Quantum Chaos and Statistical Mechanics
Srednicki, Mark
1994-01-01
We briefly review the well known connection between classical chaos and classical statistical mechanics, and the recently discovered connection between quantum chaos and quantum statistical mechanics.
On quantum statistical mechanics; A study guide
Majewski, W. A.
2016-01-01
These notes are intended as an introduction to a study of applications of noncommutative calculus to quantum statistical mechanics. Centered on noncommutative calculus we describe the physical concepts and mathematical structures appearing in the analysis of large quantum systems, and their consequences. These include the emergence of algebraic approach and the necessity of employment of infinite dimensional structures. As an illustration, a quantization of stochastic processes, new formalism...
Spin & Statistics in Nonrelativistic Quantum Mechanics, II
Kuckert, B; Kuckert, Bernd; Mund, Jens
2004-01-01
Recently a sufficient and necessary condition for Pauli's spin- statistics connection in nonrelativistic quantum mechanics has been established [quant-ph/0208151]. The two-dimensional part of this result is extended to n-particle systems and reformulated and further simplified in a more geometric language.
Algebraic-statistical approach to quantum mechanics
Slavnov, D A
2001-01-01
It is proposed the scheme of quantum mechanics, in which a Hilbert space and the linear operators are not primary elements of the theory. Instead of it certain variant of the algebraic approach is considered. The elements of noncommutative algebra (observables) and the nonlinear functionals on this algebra (physical states) are used as the primary constituents. The functionals associate with results of a particular measurement. It is suggested to consider certain ensembles of the physical states as quantum states of the standart quantum mechanics. It is shown that in such scheme the mathematical formalism of the standart quantum mechanics can be reproduced completely.
Quantum approach to classical statistical mechanics.
Somma, R D; Batista, C D; Ortiz, G
2007-07-20
We present a new approach to study the thermodynamic properties of d-dimensional classical systems by reducing the problem to the computation of ground state properties of a d-dimensional quantum model. This classical-to-quantum mapping allows us to extend the scope of standard optimization methods by unifying them under a general framework. The quantum annealing method is naturally extended to simulate classical systems at finite temperatures. We derive the rates to assure convergence to the optimal thermodynamic state using the adiabatic theorem of quantum mechanics. For simulated and quantum annealing, we obtain the asymptotic rates of T(t) approximately (pN)/(k(B)logt) and gamma(t) approximately (Nt)(-c/N), for the temperature and magnetic field, respectively. Other annealing strategies are also discussed.
Quantum Hypothesis Testing and Non-Equilibrium Statistical Mechanics
Jaksic, V; Pillet, C -A; Seiringer, R
2011-01-01
We extend the mathematical theory of quantum hypothesis testing to the general $W^*$-algebraic setting and explore its relation with recent developments in non-equilibrium quantum statistical mechanics. In particular, we relate the large deviation principle for the full counting statistics of entropy flow to quantum hypothesis testing of the arrow of time.
Statistical mechanics of quantum-classical systems with holonomic constraints.
Sergi, Alessandro
2006-01-14
The statistical mechanics of quantum-classical systems with holonomic constraints is formulated rigorously by unifying the classical Dirac bracket and the quantum-classical bracket in matrix form. The resulting Dirac quantum-classical theory, which conserves the holonomic constraints exactly, is then used to formulate time evolution and statistical mechanics. The correct momentum-jump approximation for constrained systems arises naturally from this formalism. Finally, in analogy with what was found in the classical case, it is shown that the rigorous linear-response function of constrained quantum-classical systems contains nontrivial additional terms which are absent in the response of unconstrained systems.
Statistical mechanics of confined quantum particles
Bannur, V M; Bannur, Vishnu M.
2006-01-01
We develop statistical mechanics and thermodynamics of Bose and Fermi systems in relativistic harmonic oscillator (RHO) confining potential, which may be applicable in quark gluon plasma (QGP), astrophysics, Bose-Einstein condensation (BEC), condensed matter physics etc. Detailed study of QGP system is carried out and compared with lattice results. Further, as an application, our equation of state (EoS) of QGP is used to study compact stars like quark star.
Statistical Mechanics of Confined Quantum Particles
Bannur, Vishnu M.; Udayanandan, K. M.
We develop statistical mechanics and thermodynamics of Bose and Fermi systems in relativistic harmonic oscillator (RHO) confining potential, which is applicable in quark gluon plasma (QGP), astrophysics, Bose-Einstein condensation (BEC) etc. Detailed study of QGP system is carried out and compared with lattice results. Furthermore, as an application, our equation of state (EoS) of QGP is used to study compact stars like quark star.
Spin Glass a Bridge Between Quantum Computation and Statistical Mechanics
Ohzeki, Masayuki
2013-09-01
In this chapter, we show two fascinating topics lying between quantum information processing and statistical mechanics. First, we introduce an elaborated technique, the surface code, to prepare the particular quantum state with robustness against decoherence. Interestingly, the theoretical limitation of the surface code, accuracy threshold, to restore the quantum state has a close connection with the problem on the phase transition in a special model known as spin glasses, which is one of the most active researches in statistical mechanics. The phase transition in spin glasses is an intractable problem, since we must strive many-body system with complicated interactions with change of their signs depending on the distance between spins. Fortunately, recent progress in spin-glass theory enables us to predict the precise location of the critical point, at which the phase transition occurs. It means that statistical mechanics is available for revealing one of the most interesting parts in quantum information processing. We show how to import the special tool in statistical mechanics into the problem on the accuracy threshold in quantum computation. Second, we show another interesting technique to employ quantum nature, quantum annealing. The purpose of quantum annealing is to search for the most favored solution of a multivariable function, namely optimization problem. The most typical instance is the traveling salesman problem to find the minimum tour while visiting all the cities. In quantum annealing, we introduce quantum fluctuation to drive a particular system with the artificial Hamiltonian, in which the ground state represents the optimal solution of the specific problem we desire to solve. Induction of the quantum fluctuation gives rise to the quantum tunneling effect, which allows nontrivial hopping from state to state. We then sketch a strategy to control the quantum fluctuation efficiently reaching the ground state. Such a generic framework is called
Emergence of Quantum Mechanics from a Sub-Quantum Statistical Mechanics
Grössing, Gerhard
2015-10-01
A research program within the scope of theories on "Emergent Quantum Mechanics" is presented, which has gained some momentum in recent years. Via the modeling of a quantum system as a non-equilibrium steady-state maintained by a permanent throughput of energy from the zero-point vacuum, the quantum is considered as an emergent system. We implement a specific "bouncer-walker" model in the context of an assumed sub-quantum statistical physics, in analogy to the results of experiments by Couder and Fort on a classical wave-particle duality. We can thus give an explanation of various quantum mechanical features and results on the basis of a "21st century classical physics", such as the appearance of Planck's constant, the Schrödinger equation, etc. An essential result is given by the proof that averaged particle trajectories' behaviors correspond to a specific type of anomalous diffusion termed "ballistic" diffusion on a sub-quantum level...
Statistical Structures Underlying Quantum Mechanics and Social Science
Wright, R
2003-01-01
Common observations of the unpredictability of human behavior and the influence of one question on the answer to another suggest social science experiments are probabilistic and may be mutually incompatible with one another, characteristics attributed to quantum mechanics (as distinguished from classical mechanics). This paper examines this superficial similarity in depth using the Foulis-Randall Operational Statistics language. In contradistinction to physics, social science deals with complex, open systems for which the set of possible experiments is unknowable and outcome interference is a graded phenomenon resulting from the ways the human brain processes information. It is concluded that social science is, in some ways, "less classical" than quantum mechanics, but that generalized "quantum" structures may provide appropriate descriptions of social science experiments. Specific challenges to extending "quantum" structures to social science are identified.
Statistical Mechanics of Classical and Quantum Computational Complexity
Laumann, C. R.; Moessner, R.; Scardicchio, A.; Sondhi, S. L.
The quest for quantum computers is motivated by their potential for solving problems that defy existing, classical, computers. The theory of computational complexity, one of the crown jewels of computer science, provides a rigorous framework for classifying the hardness of problems according to the computational resources, most notably time, needed to solve them. Its extension to quantum computers allows the relative power of quantum computers to be analyzed. This framework identifies families of problems which are likely hard for classical computers ("NP-complete") and those which are likely hard for quantum computers ("QMA-complete") by indirect methods. That is, they identify problems of comparable worst-case difficulty without directly determining the individual hardness of any given instance. Statistical mechanical methods can be used to complement this classification by directly extracting information about particular families of instances—typically those that involve optimization—by studying random ensembles of them. These pose unusual and interesting (quantum) statistical mechanical questions and the results shed light on the difficulty of problems for large classes of algorithms as well as providing a window on the contrast between typical and worst case complexity. In these lecture notes we present an introduction to this set of ideas with older work on classical satisfiability and recent work on quantum satisfiability as primary examples. We also touch on the connection of computational hardness with the physical notion of glassiness.
Quantum statistics as geometry: Conflict, Mechanism, Interpretation, and Implication
Galehouse, Daniel C
2015-01-01
The conflict between the determinism of geometry in general relativity and the essential statistics of quantum mechanics blocks the development of a unified theory. Electromagnetic radiation is essential to both fields and supplies a common meeting ground. It is proposed that a suitable mechanism to resolve these differences can be based on the use of a time-symmetric treatment for the radiation. Advanced fields of the absorber can be interpreted to supply the random character of spontaneous emission. This allows the statistics of the Born rule to come from the spontaneous emission that occurs during a physical measurement. When the absorber is included, quantum mechanics is completely deterministic. It is suggested that the peculiar properties of kaons may be induced by the advanced effects of the neutrino field. Schr\\"odinger's cat loses its enigmatic personality and the identification of mental processes as an essential component of a measurement is no longer needed.
Huang, Y C; Zhang, N
2004-01-01
Classical statistical average values are generally generalized to average values of quantum mechanics, it is discovered that quantum mechanics is direct generalization of classical statistical mechanics, and we generally deduce both a general new continuous eigenvalue equation and a general discrete eigenvalue equation in quantum mechanics, and discover that a eigenvalue of quantum mechanics is just an extreme value of an operator in possibility distribution, the eigenvalue f is just classical observable quantity. A general classical statistical uncertain relation is further given, the general classical statistical uncertain relation is generally generalized to quantum uncertainty principle, the two lost conditions in classical uncertain relation and quantum uncertainty principle, respectively, are found. We generally expound the relations among uncertainty principle, singularity and condensed matter stability, discover that quantum uncertainty principle prevents from the appearance of singularity of the elec...
PT Symmetry in Classical and Quantum Statistical Mechanics
Meisinger, Peter N
2012-01-01
PT-symmetric Hamiltonians and transfer matrices arise naturally in statistical mechanics. These classical and quantum models often require the use of complex or negative weights and thus fall outside of the conventional equilibrium statistical mechanics of Hermitian systems. PT-symmetric models form a natural class where the partition function is necessarily real, but not necessarily positive. The correlation functions of these models display a much richer set of behaviors than Hermitian systems, displaying sinusoidally-modulated exponential decay, as in a dense fluid, or even sinusoidal modulation without decay. Classical spin models with PT symmetry include Z(N) models with a complex magnetic field, the chiral Potts model and the anisotropic next-nearest-neighbor Ising (ANNNI) model. Quantum many-body problems with a non-zero chemical potential have a natural PT-symmetric representation related to the sign problem. Two-dimensional QCD with heavy quarks at non-zero chemical potential can be solved by diagona...
Statistical origin of classical mechanics and quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Chu, S. (Department of Physics, University of California, Riverside, California 92521 (United States))
1993-11-01
The classical action for interacting strings, obtained by generalizing the time-symmetric electrodynamics of Wheeler and Feynman, is exactly additive. The additivity of the string action suggests a connection between the area of the string world sheets and entropy. We find that the action principle of classical mechanics is the condition that the total entropy of the strings be at an extremum, and the path-integral representation of the quantum density matrix element is an approximation to the partition function of the string theory.
PT symmetry in classical and quantum statistical mechanics.
Meisinger, Peter N; Ogilvie, Michael C
2013-04-28
PT-symmetric Hamiltonians and transfer matrices arise naturally in statistical mechanics. These classical and quantum models often require the use of complex or negative weights and thus fall outside the conventional equilibrium statistical mechanics of Hermitian systems. PT-symmetric models form a natural class where the partition function is necessarily real, but not necessarily positive. The correlation functions of these models display a much richer set of behaviours than Hermitian systems, displaying sinusoidally modulated exponential decay, as in a dense fluid, or even sinusoidal modulation without decay. Classical spin models with PT-symmetry include Z(N) models with a complex magnetic field, the chiral Potts model and the anisotropic next-nearest-neighbour Ising model. Quantum many-body problems with a non-zero chemical potential have a natural PT-symmetric representation related to the sign problem. Two-dimensional quantum chromodynamics with heavy quarks at non-zero chemical potential can be solved by diagonalizing an appropriate PT-symmetric Hamiltonian.
Random matrices as models for the statistics of quantum mechanics
Casati, Giulio; Guarneri, Italo; Mantica, Giorgio
1986-05-01
Random matrices from the Gaussian unitary ensemble generate in a natural way unitary groups of evolution in finite-dimensional spaces. The statistical properties of this time evolution can be investigated by studying the time autocorrelation functions of dynamical variables. We prove general results on the decay properties of such autocorrelation functions in the limit of infinite-dimensional matrices. We discuss the relevance of random matrices as models for the dynamics of quantum systems that are chaotic in the classical limit. Permanent address: Dipartimento di Fisica, Via Celoria 16, 20133 Milano, Italy.
Introduction to relativistic statistical mechanics classical and quantum
Hakim, Rémi
2011-01-01
This is one of the very few books focusing on relativistic statistical mechanics, and is written by a leading expert in this special field. It started from the notion of relativistic kinetic theory, half a century ago, exploding into relativistic statisti
Schwabl, Franz
2006-01-01
The completely revised new edition of the classical book on Statistical Mechanics covers the basic concepts of equilibrium and non-equilibrium statistical physics. In addition to a deductive approach to equilibrium statistics and thermodynamics based on a single hypothesis - the form of the microcanonical density matrix - this book treats the most important elements of non-equilibrium phenomena. Intermediate calculations are presented in complete detail. Problems at the end of each chapter help students to consolidate their understanding of the material. Beyond the fundamentals, this text demonstrates the breadth of the field and its great variety of applications. Modern areas such as renormalization group theory, percolation, stochastic equations of motion and their applications to critical dynamics, kinetic theories, as well as fundamental considerations of irreversibility, are discussed. The text will be useful for advanced students of physics and other natural sciences; a basic knowledge of quantum mechan...
Quantum Statistical Mechanics as an Exact Classical Expansion with Results for Lennard-Jones Helium
Attard, Phil
2016-01-01
The quantum states representing classical phase space are given, and these are used to formulate quantum statistical mechanics as a formally exact double perturbation expansion about classical statistical mechanics. One series of quantum contributions arises from the non-commutativity of the position and momentum operators. Although the formulation of the quantum states differs, the present results for separate averages of position operators and of momentum operators agree with Wigner (1932) and Kirkwood (1933). The second series arises from wave function symmetrization, and is given in terms of $l$-particle permutation loops in an infinite order re-summation. The series gives analytically the known exact result for the quantum ideal gas to all orders. The leading correction corrects a correction given by Kirkwood. The first four quantum corrections to the grand potential are calculated for a Lennard-Jones fluid using the hypernetted chain closure. For helium on liquid branch isotherms, the corrections range ...
Parallelism in computations in quantum and statistical mechanics
Clementi, E.; Corongiu, G.; Detrich, J. H.
1985-07-01
Often very fundamental biochemical and biophysical problems defy simulations because of limitations in today's computers. We present and discuss a distributed system composed of two IBM 4341s and/or an IBM 4381 as front-end processors and ten FPS-164 attached array processors. This parallel system - called LCAP - has presently a peak performance of about 110 Mflops; extensions to higher performance are discussed. Presently, the system applications use a modified version of VM/SP as the operating system: description of the modifications is given. Three applications programs have been migrated from sequential to parallel: a molecular quantum mechanical, a Metropolis-Monte Carlo and a molecular dynamics program. Descriptions of the parallel codes are briefly outlined. Use of these parallel codes has already opened up new capabilities for our research. The very positive performance comparisons with today's supercomputers allow us to conclude that parallel computers and programming, of the type we have considered, represent a pragmatic answer to many computationally intensive problems.
Tasaki, Hal
2016-04-29
Based on quantum statistical mechanics and microscopic quantum dynamics, we prove Planck's and Kelvin's principles for macroscopic systems in a general and realistic setting. We consider a hybrid quantum system that consists of the thermodynamic system, which is initially in thermal equilibrium, and the "apparatus" which operates on the former, and assume that the whole system evolves autonomously. This provides a satisfactory derivation of the second law for macroscopic systems.
On quantum statistical inference
Barndorff-Nielsen, O.E.; Gill, R.D.; Jupp, P.E.
2001-01-01
Recent developments in the mathematical foundations of quantum mechanics have brought the theory closer to that of classical probability and statistics. On the other hand, the unique character of quantum physics sets many of the questions addressed apart from those met classically in stochastics.
A reductionist perspective on quantum statistical mechanics: Coarse-graining of path integrals
Energy Technology Data Exchange (ETDEWEB)
Sinitskiy, Anton V.; Voth, Gregory A., E-mail: gavoth@uchicago.edu [Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, and Computation Institute, The University of Chicago, 5735 S. Ellis Ave., Chicago, Illinois 60637 (United States)
2015-09-07
Computational modeling of the condensed phase based on classical statistical mechanics has been rapidly developing over the last few decades and has yielded important information on various systems containing up to millions of atoms. However, if a system of interest contains important quantum effects, well-developed classical techniques cannot be used. One way of treating finite temperature quantum systems at equilibrium has been based on Feynman’s imaginary time path integral approach and the ensuing quantum-classical isomorphism. This isomorphism is exact only in the limit of infinitely many classical quasiparticles representing each physical quantum particle. In this work, we present a reductionist perspective on this problem based on the emerging methodology of coarse-graining. This perspective allows for the representations of one quantum particle with only two classical-like quasiparticles and their conjugate momenta. One of these coupled quasiparticles is the centroid particle of the quantum path integral quasiparticle distribution. Only this quasiparticle feels the potential energy function. The other quasiparticle directly provides the observable averages of quantum mechanical operators. The theory offers a simplified perspective on quantum statistical mechanics, revealing its most reductionist connection to classical statistical physics. By doing so, it can facilitate a simpler representation of certain quantum effects in complex molecular environments.
A reductionist perspective on quantum statistical mechanics: Coarse-graining of path integrals.
Sinitskiy, Anton V; Voth, Gregory A
2015-09-07
Computational modeling of the condensed phase based on classical statistical mechanics has been rapidly developing over the last few decades and has yielded important information on various systems containing up to millions of atoms. However, if a system of interest contains important quantum effects, well-developed classical techniques cannot be used. One way of treating finite temperature quantum systems at equilibrium has been based on Feynman's imaginary time path integral approach and the ensuing quantum-classical isomorphism. This isomorphism is exact only in the limit of infinitely many classical quasiparticles representing each physical quantum particle. In this work, we present a reductionist perspective on this problem based on the emerging methodology of coarse-graining. This perspective allows for the representations of one quantum particle with only two classical-like quasiparticles and their conjugate momenta. One of these coupled quasiparticles is the centroid particle of the quantum path integral quasiparticle distribution. Only this quasiparticle feels the potential energy function. The other quasiparticle directly provides the observable averages of quantum mechanical operators. The theory offers a simplified perspective on quantum statistical mechanics, revealing its most reductionist connection to classical statistical physics. By doing so, it can facilitate a simpler representation of certain quantum effects in complex molecular environments.
On the Quantum Mechanical Scattering Statistics of Many Particles
Dürr, Detlef; Moser, Tilo; Römer, Sarah
2010-01-01
The probability of a quantum particle being detected in a given solid angle is determined by the $S$-matrix. The explanation of this fact in time dependent scattering theory is often linked to the quantum flux, since the quantum flux integrated against a (detector-) surface and over a time interval can be viewed as the probability that the particle crosses this surface within the given time interval. Regarding many particle scattering, however, this argument is no longer valid, as each particle arrives at the detector at its own random time. While various treatments of this problem can be envisaged, here we present a straightforward Bohmian analysis of many particle potential scattering from which the $S$-matrix probability emerges in the limit of large distances.
Quantum statistical mechanics of dense partially ionized hydrogen.
Dewitt, H. E.; Rogers, F. J.
1972-01-01
The theory of dense hydrogenic plasmas beginning with the two component quantum grand partition function is reviewed. It is shown that ionization equilibrium and molecular dissociation equilibrium can be treated in the same manner with proper consideration of all two-body states. A quantum perturbation expansion is used to give an accurate calculation of the equation of state of the gas for any degree of dissociation and ionization. In this theory, the effective interaction between any two charges is the dynamic screened potential obtained from the plasma dielectric function. We make the static approximation; and we carry out detailed numerical calculations with the bound and scattering states of the Debye potential, using the Beth-Uhlenbeck form of the quantum second virial coefficient. We compare our results with calculations from the Saha equation.
On quantum statistical inference
DEFF Research Database (Denmark)
Barndorff-Nielsen, Ole Eiler; Gill, Richard D.; Jupp, Peter E.
Recent developments in the mathematical foundations of quantum mechanics have brought the theory closer to that of classical probability and statistics. On the other hand, the unique character of quantum physics sets many of the questions addressed apart from those met classically in stochastics....... Furthermore, concurrent advances in experimental techniques and in the theory of quantum computation have led to a strong interest in questions of quantum information, in particular in the sense of the amount of information about unknown parameters in given observational data or accessible through various...
On quantum statistical inference
DEFF Research Database (Denmark)
Barndorff-Nielsen, Ole Eiler; Gill, Richard D.; Jupp, Peter E.
Recent developments in the mathematical foundations of quantum mechanics have brought the theory closer to that of classical probability and statistics. On the other hand, the unique character of quantum physics sets many of the questions addressed apart from those met classically in stochastics....... Furthermore, concurrent advances in experimental techniques and in the theory of quantum computation have led to a strong interest in questions of quantum information, in particular in the sense of the amount of information about unknown parameters in given observational data or accessible through various...
Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems
Gogolin, Christian; Eisert, Jens
2016-05-01
We review selected advances in the theoretical understanding of complex quantum many-body systems with regard to emergent notions of quantum statistical mechanics. We cover topics such as equilibration and thermalisation in pure state statistical mechanics, the eigenstate thermalisation hypothesis, the equivalence of ensembles, non-equilibration dynamics following global and local quenches as well as ramps. We also address initial state independence, absence of thermalisation, and many-body localisation. We elucidate the role played by key concepts for these phenomena, such as Lieb-Robinson bounds, entanglement growth, typicality arguments, quantum maximum entropy principles and the generalised Gibbs ensembles, and quantum (non-)integrability. We put emphasis on rigorous approaches and present the most important results in a unified language.
Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems.
Gogolin, Christian; Eisert, Jens
2016-05-01
We review selected advances in the theoretical understanding of complex quantum many-body systems with regard to emergent notions of quantum statistical mechanics. We cover topics such as equilibration and thermalisation in pure state statistical mechanics, the eigenstate thermalisation hypothesis, the equivalence of ensembles, non-equilibration dynamics following global and local quenches as well as ramps. We also address initial state independence, absence of thermalisation, and many-body localisation. We elucidate the role played by key concepts for these phenomena, such as Lieb-Robinson bounds, entanglement growth, typicality arguments, quantum maximum entropy principles and the generalised Gibbs ensembles, and quantum (non-)integrability. We put emphasis on rigorous approaches and present the most important results in a unified language.
Quantum statistical mechanics selected works of N N Bogolubov
Bogolyubov, N N
2015-01-01
In this book we have solved the complicated problem of constructing upper bounds for many-time averages for the case of a fairly broad class of model systems with four-fermion interaction. The methods proposed in this book for solving this problem will undoubtedly find application not only for the model systems associated with the theory of superconductivity considered here. The theoretical methods developed in Chapters 1 and 2 are already applicable to a much broader class of model systems from statistical physics and the theory of elementary particles. Contents: On the Theory of Superfluidit
The Green-Kubo formula and the Onsager reciprocity relations in quantum statistical mechanics
Jaksic, V; Pillet, C
2005-01-01
We study linear response theory in the general framework of algebraic quantum statistical mechanics and prove the Green-Kubo formula and the Onsager reciprocity relations for heat fluxes generated by temperature differentials. Our derivation is axiomatic and the key assumptions concern ergodic properties of non-equilibrium steady states.
Gulden, Tobias
Increased interest in non-Hermitian quantum systems calls for the development of efficient methods to treat these. This interest was sparked by the introduction of PT-symmetry and the study of mathematical mappings which map conventional statistical or quantum mechanics onto non-Hermitian quantum operators. One of the most common methods in quantum mechanics is the semiclassial approximation which requires integration along trajectories that solve classical equations of motion. However in non-Hermitian systems these solutions are rarely attainable. We borrow concepts from algebraic topology to develop methods to avoid solving the equations of motion and avoid straightforward integration altogether. We apply these methods to solve the semiclassical problem for three largely dierent systems and demonstrate their usefulness for Hermitian and non-Hermitian systems alike.
Inferring the statistical interpretation of quantum mechanics from the classical limit
Gottfried
2000-06-01
It is widely believed that the statistical interpretation of quantum mechanics cannot be inferred from the Schrodinger equation itself, and must be stated as an additional independent axiom. Here I propose that the situation is not so stark. For systems that have both continuous and discrete degrees of freedom (such as coordinates and spin respectively), the statistical interpretation for the discrete variables is implied by requiring that the system's gross motion can be classically described under circumstances specified by the Schrodinger equation. However, this is not a full-fledged derivation of the statistical interpretation because it does not apply to the continuous variables of classical mechanics.
Wave Mechanics or Wave Statistical Mechanics
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
By comparison between equations of motion of geometrical optics and that of classical statistical mechanics, this paper finds that there should be an analogy between geometrical optics and classical statistical mechanics instead of geometrical mechanics and classical mechanics. Furthermore, by comparison between the classical limit of quantum mechanics and classical statistical mechanics, it finds that classical limit of quantum mechanics is classical statistical mechanics not classical mechanics, hence it demonstrates that quantum mechanics is a natural generalization of classical statistical mechanics instead of classical mechanics. Thence quantum mechanics in its true appearance is a wave statistical mechanics instead of a wave mechanics.
Reimann, Peter; Evstigneev, Mykhaylo
2013-11-01
Focusing on isolated macroscopic systems, described in terms of either a quantum mechanical or a classical model, our two key questions are how far does an initial ensemble (usually far from equilibrium and largely unknown in detail) evolve towards a stationary long-time behavior (equilibration) and how far is this steady state in agreement with the microcanonical ensemble as predicted by statistical mechanics (thermalization). A recently developed quantum mechanical treatment of the problem is briefly summarized, putting particular emphasis on the realistic modeling of experimental measurements and nonequilibrium initial conditions. Within this framework, equilibration can be proven under very weak assumptions about those measurements and initial conditions, while thermalization still requires quite strong additional hypotheses. An analogous approach within the framework of classical mechanics is developed and compared with the quantum case. In particular, the assumptions to guarantee classical equilibration are now rather strong, while thermalization then follows under relatively weak additional conditions.
Mandl, F.
1992-07-01
The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition F. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw The Physics of Stars Second Edition A. C. Phillips Computing for Scientists R. J. Barlow and A. R. Barnett Quantum Mechanics aims to teach those parts of the subject which every physicist should know. The object is to display the inherent structure of quantum mechanics, concentrating on general principles and on methods of wide applicability without taking them to their full generality. This book will equip students to follow quantum-mechanical arguments in books and scientific papers, and to cope with simple cases. To bring the subject to life, the theory is applied to the all-important field of atomic physics. No prior knowledge of quantum mechanics is assumed. However, it would help most readers to have met some elementary wave mechanics before. Primarily written for students, it should also be of interest to experimental research workers who require a good grasp of quantum mechanics without the full formalism needed by the professional theorist. Quantum Mechanics features: A flow diagram allowing topics to be studied in different orders or omitted altogether. Optional "starred" and highlighted sections containing more advanced and specialized material for the more ambitious reader. Sets of problems at the end of each chapter to help student understanding. Hints and solutions to the problems are given at the end of the book.
Equilibrium statistical mechanics
Jackson, E Atlee
2000-01-01
Ideal as an elementary introduction to equilibrium statistical mechanics, this volume covers both classical and quantum methodology for open and closed systems. Introductory chapters familiarize readers with probability and microscopic models of systems, while additional chapters describe the general derivation of the fundamental statistical mechanics relationships. The final chapter contains 16 sections, each dealing with a different application, ordered according to complexity, from classical through degenerate quantum statistical mechanics. Key features include an elementary introduction t
Fractional statistics and quantum theory
Khare, Avinash
1997-01-01
This book explains the subtleties of quantum statistical mechanics in lower dimensions and their possible ramifications in quantum theory. The discussion is at a pedagogical level and is addressed to both graduate students and advanced research workers with a reasonable background in quantum and statistical mechanics. The main emphasis will be on explaining new concepts. Topics in the first part of the book includes the flux tube model of anyons, the braid group and quantum and statistical mechanics of noninteracting anyon gas. The second part of the book provides a detailed discussion about f
Two-time Green's functions and spectral density method in nonextensive quantum statistical mechanics
Cavallo, A.; Cosenza, F.; De Cesare, L.
2007-01-01
We extend the formalism of the thermodynamic two-time Green's functions to nonextensive quantum statistical mechanics. Working in the optimal Lagrangian multipliers representation, the $q$-spectral properties and the methods for a direct calculation of the two-time $q$% -Green's functions and the related $q$-spectral density ($q$ measures the nonextensivity degree) for two generic operators are presented in strict analogy with the extensive ($q=1$) counterpart. Some emphasis is devoted to the...
On the geometry of the spin-statistics connection in quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Reyes, A.
2006-07-01
The Spin-Statistics theorem states that the statistics of a system of identical particles is determined by their spin: Particles of integer spin are Bosons (i.e. obey Bose-Einstein statistics), whereas particles of half-integer spin are Fermions (i.e. obey Fermi-Dirac statistics). Since the original proof by Fierz and Pauli, it has been known that the connection between Spin and Statistics follows from the general principles of relativistic Quantum Field Theory. In spite of this, there are different approaches to Spin-Statistics and it is not clear whether the theorem holds under assumptions that are different, and even less restrictive, than the usual ones (e.g. Lorentz-covariance). Additionally, in Quantum Mechanics there is a deep relation between indistinguishability and the geometry of the configuration space. This is clearly illustrated by Gibbs' paradox. Therefore, for many years efforts have been made in order to find a geometric proof of the connection between Spin and Statistics. Recently, various proposals have been put forward, in which an attempt is made to derive the Spin-Statistics connection from assumptions different from the ones used in the relativistic, quantum field theoretic proofs. Among these, there is the one due to Berry and Robbins (BR), based on the postulation of a certain single-valuedness condition, that has caused a renewed interest in the problem. In the present thesis, we consider the problem of indistinguishability in Quantum Mechanics from a geometric-algebraic point of view. An approach is developed to study configuration spaces Q having a finite fundamental group, that allows us to describe different geometric structures of Q in terms of spaces of functions on the universal cover of Q. In particular, it is shown that the space of complex continuous functions over the universal cover of Q admits a decomposition into C(Q)-submodules, labelled by the irreducible representations of the fundamental group of Q, that can be
Mandl, Franz
1992-01-01
The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition F. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw The Physics of Stars Second Edition A. C. Phillips Computing for Scient
Testa, Massimo
2015-01-01
Based on the fundamental principles of Relativistic Quantum Mechanics, we give a rigorous, but completely elementary, proof of the relation between fundamental observables of a statistical system when measured relatively to two inertial reference frames, connected by a Lorentz transformation.
Directory of Open Access Journals (Sweden)
Carlos C. Aranda
2012-04-01
Full Text Available In this article, we consider systems of nonlinear elliptic problems and their relations with minimal sufficient statistics, which is a fundamental tool in classics statistics. This allows us to introduce new experimental tools in quantum physics.
DEFF Research Database (Denmark)
Pomogaev, Vladimir; Pomogaeva, Anna; Avramov, Pavel
2011-01-01
Three polycyclic organic molecules in various solvents focused on thermo-dynamical aspects were theoretically investigated using the recently developed statistical quantum mechanical/classical molecular dynamics method for simulating electronic-vibrational spectra. The absorption bands of estradiol...
Davidson, Norman
2003-01-01
Clear and readable, this fine text assists students in achieving a grasp of the techniques and limitations of statistical mechanics. The treatment follows a logical progression from elementary to advanced theories, with careful attention to detail and mathematical development, and is sufficiently rigorous for introductory or intermediate graduate courses.Beginning with a study of the statistical mechanics of ideal gases and other systems of non-interacting particles, the text develops the theory in detail and applies it to the study of chemical equilibrium and the calculation of the thermody
A Quantitative Model for the Thermocouple Effect Using Statistical and Quantum Mechanics
Bramley, Paul; Clark, Stewart
2003-09-01
This paper employs statistical and quantum mechanics to develop a model for the mechanism underlying the Seebeck effect. The conventional view of the equilibrium criterion for valence electrons in a material is that the Fermi Energy should be constant throughout the system. However, this criterion is an approximation and it is shown to be inadequate for thermocouple systems. An improved equilibrium criterion is developed by applying statistical and quantum mechanics to determine the total flow of electrons across an arbitrary boundary within a system. Dynamic equilibrium is then considered to be the situation where the Fermi Energy either side of the boundary is such that the flow of electrons in each direction is the same. This equilibrium criterion is then applied to the conditions along the thermocouple wires and at the junctions in order to generate a model for the Seebeck effect. The equations involved for calculating the electronic structure of a material cannot be solved analytically, so a solution is achieved using numeric models employing CASTEP code running on a Sun Beowulf cluster and iterative algorithms written in the Excel™ VBA language on a PC. The model is used to calculate the EMF versus temperature function for the gold versus platinum thermocouple, which is then compared with established experimental data.
Harrison, JM; Robbins, JM; 10.1098/rspa.2010.0254
2011-01-01
Quantum graphs are commonly used as models of complex quantum systems, for example molecules, networks of wires, and states of condensed matter. We consider quantum statistics for indistinguishable spinless particles on a graph, concentrating on the simplest case of abelian statistics for two particles. In spite of the fact that graphs are locally one-dimensional, anyon statistics emerge in a generalized form. A given graph may support a family of independent anyon phases associated with topologically inequivalent exchange processes. In addition, for sufficiently complex graphs, there appear new discrete-valued phases. Our analysis is simplified by considering combinatorial rather than metric graphs -- equivalently, a many-particle tight-binding model. The results demonstrate that graphs provide an arena in which to study new manifestations of quantum statistics. Possible applications include topological quantum computing, topological insulators, the fractional quantum Hall effect, superconductivity and molec...
Jana, Madhusudan
2015-01-01
Statistical mechanics is self sufficient, written in a lucid manner, keeping in mind the exam system of the universities. Need of study this subject and its relation to Thermodynamics is discussed in detail. Starting from Liouville theorem gradually, the Statistical Mechanics is developed thoroughly. All three types of Statistical distribution functions are derived separately with their periphery of applications and limitations. Non-interacting ideal Bose gas and Fermi gas are discussed thoroughly. Properties of Liquid He-II and the corresponding models have been depicted. White dwarfs and condensed matter physics, transport phenomenon - thermal and electrical conductivity, Hall effect, Magneto resistance, viscosity, diffusion, etc. are discussed. Basic understanding of Ising model is given to explain the phase transition. The book ends with a detailed coverage to the method of ensembles (namely Microcanonical, canonical and grand canonical) and their applications. Various numerical and conceptual problems ar...
Statistical mechanics of superconductivity
Kita, Takafumi
2015-01-01
This book provides a theoretical, step-by-step comprehensive explanation of superconductivity for undergraduate and graduate students who have completed elementary courses on thermodynamics and quantum mechanics. To this end, it adopts the unique approach of starting with the statistical mechanics of quantum ideal gases and successively adding and clarifying elements and techniques indispensible for understanding it. They include the spin-statistics theorem, second quantization, density matrices, the Bloch–De Dominicis theorem, the variational principle in statistical mechanics, attractive interaction, and bound states. Ample examples of their usage are also provided in terms of topics from advanced statistical mechanics such as two-particle correlations of quantum ideal gases, derivation of the Hartree–Fock equations, and Landau’s Fermi-liquid theory, among others. With these preliminaries, the fundamental mean-field equations of superconductivity are derived with maximum mathematical clarity based on ...
Energy Technology Data Exchange (ETDEWEB)
Madsen, Marianne Sloth [Department of Chemistry, H.C. Orsted Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen O (Denmark); Danish Meteorological Institute, Lyngbyvej 100, DK-2100 Copenhagen O (Denmark)], E-mail: msm@dmi.dk; Gross, Allan [Department of Chemistry, H.C. Orsted Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen O (Denmark); Danish Meteorological Institute, Lyngbyvej 100, DK-2100 Copenhagen O (Denmark); Falsig, Hanne [Department of Chemistry, H.C. Orsted Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen O (Denmark); Kongsted, Jacob [Department of Theoretical Chemistry, Chemical Center, University of Lund, P.O. Box 124, S-22100 Lund (Sweden); Osted, Anders; Mikkelsen, Kurt V. [Department of Chemistry, H.C. Orsted Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen O (Denmark); Christiansen, Ove [Department of Chemistry, University of Aarhus, Langelandsgade 140, DK-8000 Aarhus C (Denmark)
2008-06-02
We present a combined quantum mechanics/molecular mechanics and quantum statistical investigation of the interactions between a molecule (SO{sub 2}) and an aerosol particle including rate constants for the uptake process. A coupled cluster/molecular mechanics method including explicit polarization is used along with a quantum statistical method for calculating sticking coefficients. The importance of the polarization of the classical subsystem (the aerosol particle), the size of the classical subsystem and the size of one-electron basis sets are studied. The interaction energy is divided into van der Waals, electrostatic and polarization contributions. Relevant binding sites for the evaluation of the sticking coefficient are identified. These are classified into three groups according to the strength of the molecule-aerosol particle interaction energy. The identification of binding sites provides relevant information used in the quantum statistical method and thereby knowledge of the magnitude of the sticking coefficients for the different binding sites along with the total rates for the uptake processes between the aerosol particle and the SO{sub 2} molecule.
Sheffield, Scott
2009-01-01
In recent years, statistical mechanics has been increasingly recognized as a central domain of mathematics. Major developments include the Schramm-Loewner evolution, which describes two-dimensional phase transitions, random matrix theory, renormalization group theory and the fluctuations of random surfaces described by dimers. The lectures contained in this volume present an introduction to recent mathematical progress in these fields. They are designed for graduate students in mathematics with a strong background in analysis and probability. This book will be of particular interest to graduate students and researchers interested in modern aspects of probability, conformal field theory, percolation, random matrices and stochastic differential equations.
Physics colloquium: Single-electron counting in quantum metrology and in statistical mechanics
Geneva University
2011-01-01
GENEVA UNIVERSITY Ecole de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 Genève 4 Tél.: (022) 379 62 73 Fax: (022) 379 69 92olé Lundi 17 octobre 2011 17h00 - Ecole de Physique, Auditoire Stueckelberg PHYSICS COLLOQUIUM « Single-electron counting in quantum metrology and in statistical mechanics » Prof. Jukka Pekola Low Temperature Laboratory, Aalto University Helsinki, Finland First I discuss the basics of single-electron tunneling and its potential applications in metrology. My main focus is in developing an accurate source of single-electron current for the realization of the unit ampere. I discuss the principle and the present status of the so-called single- electron turnstile. Investigation of errors in transporting electrons one by one has revealed a wealth of observations on fundamental phenomena in mesoscopic superconductivity, including individual Andreev...
Rae, Alastair I M
2016-01-01
A Thorough Update of One of the Most Highly Regarded Textbooks on Quantum Mechanics Continuing to offer an exceptionally clear, up-to-date treatment of the subject, Quantum Mechanics, Sixth Edition explains the concepts of quantum mechanics for undergraduate students in physics and related disciplines and provides the foundation necessary for other specialized courses. This sixth edition builds on its highly praised predecessors to make the text even more accessible to a wider audience. It is now divided into five parts that separately cover broad topics suitable for any general course on quantum mechanics. New to the Sixth Edition * Three chapters that review prerequisite physics and mathematics, laying out the notation, formalism, and physical basis necessary for the rest of the book * Short descriptions of numerous applications relevant to the physics discussed, giving students a brief look at what quantum mechanics has made possible industrially and scientifically * Additional end-of-chapter problems with...
Cavallo, A; Cosenza, F; De Cesare, L
2008-05-01
We extend the formalism of the thermodynamic two-time Green's functions to nonextensive quantum statistical mechanics. Working in the optimal Lagrangian multiplier representation, the q -spectral properties and the methods for a direct calculation of the two-time q Green's functions and the related q -spectral density ( q measures the nonextensivity degree) for two generic operators are presented in strict analogy with the extensive (q=1) counterpart. Some emphasis is devoted to the nonextensive version of the less known spectral density method whose effectiveness in exploring equilibrium and transport properties of a wide variety of systems has been well established in conventional classical and quantum many-body physics. To check how both the equations of motion and the spectral density methods work to study the q -induced nonextensivity effects in nontrivial many-body problems, we focus on the equilibrium properties of a second-quantized model for a high-density Bose gas with strong attraction between particles for which exact results exist in extensive conditions. Remarkably, the contributions to several thermodynamic quantities of the q -induced nonextensivity close to the extensive regime are explicitly calculated in the low-temperature regime by overcoming the calculation of the q grand-partition function.
On statistical interpretation of quantum mechanics. Detection chambers and cascade measurements
Energy Technology Data Exchange (ETDEWEB)
Benzecri, J.-P.
1986-01-01
Using analysis of a concrete experimental system, and using a formal schema, we interpret this dictum due to Heisenberg: In quantum mechanics, the frontier between object and observer, can be arbitrarily moved in the direction of the latter.
Quantum information theory and quantum statistics
Energy Technology Data Exchange (ETDEWEB)
Petz, D. [Alfred Renyi Institute of Mathematics, Budapest (Hungary)
2008-07-01
Based on lectures given by the author, this book focuses on providing reliable introductory explanations of key concepts of quantum information theory and quantum statistics - rather than on results. The mathematically rigorous presentation is supported by numerous examples and exercises and by an appendix summarizing the relevant aspects of linear analysis. Assuming that the reader is familiar with the content of standard undergraduate courses in quantum mechanics, probability theory, linear algebra and functional analysis, the book addresses graduate students of mathematics and physics as well as theoretical and mathematical physicists. Conceived as a primer to bridge the gap between statistical physics and quantum information, a field to which the author has contributed significantly himself, it emphasizes concepts and thorough discussions of the fundamental notions to prepare the reader for deeper studies, not least through the selection of well chosen exercises. (orig.)
Powell, John L
2015-01-01
Suitable for advanced undergraduates, this thorough text focuses on the role of symmetry operations and the essentially algebraic structure of quantum-mechanical theory. Based on courses in quantum mechanics taught by the authors, the treatment provides numerous problems that require applications of theory and serve to supplement the textual material.Starting with a historical introduction to the origins of quantum theory, the book advances to discussions of the foundations of wave mechanics, wave packets and the uncertainty principle, and an examination of the Schrödinger equation that includ
Digital Quantum Simulation of the Statistical Mechanics of a Frustrated Magnet
Zhang, Jingfu; Laflamme, Raymond; Aspuru-Guzik, Alán; Baugh, Jonathan
2011-01-01
Many interesting problems in physics, chemistry, and computer science are equivalent to problems of interacting spins. However, most of these problems require computational resources that are out of reach by classical computers. A promising solution to overcome this challenge is to exploit the laws of quantum mechanics to perform simulation. Several "analog" quantum simulations of interacting spin systems have been realized experimentally. However, relying on adiabatic techniques, these simulations are limited to preparing ground states only. Here we report the first experimental results on a "digital" quantum simulation on thermal states; we simulated a three-spin frustrated magnet, a building block of spin ice, with an NMR quantum information processor, and we are able to explore the phase diagram of the system at any simulated temperature and external field. These results serve as a guide for identifying the challenges for performing quantum simulation on physical systems at finite temperatures, and pave t...
Ahn, Doyeol
2011-01-01
A clear introduction to quantum mechanics concepts Quantum mechanics has become an essential tool for modern engineering, particularly due to the recent developments in quantum computing as well as the rapid progress in optoelectronic devices. Engineering Quantum Mechanics explains the fundamentals of this exciting field, providing broad coverage of both traditional areas such as semiconductor and laser physics as well as relatively new yet fast-growing areas such as quantum computation and quantum information technology. The book begins with basic quantum mechanics, reviewing measurements and probability, Dirac formulation, the uncertainty principle, harmonic oscillator, angular momentum eigenstates, and perturbation theory. Then, quantum statistical mechanics is explored, from second quantization and density operators to coherent and squeezed states, coherent interactions between atoms and fields, and the Jaynes-Cummings model. From there, the book moves into elementary and modern applications, discussing s...
Dirac, Paul A M
2001-01-01
The author of this concise, brilliant series of lectures on mathematical methods in quantum mechanics was one of the shining intellects in the field, winning a Nobel prize in 1933 for his pioneering work in the quantum mechanics of the atom. Beyond that, he developed the transformation theory of quantum mechanics (which made it possible to calculate the statistical distribution of certain variables), was one of the major authors of the quantum theory of radiation, codiscovered the Fermi-Dirac statistics, and predicted the existence of the positron.The four lectures in this book were delivered
de Martini, Francesco; Santamato, Enrico
2016-04-01
The traditional standard theory of quantum mechanics is unable to solve the spin-statistics problem, i.e. to justify the utterly important “Pauli Exclusion Principle” but by the adoption of the complex standard relativistic quantum field theory. In a recent paper [E. Santamato and F. D. De Martini, Found. Phys. 45 (2015) 858] we presented a complete proof of the spin-statistics problem in the nonrelativistic approximation on the basis of the “Conformal Quantum Geometrodynamics” (CQG). In this paper, by the same theory, the proof of the spin-statistics theorem (SST) is extended to the relativistic domain in the scenario of curved spacetime. No relativistic quantum field operators are used in the present proof and the particle exchange properties are drawn from rotational invariance rather than from Lorentz invariance. Our relativistic approach allows to formulate a manifestly step-by-step Weyl gauge invariant theory and to emphasize some fundamental aspects of group theory in the demonstration. As in the nonrelativistic case, we find once more that the “intrinsic helicity” of the elementary particles enters naturally into play. It is therefore this property, not considered in the standard quantum mechanics (SQM), which determines the correct spin-statistics connection observed in Nature.
Fitzpatrick, Richard
2015-01-01
Quantum mechanics was developed during the first few decades of the twentieth century via a series of inspired guesses made by various physicists, including Planck, Einstein, Bohr, Schroedinger, Heisenberg, Pauli, and Dirac. All these scientists were trying to construct a self-consistent theory of microscopic dynamics that was compatible with experimental observations. The purpose of this book is to present quantum mechanics in a clear, concise, and systematic fashion, starting from the fundamental postulates, and developing the theory in as logical manner as possible. Topics covered in the book include the fundamental postulates of quantum mechanics, angular momentum, time-dependent and time-dependent perturbation theory, scattering theory, identical particles, and relativistic electron theory.
Ghosh, P K
2014-01-01
Quantum mechanics, designed for advanced undergraduate and graduate students of physics, mathematics and chemistry, provides a concise yet self-contained introduction to the formal framework of quantum mechanics, its application to physical problems and the interpretation of the theory. Starting with a review of some of the necessary mathematics, the basic concepts are carefully developed in the text. After building a general formalism, detailed treatment of the standard material - the harmonic oscillator, the hydrogen atom, angular momentum theory, symmetry transformations, approximation methods, identical particle and many-particle systems, and scattering theory - is presented. The concluding chapter discusses the interpretation of quantum mechanics. Some of the important topics discussed in the book are the rigged Hilbert space, deformation quantization, path integrals, coherent states, geometric phases, decoherene, etc. This book is characterized by clarity and coherence of presentation.
Gol'dman, I I
2010-01-01
A comprehensive collection of problems of varying degrees of difficulty in nonrelativistic quantum mechanics, with answers and completely worked-out solutions. Among the topics: one-dimensional motion, transmission through a potential barrier, commutation relations, angular momentum and spin, and motion of a particle in a magnetic field. An ideal adjunct to any textbook in quantum mechanics, useful in courses in atomic and nuclear physics, mathematical methods in physics, quantum statistics and applied differential equations. 1961 edition.
Rae, Alastair I M
2007-01-01
PREFACESINTRODUCTION The Photoelectric Effect The Compton Effect Line Spectra and Atomic Structure De Broglie Waves Wave-Particle Duality The Rest of This Book THE ONE-DIMENSIONAL SCHRÖDINGER EQUATIONS The Time-Dependent Schrödinger Equation The Time-Independent Schrödinger Equation Boundary ConditionsThe Infinite Square Well The Finite Square Well Quantum Mechanical Tunneling The Harmonic Oscillator THE THREE-DIMENSIONAL SCHRÖDINGER EQUATIONS The Wave Equations Separation in Cartesian Coordinates Separation in Spherical Polar Coordinates The Hydrogenic Atom THE BASIC POSTULATES OF QUANTUM MEC
Zagoskin, Alexandre
2015-01-01
Written by Dr Alexandre Zagoskin, who is a Reader at Loughborough University, Quantum Mechanics: A Complete Introduction is designed to give you everything you need to succeed, all in one place. It covers the key areas that students are expected to be confident in, outlining the basics in clear jargon-free English, and then providing added-value features like summaries of key ideas, and even lists of questions you might be asked in your exam. The book uses a structure that is designed to make quantum physics as accessible as possible - by starting with its similarities to Newtonian physics, ra
Craig, Ian R; Manolopoulos, David E
2004-08-22
We propose an approximate method for calculating Kubo-transformed real-time correlation functions involving position-dependent operators, based on path integral (Parrinello-Rahman) molecular dynamics. The method gives the exact quantum mechanical correlation function at time zero, exactly satisfies the quantum mechanical detailed balance condition, and for correlation functions of the form C(Ax)(t) and C(xB)(t) it gives the exact result for a harmonic potential. It also works reasonably well at short times for more general potentials and correlation functions, as we illustrate with some example calculations. The method provides a consistent improvement over purely classical molecular dynamics that is most apparent in the low-temperature regime.
Elements of Statistical Mechanics
Sachs, Ivo; Sen, Siddhartha; Sexton, James
2006-05-01
This textbook provides a concise introduction to the key concepts and tools of modern statistical mechanics. It also covers advanced topics such as non-relativistic quantum field theory and numerical methods. After introducing classical analytical techniques, such as cluster expansion and Landau theory, the authors present important numerical methods with applications to magnetic systems, Lennard-Jones fluids and biophysics. Quantum statistical mechanics is discussed in detail and applied to Bose-Einstein condensation and topics in astrophysics and cosmology. In order to describe emergent phenomena in interacting quantum systems, canonical non-relativistic quantum field theory is introduced and then reformulated in terms of Feynman integrals. Combining the authors' many years' experience of teaching courses in this area, this textbook is ideal for advanced undergraduate and graduate students in physics, chemistry and mathematics. Analytical and numerical techniques in one text, including sample codes and solved problems on the web at www.cambridge.org/0521841984 Covers a wide range of applications including magnetic systems, turbulence astrophysics, and biology Contains a concise introduction to Markov processes and molecular dynamics
Hasselbach, Franz
2005-05-01
Our miniaturized electron biprism interferometer [1] proved to be many orders of magnitude less sensitive to mechanical and electromagnetic disturbances than conventional interferometers (modified electron microscopes). Experiments so far inconceivable with electron waves, e.g., to rotate an electron interferometer on a turntable and to prove the Sagnac phase shift [2,3] or to realize biprism interferences with He-ions [4] with wavelengths as small as 0.3 pm became reality. A crossed-field analyzer (Wien filter) in the beam path of our electron interferometer allows to introduce electric and magnetic Aharonov-Bohm phase differences and transit time differences between the interfering wave packets [5]. For wave packet shifts introduced by the Wien filter which exceed the coherence length, which-path information is available in principle, leading to vanishing fringe contrast. Since which-path information is not read out in this experiment, fringe contrast can be restored by compensating the longitudinal shift in a second shifting device. Only recently we succeeded to demonstrate that electrons arrive at two coherently illuminated detectors `antibunched' [6], i.e., according to the demands of Fermi statistics. At present, our intertest is focused on decoherence. Coherently split electron waves propagate over a resistive plate. Which-path information of the electrons decreases with increasing height of flight. In turn the contrast of the fringes increases [7,8].[1] F. Hasselbach, Z. Phys. B -- Condensed Matter 71(1988), 443-449.[2] F. Hasselbach, M. Nicklaus, Phys. Rev. A 48(1993), 143-151.[3] R. Neutze, F. Hasselbach, Phys. Rev. A 58(1998), 557-565.[4] F. Hasselbach, U. Maier, in Quantum Coherence and Decoherence: Proc. ISQM-Tokyo`98 p. 299-302, eds. Y.Y. Ono and K. Fujikawa, Amsterdam, Elsevier, 1999.[5] M. Nicklaus, F. Hasselbach, Phys. Rev. A 48(1993), 152-160.[6] Harald Kiesel, Andreas Renz & F. Hasselbach, Nature 418(2002), 392-394.[7] H.D. Zeh, Found. Phys. 1
Lecture notes on quantum statistics
Gill, R.D.
2001-01-01
These notes are meant to form the material for an introductory course on quantum statistics at the graduate level aimed at mathematical statisticians and probabilists No background in physics quantum or otherwise is required They are still far from complete
Quantum statistical zero-knowledge
2002-01-01
In this paper we propose a definition for (honest verifier) quantum statistical zero-knowledge interactive proof systems and study the resulting complexity class, which we denote QSZK. We prove several facts regarding this class that establish close connections between classical statistical zero-knowledge and our definition for quantum statistical zero-knowledge, and give some insight regarding the effect of this zero-knowledge restriction on quantum interactive proof systems.
Digital quantum simulation of the statistical mechanics of a frustrated magnet.
Zhang, Jingfu; Yung, Man-Hong; Laflamme, Raymond; Aspuru-Guzik, Alán; Baugh, Jonathan
2012-06-06
Many problems of interest in physics, chemistry and computer science are equivalent to problems defined on systems of interacting spins. However, most such problems require computational resources that are out of reach with classical computers. A promising solution to overcome this challenge is quantum simulation. Several 'analogue' quantum simulations of interacting spin systems have been realized experimentally, where ground states were prepared using adiabatic techniques. Here we report a 'digital' quantum simulation of thermal states; a three-spin frustrated magnet was simulated using a nuclear magnetic resonance quantum information processor, and we were able to explore the phase diagram of the system at any simulated temperature and external field. These results help to identify the challenges for performing quantum simulations of physical systems at finite temperatures, and suggest methods that may be useful in simulating thermal open quantum systems.
Quantum field theory from classical statistics
Wetterich, C
2011-01-01
An Ising-type classical statistical model is shown to describe quantum fermions. For a suitable time-evolution law for the probability distribution of the Ising-spins our model describes a quantum field theory for Dirac spinors in external electromagnetic fields, corresponding to a mean field approximation to quantum electrodynamics. All quantum features for the motion of an arbitrary number of electrons and positrons, including the characteristic interference effects for two-fermion states, are described by the classical statistical model. For one-particle states in the non-relativistic approximation we derive the Schr\\"odinger equation for a particle in a potential from the time evolution law for the probability distribution of the Ising-spins. Thus all characteristic quantum features, as interference in a double slit experiment, tunneling or discrete energy levels for stationary states, are derived from a classical statistical ensemble. Concerning the particle-wave-duality of quantum mechanics, the discret...
Improta, Roberto; Vitagliano, Luigi; Esposito, Luciana
2015-11-01
The elucidation of the mutual influence between peptide bond geometry and local conformation has important implications for protein structure refinement, validation, and prediction. To gain insights into the structural determinants and the energetic contributions associated with protein/peptide backbone plasticity, we here report an extensive analysis of the variability of the peptide bond angles by combining statistical analyses of protein structures and quantum mechanics calculations on small model peptide systems. Our analyses demonstrate that all the backbone bond angles strongly depend on the peptide conformation and unveil the existence of regular trends as function of ψ and/or φ. The excellent agreement of the quantum mechanics calculations with the statistical surveys of protein structures validates the computational scheme here employed and demonstrates that the valence geometry of protein/peptide backbone is primarily dictated by local interactions. Notably, for the first time we show that the position of the H(α) hydrogen atom, which is an important parameter in NMR structural studies, is also dependent on the local conformation. Most of the trends observed may be satisfactorily explained by invoking steric repulsive interactions; in some specific cases the valence bond variability is also influenced by hydrogen-bond like interactions. Moreover, we can provide a reliable estimate of the energies involved in the interplay between geometry and conformations.
On Quantum Statistical Inference, II
Barndorff-Nielsen, O. E.; Gill, R. D.; Jupp, P.E.
2003-01-01
Interest in problems of statistical inference connected to measurements of quantum systems has recently increased substantially, in step with dramatic new developments in experimental techniques for studying small quantum systems. Furthermore, theoretical developments in the theory of quantum measurements have brought the basic mathematical framework for the probability calculations much closer to that of classical probability theory. The present paper reviews this field and proposes and inte...
Quantum Mechanics and Quantum Field Theory
Dimock, Jonathan
2011-02-01
Introduction; Part I. Non-relativistic: 1. Mathematical prelude; 2. Classical mechanics; 3. Quantum mechanics; 4. Single particle; 5. Many particles; 6. Statistical mechanics; Part II. Relativistic: 7. Relativity; 8. Scalar particles and fields; 9. Electrons and photons; 10. Field theory on a manifold; Part III. Probabilistic Methods: 11. Path integrals; 12. Fields as random variables; 13. A nonlinear field theory; Appendices; References; Index.
Kutnink, Timothy; Santrach, Amelia; Hockett, Sarah; Barcus, Scott; Petridis, Athanasios
2016-09-01
The time-dependent electromagnetically self-coupled Dirac equation is solved numerically by means of the staggered-leap-frog algorithm with reflecting boundary conditions. The stability region of the method versus the interaction strength and the spatial-grid size over time-step ratio is established. The expectation values of several dynamic operators are then evaluated as functions of time. These include the fermion and electromagnetic energies and the fermion dynamic mass, as the self-interacting spinors are no longer mass-eigenfunctions. There is a characteristic, non-exponential, oscillatory dependence leading to asymptotic constants of these expectation values. In the case of the fermion mass this amounts to renormalization. The dependence of the expectation values on the spatial-grid size is evaluated in detail. Statistical regularization, employing a canonical ensemble whose temperature is the inverse of the grid size, is used to remove the grid-size dependence and produce a finite result in the continuum limit.
Lectures on statistical mechanics
Bowler, M G
1982-01-01
Anyone dissatisfied with the almost ritual dullness of many 'standard' texts in statistical mechanics will be grateful for the lucid explanation and generally reassuring tone. Aimed at securing firm foundations for equilibrium statistical mechanics, topics of great subtlety are presented transparently and enthusiastically. Very little mathematical preparation is required beyond elementary calculus and prerequisites in physics are limited to some elementary classical thermodynamics. Suitable as a basis for a first course in statistical mechanics, the book is an ideal supplement to more convent
Equilibrium statistical mechanics
Mayer, J E
1968-01-01
The International Encyclopedia of Physical Chemistry and Chemical Physics, Volume 1: Equilibrium Statistical Mechanics covers the fundamental principles and the development of theoretical aspects of equilibrium statistical mechanics. Statistical mechanical is the study of the connection between the macroscopic behavior of bulk matter and the microscopic properties of its constituent atoms and molecules. This book contains eight chapters, and begins with a presentation of the master equation used for the calculation of the fundamental thermodynamic functions. The succeeding chapters highlight t
Hidden Statistics Approach to Quantum Simulations
Zak, Michail
2010-01-01
Recent advances in quantum information theory have inspired an explosion of interest in new quantum algorithms for solving hard computational (quantum and non-quantum) problems. The basic principle of quantum computation is that the quantum properties can be used to represent structure data, and that quantum mechanisms can be devised and built to perform operations with this data. Three basic non-classical properties of quantum mechanics superposition, entanglement, and direct-product decomposability were main reasons for optimism about capabilities of quantum computers that promised simultaneous processing of large massifs of highly correlated data. Unfortunately, these advantages of quantum mechanics came with a high price. One major problem is keeping the components of the computer in a coherent state, as the slightest interaction with the external world would cause the system to decohere. That is why the hardware implementation of a quantum computer is still unsolved. The basic idea of this work is to create a new kind of dynamical system that would preserve the main three properties of quantum physics superposition, entanglement, and direct-product decomposability while allowing one to measure its state variables using classical methods. In other words, such a system would reinforce the advantages and minimize limitations of both quantum and classical aspects. Based upon a concept of hidden statistics, a new kind of dynamical system for simulation of Schroedinger equation is proposed. The system represents a modified Madelung version of Schroedinger equation. It preserves superposition, entanglement, and direct-product decomposability while allowing one to measure its state variables using classical methods. Such an optimal combination of characteristics is a perfect match for simulating quantum systems. The model includes a transitional component of quantum potential (that has been overlooked in previous treatment of the Madelung equation). The role of the
On quantum statistics in data analysis
Pavlovic, Dusko
2008-01-01
Originally, quantum probability theory was developed to analyze statistical phenomena in quantum systems, where classical probability theory does not apply, because the lattice of measurable sets is not necessarily distributive. On the other hand, it is well known that the lattices of concepts, that arise in data analysis, are in general also non-distributive, albeit for completely different reasons. In his recent book, van Rijsbergen argues that many of the logical tools developed for quantum systems are also suitable for applications in information retrieval. I explore the mathematical support for this idea on an abstract vector space model, covering several forms of data analysis (information retrieval, data mining, collaborative filtering, formal concept analysis...), and roughly based on an idea from categorical quantum mechanics. It turns out that quantum (i.e., noncommutative) probability distributions arise already in this rudimentary mathematical framework. Moreover, a Bell-type inequality is formula...
Greiner, Walter
1989-01-01
"Quantum Dynamics" is a major survey of quantum theory based on Walter Greiner's long-running and highly successful courses at the University of Frankfurt. The key to understanding in quantum theory is to reinforce lecture attendance and textual study by working through plenty of representative and detailed examples. Firm belief in this principle led Greiner to develop his unique course and to transform it into a remarkable and comprehensive text. The text features a large number of examples and exercises involving many of the most advanced topics in quantum theory. These examples give practical and precise demonstrations of how to use the often subtle mathematics behind quantum theory. The text is divided into five volumes: Quantum Mechanics I - An Introduction, Quantum Mechanics II - Symmetries, Relativistic Quantum Mechanics, Quantum Electrodynamics, Gauge Theory of Weak Interactions. These five volumes take the reader from the fundamental postulates of quantum mechanics up to the latest research in partic...
Discrete gravity from statistical mechanics
Romano, Antonio Enea
2011-01-01
We show how to construct space time lattices with a Regge action proportional to the energy of a given Ising or Potts model macrostate. This allows to take advantage of the existence of exact solutions for these models to calculate the quantum wave function of the universe using the sum over the histories approach to quantum gravity. Motivated by this isomorphism we show how the Regge equations, i.e. the discrete equivalent of the vacuum Einstein equations, can be derived using statistical mechanics under the assumption that the energy of a given space time geometry is proportional to the Regge action.
Introduction to quantum mechanics
Villaseñor, Eduardo J. S.
2008-01-01
The purpose of this contribution is to give a very brief introduction to Quantum Mechanics for an audience of mathematicians. I will follow Segal's approach to Quantum Mechanics paying special attention to algebraic issues. The usual representation of Quantum Mechanics on Hilbert spaces is also discussed.
Testing Nonassociative Quantum Mechanics.
Bojowald, Martin; Brahma, Suddhasattwa; Büyükçam, Umut
2015-11-27
The familiar concepts of state vectors and operators in quantum mechanics rely on associative products of observables. However, these notions do not apply to some exotic systems such as magnetic monopoles, which have long been known to lead to nonassociative algebras. Their quantum physics has remained obscure. This Letter presents the first derivation of potentially testable physical results in nonassociative quantum mechanics, based on effective potentials. They imply new effects which cannot be mimicked in usual quantum mechanics with standard magnetic fields.
Modern Thermodynamics with Statistical Mechanics
Helrich, Carl S
2009-01-01
With the aim of presenting thermodynamics in as simple and as unified a form as possible, this textbook starts with an introduction to the first and second laws and then promptly addresses the complete set of the potentials in a subsequent chapter and as a central theme throughout. Before discussing modern laboratory measurements, the book shows that the fundamental quantities sought in the laboratory are those which are required for determining the potentials. Since the subjects of thermodynamics and statistical mechanics are a seamless whole, statistical mechanics is treated as integral part of the text. Other key topics such as irreversibility, the ideas of Ilya Prigogine, chemical reaction rates, equilibrium of heterogeneous systems, and transition-state theory serve to round out this modern treatment. An additional chapter covers quantum statistical mechanics due to active current research in Bose-Einstein condensation. End-of-chapter exercises, chapter summaries, and an appendix reviewing fundamental pr...
Playing at Statistical Mechanics
Clark, Paul M.; And Others
1974-01-01
Discussed are the applications of counting techniques of a sorting game to distributions and concepts in statistical mechanics. Included are the following distributions: Fermi-Dirac, Bose-Einstein, and most probable. (RH)
Statistical mechanics of pluripotency.
MacArthur, Ben D; Lemischka, Ihor R
2013-08-01
Recent reports using single-cell profiling have indicated a remarkably dynamic view of pluripotent stem cell identity. Here, we argue that the pluripotent state is not well defined at the single-cell level but rather is a statistical property of stem cell populations, amenable to analysis using the tools of statistical mechanics and information theory.
Mathematical foundation of quantum mechanics
Parthasarathy, K R
2005-01-01
This is a brief introduction to the mathematical foundations of quantum mechanics based on lectures given by the author to Ph.D.students at the Delhi Centre of the Indian Statistical Institute in order to initiate active research in the emerging field of quantum probability. The material in the first chapter is included in the author's book "An Introduction to Quantum Stochastic Calculus" published by Birkhauser Verlag in 1992 and the permission of the publishers to reprint it here is acknowledged. Apart from quantum probability, an understanding of the role of group representations in the development of quantum mechanics is always a fascinating theme for mathematicians. The first chapter deals with the definitions of states, observables and automorphisms of a quantum system through Gleason's theorem, Hahn-Hellinger theorem and Wigner's theorem. Mackey's imprimitivity theorem and the theorem of inducing representations of groups in stages are proved directly for projective unitary antiunitary representations ...
Quantum mechanical irreversibility and measurement
Grigolini, P
1993-01-01
This book is intended as a tutorial approach to some of the techniques used to deal with quantum dissipation and irreversibility, with special focus on their applications to the theory of measurements. The main purpose is to provide readers without a deep expertise in quantum statistical mechanics with the basic tools to develop a critical judgement on whether the major achievements in this field have to be considered a satisfactory solution of quantum paradox, or rather this ambitious achievement has to be postponed to when a new physics, more general than quantum and classical physics, will
Advanced Visual Quantum Mechanics
Thaller, Bernd
2005-01-01
Advanced Visual Quantum Mechanics is a systematic effort to investigate and to teach quantum mechanics with the aid of computer-generated animations. It is a self-contained textbook that combines selected topics from atomic physics (spherical symmetry, the hydrogen atom, and particles with spin) with an introduction to quantum information theory (qubits, EPR paradox, teleportation, quantum computers). It explores relativistic quantum mechanics and the strange behavior of Dirac equation solutions. A series of appendices covers important topics from perturbation and scattering theory. The book places an emphasis on ideas and concepts, with a fair to moderate amount of mathematical rigor. Though this book stands alone, it can also be paired with Thaller Visual Quantum Mechanics to form a comprehensive course in quantum mechanics. The software for the first book earned the European Academic Software Award 2000 for outstanding innovation in its field.
Quantum mechanics in chemistry
Schatz, George C
2002-01-01
Intended for graduate and advanced undergraduate students, this text explores quantum mechanical techniques from the viewpoint of chemistry and materials science. Dynamics, symmetry, and formalism are emphasized. An initial review of basic concepts from introductory quantum mechanics is followed by chapters examining symmetry, rotations, and angular momentum addition. Chapter 4 introduces the basic formalism of time-dependent quantum mechanics, emphasizing time-dependent perturbation theory and Fermi's golden rule. Chapter 5 sees this formalism applied to the interaction of radiation and matt
Computational statistical mechanics
Hoover, WG
1991-01-01
Computational Statistical Mechanics describes the use of fast computers to simulate the equilibrium and nonequilibrium properties of gases, liquids, and solids at, and away from equilibrium. The underlying theory is developed from basic principles and illustrated by applying it to the simplest possible examples. Thermodynamics, based on the ideal gas thermometer, is related to Gibb's statistical mechanics through the use of Nosé-Hoover heat reservoirs. These reservoirs use integral feedback to control temperature. The same approach is carried through to the simulation and anal
Quantum mechanics for pedestrians
Pade, Jochen
2014-01-01
This book provides an introduction into the fundamentals of non-relativistic quantum mechanics. In Part 1, the essential principles are developed. Applications and extensions of the formalism can be found in Part 2. The book includes not only material that is presented in traditional textbooks on quantum mechanics, but also discusses in detail current issues such as interaction-free quantum measurements, neutrino oscillations, various topics in the field of quantum information as well as fundamental problems and epistemological questions, such as the measurement problem, entanglement, Bell's inequality, decoherence, and the realism debate. A chapter on current interpretations of quantum mechanics concludes the book. To develop quickly and clearly the main principles of quantum mechanics and its mathematical formulation, there is a systematic change between wave mechanics and algebraic representation in the first chapters. The required mathematical tools are introduced step by step. Moreover, the appendix coll...
Mathematical foundations of quantum mechanics
Mackey, George W
2004-01-01
Designed for students familiar with abstract mathematical concepts but possessing little knowledge of physics, this text focuses on generality and careful formulation rather than problem-solving. Its author, a member of the distinguished National Academy of Science, based this graduate-level text on the course he taught at Harvard University.Opening chapters on classical mechanics examine the laws of particle mechanics; generalized coordinates and differentiable manifolds; oscillations, waves, and Hilbert space; and statistical mechanics. A survey of quantum mechanics covers the old quantum
Facing quantum mechanical reality.
Rohrlich, F
1983-09-23
Two recent precision experiments provide conclusive evidence against any local hidden variables theory and in favor of standard quantum mechanics. Therefore the epistemology and the ontology of quantum mechanics must now be taken more seriously than ever before. The consequences of the standard interpretation of quantum mechanics are summarized in nontechnical language. The implications of the finiteness of Planck's constant (h > 0) for the quantum world are as strange as the implications of the finiteness of the speed of light (c < infinity for space and time in relativity theory. Both lead to realities beyond our common experience that cannot be rejected.
Holography and Quantum Mechanics
Wang, X J
2002-01-01
It is illustrated that quantum mechanics can be interpreted as holographic projection of higher dimension classical gravity. In this explanation every quantum path in D-dimension is dual to a classical path of (D+1)-dimension gravity under definite holographic projection. I consider 2-dimension non-relativitic free particle and harmonic oscillator as two examples, and find their gravity dual. I conjecture that every quantum mechanics system has their dual gravity description.
Elementary Nonrelativistic Quantum Mechanics
Rosu, H C
2000-01-01
This is a graduate course on elementary quantum mechanics written for the benefit of undergraduate and graduate students. It is the English version of physics/0003106, which I did at the suggestion of several students from different countries. The topics included refer to the postulates of quantum mechanics, one-dimensional barriers and wells, angular momentum and spin, WKB method, harmonic oscillator, hydrogen atom, quantum scattering, and partial waves
Chang, Lay Nam; Minic, Djordje; Takeuchi, Tatsu
2012-01-01
We construct a discrete quantum mechanics using a vector space over the Galois field GF(q). We find that the correlations in our model do not violate the Clauser-Horne-Shimony-Holt (CHSH) version of Bell's inequality, despite the fact that the predictions of this discrete quantum mechanics cannot be reproduced with any hidden variable theory.
Goldman, Iosif Ilich; Geilikman, B T
2006-01-01
This challenging book contains a comprehensive collection of problems in nonrelativistic quantum mechanics of varying degrees of difficulty. It features answers and completely worked-out solutions to each problem. Geared toward advanced undergraduates and graduate students, it provides an ideal adjunct to any textbook in quantum mechanics.
Quantum Coins, Dice and Children: Probability and Quantum Statistics
Chow, Chi-Keung; Cohen, Thomas D.
1999-01-01
We discuss counterintuitive aspects of probabilities for systems of identical particles obeying quantum statistics. Quantum coins and children (two level systems) and quantum dice (many level systems) are used as examples. It is emphasized that, even in the absence of interactions, (anti)symmetrizations of multi-particle wavefunctions destroy statistical independences and often lead to dramatic departures from our intuitive expectations.
Directory of Open Access Journals (Sweden)
Tadashi Okazaki
2015-01-01
Full Text Available We consider the multiple M2-branes wrapped on a compact Riemann surface and study the arising quantum mechanics by taking the limit where the size of the Riemann surface goes to zero. The IR quantum mechanical models resulting from the BLG-model and the ABJM-model compactified on a torus are N=16 and N=12 superconformal gauged quantum mechanics. After integrating out the auxiliary gauge fields we find OSp(16|2 and SU(1,1|6 quantum mechanics from the reduced systems. The curved Riemann surface is taken as a holomorphic curve in a Calabi–Yau space to preserve supersymmetry and we present a prescription of the topological twisting. We find the N=8 superconformal gauged quantum mechanics that may describe the motion of two wrapped M2-branes in a K3 surface.
Quantum mechanics for applied physics and engineering
Fromhold, Albert T
2011-01-01
This excellent text, directed to upper-level undergraduates and graduate students in engineering and applied physics, introduces the fundamentals of quantum mechanics, emphasizing those aspects of quantum mechanics and quantum statistics essential to an understanding of solid-state theory. A heavy background in mathematics and physics is not required beyond basic courses in calculus, differential equations, and calculus-based elementary physics.The first three chapters introduce quantum mechanics (using the Schrödinger equations), quantum statistics, and the free-electron theory of metals. Ch
Statistical mechanics and fractals
Dobrushin, Roland Lvovich
1993-01-01
This book is composed of two texts, by R.L. Dobrushin and S. Kusuoka, each representing the content of a course of lectures given by the authors. They are pitched at graduate student level and are thus very accessible introductions to their respective subjects for students and non specialists. CONTENTS: R.L. Dobrushin: On the Way to the Mathematical Foundations of Statistical Mechanics.- S. Kusuoka: Diffusion Processes on Nested Fractals.
Statistical thermodynamics of polymer quantum systems
Chacón-Acosta, Guillermo; Dagdug, Leonardo; Morales-Técotl, Hugo A
2011-01-01
Polymer quantum systems are mechanical models quantized similarly as loop quantum gravity. It is actually in quantizing gravity that the polymer term holds proper as the quantum geometry excitations yield a reminiscent of a polymer material. In such an approach both non-singular cosmological models and a microscopic basis for the entropy of some black holes have arisen. Also important physical questions for these systems involve thermodynamics. With this motivation, in this work, we study the statistical thermodynamics of two one dimensional {\\em polymer} quantum systems: an ensemble of oscillators that describe a solid and a bunch of non-interacting particles in a box, which thus form an ideal gas. We first study the spectra of these polymer systems. It turns out useful for the analysis to consider the length scale required by the quantization and which we shall refer to as polymer length. The dynamics of the polymer oscillator can be given the form of that for the standard quantum pendulum. Depending on the...
Quantum Mechanics interpreted in Quantum Real Numbers
Corbett, J V; Corbett, John V; Durt, Thomas
2002-01-01
The concept of number is fundamental to the formulation of any physical theory. We give a heuristic motivation for the reformulation of Quantum Mechanics in terms of non-standard real numbers called Quantum Real Numbers. The standard axioms of quantum mechanics are re-interpreted. Our aim is to show that, when formulated in the language of quantum real numbers, the laws of quantum mechanics appear more natural, less counterintuitive than when they are presented in terms of standard numbers.
Lodola, Alessio; Sirirak, Jitnapa; Fey, Natalie; Rivara, Silvia; Mor, Marco; Mulholland, Adrian J
2010-09-14
The effects of structural fluctuations, due to protein dynamics, on enzyme activity are at the heart of current debates on enzyme catalysis. There is evidence that fatty acid amide hydrolase (FAAH) is an enzyme for which reaction proceeds via a high-energy, reactive conformation, distinct from the predominant enzyme-substrate complex (Lodola et al. Biophys. J. 2007, 92, L20-22). Identifying the structural causes of differences in reactivity between conformations in such complex systems is not trivial. Here, we show that multivariate analysis of key structural parameters can identify structural determinants of barrier height by analysis of multiple reaction paths. We apply a well-tested quantum mechanics/molecular mechanics (QM/MM) method to the first step of the acylation reaction between FAAH and oleamide substrate for 36 different starting structures. Geometrical parameters (consisting of the key bond distances that change during the reaction) were collected and used for principal component analysis (PCA), partial least-squares (PLS) regression analysis, and multiple linear regression (MLR) analysis. PCA indicates that different "families" of enzyme-substrate conformations arise from QM/MM molecular dynamics simulation and that rarely sampled, catalytically significant conformational states can be identified. PLS and MLR analyses allowed the construction of linear regression models, correlating the calculated activation barriers with simple geometrical descriptors. These analyses reveal the presence of two fully independent geometrical effects, explaining 78% of the variation in the activation barrier, which are directly correlated with transition-state stabilization (playing a major role in catalysis) and substrate binding. These results highlight the power of statistical approaches of this type in identifying crucial structural features that contribute to enzyme reactivity.
Energy Technology Data Exchange (ETDEWEB)
Kapustin, Anton [California Institute of Technology, Pasadena, California 91125 (United States)
2013-06-15
We formulate physically motivated axioms for a physical theory which for systems with a finite number of degrees of freedom uniquely lead to quantum mechanics as the only nontrivial consistent theory. Complex numbers and the existence of the Planck constant common to all systems arise naturally in this approach. The axioms are divided into two groups covering kinematics and basic measurement theory, respectively. We show that even if the second group of axioms is dropped, there are no deformations of quantum mechanics which preserve the kinematic axioms. Thus, any theory going beyond quantum mechanics must represent a radical departure from the usual a priori assumptions about the laws of nature.
Quantum mechanics for mathematicians
Takhtajan, Leon A
2008-01-01
This book provides a comprehensive treatment of quantum mechanics from a mathematics perspective and is accessible to mathematicians starting with second-year graduate students. It addition to traditional topics, like classical mechanics, mathematical foundations of quantum mechanics, quantization, and the Schrodinger equation, this book gives a mathematical treatment of systems of identical particles with spin, and it introduces the reader to functional methods in quantum mechanics. This includes the Feynman path integral approach to quantum mechanics, integration in functional spaces, the relation between Feynman and Wiener integrals, Gaussian integration and regularized determinants of differential operators, fermion systems and integration over anticommuting (Grassmann) variables, supersymmetry and localization in loop spaces, and supersymmetric derivation of the Atiyah-Singer formula for the index of the Dirac operator. Prior to this book, mathematicians could find these topics only in physics textbooks ...
Statistical mechanics of learning
Engel, Andreas
2001-01-01
The effort to build machines that are able to learn and undertake tasks such as datamining, image processing and pattern recognition has led to the development of artificial neural networks in which learning from examples may be described and understood. The contribution to this subject made over the past decade by researchers applying the techniques of statistical mechanics is the subject of this book. The authors provide a coherent account of various important concepts and techniques that are currently only found scattered in papers, supplement this with background material in mathematics and physics, and include many examples and exercises.
Quantum mechanical Carnot engine
Bender, C M; Meister, B K
2000-01-01
A cyclic thermodynamic heat engine runs most efficiently if it is reversible. Carnot constructed such a reversible heat engine by combining adiabatic and isothermal processes for a system containing an ideal gas. Here, we present an example of a cyclic engine based on a single quantum-mechanical particle confined to a potential well. The efficiency of this engine is shown to equal the Carnot efficiency because quantum dynamics is reversible. The quantum heat engine has a cycle consisting of adiabatic and isothermal quantum processes that are close analogues of the corresponding classical processes.
Emergent quantum mechanics and emergent symmetries
Hooft, G. 't
2007-01-01
Quantum mechanics is ‘emergent’ if a statistical treatment of large scale phenomena in a locally deterministic theory requires the use of quantum operators. These quantum operators may allow for symmetry transformations that are not present in the underlying deterministic system. Such
Yokogawa, Daisuke; Ono, Kohei; Sato, Hirofumi; Sakaki, Shigeyoshi
2011-11-14
The ligand exchange process of cis-platin in aqueous solution was studied using RISM-SCF-SEDD (reference interaction site model-self-consistent field with spatial electron density distribution) method, a hybrid approach of quantum chemistry and statistical mechanics. The analytical nature of RISM theory enables us to compute accurate reaction free energy in aqueous solution based on CCSD(T), together with the microscopic solvation structure around the complex. We found that the solvation effect is indispensable to promote the dissociation of the chloride anion from the complex.
Odake, Satoru; Sasaki, Ryu
2011-01-01
A comprehensive review of the discrete quantum mechanics with the pure imaginary shifts and the real shifts is presented in parallel with the corresponding results in the ordinary quantum mechanics. The main subjects to be covered are the factorised Hamiltonians, the general structure of the solution spaces of the Schroedinger equation (Crum's theorem and its modification), the shape invariance, the exact solvability in the Schroedinger picture as well as in the Heisenberg picture, the creati...
Quantum mechanics of black holes.
Witten, Edward
2012-08-03
The popular conception of black holes reflects the behavior of the massive black holes found by astronomers and described by classical general relativity. These objects swallow up whatever comes near and emit nothing. Physicists who have tried to understand the behavior of black holes from a quantum mechanical point of view, however, have arrived at quite a different picture. The difference is analogous to the difference between thermodynamics and statistical mechanics. The thermodynamic description is a good approximation for a macroscopic system, but statistical mechanics describes what one will see if one looks more closely.
Quantum entanglement and teleportation using statistical correlations
Indian Academy of Sciences (India)
Atul Kumar; Mangala Sunder Krishnan
2009-09-01
A study of quantum teleportation using two and three-particle correlated density matrix is presented. A criterion based on standard quantum statistical correlations employed in the many-body virial expansion is used to determine the extent of entanglement for a 2-particle system. A relation between the probability and statistical parameters is established using the correlated density matrices for the particles.
Statistical mechanics and applications in condensed matter
Di Castro, Carlo
2015-01-01
This innovative and modular textbook combines classical topics in thermodynamics, statistical mechanics and many-body theory with the latest developments in condensed matter physics research. Written by internationally renowned experts and logically structured to cater for undergraduate and postgraduate students and researchers, it covers the underlying theoretical principles and includes numerous problems and worked examples to put this knowledge into practice. Three main streams provide a framework for the book; beginning with thermodynamics and classical statistical mechanics, including mean field approximation, fluctuations and the renormalization group approach to critical phenomena. The authors then examine quantum statistical mechanics, covering key topics such as normal Fermi and Luttinger liquids, superfluidity and superconductivity. Finally, they explore classical and quantum kinetics, Anderson localization and quantum interference, and disordered Fermi liquids. Unique in providing a bridge between ...
Rosu, H C
2000-01-01
This is the first graduate course on elementary quantum mechanics in Internet written in Romanian for the benefit of Romanian speaking students (Romania and Moldova). It is a translation (with corrections) of the Spanish version of the course (physics/9808031, English translation is under consideration), which I did at the request of students of physics in Bucharest. The topics included refer to the postulates of quantum mechanics, one-dimensional barriers and wells, angular momentum and spin, WKB method, harmonic oscillator, hydrogen atom, quantum scattering, and partial waves
Introductory statistical mechanics for electron storage rings
Jowett, John M.
1987-02-01
These lectures concentrate on statistical phenomena in electron storage rings. A stored electron beam is a dissipative, fluctuating system far from equilibrium whose mathematical description can be based upon non-equilibrium statistical mechanics. Stochastic differential equations are used to describe the quantum fluctuations of synchrotron radiation which is the main cause of randomness in electron dynamics. Fluctuating radiation reaction forces can be described via stochastic terms in Hamilton's equations of motion. Normal modes of particle motion, radiation damping effects, quantum diffusion in single-particle phase space are all discussed in this statistical formalism. (AIP)
Effectively Emergent Quantum Mechanics
Exirifard, Qasem
2008-01-01
We consider non minimal coupling between matters and gravity in modified theories of gravity. In contrary to the current common sense, we report that quantum mechanics can effectively emerge when the space-time geometry is sufficiently flat. In other words, quantum mechanics might play no role when and where the space-time geometry is highly curved. We study the first two simple models of Effectively Emergent Quantum Mechanics(EEQM): R-dependent EEQM and G-dependent EEQM where R is the Ricci scalar and G is the Gauss-Bonnet Lagrangian density. We discuss that these EEQM theories might be fine tuned to remain consistent with all the implemented experiments and performed observations. In particular, we observe that G-dependent EEQM softens the problem of quantum gravity.
Statistical features of quantum evolution
Indian Academy of Sciences (India)
Sudhir R Jain
2009-08-01
It is shown that the integral of the uncertainty of energy with respect to time is independent of the particular Hamiltonian of the quantum system for an arbitrary pseudo-unitary (and hence $\\mathcal{PT}$ -) quantum evolution. The result generalizes the time– energy uncertainty principle for pseudo-unitary quantum evolutions. Further, employing random matrix theory developed for pseudo-Hermitian systems, time correlation functions are studied in the framework of linear response theory. The results given here provide a quantum brachistochrone problem where the system will evolve in a thermodynamic environment with spectral complexity that can be modelled by random matrix theory.
Dolev, S; Kolenda, N
2005-01-01
For more than a century, quantum mechanics has served as a very powerful theory that has expanded physics and technology far beyond their classical limits, yet it has also produced some of the most difficult paradoxes known to the human mind. This book represents the combined efforts of sixteen of today's most eminent theoretical physicists to lay out future directions for quantum physics. The authors include Yakir Aharonov, Anton Zeilinger; the Nobel laureates Anthony Leggett and Geradus 't Hooft; Basil Hiley, Lee Smolin and Henry Stapp. Following a foreword by Roger Penrose, the individual chapters address questions such as quantum non-locality, the measurement problem, quantum insights into relativity, cosmology and thermodynamics, and the possible bearing of quantum phenomena on biology and consciousness.
Mayato, R; Egusquiza, I
2002-01-01
The treatment of time in quantum mechanics is still an important and challenging open question in the foundation of the theory. This book describes the problems, and the attempts and achievements in defining, formalizing and measuring different time quantities in quantum theory, such as the parametric (clock) time, tunneling times, decay times, dwell times, delay times, arrival times or jump times. This multiauthored book, written as an introductory guide for the non-initiated as well as a useful source of information for the expert, covers many of the open questions. A brief historical overview is to be found in the introduction. It is followed by 12 chapters devoted to conceptual and theoretical investigations as well as experimental issues in quantum-mechanical time measurements. This unique monograph should attract physicists as well as philosophers of science working in the foundations of quantum physics.
Probability in quantum mechanics
Directory of Open Access Journals (Sweden)
J. G. Gilson
1982-01-01
Full Text Available By using a fluid theory which is an alternative to quantum theory but from which the latter can be deduced exactly, the long-standing problem of how quantum mechanics is related to stochastic processes is studied. It can be seen how the Schrödinger probability density has a relationship to time spent on small sections of an orbit, just as the probability density has in some classical contexts.
Effectively calculable quantum mechanics
Bolotin, Arkady
2015-01-01
According to mathematical constructivism, a mathematical object can exist only if there is a way to compute (or "construct") it; so, what is non-computable is non-constructive. In the example of the quantum model, whose Fock states are associated with Fibonacci numbers, this paper shows that the mathematical formalism of quantum mechanics is non-constructive since it permits an undecidable (or effectively impossible) subset of Hilbert space. On the other hand, as it is argued in the paper, if...
Mechanics classical and quantum
Taylor, T T
2015-01-01
Mechanics: Classical and Quantum explains the principles of quantum mechanics via the medium of analytical mechanics. The book describes Schrodinger's formulation, the Hamilton-Jacobi equation, and the Lagrangian formulation. The author discusses the Harmonic Oscillator, the generalized coordinates, velocities, as well as the application of the Lagrangian formulation to systems that are partially or entirely electromagnetic in character under certain conditions. The book examines waves on a string under tension, the isothermal cavity radiation, and the Rayleigh-Jeans result pertaining to the e
Asenov, Asen; Brown, A. R.; Slavcheva, G.; Davies, J. H.
2000-01-01
When MOSFETs are scaled to deep submicron dimensions the discreteness and randomness of the dopant charges in the channel region introduces significant fluctuations in the device characteristics. This effect, predicted 20 year ago, has been confirmed experimentally and in simulation studies. The impact of the fluctuations on the functionality, yield, and reliability of the corresponding systems shifts the paradigm of the numerical device simulation. It becomes insufficient to simulate only one device representing one macroscopical design in a continuous charge approximation. An ensemble of macroscopically identical but microscopically different devices has to be characterized by simulation of statistically significant samples. The aims of the numerical simulations shift from predicting the characteristics of a single device with continuous doping towards estimating the mean values and the standard deviations of basic design parameters such as threshold voltage, subthreshold slope, transconductance, drive current, etc. for the whole ensemble of 'atomistically' different devices in the system. It has to be pointed out that even the mean values obtained from 'atomistic' simulations are not identical to the values obtained from continuous doping simulations. In this paper we present a hierarchical approach to the 'atomistic' simulation of aggressively scaled decanano MOSFETs. A full scale 3D drift-diffusion'atomostic' simulation approach is first described and used for verification of the more economical, but also more restricted, options. To reduce the processor time and memory requirements at high drain voltage we have developed a self-consistent option based on a thin slab solution of the current continuity equation only in the channel region. This is coupled to the Poisson's equation solution in the whole simulation domain in the Gummel iteration cycles. The accuracy of this approach is investigated in comparison with the full self-consistent solution. At low drain
Statistical mechanics principles and selected applications
Hill, Terrell L
1987-01-01
""Excellent … a welcome addition to the literature on the subject."" - ScienceBefore the publication of this standard, oft-cited book, there were few if any statistical-mechanics texts that incorporated reviews of both fundamental principles and recent developments in the field.In this volume, Professor Hill offers just such a dual presentation - a useful account of basic theory and of its applications, made accessible in a comprehensive format. The book opens with concise, unusually clear introductory chapters on classical statistical mechanics, quantum statistical mechanics and the relatio
Principles of Equilibrium Statistical Mechanics
Chowdhury, Debashish; Stauffer, Dietrich
2000-09-01
This modern textbook provides a complete survey of the broad field of statistical mechanics. Based on a series of lectures, it adopts a special pedagogical approach. The authors, both excellent lecturers, clearly distinguish between general principles and their applications in solving problems. Analogies between phase transitions in fluids and magnets using continuum and spin models are emphasized, leading to a better understanding. Such special features as historical notes, summaries, problems, mathematical appendix, computer programs and order of magnitude estimations distinguish this volume from competing works. Due to its ambitious level and an extensive list of references for technical details on advanced topics, this is equally a must for researchers in condensed matter physics, materials science, polymer science, solid state physics, and astrophysics. From the contents Thermostatics: phase stability, phase equilibria, phase transitions; Statistical Mechanics: calculation, correlation functions, ideal classical gases, ideal quantum gases; Interacting Systems: models, computer simulation, mean-field approximation; Interacting Systems beyond Mean-field Theory: scaling and renormalization group, foundations of statistical mechanics "The present book, however, is unique that it both is written in a very pedagogic, easily comprehensible style, and, nevertheless, goes from the basic principles all the way to these modern topics, containing several chapters on the various approaches of mean field theory, and a chapter on computer simulation. A characteristic feature of this book is that often first some qualitative arguments are given, or a "pedestrians's approach", and then a more general and/or more rigorous derivation is presented as well. Particularly useful are also "supplementary notes", pointing out interesting applications and further developments of the subject, a detailed bibliography, problems and historical notes, and many pedagogic figures."
Statistical mechanics of nucleosomes
Chereji, Razvan V.
Eukaryotic cells contain long DNA molecules (about two meters for a human cell) which are tightly packed inside the micrometric nuclei. Nucleosomes are the basic packaging unit of the DNA which allows this millionfold compactification. A longstanding puzzle is to understand the principles which allow cells to both organize their genomes into chromatin fibers in the crowded space of their nuclei, and also to keep the DNA accessible to many factors and enzymes. With the nucleosomes covering about three quarters of the DNA, their positions are essential because these influence which genes can be regulated by the transcription factors and which cannot. We study physical models which predict the genome-wide organization of the nucleosomes and also the relevant energies which dictate this organization. In the last five years, the study of chromatin knew many important advances. In particular, in the field of nucleosome positioning, new techniques of identifying nucleosomes and the competing DNA-binding factors appeared, as chemical mapping with hydroxyl radicals, ChIP-exo, among others, the resolution of the nucleosome maps increased by using paired-end sequencing, and the price of sequencing an entire genome decreased. We present a rigorous statistical mechanics model which is able to explain the recent experimental results by taking into account nucleosome unwrapping, competition between different DNA-binding proteins, and both the interaction between histones and DNA, and between neighboring histones. We show a series of predictions of our new model, all in agreement with the experimental observations.
Statistical Mechanics of Money
Dragulescu, Adrian; Yakovenko, Victor
2000-03-01
We study a network of agents exchanging money between themselves. We find that the stationary probability distribution of money M is the Gibbs distribution exp(-M/T), where T is an effective ``temperature'' equal to the average amount of money per agent. This is in agreement with the general laws of statistical mechanics, because money is conserved during each transaction and the number of agents is held constant. We have verified the emergence of the Gibbs distribution in computer simulations of various trading rules and models. When the time-reversal symmetry of the trading rules is explicitly broken, deviations from the Gibbs distribution may occur, as follows from the Boltzmann-equation approach to the problem. Money distribution characterizes the purchasing power of a system. A seller would maximize his/her income by setting the price of a product equal to the temperature T of the system. Buying products from a system of temperature T1 and selling it to a system of temperature T2 would generate profit T_2-T_1>0, as in a thermal machine.
Topics in statistical mechanics
Energy Technology Data Exchange (ETDEWEB)
Elser, V.
1984-05-01
This thesis deals with four independent topics in statistical mechanics: (1) the dimer problem is solved exactly for a hexagonal lattice with general boundary using a known generating function from the theory of partitions. It is shown that the leading term in the entropy depends on the shape of the boundary; (2) continuum models of percolation and self-avoiding walks are introduced with the property that their series expansions are sums over linear graphs with intrinsic combinatorial weights and explicit dimension dependence; (3) a constrained SOS model is used to describe the edge of a simple cubic crystal. Low and high temperature results are derived as well as the detailed behavior near the crystal facet; (4) the microscopic model of the lambda-transition involving atomic permutation cycles is reexamined. In particular, a new derivation of the two-component field theory model of the critical behavior is presented. Results for a lattice model originally proposed by Kikuchi are extended with a high temperature series expansion and Monte Carlo simulation. 30 references.
Statistical Mechanics of Zooplankton.
Hinow, Peter; Nihongi, Ai; Strickler, J Rudi
2015-01-01
Statistical mechanics provides the link between microscopic properties of many-particle systems and macroscopic properties such as pressure and temperature. Observations of similar "microscopic" quantities exist for the motion of zooplankton, as well as many species of other social animals. Herein, we propose to take average squared velocities as the definition of the "ecological temperature" of a population under different conditions on nutrients, light, oxygen and others. We test the usefulness of this definition on observations of the crustacean zooplankton Daphnia pulicaria. In one set of experiments, D. pulicaria is infested with the pathogen Vibrio cholerae, the causative agent of cholera. We find that infested D. pulicaria under light exposure have a significantly greater ecological temperature, which puts them at a greater risk of detection by visual predators. In a second set of experiments, we observe D. pulicaria in cold and warm water, and in darkness and under light exposure. Overall, our ecological temperature is a good discriminator of the crustacean's swimming behavior.
Statistical Mechanics of Zooplankton.
Directory of Open Access Journals (Sweden)
Peter Hinow
Full Text Available Statistical mechanics provides the link between microscopic properties of many-particle systems and macroscopic properties such as pressure and temperature. Observations of similar "microscopic" quantities exist for the motion of zooplankton, as well as many species of other social animals. Herein, we propose to take average squared velocities as the definition of the "ecological temperature" of a population under different conditions on nutrients, light, oxygen and others. We test the usefulness of this definition on observations of the crustacean zooplankton Daphnia pulicaria. In one set of experiments, D. pulicaria is infested with the pathogen Vibrio cholerae, the causative agent of cholera. We find that infested D. pulicaria under light exposure have a significantly greater ecological temperature, which puts them at a greater risk of detection by visual predators. In a second set of experiments, we observe D. pulicaria in cold and warm water, and in darkness and under light exposure. Overall, our ecological temperature is a good discriminator of the crustacean's swimming behavior.
The quantum mechanics of cosmology.
Hartle, James B.
The following sections are included: * INTRODUCTION * POST-EVERETT QUANTUM MECHANICS * Probability * Probabilities in general * Probabilities in Quantum Mechanics * Decoherent Histories * Fine and Coarse Grained Histories * Decohering Sets of Coarse Grained Histories * No Moment by Moment Definition of Decoherence * Prediction, Retrodiction, and History * Prediction and Retrodiction * The Reconstruction of History * Branches (Illustrated by a Pure ρ) * Sets of Histories with the Same Probabilities * The Origins of Decoherence in Our Universe * On What Does Decoherence Depend? * Two Slit Model * The Caldeira-Leggett Oscillator Model * The Evolution of Reduced Density Matrices * Towards a Classical Domain * The Branch Dependence of Decoherence * Measurement * The Ideal Measurement Model and the Copenhagen Approximation to Quantum Mechanics * Approximate Probabilities Again * Complex Adaptive Systems * Open Questions * GENERALIZED QUANTUM MECHANICS * General Features * Hamiltonian Quantum Mechanics * Sum-Over-Histories Quantum Mechanics for Theories with a Time * Differences and Equivalences between Hamiltonian and Sum-Over-Histories Quantum Mechanics for Theories with a Time * Classical Physics and the Classical Limit of Quantum Mechanics * Generalizations of Hamiltonian Quantum Mechanics * TIME IN QUANTUM MECHANICS * Observables on Spacetime Regions * The Arrow of Time in Quantum Mechanics * Topology in Time * The Generality of Sum Over Histories Quantum Mechanics * THE QUANTUM MECHANICS OF SPACETIME * The Problem of Time * General Covariance and Time in Hamiltonian Quantum Mechanics * The "Marvelous Moment" * A Quantum Mechanics for Spacetime * What we Need * Sum-Over-Histories Quantum Mechanics for Theories Without a Time * Sum-Over-Spacetime-Histories Quantum Mechanics * Extensions and Contractions * The Construction of Sums Over Spacetime Histories * Some Open Questions * PRACTICAL QUANTUM COSMOLOGY * The Semiclassical Regime * The Semiclassical Approximation
Statistical mechanics of nonequilibrium liquids
Evans, Denis J; Craig, D P; McWeeny, R
1990-01-01
Statistical Mechanics of Nonequilibrium Liquids deals with theoretical rheology. The book discusses nonlinear response of systems and outlines the statistical mechanical theory. In discussing the framework of nonequilibrium statistical mechanics, the book explains the derivation of a nonequilibrium analogue of the Gibbsian basis for equilibrium statistical mechanics. The book reviews the linear irreversible thermodynamics, the Liouville equation, and the Irving-Kirkwood procedure. The text then explains the Green-Kubo relations used in linear transport coefficients, the linear response theory,
Fundamentals of quantum mechanics
House, J E
2017-01-01
Fundamentals of Quantum Mechanics, Third Edition is a clear and detailed introduction to quantum mechanics and its applications in chemistry and physics. All required math is clearly explained, including intermediate steps in derivations, and concise review of the math is included in the text at appropriate points. Most of the elementary quantum mechanical models-including particles in boxes, rigid rotor, harmonic oscillator, barrier penetration, hydrogen atom-are clearly and completely presented. Applications of these models to selected “real world” topics are also included. This new edition includes many new topics such as band theory and heat capacity of solids, spectroscopy of molecules and complexes (including applications to ligand field theory), and small molecules of astrophysical interest.
Nonrenewal statistics in transport through quantum dots
Ptaszyński, Krzysztof
2017-01-01
The distribution of waiting times between successive tunneling events is an already established method to characterize current fluctuations in mesoscopic systems. Here, I investigate mechanisms generating correlations between subsequent waiting times in two model systems, a pair of capacitively coupled quantum dots and a single-level dot attached to spin-polarized leads. Waiting time correlations are shown to give insight into the internal dynamics of the system; for example they allow distinction between different mechanisms of the noise enhancement. Moreover, the presence of correlations breaks the validity of the renewal theory. This increases the number of independent cumulants of current fluctuation statistics, thus providing additional sources of information about the transport mechanism. I also propose a method for inferring the presence of waiting time correlations based on low-order current correlation functions. This method gives a way to extend the analysis of nonrenewal current fluctuations to the systems for which single-electron counting is not experimentally feasible. The experimental relevance of the findings is also discussed; for example reanalysis of previous results concerning transport in quantum dots is suggested.
Quantum Statistical Testing of a Quantum Random Number Generator
Energy Technology Data Exchange (ETDEWEB)
Humble, Travis S [ORNL
2014-01-01
The unobservable elements in a quantum technology, e.g., the quantum state, complicate system verification against promised behavior. Using model-based system engineering, we present methods for verifying the opera- tion of a prototypical quantum random number generator. We begin with the algorithmic design of the QRNG followed by the synthesis of its physical design requirements. We next discuss how quantum statistical testing can be used to verify device behavior as well as detect device bias. We conclude by highlighting how system design and verification methods must influence effort to certify future quantum technologies.
Quantum Statistical Testing of a Quantum Random Number Generator
Energy Technology Data Exchange (ETDEWEB)
Humble, Travis S [ORNL
2014-01-01
The unobservable elements in a quantum technology, e.g., the quantum state, complicate system verification against promised behavior. Using model-based system engineering, we present methods for verifying the opera- tion of a prototypical quantum random number generator. We begin with the algorithmic design of the QRNG followed by the synthesis of its physical design requirements. We next discuss how quantum statistical testing can be used to verify device behavior as well as detect device bias. We conclude by highlighting how system design and verification methods must influence effort to certify future quantum technologies.
Quantum statistical testing of a quantum random number generator
Humble, Travis S.
2014-10-01
The unobservable elements in a quantum technology, e.g., the quantum state, complicate system verification against promised behavior. Using model-based system engineering, we present methods for verifying the operation of a prototypical quantum random number generator. We begin with the algorithmic design of the QRNG followed by the synthesis of its physical design requirements. We next discuss how quantum statistical testing can be used to verify device behavior as well as detect device bias. We conclude by highlighting how system design and verification methods must influence effort to certify future quantum technologies.
Quantum Mechanics with Applications
Afnan, Iraj R
2011-01-01
The ebook introduces undergraduate students to the basic skills required to use non-relativistic quantum mechanics for bound and scattering problems in atomic, molecular and nuclear physics. Initial emphasis is on problems that admit analytic solutions. These results are then used in conjunction with symmetry to develop approximation methods for both bound and scattering problems. The text concentrates on the application of computational problems to introduce the basic concepts of quantum mechanics. These are then used to study more complex problems that can be reduced to one-body problems.
Kogan, VI; Gersch, Harold
2011-01-01
Written by a pair of distinguished Soviet mathematicians, this compilation presents 160 lucidly expressed problems in nonrelativistic quantum mechanics plus completely worked-out solutions. Some were drawn from the authors' courses at the Moscow Institute of Engineering, but most were prepared especially for this book. A high-level supplement rather than a primary text, it constitutes a masterful complement to advanced undergraduate and graduate texts and courses in quantum mechanics.The mathematics employed in the proofs of the problems-asymptotic expansions of functions, Green's functions, u
Saxon, David S
2012-01-01
Based on lectures for an undergraduate UCLA course in quantum mechanics, this volume focuses on the formulas of quantum mechanics rather than applications. Widely used in both upper-level undergraduate and graduate courses, it offers a broad self-contained survey rather than in-depth treatments.Topics include the dual nature of matter and radiation, state functions and their interpretation, linear momentum, the motion of a free particle, Schrödinger's equation, approximation methods, angular momentum, and many other subjects. In the interests of keeping the mathematics as simple as possible, m
Noncommutative quantum mechanics
Gamboa, J.; Loewe, M.; Rojas, J. C.
2001-09-01
A general noncommutative quantum mechanical system in a central potential V=V(r) in two dimensions is considered. The spectrum is bounded from below and, for large values of the anticommutative parameter θ, we find an explicit expression for the eigenvalues. In fact, any quantum mechanical system with these characteristics is equivalent to a commutative one in such a way that the interaction V(r) is replaced by V=V(HHO,Lz), where HHO is the Hamiltonian of the two-dimensional harmonic oscillator and Lz is the z component of the angular momentum. For other finite values of θ the model can be solved by using perturbation theory.
Classical statistical computation of the Schwinger mechanism
Gelis, F
2013-01-01
In this paper, we show how classical statistical field theory techniques can be used to efficiently perform the numerical evaluation of the non-perturbative Schwinger mechanism of particle production by quantum tunneling. In some approximation, we also consider the back-reaction of the produced particles on the external field, as well as the self-interactions of the produced particles.
Infinite Random Graphs as Statistical Mechanical Models
DEFF Research Database (Denmark)
Durhuus, Bergfinnur Jøgvan; Napolitano, George Maria
2011-01-01
We discuss two examples of infinite random graphs obtained as limits of finite statistical mechanical systems: a model of two-dimensional dis-cretized quantum gravity defined in terms of causal triangulated surfaces, and the Ising model on generic random trees. For the former model we describe...
Hollowood, Timothy J.
2016-07-01
In our quantum mechanics courses, measurement is usually taught in passing, as an ad-hoc procedure involving the ugly collapse of the wave function. No wonder we search for more satisfying alternatives to the Copenhagen interpretation. But this overlooks the fact that the approach fits very well with modern measurement theory with its notions of the conditioned state and quantum trajectory. In addition, what we know of as the Copenhagen interpretation is a later 1950s development and some of the earlier pioneers like Bohr did not talk of wave function collapse. In fact, if one takes these earlier ideas and mixes them with later insights of decoherence, a much more satisfying version of Copenhagen quantum mechanics emerges, one for which the collapse of the wave function is seen to be a harmless book keeping device. Along the way, we explain why chaotic systems lead to wave functions that spread out quickly on macroscopic scales implying that Schrödinger cat states are the norm rather than curiosities generated in physicists' laboratories. We then describe how the conditioned state of a quantum system depends crucially on how the system is monitored illustrating this with the example of a decaying atom monitored with a time of arrival photon detector, leading to Bohr's quantum jumps. On the other hand, other kinds of detection lead to much smoother behaviour, providing yet another example of complementarity. Finally we explain how classical behaviour emerges, including classical mechanics but also thermodynamics.
Time Asymmetric Quantum Mechanics
Directory of Open Access Journals (Sweden)
Arno R. Bohm
2011-09-01
Full Text Available The meaning of time asymmetry in quantum physics is discussed. On the basis of a mathematical theorem, the Stone-von Neumann theorem, the solutions of the dynamical equations, the Schrödinger equation (1 for states or the Heisenberg equation (6a for observables are given by a unitary group. Dirac kets require the concept of a RHS (rigged Hilbert space of Schwartz functions; for this kind of RHS a mathematical theorem also leads to time symmetric group evolution. Scattering theory suggests to distinguish mathematically between states (defined by a preparation apparatus and observables (defined by a registration apparatus (detector. If one requires that scattering resonances of width Γ and exponentially decaying states of lifetime τ=h/Γ should be the same physical entities (for which there is sufficient evidence one is led to a pair of RHS's of Hardy functions and connected with it, to a semigroup time evolution t_0≤t<∞, with the puzzling result that there is a quantum mechanical beginning of time, just like the big bang time for the universe, when it was a quantum system. The decay of quasi-stable particles is used to illustrate this quantum mechanical time asymmetry. From the analysis of these processes, we show that the properties of rigged Hilbert spaces of Hardy functions are suitable for a formulation of time asymmetry in quantum mechanics.
Determinism beneath Quantum Mechanics
Hooft, G
2002-01-01
Contrary to common belief, it is not difficult to construct deterministic models where stochastic behavior is correctly described by quantum mechanical amplitudes, in precise accordance with the Copenhagen-Bohr-Bohm doctrine. What is difficult however is to obtain a Hamiltonian that is bounded from below, and whose ground state is a vacuum that exhibits complicated vacuum fluctuations, as in the real world. Beneath Quantum Mechanics, there may be a deterministic theory with (local) information loss. This may lead to a sufficiently complex vacuum state, and to an apparent non-locality in the relation between the deterministic ("ontological") states and the quantum states, of the kind needed to explain away the Bell inequalities. Theories of this kind would not only be appealing from a philosophical point of view, but may also be essential for understanding causality at Planckian distance scales.
Relativistic quantum mechanics
Wachter, Armin
2010-01-01
Which problems do arise within relativistic enhancements of the Schrödinger theory, especially if one adheres to the usual one-particle interpretation, and to what extent can these problems be overcome? And what is the physical necessity of quantum field theories? In many books, answers to these fundamental questions are given highly insufficiently by treating the relativistic quantum mechanical one-particle concept very superficially and instead introducing field quantization as soon as possible. By contrast, this monograph emphasizes relativistic quantum mechanics in the narrow sense: it extensively discusses relativistic one-particle concepts and reveals their problems and limitations, therefore motivating the necessity of quantized fields in a physically comprehensible way. The first chapters contain a detailed presentation and comparison of the Klein-Gordon and Dirac theory, always in view of the non-relativistic theory. In the third chapter, we consider relativistic scattering processes and develop the...
Institute of Scientific and Technical Information of China (English)
吴宁; 阮图南
1996-01-01
A quantum mechanical model with one bosonic degree of freedom is discussed in detail. Conventionally, when a quantum mechanical model is constructed, one must know the corresponding classical model. And by applying the correspondence between the classical Poisson brackets and the canonical commutator, the canonical quantization condition can be obtained. In the quantum model, study of the corresponding classical model is needed first. In this model, the Lagrangian is an operator gauge invariant. After localization, in order to keep gauge invariance, the operator gauge potential must be introduced. The Eular-Lagrange equation of motion of the dynamical argument gives the usual operator equation of motion. And the operator gauge potential just gjves a constraint. This constraint is just the usual canonical quantization condition.
Statistical approach to quantum field theory an introduction
Wipf, Andreas
2013-01-01
Over the past few decades the powerful methods of statistical physics and Euclidean quantum field theory have moved closer together, with common tools based on the use of path integrals. The interpretation of Euclidean field theories as particular systems of statistical physics has opened up new avenues for understanding strongly coupled quantum systems or quantum field theories at zero or finite temperatures. Accordingly, the first chapters of this book contain a self-contained introduction to path integrals in Euclidean quantum mechanics and statistical mechanics. The resulting high-dimensional integrals can be estimated with the help of Monte Carlo simulations based on Markov processes. The most commonly used algorithms are presented in detail so as to prepare the reader for the use of high-performance computers as an “experimental” tool for this burgeoning field of theoretical physics. Several chapters are then devoted to an introduction to simple lattice field theories and a variety of spin systems w...
Hollowood, Timothy J
2013-01-01
We describe an interpretation of quantum mechanics based on reduced density matrices of sub-systems from which the standard Copenhagen interpretation emerges as an effective description for macro-systems. The interpretation is a modal one, but does not suffer from the range of problems that plague other modal interpretations. The key feature is that quantum states carry an additional property assignment in the form of one the eigenvectors of the reduced density matrix which evolves evolves according to a stochastic process driven by the unmodified Schrodinger equation, but it is usually hidden from the emergent classical description due to the ergodic nature of its dynamics. However, during a quantum measurement, ergodicity is broken by decoherence and definite outcomes occur with probabilities that agree with the Born rule.
Quantum mechanics with applications
Beard, David B
2014-01-01
This introductory text emphasizes Feynman's development of path integrals and its application to wave theory for particles. Suitable for undergraduate and graduate students of physics, the well-written, clear, and rigorous text was written by two of the nation's leading authorities on quantum physics. A solid foundation in quantum mechanics and atomic physics is assumed. Early chapters provide background in the mathematical treatment and particular properties of ordinary wave motion that also apply to particle motion. The close relation of quantum theory to physical optics is stressed. Subsequent sections emphasize the physical consequences of a wave theory of material properties, and they offer extensive applications in atomic physics, nuclear physics, solid state physics, and diatomic molecules. Four helpful Appendixes supplement the text.
Epigenetics: Biology's Quantum Mechanics.
Jorgensen, Richard A
2011-01-01
The perspective presented here is that modern genetics is at a similar stage of development as were early formulations of quantum mechanics theory in the 1920s and that in 2010 we are at the dawn of a new revolution in genetics that promises to enrich and deepen our understanding of the gene and the genome. The interrelationships and interdependence of two views of the gene - the molecular biological view and the epigenetic view - are explored, and it is argued that the classical molecular biological view is incomplete without incorporation of the epigenetic perspective and that in a sense the molecular biological view has been evolving to include the epigenetic view. Intriguingly, this evolution of the molecular view toward the broader and more inclusive epigenetic view of the gene has an intriguing, if not precise, parallel in the evolution of concepts of atomic physics from Newtonian mechanics to quantum mechanics that are interesting to consider.
Epigenetics: Biology's Quantum Mechanics
Directory of Open Access Journals (Sweden)
Richard A Jorgensen
2011-04-01
Full Text Available The perspective presented here is that modern genetics is at a similar stage of development as were early formulations of quantum mechanics theory in the 1920's and that in 2010 we are at the dawn of a new revolution in genetics that promises to enrich and deepen our understanding of the gene and the genome. The interrelationships and interdependence of two views of the gene - the molecular biological view and the epigenetic view - are explored, and it is argued that the classical molecular biological view is incomplete without incorporation of the epigenetic perspective and that in a sense the molecular biological view has been evolving to include the epigenetic view. Intriguingly, this evolution of the molecular view toward the broader and more inclusive epigenetic view of the gene has an intriguing, if not precise, parallel in the evolution of concepts of atomic physics from Newtonian mechanics to quantum mechanics that are interesting to consider.
Advanced concepts in quantum mechanics
Esposito, Giampiero; Miele, Gennaro; Sudarshan, George
2015-01-01
Introducing a geometric view of fundamental physics, starting from quantum mechanics and its experimental foundations, this book is ideal for advanced undergraduate and graduate students in quantum mechanics and mathematical physics. Focusing on structural issues and geometric ideas, this book guides readers from the concepts of classical mechanics to those of quantum mechanics. The book features an original presentation of classical mechanics, with the choice of topics motivated by the subsequent development of quantum mechanics, especially wave equations, Poisson brackets and harmonic oscillators. It also presents new treatments of waves and particles and the symmetries in quantum mechanics, as well as extensive coverage of the experimental foundations.
Statistical Mechanics Algorithms and Computations
Krauth, Werner
2006-01-01
This book discusses the computational approach in modern statistical physics, adopting simple language and an attractive format of many illustrations, tables and printed algorithms. The discussion of key subjects in classical and quantum statistical physics will appeal to students, teachers and researchers in physics and related sciences. The focus is on orientation with implementation details kept to a minimum. - ;This book discusses the computational approach in modern statistical physics in a clear and accessible way and demonstrates its close relation to other approaches in theoretical phy
Monin, A S
2007-01-01
""If ever a field needed a definitive book, it is the study of turbulence; if ever a book on turbulence could be called definitive, it is this book."" - ScienceWritten by two of Russia's most eminent and productive scientists in turbulence, oceanography, and atmospheric physics, this two-volume survey is renowned for its clarity as well as its comprehensive treatment. The first volume begins with an outline of laminar and turbulent flow. The remainder of the book treats a variety of aspects of turbulence: its statistical and Lagrangian descriptions, shear flows near surfaces and free turbulenc
Symmetry and quantum mechanics
Corry, Scott
2016-01-01
This book offers an introduction to quantum mechanics for professionals, students, and others in the field of mathematics who have a minimal background in physics with an understanding of linear algebra and group theory. It covers such topics as Lie groups, algebras and their representations, and analysis (Hilbert space, distributions, the spectral Theorem, and the Stone-Von Neumann Theorem). The book emphasizes the role of symmetry and is useful to physicists as it provides a mathematical introduction to the topic.
Statistical Properties of Quantum Spectra in Nuclei
Institute of Scientific and Technical Information of China (English)
2001-01-01
Some aspects of quantum chaos in a finite system have been studied based on the analysis of statistical behaviors of quantum spectrum in nuclei. The experiment data show the transition from order to chaos with increasing excitation energy in spherical nuclei. The dependence of the order to chaos transition on nuclear deformation and nuclear rotating is described. The influence of pairing effect on the order to chaos transition is also discussed. Some important experiment phenomena in nuclear
Jambrina, P G; Aoiz, F J; Bulut, N; Smith, Sean C; Balint-Kurti, G G; Hankel, M
2010-02-01
A detailed study of the proton exchange reaction H(+) + D(2)(v = 0, j = 0) --> HD + D(+) on its ground 1(1)A' potential energy surface has been carried out using 'exact' close-coupled quantum mechanical wavepacket (WP-EQM), quasi-classical trajectory (QCT), and statistical quasi-classical trajectory (SQCT) calculations for a range of collision energies starting from the reaction threshold to 1.3 eV. The WP-EQM calculations include all total angular momenta up to J(max) = 50, and therefore the various dynamical observables are converged up to 0.6 eV. It has been found that it is necessary to include all Coriolis couplings to obtain reliable converged results. Reaction probabilities obtained using the different methods are thoroughly compared as a function of the total energy for a series of J values. Comparisons are also made of total reaction cross sections as function of the collision energy, and rate constants. In addition, opacity functions, integral cross sections (ICS) and differential cross sections (DCS) are presented at 102 meV, 201.3 meV and 524.6 meV collision energy. The agreement between the three sets of results is only qualitative. The QCT calculations fail to describe the overall reactivity and most of the dynamical observables correctly. At low collision energies, the QCT method is plagued by the lack of conservation of zero point energy, whilst at higher collision energies and/or total angular momenta, the appearance of an effective repulsive potential associated with the centrifugal motion "over" the well causes a substantial decrease of the reactivity. In turn, the statistical models overestimate the reactivity over the whole range of collision energies as compared with the WP-EQM method. Specifically, at sufficiently high collision energies the reaction cannot be deemed to be statistical and important dynamical effects seem to be present. In general the WP-EQM results lie in between those obtained using the QCT and SQCT methods. One of the main
Graduate Quantum Mechanics Reform
Carr, L D
2008-01-01
We address four main areas in which graduate quantum mechanics education in the U.S. can be improved: course content; textbook; teaching methods; and assessment tools. We report on a three year longitudinal study at the Colorado School of Mines using innovations in all four of these areas. In particular, we have modified the content of the course to reflect progress in the field in the last 50 years, use modern textbooks that include such content, incorporate a variety of teaching techniques based on physics education research, and used a variety of assessment tools to study the effectiveness of these reforms. We present a new assessment tool, the Graduate Quantum Mechanics Conceptual Survey, and further testing of a previously developed assessment tool, the Quantum Mechanics Conceptual Survey (QMCS). We find that graduate students respond well to research-based techniques that have previously been tested mainly in introductory courses, and that they learn a great deal of the new content introduced in each ve...
Statistical transmutation in doped quantum dimer models.
Lamas, C A; Ralko, A; Cabra, D C; Poilblanc, D; Pujol, P
2012-07-06
We prove a "statistical transmutation" symmetry of doped quantum dimer models on the square, triangular, and kagome lattices: the energy spectrum is invariant under a simultaneous change of statistics (i.e., bosonic into fermionic or vice versa) of the holes and of the signs of all the dimer resonance loops. This exact transformation enables us to define the duality equivalence between doped quantum dimer Hamiltonians and provides the analytic framework to analyze dynamical statistical transmutations. We investigate numerically the doping of the triangular quantum dimer model with special focus on the topological Z(2) dimer liquid. Doping leads to four (instead of two for the square lattice) inequivalent families of Hamiltonians. Competition between phase separation, superfluidity, supersolidity, and fermionic phases is investigated in the four families.
Quantum Mechanics in the Infrared
Radicevic, Djordje
2016-01-01
This paper presents an algebraic formulation of the renormalization group flow in quantum mechanics on flat target spaces. For any interacting quantum mechanical theory, the fixed point of this flow is a theory of classical probability, not a different effective quantum mechanics. Each energy eigenstate of the UV Hamiltonian flows to a probability distribution whose entropy is a natural diagnostic of quantum ergodicity of the original state. These conclusions are supported by various examples worked out in detail.
Statistical mechanics in a nutshell
Peliti, Luca
2011-01-01
Statistical mechanics is one of the most exciting areas of physics today, and it also has applications to subjects as diverse as economics, social behavior, algorithmic theory, and evolutionary biology. Statistical Mechanics in a Nutshell offers the most concise, self-contained introduction to this rapidly developing field. Requiring only a background in elementary calculus and elementary mechanics, this book starts with the basics, introduces the most important developments in classical statistical mechanics over the last thirty years, and guides readers to the very threshold of today
Basdevant, Jean-Louis
2007-01-01
Beautifully illustrated and engagingly written, Lectures on Quantum Mechanics presents theoretical physics with a breathtaking array of examples and anecdotes. Basdevant's style is clear and stimulating, in the manner of a brisk classroom lecture that students can follow with ease and enjoyment. Here is a sample of the book's style, from the opening of Chapter 1: "If one were to ask a passer-by to quote a great formula of physics, chances are that the answer would be 'E = mc2'. Nevertheless, the formula 'E=hV' which was written in the same year 1905 by the same Albert Einstein, and which started quantum theory, concerns their daily life considerably more. In fact, of the three watershed years for physics toward the beginning of the 20th century - 1905: the Special Relativity of Einstein, Lorentz and Poincaré; 1915: the General Relativity of Einstein, with its extraordinary reflections on gravitation, space and time; and 1925: the full development of Quantum Mechanics - it is surely the last which has the mos...
Hollowood, Timothy J
2015-01-01
In our quantum mechanics courses, measurement is usually taught in passing, as an ad-hoc procedure involving the ugly collapse of the wave function. No wonder we search for more satisfying alternatives to the Copenhagen interpretation. But this overlooks the fact that the approach fits very well with modern measurement theory with its notions of the conditioned state and quantum trajectory. In addition, what we know of as the Copenhagen interpretation is a later 1950's development and some of the earlier pioneers like Bohr did not talk of wave function collapse. In fact, if one takes these earlier ideas and mixes them with later insights of decoherence, a much more satisfying version of Copenhagen quantum mechanics emerges, one for which the collapse of the wave function is seen to be a harmless book keeping device. Along the way, we explain why chaotic systems lead to wave functions that spread out quickly on macroscopic scales implying that Schrodinger cat states are the norm rather than curiosities generat...
Sakurai, Jun John
2011-01-01
This best-selling classic provides a graduate-level, non-historical, modern introduction of quantum mechanical concepts. The author, J. J. Sakurai, was a renowned theorist in particle theory. This revision by Jim Napolitano retains the original material and adds topics that extend the text’s usefulness into the 21st century. The introduction of new material, and modification of existing material, appears in a way that better prepares the student for the next course in quantum field theory. You will still find such classic developments as neutron interferometer experiments, Feynman path integrals, correlation measurements, and Bell’s inequality. The style and treatment of topics is now more consistent across chapters.
Energy level statistics of quantum dots.
Tsau, Chien-Yu; Nghiem, Diu; Joynt, Robert; Woods Halley, J
2007-05-08
We investigate the charging energy level statistics of disordered interacting electrons in quantum dots by numerical calculations using the Hartree approximation. The aim is to obtain a global picture of the statistics as a function of disorder and interaction strengths. We find Poisson statistics at very strong disorder, Wigner-Dyson statistics for weak disorder and interactions, and a Gaussian intermediate regime. These regimes are as expected from previous studies and fundamental considerations, but we also find interesting and rather broad crossover regimes. In particular, intermediate between the Gaussian and Poisson regimes we find a two-sided exponential distribution for the energy level spacings. In comparing with experiment, we find that this distribution may be realized in some quantum dots.
Energy level statistics of quantum dots
Energy Technology Data Exchange (ETDEWEB)
Tsau, C-Y [University of Wisconsin-Madison, Madison, WI 53706 (United States); Nghiem, Diu [University of Wisconsin-Madison, Madison, WI 53706 (United States); Joynt, Robert [University of Wisconsin-Madison, Madison, WI 53706 (United States); Halley, J Woods [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)
2007-05-08
We investigate the charging energy level statistics of disordered interacting electrons in quantum dots by numerical calculations using the Hartree approximation. The aim is to obtain a global picture of the statistics as a function of disorder and interaction strengths. We find Poisson statistics at very strong disorder, Wigner-Dyson statistics for weak disorder and interactions, and a Gaussian intermediate regime. These regimes are as expected from previous studies and fundamental considerations, but we also find interesting and rather broad crossover regimes. In particular, intermediate between the Gaussian and Poisson regimes we find a two-sided exponential distribution for the energy level spacings. In comparing with experiment, we find that this distribution may be realized in some quantum dots.
Energy level statistics of quantum dots
Tsau, Chien-Yu; Nghiem, Diu; Joynt, Robert; Halley, J. Woods
2007-05-01
We investigate the charging energy level statistics of disordered interacting electrons in quantum dots by numerical calculations using the Hartree approximation. The aim is to obtain a global picture of the statistics as a function of disorder and interaction strengths. We find Poisson statistics at very strong disorder, Wigner-Dyson statistics for weak disorder and interactions, and a Gaussian intermediate regime. These regimes are as expected from previous studies and fundamental considerations, but we also find interesting and rather broad crossover regimes. In particular, intermediate between the Gaussian and Poisson regimes we find a two-sided exponential distribution for the energy level spacings. In comparing with experiment, we find that this distribution may be realized in some quantum dots.
Bananaworld quantum mechanics for primates
Bub, Jeffrey
2016-01-01
What on earth do bananas have to do with quantum mechanics? From a modern perspective, quantum mechanics is about strangely counterintuitive correlations between separated systems, which can be exploited in feats like quantum teleportation, unbreakable cryptographic schemes, and computers with enormously enhanced computing power. Schro?dinger coined the term "entanglement" to describe these bizarre correlations. Bananaworld -- an imaginary island with "entangled" bananas -- brings to life the fascinating discoveries of the new field of quantum information without the mathematical machinery of quantum mechanics. The connection with quantum correlations is fully explained in sections written for the non-physicist reader with a serious interest in understanding the mysteries of the quantum world. The result is a subversive but entertaining book that is accessible and interesting to a wide range of readers, with the novel thesis that quantum mechanics is about the structure of information. What we have discovered...
Quantum mechanics theory and experiment
Beck, Mark
2012-01-01
This textbook presents quantum mechanics at the junior/senior undergraduate level. It is unique in that it describes not only quantum theory, but also presents five laboratories that explore truly modern aspects of quantum mechanics. These laboratories include "proving" that light contains photons, single-photon interference, and tests of local realism. The text begins by presenting the classical theory of polarization, moving on to describe the quantum theory of polarization. Analogies between the two theories minimize conceptual difficulties that students typically have when first presented with quantum mechanics. Furthermore, because the laboratories involve studying photons, using photon polarization as a prototypical quantum system allows the laboratory work to be closely integrated with the coursework. Polarization represents a two-dimensional quantum system, so the introduction to quantum mechanics uses two-dimensional state vectors and operators. This allows students to become comfortable with the mat...
Scan Quantum Mechanics: Quantum Inertia Stops Superposition
Gato-Rivera, Beatriz
2015-01-01
A novel interpretation of the quantum mechanical superposition is put forward. Quantum systems scan all possible available states and switch randomly and very rapidly among them. The longer they remain in a given state, the larger the probability of the system to be found in that state during a measurement. A crucial property that we postulate is quantum inertia, that increases whenever a constituent is added, or the system is perturbed with all kinds of interactions. Once the quantum inertia $I_q$ reaches a critical value $I_{cr}$ for an observable, the switching among the different eigenvalues of that observable stops and the corresponding superposition comes to an end. Consequently, increasing the mass, temperature, gravitational force, etc. of a quantum system increases its quantum inertia until the superposition of states disappears for all the observables and the system transmutes into a classical one. The process could be reversible decreasing the size, temperature, gravitational force, etc. leading to...
QInfer: Statistical inference software for quantum applications
Granade, Christopher; Hincks, Ian; Casagrande, Steven; Alexander, Thomas; Gross, Jonathan; Kononenko, Michal; Sanders, Yuval
2016-01-01
Characterizing quantum systems through experimental data is critical to applications as diverse as metrology and quantum computing. Analyzing this experimental data in a robust and reproducible manner is made challenging, however, by the lack of readily-available software for performing principled statistical analysis. We improve the robustness and reproducibility of characterization by introducing an open-source library, QInfer, to address this need. Our library makes it easy to analyze data from tomography, randomized benchmarking, and Hamiltonian learning experiments either in post-processing, or online as data is acquired. QInfer also provides functionality for predicting the performance of proposed experimental protocols from simulated runs. By delivering easy- to-use characterization tools based on principled statistical analysis, QInfer helps address many outstanding challenges facing quantum technology.
An introduction to thermodynamics and statistical mechanics
Saxena, A K
2016-01-01
An Introduction to Thermodynamics and Statistical Mechanics aims to serve as a text book for undergraduate hons.and postgraduate students of physics. The book covers First Law of Thermodynamics, Entropy and Second Law ofThermodynamics, Thermodynamic Relations, The Statistical Basis of Thermodynamics, Microcanonical Ensemble,Classical Statistical and Canonical Distribution, Grand Canonical Ensemble, Quantum Statistical Mechanics, PhaseTransitions, Fluctuations, Irreversible Processes and Transport Phenomena (Diffusion).SALIENT FEATURES:iC* Offers students a conceptual development of the subjectiC* Review questions at the end of chapters.NEW TO THE SECOND EDITIONiC* PVT SurfacesiC* Real Heat EnginesiC* Van der Waals Models (Qualitative Considerations)iC* Cluster ExpansioniC* Brownian Motion (Einstein's Theory)
Quantum mechanics of leptogenesis
Energy Technology Data Exchange (ETDEWEB)
Mendizabal Cofre, Sebastian
2010-08-15
Leptogenesis is an attractive mechanism that simultaneously explains the matterantimatter asymmetry of the universe as well as the small masses of the standard model neutrinos. This is performed by naturally extending the standard model with the insertion of right handed neutrinos. Leptogenesis is usually studied via the semi-classical Boltzmann equations. However, these equations suffer from basic conceptual problems and they lack to include many quantum phenomena, such as memory effects and coherence oscillations. In order to fully describe leptogenesis, a full quantum treatment is required. In this work we show how to address leptogenesis systematically in a purely quantum way. We start by studying scalar and fermionic excitations in a plasma by solving the Kadanoff-Baym equations of motion for Green's functions, with significant emphasis on the initial and boundary conditions of the solutions. We compute analytically the asymmetry generated from the departure of equilibrium of a particle in a thermal bath. The comparison with the semi-classical Boltzmann approach is also analysed, leading to a qualitative difference between both methods. The non-locality of the Kadanoff-Baym equations shows how off-shell effects can have a huge impact on the generated asymmetry, effects that cannot be studied with the Boltzmann equations. The insertion of standard model interactions like the decay widths for the particles of the bath is also discussed. We explain how with a trivial insertion of these widths we regain locality on the processes, i.e. we regain the Boltzmann equations. (orig.)
Applications of Computer Simulations and Statistical Mechanics in Surface Electrochemistry
Rikvold, P A; Juwono, T; Robb, D T; Novotny, M A; 10.1007/978-0-387-49586-6_4
2009-01-01
We present a brief survey of methods that utilize computer simulations and quantum and statistical mechanics in the analysis of electrochemical systems. The methods, Molecular Dynamics and Monte Carlo simulations and quantum-mechanical density-functional theory, are illustrated with examples from simulations of lithium-battery charging and electrochemical adsorption of bromine on single-crystal silver electrodes.
Exactly Solvable Quantum Mechanics
Sasaki, Ryu
2014-01-01
A comprehensive review of exactly solvable quantum mechanics is presented with the emphasis of the recently discovered multi-indexed orthogonal polynomials. The main subjects to be discussed are the factorised Hamiltonians, the general structure of the solution spaces of the Schroedinger equation (Crum's theorem and its modifications), the shape invariance, the exact solvability in the Schroedinger picture as well as in the Heisenberg picture, the creation/annihilation operators and the dynamical symmetry algebras, coherent states, various deformation schemes (multiple Darboux transformations) and the infinite families of multi-indexed orthogonal polynomials, the exceptional orthogonal polynomials, and deformed exactly solvable scattering problems.
Twisted Conformal Algebra and Quantum Statistics of Harmonic Oscillators
Directory of Open Access Journals (Sweden)
J. Naji
2014-01-01
Full Text Available We consider noncommutative two-dimensional quantum harmonic oscillators and extend them to the case of twisted algebra. We obtained modified raising and lowering operators. Also we study statistical mechanics and thermodynamics and calculated partition function which yields the free energy of the system.
A New Interpretation to The Quantum Mechanics
Feng, Yulei
2012-01-01
In this paper, we try to give a new interpretation to the quantum mechanics from the point of view of (non-relativistic) quantum field theory. After field quantization, we obtain the Heisenberg equations for the momentum and coordinate operators of the particles excited from the (Schrodinger) field. We then give the probability concepts of quantum mechanics on the base of a statistical assemble realizing the assemble interpretation. With these, we make a series of conceptual modifications to the standard quantum mechanics, especially the quantum measurement theory; in the end, we try to solve the EPR paradox with the use of our new ideas. In addition, we also give a field theoretical description to the double-slit interference experiment, obtaining the particle number distribution, in the appendix.
Quantum mechanics of materials
Energy Technology Data Exchange (ETDEWEB)
Cohen, M.L.; Heine, V.; Phillips, J.C.
1982-06-01
In the past 25 years, new quantum-mechanical methods have been developed for predicting the configuration of the valence electrons in an atom or an aggregate of many atoms, within the range of energy excitations in which the atoms form interatomic bonds. A theory specifying the configuration of the valence electrons has much to say about the bulk properties of matter that depends on the nature of the interatomic bonds. The new method regards the core electrons and the atomic nucleus as if they constituted a single particle without internal structure. The method is called the pseudopotential theory. A general quantum-mechanical prediction of the properties of a substance in terms of the additive properties of separate chemical bonds is not yet feasible for molecules. However, there is one realm where prediction is now practical: crystalline solids. The regularity of the lattice into which the atoms are organized in a crystal makes it possible to calculate the properties of a macroscopic solid. In other words, many properties of an elemental solid such as lead or a simple binary solid such as gallium arsenide can not be deduced from energy considerations alone. (SC)
Submicroscopic Deterministic Quantum Mechanics
Krasnoholovets, V
2002-01-01
So-called hidden variables introduced in quantum mechanics by de Broglie and Bohm have changed their initial enigmatic meanings and acquired quite reasonable outlines of real and measurable characteristics. The start viewpoint was the following: All the phenomena, which we observe in the quantum world, should reflect structural properties of the real space. Thus the scale 10^{-28} cm at which three fundamental interactions (electromagnetic, weak, and strong) intersect has been treated as the size of a building block of the space. The appearance of a massive particle is associated with a local deformation of the cellular space, i.e. deformation of a cell. The mechanics of a moving particle that has been constructed is deterministic by its nature and shows that the particle interacts with cells of the space creating elementary excitations called "inertons". The further study has disclosed that inertons are a substructure of the matter waves which are described by the orthodox wave \\psi-function formalism. The c...
Statistical properties of quantum spectra in nuclei
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Some aspects of quantum chaos in a finite system have been studied based on the analysis of statistical behavior of quantum spectra in nuclei.The experiment data show the transition from order to chaos with increasing excitation energy in spherical nuclei.The dependence of the order to chaos transition on nuclear deformation and nuclear rotating is described.The influence of pairing effect on the order to chaos transition is also discussed.Some important experiment phenomena in nuclear physics have been understood from the point of view of the interplay between order and chaos.
Quantum mechanics using Fradkin's representation
Shajesh, K V; Milton, Kimball A.
2005-01-01
Fradkin's representation is a general method of attacking problems in quantum field theory, having as its basis the functional approach of Schwinger. As a pedagogical illustration of that method, we explicitly formulate it for quantum mechanics (field theory in one dimension) and apply it to the solution of Schrodinger's equation for the quantum harmonic oscillator.
Gamification of Quantum Mechanics Teaching
Bjælde, Ole Eggers; Sherson, Jacob
2015-01-01
In this small scale study we demonstrate how a gamified teaching setup can be used effectively to support student learning in a quantum mechanics course. The quantum mechanics games were research games, which were played during lectures and the learning was measured with a pretest/posttest method with promising results. The study works as a pilot study to guide the planning of quantum mechanics courses in the future at Aarhus University in Denmark.
Quantum Mechanics for Electrical Engineers
Sullivan, Dennis M
2011-01-01
The main topic of this book is quantum mechanics, as the title indicates. It specifically targets those topics within quantum mechanics that are needed to understand modern semiconductor theory. It begins with the motivation for quantum mechanics and why classical physics fails when dealing with very small particles and small dimensions. Two key features make this book different from others on quantum mechanics, even those usually intended for engineers: First, after a brief introduction, much of the development is through Fourier theory, a topic that is at
A Quantum Space behind Simple Quantum Mechanics
Directory of Open Access Journals (Sweden)
Chuan Sheng Chew
2017-01-01
Full Text Available In physics, experiments ultimately inform us about what constitutes a good theoretical model of any physical concept: physical space should be no exception. The best picture of physical space in Newtonian physics is given by the configuration space of a free particle (or the center of mass of a closed system of particles. This configuration space (as well as phase space can be constructed as a representation space for the relativity symmetry. From the corresponding quantum symmetry, we illustrate the construction of a quantum configuration space, similar to that of quantum phase space, and recover the classical picture as an approximation through a contraction of the (relativity symmetry and its representations. The quantum Hilbert space reduces into a sum of one-dimensional representations for the observable algebra, with the only admissible states given by coherent states and position eigenstates for the phase and configuration space pictures, respectively. This analysis, founded firmly on known physics, provides a quantum picture of physical space beyond that of a finite-dimensional manifold and provides a crucial first link for any theoretical model of quantum space-time at levels beyond simple quantum mechanics. It also suggests looking at quantum physics from a different perspective.
Quantum mechanics the theoretical minimum
Susskind, Leonard
2014-01-01
From the bestselling author of The Theoretical Minimum, an accessible introduction to the math and science of quantum mechanicsQuantum Mechanics is a (second) book for anyone who wants to learn how to think like a physicist. In this follow-up to the bestselling The Theoretical Minimum, physicist Leonard Susskind and data engineer Art Friedman offer a first course in the theory and associated mathematics of the strange world of quantum mechanics. Quantum Mechanics presents Susskind and Friedman’s crystal-clear explanations of the principles of quantum states, uncertainty and time dependence, entanglement, and particle and wave states, among other topics. An accessible but rigorous introduction to a famously difficult topic, Quantum Mechanics provides a tool kit for amateur scientists to learn physics at their own pace.
Factorization Method in Quantum Mechanics
Dong, Shi-Hai
2007-01-01
This Work introduces the factorization method in quantum mechanics at an advanced level with an aim to put mathematical and physical concepts and techniques like the factorization method, Lie algebras, matrix elements and quantum control at the Reader’s disposal. For this purpose a comprehensive description is provided of the factorization method and its wide applications in quantum mechanics which complements the traditional coverage found in the existing quantum mechanics textbooks. Related to this classic method are the supersymmetric quantum mechanics, shape invariant potentials and group theoretical approaches. It is no exaggeration to say that this method has become the milestone of these approaches. In fact the Author’s driving force has been his desire to provide a comprehensive review volume that includes some new and significant results about the factorization method in quantum mechanics since the literature is inundated with scattered articles in this field, and to pave the Reader’s way into ...
Decoherence in quantum mechanics and quantum cosmology
Hartle, James B.
1992-01-01
A sketch of the quantum mechanics for closed systems adequate for cosmology is presented. This framework is an extension and clarification of that of Everett and builds on several aspects of the post-Everett development. It especially builds on the work of Zeh, Zurek, Joos and Zeh, and others on the interactions of quantum systems with the larger universe and on the ideas of Griffiths, Omnes, and others on the requirements for consistent probabilities of histories.
Statistical mechanical theory of fluid mixtures
Zhao, Yueqiang; Wu, Zhengming; Liu, Weiwei
2014-01-01
A general statistical mechanical theory of fluid mixtures (liquid mixtures and gas mixtures) is developed based on the statistical mechanical expression of chemical potential of components in the grand canonical ensemble, which gives some new relationships between thermodynamic quantities (equilibrium ratio Ki, separation factor α and activity coefficient γi) and ensemble average potential energy u for one molecule. The statistical mechanical expressions of separation factor α and activity coefficient γi derived in this work make the fluid phase equilibrium calculations can be performed by molecular simulation simply and efficiently, or by the statistical thermodynamic approach (based on the saturated-vapor pressure of pure substance) that does not need microscopic intermolecular pair potential functions. The physical meaning of activity coefficient γi in the liquid phase is discussed in detail from a viewpoint of molecular thermodynamics. The calculated Vapor-Liquid Equilibrium (VLE) properties of argon-methane, methanol-water and n-hexane-benzene systems by this model fit well with experimental data in references, which indicates that this model is accurate and reliable in the prediction of VLE properties for small, large and strongly associating molecules; furthermore the statistical mechanical expressions of separation factor α and activity coefficient γi have good compatibility with classical thermodynamic equations and quantum mechanical COSMO-SAC approach.
Applications of quantum entropy to statistics
Energy Technology Data Exchange (ETDEWEB)
Silver, R.N.; Martz, H.F.
1994-07-01
This paper develops two generalizations of the maximum entropy (ME) principle. First, Shannon classical entropy is replaced by von Neumann quantum entropy to yield a broader class of information divergences (or penalty functions) for statistics applications. Negative relative quantum entropy enforces convexity, positivity, non-local extensivity and prior correlations such as smoothness. This enables the extension of ME methods from their traditional domain of ill-posed in-verse problems to new applications such as non-parametric density estimation. Second, given a choice of information divergence, a combination of ME and Bayes rule is used to assign both prior and posterior probabilities. Hyperparameters are interpreted as Lagrange multipliers enforcing constraints. Conservation principles are proposed to act statistical regularization and other hyperparameters, such as conservation of information and smoothness. ME provides an alternative to heirarchical Bayes methods.
Institute of Scientific and Technical Information of China (English)
李金鑫; 方明
2012-01-01
According to the charge discrete values, mesoscopic RLC circuit with a power source has been quantized based on the full quantum theory of the mesoscopic circuit. Thus, a systemetic finite-difference Schrfidinger equation has been obtained. In representation, the form of Schrodinger equation has been transformed into the standard Mathieu equa- tion. In the WKBJ approximation, the energy level distribution of Mesoscopic RLC Circuit with a Power Source has been obtained, and then the average of P and p^2 in the ground state has been calculated. The problem of quantum fluctuations in Mesoscopic RLC circuit with a power source has been solved by quantum statistical mechanics.%在电荷分立取值的客观事实基础上，利用介观电路的全量子理论，对含源介观RLC电路进行了量子化，得到了系统的有限差分薛定谔方程．在表象中，通过变换，薛定谔方程的形式变为标准的马丢方程．在WKBJ近似下，得到了源介观RLC电路的能级分布，进而计算了p和p^2在基态中的平均值．利用量子统计力学解决了有源介观RLC电路的量子涨落问题．
Quantum mechanics II advanced topics
Rajasekar, S
2015-01-01
Quantum Mechanics II: Advanced Topics uses more than a decade of research and the authors’ own teaching experience to expound on some of the more advanced topics and current research in quantum mechanics. A follow-up to the authors introductory book Quantum Mechanics I: The Fundamentals, this book begins with a chapter on quantum field theory, and goes on to present basic principles, key features, and applications. It outlines recent quantum technologies and phenomena, and introduces growing topics of interest in quantum mechanics. The authors describe promising applications that include ghost imaging, detection of weak amplitude objects, entangled two-photon microscopy, detection of small displacements, lithography, metrology, and teleportation of optical images. They also present worked-out examples and provide numerous problems at the end of each chapter.
Quantum inertia stops superposition: Scan Quantum Mechanics
Gato-Rivera, Beatriz
2017-08-01
Scan Quantum Mechanics is a novel interpretation of some aspects of quantum mechanics in which the superposition of states is only an approximate effective concept. Quantum systems scan all possible states in the superposition and switch randomly and very rapidly among them. A crucial property that we postulate is quantum inertia, that increases whenever a constituent is added, or the system is perturbed with all kinds of interactions. Once the quantum inertia Iq reaches a critical value Icr for an observable, the switching among its different eigenvalues stops and the corresponding superposition comes to an end, leaving behind a system with a well defined value of that observable. Consequently, increasing the mass, temperature, gravitational strength, etc. of a quantum system increases its quantum inertia until the superposition of states disappears for all the observables and the system transmutes into a classical one. Moreover, the process could be reversible. Entanglement can only occur between quantum systems because an exact synchronization between the switchings of the systems involved must be established in the first place and classical systems do not have any switchings to start with. Future experiments might determine the critical inertia Icr corresponding to different observables, which translates into a critical mass Mcr for fixed environmental conditions as well as critical temperatures, critical electric and magnetic fields, etc. In addition, this proposal implies a new radiation mechanism from astrophysical objects with strong gravitational fields, giving rise to non-thermal synchrotron emission, that could contribute to neutron star formation. Superconductivity, superfluidity, Bose-Einstein condensates, and any other physical phenomena at very low temperatures must be reanalyzed in the light of this interpretation, as well as mesoscopic systems in general.
Bender, Carl M; DeKieviet, Maarten; Klevansky, S P
2013-04-28
PT-symmetric quantum mechanics (PTQM) has become a hot area of research and investigation. Since its beginnings in 1998, there have been over 1000 published papers and more than 15 international conferences entirely devoted to this research topic. Originally, PTQM was studied at a highly mathematical level and the techniques of complex variables, asymptotics, differential equations and perturbation theory were used to understand the subtleties associated with the analytic continuation of eigenvalue problems. However, as experiments on PT-symmetric physical systems have been performed, a simple and beautiful physical picture has emerged, and a PT-symmetric system can be understood as one that has a balanced loss and gain. Furthermore, the PT phase transition can now be understood intuitively without resorting to sophisticated mathematics. Research on PTQM is following two different paths: at a fundamental level, physicists are attempting to understand the underlying mathematical structure of these theories with the long-range objective of applying the techniques of PTQM to understanding some of the outstanding problems in physics today, such as the nature of the Higgs particle, the properties of dark matter, the matter-antimatter asymmetry in the universe, neutrino oscillations and the cosmological constant; at an applied level, new kinds of PT-synthetic materials are being developed, and the PT phase transition is being observed in many physical contexts, such as lasers, optical wave guides, microwave cavities, superconducting wires and electronic circuits. The purpose of this Theme Issue is to acquaint the reader with the latest developments in PTQM. The articles in this volume are written in the style of mini-reviews and address diverse areas of the emerging and exciting new area of PT-symmetric quantum mechanics.
Quantum mechanics: why complex Hilbert space?
Cassinelli, G; Lahti, P
2017-11-13
We outline a programme for an axiomatic reconstruction of quantum mechanics based on the statistical duality of states and effects that combines the use of a theorem of Solér with the idea of symmetry. We also discuss arguments favouring the choice of the complex field.This article is part of the themed issue 'Second quantum revolution: foundational questions'. © 2017 The Author(s).
Popper's test of Quantum Mechanics
Bramon, A
2005-01-01
A test of quantum mechanics proposed by K. Popper and dealing with two-particle entangled states emitted from a fixed source has been criticized by several authors. Some of them claim that the test becomes inconclusive once all the quantum aspects of the source are considered. Moreover, another criticism states that the predictions attributed to quantum mechanics in Popper's analysis are untenable. We reconsider these criticisms and show that, to a large extend, the `falsifiability' potential of the test remains unaffected.
The theoretical foundations of quantum mechanics
Baaquie, Belal E
2013-01-01
The Theoretical Foundations of Quantum Mechanics addresses fundamental issues that are not discussed in most books on quantum mechanics. This book focuses on analyzing the underlying principles of quantum mechanics and explaining the conceptual and theoretical underpinning of quantum mechanics. In particular, the concepts of quantum indeterminacy, quantum measurement and quantum superposition are analyzed to clarify the concepts that are implicit in the formulation of quantum mechanics. The Schrodinger equation is never solved in the book. Rather, the discussion on the fundamentals of quantum mechanics is treated in a rigorous manner based on the mathematics of quantum mechanics. The new concept of the interplay of empirical and trans-empirical constructs in quantum mechanics is introduced to clarify the foundations of quantum mechanics and to explain the counter-intuitive construction of nature in quantum mechanics. The Theoretical Foundations of Quantum Mechanics is aimed at the advanced undergraduate and a...
Statistical mechanics a short treatise
Gallavotti, Giovanni
1999-01-01
This book presents a critical and modern analysis of the conceptual foundations of statistical mechanics as laid down in Boltzmann's works The author emphasizes the relation between microscopic reversibility and macroscopic irreversibility Students will find a clear and detailed explanation of fundamental concepts such as equipartition, entropy, and ergodicity They will learn about Brownian motion, the modern treatment of the thermodynamic limit phase transitions, the microscopic and macroscopic theory of the coexistence of phases, statistical mechanics of stationary states, and fluctuations and dissipation in chaotic motions
Noncommutative Quantum Mechanics and Quantum Cosmology
Bastos, Catarina; Dias, Nuno; Prata, Joao Nuno
2009-01-01
We present a phase-space noncommutative version of quantum mechanics and apply this extension to Quantum Cosmology. We motivate this type of noncommutative algebra through the gravitational quantum well (GQW) where the noncommutativity between momenta is shown to be relevant. We also discuss some qualitative features of the GQW such as the Berry phase. In the context of quantum cosmology we consider a Kantowski-Sachs cosmological model and obtain the Wheeler-DeWitt (WDW) equation for the noncommutative system through the ADM formalism and a suitable Seiberg-Witten (SW) map. The WDW equation is explicitly dependent on the noncommutative parameters, $\\theta$ and $\\eta$. We obtain numerical solutions of the noncommutative WDW equation for different values of the noncommutative parameters. We conclude that the noncommutativity in the momenta sector leads to a damped wave function implying that this type of noncommmutativity can be relevant for a selection of possible initial states for the universe.
Principles of Quantum Mechanics
Landé, Alfred
2013-10-01
ödinger's equation for non-conservative systems; 46. Pertubation theory; 47. Orthogonality, normalization and Hermitian conjugacy; 48. General matrix elements; Part IV. The Principle of Correspondence: 49. Contact transformations in classical mechanics; 50. Point transformations; 51. Contact transformations in quantum mechanics; 52. Constants of motion and angular co-ordinates; 53. Periodic orbits; 54. De Broglie and Schrödinger function; correspondence to classical mechanics; 55. Packets of probability; 56. Correspondence to hydrodynamics; 57. Motion and scattering of wave packets; 58. Formal correspondence between classical and quantum mechanics; Part V. Mathematical Appendix: Principle of Invariance: 59. The general theorem of transformation; 60. Operator calculus; 61. Exchange relations; three criteria for conjugacy; 62. First method of canonical transformation; 63. Second method of canonical transformation; 64. Proof of the transformation theorem; 65. Invariance of the matrix elements against unitary transformations; 66. Matrix mechanics; Index of literature; Index of names and subjects.
Quantum mechanics & the big world
Wezel, Jasper van
2007-01-01
Quantum Mechanics is one of the most successful physical theories of the last century. It explains physical phenomena from the smallest to the largest lengthscales. Despite this triumph, quantum mechanics is often perceived as a mysterious theory, involving superposition states that are alien to our
Discovering Quantum Mechanics Once Again
Duck, Ian M
2003-01-01
We expand on a recent development by Hardy, in which quantum mechanics is derived from classical probability theory supplemented by a single new axiom, Hardy's Axiom 5. Our scenario involves a `pretend world' with a `pretend' Heisenberg who seeks to construct a dynamical theory of probabilities and is lead -- seemingly inevitably -- to the Principles of Quantum Mechanics.
Quantum mechanics & the big world
Wezel, Jasper van
2007-01-01
Quantum Mechanics is one of the most successful physical theories of the last century. It explains physical phenomena from the smallest to the largest lengthscales. Despite this triumph, quantum mechanics is often perceived as a mysterious theory, involving superposition states that are alien to our
Quantum mechanics of molecular structures
Yamanouchi, Kaoru
2012-01-01
At a level accessible to advanced undergraduates, this textbook explains the fundamental role of quantum mechanics in determining the structure, dynamics, and other properties of molecules. Readers will come to understand the quantum-mechanical basis for harmonic oscillators, angular momenta and scattering processes. Exercises are provided to help readers deepen their grasp of the essential phenomena.
On Finite $J$-Hermitian Quantum Mechanics
Lee, Sungwook
2014-01-01
In his recent paper arXiv:1312.7738, the author discussed $J$-Hermitian quantum mechanics and showed that $PT$-symmetric quantum mechanics is essentially $J$-Hermitian quantum mechanics. In this paper, the author discusses finite $J$-Hermitian quantum mechanics which is derived naturally from its continuum one and its relationship with finite $PT$-symmetric quantum mechanics.
Modern Approach to Quantum Mechanics
Townsend, John S.
Inspired by Richard Feynman and J.J. Sakurai, A Modern Approach to Quantum Mechanics lets professors expose their undergraduates to the excitement and insight of Feynman's approach to quantum mechanics while simultaneously giving them a textbook that is well-ordered, logical, and pedagogically sound. This book covers all the topics that are typically presented in a standard upper-level course in quantum mechanics, but its teaching approach is new: Rather than organizing his book according to the historical development of the field and jumping into a mathematical discussion of wave mechanics, Townsend begins his book with the quantum mechanics of spin. Thus, the first five chapters of the book succeed in laying out the fundamentals of quantum mechanics with little or no wave mechanics, so the physics is not obscured by mathematics. Starting with spin systems gives students something new and interesting while providing elegant but straightforward examples of the essential structure of quantum mechanics. When wave mechanics is introduced later, students perceive it correctly as only one aspect of quantum mechanics and not the core of the subject. Praised for its pedagogical brilliance, clear writing, and careful explanations, this book is destined to become a landmark text.
Quantum Entropy and Its Applications to Quantum Communication and Statistical Physics
Directory of Open Access Journals (Sweden)
Masanori Ohya
2010-05-01
Full Text Available Quantum entropy is a fundamental concept for quantum information recently developed in various directions. We will review the mathematical aspects of quantum entropy (entropies and discuss some applications to quantum communication, statistical physics. All topics taken here are somehow related to the quantum entropy that the present authors have been studied. Many other fields recently developed in quantum information theory, such as quantum algorithm, quantum teleportation, quantum cryptography, etc., are totally discussed in the book (reference number 60.
Statistical Mechanics in a Nutshell
Rau, Jochen
1998-01-01
I give a concise introduction to some essential concepts of statistical mechanics: 1. Probability theory (constrained distributions, concentration theorem, frequency estimation, hypothesis testing); 2. Macroscopic systems in equilibrium (macrostate, thermodynamic variables, entropy, first law, thermodynamic potentials, correlations); 3. Linear response (Kubo formula).
Statistics of Quantum Turbulence in Superfluid He
L'vov, V. S.; Pomyalov, A.
2016-11-01
Based on our current understanding of statistics of quantum turbulence as well as on results of intensive ongoing analytical, numerical and experimental studies, we overview here the following problems in the large-scale, space-homogeneous, steady-state turbulence of superfluid ^4 He and ^3 He: (1) energy spectra of normal and superfluid velocity components; (2) cross-correlation function of normal and superfluid velocities; (3) energy dissipation by mutual friction and viscosity; (4) energy exchange between normal and superfluid components; (5) high-order statistics and intermittency effects. The statistical properties are discussed for turbulence in different types of flows: coflow of ^4 He; turbulent ^3 He with the laminar normal fluid; pure superflow and counterflow in ^4 He.
Quantum mechanics a modern development
Ballentine, Leslie E
2015-01-01
Although there are many textbooks that deal with the formal apparatus of quantum mechanics (QM) and its application to standard problems, none take into account the developments in the foundations of the subject which have taken place in the last few decades. There are specialized treatises on various aspects of the foundations of QM, but none that integrate those topics with the standard material. This book aims to remove that unfortunate dichotomy, which has divorced the practical aspects of the subject from the interpretation and broader implications of the theory. In this edition a new chapter on quantum information is added. As the topic is still in a state of rapid development, a comprehensive treatment is not feasible. The emphasis is on the fundamental principles and some key applications, including quantum cryptography, teleportation of states, and quantum computing. The impact of quantum information theory on the foundations of quantum mechanics is discussed. In addition, there are minor revisions ...
Communication: quantum mechanics without wavefunctions.
Schiff, Jeremy; Poirier, Bill
2012-01-21
We present a self-contained formulation of spin-free non-relativistic quantum mechanics that makes no use of wavefunctions or complex amplitudes of any kind. Quantum states are represented as ensembles of real-valued quantum trajectories, obtained by extremizing an action and satisfying energy conservation. The theory applies for arbitrary configuration spaces and system dimensionalities. Various beneficial ramifications-theoretical, computational, and interpretational-are discussed.
Coherent states in quantum mechanics
Rodrigues, R D L; Fernandes, D
2001-01-01
We present a review work on the coherent states is non-relativistic quantum mechanics analysing the quantum oscillators in the coherent states. The coherent states obtained via a displacement operator that act on the wave function of ground state of the oscillator and the connection with Quantum Optics which were implemented by Glauber have also been considered. A possible generalization to the construction of new coherent states it is point out.
Quantum Statistical Calculation of Exchange Bias
Institute of Scientific and Technical Information of China (English)
WANG Huai-Yu; DAI Zhen-Hong
2004-01-01
The phenomenon of exchange bias of ferromagnetic (FM) films, which are coupled with an antiferromagnetic (AFM) film, is studied by Heisenberg model by use of the many-body Green's function method of quantum statistical theory for the uncompensated case. Exchange bias HE and coercivity Hc are calculated as functions of the FM film thickness L, temperature, the strength of the exchange interaction across the interface between FM and AFM and the anisotropy of the FM. Hc decreases with increasing L when the FM film is beyond some thickness. The dependence of the exchange bias HE on the FM film thickness and on temperature is also qualitatively in agreement with experiments.
Quantum Mechanics of Extended Objects
Sastry, R R
2000-01-01
We propose a quantum mechanics of extended objects that accounts for the finite extent of a particle defined via its Compton wavelength. The Hilbert space representation theory of such a quantum mechanics is presented and this representation is used to demonstrate the quantization of spacetime. The quantum mechanics of extended objects is then applied to two paradigm examples, the fuzzy (extended object) harmonic oscillator and the Yukawa potential. In the second example the phenomenological coupling constant of the $\\omega$ meson which mediates the short range and repulsive nucleon force as well as the repulsive core radius are theoretically predicted.
Quantum mechanics in Hilbert space
Prugovecki, Eduard
2006-01-01
A critical presentation of the basic mathematics of nonrelativistic quantum mechanics, this text is suitable for courses in functional analysis at the advanced undergraduate and graduate levels. Its readable and self-contained form is accessible even to students without an extensive mathematical background. Applications of basic theorems to quantum mechanics make it of particular interest to mathematicians working in functional analysis and related areas.This text features the rigorous proofs of all the main functional-analytic statements encountered in books on quantum mechanics. It fills the
Linear operators for quantum mechanics
Jordan, Thomas F
2006-01-01
This compact treatment highlights the logic and simplicity of the mathematical structure of quantum mechanics. Suitable for advanced undergraduates and graduate students, it treats the language of quantum mechanics as expressed in the mathematics of linear operators.Originally oriented toward atomic physics, quantum mechanics became a basic language for solid-state, nuclear, and particle physics. Its grammar consists of the mathematics of linear operators, and with this text, students will find it easier to understand and use the language of physics. Topics include linear spaces and linear fun
Statistical mechanics on isoradial graphs
Boutillier, Cédric
2010-01-01
Isoradial graphs are a natural generalization of regular graphs which give, for many models of statistical mechanics, the right framework for studying models at criticality. In this survey paper, we first explain how isoradial graphs naturally arise in two approaches used by physicists: transfer matrices and conformal field theory. This leads us to the fact that isoradial graphs provide a natural setting for discrete complex analysis, to which we dedicate one section. Then, we give an overview of explicit results obtained for different models of statistical mechanics defined on such graphs: the critical dimer model when the underlying graph is bipartite, the 2-dimensional critical Ising model, random walk and spanning trees and the q-state Potts model.
Nhu, Nguyen Van; Singh, Mahendra; Leonhard, Kai
2008-05-08
We have computed molecular descriptors for sizes, shapes, charge distributions, and dispersion interactions for 67 compounds using quantum chemical ab initio and density functional theory methods. For the same compounds, we have fitted the three perturbed-chain polar statistical associating fluid theory (PCP-SAFT) equation of state (EOS) parameters to experimental data and have performed a statistical analysis for relations between the descriptors and the EOS parameters. On this basis, an analysis of the physical significance of the parameters, the limits of the present descriptors, and the PCP-SAFT EOS has been performed. The result is a method that can be used to estimate the vapor pressure curve including the normal boiling point, the liquid volume, the enthalpy of vaporization, the critical data, mixture properties, and so on. When only two of the three parameters are predicted and one is adjusted to experimental normal boiling point data, excellent predictions of all investigated pure compound and mixture properties are obtained. We are convinced that the methodology presented in this work will lead to new EOS applications as well as improved EOS models whose predictive performance is likely to surpass that of most present quantum chemically based, quantitative structure-property relationship, and group contribution methods for a broad range of chemical substances.
Statistical mechanics of complex networks
Rubi, Miguel; Diaz-Guilera, Albert
2003-01-01
Networks can provide a useful model and graphic image useful for the description of a wide variety of web-like structures in the physical and man-made realms, e.g. protein networks, food webs and the Internet. The contributions gathered in the present volume provide both an introduction to, and an overview of, the multifaceted phenomenology of complex networks. Statistical Mechanics of Complex Networks also provides a state-of-the-art picture of current theoretical methods and approaches.
Introduction to Modern Statistical Mechanics
Chandler, David
1987-09-01
Leading physical chemist David Chandler takes a new approach to statistical mechanics to provide the only introductory-level work on the modern topics of renormalization group theory, Monte Carlo simulations, time correlation functions, and liquid structure. The author provides compact summaries of the fundamentals of this branch of physics and discussions of many of its traditional elementary applications, interspersed with over 150 exercises and microcomputer programs.
Stochastic methods in quantum mechanics
Gudder, Stanley P
2005-01-01
Practical developments in such fields as optical coherence, communication engineering, and laser technology have developed from the applications of stochastic methods. This introductory survey offers a broad view of some of the most useful stochastic methods and techniques in quantum physics, functional analysis, probability theory, communications, and electrical engineering. Starting with a history of quantum mechanics, it examines both the quantum logic approach and the operational approach, with explorations of random fields and quantum field theory.The text assumes a basic knowledge of fun
Classical and quantum Fisher information in the geometrical formulation of quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Facchi, Paolo [Dipartimento di Matematica, Universita di Bari, I-70125 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); MECENAS, Universita Federico II di Napoli and Universita di Bari (Italy); Kulkarni, Ravi [Vivekananda Yoga Research Foundation, Bangalore 560 080 (India); Man' ko, V.I., E-mail: manko@na.infn.i [P.N. Lebedev Physical Institute, Leninskii Prospect 53, Moscow 119991 (Russian Federation); Marmo, Giuseppe [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , I-80126 Napoli (Italy); INFN, Sezione di Napoli, I-80126 Napoli (Italy); MECENAS, Universita Federico II di Napoli and Universita di Bari (Italy); Sudarshan, E.C.G. [Department of Physics, University of Texas, Austin, TX 78712 (United States); Ventriglia, Franco [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , I-80126 Napoli (Italy); INFN, Sezione di Napoli, I-80126 Napoli (Italy); MECENAS, Universita Federico II di Napoli and Universita di Bari (Italy)
2010-11-01
The tomographic picture of quantum mechanics has brought the description of quantum states closer to that of classical probability and statistics. On the other hand, the geometrical formulation of quantum mechanics introduces a metric tensor and a symplectic tensor (Hermitian tensor) on the space of pure states. By putting these two aspects together, we show that the Fisher information metric, both classical and quantum, can be described by means of the Hermitian tensor on the manifold of pure states.
Time Asymmetric Quantum Mechanics
National Research Council Canada - National Science Library
Arno R Bohm; Manuel Gadella; Piotr Kielanowski
2011-01-01
The meaning of time asymmetry in quantum physics is discussed. On the basis of a mathematical theorem, the Stone-von Neumann theorem, the solutions of the dynamical equations, the Schrödinger equation (1...
Relativistic quantum mechanics
Horwitz, Lawrence P
2015-01-01
This book describes a relativistic quantum theory developed by the author starting from the E.C.G. Stueckelberg approach proposed in the early 40s. In this framework a universal invariant evolution parameter (corresponding to the time originally postulated by Newton) is introduced to describe dynamical evolution. This theory is able to provide solutions for some of the fundamental problems encountered in early attempts to construct a relativistic quantum theory. A relativistically covariant construction is given for which particle spins and angular momenta can be combined through the usual rotation group Clebsch-Gordan coefficients. Solutions are defined for both the classical and quantum two body bound state and scattering problems. The recently developed quantum Lax-Phillips theory of semigroup evolution of resonant states is described. The experiment of Lindner and coworkers on interference in time is discussed showing how the property of coherence in time provides a simple understanding of the results. Th...
Analytical mechanics for relativity and quantum mechanics
Johns, Oliver Davis
2011-01-01
Analytical Mechanics for Relativity and Quantum Mechanics is an innovative and mathematically sound treatment of the foundations of analytical mechanics and the relation of classical mechanics to relativity and quantum theory. It is intended for use at the introductory graduate level. A distinguishing feature of the book is its integration of special relativity into teaching of classical mechanics. After a thorough review of the traditional theory, Part II of the book introduces extended Lagrangian and Hamiltonian methods that treat time as a transformable coordinate rather than the fixed parameter of Newtonian physics. Advanced topics such as covariant Langrangians and Hamiltonians, canonical transformations, and Hamilton-Jacobi methods are simplified by the use of this extended theory. And the definition of canonical transformation no longer excludes the Lorenz transformation of special relativity. This is also a book for those who study analytical mechanics to prepare for a critical exploration of quantum...
Hilbert space and quantum mechanics
Gallone, Franco
2015-01-01
The topics of this book are the mathematical foundations of non-relativistic quantum mechanics and the mathematical theory they require. The main characteristic of the book is that the mathematics is developed assuming familiarity with elementary analysis only. Moreover, all the proofs are carried out in detail. These features make the book easily accessible to readers with only the mathematical training offered by undergraduate education in mathematics or in physics, and also ideal for individual study. The principles of quantum mechanics are discussed with complete mathematical accuracy and an effort is made to always trace them back to the experimental reality that lies at their root. The treatment of quantum mechanics is axiomatic, with definitions followed by propositions proved in a mathematical fashion. No previous knowledge of quantum mechanics is required. This book is designed so that parts of it can be easily used for various courses in mathematics and mathematical physics, as suggested in the Pref...
Quantum mechanics principles and formalism
McWeeny, Roy
2012-01-01
Focusing on main principles of quantum mechanics and their immediate consequences, this graduate student-oriented volume develops the subject as a fundamental discipline, opening with review of origins of Schrödinger's equations and vector spaces.
Quantum mechanical description of waveguides
Institute of Scientific and Technical Information of China (English)
Wang Zhi-Yong; Xiong Cai-Dong; He Bing
2008-01-01
Applying the spinor representation of the electromagnetic field,this paper present a quantum-mechanical description of waveguides.As an example of application,a potential qubit generated by photon tunnelling is discussed.
Quantum Mechanics and Common Sense
Gantsevich, S V
2016-01-01
A physical picture for Quantum Mechanics which permits to conciliate it with the usual common sense is proposed. The picture agrees with the canonical Copenhagen interpretation making more clear its statements.
Quantum mechanics I the fundamentals
Rajasekar, S
2015-01-01
Quantum Mechanics I: The Fundamentals provides a graduate-level account of the behavior of matter and energy at the molecular, atomic, nuclear, and sub-nuclear levels. It covers basic concepts, mathematical formalism, and applications to physically important systems.
Statistical Mechanics of Dynamical Systems
Mori, H.; Hata, H.; Horita, T.; Kobayashi, T.
A statistical-mechanical formalism of chaos based on the geometry of invariant sets in phase space is discussed to show that chaotic dynamical systems can be treated by a formalism analogous to that of thermodynamic systems if one takes a relevant coarse-grained quantity, but their statistical laws are quite different from those of thermodynamic systems. This is a generalization of statistical mechanics for dealing with dissipative and hamiltonian (i.e., conservative) dynamical systems of a few degrees of freedom. Thus the sum of the local expansion rate of nearby orbits along relevant orbit over a long but finite time has been introduced in order to describe and characterize (1) a drastic change of the structure of a chaotic attractor at a bifurcation and anomalous phenomena associated, (2) a critical scaling of chaos in the neighborhood of a critical point for the bifurcation to a nonexotic state, and a self-similar temporal structure of a critical orbit on the critical 2^∞ attractor an the critical golden tori without mixing, (3) the critical KAM torus, diffusion and repeated sticking of a chaotic orbit to a critical torus in hamiltonian systems. Here a q-phase transition, analogous to the ferromagnetic phase transition, plays an important role. They are illustrated numerically and theoretically by treating the driven damped pendulum, the driven Duffing equation, the Henon map, and the dissipative and conservative standard maps. This description of chaos breaks the time-reversal symmetry of hamiltonian dynamical laws analogously to statistical mechanics of irreversible processes. The broken time-reversal symmetry is brought about by orbital instability of chaos.
A different approach to introducing statistical mechanics
Moore, Thomas A
2015-01-01
The basic notions of statistical mechanics (microstates, multiplicities) are quite simple, but understanding how the second law arises from these ideas requires working with cumbersomely large numbers. To avoid getting bogged down in mathematics, one can compute multiplicities numerically for a simple model system such as an Einstein solid -- a collection of identical quantum harmonic oscillators. A computer spreadsheet program or comparable software can compute the required combinatoric functions for systems containing a few hundred oscillators and units of energy. When two such systems can exchange energy, one immediately sees that some configurations are overwhelmingly more probable than others. Graphs of entropy vs. energy for the two systems can be used to motivate the theoretical definition of temperature, $T= (\\partial S/\\partial U)^{-1}$, thus bridging the gap between the classical and statistical approaches to entropy. Further spreadsheet exercises can be used to compute the heat capacity of an Einst...
Statistical Mechanics and Applications in Condensed Matter
Di Castro, Carlo; Raimondi, Roberto
2015-08-01
Preface; 1. Thermodynamics: a brief overview; 2. Kinetics; 3. From Boltzmann to Gibbs; 4. More ensembles; 5. The thermodynamic limit and its thermodynamic stability; 6. Density matrix and quantum statistical mechanics; 7. The quantum gases; 8. Mean-field theories and critical phenomena; 9. Second quantization and Hartree-Fock approximation; 10. Linear response and fluctuation-dissipation theorem in quantum systems: equilibrium and small deviations; 11. Brownian motion and transport in disordered systems; 12. Fermi liquids; 13. The Landau theory of the second order phase transitions; 14. The Landau-Wilson model for critical phenomena; 15. Superfluidity and superconductivity; 16. The scaling theory; 17. The renormalization group approach; 18. Thermal Green functions; 19. The microscopic foundations of Fermi liquids; 20. The Luttinger liquid; 21. Quantum interference effects in disordered electron systems; Appendix A. The central limit theorem; Appendix B. Some useful properties of the Euler Gamma function; Appendix C. Proof of the second theorem of Yang and Lee; Appendix D. The most probable distribution for the quantum gases; Appendix E. Fermi-Dirac and Bose-Einstein integrals; Appendix F. The Fermi gas in a uniform magnetic field: Landau diamagnetism; Appendix G. Ising and gas-lattice models; Appendix H. Sum over discrete Matsubara frequencies; Appendix I. Hydrodynamics of the two-fluid model of superfluidity; Appendix J. The Cooper problem in the theory of superconductivity; Appendix K. Superconductive fluctuations phenomena; Appendix L. Diagrammatic aspects of the exact solution of the Tomonaga Luttinger model; Appendix M. Details on the theory of the disordered Fermi liquid; References; Author index; Index.
The physics of quantum mechanics
Binney, James
2014-01-01
The Physics of Quantum Mechanics aims to give students a good understanding of how quantum mechanics describes the material world. It shows that the theory follows naturally from the use of probability amplitudes to derive probabilities. It stresses that stationary states are unphysical mathematical abstractions that enable us to solve the theory's governing equation, the time-dependent Schroedinger equation. Every opportunity is taken to illustrate the emergence of the familiarclassical, dynamical world through the quantum interference of stationary states. The text stresses the continuity be
Introductory quantum mechanics for applied nanotechnology
Kim, Dae Mann
2015-01-01
This introductory textbook covers fundamental quantum mechanics from an application perspective, considering optoelectronic devices, biological sensors and molecular imagers as well as solar cells and field effect transistors. The book provides a brief review of classical and statistical mechanics and electromagnetism, and then turns to the quantum treatment of atoms, molecules, and chemical bonds. Aiming at senior undergraduate and graduate students in nanotechnology related areas like physics, materials science, and engineering, the book could be used at schools that offer interdisciplinary but focused training for future workers in the semiconductor industry and for the increasing number of related nanotechnology firms, and even practicing people could use it when they need to learn related concepts. The author is Professor Dae Mann Kim from the Korea Institute for Advanced Study who has been teaching Quantum Mechanics to engineering, material science and physics students for over 25 years in USA and Asia.
Quantum mechanics in a nutshell
Mahan, Gerald D
2009-01-01
Covering the fundamentals as well as many special topics of current interest, this is the most concise, up-to-date, and accessible graduate-level textbook on quantum mechanics available. Written by Gerald Mahan, a distinguished research physicist and author of an acclaimed textbook on many-particle physics, Quantum Mechanics in a Nutshell is the distillation of many years' teaching experience. Emphasizing the use of quantum mechanics to describe actual quantum systems such as atoms and solids, and rich with interesting applications, the book proceeds from solving for the properties of a single particle in potential; to solving for two particles (the helium atom); to addressing many-particle systems. Applications include electron gas, magnetism, and Bose-Einstein Condensation; examples are carefully chosen and worked; and each chapter has numerous homework problems, many of them original
Quantum Mechanics and determinism
Hooft, G. 't
2001-01-01
It is shown how to map the quantum states of a system of free scalar particles one-to-one onto the states of a completely deterministic model. It is a classical field theory with a large (global) gauge group. The mapping is now also applied to free Maxwell fields. Lorentz invariance is demonstrated.
BOOK REVIEWS: Quantum Mechanics: Fundamentals
Whitaker, A.
2004-02-01
chapter of his book to these matters, titled ‘The Measurement Process and the Statistical Interpretation of Quantum Mechanics’. Gottfried considered the von Neumann or Dirac ‘collapse of state-vector’ (or ‘reduction postulate’ or ‘projection postulate’) was unsatisfactory, as he argued that it led inevitably to the requirement to include ‘consciousness’ in the theory. He replaced this by a more mathematically and conceptually sophisticated treatment in which, following measurement, the density matrix of the correlated measured and measuring systems, rho, is replaced by hat rho, in which the interference terms from rho have been removed. rho represents a pure state, and hat rho a mixture, but Gottfried argued that they are ‘indistinguishable’, and that we may make our replacement, ‘safe in the knowledge that the error will never be found’. Now our combined state is represented as a mixture, it is intuitive, Gottfried argued, to interpret it in a probabilistic way, |cm|2 being the probability of obtaining the mth measurement result. Bell liked Gottfried’s treatment little more than the cruder ‘collapse’ idea of von Neumann, and when, shortly before Bell’s death, his polemical article ‘Against measurement’ was published in the August 1990 issue of Physics World (pages 33-40), his targets included, not only Landau and Lifshitz’s classic Quantum Mechanics, pilloried for its advocacy of old-fashioned collapse, and a paper by van Kampen in Physica, but also Gottfried’s approach. Bell regarded his replacement of rho by hat rho as a ‘butchering’ of the density matrix, and considered, in any case, that even the butchered density matrix should represent co-existence of different terms, not a set of probabilities. Gottfried has replied to Bell ( Physics World, October 1991, pages 34-40; Nature 405, 533-36 (2000)). He has also become a major commentator on Bell’s work, for example editing the section on quantum foundations in the World
Statistical mechanics of multiedge networks.
Sagarra, O; Pérez Vicente, C J; Díaz-Guilera, A
2013-12-01
Statistical properties of binary complex networks are well understood and recently many attempts have been made to extend this knowledge to weighted ones. There are, however, subtle yet important considerations to be made regarding the nature of the weights used in this generalization. Weights can be either continuous or discrete magnitudes, and in the latter case, they can additionally have undistinguishable or distinguishable nature. This fact has not been addressed in the literature insofar and has deep implications on the network statistics. In this work we face this problem introducing multiedge networks as graphs where multiple (distinguishable) connections between nodes are considered. We develop a statistical mechanics framework where it is possible to get information about the most relevant observables given a large spectrum of linear and nonlinear constraints including those depending both on the number of multiedges per link and their binary projection. The latter case is particularly interesting as we show that binary projections can be understood from multiedge processes. The implications of these results are important as many real-agent-based problems mapped onto graphs require this treatment for a proper characterization of their collective behavior.
The quantum field theory interpretation of quantum mechanics
de la Torre, Alberto C.
2015-01-01
It is shown that adopting the \\emph{Quantum Field} ---extended entity in space-time build by dynamic appearance propagation and annihilation of virtual particles--- as the primary ontology the astonishing features of quantum mechanics can be rendered intuitive. This interpretation of quantum mechanics follows from the formalism of the most successful theory in physics: quantum field theory.
Quantum Mechanics and Narratability
Myrvold, Wayne C.
2016-07-01
As has been noted by several authors, in a relativistic context, there is an interesting difference between classical and quantum state evolution. For a classical system, a state history of a quantum system given along one foliation uniquely determines, without any consideration of the system's dynamics, a state history along any other foliation. This is not true for quantum state evolution; there are cases in which a state history along one foliation is compatible with multiple distinct state histories along some other, a phenomenon that David Albert has dubbed "non-narratability." In this article, we address the question of whether non-narratability is restricted to the sorts of special states that so far have been used to illustrate it. The results of the investigation suggest that there has been a misplaced emphasis on underdetermination of state histories; though this is generic for the special cases that have up until now been considered, involving bipartite systems in pure entangled states, it fails generically in cases in which more component systems are taken into account, and for bipartite systems that have some entanglement with their environment. For such cases, if we impose relativistic causality constraints on the evolution, then, except for very special states, a state history along one foliation uniquely determines a state history along any other. But this in itself is a marked difference between classical and quantum state evolution, because, in a classical setting, no considerations of dynamics at all are needed to go from a state history along one foliation to a state history along another.
The Emergent Copenhagen Interpretation of Quantum Mechanics
Hollowood, Timothy J
2013-01-01
We introduce a new and conceptually simple interpretation of quantum mechanics based on reduced density matrices of sub-systems from which the standard Copenhagen interpretation emerges as an effective description of macroscopically large systems. Wave function collapse is seen to be a useful but fundamentally unnecessary piece of prudent book keeping which is only valid for macro-systems. The new interpretation lies in a class of modal interpretations in that it applies to quantum systems that interact with a much larger environment. However, we show that it does not suffer from the problems that have plagued similar modal interpretations like macroscopic superpositions and rapid flipping between macroscopically distinct states. We describe how the interpretation fits neatly together with fully quantum formulations of statistical mechanics and that a measurement process can be viewed as a process of ergodicity breaking analogous to a phase transition. The key feature of the new interpretation is that joint p...
Quantum Mechanical Earth: Where Orbitals Become Orbits
Keeports, David
2012-01-01
Macroscopic objects, although quantum mechanical by nature, conform to Newtonian mechanics under normal observation. According to the quantum mechanical correspondence principle, quantum behavior is indistinguishable from classical behavior in the limit of very large quantum numbers. The purpose of this paper is to provide an example of the…
Quantum Mechanical Earth: Where Orbitals Become Orbits
Keeports, David
2012-01-01
Macroscopic objects, although quantum mechanical by nature, conform to Newtonian mechanics under normal observation. According to the quantum mechanical correspondence principle, quantum behavior is indistinguishable from classical behavior in the limit of very large quantum numbers. The purpose of this paper is to provide an example of the…
Black hole entropy thermodynamics, statistical-mechanics and subtraction procedure
Frolov, V P; Zelnikov, A I
1996-01-01
The thermodynamical one-loop entropy S^{TD} of a two-dimensional black hole in thermal equilibrium with the massless quantum gas is calculated. It is shown that S^{TD} includes the Bekenstein-Hawking entropy, evaluated for the quantum corrected geometry, and the finite difference of statistical mechanical entropies -Tr\\hat{\\rho}\\ln\\hat{\\rho} for the gas on the black hole and Rindler spaces. This result demonstrates in an explicit form that the relation between thermodynamical and statistical-mechanical entropies of a black hole is non-trivial and requires special subtraction procedure.
Non-relativistic quantum mechanics
Puri, Ravinder R.
2017-01-01
This book develops and simplifies the concept of quantum mechanics based on the postulates of quantum mechanics. The text discusses the technique of disentangling the exponential of a sum of operators, closed under the operation of commutation, as the product of exponentials to simplify calculations of harmonic oscillator and angular momentum. Based on its singularity structure, the Schrödinger equation for various continuous potentials is solved in terms of the hypergeometric or the confluent hypergeometric functions. The forms of the potentials for which the one-dimensional Schrödinger equation is exactly solvable are derived in detail. The problem of identifying the states of two-level systems which have no classical analogy is addressed by going beyond Bell-like inequalities and separability. The measures of quantumness of mutual information in two two-level systems is also covered in detail. Offers a new approach to learning quantum mechanics based on the history of quantum mechanics and its postu...
QUANTUM MECHANICS. Quantum squeezing of motion in a mechanical resonator.
Wollman, E E; Lei, C U; Weinstein, A J; Suh, J; Kronwald, A; Marquardt, F; Clerk, A A; Schwab, K C
2015-08-28
According to quantum mechanics, a harmonic oscillator can never be completely at rest. Even in the ground state, its position will always have fluctuations, called the zero-point motion. Although the zero-point fluctuations are unavoidable, they can be manipulated. Using microwave frequency radiation pressure, we have manipulated the thermal fluctuations of a micrometer-scale mechanical resonator to produce a stationary quadrature-squeezed state with a minimum variance of 0.80 times that of the ground state. We also performed phase-sensitive, back-action evading measurements of a thermal state squeezed to 1.09 times the zero-point level. Our results are relevant to the quantum engineering of states of matter at large length scales, the study of decoherence of large quantum systems, and for the realization of ultrasensitive sensing of force and motion.
Framing difficulties in quantum mechanics
Modir, Bahar; Sayre, Eleanor C
2016-01-01
Students' difficulties in quantum mechanics may be the result of unproductive framing and not fundamental inability to solve the problems or misconceptions about physics content. We observed groups of students solving quantum mechanics problems in an upper-division physics course. Using the lens of the epistemological framing, we investigated four frames in our observational data: algorithmic math, conceptual math, algorithmic physics, and conceptual physics. We then used our framework to seek an underlying structure to the long lists of published difficulties that span many topics in quantum mechanics. We mapped descriptions of published difficulties into errors in epistemological framing and resource use. We analyzed descriptions of students' problem solving to find their frames, and compared students' framing to framing (and frame shifting) required by problem statements. We found three categories of error: mismatches between students' framing and problem statement framing; inappropriate or absent transiti...
Algebraic Quantum Mechanics and Pregeometry
Hiley, D J B P G D B J
2006-01-01
We discuss the relation between the q-number approach to quantum mechanics suggested by Dirac and the notion of "pregeometry" introduced by Wheeler. By associating the q-numbers with the elements of an algebra and regarding the primitive idempotents as "generalized points" we suggest an approach that may make it possible to dispense with an a priori given space manifold. In this approach the algebra itself would carry the symmetries of translation, rotation, etc. Our suggestion is illustrated in a preliminary way by using a particular generalized Clifford Algebra proposed originally by Weyl, which approaches the ordinary Heisenberg algebra in a suitable limit. We thus obtain a certain insight into how quantum mechanics may be regarded as a purely algebraic theory, provided that we further introduce a new set of "neighbourhood operators", which remove an important kind of arbitrariness that has thus far been present in the attempt to treat quantum mechanics solely in terms of a Heisenberg algebra.
Statistical Mechanics of Turbulent Dynamos
Shebalin, John V.
2014-01-01
Incompressible magnetohydrodynamic (MHD) turbulence and magnetic dynamos, which occur in magnetofluids with large fluid and magnetic Reynolds numbers, will be discussed. When Reynolds numbers are large and energy decays slowly, the distribution of energy with respect to length scale becomes quasi-stationary and MHD turbulence can be described statistically. In the limit of infinite Reynolds numbers, viscosity and resistivity become zero and if these values are used in the MHD equations ab initio, a model system called ideal MHD turbulence results. This model system is typically confined in simple geometries with some form of homogeneous boundary conditions, allowing for velocity and magnetic field to be represented by orthogonal function expansions. One advantage to this is that the coefficients of the expansions form a set of nonlinearly interacting variables whose behavior can be described by equilibrium statistical mechanics, i.e., by a canonical ensemble theory based on the global invariants (energy, cross helicity and magnetic helicity) of ideal MHD turbulence. Another advantage is that truncated expansions provide a finite dynamical system whose time evolution can be numerically simulated to test the predictions of the associated statistical mechanics. If ensemble predictions are the same as time averages, then the system is said to be ergodic; if not, the system is nonergodic. Although it had been implicitly assumed in the early days of ideal MHD statistical theory development that these finite dynamical systems were ergodic, numerical simulations provided sufficient evidence that they were, in fact, nonergodic. Specifically, while canonical ensemble theory predicted that expansion coefficients would be (i) zero-mean random variables with (ii) energy that decreased with length scale, it was found that although (ii) was correct, (i) was not and the expected ergodicity was broken. The exact cause of this broken ergodicity was explained, after much
Infinite Random Graphs as Statistical Mechanical Models
DEFF Research Database (Denmark)
Durhuus, Bergfinnur Jøgvan; Napolitano, George Maria
2011-01-01
We discuss two examples of infinite random graphs obtained as limits of finite statistical mechanical systems: a model of two-dimensional dis-cretized quantum gravity defined in terms of causal triangulated surfaces, and the Ising model on generic random trees. For the former model we describe...... a relation to the so-called uniform infinite tree and results on the Hausdorff and spectral dimension of two-dimensional space-time obtained in B. Durhuus, T. Jonsson, J.F. Wheater, J. Stat. Phys. 139, 859 (2010) are briefly outlined. For the latter we discuss results on the absence of spontaneous...... magnetization and argue that, in the generic case, the values of the Hausdorff and spectral dimension of the underlying infinite trees are not influenced by the coupling to an Ising model in a constant magnetic field (B. Durhuus, G.M. Napolitano, in preparation)...
Remarks on osmosis, quantum mechanics, and gravity
Carroll, Robert
2011-01-01
Some relations of the quantum potential to Weyl geometry are indicated with applications to the Friedmann equations for a toy quantum cosmology. Osmotic velocity and pressure are briefly discussed in terms of quantum mechanics and superfluids with connections to gravity.
Black holes and quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Hooft, G. ' t, E-mail: g.thooft@uu.n [Institute for Theoretical Physics, Utrecht University and Spinoza Institute, P.O. Box 80.195, 3508 TD Utrecht (Netherlands)
2010-07-15
After a brief review of quantum black hole physics, it is shown how the dynamical properties of a quantum black hole may be deduced to a large extent from Standard Model Physics, extended to scales near the Planck length, and combined with results from perturbative quantum gravity. Together, these interactions generate a Hilbert space of states on the black hole horizon, which can be investigated, displaying interesting systematics by themselves. To make such approaches more powerful, a study is made of the black hole complementarity principle, from which one may deduce the existence of a hidden form of local conformal invariance. Finally, the question is raised whether the principles underlying Quantum Mechanics are to be sharpened in this domain of physics as well. There are intriguing possibilities.
Quantum mechanics foundations and applications
Swanson, Donald Gary
2006-01-01
Progressing from the fundamentals of quantum mechanics (QM) to more complicated topics, Quantum Mechanics: Foundations and Applications provides advanced undergraduate and graduate students with a comprehensive examination of many applications that pertain to modern physics and engineering.Based on courses taught by the author, this textbook begins with an introductory chapter that reviews historical landmarks, discusses classical theory, and establishes a set of postulates. The next chapter demonstrates how to find the appropriate wave functions for a variety of physical systems in one dimens
Numerical computation for teaching quantum statistics
Price, Tyson; Swendsen, Robert H.
2013-11-01
The study of ideal quantum gases reveals surprising quantum effects that can be observed in macroscopic systems. The properties of bosons are particularly unusual because a macroscopic number of particles can occupy a single quantum state. We describe a computational approach that supplements the usual analytic derivations applicable in the thermodynamic limit. The approach involves directly summing over the quantum states for finite systems and avoids the need for doing difficult integrals. The results display the unusual behavior of quantum gases even for relatively small systems.
Fisher information and quantum-classical field theory: classical statistics similarity
Energy Technology Data Exchange (ETDEWEB)
Syska, J. [Department of Field Theory and Particle Physics, Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland)
2007-07-15
The classical statistics indication for the impossibility to derive quantum mechanics from classical mechanics is proved. The formalism of the statistical Fisher information is used. Next the Fisher information as a tool of the construction of a self-consistent field theory, which joins the quantum theory and classical field theory, is proposed. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Effective equations for the quantum pendulum from momentous quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Hernandez, Hector H.; Chacon-Acosta, Guillermo [Universidad Autonoma de Chihuahua, Facultad de Ingenieria, Nuevo Campus Universitario, Chihuahua 31125 (Mexico); Departamento de Matematicas Aplicadas y Sistemas, Universidad Autonoma Metropolitana-Cuajimalpa, Artificios 40, Mexico D. F. 01120 (Mexico)
2012-08-24
In this work we study the quantum pendulum within the framework of momentous quantum mechanics. This description replaces the Schroedinger equation for the quantum evolution of the system with an infinite set of classical equations for expectation values of configuration variables, and quantum dispersions. We solve numerically the effective equations up to the second order, and describe its evolution.
Quantum theory and statistical thermodynamics principles and worked examples
Hertel, Peter
2017-01-01
This textbook presents a concise yet detailed introduction to quantum physics. Concise, because it condenses the essentials to a few principles. Detailed, because these few principles – necessarily rather abstract – are illustrated by several telling examples. A fairly complete overview of the conventional quantum mechanics curriculum is the primary focus, but the huge field of statistical thermodynamics is covered as well. The text explains why a few key discoveries shattered the prevailing broadly accepted classical view of physics. First, matter appears to consist of particles which, when propagating, resemble waves. Consequently, some observable properties cannot be measured simultaneously with arbitrary precision. Second, events with single particles are not determined, but are more or less probable. The essence of this is that the observable properties of a physical system are to be represented by non-commuting mathematical objects instead of real numbers. Chapters on exceptionally simple, but h...
Quantum statistical derivation of the macroscopic Maxwell equations
Schram, K.
1960-01-01
The macroscopic Maxwell equations in matter are derived on a quantum statistical basis from the microscopic equations for the field operators. Both the density operator formalism and the Wigner distribution function method are discussed. By both methods it can be proved that the quantum statistical
Statistical theory of designed quantum transport across disordered networks.
Walschaers, Mattia; Mulet, Roberto; Wellens, Thomas; Buchleitner, Andreas
2015-04-01
We explain how centrosymmetry, together with a dominant doublet of energy eigenstates in the local density of states, can guarantee interference-assisted, strongly enhanced, strictly coherent quantum excitation transport between two predefined sites of a random network of two-level systems. Starting from a generalization of the chaos-assisted tunnelling mechanism, we formulate a random matrix theoretical framework for the analytical prediction of the transfer time distribution, of lower bounds of the transfer efficiency, and of the scaling behavior of characteristic statistical properties with the size of the network. We show that these analytical predictions compare well to numerical simulations, using Hamiltonians sampled from the Gaussian orthogonal ensemble.
A Statistical Theory of Designed Quantum Transport Across Disordered Networks
Walschaers, Mattia; Wellens, Thomas; Buchleitner, Andreas
2014-01-01
We explain how centrosymmetry, together with a dominant doublet in the local density of states, can guarantee interference-assisted, strongly enhanced, strictly coherent quantum excitation transport between two predefined sites of a random network of two-level systems. Starting from a generalisation of the chaos assisted tunnelling mechanism, we formulate a random matrix theoretical framework for the analytical prediction of the transfer time distribution, of lower bounds of the transfer efficiency, and of the scaling behaviour of characteristic statistical properties with the size of the network.
Joseph Mayer and Statistical Mechanics
Yang, Chen Ning
2013-05-01
In the January 1937 issue of the Journal of Chemical Physics (Volume 5) there appeared a paper by Joseph Mayer which was the first of a series of articles. It produced great and immediate impact. The title was "The Statistical Mechanics of Condensing Systems. I," the abstract of this paper is given below: It is shown that for a system composed of N identical molecules with mutual potential energy, the assumption that the total potential energy can be expressed as the sum of that between pairs of molecules allows the derivation of simple, accurate formal equations for the thermodynamic properties of the system. Under certain conditions, generally fulfilled at low temperatures, the equations predict a region where the pressure and Gibb's free energy are independent of volume, the characteristic of condensing sytems. The equations permit calculation of the Gibb's free energy of the liquid in equilibrium with the vapor and all the properties of the saturated vapor, but not the volume or volume dependence of the condensed phase...
Emergent quantum mechanics of finances
Nastasiuk, Vadim A.
2014-06-01
This paper is an attempt at understanding the quantum-like dynamics of financial markets in terms of non-differentiable price-time continuum having fractal properties. The main steps of this development are the statistical scaling, the non-differentiability hypothesis, and the equations of motion entailed by this hypothesis. From perspective of the proposed theory the dynamics of S&P500 index are analyzed.
Quantum Mechanics, is it magic
Ferrero, M; Sánchez-Gómez, J L
2008-01-01
We show that quantum mechanics is the first theory in human history that violates the basic a priori principles that have shaped human thought since immemorial times. Therefore although it is more contrary to magic than any body of knowledge could be, what could be called its magic precisely resides in this violation.
Mind, matter and quantum mechanics
Stapp, Henry P
2009-01-01
"Scientists other than quantum physicists often fail to comprehend the enormity of the conceptual change wrought by quantum theory in our basic conception of the nature of matter," writes Henry Stapp. Stapp is a leading quantum physicist who has given particularly careful thought to the implications of the theory that lies at the heart of modern physics. In this book, which contains several of his key papers as well as new material, he focuses on the problem of consciousness and explains how quantum mechanics allows causally effective conscious thought to be combined in a natural way with the physical brain made of neurons and atoms. The book is divided into four sections. The first consists of an extended introduction. Key foundational and somewhat more technical papers are included in the second part, together with a clear exposition of the "orthodox" interpretation of quantum mechanics. The third part addresses, in a non-technical fashion, the implications of the theory for some of the most profound questi...
The Picture Book of Quantum Mechanics
Brandt, Siegmund
2012-01-01
The aim of this book is to explain the basic concepts and phenomena of quantum mechanics by means of visualization. Computer-generated illustrations in color are used extensively throughout the text, helping to establish the relation between quantum mechanics—wave functions, interference, atomic structure, and so forth—and classical physics—point mechanics, statistical mechanics, and wave optics. Even more important, by studying the pictures in parallel with the text, readers develop an intuition for such notoriously abstract phenomena as • the tunnel effect • excitation and decay of metastable states • wave-packet motion within a well • systems of distinguishable and indistinguishable particles • free wave packets and scattering in 3 dimensions • angular-momentum decomposition • stationary bound states in various 3-dimensional potentials • hybrid states • Kepler motion of wave packets in the Coulomb field • spin and magnetic resonance Illustrations from experiments in a variety of f...
Statistical properties of quantum spectra in nuclei
Institute of Scientific and Technical Information of China (English)
WU; Xizhen
2001-01-01
［1］Wu Xizhen,Sakata,F.,Zhuo Yizhong et al.,Dynamic realization of statistical state in finite systems,Phys.ReV.C,1996,53:1233-1244.［2］Weidenmüller,H.A.,Statistical theory of nuclear reactions and the Gaussian Othogonal Ensemble,Annals of Physics,1984,158:120-141.［3］Hag,R.U.,Pandey,A.,Bohigas,O.,Fluctuation properties of nuclear energy levels:Do theory and experiment agree? Phys.Rev.Lett.,1982,48:1086-1089.［4］Wu Xizhen,Gu Jianzhong,Iwamoto,A.,Statistical properties of quasiparticle spectra in deformed nuclei,Phys.Rev.C,1999,59:215-220.［5］Garrett,J.D.,Robinson,J.Q.,Foglia,A.J.et al.,Nuclear level repulsion and order vs chaos,Phys.Lett.B,1997,392:24-29.［6］Bohigas,O.,Hag,R.U.,Pandy,A.,Fluctuation properties of nuclear energy levels and widths comparison of theory with experiment,in Nuclear Data for Science and Technology (ed.Bockhoff,K.H.),Dordrecht:Reidel,1983,809-813.［7］Heiss,W.D.,Nazmitdinov,R.G.,Radu,S.,Chaos in axially symmetric potentials with Octupole deformation,Phys.Rev.Lett.,1994,72:2351-2354.［8］Wu Xizhen,Gu Jianzhong,Zhuo Yizhong et al.,Possible understanding of hyperdeformed 144-146Ba nuclei appearing in the spontaneous fission of 252Cf,Phys.Rev.Lett.,1997,79:4542-4545.［9］Ter-Akopian,G.M.,Hamilton,J.H.,Oganessian,Y.T.et al.,New spontaneous fission mode for 252Cf:Indication of hyperdeformed 144,145,146Ba at scission,Phys.Rev.Lett.,1996,77:32-35.［10］Adamian,G.G.,Antonenko,N.V.,Ivanova,S.P.et al.,Problems in description of fusion of heavy nuclei in the two-center shell model approach,Nucl.Phys.A,1999,646:29-52.［11］Hofmann,H.,A quantal transport theory for nuclear collective motion:the metrits of a locally harmonic approximation method,Phys.Rep.,1997,284:139-380.［12］Gu Jianzhong,Wu Xizhen,Zhuo Yizhong,Quantum chaotic motion of a single particle in heavy nuclei,Nucl.Phys.A,1997,625:621-632.［13］Gu Jianzhong,Wu Xizhen,Zhuo Yizhong,The single-particle spectrum and its spacing and curvature distributions in
Philosophic foundations of quantum mechanics
Reichenbach, Hans
1998-01-01
Physics concerns direct analysis of the physical world, while philosophy analyzes knowledge about the physical world. This volume combines both disciplines for a philosophical interpretation of quantum physics - an interpretation free from the imprecision of metaphysics, offering a view of the atomic world and its quantum mechanical results as concrete as the visible everyday world.Written by an internationally renowned philosopher who specialized in symbolic logic and the theory of relativity, this approach consists of three parts. The first section, which requires no background in math or p
Memetics of Quantum Mechanical Interpretations
Chakrabarty, I
2006-01-01
Memes, self reproducing mental information and cognitive structures analogous to genes in biology, can be seen as the basis for an explanatory model of cultural and psychological behavior. Their properties and effects are evolutionary conditioned and ultimately seeks to promote their replication. To survive in a context the memes must meet certain conditions. We here propose a Memetics of Quantum Mechanical Interpretations, which have eluded mankind for a century now. We also see how the ideas of memes best fit the way scientific theories in general and Quantum Theory in particular propagates in the scientific brains and finds its expressions in the scientific community and effects the way we perceive Nature.
Operator methods in quantum mechanics
Schechter, Martin
2003-01-01
This advanced undergraduate and graduate-level text introduces the power of operator theory as a tool in the study of quantum mechanics, assuming only a working knowledge of advanced calculus and no background in physics. The author presents a few simple postulates describing quantum theory, gradually introducing the mathematical techniques that help answer questions important to the physical theory; in this way, readers see clearly the purpose of the method and understand the accomplishment. The entire book is devoted to the study of a single particle moving along a straight line. By posing q
Wigner distributions in quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Ercolessi, E; Marmo, G; Morandi, G; Mukunda, N [Physics Department, University of Bologna, INFN and CNISM. 46 v.Irnerio. I-40126, Bologna (Italy); Dip. di Scienze Fisiche. University di Napoli ' Federico II' and INFN. v.Cinzia. I-80100 Naples (Italy); Physics Department, University of Bologna, INFN and CNISM. 6/2 v.le Berti Pichat. I-40127, Bologna (Italy); Centre for High-Energy Physics. Indian Institute of Science. Bamgalore 560012 (India)
2007-11-15
The Weyl-Wigner description of quantum mechanical operators and states in classical phase-space language is well known for Cartesian systems. We describe a new approach based on ideas of Dirac which leads to the same results but with interesting additional insights. A way to set up Wigner distributions in an interesting non-Cartesian case, when the configuration space is a compact connected Lie group, is outlined. Both these methods are adapted to quantum systems with finite-dimensional Hilbert spaces, and the results are contrasted.
Paradoxical reflection in quantum mechanics
Pedro L. Garrido; Goldstein, Sheldon; Lukkarinen, Jani; Tumulka, Roderich
2011-01-01
This article concerns a phenomenon of elementary quantum mechanics that is quite counter-intuitive, very non-classical, and apparently not widely known: a quantum particle can get reflected at a downward potential step. In contrast, classical particles get reflected only at upward steps. The conditions for this effect are that the wave length is much greater than the width of the potential step and the kinetic energy of the particle is much smaller than the depth of the potential step. This p...
Making sense of quantum mechanics
Bricmont, Jean
2016-01-01
This book explains, in simple terms, with a minimum of mathematics, why things can appear to be in two places at the same time, why correlations between simultaneous events occurring far apart cannot be explained by local mechanisms, and why, nevertheless, the quantum theory can be understood in terms of matter in motion. No need to worry, as some people do, whether a cat can be both dead and alive, whether the moon is there when nobody looks at it, or whether quantum systems need an observer to acquire definite properties. The author’s inimitable and even humorous style makes the book a pleasure to read while bringing a new clarity to many of the longstanding puzzles of quantum physics.
The Lagrangian in Quantum Mechanics
Dirac, P. A. M.
Quantum mechanics was built up on a foundation of analogy with the Hamiltonian theory of classical mechanics. This is because the classical notion of canonical coordinates and momenta was found to be one with a very simple quantum analogue, as a result of which the whole of the classical Hamiltonian theory, which is just a structure built up on this notion, could be taken over in all its details into quantum mechanics. Now there is an alternative formulation for classical dynamics, provided by the Lagrangian. This requires one to work in terms of coordinates and velocities instead of coordinates and momenta. The two formulations are, of course, closely related, but there are reasons for believing that the Lagrangian one is the more fundamental. In the first place the Lagrangian method allows one to collect together all the equations of motion and express them as the stationary property of a certain action function. (This action function is just the time-integral of the Lagrangian.) There is no corresponding action principle in terms of the coordinates and momenta of the Hamiltonian theory. Secondly the Lagrangian method can easily be expressed relativistically, on account of the action function being a relativistic invariant; while the Hamiltonian method is essentially non-relativistic in form, since it marks out a particular time variable as the canonical conjugate of the Hamiltonian function. For these reasons it would seem desirable to take up the question of what corresponds in the quantum theory to the Lagrangian method of the classical theory. A little consideration shows, however, that one cannot expect to be able to take over the classical Lagrangian equations in any very direct way. These equations involve partial derivatives of the Lagrangian with respect to the coordinates and velocities and no meaning can be given to such derivatives in quantum mechanics. The only differentiation process that can be carried out with respect to the dynamical variables of
Non-relativistic Quantum Mechanics versus Quantum Field Theories
Pineda, Antonio
2007-01-01
We briefly review the derivation of a non-relativistic quantum mechanics description of a weakly bound non-relativistic system from the underlying quantum field theory. We highlight the main techniques used.
Star Products for Relativistic Quantum Mechanics
Henselder, P.
2007-01-01
The star product formalism has proved to be an alternative formulation for nonrelativistic quantum mechanics. We want introduce here a covariant star product in order to extend the star product formalism to relativistic quantum mechanics in the proper time formulation.
Lectures on quantum mechanics with problems, exercises and their solutions
Basdevant, Jean-Louis
2016-01-01
The new edition of this remarkable text offers the reader a conceptually strong introduction to quantum mechanics, but goes beyond this to present a fascinating tour of modern theoretical physics. Beautifully illustrated and engagingly written, it starts with a brief overview of diverse topics across physics including nanotechnology, statistical physics, materials science, astrophysics, and cosmology. The core of the book covers both established and emerging aspects of quantum mechanics. A concise introduction to traditional quantum mechanics covers the Schrödinger equation, Hilbert space, the algebra of observables, hydrogen atom, spin and Pauli principle. Modern features of the field are presented by exploring entangled states, Bell's inequality, quantum cryptography, quantum teleportation and quantum mechanics in the universe. This new edition has been enchanced through the addition of numerous problems with detailed solutions, an introduction to the mathematical tools needed and expanded discussion of th...
Bohmian Mechanics and the Quantum Revolution
Goldstein, Sheldon
1995-01-01
This is a review-essay on ``Speakable and Unspeakable in Quantum Mechanics'' by John Bell and ``The Undivided Universe: An Ontological Interpretation of Quantum Mechanics'' by David Bohm and Basil Hiley. The views of these authors concerning the character of quantum theory and quantum reality---and, in particular, their approaches to the issues of nonlocality, the possibility of hidden variables, and the nature of and desiderata for a satisfactory scientific explanation of quantum phenomena--...
Quantum mechanics and the psyche
Galli Carminati, G.; Martin, F.
2008-07-01
In this paper we apply the last developments of the theory of measurement in quantum mechanics to the phenomenon of consciousness and especially to the awareness of unconscious components. Various models of measurement in quantum mechanics can be distinguished by the fact that there is, or there is not, a collapse of the wave function. The passive aspect of consciousness seems to agree better with models in which there is no collapse of the wave function, whereas in the active aspect of consciousness—i.e., that which goes together with an act or a choice—there seems to be a collapse of the wave function. As an example of the second possibility we study in detail the photon delayed-choice experiment and its consequences for subjective or psychological time. We apply this as an attempt to explain synchronicity phenomena. As a model of application of the awareness of unconscious components we study the mourning process. We apply also the quantum paradigm to the phenomenon of correlation at a distance between minds, as well as to group correlations that appear during group therapies or group training. Quantum entanglement leads to the formation of group unconscious or collective unconscious. Finally we propose to test the existence of such correlations during sessions of group training.
Quantum communication between remote mechanical resonators
Felicetti, S.; Fedortchenko, S.; Rossi, R.; Ducci, S.; Favero, I.; Coudreau, T.; Milman, P.
2017-02-01
Mechanical resonators represent one of the most promising candidates to mediate the interaction between different quantum technologies, bridging the gap between efficient quantum computation and long-distance quantum communication. Here, we introduce an interferometric scheme where the interaction of a mechanical resonator with input-output quantum pulses is controlled by an independent classical drive. We design protocols for state teleportation and direct quantum state transfer, between distant mechanical resonators. The proposed device, feasible with state-of-the-art technology, can serve as a building block for the implementation of long-distance quantum networks of mechanical resonators.
Crum's Theorem for `Discrete' Quantum Mechanics
Odake, Satoru; Sasaki, Ryu
2009-01-01
In one-dimensional quantum mechanics, or the Sturm-Liouville theory, Crum's theorem describes the relationship between the original and the associated Hamiltonian systems, which are iso-spectral except for the lowest energy state. Its counterpart in `discrete' quantum mechanics is formulated algebraically, elucidating the basic structure of the discrete quantum mechanics, whose Schr\\"odinger equation is a difference equation.
Helping Students Learn Quantum Mechanics for Quantum Computing
Singh, Chandralekha
2016-01-01
Quantum information science and technology is a rapidly growing interdisciplinary field drawing researchers from science and engineering fields. Traditional instruction in quantum mechanics is insufficient to prepare students for research in quantum computing because there is a lack of emphasis in the current curriculum on quantum formalism and dynamics. We are investigating the difficulties students have with quantum mechanics and are developing and evaluating quantum interactive learning tutorials (QuILTs) to reduce the difficulties. Our investigation includes interviews with individual students and the development and administration of free-response and multiple-choice tests. We discuss the implications of our research and development project on helping students learn quantum mechanics relevant for quantum computing.
Geometrical Phases in Quantum Mechanics
Christian, Joy Julius
In quantum mechanics, the path-dependent geometrical phase associated with a physical system, over and above the familiar dynamical phase, was initially discovered in the context of adiabatically changing environments. Subsequently, Aharonov and Anandan liberated this phase from the original formulation of Berry, which used Hamiltonians, dependent on curves in a classical parameter space, to represent the cyclic variations of the environments. Their purely quantum mechanical treatment, independent of Hamiltonians, instead used the non-trivial topological structure of the projective space of one-dimensional subspaces of an appropriate Hilbert space. The geometrical phase, in their treatment, results from a parallel transport of the time-dependent pure quantum states along a curve in this space, which is endowed with an abelian connection. Unlike Berry, they were able to achieve this without resort to an adiabatic approximation or to a time-independent eigenvalue equation. Prima facie, these two approaches are conceptually quite different. After a review of both approaches, an exposition bridging this apparent conceptual gap is given; by rigorously analyzing a model composite system, it is shown that, in an appropriate correspondence limit, the Berry phase can be recovered as a special case from the Aharonov-Anandan phase. Moreover, the model composite system is used to show that Berry's correction to the traditional Born-Oppenheimer energy spectra indeed brings the spectra closer to the exact results. Then, an experimental arrangement to measure geometrical phases associated with cyclic and non-cyclic variations of quantum states of an entangled composite system is proposed, utilizing the fundamental ideas of the recently opened field of two-particle interferometry. This arrangement not only resolves the controversy regarding the true nature of the phases associated with photon states, but also unequivocally predicts experimentally accessible geometrical phases in a
Microscopic quantum structure of black hole and vacuum versus quantum statistical origin of gravity
Wang, Shun-Jin
2012-01-01
The Planckon densely piled model of vacuum is proposed. Based on it, the microscopic quantum structure of Schwarzschild black hole and quantum statistical origin of its gravity are studied. It is shown that thermodynamic temperature equilibrium and mechanical acceleration balance make the space-time of the black hole horizon singular and Casimir effect works inside the horizon. This effect makes the inside vacuum have less zero fluctuation energy than the outside vacuum, and a temperature difference as well as gravity as thermal pressure are created. A dual relation between inside and outside regions of the black hole is found. By dual relation, an attractor behaviour of the horizon surface is unveiled. Outside horizon, there exist thermodynamic non-equilibrium and mechanical non-balance which lead to outward centrifugal energy flow and inward gravitation energy flow, their compensation establishes local equilibrium. The lost vacuum energy in negative gravitation potential regions has been removed to the blac...
Statistical earthquake focal mechanism forecasts
Kagan, Yan Y
2013-01-01
Forecasts of the focal mechanisms of future earthquakes are important for seismic hazard estimates and Coulomb stress and other models of earthquake occurrence. Here we report on a high-resolution global forecast of earthquake rate density as a function of location, magnitude, and focal mechanism. In previous publications we reported forecasts of 0.5 degree spatial resolution, covering the latitude range magnitude, and focal mechanism. In previous publications we reported forecasts of 0.5 degree spatial resolution, covering the latitude range from -75 to +75 degrees, based on the Global Central Moment Tensor earthquake catalog. In the new forecasts we've improved the spatial resolution to 0.1 degree and the latitude range from pole to pole. Our focal mechanism estimates require distance-weighted combinations of observed focal mechanisms within 1000 km of each grid point. Simultaneously we calculate an average rotation angle between the forecasted mechanism and all the surrounding mechanisms, using the method ...
Supersymmetric quantum mechanics with reflections
Energy Technology Data Exchange (ETDEWEB)
Post, Sarah; Vinet, Luc [Centre de Recherches Mathematiques, Universite de Montreal, Montreal CP6128 (QC) H3C 3J7 (Canada); Zhedanov, Alexei, E-mail: post@crm.umontreal.ca, E-mail: luc.vinet@umontreal.ca, E-mail: zhedanov@fti.dn.ua [Donetsk Institute for Physics and Technology, Donetsk 83114 (Ukraine)
2011-10-28
We consider a realization of supersymmetric quantum mechanics where supercharges are differential-difference operators with reflections. A supersymmetric system with an extended Scarf I potential is presented and analyzed. Its eigenfunctions are given in terms of little -1 Jacobi polynomials which obey an eigenvalue equation of Dunkl type and arise as a q {yields} -1 limit of the little q-Jacobi polynomials. Intertwining operators connecting the wavefunctions of extended Scarf I potentials with different parameters are presented. (paper)
Fun with supersymmetric quantum mechanics
Freedman, B.; Cooper, F.
1984-04-01
The Hamiltonian and path integral approaches to supersymmetric quantum mechanics were reviewed. The related path integrals for the Witten Index and for stochastic processes were discussed and shown to be indications for supersymmetry breakdown. A system where in the superpotential W(x) has assymetrical values at + or - infinity was considered. Nonperturbative strategies for studying supersymmetry breakdown were described. These strategies are based on introducing a lattice and studying the behavior of the ground state energy as the lattice cutoff is removed.
Quantum Statistical Entropy of Five-Dimensional Black Hole
Institute of Scientific and Technical Information of China (English)
ZHAO Ren; WU Yue-Qin; ZHANG Sheng-Li
2006-01-01
The generalized uncertainty relation is introduced to calculate quantum statistic entropy of a black hole.By using the new equation of state density motivated by the generalized uncertainty relation, we discuss entropies of Bose field and Fermi field on the background of the five-dimensional spacetime. In our calculation, we need not introduce cutoff. There is not the divergent logarithmic term as in the original brick-wall method. And it is obtained that the quantum statistic entropy corresponding to black hole horizon is proportional to the area of the horizon. Further it is shown that the entropy of black hole is the entropy of quantum state on the surface of horizon. The black hole's entropy is the intrinsic property of the black hole. The entropy is a quantum effect. It makes people further understand the quantum statistic entropy.
The formalisms of quantum mechanics an introduction
David, Francois
2015-01-01
These lecture notes present a concise and introductory, yet as far as possible coherent, view of the main formalizations of quantum mechanics and of quantum field theories, their interrelations and their theoretical foundations. The “standard” formulation of quantum mechanics (involving the Hilbert space of pure states, self-adjoint operators as physical observables, and the probabilistic interpretation given by the Born rule) on one hand, and the path integral and functional integral representations of probabilities amplitudes on the other, are the standard tools used in most applications of quantum theory in physics and chemistry. Yet, other mathematical representations of quantum mechanics sometimes allow better comprehension and justification of quantum theory. This text focuses on two of such representations: the algebraic formulation of quantum mechanics and the “quantum logic” approach. Last but not least, some emphasis will also be put on understanding the relation between quantum physics and ...
Econophysics, Statistical Mechanics Approach to
Victor M. Yakovenko
2007-01-01
This is a review article for Encyclopedia of Complexity and System Science, to be published by Springer http://refworks.springer.com/complexity/. The paper reviews statistical models for money, wealth, and income distributions developed in the econophysics literature since late 1990s.
Generalized statistical mechanics for superstatistical systems.
Beck, Christian
2011-01-28
Mesoscopic systems in a slowly fluctuating environment are often well described by superstatistical models. We develop a generalized statistical mechanics formalism for superstatistical systems, by mapping the superstatistical complex system onto a system of ordinary statistical mechanics with modified energy levels. We also briefly review recent examples of applications of the superstatistics concept for three very different subject areas, namely train delay statistics, turbulent tracer dynamics and cancer survival statistics.
Trace anomalies from quantum mechanics
Bastianelli, F; Bastianelli, Fiorenzo; Nieuwenhuizen, Peter van
1993-01-01
The 1-loop anomalies of a d-dimensional quantum field theory can be computed by evaluating the trace of the regulated path integral jacobian matrix, as shown by Fujikawa. In 1983, Alvarez-Gaum\\'e and Witten observed that one can simplify this evaluation by replacing the operators which appear in the regulator and in the jacobian by quantum mechanical operators with the same (anti)commutation relations. By rewriting this quantum mechanical trace as a path integral with periodic boundary conditions for a one-dimensional supersymmetric nonlinear sigma model, they obtained the chiral anomalies for spin 1/2 and 3/2 fields and selfdual antisymmetric tensors in d dimensions. In this article, we treat the case of trace anomalies for spin 0, 1/2 and 1 fields in a gravitational and Yang-Mills background. We do not introduce a supersymmetric sigma model, but keep the original Dirac matrices $\\g^\\m$ and internal symmetry generators $T^a$ in the path integral. As a result, we get a matrix-valued action. Gauge covariance o...
The Linguistic Interpretation of Quantum Mechanics
Ishikawa, Shiro
2012-01-01
About twenty years ago, we proposed the mathematical formulation of Heisenberg's uncertainty principle, and further, we concluded that Heisenberg's uncertainty principle and EPR-paradox are not contradictory. This is true, however we now think that we should have argued about it under a certain firm interpretation of quantum mechanics. Recently we proposed the linguistic quantum interpretation (called quantum and classical measurement theory), which was characterized as a kind of metaphysical and linguistic turn of the Copenhagen interpretation. This turn from physics to language does not only extend quantum theory to classical systems but also yield the quantum mechanical world view (i.e., the philosophy of quantum mechanics, in other words, quantum philosophy). In fact, we can consider that traditional philosophies have progressed toward quantum philosophy. In this paper, we first review the linguistic quantum interpretation, and further, clarify the relation between EPR-paradox and Heisenberg's uncertainty...
Relativistic quantum level-spacing statistics in chaotic graphene billiards.
Huang, Liang; Lai, Ying-Cheng; Grebogi, Celso
2010-05-01
An outstanding problem in quantum nonlinear dynamics concerns about the energy-level statistics in experimentally accessible relativistic quantum systems. We demonstrate, using chaotic graphene confinements where electronic motions are governed by the Dirac equation in the low-energy regime, that the level-spacing statistics are those given by Gaussian orthogonal ensemble (GOE) random matrices. Weak magnetic field can change the level-spacing statistics to those of Gaussian unitary ensemble for electrons in graphene. For sufficiently strong magnetic field, the GOE statistics are restored due to the appearance of Landau levels.
Negative entropy and information in quantum mechanics
Cerf, N. J.; Adami, C.
1995-01-01
A framework for a quantum mechanical information theory is introduced that is based entirely on density operators, and gives rise to a unified description of classical correlation and quantum entanglement. Unlike in classical (Shannon) information theory, quantum (von Neumann) conditional entropies can be negative when considering quantum entangled systems, a fact related to quantum non-separability. The possibility that negative (virtual) information can be carried by entangled particles sug...
Teaching Quantum Mechanics on an Introductory Level.
Muller, Rainer; Wiesner, Hartmut
2002-01-01
Presents a new research-based course on quantum mechanics in which the conceptual issues of quantum mechanics are taught at an introductory level. Involves students in the discovery of how quantum phenomena deviate from classical everyday experiences. (Contains 31 references.) (Author/YDS)
Teaching Quantum Mechanics on an Introductory Level.
Muller, Rainer; Wiesner, Hartmut
2002-01-01
Presents a new research-based course on quantum mechanics in which the conceptual issues of quantum mechanics are taught at an introductory level. Involves students in the discovery of how quantum phenomena deviate from classical everyday experiences. (Contains 31 references.) (Author/YDS)
The quantum mechanics of materials
Cohen, M. L.; Heine, V.; Phillips, J. C.
1982-06-01
The prediction of the properties of materials from fundamental principles, i.e., quantum mechanics, by the use of pseudopotential theory is discussed. Following a review of previous difficulties encountered in the application of quantum theory to complex aggregates of matter, and the failures of early theories to resolve differences corresponding to important phase transitions in solids, the idea first proposed by Herring concerning the energy cancellation of valence electrons and the possibility of neglecting core electron effects is examined as the basis of pseudopotential theory. The application of the electron pseudopotential, representing the scattering strength of one atomic core with respect to a single Fourier component of one valence-electron wave, to the calculation of the scattering of an electron wave in crystalline solids is examined, and the derivation of structural properties from the pseudopotentials is discussed. Recent advances in pseudopotential theory explaining the properties of surface and interface structures, and the total energy of semiconducting materials are indicated.
Hidden scale in quantum mechanics
Giri, Pulak Ranjan
2007-01-01
We show that the intriguing localization of a free particle wave-packet is possible due to a hidden scale present in the system. Self-adjoint extensions (SAE) is responsible for introducing this scale in quantum mechanical models through the nontrivial boundary conditions. We discuss a couple of classically scale invariant free particle systems to illustrate the issue. In this context it has been shown that a free quantum particle moving on a full line may have localized wave-packet around the origin. As a generalization, it has also been shown that particles moving on a portion of a plane or on a portion of a three dimensional space can have unusual localized wave-packet.
Quantum mechanics: Myths and facts
Nikolic, H
2006-01-01
A common understanding of quantum mechanics (QM) among students and practical users is often plagued by a number of "myths", that is, widely accepted claims on which there is not really a general consensus among experts in foundations of QM. These myths include wave-particle duality, time-energy uncertainty relation, fundamental randomness, the absence of measurement-independent reality, locality of QM, nonlocality of QM, the existence of well-defined relativistic QM, the claims that quantum field theory (QFT) solves the problems of relativistic QM or that QFT is a theory of particles, as well as myths on black-hole entropy. The fact is that the existence of various theoretical and interpretational ambiguities underlying these myths does not yet allow us to accept them as proven facts. I review the main arguments and counterarguments lying behind these myths and conclude that QM is still a not-yet-completely-understood theory open to further fundamental research.
Matrix Quantum Mechanics from Qubits
Hartnoll, Sean A; Mazenc, Edward A
2016-01-01
We introduce a transverse field Ising model with order N^2 spins interacting via a nonlocal quartic interaction. The model has an O(N,Z), hyperoctahedral, symmetry. We show that the large N partition function admits a saddle point in which the symmetry is enhanced to O(N). We further demonstrate that this `matrix saddle' correctly computes large N observables at weak and strong coupling. The matrix saddle undergoes a continuous quantum phase transition at intermediate couplings. At the transition the matrix eigenvalue distribution becomes disconnected. The critical excitations are described by large N matrix quantum mechanics. At the critical point, the low energy excitations are waves propagating in an emergent 1+1 dimensional spacetime.
Quantum Mechanics: Myths and Facts
Nikolić, Hrvoje
2007-11-01
A common understanding of quantum mechanics (QM) among students and practical users is often plagued by a number of “myths”, that is, widely accepted claims on which there is not really a general consensus among experts in foundations of QM. These myths include wave-particle duality, time-energy uncertainty relation, fundamental randomness, the absence of measurement-independent reality, locality of QM, nonlocality of QM, the existence of well-defined relativistic QM, the claims that quantum field theory (QFT) solves the problems of relativistic QM or that QFT is a theory of particles, as well as myths on black-hole entropy. The fact is that the existence of various theoretical and interpretational ambiguities underlying these myths does not yet allow us to accept them as proven facts. I review the main arguments and counterarguments lying behind these myths and conclude that QM is still a not-yet-completely-understood theory open to further fundamental research.
Deformation of noncommutative quantum mechanics
Jiang, Jian-Jian; Chowdhury, S. Hasibul Hassan
2016-09-01
In this paper, the Lie group GNC α , β , γ , of which the kinematical symmetry group GNC of noncommutative quantum mechanics (NCQM) is a special case due to fixed nonzero α, β, and γ, is three-parameter deformation quantized using the method suggested by Ballesteros and Musso [J. Phys. A: Math. Theor. 46, 195203 (2013)]. A certain family of QUE algebras, corresponding to GNC α , β , γ with two of the deformation parameters approaching zero, is found to be in agreement with the existing results of the literature on quantum Heisenberg group. Finally, we dualize the underlying QUE algebra to obtain an expression for the underlying star-product between smooth functions on GNC α , β , γ .
Statistical mechanics of violent relaxation
Spergel, David N.; Hernquist, Lars
1992-01-01
We propose a functional that is extremized through violent relaxation. It is based on the Ansatz that the wave-particle scattering during violent dynamical processes can be approximated as a sequence of discrete scattering events that occur near a particle's perigalacticon. This functional has an extremum whose structure closely resembles that of spheroidal stellar systems such as elliptical galaxies. The results described here, therefore, provide a simple framework for understanding the physical nature of violent relaxation and support the view that galaxies are structured in accord with fundamental statistical principles.
Statistical mechanics of combinatorial auctions
Galla, Tobias; Leone, Michele; Marsili, Matteo; Sellitto, Mauro; Weigt, Martin; Zecchina, Riccardo
2006-05-01
Combinatorial auctions are formulated as frustrated lattice gases on sparse random graphs, allowing the determination of the optimal revenue by methods of statistical physics. Transitions between computationally easy and hard regimes are found and interpreted in terms of the geometric structure of the space of solutions. We introduce an iterative algorithm to solve intermediate and large instances, and discuss competing states of optimal revenue and maximal number of satisfied bidders. The algorithm can be generalized to the hard phase and to more sophisticated auction protocols.
Reality without Realism: On the Ontological and Epistemological Architecture of Quantum Mechanics
Plotnitsky, Arkady
2015-01-01
First, the article considers the nature of quantum reality (the reality responsible for quantum phenomena) and the concept of realism (our ability to represent this reality) in quantum theory, in conjunction with the roles of locality, causality, and probability and statistics there. Second, it offers two interpretations of quantum mechanics, developed by the authors of this article, the second of which is also a different (from quantum mechanics) theory of quantum phenomena. Both of these interpretations are statistical. The first interpretation, by A. Plotnitsky, "the statistical Copenhagen interpretation," is non-realist, insofar as the description or even conception of the nature of quantum objects and processes is precluded. The second, by A. Khrennikov, is ultimately realist, because it assumes that the quantum-mechanical level of reality is underlain by a deeper level of reality, described, in a realist fashion, by a model based on the pre-quantum classical statistical field theory (PCSFT), the predict...
The Statistical Mechanics of Black Hole Thermodynamics
Sorkin, R D
1997-01-01
Although we have convincing evidence that a black hole bears an entropy proportional to its surface (horizon) area, the ``statistical mechanical'' explanation of this entropy remains unknown. Two basic questions in this connection are: what is the microscopic origin of the entropy, and why does the law of entropy increase continue to hold when the horizon entropy is included? After a review of some of the difficulties in answering these questions, I propose an explanation of the law of entropy increase which comes near to a proof in the context of the ``semi-classical'' approximation, and which also provides a proof in full quantum gravity under the assumption that the latter fulfills certain natural expectations, like the existence of a conserved energy definable at infinity. This explanation seems to require a fundamental spacetime discreteness in order for the entropy to be consistently finite, and I recall briefly some of the ideas for what the discreteness might be. If such ideas are right, then our know...
A Local Interpretation of Quantum Mechanics
Lopez, Carlos
2016-04-01
A local interpretation of quantum mechanics is presented. Its main ingredients are: first, a label attached to one of the "virtual" paths in the path integral formalism, determining the output for measurement of position or momentum; second, a mathematical model for spin states, equivalent to the path integral formalism for point particles in space time, with the corresponding label. The mathematical machinery of orthodox quantum mechanics is maintained, in particular amplitudes of probability and Born's rule; therefore, Bell's type inequalities theorems do not apply. It is shown that statistical correlations for pairs of particles with entangled spins have a description completely equivalent to the two slit experiment, that is, interference (wave like behaviour) instead of non locality gives account of the process. The interpretation is grounded in the experimental evidence of a point like character of electrons, and in the hypothetical existence of a wave like, the de Broglie, companion system. A correspondence between the extended Hilbert spaces of hidden physical states and the orthodox quantum mechanical Hilbert space shows the mathematical equivalence of both theories. Paradoxical behaviour with respect to the action reaction principle is analysed, and an experimental set up, modified two slit experiment, proposed to look for the companion system.
Statistical constraints on state preparation for a quantum computer
Indian Academy of Sciences (India)
Subhash Kak
2001-10-01
Quantum computing algorithms require that the quantum register be initially present in a superposition state. To achieve this, we consider the practical problem of creating a coherent superposition state of several qubits. We show that the constraints of quantum statistics require that the entropy of the system be brought down when several independent qubits are assembled together. In particular, we have: (i) not all initial states are realizable as pure states; (ii) the temperature of the system must be reduced. These factors, in addition to decoherence and sensitivity to errors, must be considered in the implementation of quantum computers.
A quantum mechanical model of "dark matter"
Belokurov, V V
2014-01-01
The role of singular solutions in some simple quantum mechanical models is studied. The space of the states of two-dimensional quantum harmonic oscillator is shown to be separated into sets of states with different properties.
Quantum Jacobi fields in Hamiltonian mechanics
Giachetta, G; Sardanashvily, G
2000-01-01
Jacobi fields of classical solutions of a Hamiltonian mechanical system are quantized in the framework of vertical-extended Hamiltonian formalism. Quantum Jacobi fields characterize quantum transitions between classical solutions.
The actual content of quantum theoretical kinematics and mechanics
Heisenberg, W.
1983-01-01
First, exact definitions are supplied for the terms: position, velocity, energy, etc. (of the electron, for instance), such that they are valid also in quantum mechanics. Canonically conjugated variables are determined simultaneously only with a characteristic uncertainty. This uncertainty is the intrinsic reason for the occurrence of statistical relations in quantum mechanics. Mathematical formulation is made possible by the Dirac-Jordan theory. Beginning from the basic principles thus obtained, macroscopic processes are understood from the viewpoint of quantum mechanics. Several imaginary experiments are discussed to elucidate the theory.
Statistical Mechanics of Resource Allocation
Inoue, Jun-ichi
2014-01-01
We provide a mathematical model to investigate the resource allocation problem for agents, say, university graduates who are looking for their positions in labor markets. The basic model is described by the so-called Potts spin glass which is well-known in the research field of statistical physics. In the model, each Potts spin (a tiny magnet in atomic scale length) represents the action of each student, and it takes a discrete variable corresponding to the company he/she applies for. We construct the energy to include three distinct effects on the students' behavior, namely, collective effect, market history and international ranking of companies. In this model system, the correlations (the adjacent matrix) between students are taken into account through the pairwise spin-spin interactions. We carry out computer simulations to examine the efficiency of the model. We also show that some chiral representation of the Potts spin enables us to obtain some analytical insights into our labor markets.
The Design and Validation of the Quantum Mechanics Conceptual Survey
Wieman, C. E.; K. K. Perkins; McKagan, S. B.
2010-01-01
The Quantum Mechanics Conceptual Survey (QMCS) is a 12-question survey of students’ conceptual understanding of quantum mechanics. It is intended to be used to measure the relative effectiveness of different instructional methods in modern physics courses. In this paper, we describe the design and validation of the survey, a process that included observations of students, a review of previous literature and textbooks and syllabi, faculty and student interviews, and statistical analysis. We al...
Entropy, Topological Theories and Emergent Quantum Mechanics
Directory of Open Access Journals (Sweden)
D. Cabrera
2017-02-01
Full Text Available The classical thermostatics of equilibrium processes is shown to possess a quantum mechanical dual theory with a ﬁnite dimensional Hilbert space of quantum states. Speciﬁcally, the kernel of a certain Hamiltonian operator becomes the Hilbert space of quasistatic quantum mechanics. The relation of thermostatics to topological ﬁeld theory is also discussed in the context of the approach of the emergence of quantum theory, where the concept of entropy plays a key role.
Quasi-determinism of weak measurement statistics: Laplace's demon's quantum cousin
Hofmann, Holger F
2010-01-01
Weak measurements can provide a complete characterization of post-selected ensembles, including the uncertainties of observables. Interestingly, the average uncertainties for pure initial and final states are always zero, suggesting the kind of complete knowledge that would allow a knowledge of past, presence and future in the sense of Laplace's demon. However, the quantum version actually describes cancellations of positive and negative uncertainties made possible by the strangeness of weak values. In this paper, I take a closer look at the relation between statistics and causality in quantum mechanics, in an attempt to recover the traces of classical determinism in the statistical relations of quantum measurement outcomes.
Entropic fluctuations in statistical mechanics: I. Classical dynamical systems
Jakšić, V.; Pillet, C.-A.; Rey-Bellet, L.
2011-03-01
Within the abstract framework of dynamical system theory we describe a general approach to the transient (or Evans-Searles) and steady state (or Gallavotti-Cohen) fluctuation theorems of non-equilibrium statistical mechanics. Our main objective is to display the minimal, model independent mathematical structure at work behind fluctuation theorems. In addition to its conceptual simplicity, another advantage of our approach is its natural extension to quantum statistical mechanics which will be presented in a companion paper. We shall discuss several examples including thermostated systems, open Hamiltonian systems, chaotic homeomorphisms of compact metric spaces and Anosov diffeomorphisms.
Entropic Fluctuations in Statistical Mechanics I. Classical Dynamical Systems
Jakšić, Vojkan; Rey-Bellet, Luc
2010-01-01
Within the abstract framework of dynamical system theory we describe a general approach to the Transient (or Evans-Searles) and Steady State (or Gallavotti-Cohen) Fluctuation Theorems of non-equilibrium statistical mechanics. Our main objective is to display the minimal, model independent mathematical structure at work behind fluctuation theorems. Besides its conceptual simplicity, another advantage of our approach is its natural extension to quantum statistical mechanics which will be presented in a companion paper. We shall discuss several examples including thermostated systems, open Hamiltonian systems, chaotic homeomorphisms of compact metric spaces and Anosov diffeomorphisms.
Teaching Classical Statistical Mechanics: A Simulation Approach.
Sauer, G.
1981-01-01
Describes a one-dimensional model for an ideal gas to study development of disordered motion in Newtonian mechanics. A Monte Carlo procedure for simulation of the statistical ensemble of an ideal gas with fixed total energy is developed. Compares both approaches for a pseudoexperimental foundation of statistical mechanics. (Author/JN)
Formulation of statistical mechanics for chaotic systems
Indian Academy of Sciences (India)
Vishnu M Bannur; Ramesh Babu Thayyullathil
2009-02-01
We formulate the statistical mechanics of chaotic system with few degrees of freedom and investigated the quartic oscillator system using microcanonical and canonical ensembles. Results of statistical mechanics are numerically verified by considering the dynamical evolution of quartic oscillator system with two degrees of freedom.
Fun with supersymmetric quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Freedman, B.; Cooper, F.
1984-04-01
One reason for studying supersymmetric quantum mechanics is that there are a class of superpotentials W(x) which behave at large x as x/sup ..cap alpha../ for which we know from general arguments whether SUSY is broken or unbroken. Thus one can use these superpotentials to test various ideas about how to see if supersymmetry is broken in an arbitrary model. Recently, Witten proposed a topological invariant, the Witten index ..delta.. which counts the number of bosons minus the number of fermions having ground state energy zero. Since if supersymmetry is broken, the ground state energy cannot be zero, one expects if ..delta.. is not zero, SUSY is preserved and the theory is not a good candidate for a realistic model. In this study we evaluate ..delta.. for several examples, and show some unexpected peculiarities of the Witten index for certain choice of superpotentials W(x). We also discuss two other nonperturbative methods of studying supersymmetry breakdown. One involves relating supersymmetric quantum mechanics to a stochastic classical problem and the other involves considering a discrete (but not supersymmetric) version of the theory and studying its behavior as one removes the lattice cuttoff. In this survey we review the Hamiltonian and path integral approaches to supersymmetric quantum mechanics. We then discuss the related path integrals for the Witten Index and for stochastic processes and show how they are indications for supersymmetry breakdown. We then discuss a system where the superpotential W(x) has assymetrical values at +-infinity. We finally discuss nonperturbative strategies for studying supersymmetry breakdown based on introducing a lattice and studying the behavior of the ground state energy as the lattice cutoff is removed. 17 references.
Entities, Identity and the Formal Structure of Quantum Mechanics
de Ronde, Christian; Holik, Federico; Freytes, Hector
2012-01-01
The concept of individuality in quantum mechanics shows radical differences from the one used in classical physics. In particular, it is not possible to consider the fundamental particles described by quantum theory as individual distinguishable objects. In this paper we present arguments in favor of quantum non-individuality, which -in addition to those based on quantum statistics- relate to the Kochen-Specker theorem and the principle of superposition. Then, we analyze the possibility of referring to 'possible individuals' instead of 'actual individuals', and show that the Modal-Kochen-Specker theorem precludes this interpretational move.
Statistical entropy of open quantum systems
Durão, L. M. M.; Caldeira, A. O.
2016-12-01
Dissipative quantum systems are frequently described within the framework of the so-called "system-plus-reservoir" approach. In this work we assign their description to the Maximum Entropy Formalism and compare the resulting thermodynamic properties with those of the well-established approaches. Due to the non-negligible coupling to the heat reservoir, these systems are nonextensive by nature, and the former task may require the use of nonextensive parameter dependent informational entropies. In doing so, we address the problem of choosing appropriate forms of those entropies in order to describe a consistent thermodynamics for dissipative quantum systems. Nevertheless, even having chosen the most successful and popular forms of those entropies, we have proven our model to be a counterexample where this sort of approach leads us to wrong results.
Quantum Informatics View of Statistical Data Processing
Bogdanov, Yu. I.; Bogdanova, N. A.
2011-01-01
Application of root density estimator to problems of statistical data analysis is demonstrated. Four sets of basis functions based on Chebyshev-Hermite, Laguerre, Kravchuk and Charlier polynomials are considered. The sets may be used for numerical analysis in problems of reconstructing statistical distributions by experimental data. Examples of numerical modeling are given.
Correspondence Truth and Quantum Mechanics
Karakostas, Vassilios
2015-01-01
The logic of a physical theory reflects the structure of the propositions referring to the behaviour of a physical system in the domain of the relevant theory. It is argued in relation to classical mechanics that the propositional structure of the theory allows truth-value assignment in conformity with the traditional conception of a correspondence theory of truth. Every proposition in classical mechanics is assigned a definite truth value, either 'true' or 'false', describing what is actually the case at a certain moment of time. Truth-value assignment in quantum mechanics, however, differs; it is known, by means of a variety of 'no go' theorems, that it is not possible to assign definite truth values to all propositions pertaining to a quantum system without generating a Kochen-Specker contradiction. In this respect, the Bub-Clifton 'uniqueness theorem' is utilized for arguing that truth-value definiteness is consistently restored with respect to a determinate sublattice of propositions defined by the state...
Quantum Statistical Theory of Polarization Mode Dispersion
Institute of Scientific and Technical Information of China (English)
ZHANG Yong-Sheng; GUO Guang-Can
2006-01-01
@@ Polarization mode dispersion is modelled as decoherence of polarization under the disturbance of environment and the coupling with frequency. This model is described by the quantum master equation and the Langevin equation. It can be predicted that the optical beam is depolarized exponentially in a fibre and the differential group delay (DGD) is proportional to the square root of the propagation distance. The distribution of the DGD can also be calculated.
Quantum Origin of the Primordial Fluctuation Spectrum and its Statistics
Leon, Gabriel; Sudarsky, Daniel
2013-01-01
The account of the origin of cosmic structure, as provided by the standard inflationary paradigm, is not fully satisfactory, as has been argued in Perez et al 2006. The central point of that work is to point out the need to discuss and explore the physical mechanism that is capable of generating the inhomogeneity and anisotropy of our Universe, starting from an exactly homogeneous and isotropic initial state associated with the early inflationary regime. We review this issue briefly here together with the proposal to address this shortcoming in terms of a dynamical collapse of the vacuum state of the inflaton field. We also briefly indicate how this issues might be connected to other questions being faced in the study of the quantum/gravity interface, and their relevance to the investigations concerning the statistical characterization of the primordial spectrum.
Concepts and methods in modern theoretical chemistry statistical mechanics
Ghosh, Swapan Kumar
2013-01-01
Concepts and Methods in Modern Theoretical Chemistry: Statistical Mechanics, the second book in a two-volume set, focuses on the dynamics of systems and phenomena. A new addition to the series Atoms, Molecules, and Clusters, this book offers chapters written by experts in their fields. It enables readers to learn how concepts from ab initio quantum chemistry and density functional theory (DFT) can be used to describe, understand, and predict chemical dynamics. This book covers a wide range of subjects, including discussions on the following topics: Time-dependent DFT Quantum fluid dynamics (QF
Transfer of Learning in Quantum Mechanics
Singh, Chandralekha
2016-01-01
We investigate the difficulties that undergraduate students in quantum mechanics courses have in transferring learning from previous courses or within the same course from one context to another by administering written tests and conducting individual interviews. Quantum mechanics is abstract and its paradigm is very different from the classical one. A good grasp of the principles of quantum mechanics requires creating and organizing a knowledge structure consistent with the quantum postulates. Previously learned concepts such as the principle of superposition and probability can be useful in quantum mechanics if students are given opportunity to build associations between new and prior knowledge. We also discuss the need for better alignment between quantum mechanics and modern physics courses taken previously because semi-classical models can impede internalization of the quantum paradigm in more advanced courses.
Quantum localization of Classical Mechanics
Batalin, Igor A
2016-01-01
Quantum localization of classical mechanics within the BRST-BFV and BV (or field-antifield) quantization methods are studied. It is shown that a special choice of gauge fixing functions (or BRST-BFV charge) together with the unitary limit leads to Hamiltonian localization in the path integral of the BRST-BFV formalism. In turn, we find that a special choice of gauge fixing functions being proportional to extremals of an initial non-degenerate classical action together with a very special solution of the classical master equation result in Lagrangian localization in the partition function of the BV formalism.
Quantum localization of classical mechanics
Batalin, Igor A.; Lavrov, Peter M.
2016-07-01
Quantum localization of classical mechanics within the BRST-BFV and BV (or field-antifield) quantization methods are studied. It is shown that a special choice of gauge fixing functions (or BRST-BFV charge) together with the unitary limit leads to Hamiltonian localization in the path integral of the BRST-BFV formalism. In turn, we find that a special choice of gauge fixing functions being proportional to extremals of an initial non-degenerate classical action together with a very special solution of the classical master equation result in Lagrangian localization in the partition function of the BV formalism.
Supersymmetric Quantum Mechanics and Topology
Directory of Open Access Journals (Sweden)
Muhammad Abdul Wasay
2016-01-01
Full Text Available Supersymmetric quantum mechanical models are computed by the path integral approach. In the β→0 limit, the integrals localize to the zero modes. This allows us to perform the index computations exactly because of supersymmetric localization, and we will show how the geometry of target space enters the physics of sigma models resulting in the relationship between the supersymmetric model and the geometry of the target space in the form of topological invariants. Explicit computation details are given for the Euler characteristics of the target manifold and the index of Dirac operator for the model on a spin manifold.
Quantum mechanics in phase space
DEFF Research Database (Denmark)
Hansen, Frank
1984-01-01
A reformulation of quantum mechanics for a finite system is given using twisted multiplication of functions on phase space and Tomita's theory of generalized Hilbert algebras. Quantization of a classical observable h is achieved when the twisted exponential Exp0(-h) is defined as a tempered....... Generalized Weyl-Wigner maps related to the notion of Hamiltonian weight are studied and used in the formulation of a twisted spectral theory for functions on phase space. Some inequalities for Wigner functions on phase space are proven. A brief discussion of the classical limit obtained through dilations...
A Quantum Space Behind Simple Quantum Mechanics
Chew, Chuan Sheng; Payne, Jason
2016-01-01
In physics, we are supposed to learn from experiments what constitutes a good/correct theoretical/mathematical model of any physical concept, the physical space should not be an exception. The best picture of the physical space, in Newtonian physics, is given by the configuration space of a free particle. The space, as well as the phase space, can be constructed as a representation space of the relativity symmetry. Starting with the corresponding quantum symmetry, we illustrate the construction of a quantum space along the lines of the quantum phase space and demonstrate the retrieval of the classical picture as an approximation through the contraction of the (relativity) symmetry and the representations of it. The result suggests a picture of the physical space beyond that of a finite dimensional manifold.
The emerging quantum the physics behind quantum mechanics
Pena, Luis de la; Valdes-Hernandez, Andrea
2014-01-01
This monograph presents the latest findings from a long-term research project intended to identify the physics behind Quantum Mechanics. A fundamental theory for quantum mechanics is constructed from first physical principles, revealing quantization as an emergent phenomenon arising from a deeper stochastic process. As such, it offers the vibrant community working on the foundations of quantum mechanics an alternative contribution open to discussion. The book starts with a critical summary of the main conceptual problems that still beset quantum mechanics. The basic consideration is then introduced that any material system is an open system in permanent contact with the random zero-point radiation field, with which it may reach a state of equilibrium. Working from this basis, a comprehensive and self-consistent theoretical framework is then developed. The pillars of the quantum-mechanical formalism are derived, as well as the radiative corrections of nonrelativistic QED, while revealing the underlying physi...
Comments on New Ontology of Quantum Mechanics called CSM
Kupczynski, Marian
2016-01-01
A new quantum ontology of quantum mechanics has been proposed recently. This ontology is based on impossible to realize measurements which need to be performed repeatedly on the same single physical system or on the same pair of physical systems. We agree that quantum mechanics is a contextual theory and that the experimental contexts have to be a part of any description of quantum phenomena but in our opinion this new ontology is neither convincing nor useful. In particular the authors claim that their ontology explains the peaceful coexistence between quantum mechanics and relativity in spin polarization correlation experiments. We show that, contrary to their claim, the authors are unable to explain why strong correlations, between the outcomes of distant local measurements, do exist and why they preserve a condition of parameter independence (non-signaling). Strangely enough the authors ignore that these strong but imperfect correlations can be explained in a local and causal way using statistical context...
The Design and Validation of the Quantum Mechanics Conceptual Survey
McKagan, S B; Wieman, C E
2010-01-01
The Quantum Mechanics Conceptual Survey (QMCS) is a 12-question survey of students' conceptual understanding of quantum mechanics. It is intended to be used to measure the relative effectiveness of different instructional methods in modern physics courses. In this paper we describe the design and validation of the survey, a process that included observations of students, a review of previous literature and textbooks and syllabi, faculty and student interviews, and statistical analysis. We also discuss issues in the development of specific questions, which may be useful both for instructors who wish to use the QMCS in their classes and for researchers who wish to conduct further research of student understanding of quantum mechanics. The QMCS has been most thoroughly tested in, and is most appropriate for assessment of (as a posttest only), sophomore-level modern physics courses. We also describe testing with students in junior quantum courses and graduate quantum courses, from which we conclude that the QMCS ...
Quantum mechanics in complex systems
Hoehn, Ross Douglas
This document should be considered in its separation; there are three distinct topics contained within and three distinct chapters within the body of works. In a similar fashion, this abstract should be considered in three parts. Firstly, we explored the existence of multiply-charged atomic ions by having developed a new set of dimensional scaling equations as well as a series of relativistic augmentations to the standard dimensional scaling procedure and to the self-consistent field calculations. Secondly, we propose a novel method of predicting drug efficacy in hopes to facilitate the discovery of new small molecule therapeutics by modeling the agonist-protein system as being similar to the process of Inelastic Electron Tunneling Spectroscopy. Finally, we facilitate the instruction in basic quantum mechanical topics through the use of quantum games; this method of approach allows for the generation of exercises with the intent of conveying the fundamental concepts within a first year quantum mechanics classroom. Furthermore, no to be mentioned within the body of the text, yet presented in appendix form, certain works modeling the proliferation of cells types within the confines of man-made lattices for the purpose of facilitating artificial vascular transplants. In Chapter 2, we present a theoretical framework which describes multiply-charged atomic ions, their stability within super-intense laser fields, also lay corrections to the systems due to relativistic effects. Dimensional scaling calculations with relativistic corrections for systems: H, H-, H 2-, He, He-, He2-, He3- within super-intense laser fields were completed. Also completed were three-dimensional self consistent field calculations to verify the dimensionally scaled quantities. With the aforementioned methods the system's ability to stably bind 'additional' electrons through the development of multiple isolated regions of high potential energy leading to nodes of high electron density is shown
Potentiality, Actuality, and Quantum Mechanics
Directory of Open Access Journals (Sweden)
Boris Koznjak
2007-12-01
Full Text Available In this paper a possible interpretative value of Aristotle’s fundamental ontological doctrine of potentiality (δύναµις and actuality (ἐνέργεια is considered in the context of operationally undoubtedly the most successful but interpretatively still controversial theory of modern physics – quantum mechanics – especially regarding understanding the nature of the world, the phenomena of which it describes and predicts so successfully. In particular, beings of the atomic world are interpreted as real potential beings (δυνάµει ὄντα actualized by the measurement process in appropriate experimental arrangement, and the problem of actual beings (ἐνεργείᾳ ὄντα of the atomic world (better known as the measurement problem in quantum mechanics is considered in the context of Aristotle’s threefold requirement for the priority of actuality over potentiality – in time (χρόνος, definition or knowledge (λόγος, and substantiality (οὐσία.
Bridging classical and quantum mechanics
Haddad, D.; Seifert, F.; Chao, L. S.; Li, S.; Newell, D. B.; Pratt, J. R.; Williams, C.; Schlamminger, S.
2016-10-01
Using a watt balance and a frequency comb, a mass-energy equivalence is derived. The watt balance compares mechanical power measured in terms of the meter, the second, and the kilogram to electrical power measured in terms of the volt and the ohm. A direct link between mechanical action and the Planck constant is established by the practical realization of the electrical units derived from the Josephson and the quantum Hall effects. By using frequency combs to measure velocities and acceleration of gravity, the unit of mass can be realized from a set of three defining constants: the Planck constant h, the speed of light c, and the hyperfine splitting frequency of 133Cs.
A Process Model of Quantum Mechanics
Sulis, William
2014-01-01
A process model of quantum mechanics utilizes a combinatorial game to generate a discrete and finite causal space upon which can be defined a self-consistent quantum mechanics. An emergent space-time M and continuous wave function arise through a non-uniform interpolation process. Standard non-relativistic quantum mechanics emerges under the limit of infinite information (the causal space grows to infinity) and infinitesimal scale (the separation between points goes to zero). The model has th...
Quantum Correlations from the Conditional Statistics of Incomplete Data
Sperling, J.; Bartley, T. J.; Donati, G.; Barbieri, M.; Jin, X.-M.; Datta, A.; Vogel, W.; Walmsley, I. A.
2016-08-01
We study, in theory and experiment, the quantum properties of correlated light fields measured with click-counting detectors providing incomplete information on the photon statistics. We establish a correlation parameter for the conditional statistics, and we derive the corresponding nonclassicality criteria for detecting conditional quantum correlations. Classical bounds for Pearson's correlation parameter are formulated that allow us, once they are violated, to determine nonclassical correlations via the joint statistics. On the one hand, we demonstrate nonclassical correlations in terms of the joint click statistics of light produced by a parametric down-conversion source. On the other hand, we verify quantum correlations of a heralded, split single-photon state via the conditional click statistics together with a generalization to higher-order moments. We discuss the performance of the presented nonclassicality criteria to successfully discern joint and conditional quantum correlations. Remarkably, our results are obtained without making any assumptions on the response function, quantum efficiency, and dark-count rate of photodetectors.
Quantum Correlations from the Conditional Statistics of Incomplete Data.
Sperling, J; Bartley, T J; Donati, G; Barbieri, M; Jin, X-M; Datta, A; Vogel, W; Walmsley, I A
2016-08-19
We study, in theory and experiment, the quantum properties of correlated light fields measured with click-counting detectors providing incomplete information on the photon statistics. We establish a correlation parameter for the conditional statistics, and we derive the corresponding nonclassicality criteria for detecting conditional quantum correlations. Classical bounds for Pearson's correlation parameter are formulated that allow us, once they are violated, to determine nonclassical correlations via the joint statistics. On the one hand, we demonstrate nonclassical correlations in terms of the joint click statistics of light produced by a parametric down-conversion source. On the other hand, we verify quantum correlations of a heralded, split single-photon state via the conditional click statistics together with a generalization to higher-order moments. We discuss the performance of the presented nonclassicality criteria to successfully discern joint and conditional quantum correlations. Remarkably, our results are obtained without making any assumptions on the response function, quantum efficiency, and dark-count rate of photodetectors.
STATISTICAL EVALUATION OF HISTORICAL DIKE FAILURE MECHANISM
Directory of Open Access Journals (Sweden)
L. NAGY
2012-12-01
Full Text Available Statistical evaluation of historical dike failure mechanism The failure mechanism of flood protection dikes includes physical (geotechnical, seepage processes leading to a dike breach. An awareness of the failure mechanism is required directly in dike stability calculations and indirectly for risk calculations. Statistics of historical data indicate among others the distribution and frequency of failure mechanisms associated with dikes. These data may be used in estimations of the expected likelihood of occurrence of non-quantifiable failure mechanisms. In addition to a comparative evaluation of statistics collected in several countries, this publication also presents data for the Carpathian Basin. One of the most important conclusions drawn from statistical information suggests that most dike breaches develop as a consequence of poor safety strategy
Energy Technology Data Exchange (ETDEWEB)
Whitaker, A [Department of Physics, Queen' s University, Belfast (United Kingdom)
2004-02-27
This review is of three books, all published by Springer, all on quantum theory at a level above introductory, but very different in content, style and intended audience. That of Gottfried and Yan is of exceptional interest, historical and otherwise. It is a second edition of Gottfried's well-known book published by Benjamin in 1966. This was written as a text for a graduate quantum mechanics course, and has become one of the most used and respected accounts of quantum theory, at a level mathematically respectable but not rigorous. Topics absent from the first edition but included in the second include the Feynman path integral, seen in 1966 as an imaginative but not very useful formulation of quantum theory. Feynman methods were given only a cursory mention by Gottfried. Other new topics include semiclassical quantum mechanics, motion in a magnetic field, the S matrix and inelastic collisions, radiation and scattering of light, identical particle systems and the Dirac equation. A topic that was all but totally neglected in 1966, but which has flourished increasingly since, is that of the foundations of quantum theory. To commence with general discussion of the new book, the authors recognise that the graduate student of today almost certainly has substantial experience of wave mechanics, and is probably familiar with the Dirac formalism. The new edition has been almost entirely rewritten; even at the level of basic text, it is difficult to trace sentences or paragraphs that have moved unscathed from one edition to the next. As well as the new topics, many of the old ones are discussed in much greater depth, and the general organisation is entirely different. As compared with the steady rise in level of the 1966 edition, the level of this book is fairly consistent throughout, and from the perspective of a beginning graduate student, I would estimate, a little tough. To sum up, Gottfried and Yan's book contains a vast amount of knowledge and understanding
Schwinger Algebra for Quaternionic Quantum Mechanics
Horwitz, L P
1997-01-01
It is shown that the measurement algebra of Schwinger, a characterization of the properties of Pauli measurements of the first and second kinds, forming the foundation of his formulation of quantum mechanics over the complex field, has a quaternionic generalization. In this quaternionic measurement algebra some of the notions of quaternionic quantum mechanics are clarified. The conditions imposed on the form of the corresponding quantum field theory are studied, and the quantum fields are constructed. It is shown that the resulting quantum fields coincide with the fermion or boson annihilation-creation operators obtained by Razon and Horwitz in the limit in which the number of particles in physical states $N \\to \\infty$.
Bohmian mechanics and the quantum revolution
Goldstein, S
1995-01-01
This is a review-essay on ``Speakable and Unspeakable in Quantum Mechanics'' by John Bell and ``The Undivided Universe: An Ontological Interpretation of Quantum Mechanics'' by David Bohm and Basil Hiley. The views of these authors concerning the character of quantum theory and quantum reality---and, in particular, their approaches to the issues of nonlocality, the possibility of hidden variables, and the nature of and desiderata for a satisfactory scientific explanation of quantum phenomena---are contrasted, with each other and with the orthodox approach to these issues.
Quantum mechanics and computation; Quanta y Computacion
Energy Technology Data Exchange (ETDEWEB)
Cirac Sasturain, J. I.
2000-07-01
We review how some of the basic principles of Quantum Mechanics can be used in the field of computation. In particular, we explain why a quantum computer can perform certain tasks in a much more efficient way than the computers we have available nowadays. We give the requirements for a quantum system to be able to implement a quantum computer and illustrate these requirements in some particular physical situations. (Author) 16 refs.
Interactive learning tutorials on quantum mechanics
Singh, Chandralekha
2016-01-01
We discuss the development and evaluation of quantum interactive learning tutorials (QuILTs) which are suitable for undergraduate courses in quantum mechanics. QuILTs are based on the investigation of student difficulties in learning quantum physics. They exploit computer-based visualization tools and help students build links between the formal and conceptual aspects of quantum physics without compromising the technical content. They can be used both as supplements to lectures or as a self-study tool.
Bohmian mechanics and quantum field theory.
Dürr, Detlef; Goldstein, Sheldon; Tumulka, Roderich; Zanghì, Nino
2004-08-27
We discuss a recently proposed extension of Bohmian mechanics to quantum field theory. For more or less any regularized quantum field theory there is a corresponding theory of particle motion, which, in particular, ascribes trajectories to the electrons or whatever sort of particles the quantum field theory is about. Corresponding to the nonconservation of the particle number operator in the quantum field theory, the theory describes explicit creation and annihilation events: the world lines for the particles can begin and end.
Oss, Stefano; Rosi, Tommaso
2015-04-01
We have developed an app for iOS-based smart-phones/tablets that allows a 3-D, complex phase-based colorful visualization of hydrogen atom wave functions. Several important features of the quantum behavior of atomic orbitals can easily be made evident, thus making this app a useful companion in introductory modern physics classes. There are many reasons why quantum mechanical systems and phenomena are difficult both to teach and deeply understand. They are described by equations that are generally hard to visualize, and they often oppose the so-called "common sense" based on the human perception of the world, which is built on mental images such as locality and causality. Moreover students cannot have direct experience of those systems and solutions, and generally do not even have the possibility to refer to pictures, videos, or experiments to fill this gap. Teachers often encounter quite serious troubles in finding out a sensible way to speak about the wonders of quantum physics at the high school level, where complex formalisms are not accessible at all. One should however consider that this is quite a common issue in physics and, more generally, in science education. There are plenty of natural phenomena whose models (not only at microscopic and atomic levels) are of difficult, if not impossible, visualization. Just think of certain kinds of waves, fields of forces, velocities, energy, angular momentum, and so on. One should also notice that physical reality is not the same as the images we make of it. Pictures (formal, abstract ones, as well as artists' views) are a convenient bridge between these two aspects.
Towards a Constructive Foundation of Quantum Mechanics
Smilga, Walter
2016-11-01
I describe a constructive foundation for quantum mechanics, based on the discreteness of the degrees of freedom of quantum objects and on the Principle of Relativity. Taking Einstein's historical construction of Special Relativity as a model, the construction is carried out in close contact with a simple quantum mechanical Gedanken experiment. This leads to the standard axioms of quantum mechanics. The quantum mechanical description is identified as a mathematical tool that allows describing objects, whose degree of freedom in space-time has a discrete spectrum, relative to classical observers in space-time. This description is covariant with respect to (continuous) coordinate transformations and meets the requirement that the spectrum is the same in every inertial system. The construction gives detailed answers to controversial questions, such as the measurement problem, the informational content of the wave function, and the completeness of quantum mechanics.
Towards a Constructive Foundation of Quantum Mechanics
Smilga, Walter
2017-01-01
I describe a constructive foundation for quantum mechanics, based on the discreteness of the degrees of freedom of quantum objects and on the Principle of Relativity. Taking Einstein's historical construction of Special Relativity as a model, the construction is carried out in close contact with a simple quantum mechanical Gedanken experiment. This leads to the standard axioms of quantum mechanics. The quantum mechanical description is identified as a mathematical tool that allows describing objects, whose degree of freedom in space-time has a discrete spectrum, relative to classical observers in space-time. This description is covariant with respect to (continuous) coordinate transformations and meets the requirement that the spectrum is the same in every inertial system. The construction gives detailed answers to controversial questions, such as the measurement problem, the informational content of the wave function, and the completeness of quantum mechanics.
Quantum Mechanics As A Limiting Case of Classical Mechanics
Ghose, Partha
2000-01-01
In spite of its popularity, it has not been possible to vindicate the conventional wisdom that classical mechanics is a limiting case of quantum mechanics. The purpose of the present paper is to offer an alternative point of view in which quantum mechanics emerges as a limiting case of classical mechanics in which the classical system is decoupled from its environment.
Quantum mechanics without potential function
Energy Technology Data Exchange (ETDEWEB)
Alhaidari, A. D., E-mail: haidari@sctp.org.sa [Saudi Center for Theoretical Physics, P.O. Box 32741, Jeddah 21438 (Saudi Arabia); Ismail, M. E. H. [Department of Mathematics, University of Central Florida, Orlando, Florida 32816 (United States)
2015-07-15
In the standard formulation of quantum mechanics, one starts by proposing a potential function that models the physical system. The potential is then inserted into the Schrödinger equation, which is solved for the wavefunction, bound states energy spectrum, and/or scattering phase shift. In this work, however, we propose an alternative formulation in which the potential function does not appear. The aim is to obtain a set of analytically realizable systems, which is larger than in the standard formulation and may or may not be associated with any given or previously known potential functions. We start with the wavefunction, which is written as a bounded infinite sum of elements of a complete basis with polynomial coefficients that are orthogonal on an appropriate domain in the energy space. Using the asymptotic properties of these polynomials, we obtain the scattering phase shift, bound states, and resonances. This formulation enables one to handle not only the well-known quantum systems but also previously untreated ones. Illustrative examples are given for two- and three-parameter systems.
Quantum mechanics of Proca fields
Zamani, Farhad; Mostafazadeh, Ali
2009-05-01
We construct the most general physically admissible positive-definite inner product on the space of Proca fields. Up to a trivial scaling this defines a five-parameter family of Lorentz invariant inner products that we use to construct a genuine Hilbert space for the quantum mechanics of Proca fields. If we identify the generator of time translations with the Hamiltonian, we obtain a unitary quantum system that describes first-quantized Proca fields and does not involve the conventional restriction to the positive-frequency fields. We provide a rather comprehensive analysis of this system. In particular, we examine the conserved current density responsible for the conservation of the probabilities, explore the global gauge symmetry underlying the conservation of the probabilities, obtain a probability current density, construct position, momentum, helicity, spin, and angular momentum operators, and determine the localized Proca fields. We also compute the generalized parity (P), generalized time-reversal (T), and generalized charge or chirality (C) operators for this system and offer a physical interpretation for its PT-, C-, and CPT-symmetries.
Tailored quantum statistics from broadband states of light
Hartmann, S; Molitor, A; Reichert, M; Elsäßer, W; Walser, R
2014-01-01
We analyze the statistics of photons originating from amplified spontaneous emission generated by a quantum dot superluminescent diode. Experimentally detectable emission properties are taken into account by parametrizing the corresponding quantum state as a multi-mode phase-randomized Gaussian density operator. The validity of this model is proven in two subsequent experiments using fast two-photon-absorption detection observing second order equal-time- as well as second order fully time-resolved intensity correlations on femtosecond timescales. In the first experiment, we study the photon statistics when the number of contributing longitudinal modes is systematically reduced by applying well-controlled optical feedback. In a second experiment, we add coherent light from a single-mode laserdiode to quantum dot superluminescent diode broadband radiation. Tuning the power ratio, we realize tailored second order correlations ranging from Gaussian to Poissonian statistics. Both experiments are very well matched ...
Statistical dynamics of a non-Abelian anyonic quantum walk
Lehman, Lauri; Brennen, Gavin K; Pachos, Jiannis K; Wang, Zhenghan
2010-01-01
We study the single particle dynamics of a mobile non-Abelian anyon hopping around many pinned anyons on a surface. The dynamics is modelled by a discrete time quantum walk and the spatial degree of freedom of the mobile anyon becomes entangled with the fusion degrees of freedom of the collective system. Each quantum trajectory makes a closed braid on the world lines of the particles establishing a direct connection between statistical dynamics and quantum link invariants. We find that asymptotically a mobile Ising anyon becomes so entangled with its environment that its statistical dynamics reduces to a classical random walk with linear dispersion in contrast to particles with Abelian statistics which have quadratic dispersion.
Pathway Model and Nonextensive Statistical Mechanics
Mathai, A. M.; Haubold, H. J.; Tsallis, C.
2015-12-01
The established technique of eliminating upper or lower parameters in a general hypergeometric series is profitably exploited to create pathways among confluent hypergeometric functions, binomial functions, Bessel functions, and exponential series. One such pathway, from the mathematical statistics point of view, results in distributions which naturally emerge within nonextensive statistical mechanics and Beck-Cohen superstatistics, as pursued in generalizations of Boltzmann-Gibbs statistics.
A modern approach to quantum mechanics
Townsend, John S
2012-01-01
Using an innovative approach that students find both accessible and exciting, A Modern Approach to Quantum Mechanics, Second Edition lays out the foundations of quantum mechanics through the physics of intrinsic spin. Written to serve as the primary textbook for an upper-division course in quantum mechanics, Townsend's text gives professors and students a refreshing alternative to the old style of teaching, by allowing the basic physics of spin systems to drive the introduction of concepts such as Dirac notation, operators, eigenstates and eigenvalues, time evolution in quantum mechanics, and entanglement. Chapters 6 through 10 cover the more traditional subjects in wave mechanics-the Schrodinger equation in position space, the harmonic oscillator, orbital angular momentum, and central potentials-but they are motivated by the foundations developed in the earlier chapters. Students using this text will perceive wave mechanics as an important aspect of quantum mechanics, but not necessarily the core of the subj...
Anderson Localization with Second Quantized Fields: Quantum Statistical Aspects
Thompson, Clinton; Agarwal, G S
2010-01-01
We report a theoretical study of Anderson localization of nonclassical light with emphasis on the quantum statistical aspects of localized light. We demonstrate, from the variance in mean intensity of localized light, as well as site-to-site correlations, that the localized light carries signatures of quantum statistics of input light. For comparison, we also present results for input light with coherent field statistics and thermal field statistics. Our results show that there is an enhancement in fluctuations of localized light due to the medium's disorder. We also find superbunching of the localized light, which may be useful for enhancing the interaction between radiation and matter. Another important consequence of sub-Poissonian statistics of the incoming light is to quench the total fluctuations at the output. Finally, we compare the effects of Gaussian and Rectangular distributions for the disorder, and show that Gaussian disorder accelerates the localization of light.
Mechanical momentum in nonequilibrium quantum electrodynamics
de Haan, M
2006-01-01
The reformulation of field theory in which self-energy processes are no longer present [Annals of Physics, {\\bf311} (2004), 314.], [ Progr. Theor. Phys., {\\bf 109} (2003), 881.], [Trends in Statistical Physics {\\bf 3} (2000), 115.] provides an adequate tool to transform Swinger-Dyson equations into a kinetic description outside any approximation scheme. Usual approaches in quantum electrodynamics (QED) are unable to cope with the mechanical momentum of the electron and replace it by the canonical momentum. The use of that unphysical momentum is responsible for the divergences that are removed by the renormalization procedure in the $S$-matrix theory. The connection between distribution functions in terms of the canonical and those in terms of the mechanical momentum is now provided by a dressing operator [Annals of Physics, {\\bf314} (2004), 10] that allows the elimination of the above divergences, as the first steps are illustrated here.
Quantum mechanics II a second course in quantum theory
Landau, Rubin H
2004-01-01
Here is a readable and intuitive quantum mechanics text that covers scattering theory, relativistic quantum mechanics, and field theory. This expanded and updated Second Edition - with five new chapters - emphasizes the concrete and calculable over the abstract and pure, and helps turn students into researchers without diminishing their sense of wonder at physics and nature.As a one-year graduate-level course, Quantum Mechanics II: A Second Course in Quantum Theory leads from quantum basics to basic field theory, and lays the foundation for research-oriented specialty courses. Used selectively, the material can be tailored to create a one-semester course in advanced topics. In either case, it addresses a broad audience of students in the physical sciences, as well as independent readers - whether advanced undergraduates or practicing scientists
Quantum Mechanics: Bell and Quantum Entropy for the Classroom
Pluch, Philipp
2014-01-01
In this article we are willing to give some first steps to quantum mechanics and a motivation of quantum mechanics and its interpretation for undergraduate students not from physics. After a short historical review in the development we discuss philosophical, physical and mathematical interpretation. We define local realism, locality and hidden variable theory which ends up in the EPR paradox, a place where questions on completeness and reality comes into play. The fundamental result of the last century was maybe Bell's that states that local realism is false if quantum mechanics is true. From this fact we can obtain the so called Bell inequalities. After a didactic example of the fact what these inequalities means we describe the key concept of quantum entanglement motivated here by quantum information theory. Also classical entropy and von Neuman entropy is discussed.
Time Symmetry and Asymmetry in Quantum Mechanics and Quantum Cosmology
Gell-Mann, Murray; Gell-Mann, Murray; Hartle, James B.
1993-01-01
We investigate the origin of the arrow of time in quantum mechanics in the context of quantum cosmology. The ``Copenhagen'' quantum mechanics of measured subsystems incorporates a fundamental arrow of time. Extending discussions of Aharonov, Bergmann and Lebovitz, Griffiths, and others we investigate a generalized quantum mechanics for cosmology that utilizes both an initial and a final density matrix to give a time-neutral formulation without a fundamental arrow of time. Time asymmetries can arise for particular universes from differences between their initial and final conditions. Theories for both would be a goal of quantum cosmology. A special initial condition and a final condition of indifference would be sufficient to explain the observed time asymmetries of the universe. In this essay we ask under what circumstances a completely time symmetric universe, with T-symmetric initial and final condition, could be consistent with the time asymmetries of the limited domain of our experience. We discuss the ap...
Quantum mechanical version of the classical Liouville theorem
Institute of Scientific and Technical Information of China (English)
Xie Chuan-Mei; Fan Hong-Yi
2013-01-01
In terms of the coherent state evolution in phase space,we present a quantum mechanical version of the classical Liouville theorem.The evolution of the coherent state from | z> to | sz-rz*> corresponds to the motion from a point z (q,p)to another point sz-rz* with |s|2-|r|2 =1.The evolution is governed by the so-called Fresnel operator U(s,r) that was recently proposed in quantum optics theory,which classically corresponds to the matrix optics law and the optical Fresnel transformation,and obeys group product rules.In other words,we can recapitulate the Liouville theorem in the context of quantum mechanics by virtue of coherent state evolution in phase space,which seems to be a combination of quantum statistics and quantum optics.
Unification of Relativistic and Quantum Mechanics from Elementary Cycles Theory
Dolce, Donatello
2016-01-01
In Elementary Cycles theory elementary quantum particles are consistently described as the manifestation of ultra-fast relativistic spacetime cyclic dynamics, classical in the essence. The peculiar relativistic geometrodynamics of Elementary Cycles theory yields de facto a unification of ordinary relativistic and quantum physics. In particular its classical-relativistic cyclic dynamics reproduce exactly from classical physics first principles all the fundamental aspects of Quantum Mechanics, such as all its axioms, the Feynman path integral, the Dirac quantisation prescription (second quantisation), quantum dynamics of statistical systems, non-relativistic quantum mechanics, atomic physics, superconductivity, graphene physics and so on. Furthermore the theory allows for the explicit derivation of gauge interactions, without postulating gauge invariance, directly from relativistic geometrodynamical transformations, in close analogy with the description of gravitational interaction in general relativity. In thi...
Pragmatic Information in Quantum Mechanics
Roederer, Juan G
2015-01-01
An objective definition of pragmatic information and the consideration of recent results about information processing in the human brain can help overcome some traditional difficulties with the interpretation of quantum mechanics. Rather than attempting to define information ab initio, I introduce the concept of interaction between material bodies as a primary concept. Two distinct categories can be identified: 1) Interactions which can always be reduced to a superposition of physical interactions (forces) between elementary constituents; 2) Interactions between complex bodies which cannot be reduced to a superposition of interactions between parts, and in which patterns and forms (in space and/or time) play the determining role. Pragmatic information is then defined as the correspondence between a given pattern and the ensuing pattern-specific change. I will show that pragmatic information is a biological concept that plays no active role in the purely physical domain; it only does so when a living organism ...
Morlet Wavelets in Quantum Mechanics
Directory of Open Access Journals (Sweden)
John Ashmead
2012-11-01
Full Text Available Wavelets offer significant advantages for the analysis of problems in quantum mechanics. Because wavelets are localized in both time and frequency they avoid certain subtle but potentially fatal conceptual errors that can result from the use of plane wave or δ function decomposition. Morlet wavelets in particular are well-suited for this work: as Gaussians, they have a simple analytic form and they work well with Feynman path integrals. But to take full advantage of Morlet wavelets we need to supply an explicit form for the inverse Morlet transform and a manifestly covariant form for the four-dimensional Morlet wavelet. We construct both here.Quanta 2012; 1: 58–70.
Kindergarten Quantum Mechanics lectures notes
Coecke, B
2005-01-01
These lecture notes survey some joint work with Samson Abramsky as it was presented by me at several conferences in the summer of 2005. It concerns `doing quantum mechanics using only pictures of lines, squares, triangles and diamonds'. This picture calculus can be seen as a very substantial extension of Dirac's notation, and has a purely algebraic counterpart in terms of so-called Strongly Compact Closed Categories (introduced by Abramsky and I in quant-ph/0402130 and [4]) which subsumes my Logic of Entanglement quant-ph/0402014. For a survey on the `what', the `why' and the `hows' I refer to a previous set of lecture notes quant-ph/0506132. In a last section we provide some pointers to the body of technical literature on the subject.
Thermodynamics of Van der Waals Fluids with quantum statistics
Redlich, Krzysztof
2016-01-01
We consider thermodynamics of the van der Waals fluid of quantum systems. We derive general relations of thermodynamic functions and parameters of any ideal gas and the corresponding van der Waals fluid. This provides unambiguous generalization of the classical van der Waals theory to quantum statistical systems. As an example, we apply the van der Waals fluid with fermi statistics to characterize the liquid-gas critical point in nuclear matter. We also introduce the Bose-Einstein condensation in the relativistic van der Waals boson gas, and argue, that it exhibits two-phase structure separated in space.
Quantum Tunneling In Deformed Quantum Mechanics with Minimal Length
Guo, Xiaobo; Tao, Jun; Wang, Peng
2016-01-01
In the deformed quantum mechanics with a minimal length, one WKB connection formula through a turning point is derived. We then use it to calculate tunnelling rates through potential barriers under the WKB approximation. Finally, the minimal length effects on two examples of quantum tunneling in nuclear and atomic physics are discussed
Testing non-associative quantum mechanics
Bojowald, Martin; Buyukcam, Umut
2015-01-01
The familiar concepts of state vectors and operators in quantum mechanics rely on associative products of observables. However, these notions do not apply to some exotic systems such as magnetic monopoles, which have long been known to lead to non-associative algebras. Their quantum physics has remained obscure. This letter presents the first derivation of potentially testable physical results in non-associative quantum mechanics, based on effective potentials. They imply new effects which cannot be mimicked in usual quantum mechanics with standard magnetic fields.
Thermodynamic integration from classical to quantum mechanics.
Habershon, Scott; Manolopoulos, David E
2011-12-14
We present a new method for calculating quantum mechanical corrections to classical free energies, based on thermodynamic integration from classical to quantum mechanics. In contrast to previous methods, our method is numerically stable even in the presence of strong quantum delocalization. We first illustrate the method and its relationship to a well-established method with an analysis of a one-dimensional harmonic oscillator. We then show that our method can be used to calculate the quantum mechanical contributions to the free energies of ice and water for a flexible water model, a problem for which the established method is unstable.
Curvature, zero modes and quantum statistics
Energy Technology Data Exchange (ETDEWEB)
Calixto, M [Departamento de Matematica Aplicada y EstadIstica, Universidad Politecnica de Cartagena, Paseo Alfonso XIII 56, 30203 Cartagena (Spain); Aldaya, V [Instituto de AstrofIsica de AndalucIa, Apartado Postal 3004, 18080 Granada (Spain)
2006-08-18
We explore an intriguing connection between the Fermi-Dirac and Bose-Einstein statistics and the thermal baths obtained from a vacuum radiation of coherent states of zero modes in a second quantized (many-particle) theory on the compact O(3) and noncompact O(2, 1) isometry subgroups of the de Sitter and anti-de Sitter spaces, respectively. The high frequency limit is retrieved as a (zero-curvature) group contraction to the Newton-Hooke (harmonic oscillator) group. We also make some comments on the vacuum energy density and the cosmological constant problem. (letter to the editor)
Random Matrix theory approach to Quantum mechanics
Chaitanya, K. V. S. Shiv
2015-01-01
In this paper, we give random matrix theory approach to the quantum mechanics using the quantum Hamilton-Jacobi formalism. We show that the bound state problems in quantum mechanics are analogous to solving Gaussian unitary ensemble of random matrix theory. This study helps in identify the potential appear in the joint probability distribution function in the random matrix theory as a super potential. This approach allows to extend the random matrix theory to the newly discovered exceptional ...
Review of student difficulties in upper-level quantum mechanics
National Research Council Canada - National Science Library
Chandralekha Singh; Emily Marshman
2015-01-01
... at the introductory and intermediate levels. In addition, learning quantum mechanics can be especially challenging because the paradigms of classical mechanics and quantum mechanics are very different...
Elucidating reaction mechanisms on quantum computers.
Reiher, Markus; Wiebe, Nathan; Svore, Krysta M; Wecker, Dave; Troyer, Matthias
2017-07-18
With rapid recent advances in quantum technology, we are close to the threshold of quantum devices whose computational powers can exceed those of classical supercomputers. Here, we show that a quantum computer can be used to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical computer simulations used to probe these reaction mechanisms, to significantly increase their accuracy and enable hitherto intractable simulations. Our resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. Our results demonstrate that quantum computers will be able to tackle important problems in chemistry without requiring exorbitant resources.
The transactional interpretation of quantum mechanics
Cramer, John G.
2001-06-01
The transactional interpretation of quantum mechanics [1] was originally published in 1986 and is now about 14 years old. It is an explicitly nonlocal and Lorentz invariant alternative to the Copenhagen interpretation. It interprets the formalism for a quantum interaction as describing a "handshake" between retarded waves (ψ) and advanced waves (ψ*) for each quantum event or "transaction" in which energy, momentum, angular momentum, and other conserved quantities are transferred. The transactional interpretation offers the advantages that (1) it is actually "visible" in the formalism of quantum mechanics, (2) it is economical, involving fewer independent assumptions than its rivals, (3) it is paradox-free, resolving all of the paradoxes of standard quantum theory including nonlocality and wave function collapse, (4) it does not give a privileged role to observers or measurements, and (5) it permits the visualization of quantum events. We will review the transactional interpretation and some of its applications to "quantum paradoxes."
Thermodynamics and statistical mechanics. [thermodynamic properties of gases
1976-01-01
The basic thermodynamic properties of gases are reviewed and the relations between them are derived from the first and second laws. The elements of statistical mechanics are then formulated and the partition function is derived. The classical form of the partition function is used to obtain the Maxwell-Boltzmann distribution of kinetic energies in the gas phase and the equipartition of energy theorem is given in its most general form. The thermodynamic properties are all derived as functions of the partition function. Quantum statistics are reviewed briefly and the differences between the Boltzmann distribution function for classical particles and the Fermi-Dirac and Bose-Einstein distributions for quantum particles are discussed.
Critique of Conventional Relativistic Quantum Mechanics.
Fanchi, John R.
1981-01-01
Following an historical sketch of the development of relativistic quantum mechanics, a discussion of the still unresolved difficulties of the currently accepted theories is presented. This review is designed to complement and update the discussion of relativistic quantum mechanics presented in many texts used in college physics courses. (Author/SK)
Khrennikov, Andrei
2016-01-01
The scientific methodology based on two descriptive levels, ontic (reality as it is ) and epistemic (observational), is briefly presented. Following Schr\\"odinger, we point to the possible gap between these two descriptions. Our main aim is to show that, although ontic entities may be inaccessible for observations, they can be useful for clarification of the physical nature of operational epistemic entities. We illustrate this thesis by the concrete example: starting with the concrete ontic model preceding quantum mechanics (the latter is treated as an epistemic model), namely, prequantum classical statistical field theory (PCSFT), we propose the natural physical interpretation for the basic quantum mechanical entity - the quantum state ("wave function"). The correspondence PCSFT to QM is not straightforward, it couples the covariance operators of classical (prequantum) random fields with the quantum density operators. We use this correspondence to clarify the physical meaning of the pure quantum state and th...
Khrennikov, Andrei
2017-02-01
The scientific methodology based on two descriptive levels, ontic (reality as it is) and epistemic (observational), is briefly presented. Following Schrödinger, we point to the possible gap between these two descriptions. Our main aim is to show that, although ontic entities may be unaccessible for observations, they can be useful for clarification of the physical nature of operational epistemic entities. We illustrate this thesis by the concrete example: starting with the concrete ontic model preceding quantum mechanics (the latter is treated as an epistemic model), namely, prequantum classical statistical field theory (PCSFT), we propose the natural physical interpretation for the basic quantum mechanical entity-the quantum state ("wave function"). The correspondence PCSFT ↦ QM is not straightforward, it couples the covariance operators of classical (prequantum) random fields with the quantum density operators. We use this correspondence to clarify the physical meaning of the pure quantum state and the superposition principle-by using the formalism of classical field correlations.
Statistical mechanics approach to lattice field theory
Amador, Arturo; Olaussen, Kåre
2016-01-01
The mean spherical approximation (MSA) is a closure relation for pair correlation functions (two-point functions) in statistical physics. It can be applied to a wide range of systems, is computationally fairly inexpensive, and when properly applied and interpreted lead to rather good results. In this paper we promote its applicability to euclidean quantum field theories formulated on a lattice, by demonstrating how it can be used to locate the critical lines of a class of multi-component bosonic models. The MSA has the potential to handle models lacking a positive definite integration measure, which therefore are difficult to investigate by Monte-Carlo simulations.
On the Classical Limit of Quantum Mechanics
Allori, V; Allori, Valia; Zangh\\`{\\i}, Nino
2001-01-01
Contrary to the widespread belief, the problem of the emergence of classical mechanics from quantum mechanics is still open. In spite of many results on the $\\h \\to 0$ asymptotics, it is not yet clear how to explain within standard quantum mechanics the classical motion of macroscopic bodies. In this paper we shall analyze special cases of classical behavior in the framework of a precise formulation of quantum mechanics, Bohmian mechanics, which contains in its own structure the possibility of describing real objects in an observer-independent way.
Tailored quantum statistics from broadband states of light
Hartmann, S.; Friedrich, F.; Molitor, A.; Reichert, M.; Elsäßer, W.; Walser, R.
2015-04-01
We analyze the statistics of photons originating from amplified spontaneous emission generated by a quantum dot superluminescent diode. Experimentally detectable emission properties are taken into account by parametrizing the corresponding quantum state as a multimode phase-randomized Gaussian density operator. The validity of this model is proven in two subsequent experiments using fast two-photon-absorption detection observing second-order equal-time and second-order fully time-resolved intensity correlations on femtosecond timescales. In the first experiment, we study the photon statistics when the number of contributing longitudinal modes is systematically reduced by applying well-controlled optical feedback. In a second experiment, we add coherent light from a single-mode laser diode to quantum dot superluminescent diode broadband radiation. Tuning the power ratio, we realize tailored second-order correlations ranging from Gaussian to Poissonian statistics. Both experiments are very well matched by theory, thus giving first insights into the quantum properties of radiation from quantum dot superluminescent diodes.
Conference on Mathematical Results in Quantum Mechanics
Exner, Pavel; Tater, Miloš; QMath-7
1999-01-01
At the age of almost three quarters of a century, quantum mechanics is by all accounts a mature theory. There were times when it seemed that it had borne its best fruit already and would give way to investigation of deeper levels of matter. Today this sounds like rash thinking. Modern experimental techniques have led to discoveries of numerous new quantum effects in solid state, optics and elsewhere. Quantum mechanics is thus gradually becoming a basis for many branches of applied physics, in this way entering our everyday life. While the dynamic laws of quantum mechanics are well known, a proper theoretical understanding requires methods which would allow us to de rive the abundance of observed quantum effects from the first principles. In many cases the rich structure hidden in the Schr6dinger equation can be revealed only using sophisticated tools. This constitutes a motivation to investigate rigorous methods which yield mathematically well-founded properties of quantum systems.
Exploring gravitational statistics not based on quantum dynamical assumptions
Mandrin, P A
2016-01-01
Despite considerable progress in several approaches to quantum gravity, there remain uncertainties on the conceptual level. One issue concerns the different roles played by space and time in the canonical quantum formalism. This issue occurs because the Hamilton-Jacobi dynamics is being quantised. The question then arises whether additional physically relevant states could exist which cannot be represented in the canonical form or as a partition function. For this reason, the author has explored a statistical approach (NDA) which is not based on quantum dynamical assumptions and does not require space-time splitting boundary conditions either. For dimension 3+1 and under thermal equilibrium, NDA simplifies to a path integral model. However, the general case of NDA cannot be written as a partition function. As a test of NDA, one recovers general relativity at low curvature and quantum field theory in the flat space-time approximation. Related paper: arxiv:1505.03719.
Propagators in Polymer Quantum Mechanics
Flores-González, Ernesto; Reyes, Juan D
2013-01-01
Polymer Quantum Mechanics is based on some of the techniques used in the loop quantization of gravity that are adapted to describe systems possessing a finite number of degrees of freedom. It has been used in two ways: on one hand it has been used to represent some aspects of the loop quantization in a simpler context, and, on the other, it has been applied to each of the infinite mechanical modes of other systems. Indeed, this polymer approach was recently implemented for the free scalar field propagator. In this work we compute the polymer propagators of the free particle and a particle in a box; amusingly, just as in the non polymeric case, the one of the particle in a box may be computed also from that of the free particle using the method of images. We verify the propagators hereby obtained satisfy standard properties such as: consistency with initial conditions, composition and Green's function character. Furthermore they are also shown to reduce to the usual Schr\\"odinger propagators in the limit of sm...
Quantum Semiotics: A Sign Language for Quantum Mechanics
Prashant
2006-01-01
Semiotics is the language of signs which has been used effectively in various disciplines of human scientific endeavor. It gives a beautiful and rich structure of language to express the basic tenets of any scientific discipline. In this article we attempt to develop from first principles such an axiomatic structure of semiotics for Quantum Mechanics. This would be a further enrichment to the already existing well understood mathematical structure of Quantum Mechanics but may give new insights and understanding to the theory and may help understand more lucidly the fundamentality of Nature which Quantum Theory attempts to explain.
Statistical Quadrature Evolution for Continuous-Variable Quantum Key Distribution
Gyongyosi, Laszlo; Imre, Sandor
2016-05-01
We propose a statistical quadrature evolution (SQE) method for multicarrier continuous-variable quantum key distribution (CVQKD). A multicarrier CVQKD protocol utilizes Gaussian subcarrier quantum continuous variables (CV) for information transmission. The SQE framework provides a minimal error estimate of the quadratures of the CV quantum states from the discrete, measured noisy subcarrier variables. We define a method for the statistical modeling and processing of noisy Gaussian subcarrier quadratures. We introduce the terms statistical secret key rate and statistical private classical information, which quantities are derived purely by the statistical functions of our method. We prove the secret key rate formulas for a multiple access multicarrier CVQKD. The framework can be established in an arbitrary CVQKD protocol and measurement setting, and are implementable by standard low-complexity statistical functions, which is particularly convenient for an experimental CVQKD scenario. This work was partially supported by the GOP-1.1.1-11-2012-0092 project sponsored by the EU and European Structural Fund, by the Hungarian Scientific Research Fund - OTKA K-112125, and by the COST Action MP1006.
Monte Carlo simulation of quantum statistical lattice models
Raedt, Hans De; Lagendijk, Ad
1985-01-01
In this article we review recent developments in computational methods for quantum statistical lattice problems. We begin by giving the necessary mathematical basis, the generalized Trotter formula, and discuss the computational tools, exact summations and Monte Carlo simulation, that will be used t
Electron Energy Level Statistics in Graphene Quantum Dots
De Raedt, H.; Katsnellson, M. I.; Katsnelson, M.I.
2008-01-01
Motivated by recent experimental observations of size quantization of electron energy levels in graphene quantum dots [7] we investigate the level statistics in the simplest tight-binding model for different dot shapes by computer simulation. The results are in a reasonable agreement with the experi
New results in the quantum statistical approach to parton distributions
Soffer, Jacques; Bourrely, Claude
2014-01-01
We will describe the quantum statistical approach to parton distributions allowing to obtain simultaneously the unpolarized distributions and the helicity distributions. We will present some recent results, in particular related to the nucleon spin structure in QCD. Future measurements are challenging to check the validity of this novel physical framework.
Thermalization and its mechanism for generic isolated quantum systems.
Rigol, Marcos; Dunjko, Vanja; Olshanii, Maxim
2008-04-17
An understanding of the temporal evolution of isolated many-body quantum systems has long been elusive. Recently, meaningful experimental studies of the problem have become possible, stimulating theoretical interest. In generic isolated systems, non-equilibrium dynamics is expected to result in thermalization: a relaxation to states in which the values of macroscopic quantities are stationary, universal with respect to widely differing initial conditions, and predictable using statistical mechanics. However, it is not obvious what feature of many-body quantum mechanics makes quantum thermalization possible in a sense analogous to that in which dynamical chaos makes classical thermalization possible. For example, dynamical chaos itself cannot occur in an isolated quantum system, in which the time evolution is linear and the spectrum is discrete. Some recent studies even suggest that statistical mechanics may give incorrect predictions for the outcomes of relaxation in such systems. Here we demonstrate that a generic isolated quantum many-body system does relax to a state well described by the standard statistical-mechanical prescription. Moreover, we show that time evolution itself plays a merely auxiliary role in relaxation, and that thermalization instead happens at the level of individual eigenstates, as first proposed by Deutsch and Srednicki. A striking consequence of this eigenstate-thermalization scenario, confirmed for our system, is that knowledge of a single many-body eigenstate is sufficient to compute thermal averages-any eigenstate in the microcanonical energy window will do, because they all give the same result.
Quantum statistical theory of semiconductor junctions in thermal equilibrium
Von Roos, O.
1977-01-01
Free carrier and electric field distributions of one-dimensional semiconductor junctions are evaluated using a quantum mechanical phase-space distribution and its corresponding Boltzmann equation. Attention is given to quantum and exchange corrections in cases of high doping concentrations when carrier densities become degenerate. Quantitative differences between degenerate and classical junction characteristics, e.g., maximum electric field and built-in voltage and carrier concentration within the transition region, are evaluated numerically.
Dorit Aharonov; Umesh Vazirani
2012-01-01
Quantum computation teaches us that quantum mechanics exhibits exponential complexity. We argue that the standard scientific paradigm of "predict and verify" cannot be applied to testing quantum mechanics in this limit of high complexity. We describe how QM can be tested in this regime by extending the usual scientific paradigm to include {\\it interactive experiments}.
Bibliographic guide to the foundations of quantum mechanics and quantum information
Cabello, A
2000-01-01
This is a collection of references (papers, books, preprints, book reviews, Ph. D. thesis, patents, etc.), sorted alphabetically and (some of them) classified by subject, on foundations of quantum mechanics and quantum information. Specifically, it covers hidden variables (``no-go'' theorems, experiments), interpretations of quantum mechanics, entanglement, quantum effects (quantum Zeno effect, quantum erasure, ``interaction-free'' measurements, quantum ``non-demolition'' measurements), quantum information (cryptography, cloning, dense coding, teleportation), and quantum computation.
Learning Predictive Statistics: Strategies and Brain Mechanisms.
Wang, Rui; Shen, Yuan; Tino, Peter; Welchman, Andrew E; Kourtzi, Zoe
2017-08-30
When immersed in a new environment, we are challenged to decipher initially incomprehensible streams of sensory information. However, quite rapidly, the brain finds structure and meaning in these incoming signals, helping us to predict and prepare ourselves for future actions. This skill relies on extracting the statistics of event streams in the environment that contain regularities of variable complexity from simple repetitive patterns to complex probabilistic combinations. Here, we test the brain mechanisms that mediate our ability to adapt to the environment's statistics and predict upcoming events. By combining behavioral training and multisession fMRI in human participants (male and female), we track the corticostriatal mechanisms that mediate learning of temporal sequences as they change in structure complexity. We show that learning of predictive structures relates to individual decision strategy; that is, selecting the most probable outcome in a given context (maximizing) versus matching the exact sequence statistics. These strategies engage distinct human brain regions: maximizing engages dorsolateral prefrontal, cingulate, sensory-motor regions, and basal ganglia (dorsal caudate, putamen), whereas matching engages occipitotemporal regions (including the hippocampus) and basal ganglia (ventral caudate). Our findings provide evidence for distinct corticostriatal mechanisms that facilitate our ability to extract behaviorally relevant statistics to make predictions.SIGNIFICANCE STATEMENT Making predictions about future events relies on interpreting streams of information that may initially appear incomprehensible. Past work has studied how humans identify repetitive patterns and associative pairings. However, the natural environment contains regularities that vary in complexity from simple repetition to complex probabilistic combinations. Here, we combine behavior and multisession fMRI to track the brain mechanisms that mediate our ability to adapt to
Prologue to super quantum mechanics something is rotten in the state of quantum mechanics
Vaguine, Victor
2012-01-01
Since its foundation more than eight decades ago, quantum mechanics has been plagued by enigmas, mysteries and paradoxes and held hostage by quantum positivism. This fact strongly suggests that something is fundamentally wrong with the quantum mechanics paradigm. The best scientific minds, such as Albert Einstein, Louis de Broglie, David Bohm, Richard Feynman and others have spent years of their professional lives attempting to find resolution to the quantum mechanics predicament, with not much success. A shift of the quantum mechanics paradigm toward a deeper physics theory is long overdue.
Topological strings from quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Grassi, Alba; Marino, Marcos [Geneve Univ. (Switzerland). Dept. de Physique Theorique et Section de Mathematique; Hatsuda, Yasuyuki [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group
2014-12-15
We propose a general correspondence which associates a non-perturbative quantum-mechanical operator to a toric Calabi-Yau manifold, and we conjecture an explicit formula for its spectral determinant in terms of an M-theoretic version of the topological string free energy. As a consequence, we derive an exact quantization condition for the operator spectrum, in terms of the vanishing of a generalized θ function. The perturbative part of this quantization condition is given by the Nekrasov-Shatashvili limit of the refined topological string, but there are non-perturbative corrections determined by the conventional topological string. We analyze in detail the cases of local P{sup 2}, local P{sup 1} x P{sup 1} and local F{sub 1}. In all these cases, the predictions for the spectrum agree with the existing numerical results. We also show explicitly that our conjectured spectral determinant leads to the correct spectral traces of the corresponding operators, which are closely related to topological string theory at orbifold points. Physically, our results provide a Fermi gas picture of topological strings on toric Calabi-Yau manifolds, which is fully non-perturbative and background independent. They also suggest the existence of an underlying theory of M2 branes behind this formulation. Mathematically, our results lead to precise, surprising conjectures relating the spectral theory of functional difference operators to enumerative geometry.
Topological Strings from Quantum Mechanics
Grassi, Alba; Marino, Marcos
2014-01-01
We propose a general correspondence which associates a non-perturbative quantum-mechanical operator to a toric Calabi-Yau manifold, and we conjecture an explicit formula for its spectral determinant in terms of an M-theoretic version of the topological string free energy. As a consequence, we derive an exact quantization condition for the operator spectrum, in terms of the vanishing of a generalized theta function. The perturbative part of this quantization condition is given by the Nekrasov-Shatashvili limit of the refined topological string, but there are non-perturbative corrections determined by the conventional topological string. We analyze in detail the cases of local P2, local P1xP1 and local F1. In all these cases, the predictions for the spectrum agree with the existing numerical results. We also show explicitly that our conjectured spectral determinant leads to the correct spectral traces of the corresponding operators, which are closely related to topological string theory at orbifold points. Phys...
Strange Bedfellows: Quantum Mechanics and Data Mining
Energy Technology Data Exchange (ETDEWEB)
Weinstein, Marvin [SLAC National Accelerator Laboratory, Stanford, CA (United States)
2010-02-15
Last year, in 2008, I gave a talk titled Quantum Calisthenics. This year I am going to tell you about how the work I described then has spun off into a most unlikely direction. What I am going to talk about is how one maps the problem of finding clusters in a given data set into a problem in quantum mechanics. I will then use the tricks I described to let quantum evolution lets the clusters come together on their own.
On the tomographic picture of quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Ibort, A., E-mail: albertoi@math.uc3m.e [Departamento de Matematicas, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganes, Madrid (Spain); Man' ko, V.I., E-mail: manko@na.infn.i [P.N. Lebedev Physical Institute, Leninskii Prospect 53, Moscow 119991 (Russian Federation); Marmo, G., E-mail: marmo@na.infn.i [Dipartimento di Scienze Fisiche dell' Universita ' Federico II' e Sezione INFN di Napoli, Complesso Universitario di Monte S. Angelo, via Cintia, 80126 Naples (Italy); Simoni, A., E-mail: simoni@na.infn.i [Dipartimento di Scienze Fisiche dell' Universita ' Federico II' e Sezione INFN di Napoli, Complesso Universitario di Monte S. Angelo, via Cintia, 80126 Naples (Italy); Ventriglia, F., E-mail: ventriglia@na.infn.i [Dipartimento di Scienze Fisiche dell' Universita ' Federico II' e Sezione INFN di Napoli, Complesso Universitario di Monte S. Angelo, via Cintia, 80126 Naples (Italy)
2010-06-07
We formulate necessary and sufficient conditions for a symplectic tomogram of a quantum state to determine the density state. We establish a connection between the (re)construction by means of symplectic tomograms with the construction by means of Naimark positive definite functions on the Weyl-Heisenberg group. This connection is used to formulate properties which guarantee that tomographic probabilities describe quantum states in the probability representation of quantum mechanics.
Strange Bedfellows: Quantum Mechanics and Data Mining
Energy Technology Data Exchange (ETDEWEB)
Weinstein, Marvin; /SLAC
2009-12-16
Last year, in 2008, I gave a talk titled Quantum Calisthenics. This year I am going to tell you about how the work I described then has spun off into a most unlikely direction. What I am going to talk about is how one maps the problem of finding clusters in a given data set into a problem in quantum mechanics. I will then use the tricks I described to let quantum evolution lets the clusters come together on their own.
Foundations of statistical mechanics a deductive treatment
Penrose, O
2013-01-01
International Series of Monographs in Natural Philosophy, Volume 22: Foundations of Statistical Mechanics: A Deductive Treatment presents the main approaches to the basic problems of statistical mechanics. This book examines the theory that provides explicit recognition to the limitations on one's powers of observation. Organized into six chapters, this volume begins with an overview of the main physical assumptions and their idealization in the form of postulates. This text then examines the consequences of these postulates that culminate in a derivation of the fundamental formula for calcula
Statistical mechanics of Hamiltonian adaptive resolution simulations.
Español, P; Delgado-Buscalioni, R; Everaers, R; Potestio, R; Donadio, D; Kremer, K
2015-02-14
The Adaptive Resolution Scheme (AdResS) is a hybrid scheme that allows to treat a molecular system with different levels of resolution depending on the location of the molecules. The construction of a Hamiltonian based on the this idea (H-AdResS) allows one to formulate the usual tools of ensembles and statistical mechanics. We present a number of exact and approximate results that provide a statistical mechanics foundation for this simulation method. We also present simulation results that illustrate the theory.
Statistical mechanics of a discrete nonlinear system
Rasmussen; Cretegny; Kevrekidis; Gronbech-Jensen
2000-04-24
Statistical mechanics of the discrete nonlinear Schrodinger equation is studied by means of analytical and numerical techniques. The lower bound of the Hamiltonian permits the construction of standard Gibbsian equilibrium measures for positive temperatures. Beyond the line of T = infinity, we identify a phase transition through a discontinuity in the partition function. The phase transition is demonstrated to manifest itself in the creation of breatherlike localized excitations. Interrelation between the statistical mechanics and the nonlinear dynamics of the system is explored numerically in both regimes.
Quantum-statistical equilibrium and the ``law'' of constant Fermi potential
Le Coz, Yannick L.
2003-02-01
We apply the general quantum-statistical density-matrix formalism to an independent-electron gas within a space-dependent external electric potential, under equilibrium conditions. This problem is analogous to an ideal semiconductor homojunction diode. We solve the resulting equilibrium density-matrix equation using a perturbation theory. Next, we derive a first-order quantum correction to the classical Maxwell-Boltzmann density-potential formula. The correction appears as an added curvature term in external potential. It represents expected quantum-mechanical scattering against a spatially varying potential. Our results indicate that the commonly encountered thermodynamic or statistical-mechanical "law" of constant, equilibrium Fermi potential—with Fermi potential a parameter in the Maxwell-Boltzmann density-potential formula—is not fundamentally exact. In a general space-dependent potential, this "law," we prove, is simply a classical approximation.
Bohmian mechanics. The physics and mathematics of quantum theory
Energy Technology Data Exchange (ETDEWEB)
Duerr, Detlef [Muenchen Univ. (Germany). Fakultaet Mathematik; Teufel, Stefan [Tuebingen Univ. (Germany). Mathematisches Inst.
2009-07-01
Bohmian Mechanics was formulated in 1952 by David Bohm as a complete theory of quantum phenomena based on a particle picture. It was promoted some decades later by John S. Bell, who, intrigued by the manifestly nonlocal structure of the theory, was led to his famous Bell's inequalities. Experimental tests of the inequalities verified that nature is indeed nonlocal. Bohmian mechanics has since then prospered as the straightforward completion of quantum mechanics. This book provides a systematic introduction to Bohmian mechanics and to the mathematical abstractions of quantum mechanics, which range from the self-adjointness of the Schroedinger operator to scattering theory. It explains how the quantum formalism emerges when Boltzmann's ideas about statistical mechanics are applied to Bohmian mechanics. The book is self-contained, mathematically rigorous and an ideal starting point for a fundamental approach to quantum mechanics. It will appeal to students and newcomers to the field, as well as to established scientists seeking a clear exposition of the theory. (orig.)
A new introductory quantum mechanics curriculum
Kohnle, Antje; Browne, Dan; Everitt, Mark; Fomins, Aleksejs; Kok, Pieter; Kulaitis, Gytis; Prokopas, Martynas; Raine, Derek; Swinbank, Elizabeth
2013-01-01
The Institute of Physics New Quantum Curriculum consists of freely available online learning and teaching materials (quantumphysics.iop.org) for a first course in university quantum mechanics starting from two-level systems. This approach immediately immerses students in inherently quantum mechanical aspects by focusing on experiments that have no classical explanation. It allows from the start a discussion of interpretive aspects of quantum mechanics and quantum information theory. This article gives an overview of the resources available at the IOP website. The core text is presented as around 80 articles co-authored by leading experts that are arranged in themes and can be used flexibly to provide a range of alternative approaches. Many of the articles include interactive simulations with accompanying activities and problem sets that can be explored by students to enhance their understanding. Much of the linear algebra needed for this approach is part of the resource. Solutions to activities are available ...
Realism and Objectivism in Quantum Mechanics
Karakostas, Vassilios
2012-01-01
The present study attempts to provide a consistent and coherent account of what the world could be like, given the conceptual framework and results of contemporary quantum theory. It is suggested that standard quantum mechanics can, and indeed should, be understood as a realist theory within its domain of application. It is pointed out, however, that a viable realist interpretation of quantum theory requires the abandonment or radical revision of the classical conception of physical reality and its traditional philosophical presuppositions. It is argued, in this direction, that the conceptualization of the nature of reality, as arising out of our most basic physical theory, calls for a kind of contextual realism. Within the domain of quantum mechanics, knowledge of 'reality in itself', 'the real such as it truly is' independent of the way it is contextualized, is impossible in principle. In this connection, the meaning of objectivity in quantum mechanics is analyzed, whilst the important question concerning t...
Linear response theory in quantum statistical mechanics
Jaksic, V; Pillet, C A
2005-01-01
This note is a continuation of a recent paper [1:mp_arc 05-215] where we have proven the Green-Kubo formula and the Onsager reciprocity relations for heat fluxes. In this note we extend the derivation of the Green-Kubo formula to heat and charge fluxes and discuss some other generalizations of the model and results of [1].
Insights into the softening of chaotic statistical models by quantum considerations
Cafaro, C.; Giffin, A.; Lupo, C.; Mancini, S.
2012-05-01
We analyze the information geometry and the entropic dynamics of a 3D Gaussian statistical model and compare our analysis to that of a 2D Gaussian statistical model obtained from the higher-dimensional model via introduction of an additional information constraint that resembles the quantum mechanical canonical minimum uncertainty relation. We uncover that the chaoticity of the 2D Gaussian statistical model, quantified by means of the Information Geometric Entropy (IGE), is softened with respect to the chaoticity of the 3D Gaussian statistical model.
Quantum ballistic evolution in quantum mechanics application to quantum computers
Benioff, P
1996-01-01
Quantum computers are important examples of processes whose evolution can be described in terms of iterations of single step operators or their adjoints. Based on this, Hamiltonian evolution of processes with associated step operators T is investigated here. The main limitation of this paper is to processes which evolve quantum ballistically, i.e. motion restricted to a collection of nonintersecting or distinct paths on an arbitrary basis. The main goal of this paper is proof of a theorem which gives necessary and sufficient conditions that T must satisfy so that there exists a Hamiltonian description of quantum ballistic evolution for the process, namely, that T is a partial isometry and is orthogonality preserving and stable on some basis. Simple examples of quantum ballistic evolution for quantum Turing machines with one and with more than one type of elementary step are discussed. It is seen that for nondeterministic machines the basis set can be quite complex with much entanglement present. It is also pr...
Quantum Mechanics Fundamentals and Applications to Technology
Singh, Jasprit
1996-01-01
Explore the relationship between quantum mechanics and information-age applications. This volume takes an altogether unique approach to quantum mechanics. Providing an in-depth exposition of quantum mechanics fundamentals, it shows how these concepts are applied to most of today's information technologies, whether they are electronic devices or materials. No other text makes this critical, essential leap from theory to real-world applications. The book's lively discussion of the mathematics involved fits right in with contemporary multidisciplinary trends in education: Once the basic formulati
A condensed course of quantum mechanics
Cejnar, Pavel
2013-01-01
This book represents a concise summary of non-relativistic quantum mechanics on the level suitable for university students of physics. It covers, perhaps even slightly exceeds, a one-year course of about 50 lectures, requiring basic knowledge of calculus, algebra, classical mechanics and a bit of motivation for the quantum adventure.The exposition is succinct, with minimal narration, but witha maximum of explicit and hierarchically structured mathematical derivations. The text covers all essential topics of university courses of quantum mechanics - from general mathematical formalism to specif
Optimization of a relativistic quantum mechanical engine
Peña, Francisco J.; Ferré, Michel; Orellana, P. A.; Rojas, René G.; Vargas, P.
2016-08-01
We present an optimal analysis for a quantum mechanical engine working between two energy baths within the framework of relativistic quantum mechanics, adopting a first-order correction. This quantum mechanical engine, with the direct energy leakage between the energy baths, consists of two adiabatic and two isoenergetic processes and uses a three-level system of two noninteracting fermions as its working substance. Assuming that the potential wall moves at a finite speed, we derive the expression of power output and, in particular, reproduce the expression for the efficiency at maximum power.
Theoretical and quantum mechanics fundamentals for chemists
Ivanov, Stefan
2006-01-01
Provides the basics of theoretical and quantum mechanics in one place and emphasizes the continuity between themUniquely presented to be used for self-taught courses covering theoretical and quantum mechanicsEach chapter includes a detailed outline, a summary, self-assessment questions for which answers can be found in the textInvaluable for chemistry undergraduate and graduate students, chemists, other non-physical scientists, engineering students of modern techniques and technology, specialists who need a better understanding of quantum mechanics.
Philosophical foundations of interpretations of quantum mechanics
Bezlepkin, Evgeny
2016-01-01
It is demonstrated that the reason for the diversity of interpretations of quantum mechanics is that they are not connected by continuity relations with classical physics, and also the reason is the impossibility of operationalist definition of the vector of state. The problem lies in the incompatibility of the philosophical foundations of interpretations, which results in the difficulty of building a unified picture of the world. To solve the problem, we identify general philosophical foundation of interpretations of quantum mechanics and built their classification. We also show that in more general theories, the part of which is quantum mechanics, it is possible to integrate (reconcile) the philosophical foundations of interpretations.
Mossbauer neutrinos in quantum mechanics and quantum field theory
Kopp, Joachim
2009-01-01
We demonstrate the correspondence between quantum mechanical and quantum field theoretical descriptions of Mossbauer neutrino oscillations. First, we compute the combined rate $\\Gamma$ of Mossbauer neutrino emission, propagation, and detection in quantum field theory, treating the neutrino as an internal line of a tree level Feynman diagram. We include explicitly the effect of homogeneous line broadening due to fluctuating electromagnetic fields in the source and detector crystals and show that the resulting formula for $\\Gamma$ is identical to the one obtained previously (Akhmedov et al., arXiv:0802.2513) for the case of inhomogeneous line broadening. We then proceed to a quantum mechanical treatment of Mossbauer neutrinos and show that the oscillation, coherence and resonance terms from the field theoretical result can be reproduced if the neutrino is described as a superposition of Lorentz-shaped wave packet with appropriately chosen energies and widths. On the other hand, the emission rate and the detecti...
Playing Games with Quantum Mechanics
Phoenix, Simon J D
2012-01-01
We present a perspective on quantum games that focuses on the physical aspects of the quantities that are used to implement a game. If a game is to be played, it has to be played with objects and actions that have some physical existence. We call such games playable. By focusing on the notion of playability for games we can more clearly see the distinction between classical and quantum games and tackle the thorny issue of what it means to quantize a game. The approach we take can more properly be thought of as gaming the quantum rather than quantizing a game and we find that in this perspective we can think of a complete quantum game, for a given set of preferences, as representing a single family of quantum games with many different playable versions. The versions of Quantum Prisoners Dilemma presented in the literature can therefore be thought of specific instances of the single family of Quantum Prisoner's Dilemma with respect to a particular measurement. The conditions for equilibrium are given for playab...
Relativistic quantum mechanics; Mecanique quantique relativiste
Energy Technology Data Exchange (ETDEWEB)
Ollitrault, J.Y. [CEA Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique]|[Universite Pierre et Marie Curie, 75 - Paris (France)
1998-12-01
These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.) 2 refs.
On the principles of quantum mechanics
Sakai, E
2004-01-01
We propose five principles as the fundamental principles of quantum mechanics: principle of space and time, Galilean principle of relativity, Hamilton's principle, wave principle, and probability principle. We deductively establish quantum mechanics on the basis of them. Then we adopt the following four guide lines. First, we do not premise the relations between dynamical variables in classical mechanics. Second, since energy and momentum are quantitatively defined in classical mechanics, we define them in quantum mechanics so that the corresponding conservation laws are satisfied in a coupling system of a quantum particle and a classical particle. Third, we define Planck's constant as a proportionality constant between energy and frequency due to one of Einstein-de Broglie formulas. Fourth, we define mass as a proportionality constant between momentum and velocity. We have succeeded to obtain the canonical commutation relations and the Schroedinger equation for a particle in an external field in the definiti...
Tensor Fields in Relativistic Quantum Mechanics
Dvoeglazov, Valeriy V
2015-01-01
We re-examine the theory of antisymmetric tensor fields and 4-vector potentials. We discuss corresponding massless limits. We analize the quantum field theory taking into account the mass dimensions of the notoph and the photon. Next, we deduced the gravitational field equations from relativistic quantum mechanics.
Quantum Mechanics as a Principle Theory
Bub, J
1999-01-01
I show how quantum mechanics, like the theory of relativity, can be understood as a 'principle theory' in Einstein's sense, and I use this notion to explore the approach to the problem of interpretation developed in my book Interpreting the Quantum World (Cambridge: Cambridge University Press, 1999).
Quantum mechanics as electrodynamics of curvilinear waves
2002-01-01
The suggested theory is the new quantum mechanics (QM) interpretation.The research proves that QM represents the electrodynamics of the curvilinear closed (non-linear) waves. It is entirely according to the modern interpretation and explains the particularities and the results of the quantum field theory.
Quantum mechanics in simple matrix form
Jordan, Thomas F
1986-01-01
With this text, basic quantum mechanics becomes accessible to undergraduates with no background in mathematics beyond algebra. Containing more than 100 problems, it provides an easy way to learn part of the quantum language and to employ this new skill in solving problems.
Statistical mechanics of fuzzy random polymer networks
Institute of Scientific and Technical Information of China (English)
陈晓红
1995-01-01
A statistical mechanics framework of fuzzy random polymer networks is established based on the theories of fuzzy systems. The entanglement effect is manifested quantitatively by introducing an entanglement tensor and membership function and the amorphous structure is treated as the fuzzy random network made up of macromolecular coils entangled randomly. A random tetrahedral entangled-crosslinked cell is chosen as an average representative unit of the fuzzy random polymer network structure. By making use of the theory of fuzzy probability and statistical mechanics, the expression for the free energy of deformation is given, which fits well with the experimental data on rubber elasticity under various deformation modes. Both classical statistical theory and Mooney-Rivlin equation can be taken as its special cases.
Ergodic theorem, ergodic theory, and statistical mechanics.
Moore, Calvin C
2015-02-17
This perspective highlights the mean ergodic theorem established by John von Neumann and the pointwise ergodic theorem established by George Birkhoff, proofs of which were published nearly simultaneously in PNAS in 1931 and 1932. These theorems were of great significance both in mathematics and in statistical mechanics. In statistical mechanics they provided a key insight into a 60-y-old fundamental problem of the subject--namely, the rationale for the hypothesis that time averages can be set equal to phase averages. The evolution of this problem is traced from the origins of statistical mechanics and Boltzman's ergodic hypothesis to the Ehrenfests' quasi-ergodic hypothesis, and then to the ergodic theorems. We discuss communications between von Neumann and Birkhoff in the Fall of 1931 leading up to the publication of these papers and related issues of priority. These ergodic theorems initiated a new field of mathematical-research called ergodic theory that has thrived ever since, and we discuss some of recent developments in ergodic theory that are relevant for statistical mechanics.
Are All Probabilities Fundamentally Quantum Mechanical?
Pradhan, Rajat Kumar
2011-01-01
The subjective and the objective aspects of probabilities are incorporated in a simple duality axiom inspired by observer participation in quantum theory. Transcending the classical notion of probabilities, it is proposed and demonstrated that all probabilities may be fundamentally quantum mechanical in the sense that they may all be derived from the corresponding amplitudes. The classical coin-toss and the quantum double slit interference experiments are discussed as illustrative prototype examples. Absence of multi-order quantum interference effects in multiple-slit experiments and the Experimental tests of complementarity in Wheeler's delayed-choice type experiments are explained using the involvement of the observer.
Statistical mechanics of reacting dense plasmas
Energy Technology Data Exchange (ETDEWEB)
Rogers, F.J.
1978-11-22
A review of the quantum statistical theory of strongly coupled many component plasmas is given. The theoretical development is shown to consist of six separate parts. Compensation between bound and scattering state contributions to the partition function and use of the shifted Debye energy levels are important aspects of the analysis. The results are valid when the electrons are moderately coupled to the heavy ions, i.e., ..lambda../sub e..cap alpha../* < 1, but no restriction is placed on the coupling between heavy ions. Another restriction is that lambda/lambda/sub D/ < 1, i.e., the thermal deBroglie wavelength is less than the Debye length. Numerical calculations of PV/N/sub 0/kT and C/sub V/ are given for a Rubidium plasma.
Babaei, Hassan; Mostafazadeh, Ali
2017-08-01
A first-quantized free photon is a complex massless vector field A =(Aμ ) whose field strength satisfies Maxwell's equations in vacuum. We construct the Hilbert space H of the photon by endowing the vector space of the fields A in the temporal-Coulomb gauge with a positive-definite and relativistically invariant inner product. We give an explicit expression for this inner product, identify the Hamiltonian for the photon with the generator of time translations in H , determine the operators representing the momentum and the helicity of the photon, and introduce a chirality operator whose eigenfunctions correspond to fields having a definite sign of energy. We also construct a position operator for the photon whose components commute with each other and with the chirality and helicity operators. This allows for the construction of the localized states of the photon with a definite sign of energy and helicity. We derive an explicit formula for the latter and compute the corresponding electric and magnetic fields. These turn out to diverge not just at the point where the photon is localized but on a plane containing this point. We identify the axis normal to this plane with an associated symmetry axis and show that each choice of this axis specifies a particular position operator, a corresponding position basis, and a position representation of the quantum mechanics of a photon. In particular, we examine the position wave functions determined by such a position basis, elucidate their relationship with the Riemann-Silberstein and Landau-Peierls wave functions, and give an explicit formula for the probability density of the spatial localization of the photon.
Avoiding Negative Probabilities in Quantum Mechanics
Nyambuya, Golden Gadzirayi
2013-01-01
As currently understood since its discovery, the bare Klein-Gordon theory consists of negative quantum probabilities which are considered to be physically meaningless if not outright obsolete. Despite this annoying setback, these negative probabilities are what led the great Paul Dirac in 1928 to the esoteric discovery of the Dirac Equation. The Dirac Equation led to one of the greatest advances in our understanding of the physical world. In this reading, we ask the seemingly senseless question, "Do negative probabilities exist in quantum mechanics?" In an effort to answer this question, we arrive at the conclusion that depending on the choice one makes of the quantum probability current, one will obtain negative probabilities. We thus propose a new quantum probability current of the Klein-Gordon theory. This quantum probability current leads directly to positive definite quantum probabilities. Because these negative probabilities are in the bare Klein-Gordon theory, intrinsically a result of negative energie...
Superconducting Qubits as Mechanical Quantum Engines
Sachtleben, Kewin; Mazon, Kahio T.; Rego, Luis G. C.
2017-09-01
We propose the equivalence of superconducting qubits with a pistonlike mechanical quantum engine. The work reports a study on the nature of the nonequilibrium work exchanged with the quantum-nonadiabatic working medium, which is modeled as a multilevel coupled quantum well system subject to an external control parameter. The quantum dynamics is solved for arbitrary control protocols. It is shown that the work output has two components: one that depends instantaneously on the level populations and another that is due to the quantum coherences built in the system. The nonadiabatic coherent dynamics of the quantum engine gives rise to a resistance (friction) force that decreases the work output. We consider the functional equivalence of such a device and a rf-SQUID flux qubit.
Progress in post-quantum mechanics
Sarfatti, Jack
2017-05-01
Newton's mechanics in the 17th century increased the lethality of artillery. Thermodynamics in the 19th led to the steam-powered industrial revolution. Maxwell's unification of electricity, magnetism and light gave us electrical power, the telegraph, radio and television. The discovery of quantum mechanics in the 20th century by Planck, Bohr, Einstein, Schrodinger, Heisenberg led to the creation of the atomic and hydrogen bombs as well as computer chips, the world-wide-web and Silicon Valley's multibillion dollar corporations. The lesson is that breakthroughs in fundamental physics, both theoretical and experimental, have always led to profound technological wealth-creating industries and will continue to do so. There is now a new revolution brewing in quantum mechanics that can be divided into three periods. The first quantum revolution was from 1900 to about 1975. The second quantum information/computer revolution was from about 1975 to 2015. (The early part of this story is told by Kaiser in his book, How the Hippies Saved Physics, how a small group of Berkeley/San Francisco physicists triggered that second revolution.) The third quantum revolution is how an extension of quantum mechanics may lead to the understanding of consciousness as a natural physical phenomenon that can emerge in many material substrates, not only in our carbon-based biochemistry. In particular, this new post-quantum mechanics may lead to naturally conscious artificial intelligence in nano-electronic machines, as well as perhaps extending human life spans to hundreds of years and more.
Quantum mechanics: Thought experiments made real
Martín, Fernando
2015-02-01
Elegant experiments performed with X-rays and a double slit formed from molecular oxygen have finally made it possible to realize and test a long-standing and famous gedanken experiment in quantum mechanics.
Supersymmetric q-deformed quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Traikia, M. H.; Mebarki, N. [Laboratoire de Physique Mathematique et Subatomique, Mentouri University, Constantine (Algeria)
2012-06-27
A supersymmetric q-deformed quantum mechanics is studied in the weak deformation approximation of the Weyl-Heisenberg algebra. The corresponding supersymmetric q-deformed hamiltonians and charges are constructed explicitly.
Beyond Quantum Mechanics and General Relativity
Gregori, Andrea
2010-01-01
In this note I present the main ideas of my proposal about the theoretical framework that could underlie, and therefore "unify", Quantum Mechanics and Relativity, and I briefly summarize the implications and predictions.
Four formulations of noncommutative quantum mechanics
Gouba, Laure
2016-01-01
Four formulations of noncommutative quantum mechanics are reviewed. These are the canonical, path-integral, Weyl-Wigner and systematic formulations. The four formulations are charaterized by a deformed Heisenberg algebra but differ in mathematical and conceptual overview.
Advanced quantum mechanics materials and photons
Dick, Rainer
2016-01-01
In this updated and expanded second edition of a well-received and invaluable textbook, Prof. Dick emphasizes the importance of advanced quantum mechanics for materials science and all experimental techniques which employ photon absorption, emission, or scattering. Important aspects of introductory quantum mechanics are covered in the first seven chapters to make the subject self-contained and accessible for a wide audience. Advanced Quantum Mechanics, Materials and Photons can therefore be used for advanced undergraduate courses and introductory graduate courses which are targeted towards students with diverse academic backgrounds from the Natural Sciences or Engineering. To enhance this inclusive aspect of making the subject as accessible as possible Appendices A and B also provide introductions to Lagrangian mechanics and the covariant formulation of electrodynamics. This second edition includes an additional 62 new problems as well as expanded sections on relativistic quantum fields and applications of�...
Quantum mechanical streamlines. I - Square potential barrier
Hirschfelder, J. O.; Christoph, A. C.; Palke, W. E.
1974-01-01
Exact numerical calculations are made for scattering of quantum mechanical particles hitting a square two-dimensional potential barrier (an exact analog of the Goos-Haenchen optical experiments). Quantum mechanical streamlines are plotted and found to be smooth and continuous, to have continuous first derivatives even through the classical forbidden region, and to form quantized vortices around each of the nodal points. A comparison is made between the present numerical calculations and the stationary wave approximation, and good agreement is found between both the Goos-Haenchen shifts and the reflection coefficients. The time-independent Schroedinger equation for real wavefunctions is reduced to solving a nonlinear first-order partial differential equation, leading to a generalization of the Prager-Hirschfelder perturbation scheme. Implications of the hydrodynamical formulation of quantum mechanics are discussed, and cases are cited where quantum and classical mechanical motions are identical.
Statistical mechanics of covariant systems with multi-fingered time
Chirco, Goffredo
2016-01-01
Recently, in [Class. Quantum Grav. 33 (2016) 045005], the authors proposed a new approach extending the framework of statistical mechanics to reparametrization-invariant systems with no additional gauges. In this work, the approach is generalized to systems defined by more than one Hamiltonian constraints (multi-fingered time). We show how well known features as the Ehrenfest- Tolman effect and the J\\"uttner distribution for the relativistic gas can be consistently recovered from a covariant approach in the multi-fingered framework. Eventually, the crucial role played by the interaction in the definition of a global notion of equilibrium is discussed.
Learning: Statistical Mechanisms in Language Acquisition
Wonnacott, Elizabeth
The grammatical structure of human languages is extremely complex, yet children master this complexity with apparent ease. One explanation is that we come to the task of acquisition equipped with knowledge about the possible grammatical structures of human languages—so-called "Universal Grammar". An alternative is that grammatical patterns are abstracted from the input via a process of identifying reoccurring patterns and using that information to form grammatical generalizations. This statistical learning hypothesis receives support from computational research, which has revealed that even low level statistics based on adjacent word co-occurrences yield grammatically relevant information. Moreover, even as adults, our knowledge and usage of grammatical patterns is often graded and probabilistic, and in ways which directly reflect the statistical makeup of the language we experience. The current chapter explores such evidence and concludes that statistical learning mechanisms play a critical role in acquisition, whilst acknowledging holes in our current knowledge, particularly with respect to the learning of `higher level' syntactic behaviours. Throughout, I emphasize that although a statistical approach is traditionally associated with a strongly empiricist position, specific accounts make specific claims about the nature of the learner, both in terms of learning mechanisms and the information that is primitive to the learning system. In particular, working models which construct grammatical generalizations often assume inbuilt semantic abstractions.
On the geometrization of quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Tavernelli, Ivano, E-mail: ita@zurich.ibm.com
2016-08-15
Nonrelativistic quantum mechanics is commonly formulated in terms of wavefunctions (probability amplitudes) obeying the static and the time-dependent Schrödinger equations (SE). Despite the success of this representation of the quantum world a wave–particle duality concept is required to reconcile the theory with observations (experimental measurements). A first solution to this dichotomy was introduced in the de Broglie–Bohm theory according to which a pilot-wave (solution of the SE) is guiding the evolution of particle trajectories. Here, I propose a geometrization of quantum mechanics that describes the time evolution of particles as geodesic lines in a curved space, whose curvature is induced by the quantum potential. This formulation allows therefore the incorporation of all quantum effects into the geometry of space–time, as it is the case for gravitation in the general relativity.
Macroscopic quantum mechanics in a classical spacetime.
Yang, Huan; Miao, Haixing; Lee, Da-Shin; Helou, Bassam; Chen, Yanbei
2013-04-26
We apply the many-particle Schrödinger-Newton equation, which describes the coevolution of a many-particle quantum wave function and a classical space-time geometry, to macroscopic mechanical objects. By averaging over motions of the objects' internal degrees of freedom, we obtain an effective Schrödinger-Newton equation for their centers of mass, which can be monitored and manipulated at quantum levels by state-of-the-art optomechanics experiments. For a single macroscopic object moving quantum mechanically within a harmonic potential well, its quantum uncertainty is found to evolve at a frequency different from its classical eigenfrequency-with a difference that depends on the internal structure of the object-and can be observable using current technology. For several objects, the Schrödinger-Newton equation predicts semiclassical motions just like Newtonian physics, yet quantum uncertainty cannot be transferred from one object to another.
Uncertainty in quantum mechanics: faith or fantasy?
Penrose, Roger
2011-12-13
The word 'uncertainty', in the context of quantum mechanics, usually evokes an impression of an essential unknowability of what might actually be going on at the quantum level of activity, as is made explicit in Heisenberg's uncertainty principle, and in the fact that the theory normally provides only probabilities for the results of quantum measurement. These issues limit our ultimate understanding of the behaviour of things, if we take quantum mechanics to represent an absolute truth. But they do not cause us to put that very 'truth' into question. This article addresses the issue of quantum 'uncertainty' from a different perspective, raising the question of whether this term might be applied to the theory itself, despite its unrefuted huge success over an enormously diverse range of observed phenomena. There are, indeed, seeming internal contradictions in the theory that lead us to infer that a total faith in it at all levels of scale leads us to almost fantastical implications.
Quench echo and work statistics in integrable quantum field theories.
Pálmai, T; Sotiriadis, S
2014-11-01
We propose a boundary thermodynamic Bethe ansatz calculation technique to obtain the Loschmidt echo and the statistics of the work done when a global quantum quench is performed on an integrable quantum field theory. We derive an analytic expression for the lowest edge of the probability density function and find that it exhibits universal features, in the sense that its scaling form depends only on the statistics of excitations. We perform numerical calculations on the sinh-Gordon model, a deformation of the free boson theory, and we obtain that by turning on the interaction the density function develops fermionic properties. The calculations are facilitated by a previously unnoticed property of the thermodynamic Bethe ansatz construction.
Full counting statistics of level renormalization in electron transport through double quantum dots.
Luo, JunYan; Jiao, HuJun; Shen, Yu; Cen, Gang; He, Xiao-Ling; Wang, Changrong
2011-04-13
We examine the full counting statistics of electron transport through double quantum dots coupled in series, with particular attention being paid to the unique features originating from level renormalization. It is clearly illustrated that the energy renormalization gives rise to a dynamic charge blockade mechanism, which eventually results in super-Poissonian noise. Coupling of the double dots to an external heat bath leads to dephasing and relaxation mechanisms, which are demonstrated to suppress the noise in a unique way.
Full counting statistics of level renormalization in electron transport through double quantum dots
Energy Technology Data Exchange (ETDEWEB)
Luo Junyan; Shen Yu; Cen Gang; He Xiaoling; Wang Changrong [School of Science, Zhejiang University of Science and Technology, Hangzhou 310023 (China); Jiao Hujun, E-mail: jyluo@zust.edu.cn [Department of Physics, Shanxi University, Taiyuan, Shanxi 030006 (China)
2011-04-13
We examine the full counting statistics of electron transport through double quantum dots coupled in series, with particular attention being paid to the unique features originating from level renormalization. It is clearly illustrated that the energy renormalization gives rise to a dynamic charge blockade mechanism, which eventually results in super-Poissonian noise. Coupling of the double dots to an external heat bath leads to dephasing and relaxation mechanisms, which are demonstrated to suppress the noise in a unique way.
Experimental status of quaternionic quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Brumby, S.P.; Joshi, G.C.
1995-10-01
Analysis of the logical foundations of quantum mechanics indicates the possibility of constructing a theory using quaternionic Hilbert spaces. Whether this mathematical structure reflects reality is a matter for experiment to decide. The only direct search for quaternionic quantum mechanics yet carried out is reviewed and is proposed to look for quaternionic effects in correlated multi-particle systems. It is also discussed how such experiments might distinguish between the several quaternionic models proposed in the literature. 21 refs.
Implications of conformal symmetry in quantum mechanics
Okazaki, Tadashi
2017-09-01
In conformal quantum mechanics with the vacuum of a real scaling dimension and with a complete orthonormal set of energy eigenstates, which is preferable under the unitary evolution, the dilatation expectation value between energy eigenstates monotonically decreases along the flow from the UV to the IR. In such conformal quantum mechanics, there exist bounds on scaling dimensions of the physical states and the gauge operators.
Some Mutant Forms of Quantum Mechanics
Takeuchi, Tatsu; Lewis, Zachary; Minic, Djordje
2013-01-01
We construct a `mutant' form of quantum mechanics on a vector space over the finite Galois field GF(q). We find that the correlations in our model do not violate the Clauser-Horne-Shimony-Holt (CHSH) version of Bell's inequality, despite the fact that the predictions of this discretized quantum mechanics cannot be reproduced with any hidden variable theory. An alternative `mutation' is also suggested.
Nonextensive statistical mechanics of ionic solutions
Energy Technology Data Exchange (ETDEWEB)
Varela, L.M. [Grupo de Nanomateriales y Materia Blanda, Departamento de Fisica de la Materia Condensada, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela (Spain)], E-mail: fmluis@usc.es; Carrete, J. [Grupo de Nanomateriales y Materia Blanda, Departamento de Fisica de la Materia Condensada, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Munoz-Sola, R. [Departamento de Matematica Aplicada, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Rodriguez, J.R.; Gallego, J. [Grupo de Nanomateriales y Materia Blanda, Departamento de Fisica de la Materia Condensada, Universidad de Santiago de Compostela, E-15782 Santiago de Compostela (Spain)
2007-10-29
Classical mean-field Poisson-Boltzmann theory of ionic solutions is revisited in the theoretical framework of nonextensive Tsallis statistics. The nonextensive equivalent of Poisson-Boltzmann equation is formulated revisiting the statistical mechanics of liquids and the Debye-Hueckel framework is shown to be valid for highly diluted solutions even under circumstances where nonextensive thermostatistics must be applied. The lowest order corrections associated to nonadditive effects are identified for both symmetric and asymmetric electrolytes and the behavior of the average electrostatic potential in a homogeneous system is analytically and numerically analyzed for various values of the complexity measurement nonextensive parameter q.
Bayesian approach to inverse statistical mechanics.
Habeck, Michael
2014-05-01
Inverse statistical mechanics aims to determine particle interactions from ensemble properties. This article looks at this inverse problem from a Bayesian perspective and discusses several statistical estimators to solve it. In addition, a sequential Monte Carlo algorithm is proposed that draws the interaction parameters from their posterior probability distribution. The posterior probability involves an intractable partition function that is estimated along with the interactions. The method is illustrated for inverse problems of varying complexity, including the estimation of a temperature, the inverse Ising problem, maximum entropy fitting, and the reconstruction of molecular interaction potentials.
An introduction to statistical mechanics and thermodynamics
Swendsen, Robert H
2012-01-01
This text presents the two complementary aspects of thermal physics as an integrated theory of the properties of matter. Conceptual understanding is promoted by thorough development of basic concepts. In contrast to many texts, statistical mechanics, including discussion of the required probability theory, is presented first. This provides a statistical foundation for the concept of entropy, which is central to thermal physics. A unique feature of the book is the development ofentropy based on Boltzmann's 1877 definition; this avoids contradictions or ad hoc corrections found in other texts. D
Lifetime statistics of quantum chaos studied by a multiscale analysis
Di Falco, A.
2012-04-30
In a series of pump and probe experiments, we study the lifetime statistics of a quantum chaotic resonator when the number of open channels is greater than one. Our design embeds a stadium billiard into a two dimensional photonic crystal realized on a silicon-on-insulator substrate. We calculate resonances through a multiscale procedure that combines energy landscape analysis and wavelet transforms. Experimental data is found to follow the universal predictions arising from random matrix theory with an excellent level of agreement.
Antonio Gramsci's Reflection on Quantum Mechanics
Tassani, Isabella
2006-06-01
As the first step of a wider historical reconstruction of the reception of quantum mechanics in the nineteenth-century philosophy, we are going to consider Antonio Gramsci's philosophy. He asks himself about the nature of quantum objects, if their existence depends on the act of measuring by the experimenter and if this kind of relationship can be interpreted as an argument in favour of an immaterialistic philosophy. We will remark how an idealistic interpretation of quantum mechanics found a fertile field in the Italian culture, characterized by an antiscientific attitude and at the same time needing to find in science a term of comparison.
Horizon quantum mechanics of rotating black holes
Energy Technology Data Exchange (ETDEWEB)
Casadio, Roberto [Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); I.N.F.N., Sezione di Bologna, I.S. FLAG, Bologna (Italy); Giugno, Andrea [Ludwig-Maximilians-Universitaet, Arnold Sommerfeld Center, Munich (Germany); Giusti, Andrea [Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); I.N.F.N., Sezione di Bologna, I.S. FLAG, Bologna (Italy); Ludwig-Maximilians-Universitaet, Arnold Sommerfeld Center, Munich (Germany); Micu, Octavian [Institute of Space Science, Bucharest, P.O. Box MG-23, Bucharest-Magurele (Romania)
2017-05-15
The horizon quantum mechanics is an approach that was previously introduced in order to analyze the gravitational radius of spherically symmetric systems and compute the probability that a given quantum state is a black hole. In this work, we first extend the formalism to general space-times with asymptotic (ADM) mass and angular momentum. We then apply the extended horizon quantum mechanics to a harmonic model of rotating corpuscular black holes. We find that simple configurations of this model naturally suppress the appearance of the inner horizon and seem to disfavor extremal (macroscopic) geometries. (orig.)
Quantum mechanics of charged particle beam optics
Khan, Sameen Ahmed
2018-01-01
Theory of charged particle beam optics is basic to the design and working of charged particle beam devices from electron microscopes to accelerator machines. Traditionally, the optical elements of the devices are designed and operated based on classical mechanics and classical electromagnetism, and only certain specific quantum mechanical aspects are dealt with separately using quantum theory. This book provides a systematic approach to quantum theory of charged particle beam optics, particularly in the high energy cases such as accelerators or high energy electron microscopy.
Becchi, Carlo Maria
2016-01-01
This is the third edition of a well-received textbook on modern physics theory. This book provides an elementary but rigorous and self-contained presentation of the simplest theoretical framework that will meet the needs of undergraduate students. In addition, a number of examples of relevant applications and an appropriate list of solved problems are provided.Apart from a substantial extension of the proposed problems, the new edition provides more detailed discussion on Lorentz transformations and their group properties, a deeper treatment of quantum mechanics in a central potential, and a closer comparison of statistical mechanics in classical and in quantum physics. The first part of the book is devoted to special relativity, with a particular focus on space-time relativity and relativistic kinematics. The second part deals with Schrödinger's formulation of quantum mechanics. The presentation concerns mainly one-dimensional problems, but some three-dimensional examples are discussed in detail. The third...
Book Review Bohmian Mechanics and Quantum Theory
Jäger, G
1999-01-01
A review of "Bohmian Mechanics and Quantum Theory: An Appraisal" (James Cushing, Arthur Fine and Sheldon Goldstein, Eds.), an extensive collection of articles on Bohmian mechanics. In addition to broad, critical overviews of Bohmian mechanics, the reviewed collection contains extensions and hybrid versions of the theory, as are several detailed applications to practical situtations.
Quantum statistical gravity: time dilation due to local information in many-body quantum systems
Sels, Dries; Wouters, Michiel
2017-08-01
We propose a generic mechanism for the emergence of a gravitational potential that acts on all classical objects in a quantum system. Our conjecture is based on the analysis of mutual information in many-body quantum systems. Since measurements in quantum systems affect the surroundings through entanglement, a measurement at one position reduces the entropy in its neighbourhood. This reduction in entropy can be described by a local temperature, that is directly related to the gravitational potential. A crucial ingredient in our argument is that ideal classical mechanical motion occurs at constant probability. This definition is motivated by the analysis of entropic forces in classical systems.
Lecture Notes in Quantum Mechanics
Cohen, D
2006-01-01
These lecture notes cover undergraduate textbook topics (e.g. as in Sakurai), and also additional advanced topics at the same level of presentation. In particular: EPR and Bell; Basic postulates; The probability matrix; Measurement theory; Entanglement; Quantum computation; Wigner-Weyl formalism; The adiabatic picture; Berry phase; Linear response theory; Kubo formula; Modern approach to scattering theory with mesoscopic orientation; Theory of the resolvent and the Green function; Gauge and Galilei Symmetries; Motion in magnetic field; Quantum Hall effect; Quantization of the electromagnetic field; Fock space formalism.
A new interpretation of quantum mechanics
Golovko, V A
2016-01-01
The present paper is based upon equations obtained in an earlier paper by the author devoted to a new formulation of quantum electrodynamics. The equations describe the structure of the electron as well as its motion in external fields, interaction with a measuring apparatus inclusive, in a deterministic manner without any jumps. Quantum mechanics is an approximate theory because its equations follow from the above equations upon neglecting the self-field of the electron itself. Just this leads to paradoxes, seeming contradictions and jumps in quantum mechanics. The quantum mechanical wavefunction has a dual interpretation. In some problems the square of its modulus represents a real distribution of the electronic density while in others the same square determines the probability distribution of coordinates. It is shown why, given the different interpretations of the wavefunction, it satisfies one and the same Dirac or Schr\\"odinger equation. Description of many-electron systems is also considered in the star...
Equilibrium statistical mechanics of lattice models
Lavis, David A
2015-01-01
Most interesting and difficult problems in equilibrium statistical mechanics concern models which exhibit phase transitions. For graduate students and more experienced researchers this book provides an invaluable reference source of approximate and exact solutions for a comprehensive range of such models. Part I contains background material on classical thermodynamics and statistical mechanics, together with a classification and survey of lattice models. The geometry of phase transitions is described and scaling theory is used to introduce critical exponents and scaling laws. An introduction is given to finite-size scaling, conformal invariance and Schramm—Loewner evolution. Part II contains accounts of classical mean-field methods. The parallels between Landau expansions and catastrophe theory are discussed and Ginzburg—Landau theory is introduced. The extension of mean-field theory to higher-orders is explored using the Kikuchi—Hijmans—De Boer hierarchy of approximations. In Part III the use of alge...
Nonextensive statistical mechanics and high energy physics
Directory of Open Access Journals (Sweden)
Tsallis Constantino
2014-04-01
Full Text Available The use of the celebrated Boltzmann-Gibbs entropy and statistical mechanics is justified for ergodic-like systems. In contrast, complex systems typically require more powerful theories. We will provide a brief introduction to nonadditive entropies (characterized by indices like q, which, in the q → 1 limit, recovers the standard Boltzmann-Gibbs entropy and associated nonextensive statistical mechanics. We then present somerecent applications to systems such as high-energy collisions, black holes and others. In addition to that, we clarify and illustrate the neat distinction that exists between Lévy distributions and q-exponential ones, a point which occasionally causes some confusion in the literature, very particularly in the LHC literature
Statistical mechanics and the physics of fluids
Tosi, Mario
This volume collects the lecture notes of a course on statistical mechanics, held at Scuola Normale Superiore di Pisa for third-to-fifth year students in physics and chemistry. Three main themes are covered in the book. The first part gives a compact presentation of the foundations of statistical mechanics and their connections with thermodynamics. Applications to ideal gases of material particles and of excitation quanta are followed by a brief introduction to a real classical gas and to a weakly coupled classical plasma, and by a broad overview on the three states of matter.The second part is devoted to fluctuations around equilibrium and their correlations. Coverage of liquid structure and critical phenomena is followed by a discussion of irreversible processes as exemplified by diffusive motions and by the dynamics of density and heat fluctuations. Finally, the third part is an introduction to some advanced themes: supercooling and the glassy state, non-Newtonian fluids including polymers and liquid cryst...
Understanding Statistical Mechanics and Biophysics Using Excel
Nelson, Peter
2009-03-01
A new approach to teaching statistical mechanics and biophysics is presented using the classic two-box system from statistical mechanics as an example. This approach makes advanced physics concepts accessible to a broad audience including undergraduates with no calculus background. Students develop a simple Excel spreadsheet that implements a kinetic Monte Carlo (kMC) simulation algorithm ``from scratch''. The students discover for themselves the properties of the system by analyzing the simulation output in a directed, activity-based exercise. By changing the number and initial distribution of the particles, students see how the system approaches equilibrium and how system variability changes with system size. A finite difference solution is also implemented in Excel, and students compare its predictions with the kMC results. This approach is quite different from using ``canned'' computer demonstrations, as students design, implement and debug the simulation themselves -- ensuring that they understand the model system intimately.
Statistical Mechanics of Soft Margin Classifiers
Risau-Gusman, Sebastian; Gordon, Mirta B.
2001-01-01
We study the typical learning properties of the recently introduced Soft Margin Classifiers (SMCs), learning realizable and unrealizable tasks, with the tools of Statistical Mechanics. We derive analytically the behaviour of the learning curves in the regime of very large training sets. We obtain exponential and power laws for the decay of the generalization error towards the asymptotic value, depending on the task and on general characteristics of the distribution of stabilities of the patte...
Dynamical Ensembles in Nonequilibrium Statistical Mechanics
Energy Technology Data Exchange (ETDEWEB)
Gallavotti, G.; Cohen, E.G.D. [Dipartimento di Fisica, Universita di Roma, La Sapienza, 00185 Roma (Italy)]|[The Rockefeller University, New York, New York 10021 (United States)
1995-04-03
Ruelle`s principle for turbulence leading to what is usually called the Sinai-Ruelle-Bowen (SRB) distribution is applied to the statistical mechanics of many particle systems in nonequilibrium stationary states. A specific prediction, obtained without the need to construct explicitly the SRB itself, is shown to be in agreement with a recent computer experiment on a strongly sheared fluid. This presents the first test of the principle on a many particle system far from equilibrium. A possible application to fluid mechanics is also discussed.
Yeh, Leehwa
1993-01-01
The phase-space-picture approach to quantum non-equilibrium statistical mechanics via the characteristic function of infinite-mode squeezed coherent states is introduced. We use quantum Brownian motion as an example to show how this approach provides an interesting geometrical interpretation of quantum non-equilibrium phenomena.
Statistical mechanics of ontology based annotations
Hoyle, David C
2016-01-01
We present a statistical mechanical theory of the process of annotating an object with terms selected from an ontology. The term selection process is formulated as an ideal lattice gas model, but in a highly structured inhomogeneous field. The model enables us to explain patterns recently observed in real-world annotation data sets, in terms of the underlying graph structure of the ontology. By relating the external field strengths to the information content of each node in the ontology graph, the statistical mechanical model also allows us to propose a number of practical metrics for assessing the quality of both the ontology, and the annotations that arise from its use. Using the statistical mechanical formalism we also study an ensemble of ontologies of differing size and complexity; an analysis not readily performed using real data alone. Focusing on regular tree ontology graphs we uncover a rich set of scaling laws describing the growth in the optimal ontology size as the number of objects being annotate...
Entanglement, thermalisation and stationarity The computational foundations of quantum mechanics
Guruprasad, V
2000-01-01
'Tis said, to know others is to be learned, to know oneself, wise - I demonstrate that it could be more fundamental than knowing the rest of nature, by applying classical computational principles and engineering hindsight to derive and explain quantum entanglement, state space formalism and the statistical nature of quantum mechanics. I show that an entangled photon pair is literally no more than a 1-bit hologram, that the quantum state formalism is completely derivable from general considerations of representation of physical information, and that both the probabilistic aspects of quantum theory and the constancy of h are exactly predicted by the thermodynamics of representation, without precluding a fundamental, relative difference in spatial scale between non-colocated observers, leading to logical foundations of relativity and cosmology that show the current thinking in that field to be simplistic and erroneous.
Oss, Stefano; Rosi, Tommaso
2015-01-01
We have developed an app for iOS-based smart-phones/tablets that allows a 3-D, complex phase-based colorful visualization of hydrogen atom wave functions. Several important features of the quantum behavior of atomic orbitals can easily be made evident, thus making this app a useful companion in introductory modern physics classes. There are many…
How to teach quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Passon, Oliver [Fachbereich Physik, University of Wuppertal, Postfach 100127, 42097 Wuppertal (Germany)
2004-11-01
In the spirit and style of John S Bell's well-known paper on How to teach special relativity it is argued that a 'Bohmian pedagogy' provides a very useful tool to illustrate the relation between classical and quantum physics and illuminates the peculiar features of the latter.
Oss, Stefano; Rosi, Tommaso
2015-01-01
We have developed an app for iOS-based smart-phones/tablets that allows a 3-D, complex phase-based colorful visualization of hydrogen atom wave functions. Several important features of the quantum behavior of atomic orbitals can easily be made evident, thus making this app a useful companion in introductory modern physics classes. There are many…
Design and validation of the Quantum Mechanics Conceptual Survey
Directory of Open Access Journals (Sweden)
S. B. McKagan
2010-11-01
Full Text Available The Quantum Mechanics Conceptual Survey (QMCS is a 12-question survey of students’ conceptual understanding of quantum mechanics. It is intended to be used to measure the relative effectiveness of different instructional methods in modern physics courses. In this paper, we describe the design and validation of the survey, a process that included observations of students, a review of previous literature and textbooks and syllabi, faculty and student interviews, and statistical analysis. We also discuss issues in the development of specific questions, which may be useful both for instructors who wish to use the QMCS in their classes and for researchers who wish to conduct further research of student understanding of quantum mechanics. The QMCS has been most thoroughly tested in, and is most appropriate for assessment of (as a posttest only, sophomore-level modern physics courses. We also describe testing with students in junior quantum courses and graduate quantum courses, from which we conclude that the QMCS may be appropriate for assessing junior quantum courses, but is not appropriate for assessing graduate courses. One surprising result of our faculty interviews is a lack of faculty consensus on what topics should be taught in modern physics, which has made designing a test that is valued by a majority of physics faculty more difficult than expected.
Design and validation of the Quantum Mechanics Conceptual Survey
Directory of Open Access Journals (Sweden)
C. E. Wieman
2010-11-01
Full Text Available The Quantum Mechanics Conceptual Survey (QMCS is a 12-question survey of students’ conceptual understanding of quantum mechanics. It is intended to be used to measure the relative effectiveness of different instructional methods in modern physics courses. In this paper, we describe the design and validation of the survey, a process that included observations of students, a review of previous literature and textbooks and syllabi, faculty and student interviews, and statistical analysis. We also discuss issues in the development of specific questions, which may be useful both for instructors who wish to use the QMCS in their classes and for researchers who wish to conduct further research of student understanding of quantum mechanics. The QMCS has been most thoroughly tested in, and is most appropriate for assessment of (as a posttest only, sophomore-level modern physics courses. We also describe testing with students in junior quantum courses and graduate quantum courses, from which we conclude that the QMCS may be appropriate for assessing junior quantum courses, but is not appropriate for assessing graduate courses. One surprising result of our faculty interviews is a lack of faculty consensus on what topics should be taught in modern physics, which has made designing a test that is valued by a majority of physics faculty more difficult than expected.
Nonrelativistic Quantum Mechanics with Fundamental Environment
Gevorkyan, Ashot S.
2011-03-01
Spontaneous transitions between bound states of an atomic system, "Lamb Shift" of energy levels and many other phenomena in real nonrelativistic quantum systems are connected within the influence of the quantum vacuum fluctuations ( fundamental environment (FE)) which are impossible to consider in the limits of standard quantum-mechanical approaches. The joint system "quantum system (QS) + FE" is described in the framework of the stochastic differential equation (SDE) of Langevin-Schrödinger (L-Sch) type, and is defined on the extended space R 3 ⊗ R { ξ}, where R 3 and R { ξ} are the Euclidean and functional spaces, respectively. The density matrix for single QS in FE is defined. The entropy of QS entangled with FE is defined and investigated in detail. It is proved that as a result of interaction of QS with environment there arise structures of various topologies which are a new quantum property of the system.
Quantum Mechanical Nature in Liquid NMR Quantum Computing
Institute of Scientific and Technical Information of China (English)
LONGGui－Lu; YANHai－Yang; 等
2002-01-01
The quantum nature of bulk ensemble NMR quantum computing-the center of recent heated debate,is addressed.Concepts of the mixed state and entanglement are examined,and the data in a two-qubit liquid NMR quantum computation are analyzed.the main points in this paper are;i) Density matrix describes the "state" of an average particle in an ensemble.It does not describe the state of an individual particle in an ensemble;ii) Entanglement is a property of the wave function of a microscopic particle(such as a molecule in a liquid NMR sample),and separability of the density matrix canot be used to measure the entanglement of mixed ensemble;iii) The state evolution in bulkensemble NMR quantum computation is quantum-mechanical;iv) The coefficient before the effective pure state density matrix,ε,is a measure of the simultaneity of the molecules in an ensemble,It reflets the intensity of the NMR signal and has no significance in quantifying the entanglement in the bulk ensemble NMR system.The decomposition of the density matrix into product states is only an indication that the ensemble can be prepared by an ensemble with the particles unentangeld.We conclude that effective-pure-state NMR quantum computation is genuine,not just classical simulations.
Errors in quantum tomography: diagnosing systematic versus statistical errors
Langford, Nathan K.
2013-03-01
A prime goal of quantum tomography is to provide quantitatively rigorous characterization of quantum systems, be they states, processes or measurements, particularly for the purposes of trouble-shooting and benchmarking experiments in quantum information science. A range of techniques exist to enable the calculation of errors, such as Monte-Carlo simulations, but their quantitative value is arguably fundamentally flawed without an equally rigorous way of authenticating the quality of a reconstruction to ensure it provides a reasonable representation of the data, given the known noise sources. A key motivation for developing such a tool is to enable experimentalists to rigorously diagnose the presence of technical noise in their tomographic data. In this work, I explore the performance of the chi-squared goodness-of-fit test statistic as a measure of reconstruction quality. I show that its behaviour deviates noticeably from expectations for states lying near the boundaries of physical state space, severely undermining its usefulness as a quantitative tool precisely in the region which is of most interest in quantum information processing tasks. I suggest a simple, heuristic approach to compensate for these effects and present numerical simulations showing that this approach provides substantially improved performance.
Measurements and mathematical formalism of quantum mechanics
Slavnov, D. A.
2007-03-01
A scheme for constructing quantum mechanics is given that does not have Hilbert space and linear operators as its basic elements. Instead, a version of algebraic approach is considered. Elements of a noncommutative algebra (observables) and functionals on this algebra (elementary states) associated with results of single measurements are used as primary components of the scheme. On the one hand, it is possible to use within the scheme the formalism of the standard (Kolmogorov) probability theory, and, on the other hand, it is possible to reproduce the mathematical formalism of standard quantum mechanics, and to study the limits of its applicability. A short outline is given of the necessary material from the theory of algebras and probability theory. It is described how the mathematical scheme of the paper agrees with the theory of quantum measurements, and avoids quantum paradoxes.
Nilpotent Quantum Mechanics: Analogs and Applications
Directory of Open Access Journals (Sweden)
Peter Marcer
2017-07-01
Full Text Available The most significant characteristic of nilpotent quantum mechanics is that the quantum system (fermion state and its environment (vacuum are, in mathematical terms, mirror images of each other. So a change in one automatically leads to corresponding changes in the other. We have used this characteristic as a model for self-organization, which has applications well beyond quantum physics. The nilpotent structure has also been identified as being constructed from two commutative vector spaces. This zero square-root construction has a number of identifiable characteristics which we can expect to find in systems where self-organization is dominant, and a case presented after the publication of a paper by us on “The ‘Logic’ of Self-Organizing Systems” [1], in the organization of the neurons in the visual cortex. We expect to find many more complex systems where our general principles, based, by analogy, on nilpotent quantum mechanics, will apply.
On Time. 6b: Quantum Mechanical Time
Raju, C K
2008-01-01
The existence of small amounts of advanced radiation, or a tilt in the arrow of time, makes the basic equations of physics mixed-type functional differential equations. The novel features of such equations point to a microphysical structure of time. This corresponds to a change of logic at the microphysical level. We show that the resulting logic is a quantum logic. This provides a natural and rigorous explanation of quantum interference. This structured-time interpretation of quantum mechanics is briefly compared with various other interpretations of q.m.
Computations in quantum mechanics made easy
Korsch, H. J.; Rapedius, K.
2016-09-01
Convenient and simple numerical techniques for performing quantum computations based on matrix representations of Hilbert space operators are presented and illustrated by various examples. The applications include the calculations of spectral and dynamical properties for one-dimensional and two-dimensional single-particle systems as well as bosonic many-particle and open quantum systems. Due to their technical simplicity these methods are well suited as a tool for teaching quantum mechanics to undergraduates and graduates. Explicit implementations of the presented numerical methods in Matlab are given.
The canonical connection in quantum mechanics
Lévai, Peter; Tsutsui, I; Levay, Peter; McMullan, David; Tsutsui, Izumi
1995-01-01
In this paper we investigate the form of induced gauge fields that arises in two types of quantum systems. In the first we consider quantum mechanics on coset spaces G/H, and argue that G-invariance is central to the emergence of the H-connection as induced gauge fields in the different quantum sectors. We then demonstrate why the same connection, now giving rise to the non-abelian generalization of Berry's phase, can also be found in systems which have slow variables taking values in such a coset space.
The canonical connection in quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Levay, P. [Budapesti Mueszaki Egyetem, Budapest (Hungary); Mcmullan, D.; Tsutsui, Izumi
1995-04-01
In this paper we investigate the form of induced gauge fields that arises in two types of quantum systems. In the first we consider quantum mechanics on coset spaces G/H, and argue that G-invariance is central to the emergence of the H-connection as induced gauge fields in the different quantum sectors. We then demonstrate why the same connection, now giving rise to the non-abelian generalization of Berry`s phase, can also be found in systems which have slow variables taking values in such a coset space. (author).
Why Quantum Mechanics is Hard to Understand
Bilodeau, D
1998-01-01
To understand the foundations of quantum mechanics, we have to think carefully about how theoretical concepts are rooted in -- and limited by -- the nature of experience, as Bohr attempted to show. Geometrical pictures of physical phenomena are favored because of their clarity. Quantum phenomena, however, do not permit them. Instead, the historical and dynamical aspects of description diverge and must be expressed in different but complementary languages. Objective historical facts are recorded in terms of objects, which necessarily have an imprecise, empirical quality. Dynamics is based on quantitative abstraction from recurring patterns. The "quantum of action" is the discontinuity between these two ways of looking at the physical world.
Fourier's Law in Quantum Mechanics
Seligman, Thomas H
2010-01-01
We derive Fourier's law for a completely coherent quantum system coupled locally to two heat baths at different temperatures. We solve the master equation to first order in the temperature difference. We show that the heat conductance can be expressed as a thermodynamic equilibrium coefficient taken at some intermediate temperature. We use that expression to show that for temperatures large compared to the mean level spacing of the system, the heat conductance is inversely proportional to the length of the system.
Advanced quantum mechanics materials and photons
Dick, Rainer
2012-01-01
Advanced Quantum Mechanics: Materials and Photons is a textbook which emphasizes the importance of advanced quantum mechanics for materials science and all experimental techniques which employ photon absorption, emission, or scattering. Important aspects of introductory quantum mechanics are covered in the first seven chapters to make the subject self-contained and accessible for a wide audience. The textbook can therefore be used for advanced undergraduate courses and introductory graduate courses which are targeted towards students with diverse academic backgrounds from the Natural Sciences or Engineering. To enhance this inclusive aspect of making the subject as accessible as possible, Appendices A and B also provide introductions to Lagrangian mechanics and the covariant formulation of electrodynamics. Other special features include an introduction to Lagrangian field theory and an integrated discussion of transition amplitudes with discrete or continuous initial or final states. Once students have acquir...