Quantum size effects in InP inner film fiber
Institute of Scientific and Technical Information of China (English)
WANG Ting-yun; WANG Ke-xin; LU Jun
2005-01-01
Based on the semiconductor amplifiing properties and the structure of optical fiber wave guide an InP inner fiber is developed.The InP inner film fiber can be employed as a small size,broadband,and ultra-short fiber amplifier.The quantum size effects of the fiber are emphatically investigated in the work.Using the experimental data,we compare the effective mass approximation (EMA) with effective parameterization within the tight binding (EPTB) models for the accurate description of the quantum size effects in InP.The results show that the EPTB model provides an excellent description of band gap variation over a wide range of sizes.The Bohr diameter and the effective Rydberg energy of InP are calculated.Finally,the amplifiing properties of the InP inner film fiber are discussed due to the quantum size effects.
Quantum size effects in spherical semiconductor microcrystals
Nair, Selvakumar V.; Sinha, Sucharita; Rustagi, K. C.
1987-03-01
The size dependence of the lowest electron-hole state in semiconductor microcrystals is calculated using the variational principle with a three-parameter Hylleraas-type wave function. For very small particles the Coulomb interaction may be treated as a perturbation. For larger particles the size dependence of the energy is much sharper than that expected in previous work.
Electric field engineering using quantum-size-effect-tuned heterojunctions
Adinolfi, V.
2013-07-03
A quantum junction solar cell architecture was recently reported that employs colloidal quantum dots (CQDs) on each side of the p-n junction. This architecture extends the range of design opportunities for CQD photovoltaics, since the bandgap can be tuned across the light-absorbing semiconductor layer via control over CQD size, employing solution-processed, room-temperature fabricated materials. We exploit this feature by designing and demonstrating a field-enhanced heterojunction architecture. We optimize the electric field profile within the solar cell through bandgap engineering, thereby improving carrier collection and achieving an increased open circuit voltage, resulting in a 12% improvement in power conversion efficiency.
Electric field engineering using quantum-size-effect-tuned heterojunctions
Adinolfi, V.; Ning, Z.; Xu, J.; Masala, S.; Zhitomirsky, D.; Thon, S. M.; Sargent, E. H.
2013-07-01
A quantum junction solar cell architecture was recently reported that employs colloidal quantum dots (CQDs) on each side of the p-n junction. This architecture extends the range of design opportunities for CQD photovoltaics, since the bandgap can be tuned across the light-absorbing semiconductor layer via control over CQD size, employing solution-processed, room-temperature fabricated materials. We exploit this feature by designing and demonstrating a field-enhanced heterojunction architecture. We optimize the electric field profile within the solar cell through bandgap engineering, thereby improving carrier collection and achieving an increased open circuit voltage, resulting in a 12% improvement in power conversion efficiency.
QUANTUM SIZE EFFECTS IN THE ATTRACTIVE HUBBARD-MODEL
BORMANN, D; SCHNEIDER, T; FRICK, M
1992-01-01
We investigate superconducting pair correlations in the attractive Hubbard model on a finite square lattice. Our aim is to understand the pronounced size dependence which they display in the weak and intermediate coupling regimes. These size effects originate from the electronic shell structure of f
Quantum Size Effects on Two Electrons and Two Holes in Double-Layer Quantum Dots
Institute of Scientific and Technical Information of China (English)
XIE Wen-Fang; ZHU Wu
2002-01-01
We propose a procedure to solve exactly the Schrodinger equation for a system of two electrons and two holes in a double-layer quantum dot by using the method of few-body physics. The features of the low-lying spectra have been deduced based on symmetry. The binding energies of the ground state are obtained as a function of the electron-to-hole mass ratio σ for a few values of the quantum dot size.
Size effects in the quantum yield of Cd Te quantum dots for optimum fluorescence bioimaging
Energy Technology Data Exchange (ETDEWEB)
Jacinto, C.; Rocha, U.S. [Universidade Federal de Alagoas (UFAL), Maceio, AL (Brazil). Inst. de Fisica. Grupo de Fotonica e Fluidos Complexos; Maestro, L.M.; Garcia-Sole, J.; Jaque, D. [Universidad Autonoma de Madrid (Spain). Dept. de Fisica de Materiales. Fluorescence Imaging Group
2011-07-01
Full text: Semiconductor nano-crystals, usually referred as Quantum Dots (QDs) are nowadays regarded as one of the building-blocks in modern photonics. They constitute bright and photostable fluorescence sources whose emission and absorption properties can be adequately tailored through their size. Recent advances on the controlled modification of their surface has made possible the development of water soluble QDs, without causing any deterioration in their fluorescence properties. This has made them excellent optical selective markers to be used in fluorescence bio-imaging experiments. The suitability of colloidal QDs for bio-imaging is pushed forward by their large two-photon absorption cross section so that their visible luminescence (associated to the recombination of electro-hole pairs) can be also efficiently excited under infrared excitation (two-photon excitation). This, in turns, allows for large penetration depths in tissues, minimization of auto-fluorescence and achievement of superior spatial imaging resolution. In addition, recent works have demonstrated the ability of QDs to act as nano-thermometers based on the thermal sensitivity of their fluorescence bands. Based on all these outstanding properties, QDs have been successfully used to mark individual receptors in cell membranes, to intracellular temperature measurements and to label living embryos at different stages. Most of the QD based bio-images reported up to now were obtained by using whether CdSe or CdTe QDs since both are currently commercial available with a high degree of quality. They show similar fluorescence properties and optical performance when used in bio-imaging. Nevertheless, CdTe-QDs have very recently attracted much attention since the hyper-thermal sensitivity of their fluorescence bands was discovered. Based on this, it has been postulated that intracellular thermal sensing with resolutions as large as 0.25 deg C can be achieved based on CdTe-QDs, three times better than
Theory of Finite Size Effects for Electronic Quantum Monte Carlo Calculations of Liquids and Solids
Holzmann, Markus; Morales, Miguel A; Tubmann, Norm M; Ceperley, David M; Pierleoni, Carlo
2016-01-01
Concentrating on zero temperature Quantum Monte Carlo calculations of electronic systems, we give a general description of the theory of finite size extrapolations of energies to the thermodynamic limit based on one and two-body correlation functions. We introduce new effective procedures, such as using the potential and wavefunction split-up into long and short range functions to simplify the method and we discuss how to treat backflow wavefunctions. Then we explicitly test the accuracy of our method to correct finite size errors on example hydrogen and helium many-body systems and show that the finite size bias can be drastically reduced for even small systems.
Energy Technology Data Exchange (ETDEWEB)
Anas, M. M.; Othman, A. P.; Gopir, G. [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor (Malaysia)
2014-09-03
Density functional theory (DFT), as a first-principle approach has successfully been implemented to study nanoscale material. Here, DFT by numerical basis-set was used to study the quantum confinement effect as well as electronic properties of silicon quantum dots (Si-QDs) in ground state condition. Selection of quantum dot models were studied intensively before choosing the right structure for simulation. Next, the computational result were used to examine and deduce the electronic properties and its density of state (DOS) for 14 spherical Si-QDs ranging in size up to ∼ 2 nm in diameter. The energy gap was also deduced from the HOMO-LUMO results. The atomistic model of each silicon QDs was constructed by repeating its crystal unit cell of face-centered cubic (FCC) structure, and reconstructed until the spherical shape obtained. The core structure shows tetrahedral (T{sub d}) symmetry structure. It was found that the model need to be passivated, and hence it was noticed that the confinement effect was more pronounced. The model was optimized using Quasi-Newton method for each size of Si-QDs to get relaxed structure before it was simulated. In this model the exchange-correlation potential (V{sub xc}) of the electrons was treated by Local Density Approximation (LDA) functional and Perdew-Zunger (PZ) functional.
The size effect of the quantum coherence in the transverse-field XY chain
Energy Technology Data Exchange (ETDEWEB)
Wang, Lu; Yang, Cui-hong; Wang, Jun-feng [Department of Physics, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Lei, Shu-guo, E-mail: sglei@njtech.edu.cn [College of Science, Nanjing Tech University, Nanjing, 211816 (China)
2016-12-15
Based on the Wigner–Yanase skew information, the size effect of the quantum coherence in the ground state of the finite transverse-field spin-1/2 XY chain is explored. It is found that the first-order derivatives of the single-spin coherence and the two-spin local coherence both have scaling behaviors in the vicinity of the critical point. A simplified version of coherence is also studied and the same characteristics with its counterpart are found.
Size and refinement edge-shape effects of graphene quantum dots on UV–visible absorption
Energy Technology Data Exchange (ETDEWEB)
Zhang, Ruiqiang; Qi, Shifei; Jia, Jianfeng [School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004 (China); Key Laboratory of Magnetic Molecules and Magnetic Information Materials, Ministry of Education, Linfen 041004 (China); Torre, Bryna [Department of Physics, University at Buffalo, The State University of New York, Buffalo, NY 14260 (United States); Zeng, Hao [School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004 (China); Department of Physics, University at Buffalo, The State University of New York, Buffalo, NY 14260 (United States); Wu, Haishun [School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004 (China); Key Laboratory of Magnetic Molecules and Magnetic Information Materials, Ministry of Education, Linfen 041004 (China); Xu, Xiaohong, E-mail: xuxiaohong_ly@163.com [School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004 (China); Key Laboratory of Magnetic Molecules and Magnetic Information Materials, Ministry of Education, Linfen 041004 (China)
2015-02-25
Highlights: • The size effect affects both the visible light absorption and the zigzag edge state. • Zigzag edge state is important than armchair edge state for visible light absorption. • The Seam atoms should be noted for the randomly shaped GQDs. - Abstract: Using the ab initio density-functional theory method, we calculated the size effect and edge shape effect on UV–visible light absorption of different shapes of graphene quantum dots (GQDs). There are two interesting findings in this study. First, the edge shape effect increase with increasing the size of square GQDs. Second, the Seam atoms, located at the boundary between zigzag and armchair edges, hardly contribute to the strongest visible light absorption. This refinement of the edge-shape effect can be found in rectangular, triangular and hexagonal GQDs. This new finding will be useful in applications of GQDs in the visible light absorption nanodevices.
Quantum-size effects and thermal response of anti-Kramer-Pesch vortex core
Chen, Yajiang; Hong-Yu, Wu; Peeters, F. M.; Shanenko, A. A.
2015-04-01
Since the 1960's it has been well known that the basic superconductive quantities can exhibit oscillations as functions of the thickness (diameter) in superconducting nanofilms (nanowires) due to the size quantization of the electronic spectrum. However, very little is known about the effects of quantum confinement on the microscopic properties of vortices. Based on a numerical solution to the Bogoliubov-de Gennes equations, we study the quantum-size oscillations of the vortex core resulting from the sequential interchange of the Kramer-Pesch and anti-Kramer-Pesch regimes with changing nanocylinder radius. The physics behind the anti-Kramer-Pesch anomaly is displayed by utilizing a semi-analytical Anderson approximate solution. We also demonstrate that the anti-Kramer-Pesch vortex core is robust against thermal smearing and results in a distinctive two-maxima structure in the local density of states, which can be used to identify the existence of the anti-Kramer-Pesch vortex.
Specific Heat of Hollow Nanosphere Coupled to Substrate: Quantum Size Effects
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
With the help of the elastic wave theory, in the perturbed approximation the density-of-states for vibrational modes and the specific heat axe studied for different hollow Si nanospheres, coupled with a semi-infinite substrate. We find that the modes of such coupled hollow spheres are significantly broadened and shifted toward low frequencies. The specific heat of the coupled hollow nanosphere is bigger than an isolated one due to the coupling interaction and quantum size effects. The predicted coupling and size enhancements on specific heat are probed in thermal experiments.
Cosentino, S; Mio, A M; Barbagiovanni, E G; Raciti, R; Bahariqushchi, R; Miritello, M; Nicotra, G; Aydinli, A; Spinella, C; Terrasi, A; Mirabella, S
2015-07-14
Quantum confinement (QC) typically assumes a sharp interface between a nanostructure and its environment, leading to an abrupt change in the potential for confined electrons and holes. When the interface is not ideally sharp and clean, significant deviations from the QC rule appear and other parameters beyond the nanostructure size play a considerable role. In this work we elucidate the role of the interface on QC in Ge quantum dots (QDs) synthesized by rf-magnetron sputtering or plasma enhanced chemical vapor deposition (PECVD). Through a detailed electron energy loss spectroscopy (EELS) analysis we investigated the structural and chemical properties of QD interfaces. PECVD QDs exhibit a sharper interface compared to sputter ones, which also evidences a larger contribution of mixed Ge-oxide states. Such a difference strongly modifies the QC strength, as experimentally verified by light absorption spectroscopy. A large size-tuning of the optical bandgap and an increase in the oscillator strength occur when the interface is sharp. A spatially dependent effective mass (SPDEM) model is employed to account for the interface difference between Ge QDs, pointing out a larger reduction in the exciton effective mass in the sharper interface case. These results add new insights into the role of interfaces on confined systems, and open the route for reliable exploitation of QC effects.
Controlling atomistic processes on Pb films via quantum size effects and lattice rotation
Energy Technology Data Exchange (ETDEWEB)
Binz, Steven [Iowa State Univ., Ames, IA (United States)
2012-01-01
The two main techniques used to record the data in this dissertation were Spot Profile Analysis - Low Energy Electron Diffraction (SPA-LEED) and Scanning Tunneling Microscopy (STM). A specific data analysis technique for LEED data called G(S) curves is described in depth. G(S) curves can provide a great deal of structural information about the surface; including step heights, island size, and island separation. The effects of quantum size effects (QSE) on the diffusion and critical island sizes of Pb and In on Pb films are reported. Pb depositions on the 2D In phases {radical}3 and {radical}31 to see how the phases affect the Pb growth and its strong QSE are reported.
Strong Quantum Size Effects in Pb(111) Thin Films Mediated by Anomalous Friedel Oscillations
Jia, Yu; Wu, Biao; Li, Chong; Einstein, T. L.; Weitering, H. H.; Zhang, Zhenyu
2010-08-01
Using first-principles calculations within density functional theory, we study Friedel oscillations (FOs) in the electron density at different metal surfaces and their influence on the lattice relaxation and stability of ultrathin metal films. We show that the FOs at the Pb(111) surface decay as 1/x with the distance x from the surface, different from the conventional 1/x2 power law at other metal surfaces. The underlying physical reason for this striking difference is tied to the strong nesting of the two different Fermi sheets along the Pb(111) direction. The interference of the strong FOs emanating from the two surfaces of a Pb(111) film, in turn, not only results in superoscillatory interlayer relaxations around the center of the film, but also determines its stability in the quantum regime. As a simple and generic picture, the present findings also explain why quantum size effects are exceptionally robust in Pb(111) films.
Comprehensive size effect on PbSe quantum dot-doped liquid-core optical fiber
Zhang, Lei; Zhang, Bing; Ning, Lina; Li, Shuai; Zheng, Youjin
2017-01-01
We have theoretically studied a comprehensive size effect on the spectra of PbSe quantum dot (QD)-doped liquid-core optical fiber, including PbSe QD's particle size and particle number effect, and fiber length and fiber diameter effect. The doping concentration, pump intensity and wavelength were fixed at proper values for comparison. The red shift of emission spectral peak increased with QD diameter, QD number, fiber length and fiber diameter, and reached up to saturation with increasingly QD number which was explained in detail. The evolutions of spectral intensity with the four size parameters were gained, and the related "optimal" (under the certain other parameters) fiber length, diameter and QD number were observed for PbSe QDs of different size as the dopant. Furthermore, each kind of the "optimal" value changed with the other three size parameters. These four size parameters restricted each other, and affected the spectral features together. The calculating results fitted well to the experimental data. This research might be a theoretical basis in the design of optical fiber-based device.
Quantum size effects in TiO2 thin films grown by atomic layer deposition.
Tallarida, Massimo; Das, Chittaranjan; Schmeisser, Dieter
2014-01-01
We study the atomic layer deposition of TiO2 by means of X-ray absorption spectroscopy. The Ti precursor, titanium isopropoxide, was used in combination with H2O on Si/SiO2 substrates that were heated at 200 °C. The low growth rate (0.15 Å/cycle) and the in situ characterization permitted to follow changes in the electronic structure of TiO2 in the sub-nanometer range, which are influenced by quantum size effects. The modified electronic properties may play an important role in charge carrier transport and separation, and increase the efficiency of energy conversion systems.
Quantum size effects in TiO2 thin films grown by atomic layer deposition
Tallarida, Massimo; Das, Chittaranjan; Schmeisser, Dieter
2014-01-01
We study the atomic layer deposition of TiO2 by means of X-ray absorption spectroscopy. The Ti precursor, titanium isopropoxide, was used in combination with H2O on Si/SiO2 substrates that were heated at 200 °C. The low growth rate (0.15 Å/cycle) and the in situ characterization permitted to follow changes in the electronic structure of TiO2 in the sub-nanometer range, which are influenced by quantum size effects. The modified electronic properties may play an important role in charge carrier...
Size and temperature effects on electric properties of CdTe/ZnTe quantum rings
Institute of Scientific and Technical Information of China (English)
Woo-Pyo Hong; Seoung-Hwan Park
2011-01-01
The electronic properties of CdTe/ZnTe quantum rings (QRs) are investigated as functions of size and temperature using an eight-band strain-dependent k-p Hamiltonian. The size effects of diameter and height on the strain distributions around the QRs are studied. We find that the interband transition energy,defined as the energy difference between the ground electronic and the ground heavy-hole subbands,increases with the increasing QR inner diameter regardless of the temperature,while the interband energy decreases with the increasing QR height. This is attributed to the reduction of subband energies in both the conduction and the valence bands due to the strain effects. Our model,in the framework of the finite element method and the theory of elasticity of solids,shows a good agreement with the temperature-dependent photoluminescence measurement of the interband transition energies.
Quantum Size Effects in Transport Properties of Bi2Te3 Topological Insulator Thin Films
Rogacheva, E. I.; Budnik, A. V.; Nashchekina, O. N.; Meriuts, A. V.; Dresselhaus, M. S.
2017-07-01
Bi2Te3 compound and Bi2Te3-based solid solutions have attracted much attention as promising thermoelectric materials for refrigerating devices. The possibility of enhancing the thermoelectric efficiency in low-dimensional structures has stimulated studies of Bi2Te3 thin films. Now, interest in studying the transport properties of Bi2Te3 has grown sharply due to the observation of special properties characteristic of three-dimensional (3D) topological insulators in Bi2Te3. One of the possible manifestations of quantum size effects in two-dimensional structures is an oscillatory behavior of the dependences of transport properties on film thickness, d. The goal of this work is to summarize our earlier experimental results on the d-dependences of transport properties of Bi2Te3 thin films obtained by thermal evaporation in a vacuum on glass substrates, and to present our new results of theoretical calculations of the oscillations periods within the framework of the model of an infinitely deep potential well, which takes into account the dependence of the Fermi energy on d and the contribution of all energy subbands below the Fermi level to the conductivity. On the basis of the data obtained, some general regularities and specificity of the quantum size effects manifestation in 3D topological insulators are established.
Size Effect of a Negatively Charged Exciton in a Two-Dimensional Quantum Dot
Institute of Scientific and Technical Information of China (English)
LIU Chao; XIE Wen-Fang
2009-01-01
In this paper we study a negatively charged exciton (NCE), which is trapped by a two-dimensional (2D) parabolic potential.By using matrix diagonalization techniques, the correlation energies of the low-lying states with L = O, 1, and 2 are calculated as a function of confinement strength.We find that the size effects of different states are different.This phenomenon can be explained as a hidden symmetry, which is originated purely from symmetry.Based on symmetry, the features of the low-lying states are discussed in the influence of the 2D parabolic potential well.It is found that the confinement may cause accidental degeneracies between levels with different low-excited states.It is shown that the effect of quantum confinement on the binding energy of the heavy hole is stronger than that of a light hole.
Quantum size effects in TiO2 thin films grown by atomic layer deposition
Directory of Open Access Journals (Sweden)
Massimo Tallarida
2014-01-01
Full Text Available We study the atomic layer deposition of TiO2 by means of X-ray absorption spectroscopy. The Ti precursor, titanium isopropoxide, was used in combination with H2O on Si/SiO2 substrates that were heated at 200 °C. The low growth rate (0.15 Å/cycle and the in situ characterization permitted to follow changes in the electronic structure of TiO2 in the sub-nanometer range, which are influenced by quantum size effects. The modified electronic properties may play an important role in charge carrier transport and separation, and increase the efficiency of energy conversion systems.
Acute toxicity of quantum dots on late pregnancy mice: Effects of nanoscale size and surface coating
Energy Technology Data Exchange (ETDEWEB)
Zhang, Wanyi [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047 (China); The Second Affiliated Hospital of Nanchang University, Nanchang 330000 (China); Yang, Lin; Kuang, Huijuan; Yang, Pengfei [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047 (China); Aguilar, Zoraida P.; Wang, Andrew [Ocean NanoTech, LLC, Springdale, AR72764 (United States); Fu, Fen, E-mail: fu_fen@163.com [The Second Affiliated Hospital of Nanchang University, Nanchang 330000 (China); Xu, Hengyi, E-mail: kidyxu@163.com [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047 (China)
2016-11-15
Graphical abstract: In spite of the immense benefits from quantum dots (QDs), there is scanty information regarding their toxicity mechanisms against late pregnancy. - Highlights: • QDs and CdCl{sub 2} were effectively blocked by the placental barrier. • CdSe QDs more effectively altered the expression levels of susceptive genes. • Nanoscale size of QDs is more important than free Cd in inducing toxicity. • Outer surface shell coating of QDs played a protective role. - Abstract: In this study, the effects of cadmium containing QDs (such as CdSe/ZnS and CdSe QDs) and bulk CdCl{sub 2} in pregnant mice, their fetuses, and the pregnancy outcomes were investigated. It was shown that although the QDs and bulk CdCl{sub 2} were effectively blocked by the placental barrier, the damage on the placenta caused by CdSe QDs still led to fetus malformation, while the mice in CdSe/ZnS QDs treatment group exhibited slightly hampered growth but showed no significant abnormalities. Moreover, the Cd contents in the placenta and the uterus of CdSe QDs and CdSe/ZnS QDs treatment groups showed significantly higher than the CdCl{sub 2} treated group which indicated that the nanoscale size of the QDs allowed relative ease of entry into the gestation tissues. In addition, the CdSe QDs more effectively altered the expression levels of susceptive genes related to cell apoptosis, dysplasia, metal transport, cryptorrhea, and oxidative stress, etc. These findings suggested that the nanoscale size of the QDs were probably more important than the free Cd in inducing toxicity. Furthermore, the results indicated that the outer surface shell coating played a protective role in the adverse effects of QDs on late pregnancy mice.
Understanding and enhancing superconductivity in FeSe/SrTiO3 by quantum size effects
Murta, Bruno; García-García, Antonio M.
2016-11-01
Superconductivity in one-atom-layer iron selenide (FeSe) on a strontium titanate (STO) substrate is enhanced by almost an order of magnitude with respect to bulk FeSe. There is recent experimental evidence suggesting that this enhancement persists in FeSe/STO nanoislands. More specifically, for sizes L ˜10 nm, the superconducting gap is a highly nonmonotonic function of L with peaks well above the bulk gap value. This is the expected behavior only for weakly-coupled metallic superconductors such as Al or Sn. Here we develop a theoretical formalism to describe these experiments based on three ingredients: Eliashberg theory of superconductivity in the weak coupling limit, pairing dominated by forward scattering, and periodic orbit theory to model spectral fluctuations. We obtain an explicit analytical expression for the size dependence of the gap that describes quantitatively the experimental results with no free parameters. This is a strong suggestion that superconductivity in FeSe/STO is mediated by STO phonons. We propose that, since FeSe/STO is still a weakly coupled superconductor, quantum size effects can be used to further enhance the bulk critical temperature in this interface.
Energy Technology Data Exchange (ETDEWEB)
Bose, Sangita; Galande, Charudatta; Chockalingam, S P; Raychaudhuri, Pratap; Ayyub, Pushan [Department of Condensed Matter Physics and Material Science, Tata Institute of Fundamental Research, Mumbai 400005 (India); Banerjee, Rajarshi [Department of Materials Science and Engineering, University of North Texas, Denton, TX 76203-5310 (United States)], E-mail: Sangita.Bose@fkf.mpg.de, E-mail: pratap@tifr.res.in, E-mail: pushan@tifr.res.in
2009-05-20
The superconducting transition temperature (T{sub C}) in nanostructured Pb decreases from 7.24 to 6.4 K as the particle size is reduced from 65 to 7 nm, below which superconductivity is lost rather abruptly. In contrast, there is a large enhancement in the upper critical field (H{sub C2}) in the same size regime. We explore the origin of the unusual robustness of T{sub C} over such a large particle size range in nanostructured Pb by measuring the temperature dependence of the superconducting energy gap in planar tunnel junctions of Al/Al{sub 2}O{sub 3}/nano-Pb. We show that below 22 nm, the electron-phonon coupling strength increases monotonically with decreasing particle size, and almost exactly compensates for the quantum size effect, which is expected to suppress T{sub C}.
Wang, Y. W.; Kim, J. S.; Kim, G. H.; Kim, Kwang S.
2006-04-01
Quantum size effects in volume plasmon excitation of bismuth nanoparticles with diameters ranging from 5to500nm have been studied by electron energy loss spectroscopy. The Bi nanoparticles were prepared by reducing Bi3+ with sodium borohydride in the presence of poly(vinylpyrroldone). The volume plasmon energy and its peak width increase with decreasing nanoparticle diameter, due to the quantum size effect. For the particles with diameter less than 40nm, the increase of the volume plasmon energy is proportional to the inverse square of the nanoparticle diameter, confirming the semimetal to semiconductor transition in Bi nanoparticles.
Study of system- size effects in multi- fragmentation using Quantum Molecular Dynamics model
Singh, J; Aichelin, Jörg; Singh, Jaivir; Puri, Rajeev K.
2001-01-01
We report, for the first time, the dependence of the multiplicity of different fragments on the system size employing a quantum molecular dynamics model. This dependence is extracted from the simulations of symmetric collisions of Ca+Ca, Ni+Ni, Nb+Nb, Xe+Xe, Er+Er, Au+Au and U+U at incident energies between 50 A MeV and 1 A GeV. We find that the multiplicity of different fragments scales with the size of the system which can be parameterized by a simple power law.
Effect of size on electronic states in a strained pyramidal InAs-GaAs quantum dot system
Energy Technology Data Exchange (ETDEWEB)
Ripan, G. H., E-mail: gregoryhr@gmail.com [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Faculty of Applied Science & Foundation Studies, Infrastructure University Kuala Lumpur, 43000 Kajang, Selangor (Malaysia); Woon, C. Y.; Gopir, G. [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)
2015-09-25
The effect of size on electronic states in a strained pyramidal InAs-GaAs quantum dot system was studied. A comparison was made between two InAs quantum pyramids of different sizes embedded inside a cubic GaAs susbtrate material. Strain relaxation was carried out via the Metropolis Monte Carlo method and the calculated local strain tensors were then included to solve the energy values and the wave functions of the electronic states inside the two simulation cube. The 3D finite difference scheme was employed to solve the time independent Schrödinger equation based on the decoupled electron-hole model. Calculated energy values of the four lowest electronic states showed that the transitions between the electron and hole states widen as the size of the dot becomes smaller especially between the ground states. The confinement of electrons and holes become weaker as the size of the dot reduces.
Effect of size on electronic states in a strained pyramidal InAs-GaAs quantum dot system
Ripan, G. H.; Woon, C. Y.; Gopir, G.
2015-09-01
The effect of size on electronic states in a strained pyramidal InAs-GaAs quantum dot system was studied. A comparison was made between two InAs quantum pyramids of different sizes embedded inside a cubic GaAs susbtrate material. Strain relaxation was carried out via the Metropolis Monte Carlo method and the calculated local strain tensors were then included to solve the energy values and the wave functions of the electronic states inside the two simulation cube. The 3D finite difference scheme was employed to solve the time independent Schrödinger equation based on the decoupled electron-hole model. Calculated energy values of the four lowest electronic states showed that the transitions between the electron and hole states widen as the size of the dot becomes smaller especially between the ground states. The confinement of electrons and holes become weaker as the size of the dot reduces.
Quantum electrostatic surface waves in a hybrid plasma waveguide: Effect of nano-sized slab
Shahmansouri, M.; Mahmodi Moghadam, M.
2017-10-01
The propagation properties of surface plasmon (SP) waves are studied in a hybrid plasma waveguide (consisting of plasma-gap-dielectric layers) with quantum effects including the Fermi-pressure, the Bohm potential and the exchange-correlation interaction. By using a quantum hydrodynamic model and Maxwell's equations, the dispersion relation of SP waves is derived, which describes the quantum corrected features of the dispersion properties of such surface waves. Previous results in this context are recovered. It is found that the exchange-correlation interactions and the presence of the second dielectric layer drastically modify the behaviors of the surface plasmon waves. The implications of our finding are discussed in some particular cases of interest. Our finding is applicable for understanding the surface wave behaviors in nano-scale systems.
Son, Yoonkook; Park, Mihee; Son, Yeonguk; Lee, Jung-Soo; Jang, Ji-Hyun; Kim, Youngsik; Cho, Jaephil
2014-02-12
This work has been performed to determine the critical size of the GeO2 nanoparticle for lithium battery anode applications and identify its quantum confinement and its related effects on the electrochemical performance. GeO2 nanoparticles with different sizes of ∼ 2, ∼ 6, ∼ 10, and ∼ 35 nm were prepared by adjusting the reaction rate, controlling the reaction temperature and reactant concentration, and using different solvents. Among the different sizes of the GeO2 nanoparticles, the ∼ 6 nm sized GeO2 showed the best electrochemical performance. Unexpectedly smaller particles of the ∼ 2 nm sized GeO2 showed the inferior electrochemical performances compared to those of the ∼ 6 nm sized one. This was due to the low electrical conductivity of the ∼ 2 nm sized GeO2 caused by its quantum confinement effect, which is also related to the increase in the charge transfer resistance. Those characteristics of the smaller nanoparticles led to poor electrochemical performances, and their relationships were discussed.
The effect of tin sulfide quantum dots size on photocatalytic and photovoltaic performance
Energy Technology Data Exchange (ETDEWEB)
Cheraghizade, Mohsen [Young Researchers and Elite Club, Ahvaz Branch, Islamic Azad University, Ahvaz (Iran, Islamic Republic of); Jamali-Sheini, Farid, E-mail: faridjamali@iauahvaz.ac.ir [Advanced Surface Engineering and Nano Materials Research Center, Department of Physics, Ahvaz Branch, Islamic Azad University, Ahvaz (Iran, Islamic Republic of); Yousefi, Ramin [Department of Physics, Masjed-Soleiman Branch, Islamic Azad University (I.A.U), Masjed-Soleiman (Iran, Islamic Republic of); Niknia, Farhad [Young Researchers and Elite Club, Ahvaz Branch, Islamic Azad University, Ahvaz (Iran, Islamic Republic of); Mahmoudian, Mohammad Reza [Department of Chemistry, Shahid Sherafat, University of Farhangian, 15916, Tehran (Iran, Islamic Republic of); Sookhakian, Mehran [Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia)
2017-07-01
In the current study, tin sulfide Quantum Dots (QDs) was successfully synthesized through sonochemical synthesis method by applying sonication times of 10, 15, and 20 min. Structural studies showed an orthorhombic phase of SnS and Sn{sub 2}S{sub 3}, and hexagonal phase of SnS{sub 2}. The particle size of tin sulfide QDs prepared through sonication time of 20 min was smaller than other QDs. According to TEM images, an increase in sonication time resulted in smaller spherical shaped particles. According to the results of Raman studies, five Raman bands and a shift towards the lower frequencies were observed by enhancing the sonication time. Based on the outcomes of photocatalytic activity, higher this property was observed for tin sulfide QDs, which are prepared through longer sonication time. Solar cell devices manufactured using tin sulfide QDs have a greater performance for the samples with more sonication time. Considering the obtained outcomes, the sonication time seems probable to be a factor affecting synthesis process of SnS QDs as well as its optical and electrical, photocatalytic, and photovoltaic conversion features. - Highlights: • Tin sulfide quantum dots (QDs) synthesized using a sonication method. • The sonication time was selected as a synthesis parameter. • The photocatalytic and photovoltaic performance were depended on synthesis parameter.
Hydrothermal Preparation of TiO2-ZnO Nano Core-Shell Structure with Quantum Size Effect
Asl, Shahab Khameneh; Rad, M. Kianpour; Sadrnezhaad, S. K.
2011-12-01
Nano sized ZnO on TiO2 spherical core shells were prepared by using hydrothermal method. The particle size of initial TiO2 was around 20 nm, and the specific surface area was 50 m2/gr. Different ratios of TiO2 and ZnO applied to synthesize core shell particle. X-ray diffraction (XRD) used to phase characterization and crystalline size, scanning electron microscopy (SEM) to morphology and microstructure investigations. S. Brunauer, P. H. Emmett and E. Teller method (BET) to find specific surface area, Diffusive UV-visible-NIR spectrometry to bang gap calculations. The results indicate that powders with a shell of zinc oxide in specific range have the quantum size effect. Titanium oxide and zinc oxide have similar band gap, but TiO2 could act as a template to produced 2D structure of ZnO with modified physical properties.
Watanabe, Hiroshi C; Kubillus, Maximilian; Kubař, Tomáš; Stach, Robert; Mizaikoff, Boris; Ishikita, Hiroshi
2017-07-21
In the condensed phase, quantum chemical properties such as many-body effects and intermolecular charge fluctuations are critical determinants of the solvation structure and dynamics. Thus, a quantum mechanical (QM) molecular description is required for both solute and solvent to incorporate these properties. However, it is challenging to conduct molecular dynamics (MD) simulations for condensed systems of sufficient scale when adapting QM potentials. To overcome this problem, we recently developed the size-consistent multi-partitioning (SCMP) quantum mechanics/molecular mechanics (QM/MM) method and realized stable and accurate MD simulations, using the QM potential to a benchmark system. In the present study, as the first application of the SCMP method, we have investigated the structures and dynamics of Na(+), K(+), and Ca(2+) solutions based on nanosecond-scale sampling, a sampling 100-times longer than that of conventional QM-based samplings. Furthermore, we have evaluated two dynamic properties, the diffusion coefficient and difference spectra, with high statistical certainty. Furthermore the calculation of these properties has not previously been possible within the conventional QM/MM framework. Based on our analysis, we have quantitatively evaluated the quantum chemical solvation effects, which show distinct differences between the cations.
Symmetry and size effects on energy and entanglement of an exciton in coupled quantum dots
Institute of Scientific and Technical Information of China (English)
Shen Man; Bai Yan-Kui; An Xing-Tao; Liu Jian-Jun
2013-01-01
We study theoretically the essential properties of an exciton in vertically coupled Gaussian quantum dots in the presence of an extemal magnetic field.The ground state energy of a heavy-hole exciton is split into four energy levels due to the Zeeman effect.For the symmetrical system,the entanglement entropy of the exciton state can reach a value of 1.However,for a system with broken symmetry,it is close to zero.Our results are in good agreement with previous studies.
Exciton size and quantum transport in nanoplatelets
Energy Technology Data Exchange (ETDEWEB)
Pelzer, Kenley M., E-mail: kpelzer@anl.gov; Gray, Stephen K. [Center for Nanoscale Materials, Argonne National Laboratory, 9700 Cass Ave., Argonne, Illinois 60439 (United States); Darling, Seth B. [Center for Nanoscale Materials, Argonne National Laboratory, 9700 Cass Ave., Argonne, Illinois 60439 (United States); Institute for Molecular Engineering, University of Chicago, 5747 S. Ellis Ave., Chicago, Illinois 60637 (United States); Schaller, Richard D. [Center for Nanoscale Materials, Argonne National Laboratory, 9700 Cass Ave., Argonne, Illinois 60439 (United States); Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208 (United States)
2015-12-14
Two-dimensional nanoplatelets (NPLs) are an exciting class of materials with promising optical and energy transport properties. The possibility of efficient energy transport between nanoplatelets raises questions regarding the nature of energy transfer in these thin, laterally extended systems. A challenge in understanding exciton transport is the uncertainty regarding the size of the exciton. Depending on the material and defects in the nanoplatelet, an exciton could plausibly extend over an entire plate or localize to a small region. The variation in possible exciton sizes raises the question how exciton size impacts the efficiency of transport between nanoplatelet structures. Here, we explore this issue using a quantum master equation approach. This method goes beyond the assumptions of Förster theory to allow for quantum mechanical effects that could increase energy transfer efficiency. The model is extremely flexible in describing different systems, allowing us to test the effect of varying the spatial extent of the exciton. We first discuss qualitative aspects of the relationship between exciton size and transport and then conduct simulations of exciton transport between NPLs for a range of exciton sizes and environmental conditions. Our results reveal that exciton size has a strong effect on energy transfer efficiency and suggest that manipulation of exciton size may be useful in designing NPLs for energy transport.
Exciton size and quantum transport in nanoplatelets.
Pelzer, Kenley M; Darling, Seth B; Gray, Stephen K; Schaller, Richard D
2015-12-14
Two-dimensional nanoplatelets (NPLs) are an exciting class of materials with promising optical and energy transport properties. The possibility of efficient energy transport between nanoplatelets raises questions regarding the nature of energy transfer in these thin, laterally extended systems. A challenge in understanding exciton transport is the uncertainty regarding the size of the exciton. Depending on the material and defects in the nanoplatelet, an exciton could plausibly extend over an entire plate or localize to a small region. The variation in possible exciton sizes raises the question how exciton size impacts the efficiency of transport between nanoplatelet structures. Here, we explore this issue using a quantum master equation approach. This method goes beyond the assumptions of Förster theory to allow for quantum mechanical effects that could increase energy transfer efficiency. The model is extremely flexible in describing different systems, allowing us to test the effect of varying the spatial extent of the exciton. We first discuss qualitative aspects of the relationship between exciton size and transport and then conduct simulations of exciton transport between NPLs for a range of exciton sizes and environmental conditions. Our results reveal that exciton size has a strong effect on energy transfer efficiency and suggest that manipulation of exciton size may be useful in designing NPLs for energy transport.
Novel π-type vortex in a nanoscale extreme type-II superconductor: Induced by quantum-size effect
Huang, Haiyan; Liu, Qing; Zhang, Wenhui; Chen, Yajiang
2016-11-01
By numerically solving the Bogoliubov-de Gennes equations, we report a novel π-type vortex state whose order parameter near the core undergoes an extraordinary π-phase change for a quantum-confined extreme type-II s-wave superconductor. Its supercurrent behaves as the cube of the radial coordinate near the core, and its local density of states spectrum exhibits a significant negative-shifted zero-bias peak. Such π-type vortex state is induced by quantum-size effect, and can survive thermal smearing at temperatures up to a critical value Tτ. The Anderson's approximation indicates that the π-type vortex may remain stable under sufficiently week magnetic field in the case less deep in the type-II limit. Moreover, we find that its appearance is governed by the sample size and kFξ0 with kF the Fermi wave number and ξ0 the zero-temperature coherence length. Similar effects may be expected in quantum-confined ultracold superfluid Fermi gasses, or even high-Tc superconductors with proper kFξ0 value.
Quantum Size Effect in ZnO Nanoparticles via Mechanical Milling
Directory of Open Access Journals (Sweden)
Nurul Azri Khalisah Aznan
2012-01-01
Full Text Available ZnO nanocrystals were successfully produced by mechanical milling. It is shown that mechanical milling is very effective and simple to produce ZnO nanoparticles with the possibility of obtaining large quantities of materials. Size effects in ZnO nanoparticles were probed by XRD and UV-vis and photoluminescence (PL spectroscopy. Absorption due to free electron was clearly observed, whereas strong PL lines were recorded in the UV and blue region. The absorbance and photoluminescence were found to increase with reduction in particle size. Blueshift of excitonic and emission peaks was observed as a consequence of the size quantization effect. Formation of pure ZnO phase was confirmed from XRD pattern and the optical spectroscopy.
Monreal, R Carmina; Apell, S Peter
2016-01-01
The detailed understanding of the physical parameters that determine Localized Surface Plasmon Resonances (LSPRs) is essential to develop new applications for plasmonics. A relatively new area of research has been opened by the identification of LSPRs in low carrier density systems obtained by doping semiconductor quantum dots. We investigate theoretically how diffuse surface scattering of electrons in combination with the effect of quantization due to size (QSE) impact the evolution of the LSPRs with the size of these nanosystems. Two key parameters are the length $R_0$ giving the strength of the QSE and the velocity $\\beta_T$ of the electronic excitations entering in the length scale for diffuse surface scattering. While the QSE itself only produces a blueshift in energy of the LSPRs, the diffuse surface scattering mechanism gives to both energy and linewidth an oscillatory-damped behavior as a function of size, with characteristic lengths that depend on material parameters. Thus, the evolution of the LSPRs...
Energy Technology Data Exchange (ETDEWEB)
Stránský, Pavel [Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague (Czech Republic); Macek, Michal [Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague (Czech Republic); Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, CT 06520-8120 (United States); Leviatan, Amiram [Racah Institute of Physics, The Hebrew University, 91904 Jerusalem (Israel); Cejnar, Pavel, E-mail: pavel.cejnar@mff.cuni.cz [Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague (Czech Republic)
2015-05-15
This article extends our previous analysis Stránský et al. (2014) of Excited-State Quantum Phase Transitions (ESQPTs) in systems of dimension two. We focus on the oscillatory component of the quantum state density in connection with ESQPT structures accompanying a first-order ground-state transition. It is shown that a separable (integrable) system can develop rather strong finite-size precursors of ESQPT expressed as singularities in the oscillatory component of the state density. The singularities originate in effectively 1-dimensional dynamics and in some cases appear in multiple replicas with increasing excitation energy. Using a specific model example, we demonstrate that these precursors are rather resistant to proliferation of chaotic dynamics. - Highlights: • Oscillatory components of state density and spectral flow studied near ESQPTs. • Enhanced finite-size precursors of ESQPT caused by fully/partly separable dynamics. • These precursors appear due to criticality of a subsystem with lower dimension. • Separability-induced finite-size effects disappear in case of fully chaotic dynamics.
Quantum size effects in TiO_{2} thin films grown by atomic layer deposition
Massimo Tallarida; Chittaranjan Das; Dieter Schmeisser
2014-01-01
We study the atomic layer deposition of TiO2 by means of X-ray absorption spectroscopy. The Ti precursor, titanium isopropoxide, was used in combination with H2O on Si/SiO2 substrates that were heated at 200 °C. The low growth rate (0.15 Å/cycle) and the in situ characterization permitted to follow changes in the electronic structure of TiO2 in the sub-nanometer range, which are influenced by quantum size effects. The modified electronic properties may play an important role in charge carrier...
Absorption diagnostics of quantum size effect on the excited states of SbI3 clusters in FAU zeolite
Virko, Sergij V.; Motsnyi, Fedir V.; Telbiz, German M.
1998-04-01
We report the absorption spectra (at 10 K) for SbI3 clusters with molecular numbers 1/2, 1 and 2 which were created in FAU-zeolite cages. At 2.0 - 3.7 eV there appear bands whose energies strongly depends of the loading densities of SbI3 molecules. These energies are remarkable blue shifted compared with the one of the bulk exciton (2.615 eV). This shift is interpreted in terms of the quantum size effect. The observed blue-shift of absorption bands coincides with one calculated in mh/me>>1 approximation (typical for MI3 layered crystals).
Energy Technology Data Exchange (ETDEWEB)
Dal Savio, C.
2006-02-20
Single InAs quantum dots (QDs) grown with the Stranski-Krastanov method in a In{sub 0.12}Ga{sub 0.88}As quantum well embedded in GaAs and emitting in the near infrared have been optically investigated. To perform QD spectroscopy at low temperatures a very stable micro-photoluminescence ({mu}-PL) microscope set-up fully integrated in a liquid helium (LHe) cryostate has been successfully developed. The system is based on the cold finger technique and a Fourier Transform (FT) spectrometer combined with a nitrogen cooled Ge detector. Photoluminescence of the QDs was excited non resonantly with a He-Ne laser and single dot spectroscopy was carried out at temperatures below 60 K. The experimental set-up allows mapping of the optical emission by recording spectra for every point of a scan grid. This mapping mode is used to acquire optical images and to locate a particular dot for investigation. Series of measurement on a single QD were normally performed over a long time (from a few days to a week), with the need of daily adjustment in the sub-micrometer range. At low excitation power a single sharp line (E{sub x}) arising from recombination of a single exciton in the dot is observed. Varying the excitation density the spectra become more complex, with appearance of the biexciton emission line (E{sub xx}) on the lower energies side of the E{sub x} line, followed by emission from excitons occupying higher shells in the dot. Measured biexciton binding energies and power dependence are in good agreement with values reported in the literature. The temperature dependence of the optical emission was investigated. The energy shows the characteristic decrease related to the shrinking of the semiconductor band gap, while the linewidth evolution is compatible with broadening due to coupling with acoustic and optical phonons. A statistics of biexciton binding energies over a dozen of dots was acquired and the results compared with single QD spectroscopy data available in the
Self-organization of Pb thin films on Cu(111) induced by quantum size effects
Dil, J. H.; Kim, J. W.; Gokhale, S.; Tallarida, M.; Horn, K.
2004-07-01
Electron confinement in thin films of Pb on Cu(111) leads to the formation of quantum well states, formed out of the upper valence band of Pb. Their evolution as a function of film thickness is characterized in angle-resolved photoemission and can be interpreted in terms of a straightforward quantum well model. This permits an identification of film growth mode at low temperatures. Bringing the films into thermal equilibrium by annealing induces strong changes in the spectra. Their interpretation demonstrates that specific “magic” layers are preferred because of total energy minimization induced by the arrangement of quantum well states with respect to the Fermi level.
Institute of Scientific and Technical Information of China (English)
XIAO,De-Bao; TIAN,Zhi-Yuan; XI,Lu; ZHAO,Li-Yun; YANG,Wen-Sheng; YAO,Jian-Nian
2003-01-01
Organic nanocrystals of 1,3,5-triphenyl-2-pyrazoline(TPP) with a series of sizes were synthesized by reprecipitation method. The luminescence quantum efficiency of TPP nanocrystals increases from 24.2% for the nanocrystals with an average size of 300 nm to 34.6% for those with an average size of 20 nm. Surface cappinb by polyvinyl pyrrolidone (PVP) will improve the quantum efficiency of TPP nanocrystals. The size-dependence and equilibrium between the TPP monomers and the aggregates in TPP nanocrystals.
Boev, Victor I.; Soloviev, Alexei; Silva, Carlos J. R.; Gomes, Maria J. M.
2006-01-01
Nanocomposite materials based on an organic-inorganic ureasilicate matrix with embedded CdS nanoparticles were produced and characterized by optical (UV/Vis), FTIR, secondary ion mass spectroscopy, inductively-coupled plasma optical emission and steady-state photoluminescence measurements. The ureasilicate precursor was obtained by the reaction between silicon alkoxyde modified by isocyanate groups and polyethylene glycol oligomers with amine terminal groups. The final nanocomposites were prepared by introducing a colloidal solution of CdS nanoparticles with various sizes into the ureasilicate precursor followed by gelation of the mixture in the presence of ammonia/water vapours. The reliable preservation of the quantum-size effect of nanoparticles after their incorporation into the ureasilicate matrix was observed in all samples. The obtained materials were optically transparent at visible range, exhibiting high flexibility and long-term stability.
Energy Technology Data Exchange (ETDEWEB)
Karimi, M.J. [Department of Physics, College of Sciences, Shiraz University of Technology, Shiraz 71555-313 (Iran, Islamic Republic of); Rezaei, G., E-mail: grezaei2001@gmail.com [Department of Physics, College of Sciences, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of); Nazari, M. [Department of Physics, College of Sciences, Shiraz University of Technology, Shiraz 71555-313 (Iran, Islamic Republic of); Department of Physics, College of Sciences, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of)
2014-01-15
Based on the effective mass and parabolic one band approximations, simultaneous effects of the geometrical size, hydrogenic impurity, hydrostatic pressure, and temperature on the intersubband optical absorption coefficients and refractive index changes in multilayered spherical quantum dots are studied. Energy eigenvalues and eigenvectors are calculated using the fourth-order Runge–Kutta method and optical properties are obtained using the compact density matrix approach. The results indicate that the hydrogenic impurity, hydrostatic pressure, temperature and geometrical parameters such as the well and barrier widths have a great influence on the linear, the third-order nonlinear and the total optical absorption coefficients and refractive index changes. -- Highlights: • Hydrogenic impurity effects on the optical properties of a MSQD are investigated. • Hydrostatic pressure and temperature effects are also studied. • Hydrogenic impurity has a great influence on the linear and nonlinear ACs and RICs. • Hydrostatic pressure and temperature change the linear and nonlinear ACs and RICs.
Zhang, Wanyi; Yang, Lin; Kuang, Huijuan; Yang, Pengfei; Aguilar, Zoraida P; Wang, Andrew; Fu, Fen; Xu, Hengyi
2016-11-15
In this study, the effects of cadmium containing QDs (such as CdSe/ZnS and CdSe QDs) and bulk CdCl2 in pregnant mice, their fetuses, and the pregnancy outcomes were investigated. It was shown that although the QDs and bulk CdCl2 were effectively blocked by the placental barrier, the damage on the placenta caused by CdSe QDs still led to fetus malformation, while the mice in CdSe/ZnS QDs treatment group exhibited slightly hampered growth but showed no significant abnormalities. Moreover, the Cd contents in the placenta and the uterus of CdSe QDs and CdSe/ZnS QDs treatment groups showed significantly higher than the CdCl2 treated group which indicated that the nanoscale size of the QDs allowed relative ease of entry into the gestation tissues. In addition, the CdSe QDs more effectively altered the expression levels of susceptive genes related to cell apoptosis, dysplasia, metal transport, cryptorrhea, and oxidative stress, etc. These findings suggested that the nanoscale size of the QDs were probably more important than the free Cd in inducing toxicity. Furthermore, the results indicated that the outer surface shell coating played a protective role in the adverse effects of QDs on late pregnancy mice.
Kumar, Indrajit; Priyam, Amiya; Choubey, Ravi Kant
2013-06-01
Supersaturation controlled synthesis of thioglycollic acid (TGA) capped CdTe quantum dots in aqueous medium has been carried out. With a four-fold increase in the degree of supersaturation, the photoluminescence quantum efficiency of the nanoparticles was enhanced more than five times to a remarkably high value of 46%. This was accompanied by concomitant narrowing of the size distribution of the QDs. The simplified approach obviates the need for post-preparative treatments to improve the particle characteristics.
Quantum size effect on the layer by layer assembly of PbTe–InSe multilayer nanocomposite structures
Energy Technology Data Exchange (ETDEWEB)
Parvathi, M. Manonmani; Arivazhagan, V. [Department of Physics, Karunya University, Coimbatore 641 114 (India); Rajesh, S., E-mail: drsrajesh@karunya.edu [Department of Nanoscience and Technology, Karunya University, Coimbatore 641 114 (India)
2015-10-15
PbTe–InSe multilayer nanocomposite structures were prepared by thermal evaporation method using layer by layer assembly with different PbTe nanocrystal (NCs) layer thicknesses ranges from 5 to 20 nm. Cross sectional transmission electron microscopy images divulge the formation of PbTe NCs embedded within InSe matrix as an ordered PbTe–InSe multilayer structure. X-ray and electron beam diffractions from the multilayer structure exhibit eminent peak at (2 0 0) plane analogous to face-centred cubic PbTe. The absorption onset significantly blue shifted as long as 3 nm PbTe NCs were embedded in InSe matrix. The observed band gap is correlated with theoretically predicted effective band gap of three dimensionally confined PbTe NCs which confirm size dependent quantum confinement effect. PL spectra show dominant single emission at 1.6 eV corresponding to the band edge emission of PbTe NCs. The prospects to use this structure in p-i-n junction quantum dot solar cells are discussed. - Graphical abstract: A graphical abstract to illustrate (a) schematic view of the PbTe–InSe multilayer structure. (b) and (c) are the cross sectional TEM and AFM image of the single layer PbTe NCs on InSe matrix, respectively. - Highlights: • PbTe Nanocrystals embedded in an amorphous InSe matrix by thermal evaporation. • Array of 3D confined PbTe NCs was obtained from layer by layer deposition. • Growth of isolated PbTe NCs were observed from TEM and AFM. • Blue shift from absorption spectra and quantum confined PL emission were observed. • Use of this structure in next generation solar cells were discussed.
Owji, Erfan; Keshavarz, Alireza; Mokhtari, Hosein
2016-10-01
In this paper, the effects of temperature, hydrostatic pressure and size on optical gain for GaAs spherical quantum dot laser with hydrogen impurity are investigated. For this purpose, the effects of temperature, pressure and quantum dot size on the band gap energy, effective mass, and dielectric constant are studied. The eigenenergies and eigenstates for valence and conduction band are calculated by using Runge-Kutta numerical method. Results show that changes in the temperature, pressure and size lead to the alteration of the band gap energy and effective mass. Also, increasing the temperature redshifts the optical gain peak and at special temperature ranges lead to increasing or decreasing of it. Further, by reducing the size, temperature-dependent of optical gain is decreased. Additionally, enhancing of the hydrostatic pressure blueshifts the peak of optical gain, and its behavior as a function of pressure which depends on the size. Finally, increasing the radius rises the redshifts of the peak of optical gain.
A quantum size effect in infrared optical response of aliminum thin films
Xiao, Mufei; Villagómez, Ricardo
1998-03-01
We present a quantum mechanical calculation for diamagnetic optical response of metallic thin films. The study shows that in the optical response of the thin films, such as the reflectance, there exists an oscillatory dependence on the film thickness when the film contents less than about 100 monolayers, and the period of the oscillation corresponds to one or few monolayers. We show that the oscillation can be attributed to the intraband fluctuations of the valence electrons at discrete energy states as well as at continuum energy states. For comparison, we present some experimental results for Aluminum thin films of thickness 5 ~112ÅInfrared (λ=9.2μ m) optical reflectance of the films was measured, which demonstrates experimentally the predicted oscillating fine structures.
Finite-size effect and Kondo screening effect in an A-B ring with a quantum dot
Institute of Scientific and Technical Information of China (English)
Wu Shao-Quan; Wang Shun-Jin; Sun Wei-Li; Yu Wan-Lun
2004-01-01
The properties of the ground state of a closed dot-ring system with a magnetic flux in the Kondo regime are studied theoretically by means of a one-impurity Anderson Hamiltonian. The Hamiltonian is solved by means of the slave-boson mean-field theory. It is shown that at T=0, a suppressed Kondo effect exists in this system even when the mean level spacing of electrons in the ring is larger than the bulk Kondo temperature. The physical quantities depend sensitively on both the parity of the system and the size of the ring; the rich physical behaviour can be attributed to the coexistence of both the finite-size effect and the Kondo screening effect. It is also possible to detect the Kondo screening cloud by measuring the persistent current or the zero field impurity susceptibility Ximp directly in future experiments.
H, Dakhlaoui; S, Almansour
2016-06-01
In this work, the electronic properties of resonant tunneling diodes (RTDs) based on GaN-Al x Ga(1-x)N double barriers are investigated by using the non-equilibrium Green functions formalism (NEG). These materials each present a wide conduction band discontinuity and a strong internal piezoelectric field, which greatly affect the electronic transport properties. The electronic density, the transmission coefficient, and the current-voltage characteristics are computed with considering the spontaneous and piezoelectric polarizations. The influence of the quantum size on the transmission coefficient is analyzed by varying GaN quantum well thickness, Al x Ga(1-x)N width, and the aluminum concentration x Al. The results show that the transmission coefficient more strongly depends on the thickness of the quantum well than the barrier; it exhibits a series of resonant peaks and valleys as the quantum well width increases. In addition, it is found that the negative differential resistance (NDR) in the current-voltage (I-V) characteristic strongly depends on aluminum concentration x Al. It is shown that the peak-to-valley ratio (PVR) increases with x Al value decreasing. These findings open the door for developing vertical transport nitrides-based ISB devices such as THz lasers and detectors. Project supported by the Deanship of Scientific Research of University of Dammam (Grant No. 2014137).
Parametric interactions in presence of different size colloids in semiconductor quantum plasmas
Energy Technology Data Exchange (ETDEWEB)
Vanshpal, R., E-mail: ravivanshpal@gmail.com; Sharma, Uttam [Shri Vaishnav Institute of Technology and Science, Indore (India); Dubey, Swati [School of Studies in Physics, Vikram University, Ujjain (M.P.) (India)
2015-07-31
Present work is an attempt to investigate the effect of different size colloids on parametric interaction in semiconductor quantum plasma. Inclusion of quantum effect is being done in this analysis through quantum correction term in classical hydrodynamic model of homogeneous semiconductor plasma. The effect is associated with purely quantum origin using quantum Bohm potential and quantum statistics. Colloidal size and quantum correction term modify the parametric dispersion characteristics of ion implanted semiconductor plasma medium. It is found that quantum effect on colloids is inversely proportional to their size. Moreover critical size of implanted colloids for the effective quantum correction is determined which is found to be equal to the lattice spacing of the crystal.
González-Moya, Johan R.; Garcia-Basabe, Yunier; Rocco, Maria Luiza M.; Pereira, Marcelo B.; Princival, Jefferson L.; Almeida, Luciano C.; Araújo, Carlos M.; David, Denis G. F.; Ferreira da Silva, Antonio; Machado, Giovanna
2016-07-01
Hydrogen fuels generated by water splitting using a photocatalyst and solar irradiation are currently gaining the strength to diversify the world energy matrix in a green way. CdS quantum dots have revealed a hydrogen generation improvement when added to TiO2 materials under visible-light irradiation. In the present paper, we investigated the performance of TiO2 nanotubes coupled with CdS quantum dots, by a molecular bifunctional linker, on photocatalytic hydrogen generation. TiO2 nanotubes were obtained by anodization of Ti foil, followed by annealing to crystallize the nanotubes into the anatase phase. Afterwards, the samples were sensitized with CdS quantum dots via an in situ hydrothermal route using 3-mercaptopropionic acid as the capping agent. This sensitization technique permits high loading and uniform distribution of CdS quantum dots onto TiO2 nanotubes. The XPS depth profile showed that CdS concentration remains almost unchanged (homogeneous), while the concentration relative to the sulfate anion decreases by more than 80% with respect to the initial value after ˜100 nm in depth. The presence of sulfate anions is due to the oxidation of sulfide and occurs in greater proportion in the material surface. This protection for air oxidation inside the nanotubular matrix seemingly protected the CdS for photocorrosion in sacrificial solution leading to good stability properties proved by long duration, stable photocurrent measurements. The effect of the size and the distribution of sizes of CdS quantum dots attached to TiO2 nanotubes on the photocatalytic hydrogen generation were investigated. The experimental results showed three different behaviors when the reaction time of CdS synthesis was increased in the sensitized samples, i.e. similar, deactivation and activation effects on the hydrogen production with regard to TiO2 nanotubes. The deactivation effect was related to two populations of sizes of CdS, where the population with a shorter band gap acts as a
Effect of the size of the quantum region in a hybrid embedded-cluster scheme for zeolite systems
Energy Technology Data Exchange (ETDEWEB)
Shor, Alexei M., E-mail: as@icct.ru [Institute of Chemistry and Chemical Technology, Russian Academy of Sciences, 660049 Krasnoyarsk (Russian Federation); Shor, Elena A. Ivanova [Institute of Chemistry and Chemical Technology, Russian Academy of Sciences, 660049 Krasnoyarsk (Russian Federation)] [Siberian Federal University, 660041 Krasnoyarsk (Russian Federation); Laletina, Svetlana [Institute of Chemistry and Chemical Technology, Russian Academy of Sciences, 660049 Krasnoyarsk (Russian Federation); Nasluzov, Vladimir A. [Institute of Chemistry and Chemical Technology, Russian Academy of Sciences, 660049 Krasnoyarsk (Russian Federation)] [Siberian Federal University, 660041 Krasnoyarsk (Russian Federation); Vayssilov, Georgi N., E-mail: gnv@chem.uni-sofia.bg [Faculty of Chemistry, University of Sofia, 1126 Sofia (Bulgaria); Roesch, Notker, E-mail: roesch@mytum.de [Technische Universitaet Muenchen, Department Chemie and Catalysis Research Center, 85747 Garching (Germany)
2009-09-18
Recently we presented an improved scheme for constructing the border region within the covEPE hybrid quantum mechanics/molecular mechanics (QM/MM) embedded cluster approach for zeolites and covalent oxides in the framework of the elastic polarizable environment method. In the present study we explored how size and shape of the embedded QM cluster affect the results for structural features, energies, and characteristic vibrational frequencies of two model systems, adsorption complexes of H{sub 2}O and Rh{sub 6} in faujasite frameworks that contain Bronsted acid sites. Comparison of calculated characteristics of different QM cluster models suggests that the local structure and vibrational frequencies of acid sites in adsorbate-free zeolite are well reproduced with all embedded QM clusters, which contain from 5T to 14T atoms. A proper description of systems with an H{sub 2}O adsorbate requires larger QM clusters, with at least 8T atoms, whereas vibrational frequencies of OH groups participating in hydrogen bonds demand even larger quantum clusters, preferably with 12T or 14T atoms. The structure of the metal particle in adsorbed rhodium species is well reproduced with all QM clusters scrutinized, from 12T atoms. Larger QM models, with 18T or 24T atoms, are recommended when one aims at a high accuracy of Rh-O and Rh-H distances and characteristic energies.
Energy Technology Data Exchange (ETDEWEB)
Daqiq, Reza; Ghobadi, Nader
2016-07-15
We study the quantum size effects of an MgO-based double barrier magnetic tunnel junction with a nonmagnetic-metal (DBMTJ-NM) (semiconductor (DBMTJ-SC)) spacer on the charge current and the spin-transfer torque (STT) components using non-equilibrium Green's function (NEGF) formalism. The results show oscillatory behavior due to the resonant tunneling effect depending on the structure parameters. We find that the charge current and the STT components in the DBMTJ-SC demonstrate the magnitude enhancement in comparison with the DBMTJ-NM. The bias dependence of the STT components in a DBMTJ-NM shows different behavior in comparison with spin valves and conventional MTJs. Therefore, by choosing a specific SC spacer with suitable thickness in a DBMTJ the charge current and the STT components significantly increase so that one can design a device with high STT and faster magnetization switching. - Highlights: • The quantum size effects are studied in double barrier magnetic tunnel junctions. • Spin torque (ST) components oscillate for increasing of middle spacer thicknesses. • Due to the resonant tunneling in the quantum well, oscillations have appeared. • By replacement a metal spacer with a semiconductor (ZnO) ST has increased. • The ST components vs. bias show gradually decreasing unlike spin valves or MTJs.
Ahmed, S. Jbara; Zulkafli, Othaman; M, A. Saeed
2016-05-01
Based on the Schrödinger equation for envelope function in the effective mass approximation, linear and nonlinear optical absorption coefficients in a multi-subband lens quantum dot are investigated. The effects of quantum dot size on the interband and intraband transitions energy are also analyzed. The finite element method is used to calculate the eigenvalues and eigenfunctions. Strain and In-mole-fraction effects are also studied, and the results reveal that with the decrease of the In-mole fraction, the amplitudes of linear and nonlinear absorption coefficients increase. The present computed results show that the absorption coefficients of transitions between the first excited states are stronger than those of the ground states. In addition, it has been found that the quantum dot size affects the amplitudes and peak positions of linear and nonlinear absorption coefficients while the incident optical intensity strongly affects the nonlinear absorption coefficients. Project supported by the Ministry of Higher Education and Scientific Research in Iraq, Ibnu Sina Institute and Physics Department of Universiti Teknologi Malaysia (UTM RUG Vote No. 06-H14).
Bruneau, A; Fortier, M; Gagne, F; Gagnon, C; Turcotte, P; Tayabali, A; Davis, T L; Auffret, M; Fournier, M
2013-03-01
The increasing use of products derived from nanotechnology has raised concern about their potential toxicity to aquatic life. This study sought to examine the comparative immunotoxicity of capped cadmium sulphide/cadmium telluride (CdS/CdTe) quantum dots (QDs) and possible impact of particle/aggregate size on two bivalves (Mytilus edulis and Elliptio complanata) and a fish (Oncorhynchus mykiss). The QDs were dispersed in sterile water and fractionated using a series of micro/ultrafiltration membranes of decreasing pore size: 450 nm, 100 nm, 50 nm, 25 nm, 100 kDa (6.8 nm), 30 kDa (4.6 nm), 10 kDa (3.2 nm) and 1 kDa (1.5 nm). The total concentrations of cadmium and tellurium were determined for the filtered material and for that retained on the filters (retentate). The immunotoxicity was determined by measuring cell viability and phagocytosis. Results revealed that nanoparticles retained on the ultrafilters had a higher Cd/Te ratio compared to the permeate fraction (ratio of 5 and 2 respectively) which could indicate that the CdS core was not associated with the permeable fraction of Cd. Our results demonstrate that the toxicity of CdS/CdTe QDs was concentration and size dependent. Large CdS/CdTe QD aggregates (25 nm < size < 100 nm) reduced phagocytosis more than did smaller nanoparticles (<25 nm). Moreover, our results revealed that the different species responded differently to these fractions. Mytilus edulis hemocytes were less sensitive to CdS/CdTe QDs than the Oncorhynchus mykiss macrophage and Elliptio complanata hemocytes.
Energy Technology Data Exchange (ETDEWEB)
Karimi, M.J. [Department of Physics, College of Sciences, Shiraz University of Technology, Shiraz 71555-313 (Iran, Islamic Republic of); Rezaei, G., E-mail: grezaei@yu.ac.ir [Department of Physics, College of Sciences, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of); Pakarzadeh, H. [Department of Physics, College of Sciences, Shiraz University of Technology, Shiraz 71555-313 (Iran, Islamic Republic of)
2013-11-01
Based on the effective mass and parabolic one-band approximations, the differential cross-section for the intersubband electron Raman scattering process in a single and multilayered spherical quantum dots is investigated. The influence of an on-center hydrogenic impurity and geometrical parameters such as the well and barrier widths on the differential cross-section is studied. Results show that the number, the position and the magnitude of the peaks of emission spectra, considerably depend on the presence of the hydrogenic impurity as well as geometrical parameters. Results also reveal that the magnitude of the peaks significantly depend on the polarization vectors of incident and scattered lights.
Heating process in the pre-Breakdown regime of the Quantum Hall Efect : a size dependent effect
Meziani, Y. M.; Chaubet, C.; Jouault, B; Bonifacie, S.; Raymond, A; Poirier, W; Piquemal, F.
2003-01-01
Our study presents experimental measurements of the contact and longitudinal voltage drops in Hall bars, as a function of the current amplitude. We are interested in the heating phenomenon which takes place before the breakdown of the quantum Hall effect, i.e. the pre-breakdown regime. Two types of samples has been investigated, at low temperature (4.2 and 1.5K) and high magnetic field (up to 13 T). The Hall bars have several different widths, and our observations clearly demonstrate that the...
Size effect on quantum magnetic and thermo-magnetic oscillations in the non-spin domain phase
Bakaleinikov, L. A.; Gordon, A.
2016-12-01
Magnetic and thermo-magnetic (magneto-caloric) oscillations are studied in quantizing magnetic fields in slabs under conditions of the existence of non-spin (Condon) domains. Size effects on the magnetization oscillations in thin samples are calculated in the domain phase. Computations are carried out in the center of the period of the magnetization and temperature oscillations, taking into account the sample size. Phase diagrams, describing diamagnetic phase transitions and formation of Condon domains, are presented in finite size silver and quasi-two-dimensional organic conductors (2D) samples.
Size effect on quantum magnetic and thermo-magnetic oscillations in the non-spin domain phase
Energy Technology Data Exchange (ETDEWEB)
Bakaleinikov, L.A., E-mail: bakal.ammp@mail.ioffe.ru [A.F. Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg, 194021 (Russian Federation); Department of Exact Sciences, Faculty of Natural Sciences, University of Haifa, Oranim Campus, Tivon 36006 (Israel); Gordon, A. [Department of Exact Sciences, Faculty of Natural Sciences, University of Haifa, Oranim Campus, Tivon 36006 (Israel)
2016-12-01
Magnetic and thermo-magnetic (magneto-caloric) oscillations are studied in quantizing magnetic fields in slabs under conditions of the existence of non-spin (Condon) domains. Size effects on the magnetization oscillations in thin samples are calculated in the domain phase. Computations are carried out in the center of the period of the magnetization and temperature oscillations, taking into account the sample size. Phase diagrams, describing diamagnetic phase transitions and formation of Condon domains, are presented in finite size silver and quasi-two-dimensional organic conductors (2D) samples.
Panković, Vladan
2009-01-01
In this work, by use of a formalism similar to formalism of the quantum Zeno effect (decrease of the decay probability of an unstable quantum system by frequent measurements) and quantum anti-Zeno effect (increase of the decay probability of an unstable quantum system by frequent measurements), we introduce so-called quantum Hamlet effect. It represents a complete destruction of the quantum predictions on the decay probability of an unstable quantum system by frequent measurement. Precisely, by means of some especial, correctly defined, frequent measurements, decay probability of an unstable quantum system can behave as a divergent series without any definite value. In this way there is quantum mechanically completely unsolvable ``Hamlet dilemma'', to decay or not to decay.
Finite-size scaling at quantum transitions
Campostrini, Massimo; Pelissetto, Andrea; Vicari, Ettore
2014-03-01
We develop the finite-size scaling (FSS) theory at quantum transitions. We consider various boundary conditions, such as open and periodic boundary conditions, and characterize the corrections to the leading FSS behavior. Using renormalization-group (RG) theory, we generalize the classical scaling ansatz to describe FSS in the quantum case, classifying the different sources of scaling corrections. We identify nonanalytic corrections due to irrelevant (bulk and boundary) RG perturbations and analytic contributions due to regular backgrounds and analytic expansions of the nonlinear scaling fields. To check the general predictions, we consider the quantum XY chain in a transverse field. For this model exact or numerically accurate results can be obtained by exploiting its fermionic quadratic representation. We study the FSS of several observables, such as the free energy, the energy differences between low-energy levels, correlation functions of the order parameter, etc., confirming the general predictions in all cases. Moreover, we consider bipartite entanglement entropies, which are characterized by the presence of additional scaling corrections, as predicted by conformal field theory.
Field emission from quantum size GaN structures
Yilmazoglu, O.; Pavlidis, D.; Litvin, Yu. M.; Hubbard, S.; Tiginyanu, I. M.; Mutamba, K.; Hartnagel, H. L.; Litovchenko, V. G.; Evtukh, A.
2003-12-01
Whisker structures and quantum dots fabricated by photoelectrochemical (PEC) etching of undoped and doped metalorganic chemical vapor deposition (MOCVD)-grown GaN (2×10 17 or 3×10 18 cm -3) are investigated in relation with their field-emission characteristics. Different surface morphologies, corresponding to different etching time and photocurrent, results in different field-emission characteristics with low turn-on voltage down to 4 V/μm and the appearance of quantum-size effect in the I- V curves.
Field emission from quantum size GaN structures
Energy Technology Data Exchange (ETDEWEB)
Yilmazoglu, O.; Pavlidis, D.; Litvin, Yu.M.; Hubbard, S.; Tiginyanu, I.M.; Mutamba, K.; Hartnagel, H.L.; Litovchenko, V.G.; Evtukh, A
2003-12-30
Whisker structures and quantum dots fabricated by photoelectrochemical (PEC) etching of undoped and doped metalorganic chemical vapor deposition (MOCVD)-grown GaN (2x10{sup 17} or 3x10{sup 18} cm{sup -3}) are investigated in relation with their field-emission characteristics. Different surface morphologies, corresponding to different etching time and photocurrent, results in different field-emission characteristics with low turn-on voltage down to 4 V/{mu}m and the appearance of quantum-size effect in the I-V curves.
Kelley, Ken; Preacher, Kristopher J.
2012-01-01
The call for researchers to report and interpret effect sizes and their corresponding confidence intervals has never been stronger. However, there is confusion in the literature on the definition of effect size, and consequently the term is used inconsistently. We propose a definition for effect size, discuss 3 facets of effect size (dimension,…
Kelley, Ken; Preacher, Kristopher J.
2012-01-01
The call for researchers to report and interpret effect sizes and their corresponding confidence intervals has never been stronger. However, there is confusion in the literature on the definition of effect size, and consequently the term is used inconsistently. We propose a definition for effect size, discuss 3 facets of effect size (dimension,…
General finite-size effects for zero-entropy states in one-dimensional quantum integrable models
Eliëns, Sebas; Caux, Jean-Sébastien
2016-12-01
We present a general derivation of the spectrum of excitations for gapless states of zero entropy density in Bethe ansatz solvable models. Our formalism is valid for an arbitrary choice of bare energy function which is relevant to situations where the Hamiltonian for time evolution differs from the Hamiltonian in a (generalized) Gibbs ensemble, i.e. out of equilibrium. The energy of particle and hole excitations, as measured with the time-evolution Hamiltonian, is shown to include additional contributions stemming from the shifts of the Fermi points that may now have finite energy. The finite-size effects are also derived and the connection with conformal field theory discussed. The critical exponents can still be obtained from the finite-size spectrum, however the velocity occurring here differs from the one in the constant Casimir term. The derivation highlights the importance of the phase shifts at the Fermi points for the critical exponents of asymptotes of correlations. We generalize certain results known for the ground state and discuss the relation to the dressed charge (matrix). Finally, we discuss the finite-size corrections in the presence of an additional particle or hole, which are important for dynamical correlation functions.
Quantum homomorphic encryption for polynomial-sized circuits
Y. Dulek (Yfke); C. Schaffner (Christian); F. Speelman (Florian)
2016-01-01
textabstractWe present a new scheme for quantum homomorphic encryption which is compact and allows for efficient evaluation of arbitrary polynomial-sized quantum circuits. Building on the framework of Broadbent and Jeffery [BJ15] and recent results in the area of instantaneous non-local quantum
Size effect in thermoelectric materials
Mao, Jun; Liu, Zihang; Ren, Zhifeng
2016-12-01
Thermoelectric applications have attracted increasing interest recently due to its capability of converting waste heat into electricity without hazardous emissions. Materials with enhanced thermoelectric performance have been reported in recent two decades. The revival of research for thermoelectric materials began in early 1990s when the size effect is considered. Low-dimensional materials with exceptionally high thermoelectric figure of merit (ZT) have been presented, which broke the limit of ZT around unity. The idea of size effect in thermoelectric materials even inspired the later nanostructuring and band engineering strategies, which effectively enhanced the thermoelectric performance of bulk materials. In this overview, the size effect in low-dimensional thermoelectric materials is reviewed. We first discuss the quantum confinement effect on carriers, including the enhancement of electronic density of states, semimetal to semiconductor transition and carrier pocket engineering. Then, the effect of assumptions on theoretical calculations is presented. Finally, the effect of phonon confinement and interface scattering on lattice thermal conductivity is discussed.
Yang, Bingjun; Liu, Rutao; Hao, Xiaopeng; Wu, Yongzhong; Du, Jie
2013-10-01
Quantum dots (QDs) are recognized as some of the most promising candidates for future applications in biomedicine. However, concerns about their safety have delayed their widespread application. Human serum albumin (HSA) is the main protein component of the circulatory system. It is important to explore the interaction of QDs with HSA for the potential in vivo application of QDs. Herein, using spectroscopy and isothermal titration calorimetry (ITC), the effect of glutathione-capped CdTe quantum dots of different sizes on the HSA was investigated. After correction for the inner filter effect, the fluorescence emission spectra and synchronous fluorescence spectra showed that the microenvironment of aromatic acid residues in the protein was slightly changed when the glutathione (GSH)-cadmium telluride (CdTe) QDs was added, and GSH-CdTe QDs with larger particle size exhibited a much higher effect on HSA than the small particles. Although a ground-state complex between HSA and GSH-CdTe QDs was formed, the UV-vis absorption and circular dichroism spectroscopic results did not find appreciable conformational changes of HSA. ITC has been used for the first time to characterize the binding of QDs with HSA. The ITC results revealed that the binding was a thermodynamically spontaneous process mainly driven by hydrophobic interactions, and the binding constant tended to increase as the GSH-CdTe QDs size increased. These findings are helpful in understanding the bioactivities of QDs in vivo and can be used to assist in the design of biocompatible and stable QDs.
Energy Technology Data Exchange (ETDEWEB)
Pejova, Biljana, E-mail: biljana@pmf.ukim.mk
2014-05-01
Raman scattering in combination with optical spectroscopy and structural studies by X-ray diffraction was employed to investigate the phonon confinement and strain-induced effects in 3D assemblies of variable-size zincblende ZnSe quantum dots close packed in thin film form. Nanostructured thin films were synthesized by colloidal chemical approach, while tuning of the nanocrystal size was enabled by post-deposition thermal annealing treatment. In-depth insights into the factors governing the observed trends of the position and half-width of the 1LO band as a function of the average QD size were gained. The overall shifts in the position of 1LO band were found to result from an intricate compromise between the influence of phonon confinement and lattice strain-induced effects. Both contributions were quantitatively and exactly modeled. Accurate assignments of the bands due to surface optical (SO) modes as well as of the theoretically forbidden transverse optical (TO) modes were provided, on the basis of reliable physical models (such as the dielectric continuum model of Ruppin and Englman). The size-dependence of the ratio of intensities of the TO and LO modes was studied and discussed as well. Relaxation time characterizing the phonon decay processes in as-deposited samples was found to be approximately 0.38 ps, while upon post-deposition annealing already at 200 °C it increases to about 0.50 ps. Both of these values are, however, significantly smaller than those characteristic for a macrocrystalline ZnSe sample. - Graphical abstract: Optical phonons in nanostructured thin films composed by zincblende zinc selenide quantum dots in strong size-quantization regime: competition between phonon confinement and strain-related effects. - Highlights: • Phonon confinement vs. strain-induced effects in ZnSe 3D QD assemblies were studied. • Shifts of the 1LO band result from an intricate compromise between the two effects. • SO and theoretically forbidden TO modes were
Daqiq, Reza; Ghobadi, Nader
2016-07-01
We study the quantum size effects of an MgO-based double barrier magnetic tunnel junction with a nonmagnetic-metal (DBMTJ-NM) (semiconductor (DBMTJ-SC)) spacer on the charge current and the spin-transfer torque (STT) components using non-equilibrium Green's function (NEGF) formalism. The results show oscillatory behavior due to the resonant tunneling effect depending on the structure parameters. We find that the charge current and the STT components in the DBMTJ-SC demonstrate the magnitude enhancement in comparison with the DBMTJ-NM. The bias dependence of the STT components in a DBMTJ-NM shows different behavior in comparison with spin valves and conventional MTJs. Therefore, by choosing a specific SC spacer with suitable thickness in a DBMTJ the charge current and the STT components significantly increase so that one can design a device with high STT and faster magnetization switching.
Quantum Cosmology: Effective Theory
Bojowald, Martin
2012-01-01
Quantum cosmology has traditionally been studied at the level of symmetry-reduced minisuperspace models, analyzing the behavior of wave functions. However, in the absence of a complete full setting of quantum gravity and detailed knowledge of specific properties of quantum states, it remained difficult to make testable predictions. For quantum cosmology to be part of empirical science, it must allow for a systematic framework in which corrections to well-tested classical equations can be derived, with any ambiguities and ignorance sufficiently parameterized. As in particle and condensed-matter physics, a successful viewpoint is one of effective theories, adapted to specific issues one encounters in quantum cosmology. This review presents such an effective framework of quantum cosmology, taking into account, among other things, space-time structures, covariance, the problem of time and the anomaly issue.
Quantum Size- Dependent Third- Order Nonlinear Optical Susceptibility in Semiconductor Quantum Dots
Institute of Scientific and Technical Information of China (English)
SUN Ting; XIONG Gui-guang
2005-01-01
The density matrix approach has been employed to investigate the optical nonlinear polarization in a single semiconductor quantum dot(QD). Electron states are considered to be confined within a quantum dot with infinite potential barriers. It is shown, by numerical calculation, that the third-order nonlinear optical susceptibilities for a typical Si quantum dot is dependent on the quantum size of the quantum dot and the frequency of incident light.
Munoz, Raul C.; Arenas, Claudio
2017-03-01
We discuss recent progress regarding size effects and their incidence upon the coefficients describing charge transport (resistivity, magnetoresistance, and Hall effect) induced by electron scattering from disordered grain boundaries and from rough surfaces on metallic nanostructures; we review recent measurements of the magneto transport coefficients that elucidate the electron scattering mechanisms at work. We review as well theoretical developments regarding quantum transport theories that allow calculating the increase in resistivity induced by electron-rough surface scattering (in the absence of grain boundaries) from first principles—from the parameters that describe the surface roughness that can be measured with a Scanning Tunnelling Microscope (STM). We evaluate the predicting power of the quantum version of the Fuchs-Sondheimer theory and of the model proposed by Calecki, abandoning the method of parameter fitting used for decades, but comparing instead theoretical predictions with resistivity measured in thin films where surface roughness has also been measured with a STM, and where electron-grain boundary scattering can be neglected. We also review the theory of Mayadas and Shatzkes (MS) [Phys. Rev. B 1, 1382 (1970)] used for decades, and discuss its severe conceptual difficulties that arise out of the fact that: (i) MS employed plane waves to describe the electronic states within the metal sample having periodic grain boundaries, rather than the Bloch states known since the thirties to be the solutions of the Schrödinger equation describing electrons propagating through a Krönig-Penney [Proc. R. Soc. London Ser. A 130, 499 (1931)] periodic potential; (ii) MS ignored the fact that the wave functions describing electrons propagating through a 1-D disordered potential are expected to decay exponentially with increasing distance, a fact known since the work of Anderson [Phys. Rev. 109, 1492 (1958)] in 1958 for which he was awarded the Nobel Prize in
Nonlocal quantum gravity and the size of the universe
Energy Technology Data Exchange (ETDEWEB)
Reuter, M. [Institute of Physics, University of Mainz, Staudingerweg 7, 55099 Mainz (Germany); Saueressig, F. [Institute of Theoretical Physics, University of Jena, Max-Wien-Platz 1, 07743 Jena (Germany)
2004-06-01
Motivated by the conjecture that the cosmological constant problem is solved by strong quantum effects in the infrared we use the exact flow equation of Quantum Einstein Gravity to determine the renormalization group behavior of a class of nonlocal effective actions. They consist of the Einstein-Hilbert term and a general nonlinear function F{sub k}(V) of the Euclidean spacetime volume V. For the V+V ln V-invariant the renormalization group running enormously suppresses the value of the renormalized curvature which results from Planck-size parameters specified at the Planck scale. One obtains very large, i.e., almost flat universes without finetuning the cosmological constant. A critical infrared fixed point is found where gravity is scale invariant. (Abstract Copyright [2004], Wiley Periodicals, Inc.)
Energy Technology Data Exchange (ETDEWEB)
Wasey, A. H. M. Abdul; Chakrabarty, Soubhik; Das, G. P., E-mail: msgpd@iacs.res.in [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032 (India)
2015-02-14
Most of the two dimensional (2D) transition metal dichalcogenides (TMDC) are nonmagnetic in pristine form. However, 2D pristine VX{sub 2} (X = S, Se, Te) materials are found to be ferromagnetic. Using spin polarized density functional theory (DFT) calculations, we have studied the electronic, magnetic, and surface properties of this class of materials in both trigonal prismatic H- and octahedral T-phase. Our calculations reveal that they exhibit materially different properties in those two polymorphs. Most importantly, detailed investigation of electronic structure explored the quantum size effect in H-phase of these materials thereby leading to metal to semimetal (H-VS{sub 2}) or semiconductor (H-VSe{sub 2}) transition when downsizing from bilayer to corresponding monolayer.
Quantum broadcasting multiple blind signature with constant size
Xiao, Min; Li, Zhenli
2016-09-01
Using quantum homomorphic signature in quantum network, we propose a quantum broadcasting multiple blind signature scheme. Different from classical signature and current quantum signature schemes, the multi-signature proposed in our scheme is not generated by simply putting the individual signatures together, but by aggregating the individual signatures based on homomorphic property. Therefore, the size of the multi-signature is constant. Furthermore, based on a wide range of investigation for the security of existing quantum signature protocols, our protocol is designed to resist possible forgery attacks against signature and message from the various attack sources and disavowal attacks from participants.
Quantum-size-controlled photoelectrochemical etching of semiconductor nanostructures
Fischer, Arthur J.; Tsao, Jeffrey Y.; Wierer, Jr., Jonathan J.; Xiao, Xiaoyin; Wang, George T.
2016-03-01
Quantum-size-controlled photoelectrochemical (QSC-PEC) etching provides a new route to the precision fabrication of epitaxial semiconductor nanostructures in the sub-10-nm size regime. For example, quantum dots (QDs) can be QSC-PEC-etched from epitaxial InGaN thin films using narrowband laser photoexcitation, and the QD sizes (and hence bandgaps and photoluminescence wavelengths) are determined by the photoexcitation wavelength.
Aguirre, Matías E; Municoy, S; Grela, M A; Colussi, A J
2017-02-08
The unique properties of semiconductor quantum dots (QDs) have found application in the conversion of solar to chemical energy. How the relative rates of the redox processes that control QD photon efficiencies depend on the particle radius (r) and photon energy (Eλ), however, is not fully understood. Here, we address these issues and report the quantum yields (Φs) of interfacial charge transfer and electron doping in ZnO QDs capped with ethylene glycol (EG) as a function of r and Eλ in the presence and absence of methyl viologen (MV(2+)) as an electron acceptor, respectively. We found that Φs for the oxidation of EG are independent of Eλ and photon fluence (φλ), but markedly increase with r. The independence of Φs on φλ ensures that QDs are never populated by more than one electron-hole pair, thereby excluding Auger-type terminations. We show that these findings are consistent with the operation of an interfacial redox process that involves thermalized carriers in the Marcus inverted region. In the absence of MV(2+), QDs accumulate electrons up to limiting volumetric densities ρe,∞ that depend sigmoidally on excess photon energy E* = Eλ - EBG(r), where EBG(r) is the r-dependent bandgap energy. The maximum electron densities: ρev,∞ ∼ 4 × 10(20) cm(-3), are reached at E* > 0.5 eV, independent of the particle radius.
Pejova, Biljana
2014-05-01
Raman scattering in combination with optical spectroscopy and structural studies by X-ray diffraction was employed to investigate the phonon confinement and strain-induced effects in 3D assemblies of variable-size zincblende ZnSe quantum dots close packed in thin film form. Nanostructured thin films were synthesized by colloidal chemical approach, while tuning of the nanocrystal size was enabled by post-deposition thermal annealing treatment. In-depth insights into the factors governing the observed trends of the position and half-width of the 1LO band as a function of the average QD size were gained. The overall shifts in the position of 1LO band were found to result from an intricate compromise between the influence of phonon confinement and lattice strain-induced effects. Both contributions were quantitatively and exactly modeled. Accurate assignments of the bands due to surface optical (SO) modes as well as of the theoretically forbidden transverse optical (TO) modes were provided, on the basis of reliable physical models (such as the dielectric continuum model of Ruppin and Englman). The size-dependence of the ratio of intensities of the TO and LO modes was studied and discussed as well. Relaxation time characterizing the phonon decay processes in as-deposited samples was found to be approximately 0.38 ps, while upon post-deposition annealing already at 200 °C it increases to about 0.50 ps. Both of these values are, however, significantly smaller than those characteristic for a macrocrystalline ZnSe sample.
Mohseni, Masoud; Omar, Yasser; Engel, Gregory S.; Plenio, Martin B.
2014-08-01
List of contributors; Preface; Part I. Introduction: 1. Quantum biology: introduction Graham R. Fleming and Gregory D. Scholes; 2. Open quantum system approaches to biological systems Alireza Shabani, Masoud Mohseni, Seogjoo Jang, Akihito Ishizaki, Martin Plenio, Patrick Rebentrost, Alàn Aspuru-Guzik, Jianshu Cao, Seth Lloyd and Robert Silbey; 3. Generalized Förster resonance energy transfer Seogjoo Jang, Hoda Hossein-Nejad and Gregory D. Scholes; 4. Multidimensional electronic spectroscopy Tomáš Mančal; Part II. Quantum Effects in Bacterial Photosynthetic Energy Transfer: 5. Structure, function, and quantum dynamics of pigment protein complexes Ioan Kosztin and Klaus Schulten; 6. Direct observation of quantum coherence Gregory S. Engel; 7. Environment-assisted quantum transport Masoud Mohseni, Alàn Aspuru-Guzik, Patrick Rebentrost, Alireza Shabani, Seth Lloyd, Susana F. Huelga and Martin B. Plenio; Part III. Quantum Effects in Higher Organisms and Applications: 8. Excitation energy transfer in higher plants Elisabet Romero, Vladimir I. Novoderezhkin and Rienk van Grondelle; 9. Electron transfer in proteins Spiros S. Skourtis; 10. A chemical compass for bird navigation Ilia A. Solov'yov, Thorsten Ritz, Klaus Schulten and Peter J. Hore; 11. Quantum biology of retinal Klaus Schulten and Shigehiko Hayashi; 12. Quantum vibrational effects on sense of smell A. M. Stoneham, L. Turin, J. C. Brookes and A. P. Horsfield; 13. A perspective on possible manifestations of entanglement in biological systems Hans J. Briegel and Sandu Popescu; 14. Design and applications of bio-inspired quantum materials Mohan Sarovar, Dörthe M. Eisele and K. Birgitta Whaley; 15. Coherent excitons in carbon nanotubes Leonas Valkunas and Darius Abramavicius; Glossary; References; Index.
Energy Technology Data Exchange (ETDEWEB)
Bernevig, B.Andrei; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.
2010-01-15
The quantum Hall liquid is a novel state of matter with profound emergent properties such as fractional charge and statistics. Existence of the quantum Hall effect requires breaking of the time reversal symmetry caused by an external magnetic field. In this work, we predict a quantized spin Hall effect in the absence of any magnetic field, where the intrinsic spin Hall conductance is quantized in units of 2 e/4{pi}. The degenerate quantum Landau levels are created by the spin-orbit coupling in conventional semiconductors in the presence of a strain gradient. This new state of matter has many profound correlated properties described by a topological field theory.
DEFF Research Database (Denmark)
Arslanagic, Samel; Ziolkowski, Richard W.
2014-01-01
of a gain-impregnated silica nano-core covered with a nano-shell of a specific plasmonic material. Attention is devoted to the influence of the over-all size of these particles and their material composition on the obtained levels of active enhancement or jamming. Silver, gold and copper are employed...... levels are most notable when the nano-shell is gold....
Correlational effect size benchmarks.
Bosco, Frank A; Aguinis, Herman; Singh, Kulraj; Field, James G; Pierce, Charles A
2015-03-01
Effect size information is essential for the scientific enterprise and plays an increasingly central role in the scientific process. We extracted 147,328 correlations and developed a hierarchical taxonomy of variables reported in Journal of Applied Psychology and Personnel Psychology from 1980 to 2010 to produce empirical effect size benchmarks at the omnibus level, for 20 common research domains, and for an even finer grained level of generality. Results indicate that the usual interpretation and classification of effect sizes as small, medium, and large bear almost no resemblance to findings in the field, because distributions of effect sizes exhibit tertile partitions at values approximately one-half to one-third those intuited by Cohen (1988). Our results offer information that can be used for research planning and design purposes, such as producing better informed non-nil hypotheses and estimating statistical power and planning sample size accordingly. We also offer information useful for understanding the relative importance of the effect sizes found in a particular study in relationship to others and which research domains have advanced more or less, given that larger effect sizes indicate a better understanding of a phenomenon. Also, our study offers information about research domains for which the investigation of moderating effects may be more fruitful and provide information that is likely to facilitate the implementation of Bayesian analysis. Finally, our study offers information that practitioners can use to evaluate the relative effectiveness of various types of interventions. PsycINFO Database Record (c) 2015 APA, all rights reserved.
Effectively Emergent Quantum Mechanics
Exirifard, Qasem
2008-01-01
We consider non minimal coupling between matters and gravity in modified theories of gravity. In contrary to the current common sense, we report that quantum mechanics can effectively emerge when the space-time geometry is sufficiently flat. In other words, quantum mechanics might play no role when and where the space-time geometry is highly curved. We study the first two simple models of Effectively Emergent Quantum Mechanics(EEQM): R-dependent EEQM and G-dependent EEQM where R is the Ricci scalar and G is the Gauss-Bonnet Lagrangian density. We discuss that these EEQM theories might be fine tuned to remain consistent with all the implemented experiments and performed observations. In particular, we observe that G-dependent EEQM softens the problem of quantum gravity.
Effectively calculable quantum mechanics
Bolotin, Arkady
2015-01-01
According to mathematical constructivism, a mathematical object can exist only if there is a way to compute (or "construct") it; so, what is non-computable is non-constructive. In the example of the quantum model, whose Fock states are associated with Fibonacci numbers, this paper shows that the mathematical formalism of quantum mechanics is non-constructive since it permits an undecidable (or effectively impossible) subset of Hilbert space. On the other hand, as it is argued in the paper, if...
Grössing, G.; Fussy, S.; Mesa Pascasio, J.; Schwabl, H.
2015-07-01
We show that during stochastic beam attenuation in double slit experiments, there appear unexpected new effects for transmission factors below a ≤ 10-4, which can eventually be observed with the aid of weak measurement techniques. These are denoted as quantum sweeper effects, which are characterized by the bunching together of low counting rate particles within very narrow spatial domains. We employ a “superclassical” modeling procedure which we have previously shown to produce predictions identical with those of standard quantum theory. Thus it is demonstrated that in reaching down to ever weaker channel intensities, the nonlinear nature of the probability density currents becomes ever more important. We finally show that the resulting unexpected effects nevertheless implicitly also exist in standard quantum mechanics.
Pankovic, Vladan
2009-01-01
In this work we consider remarkable experiment of the quantum dynamical interaction between a photon and fixed beam splitter with additional two optical fibers. Given fibers, having "circular", almost completely closed loop forms, admit that both superposition terms, corresponding to reflecting and passing photon, interact unlimitedly periodically with splitter. For increasing number of given interactions final state of the photon tends to superposition of reflecting and passing photon with equivalent superposition coefficients quite independently of their initial values. So, many time repeated unitary quantum dynamical evolution implies an unexpected degeneration. Feynman ingeniously observed that a time of the degeneration of the ideas will come, known to any great geographer-explorer (e.g. Magellan that first circumnavigate Earth), when he thinks about the army of the tourists that will come after him. For this reason mentioned dynamical degeneration will be called quantum Magellan effect. Also, we conside...
The effect of quantum noise on the restricted quantum game
Institute of Scientific and Technical Information of China (English)
Cao Shuai; Fang Mao-Fa
2006-01-01
It has recently been established that quantum strategies have great advantage over classical ones in quantum games. However, quantum states are easily affected by the quantum noise resulting in decoherence. In this paper, we investigate the effect of quantum noise on the restricted quantum game in which one player is restricted in classical strategic space, another in quantum strategic space and only the quantum player is affected by the quantum noise. Our results show that in the maximally entangled state, no Nash equilibria exist in the range of 0＜ p≤0.422 (p is the quantum noise parameter), while two special Nash equilibria appear in the range of 0.422 ＜ p＜ 1. The advantage that the quantum player diminished only in the limit of maximum quantum noise. Increasing the amount of quantum noise leads to the increase of the classical player's payoff and the reduction of the quantum player's payoff, but is helpful in forming two Nash equilibria.
Quenched effective population size
Sagitov, Serik; Vatutin, Vladimir
2010-01-01
We study the genealogy of a geographically - or otherwise - structured version of the Wright-Fisher population model with fast migration. The new feature is that migration probabilities may change in a random fashion. Applying Takahashi's results on Markov chains with random transition matrices, we establish convergence to the Kingman coalescent, as the population size goes to infinity. This brings a novel formula for the coalescent effective population size (EPS). We call it a quenched EPS to emphasize the key feature of our model - random environment. The quenched EPS is compared with an annealed (mean-field) EPS which describes the case of constant migration probabilities obtained by averaging the random migration probabilities over possible environments.
Energy Technology Data Exchange (ETDEWEB)
Schliwa, A. [Technische Univ. Berlin (Germany). Inst. fuer Festkoerperphysik]|[Weierstrass-Institut fuer Angewandte Analysis und Stochastik (WIAS) im Forschungsverbund Berlin e.V. (Germany); Winkelnkemper, M.; Bimberg, D. [Technische Univ. Berlin (Germany). Inst. fuer Festkoerperphysik
2007-07-01
The strain fields in and around self-organized In(Ga)As/GaAs quantum dots (QD) sensitively depend on QD geometry, average InGaAs composition and the In/Ga distribution profile. Piezoelectric fields of varying size are one result of these strain fields. We study systematically a large variety of realistic QD geometries and composition profiles, and calculate the linear and quadratic parts of the piezoelectric field. The balance of the two orders depends strongly on the QD shape and composition. For pyramidal InAs QDs with sharp interfaces a strong dominance of the second order fields is found. Upon annealing the first order terms become dominant, resulting in a reordering of the electron p- and d-states and a reorientation of the hole wavefunctions. (orig.)
Quantum Effects in Biological Systems
Roy, Sisir
2014-07-01
The debates about the trivial and non-trivial effects in biological systems have drawn much attention during the last decade or so. What might these non-trivial sorts of quantum effects be? There is no consensus so far among the physicists and biologists regarding the meaning of "non-trivial quantum effects". However, there is no doubt about the implications of the challenging research into quantum effects relevant to biology such as coherent excitations of biomolecules and photosynthesis, quantum tunneling of protons, van der Waals forces, ultrafast dynamics through conical intersections, and phonon-assisted electron tunneling as the basis for our sense of smell, environment assisted transport of ions and entanglement in ion channels, role of quantum vacuum in consciousness. Several authors have discussed the non-trivial quantum effects and classified them into four broad categories: (a) Quantum life principle; (b) Quantum computing in the brain; (c) Quantum computing in genetics; and (d) Quantum consciousness. First, I will review the above developments. I will then discuss in detail the ion transport in the ion channel and the relevance of quantum theory in brain function. The ion transport in the ion channel plays a key role in information processing by the brain.
Quantum Effects in Biological Systems
2016-01-01
Since the last decade the study of quantum mechanical phenomena in biological systems has become a vibrant field of research. Initially sparked by evidence of quantum effects in energy transport that is instrumental for photosynthesis, quantum biology asks the question of how methods and models from quantum theory can help us to understand fundamental mechanisms in living organisms. This approach entails a paradigm change challenging the related disciplines: The successful framework of quantum theory is taken out of its low-temperature, microscopic regimes and applied to hot and dense macroscopic environments, thereby extending the toolbox of biology and biochemistry at the same time. The Quantum Effects in Biological Systems conference is a platform for researchers from biology, chemistry and physics to present and discuss the latest developments in the field of quantum biology. After meetings in Lisbon (2009), Harvard (2010), Ulm (2011), Berkeley (2012), Vienna (2013), Singapore (2014) and Florence (2015),...
Synthesis and optical properties of quantum-size metal sulfide particles in aqueous solution
Energy Technology Data Exchange (ETDEWEB)
Nedeljkovic, J.M.; Patel, R.C.; Kaufman, P.; Joyce-Pruden, C.; O' Leary, N. (Clarkson Univ., Potsdam, NY (United States))
1993-04-01
During the past decade, small-particle' research has become quite popular in various fields of chemistry and physics. The recognition of quantum-size effects in very small colloidal particles has led to renewed interest in this area. Small particles' are clusters of atoms or molecules ranging in size from 1 nm to almost 10 nm or having agglomeration numbers from 10 up to a few hundred. In other words, small particles fall in size between single atoms or molecules and bulk materials. The agglomeration number specifies the number of individual atoms or molecules in a given cluster. The research in this area is interdisciplinary, and it links colloidal science and molecular chemistry. The symbiosis of these two areas of research has revealed some intriguing characteristics of small particles. This experiment illustrates the following: simple colloidal techniques for the preparation of two different types of quantum-size metal sulfide particles; the blue shift of the measured optical absorption spectra when the particle size is decreased in the quantum-size regime; and use of a simple quantum mechanical model to calculate the particle size from the absorption onset measured for CdS.
Loop quantum gravity and Planck-size black hole entropy
Corichi, A; Fernandez-Borja, E; Corichi, Alejandro; Diaz-Polo, Jacobo; Fernandez-Borja, Enrique
2007-01-01
The Loop Quantum Gravity (LQG) program is briefly reviewed and one of its main applications, namely the counting of black hole entropy within the framework is considered. In particular, recent results for Planck size black holes are reviewed. These results are consistent with an asymptotic linear relation (that fixes uniquely a free parameter of the theory) and a logarithmic correction with a coefficient equal to -1/2. The account is tailored as an introduction to the subject for non-experts.
Loop quantum gravity and Planck-size black hole entropy
Energy Technology Data Exchange (ETDEWEB)
Corichi, Alejandro [Instituto de Matematicas, Unidad Morelia, Universidad Nacional Autonoma de Mexico, UNAM-Campus Morelia, A. Postal 61-3, Morelia, Michoacan 58090 (Mexico); Diaz-Polo, Jacobo [Departamento de AstronomIa y AstrofIsica, Universidad de Valencia, Burjassot-46100, Valencia (Spain); Fernandez-Borja, Enrique [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC. Universidad de Valencia, Burjassot-46100, Valencia (Spain)
2007-05-15
The Loop Quantum Gravity (LQG) program is briefly reviewed and one of its main applications, namely the counting of black hole entropy within the framework is considered. In particular, recent results for Planck size black holes are reviewed. These results are consistent with an asymptotic linear relation (that fixes uniquely a free parameter of the theory) and a logarithmic correction with a coefficient equal to -1/2. The account is tailored as an introduction to the subject for non-experts.
Non-monotonicity in the quantum-classical transition: Chaos induced by quantum effects
Kapulkin, A; Kapulkin, Arie; Pattanayak, Arjendu K.
2007-01-01
The transition from classical to quantum behavior for chaotic systems is understood to be accompanied by the suppression of chaotic effects as the relative size of $\\hbar$ is increased. We show evidence to the contrary in the behavior of the quantum trajectory dynamics of a dissipative quantum chaotic system, the double-well Duffing oscillator. The classical limit in the case considered has regular behavior, but as the effective $\\hbar$ is increased we see chaotic behavior. This chaos then disappears deeper into the quantum regime, which means that the quantum-classical transition in this case is non-monotonic in $\\hbar$.
Effective equations for the quantum pendulum from momentous quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Hernandez, Hector H.; Chacon-Acosta, Guillermo [Universidad Autonoma de Chihuahua, Facultad de Ingenieria, Nuevo Campus Universitario, Chihuahua 31125 (Mexico); Departamento de Matematicas Aplicadas y Sistemas, Universidad Autonoma Metropolitana-Cuajimalpa, Artificios 40, Mexico D. F. 01120 (Mexico)
2012-08-24
In this work we study the quantum pendulum within the framework of momentous quantum mechanics. This description replaces the Schroedinger equation for the quantum evolution of the system with an infinite set of classical equations for expectation values of configuration variables, and quantum dispersions. We solve numerically the effective equations up to the second order, and describe its evolution.
Mesoscopic effects in the quantum Hall regime
Indian Academy of Sciences (India)
R N Bhatt; Xin Wan
2002-02-01
We report results of a study of (integer) quantum Hall transitions in a single or multiple Landau levels for non-interacting electrons in disordered two-dimensional systems, obtained by projecting a tight-binding Hamiltonian to the corresponding magnetic subbands. In ﬁnite-size systems, we ﬁnd that mesoscopic effects often dominate, leading to apparent non-universal scaling behavior in higher Landau levels. This is because localization length, which grows exponentially with Landau level index, exceeds the system sizes amenable to the numerical study at present. When band mixing between multiple Landau levels is present, mesoscopic effects cause a crossover from a sequence of quantum Hall transitions for weak disorder to classical behavior for strong disorder. This behavior may be of relevance to experimentally observed transitions between quantum Hall states and the insulating phase at low magnetic ﬁelds.
The effect of quantum noise on multiplayer quantum game
Institute of Scientific and Technical Information of China (English)
Cao Shuai; Fang Mao-Fa; Zheng Xiao-Juan
2007-01-01
It has recently been realized that quantum strategies have a great advantage over classical ones in quantum games.However, quantum states are easily affected by the quantum noise, resulting in decoherence. In this paper, we investigate the effect of quantum noise on a multiplayer quantum game with a certain strategic space, with all players affected by the same quantum noise at the same time. Our results show that in a maximally entangled state, a special Nash equilibrium appears in the range of 0 (≤) p (≤) 0.622 (p is the quantum noise parameter), and then disappears in the range of 0.622 ＜ p (≤) 1. Increasing the amount of quantum noise leads to the reduction of the quantum player's payoff.
Observable Effects of Quantum Gravity
Chang, Lay Nam; Sun, Chen; Takeuchi, Tatsu
2016-01-01
We discuss the generic phenomenology of quantum gravity and, in particular, argue that the observable effects of quantum gravity, associated with new, extended, non-local, non-particle-like quanta, and accompanied by a dynamical energy-momentum space, are not necessarily Planckian and that they could be observed at much lower and experimentally accessible energy scales.
Quantum-size resonance tunneling in the field emission phenomenon
Litovchenko, V.; Evtukh, A.; Kryuchenko, Yu.; Goncharuk, N.; Yilmazoglu, O.; Mutamba, K.; Hartnagel, H. L.; Pavlidis, D.
2004-07-01
Theoretical analyses have been performed of the quantum-size (QS) resonance tunneling in the field-emission (FE) phenomenon for different models of the emitting structures. Such experimentally observed peculiarities have been considered as the enhancement of the FE current, the deviation from the Fowler-Nordheim law, the appearance of sharp current peaks, and a negative resistance. Different types of FE cathodes with QS structures (quantized layers, wires, or dots) have been studied experimentally. Resonance current peaks have been observed, from which the values of the energy-level splitting can be estimated.
Bimodal-sized quantum dots for broad spectral bandwidth emitter.
Zhou, Yinli; Zhang, Jian; Ning, Yongqiang; Zeng, Yugang; Zhang, Jianwei; Zhang, Xing; Qin, Li; Wang, Lijun
2015-12-14
In this work, a high-power and broadband superluminescent diode (SLD) is achieved utilizing bimodal-sized quantum dots (QDs) as active materials. The device exhibits a 3 dB bandwidth of 178.8 nm with output power of 1.3 mW under continuous-wave (CW) conditions. Preliminary discussion attributes the spectra behavior of the device to carrier transfer between small dot ensemble and large dot ensemble. Our result provides a new possibility to further broadening the spectral bandwidth and improving the CW output power of QD-SLDs.
Synthesis and characterization of small size fluorescent LEEH caped blue emission ZnTe quantum dots
Directory of Open Access Journals (Sweden)
Patnaik Sumanta Kumar
2017-04-01
Full Text Available We report here for the first time the synthesis of LEEH caped very small size (2 nm ZnTe quantum dots at low temperature (less than 100 °C using a simple chemical route. The effects of aging and stirring time on the absorption spectra of the quantum dots were investigated. The synthesized nanocrystal (NC was characterized by PL, TEM, XRD and the formation of very small size quantum dots having FCC structure was confirmed. Further, blue emission from the prepared sample was observed during exposure to monochromatic UV radiation. ZnTe NCs obtained in this study were found to be more stable compared to those presented in literature reports. ZnTe NCs may be considered as a new material in place of CdTe for optoelectronics devices.
Quantum gravitational effects on boundary
Park, I Y
2016-01-01
Quantum gravitational effects may hold the key to some of the outstanding problems in theoretical physics. In this work we analyze the perturbative quantum effects on the boundary of a gravitational system and Dirichlet boundary condtion imposed at the classical level. Our analysis reveals that for a black hole solution there exists a clash between the quantum effects and Dirichlet boundary condition: the solution of the one-particle-irreducible (1PI) action no longer obeys the Dirichlet boundary condition. The analysis also suggests that the violation of the Dirichlet boundary condition should be tied with a certain mechanism of information storage on the boundary.
Micron size superconducting quantum interference devices of lead (Pb)
Paul, Sagar; Biswas, Sourav; Gupta, Anjan K.
2017-02-01
Micron size superconducting quantum interference devices (μ-SQUID) of lead (Pb), for probing nano-magnetism, were fabricated and characterized. In order to get continuous Pb films with small grain size, Pb was thermally evaporated on a liquid nitrogen cooled Si substrate. Pb was sandwiched between two thin Cr layers for improved adhesion and protection. The SQUID pattern was made by e-beam lithography with Pb lift-off after deposition. The current-voltage characteristics of these devices show a critical current, which exhibits the expected SQUID oscillations with magnetic field, and two re-trapping currents. As a result these devices have hysteresis at low temperatures, which disappears just below the critical temperature.
Effect sizes in memory research.
Morris, Peter E; Fritz, Catherine O
2013-01-01
Effect sizes are omitted from many research articles and are rarely discussed. To help researchers evaluate effect sizes we collected values for the more commonly reported effect size measures (partial eta squared and d) from papers reporting memory research published in 2010. Cohen's small, medium, and large generic guideline values for d mapped neatly onto the observed distributions, but his values for partial eta squared were considerably lower than those observed in current memory research. We recommend interpreting effect sizes in the context of either domain-specific guideline values agreed for an area of research or the distribution of effect size estimates from published research in the domain. We provide cumulative frequency tables for both partial eta squared and d enabling authors to report and consider not only the absolute size of observed effects but also the percentage of reported effects that are larger or smaller than those observed.
Baek, Seung-Wook; Shim, Jae-Hyoung; Seung, Hyun-Min; Lee, Gon-Sub; Hong, Jin-Pyo; Lee, Kwang-Sup; Park, Jea-Gun
2014-11-07
Silicon solar cells mainly absorb visible light, although the sun emits ultraviolet (UV), visible, and infrared light. Because the surface reflectance of a textured surface with SiNX film on a silicon solar cell in the UV wavelength region (250-450 nm) is higher than ∼27%, silicon solar-cells cannot effectively convert UV light into photo-voltaic power. We implemented the concept of energy-down-shift using CdSe/ZnS core/shell quantum-dots (QDs) on p-type silicon solar-cells to absorb more UV light. CdSe/ZnS core/shell QDs demonstrated clear evidence of energy-down-shift, which absorbed UV light and emitted green-light photoluminescence signals at a wavelength of 542 nm. The implementation of 0.2 wt% (8.8 nm QDs layer) green-light emitting CdSe/ZnS core/shell QDs reduced the surface reflectance of the textured surface with SiNX film on a silicon solar-cell from 27% to 15% and enhanced the external quantum efficiency (EQE) of silicon solar-cells to around 30% in the UV wavelength region, thereby enhancing the power conversion efficiency (PCE) for p-type silicon solar-cells by 5.5%.
Institute of Scientific and Technical Information of China (English)
Liu Yu-Min; Yu Zhong-Yuan
2009-01-01
Calculations of electronic structures about the semiconductor quantum dot and the semiconductor quantum ring are presented in this paper. To reduce the calculation costs, for the quantum dot and the quantum ring, their simplified axially symmetric shapes are utilized in our analysis. The energy dependent effective mass is taken into account in solving the Schrodinger equations in the single band effective mass approximation. The calculated results show that the energy dependent effective mass should be considered only for relatively small volume quantum dots or small quantum rings. For large size quantum materials, both the energy dependent effective mass and the parabolic effective mass can give the same results. The energy states and the effective masses of the quantum dot and the quantum ring as a function of geometric parameters are also discussed in detail.
Size Effect in Continuum Modeling
Energy Technology Data Exchange (ETDEWEB)
Lu, Wei-Yang [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Mechanics of Materials; Foulk, James W. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Mechanics of Materials; Huestis, Edwin M. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Mechanics of Materials; Connelly, Kevin [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Mechanics of Materials; Song, Bo [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Mechanics of Materials; Yang, Nancy Y. C. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engineered Materials
2008-09-01
The mechanical properties of some materials (Cu, Ni, Ag, etc.) have been shown to develop strong dependence on the geometric dimensions, resulting in a size effect. Several theories have been proposed to model size effects, but have been based on very few experiments conducted at appropriate scales. Some experimental results implied that size effects are caused by increasing strain gradients and have been used to confirm many strain gradient theories. On the other hand, some recent experiments show that a size effect exists in the absence of strain gradients. This report describes a brief analytical and experimental study trying to clarify the material and experimental issues surrounding the most influential size-effect experiments by Fleck et al (1994). This effort is to understand size effects intended to further develop predictive models.
Saharian, A. A.
2016-09-01
We investigate the vacuum expectation value of the current density for a charged scalar field on a slice of anti-de Sitter (AdS) space with toroidally compact dimensions. Along the compact dimensions periodicity conditions are imposed on the field operator with general phases and the presence of a constant gauge field is assumed. The latter gives rise to Aharonov-Bohm-like effects on the vacuum currents. The current density along compact dimensions is a periodic function of the gauge field flux with the period equal to the flux quantum. It vanishes on the AdS boundary and, near the horizon, to the leading order, it is conformally related to the corresponding quantity in Minkowski bulk for a massless field. For large values of the length of the compact dimension compared with the AdS curvature radius, the vacuum current decays as power-law for both massless and massive fields. This behavior is essentially different from the corresponding one in Minkowski background, where the currents for a massive field are suppressed exponentially.
Size dependent photoresponse characteristics of crystalline Ge quantum dots based photodetectors
Bar, Rajshekhar; Manna, Santanu; Ray, Samit K.
2016-10-01
We report on the size dependent photoresponse behaviour of crystalline Ge quantum dots (QDs) dispersed within the silica matrix. Our findings demonstrate an increasing nature of EQE with increase in QDs size, which could be attributed to the combined effect of Coulomb interaction of photogenerated carriers, QD/silica interface defects and electric field driven carrier separation and tunneling through the oxide barriers. In this regard, the bias dependent nonlinear response of the photocurrent has been explained on the basis of cold field emission (CFE) model. Besides, the EQE is extended (>100%) for larger sized QDs, suggesting the trapping of slower holes in Ge QDs creating a charge neutrality issue.
Size-controlled synthesis of SnO{sub 2} quantum dots and their gas-sensing performance
Energy Technology Data Exchange (ETDEWEB)
Du, Jianping, E-mail: dujp518@163.com [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Zhao, Ruihua [Shanxi Kunming Tobacco Limited Liability Company, Taiyuan 030012, Shanxi (China); Xie, Yajuan [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Li, Jinping, E-mail: jpli211@hotmail.com [Research Institute of Special Chemicals, Taiyuan University of Technology, Shanxi, 030024 (China)
2015-08-15
Graphical abstract: The gas-sensing property of quantum dots is related to their sizes. SnO{sub 2} quantum dots (TQDs) were synthesized and the sizes were controlled by a simple strategy. The results show that controlling QDs size is efficient to detect low-concentration hazardous volatile compounds selectively. - Highlights: • SnO{sub 2} quantum dots with controllable size were synthesized by hydrothermal route. • The sizes of SnO{sub 2} quantum dots (TQDs) were controlled by a simple strategy. • The responses to volatile chemicals strongly depend on the size of quantum dots. • Small-size TQDs exhibit a good selectivity and response to triethylamine. • Controlling size is efficient to detect low-concentration toxic gases selectively. - Abstract: Tin dioxide quantum dots (TQDs) with controllable size were synthesized by changing the amount of alkaline reagent in the hydrothermal process. The gas-sensing properties were investigated by operating chemoresistor type sensor. The morphology and structure were characterized by X-ray diffraction, scanning/transmission electron microscopy, UV–vis and Raman spectrometry. The as-synthesized SnO{sub 2} shows the characteristics of quantum dots and the narrowest size distribution is about 2–3 nm. The gas-sensing results indicate that the responses are strongly dependent on the size of quantum dots. TQDs with different sizes exhibit different sensitivities and selectivities to volatile toxic chemicals such as aldehyde, acetone, methanol, ethanol and amine. Especially, when the sensors are exposed to 100 ppm triethylamine (TEA), the sensing response value of TQDs with small size is two times higher than that of the large-size TQDs. The maximum response values of TQDs to 1 ppm and 100 ppm TEA are 15 and 153, respectively. The response time is 1 s and the recovery time is 47 s upon exposure to 1 ppm TEA. The results suggest that it is an effective method by regulating the size of SnO{sub 2} quantum dots to detect low
Quantum effects near future singularities
Barrow, John D; Dito, Giuseppe; Fabris, Julio C; Houndjo, Mahouton J S
2012-01-01
General relativity allows a variety of future singularities to occur in the evolution of the universe. At these future singularities, the universe will end in a singular state after a finite proper time and geometrical invariants of the space time will diverge. One question that naturally arises with respect to these cosmological scenarios is the following: can quantum effects lead to the avoidance of these future singularities? We analyze this problem considering massless and conformally coupled scalar fields in an isotropic and homogeneous background leading to future singularities. It is shown that near strong, big rip-type singularities, with violation of the energy conditions, the quantum effects are very important, while near some milder classes of singularity like the sudden singularity, which preserve the energy conditions, quantum effects are irrelevant.
Titantah, J. T.; Lamoen, D.; Schowalter, M.; Rosenauer, A.
2009-04-01
The modified atomic scattering amplitudes (MASAs) of mixed Ga1-xInxAs, GaAs1-xNx, and InAs1-xNx are calculated using the density functional theory approach and the results are compared with those of the binary counterparts. The MASAs of N, Ga, As, and In for various scattering vectors in various chemical environments and in the zinc-blende structure are compared with the frequently used Doyle and Turner values. Deviation from the Doyle and Turner results is found for small scattering vectors (s MASAs are found to be sensitive to the orientation of the scattering vector and on the chemical environment. The chemical environment sensitive MASAs are used within zero pressure classical Metropolis Monte Carlo, finite temperature calculations to investigate the effect of well size on the electron 002 and 220 structure factors (SFs). The implications of the use of the 002 (200) spot for the quantification of nanostructured Ga1-xInxAs systems are examined while the 220 SF across the well is evaluated and is found to be very sensitive to the in-plane static displacements.
Quantum electrodynamics in finite volume and nonrelativistic effective field theories
Fodor, Z; Katz, S D; Lellouch, L; Portelli, A; Szabo, K K; Toth, B C
2015-01-01
Electromagnetic effects are increasingly being accounted for in lattice quantum chromodynamics computations. Because of their long-range nature, they lead to large finite-size effects over which it is important to gain analytical control. Nonrelativistic effective field theories provide an efficient tool to describe these effects. Here we argue that some care has to be taken when applying these methods to quantum electrodynamics in a finite volume.
Quantum electrodynamics in finite volume and nonrelativistic effective field theories
Energy Technology Data Exchange (ETDEWEB)
Fodor, Z. [Department of Physics, University of Wuppertal, D-42119 Wuppertal (Germany); Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52428 Jülich (Germany); Institute for Theoretical Physics, Eötvös University, H-1117 Budapest (Hungary); Hoelbling, C. [Department of Physics, University of Wuppertal, D-42119 Wuppertal (Germany); Katz, S.D. [Institute for Theoretical Physics, Eötvös University, H-1117 Budapest (Hungary); MTA-ELTE Lendület Lattice Gauge Theory Research Group, H-1117 Budapest (Hungary); Lellouch, L., E-mail: lellouch@cpt.univ-mrs.fr [CNRS, Aix-Marseille U., U. de Toulon, CPT, UMR 7332, F-13288, Marseille (France); Portelli, A. [School of Physics & Astronomy, University of Southampton, SO17 1BJ (United Kingdom); Szabo, K.K. [Department of Physics, University of Wuppertal, D-42119 Wuppertal (Germany); Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52428 Jülich (Germany); Toth, B.C. [Department of Physics, University of Wuppertal, D-42119 Wuppertal (Germany)
2016-04-10
Electromagnetic effects are increasingly being accounted for in lattice quantum chromodynamics computations. Because of their long-range nature, they lead to large finite-size effects over which it is important to gain analytical control. Nonrelativistic effective field theories provide an efficient tool to describe these effects. Here we argue that some care has to be taken when applying these methods to quantum electrodynamics in a finite volume.
Quantum electrodynamics in finite volume and nonrelativistic effective field theories
Directory of Open Access Journals (Sweden)
Z. Fodor
2016-04-01
Full Text Available Electromagnetic effects are increasingly being accounted for in lattice quantum chromodynamics computations. Because of their long-range nature, they lead to large finite-size effects over which it is important to gain analytical control. Nonrelativistic effective field theories provide an efficient tool to describe these effects. Here we argue that some care has to be taken when applying these methods to quantum electrodynamics in a finite volume.
Institute of Scientific and Technical Information of China (English)
Qu Xiaosheng; Zhang Sisi; Bao Hongyin; Xiong Liling
2013-01-01
A metamorphic GaInP/GaAs/GaInAs/Ge multi-junction solar cell with InAs quantum dots is investigated,and the analytical expression of the energy conversion efficiency on the multi-junction tandem solar cell is derived using the detailed balance principle and the Kronig-Penney model.The influences of interdot distance,quantum-dot size and the intermediate band location on the energy conversion efficiency are studied.This shows that the maximum efficiency,as a function of quantum-dot size and distance,is about 60.15％ under the maximum concentration for only one InAs/GaAs subcell,and is even up to 39.69％ for the overall cell.In addition,other efficiency factors such as current mismatch,the formation ofa quasicontinuum conduction band and concentrated light are examined.
Holographic Relaxation of Finite Size Isolated Quantum Systems
Abajo-Arrastia, Javier; Lopez, Esperanza; Mas, Javier; Serantes, Alexandre
2014-01-01
We study holographically the out of equilibrium dynamics of a finite size closed quantum system in 2+1 dimensions, modelled by the collapse of a shell of a massless scalar field in AdS4. In global coordinates there exists a variety of evolutions towards final black hole formation which we relate with different patterns of relaxation in the dual field theory. For large scalar initial data rapid thermalization is achieved as a priori expected. Interesting phenomena appear for small enough amplitudes. Such shells do not generate a black hole by direct collapse, but quite generically an apparent horizon emerges after enough bounces off the AdS boundary. We relate this bulk evolution with relaxation processes at strong coupling which delay in reaching an ergodic stage. Besides the dynamics of bulk fields, we monitor the entanglement entropy, finding that it oscillates quasi-periodically before final equilibration. The radial position of the traveling shell is brought into correspondence with the evolution of the e...
Li, Zhiguo; Sui, Jiehe; Li, Xiaoli; Cai, Wei
2011-03-15
Quantum-sized CdS nanorods were synthesized by direct thermal decomposition of a single-source precursor in a monosurfactant system. The CdS nanorods were uniform, had high crystallinity, and exhibited strong quantum confinement effect. The nanorod growth was controlled by an oriented attachment mechanism, and the morphology was determined by the competition between dipole attraction and steric repulsion of nanodots. Increasing precursor concentration and prolonging reaction time were favorable for the formation of CdS nanorods.
Effect Size in Clinical Phonology
Gierut, Judith A.; Morrisette, Michele L.
2011-01-01
The purpose of this article is to motivate the use of effect size (ES) for single-subject research in clinical phonology, with an eye towards meta-analyses of treatment effects for children with phonological disorders. Standard mean difference (SMD) is introduced and illustrated as one ES well suited to the multiple baseline (MBL) design and…
Effect Size in Clinical Phonology
Gierut, Judith A.; Morrisette, Michele L.
2011-01-01
The purpose of this article is to motivate the use of effect size (ES) for single-subject research in clinical phonology, with an eye towards meta-analyses of treatment effects for children with phonological disorders. Standard mean difference (SMD) is introduced and illustrated as one ES well suited to the multiple baseline (MBL) design and…
Effective Constraints for Quantum Systems
Bojowald, Martin; Skirzewski, Aureliano; Tsobanjan, Artur
2008-01-01
An effective formalism for quantum constrained systems is presented which allows manageable derivations of solutions and observables, including a treatment of physical reality conditions without requiring full knowledge of the physical inner product. Instead of a state equation from a constraint operator, an infinite system of constraint functions on the quantum phase space of expectation values and moments of states is used. The examples of linear constraints as well as the free non-relativistic particle in parameterized form illustrate how standard problems of constrained systems can be dealt with in this framework.
Size and quality control of fast grown CdS quantum dots
Energy Technology Data Exchange (ETDEWEB)
Fregnaux, Mathieu [Laboratoire de Physique des Milieux Denses, Universite Paul Verlaine - Metz, 1 Boulevard Arago, 57078 Metz (France); Laboratoire de Spectrometrie de Masse et Chimie Laser, Universite Paul Verlaine - Metz, 1 Boulevard Arago, 57078 Metz (France); Dalmasso, Stephane; Laurenti, Jean-Pierre [Laboratoire de Physique des Milieux Denses, Universite Paul Verlaine - Metz, 1 Boulevard Arago, 57078 Metz (France); Gaumet, Jean-Jacques [Laboratoire de Spectrometrie de Masse et Chimie Laser, Universite Paul Verlaine - Metz, 1 Boulevard Arago, 57078 Metz (France)
2012-08-15
The synthesis of high quality II-VI semiconductor quantum dots (QDs) is fundamental for developing new devices in several applications such as biomarkers, solar cells or blue-UV lasers. These emerging technologies are funded on the size-dependent optical properties of the QDs. Consequently, it is a crucial aspect to get insight into different ways for syntheses of their nanosized particles. In this work, we use two different QD elaboration methods: (i) a single source precursor thermal growth methodology and (ii) a microwave synthetic route. Using both protocols, high quality small QDs (Oe < 5 nm) are produced. Both growing techniques offer the advantage to be simple and fast: 2 hours (i) and less than 25 minutes (ii) in duration, growth temperatures do not exceed 280 C. For both elaboration procedures, we report a unique physics/chemistry cross-disciplinary study on these small size QDs: mass spectrometry (MS) technique provides background data about composition, size and stability of particles; crystalline structure and size distribution of the QDs are obtained from X-ray diffraction (XRD) and transmission electron microscopy (TEM); room temperature (RT) optical spectrometry of nanodispersions - photoluminescence (PL) and absorption - reveals quantum size effects. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Quantum effects in warp drives
Directory of Open Access Journals (Sweden)
Finazzi Stefano
2013-09-01
Full Text Available Warp drives are interesting configurations that, at least theoretically, provide a way to travel at superluminal speed. Unfortunately, several issues seem to forbid their realization. First, a huge amount of exotic matter is required to build them. Second, the presence of quantum fields propagating in superluminal warp-drive geometries makes them semiclassically unstable. Indeed, a Hawking-like high-temperature flux of particles is generated inside the warp-drive bubble, which causes an exponential growth of the energy density measured at the front wall of the bubble by freely falling observers. Moreover, superluminal warp drives remain unstable even if the Lorentz symmetry is broken by the introduction of regulating higher order terms in the Lagrangian of the quantum field. If the dispersion relation of the quantum field is subluminal, a black-hole laser phenomenon yields an exponential amplification of the emitted flux. If it is superluminal, infrared effects cause a linear growth of this flux.
Quantum channels and memory effects
Caruso, Filippo; Giovannetti, Vittorio; Lupo, Cosmo; Mancini, Stefano
2014-10-01
Any physical process can be represented as a quantum channel mapping an initial state to a final state. Hence it can be characterized from the point of view of communication theory, i.e., in terms of its ability to transfer information. Quantum information provides a theoretical framework and the proper mathematical tools to accomplish this. In this context the notion of codes and communication capacities have been introduced by generalizing them from the classical Shannon theory of information transmission and error correction. The underlying assumption of this approach is to consider the channel not as acting on a single system, but on sequences of systems, which, when properly initialized allow one to overcome the noisy effects induced by the physical process under consideration. While most of the work produced so far has been focused on the case in which a given channel transformation acts identically and independently on the various elements of the sequence (memoryless configuration in jargon), correlated error models appear to be a more realistic way to approach the problem. A slightly different, yet conceptually related, notion of correlated errors applies to a single quantum system which evolves continuously in time under the influence of an external disturbance which acts on it in a non-Markovian fashion. This leads to the study of memory effects in quantum channels: a fertile ground where interesting novel phenomena emerge at the intersection of quantum information theory and other branches of physics. A survey is taken of the field of quantum channels theory while also embracing these specific and complex settings.
Many electron effects in semiconductor quantum dots
Indian Academy of Sciences (India)
R K Pandey; Manoj K Harbola; V Ranjan; Vijay A Singh
2003-01-01
Semiconductor quantum dots (QDs) exhibit shell structures, very similar to atoms. Termed as ‘artificial atoms’ by some, they are much larger (1 100 nm) than real atoms. One can study a variety of manyelectron effects in them, which are otherwise difficult to observe in a real atom. We have treated these effects within the local density approximation (LDA) and the Harbola–Sahni (HS) scheme. HS is free of the selfinteraction error of the LDA. Our calculations have been performed in a three-dimensional quantum dot. We have carried out a study of the size and shape dependence of the level spacing. Scaling laws for the Hubbard ‘’ are established.
THz quantum-confined Stark effect in semiconductor quantum dots
DEFF Research Database (Denmark)
Turchinovich, Dmitry; Monozon, Boris S.; Livshits, Daniil A.;
2012-01-01
We demonstrate an instantaneous all-optical manipulation of optical absorption at the ground state of InGaAs/GaAs quantum dots (QDs) via a quantum-confined Stark effect (QCSE) induced by the electric field of incident THz pulses with peak electric fields reaching 200 kV/cm in the free space...
Universal quantum constraints on the butterfly effect
Berenstein, David
2015-01-01
Lyapunov exponents play an important role in the evolution of quantum chaotic systems in the semiclassical limit. We conjecture the existence of an upper bound on the Lyapunov exponents that contribute to the quantum motion. This is a universal feature in any quantum system or quantum field theory, including those with a gravity dual, at zero or finite temperature. It has its origin in the finite size of the Hilbert space that is available to an initial quasi-classical configuration. An important consequence of this result is a universal quantum bound on the maximum growth rate of the entanglement entropy.
Size controlled near-infrared high-quality PbSe quantum dots
Kalasad, M. N.; Rabinal, M. K.; Mulimani, B. G.; Greenham, N. C.
2015-06-01
Herein, we report the size controlled preparation of PbSe quantum dots (QDs) by non coordinating solvent route using oleic acid as surfactant molecules. The particles size is controlled by varying temperature and time of reaction. The present method of synthesis gives highly stable colloids, spherical in shape, better size tunability, narrow size distribution, extremely small size, monodisperse and exhibit strong near-infrared emission. The estimated particles sizes are in the range of 2 to 8 nm. These PbSe quantum dots are used for applications in optoelectronics and biological imaging.
Boehme, Simon C; Wang, Hai; Siebbeles, Laurens D A; Vanmaekelbergh, Daniel; Houtepen, Arjan J
2013-03-26
Films of colloidal quantum dots (QDs) show great promise for application in optoelectronic devices. Great advances have been made in recent years in designing efficient QD solar cells and LEDs. A very important aspect in the design of devices based on QD films is the knowledge of their absolute energy levels. Unfortunately, reported energy levels vary markedly depending on the employed measurement technique and the environment of the sample. In this report, we determine absolute energy levels of QD films by electrochemical charge injection. The concomitant change in optical absorption of the film allows quantification of the number of charges in quantum-confined levels and thereby their energetic position. We show here that the size of voids in the QD films (i.e., the space between the quantum dots) determines the amount of charges that may be injected into the films. This effect is attributed to size exclusion of countercharges from the electrolyte solution. Further, the energy of the QD levels depends on subtle changes in the QD film and the supporting electrolyte: the size of the cation and the QD ligand length. These nontrivial effects can be explained by the proximity of the cation to the QD surface and a concomitant lowering of the electrochemical potential. Our findings help explain the wide range of reported values for QD energy levels and redefine the limit of applicability of electrochemical measurements on QD films. Finally, the finding that the energy of QD levels depends on ligand length and counterion size may be exploited in optimized designs of QD sensitized solar cells.
Effect size in clinical phonology
GIERUT, JUDITH A.; Morrisette, Michele L.
2011-01-01
The purpose of this article is to motivate the use of effect size (ES) for single-subject research in clinical phonology, with an eye towards meta-analyses of treatment effects for children with phonological disorders. Standard mean difference (SMD) is introduced and illustrated as one ES well suited to the multiple baseline (MBL) design and evaluation of generalization learning, both of which are key to experimental studies in clinical phonology.
Finite-size analysis of continuous-variable quantum key distribution
Leverrier, Anthony; Grangier, Philippe
2010-01-01
The goal of this paper is to extend the framework of finite size analysis recently developed for quantum key distribution to continuous-variable protocols. We do not solve this problem completely here, and we mainly consider the finite size effects on the parameter estimation procedure. Despite the fact that some questions are left open, we are able to give an estimation of the secret key rate for protocols which do not contain a postselection procedure. As expected, these results are significantly more pessimistic than the ones obtained in the asymptotic regime. However, we show that recent continuous-variable protocols are able to provide fully secure secret keys in the finite size scenario, over distances larger than 50 km.
Size effects in crystal plasticity
DEFF Research Database (Denmark)
Borg, Ulrik
2007-01-01
Numerical analyses of plasticity size effects have been carried out for different problems using a developed strain gradient crystal plasticiy theory. The theory employs higher order stresses as work conjugates to slip gradients and uses higher order boundary conditions. Problems on localization...... of plastic flow in a single crystal, grain boundary effects in a bicrystal, and grain size effects in a polycrystal are studied. Single crystals containing micro-scale voids have also been analyzed at different loading conditions with focus on the stress and deformation fields around the voids, on void...... growth and interaction between neighboring voids, and on a comparison between the developed strain gradient crystal plasticity theory and a discrete dislocation plasticity theory. Furthermore, voids and rigid inclusions in isotropic materials have been studied using a strain gradient plasticity theory...
Lectures on the Quantum Hall Effect
Tong, David
2016-01-01
The purpose of these lectures is to describe the basic theoretical structures underlying the rich and beautiful physics of the quantum Hall effect. The focus is on the interplay between microscopic wavefunctions, long-distance effective Chern-Simons theories, and the modes which live on the boundary. The notes are aimed at graduate students in any discipline where $\\hbar=1$. A working knowledge of quantum field theory is assumed. Contents: 1. The Basics (Landau levels and Berry phase). 2. The Integer Quantum Hall Effect. 3. The Fractional Quantum Hall Effect. 4. Non-Abelian Quantum Hall States. 5. Chern-Simons Theories. 6. Edge Modes.
Fabrication of CuCl quantum dots and the size dependence of the biexciton binding energy
Park, S T; Kim, H Y; Kim, I G
2000-01-01
We fabricated CuCl quantum dots (QDs) in an aluminoborosilicate glass matrix. The photoluminescence of the CuCl QDs was surveyed by using the band-to-band excitation and the site selective luminescence methods. The excitation density dependence of the exciton and the biexciton luminescence was measured, and the saturation effects of the luminescence intensities were observed. The biexciton binding energies measured using the site selective luminescence method increased with decreasing QD size. The data were well fitted by a function resulting from the numerical matrix-diagonalization method.
Quantum dot size dependent J-V characteristics in heterojunction ZnO/PbS quantum dot solar cells.
Gao, Jianbo; Luther, Joseph M; Semonin, Octavi E; Ellingson, Randy J; Nozik, Arthur J; Beard, Matthew C
2011-03-01
The current-voltage (J-V) characteristics of ZnO/PbS quantum dot (QD) solar cells show a QD size-dependent behavior resulting from a Schottky junction that forms at the back metal electrode opposing the desirable diode formed between the ZnO and PbS QD layers. We study a QD size-dependent roll-over effect that refers to the saturation of photocurrent in forward bias and crossover effect which occurs when the light and dark J-V curves intersect. We model the J-V characteristics with a main diode formed between the n-type ZnO nanocrystal (NC) layer and p-type PbS QD layer in series with a leaky Schottky-diode formed between PbS QD layer and metal contact. We show how the characteristics of the two diodes depend on QD size, metal work function, and PbS QD layer thickness, and we discuss how the presence of the back diode complicates finding an optimal layer thickness. Finally, we present Kelvin probe measurements to determine the Fermi level of the QD layers and discuss band alignment, Fermi-level pinning, and the V(oc) within these devices.
Dynamical memory effects in correlated quantum channels
Addis, Carole; Karpat, Göktuǧ; Macchiavello, Chiara; Maniscalco, Sabrina
2016-09-01
Memory effects play a fundamental role in the study of the dynamics of open quantum systems. There exist two conceptually distinct notions of memory discussed for quantum channels in the literature. In quantum information theory quantum channels with memory are characterized by the existence of correlations between successive applications of the channel on a sequence of quantum systems. In open quantum systems theory memory effects arise dynamically during the time evolution of quantum systems and define non-Markovian dynamics. Here we relate and combine these two different concepts of memory. In particular, we study the interplay between correlations between multiple uses of quantum channels and non-Markovianity as nondivisibility of the t -parametrized family of channels defining the dynamical map.
Quantum coherence in the dynamical Casimir effect
Samos-Sáenz de Buruaga, D. N.; Sabín, Carlos
2017-02-01
We propose to use quantum coherence as the ultimate proof of the quantum nature of the radiation that appears by means of the dynamical Casimir effect in experiments with superconducting microwave waveguides. We show that, unlike previously considered measurements such as entanglement and discord, quantum coherence does not require a threshold value of the external pump amplitude and is highly robust to thermal noise.
Nonlocal Quantum Effects in Cosmology
Dumin, Yurii V
2014-01-01
Since it is commonly believed that the observed large-scale structure of the Universe is an imprint of quantum fluctuations existing at the very early stage of its evolution, it is reasonable to pose the question: Do the effects of quantum nonlocality, which are well established now by the laboratory studies, manifest themselves also in the early Universe? We try to answer this question by utilizing the results of a few experiments, namely, with the superconducting multi-Josephson-junction loops and the ultracold gases in periodic potentials. Employing a close analogy between the above-mentioned setups and the simplest one-dimensional Friedmann-Robertson-Walker cosmological model, we show that the specific nonlocal correlations revealed in the laboratory studies might be of considerable importance also in treating the strongly-nonequilibrium phase transitions of Higgs fields in the early Universe. Particularly, they should substantially reduce the number of topological defects (e.g., domain walls) expected du...
Han, Wen-Ge; Noodleman, Louis
2010-03-01
In studying the properties of metalloproteins using ab initio quantum mechanical methods, one has to focus on the calculations on the active site. The bulk protein and solvent environment is often neglected, or is treated as a continuum dielectric medium with a certain dielectric constant. The size of the quantum cluster of the active site chosen for calculations can vary by including only the first-shell ligands which are directly bound to the metal centers, or including also the second-shell residues which are adjacent to and normally have H-bonding interactions with the first-shell ligands, or by including also further hydrogen bonding residues. It is not well understood how the size of the quantum cluster and the value of the dielectric constant chosen for the calculations will influence the calculated properties. In this paper, we have studied three models (A, B, and C) of different sizes for the active site of the ribonucleotide reductase intermediate X, using density functional theory (DFT) OPBE functional with broken-symmetry methodology. Each model is studied in gas-phase and in the conductor-like screening (COSMO) solvation model with different dielectric constants ε = 4, 10, 20, and 80, respectively. All the calculated Fe-ligand geometries, Heisenberg J coupling constants, and the Mössbauer isomer shifts, quadrupole splittings, and the (57)Fe, (1)H, and (17)O hyperfine tensors are compared. We find that the calculated isomer shifts are very stable. They are virtually unchanged with respect to the size of the cluster and the dielectric constant of the environment. On the other hand, certain Fe-ligand distances are sensitive to both the size of the cluster and the value of ε. ε = 4, which is normally used for the protein environment, appears too small when studying the diiron active site geometry with only the first-shell ligands as seen by comparisons with larger models.
The role of ligand density and size in mediating quantum dot nuclear transport.
Tang, Peter S; Sathiamoorthy, Sarmitha; Lustig, Lindsay C; Ponzielli, Romina; Inamoto, Ichiro; Penn, Linda Z; Shin, Jumi A; Chan, Warren C W
2014-10-29
Studying the effects of the physicochemical properties of nanomaterials on cellular uptake, toxicity, and exocytosis can provide the foundation for designing safer and more effective nanoparticles for clinical applications. However, an understanding of the effects of these properties on subcellular transport, accumulation, and distribution remains limited. The present study investigates the effects of surface density and particle size of semiconductor quantum dots on cellular uptake as well as nuclear transport kinetics, retention, and accumulation. The current work illustrates that cellular uptake and nuclear accumulation of nanoparticles depend on surface density of the nuclear localization signal (NLS) peptides with nuclear transport reaching a plateau at 20% surface NLS density in as little as 30 min. These intracellular nanoparticles have no effects on cell viability up to 72 h post treatment. These findings will set a foundation for engineering more sophisticated nanoparticle systems for imaging and manipulating genetic targets in the nucleus.
Effects of quantum gravity on black holes
Chen, Deyou; Yang, Haitang; Yang, Shuzheng
2014-01-01
In this review, we discuss effects of quantum gravity on black hole physics. After a brief review of the origin of the minimal observable length from various quantum gravity theories, we present the tunneling method. To incorporate quantum gravity effects, we modify the Klein-Gordon equation and Dirac equation by the modified fundamental commutation relations. Then we use the modified equations to discuss the tunneling radiation of scalar particles and fermions. The corrected Hawking temperatures are related to the quantum numbers of the emitted particles. Quantum gravity corrections slow down the increase of the temperatures. The remnants are observed as $M_{\\hbox{Res}}\\gtrsim \\frac{M_p}{\\sqrt{\\beta_0}}$. The mass is quantized by the modified Wheeler-DeWitt equation and is proportional to $n$ in quantum gravity regime. The thermodynamical property of the black hole is studied by the influence of quantum gravity effects.
Colloidal quantum dot photovoltaics: The effect of polydispersity
Zhitomirsky, David
2012-02-08
The size-effect tunability of colloidal quantum dots enables facile engineering of the bandgap at the time of nanoparticle synthesis. The dependence of effective bandgap on nanoparticle size also presents a challenge if the size dispersion, hence bandgap variability, is not well-controlled within a given quantum dot solid. The impact of this polydispersity is well-studied in luminescent devices as well as in unipolar electronic transport; however, the requirements on monodispersity have yet to be quantified in photovoltaics. Here we carry out a series of combined experimental and model-based studies aimed at clarifying, and quantifying, the importance of quantum dot monodispersity in photovoltaics. We successfully predict, using a simple model, the dependence of both open-circuit voltage and photoluminescence behavior on the density of small-bandgap (large-diameter) quantum dot inclusions. The model requires inclusion of trap states to explain the experimental data quantitatively. We then explore using this same experimentally tested model the implications of a broadened quantum dot population on device performance. We report that present-day colloidal quantum dot photovoltaic devices with typical inhomogeneous linewidths of 100-150 meV are dominated by surface traps, and it is for this reason that they see marginal benefit from reduction in polydispersity. Upon eliminating surface traps, achieving inhomogeneous broadening of 50 meV or less will lead to device performance that sees very little deleterious impact from polydispersity. © 2012 American Chemical Society.
Effects of Spin Quantum Force in Magnetized Quantum Plasma
Institute of Scientific and Technical Information of China (English)
杨秀峰; 姜虹; 祁学宏; 段文山
2011-01-01
Starting from the governing equations for a quantum magnetoplasma including the electron spin -1/2 effects and quantum Bohm potential, we derive Korteweg-de Vries （KdV） equation of the system of quantum magneto- hydrodynamics （QMHD）. The amplitude and width of magnetosonic soliton with different parameters in the system are studied. It is found that the normalized Zeeman energy E plays a crucial role, for E ≥ 1 the amplitude τmξ and the width we of solitary wave all decrease as E increases. That is, the introduction of spin quantum force modifies the shape of solitary magnetosonic waves and makes them more narrower and shallower.
Quantum state discrimination bounds for finite sample size
Audenaert, Koenraad M R; Verstraete, Frank
2012-01-01
In the problem of quantum state discrimination, one has to determine by measurements the state of a quantum system, based on the a priori side information that the true state is one of two given and completely known states, rho or sigma. In general, it is not possible to decide the identity of the true state with certainty, and the optimal measurement strategy depends on whether the two possible errors (mistaking rho for sigma, or the other way around) are treated as of equal importance or not. Recent results on the quantum Chernoff and Hoeffding bounds show that, if several copies of the system are available then the optimal error probabilities decay exponentially in the number of copies, and the decay rate is given by a certain statistical distance between rho and sigma (the Chernoff distance and the Hoeffding distances, respectively). While these results provide a complete solution for the asymptotic problem, they are not completely satisfying from a practical point of view. Indeed, in realistic scenarios ...
Designing artificial 2D crystals with site and size controlled quantum dots.
Xie, Xuejun; Kang, Jiahao; Cao, Wei; Chu, Jae Hwan; Gong, Yongji; Ajayan, Pulickel M; Banerjee, Kaustav
2017-08-30
Ordered arrays of quantum dots in two-dimensional (2D) materials would make promising optical materials, but their assembly could prove challenging. Here we demonstrate a scalable, site and size controlled fabrication of quantum dots in monolayer molybdenum disulfide (MoS2), and quantum dot arrays with nanometer-scale spatial density by focused electron beam irradiation induced local 2H to 1T phase change in MoS2. By designing the quantum dots in a 2D superlattice, we show that new energy bands form where the new band gap can be controlled by the size and pitch of the quantum dots in the superlattice. The band gap can be tuned from 1.81 eV to 1.42 eV without loss of its photoluminescence performance, which provides new directions for fabricating lasers with designed wavelengths. Our work constitutes a photoresist-free, top-down method to create large-area quantum dot arrays with nanometer-scale spatial density that allow the quantum dots to interfere with each other and create artificial crystals. This technique opens up new pathways for fabricating light emitting devices with 2D materials at desired wavelengths. This demonstration can also enable the assembly of large scale quantum information systems and open up new avenues for the design of artificial 2D materials.
Nonlocal Quantum Effects in Cosmology
Directory of Open Access Journals (Sweden)
Yurii V. Dumin
2014-01-01
Full Text Available Since it is commonly believed that the observed large-scale structure of the universe is an imprint of quantum fluctuations existing at the very early stage of its evolution, it is reasonable to pose the question: do the effects of quantum nonlocality, which are well established now by the laboratory studies, manifest themselves also in the early universe? We try to answer this question by utilizing the results of a few experiments, namely, with the superconducting multi-Josephson-junction loops and the ultracold gases in periodic potentials. Employing a close analogy between the above-mentioned setups and the simplest one-dimensional Friedmann-Robertson-Walker cosmological model, we show that the specific nonlocal correlations revealed in the laboratory studies might be of considerable importance also in treating the strongly nonequilibrium phase transitions of Higgs fields in the early universe. Particularly, they should substantially reduce the number of topological defects (e.g., domain walls expected due to independent establishment of the new phases in the remote spatial regions. This gives us a hint on resolving a long-standing problem of the excessive concentration of topological defects, inconsistent with observational constraints. The same effect may be also relevant to the recent problem of the anomalous behavior of cosmic microwave background fluctuations at large angular scales.
Quantum effects in beam-plasma instabilities
Bret, A
2015-01-01
Among the numerous works on quantum effects that have been published in recent years, streaming instabilities in plasma have also been revisited. Both the fluid quantum and the kinetic Wigner-Maxwell models have been used to explore quantum effects on the Weibel, Filamentation and Two-Stream instabilities. While quantum effects usually tend to reduce the instabilities, they can also spur new unstable branches. A number of theoretical results will be reviewed together with the implications to one physical setting, namely the electron driven fast ignition scenario.
Unravelling the size and temperature dependence of exciton lifetimes in colloidal ZnSe quantum dots
Eilers, Joren; Van Hest, Jacobine|info:eu-repo/dai/nl/371572622; Meijerink, A|info:eu-repo/dai/nl/075044986; Donega, Celso De Mello|info:eu-repo/dai/nl/125593899
2014-01-01
We report on the temperature dependence of the band-edge photoluminescence decay of organically capped colloidal ZnSe quantum dots (QDs) in the size range from 4.0 to 7.5 nm. A similar trend is observed for all investigated sizes: the decay time is short (∼5 ns) above 20 K and increases sharply
Piezo-Phototronic Effect in a Quantum Well Structure.
Huang, Xin; Du, Chunhua; Zhou, Yongli; Jiang, Chunyan; Pu, Xiong; Liu, Wei; Hu, Weiguo; Chen, Hong; Wang, Zhong Lin
2016-05-24
With enhancements in the performance of optoelectronic devices, the field of piezo-phototronics has attracted much attention, and several theoretical works have been reported based on semiclassical models. At present, the feature size of optoelectronic devices are rapidly shrinking toward several tens of nanometers, which results in the quantum confinement effect. Starting from the basic piezoelectricity equation, Schrödinger equation, Poisson equation, and Fermi's golden rule, a self-consistent theoretical model is proposed to study the piezo-phototronic effect in the framework of perturbation theory in quantum mechanics. The validity and universality of this model are well-proven with photoluminescence measurements in a single GaN/InGaN quantum well and multiple GaN/InGaN quantum wells. This study provides important insight into the working principle of nanoscale piezo-phototronic devices as well as guidance for the future device design.
Effect of Growth Temperature on Size Distribution of GaSb/GaAs Quantum Dots%温度对GaSb/GaAs量子点尺寸分布的影响
Institute of Scientific and Technical Information of China (English)
刘仁俊; 李天天; 杨皓宇; 王连锴; 吕游; 张宝林
2013-01-01
The GaSb/GaAs quantum dots (QDs) were prepared by the technique of low pressure metalorganic chemical vapor deposition (LP-MOCVD).Based on analysis of samples for different growth temperatures,it turns out that the growth temperatures have little contribution to the morphology of GaSb/GaAs QDs and the shape of GaSb/GaAs QDs turns to be lens.The stress distributions between GaSb/GaAs interface lead to the "self-limiting" formation of GaSb QDs.Besides,due to discontinuous chemical potential of QDs,coupled with the effect of curing mechanism of Ostwald,the size distribution of QDs in certain range is discrete and two modes of QDs size appear.The surface mobility of antimony (Sb) adatoms has an important influence on the growth of GaSb/GaAs QDs.The discreteness of QDs can be efficiently improved by raising the growth temperature.With the process of heating up,the curing process of QDs can be presented.%采用低压金属有机物化学气相沉积(LP-MOCVD)法制备GaSb/GaAs量子点.通过对不同生长温度的样品进行分析发现温度的变化对GaSb/GaAs量子点的相位角无明显影响,量子点的形状是透镜型.由于量子点特殊的应力分布,可实现量子点的“自限制”生长.量子点的化学势不连续性以及Ostwald熟化机制的影响使得量子点尺寸分布在一定范围内不连续,会出现两种尺寸模式的量子点生长.Sb原子的表面迁移率对GaSb/GaAs量子点生长有较大的影响.升高温度可有效改善量子点的分立性,在升温过程中量子点体现出其熟化过程,高温时表面原子的解析附作用对量子点尺寸和密度的影响较大.
Boundary Effects in Quantum Physics
Asorey, M
2013-01-01
We analyze the role of boundaries in the infrared behavior of quantum field theories. By means of a novel method we calculate the vacuum energy for a massless scalar field confined between two homogeneous parallel plates with the most general type of boundary properties. This allows the discrimination between boundary conditions which generate attractive or repulsive Casimir forces between the plates. In the interface between both regimes we find a very interesting family of boundary conditions which do not induce any type of Casimir force. We analyze the effect of the renormalization group flow on these boundary conditions. Even if the Casimirless conformal invariant conditions are physically unstable under renormalization group flow they emerge as a new set of conformally invariant boundary conditions which are anomaly free.
Quantum-Confinement Effects on Binding Energies and Optical Properties of Excitons in Quantum Dots
Institute of Scientific and Technical Information of China (English)
潘晖
2004-01-01
Quantum-confinement effects on the binding energy and the linear optical susceptibility of excitons in quantum dots are studied. It is found that the binding energy and the linear optical susceptibility are sensitive to the barrier height and the dot size. For an infinite barrier, the binding energy of excitons decreases monotonically with the increasing dot radius, and the absorption intensity has almost the same amplitude with the increasing photon energy. For a finite barrier, the binding energy has a maximum value with the increasing dot radius, and the absorption intensity damps rapidly with the increasing photon energy. The effective mass ratio is also found to have an influence on the binding energy. The results could be confirmed by future experiments on excitons in quantum dots.
Discrete quantum geometries and their effective dimension
Thürigen, Johannes
2015-01-01
In several approaches towards a quantum theory of gravity, such as group field theory and loop quantum gravity, quantum states and histories of the geometric degrees of freedom turn out to be based on discrete spacetime. The most pressing issue is then how the smooth geometries of general relativity, expressed in terms of suitable geometric observables, arise from such discrete quantum geometries in some semiclassical and continuum limit. In this thesis I tackle the question of suitable observables focusing on the effective dimension of discrete quantum geometries. For this purpose I give a purely combinatorial description of the discrete structures which these geometries have support on. As a side topic, this allows to present an extension of group field theory to cover the combinatorially larger kinematical state space of loop quantum gravity. Moreover, I introduce a discrete calculus for fields on such fundamentally discrete geometries with a particular focus on the Laplacian. This permits to define the ef...
Quantum Chemistry, and Eclectic Mix: From Silicon Carbide to Size Consistency
Energy Technology Data Exchange (ETDEWEB)
Rintelman, Jamie Marie [Iowa State Univ., Ames, IA (United States)
2004-12-19
Chemistry is a field of great breadth and variety. It is this diversity that makes for both an interesting and challenging field. My interests have spanned three major areas of theoretical chemistry: applications, method development, and method evaluation. The topics presented in this thesis are as follows: (1) a multi-reference study of the geometries and relative energies of four atom silicon carbide clusters in the gas phase; (2) the reaction of acetylene on the Si(100)-(2x1) surface; (3) an improvement to the Effective Fragment Potential (EFP) solvent model to enable the study of reactions in both aqueous and nonaqueous solution; and (4) an evaluation of the size consistency of Multireference Perturbation Theory (MRPT). In the following section, the author briefly discusses two topics central to, and present throughout, this thesis: Multi-reference methods and Quantum Mechanics/Molecular Mechanics (QM/MM) methods.
Universal order parameters and quantum phase transitions: a finite-size approach.
Shi, Qian-Qian; Zhou, Huan-Qiang; Batchelor, Murray T
2015-01-08
We propose a method to construct universal order parameters for quantum phase transitions in many-body lattice systems. The method exploits the H-orthogonality of a few near-degenerate lowest states of the Hamiltonian describing a given finite-size system, which makes it possible to perform finite-size scaling and take full advantage of currently available numerical algorithms. An explicit connection is established between the fidelity per site between two H-orthogonal states and the energy gap between the ground state and low-lying excited states in the finite-size system. The physical information encoded in this gap arising from finite-size fluctuations clarifies the origin of the universal order parameter. We demonstrate the procedure for the one-dimensional quantum formulation of the q-state Potts model, for q = 2, 3, 4 and 5, as prototypical examples, using finite-size data obtained from the density matrix renormalization group algorithm.
Nonmonotonic size dependence in the hole mobility of methoxide-stabilized PbSe quantum dot solids.
Scheele, Marcus; Engel, Jesse H; Ferry, Vivian E; Hanifi, David; Liu, Yi; Alivisatos, A Paul
2013-08-27
We present a facile procedure to fabricate p-type PbSe-based quantum dot solids with mobilities as large as 0.3 cm(2) V(-1)s(-1). Upon partial ligand exchange of oleate-capped PbSe quantum dots with the methoxide ion, we observe a pronounced red shift in the excitonic transition in conjunction with a large increase in conductivity. We show that there is little correlation between these two phenomena and that the electronic coupling energy in PbSe quantum dot solids is much smaller than often assumed. However, we observe for the first time a nonmonotonic size dependence of the hole mobility, illustrating that coupling can nonetheless be dominant in determining the transport characteristics. We attribute these effects to a decrease in charging energy and interparticle spacing, leading to enhanced electronic coupling on one hand and enhanced dipole interactions on the other hand, which is held responsible for the majority of the red shift.
Dynamic Dipole-Dipole Interactions between Excitons in Quantum Dots of Different Sizes
DEFF Research Database (Denmark)
Matsueda, Hideaki; Leosson, Kristjan; Xu, Zhangcheng
2005-01-01
Micro-photoluminescence spectra of GaAs/AlGaAs coupled quantum dots (QDs) are given, and proposed to be analyzed by our resonance dynamic dipole-dipole interaction (RDDDI) model, based on parity inheritance and exchange of virtual photons among QDs of different sizes.......Micro-photoluminescence spectra of GaAs/AlGaAs coupled quantum dots (QDs) are given, and proposed to be analyzed by our resonance dynamic dipole-dipole interaction (RDDDI) model, based on parity inheritance and exchange of virtual photons among QDs of different sizes....
Dynamic Dipole-Dipole Interactions between Excitons in Quantum Dots of Different Sizes
DEFF Research Database (Denmark)
Matsueda, Hideaki; Leosson, Kristjan; Xu, Zhangcheng;
2005-01-01
Micro-photoluminescence spectra of GaAs/AlGaAs coupled quantum dots (QDs) are given, and proposed to be analyzed by our resonance dynamic dipole-dipole interaction (RDDDI) model, based on parity inheritance and exchange of virtual photons among QDs of different sizes.......Micro-photoluminescence spectra of GaAs/AlGaAs coupled quantum dots (QDs) are given, and proposed to be analyzed by our resonance dynamic dipole-dipole interaction (RDDDI) model, based on parity inheritance and exchange of virtual photons among QDs of different sizes....
Effect Sizes in Gifted Education Research
Gentry, Marcia; Peters, Scott J.
2009-01-01
Recent calls for reporting and interpreting effect sizes have been numerous, with the 5th edition of the "Publication Manual of the American Psychological Association" (2001) calling for the inclusion of effect sizes to interpret quantitative findings. Many top journals have required that effect sizes accompany claims of statistical significance.…
Effect Sizes in Gifted Education Research
Gentry, Marcia; Peters, Scott J.
2009-01-01
Recent calls for reporting and interpreting effect sizes have been numerous, with the 5th edition of the "Publication Manual of the American Psychological Association" (2001) calling for the inclusion of effect sizes to interpret quantitative findings. Many top journals have required that effect sizes accompany claims of statistical significance.…
School size effects: review and conceptual analysis
Scheerens, Jaap; Hendriks, Maria; Luyten, Hans; Luyten, Hans; Hendriks, Maria; Scheerens, Jaap
2014-01-01
In this chapter, a review of international review studies on school size effects is presented. Next, ingredients of a more contextualized and tentative causal mediation model of school size effects are discussed. The chapter is completed by a short overview of school size effects as found in interna
Discrete quantum geometries and their effective dimension
Energy Technology Data Exchange (ETDEWEB)
Thuerigen, Johannes
2015-07-02
In several approaches towards a quantum theory of gravity, such as group field theory and loop quantum gravity, quantum states and histories of the geometric degrees of freedom turn out to be based on discrete spacetime. The most pressing issue is then how the smooth geometries of general relativity, expressed in terms of suitable geometric observables, arise from such discrete quantum geometries in some semiclassical and continuum limit. In this thesis I tackle the question of suitable observables focusing on the effective dimension of discrete quantum geometries. For this purpose I give a purely combinatorial description of the discrete structures which these geometries have support on. As a side topic, this allows to present an extension of group field theory to cover the combinatorially larger kinematical state space of loop quantum gravity. Moreover, I introduce a discrete calculus for fields on such fundamentally discrete geometries with a particular focus on the Laplacian. This permits to define the effective-dimension observables for quantum geometries. Analysing various classes of quantum geometries, I find as a general result that the spectral dimension is more sensitive to the underlying combinatorial structure than to the details of the additional geometric data thereon. Semiclassical states in loop quantum gravity approximate the classical geometries they are peaking on rather well and there are no indications for stronger quantum effects. On the other hand, in the context of a more general model of states which are superposition over a large number of complexes, based on analytic solutions, there is a flow of the spectral dimension from the topological dimension d on low energy scales to a real number between 0 and d on high energy scales. In the particular case of 1 these results allow to understand the quantum geometry as effectively fractal.
Preparation and quantum size effect of nano WS2 lubricating crystal%纳米WS2润滑晶体的制备与量子尺寸效应
Institute of Scientific and Technical Information of China (English)
孙克辉; 韦钦; 罗文东; 王皋
2001-01-01
纳米WS2润滑晶体是一种性能优良的新型固体润滑材料.作者介绍了一种用机械-物理固相反应装置制备纳米WS2润滑晶体的新方法；用XRD对WS2纳米晶体进行了物相分析；用ESCALAB-MKⅡ型电子能谱仪分析了不同粒径的试样W44f712，S2p312电子结合能的变化，并对50mm和10mm粒径的S-W-S纳米簇团的S 2P312电子能谱结构进行谱图拟合.分析结果表明：XRD图样显示为WS2相单相；在S-W-S纳米簇团中存在显著的量子尺寸效应，该效应强化了硫原子电子壳层间的轨道杂化，使纳米级的WS2润滑晶体形成了1个没有悬键的、化学性能稳定的中空球体，在润滑过程中，这种结构可使体系保持较强的化学稳定性，能耗降低.%Nano WS2 crystal is a kind of solid lubrication material with excellent lubrication performance. This paper reports a new method of preparing nano WS2 lubricating crystal using equipment of Mechanical-physical Solid State Reaction Methods (MPSSRM). The phase analyses of nano WS2 lubricating crystal were made in the experiment of XRD. The shift of binding energies from W 4f7/2 and S 2p3/2 electrons for specimens of different diameters was investigated with ESCALAB-MK Ⅱ , and the spectra fitting analysis for S 2p3/2 electron in S-W-S cluster of diameters 50 nm and 10 nm were performed. The results show that the diffraction patterns for WS2 single phase were observed; the pronounced quantum size effect exists in S-W-S nano clusters, and it enhances the hybridization of different electronic shell obits and formed a closed hollow spherical structure without any dangling bond. In the lubricating process, such a system can maintain its chemical stability and decrease energy dissipation.
Sifting attacks in finite-size quantum key distribution
Pfister, Corsin; Lütkenhaus, Norbert; Wehner, Stephanie; Coles, Patrick J.
2016-05-01
A central assumption in quantum key distribution (QKD) is that Eve has no knowledge about which rounds will be used for parameter estimation or key distillation. Here we show that this assumption is violated for iterative sifting, a sifting procedure that has been employed in some (but not all) of the recently suggested QKD protocols in order to increase their efficiency. We show that iterative sifting leads to two security issues: (1) some rounds are more likely to be key rounds than others, (2) the public communication of past measurement choices changes this bias round by round. We analyze these two previously unnoticed problems, present eavesdropping strategies that exploit them, and find that the two problems are independent. We discuss some sifting protocols in the literature that are immune to these problems. While some of these would be inefficient replacements for iterative sifting, we find that the sifting subroutine of an asymptotically secure protocol suggested by Lo et al (2005 J. Cryptol. 18 133-65), which we call LCA sifting, has an efficiency on par with that of iterative sifting. One of our main results is to show that LCA sifting can be adapted to achieve secure sifting in the finite-key regime. More precisely, we combine LCA sifting with a certain parameter estimation protocol, and we prove the finite-key security of this combination. Hence we propose that LCA sifting should replace iterative sifting in future QKD implementations. More generally, we present two formal criteria for a sifting protocol that guarantee its finite-key security. Our criteria may guide the design of future protocols and inspire a more rigorous QKD analysis, which has neglected sifting-related attacks so far.
The Quantum Zeno Effect -- Watched Pots in the Quantum World
Venugopalan, Anu
2012-01-01
In the 5th century B.C.,the philosopher and logician Zeno of Elea posed several paradoxes which remained unresolved for over two thousand five hundred years. The $20^{th}$ century saw some resolutions to Zeno's mind boggling problems. This long journey saw many significant milestones in the form of discoveries like the tools of converging series and theories on infinite sets in mathematics. In recent times, the Zeno effect made an intriguing appearance in a rather unlikely place - a situation involving the time evolution of a quantum system, which is subject to "observations" over a period of time. Leonid Khalfin working in the former USSR in the 1960s and ECG Sudarshan and B. Misra at the University of Texas, Austin, first drew attention to this problem. In 1977, ECG Sudarshan and B. Misra published a paper on the quantum Zeno effect, called "The Zeno's paradox in quantum theory". Their fascinating result revealed the bizarre workings of the quantum world. Misra and Sudarshan's 1977 paper activated over two ...
Modelling of Size Effect with Regularised Continua
Directory of Open Access Journals (Sweden)
H. Askes
2004-01-01
Full Text Available A nonlocal damage continuum and a viscoplastic damage continuum are used to model size effects. Three-point bending specimens are analysed, whereby a distinction is made between unnotched specimens, specimens with a constant notch and specimens with a proportionally scaled notch. Numerical finite element simulations have been performed for specimen sizes in a range of 1:64. Size effects are established in terms of nominal strength and compared to existing size effect models from the literature.
Size effects in manufacturing of metallic components
DEFF Research Database (Denmark)
Vollertsen, F; Biermann, D; Hansen, Hans Nørgaard
2009-01-01
In manufacturing of metallic components, the size of the part plays an important role for the process behaviour. This is due to so called size effects, which lead to changes in the process behaviour even if the relationship between the main geometrical features is kept constant. The aim...... of this paper is to give a systematic review on Such effects and their potential use or remedy. First, the typology of size effects will be explained, followed by a description of size effects on strength and tribology. The last three sections describe size effects on formability, forming processes and cutting...
Chaos in effective classical and quantum dynamics
Casetti, L; Modugno, M; Casetti, Lapo; Gatto, Raoul; Modugno, Michele
1998-01-01
We investigate the dynamics of classical and quantum N-component phi^4 oscillators in presence of an external field. In the large N limit the effective dynamics is described by two-degree-of-freedom classical Hamiltonian systems. In the classical model we observe chaotic orbits for any value of the external field, while in the quantum case chaos is strongly suppressed. A simple explanation of this behaviour is found in the change in the structure of the orbits induced by quantum corrections. Consistently with Heisenberg's principle, quantum fluctuations are forced away from zero, removing in the effective quantum dynamics a hyperbolic fixed point that is a major source of chaos in the classical model.
The quantum Hall effects: Philosophical approach
Lederer, P.
2015-05-01
The Quantum Hall Effects offer a rich variety of theoretical and experimental advances. They provide interesting insights on such topics as gauge invariance, strong interactions in Condensed Matter physics, emergence of new paradigms. This paper focuses on some related philosophical questions. Various brands of positivism or agnosticism are confronted with the physics of the Quantum Hall Effects. Hacking's views on Scientific Realism, Chalmers' on Non-Figurative Realism are discussed. It is argued that the difficulties with those versions of realism may be resolved within a dialectical materialist approach. The latter is argued to provide a rational approach to the phenomena, theory and ontology of the Quantum Hall Effects.
Size effects on cavitation instabilities
DEFF Research Database (Denmark)
Niordson, Christian Frithiof; Tvergaard, Viggo
2006-01-01
In metal-ceramic systems the constraint on plastic flow leads to so high stress triaxialities that cavitation instabilities may occur. If the void radius is on the order of magnitude of a characteristic length for the metal, the rate of void growth is reduced, and the possibility of unstable cavi...... as the void grows to a size well above the characteristic material length....
NP has log-space verifiers with fixed-size public quantum registers
Yakaryilmaz, Abuzer
2011-01-01
In classical Arthur-Merlin games (AM), the class of languages whose membership proofs can be verified by Arthur using logarithmic space coincides with the class P \\cite{Co89}. In this note, we show that if Arthur has a fixed-size quantum register (the size of the register does not depend on the length of the input) instead of another source of random bits, membership in any language in NP can be verified with any desired error bound.
DEFF Research Database (Denmark)
Johansen, Jeppe; Stobbe, Søren; Nikolaev, Ivan S.;
2008-01-01
and a theoretical model, we determine the striking dependence of the overlap of the electron and hole wavefunctions on the quantum dot size. We conclude that the optical quality is best for large quantum dots, which is important in order to optimally tailor quantum dot emitters for, e.g., quantum electrodynamics......The radiative and nonradiative decay rates of InAs quantum dots are measured by controlling the local density of optical states near an interface. From time-resolved measurements, we extract the oscillator strength and the quantum efficiency and their dependence on emission energy. From our results...
Thermodynamics of the quantum butterfly effect
Campisi, Michele
2016-01-01
In this letter we consider the quantum analogue of the butterfly effect which is well known in the field of classical non-linear dynamics. Recently, it has been proposed to measure the effect using an out-of-time-order correlator (OTOC) between two local operators. Effectively measuring the degree of non-commutativity in time, this correlator describes the phenomenon of information scrambling in quantum information. Here we show that the butterfly effect can be recast as a two-measurement scheme inspired from the field of non-equilibrium quan- tum thermodynamics. Furthermore, we demonstrate how an OTOC can emerge as the characteristic function of the work distribution. Our realisation not only offers a physically intuitive thermodynamical interpretation of the quantum butterfly effect, it also inspires novel experimental schemes to study the problem of quantum information scrambling.
Quantum Hall effect in momentum space
Ozawa, Tomoki; Price, Hannah M.; Carusotto, Iacopo
2016-05-01
We theoretically discuss a momentum-space analog of the quantum Hall effect, which could be observed in topologically nontrivial lattice models subject to an external harmonic trapping potential. In our proposal, the Niu-Thouless-Wu formulation of the quantum Hall effect on a torus is realized in the toroidally shaped Brillouin zone. In this analogy, the position of the trap center in real space controls the magnetic fluxes that are inserted through the holes of the torus in momentum space. We illustrate the momentum-space quantum Hall effect with the noninteracting trapped Harper-Hofstadter model, for which we numerically demonstrate how this effect manifests itself in experimental observables. Extension to the interacting trapped Harper-Hofstadter model is also briefly considered. We finally discuss possible experimental platforms where our proposal for the momentum-space quantum Hall effect could be realized.
Dynamic dipole-dipole interactions between excitons in quantum dots of different sizes
DEFF Research Database (Denmark)
Matsueda, Hideaki; Leosson, Kristjan; Xu, Zhangcheng;
2004-01-01
A model of the resonance dynamic dipole-dipole interaction between excitons confined in quantum dots (QDs) of different sizes at close enough distance is given in terms of parity inheritance and exchange of virtual photons. Microphotoluminescence spectra of GaAs-AlGaAs coupled QDs are proposed to...
Gravitational and rotational effects in quantum interference
Energy Technology Data Exchange (ETDEWEB)
Anandan, J.
1977-03-15
The phase shift due to gravitation and rotation in the quantum interference of two coherent beams is obtained relativistically and compared with the recent experiment of Colella, Overhauser, and Werner. A general expression relating the quantum phase shift to the transverse acceleration of a classical particle in the plane of interference for an arbitrary interaction with any external field is given. This can serve as a correspondence principle between quantum physics and classical physics. The phase shift due to the coupling of spin to curvature of space-time is deduced and written explicitly for the special case of a Schwarzschild field. The last result implies that a massless spinning particle can have at most two helicity states and its world line in a gravitational field is a null geodesic. Finally, new experiments are proposed to test the effect of rotation on quantum interference and to obtain direct evidence of the equivalence principle in quantum mechanics.
Do class size effects differ across grades?
DEFF Research Database (Denmark)
Nandrup, Anne Brink
This paper contributes to the class size literature by analyzing whether short-run class size effects are constant across grade levels in compulsory school. Results are based on administrative data on all pupils enroled in Danish public schools. Identification is based on a government-imposed class...... size cap that creates exogenous variation in class sizes. Significant (albeit modest) negative effects of class size increases are found for children on primary school levels. The effects on math abilities are statistically different across primary and secondary school. Larger classes do not affect...
Quantum effects in graphene monolayers: Path-integral simulations
Herrero, Carlos P.; Ramírez, Rafael
2016-12-01
Path-integral molecular dynamics (PIMD) simulations have been carried out to study the influence of quantum dynamics of carbon atoms on the properties of a single graphene layer. Finite-temperature properties were analyzed in the range from 12 to 2000 K, by using the LCBOPII effective potential. To assess the magnitude of quantum effects in structural and thermodynamic properties of graphene, classical molecular dynamics simulations have been also performed. Particular emphasis has been laid on the atomic vibrations along the out-of-plane direction. Even though quantum effects are present in these vibrational modes, we show that at any finite temperature classical-like motion dominates over quantum delocalization, provided that the system size is large enough. Vibrational modes display an appreciable anharmonicity, as derived from a comparison between kinetic and potential energies of the carbon atoms. Nuclear quantum effects are found to be appreciable in the interatomic distance and layer area at finite temperatures. The thermal expansion coefficient resulting from PIMD simulations vanishes in the zero-temperature limit, in agreement with the third law of thermodynamics.
Prevention of the Portion Size Effect
I. Versluis (Iris)
2016-01-01
markdownabstractAn increase in the portion size leads to an increase in energy intake, a phenomenon which is also referred to as the portion size effect. The increase in portion sizes in recent years is regarded as an important contributor to the increase in the prevalence of obesity. Hence, the aim
Sato, Rodrigo; Ohnuma, Masato; Oyoshi, Keiji; Takeda, Yoshihiko
2014-09-01
The effects of size quantization on the nonlinear optical response of Ag nanoparticles are experimentally studied by spectroscopic ellipsometry and femtosecond spectroscopic pump-and-probe techniques. In the vicinity of a localized surface-plasmon resonance (2.0-3.5 eV), we have investigated the optical nonlinearity of Ag particles embedded in silica glass for particle diameters ranging from 3.0 to 16 nm. The intrinsic third-order optical susceptibility χm(3) of Ag particles exhibited significant spectral and size dependences. These results are explained as quantum and dielectric confinements and are compared to the results of theoretical quantum finite-size effects calculation for metallic particles. In light of these results, we discuss the contribution of interband transitions to the size dependence of χm(3). Quantum size effects lead to an increase in nonlinearity in small Ag particles.
Liu, K M
2016-01-01
A high quality amorphous silicon (a-Si) nanostructures has grown experimentally to study the origin of light emission and the quantum confinement effect in a-Si. The quantum confinement effect increases the band gap of material as the size of quantum structure decreases, which results in a blue shift in optical luminescence and energy absorption. Here we demonstrate this effect using extended H\\"uckel method to calculate fundamental band gap and optical absorption energy of a-Si samples with various dot sizes. As result, when the dot size was decreased from 2.2 to 1.0 nm, the absorption spectra peak shifted toward higher energy from 2.278 eV to 3.856 eV.
Modeling on the size dependent properties of InP quantum dots: a hybrid functional study
Cho, Eunseog; Jang, Hyosook; Lee, Junho; Jang, Eunjoo
2013-05-01
Theoretical calculations based on density functional theory were performed to provide better understanding of the size dependent electronic properties of InP quantum dots (QDs). Using a hybrid functional approach, we suggest a reliable analytical equation to describe the change of energy band gap as a function of size. Synthesizing colloidal InP QDs with 2-4 nm diameter and measuring their optical properties was also carried out. It was found that the theoretical band gaps showed a linear dependence on the inverse size of QDs and gave energy band gaps almost identical to the experimental values.
Coherent quantum effects through dispersive bosonic media
Ye, Sai-Yun; Zheng, Shi-Biao; Serafini, Alessio
2010-01-01
The coherent evolution of two atomic qubits mediated by a set of bosonic field modes is investigated. By assuming a specific encoding of the quantum states in the internal levels of the two atoms we show that entangling quantum gates can be realised, with high fidelity, even when a large number of mediating modes is involved. The effect of losses and imperfections on the gates' operation is also considered in detail.
Algorithmic quantum simulation of memory effects
Alvarez-Rodriguez, U.; Di Candia, R.; Casanova, J.; Sanz, M.; Solano, E.
2017-02-01
We propose a method for the algorithmic quantum simulation of memory effects described by integrodifferential evolution equations. It consists in the systematic use of perturbation theory techniques and a Markovian quantum simulator. Our method aims to efficiently simulate both completely positive and nonpositive dynamics without the requirement of engineering non-Markovian environments. Finally, we find that small error bounds can be reached with polynomially scaling resources, evaluated as the time required for the simulation.
Fan, Baolu; Guo, Xiaoxiao; Zhang, Yumeng; Fan, Jiyang
2017-02-01
We investigate the concentration and size dependent UV/green photoluminescence properties of the ZnO quantum dots (QDs) with sizes in the strong confinement regime. The luminescence characteristics of an ensemble of colloidal semiconductor QDs with quantum confinement effect depend sensitively on particle concentration but this has only been qualitatively understood. By taking ZnO QDs as an ideal prototype, we construct a material-independent theoretical model to study the photon reabsorption phenomenon. The theoretical result agrees well with the experiment. This model can be used to quantitatively study the concentration-dependent luminescence properties of any collection of QDs with considerable size dispersion. On the other hand, the origin of green emission in ZnO QDs remains debated. The comparative study of the size dependence of UV and green emissions in conjunction with the effective-mass approximation calculation suggests that the green emission in the ZnO QDs originates from the conduction band to the deep level transition.
A tunable colloidal quantum dot photo field-effect transistor
Ghosh, Subir
2011-01-01
We fabricate and investigate field-effect transistors in which a light-absorbing photogate modulates the flow of current along the channel. The photogate consists of colloidal quantum dots that efficiently transfer photoelectrons to the channel across a charge-separating (type-II) heterointerface, producing a primary and sustained secondary flow that is terminated via electron back-recombination across the interface. We explore colloidal quantum dot sizes corresponding to bandgaps ranging from 730 to 1475 nm and also investigate various stoichiometries of aluminum-doped ZnO (AZO) channel materials. We investigate the role of trap state energies in both the colloidal quantum dot energy film and the AZO channel. © 2011 American Institute of Physics.
Tellier, CR; Siddall, G
1982-01-01
A complete and comprehensive study of transport phenomena in thin continuous metal films, this book reviews work carried out on external-surface and grain-boundary electron scattering and proposes new theoretical equations for transport properties of these films. It presents a complete theoretical view of the field, and considers imperfection and impurity effects.
Size and value effects in Suriname
D.S. Bodeutsch (Denice); Ph.H.B.F. Franses (Philip Hans)
2013-01-01
markdownabstract__Abstract__ This paper studies the link between stock returns and size and book-to-market equity effects for 10 companies listed at the Suriname Stock Exchange. We analyze the cross-sectional variation in average returns and we find that there is apparently no size effect, but the
Cobalt particle size effects in catalysis
den Breejen, J.P.
2010-01-01
Aim of the work described in this thesis was first to investigate cobalt particle size effects in heterogeneous catalysis. The main focus was to provide a deeper understanding of the origin of the cobalt particle size effects in Fischer-Tropsch (FT) catalysis in which synthesis gas (H2/CO) is conver
Effect size for dichotomous outcome measures
Institute of Scientific and Technical Information of China (English)
Yuanjia WANG; Naihua DUAN
2011-01-01
@@ Effect size for continuous outcome measures was discussed in our previous column[1].In this column we discuss several widely used effect size measures for dichotomous (Yes/No) outcome measures such as mortality,relapse,cure,discontinuation of treatment,and so forth.
Cobalt particle size effects in catalysis
den Breejen, J.P.
2010-01-01
Aim of the work described in this thesis was first to investigate cobalt particle size effects in heterogeneous catalysis. The main focus was to provide a deeper understanding of the origin of the cobalt particle size effects in Fischer-Tropsch (FT) catalysis in which synthesis gas (H2/CO) is
Size and value effects in Suriname
D.S. Bodeutsch (Denice); Ph.H.B.F. Franses (Philip Hans)
2013-01-01
markdownabstract__Abstract__ This paper studies the link between stock returns and size and book-to-market equity effects for 10 companies listed at the Suriname Stock Exchange. We analyze the cross-sectional variation in average returns and we find that there is apparently no size effect, but
Effective pure states for bulk quantum computation
Energy Technology Data Exchange (ETDEWEB)
Knill, E.; Chuang, I.; Laflamme, R.
1997-11-01
In bulk quantum computation one can manipulate a large number of indistinguishable quantum computers by parallel unitary operations and measure expectation values of certain observables with limited sensitivity. The initial state of each computer in the ensemble is known but not pure. Methods for obtaining effective pure input states by a series of manipulations have been described by Gershenfeld and Chuang (logical labeling) and Corey et al. (spatial averaging) for the case of quantum computation with nuclear magnetic resonance. We give a different technique called temporal averaging. This method is based on classical randomization, requires no ancilla qubits and can be implemented in nuclear magnetic resonance without using gradient fields. We introduce several temporal averaging algorithms suitable for both high temperature and low temperature bulk quantum computing and analyze the signal to noise behavior of each.
Effective operator formalism for open quantum systems
DEFF Research Database (Denmark)
Reiter, Florentin; Sørensen, Anders Søndberg
2012-01-01
We present an effective operator formalism for open quantum systems. Employing perturbation theory and adiabatic elimination of excited states for a weakly driven system, we derive an effective master equation which reduces the evolution to the ground-state dynamics. The effective evolution...
Chen, Xing; Moore, Justin E; Zekarias, Meserret; Jensen, Lasse
2015-11-10
The optical properties of metallic nanoparticles with nanometre dimensions exhibit features that cannot be described by classical electrodynamics. In this quantum size regime, the near-field properties are significantly modified and depend strongly on the geometric arrangements. However, simulating realistically sized systems while retaining the atomistic description remains computationally intractable for fully quantum mechanical approaches. Here we introduce an atomistic electrodynamics model where the traditional description of nanoparticles in terms of a macroscopic homogenous dielectric constant is replaced by an atomic representation with dielectric properties that depend on the local chemical environment. This model provides a unified description of bare and ligand-coated nanoparticles, as well as strongly interacting nanoparticle dimer systems. The non-local screening owing to an inhomogeneous ligand layer is shown to drastically modify the near-field properties. This will be important to consider in optimization of plasmonic nanostructures for near-field spectroscopy and sensing applications.
Effective population size of korean populations.
Park, Leeyoung
2014-12-01
Recently, new methods have been developed for estimating the current and recent changes in effective population sizes. Based on the methods, the effective population sizes of Korean populations were estimated using data from the Korean Association Resource (KARE) project. The overall changes in the population sizes of the total populations were similar to CHB (Han Chinese in Beijing, China) and JPT (Japanese in Tokyo, Japan) of the HapMap project. There were no differences in past changes in population sizes with a comparison between an urban area and a rural area. Age-dependent current and recent effective population sizes represent the modern history of Korean populations, including the effects of World War II, the Korean War, and urbanization. The oldest age group showed that the population growth of Koreans had already been substantial at least since the end of the 19th century.
Structural effect of size on interracial friendship.
Cheng, Siwei; Xie, Yu
2013-04-30
Social contexts exert structural effects on individuals' social relationships, including interracial friendships. In this study, we posit that, net of group composition, total context size has a distinct effect on interracial friendship. Under the assumptions of (i) maximization of preference in choosing a friend, (ii) multidimensionality of preference, and (iii) preference for same-race friends, we conducted analyses using microsimulation that yielded three main findings. First, increased context size decreases the likelihood of forming an interracial friendship. Second, the size effect increases with the number of preference dimensions. Third, the size effect is diluted by noise, i.e., the random component affecting friendship formation. Analysis of actual friendship data among 4,745 American high school students yielded results consistent with the main conclusion that increased context size promotes racial segregation and discourages interracial friendship.
Quantum Gravity signatures in the Unruh effect
Alkofer, Natalia; Saueressig, Frank; Versteegen, Fleur
2016-01-01
We study quantum gravity signatures emerging from phenomenologically motivated multiscale models, spectral actions, and Causal Set Theory within the detector approach to the Unruh effect. We show that while the Unruh temperature is unaffected, Lorentz-invariant corrections to the two-point function leave a characteristic fingerprint in the induced emission rate of the accelerated detector. Generically, quantum gravity models exhibiting dynamical dimensional reduction exhibit a suppression of the Unruh rate at high energy while the rate is enhanced in Kaluza-Klein theories with compact extra dimensions. We quantify this behavior by introducing the "Unruh dimension" as the effective spacetime dimension seen by the Unruh effect and show that it is related, though not identical, to the spectral dimension used to characterize spacetime in quantum gravity. We comment on the physical origins of these effects and their relevance for black hole evaporation.
Quantum gravity signatures in the Unruh effect
Alkofer, Natalia; D'Odorico, Giulio; Saueressig, Frank; Versteegen, Fleur
2016-11-01
We study quantum gravity signatures emerging from phenomenologically motivated multiscale models, spectral actions, and causal set theory within the detector approach to the Unruh effect. We show that while the Unruh temperature is unaffected, Lorentz-invariant corrections to the two-point function leave a characteristic fingerprint in the induced emission rate of the accelerated detector. Generically, quantum gravity models exhibiting dynamical dimensional reduction exhibit a suppression of the Unruh rate at high energy while the rate is enhanced in Kaluza-Klein theories with compact extra dimensions. We quantify this behavior by introducing the "Unruh dimension" as the effective spacetime dimension seen by the Unruh effect and show that it is related, though not identical, to the spectral dimension used to characterize spacetime in quantum gravity. We comment on the physical origins of these effects and their relevance for black hole evaporation.
DEFF Research Database (Denmark)
Leistikow, M.D.; Johansen, Jeppe; Kettelarij, A.J.;
2009-01-01
, allowing us to determine the size-dependent quantum efficiency and oscillator strength. We find that the quantum efficiency decreases with increasing emission energy mostly due to an increase in nonradiative decay. We manage to obtain the oscillator strength of the important class of CdSe quantum dots....... The oscillator strength varies weakly with frequency in agreement with behavior of quantum dots in the strong confinement limit. Surprisingly, previously calculated tight-binding results differ by a factor of 5 with the measured absolute values. Results from pseudopotential calculations agree well...
Toward simulating complex systems with quantum effects
Kenion-Hanrath, Rachel Lynn
Quantum effects like tunneling, coherence, and zero point energy often play a significant role in phenomena on the scales of atoms and molecules. However, the exact quantum treatment of a system scales exponentially with dimensionality, making it impractical for characterizing reaction rates and mechanisms in complex systems. An ongoing effort in the field of theoretical chemistry and physics is extending scalable, classical trajectory-based simulation methods capable of capturing quantum effects to describe dynamic processes in many-body systems; in the work presented here we explore two such techniques. First, we detail an explicit electron, path integral (PI)-based simulation protocol for predicting the rate of electron transfer in condensed-phase transition metal complex systems. Using a PI representation of the transferring electron and a classical representation of the transition metal complex and solvent atoms, we compute the outer sphere free energy barrier and dynamical recrossing factor of the electron transfer rate while accounting for quantum tunneling and zero point energy effects. We are able to achieve this employing only a single set of force field parameters to describe the system rather than parameterizing along the reaction coordinate. Following our success in describing a simple model system, we discuss our next steps in extending our protocol to technologically relevant materials systems. The latter half focuses on the Mixed Quantum-Classical Initial Value Representation (MQC-IVR) of real-time correlation functions, a semiclassical method which has demonstrated its ability to "tune'' between quantum- and classical-limit correlation functions while maintaining dynamic consistency. Specifically, this is achieved through a parameter that determines the quantumness of individual degrees of freedom. Here, we derive a semiclassical correction term for the MQC-IVR to systematically characterize the error introduced by different choices of simulation
The quantum Hall's effect:A quantum electrodynamic phenomenon
Institute of Scientific and Technical Information of China (English)
A.I. Arbab
2012-01-01
We have applied Maxwell's equations to study the physics of quantum Hall's effect.The electromagnetic properties of this system are obtained.The Hall's voltage,VH =2πh2ns/e rn,where ns is the electron number density,for a 2-dimensional system,and h =2πh is the Planck's constant,is found to coincide with the voltage drop across the quantum capacitor.Consideration of the cyclotronic motion of electrons is found to give rise to Hall's resistance.Ohmic resistances in the horizontal and vertical directions have been found to exist before equilibrium state is reached.At a fundamental level,the Hall's effect is found to be equivalent to a resonant LCR circuit with LH =2π m/e2ns and CH =me2/2πh2ns satisfying the resonance condition with resonant frequency equal to the inverse of the scattering (relaxation) time,Ts.The Hall's resistance is found to be RH =√LH/CH.The Hall's resistance may be connected with the impedance that the electron wave experiences when it propagates in the 2-dimeasional gas.
Polaronic Effects of an Exciton in a Cylindrical Quantum Wire
Institute of Scientific and Technical Information of China (English)
WANG Rui-Qiang; XIE Hong-Jing; GUO Kang-Xian; YU You-Bin; DENG Yong-Qing
2005-01-01
The effects of exciton-optical phonon interaction on the binding energy and the total and reduced effective masses of an exciton in a cylindrical quantum wire have been investigated. We adopt a perturbative-PLL [T.D. Lee,F. Low, and D. Pines, Phys. Rev. B90 (1953) 297] technique to construct an effective Hamiltonian and then use a variational solution to deal with the exciton-phonon system. The interactions of exciton with the longitudinal-optical phonon and the surface-optical phonon have been taken into consideration. The numerical calculations for GaAs show that the influences of phonon modes on the exciton in a quasi-one-dimensional quantum wire are considerable and should not be neglected. Moreover the numerical results for heavy- and light-hole exciton are obtained, which show that the polaronic effects on two types of excitons are very different but both depend heavily on the sizes of the wire.
Quantum metrology and estimation of Unruh effect.
Wang, Jieci; Tian, Zehua; Jing, Jiliang; Fan, Heng
2014-11-26
We study the quantum metrology for a pair of entangled Unruh-Dewitt detectors when one of them is accelerated and coupled to a massless scalar field. Comparing with previous schemes, our model requires only local interaction and avoids the use of cavities in the probe state preparation process. We show that the probe state preparation and the interaction between the accelerated detector and the external field have significant effects on the value of quantum Fisher information, correspondingly pose variable ultimate limit of precision in the estimation of Unruh effect. We find that the precision of the estimation can be improved by a larger effective coupling strength and a longer interaction time. Alternatively, the energy gap of the detector has a range that can provide us a better precision. Thus we may adjust those parameters and attain a higher precision in the estimation. We also find that an extremely high acceleration is not required in the quantum metrology process.
Size Effects on the Strength of Metals
DEFF Research Database (Denmark)
Huang, Xiaoxu
2014-01-01
The grain size effect and the specimen size effect on the strength of metals are briefly reviewed with respect to their history and current status of research. It is revealed that the fundamental strengthening mechanisms responsible for these two types of size effect are to increase the resistance...... to dislocation motion and to dislocation generation, respectively. It is shown that both strengthening mechanisms take place in some nanostructured metals, which leads to a suggestion to use these two mechanisms for optimizing the strength and ductility of nanostructured metals. This suggestion is verified...
Nanocoatings size effect in nanostructured films
Aliofkhazraei, Mahmood
2014-01-01
Size effect in structures has been taken into consideration over the last years. In comparison with coatings with micrometer-ranged thickness, nanostructured coatings usually enjoy better and appropriate properties, such as strength and resistance. These coatings enjoy unique magnetic properties and are used with the aim of producing surfaces resistant against erosion, lubricant system, cutting tools, manufacturing hardened sporadic alloys, being resistant against oxidation and corrosion. This book reviews researches on fabrication and classification of nanostructured coatings with focus on size effect in nanometric scale. Size effect on electrochemical, mechanical and physical properties of nanocoatings are presented.
Board Size Effects in Closely Held Corporations
DEFF Research Database (Denmark)
Bennedsen, Morten; Kongsted, H.C.; Meisner Nielsen, Kasper
2004-01-01
Previous work on board size effects in closely held corporationshas established a negative correlation between board size and firm performance.We argue that this work has been incomplete in analysing the causalrelationship due to lack of ownership information and weak identificationstrategies in ...
Board Size Effects in Closely Held Corporations
DEFF Research Database (Denmark)
Bennedsen, Morten; Kongsted, H.C.; Meisner Nielsen, Kasper
2004-01-01
Previous work on board size effects in closely held corporationshas established a negative correlation between board size and firm performance.We argue that this work has been incomplete in analysing the causalrelationship due to lack of ownership information and weak identificationstrategies in ...
National Research Council Canada - National Science Library
Kühberger, Anton; Fritz, Astrid; Scherndl, Thomas
2014-01-01
.... We extracted p values, effect sizes, and sample sizes of all empirical papers, and calculated the correlation between effect size and sample size, and investigated the distribution of p values...
Quantum anomalous Hall effect in real materials
Zhang, Jiayong; Zhao, Bao; Zhou, Tong; Yang, Zhongqin
2016-11-01
Under a strong magnetic field, the quantum Hall (QH) effect can be observed in two-dimensional electronic gas systems. If the quantized Hall conductivity is acquired in a system without the need of an external magnetic field, then it will give rise to a new quantum state, the quantum anomalous Hall (QAH) state. The QAH state is a novel quantum state that is insulating in the bulk but exhibits unique conducting edge states topologically protected from backscattering and holds great potential for applications in low-power-consumption electronics. The realization of the QAH effect in real materials is of great significance. In this paper, we systematically review the theoretical proposals that have been brought forward to realize the QAH effect in various real material systems or structures, including magnetically doped topological insulators, graphene-based systems, silicene-based systems, two-dimensional organometallic frameworks, quantum wells, and functionalized Sb(111) monolayers, etc. Our paper can help our readers to quickly grasp the recent developments in this field. Project supported by the National Basic Research Program of China (Grant No. 2011CB921803), the National Natural Science Foundation of China (Grant No. 11574051), the Natural Science Foundation of Shanghai, China (Grant No. 14ZR1403400), and Fudan High-end Computing Center, China.
Quantum gravity, effective fields and string theory
Bjerrum-Bohr, N E J
2004-01-01
We look at the various aspects of treating general relativity as a quantum theory. It is briefly studied how to consistently quantize general relativity as an effective field theory. A key achievement here is the long-range low-energy leading quantum corrections to both the Schwarzschild and Kerr metrics. The leading quantum corrections to the pure gravitational potential between two sources are also calculated, both in the mixed theory of scalar QED and quantum gravity and in the pure gravitational theory. The (Kawai-Lewellen-Tye) string theory gauge/gravity relations is next dealt with. We investigate if the KLT-operator mapping extends to the case of higher derivative effective operators. The KLT-relations are generalized, taking the effective field theory viewpoint, and remarkable tree-level amplitude relations between the field theory operators are derived. Quantum gravity is finally looked at from the the perspective of taking the limit of infinitely many spatial dimensions. It is verified that only a c...
Improved dot size uniformity and luminescense of InAs quantum dots on InP substrate
Qiu, Y.; Uhl, D.
2002-01-01
InAs self-organized quantum dots have been grown in InGaAs quantum well on InP substrates by metalorganic vapor phase epitaxy. Atomic Force Microscopy confirmed of quantum dot formation with dot density of 3X10(sup 10) cm(sup -2). Improved dot size uniformity and strong room temperature photoluminescence up to 2 micron were observed after modifying the InGaAs well.
Size control by rate control in colloidal PbSe quantum dot synthesis
Čapek, Richard Karel; Yanover, Dianna; Lifshitz, Efrat
2015-03-01
A recently demonstrated approach to control the size of colloidal nanoparticles, ``size control by rate control'', which was validated on the examples of colloidal CdSe- and CdS-quantum dot (CQD) synthesis, appears to be a general strategy for designing technically applicable CQD-syntheses. The ``size control by rate control'' concept allows full-yield syntheses of ensembles of CQDs with different sizes by tuning the solute formation rate. In this work, we extended this strategy to dialkylphosphine enhanced hot-injection synthesis of PbSe-CQDs. Furthermore, we provide new insight into the reaction mechanism of dialkylphosphine enhancement in TOPSe based CQD-syntheses.A recently demonstrated approach to control the size of colloidal nanoparticles, ``size control by rate control'', which was validated on the examples of colloidal CdSe- and CdS-quantum dot (CQD) synthesis, appears to be a general strategy for designing technically applicable CQD-syntheses. The ``size control by rate control'' concept allows full-yield syntheses of ensembles of CQDs with different sizes by tuning the solute formation rate. In this work, we extended this strategy to dialkylphosphine enhanced hot-injection synthesis of PbSe-CQDs. Furthermore, we provide new insight into the reaction mechanism of dialkylphosphine enhancement in TOPSe based CQD-syntheses. Electronic supplementary information (ESI) available: Additional data about the reaction and growth kinetics, NMR-data and exemplary TEM images of PbSe-CQDs prepared by the procedure described in this publication. See DOI: 10.1039/c5nr00028a
Gravitational Waves in Effective Quantum Gravity
Energy Technology Data Exchange (ETDEWEB)
Calmet, Xavier; Kuntz, Ibere; Mohapatra, Sonali [University of Sussex, Physics and Astronomy, Brighton (United Kingdom)
2016-08-15
In this short paper we investigate quantum gravitational effects on Einstein's equations using Effective Field Theory techniques. We consider the leading order quantum gravitational correction to the wave equation. Besides the usual massless mode, we find a pair of modes with complex masses. These massive particles have a width and could thus lead to a damping of gravitational waves if excited in violent astrophysical processes producing gravitational waves such as e.g. black hole mergers. We discuss the consequences for gravitational wave events such as GW 150914 recently observed by the Advanced LIGO collaboration. (orig.)
Effective constraints of loop quantum gravity
Bojowald, M; Kagan, M; Skirzewski, A; Bojowald, Martin; Hernandez, Hector; Kagan, Mikhail; Skirzewski, Aureliano
2006-01-01
Within a perturbative cosmological regime of loop quantum gravity corrections to effective constraints are computed. This takes into account all inhomogeneous degrees of freedom relevant for scalar metric modes around flat space and results in explicit expressions for modified coefficients and of higher order terms. It also illustrates the role of different scales determining the relative magnitude of corrections. Our results demonstrate that loop quantum gravity has the correct classical limit, at least in its sector of cosmological perturbations around flat space, in the sense of perturbative effective theory.
Quantum and isotope effects in lithium metal
Ackland, Graeme J.; Dunuwille, Mihindra; Martinez-Canales, Miguel; Loa, Ingo; Zhang, Rong; Sinogeikin, Stanislav; Cai, Weizhao; Deemyad, Shanti
2017-06-01
The crystal structure of elements at zero pressure and temperature is the most fundamental information in condensed matter physics. For decades it has been believed that lithium, the simplest metallic element, has a complicated ground-state crystal structure. Using synchrotron x-ray diffraction in diamond anvil cells and multiscale simulations with density functional theory and molecular dynamics, we show that the previously accepted martensitic ground state is metastable. The actual ground state is face-centered cubic (fcc). We find that isotopes of lithium, under similar thermal paths, exhibit a considerable difference in martensitic transition temperature. Lithium exhibits nuclear quantum mechanical effects, serving as a metallic intermediate between helium, with its quantum effect-dominated structures, and the higher-mass elements. By disentangling the quantum kinetic complexities, we prove that fcc lithium is the ground state, and we synthesize it by decompression.
Loop quantum gravity as an effective theory
Bojowald, Martin
2012-01-01
As a canonical and generally covariant gauge theory, loop quantum gravity requires special techniques to derive effective actions or equations. If the proper constructions are taken into account, the theory, in spite of considerable ambiguities at the dynamical level, allows for a meaningful phenomenology to be developed, by which it becomes falsifiable. The tradiational problems plaguing canonical quantum-gravity theories, such as the anomaly issue or the problem of time, can be overcome or are irrelevant at the effective level, resulting in consistent means of physical evaluations. This contribution presents aspects of canonical equations and related notions of (deformed) space-time structures and discusses implications in loop quantum gravity, such as signature change at high density from holonomy corrections, and falsifiability thanks to inverse-triad corrections.
Hofmeister effects: interplay of hydration, nonelectrostatic potentials, and ion size.
Parsons, Drew F; Boström, Mathias; Lo Nostro, Pierandrea; Ninham, Barry W
2011-07-21
The classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory of colloids, and corresponding theories of electrolytes, are unable to explain ion specific forces between colloidal particles quantitatively. The same is true generally, for surfactant aggregates, lipids, proteins, for zeta and membrane potentials and in adsorption phenomena. Even with fitting parameters the theory is not predictive. The classical theories of interactions begin with continuum solvent electrostatic (double layer) forces. Extensions to include surface hydration are taken care of with concepts like inner and outer Helmholtz planes, and "dressed" ion sizes. The opposing quantum mechanical attractive forces (variously termed van der Waals, Hamaker, Lifshitz, dispersion, nonelectrostatic forces) are treated separately from electrostatic forces. The ansatz that separates electrostatic and quantum forces can be shown to be thermodynamically inconsistent. Hofmeister or specific ion effects usually show up above ≈10(-2) molar salt. Parameters to accommodate these in terms of hydration and ion size had to be invoked, specific to each case. Ionic dispersion forces, between ions and solvent, for ion-ion and ion-surface interactions are not explicit in classical theories that use "effective" potentials. It can be shown that the missing ionic quantum fluctuation forces have a large role to play in specific ion effects, and in hydration. In a consistent predictive theory they have to be included at the same level as the nonlinear electrostatic forces that form the skeletal framework of standard theory. This poses a challenge. The challenges go further than academic theory and have implications for the interpretation and meaning of concepts like pH, buffers and membrane potentials, and for their experimental interpretation. In this article we overview recent quantitative developments in our evolving understanding of the theoretical origins of specific ion, or Hofmeister effects. These are demonstrated
The Effect of Fatty Amine Chain Length on Synthesis Process of Inp/Zns Quantum Dots
2016-01-01
Obtaining narrow size distribution through conventional methods used for quantum dots of group II-VI semiconductors is impractical in the case of III-V semiconductors speciallyInP/ZnS quantum dots because of molecular precursors depletion and growth stage continuation through Ostwald ripening process. Using fatty amines as activator along with precursors can lead to more monodispersed quantum dots. In this work, the effect of fatty amine chain length on InP/ZnS quantum dots synthesis was inve...
Rodríguez-Magdaleno, K. A.; Pérez-Álvarez, R.; Martínez-Orozco, J. C.; Pernas-Salomón, R.
2017-04-01
In this work the generation of an intermediate band of energy levels from multi-shell spherical GaAs /AlxGa1-x As quantum dot shells-size distribution is reported. Within the effective mass approximation the electronic structure of a GaAs spherical quantum-dot surrounded by one, two and three shells is studied in detail using a numerically stable transfer matrix method. We found that a shells-size distribution characterized by continuously wider GaAs domains is a suitable mechanism to generate the intermediate band whose width is also dependent on the Aluminium concentration x. Our results suggest that this effective mechanism can be used for the design of wider intermediate band than reported in other quantum systems with possible solar cells enhanced performance.
Peculiarities of the electron field emission from quantum-size structures
Litovchenko, V. G.; Evtukh, A. A.; Litvin, Yu. M.; Goncharuk, N. M.; Hartnagel, H.; Yilmazoglu, O.; Pavlidis, D.
2003-06-01
The electron field emission from semiconductor based layered structures has been investigated. Among studied structures were silicon tips coated with ultra-thin DLC layer, multilayer structures Si-SiO 2-Si ∗-SiO 2 with delta-doped Si ∗ layer, nanocomposite layers SiO xN y(Si) with Si nanocrystals embedded in SiO xN y matrix, GaN layers and Si-SiGe heterostructures. All of them have such peculiarities of electron field emission as peaks on emission current-voltage characteristics and corresponding Fowler-Nordheim plots. A physical model is proposed for explanation of experimental results. All emitters have layer, cluster wire or dot with quantum-size restriction in it. As a result, the quantum well with splitted electron levels exists or appears at electric field. Additional mechanism of electron emission-resonance tunneling is realized at definite electric fields.
Peculiarities of the electron field emission from quantum-size structures
Energy Technology Data Exchange (ETDEWEB)
Litovchenko, V.G.; Evtukh, A.A.; Litvin, Yu.M.; Goncharuk, N.M.; Hartnagel, H.; Yilmazoglu, O.; Pavlidis, D
2003-06-15
The electron field emission from semiconductor based layered structures has been investigated. Among studied structures were silicon tips coated with ultra-thin DLC layer, multilayer structures Si-SiO{sub 2}-Si*-SiO{sub 2} with delta-doped Si* layer, nanocomposite layers SiO{sub x}N{sub y}(Si) with Si nanocrystals embedded in SiO{sub x}N{sub y} matrix, GaN layers and Si-SiGe heterostructures. All of them have such peculiarities of electron field emission as peaks on emission current-voltage characteristics and corresponding Fowler-Nordheim plots. A physical model is proposed for explanation of experimental results. All emitters have layer, cluster wire or dot with quantum-size restriction in it. As a result, the quantum well with splitted electron levels exists or appears at electric field. Additional mechanism of electron emission-resonance tunneling is realized at definite electric fields.
Steady States of Infinite-Size Dissipative Quantum Chains via Imaginary Time Evolution
Gangat, Adil A.; I, Te; Kao, Ying-Jer
2017-07-01
Directly in the thermodynamic limit, we show how to combine local imaginary and real-time evolution of tensor networks to efficiently and accurately find the nonequilibrium steady states (NESSs) of one-dimensional dissipative quantum lattices governed by a local Lindblad master equation. The imaginary time evolution first bypasses any highly correlated portions of the real-time evolution trajectory by directly converging to the weakly correlated subspace of the NESS, after which, real-time evolution completes the convergence to the NESS with high accuracy. We demonstrate the power of the method with the dissipative transverse field quantum Ising chain. We show that a crossover of an order parameter shown to be smooth in previous finite-size studies remains smooth in the thermodynamic limit.
Directory of Open Access Journals (Sweden)
Amin Qorbani
2011-12-01
Full Text Available Fractal Image Compression is a well-known problem which is in the class of NP-Hard problems.Quantum Evolutionary Algorithm is a novel optimization algorithm which uses a probabilisticrepresentation for solutions and is highly suitable for combinatorial problems like Knapsack problem.Genetic algorithms are widely used for fractal image compression problems, but QEA is not used for thiskind of problems yet. This paper improves QEA whit change population size and used it in fractal imagecompression. Utilizing the self-similarity property of a natural image, the partitioned iterated functionsystem (PIFS will be found to encode an image through Quantum Evolutionary Algorithm (QEA methodExperimental results show that our method has a better performance than GA and conventional fractalimage compression algorithms.
Quantum Hall Effect in Higher Dimensions
Karabali, Dimitra; Karabali, Dimitra
2002-01-01
Following recent work on the quantum Hall effect on $S^4$, we solve the Landau problem on the complex projective spaces ${\\bf C}P^k$ and discuss quantum Hall states for such spaces. Unlike the case of $S^4$, a finite spatial density can be obtained with a finite number of internal states for each particle. We treat the case of ${\\bf C}P^2$ in some detail considering both Abelian and nonabelian background fields. The wavefunctions are obtained and incompressibility of the Hall states is shown. The case of ${\\bf C}P^3$ is related to the case of $S^4$.
Holographic Butterfly Effect at Quantum Critical Points
Ling, Yi; Wu, Jian-Pin
2016-01-01
When the Lyapunov exponent $\\lambda_L$ in a quantum chaotic system saturates the bound $\\lambda_L\\leqslant 2\\pi k_BT$, it is proposed that this system has a holographic dual described by a gravity theory. In particular, the butterfly effect as a prominent phenomenon of chaos can ubiquitously exist in a black hole system characterized by a shockwave solution near the horizon. In this letter we propose that the butterfly velocity $v_B$ can be used to diagnose quantum phase transition (QPT) in holographic theories. We provide evidences for this proposal with two holographic models exhibiting metal-insulator transitions (MIT), in which the second derivative of $v_B$ with respect to system parameters characterizes quantum critical points (QCP) with local extremes. We also point out that this proposal can be tested by experiments in the light of recent progress on the measurement of out-of-time-order correlation function (OTOC).
Finding quantum effects in strong classical potentials
Hegelich, B. Manuel; Labun, Lance; Labun, Ou Z.
2017-06-01
The long-standing challenge to describing charged particle dynamics in strong classical electromagnetic fields is how to incorporate classical radiation, classical radiation reaction and quantized photon emission into a consistent unified framework. The current, semiclassical methods to describe the dynamics of quantum particles in strong classical fields also provide the theoretical framework for fundamental questions in gravity and hadron-hadron collisions, including Hawking radiation, cosmological particle production and thermalization of particles created in heavy-ion collisions. However, as we show, these methods break down for highly relativistic particles propagating in strong fields. They must therefore be improved and adapted for the description of laser-plasma experiments that typically involve the acceleration of electrons. Theory developed from quantum electrodynamics, together with dedicated experimental efforts, offer the best controllable context to establish a robust, experimentally validated foundation for the fundamental theory of quantum effects in strong classical potentials.
Nonlinear peltier effect in quantum point contacts
Bogachek, E. N.; Scherbakov, A. G.; Landman, Uzi
1998-11-01
A theoretical analysis of the Peltier effect in two-dimensional quantum point contacts, in field-free conditions and under the influence of applied magnetic fields, is presented. It is shown that in the nonlinear regime (finite applied voltage) new peaks in the Peltier coefficient appear leading to violation of Onsager's relation. Oscillations of the Peltier coefficient in a magnetic field are demonstrated.
Quantum confined Stark effect in Gaussian quantum wells: A tight-binding study
Energy Technology Data Exchange (ETDEWEB)
Ramírez-Morales, A.; Martínez-Orozco, J. C.; Rodríguez-Vargas, I. [Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad Esquina Con Paseo La Bufa S/N, 98060 Zacatecas, Zac. (Mexico)
2014-05-15
The main characteristics of the quantum confined Stark effect (QCSE) are studied theoretically in quantum wells of Gaussian profile. The semi-empirical tight-binding model and the Green function formalism are applied in the numerical calculations. A comparison of the QCSE in quantum wells with different kinds of confining potential is presented.
Holovatsky, V. A.; Voitsekhivska, O. M.; Yakhnevych, M. Ya.
2017-09-01
The electron energy spectrum and wave functions in multishell spherical quantum dot, consisting of core and two spherical shells - potential wells separated by thin potential barriers, are obtained in the framework of the effective mass approximation and single band model. The investigations are performed within the matrix method for the nanostructure driven by magnetic field using the complete set of wave functions obtained without the magnetic field. The electron dipole momentum and oscillator strengths of intraband quantum transitions as functions of the magnetic field induction are numerically calculated. In order to increase the sensibility to magnetic field, the geometric parameters of the shells are chosen in such a way that the electron in the ground state is to be located in outer spherical well, but when the magnetic field induction becomes bigger, it moves into the core. It is shown that size of the middle potential well causes the smooth change of the electron location due to the effect of magnetic field, what is displayed on optical properties of nanostructure. The calculations are performed for multishell quantum dot CdSe/ZnS/CdSe/ZnS/CdSe.
Quantum Mechanical Effects in Gravitational Collapse
Greenwood, Eric
2010-01-01
In this thesis we investigate quantum mechanical effects to various aspects of gravitational collapse. These quantum mechanical effects are implemented in the context of the Functional Schr\\"odinger formalism. The Functional Schr\\"odinger formalism allows us to investigate the time-dependent evolutions of the quantum mechanical effects, which is beyond the scope of the usual methods used to investigate the quantum mechanical corrections of gravitational collapse. Utilizing the time-dependent nature of the Functional Schr\\"odinger formalism, we study the quantization of a spherically symmetric domain wall from the view point of an asymptotic and infalling observer, in the absence of radiation. To build a more realistic picture, we then study the time-dependent nature of the induced radiation during the collapse using a semi-classical approach. Using the domain wall and the induced radiation, we then study the time-dependent evolution of the entropy of the domain wall. Finally we make some remarks about the pos...
Stochasticity effects in quantum radiation reaction
Neitz, N
2013-01-01
When an ultrarelativistic electron beam collides with a sufficiently intense laser pulse, radiation-reaction effects can strongly alter the beam dynamics. In the realm of classical electrodynamics, radiation reaction has a beneficial effect on the electron beam as it tends to reduce its energy spread. Here, we show that when quantum effects become important, radiation reaction induces the opposite effect, i.e., the electron beam spreads out after interacting with the laser pulse. We identify the physical origin of this opposite tendency in the intrinsic stochasticity of photon emission, which becomes substantial in the full quantum regime. Our numerical simulations indicated that the predicted effects of the stochasticity can be measured already with presently available lasers and electron accelerators.
Stochasticity effects in quantum radiation reaction.
Neitz, N; Di Piazza, A
2013-08-02
When an ultrarelativistic electron beam collides with a sufficiently intense laser pulse, radiation-reaction effects can strongly alter the beam dynamics. In the realm of classical electrodynamics, radiation reaction has a beneficial effect on the electron beam as it tends to reduce its energy spread. Here we show that when quantum effects become important, radiation reaction induces the opposite effect; i.e., the energy distribution of the electron beam spreads out after interacting with the laser pulse. We identify the physical origin of this opposite tendency in the intrinsic stochasticity of photon emission, which becomes substantial in the quantum regime. Our numerical simulations indicate that the predicted effects of the stochasticity can be measured already with presently available lasers and electron accelerators.
Measuring wage effects of plant size
DEFF Research Database (Denmark)
Albæk, Karsten; Arai, Mahmood; Asplund, Rita
1998-01-01
There are large plant size–wage effects in the Nordic countries after taking into account individual and job characteristics as well as systematical sorting of the workers into various plant-sizes. The plant size–wage elasticities we obtain are, in contrast to other dimensions of the wage distrib......–wage elasticity. Our results indicate that using size–class midpoints yields essentially the same results as using exact measures of plant size...
Effective operator formalism for open quantum systems
DEFF Research Database (Denmark)
Reiter, Florentin; Sørensen, Anders Søndberg
2012-01-01
We present an effective operator formalism for open quantum systems. Employing perturbation theory and adiabatic elimination of excited states for a weakly driven system, we derive an effective master equation which reduces the evolution to the ground-state dynamics. The effective evolution...... involves a single effective Hamiltonian and one effective Lindblad operator for each naturally occurring decay process. Simple expressions are derived for the effective operators which can be directly applied to reach effective equations of motion for the ground states. We compare our method...
Ma, Xuedan; Diroll, Benjamin T; Cho, Wooje; Fedin, Igor; Schaller, Richard D; Talapin, Dmitri V; Gray, Stephen K; Wiederrecht, Gary P; Gosztola, David J
2017-09-05
Quasi-two-dimensional nanoplatelets (NPLs) possess fundamentally different excitonic properties from zero-dimensional quantum dots. We study lateral size-dependent photon emission statistics and carrier dynamics of individual NPLs using second-order photon correlation (g((2))(τ)) spectroscopy and photoluminescence (PL) intensity-dependent lifetime analysis. Room-temperature radiative lifetimes of NPLs can be derived from maximum PL intensity periods in PL time traces. It first decreases with NPL lateral size and then stays constant, deviating from the electric dipole approximation. Analysis of the PL time traces further reveals that the single exciton quantum yield in NPLs decreases with NPL lateral size and increases with protecting shell thickness, indicating the importance of surface passivation on NPL emission quality. Second-order photon correlation (g((2))(τ)) studies of single NPLs show that the biexciton quantum yield is strongly dependent on the lateral size and single exciton quantum yield of the NPLs. In large NPLs with unity single exciton quantum yield, the corresponding biexciton quantum yield can reach unity. These findings reveal that by careful growth control and core-shell material engineering, NPLs can be of great potential for light amplification and integrated quantum photonic applications.
Energy Technology Data Exchange (ETDEWEB)
Salini, K.; Suseel Rahul, K.; Mathew, Vincent [Central University of Kerala, Department of Physics, Kasaragod, Kerala (India)
2014-09-15
The electronic and optical properties of a single exciton in a CdSe/CdS/CdSe/CdS quantum dot is studied by using effective mass approximation with parabolic confinement. The Coloumbic interaction between electron and hole is included by Hartree potential. A self-consistent technique is used to calculate the energy eigenvalue and wavefunction of exciton. Based on this approximation we investigate the effect of core size, shell thickness, well width on exciton binding energy, absorption spectra, and oscillator strength. The results provide the tuning possibility of electronic and optical properties of multilayer quantum dot with layer thickness. (orig.)
Are fragment-based quantum chemistry methods applicable to medium-sized water clusters?
Yuan, Dandan; Shen, Xiaoling; Li, Wei; Li, Shuhua
2016-06-28
Fragment-based quantum chemistry methods are either based on the many-body expansion or the inclusion-exclusion principle. To compare the applicability of these two categories of methods, we have systematically evaluated the performance of the generalized energy based fragmentation (GEBF) method (J. Phys. Chem. A, 2007, 111, 2193) and the electrostatically embedded many-body (EE-MB) method (J. Chem. Theory Comput., 2007, 3, 46) for medium-sized water clusters (H2O)n (n = 10, 20, 30). Our calculations demonstrate that the GEBF method provides uniformly accurate ground-state energies for 10 low-energy isomers of three water clusters under study at a series of theory levels, while the EE-MB method (with one water molecule as a fragment and without using the cutoff distance) shows a poor convergence for (H2O)20 and (H2O)30 when the basis set contains diffuse functions. Our analysis shows that the neglect of the basis set superposition error for each subsystem has little effect on the accuracy of the GEBF method, but leads to much less accurate results for the EE-MB method. The accuracy of the EE-MB method can be dramatically improved by using an appropriate cutoff distance and using two water molecules as a fragment. For (H2O)30, the average deviation of the EE-MB method truncated up to the three-body level calculated using this strategy (relative to the conventional energies) is about 0.003 hartree at the M06-2X/6-311++G** level, while the deviation of the GEBF method with a similar computational cost is less than 0.001 hartree. The GEBF method is demonstrated to be applicable for electronic structure calculations of water clusters at any basis set.
Quantum Information Processing using Nonlinear Optical Effects
DEFF Research Database (Denmark)
Andersen, Lasse Mejling
of the converted idler depends on the other pump. This allows for temporal-mode-multiplexing. When the effects of nonlinear phase modulation (NPM) are included, the phases of the natural input and output modes are changed, reducing the separability. These effects are to some degree mediated by pre......This PhD thesis treats applications of nonlinear optical effects for quantum information processing. The two main applications are four-wave mixing in the form of Bragg scattering (BS) for quantum-state-preserving frequency conversion, and sum-frequency generation (SFG) in second-order nonlinear...... to obtain a 100 % conversion efficiency is to use multiple stages of frequency conversion, but this setup suffers from the combined effects of NPM. This problem is circumvented by using asymmetrically pumped BS, where one pump is continuous wave. For this setup, NPM is found to only lead to linear phase...
Synchronization effect for uncertain quantum networks
Li, Wenlin; Gebremariam, Tesfay; Li, Chong; Song, Heshan
2017-01-01
We propose a novel technique for investigating the synchronization effect for uncertain networks with quantum chaotic behaviors in this paper. Through designing a special function to construct Lyapunov function of network and the adaptive laws of uncertain parameters, the synchronization between the uncertain network and the synchronization target can be realized, and the uncertain parameters in state equations of the network nodes are perfectly identified. All the theoretical results are verified by numerical simulations to demonstrate the effectiveness of the proposed synchronization technique.
Size Effects in Transport Properties of PbSe Thin Films
Rogacheva, E. I.; Nashchekina, O. N.; Menshikova, S. I.
2017-07-01
This paper presents an overview and analysis of our earlier obtained experimental results on the dependences of kinetic properties of single PbSe quantum wells and PbSe-based superlattices on the PbSe layer thickness d. The observed oscillatory character of these dependences is attributed to quantum size effects due to electron or hole confinement in quantum wells. Some general regularities and factors that determine the character of these quantum size effects are established. The influence of the oxidation processes and doping on the d-dependences of the transport properties is revealed. A periodic change in the conductivity type related to quantum size oscillations is detected. It is shown that the experimentally determined values of the oscillation period Δ d are in good agreement with the results of theoretical calculations based on the model of a rectangular quantum well with infinitely high walls, taking into account the dependence of the Fermi energy ɛ F on d and the availability of subbands below ɛ F. It is established that the Δ d value for the superlattices is practically equal to the Δ d value observed for the single PbSe thin film.
Quantum and field effects of oxide heterostructures
DEFF Research Database (Denmark)
Trier, Felix
, these interfaces are the ones between CaZrO3/SrTiO3 and amorphous-LaAlO3/(La, Sr)MnO3/SrTiO3. The sample preparation section is ended by outlininga patterning strategy for the high-electron mobility interface at amorphous-LaAlO3/(La, Sr)MnO3/SrTiO3. Subsequently, the effects of electrostatic gating is studied...... with a gradual tuning of the interface conductivity. Finally, the so-called quantum Hall effect is demonstrated at the interface between amorphous-LaAlO3/(La, Sr)MnO3/SrTiO3. The manifestation of the quantum Hall effect reveals that the interface conductivity is comprised of several subbands conducting...
Spatially dependent Kondo effect in Quantum Corrals
Rossi, Enrico; Morr, Dirk K.
2007-03-01
We study the Kondo screening of a single magnetic impurity placed inside a quantum corral consisting of non-magnetic impurities on the surface of a metallic host system. We show that the spatial structure of the corral's eigenmodes leads to a spatially dependent Kondo effect whose signatures are experimentally measurable spatial variations of the Kondo temperature, TK, and of the critical Kondo coupling, Jcr. Moreover we find that the screening of the magnetic impurity is accompanied by the formation of multiple Kondo resonances with characteristic spatial patterns that provide further experimental signatures of the spatially dependent Kondo effect. Our results demonstrate that quantum corrals provide new possibilities to manipulate and explore the Kondo effect.
Understanding boundary effects in quantum state tomography - One qubit case
Sugiyama, Takanori; Turner, Peter S.; Murao, Mio
2014-12-01
For classical and quantum estimation with finite data sets, the estimation error can deviate significantly from its asymptotic (large data set) behavior. In quantum state tomography, a major reason for this is the existence of a boundary in the parameter space imposed by constraints, such as the positive semidefiniteness of density matrices. Intuitively, we should be able to reduce the estimation error by using our knowledge of these constraints. This intuition is correct for maximumlikelihood estimators, but the size of the reduction has not been evaluated quantitatively. In this proceeding, we evaluate the improvement in one qubit state tomography by using mathematical tools in classical statistical estimation theory. In particular, we show that the effect of the reduction decreases exponentially with respect to the number of data sets when the true state is mixed, and it remains at arbitrarily large data set when the true state is pure.
Boosting the accuracy and speed of quantum Monte Carlo: size-consistency and time-step
Zen, Andrea; Gillan, Michael J; Michaelides, Angelos; Alfè, Dario
2016-01-01
Diffusion Monte Carlo (DMC) simulations for fermions are becoming the standard to provide high quality reference data in systems that are too large to be investigated via quantum chemical approaches. DMC with the fixed-node approximation relies on modifications of the Green function to avoid singularities near the nodal surface of the trial wavefunction. We show that these modifications affect the DMC energies in a way that is not size-consistent, resulting in large time-step errors. Building on the modifications of Umrigar {\\em et al.} and of DePasquale {\\em et al.} we propose a simple Green function modification that restores size-consistency to large values of time-step; substantially reducing the time-step errors. The new algorithm also yields remarkable speedups of up to two orders of magnitude in the calculation of molecule-molecule binding energies and crystal cohesive energies, thus extending the horizons of what is possible with DMC.
Entanglement of a two-atom system driven by the quantum vacuum in arbitrary cavity size
Energy Technology Data Exchange (ETDEWEB)
Flores-Hidalgo, G., E-mail: gfloreshidalgo@unifei.edu.br [Instituto de Física e Química, Universidade Federal de Itajubá, 37500-903, Itajubá, MG (Brazil); Rojas, M., E-mail: moises.leyva@dfi.ufla.br [Departamento de Física, Universidade Federal de Lavras, CP 3037, 37200-000, Lavras, MG (Brazil); Rojas, Onofre, E-mail: ors@dfi.ufla.br [Departamento de Física, Universidade Federal de Lavras, CP 3037, 37200-000, Lavras, MG (Brazil)
2017-05-10
We study the entanglement dynamics of two distinguishable atoms confined into a cavity and interacting with a quantum vacuum field. As a simplified model for this system, we consider two harmonic oscillators linearly coupled to a massless scalar field which are inside a spherical cavity of radius R. Through the concurrence, the entanglement dynamics for the two-atom system is discussed for a range of initial states composed of a superposition of atomic states. Our results reveal how the entanglement of the two atoms behaves through the time evolution, in a precise way, for arbitrary cavity size and for arbitrary coupling constant. All our computations are analytical and only the final step is numerical. - Highlights: • Entanglement time evolution in arbitrary cavity size is considered. • In free space concurrence approaches a fixed value at large time. • For finite cavity, concurrence behaves almost as a periodic function of time.
Directory of Open Access Journals (Sweden)
Anju K. Augustine
2014-01-01
Full Text Available We present third-order optical nonlinear absorption in CdSe quantum dots (QDs with particle sizes in the range of 4.16–5.25 nm which has been evaluated by the Z-scan technique. At an excitation irradiance of 0.54 GW/cm2 the CdSe QDs exhibit reverse saturation indicating a clear nonlinear behavior. Nonlinearity increases with particle size in CdSe QDs within the range of our investigations which in turn depends on the optical band gap. The optical limiting threshold of the QDs varies from 0.35 GW/cm2 to 0.57 GW/cm2 which makes CdSe QDs a promising candidate for reverse-saturable absorption based devices at high laser intensities such as optical limiters.
Size dependence of electron spin dephasing in InGaAs quantum dots
Energy Technology Data Exchange (ETDEWEB)
Huang, Y. Q.; Puttisong, Y.; Buyanova, I. A.; Chen, W. M. [Department of Physics, Chemistry and Biology, Linköping University, S-581 83 Linköping (Sweden); Yang, X. J.; Subagyo, A.; Sueoka, K.; Murayama, A. [Graduate School of Information Science and Technology, Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo 060-0814 (Japan)
2015-03-02
We investigate ensemble electron spin dephasing in self-assembled InGaAs/GaAs quantum dots (QDs) of different lateral sizes by employing optical Hanle measurements. Using low excitation power, we are able to obtain a spin dephasing time T{sub 2}{sup *} (in the order of ns) of the resident electron after recombination of negative trions in the QDs. We show that T{sub 2}{sup *} is determined by the hyperfine field arising from the frozen fluctuation of nuclear spins, which scales with the size of QDs following the Merkulov-Efros-Rosen model. This scaling no longer holds in large QDs, most likely due to a breakdown in the lateral electron confinement.
Quantum Zeno effects with "pulsed" and "continuous" measurements
Facchi, P.; Pascazio, S.
2001-01-01
The dynamics of a quantum system undergoing measurements is investigated. Depending on the features of the interaction Hamiltonian, the decay can be slowed (quantum Zeno effect) or accelerated (inverse quantum Zeno effect), by changing the time interval between successive (pulsed) measurements or, alternatively, by varying the "strength" of the (continuous) measurement.
Effective Hamiltonian approach to periodically perturbed quantum optical systems
Energy Technology Data Exchange (ETDEWEB)
Sainz, I. [Centro Universitario de los Lagos, Universidad de Guadalajara, Enrique Diaz de Leon, 47460 Lagos de Moreno, Jal. (Mexico)]. E-mail: isa@culagos.udg.mx; Klimov, A.B. [Departamento de Fisica, Universidad de Guadalajara, Revolucion 1500, 44410 Guadalajara, Jal. (Mexico)]. E-mail: klimov@cencar.udg.mx; Saavedra, C. [Center for Quantum Optics and Quantum Information, Departamento de Fisica, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile)]. E-mail: csaaved@udec.cl
2006-02-20
We apply the method of Lie-type transformations to Floquet Hamiltonians for periodically perturbed quantum systems. Some typical examples of driven quantum systems are considered in the framework of this approach and corresponding effective time dependent Hamiltonians are found.
Effects of Quantum Noise on Quantum Clock Synchronization
Institute of Scientific and Technical Information of China (English)
谢端; 彭进业
2012-01-01
In laboratory environment, the channel apparatus will generate particular dominant quantum noise. The noise then will give rise to some errors during synchronization. In this work, the accuracies of one qubit transport protocol and entangled states transport protocol in the presence of noise have been studied. With the help of three important and familiar noise models, the quantum noise will degrade the accuracy has been proved. Due to the influence of quantum noise, the accuracy of entangled qubits decrease faster than that of one qubit. The entangled states will improve the accuracy in noise-free channel, and will degrade the accuracy in noise channel.
Energy Technology Data Exchange (ETDEWEB)
Mehrabian, Masood [Maragheh Univ. (Iran, Islamic Republic of). Faculty of Basic Science; Abdollahian, Parinaz [Maragheh Univ. (Iran, Islamic Republic of). Dept. of Materials Engineering
2016-07-01
PbS Quantum dots and P3HT are promising materials for photovoltaic applications due to their absorption in the NIR and visible region, respectively. Our previous experimental work showed that doping Al to ZnO lattice (Al:ZnO) could efficiently improve the cell performance. In this article, hybrid solar cells containing of two active areas with ITO/Al:ZnO/PbS QDs/P3HT and PCBM/Ag structure were fabricated and the effect of PbS QD size on photovoltaic properties was investigated. Optimised solar cell showed maximum power conversion efficiency of 2.45 % with short-circuit current of 9.36 mA/cm{sup 2} and open-circuit voltage of 0.59 V under 1 sun illumination (AM1.5).
Size dependent magnetic and optical properties in diamond shaped graphene quantum dots: A DFT study
Das, Ritwika; Dhar, Namrata; Bandyopadhyay, Arka; Jana, Debnarayan
2016-12-01
The magnetic and optical properties of diamond shaped graphene quantum dots (DSGQDs) have been investigated by varying their sizes with the help of density functional theory (DFT). The study of density of states (DOS) has revealed that the Fermi energy decreases with increase in sizes (number of carbon atoms). The intermediate structure with 30 carbon atoms shows the highest magnetic moment (8 μB, μB being the Bohr magneton). The shifting of optical transitions to higher energy in smallest DSGQD (16 carbon atoms) bears the signature of stronger quantum confinement. However, for the largest structure (48 carbon atoms) multiple broad peaks appear in case of parallel polarization and in this case electron energy loss spectra (EELS) peak (in the energy range 0-5 eV) is sharp in nature (compared to high energy peak). This may be attributed to π plasmon and the broad peak (in the range 10-16 eV) corresponds to π + σ plasmon. A detail calculation of the Raman spectra has indicated some prominent mode of vibrations which can be used to characterize these structures (with hydrogen terminated dangling bonds). We think that these theoretical observations can be utilized for novel device designs involving DSGQDs.
Quantum Effects in Higher-Order Correlators of a Quantum-Dot Spin Qubit
Bechtold, A.; Li, F.; Müller, K.; Simmet, T.; Ardelt, P.-L.; Finley, J. J.; Sinitsyn, N. A.
2016-07-01
We measure time correlators of a spin qubit in an optically active quantum dot beyond the second order. Such higher-order correlators are shown to be directly sensitive to pure quantum effects that cannot be explained within the classical framework. They allow direct determination of ensemble and quantum dephasing times, T2* and T2, using only repeated projective measurements and without the need for coherent spin control. Our method enables studies of purely quantum behavior in solid state systems, including tests of the Leggett-Garg type of inequalities that rule out local hidden variable interpretation of the quantum-dot spin dynamics.
Disruption effects on the beam size measurement
Energy Technology Data Exchange (ETDEWEB)
Raimondi, P.; Decker, F.J.; Chen, P.
1995-06-01
At the SLC Final Focus with higher currents and smaller beam sizes, the disruption parameter D{sub y} is close to one and so the pinch effect should produce a luminosity enhancement. Since a flat beam-beam function is fit to deflection scan data to measure the beam size, disruption can affect the measurement. Here the authors discuss the quantitative effects of disruption for typical SLC beam parameters. With 3.5 10{sup 10} particles per pulse, bunch length of 0.8 mm and beam sizes of 2.1 {mu}m horizontally and 0.55 {mu}m vertically, the measured vertical size can be as much as 25% bigger than the real one. Furthermore during the collision the spot size actually decrease, producing an enhancement factor H{sub D} of about 1.25. This would yield to a true luminosity which is 1.6 times that which is estimated from the beam-beam deflection fit.
Size Effect in Tension Perpendicular to Grain
DEFF Research Database (Denmark)
Astrup, Thomas; Clorius, Christian Odin; Hoffmeyer, Preben;
2004-01-01
The strength of wood is reduced when the stressed volume is increased. The phenomenon is termed size effect and is often explained as being stochastic in the sense that the probability of weak locations occurring in the wood increases with increased volume. This paper presents a hypothesis where ...
DEFF Research Database (Denmark)
Niordson, Christian Frithiof
2005-01-01
The size-effect on ductile void growth in metals is investigated. The analysis is based on unit cell models both of arrays of cylindrical voids under plane strain deformation, as well as arrays of spherical voids using an axisymmetric model. A recent finite strain generalization of two higher order...
Structural effect of size on interracial friendship
Cheng, Siwei; Xie, Yu
2013-01-01
Social contexts exert structural effects on individuals’ social relationships, including interracial friendships. In this study, we posit that, net of group composition, total context size has a distinct effect on interracial friendship. Under the assumptions of (i) maximization of preference in choosing a friend, (ii) multidimensionality of preference, and (iii) preference for same-race friends, we conducted analyses using microsimulation that yielded three main findings. First, increased co...
Size effects on generation recombination noise
Gomila, G.; Reggiani, L.
2002-01-01
We carry out an analytical theory of generation-recombination noise for a two level resistor model which goes beyond those presently available by including the effects of both space charge fluctuations and diffusion current. Finite size effects are found responsible for the saturation of the low frequency current spectral density at high enough applied voltages. The saturation behaviour is controlled essentially by the correlations coming from the long range Coulomb interaction. It is suggest...
Effective Dynamics of Disordered Quantum Systems
Kropf, Chahan M.; Gneiting, Clemens; Buchleitner, Andreas
2016-07-01
We derive general evolution equations describing the ensemble-average quantum dynamics generated by disordered Hamiltonians. The disorder average affects the coherence of the evolution and can be accounted for by suitably tailored effective coupling agents and associated rates that encode the specific statistical properties of the Hamiltonian's eigenvectors and eigenvalues, respectively. Spectral disorder and isotropically disordered eigenvector distributions are considered as paradigmatic test cases.
The pinning effect in quantum dots
Energy Technology Data Exchange (ETDEWEB)
Monisha, P. J., E-mail: pjmonisha@gmail.com [School of Physics, University of Hyderabad, Hyderabad-500046 (India); Mukhopadhyay, Soma [Department of Physics, D V R College of Engineering and Technology, Hyderabad-502285 (India)
2014-04-24
The pinning effect is studied in a Gaussian quantum dot using the improved Wigner-Brillouin perturbation theory (IWBPT) in the presence of electron-phonon interaction. The electron ground state plus one phonon state is degenerate with the electron in the first excited state. The electron-phonon interaction lifts the degeneracy and the first excited states get pinned to the ground state plus one phonon state as we increase the confinement frequency.
The effect of particle size on fracture properties and size effect of concrete
Schlangen, E.; Lim, H.S.; Weerheijm, J.
2005-01-01
In the study the effect of scaling the material structure on the fracture behaviour of concrete is investigated. Next to this the size effect of concrete fracture strength and fracture energy is studied. The fracture mechanism of concrete made with different size aggregates are tested numerically. A
Directory of Open Access Journals (Sweden)
Changiz. Vatankhah
2015-06-01
Full Text Available Nano particles of zinc sulfide (ZnS of face centered cubic (fcc structures were synthesized using sulphur source of soium sulphide and mercaptoethanol respectively via Chemical Bath Deposition method. The synthesized quantum dots were characterized using X-ray diffraction (XRD, transmission electron microscopy (TEM and UV-visible spectrophotometry. The average crystallite size calculated from TEM and XRD pattern has been found to in the range 4.6 – 1.9 nm, the pariticles size decreases with the increase of the capping agent concentrations from 0. 001 to 0.7 Mol. The absorption coefficient in the range 325 - 250 nm decreases with increasing capping agent and the particles. ZnS nanoparticles were also derived from time independent Schrodinger equations for ZnS system and calculated the coefficient absorption using the density functional theory (DFT . It is shown that decreasing of ZnS nanosize lead to changes the optical properties and coefficient absorption in the visible region does not occur and the particles act like a transparent material. In this work, the blue shift was observed in absorption-wavelength both theoretical and experimental method due to the quantum confinement effects.
Vortex equations governing the fractional quantum Hall effect
Energy Technology Data Exchange (ETDEWEB)
Medina, Luciano, E-mail: lmedina@nyu.edu [Department of Mathematics, Polytechnic School of Engineering, New York University, Brooklyn, New York 11201 (United States)
2015-09-15
An existence theory is established for a coupled non-linear elliptic system, known as “vortex equations,” describing the fractional quantum Hall effect in 2-dimensional double-layered electron systems. Via variational methods, we prove the existence and uniqueness of multiple vortices over a doubly periodic domain and the full plane. In the doubly periodic situation, explicit sufficient and necessary conditions are obtained that relate the size of the domain and the vortex numbers. For the full plane case, existence is established for all finite-energy solutions and exponential decay estimates are proved. Quantization phenomena of the magnetic flux are found in both cases.
Gravitational Effects of a Crystalline Quantum Foam
Crouse, David
2017-01-01
In this work, concepts in quantum mechanics and general relativity are used to derive the quantums of space and time. After showing that space and time, at the Planck scale, must be discrete and not continuous, various anomalous gravitational effects are described. It is discussed how discrete space necessarily imposes order upon Wheeler's quantum foam, changing the foam into a crystal. The forces in this crystal are gravitational forces due to the ordered array of electrically neutral Planck masses, and with a lattice constant on the order of the Planck length. Thus the crystal is a gravity crystal rather than the more common crystals (e.g., silicon) that rely on electromagnetic forces. It is shown that similar solid-state physics techniques can be applied to this universe-wide gravity crystal to calculate particles' dispersion curves. It is shown that the crystal produces typical crystalline effects, namely bandgaps, Brillouin zones, and effective inertial masses that may differ from the gravitational masses with possible values even being near zero or negative. It is shown that the gravity crystal can affect the motion of black holes in dramatic ways, imbuing them with a negative inertial mass such that they are pushed by the pull of gravity.
Size-dependent optical properties and carriers dynamics in CdSe/ZnS quantum dots
Institute of Scientific and Technical Information of China (English)
Ma Guo-Hong; Wang Wen-Jun; Gao Xue-Xi; Ma Hong-Liang
2008-01-01
Size-dependence of optical properties and energy relaxation in CdSe/ZnS quantum dots (QDs) were investigated by two-colour femtosecond (fs) pump-probe (400/800 nm) and picosecond time-resolved photoluminescence (ps TRPL)experiments. Pump-probe measurement results show that there are two components for the excited carriers relaxation,the fast one with a time constant of several ps arises from the Auger-type recombination, which shows almost particle sizeindependence. The slow relaxation component with a time constant of several decades of ns can be clearly determined with ps TRPL spectroscopy in which the slow relaxation process shows strong particle size-dependence. The decay time constants increase from 21 to 34ns with the decrease of particle size from 3.2 to 2.1 nm. The room-temperature decay lifetime is due to the thermal mixing of bright and dark excitons, and the size-dependence of slow relaxation process can be explained very well in terms of simple three-level model.
Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System
Directory of Open Access Journals (Sweden)
Yong He
2017-06-01
Full Text Available In this paper, we review the investigation for the light-matter interaction between surface plasmon field in metal nanoparticle (MNP and the excitons in semiconductor quantum dots (SQDs in hybrid SQD-MNP system under the full quantum description. The exciton-plasmon interaction gives rise to the modified decay rate and the exciton energy shift which are related to the exciton energy by using a quantum transformation method. We illustrate the responses of the hybrid SQD-MNP system to external field, and reveal Fano effect shown in the absorption spectrum. We demonstrate quantum entanglement between two SQD mediated by surface plasmon field. In the absence of a laser field, concurrence of quantum entanglement will disappear after a few ns. If the laser field is present, the steady states appear, so that quantum entanglement produced will reach a steady-state entanglement. Because one of all optical pathways to induce Fano effect refers to the generation of quantum entangled states, It is shown that the concurrence of quantum entanglement can be obtained by observation for Fano effect. In a hybrid system including two MNP and a SQD, because the two Fano quantum interference processes share a segment of all optical pathways, there is correlation between the Fano effects of the two MNP. The investigations for the light-matter interaction in hybrid SQD-MNP system can pave the way for the development of the optical processing devices and quantum information based on the exciton-plasmon interaction.
Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System
He, Yong; Zhu, Ka-Di
2017-01-01
In this paper, we review the investigation for the light-matter interaction between surface plasmon field in metal nanoparticle (MNP) and the excitons in semiconductor quantum dots (SQDs) in hybrid SQD-MNP system under the full quantum description. The exciton-plasmon interaction gives rise to the modified decay rate and the exciton energy shift which are related to the exciton energy by using a quantum transformation method. We illustrate the responses of the hybrid SQD-MNP system to external field, and reveal Fano effect shown in the absorption spectrum. We demonstrate quantum entanglement between two SQD mediated by surface plasmon field. In the absence of a laser field, concurrence of quantum entanglement will disappear after a few ns. If the laser field is present, the steady states appear, so that quantum entanglement produced will reach a steady-state entanglement. Because one of all optical pathways to induce Fano effect refers to the generation of quantum entangled states, It is shown that the concurrence of quantum entanglement can be obtained by observation for Fano effect. In a hybrid system including two MNP and a SQD, because the two Fano quantum interference processes share a segment of all optical pathways, there is correlation between the Fano effects of the two MNP. The investigations for the light-matter interaction in hybrid SQD-MNP system can pave the way for the development of the optical processing devices and quantum information based on the exciton-plasmon interaction. PMID:28632165
Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System.
He, Yong; Zhu, Ka-Di
2017-06-20
In this paper, we review the investigation for the light-matter interaction between surface plasmon field in metal nanoparticle (MNP) and the excitons in semiconductor quantum dots (SQDs) in hybrid SQD-MNP system under the full quantum description. The exciton-plasmon interaction gives rise to the modified decay rate and the exciton energy shift which are related to the exciton energy by using a quantum transformation method. We illustrate the responses of the hybrid SQD-MNP system to external field, and reveal Fano effect shown in the absorption spectrum. We demonstrate quantum entanglement between two SQD mediated by surface plasmon field. In the absence of a laser field, concurrence of quantum entanglement will disappear after a few ns. If the laser field is present, the steady states appear, so that quantum entanglement produced will reach a steady-state entanglement. Because one of all optical pathways to induce Fano effect refers to the generation of quantum entangled states, It is shown that the concurrence of quantum entanglement can be obtained by observation for Fano effect. In a hybrid system including two MNP and a SQD, because the two Fano quantum interference processes share a segment of all optical pathways, there is correlation between the Fano effects of the two MNP. The investigations for the light-matter interaction in hybrid SQD-MNP system can pave the way for the development of the optical processing devices and quantum information based on the exciton-plasmon interaction.
Ge/Si core/shell quantum dots in alumina: tuning the optical absorption by the core and shell size
Directory of Open Access Journals (Sweden)
Nekić Nikolina
2017-03-01
Full Text Available Ge/Si core/shell quantum dots (QDs recently received extensive attention due to their specific properties induced by the confinement effects of the core and shell structure. They have a type II confinement resulting in spatially separated charge carriers, the electronic structure strongly dependent on the core and shell size. Herein, the experimental realization of Ge/Si core/shell QDs with strongly tunable optical properties is demonstrated. QDs embedded in an amorphous alumina glass matrix are produced by simple magnetron sputtering deposition. In addition, they are regularly arranged within the matrix due to their self-assembled growth regime. QDs with different Ge core and Si shell sizes are made. These core/shell structures have a significantly stronger absorption compared to pure Ge QDs and a highly tunable absorption peak dependent on the size of the core and shell. The optical properties are in agreement with recent theoretical predictions showing the dramatic influence of the shell size on optical gap, resulting in 0.7 eV blue shift for only 0.4 nm decrease at the shell thickness. Therefore, these materials are very promising for light-harvesting applications.
Ge/Si core/shell quantum dots in alumina: tuning the optical absorption by the core and shell size
Nekić, Nikolina; Sancho-Parramon, Jordi; Bogdanović-Radović, Ivančica; Grenzer, Jörg; Hübner, René; Bernstorff, Sigrid; Ivanda, Mile; Buljan, Maja
2017-08-01
Ge/Si core/shell quantum dots (QDs) recently received extensive attention due to their specific properties induced by the confinement effects of the core and shell structure. They have a type II confinement resulting in spatially separated charge carriers, the electronic structure strongly dependent on the core and shell size. Herein, the experimental realization of Ge/Si core/shell QDs with strongly tunable optical properties is demonstrated. QDs embedded in an amorphous alumina glass matrix are produced by simple magnetron sputtering deposition. In addition, they are regularly arranged within the matrix due to their self-assembled growth regime. QDs with different Ge core and Si shell sizes are made. These core/shell structures have a significantly stronger absorption compared to pure Ge QDs and a highly tunable absorption peak dependent on the size of the core and shell. The optical properties are in agreement with recent theoretical predictions showing the dramatic influence of the shell size on optical gap, resulting in 0.7 eV blue shift for only 0.4 nm decrease at the shell thickness. Therefore, these materials are very promising for light-harvesting applications.
Quantum optical effective-medium theory and transformation quantum optics for metamaterials
DEFF Research Database (Denmark)
Wubs, Martijn; Amooghorban, Ehsan; Zhang, Jingjing
2016-01-01
While typically designed to manipulate classical light, metamaterials have many potential applications for quantum optics as well. We argue why a quantum optical effective-medium theory is needed. We present such a theory for layered metamaterials that is valid for light propagation in all spatial...... directions, thereby generalizing earlier work for one-dimensional propagation. In contrast to classical effective-medium theory there is an additional effective parameter that describes quantum noise. Our results for metamaterials are based on a rather general Lagrangian theory for the quantum...
Zhang, Zhenkui; Dai, Ying; Yu, Lin; Guo, Meng; Huang, Baibiao; Whangbo, Myung-Hwan
2012-03-07
In light of the established differences between the quantum confinement effect and the electron affinities between hydrogen-passivated C and Si quantum dots, we carried out theoretical investigations on SiC quantum dots, with surfaces uniformly terminated by C-H or Si-H bonds, to explore the role of surface terminations on these two aspects. Surprisingly, it was found that the quantum confinement effect is present (or absent) in the highest occupied (or lowest unoccupied) molecular orbital of the SiC quantum dots regardless of their surface terminations. Thus, the quantum confinement effect related to the energy gap observed experimentally (Phys. Rev. Lett., 2005, 94, 026102) is contributed to by the size-dependence of the highest occupied states; the absence of quantum confinement in the lowest unoccupied states is in contrary to the usual belief based on hydrogen-passivated C quantum dots. However, the cause of the absence of the quantum confinement in C nanodots is not transferable to SiC. We propose a model that provides a clear explanation for all findings on the basis of the nearest-neighbor and next-nearest-neighbor interactions between the valence atomic p-orbital in the frontier occupied/unoccupied states. We also found that the electron affinities of the SiC quantum dots, which closely depend on the surface environments, are negative for the C-H termination and positive for the Si-H termination. The prediction of negative electron affinities in SiC quantum dots by simple C-H termination indicates a promising application for these materials in electron-emitter devices. Our model predicts that GeC quantum dots with hydrogen passivation exhibit similar features to SiC quantum dots and our study confirms the crucial role that the surface environment plays in these nanoscale systems.
Effective evolution equations from quantum dynamics
Benedikter, Niels; Schlein, Benjamin
2016-01-01
These notes investigate the time evolution of quantum systems, and in particular the rigorous derivation of effective equations approximating the many-body Schrödinger dynamics in certain physically interesting regimes. The focus is primarily on the derivation of time-dependent effective theories (non-equilibrium question) approximating many-body quantum dynamics. The book is divided into seven sections, the first of which briefly reviews the main properties of many-body quantum systems and their time evolution. Section 2 introduces the mean-field regime for bosonic systems and explains how the many-body dynamics can be approximated in this limit using the Hartree equation. Section 3 presents a method, based on the use of coherent states, for rigorously proving the convergence towards the Hartree dynamics, while the fluctuations around the Hartree equation are considered in Section 4. Section 5 focuses on a discussion of a more subtle regime, in which the many-body evolution can be approximated by means of t...
Ushakova, Elena V; Litvin, Aleksandr P; Parfenov, Peter S; Fedorov, Anatoly V; Artemyev, Mikhail; Prudnikau, Anatoly V; Rukhlenko, Ivan D; Baranov, Alexander V
2012-10-23
We report on an anomalous size dependence of the room-temperature photoluminescence decay time from the lowest-energy state of PbS quantum dots in colloidal solution, which was found using the transient luminescence spectroscopy. The observed 10-fold reduction in the decay time (from ~2.5 to 0.25 μs) with the increase in the quantum dots' diameter is explained by the existence of phonon-induced transitions between the in-gap state-whose energy drastically depends on the diameter-and the fundamental state of the quantum dots.
Directory of Open Access Journals (Sweden)
Manvir S. Kushwaha
2014-12-01
Full Text Available Semiconducting quantum dots – more fancifully dubbed artificial atoms – are quasi-zero dimensional, tiny, man-made systems with charge carriers completely confined in all three dimensions. The scientific quest behind the synthesis of quantum dots is to create and control future electronic and optical nanostructures engineered through tailoring size, shape, and composition. The complete confinement – or the lack of any degree of freedom for the electrons (and/or holes – in quantum dots limits the exploration of spatially localized elementary excitations such as plasmons to direct rather than reciprocal space. Here we embark on a thorough investigation of the magneto-optical absorption in semiconducting spherical quantum dots characterized by a confining harmonic potential and an applied magnetic field in the symmetric gauge. This is done within the framework of Bohm-Pines’ random-phase approximation that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. As an application of our theoretical strategy, we compute various single-particle and many-particle phenomena such as the Fock-Darwin spectrum; Fermi energy; magneto-optical transitions; probability distribution; and the magneto-optical absorption in the quantum dots. It is observed that the role of an applied magnetic field on the absorption spectrum is comparable to that of a confining potential. Increasing (decreasing the strength of the magnetic field or the confining potential is found to be analogous to shrinking (expanding the size of the quantum dots: resulting into a blue (red shift in the absorption spectrum. The Fermi energy diminishes with both increasing magnetic-field and dot-size; and exhibits saw-tooth-like oscillations at large values of field or dot-size. Unlike laterally confined quantum dots, both (upper and lower magneto-optical transitions survive even in the extreme instances. However, the intra
Energy Technology Data Exchange (ETDEWEB)
Kushwaha, Manvir S. [Department of Physics and Astronomy, Rice University, P.O. Box 1892, Houston, TX 77251 (United States)
2014-12-15
Semiconducting quantum dots – more fancifully dubbed artificial atoms – are quasi-zero dimensional, tiny, man-made systems with charge carriers completely confined in all three dimensions. The scientific quest behind the synthesis of quantum dots is to create and control future electronic and optical nanostructures engineered through tailoring size, shape, and composition. The complete confinement – or the lack of any degree of freedom for the electrons (and/or holes) – in quantum dots limits the exploration of spatially localized elementary excitations such as plasmons to direct rather than reciprocal space. Here we embark on a thorough investigation of the magneto-optical absorption in semiconducting spherical quantum dots characterized by a confining harmonic potential and an applied magnetic field in the symmetric gauge. This is done within the framework of Bohm-Pines’ random-phase approximation that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. As an application of our theoretical strategy, we compute various single-particle and many-particle phenomena such as the Fock-Darwin spectrum; Fermi energy; magneto-optical transitions; probability distribution; and the magneto-optical absorption in the quantum dots. It is observed that the role of an applied magnetic field on the absorption spectrum is comparable to that of a confining potential. Increasing (decreasing) the strength of the magnetic field or the confining potential is found to be analogous to shrinking (expanding) the size of the quantum dots: resulting into a blue (red) shift in the absorption spectrum. The Fermi energy diminishes with both increasing magnetic-field and dot-size; and exhibits saw-tooth-like oscillations at large values of field or dot-size. Unlike laterally confined quantum dots, both (upper and lower) magneto-optical transitions survive even in the extreme instances. However, the intra-Landau level
Cancer proliferation and therapy: the Warburg effect and quantum metabolism
Directory of Open Access Journals (Sweden)
Tuszynski Jack A
2010-01-01
Full Text Available Abstract Background Most cancer cells, in contrast to normal differentiated cells, rely on aerobic glycolysis instead of oxidative phosphorylation to generate metabolic energy, a phenomenon called the Warburg effect. Model Quantum metabolism is an analytic theory of metabolic regulation which exploits the methodology of quantum mechanics to derive allometric rules relating cellular metabolic rate and cell size. This theory explains differences in the metabolic rates of cells utilizing OxPhos and cells utilizing glycolysis. This article appeals to an analytic relation between metabolic rate and evolutionary entropy - a demographic measure of Darwinian fitness - to: (a provide an evolutionary rationale for the Warburg effect, and (b propose methods based on entropic principles of natural selection for regulating the incidence of OxPhos and glycolysis in cancer cells. Conclusion The regulatory interventions proposed on the basis of quantum metabolism have applications in therapeutic strategies to combat cancer. These procedures, based on metabolic regulation, are non-invasive, and complement the standard therapeutic methods involving radiation and chemotherapy
[Effect of quantum dots CdSe/ZnS's concentration on its fluorescence].
Jin, Min; Huang, Yu-hua; Luo, Ji-xiang
2015-02-01
The authors measured the absorption and the fluorescence spectra of the quantum dots CdSe/ZnS with 4 nm in size at different concentration with the use of the UV-Vis absorption spectroscopy and fluorescence spectrometer. The effect of quantum dots CdSe/ZnS's concentration on its fluorescence was especially studied and its physical mechanism was analyzed. It was observed that the optimal concentration of the quantum dots CdSe/ZnS for fluorescence is 2 micromole x L(-1). When the quantum dot's concentration is over 2 micromol x L(-1), the fluorescence is decreased with the increase in the concentration. While the quantum dot's concentration is less than 2 micromol x L(-1), the fluorescence is decreased with the decrease in the concentration. There are two main reasons: (1) fluorescence quenching and 2) the competition between absorption and fluorescence. When the quantum dot's concentration is over 2 micromol x L(-1), the distance between quantum dots is so close that the fluorescence quenching is induced. The closer the distance between quantum dots is, the more serious the fluorescence quenching is induced. Also, in this case, the absorption is so large that some of the quantum dots can not be excited because the incident light can not pass through the whole sample. As a result, the fluorescence is decreased with the increase in the quantum dot's concentration. As the quantum dot's concentration is below 2 micromol x L(-1), the distance between quantum dots is far enough that no more fluorescence quenching is induced. In this case, the fluorescence is determined by the particle number per unit volume. More particle number per unit volume produces more fluorescence. Therefore, the fluorescence is decreased with the decrease in the quantum dot's concentration.
Effect of the Electron-LO-Phonon Coupling on an Exciton Quantum Dot
Institute of Scientific and Technical Information of China (English)
XIE Wen-Fang; ZHU Wu
2002-01-01
The influence of the electron-LO-phonon coupling on energy spectrum of the low-lying states ofan exciton inparabolic quantum dots is investigated as a function of dot size. Calculations are made by using the method of few-bodyphysics within the effective-mass approximation. A considerable decrease of the energy in the stronger confinement rangeis found for the low-lying states of an exciton in quantum dots, which results from the confinement of electron-phononcoupling.
Conductivity size effect of polycrystalline metal nanowires
Directory of Open Access Journals (Sweden)
Weihuang Xue
2016-11-01
Full Text Available It is well known that the conductivity of metal nanowires decreases with the wire diameter. This size effect was first studied for metal thin films when the film thickness approaches the electron mean free path. Fuchs & Sondheimer (FS pointed out that the external surface scattering of the electrons contributes to the conductivity decrease. Mayadas and Shatzkes (MS pointed out that the grain boundary scattering plays a major role for polycrystalline thin films. As is clear that nanowires are 2-d constrained instead of 1-d for thin film, so the size effect would be more eminent. However, today the mostly used physical model for the conductivity of metal nanowires is still the MS theory. This paper proposes a more complete model suitable for circular cross-section polycrystalline metal nanowires, which takes into account of background scattering, external surface scattering, as well as grain boundary scattering. Comparison with experiment data showed that our model can well explain the conductivity size effect of polycrystalline metal nanowires.
Integer quantum Hall effect in graphene
Energy Technology Data Exchange (ETDEWEB)
Jellal, Ahmed, E-mail: ahmed.jellal@gmail.com [Saudi Center for Theoretical Physics, Dhahran (Saudi Arabia); Theoretical Physics Group, Faculty of Sciences, Chouaïb Doukkali University, 24000 El Jadida (Morocco)
2016-04-08
We study the quantum Hall effect in a monolayer graphene by using an approach based on thermodynamical properties. This can be done by considering a system of Dirac particles in an electromagnetic field and taking into account of the edges effect as a pseudo-potential varying continuously along the x direction. At low temperature and in the weak electric field limit, we explicitly determine the thermodynamical potential. With this, we derive the particle numbers in terms of the quantized flux and therefore the Hall conductivity immediately follows.
Excitons in the Fractional Quantum Hall Effect
Laughlin, R. B.
1984-09-01
Quasiparticles of charge 1/m in the Fractional Quantum Hall Effect form excitons, which are collective excitations physically similar to the transverse magnetoplasma oscillations of a Wigner crystal. A variational exciton wavefunction which shows explicitly that the magnetic length is effectively longer for quasiparticles than for electrons is proposed. This wavefunction is used to estimate the dispersion relation of these excitons and the matrix elements to generate them optically out of the ground state. These quantities are then used to describe a type of nonlinear conductivity which may occur in these systems when they are relatively clean.
Liu, Xi-Jing; Hu, Bing-Quan; Cho, Sam Young; Zhou, Huan-Qiang; Shi, Qian-Qian
2016-10-01
Recently, the finite-size corrections to the geometrical entanglement per lattice site in the spin-1/2 chain have been numerically shown to scale inversely with system size, and its prefactor b has been suggested to be possibly universal [Q-Q. Shi et al., New J. Phys. 12, 025008 (2010)]. As possible evidence of its universality, the numerical values of the prefactors have been confirmed analytically by using the Affleck-Ludwig boundary entropy with a Neumann boundary condition for a free compactified field [J-M. Stephan et al., Phys. Rev. B 82, 180406(R) (2010)]. However, the Affleck-Ludwig boundary entropy is not unique and does depend on conformally invariant boundary conditions. Here, we show that a unique Affleck-Ludwig boundary entropy corresponding to a finitesize correction to the geometrical entanglement per lattice site exists and show that the ratio of the prefactor b to the corresponding minimum groundstate degeneracy gmin for the Affleck- Ludwig boundary entropy is a constant for any critical region of the spin-1 XXZ system with the single-ion anisotropy, i.e., b/(2 log2 g min ) = -1. Previously studied spin-1/2 systems, including the quantum three-state Potts model, have verified the universal ratio. Hence, the inverse finite-size correction to the geometrical entanglement per lattice site and its prefactor b are universal for one-dimensional critical systems.
Chang, C H; Li Xue Qian; Liu, Y; Ma, F C; Tao, Z; CHANG, Chao-Hsi; DAI, Wu-Sheng; LI, Xue-Qian; LIU, Yong; MA, Feng-Cai; TAO, Zhi-jian
1999-01-01
In this work we tried extensively to apply the EHNS postulation about the quantum mechanics violation effects induced by the quantum gravity of black holes to neutrino oscillations. The possibilities for observing such effects in the neutrino experiments (in progress and/or accessible in the near future) were discussed. Of them, an interesting one was outlined specially.
Possible Quantum Absorber Effects in Cortical Synchronization
Kämpf, Uwe
The Wheeler-Feynman transactional "absorber" approach was proposed originally to account for anomalous resonance coupling between spatio-temporally distant measurement partners in entangled quantum states of so-called Einstein-Podolsky-Rosen paradoxes, e.g. of spatio-temporal non-locality, quantum teleportation, etc. Applied to quantum brain dynamics, however, this view provides an anticipative resonance coupling model for aspects of cortical synchronization and recurrent visual action control. It is proposed to consider the registered activation patterns of neuronal loops in so-called synfire chains not as a result of retarded brain communication processes, but rather as surface effects of a system of standing waves generated in the depth of visual processing. According to this view, they arise from a counterbalance between the actual input's delayed bottom-up data streams and top-down recurrent information-processing of advanced anticipative signals in a Wheeler-Feynman-type absorber mode. In the framework of a "time-loop" model, findings about mirror neurons in the brain cortex are suggested to be at least partially associated with temporal rather than spatial mirror functions of visual processing, similar to phase conjugate adaptive resonance-coupling in nonlinear optics.
Monte Carlo simulation of quantum Zeno effect in the brain
Georgiev, Danko
2014-01-01
Environmental decoherence appears to be the biggest obstacle for successful construction of quantum mind theories. Nevertheless, the quantum physicist Henry Stapp promoted the view that the mind could utilize quantum Zeno effect to influence brain dynamics and that the efficacy of such mental efforts would not be undermined by environmental decoherence of the brain. To address the physical plausibility of Stapp's claim, we modeled the brain using quantum tunneling of an electron in a multiple-well structure such as the voltage sensor in neuronal ion channels and performed Monte Carlo simulations of quantum Zeno effect exerted by the mind upon the brain in the presence or absence of environmental decoherence. The simulations unambiguously showed that the quantum Zeno effect breaks down for timescales greater than the brain decoherence time. To generalize the Monte Carlo simulation results for any n-level quantum system, we further analyzed the change of brain entropy due to the mind probing actions and proved ...
Quantum Zeno Effect in the Strong Measurement Regime of Circuit Quantum Electrodynamics
2016-05-17
we report the direct observation of theQZE in a superconducting qubit undergoing continuous strongmeasurement with simultaneous qubit driving...New J. Phys. 18 (2016) 053031 doi:10.1088/1367-2630/18/5/053031 PAPER Quantum Zeno effect in the strongmeasurement regime of circuit quantum...of quantum jumps between states for a qubit beingmeasured continuously at rate Gm is the same as that for a qubit undergoing discretemeasurements at
Effect of Quantum Point Contact Measurement on Electron Spin State in Quantum Dots
Institute of Scientific and Technical Information of China (English)
ZHU Fei-Yun; TU Tao; HAO Xiao-Jie; GUO Guang-Can; GUO Guo-Ping
2009-01-01
We study the time evolution of two electron spin states in a double quantum-dot system, which includes a nearby quantum point contact (QPC) as a measurement device. We find that the QPC measurement induced decoherence is in the microsecond timescale. We also find that the enhanced QPC measurement will trap the system in its initial spin states, which is consistent with the quantum Zeno effect.
2007-08-10
The Final Report Title: Specific approach for size-control III-V based quantum/nano LED fabrication for prospective white ...COVERED 14-06-2005 to 14-12-2005 4. TITLE AND SUBTITLE Size controlled GaN based quantum dot LED for the prospective white light source 5a. CONTRACT...structure LED The physical model of the PC LED for optical simulation is shown in Figure 10. The LED are composed with p-type GaN/ MQW of InGaN /GaN/ n
The size effect in metal cutting
Indian Academy of Sciences (India)
Milton C Shaw
2003-10-01
When metal is removed by machining there is substantial increase in the speciﬁc energy required with decrease in chip size. It is generally believed this is due to the fact that all metals contain defects (grain boundaries, missing and impurity atoms, etc.), and when the size of the material removed decreases, the probability of encountering a stress-reducing defect decreases. Since the shear stress and strain in metal cutting is unusually high, discontinuous microcracks usually form on the metal-cutting shear plane. If the material being cut is very brittle, or the compressive stress on the shear plane is relatively low, microcracks grow into gross cracks giving rise to discontinuous chip formation. When discontinuous microcracks form on the shear plane they weld and reform as strain proceeds, thus joining the transport of dislocations in accounting for the total slip of the shear plane. In the presence of a contaminant, such as CCl4 vapour at a low cutting speed, the rewelding of microcracks decreases, resulting in decrease in the cutting force required for chip formation. A number of special experiments are described in the paper that support the transport of microcracks across the shear plane, and the important role compressive stress plays on the shear plane. Relatively recently, an alternative explanation for the size effect in cutting was provided based on the premise that shear stress increases with increase in strain rate. When an attempt is made to apply this to metal cutting by Dinesh et al (2001) it is assumed in the analysis that the von Mises criterion pertains to the shear plane. This is inconsistent with the experimental ﬁndings of Merchant. Until this difﬁculty is taken care of, together with the promised experimental veriﬁcation of the strain rate approach, it should be assumed that the strain rate effect may be responsible for some notion of the size effect in metal cutting. However, based on the many experiments discussed here, it is
DEFF Research Database (Denmark)
Niordson, Christian Frithiof; Tvergaard, Viggo
. For porous materials with small void volume fractions under highly triaxial tension, void growth is analyzed through cavitation instabilities using a finite element Rayleigh-Ritz procedure. Cavitation instabilities are found to be delayed for small voids, so that higher stress levels are needed in order......The intrinsic size-effect for porous metals is investigated. The analyses are carried out numerically using a finite strain generalization of a higher order strain gradient plasticity model. Results for plane strain growth of cylindrical voids are presented in terms of response curves and curves...... of relative void growth. The influence of void size compared to a constitutive length parameter is analyzed and it is shown that strain gradient hardening suppresses void growth on the micron scale. This increased resistance to void growth is accompanied by an increase in the overall strength of the material...
Continuous-flow synthesis of CdSe quantum dots: a size-tunable and scalable approach.
Mirhosseini Moghaddam, Mojtaba; Baghbanzadeh, Mostafa; Sadeghpour, Amin; Glatter, Otto; Kappe, C Oliver
2013-08-26
In recent years, continuous-flow/microreactor processing for the preparation of colloidal nanocrystals has received considerable attention. The intrinsic advantages of microfluidic reactors have opened new opportunities for the size-controlled synthesis of nanocrystals either in the laboratory or on a large scale. Herein, an experimentally simple protocol for the size-tunable continuous-flow synthesis of rather monodisperse CdSe quantum dots (QDs) is presented. CdSe QDs are manufactured by using cadmium oleate as cadmium source, selenium dioxide as selenium precursor, and 1-octadecene as solvent. Exploiting selenium dioxide as selenium source and 1-octadecene as solvent allows execution of the complete process in open air without any requirement for air-free manipulations using a glove box or Schlenk line. Continuous-flow processing is performed with a stainless steel coil of 1.0 mm inner diameter pumping the combined precursor solution through the reactor by applying a standard HPLC pump. The effect of different reaction parameters, such as temperature, residence time, and flow rate, on the properties of the resulting CdSe QDs was investigated. A temperature increase from 240 to 260 °C or an extension of the residence time from 2 to 20 min affords larger nanocrystals (range 3-6 nm) whereas the size distribution does not change significantly. Longer reaction times and higher temperatures result in QDs with lower quantum yields (range 11-28 %). The quality of the synthesized CdSe QDs was confirmed by UV/Vis and photoluminescence spectroscopy, small-angle X-ray scattering, and high-resolution transmission electron microscopy. Finally, the potential of this protocol for large-scale manufacturing was evaluated and by operating the continuous-flow process for 87 min it was possible to produce 167 mg of CdSe QDs (with a mean diameter of 4 nm) with a quantum yield of 28 %.
Jeans instability with exchange effects in quantum dusty magnetoplasmas
Energy Technology Data Exchange (ETDEWEB)
Jamil, M., E-mail: jamil.gcu@gmail.com [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Rasheed, A. [Department of Physics, Government College University, Faisalabad 38000 (Pakistan); Rozina, Ch. [Department of Physics, Lahore College for Women University, Lahore 54000 (Pakistan); Jung, Y.-D. [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 426-791 (Korea, Republic of); Salimullah, M. [Department of Physics, Jahangirnagar University, Savar, Dhaka 1342 (Bangladesh)
2015-08-15
Jeans instability is examined in magnetized quantum dusty plasmas using the quantum hydrodynamic model. The quantum effects are considered via exchange-correlation potential, recoil effect, and Fermi degenerate pressure, in addition to thermal effects of plasma species. It is found that the electron exchange and correlation potential have significant effects over the threshold value of wave vector and Jeans instability. The presence of electron exchange and correlation effect shortens the time of dust sound that comparatively stabilizes the self gravitational collapse. The results at quantum scale are helpful in understanding the collapse of the self-gravitating dusty plasma systems.
In-plane magnetization-induced quantum anomalous Hall effect.
Liu, Xin; Hsu, Hsiu-Chuan; Liu, Chao-Xing
2013-08-23
The quantum Hall effect can only be induced by an out-of-plane magnetic field for two-dimensional electron gases, and similarly, the quantum anomalous Hall effect has also usually been considered for systems with only out-of-plane magnetization. In the present work, we predict that the quantum anomalous Hall effect can be induced by in-plane magnetization that is not accompanied by any out-of-plane magnetic field. Two realistic two-dimensional systems, Bi2Te3 thin film with magnetic doping and HgMnTe quantum wells with shear strains, are presented and the general condition for the in-plane magnetization-induced quantum anomalous Hall effect is discussed based on the symmetry analysis. Nonetheless, an experimental setup is proposed to confirm this effect, the observation of which will pave the way to search for the quantum anomalous Hall effect in a wider range of materials.
Guterding, Daniel; Jeschke, Harald O.; Valentí, Roser
2016-05-01
Electronic states with non-trivial topology host a number of novel phenomena with potential for revolutionizing information technology. The quantum anomalous Hall effect provides spin-polarized dissipation-free transport of electrons, while the quantum spin Hall effect in combination with superconductivity has been proposed as the basis for realizing decoherence-free quantum computing. We introduce a new strategy for realizing these effects, namely by hole and electron doping kagome lattice Mott insulators through, for instance, chemical substitution. As an example, we apply this new approach to the natural mineral herbertsmithite. We prove the feasibility of the proposed modifications by performing ab-initio density functional theory calculations and demonstrate the occurrence of the predicted effects using realistic models. Our results herald a new family of quantum anomalous Hall and quantum spin Hall insulators at affordable energy/temperature scales based on kagome lattices of transition metal ions.
Guterding, Daniel; Jeschke, Harald O; Valentí, Roser
2016-05-17
Electronic states with non-trivial topology host a number of novel phenomena with potential for revolutionizing information technology. The quantum anomalous Hall effect provides spin-polarized dissipation-free transport of electrons, while the quantum spin Hall effect in combination with superconductivity has been proposed as the basis for realizing decoherence-free quantum computing. We introduce a new strategy for realizing these effects, namely by hole and electron doping kagome lattice Mott insulators through, for instance, chemical substitution. As an example, we apply this new approach to the natural mineral herbertsmithite. We prove the feasibility of the proposed modifications by performing ab-initio density functional theory calculations and demonstrate the occurrence of the predicted effects using realistic models. Our results herald a new family of quantum anomalous Hall and quantum spin Hall insulators at affordable energy/temperature scales based on kagome lattices of transition metal ions.
Guterding, Daniel; Jeschke, Harald O.; Valentí, Roser
2016-01-01
Electronic states with non-trivial topology host a number of novel phenomena with potential for revolutionizing information technology. The quantum anomalous Hall effect provides spin-polarized dissipation-free transport of electrons, while the quantum spin Hall effect in combination with superconductivity has been proposed as the basis for realizing decoherence-free quantum computing. We introduce a new strategy for realizing these effects, namely by hole and electron doping kagome lattice Mott insulators through, for instance, chemical substitution. As an example, we apply this new approach to the natural mineral herbertsmithite. We prove the feasibility of the proposed modifications by performing ab-initio density functional theory calculations and demonstrate the occurrence of the predicted effects using realistic models. Our results herald a new family of quantum anomalous Hall and quantum spin Hall insulators at affordable energy/temperature scales based on kagome lattices of transition metal ions. PMID:27185665
Dynamics of Quantum Entanglement in Reservoir with Memory Effects
Institute of Scientific and Technical Information of China (English)
郝翔; 沙金巧; 孙坚; 朱士群
2012-01-01
The non-Markovian dynamics of quantum entanglement is studied by the Shabani-Lidar master equation when one of entangled quantum systems is coupled to a local reservoir with memory effects. The completely positive reduced dynamical map can be constructed in the Kraus representation. Quantum entanglement decays more slowly in the non-Markovian environment. The decoherence time for quantum entanglement can be markedly increased with the change of the memory kernel. It is found out that the entanglement sudden death between quantum systems and entanglement sudden birth between the system and reservoir occur at different instants.
Quantum mechanical effects analysis of nanostructured solar cell models
Directory of Open Access Journals (Sweden)
Badea Andrei
2016-01-01
Full Text Available The quantum mechanical effects resulted from the inclusion of nanostructures, represented by quantum wells and quantum dots, in the i-layer of an intermediate band solar cell will be analyzed. We will discuss the role of these specific nanostructures in the increasing of the solar cells efficiency. InAs quantum wells being placed in the i-layer of a gallium arsenide (GaAs p-i-n cell, we will analyze the quantum confined regions and determine the properties of the eigenstates located therein. Also, we simulate the electroluminescence that occurs due to the nanostructured regions.
DEFF Research Database (Denmark)
Niordson, Christian Frithiof
2005-01-01
The size-effect on ductile void growth in metals is investigated. The analysis is based on unit cell models both of arrays of cylindrical voids under plane strain deformation, as well as arrays of spherical voids using an axisymmetric model. A recent finite strain generalization of two higher order...... strain gradient plasticity models is implemented in a finite element program, which is used to study void growth numerically. The results based on the two models are compared. It is shown how gradient effects suppress void growth on the micron scale when compared to predictions based on conventional...... models. This increased resistance to void growth, due to gradient hardening, is accompanied by an increase in the overall strength for the material. Furthermore, for increasing initial void volume fraction, it is shown that the effect of gradients becomes more important to the overall response but less...
Quantum Zeno effect by general measurements
Koshino, K
2004-01-01
It was predicted that frequently repeated measurements on an unstable state may alter the decay rate of the state. This is called the quantum Zeno effect (QZE) or the anti-Zeno effect (AZE), depending on whether the decay is suppressed or enhanced. In conventional theories of the QZE and AZE, effects of measurements are simply described by the projection postulate, assuming that each measurement is an instantaneous and ideal one. However, real measurements are not instantaneous and ideal. For the QZE and AZE by such general measurements, interesting and surprising features have recently been revealed, which we review in this article. The results are based on the quantum measurement theory, which is also reviewed briefly. As a typical model, we consider a continuous measurement of the decay of an excited atom by a photodetector that detects a photon emitted from the atom upon decay. This measurement is an indirect negative-result one, for which the curiosity of the QZE and AZE is emphasized. It is shown that t...
Quantum spring from the Casimir effect
Feng, Chao-Jun; Li, Xin-Zhou
2010-07-01
The Casimir effect arises not only in the presence of material boundaries but also in space with nontrivial topology. In this Letter, we choose a topology of the flat (D + 1)-dimensional spacetime, which causes the helix boundary condition for a Hermitian massless scalar field. Especially, Casimir effect for a massless scalar field on the helix boundary condition is investigated in two and three dimensions by using the zeta function techniques. The Casimir force parallel to the axis of the helix behaves very much like the force on a spring that obeys the Hooke's law when the ratio r of the pitch to the circumference of the helix is small, but in this case, the force comes from a quantum effect, so we would like to call it quantum spring. When r is large, this force behaves like the Newton's law of universal gravitation in the leading order. On the other hand, the force perpendicular to the axis decreases monotonously with the increasing of the ratio r. Both forces are attractive and their behaviors are the same in two and three dimensions.
DEFF Research Database (Denmark)
Niordson, Christian Frithiof; Tvergaard, Viggo
2007-01-01
of the material. For porous materials with small void volume fractions under highly triaxial tension, void growth is analysed through cavitation instabilities using a finite element Rayleigh–Ritz procedure. Cavitation instabilities are found to be delayed for small voids, so that higher stress levels are needed......The intrinsic size-effect for porous metals is investigated. The analyses are carried out numerically using a finite strain generalization of a higher order strain gradient plasticity model. Results for plane strain growth of cylindrical voids are presented in terms of response curves and curves...
On the Effect of Quantum Noise in a Quantum-Relativistic Prisoner's Dilemma Cellular Automaton
Alonso-Sanz, Ramón; Situ, Haozhen
2016-12-01
The disrupting effect of quantum noise on the dynamics of a spatial quantum relativistic formulation of the iterated prisoner's dilemma game with variable entangling is studied in this work. The game is played in the cellular automata manner, i.e., with local and synchronous interaction. The game is assessed in fair and unfair contests.
The pack size effect: Influence on consumer perceptions of portion sizes
Hieke, Sophie; Palascha, Aikaterini; Jola, Corinne; Wills, Josephine; Raats, Monique M.
2016-01-01
Larger portions as well as larger packs can lead to larger prospective consumption estimates, larger servings and increased consumption, described as 'portion-size effects' and 'pack size effects'. Although related, the effects of pack sizes on portion estimates have received less attention. While i
Nonideal effects in quantum field-effect directional coupler
Institute of Scientific and Technical Information of China (English)
Xie Yue-E; Yan Xiao-Hong; Chen Yuan-Ping
2006-01-01
The nonideal effects in a quantum field-effect directional coupler where two quantum wires are coupled through a finite potential barrier are studied by adopting the lattice Green function method. The results show that the electron energy distribution, asymmetric geometry and finite temperature all have obvious influence on the electron transfer of the coupler. Only for the electrons with energies in a certain region, can the complete periodic transfer between two quantum wires take place. The conductance of these electrons as a function of the barrier length and potential height exhibits a fine periodic or quasi-periodic pattern. For the electrons with energies beyond the region, however, the complete periodic transfer does not hold any more since many irregular oscillations are superimposed on the conductance profile. In addition, the finite temperature and asymmetric geometry both can reduce the electron transfer efficiency.
Realizing Tao-Thouless-like state in fractional quantum spin Hall effect
Liu, Chen-Rong; Guo, Yao-Wu; Li, Zhuo-Jun; Li, Wei; Chen, Yan
2016-09-01
The quest for exotic quantum states of matter has become one of the most challenging tasks in modern condensed matter communications. Interplay between topology and strong electron-electron interactions leads to lots of fascinating effects since the discovery of the fractional quantum Hall effect. Here, we theoretically study the Rashba-type spin-orbit coupling effect on a fractional quantum spin Hall system by means of finite size exact diagonalization. Numerical evidences from the ground degeneracies, states evolutions, entanglement spectra, and static structure factor calculations demonstrate that non-trivial fractional topological Tao-Thouless-like quantum state can be realized in the fractional quantum spin Hall effect in a thin torus geometric structure by tuning the strength of spin-orbit coupling. Furthermore, the experimental realization of the Tao-Thouless-like state as well as its evolution in optical lattices are also proposed. The importance of this prediction provides significant insight into the realization of exotic topological quantum states in optical lattice, and also opens a route for exploring the exotic quantum states in condensed matters in future.
Realizing Tao-Thouless-like state in fractional quantum spin Hall effect.
Liu, Chen-Rong; Guo, Yao-Wu; Li, Zhuo-Jun; Li, Wei; Chen, Yan
2016-09-21
The quest for exotic quantum states of matter has become one of the most challenging tasks in modern condensed matter communications. Interplay between topology and strong electron-electron interactions leads to lots of fascinating effects since the discovery of the fractional quantum Hall effect. Here, we theoretically study the Rashba-type spin-orbit coupling effect on a fractional quantum spin Hall system by means of finite size exact diagonalization. Numerical evidences from the ground degeneracies, states evolutions, entanglement spectra, and static structure factor calculations demonstrate that non-trivial fractional topological Tao-Thouless-like quantum state can be realized in the fractional quantum spin Hall effect in a thin torus geometric structure by tuning the strength of spin-orbit coupling. Furthermore, the experimental realization of the Tao-Thouless-like state as well as its evolution in optical lattices are also proposed. The importance of this prediction provides significant insight into the realization of exotic topological quantum states in optical lattice, and also opens a route for exploring the exotic quantum states in condensed matters in future.
Concentration and size dependence of peak wavelength shift on quantum dots in colloidal suspension
Rinehart, Benjamin S.; Cao, Caroline G. L.
2016-08-01
Quantum dots (QDs) are semiconductor nanocrystals that have significant advantages over organic fluorophores, including their extremely narrow Gaussian emission bands and broad absorption bands. Thus, QDs have a wide range of potential applications, such as in quantum computing, photovoltaic cells, biological sensing, and electronics. For these applications, aliasing provides a detrimental effect on signal identification efficiency. This can be avoided through characterization of the QD fluorescence signals. Characterization of the emissivity of CdTe QDs as a function of concentration (1 to 10 mg/ml aqueous) was conducted on 12 commercially available CdTe QDs (emission peaks 550 to 730 nm). The samples were excited by a 50-mW 405-nm laser with emission collected via a free-space CCD spectrometer. All QDs showed a redshift effect as concentration increased. On average, the CdTe QDs exhibited a maximum shift of +35.6 nm at 10 mg/ml and a minimum shift of +27.24 nm at 1 mg/ml, indicating a concentration dependence for shift magnitude. The concentration-dependent redshift function can be used to predict emission response as QD concentration is changed in a complex system.
Revisiting the Valence and Conduction Band Size Dependence of PbS Quantum Dot Thin Films
Energy Technology Data Exchange (ETDEWEB)
Miller, Elisa M.; Kroupa, Daniel M.; Zhang, Jianbing; Schulz, Philip; Marshall, Ashley R.; Kahn, Antoine; Lany, Stephan; Luther, Joseph M.; Beard, Matthew C.; Perkins, Craig L.; van de Lagemaat, Jao
2016-03-22
We use a high signal-to-noise X-ray photoelectron spectrum of bulk PbS, GW calculations, and a model assuming parabolic bands to unravel the various X-ray and ultraviolet photoelectron spectral features of bulk PbS as well as determine how to best analyze the valence band region of PbS quantum dot (QD) films. X-ray and ultraviolet photoelectron spectroscopy (XPS and UPS) are commonly used to probe the difference between the Fermi level and valence band maximum (VBM) for crystalline and thin-film semiconductors. However, we find that when the standard XPS/UPS analysis is used for PbS, the results are often unrealistic due to the low density of states at the VBM. Instead, a parabolic band model is used to determine the VBM for the PbS QD films, which is based on the bulk PbS experimental spectrum and bulk GW calculations. Our analysis highlights the breakdown of the Brillioun zone representation of the band diagram for large band gap, highly quantum confined PbS QDs. We have also determined that in 1,2-ethanedithiol-treated PbS QD films the Fermi level position is dependent on the QD size; specifically, the smallest band gap QD films have the Fermi level near the conduction band minimum and the Fermi level moves away from the conduction band for larger band gap PbS QD films. This change in the Fermi level within the QD band gap could be due to changes in the Pb:S ratio. In addition, we use inverse photoelectron spectroscopy to measure the conduction band region, which has similar challenges in the analysis of PbS QD films due to a low density of states near the conduction band minimum.
"Quantized" Doping of Individual Colloidal Nanocrystals Using Size-Focused Metal Quantum Clusters.
Santiago-González, Beatriz; Monguzzi, Angelo; Pinchetti, Valerio; Casu, Alberto; Prato, Mirko; Lorenzi, Roberto; Campione, Marcello; Chiodini, Norberto; Santambrogio, Carlo; Meinardi, Francesco; Manna, Liberato; Brovelli, Sergio
2017-06-27
The insertion of intentional impurities, commonly referred to as doping, into colloidal semiconductor quantum dots (QDs) is a powerful paradigm for tailoring their electronic, optical, and magnetic behaviors beyond what is obtained with size-control and heterostructuring motifs. Advancements in colloidal chemistry have led to nearly atomic precision of the doping level in both lightly and heavily doped QDs. The doping strategies currently available, however, operate at the ensemble level, resulting in a Poisson distribution of impurities across the QD population. To date, the synthesis of monodisperse ensembles of QDs individually doped with an identical number of impurity atoms is still an open challenge, and its achievement would enable the realization of advanced QD devices, such as optically/electrically controlled magnetic memories and intragap state transistors and solar cells, that rely on the precise tuning of the impurity states (i.e., number of unpaired spins, energy and width of impurity levels) within the QD host. The only approach reported to date relies on QD seeding with organometallic precursors that are intrinsically unstable and strongly affected by chemical or environmental degradation, which prevents the concept from reaching its full potential and makes the method unsuitable for aqueous synthesis routes. Here, we overcome these issues by demonstrating a doping strategy that bridges two traditionally orthogonal nanostructured material systems, namely, QDs and metal quantum clusters composed of a "magic number" of atoms held together by stable metal-to-metal bonds. Specifically, we use clusters composed of four copper atoms (Cu4) capped with d-penicillamine to seed the growth of CdS QDs in water at room temperature. The elemental analysis, performed by electrospray ionization mass spectrometry, X-ray fluorescence, and inductively coupled plasma mass spectrometry, side by side with optical spectroscopy and transmission electron microscopy
Size effects on miniature Stirling cycle cryocoolers
Yang, Xiaoqin; Chung, J. N.
2005-08-01
Size effects on the performance of Stirling cycle cryocoolers were investigated by examining each individual loss associated with the regenerator and combining these effects. For the fixed cycle parameters and given regenerator length scale, it was found that only for a specific range of the hydrodynamic diameter the system can produce net refrigeration and there is an optimum hydraulic diameter at which the maximum net refrigeration is achieved. When the hydraulic diameter is less than the optimum value, the regenerator performance is controlled by the pressure drop loss; when the hydraulic diameter is greater than the optimum value, the system performance is controlled by the thermal losses. It was also found that there exists an optimum ratio between the hydraulic diameter and the length of the regenerator that offers the maximum net refrigeration. As the regenerator length is decreased, the optimum hydraulic diameter-to-length ratio increases; and the system performance is increased that is controlled by the pressure drop loss and heat conduction loss. Choosing appropriate regenerator characteristic sizes in small-scale systems are more critical than in large-scale ones.
Size effects on miniature Stirling cycle cryocoolers
Energy Technology Data Exchange (ETDEWEB)
Xiaoqin Yang; Chung, J.N. [Florida Univ., Dept. of Mechanical and Aerospace Engineering, Gainesville, FL (United States)
2005-08-01
Size effects on the performance of Stirling cycle cryocoolers were investigated by examining each individual loss associated with the regenerator and combining these effects. For the fixed cycle parameters and given regenerator length scale, it was found that only for a specific range of the hydrodynamic diameter the system can produce net refrigeration and there is an optimum hydraulic diameter at which the maximum net refrigeration is achieved. When the hydraulic diameter is less than the optimum value, the regenerator performance is controlled by the pressure drop loss; when the hydraulic diameter is greater than the optimum value, the system performance is controlled by the thermal losses. It was also found that there exists an optimum ratio between the hydraulic diameter and the length of the regenerator that offers the maximum net refrigeration. As the regenerator length is decreased, the optimum hydraulic diameter-to-length ratio increases; and the system performance is increased that is controlled by the pressure drop loss and heat conduction loss. Choosing appropriate regenerator characteristic sizes in small-scale systems are more critical than in large-scale ones. (Author)
Quantum anomalous Hall effect in magnetically doped InAs/GaSb quantum wells.
Wang, Qing-Ze; Liu, Xin; Zhang, Hai-Jun; Samarth, Nitin; Zhang, Shou-Cheng; Liu, Chao-Xing
2014-10-03
The quantum anomalous Hall effect has recently been observed experimentally in thin films of Cr-doped (Bi,Sb)(2)Te(3) at a low temperature (∼ 30 mK). In this work, we propose realizing the quantum anomalous Hall effect in more conventional diluted magnetic semiconductors with magnetically doped InAs/GaSb type-II quantum wells. Based on a four-band model, we find an enhancement of the Curie temperature of ferromagnetism due to band edge singularities in the inverted regime of InAs/GaSb quantum wells. Below the Curie temperature, the quantum anomalous Hall effect is confirmed by the direct calculation of Hall conductance. The parameter regime for the quantum anomalous Hall phase is identified based on the eight-band Kane model. The high sample quality and strong exchange coupling make magnetically doped InAs/GaSb quantum wells good candidates for realizing the quantum anomalous Hall insulator at a high temperature.
Directory of Open Access Journals (Sweden)
Anton Kühberger
Full Text Available The p value obtained from a significance test provides no information about the magnitude or importance of the underlying phenomenon. Therefore, additional reporting of effect size is often recommended. Effect sizes are theoretically independent from sample size. Yet this may not hold true empirically: non-independence could indicate publication bias.We investigate whether effect size is independent from sample size in psychological research. We randomly sampled 1,000 psychological articles from all areas of psychological research. We extracted p values, effect sizes, and sample sizes of all empirical papers, and calculated the correlation between effect size and sample size, and investigated the distribution of p values.We found a negative correlation of r = -.45 [95% CI: -.53; -.35] between effect size and sample size. In addition, we found an inordinately high number of p values just passing the boundary of significance. Additional data showed that neither implicit nor explicit power analysis could account for this pattern of findings.The negative correlation between effect size and samples size, and the biased distribution of p values indicate pervasive publication bias in the entire field of psychology.
Kühberger, Anton; Fritz, Astrid; Scherndl, Thomas
2014-01-01
Background The p value obtained from a significance test provides no information about the magnitude or importance of the underlying phenomenon. Therefore, additional reporting of effect size is often recommended. Effect sizes are theoretically independent from sample size. Yet this may not hold true empirically: non-independence could indicate publication bias. Methods We investigate whether effect size is independent from sample size in psychological research. We randomly sampled 1,000 psychological articles from all areas of psychological research. We extracted p values, effect sizes, and sample sizes of all empirical papers, and calculated the correlation between effect size and sample size, and investigated the distribution of p values. Results We found a negative correlation of r = −.45 [95% CI: −.53; −.35] between effect size and sample size. In addition, we found an inordinately high number of p values just passing the boundary of significance. Additional data showed that neither implicit nor explicit power analysis could account for this pattern of findings. Conclusion The negative correlation between effect size and samples size, and the biased distribution of p values indicate pervasive publication bias in the entire field of psychology. PMID:25192357
Quantum optical effective-medium theory for layered metamaterials
Amooghorban, Ehsan
2016-01-01
The quantum optics of metamaterials starts with the question whether the same effective-medium theories apply as in classical optics. In general the answer is negative. For active plasmonics but also for some passive metamaterials, we show that an additional effective-medium parameter is indispensable besides the effective index, namely the effective noise-photon distribution. Only with the extra parameter can one predict how well the quantumness of states of light is preserved in the metamaterial. The fact that the effective index alone is not always sufficient and that one additional effective parameter suffices in the quantum optics of metamaterials is both of fundamental and practical interest. Here from a Lagrangian description of the quantum electrodynamics of media with both linear gain and loss, we compute the effective noise-photon distribution for quantum light propagation in arbitrary directions in layered metamaterials, thereby detailing and generalizing our recent work [ E. Amooghorban et al., Ph...
The trouble with orbits: the Stark effect in the old and the new quantum theory
Duncan, Anthony
2014-01-01
The old quantum theory and Schr\\"odinger's wave mechanics (and other forms of quantum mechanics) give the same results for the line splittings in the first-order Stark effect in hydrogen, the leading terms in the splitting of the spectral lines emitted by a hydrogen atom in an external electric field. We examine the account of the effect in the old quantum theory, which was hailed as a major success of that theory, from the point of view of wave mechanics. First, we show how the new quantum mechanics solves a fundamental problem one runs into in the old quantum theory with the Stark effect. It turns out that, even without an external field, it depends on the coordinates in which the quantum conditions are imposed which electron orbits are allowed in a hydrogen atom. The allowed energy levels and hence the line splittings are independent of the coordinates used but the size and eccentricity of the orbits are not. In the new quantum theory, this worrisome non-uniqueness of orbits turns into the perfectly innocu...
Quantum dots improve peptide detection in MALDI MS in a size dependent manner
Directory of Open Access Journals (Sweden)
Ivanov Dimitri A
2009-12-01
Full Text Available Abstract Laser Desorption Ionization Mass Spectrometry employs matrix which is co-crystallised with the analyte to achieve "soft ionization" that is the formation of ions without fragmentation. A variety of matrix-free and matrix-assisted LDI techniques and matrices have been reported to date. LDI has been achieved using ultra fine metal powders (UFMPs, desorption ionisation on silicon (DIOS, sol-gel assisted laser desorption/ionization (SGALDI, as well as with common MALDI matrices such as 2,5-dihydroxy benzoic acid (DHB, 3,5-dimethoxy-4-hydroxycinnamic acid (SA, α-cyano-4-hydroxycinnamic acid (CHCA to name a few. A variety of matrix additives have been shown to improve matrix assisted desorption, including silicon nanowires (SiNW, carbon nanotubes (CNT, metal nanoparticles and nanodots. To our knowledge no evidence exists for the application of highly fluorescent CdSe/ZnS quantum dots to enhance MALDI desorption of biological samples. Here we report that although CdSe/ZnS quantum dots on their own can not substitute matrix in MALDI-MS, their presence has a moderately positive effect on MALDI desorption, improves the signal-to-noise ratio, peak quality and increases the number of detected peptides and the overall sequence coverage.
Multidimensional Quantum Tunneling in the Schwinger Effect
Dumlu, Cesim K
2015-01-01
We study the Schwinger effect, in which the external field having a spatio-temporal profile creates electron-positron pairs via multidimensional quantum tunneling. Our treatment is based on Gutzwiller's trace formula for the QED effective action, whose imaginary part is represented by a sum over complex wordlines. The worldlines are multi-periodic, and the periods of motion collectively depend on the strength of spatial and temporal inhomogeneity. We argue that Hamilton's characteristic function that leads to the correct tunneling amplitude must explicitly depend on both periods, and is represented by an average over the internal cycles of motion. We use this averaging method to calculate the pair production rate in an exponentially damped sinusoidal field, where we find that the initial conditions for each family of periodic trajectories lie on a curve in the momentum plane. The ratio of the periods, which may also be referred as the topological index, stays uniform on each curve. Calculation of tunneling am...
Higher (odd dimensional quantum Hall effect and extended dimensional hierarchy
Directory of Open Access Journals (Sweden)
Kazuki Hasebe
2017-07-01
Full Text Available We demonstrate dimensional ladder of higher dimensional quantum Hall effects by exploiting quantum Hall effects on arbitrary odd dimensional spheres. Non-relativistic and relativistic Landau models are analyzed on S2k−1 in the SO(2k−1 monopole background. The total sub-band degeneracy of the odd dimensional lowest Landau level is shown to be equal to the winding number from the base-manifold S2k−1 to the one-dimension higher SO(2k gauge group. Based on the chiral Hopf maps, we clarify the underlying quantum Nambu geometry for odd dimensional quantum Hall effect and the resulting quantum geometry is naturally embedded also in one-dimension higher quantum geometry. An origin of such dimensional ladder connecting even and odd dimensional quantum Hall effects is illuminated from a viewpoint of the spectral flow of Atiyah–Patodi–Singer index theorem in differential topology. We also present a BF topological field theory as an effective field theory in which membranes with different dimensions undergo non-trivial linking in odd dimensional space. Finally, an extended version of the dimensional hierarchy for higher dimensional quantum Hall liquids is proposed, and its relationship to quantum anomaly and D-brane physics is discussed.
Higher (odd) dimensional quantum Hall effect and extended dimensional hierarchy
Hasebe, Kazuki
2017-07-01
We demonstrate dimensional ladder of higher dimensional quantum Hall effects by exploiting quantum Hall effects on arbitrary odd dimensional spheres. Non-relativistic and relativistic Landau models are analyzed on S 2 k - 1 in the SO (2 k - 1) monopole background. The total sub-band degeneracy of the odd dimensional lowest Landau level is shown to be equal to the winding number from the base-manifold S 2 k - 1 to the one-dimension higher SO (2 k) gauge group. Based on the chiral Hopf maps, we clarify the underlying quantum Nambu geometry for odd dimensional quantum Hall effect and the resulting quantum geometry is naturally embedded also in one-dimension higher quantum geometry. An origin of such dimensional ladder connecting even and odd dimensional quantum Hall effects is illuminated from a viewpoint of the spectral flow of Atiyah-Patodi-Singer index theorem in differential topology. We also present a BF topological field theory as an effective field theory in which membranes with different dimensions undergo non-trivial linking in odd dimensional space. Finally, an extended version of the dimensional hierarchy for higher dimensional quantum Hall liquids is proposed, and its relationship to quantum anomaly and D-brane physics is discussed.
Finite-size effects from giant magnons
Energy Technology Data Exchange (ETDEWEB)
Arutyunov, Gleb [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht (Netherlands)]. E-mail: g.arutyunov@phys.uu.nl; Frolov, Sergey [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, D-14476 Potsdam (Germany)]. E-mail: frolovs@aei.mpg.de; Zamaklar, Marija [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, D-14476 Potsdam (Germany)]. E-mail: marzam@aei.mpg.de
2007-08-27
In order to analyze finite-size effects for the gauge-fixed string sigma model on AdS{sub 5}xS{sup 5}, we construct one-soliton solutions carrying finite angular momentum J. In the infinite J limit the solutions reduce to the recently constructed one-magnon configuration of Hofman and Maldacena. The solutions do not satisfy the level-matching condition and hence exhibit a dependence on the gauge choice, which however disappears as the size J is taken to infinity. Interestingly, the solutions do not conserve all the global charges of the psu(2,2-vertical bar4) algebra of the sigma model, implying that the symmetry algebra of the gauge-fixed string sigma model is different from psu(2,2-vertical bar4) for finite J, once one gives up the level-matching condition. The magnon dispersion relation exhibits exponential corrections with respect to the infinite J solution. We also find a generalisation of our one-magnon configuration to a solution carrying two charges on the sphere. We comment on the possible implications of our findings for the existence of the Bethe ansatz describing the spectrum of strings carrying finite charges.
Energy Technology Data Exchange (ETDEWEB)
Federico Jimenez-Cruz; Georgina C. Laredo [Instituto Mexicano del Petroleo, Mexico (Mexico). Programa de Tratamiento de Crudo Maya
2004-11-01
A good approach of the critical molecular dimensions of 35 linear and branched C5-C8 paraffins by DFT quantum chemical calculations at B3LYP/6-31G{asterisk}{asterisk} level of theory in gas phase is described. In this context, we found that either the determined molecular width or width-height average values can be used as critical measures in the analysis for selection of molecular sieves materials, depending on their pore size and shape. The molecular width values for linear and monosubstituted paraffins are 4.2 and 5.5 {angstrom}, respectively. In the case of disubstituted paraffins, the values are 5.5 for 2,3-, 2,4-, 2,5- and 3,4-disubstituted and for 2,2- and 3,3-disubstituted are 6.7-7.1 {angstrom}. The values for ethyl-substituted are 6.1-6.7 {angstrom} and for trisubstituted isoparaffins are 6.7. In order to select a porous material for selective separation of isoparaffins and paraffins, the zeolite diffusivity can be correlated with the critical diameter of the paraffins according to the geometry-limited diffusion concept and the effective minimum dimensions of the molecules. The calculated values of CPK molecular volume of the titled paraffins showed a good discrimination between the number of carbons and molecular size. 25 refs., 4 figs., 2 tabs.
Bano, N; Hussain, I; Sawaf, S; Alshammari, Abeer; Saleemi, F
2017-06-16
The size of ZnO nanorods (NRs) plays an important role in tuning the external quantum efficiency (EQE) and quality of light generated by white light emitting diodes (LEDs). In this work, we report on the enhancement of EQE and the quality of ZnO NR-based hetrojunction white LEDs fabricated on a p-GaN substrate using a low temperature solution method. Cathodoluminescence spectra demonstrate that ultraviolet (UV) emission decreases and visible deep band emission increases with an increase in the length of the ZnO NRs. The UV emission could be internally reabsorbed by the ZnO NR excitation, thus enhancing the emission intensity of the visible deep band. Photocurrent measurements validated the fact that the EQE depends on the size of ZnO NRs, increasing by 87% with an increase in the length of the ZnO NRs. Furthermore, the quality of white light was measured and clearly indicated an increase in the color rendering indices of the LEDs with an increase in the length of the ZnO NRs, confirming that the quality of light generated by LEDs can be tuned by varying the length of the ZnO NRs. These results suggest that the EQE and visible deep band emission from n-ZnONRs/p-GaN heterojunction LEDs can be effectively controlled by adjusting the length of the ZnO NRs, which can be useful for realizing tunable white LEDs.
Energy Technology Data Exchange (ETDEWEB)
Liu Zhang, E-mail: liuzhang0126@126.com [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Xu Weicheng [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Fang Jianzhang, E-mail: fangjzh@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Xu Xiaoxin; Wu Shuxing; Zhu Ximiao; Chen Zehua [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China)
2012-10-15
Highlights: Black-Right-Pointing-Pointer RGO/BiOI nanocomposites were synthesized by a reverse microemulsion method. Black-Right-Pointing-Pointer Quantum sized BiOI nanoparticles can be obtained by this approach. Black-Right-Pointing-Pointer Ascorbic acid was used as a reducing agent to reduce GO and seemed to be effective. Black-Right-Pointing-Pointer RGO/BiOI presented outstanding visible-light-induced photocatalytic performance. Black-Right-Pointing-Pointer Possible photocatalytic mechanism was proposed based on the experimental studies. - Abstract: Herein, a reverse microemulsion route was developed to synthesize bismuth oxyiodide (BiOI) nanocrystals and reduced graphene oxide (RGO) nanocomposites as a highly efficient photocatalyst, and both the formation of BiOI and the reduction of RGO were achieved in situ in microemulsions simultaneously at low temperature (60 Degree-Sign C). The uniform nanocrystal size and structure were indicated by XRD, TEM, and the reduction of GO by ascorbic acid was evidenced by FTIR, XPS, and Raman spectra techniques. The enhanced photoactivity of RGO/BiOI nanocomposites under visible light was attributed to improved light absorption and efficient charge separation and transportation.
Effective equations for isotropic quantum cosmology including matter
Bojowald, Martin; Skirzewski, Aureliano
2007-01-01
Effective equations often provide powerful tools to develop a systematic understanding of detailed properties of a quantum system. This is especially helpful in quantum cosmology where several conceptual and technical difficulties associated with the full quantum equations can be avoided in this way. Here, effective equations for Wheeler-DeWitt and loop quantizations of spatially flat, isotropic cosmological models sourced by a massive or interacting scalar are derived and studied. The resulting systems are remarkably different from that given for a free, massless scalar. This has implications for the coherence of evolving states and the realization of a bounce in loop quantum cosmology.
Strong crystal size effect on deformation twinning
DEFF Research Database (Denmark)
Yu, Qian; Shan, Zhi-Wei; Li, Ju
2010-01-01
find that the stress required for deformation twinning increases drastically with decreasing sample size of a titanium alloy single crystal7, 8, until the sample size is reduced to one micrometre, below which the deformation twinning is entirely replaced by less correlated, ordinary dislocation....... The sample size in transition is relatively large and easily accessible in experiments, making our understanding of size dependence11, 12, 13, 14, 15, 16, 17 relevant for applications....
Tomilina, O. A.; Berzhansky, V. N.; Tomilin, S. V.; Shaposhnikov, A. N.
2016-08-01
The results of investigations of the quantum-size effects influence on selective properties of heterogeneous nanocatalysts are presents. As etalon exothermic reaction was used the reaction of atomic hydrogen recombination. The nanostructured Pd and Pt films on Teflon substrate were used as a samples of heterogeneous nanocatalysts. It was shown that for nanoparticles with various sizes the catalytic activity has the periodic dependence. It has been found that for certain sizes of nanoparticles their catalytic activity is less than that of Teflon substrate.
Destruction of the Fractional Quantum Hall Effect by Disorder
Laughlin, R. B.
1985-07-01
It is suggested that Hall steps in the fractional quantum Hall effect are physically similar to those in the ordinary quantum Hall effect. This proposition leads to a simple scaling diagram containing a new type of fixed point, which is identified with the destruction of the fractional states by disorder. 15 refs., 3 figs.
Bulk Versus Edge in the Quantum Hall Effect
Kao, Y. -C.; Lee, D.-H.
1996-01-01
The manifestation of the bulk quantum Hall effect on edge is the chiral anomaly. The chiral anomaly {\\it is} the underlying principle of the ``edge approach'' of quantum Hall effect. In that approach, $\\sxy$ should not be taken as the conductance derived from the space-local current-current correlation function of the pure one-dimensional edge problem.
Watanabe, Hiroshi C; Banno, Misa; Sakurai, Minoru
2016-03-14
Quantum effects in solute-solvent interactions, such as the many-body effect and the dipole-induced dipole, are known to be critical factors influencing the infrared spectra of species in the liquid phase. For accurate spectrum evaluation, the surrounding solvent molecules, in addition to the solute of interest, should be treated using a quantum mechanical method. However, conventional quantum mechanics/molecular mechanics (QM/MM) methods cannot handle free QM solvent molecules during molecular dynamics (MD) simulation because of the diffusion problem. To deal with this problem, we have previously proposed an adaptive QM/MM "size-consistent multipartitioning (SCMP) method". In the present study, as the first application of the SCMP method, we demonstrate the reproduction of the infrared spectrum of liquid-phase water, and evaluate the quantum effect in comparison with conventional QM/MM simulations.
Low-Energy Effective Theories of Quantum Link and Quantum Spin Models
Schlittgen, B
2001-01-01
Quantum spin and quantum link models provide an unconventional regularization of field theory in which classical fields arise via dimensional reduction of discrete variables. This D-theory regularization leads to the same continuum theories as the conventional approach. We show this by deriving the low-energy effective Lagrangians of D-theory models using coherent state path integral techniques. We illustrate our method for the $(2+1)$-d Heisenberg quantum spin model which is the D-theory regularization of the 2-d O(3) model. Similarly, we prove that in the continuum limit a $(2+1)$-d quantum spin model with $SU(N)_L\\times SU(N)_R\\times U(1)_{L=R}$ symmetry is equivalent to the 2-d principal chiral model. Finally, we show that $(4+1)$-d SU(N) quantum link models reduce to ordinary 4-d Yang-Mills theory.
Mandal, Aparajita; Kole, Arindam; Dasgupta, Arup; Chaudhuri, Partha
2016-11-01
Electrical transport in the transverse direction has been studied through a series of hydrogenated silicon carbon alloy multilayers (SiC-MLs) deposited by plasma enhanced chemical vapor deposition method. Each SiC-ML consists of 30 cycles of the alternating layers of a nearly amorphous silicon carbide (a-SiC:H) and a microcrystalline silicon carbide (μc-SiC:H) that contains high density of silicon quantum dots (Si-QDs). A detailed investigation by cross sectional TEM reveals preferential growth of densely packed Si-QDs of regular sizes ∼4.8 nm in diameter in a vertically aligned columnar structure within the SiC-ML. More than six orders of magnitude increase in transverse current through the SiC-ML structure were observed for decrease in the a-SiC:H layer thickness from 13 nm to 2 nm. The electrical transport mechanism was established to be a combination of grain boundary or band tail hopping and Frenkel-Poole (F-P) type conduction depending on the temperature and externally applied voltage ranges. Evaluation of trap concentration within the multilayer structures from the fitted room temperature current voltage characteristics by F-P function shows reduction up-to two orders of magnitude indicating an improvement in the short range order in the a-SiC:H matrix for decrease in the thickness of a-SiC:H layer.
On Quantum Effects in a Theory of Biological Evolution
Martin-Delgado, M. A.
2012-01-01
We construct a descriptive toy model that considers quantum effects on biological evolution starting from Chaitin's classical framework. There are smart evolution scenarios in which a quantum world is as favorable as classical worlds for evolution to take place. However, in more natural scenarios, the rate of evolution depends on the degree of entanglement present in quantum organisms with respect to classical organisms. If the entanglement is maximal, classical evolution turns out to be more favorable. PMID:22413059
On quantum effects in a theory of biological evolution.
Martin-Delgado, M A
2012-01-01
We construct a descriptive toy model that considers quantum effects on biological evolution starting from Chaitin's classical framework. There are smart evolution scenarios in which a quantum world is as favorable as classical worlds for evolution to take place. However, in more natural scenarios, the rate of evolution depends on the degree of entanglement present in quantum organisms with respect to classical organisms. If the entanglement is maximal, classical evolution turns out to be more favorable.
General relativistic effects in quantum interference of "clocks"
Zych, Magdalena; Costa, Fabio; Brukner, Časlav
2016-01-01
Quantum mechanics and general relativity have been each successfully tested in numerous experiments. However, the regime where both theories are jointly required to explain physical phenomena remains untested by laboratory experiments, and is also not fully understood by theory. This contribution reviews recent ideas for a new type of experiments: quantum interference of "clocks", which aim to test novel quantum effects that arise from time dilation. "Clock" interference experiments could be realised with atoms or photons in near future laboratory experiments.
Mixing effects in the crystallization of supercooled quantum binary liquids
Energy Technology Data Exchange (ETDEWEB)
Kühnel, M.; Kalinin, A. [Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany); Fernández, J. M.; Tejeda, G.; Moreno, E.; Montero, S. [Laboratory of Molecular Fluid Dynamics, Instituto de Estructura de la Materia, CSIC, Serrano 121, 28006 Madrid (Spain); Tramonto, F.; Galli, D. E. [Laboratorio di Calcolo Parallelo e di Simulazioni di Materia Condensata, Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); Nava, M. [Laboratorio di Calcolo Parallelo e di Simulazioni di Materia Condensata, Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); Computational Science, Department of Chemistry and Applied Biosciences, ETH Zurich, USI Campus, Via Giuseppe Buffi 13, CH-6900 Lugano (Switzerland); Grisenti, R. E. [Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany); GSI - Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany)
2015-08-14
By means of Raman spectroscopy of liquid microjets, we have investigated the crystallization process of supercooled quantum liquid mixtures composed of parahydrogen (pH{sub 2}) or orthodeuterium (oD{sub 2}) diluted with small amounts of neon. We show that the introduction of the Ne impurities affects the crystallization kinetics in terms of a significant reduction of the measured pH{sub 2} and oD{sub 2} crystal growth rates, similarly to what found in our previous work on supercooled pH{sub 2}-oD{sub 2} liquid mixtures [Kühnel et al., Phys. Rev. B 89, 180201(R) (2014)]. Our experimental results, in combination with path-integral simulations of the supercooled liquid mixtures, suggest in particular a correlation between the measured growth rates and the ratio of the effective particle sizes originating from quantum delocalization effects. We further show that the crystalline structure of the mixtures is also affected to a large extent by the presence of the Ne impurities, which likely initiate the freezing process through the formation of Ne-rich crystallites.
Electronic states in crystals of finite size quantum confinement of bloch waves
Ren, Shang Yuan
2017-01-01
This book presents an analytical theory of the electronic states in ideal low dimensional systems and finite crystals based on a differential equation theory approach. It provides precise and fundamental understandings on the electronic states in ideal low-dimensional systems and finite crystals, and offers new insights into some of the basic problems in low-dimensional systems, such as the surface states and quantum confinement effects, etc., some of which are quite different from what is traditionally believed in the solid state physics community. Many previous predictions have been confirmed in subsequent investigations by other authors on various relevant problems. In this new edition, the theory is further extended to one-dimensional photonic crystals and phononic crystals, and a general theoretical formalism for investigating the existence and properties of surface states/modes in semi-infinite one-dimensional crystals is developed. In addition, there are various revisions and improvements, including us...
Casimir effect from macroscopic quantum electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Philbin, T G, E-mail: tgp3@st-andrews.ac.uk [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom)
2011-06-15
The canonical quantization of macroscopic electromagnetism was recently presented in (Philbin 2010 New J. Phys. 12 123008). This theory is used here to derive the Casimir effect, by considering the special case of thermal and zero-point fields. The stress-energy-momentum tensor of the canonical theory follows from Noether's theorem, and its electromagnetic part in thermal equilibrium gives the Casimir energy density and stress tensor. The results hold for arbitrary inhomogeneous magnetodielectrics and are obtained from a rigorous quantization of electromagnetism in dispersive, dissipative media. Continuing doubts about the status of the standard Lifshitz theory as a proper quantum treatment of Casimir forces do not apply to the derivation given here. Moreover, the correct expressions for the Casimir energy density and stress tensor inside media follow automatically from the simple restriction to thermal equilibrium, without the need for complicated thermodynamical or mechanical arguments.
Peltier effect in strongly driven quantum wires
Mierzejewski, M.; Crivelli, D.; Prelovšek, P.
2014-08-01
We study a microscopic model of a thermocouple device with two connected correlated quantum wires driven by a constant electric field. In such a closed system we follow the time and position dependence of the entropy density using the concept of the reduced density matrix. At weak driving, the initial changes of the entropy at the junctions can be described by the linear Peltier response. At longer times the quasiequilibrium situation is reached with well defined local temperatures which increase due to an overall Joule heating. On the other hand, a strong electric field induces a nontrivial nonlinear thermoelectric response, e.g., the Bloch oscillations of the energy current. Moreover, we show for the doped Mott insulators that strong driving can reverse the Peltier effect.
Smith, L. W.; Al-Taie, H.; Lesage, A. A. J.; Thomas, K. J.; Sfigakis, F.; See, P.; Griffiths, J. P.; Farrer, I.; Jones, G. A. C.; Ritchie, D. A.; Kelly, M. J.; Smith, C. G.
2016-04-01
We study 95 split gates of different size on a single chip using a multiplexing technique. Each split gate defines a one-dimensional channel on a modulation-doped GaAs /AlGaAs heterostructure, through which the conductance is quantized. The yield of devices showing good quantization decreases rapidly as the length of the split gates increases. However, for the subset of devices showing good quantization, there is no correlation between the electrostatic length of the one-dimensional channel (estimated using a saddle-point model) and the gate length. The variation in electrostatic length and the one-dimensional subband spacing for devices of the same gate length exceeds the variation in the average values between devices of different lengths. There is a clear correlation between the curvature of the potential barrier in the transport direction and the strength of the "0.7 anomaly": the conductance value of the 0.7 anomaly reduces as the barrier curvature becomes shallower. These results highlight the key role of the electrostatic environment in one-dimensional systems. Even in devices with clean conductance plateaus, random fluctuations in the background potential are crucial in determining the potential landscape in the active device area such that nominally identical gate structures have different characteristics.
Energy Technology Data Exchange (ETDEWEB)
El Ghazi, Haddou, E-mail: hadghazi@gmail.com [Special Mathematics, CPGE Rabat (Morocco); LPS, Faculty of Science, Dhar El Mehrez, BP 1796 Fes-Atlas (Morocco); A John Peter [P.G. & Research Department of Physics, Goverment Arts and Science College, Melur 625106, Madurai (India)
2015-04-01
In the present paper, internal composition and size-dependent threshold pump intensity effects on on-center impurity-related linear, third-order nonlinear and total refractive index changes are investigated in wurtzite (In,Ga)N/GaN unstrained spherical quantum dot. The calculation is performed within the framework of parabolic band and single band effective-mass approximations using a combination of Quantum Genetic Algorithm (QGA) and Hartree–Fock–Roothaan (HFR) method. According to the results obtained, (i) a significant red-shift (blue shift) is obtained as the dot size (potential barrier) increases and (ii) a threshold optical pump intensity depending strongly on the size and the internal composition is obtained which constitutes the limit between two behaviors.
El Ghazi, Haddou; A John Peter
2015-04-01
In the present paper, internal composition and size-dependent threshold pump intensity effects on on-center impurity-related linear, third-order nonlinear and total refractive index changes are investigated in wurtzite (In,Ga)N/GaN unstrained spherical quantum dot. The calculation is performed within the framework of parabolic band and single band effective-mass approximations using a combination of Quantum Genetic Algorithm (QGA) and Hartree-Fock-Roothaan (HFR) method. According to the results obtained, (i) a significant red-shift (blue shift) is obtained as the dot size (potential barrier) increases and (ii) a threshold optical pump intensity depending strongly on the size and the internal composition is obtained which constitutes the limit between two behaviors.
Formulation of the Relativistic Quantum Hall Effect and "Parity Anomaly"
Yonaga, Kouki; Shibata, Naokazu
2016-01-01
We present a relativistic formulation of the quantum Hall effect on a Riemann sphere. An explicit form of the pseudopotential is derived for the relativistic quantum Hall effect with/without mass term.We clarify particular features of the relativistic quantum Hall states with use of the exact diagonalization study of the pseudopotential Hamiltonian. Physical effects of the mass term to relativistic quantum Hall states are investigated in detail.The mass term acts as an interporating parameter between the relativistic and non-relativistic quantum Hall effects. It is pointed out that the mass term inequivalently affects to many-body physics of the positive and negative Landau levels and brings instability of the Laughlin state of the positive first relativistic Landau level as a consequence of the "parity anomaly".
Quantum effects of massive modes in a cosmological quantum space-time
Tavakoli, Yaser
2015-01-01
The quantum theory of a massive, minimally coupled scalar field on an isotropic cosmological quantum space-time is revisited. The interplay between the quantum background and the massive modes of the field, when disregarding their back-reaction effects, gives rise to a theory of quantum field on an effective, dressed space-time whose isotropy may be broken in the direction of the field propagation. On the resulting dressed geometry, evolution of the massive modes, by analyzing the solutions to the corresponding Klein-Gordon equation, is investigated. In particular, by computing the leading order contributions in adiabatic series, an approximate solution for the mode function is obtained. By using the adiabatic regularization, to the fourth order in expansion series, the renormalization of the stress-energy and Hamiltonian of the quantized field is studied. The problem of particle production is studied here in the light of the classical theory of wave propagation on the effective anisotropic background. To the...
A Rapid and Cost-Effective Laser Based Synthesis of High Purity Cadmium Selenide Quantum Dots.
Gondall, M A; Qahtan, Talal F; Dastageer, M A; Yamani, Z H; Anjum, D H
2016-01-01
A rapid and cost effective method is developed to synthesize high purity cadmium Selenide (CdSe) quantum dots in acetone medium using second harmonic of Nd:YAG nanosecond pulsed laser of 532 nm wavelength. The thermal agglomeration due the nanosecond pulse duration of the laser was successfully eliminated by using unfocussed laser beam and thereby providing a favorable conditions for the synthesis of quantum dots having the grain size of 3 nm. The morphological and optical characterizations like XRD, HRTEM, optical absorption of the synthesized CdSe quantum dots, reveal that the material possesses the similar characteristics of the one synthesized through cumbersome wet chemical methods. Relative to the CdSe bulk material, the synthesized CdSe quantum dots showed a blue shift in the measured band gap energy from near infrared spectral region to visible region, making this material very attractive for many solar energy harvesting applications like photo-catalysis and solar cells.
Kondo effect in quantum dots and molecular devices
Institute of Scientific and Technical Information of China (English)
JIANG Lang; LI Hongxiang; HU Wenping; ZHU Daoben
2005-01-01
Kondo effect is a very important many-body phenomenon in condensed matter physics,which explains why the resistance increases as the temperature is lowered (usually <10 K) in dilute magnetic alloy, and why the conductance increases as temperature is decreased in quantum dots. This paper simply introduces equilibrium and non- equilibrium Kondo effects in quantum dots together with the Kondo effect in quantum dots with even number of electrons (when the singlet and triplet states are degenerate). Furthermore, Kondo effect in single atom/molecular transistors is introduced, which indicates a new way to study Kondo effect.
Few-body, hyperspherical treatment of the quantum Hall effect
Directory of Open Access Journals (Sweden)
Wooten R. E.
2016-01-01
Full Text Available The quantum Hall effect arises from the quantum behavior of two-dimensional, strongly-interacting electrons exposed to a strong, perpendicular magnetic field [1, 2]. Conventionally treated from a many-body perspective, we instead treat the system from the few-body perspective using collective coordinates and the hyperspherical adiabatic technique developed originally for atomic systems [3]. The grand angular momentum K from K-harmonic few-body theory, is shown to be an approximate good collective quantum number in this system, and is shown to correlate with known fractional quantum Hall (FQH states at experimentally observed filling factors.
Quantum radiation reaction effects in multiphoton Compton scattering.
Di Piazza, A; Hatsagortsyan, K Z; Keitel, C H
2010-11-26
Radiation reaction effects in the interaction of an electron and a strong laser field are investigated in the realm of quantum electrodynamics. We identify the quantum radiation reaction with the multiple photon recoils experienced by the laser-driven electron due to consecutive incoherent photon emissions. After determining a quantum radiation dominated regime, we demonstrate how in this regime quantum signatures of the radiation reaction strongly affect multiphoton Compton scattering spectra and that they could be measurable in principle with presently available laser technology.
Quantum teleportation of nonclassical wave packets: An effective multimode theory
Energy Technology Data Exchange (ETDEWEB)
Benichi, Hugo; Takeda, Shuntaro; Lee, Noriyuki; Furusawa, Akira [Department of Applied Physics, University of Tokyo, Tokyo (Japan)
2011-07-15
We develop a simple and efficient theoretical model to understand the quantum properties of broadband continuous variable quantum teleportation. We show that, if stated properly, the problem of multimode teleportation can be simplified to teleportation of a single effective mode that describes the input state temporal characteristic. Using that model, we show how the finite bandwidth of squeezing and external noise in the classical channel affect the output teleported quantum field. We choose an approach that is especially relevant for the case of non-Gaussian nonclassical quantum states and we finally back-test our model with recent experimental results.
Energy Technology Data Exchange (ETDEWEB)
Li, Shun; Ge, Zhen-Hua [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhang, Bo-Ping, E-mail: bpzhang@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Yao, Yao [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Wang, Huan-Chun [School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 (China); Yang, Jing; Li, Yan; Gao, Chao [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Lin, Yuan-Hua [School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 (China)
2016-10-30
Highlights: • CuS quantum dots (<5 nm) were synthesized by mechanochemical ball milling. • Defects was observed in the CuS quantum dots. • They show good visible light photocatalytic activity as Fenton-like reagents. - Abstract: We report a simple mechanochemical ball milling method for synthesizing monodisperse CuS quantum dots (QDs) with sizes as small as sub-5 nm. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and UV–vis spectroscopy. The CuS QDs exhibited excellent visible-light-driven photocatalytic activity and stability for degradation of Rodanmine B aqueous solution as Fenton-like reagents. Our study opens the opportunity to low-cost and facile synthesis of QDs in large scale for future industrial applications.
Crossed Andreev effects in two-dimensional quantum Hall systems
Hou, Zhe; Xing, Yanxia; Guo, Ai-Min; Sun, Qing-Feng
2016-08-01
We study the crossed Andreev effects in two-dimensional conductor/superconductor hybrid systems under a perpendicular magnetic field. Both a graphene/superconductor hybrid system and an electron gas/superconductor one are considered. It is shown that an exclusive crossed Andreev reflection, with other Andreev reflections being completely suppressed, is obtained in a high magnetic field because of the chiral edge states in the quantum Hall regime. Importantly, the exclusive crossed Andreev reflection not only holds for a wide range of system parameters, e.g., the size of system, the width of central superconductor, and the quality of coupling between the graphene and the superconductor, but also is very robust against disorder. When the applied bias is within the superconductor gap, a robust Cooper-pair splitting process with high-efficiency can be realized in this system.
Modelling the effect of size-asymmetric competition on size inequality
DEFF Research Database (Denmark)
Rasmussen, Camilla Ruø; Weiner, Jacob
2017-01-01
Abstract The concept of size asymmetry in resource competition among plants, in which larger individuals obtain a disproportionate share of contested resources, appears to be very straightforward, but the effects of size asymmetry on growth and size variation among individuals have proved...... to be controversial. It has often been assumed that competition among individual plants in a population has to be size-asymmetric to result in higher size inequality than in the absence of competition, but here we question this inference. Using very simple, individual-based models, we investigate how size symmetry...... irrespective of their sizes, can, under some assumptions, result in higher size inequality than when competition is absent. We demonstrate our approach by applying it to data from a greenhouse experiment investigating the size symmetry of belowground competition between pairs of Triticum aestivum (wheat...
Kondo effects in triangular triple quantum dots
Oguri, Akira; Numata, Takahide; Nisikawa, Yunori; Hewson, A. C.
2009-03-01
We study the conductance through a triangular triple quantum dot, which is connected to two noninteracting leads, using the numerical renormalization group (NRG). It is found that the system shows a variety of Kondo effects depending on the filling of the triangle. The SU(4) Kondo effect occurs at half-filling, and a sharp conductance dip due to a phase lapse appears in the gate-voltage dependence. Furthermore, when four electrons occupy the three sites on average, a local S=1 moment, which is caused by the Nagaoka mechanism, is induced along the triangle. The temperature dependence of the entropy and spin susceptibility of the triangle shows that this moment is screened by the conduction electrons via two separate stages at different temperatures. The two-terminal and four-terminal conductances show a clear difference at the gate voltages, where the SU(4) or the S=1 Kondo effects occur[1]. We will also discuss effects of deformations of the triangular configuration, caused by the inhomogeneity in the inter-dot couplings and in the gate voltages. [4pt] [1] T.Numata, Y.Nisikawa, A.Oguri, and A.C.Hewson: arXiv:0808.3496.
Quantum-Memory Effects in the Emission of Quantum-Dot Microcavities
Berger, C.; Huttner, U.; Mootz, M.; Kira, M.; Koch, S. W.; Tempel, J.-S.; Aßmann, M.; Bayer, M.; Mintairov, A. M.; Merz, J. L.
2014-08-01
The experimentally measured input-output characteristics of optically pumped semiconductor microcavities exhibits unexpected oscillations modifying the fundamentally linear slope in the excitation power regime below lasing. A systematic microscopic analysis reproduces these oscillations, identifying them as a genuine quantum-memory effect, i.e., a photon-density correlation accumulated during the excitation. With the use of projected quantum measurements, it is shown that the input-output oscillations can be controlled and enhanced by an order of magnitude when the quantum fluctuations of the pump are adjusted.
Measuring the effective phonon density of states of a quantum dot in cavity quantum electrodynamics
DEFF Research Database (Denmark)
Madsen, Kristian Høeg; Nielsen, Per Kær; Kreiner-Møller, Asger
2013-01-01
We employ detuning-dependent decay-rate measurements of a quantum dot in a photonic-crystal cavity to study the influence of phonon dephasing in a solid-state quantum-electrodynamics experiment. The experimental data agree with a microscopic non-Markovian model accounting for dephasing from...... longitudinal acoustic phonons, and the analysis explains the difference between nonresonant cavity feeding in different nanocavities. From the comparison between experiment and theory we extract the effective phonon density of states experienced by the quantum dot in the nanocavity. This quantity determines...
Polaron Energy and Effective Mass in Parabolic Quantum Wells
Institute of Scientific and Technical Information of China (English)
WANG Zhi-Ping; LIANG Xi-Xia
2005-01-01
@@ The energy and effective mass of a polaron in a parabolic quantum well are studied theoretically by using LLP-like transformations and a variational approach. Numerical results are presented for the polaron energy and effective mass in the GaAs/Al0.3Ga0.7As parabolic quantum well. The results show that the energy and the effective mass of the polaron both have their maxima in the finite parabolic quantum well but decrease monotonously in the infinite parabolic quantum well with the increasing well width. It is verified that the bulk longitudinal optical phonon mode approximation is an adequate formulation for the electron-phonon coupling in parabolic quantum well structures.
Quantum Zeno effect in atomic spin-exchange collisions
Energy Technology Data Exchange (ETDEWEB)
Kominis, I.K. [Department of Physics, University of Crete, Heraklion 71103 (Greece); Institute of Electronic Structure and Laser, Foundation for Research and Technology, Heraklion 71110 (Greece)], E-mail: ikominis@iesl.forth.gr
2008-07-07
The suppression of spin-exchange relaxation in dense alkali-metal vapors discovered in 1973 and governing modern atomic magnetometers is here reformulated in terms of quantum measurement theory and the quantum Zeno effect. This provides a new perspective of understanding decoherence in spin-polarized atomic vapors.
Quantum noise memory effect of multiple scattered light
Lodahl, P
2005-01-01
We investigate frequency correlations in multiple scattered light that are present in the quantum fluctuations. The memory effect for quantum and classical noise is compared, and found to have markedly different frequency scaling, which was confirmed in a recent experiment. Furthermore, novel mesoscopic correlations are predicted that depend on the photon statistics of the incoming light.
Quantum description of classical apparatus; Zeno effect and decoherence
Gurvitz, S A
2003-01-01
We study the measurement process by treating classical detectors entirely quantum mechanically. Transition to the classical description and the mechanism of decoherence is investigated. We concentrate on influence of continuous measurement on decay of unstable systems (quantum Zeno effect). We discuss the experimental consequences of our results and a role of the projection postulate in a measurement process.
Quantum Zeno effect in atomic spin-exchange collisions
Kominis, I. K.
2008-01-01
The suppression of spin-exchange relaxation in dense alkali-metal vapors discovered in 1973 and governing modern atomic magnetometers is here reformulated in terms of quantum measurement theory and the quantum Zeno effect. This provides a new perspective of understanding decoherence in spin-polarized atomic vapors.
Robust effective Zeeman energy in monolayer MoS2 quantum dots
Dias, A. C.; Fu, Jiyong; Villegas-Lelovsky, L.; Qu, Fanyao
2016-09-01
We report a theoretical investigation on the energy spectrum and the effective Zeeman energy (EZE) in monolayer MoS2 circular quantum dots, subjected to an out-of-plane magnetic field. Interestingly, we observe the emergence of energy-locked modes, depending on the competition between the dot confinement and the applied magnetic field, for either the highest K-valley valence band or the lowest {{K}\\prime} -valley conduction band. Moreover, an unusual dot-size-independent EZE behavior of the highest valence and the lowest conduction bands is found. Although the EZEs are insensitive to the variation of quantum confinement, both of them grow linearly with the magnetic field, similar to that in the monolayer MoS2 material. The EZEs along with their ‘robustness’ against dot confinements open opportunities of a universal magnetic control over the valley degree of freedom, for quantum dots of all sizes.
Quantum effects in many-body gravitating systems
Golovko, V A
2015-01-01
A hierarchy of equations for equilibrium reduced density matrices obtained earlier is used to consider systems of spinless bosons bound by forces of gravity alone. The systems are assumed to be at absolute zero of temperature under conditions of Bose condensation. In this case, a peculiar interplay of quantum effects and of very weak gravitational interaction between microparticles occurs. As a result, there can form spatially-bounded equilibrium structures macroscopic in size, both immobile and rotating. The size of a structure is inversely related to the number of particles in the structure. When the number of particles is relatively small the size can be enormous, whereas if this numbder equals Avogadro's number the radius of the structure is about 30 cm in the case that the structure consists of hydrogen atoms. The rotating objects have the form of rings and exhibit superfluidity. An atmosphere that can be captured by tiny celestial bodies from the ambient medium is considered too. The thickness of the at...
[Effect sizes, statistical power and sample sizes in "the Japanese Journal of Psychology"].
Suzukawa, Yumi; Toyoda, Hideki
2012-04-01
This study analyzed the statistical power of research studies published in the "Japanese Journal of Psychology" in 2008 and 2009. Sample effect sizes and sample statistical powers were calculated for each statistical test and analyzed with respect to the analytical methods and the fields of the studies. The results show that in the fields like perception, cognition or learning, the effect sizes were relatively large, although the sample sizes were small. At the same time, because of the small sample sizes, some meaningful effects could not be detected. In the other fields, because of the large sample sizes, meaningless effects could be detected. This implies that researchers who could not get large enough effect sizes would use larger samples to obtain significant results.
Phase effects in HgTe quantum structures
Energy Technology Data Exchange (ETDEWEB)
Koenig, M.; Buhmann, H.; Becker, C.R.; Molenkamp, L.W. [Wuerzburg Univ. (Germany). Physikalisches Inst.
2007-07-01
HgTe quantum well structures with high electron mobilities have been used to fabricate quantum interference devices. Aharonov-Bohm oscillations have been studied in the low and high magnetic field regime. In the latter case a decrease of the effective ring radius is observed. Additionally, as a consequence of the strong Rashba spin-orbit coupling within this material, it was possible to observe conductance oscillations which are due to the so-called Aharonov-Casher effect. These quantum interference effects are effectively controlled by the applied magnetic and electric field. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Versluis, Iris; Papies, Esther; Marchiori, David
2015-01-01
People eat more from large than from small packs, which is known as the pack size effect. We hypothesized that providing a serving size recommendation would reduce the influence of the pack size on consumption and would thus diminish the pack size effect. Moreover, we hypothesized that a pictorial
Versluis, Iris; Papies, Esther; Marchiori, David
2015-01-01
People eat more from large than from small packs, which is known as the pack size effect. We hypothesized that providing a serving size recommendation would reduce the influence of the pack size on consumption and would thus diminish the pack size effect. Moreover, we hypothesized that a pictorial s
THz Electro-absorption Effect in Quantum Dots
DEFF Research Database (Denmark)
Turchinovich, Dmitry; Monozon, Boris S.; Livshits, Daniil A.;
2011-01-01
Instantaneous electro-absorption effect in quantum dots, induced by electric field of THz pulse with 3 THz bandwidth is demonstrated in THz pump - optical probe experiment. This effect may be promising for Tbit/s wireless transmission systems.......Instantaneous electro-absorption effect in quantum dots, induced by electric field of THz pulse with 3 THz bandwidth is demonstrated in THz pump - optical probe experiment. This effect may be promising for Tbit/s wireless transmission systems....
Unruh effect and macroscopic quantum interference
Steane, Andrew
2015-01-01
We investigate the influence of Unruh radiation on matter-wave interferometry experiments using neutral objects modeled as dielectric spheres. The Unruh effect leads to a loss of coherence through momentum diffusion. This is a fundamental source of decoherence that affects all objects having electromagnetic interactions. However, the effect is not large enough to prevent the observation of interference for objects of any size, even when the path separation is larger than the size of the object. When the acceleration in the interferometer arms is large, inertial tidal forces will disrupt the material integrity of the interfering objects before the Unruh decoherence of the centre of mass motion is sufficient to prevent observable interference.
The effect of impurity on transition frequency of bound polaron in quantum rods
Indian Academy of Sciences (India)
Wei Xiao; Jing-Lin Xiao
2012-12-01
The Hamiltonian of a quantum rod with an ellipsoidal boundary is given after a coordinate transformation that changes the ellipsoidal boundary into a spherical one. The properties of the quantum rods constituting the bridge between two-dimensional quantum wells, zero-dimensional quantum dots and one-dimensional quantum wires are explored theoretically using linear combination operator method. The first internal excited state energy, the excitation energy and the transition frequency between the first internal excited and the ground states of the strong-coupled impurity-bound polaron in the rod with Coulomb-bound potential, the transverse effective confinement length, the ellipsoid aspect ratio and the electron–phonon coupling strength are studied. It is found that the first internal excited state energy, the excitation energy and the transition frequency are increasing functions of the Coulomb-bound potential and the electron–phonon coupling strength, whereas they are decreasing functions of the ellipsoid aspect ratio and the transverse effective confinement length. These results can be attributed to the interesting quantum size confining effects.
Monte Carlo simulation of quantum Zeno effect in the brain
Georgiev, Danko
2015-12-01
Environmental decoherence appears to be the biggest obstacle for successful construction of quantum mind theories. Nevertheless, the quantum physicist Henry Stapp promoted the view that the mind could utilize quantum Zeno effect to influence brain dynamics and that the efficacy of such mental efforts would not be undermined by environmental decoherence of the brain. To address the physical plausibility of Stapp's claim, we modeled the brain using quantum tunneling of an electron in a multiple-well structure such as the voltage sensor in neuronal ion channels and performed Monte Carlo simulations of quantum Zeno effect exerted by the mind upon the brain in the presence or absence of environmental decoherence. The simulations unambiguously showed that the quantum Zeno effect breaks down for timescales greater than the brain decoherence time. To generalize the Monte Carlo simulation results for any n-level quantum system, we further analyzed the change of brain entropy due to the mind probing actions and proved a theorem according to which local projections cannot decrease the von Neumann entropy of the unconditional brain density matrix. The latter theorem establishes that Stapp's model is physically implausible but leaves a door open for future development of quantum mind theories provided the brain has a decoherence-free subspace.
National Research Council Canada - National Science Library
Anton Kühberger; Astrid Fritz; Thomas Scherndl
2014-01-01
.... We extracted p values, effect sizes, and sample sizes of all empirical papers, and calculated the correlation between effect size and sample size, and investigated the distribution of p values...
How to Estimate and Interpret Various Effect Sizes
Vacha-Haase, Tammi; Thompson, Bruce
2004-01-01
The present article presents a tutorial on how to estimate and interpret various effect sizes. The 5th edition of the Publication Manual of the American Psychological Association (2001) described the failure to report effect sizes as a "defect" (p. 5), and 23 journals have published author guidelines requiring effect size reporting. Although…
How to Estimate and Interpret Various Effect Sizes
Vacha-Haase, Tammi; Thompson, Bruce
2004-01-01
The present article presents a tutorial on how to estimate and interpret various effect sizes. The 5th edition of the Publication Manual of the American Psychological Association (2001) described the failure to report effect sizes as a "defect" (p. 5), and 23 journals have published author guidelines requiring effect size reporting. Although…
Quantum corrections in massive bigravity and new effective composite metrics
Heisenberg, Lavinia
2015-05-01
We compute the one-loop quantum corrections to the interactions between the two metrics of the ghost-free massive bigravity. When considering gravitons running in the loops, we show how the structure of the interactions gets destabilized at the quantum level, exactly in the same way as in its massive gravity limit. A priori one might have expected a better quantum behavior, however, the broken diffeomorphism invariance out of the two initial diffeomorphisms in bigravity has similar consequences at the quantum level as the broken diffeomorphism in massive gravity. From lessons of the generated quantum corrections through matter loops we propose yet other types of effective composite metrics to which the matter fields can couple. Among these new effective metrics there might be one or more that could provide interesting phenomenology and important cosmological implications.
Quantum corrections in massive bigravity and new effective composite metrics
Heisenberg, Lavinia
2014-01-01
We compute the one-loop quantum corrections to the interactions between the two metrics of the ghost-free massive bigravity. When considering gravitons running in the loops, we show how the structure of the interactions gets destabilized at the quantum level, exactly in the same way as in its massive gravity limit. A priori one might have expected a better quantum behavior, however the broken diffeomorphism invariance out of the two initial diffeomorphisms in bigravity has similar consequences at the quantum level as the broken diffeomorphism in massive gravity. From lessons of the generated quantum corrections through matter loops we propose yet other types of effective composite metrics to which the matter fields can couple. Among these new effective metrics there might be one or more that could provide interesting phenomenology and important cosmological implications.
Effect of Particle Size on Shear Stress of Magnetorheological Fluids
Directory of Open Access Journals (Sweden)
Chiranjit Sarkar
2015-05-01
Full Text Available Magnetorheological fluids (MRF, known for their variable shear stress contain magnetisable micrometer-sized particles (few micrometer to 200 micrometers in a nonmagnetic carrier liquid. To avoid settling of particles, smaller sized (3-10 micrometers particles are preferred, while larger sized particles can be used in MR brakes, MR clutches, etc. as mechanical stirring action in those mechanisms does not allow particles to settle down. Ideally larger sized particles provide higher shear stress compared to smaller sized particles. However there is need to explore the effect of particle sizes on the shear stress. In the current paper, a comparison of different particle sizes on MR effect has been presented. Particle size distributions of iron particles were measured using HORIBA Laser Scattering Particle Size Distribution Analyser. The particle size distribution, mean sizes and standard deviations have been presented. The nature of particle shapes has been observed using scanning electron microscopy. To explore the effect of particle sizes, nine MR fluids containing small, large and mixed sized carbonyl iron particles have been synthesized. Three concentrations (9%, 18% and 36% by volume for each size of particles have been used. The shear stresses of those MRF samples have been measured using ANTON PAAR MCR-102 Rheometer. With increase in volume fraction of iron particles, the MR fluids synthesized using “mixed sized particles” show better shear stress compared to the MR fluids containing “smaller sized spherical shaped particles” and “larger sized flaked shaped particles” at higher shear rate.
Institute of Scientific and Technical Information of China (English)
陈赛艳; 陆世鹏; 覃铭
2012-01-01
Based on transfer-matrix method, the effect of structural size scale on electron-spin polarization in a spin filter has been studied. The spin filter can be realized by depositing nanosized ferromagnetic metal stripe and Schottky normal metal stripe on the top of the semiconductor heterostructure. It is shown that the electron-spin polarization is dependent greatly on the sizes and the position of the stripes. Thus, a quantum size effect exists in this device and the optimal spin polarization can be achieved by felicitously fabricating the stripes. It also is shown that the spin polarization can be altered by adjusting the electric-barrier height induced by an applied voltage to the Schottky normal metal stripe, which can result in a voltage-tunable spin filter.%采用转移矩阵法,研究了结构尺度对自旋过滤器中电子自旋极化特性的影响.该自旋过滤器可以通过在半导体异质结上沉积纳米足度的铁磁条带和肖特基金属条带来实现.计算结果表明,电子的自旋极化特性强烈依赖于铁磁条带和肖特基金属条带的结构尺度和位置,即该器件中存在量子足寸效应.此外,我们的计算结果还表明,电子的自旋极化特性还与施加在肖特基金属条上的电压所诱发的电垒高度密切相关.因此,我们可以通过改变施加在肖特基金属条上的电压来调控该器件中电子的自旋极化特性,制造一个电压可调的电子自旋过滤器.
The causal effect of board size in the performance of small and medium-sized firms
DEFF Research Database (Denmark)
Bennedsen, Morten; Kongsted, Hans Christian; Meisner Nielsen, Kasper
2008-01-01
correlation between family size and board size and show this correlation to be driven by firms where the CEO's relatives serve on the board. Second, we find empirical evidence of a small adverse board size effect driven by the minority of small and medium-sized firms that are characterized by having......Empirical studies of large publicly traded firms have shown a robust negative relationship between board size and firm performance. The evidence on small and medium-sized firms is less clear; we show that existing work has been incomplete in analyzing the causal relationship due to weak...... identification strategies. Using a rich data set of almost 7000 closely held corporations we provide a causal analysis of board size effects on firm performance: We use a novel instrument given by the number of children of the chief executive officer (CEO) of the firms. First, we find a strong positive...
Quantum effects at low-energy atom–molecule interface
Indian Academy of Sciences (India)
B Deb; A Rakshit; J Hazra; D Chakraborty
2013-01-01
The effects of quantum interference in inter-conversion between cold atoms and diatomic molecules are analysed in this study. Within the framework of Fano’s theory, continuum bound anisotropic dressed state formalism of atom–molecule quantum dynamics is presented. This formalism is applicable in photo- and magneto-associative strong-coupling regimes. The significance of Fano effect in ultracold atom–molecule transitions is discussed. Quantum effects at low-energy atom–molecule interface are important for exploring coherent phenomena in hitherto unexplored parameter regimes.
Study of band gap and determination of size of PbS quantum dots synthesized by colloidal solution
Directory of Open Access Journals (Sweden)
M. S. Ghamsari
2005-03-01
Full Text Available PbS semiconductor non-crystals have been synthesized in order to study the modification of their electronic structures and optical properties in relation to their size. The synthesis has been carried out by using the techniques of colloidal chemistry. Strong quantum confinement behavior has been observed based on the analysis of optical spectra of these particles. The average particle size approximated by x-ray line width and hyperbolic band model calculation. Heterogeneous broadening of optical spectrum is studied finally.
Grinolds, Darcy D W; Brown, Patrick R; Harris, Daniel K; Bulovic, Vladimir; Bawendi, Moungi G
2015-01-14
We study the dielectric constant of lead sulfide quantum dot (QD) films as a function of the volume fraction of QDs by varying the QD size and keeping the ligand constant. We create a reliable QD sizing curve using small-angle X-ray scattering (SAXS), thin-film SAXS to extract a pair-distribution function for QD spacing, and a stacked-capacitor geometry to measure the capacitance of the thin film. Our data support a reduced dielectric constant in nanoparticles.
Quantum radiation by electrons in lasers and the Unruh effect
Schützhold, Ralf
2010-01-01
In addition to the Larmor radiation known from classical electrodynamics, electrons in a laser field may emit pairs of entangled photons -- which is a pure quantum effect. We investigate this quantum effect and discuss why it is suppressed in comparison with the classical Larmor radiation (which is just Thomson backscattering of the laser photons). Further, we provide an intuitive explanation of this process (in a simplified setting) in terms of the Unruh effect.
Institute of Scientific and Technical Information of China (English)
Sun Yu; Zhang Ping; Xu Jiangtao; Gao Zhiyuan; Xu Chao
2012-01-01
To improve the full well capacity (FWC) of a small size backside illuminated (BSI) CMOS image sensor (CIS),the effect of photodiode capacitance (CPD) on FWC is studied,and a reformed pinned photodiode (PPD) structure is proposed.Two procedures are implemented for the optimization.The first is to form a varying doping concentration and depth stretched new N region,which is implemented by an additional higher-energy and lower-dose N type implant beneath the original N region.The FWC of this structure is increased by extending the side wall junctions in the substrate.Secondly,in order to help the enlarged well capacity achieve full depletion,two step P-type implants with different implant energies are introduced to form a P-type insertion region in the interior of the stretched N region.This vertical inserted P region guarantees that the proposed new PD structure achieves full depletion in the reset period.The simulation results show that the FWC can be improved from 1289e-to 6390e-,and this improvement does not sacrifice any image lag performance.Additionally,quantum efficiency (QE) is enhanced in the full wavelength range,especially 6.3％ at 520 nm wavelength.This technique can not only be used in such BSI structures,but also adopted in an FSI pixel with any photodiode-type readout scheme.
Approximating relational observables by absolute quantities: a quantum accuracy-size trade-off
Miyadera, Takayuki; Loveridge, Leon; Busch, Paul
2016-05-01
The notion that any physical quantity is defined and measured relative to a reference frame is traditionally not explicitly reflected in the theoretical description of physical experiments where, instead, the relevant observables are typically represented as ‘absolute’ quantities. However, the emergence of the resource theory of quantum reference frames as a new branch of quantum information science in recent years has highlighted the need to identify the physical conditions under which a quantum system can serve as a good reference. Here we investigate the conditions under which, in quantum theory, an account in terms of absolute quantities can provide a good approximation of relative quantities. We find that this requires the reference system to be large in a suitable sense.
Two Quantum Effects In The Theory Of Gravitation
Robinson, S P
2005-01-01
We will discuss two methods by which the formalism of quantum field theory can be included in calculating the physical effects of gravitation. In the first of these, the consequences of treating general relativity as an effective quantum field theory will be examined. The primary result will be the calculation of the first-order quantum gravity corrections to the β functions of arbitrary Yang-Mills theories. These corrections will effect the high-energy phenomenology of such theories, including the details of coupling constant unification. Following this, we will address the question of how to form effective quantum field theories in classical gravitational backgrounds. We follow the prescription that effective theories should provide a description of experimentally accessible degrees of freedom with all other degrees of freedom integrated out of the theory. We will show that this prescription appears to fail for a scalar field in a black hole background because of an anomaly generated in general cov...
Heidel, R. Eric
2016-01-01
Statistical power is the ability to detect a significant effect, given that the effect actually exists in a population. Like most statistical concepts, statistical power tends to induce cognitive dissonance in hepatology researchers. However, planning for statistical power by an a priori sample size calculation is of paramount importance when designing a research study. There are five specific empirical components that make up an a priori sample size calculation: the scale of measurement of the outcome, the research design, the magnitude of the effect size, the variance of the effect size, and the sample size. A framework grounded in the phenomenon of isomorphism, or interdependencies amongst different constructs with similar forms, will be presented to understand the isomorphic effects of decisions made on each of the five aforementioned components of statistical power. PMID:27073717
Directory of Open Access Journals (Sweden)
R. Eric Heidel
2016-01-01
Full Text Available Statistical power is the ability to detect a significant effect, given that the effect actually exists in a population. Like most statistical concepts, statistical power tends to induce cognitive dissonance in hepatology researchers. However, planning for statistical power by an a priori sample size calculation is of paramount importance when designing a research study. There are five specific empirical components that make up an a priori sample size calculation: the scale of measurement of the outcome, the research design, the magnitude of the effect size, the variance of the effect size, and the sample size. A framework grounded in the phenomenon of isomorphism, or interdependencies amongst different constructs with similar forms, will be presented to understand the isomorphic effects of decisions made on each of the five aforementioned components of statistical power.
Size effects of effective Young's modulus for periodic cellular materials
Institute of Scientific and Technical Information of China (English)
DAI GaoMing; ZHANG WeiHong
2009-01-01
With the wide demands of cellular materials applications in aerospace and civil engineering, research effort sacrificed for this type of materials attains nowadays a higher level than ever before. This paper is focused on the prediction methods of effective Young's modulus for periodical cellular materials. Based on comprehensive studies of the existing homogenization method (HM), the G-A meso-me-chanice method (G-A MMM) and the stretching energy method (SEM) that are unable to reflect the size effect, we propose the bending energy method (BEM) for the first time, and a comparative study of these four methods is further made to show the generality and the capability of capturing the size effect of the BEM method. Meanwhile, the underlying characteristics of each method and their relations are clarified. To do this, the detailed finite element computing and existing experimental results of hex-agonal honeycombs from the literature are adopted as the standard of comparison for the above four methods. Stretch and bending models of periodical cellular materials are taken into account, respec-tively for the comparison of stretch and flexural displacements resulting from the above methods. We conclude that the BEM has the strong ability of both predicting the effective Young's modulus and re- vealing the size effect. Such a method is also able to predict well the variations of structural displace-ments in terms of the cell size under stretching and bending loads including the non-monotonous variations for the hexagonal cell. On the contrary, other three methods can only predict the limited re- sults whenever the cell size tends to be infinitely small.
Barnette, J. Jackson; McLean, James E.
The level of standardized effect sizes obtained by chance and the use of significance tests to guard against spuriously high standardized effect sizes were studied. The concept of the "protected effect size" is also introduced. Monte Carlo methods were used to generate data for the study using random normal deviates as the basis for sample means…
Duck Oh, Si; Kim, Jungkil; Lee, Dae Hun; Kim, Ju Hwan; Jang, Chan Wook; Kim, Sung; Choi, Suk-Ho
2016-01-01
Graphene quantum dots (GQDs) are one of the most attractive graphene nanostructures due to their potential optoelectronic device applications, but it is a challenge to accurately control the size and arrangement of GQDs. In this report, we fabricate well-aligned GQDs on a large area by polystyrene (PS)-nanosphere (NS) lithography and study their structural and optical properties. Single-layer graphene grown on a Cu foil by chemical vapour deposition is patterned by reactive ion etching employing aligned PS-NS arrays as an etching mask. The size (d) of the GQDs is controlled from 75 to 23 nm by varying the etching time, as proved by scanning electron microscopy and atomic force microscopy. This method is well valid for both rigid/flexible target substrates and even for multilayer graphene formed by piling up single layers. The absorption peak of the GQDs is blue-shifted with respect to that of a graphene sheet, and is sequentially shifted to higher energies by reducing d, consistent with the quantum confinement effect (QCE). The Raman D-to-G band intensity ratio shows an almost monotonic increase with decreasing d, resulting from the dominant contribution of the edge states at the periphery of smaller GQDs. The G-band frequency shows a three-step size-dependence: initial increase, interim saturation, and final decrease with decreasing d, thought to be caused by the competition between the QCE and edge-induced strain effect.
Hierarchical surface code for network quantum computing with modules of arbitrary size
Li, Ying; Benjamin, Simon C.
2016-10-01
The network paradigm for quantum computing involves interconnecting many modules to form a scalable machine. Typically it is assumed that the links between modules are prone to noise while operations within modules have a significantly higher fidelity. To optimize fault tolerance in such architectures we introduce a hierarchical generalization of the surface code: a small "patch" of the code exists within each module and constitutes a single effective qubit of the logic-level surface code. Errors primarily occur in a two-dimensional subspace, i.e., patch perimeters extruded over time, and the resulting noise threshold for intermodule links can exceed ˜10 % even in the absence of purification. Increasing the number of qubits within each module decreases the number of qubits necessary for encoding a logical qubit. But this advantage is relatively modest, and broadly speaking, a "fine-grained" network of small modules containing only about eight qubits is competitive in total qubit count versus a "course" network with modules containing many hundreds of qubits.
The effect of superfluid hydrodynamics on pulsar glitch sizes and waiting times
Haskell, Brynmor
2016-01-01
Pulsar glitches, sudden jumps in frequency observed in many radio pulsars, may be the macroscopic manifestation of superfluid vortex avalanches on the microscopic scale. Small scale quantum mechanical simulations of vortex motion in a decelerating container have shown that such events are possible and predict power-law distributions for the size of the events, and exponential distributions for the waiting time. Despite a paucity of data, this prediction is consistent with the size and waiting time distributions of most glitching pulsars. Nevertheless a few object appear to glitch quasi-periodically, and exhibit many large glitches, while a recent study of the Crab pulsar has suggested a cut-off deviations from a power-law distribution for smaller glitches. In this paper we incorporate the results of quantum mechanical simulations in a macroscopic scale superfluid hydrodynamics simulation. We show that the effect of vortex coupling to the neutron and proton fluids in the neutron star naturally leads to deviati...
Pseudo Memory Effects, Majorization and Entropy in Quantum Random Walks
Bracken, A J; Tsohantjis, I; Bracken, Anthony J.; Ellinas, Demosthenes; Tsohantjis, Ioannis
2004-01-01
A quantum random walk on the integers exhibits pseudo memory effects, in that its probability distribution after N steps is determined by reshuffling the first N distributions that arise in a classical random walk with the same initial distribution. In a classical walk, entropy increase can be regarded as a consequence of the majorization ordering of successive distributions. The Lorenz curves of successive distributions for a symmetric quantum walk reveal no majorization ordering in general. Nevertheless, entropy can increase, and computer experiments show that it does so on average. Varying the stages at which the quantum coin system is traced out leads to new quantum walks, including a symmetric walk for which majorization ordering is valid but the spreading rate exceeds that of the usual symmetric quantum walk.
Light propagation on quantum curved spacetime and back reaction effects
Energy Technology Data Exchange (ETDEWEB)
Kozameh, Carlos; Parisi, Florencia [FaMAF, Universidad Nacional de Cordoba, 5000 Cordoba (Argentina)
2007-09-07
We study the electromagnetic field equations on an arbitrary quantum curved background in the semiclassical approximation of loop quantum gravity. The effective interaction Hamiltonian for the Maxwell and gravitational fields is obtained and the corresponding field equations, which can be expressed as a modified wave equation for the Maxwell potential, are derived. We use these results to analyze electromagnetic wave propagation on a quantum Robertson-Walker spacetime and show that Lorentz invariance is not preserved. The formalism developed can be applied to the case where back reaction effects on the metric due to the electromagnetic field are taken into account, leading to non-covariant field equations.
Quantum effects for particles channeling in a bent crystal
Feranchuk, Ilya; San, Nguyen Quang
2016-09-01
Quantum mechanical theory for channeling of the relativistic charged particles in the bent crystals is considered in the paper. Quantum effects of under-barrier tunneling are essential when the radius of the curvature is closed to its critical value. In this case the wave functions of the quasi-stationary states corresponding to the particles captured in a channel are presented in the analytical form. The efficiency of channeling of the particles and their angular distribution at the exit crystal surface are calculated. Characteristic experimental parameters for observation the quantum effects are estimated.
Intrinsic Spin Hall Effect Induced by Quantum Phase Transition in HgCdTe Quantum Wells
Energy Technology Data Exchange (ETDEWEB)
Yang, Wen; Chang, Kai; /Beijing, Inst. Semiconductors; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.
2010-03-19
Spin Hall effect can be induced both by the extrinsic impurity scattering and by the intrinsic spin-orbit coupling in the electronic structure. The HgTe/CdTe quantum well has a quantum phase transition where the electronic structure changes from normal to inverted. We show that the intrinsic spin Hall effect of the conduction band vanishes on the normal side, while it is finite on the inverted side. This difference gives a direct mechanism to experimentally distinguish the intrinsic spin Hall effect from the extrinsic one.
Spontaneous Coherence Effects in Quantum Dots and Quantum Wells Placed in Microcavities
Directory of Open Access Journals (Sweden)
Kaputkina N.E.
2016-01-01
Full Text Available The Bose-Einstein condensation temperature Tc for a system of coupled quantum dots in a microcavity was estimated in function of the confining potential steepness, the external magnetic field strength, and the barrier layer width for indirect excitons. The effect of the magnetic field on Tc was found to be nonmonotonic over a certain range of the control parameters. The reason is the presence of two competing mechanisms accompanying the increase of the magnetic field: (a increase of the magnetoexciton effective mass and (b increase of the effective confining potential steepness for quantum dots.
Effect of the Electron－LO－Phonon Coupling on an Exciton Quantum Dot
Institute of Scientific and Technical Information of China (English)
XIEWen－Fang; ZHUWu
2002-01-01
The influence of the electron-LO-phonon coupling on energy spectrum of the low -lying states of an exciton in parabolic quantum dots is investigated as a function of dot size.Calculations are made by using the method of few-body physics within the effective-mass approximation.A considerable decrease of the energy in the stronger confinement range is found for the low-lying states of an exction in quantum dots.Which results from the confinement of electron-phonon coupling.
Interpreting and Reporting Effect Sizes in Research Investigations.
Tapia, Martha; Marsh, George E., II
Since 1994, the American Psychological Association (APA) has advocated the inclusion of effect size indices in reporting research to elucidate the statistical significance of studies based on sample size. In 2001, the fifth edition of the APA "Publication Manual" stressed the importance of including an index of effect size to clarify…
Fractional quantum Hall effect in the absence of Landau levels.
Sheng, D N; Gu, Zheng-Cheng; Sun, Kai; Sheng, L
2011-07-12
It is well known that the topological phenomena with fractional excitations, the fractional quantum Hall effect, will emerge when electrons move in Landau levels. Here we show the theoretical discovery of the fractional quantum Hall effect in the absence of Landau levels in an interacting fermion model. The non-interacting part of our Hamiltonian is the recently proposed topologically non-trivial flat-band model on a checkerboard lattice. In the presence of nearest-neighbouring repulsion, we find that at 1/3 filling, the Fermi-liquid state is unstable towards the fractional quantum Hall effect. At 1/5 filling, however, a next-nearest-neighbouring repulsion is needed for the occurrence of the 1/5 fractional quantum Hall effect when nearest-neighbouring repulsion is not too strong. We demonstrate the characteristic features of these novel states and determine the corresponding phase diagram.
Effects of decoherence and imperfections for quantum algorithms
Pomeransky, A A; Shepelyansky, D L
2004-01-01
We study effects of static inter-qubit interactions and random errors in quantum gates on the stability of various quantum algorithms including the Grover quantum search algorithm and the quantum chaos maps. For the Grover algorithm our numerical and analytical results show existence of regular and chaotic phases depending on the static imperfection strength $\\epsilon$. The critical border $\\epsilon_c$ between two phases drops polynomially with the number of qubits $n_q$ as $\\epsilon_c \\sim n_q^{-3/2}$. In the regular phase $(\\epsilon 2^{-n_q/2}$. In the chaotic phase $(\\epsilon > \\epsilon_c)$ the algorithm is completely destroyed. The results for the Grover algorithm are compared with the imperfection effects for quantum algorithms of quantum chaos maps where the universal law for the fidelity decay is given by the Random Matrix Theory (RMT). We also discuss a new gyroscopic quantum error correction method which allows to reduce the effect of static imperfections. In spite of this decay GYQEC allows to obta...
Spacetime effects on satellite-based quantum communications
Bruschi, David Edward; Fuentes, Ivette; Jennewein, Thomas; Razavi, Mohsen
2013-01-01
We investigate the effects of space-time curvature on space-based quantum communication protocols. We analyze tasks that require either the exchange of single photons in a certain entanglement distribution protocol or beams of light in a continuous-variable quantum key distribution scheme. We find that gravity affects the propagation of photons, therefore acting as a noisy channel for the transmission of information. The effects can be measured with current technology.
Jet Extinction from Non-Perturbative Quantum Gravity Effects
Kilic, Can; Lath, Amitabh; Rose, Keith; Thomas, Scott
2012-01-01
The infrared-ultraviolet properties of quantum gravity suggest on very general grounds that hard short distance scattering processes are highly suppressed for center of mass scattering energies beyond the fundamental Planck scale. If this scale is not too far above the electroweak scale, these non-perturbative quantum gravity effects could be manifest as an extinction of high transverse momentum jets at the LHC. To model these effects we implement an Extinction Monte Carlo modification of the...
Interface phonon effect on optical spectra of quantum nanostructures
Energy Technology Data Exchange (ETDEWEB)
Maslov, Alexander Yu., E-mail: maslov.ton@mail.ioffe.r [Ioffe Physical Technical Institute, Polytechnicheskaya st., 26, 194021 Saint Petersburg (Russian Federation); Proshina, Olga V.; Rusina, Anastasia N. [Ioffe Physical Technical Institute, Polytechnicheskaya st., 26, 194021 Saint Petersburg (Russian Federation)
2009-12-15
This paper deals with theory of large radius polaron effect in quantum wells, wires and dots. The interaction of charge particles and excitons with both bulk and interface optical phonons is taken into consideration. The analytical expression for polaron binding energy is obtained for different types of nanostructures. It is shown that the contribution of interface phonons to the polaron binding energy may exceed the bulk phonon part. The manifestation of polaron effects in optical spectra of quantum nanostructures is discussed.
Chern-Simons Dynamics and the Quantum Hall Effect
Balachandran, A P
1991-01-01
Theoretical developments during the past several years have shown that large scale properties of the Quantum Hall system can be successfully described by effective field theories which use the Chern-Simons interaction. In this article, we first recall certain salient features of the Quantum Hall Effect and their microscopic explanation. We then review one particular approach to their description based on the Chern-Simons Lagrangian and its variants.
The pack size effect: Influence on consumer perceptions of portion sizes.
Hieke, Sophie; Palascha, Aikaterini; Jola, Corinne; Wills, Josephine; Raats, Monique M
2016-01-01
Larger portions as well as larger packs can lead to larger prospective consumption estimates, larger servings and increased consumption, described as 'portion-size effects' and 'pack size effects'. Although related, the effects of pack sizes on portion estimates have received less attention. While it is not possible to generalize consumer behaviour across cultures, external cues taken from pack size may affect us all. We thus examined whether pack sizes influence portion size estimates across cultures, leading to a general 'pack size effect'. We compared portion size estimates based on digital presentations of different product pack sizes of solid and liquid products. The study with 13,177 participants across six European countries consisted of three parts. Parts 1 and 2 asked participants to indicate the number of portions present in a combined photographic and text-based description of different pack sizes. The estimated portion size was calculated as the quotient of the content weight or volume of the food presented and the number of stated portions. In Part 3, participants stated the number of food items that make up a portion when presented with packs of food containing either a small or a large number of items. The estimated portion size was calculated as the item weight times the item number. For all three parts and across all countries, we found that participants' portion estimates were based on larger portions for larger packs compared to smaller packs (Part 1 and 2) as well as more items to make up a portion (Part 3); hence, portions were stated to be larger in all cases. Considering that the larger estimated portions are likely to be consumed, there are implications for energy intake and weight status.
Effect size estimates: current use, calculations, and interpretation.
Fritz, Catherine O; Morris, Peter E; Richler, Jennifer J
2012-02-01
The Publication Manual of the American Psychological Association (American Psychological Association, 2001, American Psychological Association, 2010) calls for the reporting of effect sizes and their confidence intervals. Estimates of effect size are useful for determining the practical or theoretical importance of an effect, the relative contributions of factors, and the power of an analysis. We surveyed articles published in 2009 and 2010 in the Journal of Experimental Psychology: General, noting the statistical analyses reported and the associated reporting of effect size estimates. Effect sizes were reported for fewer than half of the analyses; no article reported a confidence interval for an effect size. The most often reported analysis was analysis of variance, and almost half of these reports were not accompanied by effect sizes. Partial η2 was the most commonly reported effect size estimate for analysis of variance. For t tests, 2/3 of the articles did not report an associated effect size estimate; Cohen's d was the most often reported. We provide a straightforward guide to understanding, selecting, calculating, and interpreting effect sizes for many types of data and to methods for calculating effect size confidence intervals and power analysis.
Quantum optical effective-medium theory and transformation quantum optics for metamaterials
Wubs, Martijn; Amooghorban, Ehsan; Zhang, Jingjing; Mortensen, N. Asger
2016-09-01
While typically designed to manipulate classical light, metamaterials have many potential applications for quantum optics as well. We argue why a quantum optical effective-medium theory is needed. We present such a theory for layered metamaterials that is valid for light propagation in all spatial directions, thereby generalizing earlier work for one-dimensional propagation. In contrast to classical effective-medium theory there is an additional effective parameter that describes quantum noise. Our results for metamaterials are based on a rather general Lagrangian theory for the quantum electrodynamics of media with both loss and gain. In the second part of this paper, we present a new application of transformation optics whereby local spontaneous-emission rates of quantum emitters can be designed. This follows from an analysis how electromagnetic Green functions trans- form under coordinate transformations. Spontaneous-emission rates can be either enhanced or suppressed using invisibility cloaks or gradient index lenses. Furthermore, the anisotropic material profile of the cloak enables the directional control of spontaneous emission.
Al-Khalili, Jim
2003-01-01
In this lively look at quantum science, a physicist takes you on an entertaining and enlightening journey through the basics of subatomic physics. Along the way, he examines the paradox of quantum mechanics--beautifully mathematical in theory but confoundingly unpredictable in the real world. Marvel at the Dual Slit experiment as a tiny atom passes through two separate openings at the same time. Ponder the peculiar communication of quantum particles, which can remain in touch no matter how far apart. Join the genius jewel thief as he carries out a quantum measurement on a diamond without ever touching the object in question. Baffle yourself with the bizzareness of quantum tunneling, the equivalent of traveling partway up a hill, only to disappear then reappear traveling down the opposite side. With its clean, colorful layout and conversational tone, this text will hook you into the conundrum that is quantum mechanics.
Size Effects in Heavy Ions Fragmentation
Barrañon, A; Dorso, C O
2003-01-01
Rise-Plateau Caloric curves for different Heavy Ion collisions have been obtained, in the range of experimental observations. Limit temperature decreases when the residual size is increased, in agreement with recent theoretical analysis of experimental results reported by other Collaborations. Besides, promptly emitted particles influence on temperature plateau is shown. LATINO binary interaction semiclassical model is used to reproduce the inter-nucleonic forces via Pandharipande Potential and fragments are detected with an Early Cluster Recognition Algorithm.
Quantum confinement effects in low-dimensional systems
Indian Academy of Sciences (India)
D Topwal
2015-06-01
The confinement effects of electrons in ultrathin films and nanowires grown on metallic and semiconducting substrates investigated using band mapping of their electronic structures using angle-resolved photoemission spectroscopy is discussed here. It has been shown that finite electron reflectivity at the interface is sufficient to sustain the formation of quantum well states and weak quantum well resonance states even in closely matched metals. The expected parabolic dispersion of sp-derived quantum well states for free-standing layers undergoes deviations from parabolic behaviour and modifications due to the underlying substrate bands, suggesting the effects of strong hybridization between the quantum well states and the substrate bands. Electron confinement effects in low dimensions as observed from the dispersionless features in the band structures are also discussed.
Graphene and the universality of the quantum Hall effect
DEFF Research Database (Denmark)
Tzalenchuk, A.; Janssen, T. J.B.M.; Kazakova, O.
2013-01-01
The quantum Hall effect allows the standard for resistance to be defined in terms of the elementary charge and Planck's constant alone. The effect comprises the quantization of the Hall resistance in two-dimensional electron systems in rational fractions of RK=h/e2=25812.8074434(84) Ω (Mohr P. J....... et al., Rev. Mod. Phys., 84 (2012) 1527), the resistance quantum. Despite 30 years of research into the quantum Hall effect, the level of precision necessary for metrology, a few parts per billion, has been achieved only in silicon and III-V heterostructure devices. In this lecture we show...... that graphene - a single layer of carbon atoms - beats these well-established semiconductor materials as the system of choice for the realisation of the quantum resistance standard. Here we shall briefly describe graphene technology, discuss the structure and electronic properties of graphene, including...
Energy Technology Data Exchange (ETDEWEB)
Chen, Yuehui; Ma, Ligang; Yin, Yan; Qian, Xu; Zhou, Guotai; Gu, Xiaomin [National Laboratory of Solid State Microstructures and Photovoltaic Engineering Center, Department of Physics, Nanjing University, Nanjing (China); Liu, Wenchao, E-mail: wcliu@nju.edu.cn [National Laboratory of Solid State Microstructures and Photovoltaic Engineering Center, Department of Physics, Nanjing University, Nanjing (China); Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials - SICAM, Nanjing Tech University - NanjingTech, Nanjing (China); Wu, Xiaoshan, E-mail: xswu@nju.edu.cn [National Laboratory of Solid State Microstructures and Photovoltaic Engineering Center, Department of Physics, Nanjing University, Nanjing (China); Zhang, Fengming [National Laboratory of Solid State Microstructures and Photovoltaic Engineering Center, Department of Physics, Nanjing University, Nanjing (China)
2016-07-05
We developed an improved hydrothermal method with water-oil two-phase reaction system to synthesize size-controllable and oil-soluble Cu{sub 4}SnS{sub 4} (CTS) quantum dots (QDs). The water-oil interface played an important role in controlling nuclei process, growth speed, crystal size and size-distribution of CTS QDs. X-ray diffraction, Raman scattering and transmission electron microscopy studies suggested that the formation and growth mechanism of CTS QDs was revealed to involve three steps. The crystallographic orientation of the CTS nanoprism was analyzed in detail. The blue-shift of absorption edge and broadening of Raman bands were observed due to the quantum confinement effect. The exciton Bohr radius of CTS QDs was calculated to be 3.3–5.8 nm by using the first principle calculation. The size dependence of band-gaps of CTS QDs follows the particle-in-a-box effective-mass model. The ability to fabricate high-quality CTS QDs certainly facilitates the solar cell applications. - Highlights: • We develop an improved hydrothermal method to synthesize monodisperse CTS QDs. • The size can be controlled through controlling the oil/water ratio. • The quantum confinement effect is confirmed by experiments and calculation.
Class Size and Teacher Effects in Higher Education
Gastón Illanes; Claudio Sapelli
2012-01-01
Using student evaluations as a learning measure, we estimate and compare class size and teacher effects for higher education, with emphasis on determining whether a comprehensive class size reduction policy that draws on the hiring of new teachers is likely to improve educational outcomes. We find that teacher effects far outweigh class size effects, and that young teachers and first time teachers perform significantly worse than their peers. Furthermore, we study whether teacher effects are ...
Magnetic field effects on the electron Raman scattering in coaxial cylindrical quantum well wires
Energy Technology Data Exchange (ETDEWEB)
Rezaei, G., E-mail: grezaei2001@gmail.com [Department of Physics, College of Sciences, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of); Karimi, M.J.; Pakarzadeh, H. [Department of Physics, College of Sciences, Shiraz University of Technology, Shiraz 71555-313 (Iran, Islamic Republic of)
2013-11-15
Based on the effective mass and parabolic one band approximations, the influence of an external magnetic field on the differential cross-section for the intersubband electron Raman scattering process in coaxial cylindrical quantum well wires is investigated. The dependence of differential cross-section on magnetic field strength and structural parameters of the coaxial cylindrical quantum well wire is studied. It is found that the magnetic field strength and the geometrical size of the system have a great influence on the position of the singularities in the emission spectra. Moreover, one can control the frequency shift in the Raman spectrum by varying the magnetic field strength and the size of the coaxial cylindrical quantum well wire. -- Highlights: • Magnetic field effects on ERS in CCQWWs are investigated. • Light polarization vectors and geometrical size effects on the ERS are also studied. • Number, position and magnitude of the peaks depend on the magnetic field strength. • The light polarization vectors have a great influence on the magnitude of the peaks. • An increase in the size leads to the considerable changes in the emission spectra.
Effects of symmetry breaking in finite quantum systems
Energy Technology Data Exchange (ETDEWEB)
Birman, J.L. [Department of Physics, City College, City University of New York, New York, NY 10031 (United States); Nazmitdinov, R.G. [Departament de Fisica, Universitat de les Illes Balears, Palma de Mallorca 07122 (Spain); Bogolubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Yukalov, V.I., E-mail: yukalov@theor.jinr.ru [Bogolubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation)
2013-05-15
The review considers the peculiarities of symmetry breaking and symmetry transformations and the related physical effects in finite quantum systems. Some types of symmetry in finite systems can be broken only asymptotically. However, with a sufficiently large number of particles, crossover transitions become sharp, so that symmetry breaking happens similarly to that in macroscopic systems. This concerns, in particular, global gauge symmetry breaking, related to Bose–Einstein condensation and superconductivity, or isotropy breaking, related to the generation of quantum vortices, and the stratification in multicomponent mixtures. A special type of symmetry transformation, characteristic only for finite systems, is the change of shape symmetry. These phenomena are illustrated by the examples of several typical mesoscopic systems, such as trapped atoms, quantum dots, atomic nuclei, and metallic grains. The specific features of the review are: (i) the emphasis on the peculiarities of the symmetry breaking in finite mesoscopic systems; (ii) the analysis of common properties of physically different finite quantum systems; (iii) the manifestations of symmetry breaking in the spectra of collective excitations in finite quantum systems. The analysis of these features allows for the better understanding of the intimate relation between the type of symmetry and other physical properties of quantum systems. This also makes it possible to predict new effects by employing the analogies between finite quantum systems of different physical nature.
Sample Size Calculations for Precise Interval Estimation of the Eta-Squared Effect Size
Shieh, Gwowen
2015-01-01
Analysis of variance is one of the most frequently used statistical analyses in the behavioral, educational, and social sciences, and special attention has been paid to the selection and use of an appropriate effect size measure of association in analysis of variance. This article presents the sample size procedures for precise interval estimation…
Detecting quantum gravitational effects of loop quantum cosmology in the early universe
Zhu, Tao; Cleaver, Gerald; Kirsten, Klaus; Sheng, Qin; Wu, Qiang
2015-01-01
We derive the primordial power spectra and spectral indexes of the density fluctuations and gravitational waves in the framework of loop quantum cosmology (LQC) with holonomy and inverse-volume corrections, by using the uniform asymptotic approximation method to its third-order, at which the upper error bounds are $\\lesssim 0.15\\%$, accurate enough for the current and forthcoming cosmological observations. Then, using the Planck, BAO and SN data we obtain new constraints on quantum gravitational effects from LQC corrections, and find that such effects could be well within the detection of the current and forthcoming experiments.
Casimir Effects in Renormalizable Quantum Field Theories
Graham, N; Weigel, H; Graham, Noah; Jaffe, Robert L.; Weigel, Herbert
2002-01-01
We review the framework we and our collaborators have developed for the study of one-loop quantum corrections to extended field configurations in renormalizable quantum field theories. We work in the continuum, transforming the standard Casimir sum over modes into a sum over bound states and an integral over scattering states weighted by the density of states. We express the density of states in terms of phase shifts, allowing us to extract divergences by identifying Born approximations to the phase shifts with low order Feynman diagrams. Once isolated in Feynman diagrams, the divergences are canceled against standard counterterms. Thus regulated, the Casimir sum is highly convergent and amenable to numerical computation. Our methods have numerous applications to the theory of solitons, membranes, and quantum field theories in strong external fields or subject to boundary conditions.
Casimir Effects in Renormalizable Quantum Field Theories
Graham, Noah; Jaffe, Robert L.; Weigel, Herbert
We present a framework for the study of one-loop quantum corrections to extended field configurations in renormalizable quantum field theories. We work in the continuum, transforming the standard Casimir sum over modes into a sum over bound states and an integral over scattering states weighted by the density of states. We express the density of states in terms of phase shifts, allowing us to extract divergences by identifying Born approximations to the phase shifts with low order Feynman diagrams. Once isolated in Feynman diagrams, the divergences are canceled against standard counterterms. Thus regulated, the Casimir sum is highly convergent and amenable to numerical computation. Our methods have numerous applications to the theory of solitons, membranes, and quantum field theories in strong external fields or subject to boundary conditions.
Silva, Anielle Christine Almeida; Silva, Marcelo José Barbosa; da Luz, Felipe Andrés Cordero; Silva, Danielle Pereira; de Deus, Samantha Luara Vieira; Dantas, Noelio Oliveira
2014-09-10
Quantum dots are potentially very useful as fluorescent probes in biological systems. However, they are inherently cytotoxic because of their constituents. We controlled the cytotoxicity of CdSe magic-sized quantum dots (MSQDs) as a function of surface defect density by altering selenium (Se) concentration during synthesis. Higher Se concentrations reduced the cytotoxicity of the CdSe MSQDs and diminished mRNA expression of methallothionein because of the low cadmium ions (Cd(2+)) concentration adsorbed on the surface of the MSQDs. These results agree with luminescence spectra, which show that higher Se concentrations decrease the density of surface defects. Therefore, our results describe for the first time a simple way of controlling the cytotoxicity of CdSe MSQDs and making them safer to use as fluorescence probes in biological systems.
Magnetocaloric effect in quantum spin-s chains
Directory of Open Access Journals (Sweden)
A. Honecker
2009-01-01
Full Text Available We compute the entropy of antiferromagnetic quantum spin-s chains in an external magnetic field using exact diagonalization and Quantum Monte Carlo simulations. The magnetocaloric effect, i. e., temperature variations during adiabatic field changes, can be derived from the isentropes. First, we focus on the example of the spin-s=1 chain and show that one can cool by closing the Haldane gap with a magnetic field. We then move to quantum spin-s chains and demonstrate linear scaling with s close to the saturation field. In passing, we propose a new method to compute many low-lying excited states using the Lanczos recursion.
Effective horizons for quantum communication in a Schwarzschild spacetime
Hosler, Dominic; Kok, Pieter
2011-01-01
Communication between a free-falling observer and an observer hovering above the Schwarzschild horizon of a black hole suffers from Unruh-Hawking noise, which degrades communication channel capacities. Ignoring time dilation, which affects all channels equally, we show that for bosonic communication using single and dual rail encoding the classical channel capacity reaches a finite value and the quantum channel capacity falls off exponentially. The latter defines an effective horizon, beyond which quantum communication becomes exponentially resource inefficient. The characteristic length scale associated with this quantum horizon depends on the mass of the black hole and the frequency of the communication channel.
General relativistic effects in quantum interference of “clocks”
Zych, M.; Pikovski, I.; Costa, F.; Brukner, Č.
2016-06-01
Quantum mechanics and general relativity have been each successfully tested in numerous experiments. However, the regime where both theories are jointly required to explain physical phenomena remains untested by laboratory experiments, and is also not fully understood by theory. This contribution reviews recent ideas for a new type of experiments: quantum interference of “clocks”, which aim to test novel quantum effects that arise from time dilation. “Clock” interference experiments could be realised with atoms or photons in near future laboratory experiments.
Topological Effects on Quantum Phase Slips in Superfluid Spin Transport
Kim, Se Kwon; Tserkovnyak, Yaroslav
2016-03-01
We theoretically investigate effects of quantum fluctuations on superfluid spin transport through easy-plane quantum antiferromagnetic spin chains in the large-spin limit. Quantum fluctuations result in the decaying spin supercurrent by unwinding the magnetic order parameter within the easy plane, which is referred to as phase slips. We show that the topological term in the nonlinear sigma model for the spin chains qualitatively differentiates the decaying rate of the spin supercurrent between the integer versus half-odd-integer spin chains. An experimental setup for a magnetoelectric circuit is proposed, in which the dependence of the decaying rate on constituent spins can be verified by measuring the nonlocal magnetoresistance.
Quantum Effects of Mesoscopic Inductance and Capacity Coupling Circuits
Institute of Scientific and Technical Information of China (English)
LIU Jian-Xin; AN Zhan-Yuan; SONG Yong-Hua
2006-01-01
Using the quantum theory for a mesoscopic circuit based on the discretenes of electric charges, the finitedifference Schrodinger equation of the non-dissipative mesoscopic inductance and capacity coupling circuit is achieved.The Coulomb blockade effect, which is caused by the discreteness of electric charges, is studied. Appropriately choose the components in the circuits, the finite-difference Schrodinger equation can be divided into two Mathieu equations in p representation. With the WKBJ method, the currents quantum fluctuations in the ground states of the two circuits are calculated. The results show that the currents quantum zero-point fluctuations of the two circuits are exist and correlated.
Exchange effects in magnetized quantum plasmas
Trukhanova, Mariya Iv
2015-01-01
We apply the many-particle quantum hydrodynamics including the Coulomb exchange interaction to magnetized quantum plasmas. We consider a number of wave phenomenon under influence of the Coulomb exchange interaction. Since the Coulomb exchange interaction affects longitudinal and transverse-longitudinal waves we focus our attention to the Langmuir waves, Trivelpiece-Gould waves, ion-acoustic waves in non-isothermal magnetized plasmas, the dispersion of the longitudinal low-frequency ion-acoustic waves and low-frequencies electromagnetic waves at $T_{e}\\gg T_{i}$ . We obtained the numerical simulation of the dispersion properties of different types of waves.
Thermal effects on photon-induced quantum transport in a single quantum dot.
Assunção, M O; de Oliveira, E J R; Villas-Bôas, J M; Souza, F M
2013-04-03
We theoretically investigate laser induced quantum transport in a single quantum dot attached to electrical contacts. Our approach, based on a nonequilibrium Green function technique, allows us to include thermal effects on the photon-induced quantum transport and excitonic dynamics, enabling the study of non-Markovian effects. By solving a set of coupled integrodifferential equations, involving correlation and propagator functions, we obtain the photocurrent and the dot occupation as a function of time. Two distinct sources of decoherence, namely, incoherent tunneling and thermal fluctuations, are observed in the Rabi oscillations. As temperature increases, a thermally activated Pauli blockade results in a suppression of these oscillations. Additionally, the interplay between photon and thermally induced electron populations results in a switch of the current sign as time evolves and its stationary value can be maximized by tuning the laser intensity.
Jagtap, Amardeep M.; Chatterjee, Abhijit; Banerjee, Arup; Babu Pendyala, Naresh; Koteswara Rao, K. S. R.
2016-04-01
Exciton-phonon coupling and nonradiative relaxation processes have been investigated in near-infrared (NIR) emitting ternary alloyed mercury cadmium telluride (CdHgTe) quantum dots. Organically capped CdHgTe nanocrystals of sizes varying from 2.5-4.2 nm have been synthesized where emission is in the NIR region of 650-855 nm. Temperature-dependent (15-300 K) photoluminescence (PL) and the decay dynamics of PL at 300 K have been studied to understand the photophysical properties. The PL decay kinetics shows the transition from triexponential to biexponential on increasing the size of the quantom dots (QDs), informing the change in the distribution of the emitting states. The energy gap is found to be following the Varshni relation with a temperature coefficient of 2.1-2.8 × 10-4 eV K-1. The strength of the electron-phonon coupling, which is reflected in the Huang and Rhys factor S, is found in the range of 1.17-1.68 for QDs with a size of 2.5-4.2 nm. The integrated PL intensity is nearly constant until 50 K, and slowly decreases up to 140 K, beyond which it decreases at a faster rate. The mechanism for PL quenching with temperature is attributed to the presence of nonradiative relaxation channels, where the excited carriers are thermally stimulated to the surface defect/trap states. At temperatures of different region (<140 K and 140-300 K), traps of low (13-25 meV) and high (65-140 meV) activation energies seem to be controlling the quenching of the PL emission. The broadening of emission linewidth is found to due to exciton-acoustic phonon scattering and exciton-longitudinal optical (LO) phonon coupling. The exciton-acoustic phonon scattering coefficient is found to be enhanced up to 55 μeV K-1 due to a stronger confinement effect. These findings give insight into understanding the photophysical properties of CdHgTe QDs and pave the way for their possible applications in the fields of NIR photodetectors and other optoelectronic devices.
Energy Technology Data Exchange (ETDEWEB)
Marocico, Cristian A.; Zhang, Xia; Bradley, A. Louise, E-mail: bradlel@tcd.ie [Semiconductor Photonics Group, School of Physics and CRANN, Trinity College Dublin, College Green, Dublin 2 (Ireland)
2016-01-14
We present in this contribution a comprehensive investigation of the effect of the size of gold nanospheres on the decay and energy transfer rates of quantum systems placed close to these nanospheres. These phenomena have been investigated before, theoretically and experimentally, but no comprehensive study of the influence of the nanoparticle size on important dependences of the decay and energy transfer rates, such as the dependence on the donor-acceptor spectral overlap and the relative positions of the donor, acceptor, and nanoparticle, exists. As such, different accounts of the energy transfer mechanism have been presented in the literature. We perform an investigation of the energy transfer mechanisms between emitters and gold nanospheres and between donor-acceptor pairs in the presence of the gold nanospheres using a Green’s tensor formalism, experimentally verified in our lab. We find that the energy transfer rate to small nanospheres is greatly enhanced, leading to a strong quenching of the emission of the emitter. When the nanosphere size is increased, it acts as an antenna, increasing the emission of the emitter. We also investigate the emission wavelength and intrinsic quantum yield dependence of the energy transfer to the nanosphere. As evidenced from the literature, the energy transfer process between the quantum system and the nanosphere can have a complicated distance dependence, with a r{sup −6} regime, characteristic of the Förster energy transfer mechanism, but also exhibiting other distance dependences. In the case of a donor-acceptor pair of quantum systems in the presence of a gold nanosphere, when the donor couples strongly to the nanosphere, acting as an enhanced dipole; the donor-acceptor energy transfer rate then follows a Förster trend, with an increased Förster radius. The coupling of the acceptor to the nanosphere has a different distance dependence. The angular dependence of the energy transfer efficiency between donor and
Marocico, Cristian A; Zhang, Xia; Bradley, A Louise
2016-01-14
We present in this contribution a comprehensive investigation of the effect of the size of gold nanospheres on the decay and energy transfer rates of quantum systems placed close to these nanospheres. These phenomena have been investigated before, theoretically and experimentally, but no comprehensive study of the influence of the nanoparticle size on important dependences of the decay and energy transfer rates, such as the dependence on the donor-acceptor spectral overlap and the relative positions of the donor, acceptor, and nanoparticle, exists. As such, different accounts of the energy transfer mechanism have been presented in the literature. We perform an investigation of the energy transfer mechanisms between emitters and gold nanospheres and between donor-acceptor pairs in the presence of the gold nanospheres using a Green's tensor formalism, experimentally verified in our lab. We find that the energy transfer rate to small nanospheres is greatly enhanced, leading to a strong quenching of the emission of the emitter. When the nanosphere size is increased, it acts as an antenna, increasing the emission of the emitter. We also investigate the emission wavelength and intrinsic quantum yield dependence of the energy transfer to the nanosphere. As evidenced from the literature, the energy transfer process between the quantum system and the nanosphere can have a complicated distance dependence, with a r(-6) regime, characteristic of the Förster energy transfer mechanism, but also exhibiting other distance dependences. In the case of a donor-acceptor pair of quantum systems in the presence of a gold nanosphere, when the donor couples strongly to the nanosphere, acting as an enhanced dipole; the donor-acceptor energy transfer rate then follows a Förster trend, with an increased Förster radius. The coupling of the acceptor to the nanosphere has a different distance dependence. The angular dependence of the energy transfer efficiency between donor and acceptor
Effective quantum gravity observables and locally covariant QFT
Rejzner, Kasia
2016-01-01
Perturbative algebraic quantum field theory (pAQFT) is a mathematically rigorous framework that allows to construct models of quantum field theories on a general class of Lorentzian manifolds. Recently this idea has been applied also to perturbative quantum gravity, treated as an effective theory. The difficulty was to find the right notion of observables that would in an appropriate sense be diffeomorphism invariant. In this article I will outline a general framework that allows to quantize theories with local symmetries (this includes infinitesimal diffeomorphism transformations) with the use of the BV (Batalin-Vilkovisky) formalism. This approach has been successfully applied to effective quantum gravity in a recent paper by R. Brunetti, K. Fredenhagen and myself. In the same paper we also proved perturbative background independence of the quantized theory, which is going to be discussed in the present work as well.
Hall effect in quantum critical charge-cluster glass.
Wu, Jie; Bollinger, Anthony T; Sun, Yujie; Božović, Ivan
2016-04-19
Upon doping, cuprates undergo a quantum phase transition from an insulator to a d-wave superconductor. The nature of this transition and of the insulating state is vividly debated. Here, we study the Hall effect in La2-xSrxCuO4(LSCO) samples doped near the quantum critical point atx∼ 0.06. Dramatic fluctuations in the Hall resistance appear belowTCG∼ 1.5 K and increase as the sample is cooled down further, signaling quantum critical behavior. We explore the doping dependence of this effect in detail, by studying a combinatorial LSCO library in which the Sr content is varied in extremely fine steps,Δx∼ 0.00008. We observe that quantum charge fluctuations wash out when superconductivity emerges but can be restored when the latter is suppressed by applying a magnetic field, showing that the two instabilities compete for the ground state.
Quantum Gravity Effects in Scalar, Vector and Tensor Field Propagation
Dutta, Anindita
Quantum theory of gravity deals with the physics of the gravitational field at Planck length scale (10-35 m). Even though it is experimentally hard to reach the Planck length scale, on can look for evidence of quantum gravity that is detectable in astrophysics. In this thesis, we try to find effects of loop quantum gravity corrections on observable phenomena. We show that the quantum fluctuation strain for LIGO data would be 10 -125 on the Earth. Th correction is, however, substantial near the black hole horizon. We discuss the effect of this for scalar field propagation followed by vector and tensor fields. For the scalar field, the correction introduces a new asymmetry; for the vector field, we found a new perturbation solution and for the tensor field, we found the corrected Einstein equations which are yet to solve. These will affect phenomena like Hawking radiation, black hole entropy and gravitational waves.
Application of size effect to compressive strength of concrete members
Indian Academy of Sciences (India)
Jin-Keun Kim; Seong-Tae Yi
2002-08-01
It is important to consider the effect of size when estimating the ultimate strength of a concrete member under various loading conditions. Well known as the size effect, the strength of a member tends to decrease when its size increases. Therefore, in view of recent increased interest in the size effect of concrete this research focuses on the size effect of two main classes of compressive strength of concrete: pure axial compressive strength and ﬂexural compressive strength. First, fracture mechanics type size effect on the compressive strength of cylindrical concrete specimens was studied, with the diameter, and the height/diameter ratio considered as the main parameters. Theoretical and statistical analyses were conducted, and a size effect equation was proposed to predict the compressive strength specimens. The proposed equation showed good agreement with the existing test results for concrete cylinders. Second, the size, length, and depth variations of a ﬂexural compressive member have been studied experimentally. A series of -shaped specimens subjected to axial compressive load and bending moment were tested. The shape of specimens and the test procedures used were similar to those by Hognestad and others. The test results are curve-ﬁtted using Levenberg-Marquardt’s least squares method (LSM) to obtain parameters for the modiﬁed size effect law (MSEL) by Kim and co workers. The results of the analysis show that the effect of specimen size, length, and depth on ultimate strength is signiﬁcant. Finally, more general parameters for MSEL are suggested.
Indian Academy of Sciences (India)
Dhanraj B Shinde; Vishal M Dhavale; Sreekumar Kurungot; Vijayamohanan K Pillai
2015-04-01
Here we report a remarkable transformation of nitrogen-doped multiwalled carbon nanotubes (MWCNTs) to size selective nitrogen-doped graphene quantum dots (N-GQDs) by a two-step electrochemical method. The sizes of the N-GQDs strongly depend on the applied anodic potential, moreover increasing potential resulted in a smaller size of N-GQDs. These N-GQDs display many unusual size-dependant optoelectronic (blue emission) and electrocatalytic (oxygen reduction) properties. The presence of N dopants in the carbon framework not only causes faster unzipping of MWCNTs but also provides more low activation energy site for enhancing the electrocatalytic activity for technologically daunting reactions like oxygen reduction. The smaller size of N-GQDs has shown better performance as compared to the large N-GQDs. Interestingly, N-GQDs-3 (size = 2.5 ± 0.3 nm, onset potential = 0.75 V) show a 30-mV higher positive onset potential shift compared to that of N-GQDs-2 (size = 4.7 ± 0.3 nm, onset potential = 0.72 V) and 70 mV than that of N-GQDs-1 (size = 7.2 ± 0.3, onset potential = 0.68 V) for oxygen reduction reaction (ORR) in a liquid phase. These result in the size-dependent electrocatalytic activity of N-GQDs for ORR as illustrated by the smaller sized N-GQDs (2.5 ± 0.3 nm) undoubtedly promising metal-free electrocatalysts for fuel cell applications.
Surface brightens up Si quantum dots: direct bandgap-like size-tunable emission
Dohnalova, K.; Poddubny, A.N.; Prokofiev, A.A.; Boer, W.D.A.M.; Umesh, C.; Paulusse, J.M.J.; Zuilhof, H.; Gregorkiewicz, T.
2013-01-01
Colloidal semiconductor quantum dots (QDs) constitute a perfect material for ink-jet printable large area displays, photovoltaics, light-emitting diode, bio-imaging luminescent markers and many other applications. For this purpose, efficient light emission/absorption and spectral tunability are
Surface brightens-up Si quantum dots: direct bandgap-like size-tunable emission
Dohnalová, K.; Poddubny, A. N.; Prokofiev, A.A.; de Boer, W.D.A.M.; Umesh, C.P.; Paulusse, J.M.J.; Zuilhof, H.; Gregorkiewicz, T.
2013-01-01
Colloidal semiconductor quantum dots (QDs) constitute a perfect material for ink-jet printable large area displays, photovoltaics, light-emitting diode, bio-imaging luminescent markers and many other applications. For this purpose, efficient light emission/absorption and spectral tunability are
Fracchia, F.; Filippi, C.; Amovilli, C.
2012-01-01
We propose a new class of multideterminantal Jastrow–Slater wave functions constructed with localized orbitals and designed to describe complex potential energy surfaces of molecular systems for use in quantum Monte Carlo (QMC). Inspired by the generalized valence bond formalism, we elaborate a coup
Surface brightens up Si quantum dots: direct bandgap-like size-tunable emission
Dohnalova, K.; Poddubny, A.N.; Prokofiev, A.A.; Dam-de Boer, W.; Umesh, C.P.; Paulusse, J.M.J.; Zuilhof, H.; Gregorkiewicz, T.
2013-01-01
Colloidal semiconductor quantum dots (QDs) constitute a perfect material for ink-jet printable large area displays, photovoltaics, light-emitting diode, bio-imaging luminescent markers and many other applications. For this purpose, efficient light emission/absorption and spectral tunability are nece
Quantum Effects in Nanoantennas and Their Applications in Tunability, Mixing, and Rectification
Chen, Pai-Yen
2015-08-04
It has been recently shown that optical nanoantennas made of single or paired metallic nanoparticles can efficiently couple the propagating light into and from deeply subwavelength volumes. The strong light-matter interaction mediated by surface plasmons in metallic nanostructures allows for localizing optical fields to a subdiffraction-limited region, thereby enhancing emission of nanoemitters and offering the flexible control of nanofocused radiation. Here we theoretically study the nanodipole antennas with submicroscopic gaps, i.e. a few nanometers, for which there exists linear and high-order nonlinear quantum conductivities due to the photon-assisted tunneling effect. Noticeably, these quantum conductivities induced at the nanogap are enhanced by several orders of magnitude, due to the strongly localized optical fields associated with the plasmonic resonance.In this talk, we will show that by tailoring the geometry of nanoantennas and the quantum well structure, a quantum nanodipole antenna with a gap size of few nanometers can induce linear, high-order quantum conductivities that are considerably enhanced by the surface plasmon resonance. We envisage here a number of intriguing nanophotonic applications of these quantum nanoantennas, including (i) modulatable and switchable radiators and metamaterials, with electronic and all-optical tuning (which is related to the two photon absorption), (ii) optical rectification for detection and energy harvesting of infrared and visible light, which are related to the relevant second-order quantum conductivity, (iii) harmonic sensing for the work function and the optical index of nanoparticle, e.g. DNA and molecules, loaded inside the nanogap, and (iv) high harmonic generation and wave mixing with nonlinear quantum conductivities.
Spacetime effects on satellite-based quantum communications
Bruschi, David Edward; Ralph, Timothy C.; Fuentes, Ivette; Jennewein, Thomas; Razavi, Mohsen
2014-08-01
We investigate the consequences of space-time being curved on space-based quantum communication protocols. We analyze tasks that require either the exchange of single photons in a certain entanglement distribution protocol or beams of light in a continuous-variable quantum key distribution scheme. We find that gravity affects the propagation of photons, therefore adding additional noise to the channel for the transmission of information. The effects could be measured with current technology.
Size effect in the strength of concrete structures
Indian Academy of Sciences (India)
B L Karihaloo; Q Z Xiao
2002-08-01
This paper reports on the range of applicability of the various size effect formulae available in the literature. In particular, the failure loads of three point bend (TPB) beams are analysed according to the size effect formulae of Ba$\\breve{z}$ant and of Karihaloo for notched beams and according to those of Ba$\\breve{z}$ant and of Carpinteri for unnotched beams, and the results of this analysis presented. Improvements to Karihaloo’s size effect formula are also proposed.
Size effects in the Ginzburg-Landau theory
Fiolhais, Miguel C. N.; Birman, Joseph L.
2015-02-01
The Ginzburg-Landau theory is analyzed in the case of small dimension superconductors, a couple of orders of magnitude above the coherence length, where the theory is still valid but quantum fluctuations become significant. In this regime, the potential around the expectation value is approximated to a quadratic behavior, and the ground-state is derived from the Klein-Gordon solutions of the Higgs-like field. The ground-state energy is directly compared to the condensation energy, and used to extract new limits on the size of superconductors at zero Kelvin and near the critical temperature.
Tang, Jiang
2012-09-12
Colloidal quantum dot solids combine convenient solution-processing with quantum size effect tuning, offering avenues to high-efficiency multijunction cells based on a single materials synthesis and processing platform. The highest-performing colloidal quantum dot rectifying devices reported to date have relied on a junction between a quantum-tuned absorber and a bulk material (e.g., TiO 2); however, quantum tuning of the absorber then requires complete redesign of the bulk acceptor, compromising the benefits of facile quantum tuning. Here we report rectifying junctions constructed entirely using inherently band-aligned quantum-tuned materials. Realizing these quantum junction diodes relied upon the creation of an n-type quantum dot solid having a clean bandgap. We combine stable, chemically compatible, high-performance n-type and p-type materials to create the first quantum junction solar cells. We present a family of photovoltaic devices having widely tuned bandgaps of 0.6-1.6 eV that excel where conventional quantum-to-bulk devices fail to perform. Devices having optimal single-junction bandgaps exhibit certified AM1.5 solar power conversion efficiencies of 5.4%. Control over doping in quantum solids, and the successful integration of these materials to form stable quantum junctions, offers a powerful new degree of freedom to colloidal quantum dot optoelectronics. © 2012 American Chemical Society.
Size effect on compressive strength of reactive powder concrete
Institute of Scientific and Technical Information of China (English)
AN Ming-zhe; ZHANG Li-jun; YI Quan-xin
2008-01-01
In this paper the coefficient and law of the size effect of RPC were studied through experiments and theoretical analysis. The size-effect coefficients for the compressive strength of RPC are deduced through experiments. They indicate that RPC without fiber behaves quite the same as normal or high strength concrete. The size effect on compressive strength is more prominent in RPC containing fiber. Bazant's size effect formula of compressive strength applies to RPC. A formula is given to predict the compressive strength of cubic RPC specimens 100 mm on a side where the fiber dosage ranges from 0-2%.
Quantum confinement effect in cheese like silicon nano structure fabricated by metal induced etching
Energy Technology Data Exchange (ETDEWEB)
Saxena, Shailendra K., E-mail: phd1211512@iiti.ac.in; Sahu, Gayatri; Sagdeo, Pankaj R.; Kumar, Rajesh [Material Research Laboratory, Discipline of Physics & MSEG, Indian Institute of Technology Indore, Madhya Pradesh-452017 (India)
2015-08-28
Quantum confinement effect has been studied in cheese like silicon nano-structures (Ch-SiNS) fabricated by metal induced chemical etching using different etching times. Scanning electron microscopy is used for the morphological study of these Ch-SiNS. A visible photoluminescence (PL) emission is observed from the samples under UV excitation at room temperature due to quantum confinement effect. The average size of Silicon Nanostructures (SiNS) present in the samples has been estimated by bond polarizability model using Raman Spectroscopy from the red-shift observed from SiNSs as compared to its bulk counterpart. The sizes of SiNS present in the samples decreases as etching time increase from 45 to 75 mintunes.
Rossi, Mariana; Michaelides, Angelos
2016-01-01
Biomolecules are complex systems stabilized by a delicate balance of weak interactions, making it important to assess all energetic contributions in an accurate manner. However, it is a priori unclear which contributions make more of an impact. Here, we examine stacked polyglutamine (polyQ) strands, a peptide repeat often found in amyloid aggregates. We investigate the role of hydrogen bond (HB) cooperativity, van der Waals (vdW) dispersion interactions, and quantum contributions to free energies, including anharmonicities through density functional theory and ab initio path integral simulations. Of these various factors, we find that the largest impact on structural stabilization comes from vdW interactions. HB cooperativity is the second largest contribution as the size of the stacked chain grows. Competing nuclear quantum effects make the net quantum contribution small but very sensitive to anharmonicities, vdW, and the number of HBs. Our results suggest that a reliable treatment of these systems can only ...
Effect of PbS Film Thickness on the Performance of Colloidal Quantum Dot Solar Cells
Directory of Open Access Journals (Sweden)
M. Mazloum-Ardakani
2013-03-01
Full Text Available Colloidal quantum dots offer broad tuning of semiconductor band structure via the quantum size effect. In this paper, we present a detailed investigation on the influence of the thickness of colloidal lead sulfide (PbS nanocrystals (active layer to the photovoltaic performance of colloidal quantum dot solar cells. The PbS nanocrystals (QDs were synthesized in a non-coordinating solvent, 1-octadecene, using oleic acid (OA as the ligand. It was found that the device with 50 nm of thickness of active layer showed a high Efficiency (η of 0.667 under simulated Air Mass 1.5 Global (AM 1.5G irradiation (100 mW/cm2 compared to the device with low thickness of active layer.
Quantum diffraction effects on the atomic polarization collision in partially ionized dense plasmas
Energy Technology Data Exchange (ETDEWEB)
Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Electrical and Computer Engineering, MC 0407, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0407, USA and Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 426-791 (Korea, Republic of)
2014-04-15
The influence of quantum diffraction on the electron-atom polarization collision process is investigated in partially ionized dense plasmas. The pseudopotential model and eikonal method are employed to obtain the eikonal phase shift and eikonal cross section as functions of the impact parameter, collision energy, Debye length, electron de Broglie wavelength, and atomic polarizability. The results show that the eikonal phase shift for the electron-hydrogen atom polarization collision decreases with an increase of the electron de Broglie wavelength. It is important to note that the influence of quantum diffraction produces the repulsive part in the electron-atom polarization interaction. It is also found that the quantum diffraction effect enhances the differential eikonal cross section. Additionally, the total eikonal cross section decreases with increasing electron de Broglie wavelength. The variations of the eikonal cross section due to the influence of finite size of the de Broglie wavelength and Debye radius are also discussed.
Quantum decrease of capacitance in a nanometer-sized tunnel junction
Untiedt, C.; Saenz, G.; Olivera, B.; Corso, M.; Sabater, C.; Pascual, J. I.
2013-03-01
We have studied the capacitance of the tunnel junction defined by the tip and sample of a Scanning Tunnelling Microscope through the measurement of the electrostatic forces and impedance of the junction. A decrease of the capacitance when a tunnel current is present has shown to be a more general phenomenon as previously reported in other systems. On another hand, an unexpected reduction of the capacitance is also observed when increasing the applied voltage above the work function energy of the electrodes to the Field Emission (FE) regime, and the decrease of capacitance due to a single FE-Resonance has been characterized. All these effects should be considered when doing measurements of the electronic characteristics of nanometer-sized electronic devices and have been neglected up to date. Spanish government (FIS2010-21883-C02-01, CONSOLIDER CSD2007-0010), Comunidad Valenciana (ACOMP/2012/127 and PROMETEO/2012/011)
Quantum-Confined Stark Effects in a Single GaN Quantum Dot
Institute of Scientific and Technical Information of China (English)
LIU Yong-Hui; WANG Xue-Feng; LI Shu-Shen
2008-01-01
Using analytical expressions for the polarization field in GaN quantum dot, and an approximation by separating the potential into a radial and an axial, we investigate theoretically the quantum-confined Stark effects. The electron and hole energy levels and optical transition energies are calculated in the presence of an electric field in different directions. The results show that the electron and hole energy levels and the optical transition energies can cause redshifts for the lateral electric field and blueshifts for the vertical field. The rotational direction of electric field can also change the energy shift.
Quantum-Confined Stark Effect in Ensemble of Colloidal Semiconductor Quantum Dots
Institute of Scientific and Technical Information of China (English)
WANG Zhi-Bing; ZHANG Hui-Chao; ZHANG Jia-Yu; Huaipeng Su; Y.Andrew Wang
2010-01-01
@@ The presence of a strong,changing,randomly-oriented,local electric field,which is induced by the photo-ionization that occurs universally in colloidal semiconductor quantum dots(QDs),makes it difficult to observe the quantumconfined Stark effect in ensemble of colloidal QDs.We propose a way to inhibit such a random electric field,and a clear quantum-confined Stark shift is observed directly in close-packed colloidal QDs.Besides the applications in optical switches and modulators,our experimental results indicate how the oscillator strengths of the optical transitions are changed under external electric fields.
The quantum Goldilocks effect: on the convergence of timescales in quantum transport
Lloyd, Seth; Shabani, Alireza; Rabitz, Herschel
2011-01-01
Excitonic transport in photosynthesis exhibits a wide range of time scales. Absorption and initial relaxation takes place over tens of femtoseconds. Excitonic lifetimes are on the order of a nanosecond. Hopping rates, energy differences between chromophores, reorganization energies, and decoherence rates correspond to time scales on the order of picoseconds. The functional nature of the divergence of time scales is easily understood: strong coupling to the electromagnetic field over a broad band of frequencies yields rapid absorption, while long excitonic lifetimes increase the amount of energy that makes its way to the reaction center to be converted to chemical energy. The convergence of the remaining time scales to the centerpoint of the overall temporal range is harder to understand. In this paper we argue that the convergence of timescales in photosynthesis can be understood as an example of the `quantum Goldilocks effect': natural selection tends to drive quantum systems to the degree of quantum coheren...
Xin, Yunzi; Kitasako, Takumi; Maeda, Makoto; Saitow, Ken-ichi
2017-04-01
Pulsed-laser ablation of silicon (Si) was conducted in six different organic solvents using a nanosecond laser. Si nanoparticles (Si-NPs) that exhibited blue photoluminescence (PL) were generated in all the solvents, but a significant solvent dependence emerged: particle size, PL spectra, and PL quantum yield (QY). The results of solvent dependence were well characterized using an atomic ratio in a solvent molecule. The highest QY was observed for the smallest Si-NPs (ca. 2 nm) synthesized in 1-octyne. The QY was enhanced by aging in 1-octyne, and its mechanism was attributed to alkyl passivation of dangling bonds on the Si-NPs.
Li, Shun; Ge, Zhen-Hua; Zhang, Bo-Ping; Yao, Yao; Wang, Huan-Chun; Yang, Jing; Li, Yan; Gao, Chao; Lin, Yuan-Hua
2016-10-01
We report a simple mechanochemical ball milling method for synthesizing monodisperse CuS quantum dots (QDs) with sizes as small as sub-5 nm. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and UV-vis spectroscopy. The CuS QDs exhibited excellent visible-light-driven photocatalytic activity and stability for degradation of Rodanmine B aqueous solution as Fenton-like reagents. Our study opens the opportunity to low-cost and facile synthesis of QDs in large scale for future industrial applications.
To investigate the coupled effects of solution chemistry and vadose zone processes on the mobility of quantum dot (QD) nanoparticles, laboratory scale transport experiments were performed. The complex coupled effects of ionic strength, size of QD aggregates, surface tension, contact angle, infiltrat...
Singularity free gravitational collapse in an effective dynamical quantum spacetime
Energy Technology Data Exchange (ETDEWEB)
Torres, R., E-mail: ramon.torres-herrera@upc.edu; Fayos, F., E-mail: f.fayos@upc.edu
2014-06-02
We model the gravitational collapse of heavy massive shells including its main quantum corrections. Among these corrections, quantum improvements coming from Quantum Einstein Gravity are taken into account, which provides us with an effective quantum spacetime. Likewise, we consider dynamical Hawking radiation by modeling its back-reaction once the horizons have been generated. Our results point towards a picture of gravitational collapse in which the collapsing shell reaches a minimum non-zero radius (whose value depends on the shell initial conditions) with its mass only slightly reduced. Then, there is always a rebound after which most (or all) of the mass evaporates in the form of Hawking radiation. Since the mass never concentrates in a single point, no singularity appears.
Unconventional quantum Hall effect in Floquet topological insulators
Tahir, M.
2016-07-27
We study an unconventional quantum Hall effect for the surface states of ultrathin Floquet topological insulators in a perpendicular magnetic field. The resulting band structure is modified by photon dressing and the topological property is governed by the low-energy dynamics of a single surface. An exchange of symmetric and antisymmetric surface states occurs by reversing the lights polarization. We find a novel quantum Hall state in which the zeroth Landau level undergoes a phase transition from a trivial insulator state, with Hall conductivity αyx = 0 at zero Fermi energy, to a Hall insulator state with αyx = e2/2h. These findings open new possibilities for experimentally realizing nontrivial quantum states and unusual quantum Hall plateaus at (±1/2,±3/2,±5/2, ...)e2/h. © 2016 IOP Publishing Ltd Printed in the UK.
Unconventional quantum Hall effect in Floquet topological insulators.
Tahir, M; Vasilopoulos, P; Schwingenschlögl, U
2016-09-28
We study an unconventional quantum Hall effect for the surface states of ultrathin Floquet topological insulators in a perpendicular magnetic field. The resulting band structure is modified by photon dressing and the topological property is governed by the low-energy dynamics of a single surface. An exchange of symmetric and antisymmetric surface states occurs by reversing the light's polarization. We find a novel quantum Hall state in which the zeroth Landau level undergoes a phase transition from a trivial insulator state, with Hall conductivity [Formula: see text] at zero Fermi energy, to a Hall insulator state with [Formula: see text]. These findings open new possibilities for experimentally realizing nontrivial quantum states and unusual quantum Hall plateaus at [Formula: see text].
Magnetic Topological Insulators and Quantum Anomalous Hall Effect
Kou, Xufeng
The engineering of topological surface states is a key to realize applicable devices based on topological insulators (TIs). Among various proposals, introducing magnetic impurities into TIs has been proven to be an effective way to open a surface gap and integrate additional ferromagnetism with the original topological order. In this Dissertation, we study both the intrinsic electrical and magnetic properties of the magnetic TI thin films grown by molecular beam epitaxy. By doping transition element Cr into the host tetradymite-type V-VI semiconductors, we achieve robust ferromagnetic order with a strong perpendicular magnetic anisotropy. With additional top-gating capability, we realize the electric-field-controlled ferromagnetism in the magnetic TI systems, and demonstrate such magneto-electric effects can be effectively manipulated, depending on the interplays between the band topology, magnetic exchange coupling, and structural engineering. Most significantly, we report the observation of quantum anomalous Hall effect (QAHE) in the Cr-doped (BiSb)2Te3 samples where dissipationless chiral edge conduction is realized in the macroscopic millimeter-size devices without the presence of any external magnetic field, and the stability of the quantized Hall conductance of e2/h is well-maintained as the film thickness varies across the 2D hybridization limit. With additional quantum confinement, we discover the metal-to-insulator switching between two opposite QAHE states, and reveal the universal QAHE phase diagram in the thin magnetic TI samples. In addition to the uniform magnetic TIs, we further investigate the TI/Cr-doped TI bilayer structures prepared by the modulation-doped growth method. By controlling the magnetic interaction profile, we observe the Dirac hole-mediated ferromagnetism and develop an effective way to manipulate its strength. Besides, the giant spin-orbit torque in such magnetic TI-based heterostructures enables us to demonstrate the current
Size Effect for Normal Strength Concrete in Uniaxial Tension
Institute of Scientific and Technical Information of China (English)
李庆斌; 尹玉先
2004-01-01
This paper presents a new size effect model for normal strength concrete subjected to uniaxial tension. The model is based on two extremes, sand cement paste in uniaxial tension and a sand-cement-paste/rock interface in uniaxial tension. Uniaxial tension tests with normal strength concrete measuring the tensile strength of normal strength concrete specimens with different geometrical shapes and different ratios of the aggregate size to the characteristic dimension of the concrete specimen show a significant size effect. The theoretical size effect law prediction agrees well with the experimental data.
Peltier effect in strongly driven quantum wires
Mierzejewski, M.; Crivelli, D.; Prelovsek, P.
2013-01-01
We study a microscopic model of a thermocouple device with two connected correlated quantum wires driven by a constant electric field. In such isolated system we follow the time-- and position--dependence of the entropy density using the concept of the reduced density matrix. At weak driving, the initial changes of the entropy at the junctions can be described by the linear Peltier response. At longer times the quasiequilibrium situation is reached with well defined local temperatures which i...
Friction related size-effect in microforming – a review
Directory of Open Access Journals (Sweden)
Wang Chunju
2014-01-01
Full Text Available This paper presents a thorough literature review of the size effects of friction in microforming. During miniaturization, the size effects of friction occur clearly. The paper first introduces experimental research progress on size effects of friction in both micro bulk and sheet forming. The effects of several parameters are discussed. Based on the experimental results, several approaches have been performed to develop a model or functions to analyse the mechanism of size effects of friction, and simulate the micro deep drawing process by integrating them into an FE program. Following this, surface modification, e.g. a DLC film and a micro structure/textured surface, as a method to reduce friction are presented. Finally, the outlook for the size effect of friction in the future is assessed, based on the understanding of the current research progress.
Hui, Hoi-Yin; Sau, Jay D.
2017-01-01
Time-reversal invariance places strong constraints on the properties of the quantum spin Hall edge. One such restriction is the inevitability of dissipation in a Josephson junction between two superconductors formed on such an edge without the presence of interaction. Interactions and spin-conservation breaking are key ingredients for the realization of the dissipationless ac Josephson effect on such quantum spin Hall edges. We present a simple quantum impurity model that allows us to create a dissipationless fractional Josephson effect on a quantum spin Hall edge. We then use this model to substantiate a general argument that shows that any such nondissipative Josephson effect must necessarily be 8 π periodic.
Energy Technology Data Exchange (ETDEWEB)
Santos, Calink Indiara do Livramento; Carvalho, Melissa Souza; Raphael, Ellen; Ferrari, Jefferson Luis; Schiavon, Marco Antonio, E-mail: schiavon@ufsj.edu.br [Universidade Federal de Sao Joao del-Rei (UFSJ), MG (Brazil). Grupo de Pesquisa em Quimica de Materiais; Dantas, Clecio [Universidade Estadual do Maranhao (LQCINMETRIA/UEMA), Caxias, MA (Brazil). Lab. de Quimica Computacional Inorganica e Quimiometria
2016-11-15
In this work a colloidal approach to synthesize water-soluble CdSe quantum dots (QDs) bearing a surface ligand, such as thioglycolic acid (TGA), 3-mercaptopropionic acid (MPA), glutathione (GSH), or thioglycerol (TGH) was applied. The synthesized material was characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), UV-visible spectroscopy (UV-Vis), and fluorescence spectroscopy (PL). Additionally, a comparative study of the optical properties of different CdSe QDs was performed, demonstrating how the surface ligand affected crystal growth. The particles sizes were calculated from a polynomial function that correlates the particle size with the maximum fluorescence position. Curve resolution methods (EFA and MCR-ALS) were employed to decompose a series of fluorescence spectra to investigate the CdSe QDs size distribution and determine the number of fraction with different particle size. The results for the MPA-capped CdSe sample showed only two main fraction with different particle sizes with maximum emission at 642 and 686 nm. The calculated diameters from these maximum emission were, respectively, 2.74 and 3.05 nm. (author)
An Effect Size for Regression Predictors in Meta-Analysis
Aloe, Ariel M.; Becker, Betsy Jane
2012-01-01
A new effect size representing the predictive power of an independent variable from a multiple regression model is presented. The index, denoted as r[subscript sp], is the semipartial correlation of the predictor with the outcome of interest. This effect size can be computed when multiple predictor variables are included in the regression model…
Hydrostatic pressure effects on the state density and optical transitions in quantum dots
Energy Technology Data Exchange (ETDEWEB)
Galindez-Ramirez, G; Perez-Merchancano, S T [Departamento de Fisica, Universidad del Cauca, calle 5 4-70, Popayan (Colombia); Paredes Gutierrez, H [Escuela de Fisica, Universidad Industrial de Santander, A. A. 678, Bucaramanga (Colombia); Gonzalez, J D, E-mail: jdavid0831@gmail.co [Grupo de Investigacion en teorIa de la Materia Condensada, Universidad del Magdalena, A.A. 731, Santa Marta (Colombia)
2010-09-01
Using the effective mass approximation and variational method we have computed the effects of hydrostatic pressure on the absorption and photoluminescence spectra in spherical quantum dot GaAs-(Ga, Al) As, considering a finite confinement potential of this particular work we show the optical transitions in quantum of various sizes in the presence of hydrogenic impurities and hydrostatic pressure effects. Our first result describes the spectrum of optical absorption of 500 A QD for different values of hydrostatic pressure P = 0, 20 and 40 Kbar. The absorption peaks are sensitive to the displacement of the impurity center to the edge of the quantum dot and even more when the hydrostatic pressure changes in both cases showing that to the extent that these two effects are stronger quantum dots respond more efficiently. Also this result can be seen in the study of the photoluminescence spectrum as in the case of acceptor impurities consider them more efficiently capture carriers or electrons that pass from the conduction band to the valence band. Density states with randomly distributed impurity show that the additional peaks in the curves of the density of impurity states appear due to the presence of the additional hydrostatic pressure effects.
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
A method of suppressing the multimodal size distribution of InAs/GaAs quantum dots(QDs) using molecular beam epitaxy through flattening the substrate surface is reported in this work.It is found that the surface roughness plays an important role in the growth of QDs through continuous surface evolution(SEQDs).SEQDs are the main components of small QD ensemble in QDs with multimodal size distribution.It is suggested that most of the SEQDs are very likely to nucleate during the growth interruption rather than during the deposition.The growth of QDs on a smoother surface has largely reduced the density of SEQDs.The photoluminescence line width of uniform QDs is found to be only 17 meV at a low temperature.
Excitation Transfer in Vertically Self-Organized Pairs of Unequal-Sized InAs/GaAs Quantum Dots
Institute of Scientific and Technical Information of China (English)
WANG Hai-Long; FENG Song-Lin; YANG Fu-Hua; SUN Bao-Quan; JIANG De-Sheng
2000-01-01
The excitation transfer processes in vertically self-organized pairs of unequal-sized quantum dots (QD's), which are created in InAs/GaAs bilayers with different InAs deposition amounts in the first and second layers, have been investigated experimentally by photoluminescence technique. The distance between the two dot layers is varied from 3 to 12nm. The optical properties of the formed pairs of unequal-sized QD's with clearly discernible ground-state transition energy depend on the spacer thickness. When the spacer layer of GaAs is thin enough, only one photoluminescence peak related to the large QD ensemble has been observed as a result of strong electronic coupling in the InAs QD pairs. The results provide evidence for nonresonant energy transfer from the smaller QDs in the second layer to the larger QD's in the first layer in such an asymmetric QD pair.
Weissker, Hans-Christian; López-Lozano, Xóchitl
2015-11-14
The localized surface-plasmon resonance of metal nanoparticles corresponds to a classical charge oscillation of the quasi-free conduction electrons. In the case of noble-metal nanoparticles, interband transitions from the d electrons influence the spectra strongly. In addition, the inhomogeneity of the nanoparticles at the atomistic level becomes important for small sizes. Using the time-evolution formulation of time-dependent density-functional theory, we show that in spherical 147-atom silver clusters, the localized surface-plasmon resonance corresponds indeed to a collective charge oscillation resembling the schematic picture, while the dynamics in a comparable gold cluster shows multiple modes which correspond to the spectra without strong resonance. Short nanorods show the same difference between Au and Ag. However, nanorods of high aspect ratio develop a silver-like charge oscillation. Monatomic silver chains behave similarly to the nanorods and show a clear transverse charge oscillation mode. The role of the d electrons in the screening of the localized surface-plasmon resonance is demonstrated.
Thermal effects on quantum communication through spin chains
Bayat, A; Bayat, Abolfazl; Karimipour, Vahid
2004-01-01
We study the effect of thermal fluctuations in a recently proposed protocol for transmission of unknown quantum states through quantum spin chains. We develop a low temperature expansion for general spin chains. We then apply this formalism to study exactly thermal effects on short spin chains of four spins. We show that optimal times for extraction of output states are almost independent of the temperature which lowers only the fidelity of the channel. Moreover we show that thermal effects are smaller in the anti-ferromagnetic chains than the ferromagnetic ones.
One-loop effective action in quantum gravitation
DEFF Research Database (Denmark)
Rachwal, Leslaw; Codello, Alessandro; Percacci, Roberto
2016-01-01
We present the formalism of computing one-loop effective action for Quantum Gravitation using non-local heat kernel methods. We found agreement with previous old results. In main part of my presentation I considered the system of E-H gravitation and scalar fields. We were able to derive non......-local quantum effective action up to the second order in heat kernel generalized curvatures. By going to flat spacetime expressions for gravitational form factors are possible to construct and compare with the results from effective field theory for gravity....
de Sousa, G. O.; da Costa, D. R.; Chaves, Andrey; Farias, G. A.; Peeters, F. M.
2017-05-01
The effects of external electric and magnetic fields on the energy spectrum of quantum rings made out of a bidimensional semiconductor material with anisotropic band structures are investigated within the effective-mass model. The interplay between the effective-mass anisotropy and the radial confinement leads to wave functions that are strongly localized at two diametrically opposite regions where the kinetic energy is lowest due to the highest effective mass. We show that this quantum phenomenon has clear consequences on the behavior of the energy states in the presence of applied in-plane electric fields and out-of-plane magnetic fields. In the former, the quantum confined Stark effect is observed with either linear or quadratic shifts, depending on the direction of the applied field. As for the latter, the usual Aharonov-Bohm oscillations are not observed for a circularly symmetric confining potential, however they can be reinstated if an elliptic ring with an appropriate aspect ratio is chosen.
Energy Technology Data Exchange (ETDEWEB)
Jiang, Xiao Bao, E-mail: jiangxb@just.edu.cn; Sheng, Hong Chao; Gu, Xiao Yan; Shi, Ming Xiao
2015-12-15
Size, dimensionality and pressure play important roles on modulating band gap (E{sub g}) of semiconductor nanocrystals, and have attracted extensive attention in recent years. In this letter, a simple thermodynamic model is developed and the competition relation among size, dimensionality and pressure effects on E{sub g} is discussed. The accuracy of our prediction is confirmed by the experimental data and simulation results of CdSe and ZnO nanocrystals. This model provides a new insight into the size, dimensionality and pressure effects on E{sub g} and guides the optimal selection as design quantum devices.
Jiang, Xiao Bao; Sheng, Hong Chao; Gu, Xiao Yan; Shi, Ming Xiao
2015-12-01
Size, dimensionality and pressure play important roles on modulating band gap (Eg) of semiconductor nanocrystals, and have attracted extensive attention in recent years. In this letter, a simple thermodynamic model is developed and the competition relation among size, dimensionality and pressure effects on Eg is discussed. The accuracy of our prediction is confirmed by the experimental data and simulation results of CdSe and ZnO nanocrystals. This model provides a new insight into the size, dimensionality and pressure effects on Eg and guides the optimal selection as design quantum devices.
Zhai, Yusheng; Wang, Qilong; Qi, Zhiyang; Li, Chen; Xia, Jun; Li, Xiaohua
2017-04-01
Hybrid nanostructures of quantum dots(QDs) and metallic nanostructure are attractive for future use in a variety of optoelectronic devices. For photodetection applications, it is important that the photoluminescence (PL) of QDs is quenched by the metallic nanostructures. Here, the quenching efficiency of CdSe/ZnS core-shell quantum dots (QDs) with different sized gold nanoparticles (NPs) films through energy transfer is investigated by measuring the PL intensity of the hybrid nanostructures. In our research, the gold NPs films are formed by the post-annealing of the deposited Au films on the quartz substrate. We find that the energy transfer from the QDs to the Au NPs strongly depends on the sizes of the Au NPs. For CdSe/ZnS QDs direct contact with the Au NPs films, the largest energy transfer efficiency are detected when the resonance absorption peak of the Au NPs is nearest to the emission peak of the CdSe/ZnS QDs. However, when there is a PMMA spacer between the QDs layer and the Au NPs films, firstly, we find that the energy transfer efficiency is weakened, and the largest energy transfer efficiency is obtained when the resonant absorption peak of the Au NPs is farthest to the emission peak wavelength of CdSe/ZnS QDs. These results will be useful for the potential design of the high efficiency QDs optoelectronic devices.
Size Effects in Linear Elastic Fracture Mechanics
1988-01-01
Recent Theoretical and Experimental Developments in Fracture Mechanics", Fracture 1977, 1 (1977) 695-723. 40 S. Mindess and J. S. Nadeau," Effect of Notch...0.4 1.42 b 2.0 0.80 b Mindess and Nadeau [40], 1.0 3.98 0.86 b Mortar, 3PB 8.03 0.80 b 12.0 0.82 b 16.0 0.84 b 20.0 0.83 b Concrete, 3PB 1.0 3.54 1.08
The Influence of the Size Effects on the Termoelectrical Properties of PbTe Thin Films
Directory of Open Access Journals (Sweden)
M.A. Ruvinskii
2016-06-01
Full Text Available Based on kinetic Boltzmann equation the boundary problem of calculating the conductivity and Seebeck coefficient for a film with a rectangular cross section is solved. Mirror-diffuse mechanism of reflection of the charge carriers from the surfaces of the film is considered. Calculations were performed for different thicknesses semiconductor n-PbTe. Based on the model of quantum flat rectangular and with infinitely high walls pit, the value of Seebeck coefficient S was calculated for n-PbTe. The quantum and classical size effects were experimentally investigated. The transition from the oscillating to monotonic dependences of the thermoelectric parameters of nanostructures based on n-PbTe has been proved.
EFFECT OF SOYBEAN SEED SIZE ON SEED QUALITY
Directory of Open Access Journals (Sweden)
Atin Yulyatin
2015-07-01
Full Text Available Soybean seed is a seed that is rapidly deteriorate or decrease in viability and vigor, especially if stored in conditions that are less optimum savings. Soybean seed size can affect the quality of the seed. Seed quality is characterized by germination of seeds. Grain size effect on soybean utilization. Large seed size tends to be used as an industrial raw material utilization while small seed size as a seed planted back. Purpose of this study was to determine whether soybean seed size can affect the quality of the seeds while in storage. The experimental design used a Completely Randomized Design (CRD using soybean seed size is a large size (Grobogan, medium (Kaba, and small (Willis is repeated four times. Parameter observations are normal seeds, dirt seed, weight of 100 grains, moisture content, germination. Data were tabulated and analyzed using the F test, if significantly different then tested further by DMRT level of 5 percent. Large size seed has the normal number of seeds, seed dirt, moisture content higher than medium and small seed size. But has a lower germination than seeds of medium and small size. To maintain the water content of <11 percent should be larger seed size is more frequent than the dried seed medium and small sizes.
Yu, H. L.; Jiang, C.; Zhai, Z. Y.
2017-01-01
We investigate numerically the integer quantum Hall effect in a three-band triangular-lattice model. The three bands own the Chern number C=2,-1,-1, respectively. The lowest topological flat band carrying Chern number C=2, which leads to the Hall plateau σH = 2 (e2 / h) . This Hall plateau is sensitive to the disorder scattering and is rapidly destroyed by the weak disorder. Further increasing the strength of disorder, the gap of density of states always disappears before the vanishing of the corresponding Hall plateau. The scaling behavior of quantum phase transition between an insulator and a quantum Hall plateau is studied. We find that the insulator-plateau transition becomes sharper with increasing the size of system. Due to the different of edge states, the critical energy Ec1 gradually shifts to the center of Hall plateau while Ec2 is unaffected with increasing the disorder strength.
Focus on quantum effects and noise in biomolecules
Fleming, G. R.; Huelga, S. F.; Plenio, M. B.
2011-11-01
The role of quantum mechanics in biological organisms has been a fundamental question of twentieth-century biology. It is only now, however, with modern experimental techniques, that it is possible to observe quantum mechanical effects in bio-molecular complexes directly. Indeed, recent experiments have provided evidence that quantum effects such as wave-like motion of excitonic energy flow, delocalization and entanglement can be seen even in complex and noisy biological environments (Engel et al 2007 Nature 446 782; Collini et al 2010 Nature 463 644; Panitchayangkoon et al 2010 Proc. Natl Acad. Sci. USA 107 12766). Motivated by these observations, theoretical work has highlighted the importance of an interplay between environmental noise and quantum coherence in such systems (Mohseni et al 2008 J. Chem. Phys. 129 174106; Plenio and Huelga 2008 New J. Phys. 10 113019; Olaya-Castro et al 2008 Phys. Rev. B 78 085115; Rebentrost et al 2009 New J. Phys. 11 033003; Caruso et al 2009 J. Chem. Phys. 131 105106; Ishizaki and Fleming 2009 J. Chem. Phys. 130 234111). All of this has led to a surge of interest in the exploration of quantum effects in biological systems in order to understand the possible relevance of non-trivial quantum features and to establish a potential link between quantum coherence and biological function. These studies include not only exciton transfer across light harvesting complexes, but also the avian compass (Ritz et al 2000 Biophys. J. 78 707), and the olfactory system (Turin 1996 Chem. Sens. 21 773; Chin et al 2010 New J. Phys. 12 065002). These examples show that the full understanding of the dynamics at bio-molecular length (10 Å) and timescales (sub picosecond) in noisy biological systems can uncover novel phenomena and concepts and hence present a fertile ground for truly multidisciplinary research.
Effect of quantum tunneling on spin Hall magnetoresistance
Ok, Seulgi; Chen, Wei; Sigrist, Manfred; Manske, Dirk
2017-02-01
We present a formalism that simultaneously incorporates the effect of quantum tunneling and spin diffusion on the spin Hall magnetoresistance observed in normal metal/ferromagnetic insulator bilayers (such as Pt/Y3Fe5O12) and normal metal/ferromagnetic metal bilayers (such as Pt/Co), in which the angle of magnetization influences the magnetoresistance of the normal metal. In the normal metal side the spin diffusion is known to affect the landscape of the spin accumulation caused by spin Hall effect and subsequently the magnetoresistance, while on the ferromagnet side the quantum tunneling effect is detrimental to the interface spin current which also affects the spin accumulation. The influence of generic material properties such as spin diffusion length, layer thickness, interface coupling, and insulating gap can be quantified in a unified manner, and experiments that reveal the quantum feature of the magnetoresistance are suggested.
de Mello Donega, C.; Koole, R.
2009-01-01
In this paper, the size dependence of the band gap, of the spontaneous emission rate, and of the absorption cross section of quantum dots is systematically investigated over a wide size range, using colloidal CdSe and CdTe QDs as model systems (diameters ranging from 1.2 to 8 nm and from 2 to 9.5 nm
Quantum chromodynamics effects in electroweak and Higgs physics
Indian Academy of Sciences (India)
Frank Petriello
2012-10-01
Several examples of the often intricate effects of higher-order quantum chromodynamics (QCD) corrections on predictions for hadron-collider observables, are discussed, using the production of electroweak gauge boson and the Standard Model Higgs boson as examples. Particular attention is given to the interplay of QCD effects and experimental cuts, and to the use of scale variations as estimates of theoretical uncertainties.
Quantum vacuum effects from boundaries of designer potentials
Konopka, T.J.
2009-01-01
Vacuum energy in quantum field theory, being the sum of zero-point energies of all field modes, is formally infinite but yet, after regularization or renormalization, can give rise to finite observable effects. One way of understanding how these effects arise is to compute the vacuum energy in an id
Experiments towards size and dopant control of germanium quantum dots for solar applications
2015-01-01
While the literature for the doping of silicon quantum dots (QDs) and nanocrystals (NCs) is extensive, reports of doping their germanium analogs are sparse. We report a range of attempts to dope Ge QDs both during and post-synthesis. The QDs have been characterized by TEM, XPS, and I/V measurements of SiO2 coated QD thin films in test cells using doped Si substrates. The solution synthesis of Ge QDs by the reduction of GeCl4 with LiAlH4 results in Ge QDs with a low level of chlorine atoms on ...