectionist Exploration
Gonçalves, Carlos Pedro
2014-01-01
Quantum cybernetics and its connections to complex quantum systems science is addressed from the perspective of complex quantum computing systems. In this way, the notion of an autonomous quantum computing system is introduced in regards to quantum artificial intelligence, and applied to quantum artificial neural networks, considered as autonomous quantum computing systems, which leads to a quantum connectionist framework within quantum cybernetics for complex quantum computing systems. Sever...
Energy Technology Data Exchange (ETDEWEB)
Micheli, Fiorenza de [Centro de Estudios Cientificos, Arturo Prat 514, Valdivia (Chile); Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso (Chile); Zanelli, Jorge [Centro de Estudios Cientificos, Arturo Prat 514, Valdivia (Chile); Universidad Andres Bello, Av. Republica 440, Santiago (Chile)
2012-10-15
A degenerate dynamical system is characterized by a symplectic structure whose rank is not constant throughout phase space. Its phase space is divided into causally disconnected, nonoverlapping regions in each of which the rank of the symplectic matrix is constant, and there are no classical orbits connecting two different regions. Here the question of whether this classical disconnectedness survives quantization is addressed. Our conclusion is that in irreducible degenerate systems-in which the degeneracy cannot be eliminated by redefining variables in the action-the disconnectedness is maintained in the quantum theory: there is no quantum tunnelling across degeneracy surfaces. This shows that the degeneracy surfaces are boundaries separating distinct physical systems, not only classically, but in the quantum realm as well. The relevance of this feature for gravitation and Chern-Simons theories in higher dimensions cannot be overstated.
International Nuclear Information System (INIS)
Vourdas, A
2005-01-01
A finite quantum system in which the position and momentum take values in the Galois field GF(p l ) is constructed from a smaller quantum system in which the position and momentum take values in Z p , using field extension. The Galois trace is used in the definition of the Fourier transform. The Heisenberg-Weyl group of displacements and the Sp(2, GF(p l )) group of symplectic transformations are studied. A class of transformations inspired by the Frobenius maps in Galois fields is introduced. The relationship of this 'Galois quantum system' with its subsystems in which the position and momentum take values in subfields of GF(p l ) is discussed
Quantum-information processing in disordered and complex quantum systems
International Nuclear Information System (INIS)
Sen, Aditi; Sen, Ujjwal; Ahufinger, Veronica; Briegel, Hans J.; Sanpera, Anna; Lewenstein, Maciej
2006-01-01
We study quantum information processing in complex disordered many body systems that can be implemented by using lattices of ultracold atomic gases and trapped ions. We demonstrate, first in the short range case, the generation of entanglement and the local realization of quantum gates in a disordered magnetic model describing a quantum spin glass. We show that in this case it is possible to achieve fidelities of quantum gates higher than in the classical case. Complex systems with long range interactions, such as ions chains or dipolar atomic gases, can be used to model neural network Hamiltonians. For such systems, where both long range interactions and disorder appear, it is possible to generate long range bipartite entanglement. We provide an efficient analytical method to calculate the time evolution of a given initial state, which in turn allows us to calculate its quantum correlations
The Schroedinger-Newton equation as model of self-gravitating quantum systems
International Nuclear Information System (INIS)
Grossardt, Andre
2013-01-01
The Schroedinger-Newton equation (SN equation) describes a quantummechanical one-particle-system with gravitational self-interaction and might play a role answering the question if gravity must be quantised. As non-relativistic limit of semi-classical gravity, it provides testable predictions of the effects that classical gravity has on genuinely quantum mechanical systems in the mass regime between a few thousand proton masses and the Planck mass, which is experimentally unexplored. In this thesis I subsume the mathematical properties of the SN equation and justify it as a physical model. I will give a short outline of the controversial debate around semi-classical gravity as a fundamental theory, along with the idea of the SN equation as a model of quantum state reduction. Subsequently, I will respond to frequent objections against nonlinear Schrodinger equations. I will show how the SN equation can be obtained from Einstein's General Relativity coupled to either a KleinGordon or a Dirac equation, in the same sense as the linear Schroedinger equation can be derived in flat Minkowski space-time. The equation is, to this effect, a non-relativistic approximation of the semi-classical Einstein equations. Additionally, I will discuss, first by means of analytic estimations and later numerically, in which parameter range effects of gravitational selfinteraction - e.g. in molecular-interferometry experiments - should be expected. Besides the one-particle SN equation I will provide justification for a modified equation describing the centre-of-mass wave-function of a many-particle system. Furthermore, for this modified equation, I will examine, numerically, the consequences for experiments. Although one arrives at the conclusion that no effects of the SN equation can be expected for masses up to six or seven orders of magnitude above those considered in contemporary molecular interferometry experiments, tests of the equation, for example in satellite experiments, seem
Scheme of thinking quantum systems
International Nuclear Information System (INIS)
Yukalov, V I; Sornette, D
2009-01-01
A general approach describing quantum decision procedures is developed. The approach can be applied to quantum information processing, quantum computing, creation of artificial quantum intelligence, as well as to analyzing decision processes of human decision makers. Our basic point is to consider an active quantum system possessing its own strategic state. Processing information by such a system is analogous to the cognitive processes associated to decision making by humans. The algebra of probability operators, associated with the possible options available to the decision maker, plays the role of the algebra of observables in quantum theory of measurements. A scheme is advanced for a practical realization of decision procedures by thinking quantum systems. Such thinking quantum systems can be realized by using spin lattices, systems of magnetic molecules, cold atoms trapped in optical lattices, ensembles of quantum dots, or multilevel atomic systems interacting with electromagnetic field
A model of quantum communication device for quantum hashing
International Nuclear Information System (INIS)
Vasiliev, A
2016-01-01
In this paper we consider a model of quantum communications between classical computers aided with quantum processors, connected by a classical and a quantum channel. This type of communications implying both classical and quantum messages with moderate use of quantum processing is implicitly used in many quantum protocols, such as quantum key distribution or quantum digital signature. We show that using the model of a quantum processor on multiatomic ensembles in the common QED cavity we can speed up quantum hashing, which can be the basis of quantum digital signature and other communication protocols. (paper)
Integrable models in classical and quantum mechanics
International Nuclear Information System (INIS)
Jurco, B.
1991-01-01
Integrable systems are investigated, especially the rational and trigonometric Gaudin models. The Gaudin models are diagonalized for the case of classical Lie algebras. Their relation to the other integrable models and to the quantum inverse scattering method is investigated. Applications in quantum optics and plasma physics are discussed. (author). 94 refs
Opinion dynamics model based on quantum formalism
Energy Technology Data Exchange (ETDEWEB)
Artawan, I. Nengah, E-mail: nengahartawan@gmail.com [Theoretical Physics Division, Department of Physics, Udayana University (Indonesia); Trisnawati, N. L. P., E-mail: nlptrisnawati@gmail.com [Biophysics, Department of Physics, Udayana University (Indonesia)
2016-03-11
Opinion dynamics model based on quantum formalism is proposed. The core of the quantum formalism is on the half spin dynamics system. In this research the implicit time evolution operators are derived. The analogy between the model with Deffuant dan Sznajd models is discussed.
A model of epigenetic evolution based on theory of open quantum systems.
Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro
2013-12-01
We present a very general model of epigenetic evolution unifying (neo-)Darwinian and (neo-)Lamarckian viewpoints. The evolution is represented in the form of adaptive dynamics given by the quantum(-like) master equation. This equation describes development of the information state of epigenome under the pressure of an environment. We use the formalism of quantum mechanics in the purely operational framework. (Hence, our model has no direct relation to quantum physical processes inside a cell.) Thus our model is about probabilities for observations which can be done on epigenomes and it does not provide a detailed description of cellular processes. Usage of the operational approach provides a possibility to describe by one model all known types of cellular epigenetic inheritance.
Dynamics of complex quantum systems
Akulin, Vladimir M
2014-01-01
This book gathers together a range of similar problems that can be encountered in different fields of modern quantum physics and that have common features with regard to multilevel quantum systems. The main motivation was to examine from a uniform standpoint various models and approaches that have been developed in atomic, molecular, condensed matter, chemical, laser and nuclear physics in various contexts. The book should help senior-level undergraduate, graduate students and researchers putting particular problems in these fields into a broader scientific context and thereby taking advantage of well-established techniques used in adjacent fields. This second edition has been expanded to include substantial new material (e.g. new sections on Dynamic Localization and on Euclidean Random Matrices and new chapters on Entanglement, Open Quantum Systems, and Coherence Protection). It is based on the author’s lectures at the Moscow Institute of Physics and Technology, at the CNRS Aimé Cotton Laboratory, and on ...
Physics-based mathematical models for quantum devices via experimental system identification
Energy Technology Data Exchange (ETDEWEB)
Schirmer, S G; Oi, D K L; Devitt, S J [Department of Applied Maths and Theoretical Physics, University of Cambridge, Wilberforce Rd, Cambridge, CB3 0WA (United Kingdom); SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430 (Japan)], E-mail: sgs29@cam.ac.uk
2008-03-15
We consider the task of intrinsic control system identification for quantum devices. The problem of experimental determination of subspace confinement is considered, and simple general strategies for full Hamiltonian identification and decoherence characterization of a controlled two-level system are presented.
Dissipation and decoherence in quantum systems
International Nuclear Information System (INIS)
Menskii, Mikhail B
2003-01-01
The theory of dissipative quantum systems and its relation to the quantum theory of continuous measurements are reviewed. Constructing a correct theory of a dissipative quantum system requires that the system's interaction with its environment (reservoir) be taken into account. Since information about the system is 'recorded' in the state of the reservoir, the quantum theory of continuous measurements can be used to account for the influence of the reservoir. If based on the use of restricted path integrals, this theory does not require an explicit reservoir model and is therefore much simpler technically. (reviews of topical problems)
Directory of Open Access Journals (Sweden)
Dan Alexandru Anghel
2012-01-01
Full Text Available In semiconductor laser modeling, a good mathematical model gives near-reality results. Three methods of modeling solutions from the rate equations are presented and analyzed. A method based on the rate equations modeled in Simulink to describe quantum well lasers was presented. For different signal types like step function, saw tooth and sinus used as input, a good response of the used equations is obtained. Circuit model resulting from one of the rate equations models is presented and simulated in SPICE. Results show a good modeling behavior. Numerical simulation in MathCad gives satisfactory results for the study of the transitory and dynamic operation at small level of the injection current. The obtained numerical results show the specific limits of each model, according to theoretical analysis. Based on these results, software can be built that integrates circuit simulation and other modeling methods for quantum well lasers to have a tool that model and analysis these devices from all points of view.
International Nuclear Information System (INIS)
Coule, D H
2005-01-01
We contrast the initial condition requirements of various contemporary cosmological models including inflationary and bouncing cosmologies. Canonical quantization of general relativity is used, as a first approximation to full quantum gravity, to determine whether suitable initial conditions are present. Various proposals such as Hartle-Hawking's 'no boundary' or tunnelling boundary conditions are assessed on grounds of naturalness and fine tuning. Alternatively, a quiescent initial state or an initial closed timelike curve 'time machine' is considered. Possible extensions to brane models are also addressed. Further ideas about universe creation from a meta-universe are outlined. Semiclassical and time asymmetry requirements of cosmology are briefly discussed and contrasted with the black-hole final-state proposal. We compare the recent loop quantum cosmology of Bojowald and co-workers with these earlier schemes. A number of possible difficulties and limitations are outlined. (topical review)
Simulation of n-qubit quantum systems. III. Quantum operations
Radtke, T.; Fritzsche, S.
2007-05-01
During the last decade, several quantum information protocols, such as quantum key distribution, teleportation or quantum computation, have attracted a lot of interest. Despite the recent success and research efforts in quantum information processing, however, we are just at the beginning of understanding the role of entanglement and the behavior of quantum systems in noisy environments, i.e. for nonideal implementations. Therefore, in order to facilitate the investigation of entanglement and decoherence in n-qubit quantum registers, here we present a revised version of the FEYNMAN program for working with quantum operations and their associated (Jamiołkowski) dual states. Based on the implementation of several popular decoherence models, we provide tools especially for the quantitative analysis of quantum operations. Apart from the implementation of different noise models, the current program extension may help investigate the fragility of many quantum states, one of the main obstacles in realizing quantum information protocols today. Program summaryTitle of program: Feynman Catalogue identifier: ADWE_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWE_v3_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: None Operating systems: Any system that supports MAPLE; tested under Microsoft Windows XP, SuSe Linux 10 Program language used:MAPLE 10 Typical time and memory requirements: Most commands that act upon quantum registers with five or less qubits take ⩽10 seconds of processor time (on a Pentium 4 processor with ⩾2 GHz or equivalent) and 5-20 MB of memory. Especially when working with symbolic expressions, however, the memory and time requirements critically depend on the number of qubits in the quantum registers, owing to the exponential dimension growth of the associated Hilbert space. For example, complex (symbolic) noise models (with several Kraus operators) for multi-qubit systems
Capacity on wireless quantum cellular communication system
Zhou, Xiang-Zhen; Yu, Xu-Tao; Zhang, Zai-Chen
2018-03-01
Quantum technology is making excellent prospects in future communication networks. Entanglement generation and purification are two major components in quantum networks. Combining these two techniques with classical cellular mobile communication, we proposed a novel wireless quantum cellular(WQC) communication system which is possible to realize commercial mobile quantum communication. In this paper, the architecture and network topology of WQC communication system are discussed, the mathematical model of WQC system is extracted and the serving capacity, indicating the ability to serve customers, is defined and calculated under certain circumstances.
Modeling of quantum nanomechanics
DEFF Research Database (Denmark)
Jauho, Antti-Pekka; Novotny, Tomas; Donarini, Andrea
2004-01-01
Microelectromechanical systems (MEMS) are approaching the nanoscale, which ultimately implies that the mechanical motion needs to be treated quantum mechanically. In recent years our group has developed theoretical methods to analyze the shuttle transition in the quantum regime (Novotny, 2004......), focusing not only in the IV-curve, but also considering noise, which is an important diagnostic tool in unraveling the microscopic transport mechanisms. Our theoretical analysis is based on a numerical solution of a generalized master equation (GME) for the density matrix. This equation is obtained...... by tracing the Liouville equation over the bath degrees of freedom (i.e., the free fermions of the electronic contacts, and the damping of the mechanical degree of freedom due to a bosonic environment)....
Quantum games in open systems using biophysical Hamiltonians
International Nuclear Information System (INIS)
Faber, Jean; Portugal, Renato; Rosa, Luiz Pinguelli
2006-01-01
We analyze the necessary physical conditions to model an open quantum system as a quantum game. By applying the formalism of quantum operations on a particular system, we use Kraus operators as quantum strategies. The physical interpretation is a conflict among different configurations of the environment. The resolution of the conflict displays regimes of minimum loss of information
Quantum games in open systems using biophysical Hamiltonians
Energy Technology Data Exchange (ETDEWEB)
Faber, Jean [National Laboratory of Scientific Computing (LNCC), Av. Getulio Vargas 333, Quitandinha 25651-075, Petropolis, RJ (Brazil)]. E-mail: faber@lncc.br; Portugal, Renato [National Laboratory of Scientific Computing (LNCC), Av. Getulio Vargas 333, Quitandinha 25651-075, Petropolis, RJ (Brazil)]. E-mail: portugal@lncc.br; Rosa, Luiz Pinguelli [Federal University of Rio de Janeiro, COPPE-UFRJ, RJ (Brazil)]. E-mail: lpr@adc.coppe.ufrj.br
2006-09-25
We analyze the necessary physical conditions to model an open quantum system as a quantum game. By applying the formalism of quantum operations on a particular system, we use Kraus operators as quantum strategies. The physical interpretation is a conflict among different configurations of the environment. The resolution of the conflict displays regimes of minimum loss of information.
Macroscopic quantum systems and gravitational phenomena
International Nuclear Information System (INIS)
Pikovski, I.
2014-01-01
Low-energy quantum systems are studied theoretically in light of possible experiments to test the interplay between quantum theory and general relativity. The research focus in this thesis is on quantum systems which can be controlled with very high precision and which allow for tests of quantum theory at novel scales in terms of mass and size. The pulsed regime of opto-mechanics is explored and it is shown how short optical pulses can be used to prepare and characterize quantum states of a massive mechanical resonator, and how some phenomenological models of quantum gravity can be probed. In addition, quantum interferometry with photons and matter-waves in the presence of gravitational time dilation is considered. It is shown that time dilation causes entanglement between internal states and the center-of-mass position and that it leads to decoherence of all composite quantum systems. The results of the thesis show that the interplay between quantum theory and general relativity affects even low-energy quantum systems and that it offers novel phenomena which can be probed in experiments. (author) [de
Quantum random oracle model for quantum digital signature
Shang, Tao; Lei, Qi; Liu, Jianwei
2016-10-01
The goal of this work is to provide a general security analysis tool, namely, the quantum random oracle (QRO), for facilitating the security analysis of quantum cryptographic protocols, especially protocols based on quantum one-way function. QRO is used to model quantum one-way function and different queries to QRO are used to model quantum attacks. A typical application of quantum one-way function is the quantum digital signature, whose progress has been hampered by the slow pace of the experimental realization. Alternatively, we use the QRO model to analyze the provable security of a quantum digital signature scheme and elaborate the analysis procedure. The QRO model differs from the prior quantum-accessible random oracle in that it can output quantum states as public keys and give responses to different queries. This tool can be a test bed for the cryptanalysis of more quantum cryptographic protocols based on the quantum one-way function.
Single-server blind quantum computation with quantum circuit model
Zhang, Xiaoqian; Weng, Jian; Li, Xiaochun; Luo, Weiqi; Tan, Xiaoqing; Song, Tingting
2018-06-01
Blind quantum computation (BQC) enables the client, who has few quantum technologies, to delegate her quantum computation to a server, who has strong quantum computabilities and learns nothing about the client's quantum inputs, outputs and algorithms. In this article, we propose a single-server BQC protocol with quantum circuit model by replacing any quantum gate with the combination of rotation operators. The trap quantum circuits are introduced, together with the combination of rotation operators, such that the server is unknown about quantum algorithms. The client only needs to perform operations X and Z, while the server honestly performs rotation operators.
Quantum mechanics model on a Kaehler conifold
International Nuclear Information System (INIS)
Bellucci, Stefano; Nersessian, Armen; Yeranyan, Armen
2004-01-01
We propose an exactly solvable model of the quantum oscillator on the class of Kaehler spaces (with conic singularities), connected with two-dimensional complex projective spaces. Its energy spectrum is nondegenerate in the orbital quantum number, when the space has nonconstant curvature. We reduce the model to a three-dimensional system interacting with the Dirac monopole. Owing to noncommutativity of the reduction and quantization procedures, the Hamiltonian of the reduced system gets nontrivial quantum corrections. We transform the reduced system into a MIC-Kepler-like one and find that quantum corrections arise only in its energy and coupling constant. We present the exact spectrum of the generalized MIC-Kepler system. The one-(complex) dimensional analog of the suggested model is formulated on the Riemann surface over the complex projective plane and could be interpreted as a system with fractional spin
Decoherence in open quantum systems
International Nuclear Information System (INIS)
Isar, A.
2005-01-01
In the framework of the Lindblad theory for open quantum systems we determine the degree of quantum decoherence of a harmonic oscillator interacting with a thermal bath. In the present paper we have studied QD with the Markovian equation of Lindblad in order to understand the quantum to classical transition for a system consisting of an one-dimensional harmonic oscillator in interaction with a thermal bath in the framework of the theory of open quantum systems based on quantum dynamical semigroups. The role of QD became relevant in many interesting physical problems from field theory, atomic physics, quantum optics and quantum information processing, to which we can add material science, heavy ion collisions, quantum gravity and cosmology, condensed matter physics. Just to mention only a few of them: to understand the way in which QD enhances the quantum to classical transition of density fluctuations; to study systems of trapped and cold atoms (or ions) which may offer the possibility of engineering the environment, like trapped atoms inside cavities, relation between decoherence and other cavity QED effects (such as Casimir effect); on mesoscopic scale, decoherence in the context of Bose-Einstein condensation. In many cases physicists are interested in understanding the specific causes of QD just because they want to prevent decoherence from damaging quantum states and to protect the information stored in quantum states from the degrading effect of the interaction with the environment. Thus, decoherence is responsible for washing out the quantum interference effects which are desirable to be seen as signals in some experiments. QD has a negative influence on many areas relying upon quantum coherence effects, such as quantum computation and quantum control of atomic and molecular processes. The physics of information and computation is such a case, where decoherence is an obvious major obstacle in the implementation of information-processing hardware that takes
Quantum Models of Classical World
Directory of Open Access Journals (Sweden)
Petr Hájíček
2013-02-01
Full Text Available This paper is a review of our recent work on three notorious problems of non-relativistic quantum mechanics: realist interpretation, quantum theory of classical properties, and the problem of quantum measurement. A considerable progress has been achieved, based on four distinct new ideas. First, objective properties are associated with states rather than with values of observables. Second, all classical properties are selected properties of certain high entropy quantum states of macroscopic systems. Third, registration of a quantum system is strongly disturbed by systems of the same type in the environment. Fourth, detectors must be distinguished from ancillas and the states of registered systems are partially dissipated and lost in the detectors. The paper has two aims: a clear explanation of all new results and a coherent and contradiction-free account of the whole quantum mechanics including all necessary changes of its current textbook version.
Asymptotically open quantum systems
International Nuclear Information System (INIS)
Westrich, M.
2008-04-01
In the present thesis we investigate the structure of time-dependent equations of motion in quantum mechanics.We start from two coupled systems with an autonomous equation of motion. A limit, in which the dynamics of one of the two systems has a decoupled evolution and imposes a non-autonomous evolution for the second system is identified. A result due to K. Hepp that provides a classical limit for dynamics turns out to be part and parcel for this limit and is generalized in our work. The method introduced by J.S. Howland for the solution of the time-dependent Schroedinger equation is interpreted as such a limit. Moreover, we associate our limit with the modern theory of quantization. (orig.)
Non-perturbative description of quantum systems
Feranchuk, Ilya; Le, Van-Hoang; Ulyanenkov, Alexander
2015-01-01
This book introduces systematically the operator method for the solution of the Schrödinger equation. This method permits to describe the states of quantum systems in the entire range of parameters of Hamiltonian with a predefined accuracy. The operator method is unique compared with other non-perturbative methods due to its ability to deliver in zeroth approximation the uniformly suitable estimate for both ground and excited states of quantum system. The method has been generalized for the application to quantum statistics and quantum field theory. In this book, the numerous applications of operator method for various physical systems are demonstrated. Simple models are used to illustrate the basic principles of the method which are further used for the solution of complex problems of quantum theory for many-particle systems. The results obtained are supplemented by numerical calculations, presented as tables and figures.
International Nuclear Information System (INIS)
Li, Guanchen; Al-Abbasi, Omar; Von Spakovsky, Michael R
2014-01-01
This paper outlines an atomistic-level framework for modeling the non-equilibrium behavior of chemically reactive systems. The framework called steepest- entropy-ascent quantum thermodynamics (SEA-QT) is based on the paradigm of intrinsic quantum thermodynamic (IQT), which is a theory that unifies quantum mechanics and thermodynamics into a single discipline with wide applications to the study of non-equilibrium phenomena at the atomistic level. SEA-QT is a novel approach for describing the state of chemically reactive systems as well as the kinetic and dynamic features of the reaction process without any assumptions of near-equilibrium states or weak-interactions with a reservoir or bath. Entropy generation is the basis of the dissipation which takes place internal to the system and is, thus, the driving force of the chemical reaction(s). The SEA-QT non-equilibrium model is able to provide detailed information during the reaction process, providing a picture of the changes occurring in key thermodynamic properties (e.g., the instantaneous species concentrations, entropy and entropy generation, reaction coordinate, chemical affinities, reaction rate, etc). As an illustration, the SEA-QT framework is applied to an atomistic-level chemically reactive system governed by the reaction mechanism F + H 2 ↔ FH + H
Energy Technology Data Exchange (ETDEWEB)
Sidles, John A; Jacky, Jonathan P [Department of Orthopaedics and Sports Medicine, Box 356500, School of Medicine, University of Washington, Seattle, WA, 98195 (United States); Garbini, Joseph L; Malcomb, Joseph R; Williamson, Austin M [Department of Mechanical Engineering, University of Washington, Seattle, WA 98195 (United States); Harrell, Lee E [Department of Physics, US Military Academy, West Point, NY 10996 (United States); Hero, Alfred O [Department of Electrical Engineering, University of Michigan, MI 49931 (United States); Norman, Anthony G [Department of Bioengineering, University of Washington, Seattle, WA 98195 (United States)], E-mail: sidles@u.washington.edu
2009-06-15
Practical recipes are presented for simulating high-temperature and nonequilibrium quantum spin systems that are continuously measured and controlled. The notion of a spin system is broadly conceived, in order to encompass macroscopic test masses as the limiting case of large-j spins. The simulation technique has three stages: first the deliberate introduction of noise into the simulation, then the conversion of that noise into an equivalent continuous measurement and control process, and finally, projection of the trajectory onto state-space manifolds having reduced dimensionality and possessing a Kaehler potential of multilinear algebraic form. These state-spaces can be regarded as ruled algebraic varieties upon which a projective quantum model order reduction (MOR) is performed. The Riemannian sectional curvature of ruled Kaehlerian varieties is analyzed, and proved to be non-positive upon all sections that contain a rule. These manifolds are shown to contain Slater determinants as a special case and their identity with Grassmannian varieties is demonstrated. The resulting simulation formalism is used to construct a positive P-representation for the thermal density matrix. Single-spin detection by magnetic resonance force microscopy (MRFM) is simulated, and the data statistics are shown to be those of a random telegraph signal with additive white noise. Larger-scale spin-dust models are simulated, having no spatial symmetry and no spatial ordering; the high-fidelity projection of numerically computed quantum trajectories onto low dimensionality Kaehler state-space manifolds is demonstrated. The reconstruction of quantum trajectories from sparse random projections is demonstrated, the onset of Donoho-Stodden breakdown at the Candes-Tao sparsity limit is observed, a deterministic construction for sampling matrices is given and methods for quantum state optimization by Dantzig selection are given.
International Nuclear Information System (INIS)
Sidles, John A; Jacky, Jonathan P; Garbini, Joseph L; Malcomb, Joseph R; Williamson, Austin M; Harrell, Lee E; Hero, Alfred O; Norman, Anthony G
2009-01-01
Practical recipes are presented for simulating high-temperature and nonequilibrium quantum spin systems that are continuously measured and controlled. The notion of a spin system is broadly conceived, in order to encompass macroscopic test masses as the limiting case of large-j spins. The simulation technique has three stages: first the deliberate introduction of noise into the simulation, then the conversion of that noise into an equivalent continuous measurement and control process, and finally, projection of the trajectory onto state-space manifolds having reduced dimensionality and possessing a Kaehler potential of multilinear algebraic form. These state-spaces can be regarded as ruled algebraic varieties upon which a projective quantum model order reduction (MOR) is performed. The Riemannian sectional curvature of ruled Kaehlerian varieties is analyzed, and proved to be non-positive upon all sections that contain a rule. These manifolds are shown to contain Slater determinants as a special case and their identity with Grassmannian varieties is demonstrated. The resulting simulation formalism is used to construct a positive P-representation for the thermal density matrix. Single-spin detection by magnetic resonance force microscopy (MRFM) is simulated, and the data statistics are shown to be those of a random telegraph signal with additive white noise. Larger-scale spin-dust models are simulated, having no spatial symmetry and no spatial ordering; the high-fidelity projection of numerically computed quantum trajectories onto low dimensionality Kaehler state-space manifolds is demonstrated. The reconstruction of quantum trajectories from sparse random projections is demonstrated, the onset of Donoho-Stodden breakdown at the Candes-Tao sparsity limit is observed, a deterministic construction for sampling matrices is given and methods for quantum state optimization by Dantzig selection are given.
Sidles, John A.; Garbini, Joseph L.; Harrell, Lee E.; Hero, Alfred O.; Jacky, Jonathan P.; Malcomb, Joseph R.; Norman, Anthony G.; Williamson, Austin M.
2009-06-01
Practical recipes are presented for simulating high-temperature and nonequilibrium quantum spin systems that are continuously measured and controlled. The notion of a spin system is broadly conceived, in order to encompass macroscopic test masses as the limiting case of large-j spins. The simulation technique has three stages: first the deliberate introduction of noise into the simulation, then the conversion of that noise into an equivalent continuous measurement and control process, and finally, projection of the trajectory onto state-space manifolds having reduced dimensionality and possessing a Kähler potential of multilinear algebraic form. These state-spaces can be regarded as ruled algebraic varieties upon which a projective quantum model order reduction (MOR) is performed. The Riemannian sectional curvature of ruled Kählerian varieties is analyzed, and proved to be non-positive upon all sections that contain a rule. These manifolds are shown to contain Slater determinants as a special case and their identity with Grassmannian varieties is demonstrated. The resulting simulation formalism is used to construct a positive P-representation for the thermal density matrix. Single-spin detection by magnetic resonance force microscopy (MRFM) is simulated, and the data statistics are shown to be those of a random telegraph signal with additive white noise. Larger-scale spin-dust models are simulated, having no spatial symmetry and no spatial ordering; the high-fidelity projection of numerically computed quantum trajectories onto low dimensionality Kähler state-space manifolds is demonstrated. The reconstruction of quantum trajectories from sparse random projections is demonstrated, the onset of Donoho-Stodden breakdown at the Candès-Tao sparsity limit is observed, a deterministic construction for sampling matrices is given and methods for quantum state optimization by Dantzig selection are given.
Energy Technology Data Exchange (ETDEWEB)
Haemmerling, Jens; Gutkin, Boris; Guhr, Thomas, E-mail: jens.haemmerling@uni-due.d [Universitaet Duisburg-Essen, Lotharstrasse 1, 47048 Duisburg (Germany)
2010-07-02
We study the emergence of collective dynamics in the integrable Hamiltonian system of two finite ensembles of coupled harmonic oscillators. After identification of a collective degree of freedom, the Hamiltonian is mapped onto a model of Caldeira-Leggett type, where the collective coordinate is coupled to an internal bath of phonons. In contrast to the usual Caldeira-Leggett model, the bath in the present case is part of the system. We derive an equation of motion for the collective coordinate which takes the form of a damped harmonic oscillator. We show that the distribution of quantum transition strengths induced by the collective mode is determined by its classical dynamics.
International Nuclear Information System (INIS)
Haemmerling, Jens; Gutkin, Boris; Guhr, Thomas
2010-01-01
We study the emergence of collective dynamics in the integrable Hamiltonian system of two finite ensembles of coupled harmonic oscillators. After identification of a collective degree of freedom, the Hamiltonian is mapped onto a model of Caldeira-Leggett type, where the collective coordinate is coupled to an internal bath of phonons. In contrast to the usual Caldeira-Leggett model, the bath in the present case is part of the system. We derive an equation of motion for the collective coordinate which takes the form of a damped harmonic oscillator. We show that the distribution of quantum transition strengths induced by the collective mode is determined by its classical dynamics.
Iqbal, A.; Toor, A. H.
2002-03-01
We investigate the role of quantum mechanical effects in the central stability concept of evolutionary game theory, i.e., an evolutionarily stable strategy (ESS). Using two and three-player symmetric quantum games we show how the presence of quantum phenomenon of entanglement can be crucial to decide the course of evolutionary dynamics in a population of interacting individuals.
Quantum technologies with hybrid systems
Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg
2015-03-01
An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.
Quantum technologies with hybrid systems
Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg
2015-01-01
An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field. PMID:25737558
Quantum technologies with hybrid systems.
Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg
2015-03-31
An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.
Models of optical quantum computing
Directory of Open Access Journals (Sweden)
Krovi Hari
2017-03-01
Full Text Available I review some work on models of quantum computing, optical implementations of these models, as well as the associated computational power. In particular, we discuss the circuit model and cluster state implementations using quantum optics with various encodings such as dual rail encoding, Gottesman-Kitaev-Preskill encoding, and coherent state encoding. Then we discuss intermediate models of optical computing such as boson sampling and its variants. Finally, we review some recent work in optical implementations of adiabatic quantum computing and analog optical computing. We also provide a brief description of the relevant aspects from complexity theory needed to understand the results surveyed.
Entanglement in open quantum systems
International Nuclear Information System (INIS)
Isar, A.
2007-01-01
In the framework of the theory of open systems based on quantum dynamical semigroups, we solve the master equation for two independent bosonic oscillators interacting with an environment in the asymptotic long-time regime. We give a description of the continuous-variable entanglement in terms of the covariance matrix of the quantum states of the considered system for an arbitrary Gaussian input state. Using the Peres-Simon necessary and sufficient condition for separability of two-mode Gaussian states, we show that the two non-interacting systems immersed in a common environment and evolving under a Markovian, completely positive dynamics become asymptotically entangled for certain environments, so that their non-local quantum correlations exist in the long-time regime. (author) Key words: quantum information theory, open systems, quantum entanglement, inseparable states
Quantum Graphical Models and Belief Propagation
International Nuclear Information System (INIS)
Leifer, M.S.; Poulin, D.
2008-01-01
Belief Propagation algorithms acting on Graphical Models of classical probability distributions, such as Markov Networks, Factor Graphs and Bayesian Networks, are amongst the most powerful known methods for deriving probabilistic inferences amongst large numbers of random variables. This paper presents a generalization of these concepts and methods to the quantum case, based on the idea that quantum theory can be thought of as a noncommutative, operator-valued, generalization of classical probability theory. Some novel characterizations of quantum conditional independence are derived, and definitions of Quantum n-Bifactor Networks, Markov Networks, Factor Graphs and Bayesian Networks are proposed. The structure of Quantum Markov Networks is investigated and some partial characterization results are obtained, along the lines of the Hammersley-Clifford theorem. A Quantum Belief Propagation algorithm is presented and is shown to converge on 1-Bifactor Networks and Markov Networks when the underlying graph is a tree. The use of Quantum Belief Propagation as a heuristic algorithm in cases where it is not known to converge is discussed. Applications to decoding quantum error correcting codes and to the simulation of many-body quantum systems are described
Noncommutative mathematics for quantum systems
Franz, Uwe
2016-01-01
Noncommutative mathematics is a significant new trend of mathematics. Initially motivated by the development of quantum physics, the idea of 'making theory noncommutative' has been extended to many areas of pure and applied mathematics. This book is divided into two parts. The first part provides an introduction to quantum probability, focusing on the notion of independence in quantum probability and on the theory of quantum stochastic processes with independent and stationary increments. The second part provides an introduction to quantum dynamical systems, discussing analogies with fundamental problems studied in classical dynamics. The desire to build an extension of the classical theory provides new, original ways to understand well-known 'commutative' results. On the other hand the richness of the quantum mathematical world presents completely novel phenomena, never encountered in the classical setting. This book will be useful to students and researchers in noncommutative probability, mathematical physi...
Integrable models of quantum optics
Directory of Open Access Journals (Sweden)
Yudson Vladimir
2017-01-01
Full Text Available We give an overview of exactly solvable many-body models of quantum optics. Among them is a system of two-level atoms which interact with photons propagating in a one-dimensional (1D chiral waveguide; exact eigenstates of this system can be explicitly constructed. This approach is used also for a system of closely located atoms in the usual (non-chiral waveguide or in 3D space. Moreover, it is shown that for an arbitrary atomic system with a cascade spontaneous radiative decay, the fluorescence spectrum can be described by an exact analytic expression which accounts for interference of emitted photons. Open questions related with broken integrability are discussed.
International Nuclear Information System (INIS)
Chirikov, B.V.
1991-01-01
The overview of recent developments in the theory of quantum chaos is presented with the special emphasis on a number of unsolved problems and current apparent contradictions. The relation between dynamical quantum chaos and statistical random matrix theory is discussed. 97 refs
Quantum transport in complex system
International Nuclear Information System (INIS)
Kusnezov, D.; Bulgac, A.; DoDang, G.
1998-01-01
We derive the influence function and the effective dynamics of a quantum systems coupled to a chaotic environment, using very general parametric and banded random matrices to describe the quantum properties of a chaotic bath. We find that only in certain limits the thermalization can result from the environment. We study the general transport problems including escape, fusion and tunneling (fission). (author)
Quantum mechanics in complex systems
Hoehn, Ross Douglas
This document should be considered in its separation; there are three distinct topics contained within and three distinct chapters within the body of works. In a similar fashion, this abstract should be considered in three parts. Firstly, we explored the existence of multiply-charged atomic ions by having developed a new set of dimensional scaling equations as well as a series of relativistic augmentations to the standard dimensional scaling procedure and to the self-consistent field calculations. Secondly, we propose a novel method of predicting drug efficacy in hopes to facilitate the discovery of new small molecule therapeutics by modeling the agonist-protein system as being similar to the process of Inelastic Electron Tunneling Spectroscopy. Finally, we facilitate the instruction in basic quantum mechanical topics through the use of quantum games; this method of approach allows for the generation of exercises with the intent of conveying the fundamental concepts within a first year quantum mechanics classroom. Furthermore, no to be mentioned within the body of the text, yet presented in appendix form, certain works modeling the proliferation of cells types within the confines of man-made lattices for the purpose of facilitating artificial vascular transplants. In Chapter 2, we present a theoretical framework which describes multiply-charged atomic ions, their stability within super-intense laser fields, also lay corrections to the systems due to relativistic effects. Dimensional scaling calculations with relativistic corrections for systems: H, H-, H 2-, He, He-, He2-, He3- within super-intense laser fields were completed. Also completed were three-dimensional self consistent field calculations to verify the dimensionally scaled quantities. With the aforementioned methods the system's ability to stably bind 'additional' electrons through the development of multiple isolated regions of high potential energy leading to nodes of high electron density is shown
A prototype quantum cryptography system
Energy Technology Data Exchange (ETDEWEB)
Surasak, Chiangga
1998-07-01
In this work we have constructed a new secure quantum key distribution system based on the BB84 protocol. Many current state-of-the-art quantum cryptography systems encounter major problems concerning low bit rate, synchronization, and stabilization. Our quantum cryptography system utilizes only laser diodes and standard passive optical components, to enhance the stability and also to decrease the space requirements. The development of this demonstration for a practical quantum key distribution system is a consequence of our previous work on the quantum cryptographic system using optical fiber components for the transmitter and receiver. There we found that the optical fiber couplers should not be used due to the problems with space, stability and alignment. The goal of the synchronization is to use as little transmission capacities as possible. The experimental results of our quantum key distribution system show the feasibility of getting more than 90 % transmission capacities with the approaches developed in this work. Therefore it becomes feasible to securely establish a random key sequence at a rate of 1 to {approx} 5K bit/s by using our stable, compact, cheap, and user-friendly modules for quantum cryptography. (author)
A prototype quantum cryptography system
International Nuclear Information System (INIS)
Chiangga Surasak
1998-07-01
In this work we have constructed a new secure quantum key distribution system based on the BB84 protocol. Many current state-of-the-art quantum cryptography systems encounter major problems concerning low bit rate, synchronization, and stabilization. Our quantum cryptography system utilizes only laser diodes and standard passive optical components, to enhance the stability and also to decrease the space requirements. The development of this demonstration for a practical quantum key distribution system is a consequence of our previous work on the quantum cryptographic system using optical fiber components for the transmitter and receiver. There we found that the optical fiber couplers should not be used due to the problems with space, stability and alignment. The goal of the synchronization is to use as little transmission capacities as possible. The experimental results of our quantum key distribution system show the feasibility of getting more than 90 % transmission capacities with the approaches developed in this work. Therefore it becomes feasible to securely establish a random key sequence at a rate of 1 to ∼ 5K bit/s by using our stable, compact, cheap, and user-friendly modules for quantum cryptography. (author)
International Nuclear Information System (INIS)
Ji, C.R.
1999-01-01
This report details research progress and results obtained during the entire period of the research project. In compliance with grant requirements the Principal Investigator, Professor Chueng-Ryong Ji, has conducted a research program addressing theoretical investigations of hadron structure and reactions using quantum chromodynamic quark models. This Principal Investigator has devoted 50% of his time during the academic year and 100% of his time in the summer. This percent effort has continued during the entire period of the grant. The new, significant research results are briefly summarized in this report. Finally, full, detailed descriptions of completed work can be found in the project publications which are listed at the end of this technical report
Solvable model of quantum microcanonical states
International Nuclear Information System (INIS)
Bender, Carl M; Brody, Dorje C; Hook, Daniel W
2005-01-01
This letter examines the consequences of a recently proposed modification of the postulate of equal a priori probability in quantum statistical mechanics. This modification, called the quantum microcanonical postulate (QMP), asserts that for a system in microcanonical equilibrium all pure quantum states having the same energy expectation value are realized with equal probability. A simple model of a quantum system that obeys the QMP and that has a nondegenerate spectrum with equally spaced energy eigenvalues is studied. This model admits a closed-form expression for the density of states in terms of the energy eigenvalues. It is shown that in the limit as the number of energy levels approaches infinity, the expression for the density of states converges to a δ function centred at the intermediate value (E max + E min )/2 of the energy. Determining this limit requires an elaborate asymptotic study of an infinite sum whose terms alternate in sign. (letter to the editor)
Modeling techniques for quantum cascade lasers
Energy Technology Data Exchange (ETDEWEB)
Jirauschek, Christian [Institute for Nanoelectronics, Technische Universität München, D-80333 Munich (Germany); Kubis, Tillmann [Network for Computational Nanotechnology, Purdue University, 207 S Martin Jischke Drive, West Lafayette, Indiana 47907 (United States)
2014-03-15
Quantum cascade lasers are unipolar semiconductor lasers covering a wide range of the infrared and terahertz spectrum. Lasing action is achieved by using optical intersubband transitions between quantized states in specifically designed multiple-quantum-well heterostructures. A systematic improvement of quantum cascade lasers with respect to operating temperature, efficiency, and spectral range requires detailed modeling of the underlying physical processes in these structures. Moreover, the quantum cascade laser constitutes a versatile model device for the development and improvement of simulation techniques in nano- and optoelectronics. This review provides a comprehensive survey and discussion of the modeling techniques used for the simulation of quantum cascade lasers. The main focus is on the modeling of carrier transport in the nanostructured gain medium, while the simulation of the optical cavity is covered at a more basic level. Specifically, the transfer matrix and finite difference methods for solving the one-dimensional Schrödinger equation and Schrödinger-Poisson system are discussed, providing the quantized states in the multiple-quantum-well active region. The modeling of the optical cavity is covered with a focus on basic waveguide resonator structures. Furthermore, various carrier transport simulation methods are discussed, ranging from basic empirical approaches to advanced self-consistent techniques. The methods include empirical rate equation and related Maxwell-Bloch equation approaches, self-consistent rate equation and ensemble Monte Carlo methods, as well as quantum transport approaches, in particular the density matrix and non-equilibrium Green's function formalism. The derived scattering rates and self-energies are generally valid for n-type devices based on one-dimensional quantum confinement, such as quantum well structures.
Modeling techniques for quantum cascade lasers
Jirauschek, Christian; Kubis, Tillmann
2014-03-01
Quantum cascade lasers are unipolar semiconductor lasers covering a wide range of the infrared and terahertz spectrum. Lasing action is achieved by using optical intersubband transitions between quantized states in specifically designed multiple-quantum-well heterostructures. A systematic improvement of quantum cascade lasers with respect to operating temperature, efficiency, and spectral range requires detailed modeling of the underlying physical processes in these structures. Moreover, the quantum cascade laser constitutes a versatile model device for the development and improvement of simulation techniques in nano- and optoelectronics. This review provides a comprehensive survey and discussion of the modeling techniques used for the simulation of quantum cascade lasers. The main focus is on the modeling of carrier transport in the nanostructured gain medium, while the simulation of the optical cavity is covered at a more basic level. Specifically, the transfer matrix and finite difference methods for solving the one-dimensional Schrödinger equation and Schrödinger-Poisson system are discussed, providing the quantized states in the multiple-quantum-well active region. The modeling of the optical cavity is covered with a focus on basic waveguide resonator structures. Furthermore, various carrier transport simulation methods are discussed, ranging from basic empirical approaches to advanced self-consistent techniques. The methods include empirical rate equation and related Maxwell-Bloch equation approaches, self-consistent rate equation and ensemble Monte Carlo methods, as well as quantum transport approaches, in particular the density matrix and non-equilibrium Green's function formalism. The derived scattering rates and self-energies are generally valid for n-type devices based on one-dimensional quantum confinement, such as quantum well structures.
The fractional dynamics of quantum systems
Lu, Longzhao; Yu, Xiangyang
2018-05-01
The fractional dynamic process of a quantum system is a novel and complicated problem. The establishment of a fractional dynamic model is a significant attempt that is expected to reveal the mechanism of fractional quantum system. In this paper, a generalized time fractional Schrödinger equation is proposed. To study the fractional dynamics of quantum systems, we take the two-level system as an example and derive the time fractional equations of motion. The basic properties of the system are investigated by solving this set of equations in the absence of light field analytically. Then, when the system is subject to the light field, the equations are solved numerically. It shows that the two-level system described by the time fractional Schrödinger equation we proposed is a confirmable system.
Malpetti, Daniele; Roscilde, Tommaso
2017-02-01
The mean-field approximation is at the heart of our understanding of complex systems, despite its fundamental limitation of completely neglecting correlations between the elementary constituents. In a recent work [Phys. Rev. Lett. 117, 130401 (2016), 10.1103/PhysRevLett.117.130401], we have shown that in quantum many-body systems at finite temperature, two-point correlations can be formally separated into a thermal part and a quantum part and that quantum correlations are generically found to decay exponentially at finite temperature, with a characteristic, temperature-dependent quantum coherence length. The existence of these two different forms of correlation in quantum many-body systems suggests the possibility of formulating an approximation, which affects quantum correlations only, without preventing the correct description of classical fluctuations at all length scales. Focusing on lattice boson and quantum Ising models, we make use of the path-integral formulation of quantum statistical mechanics to introduce such an approximation, which we dub quantum mean-field (QMF) approach, and which can be readily generalized to a cluster form (cluster QMF or cQMF). The cQMF approximation reduces to cluster mean-field theory at T =0 , while at any finite temperature it produces a family of systematically improved, semi-classical approximations to the quantum statistical mechanics of the lattice theory at hand. Contrary to standard MF approximations, the correct nature of thermal critical phenomena is captured by any cluster size. In the two exemplary cases of the two-dimensional quantum Ising model and of two-dimensional quantum rotors, we study systematically the convergence of the cQMF approximation towards the exact result, and show that the convergence is typically linear or sublinear in the boundary-to-bulk ratio of the clusters as T →0 , while it becomes faster than linear as T grows. These results pave the way towards the development of semiclassical numerical
Quantum system lifetimes and measurement perturbations
International Nuclear Information System (INIS)
Najakov, E.
1977-05-01
The recently proposed description of quantum system decay in terms of repeated measurement perturbations is modified. The possibility of retarded reductions to a unique quantum state, due to ineffective localization of the decay products at initial time measurements, is simply taken into account. The exponential decay law is verified again. A modified equation giving the observed lifetime in terms of unperturbed quantum decay law, measurement frequency and reduction law is derived. It predicts deviations of the observed lifetime from the umperturbed one, together with a dependence on experimental procedures. The influence of different model unperturbed decay laws and reduction laws on this effect is studied
Quantum Transport in Mesoscopic Systems
Indian Academy of Sciences (India)
voltage bias, the tunneling of the electron from the lead to the dot and vice versa will happen very rarely. Then two successive ..... A typical mesoscopic quantum dot system (a small drop- .... dynamical behavior of the distribution function of the.
Universal blind quantum computation for hybrid system
Huang, He-Liang; Bao, Wan-Su; Li, Tan; Li, Feng-Guang; Fu, Xiang-Qun; Zhang, Shuo; Zhang, Hai-Long; Wang, Xiang
2017-08-01
As progress on the development of building quantum computer continues to advance, first-generation practical quantum computers will be available for ordinary users in the cloud style similar to IBM's Quantum Experience nowadays. Clients can remotely access the quantum servers using some simple devices. In such a situation, it is of prime importance to keep the security of the client's information. Blind quantum computation protocols enable a client with limited quantum technology to delegate her quantum computation to a quantum server without leaking any privacy. To date, blind quantum computation has been considered only for an individual quantum system. However, practical universal quantum computer is likely to be a hybrid system. Here, we take the first step to construct a framework of blind quantum computation for the hybrid system, which provides a more feasible way for scalable blind quantum computation.
Quantum Dot Systems : A versatile platform for quantum simulations
Barthelemy, P.J.C.; Vandersypen, L.M.K.
2013-01-01
Quantum mechanics often results in extremely complex phenomena, especially when the quantum system under consideration is composed of many interacting particles. The states of these many-body systems live in a space so large that classical numerical calculations cannot compute them. Quantum
Open quantum systems and error correction
Shabani Barzegar, Alireza
Quantum effects can be harnessed to manipulate information in a desired way. Quantum systems which are designed for this purpose are suffering from harming interaction with their surrounding environment or inaccuracy in control forces. Engineering different methods to combat errors in quantum devices are highly demanding. In this thesis, I focus on realistic formulations of quantum error correction methods. A realistic formulation is the one that incorporates experimental challenges. This thesis is presented in two sections of open quantum system and quantum error correction. Chapters 2 and 3 cover the material on open quantum system theory. It is essential to first study a noise process then to contemplate methods to cancel its effect. In the second chapter, I present the non-completely positive formulation of quantum maps. Most of these results are published in [Shabani and Lidar, 2009b,a], except a subsection on geometric characterization of positivity domain of a quantum map. The real-time formulation of the dynamics is the topic of the third chapter. After introducing the concept of Markovian regime, A new post-Markovian quantum master equation is derived, published in [Shabani and Lidar, 2005a]. The section of quantum error correction is presented in three chapters of 4, 5, 6 and 7. In chapter 4, we introduce a generalized theory of decoherence-free subspaces and subsystems (DFSs), which do not require accurate initialization (published in [Shabani and Lidar, 2005b]). In Chapter 5, we present a semidefinite program optimization approach to quantum error correction that yields codes and recovery procedures that are robust against significant variations in the noise channel. Our approach allows us to optimize the encoding, recovery, or both, and is amenable to approximations that significantly improve computational cost while retaining fidelity (see [Kosut et al., 2008] for a published version). Chapter 6 is devoted to a theory of quantum error correction (QEC
Quantum speed limits in open system dynamics
del Campo, A.; Egusquiza, I. L.; Plenio, M. B.; Huelga, S. F.
2012-01-01
Bounds to the speed of evolution of a quantum system are of fundamental interest in quantum metrology, quantum chemical dynamics and quantum computation. We derive a time-energy uncertainty relation for open quantum systems undergoing a general, completely positive and trace preserving (CPT) evolution which provides a bound to the quantum speed limit. When the evolution is of the Lindblad form, the bound is analogous to the Mandelstam-Tamm relation which applies in the unitary case, with the ...
Design of coherent quantum observers for linear quantum systems
International Nuclear Information System (INIS)
Vuglar, Shanon L; Amini, Hadis
2014-01-01
Quantum versions of control problems are often more difficult than their classical counterparts because of the additional constraints imposed by quantum dynamics. For example, the quantum LQG and quantum H ∞ optimal control problems remain open. To make further progress, new, systematic and tractable methods need to be developed. This paper gives three algorithms for designing coherent quantum observers, i.e., quantum systems that are connected to a quantum plant and their outputs provide information about the internal state of the plant. Importantly, coherent quantum observers avoid measurements of the plant outputs. We compare our coherent quantum observers with a classical (measurement-based) observer by way of an example involving an optical cavity with thermal and vacuum noises as inputs. (paper)
Contextual logic for quantum systems
International Nuclear Information System (INIS)
Domenech, Graciela; Freytes, Hector
2005-01-01
In this work we build a quantum logic that allows us to refer to physical magnitudes pertaining to different contexts from a fixed one without the contradictions with quantum mechanics expressed in no-go theorems. This logic arises from considering a sheaf over a topological space associated with the Boolean sublattices of the ortholattice of closed subspaces of the Hilbert space of the physical system. Different from standard quantum logics, the contextual logic maintains a distributive lattice structure and a good definition of implication as a residue of the conjunction
Duality quantum algorithm efficiently simulates open quantum systems
Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu
2016-01-01
Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d3) in contrast to O(d4) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm. PMID:27464855
Recent advances in quantum integrable systems
Energy Technology Data Exchange (ETDEWEB)
Amico, L.; Belavin, A.; Buffenoir, E.; Castro Alvaredo, A.; Caudrelier, V.; Chakrabarti, A.; Corrig, E.; Crampe, N.; Deguchi, T.; Dobrev, V.K.; Doikou, A.; Doyon, B.; Feher, L.; Fioravanti, D.; Gohmann, F.; Hallnas, M.; Jimbo, M.; Konno, N.C.H.; Korchemsky, G.; Kulish, P.; Lassalle, M.; Maillet, J.M.; McCoy, B.; Mintchev, M.; Pakuliak, S.; Quano, F.Y.Z.; Ragnisco, R.; Ravanini, F.; Rittenberg, V.; Rivasseau, V.; Rossi, M.; Satta, G.; Sedrakyan, T.; Shiraishi, J.; Suzuki, N.C.J.; Yamada, Y.; Zamolodchikov, A.; Ishimoto, Y.; Nagy, Z.; Posta, S.; Sedra, M.B.; Zuevskiy, A.; Gohmann, F
2005-07-01
This meeting was dedicated to different aspects of the theory of quantum integrable systems. The organizers have intended to concentrate on topics related to the study of correlation functions, to systems with boundaries and to models at roots of unity. This document gathers the abstracts of 32 contributions, most of the contributions are accompanied by the set of transparencies.
Recent advances in quantum integrable systems
International Nuclear Information System (INIS)
Amico, L.; Belavin, A.; Buffenoir, E.; Castro Alvaredo, A.; Caudrelier, V.; Chakrabarti, A.; Corrig, E.; Crampe, N.; Deguchi, T.; Dobrev, V.K.; Doikou, A.; Doyon, B.; Feher, L.; Fioravanti, D.; Gohmann, F.; Hallnas, M.; Jimbo, M.; Konno, N.C.H.; Korchemsky, G.; Kulish, P.; Lassalle, M.; Maillet, J.M.; McCoy, B.; Mintchev, M.; Pakuliak, S.; Quano, F.Y.Z.; Ragnisco, R.; Ravanini, F.; Rittenberg, V.; Rivasseau, V.; Rossi, M.; Satta, G.; Sedrakyan, T.; Shiraishi, J.; Suzuki, N.C.J.; Yamada, Y.; Zamolodchikov, A.; Ishimoto, Y.; Nagy, Z.; Posta, S.; Sedra, M.B.; Zuevskiy, A.; Gohmann, F.
2005-01-01
This meeting was dedicated to different aspects of the theory of quantum integrable systems. The organizers have intended to concentrate on topics related to the study of correlation functions, to systems with boundaries and to models at roots of unity. This document gathers the abstracts of 32 contributions, most of the contributions are accompanied by the set of transparencies
Quantum dynamics in open quantum-classical systems.
Kapral, Raymond
2015-02-25
Often quantum systems are not isolated and interactions with their environments must be taken into account. In such open quantum systems these environmental interactions can lead to decoherence and dissipation, which have a marked influence on the properties of the quantum system. In many instances the environment is well-approximated by classical mechanics, so that one is led to consider the dynamics of open quantum-classical systems. Since a full quantum dynamical description of large many-body systems is not currently feasible, mixed quantum-classical methods can provide accurate and computationally tractable ways to follow the dynamics of both the system and its environment. This review focuses on quantum-classical Liouville dynamics, one of several quantum-classical descriptions, and discusses the problems that arise when one attempts to combine quantum and classical mechanics, coherence and decoherence in quantum-classical systems, nonadiabatic dynamics, surface-hopping and mean-field theories and their relation to quantum-classical Liouville dynamics, as well as methods for simulating the dynamics.
Scattering theory for open quantum systems
International Nuclear Information System (INIS)
Behrndt, Jussi
2006-01-01
Quantum systems which interact with their environment are often modeled by maximal dissipative operators or so-called Pseudo-Hamiltonians. In this paper the scattering theory for such open systems is considered. First it is assumed that a single maximal dissipative operator A D in a Hilbert space H is used to describe an open quantum system. In this case the minimal self-adjoint dilation K of A D can be regarded as the Hamiltonian of a closed system which contains the open system {A D ,h}, but since K is necessarily not semibounded from below, this model is difficult to interpret from a physical point of view. In the second part of the paper an open quantum system is modeled with a family {A(μ)} of maximal dissipative operators depending on energy μ, and it is shown that the open system can be embedded into a closed system where the Hamiltonian is semibounded. Surprisingly it turns out that the corresponding scattering matrix can be completely recovered from scattering matrices of single Pseudo-Hamiltonians as in the first part of the paper. The general results are applied to a class of Sturm-Liouville operators arising in dissipative and quantum transmitting Schroedinger-Poisson systems. (orig.)
Scattering theory for open quantum systems
Energy Technology Data Exchange (ETDEWEB)
Behrndt, Jussi [Technische Univ. Berlin (Germany). Inst. fuer Mathematik; Malamud, Mark M. [Donetsk National University (Ukraine). Dept. of Mathematics; Neidhardt, Hagen [Weierstrass-Institut fuer Angewandte Analysis und Stochastik (WIAS) im Forschungsverbund Berlin e.V. (Germany)
2006-07-01
Quantum systems which interact with their environment are often modeled by maximal dissipative operators or so-called Pseudo-Hamiltonians. In this paper the scattering theory for such open systems is considered. First it is assumed that a single maximal dissipative operator A{sub D} in a Hilbert space H is used to describe an open quantum system. In this case the minimal self-adjoint dilation K of A{sub D} can be regarded as the Hamiltonian of a closed system which contains the open system {l_brace}A{sub D},h{r_brace}, but since K is necessarily not semibounded from below, this model is difficult to interpret from a physical point of view. In the second part of the paper an open quantum system is modeled with a family {l_brace}A({mu}){r_brace} of maximal dissipative operators depending on energy {mu}, and it is shown that the open system can be embedded into a closed system where the Hamiltonian is semibounded. Surprisingly it turns out that the corresponding scattering matrix can be completely recovered from scattering matrices of single Pseudo-Hamiltonians as in the first part of the paper. The general results are applied to a class of Sturm-Liouville operators arising in dissipative and quantum transmitting Schroedinger-Poisson systems. (orig.)
Quantum systems and symmetric spaces
International Nuclear Information System (INIS)
Olshanetsky, M.A.; Perelomov, A.M.
1978-01-01
Certain class of quantum systems with Hamiltonians related to invariant operators on symmetric spaces has been investigated. A number of physical facts have been derived as a consequence. In the classical limit completely integrable systems related to root systems are obtained
Projected Dipole Model for Quantum Plasmonics
DEFF Research Database (Denmark)
Yan, Wei; Wubs, Martijn; Mortensen, N. Asger
2015-01-01
of classical electrodynamics, while quantum properties are described accurately through an infinitely thin layer of dipoles oriented normally to the metal surface. The nonlocal polarizability of the dipole layer-the only introduced parameter-is mapped from the free-electron distribution near the metal surface...... as obtained with 1D quantum calculations, such as time-dependent density-functional theory (TDDFT), and is determined once and for all. The model can be applied in two and three dimensions to any system size that is tractable within classical electrodynamics, while capturing quantum plasmonic aspects......Quantum effects of plasmonic phenomena have been explored through ab initio studies, but only for exceedingly small metallic nanostructures, leaving most experimentally relevant structures too large to handle. We propose instead an effective description with the computationally appealing features...
The quantum Hall effect in quantum dot systems
International Nuclear Information System (INIS)
Beltukov, Y M; Greshnov, A A
2014-01-01
It is proposed to use quantum dots in order to increase the temperatures suitable for observation of the integer quantum Hall effect. A simple estimation using Fock-Darwin spectrum of a quantum dot shows that good part of carriers localized in quantum dots generate the intervals of plateaus robust against elevated temperatures. Numerical calculations employing local trigonometric basis and highly efficient kernel polynomial method adopted for computing the Hall conductivity reveal that quantum dots may enhance peak temperature for the effect by an order of magnitude, possibly above 77 K. Requirements to potentials, quality and arrangement of the quantum dots essential for practical realization of such enhancement are indicated. Comparison of our theoretical results with the quantum Hall measurements in InAs quantum dot systems from two experimental groups is also given
Scrambling in the quantum Lifshitz model
Plamadeala, Eugeniu; Fradkin, Eduardo
2018-06-01
We study signatures of chaos in the quantum Lifshitz model through out-of-time ordered correlators (OTOC) of current operators. This model is a free scalar field theory with dynamical critical exponent z = 2. It describes the quantum phase transition in 2D systems, such as quantum dimer models, between a phase with a uniform ground state to another one with spontaneously broken translation invariance. At the lowest temperatures the chaotic dynamics are dominated by a marginally irrelevant operator which induces a temperature dependent stiffness term. The numerical computations of OTOC exhibit a non-zero Lyapunov exponent (LE) in a wide range of temperatures and interaction strengths. The LE (in units of temperature) is a weakly temperature-dependent function; it vanishes at weak interaction and saturates for strong interaction. The Butterfly velocity increases monotonically with interaction strength in the studied region while remaining smaller than the interaction-induced velocity/stiffness.
Quantum thermodynamics of the resonant-level model with driven system-bath coupling
Haughian, Patrick; Esposito, Massimiliano; Schmidt, Thomas L.
2018-02-01
We study nonequilibrium thermodynamics in a fermionic resonant-level model with arbitrary coupling strength to a fermionic bath, taking the wide-band limit. In contrast to previous theories, we consider a system where both the level energy and the coupling strength depend explicitly on time. We find that, even in this generalized model, consistent thermodynamic laws can be obtained, up to the second order in the drive speed, by splitting the coupling energy symmetrically between system and bath. We define observables for the system energy, work, heat, and entropy, and calculate them using nonequilibrium Green's functions. We find that the observables fulfill the laws of thermodynamics, and connect smoothly to the known equilibrium results.
Quantum Dynamics in Biological Systems
Shim, Sangwoo
In the first part of this dissertation, recent efforts to understand quantum mechanical effects in biological systems are discussed. Especially, long-lived quantum coherences observed during the electronic energy transfer process in the Fenna-Matthews-Olson complex at physiological condition are studied extensively using theories of open quantum systems. In addition to the usual master equation based approaches, the effect of the protein structure is investigated in atomistic detail through the combined application of quantum chemistry and molecular dynamics simulations. To evaluate the thermalized reduced density matrix, a path-integral Monte Carlo method with a novel importance sampling approach is developed for excitons coupled to an arbitrary phonon bath at a finite temperature. In the second part of the thesis, simulations of molecular systems and applications to vibrational spectra are discussed. First, the quantum dynamics of a molecule is simulated by combining semiclassical initial value representation and density funcitonal theory with analytic derivatives. A computationally-tractable approximation to the sum-of-states formalism of Raman spectra is subsequently discussed.
Correlation effects in superconducting quantum dot systems
Pokorný, Vladislav; Žonda, Martin
2018-05-01
We study the effect of electron correlations on a system consisting of a single-level quantum dot with local Coulomb interaction attached to two superconducting leads. We use the single-impurity Anderson model with BCS superconducting baths to study the interplay between the proximity induced electron pairing and the local Coulomb interaction. We show how to solve the model using the continuous-time hybridization-expansion quantum Monte Carlo method. The results obtained for experimentally relevant parameters are compared with results of self-consistent second order perturbation theory as well as with the numerical renormalization group method.
Toy Models of a Nonassociative Quantum Mechanics
International Nuclear Information System (INIS)
Dzhunushaliev, V.
2007-01-01
Toy models of a nonassociative quantum mechanics are presented. The Heisenberg equation of motion is modified using a nonassociative commutator. Possible physical applications of a nonassociative quantum mechanics are considered. The idea is discussed that a nonassociative algebra could be the operator language for the nonperturbative quantum theory. In such approach the nonperturbative quantum theory has observables and un observables quantities.
Epidemic Dynamics in Open Quantum Spin Systems
Pérez-Espigares, Carlos; Marcuzzi, Matteo; Gutiérrez, Ricardo; Lesanovsky, Igor
2017-10-01
We explore the nonequilibrium evolution and stationary states of an open many-body system that displays epidemic spreading dynamics in a classical and a quantum regime. Our study is motivated by recent experiments conducted in strongly interacting gases of highly excited Rydberg atoms where the facilitated excitation of Rydberg states competes with radiative decay. These systems approximately implement open quantum versions of models for population dynamics or disease spreading where species can be in a healthy, infected or immune state. We show that in a two-dimensional lattice, depending on the dominance of either classical or quantum effects, the system may display a different kind of nonequilibrium phase transition. We moreover discuss the observability of our findings in laser driven Rydberg gases with particular focus on the role of long-range interactions.
Quantum dissipation of a simple conservative system
International Nuclear Information System (INIS)
Ibeh, G. J.; Mshelia, E. D.
2014-01-01
A model of quantum dissipative system is presented. Here dissipation of energy is demonstrated as based on the coupling of a free translational motion of a centre of mass to a harmonic oscillator. The two-dimensional arrangement of two coupled particles of different masses is considered.
Quantum simulation of strongly correlated condensed matter systems
Hofstetter, W.; Qin, T.
2018-04-01
We review recent experimental and theoretical progress in realizing and simulating many-body phases of ultracold atoms in optical lattices, which gives access to analog quantum simulations of fundamental model Hamiltonians for strongly correlated condensed matter systems, such as the Hubbard model. After a general introduction to quantum gases in optical lattices, their preparation and cooling, and measurement techniques for relevant observables, we focus on several examples, where quantum simulations of this type have been performed successfully during the past years: Mott-insulator states, itinerant quantum magnetism, disorder-induced localization and its interplay with interactions, and topological quantum states in synthetic gauge fields.
On quantum mechanics for macroscopic systems
International Nuclear Information System (INIS)
Primas, H.
1992-01-01
The parable of Schroedinger's cat may lead to several up-to date questions: how to treat open systems in quantum theory, how to treat thermodynamically irreversible processes in the quantum mechanics framework, how to explain, following the quantum theory, the existence, phenomenologically evident, of classical observables, what implies the predicted existence by the quantum theory of non localized macroscopic material object ?
Quantum tomography and classical propagator for quadratic quantum systems
International Nuclear Information System (INIS)
Man'ko, O.V.
1999-03-01
The classical propagator for tomographic probability (which describes the quantum state instead of wave function or density matrix) is presented for quadratic quantum systems and its relation to the quantum propagator is considered. The new formalism of quantum mechanics, based on the probability representation of the state, is applied to particular quadratic systems - the harmonic oscillator, particle's free motion, problems of an ion in a Paul trap and in asymmetric Penning trap, and to the process of stimulated Raman scattering. The classical propagator for these systems is written in an explicit form. (author)
Colloquium: Non-Markovian dynamics in open quantum systems
Breuer, Heinz-Peter; Laine, Elsi-Mari; Piilo, Jyrki; Vacchini, Bassano
2016-04-01
The dynamical behavior of open quantum systems plays a key role in many applications of quantum mechanics, examples ranging from fundamental problems, such as the environment-induced decay of quantum coherence and relaxation in many-body systems, to applications in condensed matter theory, quantum transport, quantum chemistry, and quantum information. In close analogy to a classical Markovian stochastic process, the interaction of an open quantum system with a noisy environment is often modeled phenomenologically by means of a dynamical semigroup with a corresponding time-independent generator in Lindblad form, which describes a memoryless dynamics of the open system typically leading to an irreversible loss of characteristic quantum features. However, in many applications open systems exhibit pronounced memory effects and a revival of genuine quantum properties such as quantum coherence, correlations, and entanglement. Here recent theoretical results on the rich non-Markovian quantum dynamics of open systems are discussed, paying particular attention to the rigorous mathematical definition, to the physical interpretation and classification, as well as to the quantification of quantum memory effects. The general theory is illustrated by a series of physical examples. The analysis reveals that memory effects of the open system dynamics reflect characteristic features of the environment which opens a new perspective for applications, namely, to exploit a small open system as a quantum probe signifying nontrivial features of the environment it is interacting with. This Colloquium further explores the various physical sources of non-Markovian quantum dynamics, such as structured environmental spectral densities, nonlocal correlations between environmental degrees of freedom, and correlations in the initial system-environment state, in addition to developing schemes for their local detection. Recent experiments addressing the detection, quantification, and control of
Security of practical quantum key distribution systems
Energy Technology Data Exchange (ETDEWEB)
Jain, Nitin
2015-02-24
This thesis deals with practical security aspects of quantum key distribution (QKD) systems. At the heart of the theoretical model of any QKD system lies a quantum-mechanical security proof that guarantees perfect secrecy of messages - based on certain assumptions. However, in practice, deviations between the theoretical model and the physical implementation could be exploited by an attacker to break the security of the system. These deviations may arise from technical limitations and operational imperfections in the physical implementation and/or unrealistic assumptions and insufficient constraints in the theoretical model. In this thesis, we experimentally investigate in depth several such deviations. We demonstrate the resultant vulnerabilities via proof-of-principle attacks on a commercial QKD system from ID Quantique. We also propose countermeasures against the investigated loopholes to secure both existing and future QKD implementations.
Quantum frustrated and correlated electron systems
Directory of Open Access Journals (Sweden)
P Thalmeier
2008-06-01
Full Text Available Quantum phases and fluctuations in correlated electron systems with frustration and competing interactions are reviewed. In the localized moment case the S=1/2 J1 - J2 - model on a square lattice exhibits a rich phase diagram with magnetic as well as exotic hidden order phases due to the interplay of frustration and quantum fluctuations. Their signature in magnetocaloric quantities and the high field magnetization are surveyed. The possible quantum phase transitions are discussed and applied to layered vanadium oxides. In itinerant electron systems frustration is an emergent property caused by electron correlations. It leads to enhanced spin fluctuations in a very large region of momentum space and therefore may cause heavy fermion type low temperature anomalies as in the 3d spinel compound LiV2O4 . Competing on-site and inter-site electronic interactions in Kondo compounds are responsible for the quantum phase transition between nonmagnetic Kondo singlet phase and magnetic phase such as observed in many 4f compounds. They may be described by Kondo lattice and simplified Kondo necklace type models. Their quantum phase transitions are investigated by numerical exact diagonalization and analytical bond operator methods respectively.
Quantum Brownian motion model for the stock market
Meng, Xiangyi; Zhang, Jian-Wei; Guo, Hong
2016-06-01
It is believed by the majority today that the efficient market hypothesis is imperfect because of market irrationality. Using the physical concepts and mathematical structures of quantum mechanics, we construct an econophysical framework for the stock market, based on which we analogously map massive numbers of single stocks into a reservoir consisting of many quantum harmonic oscillators and their stock index into a typical quantum open system-a quantum Brownian particle. In particular, the irrationality of stock transactions is quantitatively considered as the Planck constant within Heisenberg's uncertainty relationship of quantum mechanics in an analogous manner. We analyze real stock data of Shanghai Stock Exchange of China and investigate fat-tail phenomena and non-Markovian behaviors of the stock index with the assistance of the quantum Brownian motion model, thereby interpreting and studying the limitations of the classical Brownian motion model for the efficient market hypothesis from a new perspective of quantum open system dynamics.
Negele, John W
1988-01-01
This book explains the fundamental concepts and theoretical techniques used to understand the properties of quantum systems having large numbers of degrees of freedom. A number of complimentary approaches are developed, including perturbation theory; nonperturbative approximations based on functional integrals; general arguments based on order parameters, symmetry, and Fermi liquid theory; and stochastic methods.
Directory of Open Access Journals (Sweden)
Mihai V. Putz
2012-11-01
Full Text Available The present work advances the inverse quantum (IQ structural criterion for ordering and characterizing the porosity of the mesosystems based on the recently advanced ratio of the particle-to-wave nature of quantum objects within the extended Heisenberg uncertainty relationship through employing the quantum fluctuation, both for free and observed quantum scattering information, as computed upon spectral identification of the wave-numbers specific to the maximum of absorption intensity record, and to left-, right- and full-width at the half maximum (FWHM of the concerned bands of a given compound. It furnishes the hierarchy for classifying the mesoporous systems from more particle-related (porous, tight or ionic bindings to more wave behavior (free or covalent bindings. This so-called spectral inverse quantum (Spectral-IQ particle-to-wave assignment was illustrated on spectral measurement of FT-IR (bonding bands’ assignment for samples synthesized within different basic environment and different thermal treatment on mesoporous materials obtained by sol-gel technique with n-dodecyl trimethyl ammonium bromide (DTAB and cetyltrimethylammonium bromide (CTAB and of their combination as cosolvents. The results were analyzed in the light of the so-called residual inverse quantum information, accounting for the free binding potency of analyzed samples at drying temperature, and were checked by cross-validation with thermal decomposition techniques by endo-exo thermo correlations at a higher temperature.
Quantum uncertainty in critical systems with three spins interaction
International Nuclear Information System (INIS)
Carrijo, Thiago M; Avelar, Ardiley T; Céleri, Lucas C
2015-01-01
In this article we consider two spin-1/2 chains described, respectively, by the thermodynamic limit of the XY model with the usual two site interaction, and an extension of this model (without taking the thermodynamics limit), called XYT, were a three site interaction term is presented. To investigate the critical behaviour of such systems we employ tools from quantum information theory. Specifically, we show that the local quantum uncertainty, a quantity introduced in order to quantify the minimum quantum share of the variance of a local measurement, can be used to indicate quantum phase transitions presented by these models at zero temperature. Due to the connection of this quantity with the quantum Fisher information, the results presented here may be relevant for quantum metrology and quantum thermodynamics. (paper)
Optimal evolution models for quantum tomography
International Nuclear Information System (INIS)
Czerwiński, Artur
2016-01-01
The research presented in this article concerns the stroboscopic approach to quantum tomography, which is an area of science where quantum physics and linear algebra overlap. In this article we introduce the algebraic structure of the parametric-dependent quantum channels for 2-level and 3-level systems such that the generator of evolution corresponding with the Kraus operators has no degenerate eigenvalues. In such cases the index of cyclicity of the generator is equal to 1, which physically means that there exists one observable the measurement of which performed a sufficient number of times at distinct instants provides enough data to reconstruct the initial density matrix and, consequently, the trajectory of the state. The necessary conditions for the parameters and relations between them are introduced. The results presented in this paper seem to have considerable potential applications in experiments due to the fact that one can perform quantum tomography by conducting only one kind of measurement. Therefore, the analyzed evolution models can be considered optimal in the context of quantum tomography. Finally, we introduce some remarks concerning optimal evolution models in the case of n-dimensional Hilbert space. (paper)
QUANTUM AND CLASSICAL CORRELATIONS IN GAUSSIAN OPEN QUANTUM SYSTEMS
Directory of Open Access Journals (Sweden)
Aurelian ISAR
2015-01-01
Full Text Available In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous-variable quantum correlations (quantum entanglement and quantum discord for a system consisting of two noninteracting bosonic modes embedded in a thermal environment. We solve the Kossakowski-Lindblad master equation for the time evolution of the considered system and describe the entanglement and discord in terms of the covariance matrix for Gaussian input states. For all values of the temperature of the thermal reservoir, an initial separable Gaussian state remains separable for all times. We study the time evolution of logarithmic negativity, which characterizes the degree of entanglement, and show that in the case of an entangled initial squeezed thermal state, entanglement suppression takes place for all temperatures of the environment, including zero temperature. We analyze the time evolution of the Gaussian quantum discord, which is a measure of all quantum correlations in the bipartite state, including entanglement, and show that it decays asymptotically in time under the effect of the thermal bath. This is in contrast with the sudden death of entanglement. Before the suppression of the entanglement, the qualitative evolution of quantum discord is very similar to that of the entanglement. We describe also the time evolution of the degree of classical correlations and of quantum mutual information, which measures the total correlations of the quantum system.
Quantum Accelerators for High-performance Computing Systems
Energy Technology Data Exchange (ETDEWEB)
Humble, Travis S. [ORNL; Britt, Keith A. [ORNL; Mohiyaddin, Fahd A. [ORNL
2017-11-01
We define some of the programming and system-level challenges facing the application of quantum processing to high-performance computing. Alongside barriers to physical integration, prominent differences in the execution of quantum and conventional programs challenges the intersection of these computational models. Following a brief overview of the state of the art, we discuss recent advances in programming and execution models for hybrid quantum-classical computing. We discuss a novel quantum-accelerator framework that uses specialized kernels to offload select workloads while integrating with existing computing infrastructure. We elaborate on the role of the host operating system to manage these unique accelerator resources, the prospects for deploying quantum modules, and the requirements placed on the language hierarchy connecting these different system components. We draw on recent advances in the modeling and simulation of quantum computing systems with the development of architectures for hybrid high-performance computing systems and the realization of software stacks for controlling quantum devices. Finally, we present simulation results that describe the expected system-level behavior of high-performance computing systems composed from compute nodes with quantum processing units. We describe performance for these hybrid systems in terms of time-to-solution, accuracy, and energy consumption, and we use simple application examples to estimate the performance advantage of quantum acceleration.
On quantum chaos, stochastic webs and localization in a quantum mechanical kick system
International Nuclear Information System (INIS)
Engel, U.M.
2007-01-01
In this study quantum chaos is discussed using the kicked harmonic oscillator as a model system. The kicked harmonic oscillator is characterized by an exceptional scenario of weak chaos: In the case of resonance between the frequency of the harmonic oscillator and the frequency of the periodic forcing, stochastic webs in phase space are generated by the classical dynamics. For the quantum dynamics of this system it is shown that the resulting Husimi distributions in quantum phase space exhibit the same web-like structures as the classical webs. The quantum dynamics is characterized by diffusive energy growth - just as the classical dynamics in the channels of the webs. In the case of nonresonance, the classically diffusive dynamics is found to be quantum mechanically suppressed. This bounded energy growth, which corresponds to localization in quantum phase space, is explained analytically by mapping the system onto the Anderson model. In this way, within the context of quantum chaos, the kicked harmonic oscillator is characterized by exhibiting its noteworthy geometrical and dynamical properties both classically and quantum mechanically, while at the same time there are also very distinct quantum deviations from classical properties, the most prominent example being quantum localization. (orig.)
Linear dynamical quantum systems analysis, synthesis, and control
Nurdin, Hendra I
2017-01-01
This monograph provides an in-depth treatment of the class of linear-dynamical quantum systems. The monograph presents a detailed account of the mathematical modeling of these systems using linear algebra and quantum stochastic calculus as the main tools for a treatment that emphasizes a system-theoretic point of view and the control-theoretic formulations of quantum versions of familiar problems from the classical (non-quantum) setting, including estimation and filtering, realization theory, and feedback control. Both measurement-based feedback control (i.e., feedback control by a classical system involving a continuous-time measurement process) and coherent feedback control (i.e., feedback control by another quantum system without the intervention of any measurements in the feedback loop) are treated. Researchers and graduates studying systems and control theory, quantum probability and stochastics or stochastic control whether from backgrounds in mechanical or electrical engineering or applied mathematics ...
Quantum mechanical Hamiltonian models of discrete processes
International Nuclear Information System (INIS)
Benioff, P.
1981-01-01
Here the results of other work on quantum mechanical Hamiltonian models of Turing machines are extended to include any discrete process T on a countably infinite set A. The models are constructed here by use of scattering phase shifts from successive scatterers to turn on successive step interactions. Also a locality requirement is imposed. The construction is done by first associating with each process T a model quantum system M with associated Hilbert space H/sub M/ and step operator U/sub T/. Since U/sub T/ is not unitary in general, M, H/sub M/, and U/sub T/ are extended into a (continuous time) Hamiltonian model on a larger space which satisfies the locality requirement. The construction is compared with the minimal unitary dilation of U/sub T/. It is seen that the model constructed here is larger than the minimal one. However, the minimal one does not satisfy the locality requirement
Quantum Accelerators for High-Performance Computing Systems
Britt, Keith A.; Mohiyaddin, Fahd A.; Humble, Travis S.
2017-01-01
We define some of the programming and system-level challenges facing the application of quantum processing to high-performance computing. Alongside barriers to physical integration, prominent differences in the execution of quantum and conventional programs challenges the intersection of these computational models. Following a brief overview of the state of the art, we discuss recent advances in programming and execution models for hybrid quantum-classical computing. We discuss a novel quantu...
A quantum mechanical model of "dark matter"
Belokurov, V. V.; Shavgulidze, E. T.
2014-01-01
The role of singular solutions in some simple quantum mechanical models is studied. The space of the states of two-dimensional quantum harmonic oscillator is shown to be separated into sets of states with different properties.
Rabi model as a quantum coherent heat engine: From quantum biology to superconducting circuits
Altintas, Ferdi; Hardal, Ali Ü. C.; Müstecaplıoǧlu, Özgür E.
2015-02-01
We propose a multilevel quantum heat engine with a working medium described by a generalized Rabi model which consists of a two-level system coupled to a single-mode bosonic field. The model is constructed to be a continuum limit of a quantum biological description of light-harvesting complexes so that it can amplify quantum coherence by a mechanism which is a quantum analog of classical Huygens clocks. The engine operates in a quantum Otto cycle where the working medium is coupled to classical heat baths in the isochoric processes of the four-stroke cycle, while either the coupling strength or the resonance frequency is changed in the adiabatic stages. We found that such an engine can produce work with an efficiency close to the Carnot bound when it operates at low temperatures and in the ultrastrong-coupling regime. The interplay of the effects of quantum coherence and quantum correlations on the engine performance is discussed in terms of second-order coherence, quantum mutual information, and the logarithmic negativity of entanglement. We point out that the proposed quantum Otto engine can be implemented experimentally with modern circuit quantum electrodynamic systems where flux qubits can be coupled ultrastrongly to superconducting transmission-line resonators.
Quantum Simulation of the Quantum Rabi Model in a Trapped Ion
Lv, Dingshun; An, Shuoming; Liu, Zhenyu; Zhang, Jing-Ning; Pedernales, Julen S.; Lamata, Lucas; Solano, Enrique; Kim, Kihwan
2018-04-01
The quantum Rabi model, involving a two-level system and a bosonic field mode, is arguably the simplest and most fundamental model describing quantum light-matter interactions. Historically, due to the restricted parameter regimes of natural light-matter processes, the richness of this model has been elusive in the lab. Here, we experimentally realize a quantum simulation of the quantum Rabi model in a single trapped ion, where the coupling strength between the simulated light mode and atom can be tuned at will. The versatility of the demonstrated quantum simulator enables us to experimentally explore the quantum Rabi model in detail, including a wide range of otherwise unaccessible phenomena, as those happening in the ultrastrong and deep strong-coupling regimes. In this sense, we are able to adiabatically generate the ground state of the quantum Rabi model in the deep strong-coupling regime, where we are able to detect the nontrivial entanglement between the bosonic field mode and the two-level system. Moreover, we observe the breakdown of the rotating-wave approximation when the coupling strength is increased, and the generation of phonon wave packets that bounce back and forth when the coupling reaches the deep strong-coupling regime. Finally, we also measure the energy spectrum of the quantum Rabi model in the ultrastrong-coupling regime.
Quantum Simulation of the Quantum Rabi Model in a Trapped Ion
Directory of Open Access Journals (Sweden)
Dingshun Lv
2018-04-01
Full Text Available The quantum Rabi model, involving a two-level system and a bosonic field mode, is arguably the simplest and most fundamental model describing quantum light-matter interactions. Historically, due to the restricted parameter regimes of natural light-matter processes, the richness of this model has been elusive in the lab. Here, we experimentally realize a quantum simulation of the quantum Rabi model in a single trapped ion, where the coupling strength between the simulated light mode and atom can be tuned at will. The versatility of the demonstrated quantum simulator enables us to experimentally explore the quantum Rabi model in detail, including a wide range of otherwise unaccessible phenomena, as those happening in the ultrastrong and deep strong-coupling regimes. In this sense, we are able to adiabatically generate the ground state of the quantum Rabi model in the deep strong-coupling regime, where we are able to detect the nontrivial entanglement between the bosonic field mode and the two-level system. Moreover, we observe the breakdown of the rotating-wave approximation when the coupling strength is increased, and the generation of phonon wave packets that bounce back and forth when the coupling reaches the deep strong-coupling regime. Finally, we also measure the energy spectrum of the quantum Rabi model in the ultrastrong-coupling regime.
Characterizing and quantifying frustration in quantum many-body systems.
Giampaolo, S M; Gualdi, G; Monras, A; Illuminati, F
2011-12-23
We present a general scheme for the study of frustration in quantum systems. We introduce a universal measure of frustration for arbitrary quantum systems and we relate it to a class of entanglement monotones via an exact inequality. If all the (pure) ground states of a given Hamiltonian saturate the inequality, then the system is said to be inequality saturating. We introduce sufficient conditions for a quantum spin system to be inequality saturating and confirm them with extensive numerical tests. These conditions provide a generalization to the quantum domain of the Toulouse criteria for classical frustration-free systems. The models satisfying these conditions can be reasonably identified as geometrically unfrustrated and subject to frustration of purely quantum origin. Our results therefore establish a unified framework for studying the intertwining of geometric and quantum contributions to frustration.
On quantum models of the human mind.
Wang, Hongbin; Sun, Yanlong
2014-01-01
Recent years have witnessed rapidly increasing interests in developing quantum theoretical models of human cognition. Quantum mechanisms have been taken seriously to describe how the mind reasons and decides. Papers in this special issue report the newest results in the field. Here we discuss why the two levels of commitment, treating the human brain as a quantum computer and merely adopting abstract quantum probability principles to model human cognition, should be integrated. We speculate that quantum cognition models gain greater modeling power due to a richer representation scheme. Copyright © 2013 Cognitive Science Society, Inc.
Perturbative approach to Markovian open quantum systems.
Li, Andy C Y; Petruccione, F; Koch, Jens
2014-05-08
The exact treatment of Markovian open quantum systems, when based on numerical diagonalization of the Liouville super-operator or averaging over quantum trajectories, is severely limited by Hilbert space size. Perturbation theory, standard in the investigation of closed quantum systems, has remained much less developed for open quantum systems where a direct application to the Lindblad master equation is desirable. We present such a perturbative treatment which will be useful for an analytical understanding of open quantum systems and for numerical calculation of system observables which would otherwise be impractical.
Quantum systems, channels, information. A mathematical introduction
Energy Technology Data Exchange (ETDEWEB)
Holevo, Alexander S.
2012-07-01
The subject of this book is theory of quantum system presented from information science perspective. The central role is played by the concept of quantum channel and its entropic and information characteristics. Quantum information theory gives a key to understanding elusive phenomena of quantum world and provides a background for development of experimental techniques that enable measuring and manipulation of individual quantum systems. This is important for the new efficient applications such as quantum computing, communication and cryptography. Research in the field of quantum informatics, including quantum information theory, is in progress in leading scientific centers throughout the world. This book gives an accessible, albeit mathematically rigorous and self-contained introduction to quantum information theory, starting from primary structures and leading to fundamental results and to exiting open problems.
Software Systems for High-performance Quantum Computing
Energy Technology Data Exchange (ETDEWEB)
Humble, Travis S [ORNL; Britt, Keith A [ORNL
2016-01-01
Quantum computing promises new opportunities for solving hard computational problems, but harnessing this novelty requires breakthrough concepts in the design, operation, and application of computing systems. We define some of the challenges facing the development of quantum computing systems as well as software-based approaches that can be used to overcome these challenges. Following a brief overview of the state of the art, we present models for the quantum programming and execution models, the development of architectures for hybrid high-performance computing systems, and the realization of software stacks for quantum networking. This leads to a discussion of the role that conventional computing plays in the quantum paradigm and how some of the current challenges for exascale computing overlap with those facing quantum computing.
Eigenfunctions in chaotic quantum systems
Energy Technology Data Exchange (ETDEWEB)
Baecker, Arnd
2007-07-01
The structure of wavefunctions of quantum systems strongly depends on the underlying classical dynamics. In this text a selection of articles on eigenfunctions in systems with fully chaotic dynamics and systems with a mixed phase space is summarized. Of particular interest are statistical properties like amplitude distribution and spatial autocorrelation function and the implication of eigenfunction structures on transport properties. For systems with a mixed phase space the separation into regular and chaotic states does not always hold away from the semiclassical limit, such that chaotic states may completely penetrate into the region of the regular island. The consequences of this flooding are discussed and universal aspects highlighted. (orig.)
Eigenfunctions in chaotic quantum systems
International Nuclear Information System (INIS)
Baecker, Arnd
2007-01-01
The structure of wavefunctions of quantum systems strongly depends on the underlying classical dynamics. In this text a selection of articles on eigenfunctions in systems with fully chaotic dynamics and systems with a mixed phase space is summarized. Of particular interest are statistical properties like amplitude distribution and spatial autocorrelation function and the implication of eigenfunction structures on transport properties. For systems with a mixed phase space the separation into regular and chaotic states does not always hold away from the semiclassical limit, such that chaotic states may completely penetrate into the region of the regular island. The consequences of this flooding are discussed and universal aspects highlighted. (orig.)
Logical entropy of quantum dynamical systems
Directory of Open Access Journals (Sweden)
Ebrahimzadeh Abolfazl
2016-01-01
Full Text Available This paper introduces the concepts of logical entropy and conditional logical entropy of hnite partitions on a quantum logic. Some of their ergodic properties are presented. Also logical entropy of a quantum dynamical system is dehned and ergodic properties of dynamical systems on a quantum logic are investigated. Finally, the version of Kolmogorov-Sinai theorem is proved.
Quantum control of optomechanical systems
International Nuclear Information System (INIS)
Hofer, S.
2015-01-01
This thesis explores the prospects of entanglement-enhanced quantum control of optomechanical systems. We first discuss several pulsed schemes in which the radiation-pressure interaction is used to generate EPR entanglement between the mechanical mode of a cavity-optomechanical system and a travelling-wave light pulse. The entanglement created in this way can be used as a resource for mechanical state preparation. On the basis of this protocol, we introduce an optomechanical teleportation scheme to transfer an arbitrary light state onto the mechanical system. Furthermore, we describe how one can create a mechanical non-classical state (i.e., a state with a negative Wigner function) by single-photon detection, and, in a similar protocol, how optomechanical systems can be used to demonstrate the violation of a Bell inequality. The second part of the thesis is dedicated to time-continuous quantum control protocols. Making use of optimal-control techniques, we analyse measurement-based feedback cooling of a mechanical oscillator and demonstrate that ground-state cooling is achievable in the sideband-resolved, blue-detuned regime. We then extend this homodyne-detection based setup and introduce the notion of a time-continuous Bell measurement---a generalisation of the standard continuous variable Bell measurement to a continuous measurement setting. Combining this concept with continuous feedback we analyse the generation of a squeezed mechanical steady state via time-continuous teleportation, and the creation of bipartite mechanical entanglement by entanglement swapping. Finally we discuss an experiment demonstrating the evaluation of the conditional optomechanical quantum state by Kalman filtering, constituting a important step towards time-continuous quantum control of optomechanical systems and the possible realisation of the protocols presented in this thesis. (author) [de
Loss energy states of nonstationary quantum systems
International Nuclear Information System (INIS)
Dodonov, V.V.; Man'ko, V.I.
1978-01-01
The concept of loss energy states is introduced. The loss energy states of the quantum harmonic damping oscillator are considered in detail. The method of constructing the loss energy states for general multidimensional quadratic nonstationary quantum systems is briefly discussed
Investigating non-Markovian dynamics of quantum open systems
Chen, Yusui
Quantum open system coupled to a non-Markovian environment has recently attracted widespread interest for its important applications in quantum information processing and quantum dissipative systems. New phenomena induced by the non-Markovian environment have been discovered in variety of research areas ranging from quantum optics, quantum decoherence to condensed matter physics. However, the study of the non-Markovian quantum open system is known a difficult problem due to its technical complexity in deriving the fundamental equation of motion and elusive conceptual issues involving non-equilibrium dynamics for a strong coupled environment. The main purpose of this thesis is to introduce several new techniques of solving the quantum open systems including a systematic approach to dealing with non-Markovian master equations from a generic quantum-state diffusion (QSD) equation. In the first part of this thesis, we briefly introduce the non-Markovian quantum-state diffusion approach, and illustrate some pronounced non-Markovian quantum effects through numerical investigation on a cavity-QED model. Then we extend the non-Markovian QSD theory to an interesting model where the environment has a hierarchical structure, and find out the exact non-Markovian QSD equation of this model system. We observe the generation of quantum entanglement due to the interplay between the non-Markovian environment and the cavity. In the second part, we show an innovative method to obtain the exact non-Markovian master equations for a set of generic quantum open systems based on the corresponding non-Markovian QSD equations. Multiple-qubit systems and multilevel systems are discussed in details as two typical examples. Particularly, we derive the exact master equation for a model consisting of a three-level atom coupled to an optical cavity and controlled by an external laser field. Additionally, we discuss in more general context the mathematical similarity between the multiple
Quantum-like behavior without quantum physics I : Kinematics of neural-like systems.
Selesnick, S A; Rawling, J P; Piccinini, Gualtiero
2017-09-01
Recently there has been much interest in the possible quantum-like behavior of the human brain in such functions as cognition, the mental lexicon, memory, etc., producing a vast literature. These studies are both empirical and theoretical, the tenets of the theory in question being mainly, and apparently inevitably, those of quantum physics itself, for lack of other arenas in which quantum-like properties are presumed to obtain. However, attempts to explain this behavior on the basis of actual quantum physics going on at the atomic or molecular level within some element of brain or neuronal anatomy (other than the ordinary quantum physics that underlies everything), do not seem to survive much scrutiny. Moreover, it has been found empirically that the usual physics-like Hilbert space model seems not to apply in detail to human cognition in the large. In this paper we lay the groundwork for a theory that might explain the provenance of quantum-like behavior in complex systems whose internal structure is essentially hidden or inaccessible. The approach is via the logic obeyed by these systems which is similar to, but not identical with, the logic obeyed by actual quantum systems. The results reveal certain effects in such systems which, though quantum-like, are not identical to the kinds of quantum effects found in physics. These effects increase with the size of the system.
International Nuclear Information System (INIS)
Lorenzen, F.; Moussa, M. H. Y.; Ponte, M. A. de; Almeida, N. G. de
2009-01-01
We analyze the dynamical behavior of a quantum system under the actions of two counteracting baths: the inevitable energy draining reservoir and, in opposition, exciting the system, an engineered Glauber's amplifier. We follow the system dynamics towards equilibrium to map its distinctive behavior arising from the interplay of attenuation and amplification. Such a mapping, with the corresponding parameter regimes, is achieved by calculating the evolution of both the excitation and the Glauber-Sudarshan P function. Techniques to compute the decoherence and the fidelity of quantum states under the action of both counteracting baths, based on the Wigner function rather than the density matrix, are also presented. They enable us to analyze the similarity of the evolved state vector of the system with respect to the original one, for all regimes of parameters. Applications of this attenuation-amplification interplay are discussed.
Sokkar, Pandian; Boulanger, Eliot; Thiel, Walter; Sanchez-Garcia, Elsa
2015-04-14
We present a hybrid quantum mechanics/molecular mechanics/coarse-grained (QM/MM/CG) multiresolution approach for solvated biomolecular systems. The chemically important active-site region is treated at the QM level. The biomolecular environment is described by an atomistic MM force field, and the solvent is modeled with the CG Martini force field using standard or polarizable (pol-CG) water. Interactions within the QM, MM, and CG regions, and between the QM and MM regions, are treated in the usual manner, whereas the CG-MM and CG-QM interactions are evaluated using the virtual sites approach. The accuracy and efficiency of our implementation is tested for two enzymes, chorismate mutase (CM) and p-hydroxybenzoate hydroxylase (PHBH). In CM, the QM/MM/CG potential energy scans along the reaction coordinate yield reaction energies that are too large, both for the standard and polarizable Martini CG water models, which can be attributed to adverse effects of using large CG water beads. The inclusion of an atomistic MM water layer (10 Å for uncharged CG water and 5 Å for polarizable CG water) around the QM region improves the energy profiles compared to the reference QM/MM calculations. In analogous QM/MM/CG calculations on PHBH, the use of the pol-CG description for the outer water does not affect the stabilization of the highly charged FADHOOH-pOHB transition state compared to the fully atomistic QM/MM calculations. Detailed performance analysis in a glycine-water model system indicates that computation times for QM energy and gradient evaluations at the density functional level are typically reduced by 40-70% for QM/MM/CG relative to fully atomistic QM/MM calculations.
Sidles, John A.; Garbini, Joseph L.; Harrell, Lee E.; Hero, Alfred O.; Jacky, Jonathan P.; Malcomb, Joseph R.; Norman, Anthony G.; Williamson, Austin M.
2008-01-01
This article presents numerical recipes for simulating high-temperature and non-equilibrium quantum spin systems that are continuously measured and controlled. The notion of a spin system is broadly conceived, in order to encompass macroscopic test masses as the limiting case of large-j spins. The simulation technique has three stages: first the deliberate introduction of noise into the simulation, then the conversion of that noise into an equivalent continuous measurement and control process...
Global quantum discord in multipartite systems
Energy Technology Data Exchange (ETDEWEB)
Rulli, C. C.; Sarandy, M. S. [Instituto de Fisica, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, Gragoata, 24210-346 Niteroi, RJ (Brazil)
2011-10-15
We propose a global measure for quantum correlations in multipartite systems, which is obtained by suitably recasting the quantum discord in terms of relative entropy and local von Neumann measurements. The measure is symmetric with respect to subsystem exchange and is shown to be nonnegative for an arbitrary state. As an illustration, we consider tripartite correlations in the Werner-GHZ (Greenberger-Horne-Zeilinger) state and multipartite correlations at quantum criticality. In particular, in contrast with the pairwise quantum discord, we show that the global quantum discord is able to characterize the infinite-order quantum phase transition in the Ashkin-Teller spin chain.
QuantumOptics.jl: A Julia framework for simulating open quantum systems
Krämer, Sebastian; Plankensteiner, David; Ostermann, Laurin; Ritsch, Helmut
2018-06-01
We present an open source computational framework geared towards the efficient numerical investigation of open quantum systems written in the Julia programming language. Built exclusively in Julia and based on standard quantum optics notation, the toolbox offers speed comparable to low-level statically typed languages, without compromising on the accessibility and code readability found in dynamic languages. After introducing the framework, we highlight its features and showcase implementations of generic quantum models. Finally, we compare its usability and performance to two well-established and widely used numerical quantum libraries.
Reversibility in Quantum Models of Stochastic Processes
Gier, David; Crutchfield, James; Mahoney, John; James, Ryan
Natural phenomena such as time series of neural firing, orientation of layers in crystal stacking and successive measurements in spin-systems are inherently probabilistic. The provably minimal classical models of such stochastic processes are ɛ-machines, which consist of internal states, transition probabilities between states and output values. The topological properties of the ɛ-machine for a given process characterize the structure, memory and patterns of that process. However ɛ-machines are often not ideal because their statistical complexity (Cμ) is demonstrably greater than the excess entropy (E) of the processes they represent. Quantum models (q-machines) of the same processes can do better in that their statistical complexity (Cq) obeys the relation Cμ >= Cq >= E. q-machines can be constructed to consider longer lengths of strings, resulting in greater compression. With code-words of sufficiently long length, the statistical complexity becomes time-symmetric - a feature apparently novel to this quantum representation. This result has ramifications for compression of classical information in quantum computing and quantum communication technology.
Relationship between quantum-mechanical systems with and without monopoles
International Nuclear Information System (INIS)
Mardoyan, Levon; Nersessian, Armen; Yeranyan, Armen
2007-01-01
It is shown that the inclusion of the monopole field in the three- and five-dimensional spherically symmetric quantum-mechanical systems, with the addition of the special centrifugal term, leads to the lift of the range of the total and azimuth quantum numbers only. Meanwhile the functional dependence of the energy spectra on quantum numbers does not undergo any changes. We also present a new integrable model of the spherical oscillator
Quantum-classical correspondence in steady states of nonadiabatic systems
International Nuclear Information System (INIS)
Fujii, Mikiya; Yamashita, Koichi
2015-01-01
We first present nonadiabatic path integral which is exact formulation of quantum dynamics in nonadiabatic systems. Then, by applying the stationary phase approximations to the nonadiabatic path integral, a semiclassical quantization condition, i.e., quantum-classical correspondence, for steady states of nonadiabatic systems is presented as a nonadiabatic trace formula. The present quantum-classical correspondence indicates that a set of primitive hopping periodic orbits, which are invariant under time evolution in the phase space of the slow degree of freedom, should be quantized. The semiclassical quantization is then applied to a simple nonadiabatic model and accurately reproduces exact quantum energy levels
Khrennikova, Polina; Haven, Emmanuel; Khrennikov, Andrei
2014-04-01
The Gorini-Kossakowski-Sudarshan-Lindblad equation allows us to model the process of decision making in US elections. The crucial point we attempt to make is that the voter's mental state can be represented as a superposition of two possible choices for either republicans or democrats. However, reality dictates a more complicated situation: typically a voter participates in two elections, i.e. the congress and the presidential elections. In both elections the voter has to decide between two choices. This very feature of the US election system requires that the mental state is represented by a 2-qubit state corresponding to the superposition of 4 different choices. The main issue is to describe the dynamics of the voters' mental states taking into account the mental and political environment. What is novel in this paper is that we apply the theory of open quantum systems to social science. The quantum master equation describes the resolution of uncertainty (represented in the form of superposition) to a definite choice.
A quantum-implementable neural network model
Chen, Jialin; Wang, Lingli; Charbon, Edoardo
2017-10-01
A quantum-implementable neural network, namely quantum probability neural network (QPNN) model, is proposed in this paper. QPNN can use quantum parallelism to trace all possible network states to improve the result. Due to its unique quantum nature, this model is robust to several quantum noises under certain conditions, which can be efficiently implemented by the qubus quantum computer. Another advantage is that QPNN can be used as memory to retrieve the most relevant data and even to generate new data. The MATLAB experimental results of Iris data classification and MNIST handwriting recognition show that much less neuron resources are required in QPNN to obtain a good result than the classical feedforward neural network. The proposed QPNN model indicates that quantum effects are useful for real-life classification tasks.
Past Quantum States of a Monitored System
DEFF Research Database (Denmark)
Gammelmark, Søren; Julsgaard, Brian; Mølmer, Klaus
2013-01-01
A density matrix ρ(t) yields probabilistic information about the outcome of measurements on a quantum system. We introduce here the past quantum state, which, at time T, accounts for the state of a quantum system at earlier times t...(t) and E(t), conditioned on the dynamics and the probing of the system until t and in the time interval [t, T], respectively. The past quantum state is characterized by its ability to make better predictions for the unknown outcome of any measurement at t than the conventional quantum state at that time....... On the one hand, our formalism shows how smoothing procedures for estimation of past classical signals by a quantum probe [M. Tsang, Phys. Rev. Lett. 102 250403 (2009)] apply also to describe the past state of the quantum system itself. On the other hand, it generalizes theories of pre- and postselected...
Quantum kinematics of spacetime. II. A model quantum cosmology with real clocks
International Nuclear Information System (INIS)
Hartle, J.B.
1988-01-01
Nonrelativistic model quantum cosmologies are studied in which the basic time variable is the position of a clock indicator and the time parameter of the Schroedinger equation is an unobservable label. Familiar Schroedinger-Heisenberg quantum mechanics emerges if the clock is ideal: arbitrarily accurate for arbitrarily long times. More realistically, however, the usual formulation emerges only as an approximation appropriate to states of this model universe in which part of the system functions approximately as an ideal clock. It is suggested that the quantum kinematics of spacetime theories such as general relativity may be analogous to those of this model. In particular it is suggested that our familiar notion of time in quantum mechanics is not an inevitable property of a general quantum framework but an approximate feature of specific initial conditions
Quantum chaos and holographic tensor models
Energy Technology Data Exchange (ETDEWEB)
Krishnan, Chethan [Center for High Energy Physics, Indian Institute of Science,Bangalore 560012 (India); Sanyal, Sambuddha [International Center for Theoretical Sciences, Tata Institute of Fundamental Research,Bangalore 560089 (India); Subramanian, P.N. Bala [Center for High Energy Physics, Indian Institute of Science,Bangalore 560012 (India)
2017-03-10
A class of tensor models were recently outlined as potentially calculable examples of holography: their perturbative large-N behavior is similar to the Sachdev-Ye-Kitaev (SYK) model, but they are fully quantum mechanical (in the sense that there is no quenched disorder averaging). These facts make them intriguing tentative models for quantum black holes. In this note, we explicitly diagonalize the simplest non-trivial Gurau-Witten tensor model and study its spectral and late-time properties. We find parallels to (a single sample of) SYK where some of these features were recently attributed to random matrix behavior and quantum chaos. In particular, the spectral form factor exhibits a dip-ramp-plateau structure after a running time average, in qualitative agreement with SYK. But we also observe that even though the spectrum has a unique ground state, it has a huge (quasi-?)degeneracy of intermediate energy states, not seen in SYK. If one ignores the delta function due to the degeneracies however, there is level repulsion in the unfolded spacing distribution hinting chaos. Furthermore, there are gaps in the spectrum. The system also has a spectral mirror symmetry which we trace back to the presence of a unitary operator with which the Hamiltonian anticommutes. We use it to argue that to the extent that the model exhibits random matrix behavior, it is controlled not by the Dyson ensembles, but by the BDI (chiral orthogonal) class in the Altland-Zirnbauer classification.
Quantum chaos and holographic tensor models
International Nuclear Information System (INIS)
Krishnan, Chethan; Sanyal, Sambuddha; Subramanian, P.N. Bala
2017-01-01
A class of tensor models were recently outlined as potentially calculable examples of holography: their perturbative large-N behavior is similar to the Sachdev-Ye-Kitaev (SYK) model, but they are fully quantum mechanical (in the sense that there is no quenched disorder averaging). These facts make them intriguing tentative models for quantum black holes. In this note, we explicitly diagonalize the simplest non-trivial Gurau-Witten tensor model and study its spectral and late-time properties. We find parallels to (a single sample of) SYK where some of these features were recently attributed to random matrix behavior and quantum chaos. In particular, the spectral form factor exhibits a dip-ramp-plateau structure after a running time average, in qualitative agreement with SYK. But we also observe that even though the spectrum has a unique ground state, it has a huge (quasi-?)degeneracy of intermediate energy states, not seen in SYK. If one ignores the delta function due to the degeneracies however, there is level repulsion in the unfolded spacing distribution hinting chaos. Furthermore, there are gaps in the spectrum. The system also has a spectral mirror symmetry which we trace back to the presence of a unitary operator with which the Hamiltonian anticommutes. We use it to argue that to the extent that the model exhibits random matrix behavior, it is controlled not by the Dyson ensembles, but by the BDI (chiral orthogonal) class in the Altland-Zirnbauer classification.
Entangling transformations in composite finite quantum systems
International Nuclear Information System (INIS)
Vourdas, A
2003-01-01
Phase space methods are applied in the context of finite quantum systems. 'Galois quantum systems' (with a dimension which is a power of a prime number) are considered, and symplectic Sp(2,Z(d)) transformations are studied. Composite systems comprising two finite quantum systems are also considered. Symplectic Sp(4,Z(d)) transformations are classified into local and entangling ones and the necessary matrices which perform such transformations are calculated numerically
Classical and quantum simulations of many-body systems
Energy Technology Data Exchange (ETDEWEB)
Murg, Valentin
2008-04-07
This thesis is devoted to recent developments in the fields of classical and quantum simulations of many-body systems. We describe new classical algorithms that overcome problems apparent in conventional renormalization group and Monte Carlo methods. These algorithms make possible the detailed study of finite temperature properties of 2-D classical and 1-D quantum systems, the investigation of ground states of 2-D frustrated or fermionic systems and the analysis of time evolutions of 2-D quantum systems. Furthermore, we propose new 'analog' quantum simulators that are able to realize interesting models such as a Tonks-Girardeau gas or a frustrated spin-1/2 XY model on a trigonal lattice. These quantum simulators make use of optical lattices and trapped ions and are technically feasible. In fact, the Tonks-Girardeau gas has been realized experimentally and we provide a detailed comparison between the experimental data and the theoretical predictions. (orig.)
Classical and quantum simulations of many-body systems
International Nuclear Information System (INIS)
Murg, Valentin
2008-01-01
This thesis is devoted to recent developments in the fields of classical and quantum simulations of many-body systems. We describe new classical algorithms that overcome problems apparent in conventional renormalization group and Monte Carlo methods. These algorithms make possible the detailed study of finite temperature properties of 2-D classical and 1-D quantum systems, the investigation of ground states of 2-D frustrated or fermionic systems and the analysis of time evolutions of 2-D quantum systems. Furthermore, we propose new ''analog'' quantum simulators that are able to realize interesting models such as a Tonks-Girardeau gas or a frustrated spin-1/2 XY model on a trigonal lattice. These quantum simulators make use of optical lattices and trapped ions and are technically feasible. In fact, the Tonks-Girardeau gas has been realized experimentally and we provide a detailed comparison between the experimental data and the theoretical predictions. (orig.)
Thermodynamics of Weakly Measured Quantum Systems.
Alonso, Jose Joaquin; Lutz, Eric; Romito, Alessandro
2016-02-26
We consider continuously monitored quantum systems and introduce definitions of work and heat along individual quantum trajectories that are valid for coherent superposition of energy eigenstates. We use these quantities to extend the first and second laws of stochastic thermodynamics to the quantum domain. We illustrate our results with the case of a weakly measured driven two-level system and show how to distinguish between quantum work and heat contributions. We finally employ quantum feedback control to suppress detector backaction and determine the work statistics.
Electronic structure and microscopic model of V2GeO4F2-a quantum spin system with S = 1
International Nuclear Information System (INIS)
Rahaman, Badiur; Saha-Dasgupta, T
2007-01-01
We present first-principles density functional calculations and downfolding studies of the electronic and magnetic properties of the oxide-fluoride quantum spin system V 2 GeO 4 F 2 . We discuss explicitly the nature of the exchange paths and provide quantitative estimates of magnetic exchange couplings. A microscopic modelling based on analysis of the electronic structure of this systems puts it in the interesting class of weakly coupled alternating chain S = 1 systems. Based on the microscopic model, we make inferrences about its spin excitation spectra, which needs to be tested by rigorous experimental study
Maraga, Anna; Chiocchetta, Alessio; Mitra, Aditi; Gambassi, Andrea
2015-10-01
The nonequilibrium dynamics of an isolated quantum system after a sudden quench to a dynamical critical point is expected to be characterized by scaling and universal exponents due to the absence of time scales. We explore these features for a quench of the parameters of a Hamiltonian with O(N) symmetry, starting from a ground state in the disordered phase. In the limit of infinite N, the exponents and scaling forms of the relevant two-time correlation functions can be calculated exactly. Our analytical predictions are confirmed by the numerical solution of the corresponding equations. Moreover, we find that the same scaling functions, yet with different exponents, also describe the coarsening dynamics for quenches below the dynamical critical point.
The quantum Rabi model: solution and dynamics
International Nuclear Information System (INIS)
Xie, Qiongtao; Zhong, Honghua; Lee, Chaohong; Batchelor, Murray T
2017-01-01
This article presents a review of recent developments on various aspects of the quantum Rabi model. Particular emphasis is given on the exact analytic solution obtained in terms of confluent Heun functions. The analytic solutions for various generalisations of the quantum Rabi model are also discussed. Results are also reviewed on the level statistics and the dynamics of the quantum Rabi model. The article concludes with an introductory overview of several experimental realisations of the quantum Rabi model. An outlook towards future developments is also given. (topical review)
The Conditional Entropy Power Inequality for Bosonic Quantum Systems
De Palma, Giacomo; Trevisan, Dario
2018-06-01
We prove the conditional Entropy Power Inequality for Gaussian quantum systems. This fundamental inequality determines the minimum quantum conditional von Neumann entropy of the output of the beam-splitter or of the squeezing among all the input states where the two inputs are conditionally independent given the memory and have given quantum conditional entropies. We also prove that, for any couple of values of the quantum conditional entropies of the two inputs, the minimum of the quantum conditional entropy of the output given by the conditional Entropy Power Inequality is asymptotically achieved by a suitable sequence of quantum Gaussian input states. Our proof of the conditional Entropy Power Inequality is based on a new Stam inequality for the quantum conditional Fisher information and on the determination of the universal asymptotic behaviour of the quantum conditional entropy under the heat semigroup evolution. The beam-splitter and the squeezing are the central elements of quantum optics, and can model the attenuation, the amplification and the noise of electromagnetic signals. This conditional Entropy Power Inequality will have a strong impact in quantum information and quantum cryptography. Among its many possible applications there is the proof of a new uncertainty relation for the conditional Wehrl entropy.
2014-09-18
researcher discovered issues that affected the research. The most important of 19 these was the lack of advanced math functions in the DEVS- JAVA ...to install a comparative JAVA -language scientific library. This issue was reported to RTSync, but there was no fix to this issue during the research...and tracking systems necessary to deal with high relative angular motion. random motion of the platforms. and atmospheric turbulence that would be
A Simplified Quantum Mechanical Model of Diatomic Molecules
Nielsen, Lars Drud
1978-01-01
Introduces a simple one-dimensional model of a diatomic molecule that can explain all the essential features of a real two particle quantum mechanical system and gives quantitative results in fair agreement with those of a hydrogen molecule. (GA)
The Dynamical Invariant of Open Quantum System
Wu, S. L.; Zhang, X. Y.; Yi, X. X.
2015-01-01
The dynamical invariant, whose expectation value is constant, is generalized to open quantum system. The evolution equation of dynamical invariant (the dynamical invariant condition) is presented for Markovian dynamics. Different with the dynamical invariant for the closed quantum system, the evolution of the dynamical invariant for the open quantum system is no longer unitary, and the eigenvalues of it are time-dependent. Since any hermitian operator fulfilling dynamical invariant condition ...
Quantum simulation of transverse Ising models with Rydberg atoms
Schauss, Peter
2018-04-01
Quantum Ising models are canonical models for the study of quantum phase transitions (Sachdev 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press)) and are the underlying concept for many analogue quantum computing and quantum annealing ideas (Tanaka et al Quantum Spin Glasses, Annealing and Computation (Cambridge: Cambridge University Press)). Here we focus on the implementation of finite-range interacting Ising spin models, which are barely tractable numerically. Recent experiments with cold atoms have reached the interaction-dominated regime in quantum Ising magnets via optical coupling of trapped neutral atoms to Rydberg states. This approach allows for the tunability of all relevant terms in an Ising spin Hamiltonian with 1/{r}6 interactions in transverse and longitudinal fields. This review summarizes the recent progress of these implementations in Rydberg lattices with site-resolved detection. Strong correlations in quantum Ising models have been observed in several experiments, starting from a single excitation in the superatom regime up to the point of crystallization. The rapid progress in this field makes spin systems based on Rydberg atoms a promising platform for quantum simulation because of the unmatched flexibility and strength of interactions combined with high control and good isolation from the environment.
Quantum entanglement and quantum information in biological systems (DNA)
Hubač, Ivan; Švec, Miloslav; Wilson, Stephen
2017-12-01
Recent studies of DNA show that the hydrogen bonds between given base pairs can be treated as diabatic systems with spin-orbit coupling. For solid state systems strong diabaticity and spin-orbit coupling the possibility of forming Majorana fermions has been discussed. We analyze the hydrogen bonds in the base pairs in DNA from this perspective. Our analysis is based on a quasiparticle supersymmetric transformation which couples electronic and vibrational motion and includes normal coordinates and the corresponding momenta. We define qubits formed by Majorana fermions in the hydrogen bonds and also discuss the entangled states in base pairs. Quantum information and quantum entropy are introduced. In addition to the well-known classical information connected with the DNA base pairs, we also consider quantum information and show that the classical and quantum information are closely connected.
Quantum model of light transmission in array waveguide gratings.
Capmany, J; Mora, J; Fernández-Pousa, C R; Muñoz, P
2013-06-17
We develop, to the best of our knowledge, the first model for an array waveguide grating (AWG) device subject to quantum inputs and analyze its basic transformation functionalities for single-photon states. A commercial, cyclic AWG is experimentally characterized with weak input coherent states as a means of exploring its behaviour under realistic quantum detection. In particular it is shown the existence of a cutoff value of the average photon number below which quantum crosstalk between AWG ports is negligible with respect to dark counts. These results can be useful when considering the application of AWG devices to integrated quantum photonic systems.
Open quantum system approach to the modeling of spin recombination reactions.
Tiersch, M; Steiner, U E; Popescu, S; Briegel, H J
2012-04-26
In theories of spin-dependent radical pair reactions, the time evolution of the radical pair, including the effect of the chemical kinetics, is described by a master equation in the Liouville formalism. For the description of the chemical kinetics, a number of possible reaction operators have been formulated in the literature. In this work, we present a framework that allows for a unified description of the various proposed mechanisms and the forms of reaction operators for the spin-selective recombination processes. On the basis of the concept that master equations can be derived from a microscopic description of the spin system interacting with external degrees of freedom, it is possible to gain insight into the underlying microscopic processes and develop a systematic approach toward determining the specific form of the reaction operator in concrete scenarios.
Quantum speed limits in open system dynamics.
del Campo, A; Egusquiza, I L; Plenio, M B; Huelga, S F
2013-02-01
Bounds to the speed of evolution of a quantum system are of fundamental interest in quantum metrology, quantum chemical dynamics, and quantum computation. We derive a time-energy uncertainty relation for open quantum systems undergoing a general, completely positive, and trace preserving evolution which provides a bound to the quantum speed limit. When the evolution is of the Lindblad form, the bound is analogous to the Mandelstam-Tamm relation which applies in the unitary case, with the role of the Hamiltonian being played by the adjoint of the generator of the dynamical semigroup. The utility of the new bound is exemplified in different scenarios, ranging from the estimation of the passage time to the determination of precision limits for quantum metrology in the presence of dephasing noise.
Quantum open system theory: bipartite aspects.
Yu, T; Eberly, J H
2006-10-06
We demonstrate in straightforward calculations that even under ideally weak noise the relaxation of bipartite open quantum systems contains elements not previously encountered in quantum noise physics. While additivity of decay rates is known to be generic for decoherence of a single system, we demonstrate that it breaks down for bipartite coherence of even the simplest composite systems.
Hybrid quantum systems: Outsourcing superconducting qubits
Cleland, Andrew
Superconducting qubits offer excellent prospects for manipulating quantum information, with good qubit lifetimes, high fidelity single- and two-qubit gates, and straightforward scalability (admittedly with multi-dimensional interconnect challenges). One interesting route for experimental development is the exploration of hybrid systems, i.e. coupling superconducting qubits to other systems. I will report on our group's efforts to develop approaches that will allow interfacing superconducting qubits in a quantum-coherent fashion to spin defects in solids, to optomechanical devices, and to resonant nanomechanical structures. The longer term goals of these efforts include transferring quantum states between different qubit systems; generating and receiving ``flying'' acoustic phonon-based as well as optical photon-based qubits; and ultimately developing systems that can be used for quantum memory, quantum computation and quantum communication, the last in both the microwave and fiber telecommunications bands. Work is supported by Grants from AFOSR, ARO, DOE and NSF.
Quantum entanglement in inhomogeneous 1D systems
Ramírez, Giovanni
2018-04-01
The entanglement entropy of the ground state of a quantum lattice model with local interactions usually satisfies an area law. However, in 1D systems some violations may appear in inhomogeneous systems or in random systems. In our inhomogeneous system, the inhomogeneity parameter, h, allows us to tune different regimes where a volumetric violation of the area law appears. We apply the strong disorder renormalization group to describe the maximally entangled state of the system in a strong inhomogeneity regime. Moreover, in a weak inhomogeneity regime, we use a continuum approximation to describe the state as a thermo-field double in a conformal field theory with an effective temperature which is proportional to the inhomogeneity parameter of the system. The latter description also shows that the universal scaling features of this model are captured by a massless Dirac fermion in a curved space-time with constant negative curvature R = h2, providing another example of the relation between quantum entanglement and space-time geometry. The results we discuss here were already published before, but here we present a more didactic exposure of basic concepts of the rainbow system for the students attending the Latin American School of Physics "Marcos Moshinsky" 2017.
Quantum ergodicity in the SYK model
Altland, Alexander; Bagrets, Dmitry
2018-05-01
We present a replica path integral approach describing the quantum chaotic dynamics of the SYK model at large time scales. The theory leads to the identification of non-ergodic collective modes which relax and eventually give way to an ergodic long time regime (describable by random matrix theory). These modes, which play a role conceptually similar to the diffusion modes of dirty metals, carry quantum numbers which we identify as the generators of the Clifford algebra: each of the 2N different products that can be formed from N Majorana operators defines one effective mode. The competition between a decay rate quickly growing in the order of the product and a density of modes exponentially growing in the same parameter explains the characteristics of the system's approach to the ergodic long time regime. We probe this dynamics through various spectral correlation functions and obtain favorable agreement with existing numerical data.
Controllable Subspaces of Open Quantum Dynamical Systems
International Nuclear Information System (INIS)
Zhang Ming; Gong Erling; Xie Hongwei; Hu Dewen; Dai Hongyi
2008-01-01
This paper discusses the concept of controllable subspace for open quantum dynamical systems. It is constructively demonstrated that combining structural features of decoherence-free subspaces with the ability to perform open-loop coherent control on open quantum systems will allow decoherence-free subspaces to be controllable. This is in contrast to the observation that open quantum dynamical systems are not open-loop controllable. To a certain extent, this paper gives an alternative control theoretical interpretation on why decoherence-free subspaces can be useful for quantum computation.
Description of an open quantum mechanical system
International Nuclear Information System (INIS)
Rotter, I.; Forschungszentrum Rossendorf e.V.
1994-05-01
A model for the description of an open quantum mechanical many-particle system is formulated. It starts from the shell model and treats the continuous states by a coupled channels method. The mixing of the discrete shell model states via the continuum of decay channels results in the genuine decaying states of the system. These states are eigenstates of a non-Hermitean Hamilton operator the eigenvalues of which give both the energies and the widths of the states. All correlations between two particles which are caused by the two-particle residual interaction, are taken into account including those via the continuum. In the formalism describing the open quantum mechanical system, the coupling between the system and its environment appears nonlinearly. If the resonance states start to overlap, a redistribution of the spectroscopic values ('trapping effect') takes place. As a result, the complexity of the system is reduced at high level density, structures in space and time are formed. This redistribution describes, on the one hand, the transition from the well-known nuclear properties at low level density to those at high level density and fits, on the other hand, into the concept of selforganization. (orig.)
Linear Quantum Systems: Non-Classical States and Robust Stability
2016-06-29
modulation and entanglement in a compound gradient echo memory, Physical Review A 93(2) 023809 2016. We present a theoretical model for a Kerr...Carvalho, M. Hedges and M R James, Analysis of the operation of gradient echo memories using a quantum input-output model, New Journal of Physics , 15...new structured uncertainty methods that ensure robust stability of quantum systems based on nominal linear models, and (v) physical realizability
Head-Marsden, Kade; Mazziotti, David A
2015-02-07
For an open, time-dependent quantum system, Lindblad derived the most general modification of the quantum Liouville equation in the Markovian approximation that models environmental effects while preserving the non-negativity of the system's density matrix. While Lindblad's modification is correct for N-electron density matrices, solution of the Liouville equation with a Lindblad operator causes the one-electron reduced density matrix (1-RDM) to violate the Pauli exclusion principle. Consequently, after a short time, the 1-RDM is not representable by an ensemble N-electron density matrix (not ensemble N-representable). In this communication, we derive the necessary and sufficient constraints on the Lindbladian matrix within the Lindblad operator to ensure that the 1-RDM remains N-representable for all time. The theory is illustrated by considering the relaxation of an excitation in several molecules F2, N2, CO, and BeH2 subject to environmental noise.
Manipulating Quantum Coherence in Solid State Systems
Flatté, Michael E; The NATO Advanced Study Institute "Manipulating Quantum Coherence in Solid State Systems"
2007-01-01
The NATO Advanced Study Institute "Manipulating Quantum Coherence in Solid State Systems", in Cluj-Napoca, Romania, August 29-September 9, 2005, presented a fundamental introduction to solid-state approaches to achieving quantum computation. This proceedings volume describes the properties of quantum coherence in semiconductor spin-based systems and the behavior of quantum coherence in superconducting systems. Semiconductor spin-based approaches to quantum computation have made tremendous advances in the past several years. Coherent populations of spins can be oriented, manipulated and detected experimentally. Rapid progress has been made towards performing the same tasks on individual spins (nuclear, ionic, or electronic) with all-electrical means. Superconducting approaches to quantum computation have demonstrated single qubits based on charge eigenstates as well as flux eigenstates. These topics have been presented in a pedagogical fashion by leading researchers in the fields of semiconductor-spin-based qu...
Energy balance for a dissipative quantum system
International Nuclear Information System (INIS)
Kumar, Jishad
2014-01-01
The role of random force in maintaining equilibrium in a dissipative quantum system is studied here. We compute the instantaneous power supplied by the fluctuating (random) force, which provides information about the work done by the random force on the quantum subsystem of interest. The quantum Langevin equation formalism is used here to verify that, at equilibrium, the work done by the fluctuating force balances the energy lost by the quantum subsystem to the heat bath. The quantum subsystem we choose to couple to the heat bath is the charged oscillator in a magnetic field. We perform the calculations using the Drude regularized spectral density of bath oscillators instead of using a strict ohmic spectral density that gives memoryless damping. We also discuss the energy balance for our dissipative quantum system and in this regard it is to be understood that the physical system is the charged magneto-oscillator coupled to the heat bath, not the uncoupled charged magneto-oscillator. (paper)
International Nuclear Information System (INIS)
Jullien, R.; Pfeuty, P.; Fields, J.N.; Doniach, S.
1978-01-01
A zero-temperature real-space renormalization-group method is presented and applied to the quantum Ising model with a transverse field in one dimension. The transition between the low-field and high-field regimes is studied. Magnetization components, spin correlation functions, and critical exponents are derived and checked against the exact results. It is shown that increasing the size of the blocks in the iterative procedure yields more accurate results, especially for the critical ''magnetic'' exponents near the transition
Computational physics simulation of classical and quantum systems
Scherer, Philipp O J
2017-01-01
This textbook presents basic numerical methods and applies them to a large variety of physical models in multiple computer experiments. Classical algorithms and more recent methods are explained. Partial differential equations are treated generally comparing important methods, and equations of motion are solved by a large number of simple as well as more sophisticated methods. Several modern algorithms for quantum wavepacket motion are compared. The first part of the book discusses the basic numerical methods, while the second part simulates classical and quantum systems. Simple but non-trivial examples from a broad range of physical topics offer readers insights into the numerical treatment but also the simulated problems. Rotational motion is studied in detail, as are simple quantum systems. A two-level system in an external field demonstrates elementary principles from quantum optics and simulation of a quantum bit. Principles of molecular dynamics are shown. Modern bounda ry element methods are presented ...
Integrable lattice models and quantum groups
International Nuclear Information System (INIS)
Saleur, H.; Zuber, J.B.
1990-01-01
These lectures aim at introducing some basic algebraic concepts on lattice integrable models, in particular quantum groups, and to discuss some connections with knot theory and conformal field theories. The list of contents is: Vertex models and Yang-Baxter equation; Quantum sl(2) algebra and the Yang-Baxter equation; U q sl(2) as a symmetry of statistical mechanical models; Face models; Face models attached to graphs; Yang-Baxter equation, braid group and link polynomials
Quantum dynamics modeled by interacting trajectories
Cruz-Rodríguez, L.; Uranga-Piña, L.; Martínez-Mesa, A.; Meier, C.
2018-03-01
We present quantum dynamical simulations based on the propagation of interacting trajectories where the effect of the quantum potential is mimicked by effective pseudo-particle interactions. The method is applied to several quantum systems, both for bound and scattering problems. For the bound systems, the quantum ground state density and zero point energy are shown to be perfectly obtained by the interacting trajectories. In the case of time-dependent quantum scattering, the Eckart barrier and uphill ramp are considered, with transmission coefficients in very good agreement with standard quantum calculations. Finally, we show that via wave function synthesis along the trajectories, correlation functions and energy spectra can be obtained based on the dynamics of interacting trajectories.
Quantum entanglement and quantum phase transitions in frustrated Majumdar-Ghosh model
International Nuclear Information System (INIS)
Liu Guanghua; Wang Chunhai; Deng Xiaoyan
2011-01-01
By using the density matrix renormalization group technique, the quantum phase transitions in the frustrated Majumdar-Ghosh model are investigated. The behaviors of the conventional order parameter and the quantum entanglement entropy are analyzed in detail. The order parameter is found to peak at J 2 ∼0.58, but not at the Majumdar-Ghosh point (J 2 =0.5). Although, the quantum entanglements calculated with different subsystems display dissimilarly, the extremes of their first derivatives approach to the same critical point. By finite size scaling, this quantum critical point J C 2 converges to around 0.301 in the thermodynamic limit, which is consistent with those predicted previously by some authors (Tonegawa and Harada, 1987 ; Kuboki and Fukuyama, 1987 ; Chitra et al., 1995 ). Across the J C 2 , the system undergoes a quantum phase transition from a gapless spin-fluid phase to a gapped dimerized phase.
Spin chain model for correlated quantum channels
Energy Technology Data Exchange (ETDEWEB)
Rossini, Davide [International School for Advanced Studies SISSA/ISAS, via Beirut 2-4, I-34014 Trieste (Italy); Giovannetti, Vittorio; Montangero, Simone [NEST-CNR-INFM and Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa (Italy)], E-mail: monta@sns.it
2008-11-15
We analyze the quality of the quantum information transmission along a correlated quantum channel by studying the average fidelity between input and output states and the average output purity, giving bounds for the entropy of the channel. Noise correlations in the channel are modeled by the coupling of each channel use with an element of a one-dimensional interacting quantum spin chain. Criticality of the environment chain is seen to emerge in the changes of the fidelity and of the purity.
A quantum relativistic integrable model as the continuous limit of the six-vertex model
International Nuclear Information System (INIS)
Zhou, Y.K.
1992-01-01
The six-vertex model in two-dimensional statistical mechanics is used to construct the L-matrix of a one-dimensional quantum relativistic integrable model through a continuous limit. This is the first step to extend the method used earlier by the author to construct quantum completely integrable systems from other well-known two-dimensional vertex models. (orig.)
Relativistic Quantum Transport in Graphene Systems
2015-07-09
dimensional Dirac material systems. 2 List of Publications 1. X. Ni, L. Huang, Y.-C. Lai, and L. M. Pecora, “Effect of chaos on relativistic quantum...development of relativistic quantum devices based on graphene or alternative two-dimensional Dirac material systems. In the project period, we studied
Dynamical entropy for infinite quantum systems
International Nuclear Information System (INIS)
Hudetz, T.
1990-01-01
We review the recent physical application of the so-called Connes-Narnhofer-Thirring entropy, which is the successful quantum mechanical generalization of the classical Kolmogorov-Sinai entropy and, by its very conception, is a dynamical entropy for infinite quantum systems. We thus comparingly review also the physical applications of the classical dynamical entropy for infinite classical systems. 41 refs. (Author)
Linear response theory for quantum open systems
Wei, J. H.; Yan, YiJing
2011-01-01
Basing on the theory of Feynman's influence functional and its hierarchical equations of motion, we develop a linear response theory for quantum open systems. Our theory provides an effective way to calculate dynamical observables of a quantum open system at its steady-state, which can be applied to various fields of non-equilibrium condensed matter physics.
Controlling the Shannon Entropy of Quantum Systems
Xing, Yifan; Wu, Jun
2013-01-01
This paper proposes a new quantum control method which controls the Shannon entropy of quantum systems. For both discrete and continuous entropies, controller design methods are proposed based on probability density function control, which can drive the quantum state to any target state. To drive the entropy to any target at any prespecified time, another discretization method is proposed for the discrete entropy case, and the conditions under which the entropy can be increased or decreased are discussed. Simulations are done on both two- and three-dimensional quantum systems, where division and prediction are used to achieve more accurate tracking. PMID:23818819
Controlling the Shannon Entropy of Quantum Systems
Directory of Open Access Journals (Sweden)
Yifan Xing
2013-01-01
Full Text Available This paper proposes a new quantum control method which controls the Shannon entropy of quantum systems. For both discrete and continuous entropies, controller design methods are proposed based on probability density function control, which can drive the quantum state to any target state. To drive the entropy to any target at any prespecified time, another discretization method is proposed for the discrete entropy case, and the conditions under which the entropy can be increased or decreased are discussed. Simulations are done on both two- and three-dimensional quantum systems, where division and prediction are used to achieve more accurate tracking.
Quantum information theory with Gaussian systems
Energy Technology Data Exchange (ETDEWEB)
Krueger, O.
2006-04-06
This thesis applies ideas and concepts from quantum information theory to systems of continuous-variables such as the quantum harmonic oscillator. The focus is on three topics: the cloning of coherent states, Gaussian quantum cellular automata and Gaussian private channels. Cloning was investigated both for finite-dimensional and for continuous-variable systems. We construct a private quantum channel for the sequential encryption of coherent states with a classical key, where the key elements have finite precision. For the case of independent one-mode input states, we explicitly estimate this precision, i.e. the number of key bits needed per input state, in terms of these parameters. (orig.)
Quantum information theory with Gaussian systems
International Nuclear Information System (INIS)
Krueger, O.
2006-01-01
This thesis applies ideas and concepts from quantum information theory to systems of continuous-variables such as the quantum harmonic oscillator. The focus is on three topics: the cloning of coherent states, Gaussian quantum cellular automata and Gaussian private channels. Cloning was investigated both for finite-dimensional and for continuous-variable systems. We construct a private quantum channel for the sequential encryption of coherent states with a classical key, where the key elements have finite precision. For the case of independent one-mode input states, we explicitly estimate this precision, i.e. the number of key bits needed per input state, in terms of these parameters. (orig.)
A stochastic model for quantum measurement
International Nuclear Information System (INIS)
Budiyono, Agung
2013-01-01
We develop a statistical model of microscopic stochastic deviation from classical mechanics based on a stochastic process with a transition probability that is assumed to be given by an exponential distribution of infinitesimal stationary action. We apply the statistical model to stochastically modify a classical mechanical model for the measurement of physical quantities reproducing the prediction of quantum mechanics. The system+apparatus always has a definite configuration at all times, as in classical mechanics, fluctuating randomly following a continuous trajectory. On the other hand, the wavefunction and quantum mechanical Hermitian operator corresponding to the physical quantity arise formally as artificial mathematical constructs. During a single measurement, the wavefunction of the whole system+apparatus evolves according to a Schrödinger equation and the configuration of the apparatus acts as the pointer of the measurement so that there is no wavefunction collapse. We will also show that while the outcome of each single measurement event does not reveal the actual value of the physical quantity prior to measurement, its average in an ensemble of identical measurements is equal to the average of the actual value of the physical quantity prior to measurement over the distribution of the configuration of the system. (paper)
Quantum decoration transformation for spin models
Energy Technology Data Exchange (ETDEWEB)
Braz, F.F.; Rodrigues, F.C.; Souza, S.M. de; Rojas, Onofre, E-mail: ors@dfi.ufla.br
2016-09-15
It is quite relevant the extension of decoration transformation for quantum spin models since most of the real materials could be well described by Heisenberg type models. Here we propose an exact quantum decoration transformation and also showing interesting properties such as the persistence of symmetry and the symmetry breaking during this transformation. Although the proposed transformation, in principle, cannot be used to map exactly a quantum spin lattice model into another quantum spin lattice model, since the operators are non-commutative. However, it is possible the mapping in the “classical” limit, establishing an equivalence between both quantum spin lattice models. To study the validity of this approach for quantum spin lattice model, we use the Zassenhaus formula, and we verify how the correction could influence the decoration transformation. But this correction could be useless to improve the quantum decoration transformation because it involves the second-nearest-neighbor and further nearest neighbor couplings, which leads into a cumbersome task to establish the equivalence between both lattice models. This correction also gives us valuable information about its contribution, for most of the Heisenberg type models, this correction could be irrelevant at least up to the third order term of Zassenhaus formula. This transformation is applied to a finite size Heisenberg chain, comparing with the exact numerical results, our result is consistent for weak xy-anisotropy coupling. We also apply to bond-alternating Ising–Heisenberg chain model, obtaining an accurate result in the limit of the quasi-Ising chain.
Quantum decoration transformation for spin models
International Nuclear Information System (INIS)
Braz, F.F.; Rodrigues, F.C.; Souza, S.M. de; Rojas, Onofre
2016-01-01
It is quite relevant the extension of decoration transformation for quantum spin models since most of the real materials could be well described by Heisenberg type models. Here we propose an exact quantum decoration transformation and also showing interesting properties such as the persistence of symmetry and the symmetry breaking during this transformation. Although the proposed transformation, in principle, cannot be used to map exactly a quantum spin lattice model into another quantum spin lattice model, since the operators are non-commutative. However, it is possible the mapping in the “classical” limit, establishing an equivalence between both quantum spin lattice models. To study the validity of this approach for quantum spin lattice model, we use the Zassenhaus formula, and we verify how the correction could influence the decoration transformation. But this correction could be useless to improve the quantum decoration transformation because it involves the second-nearest-neighbor and further nearest neighbor couplings, which leads into a cumbersome task to establish the equivalence between both lattice models. This correction also gives us valuable information about its contribution, for most of the Heisenberg type models, this correction could be irrelevant at least up to the third order term of Zassenhaus formula. This transformation is applied to a finite size Heisenberg chain, comparing with the exact numerical results, our result is consistent for weak xy-anisotropy coupling. We also apply to bond-alternating Ising–Heisenberg chain model, obtaining an accurate result in the limit of the quasi-Ising chain.
Quantum dot systems: artificial atoms with tunable properties
International Nuclear Information System (INIS)
Weis, J.
2005-01-01
Full text: Quantum dots - also called zero-dimensional electron systems or artificial atoms - are physical objects where the constituent electrons are confined in a small spatial region, leading to discrete eigenvalues for the energies of the confined electrons. Large quantum dots offer a dense energy spectrum comparable to that of metallic grains, whereas small quantum dots more closely resemble atoms in their electronic properties. Quantum dots can be linked to leads by tunnel barriers, hence permitting electrical transport measurements: Coulomb blockade and single-electron charging effects are observed due to the repulsive electron electron interaction on the quantum dot site. Usually fabricated by conventional semiconductor growth and processing technology, the advantage is that both simple and also more complex quantum dot systems can be designed to purpose, acting as model systems with in-situ tunable parameters such as the number of confined electrons in the quantum dot and the strength of the tunnel coupling to the leads, electrostatically controlled by the applied voltages to gate electrodes. With increasing the tunnel coupling to the leads, the virtual occupation of the quantum dot from the leads becomes more and more important -- the simple description of electrical transport by single-electron tunneling events breaks down. The basic physics is described by the Kondo physics based on the Anderson impurity model. A system consisting of strongly electrostatically coupled quantum dots with separate leads to each quantum dot represent another realization of the Anderson impurity model. Experiments to verify the analogy are presented. The experimental data embedded within this tutorial have been obtained with Alexander Huebel, Matthias Keller, Joerg Schmid, David Quirion, Armin Welker, Ulf Wilhelm, and Klaus von Klitzing. (author)
Scalar material reference systems and loop quantum gravity
International Nuclear Information System (INIS)
Giesel, K; Thiemann, T
2015-01-01
In the past, the possibility to employ (scalar) material reference systems in order to describe classical and quantum gravity directly in terms of gauge invariant (Dirac) observables has been emphasized frequently. This idea has been picked up more recently in loop quantum gravity with the aim to perform a reduced phase space quantization of the theory, thus possibly avoiding problems with the (Dirac) operator constraint quantization method for a constrained system. In this work, we review the models that have been studied on the classical and/or the quantum level and parametrize the space of theories considered so far. We then describe the quantum theory of a model that, to the best of our knowledge, has only been considered classically so far. This model could arguably be called the optimal one in this class of models considered as it displays the simplest possible true Hamiltonian, while at the same time reducing all constraints of general relativity. (paper)
Quantum spin systems on infinite lattices a concise introduction
Naaijkens, Pieter
2017-01-01
This course-based primer offers readers a concise introduction to the description of quantum mechanical systems with infinitely many degrees of freedom – and quantum spin systems in particular – using the operator algebraic approach. Here, the observables are modeled using elements of some operator algebra, usually a C*-algebra. This text introduces readers to the framework and the necessary mathematical tools without assuming much mathematical background, making it more accessible than advanced monographs. The book also highlights the usefulness of the so-called thermodynamic limit of quantum spin systems, which is the limit of infinite system size. For example, this makes it possible to clearly distinguish between local and global properties, without having to keep track of the system size. Together with Lieb-Robinson bounds, which play a similar role in quantum spin systems to that of the speed of light in relativistic theories, this approach allows ideas from relativistic field theories to be implemen...
A quantum hydrodynamic model for multicomponent quantum magnetoplasma with Jeans term
International Nuclear Information System (INIS)
Masood, W.; Salimullah, M.; Shah, H.A.
2008-01-01
The effect of Jeans term in a multicomponent self-gravitating quantum magnetoplasma is investigated employing the quantum hydrodynamic (QHD) model. The effects of quantum Bohm potential and statistical terms as well as the ambient magnetic field are also investigated on both dust and ion dynamics driven waves in this Letter. We state the conditions that can drive the system unstable in the presence of Jeans term. The limiting cases are also presented. The present work may have relevance in the dense astrophysical environments where the self-gravitating effects are expected to play a pivotal role
One-Way Deficit and Quantum Phase Transitions in XX Model
Wang, Yao-Kun; Zhang, Yu-Ran
2018-02-01
Quantum correlations including entanglement and quantum discord have drawn much attention in characterizing quantum phase transitions. Quantum deficit originates in questions regarding work extraction from quantum systems coupled to a heat bath (Oppenheim et al. Phys. Rev. Lett. 89, 180402, 2002). It links quantum thermodynamics with quantum correlations and provides a new standpoint for understanding quantum non-locality. In this paper, we evaluate the one-way deficit of two adjacent spins in the bulk for the XX model. In the thermodynamic limit, the XX model undergoes a first order transition from fully polarized to a critical phase with quasi-long-range order with decrease of quantum parameter. We find that the one-way deficit becomes nonzero after the critical point. Therefore, the one-way deficit characterizes the quantum phase transition in the XX model.
Quantum chaos in a fermion system
International Nuclear Information System (INIS)
Pal, Santanu
1992-01-01
With the growing realisation that the dynamics of a system with a few degrees of freedom is chaotic more as a rule than an exception, the relevance of quantum chaos in nuclear single-particle motion is now receiving closer scrutinisation. This on one hand is helping to gain a deeper understanding of dissipative processes in nuclear dynamics as well as revealing certain interesting features of a fermion system on the other. In the present talk, we would discuss the chaotic features of the single-particle motion in a di nucleus with a view to study the signatures of an effective underlying classical dynamics in the system. As the present day understanding of quantum chaos relies quite heavily on the existence of classical trajectories, it is rather interesting to study how far such considerations can be pushed for systems which do not have a obvious classical analogue such as the spin-orbit interaction in our system. This question has been further investigated for a relativistic fermion system, similar to the Bogoliubov bag. This model is particularly suited as spin, without a classical analogue, has its natural place in the Dirac equation. The results of this study have been presented in the talk. (author). 25 refs., 14 figs
Philosophical perspectives on quantum chaos: Models and interpretations
Bokulich, Alisa Nicole
2001-09-01
The problem of quantum chaos is a special case of the larger problem of understanding how the classical world emerges from quantum mechanics. While we have learned that chaos is pervasive in classical systems, it appears to be almost entirely absent in quantum systems. The aim of this dissertation is to determine what implications the interpretation of quantum mechanics has for attempts to explain the emergence of classical chaos. There are three interpretations of quantum mechanics that have set out programs for solving the problem of quantum chaos: the standard interpretation, the statistical interpretation, and the deBroglie-Bohm causal interpretation. One of the main conclusions of this dissertation is that an interpretation alone is insufficient for solving the problem of quantum chaos and that the phenomenon of decoherence must be taken into account. Although a completely satisfactory solution of the problem of quantum chaos is still outstanding, I argue that the deBroglie-Bohm interpretation with the help of decoherence outlines the most promising research program to pursue. In addition to making a contribution to the debate in the philosophy of physics concerning the interpretation of quantum mechanics, this dissertation reveals two important methodological lessons for the philosophy of science. First, issues of reductionism and intertheoretic relations cannot be divorced from questions concerning the interpretation of the theories involved. Not only is the exploration of intertheoretic relations a central part of the articulation and interpretation of an individual theory, but the very terms used to discuss intertheoretic relations, such as `state' and `classical limit', are themselves defined by particular interpretations of the theory. The second lesson that emerges is that, when it comes to characterizing the relationship between classical chaos and quantum mechanics, the traditional approaches to intertheoretic relations, namely reductionism and
Quantum equilibria for macroscopic systems
International Nuclear Information System (INIS)
Grib, A; Khrennikov, A; Parfionov, G; Starkov, K
2006-01-01
Nash equilibria are found for some quantum games with particles with spin-1/2 for which two spin projections on different directions in space are measured. Examples of macroscopic games with the same equilibria are given. Mixed strategies for participants of these games are calculated using probability amplitudes according to the rules of quantum mechanics in spite of the macroscopic nature of the game and absence of Planck's constant. A possible role of quantum logical lattices for the existence of macroscopic quantum equilibria is discussed. Some examples for spin-1 cases are also considered
Quantum equilibria for macroscopic systems
Energy Technology Data Exchange (ETDEWEB)
Grib, A [Department of Theoretical Physics and Astronomy, Russian State Pedagogical University, St. Petersburg (Russian Federation); Khrennikov, A [Centre for Mathematical Modelling in Physics and Cognitive Sciences Vaexjoe University (Sweden); Parfionov, G [Department of Mathematics, St. Petersburg State University of Economics and Finances (Russian Federation); Starkov, K [Department of Mathematics, St. Petersburg State University of Economics and Finances (Russian Federation)
2006-06-30
Nash equilibria are found for some quantum games with particles with spin-1/2 for which two spin projections on different directions in space are measured. Examples of macroscopic games with the same equilibria are given. Mixed strategies for participants of these games are calculated using probability amplitudes according to the rules of quantum mechanics in spite of the macroscopic nature of the game and absence of Planck's constant. A possible role of quantum logical lattices for the existence of macroscopic quantum equilibria is discussed. Some examples for spin-1 cases are also considered.
Quantum modeling of ultrafast photoinduced charge separation
Rozzi, Carlo Andrea; Troiani, Filippo; Tavernelli, Ivano
2018-01-01
Phenomena involving electron transfer are ubiquitous in nature, photosynthesis and enzymes or protein activity being prominent examples. Their deep understanding thus represents a mandatory scientific goal. Moreover, controlling the separation of photogenerated charges is a crucial prerequisite in many applicative contexts, including quantum electronics, photo-electrochemical water splitting, photocatalytic dye degradation, and energy conversion. In particular, photoinduced charge separation is the pivotal step driving the storage of sun light into electrical or chemical energy. If properly mastered, these processes may also allow us to achieve a better command of information storage at the nanoscale, as required for the development of molecular electronics, optical switching, or quantum technologies, amongst others. In this Topical Review we survey recent progress in the understanding of ultrafast charge separation from photoexcited states. We report the state-of-the-art of the observation and theoretical description of charge separation phenomena in the ultrafast regime mainly focusing on molecular- and nano-sized solar energy conversion systems. In particular, we examine different proposed mechanisms driving ultrafast charge dynamics, with particular regard to the role of quantum coherence and electron-nuclear coupling, and link experimental observations to theoretical approaches based either on model Hamiltonians or on first principles simulations.
Quantum integrable models of field theory
International Nuclear Information System (INIS)
Faddeev, L.D.
1979-01-01
Fundamental features of the classical method of the inverse problem have been formulated in the form which is convenient for its quantum reformulation. Typical examples are studied which may help to formulate the quantum method of the inverse problem. Examples are considered for interaction with both attraction and repulsion at a final density. The sine-Gordon model and the XYZ model from the quantum theory of magnetics are examined in short. It is noted that all the achievements of the one-dimensional mathematical physics as applied to exactly solvable quantum models may be put to an extent within the framework of the quantum method of the inverse problem. Unsolved questions are enumerated and perspectives of applying the inverse problem method are shown
Interaction between classical and quantum systems
International Nuclear Information System (INIS)
Sherry, T.N.; Sudarshan, E.C.G.
1977-10-01
An unconventional approach to the measurement problem in quantum mechanics is considered--the apparatus is treated as a classical system, belonging to the macro-world. In order to have a measurement the apparatus must interact with the quantum system. As a first step, the classical apparatus is embedded into a large quantum mechanical structure, making use of a superselection principle. The apparatus and system are coupled such that the apparatus remains classical (principle of integrity), and unambiguous information of the values of a quantum observable are transferred to the variables of the apparatus. Further measurement of the classical apparatus can be done, causing no problems of principle. Thus interactions causing pointers to move (which are not treated) can be added. The restrictions placed by the principle of integrity on the form of the interaction between classical and quantum systems are examined and illustration is given by means of a simple example in which one sees the principle of integrity at work
Quantum Transport in Strongly Correlated Systems
DEFF Research Database (Denmark)
Bohr, Dan
2007-01-01
the density matrix renormalization group (DMRG) method. We present two DMRG setups for calculating the linear conductance of strongly correlated nanostructures in the infinitesimal source-drain voltage regime. The first setup describes the leads by modified real-space tight-binding chains, whereas the second....... Thus both coherence and correlation effects are important in this model, and the methods applied should be able to handle both these effects rigorously. We present the DMRG setup for this model and benchmark against existing Greens function results for the model. Then we present initial DMRG results...... screening plays a much less significant role than in bulk systems due to the reduced size of the objects, therefore making it necessary to consider the importance of correlations between electrons. The work presented in this thesis deals with quantum transport through strongly correlated systems using...
Quantum vertex model for reversible classical computing.
Chamon, C; Mucciolo, E R; Ruckenstein, A E; Yang, Z-C
2017-05-12
Mappings of classical computation onto statistical mechanics models have led to remarkable successes in addressing some complex computational problems. However, such mappings display thermodynamic phase transitions that may prevent reaching solution even for easy problems known to be solvable in polynomial time. Here we map universal reversible classical computations onto a planar vertex model that exhibits no bulk classical thermodynamic phase transition, independent of the computational circuit. Within our approach the solution of the computation is encoded in the ground state of the vertex model and its complexity is reflected in the dynamics of the relaxation of the system to its ground state. We use thermal annealing with and without 'learning' to explore typical computational problems. We also construct a mapping of the vertex model into the Chimera architecture of the D-Wave machine, initiating an approach to reversible classical computation based on state-of-the-art implementations of quantum annealing.
Synchronization in Quantum Key Distribution Systems
Directory of Open Access Journals (Sweden)
Anton Pljonkin
2017-10-01
Full Text Available In the description of quantum key distribution systems, much attention is paid to the operation of quantum cryptography protocols. The main problem is the insufficient study of the synchronization process of quantum key distribution systems. This paper contains a general description of quantum cryptography principles. A two-line fiber-optic quantum key distribution system with phase coding of photon states in transceiver and coding station synchronization mode was examined. A quantum key distribution system was built on the basis of the scheme with automatic compensation of polarization mode distortions. Single-photon avalanche diodes were used as optical radiation detecting devices. It was estimated how the parameters used in quantum key distribution systems of optical detectors affect the detection of the time frame with attenuated optical pulse in synchronization mode with respect to its probabilistic and time-domain characteristics. A design method was given for the process that detects the time frame that includes an optical pulse during synchronization. This paper describes the main quantum communication channel attack methods by removing a portion of optical emission. This paper describes the developed synchronization algorithm that takes into account the time required to restore the photodetector’s operation state after the photon has been registered during synchronization. The computer simulation results of the developed synchronization algorithm were analyzed. The efficiency of the developed algorithm with respect to synchronization process protection from unauthorized gathering of optical emission is demonstrated herein.
Mixing and entropy increase in quantum systems
International Nuclear Information System (INIS)
Narnhofer, H.; Pflug, A.; Thirring, W.
1989-01-01
This paper attempts to explain the key feature of deterministic chaotic classical systems and how they can be translated to quantum systems. To do so we develop the appropriate algebraic language for the non-specialist. 22 refs. (Author)
Current algebra, statistical mechanics and quantum models
Vilela Mendes, R.
2017-11-01
Results obtained in the past for free boson systems at zero and nonzero temperatures are revisited to clarify the physical meaning of current algebra reducible functionals which are associated to systems with density fluctuations, leading to observable effects on phase transitions. To use current algebra as a tool for the formulation of quantum statistical mechanics amounts to the construction of unitary representations of diffeomorphism groups. Two mathematical equivalent procedures exist for this purpose. One searches for quasi-invariant measures on configuration spaces, the other for a cyclic vector in Hilbert space. Here, one argues that the second approach is closer to the physical intuition when modelling complex systems. An example of application of the current algebra methodology to the pairing phenomenon in two-dimensional fermion systems is discussed.
Equivalence relations between deterministic and quantum mechanical systems
International Nuclear Information System (INIS)
Hooft, G.
1988-01-01
Several quantum mechanical models are shown to be equivalent to certain deterministic systems because a basis can be found in terms of which the wave function does not spread. This suggests that apparently indeterministic behavior typical for a quantum mechanical world can be the result of locally deterministic laws of physics. We show how certain deterministic systems allow the construction of a Hilbert space and a Hamiltonian so that at long distance scales they may appear to behave as quantum field theories, including interactions but as yet no mass term. These observations are suggested to be useful for building theories at the Planck scale
Quantum work relations and response theory in parity-time-symmetric quantum systems
Wei, Bo-Bo
2018-01-01
In this work, we show that a universal quantum work relation for a quantum system driven arbitrarily far from equilibrium extends to a parity-time- (PT -) symmetric quantum system with unbroken PT symmetry, which is a consequence of microscopic reversibility. The quantum Jarzynski equality, linear response theory, and Onsager reciprocal relations for the PT -symmetric quantum system are recovered as special cases of the universal quantum work relation in a PT -symmetric quantum system. In the regime of broken PT symmetry, the universal quantum work relation does not hold because the norm is not preserved during the dynamics.
Open quantum spin systems in semiconductor quantum dots and atoms in optical lattices
Energy Technology Data Exchange (ETDEWEB)
Schwager, Heike
2012-07-04
In this Thesis, we study open quantum spin systems from different perspectives. The first part is motivated by technological challenges of quantum computation. An important building block for quantum computation and quantum communication networks is an interface between material qubits for storage and data processing and travelling photonic qubits for communication. We propose the realisation of a quantum interface between a travelling-wave light field and the nuclear spins in a quantum dot strongly coupled to a cavity. Our scheme is robust against cavity decay as it uses the decay of the cavity to achieve the coupling between nuclear spins and the travelling-wave light fields. A prerequiste for such a quantum interface is a highly polarized ensemble of nuclear spins. High polarization of the nuclear spin ensemble is moreover highly desirable as it protects the potential electron spin qubit from decoherence. Here we present the theoretical description of an experiment in which highly asymmetric dynamic nuclear spin pumping is observed in a single self-assembled InGaAs quantum dot. The second part of this Thesis is devoted to fundamental studies of dissipative spin systems. We study general one-dimensional spin chains under dissipation and propose a scheme to realize a quantum spin system using ultracold atoms in an optical lattice in which both coherent interaction and dissipation can be engineered and controlled. This system enables the study of non-equilibrium and steady state physics of open and driven spin systems. We find, that the steady state expectation values of different spin models exhibit discontinuous behaviour at degeneracy points of the Hamiltonian in the limit of weak dissipation. This effect can be used to dissipatively probe the spectrum of the Hamiltonian. We moreover study spin models under the aspect of state preparation and show that dissipation drives certain spin models into highly entangled state. Finally, we study a spin chain with
Open quantum spin systems in semiconductor quantum dots and atoms in optical lattices
International Nuclear Information System (INIS)
Schwager, Heike
2012-01-01
In this Thesis, we study open quantum spin systems from different perspectives. The first part is motivated by technological challenges of quantum computation. An important building block for quantum computation and quantum communication networks is an interface between material qubits for storage and data processing and travelling photonic qubits for communication. We propose the realisation of a quantum interface between a travelling-wave light field and the nuclear spins in a quantum dot strongly coupled to a cavity. Our scheme is robust against cavity decay as it uses the decay of the cavity to achieve the coupling between nuclear spins and the travelling-wave light fields. A prerequiste for such a quantum interface is a highly polarized ensemble of nuclear spins. High polarization of the nuclear spin ensemble is moreover highly desirable as it protects the potential electron spin qubit from decoherence. Here we present the theoretical description of an experiment in which highly asymmetric dynamic nuclear spin pumping is observed in a single self-assembled InGaAs quantum dot. The second part of this Thesis is devoted to fundamental studies of dissipative spin systems. We study general one-dimensional spin chains under dissipation and propose a scheme to realize a quantum spin system using ultracold atoms in an optical lattice in which both coherent interaction and dissipation can be engineered and controlled. This system enables the study of non-equilibrium and steady state physics of open and driven spin systems. We find, that the steady state expectation values of different spin models exhibit discontinuous behaviour at degeneracy points of the Hamiltonian in the limit of weak dissipation. This effect can be used to dissipatively probe the spectrum of the Hamiltonian. We moreover study spin models under the aspect of state preparation and show that dissipation drives certain spin models into highly entangled state. Finally, we study a spin chain with
The classical limit of non-integrable quantum systems, a route to quantum chaos
International Nuclear Information System (INIS)
Castagnino, Mario; Lombardi, Olimpia
2006-01-01
The classical limit of non-integrable quantum systems is studied. We define non-integrable quantum systems as those, which have, as their classical limit, a non-integrable classical system. This quantum systems will be the candidates to be the models of quantum chaos. In order to obtain this limit, the self-induced decoherence approach and the corresponding classical limit are generalized from integrable to non-integrable systems. In this approach, the lost of information, usually conceived as the result of a coarse-graining or the trace of an environment, is produced by a particular choice of the algebra of observables and the systematic use of mean values, that project the unitary evolution onto an effective non-unitary one. By means of our method, we can obtain the classical limit of the quantum state of a non-integrable system, which turns out to be a set of unstable, potentially chaotic classical trajectories contained in the Wigner transformation of the quantum state
The classical limit of non-integrable quantum systems, a route to quantum chaos
Energy Technology Data Exchange (ETDEWEB)
Castagnino, Mario [CONICET-UNR-UBA, Institutos de Fisica de Rosario y de Astronomia y Fisica del Espacio, Casilla de Correos 67, Sucursal 28, 1428, Buenos Aires (Argentina)]. E-mail: mariocastagnino@citynet.net.ar; Lombardi, Olimpia [CONICET-Universidad de Buenos Aires-Universidad de Quilmes Rivadavia 2358, 6to. Derecha, Buenos Aires (Argentina)
2006-05-15
The classical limit of non-integrable quantum systems is studied. We define non-integrable quantum systems as those, which have, as their classical limit, a non-integrable classical system. This quantum systems will be the candidates to be the models of quantum chaos. In order to obtain this limit, the self-induced decoherence approach and the corresponding classical limit are generalized from integrable to non-integrable systems. In this approach, the lost of information, usually conceived as the result of a coarse-graining or the trace of an environment, is produced by a particular choice of the algebra of observables and the systematic use of mean values, that project the unitary evolution onto an effective non-unitary one. By means of our method, we can obtain the classical limit of the quantum state of a non-integrable system, which turns out to be a set of unstable, potentially chaotic classical trajectories contained in the Wigner transformation of the quantum state.
Yanagisawa, Masahiro
2007-01-01
We provide a control theoretical method for a computational lower bound of quantum algorithms based on quantum walks of a finite time horizon. It is shown that given a quantum network, there exists a control theoretical expression of the quantum system and the transition probability of the quantum walk is related to a norm of the associated transfer function.
Classical system underlying a diffracting quantum billiard
Indian Academy of Sciences (India)
Manan Jain
2018-01-05
Jan 5, 2018 ... Wave equation; rays; quantum chaos. PACS Nos 03.65.Ge; 05.45.Mt; 42.25.Fx. 1. Introduction. Diffraction [1] is a complex wave phenomenon which manifests classically and quantum mechanically. Among a wide range of systems where diffraction becomes important, there is an interesting situation of.
Quantum contextuality in N-boson systems
International Nuclear Information System (INIS)
Benatti, Fabio; Floreanini, Roberto; Genovese, Marco; Olivares, Stefano
2011-01-01
Quantum contextuality in systems of identical bosonic particles is explicitly exhibited via the maximum violation of a suitable inequality of Clauser-Horne-Shimony-Holt type. Unlike the approaches considered so far, which make use of single-particle observables, our analysis involves collective observables constructed using multiboson operators. An exemplifying scheme to test this violation with a quantum optical setup is also discussed.
Quantum Markov processes and applications in many-body systems
International Nuclear Information System (INIS)
Temme, P. K.
2010-01-01
This thesis is concerned with the investigation of quantum as well as classical Markov processes and their application in the field of strongly correlated many-body systems. A Markov process is a special kind of stochastic process, which is determined by an evolution that is independent of its history and only depends on the current state of the system. The application of Markov processes has a long history in the field of statistical mechanics and classical many-body theory. Not only are Markov processes used to describe the dynamics of stochastic systems, but they predominantly also serve as a practical method that allows for the computation of fundamental properties of complex many-body systems by means of probabilistic algorithms. The aim of this thesis is to investigate the properties of quantum Markov processes, i.e. Markov processes taking place in a quantum mechanical state space, and to gain a better insight into complex many-body systems by means thereof. Moreover, we formulate a novel quantum algorithm which allows for the computation of the thermal and ground states of quantum many-body systems. After a brief introduction to quantum Markov processes we turn to an investigation of their convergence properties. We find bounds on the convergence rate of the quantum process by generalizing geometric bounds found for classical processes. We generalize a distance measure that serves as the basis for our investigations, the chi-square divergence, to non-commuting probability spaces. This divergence allows for a convenient generalization of the detailed balance condition to quantum processes. We then devise the quantum algorithm that can be seen as the natural generalization of the ubiquitous Metropolis algorithm to simulate quantum many-body Hamiltonians. By this we intend to provide further evidence, that a quantum computer can serve as a fully-fledged quantum simulator, which is not only capable of describing the dynamical evolution of quantum systems, but
Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array.
Hensgens, T; Fujita, T; Janssen, L; Li, Xiao; Van Diepen, C J; Reichl, C; Wegscheider, W; Das Sarma, S; Vandersypen, L M K
2017-08-02
Interacting fermions on a lattice can develop strong quantum correlations, which are the cause of the classical intractability of many exotic phases of matter. Current efforts are directed towards the control of artificial quantum systems that can be made to emulate the underlying Fermi-Hubbard models. Electrostatically confined conduction-band electrons define interacting quantum coherent spin and charge degrees of freedom that allow all-electrical initialization of low-entropy states and readily adhere to the Fermi-Hubbard Hamiltonian. Until now, however, the substantial electrostatic disorder of the solid state has meant that only a few attempts at emulating Fermi-Hubbard physics on solid-state platforms have been made. Here we show that for gate-defined quantum dots this disorder can be suppressed in a controlled manner. Using a semi-automated and scalable set of experimental tools, we homogeneously and independently set up the electron filling and nearest-neighbour tunnel coupling in a semiconductor quantum dot array so as to simulate a Fermi-Hubbard system. With this set-up, we realize a detailed characterization of the collective Coulomb blockade transition, which is the finite-size analogue of the interaction-driven Mott metal-to-insulator transition. As automation and device fabrication of semiconductor quantum dots continue to improve, the ideas presented here will enable the investigation of the physics of ever more complex many-body states using quantum dots.
Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array
Hensgens, T.; Fujita, T.; Janssen, L.; Li, Xiao; van Diepen, C. J.; Reichl, C.; Wegscheider, W.; Das Sarma, S.; Vandersypen, L. M. K.
2017-08-01
Interacting fermions on a lattice can develop strong quantum correlations, which are the cause of the classical intractability of many exotic phases of matter. Current efforts are directed towards the control of artificial quantum systems that can be made to emulate the underlying Fermi-Hubbard models. Electrostatically confined conduction-band electrons define interacting quantum coherent spin and charge degrees of freedom that allow all-electrical initialization of low-entropy states and readily adhere to the Fermi-Hubbard Hamiltonian. Until now, however, the substantial electrostatic disorder of the solid state has meant that only a few attempts at emulating Fermi-Hubbard physics on solid-state platforms have been made. Here we show that for gate-defined quantum dots this disorder can be suppressed in a controlled manner. Using a semi-automated and scalable set of experimental tools, we homogeneously and independently set up the electron filling and nearest-neighbour tunnel coupling in a semiconductor quantum dot array so as to simulate a Fermi-Hubbard system. With this set-up, we realize a detailed characterization of the collective Coulomb blockade transition, which is the finite-size analogue of the interaction-driven Mott metal-to-insulator transition. As automation and device fabrication of semiconductor quantum dots continue to improve, the ideas presented here will enable the investigation of the physics of ever more complex many-body states using quantum dots.
Decoherence control in open quantum systems via classical feedback
International Nuclear Information System (INIS)
Ganesan, Narayan; Tarn, Tzyh-Jong
2007-01-01
In this work we propose a strategy using techniques from systems theory to completely eliminate decoherence and also provide conditions under which it can be done. A construction employing an auxiliary system, the bait, which is instrumental to decoupling the system from the environment is presented. Our approach to decoherence control in contrast to other approaches in the literature involves the bilinear input affine model of quantum control system which lends itself to various techniques from classical control theory, but with nontrivial modifications to the quantum regime. The elegance of this approach yields interesting results on open loop decouplability and decoherence free subspaces. Additionally, the feedback control of decoherence may be related to disturbance decoupling for classical input affine systems, which entails careful application of the methods by avoiding all the quantum mechanical pitfalls. In the process of calculating a suitable feedback the system must be restructured due to its tensorial nature of interaction with the environment, which is unique to quantum systems. In the subsequent section we discuss a general information extraction scheme to gain knowledge of the state and the amount of decoherence based on indirect continuous measurement. The analysis of continuous measurement on a decohering quantum system has not been extensively studied before. Finally, a methodology to synthesize feedback parameters itself is given, that technology permitting, could be implemented for practical 2-qubit systems to perform decoherence free quantum computing. The results obtained are qualitatively different and superior to the ones obtained via master equations
Quantum Control of Open Systems and Dense Atomic Ensembles
DiLoreto, Christopher
Controlling the dynamics of open quantum systems; i.e. quantum systems that decohere because of interactions with the environment, is an active area of research with many applications in quantum optics and quantum computation. My thesis expands the scope of this inquiry by seeking to control open systems in proximity to an additional system. The latter could be a classical system such as metal nanoparticles, or a quantum system such as a cluster of similar atoms. By modelling the interactions between the systems, we are able to expand the accessible state space of the quantum system in question. For a single, three-level quantum system, I examine isolated systems that have only normal spontaneous emission. I then show that intensity-intensity correlation spectra, which depend directly on the density matrix of the system, can be used detect whether transitions share a common energy level. This detection is possible due to the presence of quantum interference effects between two transitions if they are connected. This effect allows one to asses energy level structure diagrams in complex atoms/molecules. By placing an open quantum system near a nanoparticle dimer, I show that the spontaneous emission rate of the system can be changed "on demand" by changing the polarization of an incident, driving field. In a three-level, Lambda system, this allows a qubit to both retain high qubit fidelity when it is operating, and to be rapidly initialized to a pure state once it is rendered unusable by decoherence. This type of behaviour is not possible in a single open quantum system; therefore adding a classical system nearby extends the overall control space of the quantum system. An open quantum system near identical neighbours in a dense ensemble is another example of how the accessible state space can be expanded. I show that a dense ensemble of atoms rapidly becomes disordered with states that are not directly excited by an incident field becoming significantly populated
Microscopic models of quantum-jump superoperators
International Nuclear Information System (INIS)
Dodonov, A.V.; Mizrahi, S.S.; Dodonov, V.V.
2005-01-01
We discuss the quantum-jump operation in an open system and show that jump superoperators related to a system under measurement can be derived from the interaction of that system with a quantum measurement apparatus. We give two examples for the interaction of a monochromatic electromagnetic field in a cavity (the system) with two-level atoms and with a harmonic oscillator (representing two different kinds of detectors). We show that the derived quantum-jump superoperators have a 'nonlinear' form Jρ=γ diag[F(n)aρa † F(n)], where the concrete form of the function F(n) depends on assumptions made about the interaction between the system and detector. Under certain conditions the asymptotical power-law dependence F(n)=(n+1) -β is obtained. A continuous transition to the standard Srinivas-Davies form of the quantum-jump superoperator (corresponding to β=0) is shown
Equilibration and thermalization in finite quantum systems
International Nuclear Information System (INIS)
Yukalov, V I
2011-01-01
Experiments with trapped atomic gases have opened novel possibilities for studying the evolution of nonequilibrium finite quantum systems, which revived the necessity of reconsidering and developing the theory of such processes. This review analyzes the basic approaches to describing the phenomena of equilibration, thermalization, and decoherence in finite quantum systems. Isolated, nonisolated, and quasi-isolated quantum systems are considered. The relations between equilibration, decoherence, and the existence of time arrow are emphasized. The possibility for the occurrence of rare events, preventing complete equilibration, are mentioned
Limit cycles in quantum systems
Energy Technology Data Exchange (ETDEWEB)
Niemann, Patrick
2015-04-27
In this thesis we investigate Limit Cycles in Quantum Systems. Limit cycles are a renormalization group (RG) topology. When degrees of freedom are integrated out, the coupling constants flow periodically in a closed curve. The presence of limit cycles is restricted by the necessary condition of discrete scale invariance. A signature of discrete scale invariance and limit cycles is log-periodic behavior. The first part of this thesis is concerned with the study of limit cycles with the similarity renormalization group (SRG). Limit cycles are mainly investigated within conventional renormalization group frameworks, where degrees of freedom, which are larger than a given cutoff, are integrated out. In contrast, in the SRG potentials are unitarily transformed and thereby obtain a band-diagonal structure. The width of the band structure can be regarded as an effective cutoff. We investigate the appearance of limit cycles in the SRG evolution. Our aim is to extract signatures as well as the scaling factor of the limit cycle. We consider the 1/R{sup 2}-potential in a two-body system and a three-body system with large scattering lengths. Both systems display a limit cycle. Besides the frequently used kinetic energy generator we apply the exponential and the inverse generator. In the second part of this thesis, Limit Cycles at Finite Density, we examine the pole structure of the scattering amplitude for distinguishable fermions at zero temperature in the medium. Unequal masses and a filled Fermi sphere for each fermion species are considered. We focus on negative scattering lengths and the unitary limit. The properties of the three-body spectrum in the medium and implications for the phase structure of ultracold Fermi gases are discussed.
Thue-Morse quantum Ising model
International Nuclear Information System (INIS)
Doria, M.M.; Nori, F.; Satija, I.I.
1989-01-01
We study the one-dimensional quantum Ising model in a transverse magnetic field where the exchange couplings are ordered according to the Thue-Morse (TM) sequence. At zero temperature, this model is equivalent to a two-dimensional classical Ising model in a magnetic field with TM aperiodicity along one direction. We compute the order parameter (magnetization) of the chain and the scaling behavior of the energy spectrum when the system undergoes a phase transition. Analogous to the quasiperiodic (QP) quantum Ising chain, the onset of long-range order is signaled by a nonanaliticity in the exponent δ which describes the scaling of the total bandwidth with the size of the chain. The critical spin-coupling can be computed analytically and it is found to be lower than the QP case. Furthermore, the energy bands are found to be narrower than the corresponding QP chain. The former and latter results are consistent with the fact that the present structure has a degree of ordering intermediate between QP and random
Random unitary evolution model of quantum Darwinism with pure decoherence
Balanesković, Nenad
2015-10-01
We study the behavior of Quantum Darwinism [W.H. Zurek, Nat. Phys. 5, 181 (2009)] within the iterative, random unitary operations qubit-model of pure decoherence [J. Novotný, G. Alber, I. Jex, New J. Phys. 13, 053052 (2011)]. We conclude that Quantum Darwinism, which describes the quantum mechanical evolution of an open system S from the point of view of its environment E, is not a generic phenomenon, but depends on the specific form of input states and on the type of S-E-interactions. Furthermore, we show that within the random unitary model the concept of Quantum Darwinism enables one to explicitly construct and specify artificial input states of environment E that allow to store information about an open system S of interest with maximal efficiency.
Dynamics of a Simple Quantum System in a Complex Environment
Bulgac, A; Kusnezov, D; Bulgac, Aurel; Dang, Gui Do; Kusnezov, Dimitri
1998-01-01
We present a theory for the dynamical evolution of a quantum system coupled to a complex many-body intrinsic system/environment. By modelling the intrinsic many-body system with parametric random matrices, we study the types of effective stochastic models which emerge from random matrix theory. Using the Feynman-Vernon path integral formalism, we derive the influence functional and obtain either analytical or numerical solutions for the time evolution of the entire quantum system. We discuss thoroughly the structure of the solutions for some representative cases and make connections to well known limiting results, particularly to Brownian motion, Kramers classical limit and the Caldeira-Leggett approach.
Closed-Loop and Robust Control of Quantum Systems
Directory of Open Access Journals (Sweden)
Chunlin Chen
2013-01-01
Full Text Available For most practical quantum control systems, it is important and difficult to attain robustness and reliability due to unavoidable uncertainties in the system dynamics or models. Three kinds of typical approaches (e.g., closed-loop learning control, feedback control, and robust control have been proved to be effective to solve these problems. This work presents a self-contained survey on the closed-loop and robust control of quantum systems, as well as a brief introduction to a selection of basic theories and methods in this research area, to provide interested readers with a general idea for further studies. In the area of closed-loop learning control of quantum systems, we survey and introduce such learning control methods as gradient-based methods, genetic algorithms (GA, and reinforcement learning (RL methods from a unified point of view of exploring the quantum control landscapes. For the feedback control approach, the paper surveys three control strategies including Lyapunov control, measurement-based control, and coherent-feedback control. Then such topics in the field of quantum robust control as H∞ control, sliding mode control, quantum risk-sensitive control, and quantum ensemble control are reviewed. The paper concludes with a perspective of future research directions that are likely to attract more attention.
Closed-loop and robust control of quantum systems.
Chen, Chunlin; Wang, Lin-Cheng; Wang, Yuanlong
2013-01-01
For most practical quantum control systems, it is important and difficult to attain robustness and reliability due to unavoidable uncertainties in the system dynamics or models. Three kinds of typical approaches (e.g., closed-loop learning control, feedback control, and robust control) have been proved to be effective to solve these problems. This work presents a self-contained survey on the closed-loop and robust control of quantum systems, as well as a brief introduction to a selection of basic theories and methods in this research area, to provide interested readers with a general idea for further studies. In the area of closed-loop learning control of quantum systems, we survey and introduce such learning control methods as gradient-based methods, genetic algorithms (GA), and reinforcement learning (RL) methods from a unified point of view of exploring the quantum control landscapes. For the feedback control approach, the paper surveys three control strategies including Lyapunov control, measurement-based control, and coherent-feedback control. Then such topics in the field of quantum robust control as H(∞) control, sliding mode control, quantum risk-sensitive control, and quantum ensemble control are reviewed. The paper concludes with a perspective of future research directions that are likely to attract more attention.
Deterministic constant-temperature dynamics for dissipative quantum systems
International Nuclear Information System (INIS)
Sergi, Alessandro
2007-01-01
A novel method is introduced in order to treat the dissipative dynamics of quantum systems interacting with a bath of classical degrees of freedom. The method is based upon an extension of the Nose-Hoover chain (constant temperature) dynamics to quantum-classical systems. Both adiabatic and nonadiabatic numerical calculations on the relaxation dynamics of the spin-boson model show that the quantum-classical Nose-Hoover chain dynamics represents the thermal noise of the bath in an accurate and simple way. Numerical comparisons, both with the constant-energy calculation and with the quantum-classical Brownian motion treatment of the bath, show that the quantum-classical Nose-Hoover chain dynamics can be used to introduce dissipation in the evolution of a quantum subsystem even with just one degree of freedom for the bath. The algorithm can be computationally advantageous in modelling, within computer simulation, the dynamics of a quantum subsystem interacting with complex molecular environments. (fast track communication)
DEFF Research Database (Denmark)
Nielsen, Per Kær; Nielsen, Torben Roland; Lodahl, Peter
2010-01-01
treatments. A pronounced consequence is the emergence of a phonon induced spectral asymmetry when detuning the cavity from the quantum-dot resonance. The asymmetry can only be explained when considering the polaritonic quasiparticle nature of the quantum-dot-cavity system. Furthermore, a temperature induced...
Coherence protection in coupled quantum systems
Cammack, H. M.; Kirton, P.; Stace, T. M.; Eastham, P. R.; Keeling, J.; Lovett, B. W.
2018-02-01
The interaction of a quantum system with its environment causes decoherence, setting a fundamental limit on its suitability for quantum information processing. However, we show that if the system consists of coupled parts with different internal energy scales then the interaction of one part with a thermal bath need not lead to loss of coherence from the other. Remarkably, we find that the protected part can remain coherent for longer when the coupling to the bath becomes stronger or the temperature is raised. Our theory will enable the design of decoherence-resistant hybrid quantum computers.
System and method for making quantum dots
Bakr, Osman; Pan, Jun; El-Ballouli, Ala'a O.; Knudsen, Kristian Rahbek; Abdelhady, Ahmed L.
2015-01-01
Embodiments of the present disclosure provide for methods of making quantum dots (QDs) (passivated or unpassivated) using a continuous flow process, systems for making QDs using a continuous flow process, and the like. In one or more embodiments
Stabilization of classic and quantum systems
International Nuclear Information System (INIS)
Buts, V.A.
2012-01-01
It is shown that the mechanism of quantum whirligig can be successfully used for stabilization of classical systems. In particular, the conditions for stabilization of charged particles and radiation fluxes in plasma are found.
Ground states of quantum spin systems
International Nuclear Information System (INIS)
Bratteli, Ola; Kishimoto, Akitaka; Robinson, D.W.
1978-07-01
The authors prove that ground states of quantum spin systems are characterized by a principle of minimum local energy and that translationally invariant ground states are characterized by the principle of minimum energy per unit volume
Quantum Phenomena in Low-Dimensional Systems
Geller, Michael R.
2001-01-01
A brief summary of the physics of low-dimensional quantum systems is given. The material should be accessible to advanced physics undergraduate students. References to recent review articles and books are provided when possible.
Quantum fluctuations in mesoscopic and macroscopic systems
International Nuclear Information System (INIS)
Cerdeira, H.A.; Guinea Lopez, F.; Weiss, U.
1991-01-01
The conference presentations have been grouped in three chapters; Quantum Transport (4 papers), Dissipation in Discrete Systems (7 papers) and Mesoscopic Junction, Rings and Arrays (6 papers). A separate abstract was prepared for each paper. Refs and figs
Approach to equilibrium in infinite quantum systems
International Nuclear Information System (INIS)
Haag, R.
1975-01-01
Ergodic theory of infinite quantum systems is discussed. The framework of this theory is based in an algebra of quasi-local observables. Nonrelativistic situation, i.e., Galilei invariance and Clifford algebra, is used [pt
Monari, Antonio; Rivail, Jean-Louis; Assfeld, Xavier
2013-02-19
Molecular mechanics methods can efficiently compute the macroscopic properties of a large molecular system but cannot represent the electronic changes that occur during a chemical reaction or an electronic transition. Quantum mechanical methods can accurately simulate these processes, but they require considerably greater computational resources. Because electronic changes typically occur in a limited part of the system, such as the solute in a molecular solution or the substrate within the active site of enzymatic reactions, researchers can limit the quantum computation to this part of the system. Researchers take into account the influence of the surroundings by embedding this quantum computation into a calculation of the whole system described at the molecular mechanical level, a strategy known as the mixed quantum mechanics/molecular mechanics (QM/MM) approach. The accuracy of this embedding varies according to the types of interactions included, whether they are purely mechanical or classically electrostatic. This embedding can also introduce the induced polarization of the surroundings. The difficulty in QM/MM calculations comes from the splitting of the system into two parts, which requires severing the chemical bonds that link the quantum mechanical subsystem to the classical subsystem. Typically, researchers replace the quantoclassical atoms, those at the boundary between the subsystems, with a monovalent link atom. For example, researchers might add a hydrogen atom when a C-C bond is cut. This Account describes another approach, the Local Self Consistent Field (LSCF), which was developed in our laboratory. LSCF links the quantum mechanical portion of the molecule to the classical portion using a strictly localized bond orbital extracted from a small model molecule for each bond. In this scenario, the quantoclassical atom has an apparent nuclear charge of +1. To achieve correct bond lengths and force constants, we must take into account the inner shell of
Modeling quantum fluid dynamics at nonzero temperatures
Berloff, Natalia G.; Brachet, Marc; Proukakis, Nick P.
2014-01-01
The detailed understanding of the intricate dynamics of quantum fluids, in particular in the rapidly growing subfield of quantum turbulence which elucidates the evolution of a vortex tangle in a superfluid, requires an in-depth understanding of the role of finite temperature in such systems. The Landau two-fluid model is the most successful hydrodynamical theory of superfluid helium, but by the nature of the scale separations it cannot give an adequate description of the processes involving vortex dynamics and interactions. In our contribution we introduce a framework based on a nonlinear classical-field equation that is mathematically identical to the Landau model and provides a mechanism for severing and coalescence of vortex lines, so that the questions related to the behavior of quantized vortices can be addressed self-consistently. The correct equation of state as well as nonlocality of interactions that leads to the existence of the roton minimum can also be introduced in such description. We review and apply the ideas developed for finite-temperature description of weakly interacting Bose gases as possible extensions and numerical refinements of the proposed method. We apply this method to elucidate the behavior of the vortices during expansion and contraction following the change in applied pressure. We show that at low temperatures, during the contraction of the vortex core as the negative pressure grows back to positive values, the vortex line density grows through a mechanism of vortex multiplication. This mechanism is suppressed at high temperatures. PMID:24704874
Two point function for a simple general relativistic quantum model
Colosi, Daniele
2007-01-01
We study the quantum theory of a simple general relativistic quantum model of two coupled harmonic oscillators and compute the two-point function following a proposal first introduced in the context of loop quantum gravity.
International Nuclear Information System (INIS)
Zhu, Ka-Di; Li, Wai-Sang
2003-01-01
The quantum coherent oscillations in a coherently driven quantum dot-cavity system with the presence of strong exciton-phonon interactions are investigated theoretically in a fully quantum treatment. It is shown that even at zero temperature, the strong exciton-phonon interactions still affect the quantum coherent oscillations significantly
Quantum billiards in multidimensional models with branes
Energy Technology Data Exchange (ETDEWEB)
Ivashchuk, V.D.; Melnikov, V.N. [VNIIMS, Center for Gravitation and Fundamental Metrology, Moscow (Russian Federation); Peoples' Friendship University of Russia, Institute of Gravitation and Cosmology, Moscow (Russian Federation)
2014-03-15
gravitational D-dimensional model with l scalar fields and several forms is considered. When a cosmological-type diagonal metric is chosen, an electromagnetic composite brane ansatz is adopted and certain restrictions on the branes are imposed; the conformally covariant Wheeler-DeWitt (WDW) equation for the model is studied. Under certain restrictions asymptotic solutions to WDW equation are found in the limit of the formation of the billiard walls which reduce the problem to the so-called quantum billiard on the (D+l-2)-dimensional Lobachevsky space. Two examples of quantum billiards are considered. The first one deals with 9-dimensional quantum billiard for D = 11 model with 330 four-forms which mimic space-like M2- and M5-branes of D = 11 supergravity. The second one deals with the 9-dimensional quantum billiard for D = 10 gravitational model with one scalar field, 210 four-forms and 120 three-forms which mimic space-like D2-, D4-, FS1- and NS5-branes in D = 10 IIA supergravity. It is shown that in both examples wave functions vanish in the limit of the formation of the billiard walls (i.e. we get a quantum resolution of the singularity for 11D model) but magnetic branes could not be neglected in calculations of quantum asymptotic solutions while they are irrelevant for classical oscillating behavior when all 120 electric branes are present. (orig.)
Quantum entropy of systems described by non-Hermitian Hamiltonians
International Nuclear Information System (INIS)
Sergi, Alessandro; Zloshchastiev, Konstantin G
2016-01-01
We study the quantum entropy of systems that are described by general non-Hermitian Hamiltonians, including those which can model the effects of sinks or sources. We generalize the von Neumann entropy to the non-Hermitian case and find that one needs both the normalized and non-normalized density operators in order to properly describe irreversible processes. It turns out that such a generalization monitors the onset of disorder in quantum dissipative systems. We give arguments for why one can consider the generalized entropy as the informational entropy describing the flow of information between the system and the bath. We illustrate the theory by explicitly studying few simple models, including tunneling systems with two energy levels and non-Hermitian detuning. (paper: quantum statistical physics, condensed matter, integrable systems)
New Spin Foam Models of Quantum Gravity
Miković, A.
We give a brief and a critical review of the Barret-Crane spin foam models of quantum gravity. Then we describe two new spin foam models which are obtained by direct quantization of General Relativity and do not have some of the drawbacks of the Barret-Crane models. These are the model of spin foam invariants for the embedded spin networks in loop quantum gravity and the spin foam model based on the integration of the tetrads in the path integral for the Palatini action.
Modeling experiments using quantum and Kolmogorov probability
International Nuclear Information System (INIS)
Hess, Karl
2008-01-01
Criteria are presented that permit a straightforward partition of experiments into sets that can be modeled using both quantum probability and the classical probability framework of Kolmogorov. These new criteria concentrate on the operational aspects of the experiments and lead beyond the commonly appreciated partition by relating experiments to commuting and non-commuting quantum operators as well as non-entangled and entangled wavefunctions. In other words the space of experiments that can be understood using classical probability is larger than usually assumed. This knowledge provides advantages for areas such as nanoscience and engineering or quantum computation.
Exotic quantum order in low-dimensional systems
Girvin, S. M.
1998-08-01
Strongly correlated quantum systems in low dimensions often exhibit novel quantum ordering. This ordering is sometimes hidden and can be revealed only by examining new "dual" types of correlations. Such ordering leads to novel collection modes and fractional quantum numbers. Examples will be presented from quantum spin chains and the quantum Hall effect.
CIME School on Quantum Many Body Systems
Rivasseau, Vincent; Solovej, Jan Philip; Spencer, Thomas
2012-01-01
The book is based on the lectures given at the CIME school "Quantum many body systems" held in the summer of 2010. It provides a tutorial introduction to recent advances in the mathematics of interacting systems, written by four leading experts in the field: V. Rivasseau illustrates the applications of constructive Quantum Field Theory to 2D interacting electrons and their relation to quantum gravity; R. Seiringer describes a proof of Bose-Einstein condensation in the Gross-Pitaevski limit and explains the effects of rotating traps and the emergence of lattices of quantized vortices; J.-P. Solovej gives an introduction to the theory of quantum Coulomb systems and to the functional analytic methods used to prove their thermodynamic stability; finally, T. Spencer explains the supersymmetric approach to Anderson localization and its relation to the theory of random matrices. All the lectures are characterized by their mathematical rigor combined with physical insights.
Quantum protocols within Spekkens' toy model
Disilvestro, Leonardo; Markham, Damian
2017-05-01
Quantum mechanics is known to provide significant improvements in information processing tasks when compared to classical models. These advantages range from computational speedups to security improvements. A key question is where these advantages come from. The toy model developed by Spekkens [R. W. Spekkens, Phys. Rev. A 75, 032110 (2007), 10.1103/PhysRevA.75.032110] mimics many of the features of quantum mechanics, such as entanglement and no cloning, regarded as being important in this regard, despite being a local hidden variable theory. In this work, we study several protocols within Spekkens' toy model where we see it can also mimic the advantages and limitations shown in the quantum case. We first provide explicit proofs for the impossibility of toy bit commitment and the existence of a toy error correction protocol and consequent k -threshold secret sharing. Then, defining a toy computational model based on the quantum one-way computer, we prove the existence of blind and verified protocols. Importantly, these two last quantum protocols are known to achieve a better-than-classical security. Our results suggest that such quantum improvements need not arise from any Bell-type nonlocality or contextuality, but rather as a consequence of steering correlations.
Matrix product state calculations for one-dimensional quantum chains and quantum impurity models
International Nuclear Information System (INIS)
Muender, Wolfgang
2011-01-01
This thesis contributes to the field of strongly correlated electron systems with studies in two distinct fields thereof: the specific nature of correlations between electrons in one dimension and quantum quenches in quantum impurity problems. In general, strongly correlated systems are characterized in that their physical behaviour needs to be described in terms of a many-body description, i.e. interactions correlate all particles in a complex way. The challenge is that the Hilbert space in a many-body theory is exponentially large in the number of particles. Thus, when no analytic solution is available - which is typically the case - it is necessary to find a way to somehow circumvent the problem of such huge Hilbert spaces. Therefore, the connection between the two studies comes from our numerical treatment: they are tackled by the density matrix renormalization group (DMRG) and the numerical renormalization group (NRG), respectively, both based on matrix product states. The first project presented in this thesis addresses the problem of numerically finding the dominant correlations in quantum lattice models in an unbiased way, i.e. without using prior knowledge of the model at hand. A useful concept for this task is the correlation density matrix (CDM) which contains all correlations between two clusters of lattice sites. We show how to extract from the CDM, a survey of the relative strengths of the system's correlations in different symmetry sectors as well as detailed information on the operators carrying long-range correlations and the spatial dependence of their correlation functions. We demonstrate this by a DMRG study of a one-dimensional spinless extended Hubbard model, while emphasizing that the proposed analysis of the CDM is not restricted to one dimension. The second project presented in this thesis is motivated by two phenomena under ongoing experimental and theoretical investigation in the context of quantum impurity models: optical absorption
Matrix product state calculations for one-dimensional quantum chains and quantum impurity models
Energy Technology Data Exchange (ETDEWEB)
Muender, Wolfgang
2011-09-28
This thesis contributes to the field of strongly correlated electron systems with studies in two distinct fields thereof: the specific nature of correlations between electrons in one dimension and quantum quenches in quantum impurity problems. In general, strongly correlated systems are characterized in that their physical behaviour needs to be described in terms of a many-body description, i.e. interactions correlate all particles in a complex way. The challenge is that the Hilbert space in a many-body theory is exponentially large in the number of particles. Thus, when no analytic solution is available - which is typically the case - it is necessary to find a way to somehow circumvent the problem of such huge Hilbert spaces. Therefore, the connection between the two studies comes from our numerical treatment: they are tackled by the density matrix renormalization group (DMRG) and the numerical renormalization group (NRG), respectively, both based on matrix product states. The first project presented in this thesis addresses the problem of numerically finding the dominant correlations in quantum lattice models in an unbiased way, i.e. without using prior knowledge of the model at hand. A useful concept for this task is the correlation density matrix (CDM) which contains all correlations between two clusters of lattice sites. We show how to extract from the CDM, a survey of the relative strengths of the system's correlations in different symmetry sectors as well as detailed information on the operators carrying long-range correlations and the spatial dependence of their correlation functions. We demonstrate this by a DMRG study of a one-dimensional spinless extended Hubbard model, while emphasizing that the proposed analysis of the CDM is not restricted to one dimension. The second project presented in this thesis is motivated by two phenomena under ongoing experimental and theoretical investigation in the context of quantum impurity models: optical absorption
Isoperiodic classical systems and their quantum counterparts
International Nuclear Information System (INIS)
Asorey, M.; Carinena, J.F.; Marmo, G.; Perelomov, A.
2007-01-01
One-dimensional isoperiodic classical systems have been first analyzed by Abel. Abel's characterization can be extended for singular potentials and potentials which are not defined on the whole real line. The standard shear equivalence of isoperiodic potentials can also be extended by using reflection and inversion transformations. We provide a full characterization of isoperiodic rational potentials showing that they are connected by translations, reflections or Joukowski transformations. Upon quantization many of these isoperiodic systems fail to exhibit identical quantum energy spectra. This anomaly occurs at order O(h 2 ) because semiclassical corrections of energy levels of order O(h) are identical for all isoperiodic systems. We analyze families of systems where this quantum anomaly occurs and some special systems where the spectral identity is preserved by quantization. Conversely, we point out the existence of isospectral quantum systems which do not correspond to isoperiodic classical systems
Numerical approaches to complex quantum, semiclassical and classical systems
Energy Technology Data Exchange (ETDEWEB)
Schubert, Gerald
2008-11-03
In this work we analyse the capabilities of several numerical techniques for the description of different physical systems. Thereby, the considered systems range from quantum over semiclassical to classical and from few- to many-particle systems. In chapter 1 we investigate the behaviour of a single quantum particle in the presence of an external disordered background (static potentials). Starting from the quantum percolation problem, we address the fundamental question of a disorder induced (Anderson-) transition from extended to localised single-particle eigenstates. Distinguishing isolating from conducting states by applying a local distribution approach for the local density of states (LDOS), we detect the quantum percolation threshold in two- and three-dimensions. Extending the quantum percolation model to a quantum random resistor model, we comment on the possible relevance of our results to the influence of disorder on the conductivity in graphene sheets. For the calculation of the LDOS as well as for the Chebyshev expansion of the time evolution operator, the kernel polynomial method (KPM) is the key numerical technique. In chapter 2 we examine how a single quantum particle is influenced by retarded bosonic fields that are inherent to the system. Within the Holstein model, these bosonic degrees of freedom (phonons) give rise to an infinite dimensional Hilbert space, posing a true many-particle problem. Constituting a minimal model for polaron formation, the Holstein model allows us to study the optical absorption and activated transport in polaronic systems. Using a two-dimensional variant of the KPM, we calculate for the first time quasi-exactly the optical absorption and dc-conductivity as a function of temperature. In chapter 3 we come back to the time evolution of a quantum particle in an external, static potential and investigate the capability of semiclassical approximations to it. We address basic quantum effects as tunneling, interference and
Numerical approaches to complex quantum, semiclassical and classical systems
International Nuclear Information System (INIS)
Schubert, Gerald
2008-01-01
In this work we analyse the capabilities of several numerical techniques for the description of different physical systems. Thereby, the considered systems range from quantum over semiclassical to classical and from few- to many-particle systems. In chapter 1 we investigate the behaviour of a single quantum particle in the presence of an external disordered background (static potentials). Starting from the quantum percolation problem, we address the fundamental question of a disorder induced (Anderson-) transition from extended to localised single-particle eigenstates. Distinguishing isolating from conducting states by applying a local distribution approach for the local density of states (LDOS), we detect the quantum percolation threshold in two- and three-dimensions. Extending the quantum percolation model to a quantum random resistor model, we comment on the possible relevance of our results to the influence of disorder on the conductivity in graphene sheets. For the calculation of the LDOS as well as for the Chebyshev expansion of the time evolution operator, the kernel polynomial method (KPM) is the key numerical technique. In chapter 2 we examine how a single quantum particle is influenced by retarded bosonic fields that are inherent to the system. Within the Holstein model, these bosonic degrees of freedom (phonons) give rise to an infinite dimensional Hilbert space, posing a true many-particle problem. Constituting a minimal model for polaron formation, the Holstein model allows us to study the optical absorption and activated transport in polaronic systems. Using a two-dimensional variant of the KPM, we calculate for the first time quasi-exactly the optical absorption and dc-conductivity as a function of temperature. In chapter 3 we come back to the time evolution of a quantum particle in an external, static potential and investigate the capability of semiclassical approximations to it. We address basic quantum effects as tunneling, interference and
Noise management to achieve superiority in quantum information systems
Nemoto, Kae; Devitt, Simon; Munro, William J.
2017-06-01
Quantum information systems are expected to exhibit superiority compared with their classical counterparts. This superiority arises from the quantum coherences present in these quantum systems, which are obviously absent in classical ones. To exploit such quantum coherences, it is essential to control the phase information in the quantum state. The phase is analogue in nature, rather than binary. This makes quantum information technology fundamentally different from our classical digital information technology. In this paper, we analyse error sources and illustrate how these errors must be managed for the system to achieve the required fidelity and a quantum superiority. This article is part of the themed issue 'Quantum technology for the 21st century'.
Physical models of semiconductor quantum devices
Fu, Ying
2013-01-01
The science and technology relating to nanostructures continues to receive significant attention for its applications to various fields including microelectronics, nanophotonics, and biotechnology. This book describes the basic quantum mechanical principles underlining this fast developing field. From the fundamental principles of quantum mechanics to nanomaterial properties, from device physics to research and development of new systems, this title is aimed at undergraduates, graduates, postgraduates, and researchers.
Conductance in double quantum well systems
International Nuclear Information System (INIS)
Hasbun, J E
2003-01-01
The object of this paper is to review the electronic conductance in double quantum well systems. These are quantum well structures in which electrons are confined in the z direction by large band gap material barrier layers, yet form a free two-dimensional Fermi gas within the sandwiched low band gap material layers in the x-y plane. Aspects related to the conductance in addition to the research progress made since the inception of such systems are included. While the review focuses on the tunnelling conductance properties of double quantum well devices, the longitudinal conductance is also discussed. Double quantum well systems are a more recent generation of structures whose precursors are the well known double-barrier resonant tunnelling systems. Thus, they have electronic signatures such as negative differential resistance, in addition to resonant tunnelling, whose behaviours depend on the wavefunction coupling between the quantum wells. As such, the barrier which separates the quantum wells can be tailored in order to provide better control of the device's electronic properties over their single well ancestors. (topical review)
Quantum statistical model for hot dense matter
International Nuclear Information System (INIS)
Rukhsana Kouser; Tasneem, G.; Saleem Shahzad, M.; Shafiq-ur-Rehman; Nasim, M.H.; Amjad Ali
2015-01-01
In solving numerous applied problems, one needs to know the equation of state, photon absorption coefficient and opacity of substances employed. We present a code for absorption coefficient and opacity calculation based on quantum statistical model. A self-consistent method for the calculation of potential is used. By solving Schrödinger equation with self-consistent potential we find energy spectrum of quantum mechanical system and corresponding wave functions. In addition we find mean occupation numbers of electron states and average charge state of the substance studied. The main processes of interaction of radiation with matter included in our opacity calculation are photon absorption in spectral lines (Bound-bound), photoionization (Bound-free), inverse bremsstrahlung (Free-free), Compton and Thomson scattering. Bound-bound line shape function has contribution from natural, Doppler, fine structure, collisional and stark broadening. To illustrate the main features of the code and its capabilities, calculation of average charge state, absorption coefficient, Rosseland and Planck mean and group opacities of aluminum and iron are presented. Results are satisfactorily compared with the published data. (authors)
Quantum optical properties in plasmonic systems
Energy Technology Data Exchange (ETDEWEB)
Ooi, C. H. Raymond [Department of Physics, University of Malaya, 50603, Kuala Lumpur (Malaysia)
2015-04-24
Plasmonic metallic particle (MP) can affect the optical properties of a quantum system (QS) in a remarkable way. We develop a general quantum nonlinear formalism with exact vectorial description for the scattered photons by the QS. The formalism enables us to study the variations of the dielectric function and photon spectrum of the QS with the particle distance between QS and MP, exciting laser direction, polarization and phase in the presence of surface plasmon resonance (SPR) in the MP. The quantum formalism also serves as a powerful tool for studying the effects of these parameters on the nonclassical properties of the scattered photons. The plasmonic effect of nanoparticles has promising possibilities as it provides a new way for manipulating quantum optical properties of light in nanophotonic systems.
Quantum chromodynamics, chiral symmetry and bag models
International Nuclear Information System (INIS)
Soyeur, M.
1983-08-01
This course deals with the following subjects: quarks; quantum chromodynamics (the classical Lagrangian of QCD, quark masses, the classical equations of motion of QCD, general properties, lattices); chiral symmetry (massless free Dirac theory, realizations, the σ-model); the M.I.T. bag model (basic assumptions and equations of motion, spherical cavity approximation, properties of hadrons); the chiral bag models (basic assumptions, the cloudy bag model, the little bag model); non-topological soliton bag models
Approaches to open quantum systems: Decoherence, localisation and all that
International Nuclear Information System (INIS)
Yu Ting
1998-01-01
This thesis is mainly concerned with issues in quantum open systems and the foundations of quantum theory. Chapter I introduces the aim, background and main results which take place in the following chapters. Chapters II and III are used to study and compare the decoherent histories approach, the environment-induced decoherence and the localisation properties of the solutions to the stochastic Schrodinger equation in quantum jump simulation and quantum state diffusion approaches, for a quantum two-level system model. We show, in particular, that there is a close connection between the decoherent histories and the quantum jump simulation, complementing a connection with the quantum state diffusion approach noted earlier by Diosi, Gisin, Halliwell and Percival. In the case of the decoherent histories analysis, the degree of approximate decoherence is discussed in detail. As by-product, by using the von Neumann entropy, we also discuss the predictability and its relation to the upper bounds of degree of decoherence. In Chapter IV, we give an alternative and elementary derivation of the Hu-Paz-Ghang master equation for quantum Brownian motion in a general environment, which involves tracing the evolution equation for the Wigner function. We also discuss the master equation in some special cases. This master equation provides a very useful tool to study the decoherence of a quantum system due to the interaction with its environment. In Chapter V, a derivation of the parameter-based uncertainty relation between position and momentum is given. This uncertainty relation can be regarded as an exact counterpart of the time-energy uncertainty relation. The final chapter is a rather brief summary of the thesis. (author)
Quantum statistics of many-particle systems
International Nuclear Information System (INIS)
Kraeft, W.D.; Ebeling, W.; Kremp, D.; Ropke, G.
1986-01-01
This paper presents the elements of quantum statistics and discusses the quantum mechanics of many-particle systems. The method of second quantization is discussed and the Bogolyubov hierarchy is examined. The general properties of the correlation function and one-particle Green's function are examined. The paper presents dynamical and thermodynamical information contained in the spectral function. An equation of motion is given for the one-particle Green's function. T-matrix and thermodynamic properties in binary collision approximation are discussed
Analog model for quantum gravity effects: phonons in random fluids.
Krein, G; Menezes, G; Svaiter, N F
2010-09-24
We describe an analog model for quantum gravity effects in condensed matter physics. The situation discussed is that of phonons propagating in a fluid with a random velocity wave equation. We consider that there are random fluctuations in the reciprocal of the bulk modulus of the system and study free phonons in the presence of Gaussian colored noise with zero mean. We show that, in this model, after performing the random averages over the noise function a free conventional scalar quantum field theory describing free phonons becomes a self-interacting model.
Scattering Theory for Open Quantum Systems with Finite Rank Coupling
International Nuclear Information System (INIS)
Behrndt, Jussi; Malamud, Mark M.; Neidhardt, Hagen
2007-01-01
Quantum systems which interact with their environment are often modeled by maximal dissipative operators or so-called Pseudo-Hamiltonians. In this paper the scattering theory for such open systems is considered. First it is assumed that a single maximal dissipative operator A D in a Hilbert space is used to describe an open quantum system. In this case the minimal self-adjoint dilation of A D can be regarded as the Hamiltonian of a closed system which contains the open system, but since K-tilde is necessarily not semibounded from below, this model is difficult to interpret from a physical point of view. In the second part of the paper an open quantum system is modeled with a family {A(μ)} of maximal dissipative operators depending on energy μ, and it is shown that the open system can be embedded into a closed system where the Hamiltonian is semibounded. Surprisingly it turns out that the corresponding scattering matrix can be completely recovered from scattering matrices of single pseudo-Hamiltonians as in the first part of the paper. The general results are applied to a class of Sturm-Liouville operators arising in dissipative and quantum transmitting Schroedinger-Poisson systems
Models of Quantum Space Time: Quantum Field Planes
Mack, G.; Schomerus, V.
1994-01-01
Quantum field planes furnish a noncommutative differential algebra $\\Omega$ which substitutes for the commutative algebra of functions and forms on a contractible manifold. The data required in their construction come from a quantum field theory. The basic idea is to replace the ground field ${\\bf C}$ of quantum planes by the noncommutative algebra ${\\cal A}$ of observables of the quantum field theory.
Quantum field theory and the standard model
Schwartz, Matthew D
2014-01-01
Providing a comprehensive introduction to quantum field theory, this textbook covers the development of particle physics from its foundations to the discovery of the Higgs boson. Its combination of clear physical explanations, with direct connections to experimental data, and mathematical rigor make the subject accessible to students with a wide variety of backgrounds and interests. Assuming only an undergraduate-level understanding of quantum mechanics, the book steadily develops the Standard Model and state-of-the-art calculation techniques. It includes multiple derivations of many important results, with modern methods such as effective field theory and the renormalization group playing a prominent role. Numerous worked examples and end-of-chapter problems enable students to reproduce classic results and to master quantum field theory as it is used today. Based on a course taught by the author over many years, this book is ideal for an introductory to advanced quantum field theory sequence or for independe...
Quantum-like Modeling of Cognition
Khrennikov, Andrei
2015-09-01
This paper begins with a historical review of the mutual influence of physics and psychology, from Freud's invention of psychic energy inspired by von Boltzmann' thermodynamics to the enrichment quantum physics gained from the side of psychology by the notion of complementarity (the invention of Niels Bohr who was inspired by William James), besides we consider the resonance of the correspondence between Wolfgang Pauli and Carl Jung in both physics and psychology. Then we turn to the problem of development of mathematical models for laws of thought starting with Boolean logic and progressing towards foundations of classical probability theory. Interestingly, the laws of classical logic and probability are routinely violated not only by quantum statistical phenomena but by cognitive phenomena as well. This is yet another common feature between quantum physics and psychology. In particular, cognitive data can exhibit a kind of the probabilistic interference effect. This similarity with quantum physics convinced a multi-disciplinary group of scientists (physicists, psychologists, economists, sociologists) to apply the mathematical apparatus of quantum mechanics to modeling of cognition. We illustrate this activity by considering a few concrete phenomena: the order and disjunction effects, recognition of ambiguous figures, categorization-decision making. In Appendix 1 we briefly present essentials of theory of contextual probability and a method of representations of contextual probabilities by complex probability amplitudes (solution of the ``inverse Born's problem'') based on a quantum-like representation algorithm (QLRA).
Quantum-like Modeling of Cognition
Directory of Open Access Journals (Sweden)
Andrei eKhrennikov
2015-09-01
Full Text Available This paper begins with a historical review of the mutual influence of physics and psychology, from Freud's invention of psychic energy inspired by von Boltzmann' thermodynamics to the enrichment quantum physics gained from the side of psychology by the notion of complementarity (the invention of Niels Bohr who was inspired by William James, besides we consider the resonance of the correspondence between Wolfgang Pauli and Carl Jung in both physics and psychology. Then we turn to the problem of development of mathematical models for laws of thought starting with Boolean logic and progressing towards foundations of classical probability theory. Interestingly, the laws of classical logic and probability are routinely violated not only by quantum statistical phenomena but by cognitive phenomena as well. This is yet another common feature between quantum physics and psychology.In particular, cognitive data can exhibit a kind of the probabilistic interference effect. This similarity with quantum physics convinced a multi-disciplinary group of scientists (physicists, psychologists, economists, sociologists to apply the mathematical apparatus of quantum mechanics to modeling of cognition. We illustrate this activity by considering a few concrete phenomena: the order and disjunction effects, recognition of ambiguous figures, categorization-decision making.In Appendix 1 we briefly present essentials of theory of contextual probability and a method of representations of contextual probabilities by complex probability amplitudes(solution of the ``inverse Born's problem'' based on a quantum-like representation algorithm (QLRA.
Wigner Functions for Arbitrary Quantum Systems.
Tilma, Todd; Everitt, Mark J; Samson, John H; Munro, William J; Nemoto, Kae
2016-10-28
The possibility of constructing a complete, continuous Wigner function for any quantum system has been a subject of investigation for over 50 years. A key system that has served to illustrate the difficulties of this problem has been an ensemble of spins. Here we present a general and consistent framework for constructing Wigner functions exploiting the underlying symmetries in the physical system at hand. The Wigner function can be used to fully describe any quantum system of arbitrary dimension or ensemble size.
International Nuclear Information System (INIS)
Yoshida, Beni
2011-01-01
Searches for possible new quantum phases and classifications of quantum phases have been central problems in physics. Yet, they are indeed challenging problems due to the computational difficulties in analyzing quantum many-body systems and the lack of a general framework for classifications. While frustration-free Hamiltonians, which appear as fixed point Hamiltonians of renormalization group transformations, may serve as representatives of quantum phases, it is still difficult to analyze and classify quantum phases of arbitrary frustration-free Hamiltonians exhaustively. Here, we address these problems by sharpening our considerations to a certain subclass of frustration-free Hamiltonians, called stabilizer Hamiltonians, which have been actively studied in quantum information science. We propose a model of frustration-free Hamiltonians which covers a large class of physically realistic stabilizer Hamiltonians, constrained to only three physical conditions; the locality of interaction terms, translation symmetries and scale symmetries, meaning that the number of ground states does not grow with the system size. We show that quantum phases arising in two-dimensional models can be classified exactly through certain quantum coding theoretical operators, called logical operators, by proving that two models with topologically distinct shapes of logical operators are always separated by quantum phase transitions.
Transitivity and ergodicity of quantum systems
International Nuclear Information System (INIS)
Narnhofer, H.; Thirring, W.; Wiklicky, H.
1987-01-01
First we try to generalize the notion of a topological transitive or a topologically mixing system for quantum mechanical systems in a consistent way. Furthermore we compare these ergodic properties with the classical results. Finaly we deal with some aspects of nearly abelian systems and investigate some relations between these notions. 11 refs. (Author)
Classical Boolean logic gates with quantum systems
International Nuclear Information System (INIS)
Renaud, N; Joachim, C
2011-01-01
An analytical method is proposed to implement any classical Boolean function in a small quantum system by taking the advantage of its electronic transport properties. The logical input, α = {α 1 , ..., α N }, is used to control well-identified parameters of the Hamiltonian of the system noted H 0 (α). The logical output is encoded in the tunneling current intensity passing through the quantum system when connected to conducting electrodes. It is demonstrated how to implement the six symmetric two-input/one-output Boolean functions in a quantum system. This system can be switched from one logic function to another by changing its structural parameters. The stability of the logic gates is discussed, perturbing the Hamiltonian with noise sources and studying the effect of decoherence.
Completeness of classical spin models and universal quantum computation
International Nuclear Information System (INIS)
De las Cuevas, Gemma; Dür, Wolfgang; Briegel, Hans J; Van den Nest, Maarten
2009-01-01
We study mappings between different classical spin systems that leave the partition function invariant. As recently shown in Van den Nest et al (2008 Phys. Rev. Lett. 100 110501), the partition function of the 2D square lattice Ising model in the presence of an inhomogeneous magnetic field can specialize to the partition function of any Ising system on an arbitrary graph. In this sense the 2D Ising model is said to be 'complete'. However, in order to obtain the above result, the coupling strengths on the 2D lattice must assume complex values, and thus do not allow for a physical interpretation. Here we show how a complete model with real—and, hence, 'physical'—couplings can be obtained if the 3D Ising model is considered. We furthermore show how to map general q-state systems with possibly many-body interactions to the 2D Ising model with complex parameters, and give completeness results for these models with real parameters. We also demonstrate that the computational overhead in these constructions is in all relevant cases polynomial. These results are proved by invoking a recently found cross-connection between statistical mechanics and quantum information theory, where partition functions are expressed as quantum mechanical amplitudes. Within this framework, there exists a natural correspondence between many-body quantum states that allow for universal quantum computation via local measurements only, and complete classical spin systems
Incoherent control of locally controllable quantum systems
International Nuclear Information System (INIS)
Dong Daoyi; Zhang Chenbin; Rabitz, Herschel; Pechen, Alexander; Tarn, T.-J.
2008-01-01
An incoherent control scheme for state control of locally controllable quantum systems is proposed. This scheme includes three steps: (1) amplitude amplification of the initial state by a suitable unitary transformation, (2) projective measurement of the amplified state, and (3) final optimization by a unitary controlled transformation. The first step increases the amplitudes of some desired eigenstates and the corresponding probability of observing these eigenstates, the second step projects, with high probability, the amplified state into a desired eigenstate, and the last step steers this eigenstate into the target state. Within this scheme, two control algorithms are presented for two classes of quantum systems. As an example, the incoherent control scheme is applied to the control of a hydrogen atom by an external field. The results support the suggestion that projective measurements can serve as an effective control and local controllability information can be used to design control laws for quantum systems. Thus, this scheme establishes a subtle connection between control design and controllability analysis of quantum systems and provides an effective engineering approach in controlling quantum systems with partial controllability information.
Open quantum maps from complex scaling of kicked scattering systems
Mertig, Normann; Shudo, Akira
2018-04-01
We derive open quantum maps from periodically kicked scattering systems and discuss the computation of their resonance spectra in terms of theoretically grounded methods, such as complex scaling and sufficiently weak absorbing potentials. In contrast, we also show that current implementations of open quantum maps, based on strong absorptive or even projective openings, fail to produce the resonance spectra of kicked scattering systems. This comparison pinpoints flaws in current implementations of open quantum maps, namely, the inability to separate resonance eigenvalues from the continuum as well as the presence of diffraction effects due to strong absorption. The reported deviations from the true resonance spectra appear, even if the openings do not affect the classical trapped set, and become appreciable for shorter-lived resonances, e.g., those associated with chaotic orbits. This makes the open quantum maps, which we derive in this paper, a valuable alternative for future explorations of quantum-chaotic scattering systems, for example, in the context of the fractal Weyl law. The results are illustrated for a quantum map model whose classical dynamics exhibits key features of ionization and a trapped set which is organized by a topological horseshoe.
On the Velocity of Moving Relativistic Unstable Quantum Systems
Directory of Open Access Journals (Sweden)
K. Urbanowski
2015-01-01
Full Text Available We study properties of moving relativistic quantum unstable systems. We show that in contrast to the properties of classical particles and quantum stable objects the velocity of freely moving relativistic quantum unstable systems cannot be constant in time. We show that this new quantum effect results from the fundamental principles of the quantum theory and physics: it is a consequence of the principle of conservation of energy and of the fact that the mass of the quantum unstable system is not defined. This effect can affect the form of the decay law of moving relativistic quantum unstable systems.
Localization in a quantum spin Hall system.
Onoda, Masaru; Avishai, Yshai; Nagaosa, Naoto
2007-02-16
The localization problem of electronic states in a two-dimensional quantum spin Hall system (that is, a symplectic ensemble with topological term) is studied by the transfer matrix method. The phase diagram in the plane of energy and disorder strength is exposed, and demonstrates "levitation" and "pair annihilation" of the domains of extended states analogous to that of the integer quantum Hall system. The critical exponent nu for the divergence of the localization length is estimated as nu congruent with 1.6, which is distinct from both exponents pertaining to the conventional symplectic and the unitary quantum Hall systems. Our analysis strongly suggests a different universality class related to the topology of the pertinent system.
Pate, S. F.; Wester, T.; Bugel, L.; Conrad, J.; Henderson, E.; Jones, B. J. P.; McLean, A. I. L.; Moon, J. S.; Toups, M.; Wongjirad, T.
2018-02-01
We present a model for the Global Quantum Efficiency (GQE) of the MicroBooNE optical units. An optical unit consists of a flat, circular acrylic plate, coated with tetraphenyl butadiene (TPB), positioned near the photocathode of a 20.2-cm diameter photomultiplier tube. The plate converts the ultra-violet scintillation photons from liquid argon into visible-spectrum photons to which the cryogenic phototubes are sensitive. The GQE is the convolution of the efficiency of the plates that convert the 128 nm scintillation light from liquid argon to visible light, the efficiency of the shifted light to reach the photocathode, and the efficiency of the cryogenic photomultiplier tube. We develop a GEANT4-based model of the optical unit, based on first principles, and obtain the range of probable values for the expected number of detected photoelectrons (NPE) given the known systematic errors on the simulation parameters. We compare results from four measurements of the NPE determined using alpha-particle sources placed at two distances from a TPB-coated plate in a liquid argon cryostat test stand. We also directly measured the radial dependence of the quantum efficiency, and find that this has the same shape as predicted by our model. Our model results in a GQE of 0.0055±0.0009 for the MicroBooNE optical units. While the information shown here is MicroBooNE specific, the approach to the model and the collection of simulation parameters will be widely applicable to many liquid-argon-based light collection systems.
Experimental non-classicality of an indivisible quantum system.
Lapkiewicz, Radek; Li, Peizhe; Schaeff, Christoph; Langford, Nathan K; Ramelow, Sven; Wieśniak, Marcin; Zeilinger, Anton
2011-06-22
In contrast to classical physics, quantum theory demands that not all properties can be simultaneously well defined; the Heisenberg uncertainty principle is a manifestation of this fact. Alternatives have been explored--notably theories relying on joint probability distributions or non-contextual hidden-variable models, in which the properties of a system are defined independently of their own measurement and any other measurements that are made. Various deep theoretical results imply that such theories are in conflict with quantum mechanics. Simpler cases demonstrating this conflict have been found and tested experimentally with pairs of quantum bits (qubits). Recently, an inequality satisfied by non-contextual hidden-variable models and violated by quantum mechanics for all states of two qubits was introduced and tested experimentally. A single three-state system (a qutrit) is the simplest system in which such a contradiction is possible; moreover, the contradiction cannot result from entanglement between subsystems, because such a three-state system is indivisible. Here we report an experiment with single photonic qutrits which provides evidence that no joint probability distribution describing the outcomes of all possible measurements--and, therefore, no non-contextual theory--can exist. Specifically, we observe a violation of the Bell-type inequality found by Klyachko, Can, Binicioğlu and Shumovsky. Our results illustrate a deep incompatibility between quantum mechanics and classical physics that cannot in any way result from entanglement.
Functional methods and mappings of dissipative quantum systems
International Nuclear Information System (INIS)
Baur, H.
2006-01-01
In the first part of this work we extract the algebraic structure behind the method of the influence functional in the context of dissipative quantum mechanics. Special emphasis was put on the transition from a quantum mechanical description to a classical one, since it allows a deeper understanding of the measurement-process. This is tightly connected with the transition from a microscopic to a macroscopic world where the former one is described by the rules of quantum mechanics whereas the latter follows the rules of classical mechanics. In addition we show how the results of the influence functional method can be interpreted as a stochastical process, which in turn allows an easy comparison with the well known time development of a quantum mechanical system by use of the Schroedinger equation. In the following we examine the tight-binding approximation of models of which their hamiltionian shows discrete eigenstates in position space and where transitions between those states are suppressed so that propagation either is described by tunneling or by thermal activation. In the framework of dissipative quantum mechanics this leads to a tremendous simplification of the effective description of the system since instead of looking at the full history of all paths in the path integral description, we only have to look at all possible jump times and the possible corresponding set of weights for the jump direction, which is much easier to handle both analytically and numerically. In addition we deal with the mapping and the connection of dissipative quantum mechanical models with ones in quantum field theory and in particular models in statistical field theory. As an example we mention conformal invariance in two dimensions which always becomes relevant if a statistical system only has local interaction and is invariant under scaling. (orig.)
Criticality and entanglement in random quantum systems
International Nuclear Information System (INIS)
Refael, G; Moore, J E
2009-01-01
We review studies of entanglement entropy in systems with quenched randomness, concentrating on universal behavior at strongly random quantum critical points. The disorder-averaged entanglement entropy provides insight into the quantum criticality of these systems and an understanding of their relationship to non-random ('pure') quantum criticality. The entanglement near many such critical points in one dimension shows a logarithmic divergence in subsystem size, similar to that in the pure case but with a different universal coefficient. Such universal coefficients are examples of universal critical amplitudes in a random system. Possible measurements are reviewed along with the one-particle entanglement scaling at certain Anderson localization transitions. We also comment briefly on higher dimensions and challenges for the future.
Adiabatic Theorem for Quantum Spin Systems
Bachmann, S.; De Roeck, W.; Fraas, M.
2017-08-01
The first proof of the quantum adiabatic theorem was given as early as 1928. Today, this theorem is increasingly applied in a many-body context, e.g., in quantum annealing and in studies of topological properties of matter. In this setup, the rate of variation ɛ of local terms is indeed small compared to the gap, but the rate of variation of the total, extensive Hamiltonian, is not. Therefore, applications to many-body systems are not covered by the proofs and arguments in the literature. In this Letter, we prove a version of the adiabatic theorem for gapped ground states of interacting quantum spin systems, under assumptions that remain valid in the thermodynamic limit. As an application, we give a mathematical proof of Kubo's linear response formula for a broad class of gapped interacting systems. We predict that the density of nonadiabatic excitations is exponentially small in the driving rate and the scaling of the exponent depends on the dimension.
Develop of a quantum electromechanical hybrid system
Hao, Yu; Rouxinol, Francisco; Brito, Frederico; Caldeira, Amir; Irish, Elinor; Lahaye, Matthew
In this poster, we will show our results from measurements of a hybrid quantum system composed of a superconducting transmon qubit-coupled and ultra-high frequency nano-mechanical resonator, embedded in a superconducting cavity. The transmon is capacitively coupled to a 3.4GHz nanoresonator and a T-filter-biased high-Q transmission line cavity. Single-tone and two-tone transmission spectroscopy measurements are used to probe the interactions between the cavity, qubit and mechanical resonator. These measurements are in good agreement with numerical simulations based upon a master equation for the tripartite system including dissipation. The results indicate that this system may be developed to serve as a platform for more advanced measurements with nanoresonators, including quantum state measurement, the exploration of nanoresonator quantum noise, and reservoir engineering.
Large quantum systems: a mathematical and numerical perspective
International Nuclear Information System (INIS)
Lewin, M.
2009-06-01
This thesis is devoted to the mathematical study of variational models for large quantum systems. The mathematical methods are that of nonlinear analysis, calculus of variations, partial differential equations, spectral theory, and numerical analysis. The first part contains some results on finite systems. We study several approximations of the N-body Schroedinger equation for electrons in an atom or a molecule, and then the so-called Hartree-Fock- Bogoliubov model for a system of fermions interacting via the gravitational force. In a second part, we propose a new method allowing to prove the existence of the thermodynamic limit of Coulomb quantum systems. Then, we construct two Hartree-Fock-type models for infinite systems. The first is a relativistic theory deduced from Quantum Electrodynamics, allowing to describe the behavior of electrons, coupled to that of Dirac's vacuum which can become polarized. The second model describes a nonrelativistic quantum crystal in the presence of a charged defect. A new numerical method is also proposed. The last part of the thesis is devoted to spectral pollution, a phenomenon which is observed when trying to approximate eigenvalues in a gap of the essential spectrum of a self-adjoint operator, for instance for periodic Schroedinger operators or Dirac operators. (author)
Time dilation in quantum systems and decoherence
International Nuclear Information System (INIS)
Pikovski, Igor; Zych, Magdalena; Costa, Fabio; Brukner, Časlav
2017-01-01
Both quantum mechanics and general relativity are based on principles that defy our daily intuitions, such as time dilation, quantum interference and entanglement. Because the regimes where the two theories are typically tested are widely separated, their foundational principles are rarely jointly studied. Recent works have found that novel phenomena appear for quantum particles with an internal structure in the presence of time dilation, which can take place at low energies and in weak gravitational fields. Here we briefly review the effects of time dilation on quantum interference and generalize the results to a variety of systems. In addition, we provide an extended study of the basic principles of quantum theory and relativity that are of relevance for the effects and also address several questions that have been raised, such as the description in different reference frames, the role of the equivalence principle and the effective irreversibility of the decoherence. The manuscript clarifies some of the counterintuitive aspects arising when quantum phenomena and general relativistic effects are jointly considered. (paper)
Josephson tunneling in bilayer quantum Hall system
International Nuclear Information System (INIS)
Ezawa, Z.F.; Tsitsishvili, G.; Sawada, A.
2012-01-01
A Bose–Einstein condensation is formed by composite bosons in the quantum Hall state. A composite boson carries the fundamental charge (−e). We investigate Josephson tunneling of such charges in the bilayer quantum Hall system at the total filling ν=1. We show the existence of the critical current for the tunneling current to be coherent and dissipationless. Our results explain recent experiments due to [L. Tiemann, Y. Yoon, W. Dietsche, K. von Klitzing, W. Wegscheider, Phys. Rev. B 80 (2009) 165120] and due to [Y. Yoon, L. Tiemann, S. Schmult, W. Dietsche, K. von Klitzing, Phys. Rev. Lett. 104 (2010) 116802]. We predict also how the critical current changes as the sample is tilted in the magnetic field. -- Highlights: ► Composite bosons undergo Bose–Einstein condensation to form the bilayer quantum Hall state. ► A composite boson is a single electron bound to a flux quantum and carries one unit charge. ► Quantum coherence develops due to the condensation. ► Quantum coherence drives the supercurrent in each layer and the tunneling current. ► There exists the critical input current so that the tunneling current is coherent and dissipationless.
Statistical transmutation in doped quantum dimer models.
Lamas, C A; Ralko, A; Cabra, D C; Poilblanc, D; Pujol, P
2012-07-06
We prove a "statistical transmutation" symmetry of doped quantum dimer models on the square, triangular, and kagome lattices: the energy spectrum is invariant under a simultaneous change of statistics (i.e., bosonic into fermionic or vice versa) of the holes and of the signs of all the dimer resonance loops. This exact transformation enables us to define the duality equivalence between doped quantum dimer Hamiltonians and provides the analytic framework to analyze dynamical statistical transmutations. We investigate numerically the doping of the triangular quantum dimer model with special focus on the topological Z(2) dimer liquid. Doping leads to four (instead of two for the square lattice) inequivalent families of Hamiltonians. Competition between phase separation, superfluidity, supersolidity, and fermionic phases is investigated in the four families.
Quantum Processes and Dynamic Networks in Physical and Biological Systems.
Dudziak, Martin Joseph
, by virtue of mathematical and computational models that may be transferred from the macroscopic domain to the microscopic. A consequence of this multi-faceted thesis is that there may be mature analytical tools and techniques that have heretofore not been adequately recognized for their value to quantum physics. These may include adaptations of neural networks, cellular automata, chaotic attractors, and parallel processing systems. Conceptual and practical architectures are presented for the development of software and hardware environments to employ massively parallel computing for the modeling of large populations of dynamic processes.
Modelling exciton–phonon interactions in optically driven quantum dots
DEFF Research Database (Denmark)
Nazir, Ahsan; McCutcheon, Dara
2016-01-01
We provide a self-contained review of master equation approaches to modelling phonon effects in optically driven self-assembled quantum dots. Coupling of the (quasi) two-level excitonic system to phonons leads to dissipation and dephasing, the rates of which depend on the excitation conditions...
Mean field dynamics of some open quantum systems.
Merkli, Marco; Rafiyi, Alireza
2018-04-01
We consider a large number N of quantum particles coupled via a mean field interaction to another quantum system (reservoir). Our main result is an expansion for the averages of observables, both of the particles and of the reservoir, in inverse powers of [Formula: see text]. The analysis is based directly on the Dyson series expansion of the propagator. We analyse the dynamics, in the limit [Formula: see text], of observables of a fixed number n of particles, of extensive particle observables and their fluctuations, as well as of reservoir observables. We illustrate our results on the infinite mode Dicke model and on various energy-conserving models.
Mean field dynamics of some open quantum systems
Merkli, Marco; Rafiyi, Alireza
2018-04-01
We consider a large number N of quantum particles coupled via a mean field interaction to another quantum system (reservoir). Our main result is an expansion for the averages of observables, both of the particles and of the reservoir, in inverse powers of √{N }. The analysis is based directly on the Dyson series expansion of the propagator. We analyse the dynamics, in the limit N →∞ , of observables of a fixed number n of particles, of extensive particle observables and their fluctuations, as well as of reservoir observables. We illustrate our results on the infinite mode Dicke model and on various energy-conserving models.
Teleportation in an indivisible quantum system
Directory of Open Access Journals (Sweden)
Kiktenko E.O.
2016-01-01
Full Text Available Teleportation protocol is conventionally treated as a method for quantum state transfer between two spatially separated physical carriers. Recent experimental progress in manipulation with high-dimensional quantum systems opens a new framework for implementation of teleportation protocols. We show that the one-qubit teleportation can be considered as a state transfer between subspaces of the whole Hilbert space of an indivisible eight-dimensional system. We explicitly show all corresponding operations and discuss an alternative way of implementation of similar tasks.
Tunneling with dissipation in open quantum systems
International Nuclear Information System (INIS)
Adamyan, G.G.; Antonenko, N.V.; Scheid, W.
1997-01-01
Based on the general form of the master equation for open quantum systems the tunneling is considered. Using the path integral technique a simple closed form expression for the tunneling rate through a parabolic barrier is obtained. The tunneling in the open quantum systems strongly depends on the coupling with environment. We found the cases when the dissipation prohibits tunneling through the barrier but decreases the crossing of the barrier for the energies above the barrier. As a particular application, the case of decay from the metastable state is considered
Dynamical singularities of glassy systems in a quantum quench.
Obuchi, Tomoyuki; Takahashi, Kazutaka
2012-11-01
We present a prototype of behavior of glassy systems driven by quantum dynamics in a quenching protocol by analyzing the random energy model in a transverse field. We calculate several types of dynamical quantum amplitude and find a freezing transition at some critical time. The behavior is understood by the partition-function zeros in the complex temperature plane. We discuss the properties of the freezing phase as a dynamical chaotic phase, which are contrasted to those of the spin-glass phase in the static system.
Nonlinear von Neumann equations for quantum dissipative systems
International Nuclear Information System (INIS)
Messer, J.; Baumgartner, B.
1978-01-01
For pure states nonlinear Schroedinger equations, the so-called Schroedinger-Langevin equations are well-known to model quantum dissipative systems of the Langevin type. For mixtures it is shown that these wave equations do not extend to master equations, but to corresponding nonlinear von Neumann equations. Solutions for the damped harmonic oscillator are discussed. (Auth.)
Nonlinear von Neumann equations for quantum dissipative systems
International Nuclear Information System (INIS)
Messer, J.; Baumgartner, B.
For pure states nonlinear Schroedinger equations, the so-called Schroedinger-Langevin equations are well-known to model quantum dissipative systems of the Langevin type. For mixtures it is shown that these wave equations do not extend to master equations, but to corresponding nonlinear von Neumann equations. Solutions for the damped harmonic oscillator are discussed. (Author)
A quantum spin system with random interactions I
Indian Academy of Sciences (India)
. In order to study the dynamics of a quantum spin glass we model it as a .... Next we construct a family of strongly continuous one-parameter groups of c-auto- morphisms which determine the evolution of the spin system. To this end, we have ...
Solution of quantum integrable systems from quiver gauge theories
Energy Technology Data Exchange (ETDEWEB)
Dorey, Nick [Department of Applied Mathematics and Theoretical Physics, University of Cambridge,Cambridge (United Kingdom); Zhao, Peng [Simons Center for Geometry and Physics, Stony Brook University,Stony Brook (United States)
2017-02-23
We construct new integrable systems describing particles with internal spin from four-dimensional N = 2 quiver gauge theories. The models can be quantized and solved exactly using the quantum inverse scattering method and also using the Bethe/Gauge correspondence.
Quantum Vertex Model for Reversible Classical Computing
Chamon, Claudio; Mucciolo, Eduardo; Ruckenstein, Andrei; Yang, Zhicheng
We present a planar vertex model that encodes the result of a universal reversible classical computation in its ground state. The approach involves Boolean variables (spins) placed on links of a two-dimensional lattice, with vertices representing logic gates. Large short-ranged interactions between at most two spins implement the operation of each gate. The lattice is anisotropic with one direction corresponding to computational time, and with transverse boundaries storing the computation's input and output. The model displays no finite temperature phase transitions, including no glass transitions, independent of circuit. The computational complexity is encoded in the scaling of the relaxation rate into the ground state with the system size. We use thermal annealing and a novel and more efficient heuristic \\x9Dannealing with learning to study various computational problems. To explore faster relaxation routes, we construct an explicit mapping of the vertex model into the Chimera architecture of the D-Wave machine, initiating a novel approach to reversible classical computation based on quantum annealing.
Towards practical characterization of quantum systems with quantum Hamiltonian learning
Santagati, R.; Wang, J.; Paesani, S.; Knauer, S.; Gentile, A. A.; Wiebe, N.; Petruzzella, M.; O'Brien, J. L.; Rarity, J. G.; Laing, A.; Thompson, M. G.
2017-01-01
Here we show the first experimental implementation of quantum Hamiltonian Learning, where a silicon-on-insulator quantum photonic simulator is used to learn the dynamics of an electron-spin in an NV center in diamond.
Directory of Open Access Journals (Sweden)
Andrey V. Tokar
2014-03-01
Full Text Available The structure and spectral properties for molecular complexes, which formed by added monomer form of pentaplast as well as N-phenylbenzamide with some species of intermolecular interaction in system «penton-terlon» have been investigated at ab initio level of theory. It is shown, that the main contribution in total energy of molecules have included by dispersion forces, which realized between Chlorine atom of CH2Cl-group and Hydrogen atoms of benzene rings with amide fragment. The proposed theoretical models are validated in reflection of spectral and energetic characteristics of investigating system. Finally, the results of calculations are in good agreement with that data, which have been obtained for such type modeling previously.
Quantum dynamics of classical stochastic systems
Energy Technology Data Exchange (ETDEWEB)
Casati, G
1983-01-01
It is shown that one hand Quantum Mechanics introduces limitations to the manifestations of chaotic motion resulting, for the case of the periodically kicked rotator, in the limitation of energy growth; also, as it is confirmed by numerical experiments, phenomena like the exponential instability of orbits, inherent to strongly chaotic systems, are absent here and therefore Quantum Mechanics appear to be more stable and predictable than Classical Mechanics. On the other hand, we have seen that nonrecurrent behavior may arise in Quantum Systems and it is connected to the presence of singular continuous spectrum. We conjecture that the classical chaotic behavior is reflected, at least partially, in the nature of the spectrum and the singular-continuity of the latter may possess a self-similar structure typical of classical chaos.
Quantum information and continuous variable systems
International Nuclear Information System (INIS)
Giedke, G.K.
2001-08-01
This thesis treats several questions concerning quantum information theory of infinite dimensional continuous variable (CV) systems. We investigate the separability properties of Gaussian states of such systems. Both the separability and the distillability problem for bipartite Gaussian states are solved by deriving operational criteria for these properties. We consider multipartite Gaussian states and obtain a necessary and sufficient condition that allows the complete classification of three-mode tripartite states according to their separability properties. Moreover we study entanglement distillation protocols. We show that the standard protocols for qubits are robust against imperfect implementation of the required quantum operations. For bipartite Gaussian states we find a universal scheme to distill all distillable states and propose a concrete quantum optical realization. (author)
Exact diagonalization library for quantum electron models
Iskakov, Sergei; Danilov, Michael
2018-04-01
We present an exact diagonalization C++ template library (EDLib) for solving quantum electron models, including the single-band finite Hubbard cluster and the multi-orbital impurity Anderson model. The observables that can be computed using EDLib are single particle Green's functions and spin-spin correlation functions. This code provides three different types of Hamiltonian matrix storage that can be chosen based on the model.
Correlation Functions in Open Quantum-Classical Systems
Hsieh, Chang-Yu; Kapral, Raymond
2013-01-01
Quantum time correlation functions are often the principal objects of interest in experimental investigations of the dynamics of quantum systems. For instance, transport properties, such as diffusion and reaction rate coefficients, can be obtained by integrating these functions. The evaluation of such correlation functions entails sampling from quantum equilibrium density operators and quantum time evolution of operators. For condensed phase and complex systems, where quantum dynamics is diff...
Quantum Computing in Condensed Matter Systems
National Research Council Canada - National Science Library
Privman, V
1997-01-01
Specific theoretical calculations of Hamiltonians corresponding to several quantum logic gates, including the NOT gate, quantum signal splitting, and quantum copying, were obtained and prepared for publication...
Hybrid quantum teleportation: A theoretical model
Energy Technology Data Exchange (ETDEWEB)
Takeda, Shuntaro; Mizuta, Takahiro; Fuwa, Maria; Yoshikawa, Jun-ichi; Yonezawa, Hidehiro; Furusawa, Akira [Department of Applied Physics, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)
2014-12-04
Hybrid quantum teleportation – continuous-variable teleportation of qubits – is a promising approach for deterministically teleporting photonic qubits. We propose how to implement it with current technology. Our theoretical model shows that faithful qubit transfer can be achieved for this teleportation by choosing an optimal gain for the teleporter’s classical channel.
The quantum hydrodynamics of the Sutherland model
International Nuclear Information System (INIS)
Stone, Michael; Gutman, Dmitry
2008-01-01
We show that the form of the chiral condition found by Abanov et al in the quantum hydrodynamics of the Sutherland model arises because there are two distinct inner products with respect to which the chiral Hamiltonian is Hermitian, but only one with respect to which the full, non-chiral, Hamiltonian is Hermitian
Genuine quantum correlations in quantum many-body systems: a review of recent progress.
De Chiara, Gabriele; Sanpera, Anna
2018-04-19
Quantum information theory has considerably helped in the understanding of quantum many-body systems. The role of quantum correlations and in particular, bipartite entanglement, has become crucial to characterise, classify and simulate quantum many body systems. Furthermore, the scaling of entanglement has inspired modifications to numerical techniques for the simulation of many-body systems leading to the, now established, area of tensor networks. However, the notions and methods brought by quantum information do not end with bipartite entanglement. There are other forms of correlations embedded in the ground, excited and thermal states of quantum many-body systems that also need to be explored and might be utilised as potential resources for quantum technologies. The aim of this work is to review the most recent developments regarding correlations in quantum many-body systems focussing on multipartite entanglement, quantum nonlocality, quantum discord, mutual information but also other non classical measures of correlations based on quantum coherence. Moreover, we also discuss applications of quantum metrology in quantum many-body systems. © 2018 IOP Publishing Ltd.
Radtke, T.; Fritzsche, S.
2008-11-01
with ⩾2GHz or newer, and about 5-20 MB of working memory (in addition to the memory for the Maple environment). Especially when working with symbolic expressions, however, the requirements on CPU time and memory critically depend on the size of the quantum registers, owing to the exponential growth of the dimension of the associated Hilbert space. For example, complex (symbolic) noise models, i.e. with several symbolic Kraus operators, result for multi-qubit systems often in very large expressions that dramatically slow down the evaluation of e.g. distance measures or the final-state entropy, etc. In these cases, Maple's assume facility sometimes helps to reduce the complexity of the symbolic expressions, but more often only a numerical evaluation is possible eventually. Since the complexity of the various commands of the FEYNMAN program and the possible usage scenarios can be very different, no general scaling law for CPU time or the memory requirements can be given. References: [1] T. Radtke, S. Fritzsche, Comput. Phys. Comm. 173 (2005) 91. [2] T. Radtke, S. Fritzsche, Comput. Phys. Comm. 175 (2006) 145. [3] T. Radtke, S. Fritzsche, Comput. Phys. Comm. 176 (2007) 617.
Classical system boundaries cannot be determined within quantum Darwinism
Fields, Chris
Multiple observers who interact with environmental encodings of the states of a macroscopic quantum system S as required by quantum Darwinism cannot demonstrate that they are jointly observing S without a joint a priori assumption of a classical boundary separating S from its environment E. Quantum Darwinism cannot, therefore, be regarded as providing a purely quantum-mechanical explanation of the "emergence" of classicality.
International Nuclear Information System (INIS)
Dong, Jianping
2011-01-01
The many-body space fractional quantum system is studied using the density matrix method. We give the new results of the Thomas-Fermi model, obtain the quantum pressure of the free electron gas. We also show the validity of the Hohenberg-Kohn theorems in the space fractional quantum mechanics and generalize the density functional theory to the fractional quantum mechanics. -- Highlights: → Thomas-Fermi model under the framework of fractional quantum mechanics is studied. → We show the validity of the HK theorems in the space fractional quantum mechanics. → The density functional theory is generalized to the fractional quantum mechanics.
Non standard analysis, polymer models, quantum fields
International Nuclear Information System (INIS)
Albeverio, S.
1984-01-01
We give an elementary introduction to non standard analysis and its applications to the theory of stochastic processes. This is based on a joint book with J.E. Fenstad, R. Hoeegh-Krohn and T. Lindstroeem. In particular we give a discussion of an hyperfinite theory of Dirichlet forms with applications to the study of the Hamiltonian for a quantum mechanical particle in the potential created by a polymer. We also discuss new results on the existence of attractive polymer measures in dimension d 1 2 phi 2 2 )sub(d)-model of interacting quantum fields. (orig.)
Cui, Ping
The thesis comprises two major themes of quantum statistical dynamics. One is the development of quantum dissipation theory (QDT). It covers the establishment of some basic relations of quantum statistical dynamics, the construction of several nonequivalent complete second-order formulations, and the development of exact QDT. Another is related to the applications of quantum statistical dynamics to a variety of research fields. In particular, unconventional but novel theories of the electron transfer in Debye solvents, quantum transport, and quantum measurement are developed on the basis of QDT formulations. The thesis is organized as follows. In Chapter 1, we present some background knowledge in relation to the aforementioned two themes of this thesis. The key quantity in QDT is the reduced density operator rho(t) ≡ trBrho T(t); i.e., the partial trace of the total system and bath composite rhoT(t) over the bath degrees of freedom. QDT governs the evolution of reduced density operator, where the effects of bath are treated in a quantum statistical manner. In principle, the reduced density operator contains all dynamics information of interest. However, the conventional quantum transport theory is formulated in terms of nonequilibrium Green's function. The newly emerging field of quantum measurement in relation to quantum information and quantum computing does exploit a sort of QDT formalism. Besides the background of the relevant theoretical development, some representative experiments on molecular nanojunctions are also briefly discussed. In chapter 2, we outline some basic (including new) relations that highlight several important issues on QDT. The content includes the background of nonequilibrium quantum statistical mechanics, the general description of the total composite Hamiltonian with stochastic system-bath interaction, a novel parameterization scheme for bath correlation functions, a newly developed exact theory of driven Brownian oscillator (DBO
Wang, Shengtao
and simulation. Trapped atomic ions are one of the leading platforms to build a scalable, universal quantum computer. The common one-dimensional setup, however, greatly limits the system's scalability. By solving the critical problem of micromotion, we propose a two-dimensional architecture for scalable trapped-ion quantum computation. Hamiltonian tomography for many-body quantum systems is essential for benchmarking quantum computation and simulation. By employing dynamical decoupling, we propose a scalable scheme for full Hamiltonian tomography. The required number of measurements increases only polynomially with the system size, in contrast to an exponential scaling in common methods. Finally, we work toward the goal of demonstrating quantum supremacy. A number of sampling tasks, such as the boson sampling problem, have been proposed to be classically intractable under mild assumptions. An intermediate quantum computer can efficiently solve the sampling problem, but the correct operation of the device is not known to be classically verifiable. Toward practical verification, we present an experimental friendly scheme to extract useful and robust information from the quantum boson samplers based on coarse-grained measurements. In a separate study, we introduce a new model built from translation-invariant Ising-interacting spins. This model possesses several advantageous properties, catalyzing the ultimate experimental demonstration of quantum supremacy.
EDITORIAL: CAMOP: Quantum Non-Stationary Systems CAMOP: Quantum Non-Stationary Systems
Dodonov, Victor V.; Man'ko, Margarita A.
2010-09-01
Although time-dependent quantum systems have been studied since the very beginning of quantum mechanics, they continue to attract the attention of many researchers, and almost every decade new important discoveries or new fields of application are made. Among the impressive results or by-products of these studies, one should note the discovery of the path integral method in the 1940s, coherent and squeezed states in the 1960-70s, quantum tunneling in Josephson contacts and SQUIDs in the 1960s, the theory of time-dependent quantum invariants in the 1960-70s, different forms of quantum master equations in the 1960-70s, the Zeno effect in the 1970s, the concept of geometric phase in the 1980s, decoherence of macroscopic superpositions in the 1980s, quantum non-demolition measurements in the 1980s, dynamics of particles in quantum traps and cavity QED in the 1980-90s, and time-dependent processes in mesoscopic quantum devices in the 1990s. All these topics continue to be the subject of many publications. Now we are witnessing a new wave of interest in quantum non-stationary systems in different areas, from cosmology (the very first moments of the Universe) and quantum field theory (particle pair creation in ultra-strong fields) to elementary particle physics (neutrino oscillations). A rapid increase in the number of theoretical and experimental works on time-dependent phenomena is also observed in quantum optics, quantum information theory and condensed matter physics. Time-dependent tunneling and time-dependent transport in nano-structures are examples of such phenomena. Another emerging direction of study, stimulated by impressive progress in experimental techniques, is related to attempts to observe the quantum behavior of macroscopic objects, such as mirrors interacting with quantum fields in nano-resonators. Quantum effects manifest themselves in the dynamics of nano-electromechanical systems; they are dominant in the quite new and very promising field of circuit
Birkhoffian Symplectic Scheme for a Quantum System
International Nuclear Information System (INIS)
Su Hongling
2010-01-01
In this paper, a classical system of ordinary differential equations is built to describe a kind of n-dimensional quantum systems. The absorption spectrum and the density of the states for the system are defined from the points of quantum view and classical view. From the Birkhoffian form of the equations, a Birkhoffian symplectic scheme is derived for solving n-dimensional equations by using the generating function method. Besides the Birkhoffian structure-preserving, the new scheme is proven to preserve the discrete local energy conservation law of the system with zero vector f. Some numerical experiments for a 3-dimensional example show that the new scheme can simulate the general Birkhoffian system better than the implicit midpoint scheme, which is well known to be symplectic scheme for Hamiltonian system. (general)
Quantum Gravity as a Dissipative Deterministic System
Hooft, G. 't
1999-01-01
It is argued that the so-called holographic principle will obstruct attempts to produce physically realistic models for the unification of general relativity with quantum mechanics, unless determinism in the latter is restored. The notion of time in GR is so different from the usual one in
A quantum information perspective of fermionic quantum many-body systems
Energy Technology Data Exchange (ETDEWEB)
Kraus, Christina V.
2009-11-02
In this Thesis fermionic quantum many-body system are theoretically investigated from a quantum information perspective. Quantum correlations in fermionic many-body systems, though central to many of the most fascinating effects of condensed matter physics, are poorly understood from a theoretical perspective. Even the notion of ''paired'' fermions which is widely used in the theory of superconductivity and has a clear physical meaning there, is not a concept of a systematic and mathematical theory so far. Applying concepts and tools from entanglement theory, we close this gap, developing a pairing theory allowing to unambiguously characterize paired states. We develop methods for the detection and quantification of pairing according to our definition which are applicable to current experimental setups. Pairing is shown to be a quantum correlation distinct from any notion of entanglement proposed for fermionic systems, giving further understanding of the structure of highly correlated quantum states. In addition, we show the resource character of paired states for precision metrology, proving that BCS-states allow phase measurements at the Heisenberg limit. Next, the power of fermionic systems is considered in the context of quantum simulations, where we study the possibility to simulate Hamiltonian time evolutions on a cubic lattice under the constraint of translational invariance. Given a set of translationally invariant local Hamiltonians and short range interactions we determine time evolutions which can and those which can not be simulated. Bosonic and finite-dimensional quantum systems (''spins'') are included in our investigations. Furthermore, we develop new techniques for the classical simulation of fermionic many-body systems. First, we introduce a new family of states, the fermionic Projected Entangled Pair States (fPEPS) on lattices in arbitrary spatial dimension. These are the natural generalization of the PEPS
A quantum information perspective of fermionic quantum many-body systems
International Nuclear Information System (INIS)
Kraus, Christina V.
2009-01-01
In this Thesis fermionic quantum many-body system are theoretically investigated from a quantum information perspective. Quantum correlations in fermionic many-body systems, though central to many of the most fascinating effects of condensed matter physics, are poorly understood from a theoretical perspective. Even the notion of ''paired'' fermions which is widely used in the theory of superconductivity and has a clear physical meaning there, is not a concept of a systematic and mathematical theory so far. Applying concepts and tools from entanglement theory, we close this gap, developing a pairing theory allowing to unambiguously characterize paired states. We develop methods for the detection and quantification of pairing according to our definition which are applicable to current experimental setups. Pairing is shown to be a quantum correlation distinct from any notion of entanglement proposed for fermionic systems, giving further understanding of the structure of highly correlated quantum states. In addition, we show the resource character of paired states for precision metrology, proving that BCS-states allow phase measurements at the Heisenberg limit. Next, the power of fermionic systems is considered in the context of quantum simulations, where we study the possibility to simulate Hamiltonian time evolutions on a cubic lattice under the constraint of translational invariance. Given a set of translationally invariant local Hamiltonians and short range interactions we determine time evolutions which can and those which can not be simulated. Bosonic and finite-dimensional quantum systems (''spins'') are included in our investigations. Furthermore, we develop new techniques for the classical simulation of fermionic many-body systems. First, we introduce a new family of states, the fermionic Projected Entangled Pair States (fPEPS) on lattices in arbitrary spatial dimension. These are the natural generalization of the PEPS known for spin systems, and they
Quantum quenches in a holographic Kondo model
Erdmenger, Johanna; Flory, Mario; Newrzella, Max-Niklas; Strydom, Migael; Wu, Jackson M. S.
2017-04-01
We study non-equilibrium dynamics and quantum quenches in a recent gauge/gravity duality model for a strongly coupled system interacting with a magnetic impurity with SU( N ) spin. At large N , it is convenient to write the impurity spin as a bilinear in Abrikosov fermions. The model describes an RG flow triggered by the marginally relevant Kondo operator. There is a phase transition at a critical temperature, below which an operator condenses which involves both an electron and an Abrikosov fermion field. This corresponds to a holographic superconductor in AdS2 and models the impurity screening. We quench the Kondo coupling either by a Gaussian pulse or by a hyperbolic tangent, the latter taking the system from the condensed to the uncondensed phase or vice-versa. We study the time dependence of the condensate induced by this quench. The timescale for equilibration is generically given by the leading quasinormal mode of the dual gravity model. This mode also governs the formation of the screening cloud, which is obtained as the decrease of impurity degrees of freedom with time. In the condensed phase, the leading quasinormal mode is imaginary and the relaxation of the condensate is over-damped. For quenches whose final state is close to the critical point of the large N phase transition, we study the critical slowing down and obtain the combination of critical exponents zν = 1. When the final state is exactly at the phase transition, we find that the exponential ringing of the quasinormal modes is replaced by a power-law behaviour of the form ˜ t - a sin( b log t). This indicates the emergence of a discrete scale invariance.
Quantum quenches in a holographic Kondo model
Energy Technology Data Exchange (ETDEWEB)
Erdmenger, Johanna [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, 80805, Munich (Germany); Institut für Theoretische Physik und Astrophysik, Julius-Maximilians-Universität Würzburg,Am Hubland, 97074 Würzburg (Germany); Flory, Mario [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, 80805, Munich (Germany); Institute of Physics, Jagiellonian University,Łojasiewicza 11, 30-348 Kraków (Poland); Newrzella, Max-Niklas; Strydom, Migael [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, 80805, Munich (Germany); Wu, Jackson M. S. [Department of Physics and Astronomy, University of Alabama,Tuscaloosa, AL 35487 (United States)
2017-04-10
We study non-equilibrium dynamics and quantum quenches in a recent gauge/ gravity duality model for a strongly coupled system interacting with a magnetic impurity with SU(N) spin. At large N, it is convenient to write the impurity spin as a bilinear in Abrikosov fermions. The model describes an RG flow triggered by the marginally relevant Kondo operator. There is a phase transition at a critical temperature, below which an operator condenses which involves both an electron and an Abrikosov fermion field. This corresponds to a holographic superconductor in AdS{sub 2} and models the impurity screening. We quench the Kondo coupling either by a Gaussian pulse or by a hyperbolic tangent, the latter taking the system from the condensed to the uncondensed phase or vice-versa. We study the time dependence of the condensate induced by this quench. The timescale for equilibration is generically given by the leading quasinormal mode of the dual gravity model. This mode also governs the formation of the screening cloud, which is obtained as the decrease of impurity degrees of freedom with time. In the condensed phase, the leading quasinormal mode is imaginary and the relaxation of the condensate is over-damped. For quenches whose final state is close to the critical point of the large N phase transition, we study the critical slowing down and obtain the combination of critical exponents zν=1. When the final state is exactly at the phase transition, we find that the exponential ringing of the quasinormal modes is replaced by a power-law behaviour of the form ∼t{sup −a}sin (blog t). This indicates the emergence of a discrete scale invariance.
An impurity-induced gap system as a quantum data bus for quantum state transfer
International Nuclear Information System (INIS)
Chen, Bing; Li, Yong; Song, Z.; Sun, C.-P.
2014-01-01
We introduce a tight-binding chain with a single impurity to act as a quantum data bus for perfect quantum state transfer. Our proposal is based on the weak coupling limit of the two outermost quantum dots to the data bus, which is a gapped system induced by the impurity. By connecting two quantum dots to two sites of the data bus, the system can accomplish a high-fidelity and long-distance quantum state transfer. Numerical simulations for finite system show that the numerical and analytical results of the effective coupling strength agree well with each other. Moreover, we study the robustness of this quantum communication protocol in the presence of disorder in the couplings between the nearest-neighbor quantum dots. We find that the gap of the system plays an important role in robust quantum state transfer
SUSY anomaly in quantum-mechanical systems
International Nuclear Information System (INIS)
Smilga, A.V.
1987-01-01
Explicit examples of supersymmetric systems involving finite numbers of degrees of freedom where quantum supersymmetry algebra cannot be preserved on the classical level, are constructed. Resolving the ordering ambiguities in different ways leads either to a modified algebra or to a reduced algebra, or totally destroys supersymmetry
System and method for making quantum dots
Bakr, Osman M.
2015-05-28
Embodiments of the present disclosure provide for methods of making quantum dots (QDs) (passivated or unpassivated) using a continuous flow process, systems for making QDs using a continuous flow process, and the like. In one or more embodiments, the QDs produced using embodiments of the present disclosure can be used in solar photovoltaic cells, bio-imaging, IR emitters, or LEDs.
Quantum distribution function of nonequilibrium system
International Nuclear Information System (INIS)
Sogo, Kiyoshi; Fujimoto, Yasushi.
1990-03-01
A path integral representation is derived for the Wigner distribution function of a nonequilibrium system coupled with heat bath. Under appropriate conditions, the Wigner distribution function approaches an equilibrium distribution, which manifests shifting and broadening of spectral lines due to the interaction with heat bath. It is shown that the equilibrium distribution becomes the quantum canonical distribution in the vanishing coupling constant limit. (author)
Quantum field theory and multiparticle systems
International Nuclear Information System (INIS)
Trlifaj, M.
1981-01-01
The use of quantum field theory methods for the investigation of the physical characteristics of the MANY-BODY SYSTEMS is discussed. Mainly discussed is the method of second quantization and the method of the Green functions. Briefly discussed is the method of calculating the Green functions at finite temperatures. (Z.J.)
Exceptional points in open quantum systems
International Nuclear Information System (INIS)
Mueller, Markus; Rotter, Ingrid
2008-01-01
Open quantum systems are embedded in the continuum of scattering wavefunctions and are naturally described by non-Hermitian Hamilton operators. In the complex energy plane, exceptional points appear at which two (or more) eigenvalues of the Hamilton operator coalesce. Although they are a countable set of single points in the complex energy plane and therefore of measure zero, they determine decisively the dynamics of open quantum systems. A powerful method for the description of open quantum systems is the Feshbach projection operator formalism. It is used in the present paper as a basic tool for the study of exceptional points and of the role they play for the dynamics of open quantum systems. Among others, the topological structure of the exceptional points, the rigidity of the phases of the eigenfunctions in their vicinity, the enhancement of observable values due to the reduced phase rigidity and the appearance of phase transitions are considered. The results are compared with existing experimental data on microwave cavities. In the last section, some questions being still unsolved, are considered
Coherent control in simple quantum systems
Prants, Sergey V.
1995-01-01
Coherent dynamics of two, three, and four-level quantum systems, simultaneously driven by concurrent laser pulses of arbitrary and different forms, is treated by using a nonperturbative, group-theoretical approach. The respective evolution matrices are calculated in an explicit form. General aspects of controllability of few-level atoms by using laser fields are treated analytically.
Optimal control of complex atomic quantum systems.
van Frank, S; Bonneau, M; Schmiedmayer, J; Hild, S; Gross, C; Cheneau, M; Bloch, I; Pichler, T; Negretti, A; Calarco, T; Montangero, S
2016-10-11
Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit - the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations.
Group Theoretical Approach for Controlled Quantum Mechanical Systems
National Research Council Canada - National Science Library
Tarn, Tzyh-Jong
2007-01-01
The aim of this research is the study of controllability of quantum mechanical systems and feedback control of de-coherence in order to gain an insight on the structure of control of quantum systems...
Dissipation-driven quantum phase transitions in collective spin systems
International Nuclear Information System (INIS)
Morrison, S; Parkins, A S
2008-01-01
We consider two different collective spin systems subjected to strong dissipation-on the same scale as interaction strengths and external fields-and show that either continuous or discontinuous dissipative quantum phase transitions can occur as the dissipation strength is varied. First, we consider a well-known model of cooperative resonance fluorescence that can exhibit a second-order quantum phase transition, and analyse the entanglement properties near the critical point. Next, we examine a dissipative version of the Lipkin-Meshkov-Glick interacting collective spin model, where we find that either first- or second-order quantum phase transitions can occur, depending only on the ratio of the interaction and external field parameters. We give detailed results and interpretation for the steady-state entanglement in the vicinity of the critical point, where it reaches a maximum. For the first-order transition we find that the semiclassical steady states exhibit a region of bistability. (fast track communication)
Quantum Entanglement of Matter and Geometry in Large Systems
Energy Technology Data Exchange (ETDEWEB)
Hogan, Craig J.
2014-12-04
Standard quantum mechanics and gravity are used to estimate the mass and size of idealized gravitating systems where position states of matter and geometry become indeterminate. It is proposed that well-known inconsistencies of standard quantum field theory with general relativity on macroscopic scales can be reconciled by nonstandard, nonlocal entanglement of field states with quantum states of geometry. Wave functions of particle world lines are used to estimate scales of geometrical entanglement and emergent locality. Simple models of entanglement predict coherent fluctuations in position of massive bodies, of Planck scale origin, measurable on a laboratory scale, and may account for the fact that the information density of long lived position states in Standard Model fields, which is determined by the strong interactions, is the same as that determined holographically by the cosmological constant.
Symmetry and stability of open quantum systems
International Nuclear Information System (INIS)
Scutaru, H.
1979-01-01
The presentation of the thesis involves an introduction and six chapters. Chapter 1 presents notions and results used in the other chpaters. Chapters 2-6 present our results which are focused on two notions: generalized observable and dynamic semigroup. These notions characterize a specific research domain (set up during the last 10 years) which is currently called quantum mechanics of open systems. The two notions (generalized observable and dynamic semigroup) are mathematically correlated. They belong to the set of completely positive linear applications among observable algebras. This fact, associated with that formulation of quantum mechanics according to which it is a special case of quantum mechanics namely, that for which the observable algebra is commutative, help to understand the similar essence of the results presented in chapter 2-6. Thus, the natural mathematical background has been achieved for our results; it is represented by that category whose objects are the observable algebras and whose morphisms are completely positive linear contractions generating unity within unity. These ideas are extensively presented in the introduction. The fact that the relations between classical mechanics and quantum mechanics can be rigorously treated as positive linear applications between classical observable algebras commutative and quantum observable algebras non-commutative, which are automatically fully positive, has been initially shown in our paper. (author)
Theoretical discussion for quantum computation in biological systems
Baer, Wolfgang
2010-04-01
Analysis of the brain as a physical system, that has the capacity of generating a display of every day observed experiences and contains some knowledge of the physical reality which stimulates those experiences, suggests the brain executes a self-measurement process described by quantum theory. Assuming physical reality is a universe of interacting self-measurement loops, we present a model of space as a field of cells executing such self-measurement activities. Empty space is the observable associated with the measurement of this field when the mass and charge density defining the material aspect of the cells satisfy the least action principle. Content is the observable associated with the measurement of the quantum wave function ψ interpreted as mass-charge displacements. The illusion of space and its content incorporated into cognitive biological systems is evidence of self-measurement activity that can be associated with quantum operations.
The brachistochrone problem in open quantum systems
International Nuclear Information System (INIS)
Rotter, Ingrid
2007-01-01
Recently, the quantum brachistochrone problem has been discussed in the literature by using non-Hermitian Hamilton operators of different types. Here, it is demonstrated that the passage time is tunable in realistic open quantum systems due to the biorthogonality of the eigenfunctions of the non-Hermitian Hamilton operator. As an example, the numerical results obtained by Bulgakov et al for the transmission through microwave cavities of different shapes are analyzed from the point of view of the brachistochrone problem. The passage time is shortened in the crossover from the weak-coupling to the strong-coupling regime where the resonance states overlap and many branch points (exceptional points) in the complex plane exist. The effect can not be described in the framework of the standard quantum mechanics with the Hermitian Hamilton operator and consideration of S matrix poles
Perturbation expansions of stochastic wavefunctions for open quantum systems
Ke, Yaling; Zhao, Yi
2017-11-01
Based on the stochastic unravelling of the reduced density operator in the Feynman path integral formalism for an open quantum system in touch with harmonic environments, a new non-Markovian stochastic Schrödinger equation (NMSSE) has been established that allows for the systematic perturbation expansion in the system-bath coupling to arbitrary order. This NMSSE can be transformed in a facile manner into the other two NMSSEs, i.e., non-Markovian quantum state diffusion and time-dependent wavepacket diffusion method. Benchmarked by numerically exact results, we have conducted a comparative study of the proposed method in its lowest order approximation, with perturbative quantum master equations in the symmetric spin-boson model and the realistic Fenna-Matthews-Olson complex. It is found that our method outperforms the second-order time-convolutionless quantum master equation in the whole parameter regime and even far better than the fourth-order in the slow bath and high temperature cases. Besides, the method is applicable on an equal footing for any kind of spectral density function and is expected to be a powerful tool to explore the quantum dynamics of large-scale systems, benefiting from the wavefunction framework and the time-local appearance within a single stochastic trajectory.
Evolution of quantum-like modeling in decision making processes
Khrennikova, Polina
2012-12-01
The application of the mathematical formalism of quantum mechanics to model behavioral patterns in social science and economics is a novel and constantly emerging field. The aim of the so called 'quantum like' models is to model the decision making processes in a macroscopic setting, capturing the particular 'context' in which the decisions are taken. Several subsequent empirical findings proved that when making a decision people tend to violate the axioms of expected utility theory and Savage's Sure Thing principle, thus violating the law of total probability. A quantum probability formula was devised to describe more accurately the decision making processes. A next step in the development of QL-modeling in decision making was the application of Schrödinger equation to describe the evolution of people's mental states. A shortcoming of Schrödinger equation is its inability to capture dynamics of an open system; the brain of the decision maker can be regarded as such, actively interacting with the external environment. Recently the master equation, by which quantum physics describes the process of decoherence as the result of interaction of the mental state with the environmental 'bath', was introduced for modeling the human decision making. The external environment and memory can be referred to as a complex 'context' influencing the final decision outcomes. The master equation can be considered as a pioneering and promising apparatus for modeling the dynamics of decision making in different contexts.
Evolution of quantum-like modeling in decision making processes
Energy Technology Data Exchange (ETDEWEB)
Khrennikova, Polina [School of Management, University of Leicester, University Road Leicester LE1 7RH (United Kingdom)
2012-12-18
The application of the mathematical formalism of quantum mechanics to model behavioral patterns in social science and economics is a novel and constantly emerging field. The aim of the so called 'quantum like' models is to model the decision making processes in a macroscopic setting, capturing the particular 'context' in which the decisions are taken. Several subsequent empirical findings proved that when making a decision people tend to violate the axioms of expected utility theory and Savage's Sure Thing principle, thus violating the law of total probability. A quantum probability formula was devised to describe more accurately the decision making processes. A next step in the development of QL-modeling in decision making was the application of Schroedinger equation to describe the evolution of people's mental states. A shortcoming of Schroedinger equation is its inability to capture dynamics of an open system; the brain of the decision maker can be regarded as such, actively interacting with the external environment. Recently the master equation, by which quantum physics describes the process of decoherence as the result of interaction of the mental state with the environmental 'bath', was introduced for modeling the human decision making. The external environment and memory can be referred to as a complex 'context' influencing the final decision outcomes. The master equation can be considered as a pioneering and promising apparatus for modeling the dynamics of decision making in different contexts.
Evolution of quantum-like modeling in decision making processes
International Nuclear Information System (INIS)
Khrennikova, Polina
2012-01-01
The application of the mathematical formalism of quantum mechanics to model behavioral patterns in social science and economics is a novel and constantly emerging field. The aim of the so called 'quantum like' models is to model the decision making processes in a macroscopic setting, capturing the particular 'context' in which the decisions are taken. Several subsequent empirical findings proved that when making a decision people tend to violate the axioms of expected utility theory and Savage's Sure Thing principle, thus violating the law of total probability. A quantum probability formula was devised to describe more accurately the decision making processes. A next step in the development of QL-modeling in decision making was the application of Schrödinger equation to describe the evolution of people's mental states. A shortcoming of Schrödinger equation is its inability to capture dynamics of an open system; the brain of the decision maker can be regarded as such, actively interacting with the external environment. Recently the master equation, by which quantum physics describes the process of decoherence as the result of interaction of the mental state with the environmental 'bath', was introduced for modeling the human decision making. The external environment and memory can be referred to as a complex 'context' influencing the final decision outcomes. The master equation can be considered as a pioneering and promising apparatus for modeling the dynamics of decision making in different contexts.
Qudit quantum computation in the Jaynes-Cummings model
DEFF Research Database (Denmark)
Mischuck, Brian; Mølmer, Klaus
2013-01-01
We have developed methods for performing qudit quantum computation in the Jaynes-Cummings model with the qudits residing in a finite subspace of individual harmonic oscillator modes, resonantly coupled to a spin-1/2 system. The first method determines analytical control sequences for the one......- and two-qudit gates necessary for universal quantum computation by breaking down the desired unitary transformations into a series of state preparations implemented with the Law-Eberly scheme [ Law and Eberly Phys. Rev. Lett. 76 1055 (1996)]. The second method replaces some of the analytical pulse...
Quantum correlations of coupled superconducting two-qubit system in various cavity environments
International Nuclear Information System (INIS)
Yu, Yanxia; Fu, Guolan; Guo, L.P.; Pan, Hui; Wang, Z.S.
2013-01-01
Highlights: •We investigate dynamic evolutions of quantum and classical correlations for coupled superconducting system with various cavity environments. •We show that the quantum discord continues to reflect quantum information. •A transition of quantum discord is founded between classical loss and quantum increasing of correlations for a purely dephasing mode. •We show that the environment-dependent models can delay the loss of quantum discord. •We find that the results depend strongly on the initial angle. -- Abstract: Dynamic evolutions of quantum discord, concurrence, and classical correlation are investigated in coupled superconducting system with various cavity environments, focusing on the two-qubit system at an initially entangling X-state and Y-state. We find that for a smaller photon number, the quantum discord, concurrence and classical correlation show damped oscillations for all different decay modes. Differently from the sudden death or the dark and bright periods emerging in evolving processing of the concurrence and classical correlation, however, the quantum discord decreases gradually to zero. The results reveal that the quantum entanglement and classical correlation are lost, but the quantum discord continues to reflect quantum information in the same evolving period. For a larger photon number, the oscillations disappear. It is surprised that there exists a transition of quantum discord between classical loss and quantum increasing of correlations for a purely dephasing mode. For a larger photon number in the Y-state, the transition disappears. Moreover, we show that the environment-dependent models can delay the loss of quantum discord. The results depend strongly on the initial angle, which provide a clue to control the quantum gate of superconducting circuit
Pre-quantum mechanics. Introduction to models with hidden variables
International Nuclear Information System (INIS)
Grea, J.
1976-01-01
Within the context of formalism of hidden variable type, the author considers the models used to describe mechanical systems before the introduction of the quantum model. An account is given of the characteristics of the theoretical models and their relationships with experimental methodology. The models of analytical, pre-ergodic, stochastic and thermodynamic mechanics are studied in succession. At each stage the physical hypothesis is enunciated by postulate corresponding to the type of description of the reality of the model. Starting from this postulate, the physical propositions which are meaningful for the model under consideration are defined and their logical structure is indicated. It is then found that on passing from one level of description to another, one can obtain successively Boolean lattices embedded in lattices of continuous geometric type, which are themselves embedded in Boolean lattices. It is therefore possible to envisage a more detailed description than that given by the quantum lattice and to construct it by analogy. (Auth.)
López-Ruiz, F. F.; Guerrero, J.; Aldaya, V.; Cossío, F.
2012-08-01
Using a quantum version of the Arnold transformation of classical mechanics, all quantum dynamical systems whose classical equations of motion are non-homogeneous linear second-order ordinary differential equations (LSODE), including systems with friction linear in velocity such as the damped harmonic oscillator, can be related to the quantum free-particle dynamical system. This implies that symmetries and simple computations in the free particle can be exported to the LSODE-system. The quantum Arnold transformation is given explicitly for the damped harmonic oscillator, and an algebraic connection between the Caldirola-Kanai model for the damped harmonic oscillator and the Bateman system will be sketched out.
International Nuclear Information System (INIS)
López-Ruiz, F F; Guerrero, J; Aldaya, V; Cossío, F
2012-01-01
Using a quantum version of the Arnold transformation of classical mechanics, all quantum dynamical systems whose classical equations of motion are non-homogeneous linear second-order ordinary differential equations (LSODE), including systems with friction linear in velocity such as the damped harmonic oscillator, can be related to the quantum free-particle dynamical system. This implies that symmetries and simple computations in the free particle can be exported to the LSODE-system. The quantum Arnold transformation is given explicitly for the damped harmonic oscillator, and an algebraic connection between the Caldirola-Kanai model for the damped harmonic oscillator and the Bateman system will be sketched out.
Quantum Dynamics in the HMF Model
Plestid, Ryan; O'Dell, Duncan
2017-04-01
The Hamiltonian Mean Field (HMF) model represents a paradigm in the study of long-range interactions but has never been realized in a lab. Recently Shutz and Morigi (PRL 113) have come close but ultimately fallen short. Their proposal relied on cavity-induced interactions between atoms. If a design using cold atoms is to be successful, an understanding of quantum effects is essential. I will outline the natural quantum generalization of the HMF assuming a BEC by using a generalized Gross-Pitaevskii equation (gGPE). I will show how quantum effects modify features which are well understood in the classical model. More specifically, by working in the semi-classical regime (strong interparticle interactions) we can identify the universal features predicted by catastrophe theory dressed with quantum interference effects. The stationary states of gGPE can be solved exactly and are found to be described by self-consistent Mathieu functions. Finally, I will discuss the connection between the classical description of the dynamics in terms of the Vlassov equation, and the gGPE. We would like to thank the Government of Ontario's OGS program, NSERC, and the Perimeter Institute of Theoretical Physics.
Quantum robots and quantum computers
Energy Technology Data Exchange (ETDEWEB)
Benioff, P.
1998-07-01
Validation of a presumably universal theory, such as quantum mechanics, requires a quantum mechanical description of systems that carry out theoretical calculations and systems that carry out experiments. The description of quantum computers is under active development. No description of systems to carry out experiments has been given. A small step in this direction is taken here by giving a description of quantum robots as mobile systems with on board quantum computers that interact with different environments. Some properties of these systems are discussed. A specific model based on the literature descriptions of quantum Turing machines is presented.
Conjugate dynamical systems: classical analogue of the quantum energy translation
International Nuclear Information System (INIS)
Torres-Vega, Gabino
2012-01-01
An aspect of quantum mechanics that has not been fully understood is the energy shift generated by the time operator. In this study, we introduce the use of the eigensurfaces of dynamical variables and commutators in classical mechanics to study the classical analogue of the quantum translation of energy. We determine that there is a conjugate dynamical system that is conjugate to Hamilton's equations of motion, and then we generate the analogue of the time operator and use it in the translation of points along the energy direction, i.e. the classical analogue of the Pauli theorem. The theory is illustrated with a nonlinear oscillator model. (paper)
Slow dynamics in translation-invariant quantum lattice models
Michailidis, Alexios A.; Žnidarič, Marko; Medvedyeva, Mariya; Abanin, Dmitry A.; Prosen, Tomaž; Papić, Z.
2018-03-01
Many-body quantum systems typically display fast dynamics and ballistic spreading of information. Here we address the open problem of how slow the dynamics can be after a generic breaking of integrability by local interactions. We develop a method based on degenerate perturbation theory that reveals slow dynamical regimes and delocalization processes in general translation invariant models, along with accurate estimates of their delocalization time scales. Our results shed light on the fundamental questions of the robustness of quantum integrable systems and the possibility of many-body localization without disorder. As an example, we construct a large class of one-dimensional lattice models where, despite the absence of asymptotic localization, the transient dynamics is exceptionally slow, i.e., the dynamics is indistinguishable from that of many-body localized systems for the system sizes and time scales accessible in experiments and numerical simulations.
A holographic model for the fractional quantum Hall effect
Energy Technology Data Exchange (ETDEWEB)
Lippert, Matthew [Institute for Theoretical Physics, University of Amsterdam,Science Park 904, 1090GL Amsterdam (Netherlands); Meyer, René [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo,Kashiwa, Chiba 277-8568 (Japan); Taliotis, Anastasios [Theoretische Natuurkunde, Vrije Universiteit Brussel andThe International Solvay Institutes,Pleinlaan 2, B-1050 Brussels (Belgium)
2015-01-08
Experimental data for fractional quantum Hall systems can to a large extent be explained by assuming the existence of a Γ{sub 0}(2) modular symmetry group commuting with the renormalization group flow and hence mapping different phases of two-dimensional electron gases into each other. Based on this insight, we construct a phenomenological holographic model which captures many features of the fractional quantum Hall effect. Using an SL(2,ℤ)-invariant Einstein-Maxwell-axio-dilaton theory capturing the important modular transformation properties of quantum Hall physics, we find dyonic diatonic black hole solutions which are gapped and have a Hall conductivity equal to the filling fraction, as expected for quantum Hall states. We also provide several technical results on the general behavior of the gauge field fluctuations around these dyonic dilatonic black hole solutions: we specify a sufficient criterion for IR normalizability of the fluctuations, demonstrate the preservation of the gap under the SL(2,ℤ) action, and prove that the singularity of the fluctuation problem in the presence of a magnetic field is an accessory singularity. We finish with a preliminary investigation of the possible IR scaling solutions of our model and some speculations on how they could be important for the observed universality of quantum Hall transitions.
A holographic model for the fractional quantum Hall effect
Lippert, Matthew; Meyer, René; Taliotis, Anastasios
2015-01-01
Experimental data for fractional quantum Hall systems can to a large extent be explained by assuming the existence of a Γ0(2) modular symmetry group commuting with the renormalization group flow and hence mapping different phases of two-dimensional electron gases into each other. Based on this insight, we construct a phenomenological holographic model which captures many features of the fractional quantum Hall effect. Using an -invariant Einstein-Maxwell-axio-dilaton theory capturing the important modular transformation properties of quantum Hall physics, we find dyonic diatonic black hole solutions which are gapped and have a Hall conductivity equal to the filling fraction, as expected for quantum Hall states. We also provide several technical results on the general behavior of the gauge field fluctuations around these dyonic dilatonic black hole solutions: we specify a sufficient criterion for IR normalizability of the fluctuations, demonstrate the preservation of the gap under the action, and prove that the singularity of the fluctuation problem in the presence of a magnetic field is an accessory singularity. We finish with a preliminary investigation of the possible IR scaling solutions of our model and some speculations on how they could be important for the observed universality of quantum Hall transitions.
Dissipation Assisted Quantum Memory with Coupled Spin Systems
Jiang, Liang; Verstraete, Frank; Cirac, Ignacio; Lukin, Mikhail
2009-05-01
Dissipative dynamics often destroys quantum coherences. However, one can use dissipation to suppress decoherence. A well-known example is the so-called quantum Zeno effect, in which one can freeze the evolution using dissipative processes (e.g., frequently projecting the system to its initial state). Similarly, the undesired decoherence of quantum bits can also be suppressed using controlled dissipation. We propose and analyze the use of this generalization of quantum Zeno effect for protecting the quantum information encoded in the coupled spin systems. This new approach may potentially enhance the performance of quantum memories, in systems such as nitrogen-vacancy color-centers in diamond.
A quantum probability model of causal reasoning
Directory of Open Access Journals (Sweden)
Jennifer S Trueblood
2012-05-01
Full Text Available People can often outperform statistical methods and machine learning algorithms in situations that involve making inferences about the relationship between causes and effects. While people are remarkably good at causal reasoning in many situations, there are several instances where they deviate from expected responses. This paper examines three situations where judgments related to causal inference problems produce unexpected results and describes a quantum inference model based on the axiomatic principles of quantum probability theory that can explain these effects. Two of the three phenomena arise from the comparison of predictive judgments (i.e., the conditional probability of an effect given a cause with diagnostic judgments (i.e., the conditional probability of a cause given an effect. The third phenomenon is a new finding examining order effects in predictive causal judgments. The quantum inference model uses the notion of incompatibility among different causes to account for all three phenomena. Psychologically, the model assumes that individuals adopt different points of view when thinking about different causes. The model provides good fits to the data and offers a coherent account for all three causal reasoning effects thus proving to be a viable new candidate for modeling human judgment.
The coupled cluster theory of quantum lattice systems
International Nuclear Information System (INIS)
Bishop, R.; Xian, Yang
1994-01-01
The coupled cluster method is widely recognized nowadays as providing an ab initio method of great versatility, power, and accuracy for handling in a fully microscopic and systematic way the correlations between particles in quantum many-body systems. The number of successful applications made to date within both chemistry and physics is impressive. In this article, the authors review recent extensions of the method which now provide a unifying framework for also dealing with strongly interacting infinite quantum lattice systems described by a Hamiltonian. Such systems include both spin-lattice models (such as the anisotropic Heisenberg or XXZ model) exhibiting interesting magnetic properties, and electron lattice models (such as the tJ and Hubbard models), where the spins or fermions are localized on the sites of a regular lattice; as well as lattice gauge theories [such as the Abelian U(1) model of quantum electrodynamics and non-Abelian SU(n) models]. Illustrative results are given for both the XXZ spin lattice model and U(1) lattice gauge theory
Hybrid quantum systems of ions and atoms
Sias, Carlo; Köhl, Michael
2014-01-01
In this chapter we review the progress in experiments with hybrid systems of trapped ions and ultracold neutral atoms. We give a theoretical overview over the atom-ion interactions in the cold regime and give a summary of the most important experimental results. We conclude with an overview of remaining open challenges and possible applications in hybrid quantum systems of ions and neutral atoms.
Quantum Ising model on hierarchical structures
International Nuclear Information System (INIS)
Lin Zhifang; Tao Ruibao.
1989-11-01
A quantum Ising chain with both the exchange couplings and the transverse fields arranged in a hierarchical way is considered. Exact analytical results for the critical line and energy gap are obtained. It is shown that when R 1 not= R 2 , where R 1 and R 2 are the hierarchical parameters for the exchange couplings and the transverse fields, respectively, the system undergoes a phase transition in a different universality class from the pure quantum Ising chain with R 1 =R 2 =1. On the other hand, when R 1 =R 2 =R, there exists a critical value R c dependent on the furcating number of the hierarchy. In case of R > R c , the system is shown to exhibit as Ising-like critical point with the critical behaviour the same as in the pure case, while for R c the system belongs to another universality class. (author). 19 refs, 2 figs
Quantum Annealing and Quantum Fluctuation Effect in Frustrated Ising Systems
Tanaka, Shu; Tamura, Ryo
2012-01-01
Quantum annealing method has been widely attracted attention in statistical physics and information science since it is expected to be a powerful method to obtain the best solution of optimization problem as well as simulated annealing. The quantum annealing method was incubated in quantum statistical physics. This is an alternative method of the simulated annealing which is well-adopted for many optimization problems. In the simulated annealing, we obtain a solution of optimization problem b...
Irreversible processes in quantum mechanical systems
International Nuclear Information System (INIS)
Talkner, P.
1979-01-01
Although the information provided by the evolution of the density matrix of a quantum system is equivalent with the knowledge of all observables at a given time, it turns out ot be insufficient to answer certain questions in quantum optics or linear response theory where the commutator of certain observables at different space-time points is needed. In this doctoral thesis we prove the existence of density matrices for common probabilities at multiple times and discuss their properties and their characterization independent of a special representation. We start with a compilation of definitions and properties of classical common probabilities and correlation functions. In the second chapter we give the definition of a quantum mechanical Markov process and derive the properties of propagators, generators and conditional probabilities as well as their mutual relations. The third chapter is devoted to a treatment of quantum mechanical systems in thermal equilibrium for which the principle of detailed balance holds as a consequence of microreversibility. We work out the symmetry properties of the two-sided correlation functions which turn out to be analogous to those in classical processes. In the final chapter we use the Gaussian behavior of the stationary correlation function of an oscillator and determine a class of Markov processes which are characterized by dissipative Lionville operators. We succeed in obtaining the canonical representation in a purely algebraic way by means of similarity transformations. Starting from this representation it is particularly easy to calculate the propagator and the correlation function. (HJ) 891 HJ/HJ 892 MKO
Deformed Calogero-Sutherland model and fractional quantum Hall effect
Atai, Farrokh; Langmann, Edwin
2017-01-01
The deformed Calogero-Sutherland (CS) model is a quantum integrable system with arbitrary numbers of two types of particles and reducing to the standard CS model in special cases. We show that a known collective field description of the CS model, which is based on conformal field theory (CFT), is actually a collective field description of the deformed CS model. This provides a natural application of the deformed CS model in Wen's effective field theory of the fractional quantum Hall effect (FQHE), with the two kinds of particles corresponding to electrons and quasi-hole excitations. In particular, we use known mathematical results about super-Jack polynomials to obtain simple explicit formulas for the orthonormal CFT basis proposed by van Elburg and Schoutens in the context of the FQHE.
Mathematical Structure in Quantum Systems and applications
International Nuclear Information System (INIS)
Cavero-Pelaez, I.; Clemente-Gallardo, J.; Marmo, G.; Muñoz--Castañeda, J.M.
2013-01-01
This volume contains most of the contributions presented at the Conference 'Mathematical Structures in Quantum Systems and applications', held at the Centro de Ciencias de Benasque 'Pedro Pascual', Benasque (Spain) from 8-14 July 2012. The aim of the Conference was to bring together physicists working on different applications of mathematical methods to quantum systems in order to enable the different communities to become acquainted with other approaches and techniques that could be used in their own fields of expertise. We concentrated on three main subjects: – the geometrical description of Quantum Mechanics; – the Casimir effect and its mathematical implications; – the Quantum Zeno Effect and Open system dynamics. Each of these topics had a set of general lectures, aimed at presenting a global view on the subject, and other more technical seminars. We would like to thank all participants for their contribution to creating a wonderful scientific atmosphere during the Conference. We would especially like to thank the speakers and the authors of the papers contained in this volume, the members of the Scientific Committee for their guidance and support and, of course, the referees for their generous work. Special thanks are also due to the staff of the Centro de Ciencias de Benasque 'Pedro Pascual' who made this successful meeting possible. On behalf of the organising committee and the authors we would also like to acknowledge the partial support provided by the ESF-CASIMIR network ('New Trends and Applications of the Casimir Effect'), the QUITEMAD research Project (“Quantum technologies at Madrid”, Ref. Comunidad de Madrid P2009/ESP-1594), the MICINN Project (MTM2011-16027-E) and the Government from Arag´on (DGA) (DGA, Department of Industry and Innovation and the European Social Fund, DGA-Grant 24/1) who made the Conference and this Proceedings volume possible.
Multiple-state quantum Otto engine, 1D box system
Energy Technology Data Exchange (ETDEWEB)
Latifah, E., E-mail: enylatifah@um.ac.id [Laboratory of Theoretical Physics and Natural Philosophy, Physics Department, Institut Teknologi Sepuluh Nopember, ITS, Surabaya, Indonesia and Physics Department, Malang State University (Indonesia); Purwanto, A. [Laboratory of Theoretical Physics and Natural Philosophy, Physics Department, Institut Teknologi Sepuluh Nopember, ITS, Surabaya (Indonesia)
2014-03-24
Quantum heat engines produce work using quantum matter as their working substance. We studied adiabatic and isochoric processes and defined the general force according to quantum system. The processes and general force are used to evaluate a quantum Otto engine based on multiple-state of one dimensional box system and calculate the efficiency. As a result, the efficiency depends on the ratio of initial and final width of system under adiabatic processes.
Closed hierarchy of correlations in Markovian open quantum systems
International Nuclear Information System (INIS)
Žunkovič, Bojan
2014-01-01
We study the Lindblad master equation in the space of operators and provide simple criteria for closeness of the hierarchy of equations for correlations. We separately consider the time evolution of closed and open systems and show that open systems satisfying the closeness conditions are not necessarily of Gaussian type. In addition, we show that dissipation can induce the closeness of the hierarchy of correlations in interacting quantum systems. As an example we study an interacting optomechanical model, the Fermi–Hubbard model, and the Rabi model, all coupled to a fine-tuned Markovian environment and obtain exact analytic expressions for the time evolution of two-point correlations. (paper)
Controllability of multi-partite quantum systems and selective excitation of quantum dots
International Nuclear Information System (INIS)
Schirmer, S G; Pullen, I C H; Solomon, A I
2005-01-01
We consider the degrees of controllability of multi-partite quantum systems, as well as necessary and sufficient criteria for each case. The results are applied to the problem of simultaneous control of an ensemble of quantum dots with a single laser pulse. Finally, we apply optimal control techniques to demonstrate selective excitation of individual dots for a simultaneously controllable ensemble of quantum dots
Theory of ground state factorization in quantum cooperative systems.
Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio
2008-05-16
We introduce a general analytic approach to the study of factorization points and factorized ground states in quantum cooperative systems. The method allows us to determine rigorously the existence, location, and exact form of separable ground states in a large variety of, generally nonexactly solvable, spin models belonging to different universality classes. The theory applies to translationally invariant systems, irrespective of spatial dimensionality, and for spin-spin interactions of arbitrary range.
Quantum system under periodic perturbation: Effect of environment
International Nuclear Information System (INIS)
Hotta, M.; Joichi, I.; Matsumoto, S.; Yoshimura, M.
1997-01-01
In many physical situations the behavior of a quantum system is affected by interaction with a larger environment. We develop, using the method of an influence functional, how to deduce the density matrix of the quantum system incorporating the effect of environment. After introducing the characterization of the environment by spectral weight, we first devise schemes to approximate the spectral weight, and then a perturbation method in field theory models, in order to approximately describe the environment. All of these approximate models may be classified as extended Ohmic models of dissipation whose differences are in the high frequency part. The quantum system we deal with in the present work is a general class of harmonic oscillators with an arbitrary time-dependent frequency. The late time behavior of the system is well described by an approximation that employs a localized friction in the dissipative part of the correlation function appearing in the influence functional. The density matrix of the quantum system is then determined in terms of a single classical solution obtained with the time-dependent frequency. With this one can compute the entropy, the energy distribution function, and other physical quantities of the system in a closed form. A specific application is made to the case of a periodically varying frequency. This dynamical system has a remarkable property when the environmental interaction is switched off: The effect of the parametric resonance gives rise to an exponential growth of the populated number in higher excitation levels, or particle production in field theory models. The effect of the environment is investigated for this dynamical system and it is demonstrated that there exists a critical strength of the friction for the parametric effect. (Abstract Truncated)
Levitation and percolation in quantum Hall systems with correlated disorder
Song, Hui; Maruyama, Isao; Hatsugai, Yasuhiro
2007-01-01
We investigate the integer quantum Hall system in a two dimensional lattice model with spatially correlated disorder by using the efficient method to calculate the Chern number proposed by Fukui et al. [J. Phys. Soc. Jpn. 74, 1674 (2005)]. Distribution of charge density indicates that the extended states at the center of each Landau band have percolating current paths, which are topologically equivalent to the edge states that exist in a system with boundaries. As increasing the strength of d...
Quantum Monte Carlo approaches for correlated systems
Becca, Federico
2017-01-01
Over the past several decades, computational approaches to studying strongly-interacting systems have become increasingly varied and sophisticated. This book provides a comprehensive introduction to state-of-the-art quantum Monte Carlo techniques relevant for applications in correlated systems. Providing a clear overview of variational wave functions, and featuring a detailed presentation of stochastic samplings including Markov chains and Langevin dynamics, which are developed into a discussion of Monte Carlo methods. The variational technique is described, from foundations to a detailed description of its algorithms. Further topics discussed include optimisation techniques, real-time dynamics and projection methods, including Green's function, reptation and auxiliary-field Monte Carlo, from basic definitions to advanced algorithms for efficient codes, and the book concludes with recent developments on the continuum space. Quantum Monte Carlo Approaches for Correlated Systems provides an extensive reference ...
Quantum tunneling in the adiabatic Dicke model
International Nuclear Information System (INIS)
Chen Gang; Chen Zidong; Liang Jiuqing
2007-01-01
The Dicke model describes N two-level atoms interacting with a single-mode bosonic field and exhibits a second-order phase transition from the normal to the superradiant phase. The energy levels are not degenerate in the normal phase but have degeneracy in the superradiant phase, where quantum tunneling occurs. By means of the Born-Oppenheimer approximation and the instanton method in quantum field theory, the tunneling splitting, inversely proportional to the tunneling rate for the adiabatic Dicke model, in the superradiant phase can be evaluated explicitly. It is shown that the tunneling splitting vanishes as exp(-N) for large N, whereas for small N it disappears as √(N)/exp(N). The dependence of the tunneling splitting on the relevant parameters, especially on the atom-field coupling strength, is also discussed
A quantum heat engine based on Tavis-Cummings model
Sun, Kai-Wei; Li, Ran; Zhang, Guo-Feng
2017-09-01
This paper will investigate a four-stroke quantum heat engine based on the Tavis-Cummings model. The cycle of the heat engine is similar to the Otto cycle in classical thermodynamics. The relationship between output power as well as cycle efficiency and external physical system parameters are given. Under this condition, the entanglement behavior of the system will be studied. The system can show considerable entanglement by strictly controlling relevant parameters. Unlike common two-level quantum heat engines, efficiency is a function of temperature, showing interesting and unexpected phenomena. Several ways to adjust engine properties by external parameters are proposed, with which the output power and efficiency can be optimized. The heat engine model exhibits high efficiency and output power with the participation of a small number of photons, and decay rapidly as the number of photons increases in entangled area but shows interesting behaviors in non-entangled area of photon numbers.
Excess Entropy Production in Quantum System: Quantum Master Equation Approach
Nakajima, Satoshi; Tokura, Yasuhiro
2017-12-01
For open systems described by the quantum master equation (QME), we investigate the excess entropy production under quasistatic operations between nonequilibrium steady states. The average entropy production is composed of the time integral of the instantaneous steady entropy production rate and the excess entropy production. We propose to define average entropy production rate using the average energy and particle currents, which are calculated by using the full counting statistics with QME. The excess entropy production is given by a line integral in the control parameter space and its integrand is called the Berry-Sinitsyn-Nemenman (BSN) vector. In the weakly nonequilibrium regime, we show that BSN vector is described by ln \\breve{ρ }_0 and ρ _0 where ρ _0 is the instantaneous steady state of the QME and \\breve{ρ }_0 is that of the QME which is given by reversing the sign of the Lamb shift term. If the system Hamiltonian is non-degenerate or the Lamb shift term is negligible, the excess entropy production approximately reduces to the difference between the von Neumann entropies of the system. Additionally, we point out that the expression of the entropy production obtained in the classical Markov jump process is different from our result and show that these are approximately equivalent only in the weakly nonequilibrium regime.
Universe before Planck time: A quantum gravity model
International Nuclear Information System (INIS)
Padmanabhan, T.
1983-01-01
A model for quantum gravity can be constructed by treating the conformal degree of freedom of spacetime as a quantum variable. An isotropic, homogeneous cosmological solution in this quantum gravity model is presented. The spacetime is nonsingular for all the three possible values of three-space curvature, and agrees with the classical solution for time scales larger than the Planck time scale. A possibility of quantum fluctuations creating the matter in the universe is suggested
Topological quantum theories and integrable models
International Nuclear Information System (INIS)
Keski-Vakkuri, E.; Niemi, A.J.; Semenoff, G.; Tirkkonen, O.
1991-01-01
The path-integral generalization of the Duistermaat-Heckman integration formula is investigated for integrable models. It is shown that for models with periodic classical trajectories the path integral reduces to a form similar to the finite-dimensional Duistermaat-Heckman integration formula. This provides a relation between exactness of the stationary-phase approximation and Morse theory. It is also argued that certain integrable models can be related to topological quantum theories. Finally, it is found that in general the stationary-phase approximation presumes that the initial and final configurations are in different polarizations. This is exemplified by the quantization of the SU(2) coadjoint orbit
Quantum mechanical models for the Fermi shuttle
Sternberg, James; Ovchinnikov, S. Yu.; Macek, J. H.
2009-05-01
Although the Fermi shuttle was originally proposed as an explanation for highly energetic cosmic rays, it is also a mechanism for the production of high energy electrons in atomic collisions [1]. The Fermi shuttle is usually thought of as a classical effect and most models of this process rely on classical or semi-classical approximations. In this work we explore several quantum mechanical models for ion-atom collisions and examine the evidence for the Fermi shuttle in these models. [4pt] [1] B. Sulik, Cs. Koncz, K. Tok'esi, A. Orb'an, and D. Ber'enyi, Phys Rev. Lett. 88 073201 (2002)
Process tomography via sequential measurements on a single quantum system
CSIR Research Space (South Africa)
Bassa, H
2015-09-01
Full Text Available The authors utilize a discrete (sequential) measurement protocol to investigate quantum process tomography of a single two-level quantum system, with an unknown initial state, undergoing Rabi oscillations. The ignorance of the dynamical parameters...
The Generalized Quantum Episodic Memory Model.
Trueblood, Jennifer S; Hemmer, Pernille
2017-11-01
Recent evidence suggests that experienced events are often mapped to too many episodic states, including those that are logically or experimentally incompatible with one another. For example, episodic over-distribution patterns show that the probability of accepting an item under different mutually exclusive conditions violates the disjunction rule. A related example, called subadditivity, occurs when the probability of accepting an item under mutually exclusive and exhaustive instruction conditions sums to a number >1. Both the over-distribution effect and subadditivity have been widely observed in item and source-memory paradigms. These phenomena are difficult to explain using standard memory frameworks, such as signal-detection theory. A dual-trace model called the over-distribution (OD) model (Brainerd & Reyna, 2008) can explain the episodic over-distribution effect, but not subadditivity. Our goal is to develop a model that can explain both effects. In this paper, we propose the Generalized Quantum Episodic Memory (GQEM) model, which extends the Quantum Episodic Memory (QEM) model developed by Brainerd, Wang, and Reyna (2013). We test GQEM by comparing it to the OD model using data from a novel item-memory experiment and a previously published source-memory experiment (Kellen, Singmann, & Klauer, 2014) examining the over-distribution effect. Using the best-fit parameters from the over-distribution experiments, we conclude by showing that the GQEM model can also account for subadditivity. Overall these results add to a growing body of evidence suggesting that quantum probability theory is a valuable tool in modeling recognition memory. Copyright © 2016 Cognitive Science Society, Inc.
Quantum scaling in many-body systems an approach to quantum phase transitions
Continentino, Mucio
2017-01-01
Quantum phase transitions are strongly relevant in a number of fields, ranging from condensed matter to cold atom physics and quantum field theory. This book, now in its second edition, approaches the problem of quantum phase transitions from a new and unifying perspective. Topics addressed include the concepts of scale and time invariance and their significance for quantum criticality, as well as brand new chapters on superfluid and superconductor quantum critical points, and quantum first order transitions. The renormalisation group in real and momentum space is also established as the proper language to describe the behaviour of systems close to a quantum phase transition. These phenomena introduce a number of theoretical challenges which are of major importance for driving new experiments. Being strongly motivated and oriented towards understanding experimental results, this is an excellent text for graduates, as well as theorists, experimentalists and those with an interest in quantum criticality.
Quantum Information Biology: From Theory of Open Quantum Systems to Adaptive Dynamics
Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro
This chapter reviews quantum(-like) information biology (QIB). Here biology is treated widely as even covering cognition and its derivatives: psychology and decision making, sociology, and behavioral economics and finances. QIB provides an integrative description of information processing by bio-systems at all scales of life: from proteins and cells to cognition, ecological and social systems. Mathematically QIB is based on the theory of adaptive quantum systems (which covers also open quantum systems). Ideologically QIB is based on the quantum-like (QL) paradigm: complex bio-systems process information in accordance with the laws of quantum information and probability. This paradigm is supported by plenty of statistical bio-data collected at all bio-scales. QIB re ects the two fundamental principles: a) adaptivity; and, b) openness (bio-systems are fundamentally open). In addition, quantum adaptive dynamics provides the most generally possible mathematical representation of these principles.
Mixing properties of quantum systems
International Nuclear Information System (INIS)
Narnhofer, H.; Thirring, W.
1988-01-01
We generalize the classical notion of topological mixing for automorphisms of C * -algebras in two ways. We show that for Galilean invariant Fermi systems the weaker form of mixing is satisfied. With some additional requirement on the range of the interaction we can also demonstrate the stronger mixing property. (Author)
Quantum mechanical simulation methods for studying biological systems
International Nuclear Information System (INIS)
Bicout, D.; Field, M.
1996-01-01
Most known biological mechanisms can be explained using fundamental laws of physics and chemistry and a full understanding of biological processes requires a multidisciplinary approach in which all the tools of biology, chemistry and physics are employed. An area of research becoming increasingly important is the theoretical study of biological macromolecules where numerical experimentation plays a double role of establishing a link between theoretical models and predictions and allowing a quantitative comparison between experiments and models. This workshop brought researchers working on different aspects of the development and application of quantum mechanical simulation together, assessed the state-of-the-art in the field and highlighted directions for future research. Fourteen lectures (theoretical courses and specialized seminars) deal with following themes: 1) quantum mechanical calculations of large systems, 2) ab initio molecular dynamics where the calculation of the wavefunction and hence the energy and forces on the atoms for a system at a single nuclear configuration are combined with classical molecular dynamics algorithms in order to perform simulations which use a quantum mechanical potential energy surface, 3) quantum dynamical simulations, electron and proton transfer processes in proteins and in solutions and finally, 4) free seminars that helped to enlarge the scope of the workshop. (N.T.)
Quantum Bohmian model for financial market
Choustova, Olga Al.
2007-01-01
We apply methods of quantum mechanics for mathematical modeling of price dynamics at the financial market. The Hamiltonian formalism on the price/price-change phase space describes the classical-like evolution of prices. This classical dynamics of prices is determined by “hard” conditions (natural resources, industrial production, services and so on). These conditions are mathematically described by the classical financial potential V(q), where q=(q1,…,qn) is the vector of prices of various shares. But the information exchange and market psychology play important (and sometimes determining) role in price dynamics. We propose to describe such behavioral financial factors by using the pilot wave (Bohmian) model of quantum mechanics. The theory of financial behavioral waves takes into account the market psychology. The real trajectories of prices are determined (through the financial analogue of the second Newton law) by two financial potentials: classical-like V(q) (“hard” market conditions) and quantum-like U(q) (behavioral market conditions).
Coherent nonlinear quantum model for composite fermions
Energy Technology Data Exchange (ETDEWEB)
Reinisch, Gilbert [Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik (Iceland); Gudmundsson, Vidar, E-mail: vidar@hi.is [Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik (Iceland); Manolescu, Andrei [School of Science and Engineering, Reykjavik University, Menntavegur 1, IS-101 Reykjavik (Iceland)
2014-04-01
Originally proposed by Read [1] and Jain [2], the so-called “composite-fermion” is a phenomenological quasi-particle resulting from the attachment of two local flux quanta, seen as nonlocal vortices, to electrons situated on a two-dimensional (2D) surface embedded in a strong orthogonal magnetic field. In this Letter this phenomenon is described as a highly-nonlinear and coherent mean-field quantum process of the soliton type by use of a 2D stationary Schrödinger–Poisson differential model with only two Coulomb-interacting electrons. At filling factor ν=1/3 of the lowest Landau level the solution agrees with both the exact two-electron antisymmetric Schrödinger wavefunction and with Laughlin's Jastrow-type guess for the fractional quantum Hall effect, hence providing this latter with a tentative physical justification deduced from the experimental results and based on first principles.
A probability space for quantum models
Lemmens, L. F.
2017-06-01
A probability space contains a set of outcomes, a collection of events formed by subsets of the set of outcomes and probabilities defined for all events. A reformulation in terms of propositions allows to use the maximum entropy method to assign the probabilities taking some constraints into account. The construction of a probability space for quantum models is determined by the choice of propositions, choosing the constraints and making the probability assignment by the maximum entropy method. This approach shows, how typical quantum distributions such as Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein are partly related with well-known classical distributions. The relation between the conditional probability density, given some averages as constraints and the appropriate ensemble is elucidated.
Noise management to achieve superiority in quantum information systems.
Nemoto, Kae; Devitt, Simon; Munro, William J
2017-08-06
Quantum information systems are expected to exhibit superiority compared with their classical counterparts. This superiority arises from the quantum coherences present in these quantum systems, which are obviously absent in classical ones. To exploit such quantum coherences, it is essential to control the phase information in the quantum state. The phase is analogue in nature, rather than binary. This makes quantum information technology fundamentally different from our classical digital information technology. In this paper, we analyse error sources and illustrate how these errors must be managed for the system to achieve the required fidelity and a quantum superiority.This article is part of the themed issue 'Quantum technology for the 21st century'. © 2017 The Author(s).
Analog quantum simulation of generalized Dicke models in trapped ions
Aedo, Ibai; Lamata, Lucas
2018-04-01
We propose the analog quantum simulation of generalized Dicke models in trapped ions. By combining bicromatic laser interactions on multiple ions we can generate all regimes of light-matter coupling in these models, where here the light mode is mimicked by a motional mode. We present numerical simulations of the three-qubit Dicke model both in the weak field (WF) regime, where the Jaynes-Cummings behavior arises, and the ultrastrong coupling (USC) regime, where a rotating-wave approximation cannot be considered. We also simulate the two-qubit biased Dicke model in the WF and USC regimes and the two-qubit anisotropic Dicke model in the USC regime and the deep-strong coupling regime. The agreement between the mathematical models and the ion system convinces us that these quantum simulations can be implemented in the laboratory with current or near-future technology. This formalism establishes an avenue for the quantum simulation of many-spin Dicke models in trapped ions.
Quantum interference vs. quantum chaos in the nuclear shell model
International Nuclear Information System (INIS)
Fernández, Gerardo; Hautefeuille, M; Velázquez, V; Hernández, Edna M; Landa, E; Morales, I O; Frank, A; Fossion, R; Vargas, C E
2015-01-01
In this paper we study the complexity of the nuclear states in terms of a two body quadupole-quadrupole interaction. Energy distributions and eigenvectors composition exhibit a visible interference pattern which is dependent on the intensity of the interaction. In analogy with optics, the visibility of the interference is related to the purity of the states, therefore, we show that the fluctuations associated with quantum chaos have as their origin the remaining quantum coherence with a visibility magnitude close to 5%
Using a quantum dot system to realize perfect state transfer
International Nuclear Information System (INIS)
Li Ji; Wu Shi-Hai; Zhang Wen-Wen; Xi Xiao-Qiang
2011-01-01
There are some disadvantages to Nikolopoulos et al.'s protocol [Nikolopoulos G M, Petrosyan D and Lambropoulos P 2004 Europhys. Lett. 65 297] where a quantum dot system is used to realize quantum communication. To overcome these disadvantages, we propose a protocol that uses a quantum dot array to construct a four-qubit spin chain to realize perfect quantum state transfer (PQST). First, we calculate the interaction relation for PQST in the spin chain. Second, we review the interaction between the quantum dots in the Heitler—London approach. Third, we present a detailed program for designing the proper parameters of a quantum dot array to realize PQST. (general)
Quantum oscillations in nodal line systems
Yang, Hui; Moessner, Roderich; Lim, Lih-King
2018-04-01
We study signatures of magnetic quantum oscillations in three-dimensional nodal line semimetals at zero temperature. The extended nature of the degenerate bands can result in a Fermi surface geometry with topological genus one, as well as a Fermi surface of electron and hole pockets encapsulating the nodal line. Moreover, the underlying two-band model to describe a nodal line is not unique, in that there are two classes of Hamiltonian with distinct band topology giving rise to the same Fermi-surface geometry. After identifying the extremal cyclotron orbits in various magnetic field directions, we study their concomitant Landau levels and resulting quantum oscillation signatures. By Landau-fan-diagram analyses, we extract the nontrivial π Berry phase signature for extremal orbits linking the nodal line.
Li, Guanchen; von Spakovsky, Michael R.
2016-01-01
This paper presents a study of the nonequilibrium relaxation process of chemically reactive systems using steepest-entropy-ascent quantum thermodynamics (SEAQT). The trajectory of the chemical reaction, i.e., the accessible intermediate states, is predicted and discussed. The prediction is made using a thermodynamic-ensemble approach, which does not require detailed information about the particle mechanics involved (e.g., the collision of particles). Instead, modeling the kinetics and dynamics of the relaxation process is based on the principle of steepest-entropy ascent (SEA) or maximum-entropy production, which suggests a constrained gradient dynamics in state space. The SEAQT framework is based on general definitions for energy and entropy and at least theoretically enables the prediction of the nonequilibrium relaxation of system state at all temporal and spatial scales. However, to make this not just theoretically but computationally possible, the concept of density of states is introduced to simplify the application of the relaxation model, which in effect extends the application of the SEAQT framework even to infinite energy eigenlevel systems. The energy eigenstructure of the reactive system considered here consists of an extremely large number of such levels (on the order of 10130) and yields to the quasicontinuous assumption. The principle of SEA results in a unique trajectory of system thermodynamic state evolution in Hilbert space in the nonequilibrium realm, even far from equilibrium. To describe this trajectory, the concepts of subsystem hypoequilibrium state and temperature are introduced and used to characterize each system-level, nonequilibrium state. This definition of temperature is fundamental rather than phenomenological and is a generalization of the temperature defined at stable equilibrium. In addition, to deal with the large number of energy eigenlevels, the equation of motion is formulated on the basis of the density of states and a set of
Are quantum-mechanical-like models possible, or necessary, outside quantum physics?
International Nuclear Information System (INIS)
Plotnitsky, Arkady
2014-01-01
This article examines some experimental conditions that invite and possibly require recourse to quantum-mechanical-like mathematical models (QMLMs), models based on the key mathematical features of quantum mechanics, in scientific fields outside physics, such as biology, cognitive psychology, or economics. In particular, I consider whether the following two correlative features of quantum phenomena that were decisive for establishing the mathematical formalism of quantum mechanics play similarly important roles in QMLMs elsewhere. The first is the individuality and discreteness of quantum phenomena, and the second is the irreducibly probabilistic nature of our predictions concerning them, coupled to the particular character of the probabilities involved, as different from the character of probabilities found in classical physics. I also argue that these features could be interpreted in terms of a particular form of epistemology that suspends and even precludes a causal and, in the first place, realist description of quantum objects and processes. This epistemology limits the descriptive capacity of quantum theory to the description, classical in nature, of the observed quantum phenomena manifested in measuring instruments. Quantum mechanics itself only provides descriptions, probabilistic in nature, concerning numerical data pertaining to such phenomena, without offering a physical description of quantum objects and processes. While QMLMs share their use of the quantum-mechanical or analogous mathematical formalism, they may differ by the roles, if any, the two features in question play in them and by different ways of interpreting the phenomena they considered and this formalism itself. This article will address those differences as well. (paper)
Quantum communications system with integrated photonic devices
Nordholt, Jane E.; Peterson, Charles Glen; Newell, Raymond Thorson; Hughes, Richard John
2017-11-14
Security is increased in quantum communication (QC) systems lacking a true single-photon laser source by encoding a transmitted optical signal with two or more decoy-states. A variable attenuator or amplitude modulator randomly imposes average photon values onto the optical signal based on data input and the predetermined decoy-states. By measuring and comparing photon distributions for a received QC signal, a single-photon transmittance is estimated. Fiber birefringence is compensated by applying polarization modulation. A transmitter can be configured to transmit in conjugate polarization bases whose states of polarization (SOPs) can be represented as equidistant points on a great circle on the Poincare sphere so that the received SOPs are mapped to equidistant points on a great circle and routed to corresponding detectors. Transmitters are implemented in quantum communication cards and can be assembled from micro-optical components, or transmitter components can be fabricated as part of a monolithic or hybrid chip-scale circuit.
Engineering quantum hyperentangled states in atomic systems
Nawaz, Mehwish; -Islam, Rameez-ul; Abbas, Tasawar; Ikram, Manzoor
2017-11-01
Hyperentangled states have boosted many quantum informatics tasks tremendously due to their high information content per quantum entity. Until now, however, the engineering and manipulation of such states were limited to photonic systems only. In present article, we propose generating atomic hyperentanglement involving atomic internal states as well as atomic external momenta states. Hypersuperposition, hyperentangled cluster, Bell and Greenberger-Horne-Zeilinger states are engineered deterministically through resonant and off-resonant Bragg diffraction of neutral two-level atoms. Based on the characteristic parameters of the atomic Bragg diffraction, such as comparatively large interaction times and spatially well-separated outputs, such decoherence resistant states are expected to exhibit good overall fidelities and offer the evident benefits of full controllability, along with extremely high detection efficiency, over the counterpart photonic states comprised entirely of flying qubits.
Yang-Baxter algebra - Integrable systems - Conformal quantum field theories
International Nuclear Information System (INIS)
Karowski, M.
1989-01-01
This series of lectures is based on investigations [1,2] of finite-size corrections for the six-vertex model by means of Bethe ansatz methods. In addition a review on applications of Yang-Baxter algebras and an introduction to the theory of integrable systems and the algebraic Bethe ansatz is presented. A Θ-vacuum like angle appearing in the RSOS-models is discussed. The continuum limit in the critical case of these statistical models is performed to obtain the minimal models of conformal quantum field theory. (author)
Murashita, Yûto; Gong, Zongping; Ashida, Yuto; Ueda, Masahito
2017-10-01
The thermodynamics of quantum coherence has attracted growing attention recently, where the thermodynamic advantage of quantum superposition is characterized in terms of quantum thermodynamics. We investigate the thermodynamic effects of quantum coherent driving in the context of the fluctuation theorem. We adopt a quantum-trajectory approach to investigate open quantum systems under feedback control. In these systems, the measurement backaction in the forward process plays a key role, and therefore the corresponding time-reversed quantum measurement and postselection must be considered in the backward process, in sharp contrast to the classical case. The state reduction associated with quantum measurement, in general, creates a zero-probability region in the space of quantum trajectories of the forward process, which causes singularly strong irreversibility with divergent entropy production (i.e., absolute irreversibility) and hence makes the ordinary fluctuation theorem break down. In the classical case, the error-free measurement ordinarily leads to absolute irreversibility, because the measurement restricts classical paths to the region compatible with the measurement outcome. In contrast, in open quantum systems, absolute irreversibility is suppressed even in the presence of the projective measurement due to those quantum rare events that go through the classically forbidden region with the aid of quantum coherent driving. This suppression of absolute irreversibility exemplifies the thermodynamic advantage of quantum coherent driving. Absolute irreversibility is shown to emerge in the absence of coherent driving after the measurement, especially in systems under time-delayed feedback control. We show that absolute irreversibility is mitigated by increasing the duration of quantum coherent driving or decreasing the delay time of feedback control.
Sign rules for anisotropic quantum spin systems
International Nuclear Information System (INIS)
Bishop, R. F.; Farnell, D. J. J.; Parkinson, J. B.
2000-01-01
We present exact ''sign rules'' for various spin-s anisotropic spin-lattice models. It is shown that, after a simple transformation which utilizes these sign rules, the ground-state wave function of the transformed Hamiltonian is positive definite. Using these results exact statements for various expectation values of off-diagonal operators are presented, and transitions in the behavior of these expectation values are observed at particular values of the anisotropy. Furthermore, the importance of such sign rules in variational calculations and quantum Monte Carlo calculations is emphasized. This is illustrated by a simple variational treatment of a one-dimensional anisotropic spin model
Linear Quantum Systems: Non-Classical States and Robust Stability
2016-06-29
has a history going back some 50 years, to the birth of modern control theory with Kalman’s foundational work on filtering and LQG optimal control...realizability conditions. DISTRIBUTION A. Approved for public release: distribution unlimited. 8 Shi Wang, Matthew R James H- Infinity control of...physical model for a quantum measurement-based feedback control system with time delay is presented for the H- infinity control. Luis Augusto
Quantum and classical dynamics in biologically inspired systems
International Nuclear Information System (INIS)
Guerreschi, G.
2012-01-01
Quantum biology is an emerging field in which traditional believes and paradigms are under examination. Typically, quantum effects are witnessed inside quantum optics or atomic physics laboratories in systems which are kept under control and isolated from any noise source by means of very advanced technology. Biological systems exhibit opposite characteristics: They are usually constituted of macromolecules continuously exposed to a warm and wet environment, well beyond our control; but at the same time, they operate far away from equilibrium. Recently, the experimental observation of excitonic coherence in photosynthetic complexes has con firmed that, in non-equilibrium scenarios, quantum phenomena can survive even in presence of a noisy environment. The challenge faced by the ongoing research is twofold: On one side, considering biological molecules as effective nanomachines, one has to address questions of principle regarding their design and functioning; on the other side, one has to investigate real systems which are experimentally accessible and identify such features in these concrete scenarios. The present thesis contributes to both of these aspects. In Part I, we demonstrate how entanglement can be persistently generated even under unfavorable environmental conditions. The physical mechanism is modeled after the idea of conformational changes, and it relies on the interplay of classical oscillations of large structures with the quantum dynamics of a few interacting degrees of freedom. In a similar context, we show that the transfer of an excitation through a linear chain of sites can be enhanced when the inter-site distances oscillate periodically. This enhancement is present even in comparison with the static con figuration which is optimal in the classical case and, therefore, it constitutes a clear signature of the underlying quantum dynamics. In Part II of this thesis, we study the radical pair mechanism from the perspective of quantum control and
Note on transmitted complexity for quantum dynamical systems
Watanabe, Noboru; Muto, Masahiro
2017-10-01
Transmitted complexity (mutual entropy) is one of the important measures for quantum information theory developed recently in several ways. We will review the fundamental concepts of the Kossakowski, Ohya and Watanabe entropy and define a transmitted complexity for quantum dynamical systems. This article is part of the themed issue `Second quantum revolution: foundational questions'.
Model of biological quantum logic in DNA.
Mihelic, F Matthew
2013-08-02
The DNA molecule has properties that allow it to act as a quantum logic processor. It has been demonstrated that there is coherent conduction of electrons longitudinally along the DNA molecule through pi stacking interactions of the aromatic nucleotide bases, and it has also been demonstrated that electrons moving longitudinally along the DNA molecule are subject to a very efficient electron spin filtering effect as the helicity of the DNA molecule interacts with the spin of the electron. This means that, in DNA, electrons are coherently conducted along a very efficient spin filter. Coherent electron spin is held in a logically and thermodynamically reversible chiral symmetry between the C2-endo and C3-endo enantiomers of the deoxyribose moiety in each nucleotide, which enables each nucleotide to function as a quantum gate. The symmetry break that provides for quantum decision in the system is determined by the spin direction of an electron that has an orbital angular momentum that is sufficient to overcome the energy barrier of the double well potential separating the C2-endo and C3-endo enantiomers, and that enantiomeric energy barrier is appropriate to the Landauer limit of the energy necessary to randomize one bit of information.
Understanding Hawking radiation in the framework of open quantum systems
International Nuclear Information System (INIS)
Yu Hongwei; Zhang Jialin
2008-01-01
We study the Hawking radiation in the framework of open quantum systems by examining the time evolution of a detector (modeled by a two-level atom) interacting with vacuum massless scalar fields. The dynamics of the detector is governed by a master equation obtained by tracing over the field degrees of freedom from the complete system. The nonunitary effects are studied by analyzing the time behavior of a particular observable of the detector, i.e., its admissible state, in the Unruh, Hartle-Hawking, as well as Boulware vacua outside a Schwarzschild black hole. We find that the detector in both the Unruh and Hartle-Hawking vacua would spontaneously excite with a nonvanishing probability the same as what one would obtain if there is thermal radiation at the Hawking temperature from the black hole, thus reproducing the basic results concerning the Hawking effect in the framework of open quantum systems
Effective operator formalism for open quantum systems
DEFF Research Database (Denmark)
Reiter, Florentin; Sørensen, Anders Søndberg
2012-01-01
We present an effective operator formalism for open quantum systems. Employing perturbation theory and adiabatic elimination of excited states for a weakly driven system, we derive an effective master equation which reduces the evolution to the ground-state dynamics. The effective evolution...... involves a single effective Hamiltonian and one effective Lindblad operator for each naturally occurring decay process. Simple expressions are derived for the effective operators which can be directly applied to reach effective equations of motion for the ground states. We compare our method...
Seniority in quantum many-body systems
International Nuclear Information System (INIS)
Van Isacker, P.
2010-01-01
The use of the seniority quantum number in many-body systems is reviewed. A brief summary is given of its introduction by Racah in the context of atomic spectroscopy. Several extensions of Racah's original idea are discussed: seniority for identical nucleons in a single-j shell, its extension to the case of many, non-degenerate j shells and to systems with neutrons and protons. To illustrate its usefulness to this day, a recent application of seniority is presented in Bose-Einstein condensates of atoms with spin.
Low-rank driving in quantum systems
International Nuclear Information System (INIS)
Burkey, R.S.
1989-01-01
A new property of quantum systems called low-rank driving is introduced. Numerous simplifications in the solution of the time-dependent Schroedinger equation are pointed out for systems having this property. These simplifications are in the areas of finding eigenvalues, taking the Laplace transform, converting Schroedinger's equation to an integral form, discretizing the continuum, generalizing the Weisskopf-Wigner approximation, band-diagonalizing the Hamiltonian, finding new exact solutions to Schroedinger's equation, and so forth. The principal physical application considered is the phenomenon of coherent populations-trapping in continuum-continuum interactions
Quantum phase transitions in effective spin-ladder models for graphene zigzag nanoribbons
Koop, Cornelie; Wessel, Stefan
2017-10-01
We examine the magnetic correlations in quantum spin models that were derived recently as effective low-energy theories for electronic correlation effects on the edge states of graphene nanoribbons. For this purpose, we employ quantum Monte Carlo simulations to access the large-distance properties, accounting for quantum fluctuations beyond mean-field-theory approaches to edge magnetism. For certain chiral nanoribbons, antiferromagnetic interedge couplings were previously found to induce a gapped quantum disordered ground state of the effective spin model. We find that the extended nature of the intraedge couplings in the effective spin model for zigzag nanoribbons leads to a quantum phase transition at a large, finite value of the interedge coupling. This quantum critical point separates the quantum disordered region from a gapless phase of stable edge magnetism at weak intraedge coupling, which includes the ground states of spin-ladder models for wide zigzag nanoribbons. To study the quantum critical behavior, the effective spin model can be related to a model of two antiferromagnetically coupled Haldane-Shastry spin-half chains with long-ranged ferromagnetic intrachain couplings. The results for the critical exponents are compared also to several recent renormalization-group calculations for related long-ranged interacting quantum systems.
Quantum integrable systems related to lie algebras
International Nuclear Information System (INIS)
Olshanetsky, M.A.; Perelomov, A.M.
1983-01-01
Some quantum integrable finite-dimensional systems related to Lie algebras are considered. This review continues the previous review of the same authors (1981) devoted to the classical aspects of these systems. The dynamics of some of these systems is closely related to free motion in symmetric spaces. Using this connection with the theory of symmetric spaces some results such as the forms of spectra, wave functions, S-matrices, quantum integrals of motion are derived. In specific cases the considered systems describe the one-dimensional n-body systems interacting pairwise via potentials g 2 v(q) of the following 5 types: vsub(I)(q)=q - 2 , vsub(II)(q)=sinh - 2 q, vsub(III)(q)=sin - 2 q, vsub(IV)(q)=P(q), vsub(V)(q)=q - 2 +#betta# 2 q 2 . Here P(q) is the Weierstrass function, so that the first three cases are merely subcases on the fourth. The system characterized by the Toda nearest-neighbour potential exp(qsub(j)-qsub(j+1)) is moreover considered. This review presents from a general and universal point of view results obtained mainly over the past fifteen years. Besides, it contains some new results both of physical and mathematical interest. (orig.)
Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System.
He, Yong; Zhu, Ka-Di
2017-06-20
In this paper, we review the investigation for the light-matter interaction between surface plasmon field in metal nanoparticle (MNP) and the excitons in semiconductor quantum dots (SQDs) in hybrid SQD-MNP system under the full quantum description. The exciton-plasmon interaction gives rise to the modified decay rate and the exciton energy shift which are related to the exciton energy by using a quantum transformation method. We illustrate the responses of the hybrid SQD-MNP system to external field, and reveal Fano effect shown in the absorption spectrum. We demonstrate quantum entanglement between two SQD mediated by surface plasmon field. In the absence of a laser field, concurrence of quantum entanglement will disappear after a few ns. If the laser field is present, the steady states appear, so that quantum entanglement produced will reach a steady-state entanglement. Because one of all optical pathways to induce Fano effect refers to the generation of quantum entangled states, It is shown that the concurrence of quantum entanglement can be obtained by observation for Fano effect. In a hybrid system including two MNP and a SQD, because the two Fano quantum interference processes share a segment of all optical pathways, there is correlation between the Fano effects of the two MNP. The investigations for the light-matter interaction in hybrid SQD-MNP system can pave the way for the development of the optical processing devices and quantum information based on the exciton-plasmon interaction.
Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System
Directory of Open Access Journals (Sweden)
Yong He
2017-06-01
Full Text Available In this paper, we review the investigation for the light-matter interaction between surface plasmon field in metal nanoparticle (MNP and the excitons in semiconductor quantum dots (SQDs in hybrid SQD-MNP system under the full quantum description. The exciton-plasmon interaction gives rise to the modified decay rate and the exciton energy shift which are related to the exciton energy by using a quantum transformation method. We illustrate the responses of the hybrid SQD-MNP system to external field, and reveal Fano effect shown in the absorption spectrum. We demonstrate quantum entanglement between two SQD mediated by surface plasmon field. In the absence of a laser field, concurrence of quantum entanglement will disappear after a few ns. If the laser field is present, the steady states appear, so that quantum entanglement produced will reach a steady-state entanglement. Because one of all optical pathways to induce Fano effect refers to the generation of quantum entangled states, It is shown that the concurrence of quantum entanglement can be obtained by observation for Fano effect. In a hybrid system including two MNP and a SQD, because the two Fano quantum interference processes share a segment of all optical pathways, there is correlation between the Fano effects of the two MNP. The investigations for the light-matter interaction in hybrid SQD-MNP system can pave the way for the development of the optical processing devices and quantum information based on the exciton-plasmon interaction.
International Nuclear Information System (INIS)
Chen, Chun-Nan; Shyu, Feng-Lin; Chung, Hsien-Ching; Lin, Chiun-Yan; Wu, Jhao-Ying
2016-01-01
Mainly based on non-equilibrium Green’s function technique in combination with the three-band model, a full atomistic-scale and full quantum method for solving quantum transport problems of a zigzag-edge molybdenum disulfide nanoribbon (zMoSNR) structure is proposed here. For transport calculations, the relational expressions of a zMoSNR crystalline solid and its whole device structure are derived in detail and in its integrity. By adopting the complex-band structure method, the boundary treatment of this open boundary system within the non-equilibrium Green’s function framework is so straightforward and quite sophisticated. The transmission function, conductance, and density of states of zMoSNR devices are calculated using the proposed method. The important findings in zMoSNR devices such as conductance quantization, van Hove singularities in the density of states, and contact interaction on channel are presented and explored in detail.
Energy Technology Data Exchange (ETDEWEB)
Chen, Chun-Nan, E-mail: quantum@mail.tku.edu.tw, E-mail: ccn1114@kimo.com [Quantum Engineering Laboratory, Department of Physics, Tamkang University, Tamsui, New Taipei 25137, Taiwan (China); Shyu, Feng-Lin [Department of Physics, R.O.C. Military Academy, Kaohsiung 830, Taiwan (China); Chung, Hsien-Ching; Lin, Chiun-Yan [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China); Wu, Jhao-Ying [Center of General Studies, National Kaohsiung Marine University, Kaohsiung 811, Taiwan (China)
2016-08-15
Mainly based on non-equilibrium Green’s function technique in combination with the three-band model, a full atomistic-scale and full quantum method for solving quantum transport problems of a zigzag-edge molybdenum disulfide nanoribbon (zMoSNR) structure is proposed here. For transport calculations, the relational expressions of a zMoSNR crystalline solid and its whole device structure are derived in detail and in its integrity. By adopting the complex-band structure method, the boundary treatment of this open boundary system within the non-equilibrium Green’s function framework is so straightforward and quite sophisticated. The transmission function, conductance, and density of states of zMoSNR devices are calculated using the proposed method. The important findings in zMoSNR devices such as conductance quantization, van Hove singularities in the density of states, and contact interaction on channel are presented and explored in detail.
International Nuclear Information System (INIS)
Bakke, K.; Furtado, C.
2012-01-01
We study the quantum dynamics of a neutral particle in the Aharonov-Casher system and in the Landau-Aharonov-Casher system confined to a two-dimensional quantum ring, a quantum dot, and a quantum anti-dot potentials described by the Tan-Inkson model [W.-C. Tan and J. C. Inkson, Semicond. Sci. Technol. 11, 1635 (1996)]. We show, in the Aharonov-Casher system, that bound states can be achieved when the neutral particle is confined to the two-dimensional quantum ring and the quantum dot and discuss the appearance of persistent currents. In the Landau-Aharonov-Casher system, we show that bound states can be achieved when the neutral particle is confined to the quantum anti-dot, quantum dot, and the two-dimensional quantum ring, but there are no persistent currents.
Strong chaos in one-dimensional quantum system
International Nuclear Information System (INIS)
Yang, C.-D.; Wei, C.-H.
2008-01-01
According to the Poincare-Bendixson theorem, a minimum of three autonomous equations is required to exhibit deterministic chaos. Because a one-dimensional quantum system is described by only two autonomous equations using de Broglie-Bohm's trajectory interpretation, chaos in one-dimensional quantum systems has long been considered impossible. We will prove in this paper that chaos phenomenon does exist in one-dimensional quantum systems, if the domain of quantum motions is extended to complex space by noting that the quantum world is actually characterized by a four-dimensional complex spacetime according to the E (∞) theory. Furthermore, we point out that the interaction between the real and imaginary parts of complex trajectories produces a new chaos phenomenon unique to quantum systems, called strong chaos, which describes the situation that quantum trajectories may emerge and diverge spontaneously without any perturbation in the initial position
Semiconductor Quantum Dash Broadband Emitters: Modeling and Experiments
Khan, Mohammed Zahed Mustafa
2013-10-01
Broadband light emitters operation, which covers multiple wavelengths of the electromagnetic spectrum, has been established as an indispensable element to the human kind, continuously advancing the living standard by serving as sources in important multi-disciplinary field applications such as biomedical imaging and sensing, general lighting and internet and mobile phone connectivity. In general, most commercial broadband light sources relies on complex systems for broadband light generation which are bulky, and energy hungry. \\tRecent demonstration of ultra-broadband emission from semiconductor light sources in the form of superluminescent light emitting diodes (SLDs) has paved way in realization of broadband emitters on a completely novel platform, which offered compactness, cost effectiveness, and comparatively energy efficient, and are already serving as a key component in medical imaging systems. The low power-bandwidth product is inherent in SLDs operating in the amplified spontaneous emission regime. A quantum leap in the advancement of broadband emitters, in which high power and large bandwidth (in tens of nm) are in demand. Recently, the birth of a new class of broadband semiconductor laser diode (LDs) producing multiple wavelength light in stimulated emission regime was demonstrated. This very recent manifestation of a high power-bandwidth-product semiconductor broadband LDs relies on interband optical transitions via quantum confined dot/dash nanostructures and exploiting the natural inhomogeneity of the self-assembled growth technology. This concept is highly interesting and extending the broad spectrum of stimulated emission by novel device design forms the central focus of this dissertation. \\tIn this work, a simple rate equation numerical technique for modeling InAs/InP quantum dash laser incorporating the properties of inhomogeneous broadening effect on lasing spectra was developed and discussed, followed by a comprehensive experimental analysis
Quantum ratchet effect in a time non-uniform double-kicked model
Chen, Lei; Wang, Zhen-Yu; Hui, Wu; Chu, Cheng-Yu; Chai, Ji-Min; Xiao, Jin; Zhao, Yu; Ma, Jin-Xiang
2017-07-01
The quantum ratchet effect means that the directed transport emerges in a quantum system without a net force. The delta-kicked model is a quantum Hamiltonian model for the quantum ratchet effect. This paper investigates the quantum ratchet effect based on a time non-uniform double-kicked model, in which two flashing potentials alternately act on a particle with a homogeneous initial state of zero momentum, while the intervals between adjacent actions are not equal. The evolution equation of the state of the particle is derived from its Schrödinger equation, and the numerical method to solve the evolution equation is pointed out. The results show that quantum resonances can induce the ratchet effect in this time non-uniform double-kicked model under certain conditions; some quantum resonances, which cannot induce the ratchet effect in previous models, can induce the ratchet effect in this model, and the strengths of the ratchet effect in this model are stronger than those in previous models under certain conditions. These results enrich people’s understanding of the delta-kicked model, and provides a new optional scheme to control the quantum transport of cold atoms in experiment.
Dynamics of quantum-classical differences for chaotic systems
International Nuclear Information System (INIS)
Ballentine, L.E.
2002-01-01
The differences between quantum and classical dynamics can be studied through the moments and correlations of the position and momentum variables in corresponding quantum and classical statistical states. In chaotic states the quantum-classical differences grow exponentially with an exponent that exceeds the classical Lyapunov exponent. It is shown analytically that the quantum-classical differences scale as (ℎ/2π) 2 , and that the exponent for the growth of these differences is independent of (ℎ/2π). The quantum-classical difference exponent is studied for two quartic potential models, and the results are compared with previous work on the Henon-Heiles model
Effective time-independent analysis for quantum kicked systems
Bandyopadhyay, Jayendra N.; Guha Sarkar, Tapomoy
2015-03-01
We present a mapping of potentially chaotic time-dependent quantum kicked systems to an equivalent approximate effective time-independent scenario, whereby the system is rendered integrable. The time evolution is factorized into an initial kick, followed by an evolution dictated by a time-independent Hamiltonian and a final kick. This method is applied to the kicked top model. The effective time-independent Hamiltonian thus obtained does not suffer from spurious divergences encountered if the traditional Baker-Cambell-Hausdorff treatment is used. The quasienergy spectrum of the Floquet operator is found to be in excellent agreement with the energy levels of the effective Hamiltonian for a wide range of system parameters. The density of states for the effective system exhibits sharp peaklike features, pointing towards quantum criticality. The dynamics in the classical limit of the integrable effective Hamiltonian shows remarkable agreement with the nonintegrable map corresponding to the actual time-dependent system in the nonchaotic regime. This suggests that the effective Hamiltonian serves as a substitute for the actual system in the nonchaotic regime at both the quantum and classical level.
Resilience of the quantum Rabi model in circuit QED
International Nuclear Information System (INIS)
Manucharyan, Vladimir E; Baksic, Alexandre; Ciuti, Cristiano
2017-01-01
In circuit quantum electrodynamics (circuit QED), an artificial ‘circuit atom’ can couple to a quantized microwave radiation much stronger than its real atomic counterpart. The celebrated quantum Rabi model describes the simplest interaction of a two-level system with a single-mode boson field. When the coupling is large enough, the bare multilevel structure of a realistic circuit atom cannot be ignored even if the circuit is strongly anharmonic. We explored this situation theoretically for flux (fluxonium) and charge (Cooper pair box) type multi-level circuits tuned to their respective flux/charge degeneracy points. We identified which spectral features of the quantum Rabi model survive and which are renormalized for large coupling. Despite significant renormalization of the low-energy spectrum in the fluxonium case, the key quantum Rabi feature—nearly-degenerate vacuum consisting of an atomic state entangled with a multi-photon field—appears in both types of circuits when the coupling is sufficiently large. Like in the quantum Rabi model, for very large couplings the entanglement spectrum is dominated by only two, nearly equal eigenvalues, in spite of the fact that a large number of bare atomic states are actually involved in the atom-resonator ground state. We interpret the emergence of the two-fold degeneracy of the vacuum of both circuits as an environmental suppression of flux/charge tunneling due to their dressing by virtual low-/high-impedance photons in the resonator. For flux tunneling, the dressing is nothing else than the shunting of a Josephson atom with a large capacitance of the resonator. Suppression of charge tunneling is a manifestation of the dynamical Coulomb blockade of transport in tunnel junctions connected to resistive leads. (paper)
Conditional density matrix: systems and subsystems in quantum mechanics
International Nuclear Information System (INIS)
Belokurov, V.V.; Khrustalev, O.A.; Sadovnichij, V.A.; Timofeevskaya, O.D.
2003-01-01
A new quantum mechanical notion - Conditional Density Matrix - is discussed and is applied to describe some physical processes. This notion is a natural generalization of von Neumann density matrix for such processes as divisions of quantum systems into subsystems and reunifications of subsystems into new joint systems. Conditional Density Matrix assigns a quantum state to a subsystem of a composite system on condition that another part of the composite system is in some pure state
Coherent states and classical limit of algebraic quantum models
International Nuclear Information System (INIS)
Scutaru, H.
1983-01-01
The algebraic models for collective motion in nuclear physics belong to a class of theories the basic observables of which generate selfadjoint representations of finite dimensional, real Lie algebras, or of the enveloping algebras of these Lie algebras. The simplest and most used for illustrations model of this kind is the Lipkin model, which is associated with the Lie algebra of the three dimensional rotations group, and which presents all characteristic features of an algebraic model. The Lipkin Hamiltonian is the image, of an element of the enveloping algebra of the algebra SO under a representation. In order to understand the structure of the algebraic models the author remarks that in both classical and quantum mechanics the dynamics is associated to a typical algebraic structure which we shall call a dynamical algebra. In this paper he shows how the constructions can be made in the case of the algebraic quantum systems. The construction of the symplectic manifold M can be made in this case using a quantum analog of the momentum map which he defines
The pointer basis and the feedback stabilization of quantum systems
International Nuclear Information System (INIS)
Li, L; Chia, A; Wiseman, H M
2014-01-01
The dynamics for an open quantum system can be ‘unravelled’ in infinitely many ways, depending on how the environment is monitored, yielding different sorts of conditioned states, evolving stochastically. In the case of ideal monitoring these states are pure, and the set of states for a given monitoring forms a basis (which is overcomplete in general) for the system. It has been argued elsewhere (Atkins et al 2005 Europhys. Lett. 69 163) that the ‘pointer basis’ as introduced by Zurek et al (1993 Phys. Rev. Lett. 70 1187), should be identified with the unravelling-induced basis which decoheres most slowly. Here we show the applicability of this concept of pointer basis to the problem of state stabilization for quantum systems. In particular we prove that for linear Gaussian quantum systems, if the feedback control is assumed to be strong compared to the decoherence of the pointer basis, then the system can be stabilized in one of the pointer basis states with a fidelity close to one (the infidelity varies inversely with the control strength). Moreover, if the aim of the feedback is to maximize the fidelity of the unconditioned system state with a pure state that is one of its conditioned states, then the optimal unravelling for stabilizing the system in this way is that which induces the pointer basis for the conditioned states. We illustrate these results with a model system: quantum Brownian motion. We show that even if the feedback control strength is comparable to the decoherence, the optimal unravelling still induces a basis very close to the pointer basis. However if the feedback control is weak compared to the decoherence, this is not the case. (paper)
PsiQuaSP-A library for efficient computation of symmetric open quantum systems.
Gegg, Michael; Richter, Marten
2017-11-24
In a recent publication we showed that permutation symmetry reduces the numerical complexity of Lindblad quantum master equations for identical multi-level systems from exponential to polynomial scaling. This is important for open system dynamics including realistic system bath interactions and dephasing in, for instance, the Dicke model, multi-Λ system setups etc. Here we present an object-oriented C++ library that allows to setup and solve arbitrary quantum optical Lindblad master equations, especially those that are permutationally symmetric in the multi-level systems. PsiQuaSP (Permutation symmetry for identical Quantum Systems Package) uses the PETSc package for sparse linear algebra methods and differential equations as basis. The aim of PsiQuaSP is to provide flexible, storage efficient and scalable code while being as user friendly as possible. It is easily applied to many quantum optical or quantum information systems with more than one multi-level system. We first review the basics of the permutation symmetry for multi-level systems in quantum master equations. The application of PsiQuaSP to quantum dynamical problems is illustrated with several typical, simple examples of open quantum optical systems.
Quantum-critical scaling of fidelity in 2D pairing models
Energy Technology Data Exchange (ETDEWEB)
Adamski, Mariusz, E-mail: mariusz.adamski@ift.uni.wroc.pl [Institute of Theoretical Physics, University of Wrocław, pl. Maksa Borna 9, 50–204, Wrocław (Poland); Jȩdrzejewski, Janusz [Institute of Theoretical Physics, University of Wrocław, pl. Maksa Borna 9, 50–204, Wrocław (Poland); Krokhmalskii, Taras [Institute for Condensed Matter Physics, 1 Svientsitski Street, 79011, Lviv (Ukraine)
2017-01-15
The laws of quantum-critical scaling theory of quantum fidelity, dependent on the underlying system dimensionality D, have so far been verified in exactly solvable 1D models, belonging to or equivalent to interacting, quadratic (quasifree), spinless or spinfull, lattice-fermion models. The obtained results are so appealing that in quest for correlation lengths and associated universal critical indices ν, which characterize the divergence of correlation lengths on approaching critical points, one might be inclined to substitute the hard task of determining an asymptotic behavior at large distances of a two-point correlation function by an easier one, of determining the quantum-critical scaling of the quantum fidelity. However, the role of system's dimensionality has been left as an open problem. Our aim in this paper is to fill up this gap, at least partially, by verifying the laws of quantum-critical scaling theory of quantum fidelity in a 2D case. To this end, we study correlation functions and quantum fidelity of 2D exactly solvable models, which are interacting, quasifree, spinfull, lattice-fermion models. The considered 2D models exhibit new, as compared with 1D ones, features: at a given quantum-critical point there exists a multitude of correlation lengths and multiple universal critical indices ν, since these quantities depend on spatial directions, moreover, the indices ν may assume larger values. These facts follow from the obtained by us analytical asymptotic formulae for two-point correlation functions. In such new circumstances we discuss the behavior of quantum fidelity from the perspective of quantum-critical scaling theory. In particular, we are interested in finding out to what extent the quantum fidelity approach may be an alternative to the correlation-function approach in studies of quantum-critical points beyond 1D.
The quench action approach to out-of-equilibrium quantum integrable models
Wouters, B.M.
2015-01-01
In this PhD thesis quantum quenches to 1D quantum integrable models are studied by means of the quench action approach. Using the large-system-size scaling of overlaps between the initial state and Bethe states as basic input, this method gives an exact description in the thermodynamic limit of the
Optimal dynamics for quantum-state and entanglement transfer through homogeneous quantum systems
International Nuclear Information System (INIS)
Banchi, L.; Apollaro, T. J. G.; Cuccoli, A.; Vaia, R.; Verrucchi, P.
2010-01-01
The capability of faithfully transmit quantum states and entanglement through quantum channels is one of the key requirements for the development of quantum devices. Different solutions have been proposed to accomplish such a challenging task, which, however, require either an ad hoc engineering of the internal interactions of the physical system acting as the channel or specific initialization procedures. Here we show that optimal dynamics for efficient quantum-state and entanglement transfer can be attained in generic quantum systems with homogeneous interactions by tuning the coupling between the system and the two attached qubits. We devise a general procedure to determine the optimal coupling, and we explicitly implement it in the case of a channel consisting of a spin-(1/2)XY chain. The quality of quantum-state and entanglement transfer is found to be very good and, remarkably, almost independent of the channel length.
The transition to chaos conservative classical systems and quantum manifestations
Reichl, Linda E
2004-01-01
This book provides a thorough and comprehensive discussion of classical and quantum chaos theory for bounded systems and for scattering processes Specific discussions include • Noether’s theorem, integrability, KAM theory, and a definition of chaotic behavior • Area-preserving maps, quantum billiards, semiclassical quantization, chaotic scattering, scaling in classical and quantum dynamics, dynamic localization, dynamic tunneling, effects of chaos in periodically driven systems and stochastic systems • Random matrix theory and supersymmetry The book is divided into several parts Chapters 2 through 4 deal with the dynamics of nonlinear conservative classical systems Chapter 5 and several appendices give a thorough grounding in random matrix theory and supersymmetry techniques Chapters 6 and 7 discuss the manifestations of chaos in bounded quantum systems and open quantum systems respectively Chapter 8 focuses on the semiclassical description of quantum systems with underlying classical chaos, and Chapt...
Carrier Statistics and Quantum Capacitance Models of Graphene Nanoscroll
Directory of Open Access Journals (Sweden)
M. Khaledian
2014-01-01
schematic perfect scroll-like Archimedes spiral. The DOS model was derived at first, while it was later applied to compute the carrier concentration and quantum capacitance model. Furthermore, the carrier concentration and quantum capacitance were modeled for both degenerate and nondegenerate regimes, along with examining the effect of structural parameters and chirality number on the density of state and carrier concentration. Latterly, the temperature effect on the quantum capacitance was studied too.
Analytical eigenstates for the quantum Rabi model
International Nuclear Information System (INIS)
Zhong, Honghua; Xie, Qiongtao; Lee, Chaohong; Batchelor, Murray T
2013-01-01
We develop a method to find analytical solutions for the eigenstates of the quantum Rabi model. These include symmetric, anti-symmetric and asymmetric analytic solutions given in terms of the confluent Heun functions. Both regular and exceptional solutions are given in a unified form. In addition, the analytic conditions for determining the energy spectrum are obtained. Our results show that conditions proposed by Braak (2011 Phys. Rev. Lett. 107 100401) are a type of sufficiency condition for determining the regular solutions. The well-known Judd isolated exact solutions appear naturally as truncations of the confluent Heun functions. (paper)
Quantum Monte Carlo Simulation of Frustrated Kondo Lattice Models
Sato, Toshihiro; Assaad, Fakher F.; Grover, Tarun
2018-03-01
The absence of the negative sign problem in quantum Monte Carlo simulations of spin and fermion systems has different origins. World-line based algorithms for spins require positivity of matrix elements whereas auxiliary field approaches for fermions depend on symmetries such as particle-hole symmetry. For negative-sign-free spin and fermionic systems, we show that one can formulate a negative-sign-free auxiliary field quantum Monte Carlo algorithm that allows Kondo coupling of fermions with the spins. Using this general approach, we study a half-filled Kondo lattice model on the honeycomb lattice with geometric frustration. In addition to the conventional Kondo insulator and antiferromagnetically ordered phases, we find a partial Kondo screened state where spins are selectively screened so as to alleviate frustration, and the lattice rotation symmetry is broken nematically.
Modeling of the quantum dot filling and the dark current of quantum dot infrared photodetectors
International Nuclear Information System (INIS)
Ameen, Tarek A.; El-Batawy, Yasser M.; Abouelsaood, A. A.
2014-01-01
A generalized drift-diffusion model for the calculation of both the quantum dot filling profile and the dark current of quantum dot infrared photodetectors is proposed. The confined electrons inside the quantum dots produce a space-charge potential barrier between the two contacts, which controls the quantum dot filling and limits the dark current in the device. The results of the model reasonably agree with a published experimental work. It is found that increasing either the doping level or the temperature results in an exponential increase of the dark current. The quantum dot filling turns out to be nonuniform, with a dot near the contacts containing more electrons than one in the middle of the device where the dot occupation approximately equals the number of doping atoms per dot, which means that quantum dots away from contacts will be nearly unoccupied if the active region is undoped
Short-Term Load Forecasting Model Based on Quantum Elman Neural Networks
Directory of Open Access Journals (Sweden)
Zhisheng Zhang
2016-01-01
Full Text Available Short-term load forecasting model based on quantum Elman neural networks was constructed in this paper. The quantum computation and Elman feedback mechanism were integrated into quantum Elman neural networks. Quantum computation can effectively improve the approximation capability and the information processing ability of the neural networks. Quantum Elman neural networks have not only the feedforward connection but also the feedback connection. The feedback connection between the hidden nodes and the context nodes belongs to the state feedback in the internal system, which has formed specific dynamic memory performance. Phase space reconstruction theory is the theoretical basis of constructing the forecasting model. The training samples are formed by means of K-nearest neighbor approach. Through the example simulation, the testing results show that the model based on quantum Elman neural networks is better than the model based on the quantum feedforward neural network, the model based on the conventional Elman neural network, and the model based on the conventional feedforward neural network. So the proposed model can effectively improve the prediction accuracy. The research in the paper makes a theoretical foundation for the practical engineering application of the short-term load forecasting model based on quantum Elman neural networks.
The Conditional Entropy Power Inequality for Bosonic Quantum Systems
DEFF Research Database (Denmark)
de Palma, Giacomo; Trevisan, Dario
2018-01-01
We prove the conditional Entropy Power Inequality for Gaussian quantum systems. This fundamental inequality determines the minimum quantum conditional von Neumann entropy of the output of the beam-splitter or of the squeezing among all the input states where the two inputs are conditionally...... independent given the memory and have given quantum conditional entropies. We also prove that, for any couple of values of the quantum conditional entropies of the two inputs, the minimum of the quantum conditional entropy of the output given by the conditional Entropy Power Inequality is asymptotically...... achieved by a suitable sequence of quantum Gaussian input states. Our proof of the conditional Entropy Power Inequality is based on a new Stam inequality for the quantum conditional Fisher information and on the determination of the universal asymptotic behaviour of the quantum conditional entropy under...
Fisher information and quantum potential well model for finance
Energy Technology Data Exchange (ETDEWEB)
Nastasiuk, V.A., E-mail: nasa@i.ua
2015-09-25
The probability distribution function (PDF) for prices on financial markets is derived by extremization of Fisher information. It is shown how on that basis the quantum-like description for financial markets arises and different financial market models are mapped by quantum mechanical ones. - Highlights: • The financial Schrödinger equation is derived using the principle of minimum Fisher information. • Statistical models for price variation are mapped by the quantum models of coupled particle. • The model of quantum particle in parabolic potential well corresponds to Efficient market.
Fisher information and quantum potential well model for finance
International Nuclear Information System (INIS)
Nastasiuk, V.A.
2015-01-01
The probability distribution function (PDF) for prices on financial markets is derived by extremization of Fisher information. It is shown how on that basis the quantum-like description for financial markets arises and different financial market models are mapped by quantum mechanical ones. - Highlights: • The financial Schrödinger equation is derived using the principle of minimum Fisher information. • Statistical models for price variation are mapped by the quantum models of coupled particle. • The model of quantum particle in parabolic potential well corresponds to Efficient market
Thermalization and prethermalization in isolated quantum systems: a theoretical overview
Mori, Takashi; Ikeda, Tatsuhiko N.; Kaminishi, Eriko; Ueda, Masahito
2018-06-01
The approach to thermal equilibrium, or thermalization, in isolated quantum systems is among the most fundamental problems in statistical physics. Recent theoretical studies have revealed that thermalization in isolated quantum systems has several remarkable features, which emerge from quantum entanglement and are quite distinct from those in classical systems. Experimentally, well isolated and highly controllable ultracold quantum gases offer an ideal testbed to study the nonequilibrium dynamics in isolated quantum systems, promoting intensive recent theoretical endeavors on this fundamental subject. Besides thermalization, many isolated quantum systems show intriguing behavior in relaxation processes, especially prethermalization. Prethermalization occurs when there is a clear separation of relevant time scales and has several different physical origins depending on individual systems. In this review, we overview theoretical approaches to the problems of thermalization and prethermalization.
Quantum revivals and magnetization tunneling in effective spin systems
International Nuclear Information System (INIS)
Krizanac, M; Altwein, D; Vedmedenko, E Y; Wiesendanger, R
2016-01-01
Quantum mechanical objects or nano-objects have been proposed as bits for information storage. While time-averaged properties of magnetic, quantum-mechanical particles have been extensively studied experimentally and theoretically, experimental investigations of the real time evolution of magnetization in the quantum regime were not possible until recent developments in pump–probe techniques. Here we investigate the quantum dynamics of effective spin systems by means of analytical and numerical treatments. Particular attention is paid to the quantum revival time and its relation to the magnetization tunneling. The quantum revival time has been initially defined as the recurrence time of a total wave-function. Here we show that the quantum revivals of wave-functions and expectation values in spin systems may be quite different which gives rise to a more sophisticated definition of the quantum revival within the realm of experimental research. Particularly, the revival times for integer spins coincide which is not the case for half-integer spins. Furthermore, the quantum revival is found to be shortest for integer ratios between the on-site anisotropy and an external magnetic field paving the way to novel methods of anisotropy measurements. We show that the quantum tunneling of magnetization at avoided level crossing is coherent to the quantum revival time of expectation values, leading to a connection between these two fundamental properties of quantum mechanical spins. (paper)
Ground state of the parallel double quantum dot system.
Zitko, Rok; Mravlje, Jernej; Haule, Kristjan
2012-02-10
We resolve the controversy regarding the ground state of the parallel double quantum dot system near half filling. The numerical renormalization group predicts an underscreened Kondo state with residual spin-1/2 magnetic moment, ln2 residual impurity entropy, and unitary conductance, while the Bethe ansatz solution predicts a fully screened impurity, regular Fermi-liquid ground state, and zero conductance. We calculate the impurity entropy of the system as a function of the temperature using the hybridization-expansion continuous-time quantum Monte Carlo technique, which is a numerically exact stochastic method, and find excellent agreement with the numerical renormalization group results. We show that the origin of the unconventional behavior in this model is the odd-symmetry "dark state" on the dots.
Admissible perturbations and false instabilities in PT -symmetric quantum systems
Znojil, Miloslav
2018-03-01
One of the most characteristic mathematical features of the PT -symmetric quantum mechanics is the explicit Hamiltonian dependence of its physical Hilbert space of states H =H (H ) . Some of the most important physical consequences are discussed, with emphasis on the dynamical regime in which the system is close to phase transition. Consistent perturbation treatment of such a regime is proposed. An illustrative application of the innovated perturbation theory to a non-Hermitian but PT -symmetric user-friendly family of J -parametric "discrete anharmonic" quantum Hamiltonians H =H (λ ⃗) is provided. The models are shown to admit the standard probabilistic interpretation if and only if the parameters remain compatible with the reality of the spectrum, λ ⃗∈D(physical ) . In contradiction to conventional wisdom, the systems are then shown to be stable with respect to admissible perturbations, inside the domain D(physical ), even in the immediate vicinity of the phase-transition boundaries ∂ D(physical ) .
Spin foam models for quantum gravity
Perez, Alejandro
The definition of a quantum theory of gravity is explored following Feynman's path-integral approach. The aim is to construct a well defined version of the Wheeler-Misner- Hawking ``sum over four geometries'' formulation of quantum general relativity (GR). This is done by means of exploiting the similarities between the formulation of GR in terms of tetrad-connection variables (Palatini formulation) and a simpler theory called BF theory. One can go from BF theory to GR by imposing certain constraints on the BF-theory configurations. BF theory contains only global degrees of freedom (topological theory) and it can be exactly quantized á la Feynman introducing a discretization of the manifold. Using the path integral for BF theory we define a path integration for GR imposing the BF-to-GR constraints on the BF measure. The infinite degrees of freedom of gravity are restored in the process, and the restriction to a single discretization introduces a cut- off in the summed-over configurations. In order to capture all the degrees of freedom a sum over discretization is implemented. Both the implementation of the BF-to-GR constraints and the sum over discretizations are obtained by means of the introduction of an auxiliary field theory (AFT). 4-geometries in the path integral for GR are given by the Feynman diagrams of the AFT which is in this sense dual to GR. Feynman diagrams correspond to 2-complexes labeled by unitary irreducible representations of the internal gauge group (corresponding to tetrad rotation in the connection to GR). A model for 4-dimensional Euclidean quantum gravity (QG) is defined which corresponds to a different normalization of the Barrett-Crane model. The model is perturbatively finite; divergences appearing in the Barrett-Crane model are cured by the new normalization. We extend our techniques to the Lorentzian sector, where we define two models for four-dimensional QG. The first one contains only time-like representations and is shown to be
Unstable particles as open quantum systems
International Nuclear Information System (INIS)
Caban, Pawel; Rembielinski, Jakub; Smolinski, Kordian A.; Walczak, Zbigniew
2005-01-01
We present the probability-preserving description of the decaying particle within the framework of quantum mechanics of open systems, taking into account the superselection rule prohibiting the superposition of the particle and vacuum. In our approach the evolution of the system is given by a family of completely positive trace-preserving maps forming a one-parameter dynamical semigroup. We give the Kraus representation for the general evolution of such systems, which allows one to write the evolution for systems with two or more particles. Moreover, we show that the decay of the particle can be regarded as a Markov process by finding explicitly the master equation in the Lindblad form. We also show that there are remarkable restrictions on the possible strength of decoherence
Quantum Zeno effect for exponentially decaying systems
International Nuclear Information System (INIS)
Koshino, Kazuki; Shimizu, Akira
2004-01-01
The quantum Zeno effect - suppression of decay by frequent measurements - was believed to occur only when the response of the detector is so quick that the initial tiny deviation from the exponential decay law is detectable. However, we show that it can occur even for exactly exponentially decaying systems, for which this condition is never satisfied, by considering a realistic case where the detector has a finite energy band of detection. The conventional theories correspond to the limit of an infinite bandwidth. This implies that the Zeno effect occurs more widely than expected thus far
Superconducting system for adiabatic quantum computing
Energy Technology Data Exchange (ETDEWEB)
Corato, V [Dipartimento di Ingegneria dell' Informazione, Second University of Naples, 81031 Aversa (Italy); Roscilde, T [Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484 (Canada); Ruggiero, B [Istituto di Cibernetica ' E.Caianiello' del CNR, I-80078, Pozzuoli (Italy); Granata, C [Istituto di Cibernetica ' E.Caianiello' del CNR, I-80078, Pozzuoli (Italy); Silvestrini, P [Dipartimento di Ingegneria dell' Informazione, Second University of Naples, 81031 Aversa (Italy)
2006-06-01
We study the Hamiltonian of a system of inductively coupled flux qubits, which has been theoretically proposed for adiabatic quantum computation to handle NP problems. We study the evolution of a basic structure consisting of three coupled rf-SQUIDs upon tuning the external flux bias, and we show that the adiabatic nature of the evolution is guaranteed by the presence of the single-SQUID gap. We further propose a scheme and the first realization of an experimental device suitable for verifying the theoretical results.
Quantum-size colloid metal systems
International Nuclear Information System (INIS)
Roldugin, V.I.
2000-01-01
In the review dealing with quantum-dimensional metallic colloid systems the methods of preparation, electronic, optical and thermodynamic properties of metal nanoparticles and thin films are considered, the effect of ionizing radiation on stability of silver colloid sols and existence of a threshold radiation dose affecting loss of stability being discussed. It is shown that sol stability loss stems from particles charge neutralization due to reduction of sorbed silver ions induced by radiation, which results in destruction of double electric layer on colloid particles boundary [ru
Jacak, Monika; Jacak, Janusz; Jóźwiak, Piotr; Jóźwiak, Ireneusz
2016-06-01
The overview of the current status of quantum cryptography is given in regard to quantum key distribution (QKD) protocols, implemented both on nonentangled and entangled flying qubits. Two commercial R&D platforms of QKD systems are described (the Clavis II platform by idQuantique implemented on nonentangled photons and the EPR S405 Quelle platform by AIT based on entangled photons) and tested for feasibility of their usage in commercial TELECOM fiber metropolitan networks. The comparison of systems efficiency, stability and resistivity against noise and hacker attacks is given with some suggestion toward system improvement, along with assessment of two models of QKD.
Directory of Open Access Journals (Sweden)
A. Weissblut
2012-03-01
Full Text Available This article – introduction to the structural theory of general view dynamical systems, based on construction of dynamic quantum models (DQM, offered by the author. This model is simply connected with traditional model of quantum mechanics (i.e. with the Schrodinger equation. At the same time obtained thus non – Hamiltonian quantum dynamics is easier than classical one: it allow building the clear structural theory and effective algorithms of research for concrete systems. This article is devoted mainly to such task. The algorithm of search for DQM attractors, based on this approach, is offered here.
Integrability and nonintegrability of quantum systems. II. Dynamics in quantum phase space
Zhang, Wei-Min; Feng, Da Hsuan; Yuan, Jian-Min
1990-12-01
Based on the concepts of integrability and nonintegrability of a quantum system presented in a previous paper [Zhang, Feng, Yuan, and Wang, Phys. Rev. A 40, 438 (1989)], a realization of the dynamics in the quantum phase space is now presented. For a quantum system with dynamical group scrG and in one of its unitary irreducible-representation carrier spaces gerhΛ, the quantum phase space is a 2MΛ-dimensional topological space, where MΛ is the quantum-dynamical degrees of freedom. This quantum phase space is isomorphic to a coset space scrG/scrH via the unitary exponential mapping of the elementary excitation operator subspace of scrg (algebra of scrG), where scrH (⊂scrG) is the maximal stability subgroup of a fixed state in gerhΛ. The phase-space representation of the system is realized on scrG/scrH, and its classical analogy can be obtained naturally. It is also shown that there is consistency between quantum and classical integrability. Finally, a general algorithm for seeking the manifestation of ``quantum chaos'' via the classical analogy is provided. Illustrations of this formulation in several important quantum systems are presented.
International Nuclear Information System (INIS)
Olejniczak, M.; Gomes, A.S.P.; Bast, R.
2015-07-01
We report an implementation of the nuclear magnetic resonance (NMR) shielding tensor in the frozen density embedding (FDE) scheme - in which the total system is divided into interacting subsystems - using the four-component (4c) relativistic Dirac-Coulomb (DC) Hamiltonian and the non-collinear spin density functional theory (SDFT). The formalism takes into account the magnetic balance between the large and the small components of molecular spinors and assures the gauge-origin independence of results. This implementation has been applied to hydrogen-bonded H 2 X---H 2 O complexes (X = Se, Te, Po) and compared with the super-molecular calculations and with the approach based on the integration of the magnetically induced current density vector. (authors)
Local decoherence-resistant quantum states of large systems
Energy Technology Data Exchange (ETDEWEB)
Mishra, Utkarsh; Sen, Aditi; Sen, Ujjwal, E-mail: ujjwal@hri.res.in
2015-02-06
We identify an effectively decoherence-free class of quantum states, each of which consists of a “minuscule” and a “large” sector, against local noise. In particular, the content of entanglement and other quantum correlations in the minuscule to large partition is independent of the number of particles in their large sectors, when all the particles suffer passage through local amplitude and phase damping channels. The states of the large sectors are distinct in terms of markedly different amounts of violation of Bell inequality. In case the large sector is macroscopic, such states are akin to the Schrödinger cat. - Highlights: • We identify an effectively decoherence-free class of quantum states of large systems. • We work with local noise models. • Decay of entanglement as well as information-theoretic quantum correlations considered. • The states are of the form of the Schrödinger cats, with minuscule and large sectors. • The states of the large sector are distinguishable by their violation of Bell inequality.
Two-qubit logical operations in three quantum dots system.
Łuczak, Jakub; Bułka, Bogdan R
2018-06-06
We consider a model of two interacting always-on, exchange-only qubits for which controlled phase (CPHASE), controlled NOT (CNOT), quantum Fourier transform (QFT) and SWAP operations can be implemented only in a few electrical pulses in a nanosecond time scale. Each qubit is built of three quantum dots (TQD) in a triangular geometry with three electron spins which are always kept coupled by exchange interactions only. The qubit states are encoded in a doublet subspace and are fully electrically controlled by a voltage applied to gate electrodes. The two qubit quantum gates are realized by short electrical pulses which change the triangular symmetry of TQD and switch on exchange interaction between the qubits. We found an optimal configuration to implement the CPHASE gate by a single pulse of the order 2.3 ns. Using this gate, in combination with single qubit operations, we searched for optimal conditions to perform the other gates: CNOT, QFT and SWAP. Our studies take into account environment effects and leakage processes as well. The results suggest that the system can be implemented for fault tolerant quantum computations.
Analog quantum simulation of the Rabi model in the ultra-strong coupling regime.
Braumüller, Jochen; Marthaler, Michael; Schneider, Andre; Stehli, Alexander; Rotzinger, Hannes; Weides, Martin; Ustinov, Alexey V
2017-10-03
The quantum Rabi model describes the fundamental mechanism of light-matter interaction. It consists of a two-level atom or qubit coupled to a quantized harmonic mode via a transversal interaction. In the weak coupling regime, it reduces to the well-known Jaynes-Cummings model by applying a rotating wave approximation. The rotating wave approximation breaks down in the ultra-strong coupling regime, where the effective coupling strength g is comparable to the energy ω of the bosonic mode, and remarkable features in the system dynamics are revealed. Here we demonstrate an analog quantum simulation of an effective quantum Rabi model in the ultra-strong coupling regime, achieving a relative coupling ratio of g/ω ~ 0.6. The quantum hardware of the simulator is a superconducting circuit embedded in a cQED setup. We observe fast and periodic quantum state collapses and revivals of the initial qubit state, being the most distinct signature of the synthesized model.An analog quantum simulation scheme has been explored with a quantum hardware based on a superconducting circuit. Here the authors investigate the time evolution of the quantum Rabi model at ultra-strong coupling conditions, which is synthesized by slowing down the system dynamics in an effective frame.
Random matrix model of adiabatic quantum computing
International Nuclear Information System (INIS)
Mitchell, David R.; Adami, Christoph; Lue, Waynn; Williams, Colin P.
2005-01-01
We present an analysis of the quantum adiabatic algorithm for solving hard instances of 3-SAT (an NP-complete problem) in terms of random matrix theory (RMT). We determine the global regularity of the spectral fluctuations of the instantaneous Hamiltonians encountered during the interpolation between the starting Hamiltonians and the ones whose ground states encode the solutions to the computational problems of interest. At each interpolation point, we quantify the degree of regularity of the average spectral distribution via its Brody parameter, a measure that distinguishes regular (i.e., Poissonian) from chaotic (i.e., Wigner-type) distributions of normalized nearest-neighbor spacings. We find that for hard problem instances - i.e., those having a critical ratio of clauses to variables - the spectral fluctuations typically become irregular across a contiguous region of the interpolation parameter, while the spectrum is regular for easy instances. Within the hard region, RMT may be applied to obtain a mathematical model of the probability of avoided level crossings and concomitant failure rate of the adiabatic algorithm due to nonadiabatic Landau-Zener-type transitions. Our model predicts that if the interpolation is performed at a uniform rate, the average failure rate of the quantum adiabatic algorithm, when averaged over hard problem instances, scales exponentially with increasing problem size
Multiple-event probability in general-relativistic quantum mechanics. II. A discrete model
International Nuclear Information System (INIS)
Mondragon, Mauricio; Perez, Alejandro; Rovelli, Carlo
2007-01-01
We introduce a simple quantum mechanical model in which time and space are discrete and periodic. These features avoid the complications related to continuous-spectrum operators and infinite-norm states. The model provides a tool for discussing the probabilistic interpretation of generally covariant quantum systems, without the confusion generated by spurious infinities. We use the model to illustrate the formalism of general-relativistic quantum mechanics, and to test the definition of multiple-event probability introduced in a companion paper [Phys. Rev. D 75, 084033 (2007)]. We consider a version of the model with unitary time evolution and a version without unitary time evolution
State sum models for quantum gravity
Barrett, John W.
2000-01-01
This paper reviews the construction of quantum field theory on a 4-dimensional spacetime by combinatorial methods, and discusses the recent developments in the direction of a combinatorial construction of quantum gravity.
Quantum chaos and thermalization in isolated systems of interacting particles
Energy Technology Data Exchange (ETDEWEB)
Borgonovi, F., E-mail: fausto.borgonovi@unicatt.it [Dipartimento di Matematica e Fisica and Interdisciplinary Laboratories for Advanced Materials Physics, Universitá Cattolica, via Musei 41, 25121 Brescia, and INFN, Sezione di Pavia (Italy); Izrailev, F.M., E-mail: felix.izrailev@gmail.com [Instituto de Física, Universidad Autónoma de Puebla, Apt. Postal J-48, Puebla, Pue., 72570 (Mexico); NSCL and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-1321 (United States); Santos, L.F., E-mail: lsantos2@yu.edu [Department of Physics, Yeshiva University, 245 Lexington Ave, New York, NY 10016 (United States); Zelevinsky, V.G., E-mail: Zelevins@nscl.msu.edu [NSCL and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-1321 (United States)
2016-04-15
This review is devoted to the problem of thermalization in a small isolated conglomerate of interacting constituents. A variety of physically important systems of intensive current interest belong to this category: complex atoms, molecules (including biological molecules), nuclei, small devices of condensed matter and quantum optics on nano- and micro-scale, cold atoms in optical lattices, ion traps. Physical implementations of quantum computers, where there are many interacting qubits, also fall into this group. Statistical regularities come into play through inter-particle interactions, which have two fundamental components: mean field, that along with external conditions, forms the regular component of the dynamics, and residual interactions responsible for the complex structure of the actual stationary states. At sufficiently high level density, the stationary states become exceedingly complicated superpositions of simple quasiparticle excitations. At this stage, regularities typical of quantum chaos emerge and bring in signatures of thermalization. We describe all the stages and the results of the processes leading to thermalization, using analytical and massive numerical examples for realistic atomic, nuclear, and spin systems, as well as for models with random parameters. The structure of stationary states, strength functions of simple configurations, and concepts of entropy and temperature in application to isolated mesoscopic systems are discussed in detail. We conclude with a schematic discussion of the time evolution of such systems to equilibrium.
Classical and Quantum Nonlinear Integrable Systems: Theory and Application
International Nuclear Information System (INIS)
Brzezinski, Tomasz
2003-01-01
This is a very interesting collection of introductory and review articles on the theory and applications of classical and quantum integrable systems. The book reviews several integrable systems such as the KdV equation, vertex models, RSOS and IRF models, spin chains, integrable differential equations, discrete systems, Ising, Potts and other lattice models and reaction--diffusion processes, as well as outlining major methods of solving integrable systems. These include Lax pairs, Baecklund and Miura transformations, the inverse scattering method, various types of the Bethe Ansatz, Painleve methods, the dbar method and fusion methods to mention just a few. The book is divided into two parts, each containing five chapters. The first part is devoted to classical integrable systems and introduces the subject through the KdV equation, and then proceeds through Painleve analysis, discrete systems and two-dimensional integrable partial differential equations, to culminate in the review of solvable lattice models in statistical physics, solved through the coordinate and algebraic Bethe Ansatz methods. The second part deals with quantum integrable systems, and begins with an outline of unifying approaches to quantum, statistical, ultralocal and non-ultralocal systems. The theory and methods of solving quantum integrable spin chains are then described. Recent developments in applying Bethe Ansatz methods in condensed matter physics, including superconductivity and nanoscale physics, are reviewed. The book concludes with an introduction to diffusion-reaction processes. Every chapter is devoted to a different subject and is self-contained, and thus can be read separately. A reader interesting in classical methods of solitons, such as the methods of solving the KdV equation, can start from Chapter 1, while a reader interested in the Bethe Ansatz method can immediately proceed to Chapter 5, and so on. Thus the book should appeal and be useful to a wide range of theoretical
On the structure of the quantum-mechanical probability models
International Nuclear Information System (INIS)
Cufaro-Petroni, N.
1992-01-01
In this paper the role of the mathematical probability models in the classical and quantum physics in shortly analyzed. In particular the formal structure of the quantum probability spaces (QPS) is contrasted with the usual Kolmogorovian models of probability by putting in evidence the connections between this structure and the fundamental principles of the quantum mechanics. The fact that there is no unique Kolmogorovian model reproducing a QPS is recognized as one of the main reasons of the paradoxical behaviors pointed out in the quantum theory from its early days. 8 refs
Correlation function behavior in quantum systems which are classically chaotic
International Nuclear Information System (INIS)
Berman, G.P.; Kolovsky, A.R.
1983-01-01
The time behavior of a phase correlation function for dynamical quantum systems which are classically chaotic is considered. It is shown that under certain conditions there are three time regions of the quantum correlations behavior; the region of classical stochasticity (exponential decay of quantum correlations); the region of the correlations decay with a power law; the region of the constant level of the quantum correlations. The boundaries of these time regions are presented. The estimation of a remaining level of the quantum correlations is given. (orig.)
Putz, Mihai V
2009-11-10
The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr's quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions - all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems.
Directory of Open Access Journals (Sweden)
Mihai V. Putz
2009-11-01
Full Text Available The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr’s quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions – all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving many-electronic systems.
Asymptotically open quantum systems; Asymptotisch offene Quantensysteme
Energy Technology Data Exchange (ETDEWEB)
Westrich, M.
2008-04-15
In the present thesis we investigate the structure of time-dependent equations of motion in quantum mechanics.We start from two coupled systems with an autonomous equation of motion. A limit, in which the dynamics of one of the two systems has a decoupled evolution and imposes a non-autonomous evolution for the second system is identified. A result due to K. Hepp that provides a classical limit for dynamics turns out to be part and parcel for this limit and is generalized in our work. The method introduced by J.S. Howland for the solution of the time-dependent Schroedinger equation is interpreted as such a limit. Moreover, we associate our limit with the modern theory of quantization. (orig.)
Quantum phase transition of the transverse-field quantum Ising model on scale-free networks.
Yi, Hangmo
2015-01-01
I investigate the quantum phase transition of the transverse-field quantum Ising model in which nearest neighbors are defined according to the connectivity of scale-free networks. Using a continuous-time quantum Monte Carlo simulation method and the finite-size scaling analysis, I identify the quantum critical point and study its scaling characteristics. For the degree exponent λ=6, I obtain results that are consistent with the mean-field theory. For λ=4.5 and 4, however, the results suggest that the quantum critical point belongs to a non-mean-field universality class. Further simulations indicate that the quantum critical point remains mean-field-like if λ>5, but it continuously deviates from the mean-field theory as λ becomes smaller.
Stationary states of two-level open quantum systems
International Nuclear Information System (INIS)
Gardas, Bartlomiej; Puchala, Zbigniew
2011-01-01
A problem of finding stationary states of open quantum systems is addressed. We focus our attention on a generic type of open system: a qubit coupled to its environment. We apply the theory of block operator matrices and find stationary states of two-level open quantum systems under certain conditions applied on both the qubit and the surrounding.
Repetitive Interrogation of 2-Level Quantum Systems
Prestage, John D.; Chung, Sang K.
2010-01-01
Trapped ion clocks derive information from a reference atomic transition by repetitive interrogations of the same quantum system, either a single ion or ionized gas of many millions of ions. Atomic beam frequency standards, by contrast, measure reference atomic transitions in a continuously replenished "flow through" configuration where initial ensemble atomic coherence is zero. We will describe some issues and problems that can arise when atomic state selection and preparation of the quantum atomic system is not completed, that is, optical pumping has not fully relaxed the coherence and also not fully transferred atoms to the initial state. We present a simple two-level density matrix analysis showing how frequency shifts during the state-selection process can cause frequency shifts of the measured clock transition. Such considerations are very important when a low intensity lamp light source is used for state selection, where there is relatively weak relaxation and re-pumping of ions to an initial state and much weaker 'environmental' relaxation of the atomic coherence set-up in the atomic sample.
Three-dimensional simplicial quantum gravity and generalized matrix models
International Nuclear Information System (INIS)
Ambjoern, J.; Durhuus, B.; Jonsson, T.
1990-11-01
We consider a discrete model of Euclidean quantum gravity in three dimensions based on a summation over random simplicial manifolds. We derive some elementary properties of the model and discuss possible 'matrix' models for 3d gravity. (orig.)
Emergent Hydrodynamics in Integrable Quantum Systems Out of Equilibrium
Directory of Open Access Journals (Sweden)
Olalla A. Castro-Alvaredo
2016-12-01
Full Text Available Understanding the general principles underlying strongly interacting quantum states out of equilibrium is one of the most important tasks of current theoretical physics. With experiments accessing the intricate dynamics of many-body quantum systems, it is paramount to develop powerful methods that encode the emergent physics. Up to now, the strong dichotomy observed between integrable and nonintegrable evolutions made an overarching theory difficult to build, especially for transport phenomena where space-time profiles are drastically different. We present a novel framework for studying transport in integrable systems: hydrodynamics with infinitely many conservation laws. This bridges the conceptual gap between integrable and nonintegrable quantum dynamics, and gives powerful tools for accurate studies of space-time profiles. We apply it to the description of energy transport between heat baths, and provide a full description of the current-carrying nonequilibrium steady state and the transition regions in a family of models including the Lieb-Liniger model of interacting Bose gases, realized in experiments.
Classical and quantum phases of low-dimensional dipolar systems
Energy Technology Data Exchange (ETDEWEB)
Cartarius, Florian
2016-09-22
In this thesis we present a detailed study of the phase diagram of ultracold bosonic atoms confined along a tight atomic wave guide, along which they experience an optical lattice potential. In this quasi-one dimensional model we analyse the interplay between interactions and quantum fluctuations in (i) determining the non-equilibrium steady state after a quench and (ii) giving rise to novel equilibrium phases, when the interactions combine the s-wave contact interaction and the anisotropic long range dipole-dipole interactions. In detail, in the first part of the thesis we study the depinning of a gas of impenetrable bosons following the sudden switch of of the optical lattice. By means of a Bose-Fermi mapping we infer the exact quantum dynamical evolution and show that in the thermodynamic limit the system is in a non-equilibrium steady state without quasi-long range order. In the second part of the thesis, we study the effect of quantum fluctuations on the linear-zigzag instability in the ground state of ultracold dipolar bosons, as a function of the strength of the transverse confinement. We first analyse the linear-zigzag instability in the classical regime, and then use our results to develop a multi-mode Bose-Hubbard model for the system. We then develop several numerical methods, to determine the ground state.
Quantum Simulation of the Hubbard Model Using Ultra-Cold Atoms
2008-11-01
Hubbard model. The SU(3) Hubbard model has been proposed as a model system for studying different phases of matter expected to occur in quantum...chromodynamics (QCD): the color superconducting phase and the formation of baryons . Our initial investigations have focused on understanding three-body...density quark matter described by quantum chromodynamics . We have been investigating the stability of the 3-state Fermi gas with respect to decay due
Super-quantum curves from super-eigenvalue models
Energy Technology Data Exchange (ETDEWEB)
Ciosmak, Paweł [Faculty of Mathematics, Informatics and Mechanics, University of Warsaw,ul. Banacha 2, 02-097 Warsaw (Poland); Hadasz, Leszek [M. Smoluchowski Institute of Physics, Jagiellonian University,ul. Łojasiewicza 11, 30-348 Kraków (Poland); Manabe, Masahide [Faculty of Physics, University of Warsaw,ul. Pasteura 5, 02-093 Warsaw (Poland); Sułkowski, Piotr [Faculty of Physics, University of Warsaw,ul. Pasteura 5, 02-093 Warsaw (Poland); Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E. California Blvd, Pasadena, CA 91125 (United States)
2016-10-10
In modern mathematical and theoretical physics various generalizations, in particular supersymmetric or quantum, of Riemann surfaces and complex algebraic curves play a prominent role. We show that such supersymmetric and quantum generalizations can be combined together, and construct supersymmetric quantum curves, or super-quantum curves for short. Our analysis is conducted in the formalism of super-eigenvalue models: we introduce β-deformed version of those models, and derive differential equations for associated α/β-deformed super-matrix integrals. We show that for a given model there exists an infinite number of such differential equations, which we identify as super-quantum curves, and which are in one-to-one correspondence with, and have the structure of, super-Virasoro singular vectors. We discuss potential applications of super-quantum curves and prospects of other generalizations.
Super-quantum curves from super-eigenvalue models
International Nuclear Information System (INIS)
Ciosmak, Paweł; Hadasz, Leszek; Manabe, Masahide; Sułkowski, Piotr
2016-01-01
In modern mathematical and theoretical physics various generalizations, in particular supersymmetric or quantum, of Riemann surfaces and complex algebraic curves play a prominent role. We show that such supersymmetric and quantum generalizations can be combined together, and construct supersymmetric quantum curves, or super-quantum curves for short. Our analysis is conducted in the formalism of super-eigenvalue models: we introduce β-deformed version of those models, and derive differential equations for associated α/β-deformed super-matrix integrals. We show that for a given model there exists an infinite number of such differential equations, which we identify as super-quantum curves, and which are in one-to-one correspondence with, and have the structure of, super-Virasoro singular vectors. We discuss potential applications of super-quantum curves and prospects of other generalizations.
Super-quantum curves from super-eigenvalue models
Ciosmak, Paweł; Hadasz, Leszek; Manabe, Masahide; Sułkowski, Piotr
2016-10-01
In modern mathematical and theoretical physics various generalizations, in particular supersymmetric or quantum, of Riemann surfaces and complex algebraic curves play a prominent role. We show that such supersymmetric and quantum generalizations can be combined together, and construct supersymmetric quantum curves, or super-quantum curves for short. Our analysis is conducted in the formalism of super-eigenvalue models: we introduce β-deformed version of those models, and derive differential equations for associated α/ β-deformed super-matrix integrals. We show that for a given model there exists an infinite number of such differential equations, which we identify as super-quantum curves, and which are in one-to-one correspondence with, and have the structure of, super-Virasoro singular vectors. We discuss potential applications of super-quantum curves and prospects of other generalizations.
Quantum systems related to root systems and radial parts of Laplace operators
Olshanetsky, M. A.; Perelomov, A. M.
2002-01-01
The relation between quantum systems associated to root systems and radial parts of Laplace operators on symmetric spaces is established. From this it follows the complete integrability of some quantum systems.
Realization of quantum state privacy amplification in a nuclear magnetic resonance quantum system
International Nuclear Information System (INIS)
Hao, Liang; Wang, Chuan; Long, Gui Lu
2010-01-01
Quantum state privacy amplification (QSPA) is the quantum analogue of classical privacy amplification. If the state information of a series of single-particle states has some leakage, QSPA reduces this leakage by condensing the state information of two particles into the state of one particle. Recursive applications of the operations will eliminate the quantum state information leakage to a required minimum level. In this paper, we report the experimental implementation of a quantum state privacy amplification protocol in a nuclear magnetic resonance system. The density matrices of the states are constructed in the experiment, and the experimental results agree well with theory.
Conditional quantum entropy power inequality for d-level quantum systems
Jeong, Kabgyun; Lee, Soojoon; Jeong, Hyunseok
2018-04-01
We propose an extension of the quantum entropy power inequality for finite dimensional quantum systems, and prove a conditional quantum entropy power inequality by using the majorization relation as well as the concavity of entropic functions also given by Audenaert et al (2016 J. Math. Phys. 57 052202). Here, we make particular use of the fact that a specific local measurement after a partial swap operation (or partial swap quantum channel) acting only on finite dimensional bipartite subsystems does not affect the majorization relation for the conditional output states when a separable ancillary subsystem is involved. We expect our conditional quantum entropy power inequality to be useful, and applicable in bounding and analyzing several capacity problems for quantum channels.
Simulating quantum systems on classical computers with matrix product states
International Nuclear Information System (INIS)
Kleine, Adrian
2010-01-01
In this thesis, the numerical simulation of strongly-interacting many-body quantum-mechanical systems using matrix product states (MPS) is considered. Matrix-Product-States are a novel representation of arbitrary quantum many-body states. Using quantum information theory, it is possible to show that Matrix-Product-States provide a polynomial-sized representation of one-dimensional quantum systems, thus allowing an efficient simulation of one-dimensional quantum system on classical computers. Matrix-Product-States form the conceptual framework of the density-matrix renormalization group (DMRG). After a general introduction in the first chapter of this thesis, the second chapter deals with Matrix-Product-States, focusing on the development of fast and stable algorithms. To obtain algorithms to efficiently calculate ground states, the density-matrix renormalization group is reformulated using the Matrix-Product-States framework. Further, time-dependent problems are considered. Two different algorithms are presented, one based on a Trotter decomposition of the time-evolution operator, the other one on Krylov subspaces. Finally, the evaluation of dynamical spectral functions is discussed, and a correction vector-based method is presented. In the following chapters, the methods presented in the second chapter, are applied to a number of different physical problems. The third chapter deals with the existence of chiral phases in isotropic one-dimensional quantum spin systems. A preceding analytical study based on a mean-field approach indicated the possible existence of those phases in an isotropic Heisenberg model with a frustrating zig-zag interaction and a magnetic field. In this thesis, the existence of the chiral phases is shown numerically by using Matrix-Product-States-based algorithms. In the fourth chapter, we propose an experiment using ultracold atomic gases in optical lattices, which allows a well controlled observation of the spin-charge separation (of
Simulating quantum systems on classical computers with matrix product states
Energy Technology Data Exchange (ETDEWEB)
Kleine, Adrian
2010-11-08
In this thesis, the numerical simulation of strongly-interacting many-body quantum-mechanical systems using matrix product states (MPS) is considered. Matrix-Product-States are a novel representation of arbitrary quantum many-body states. Using quantum information theory, it is possible to show that Matrix-Product-States provide a polynomial-sized representation of one-dimensional quantum systems, thus allowing an efficient simulation of one-dimensional quantum system on classical computers. Matrix-Product-States form the conceptual framework of the density-matrix renormalization group (DMRG). After a general introduction in the first chapter of this thesis, the second chapter deals with Matrix-Product-States, focusing on the development of fast and stable algorithms. To obtain algorithms to efficiently calculate ground states, the density-matrix renormalization group is reformulated using the Matrix-Product-States framework. Further, time-dependent problems are considered. Two different algorithms are presented, one based on a Trotter decomposition of the time-evolution operator, the other one on Krylov subspaces. Finally, the evaluation of dynamical spectral functions is discussed, and a correction vector-based method is presented. In the following chapters, the methods presented in the second chapter, are applied to a number of different physical problems. The third chapter deals with the existence of chiral phases in isotropic one-dimensional quantum spin systems. A preceding analytical study based on a mean-field approach indicated the possible existence of those phases in an isotropic Heisenberg model with a frustrating zig-zag interaction and a magnetic field. In this thesis, the existence of the chiral phases is shown numerically by using Matrix-Product-States-based algorithms. In the fourth chapter, we propose an experiment using ultracold atomic gases in optical lattices, which allows a well controlled observation of the spin-charge separation (of