Quantum process tomography of the quantum Fourier transform.
Weinstein, Yaakov S; Havel, Timothy F; Emerson, Joseph; Boulant, Nicolas; Saraceno, Marcos; Lloyd, Seth; Cory, David G
2004-10-01
The results of quantum process tomography on a three-qubit nuclear magnetic resonance quantum information processor are presented and shown to be consistent with a detailed model of the system-plus-apparatus used for the experiments. The quantum operation studied was the quantum Fourier transform, which is important in several quantum algorithms and poses a rigorous test for the precision of our recently developed strongly modulating control fields. The results were analyzed in an attempt to decompose the implementation errors into coherent (overall systematic), incoherent (microscopically deterministic), and decoherent (microscopically random) components. This analysis yielded a superoperator consisting of a unitary part that was strongly correlated with the theoretically expected unitary superoperator of the quantum Fourier transform, an overall attenuation consistent with decoherence, and a residual portion that was not completely positive-although complete positivity is required for any quantum operation. By comparison with the results of computer simulations, the lack of complete positivity was shown to be largely a consequence of the incoherent errors which occurred over the full quantum process tomography procedure. These simulations further showed that coherent, incoherent, and decoherent errors can often be identified by their distinctive effects on the spectrum of the overall superoperator. The gate fidelity of the experimentally determined superoperator was 0.64, while the correlation coefficient between experimentally determined superoperator and the simulated superoperator was 0.79; most of the discrepancies with the simulations could be explained by the cumulative effect of small errors in the single qubit gates.
Quantum imaging as an ancilla-assisted process tomography
Ghalaii, M.; Afsary, M.; Alipour, S.; Rezakhani, A. T.
2016-10-01
We show how a recent experiment of quantum imaging with undetected photons can basically be described as an (a partial) ancilla-assisted process tomography in which the object is described by an amplitude-damping quantum channel. We propose a simplified quantum circuit version of this scenario, which also enables one to recast quantum imaging in quantum computation language. Our analogy and analysis may help us to better understand the role of classical and/or quantum correlations in imaging experiments.
A de Finetti Representation Theorem for Quantum Process Tomography
Fuchs, C; Scudo, P F; Fuchs, Christopher A.; Schack, Ruediger; Scudo, Petra F.
2003-01-01
In quantum process tomography, it is possible to express the experimenter's prior information as a sequence of quantum operations, i.e., trace-preserving completely positive maps. In analogy to de Finetti's concept of exchangeability for probability distributions, we give a definition of exchangeability for sequences of quantum operations. We then state and prove a representation theorem for such exchangeable sequences. The theorem leads to a simple characterization of admissible priors for quantum process tomography and solves to a Bayesian's satisfaction the problem of an unknown quantum operation.
Ancilla-less selective and efficient quantum process tomography
Schmiegelow, Christian Tomás; Larotonda, Miguel Antonio; Paz, Juan Pablo
2011-01-01
Several methods, known as Quantum Process Tomography, are available to characterize the evolution of quantum systems, a task of crucial importance. However, their complexity dramatically increases with the size of the system. Here we present the theory describing a new type of method for quantum process tomography. We describe an algorithm that can be used to selectively estimate any parameter characterizing a quantum process. Unlike any of its predecessors this new quantum tomographer combines two main virtues: it requires investing a number of physical resources scaling polynomially with the number of qubits and at the same time it does not require any ancillary resources. We present the results of the first photonic implementation of this quantum device, characterizing quantum processes affecting two qubits encoded in heralded single photons. Even for this small system our method displays clear advantages over the other existing ones.
Quantum process tomography by 2D fluorescence spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Pachón, Leonardo A. [Grupo de Física Atómica y Molecular, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138 (United States); Marcus, Andrew H. [Department of Chemistry and Biochemistry, Oregon Center for Optics, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403 (United States); Aspuru-Guzik, Alán [Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138 (United States)
2015-06-07
Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed.
Quantum process tomography: the role of initial correlations
Ziman, M
2006-01-01
We address the problem of quantum process tomography with the preparators producing states correlated with the enviromental degrees of freedom that play role in the system-enviroment interactions. We discuss the physical situations, in which the dynamics is described by nonlinear, or noncompletely positive transformations. In particular, we show that arbitrary mapping R_in -> R_out can be realized by using appropriate set of preparators and applying the unitary operation SWAP. The experimental ``realization'' of perfect NOT operation is presented. We propose a method how to test the compatibility of the preparator devices with the estimating process. The evolution map describing the dynamics in arbitrary time interval is found not to be completely positive, but still linear. The tomography and general properties of these maps are discussed.
Quantum process tomography quantifies coherence transfer dynamics in vibrational exciton.
Chuntonov, Lev; Ma, Jianqiang
2013-10-31
Quantum coherence has been a subject of great interest in many scientific disciplines. However, detailed characterization of the quantum coherence in molecular systems, especially its transfer and relaxation mechanisms, still remains a major challenge. The difficulties arise in part because the spectroscopic signatures of the coherence transfer are typically overwhelmed by other excitation-relaxation processes. We use quantum process tomography (QPT) via two-dimensional infrared spectroscopy to quantify the rate of the elusive coherence transfer between two vibrational exciton states. QPT retrieves the dynamics of the dissipative quantum system directly from the experimental observables. It thus serves as an experimental alternative to theoretical models of the system-bath interaction and can be used to validate these theories. Our results for coupled carbonyl groups of a diketone molecule in chloroform, used as a benchmark system, reveal the nonsecular nature of the interaction between the exciton and the Markovian bath and open the door for the systematic studies of the dissipative quantum systems dynamics in detail.
Turbocharging Quantum Tomography.
Energy Technology Data Exchange (ETDEWEB)
Blume-Kohout, Robin J; Gamble, John King,; Nielsen, Erik; Maunz, Peter Lukas Wilhelm; Scholten, Travis L.; Rudinger, Kenneth Michael
2015-01-01
Quantum tomography is used to characterize quantum operations implemented in quantum information processing (QIP) hardware. Traditionally, state tomography has been used to characterize the quantum state prepared in an initialization procedure, while quantum process tomography is used to characterize dynamical operations on a QIP system. As such, tomography is critical to the development of QIP hardware (since it is necessary both for debugging and validating as-built devices, and its results are used to influence the next generation of devices). But tomography su %7C ers from several critical drawbacks. In this report, we present new research that resolves several of these flaws. We describe a new form of tomography called gate set tomography (GST), which unifies state and process tomography, avoids prior methods critical reliance on precalibrated operations that are not generally available, and can achieve unprecedented accuracies. We report on theory and experimental development of adaptive tomography protocols that achieve far higher fidelity in state reconstruction than non-adaptive methods. Finally, we present a new theoretical and experimental analysis of process tomography on multispin systems, and demonstrate how to more e %7C ectively detect and characterize quantum noise using carefully tailored ensembles of input states.
Turbocharging Quantum Tomography
Energy Technology Data Exchange (ETDEWEB)
Blume-Kohout, Robin J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Gamble, John King [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Nielsen, Erik [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Maunz, Peter Lukas Wilhelm [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Scholten, Travis L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Rudinger, Kenneth Michael [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
2015-01-01
Quantum tomography is used to characterize quantum operations implemented in quantum information processing (QIP) hardware. Traditionally, state tomography has been used to characterize the quantum state prepared in an initialization procedure, while quantum process tomography is used to characterize dynamical operations on a QIP system. As such, tomography is critical to the development of QIP hardware (since it is necessary both for debugging and validating as-built devices, and its results are used to influence the next generation of devices). But tomography suffers from several critical drawbacks. In this report, we present new research that resolves several of these flaws. We describe a new form of tomography called gate set tomography (GST), which unifies state and process tomography, avoids prior methods critical reliance on precalibrated operations that are not generally available, and can achieve unprecedented accuracies. We report on theory and experimental development of adaptive tomography protocols that achieve far higher fidelity in state reconstruction than non-adaptive methods. Finally, we present a new theoretical and experimental analysis of process tomography on multispin systems, and demonstrate how to more effectively detect and characterize quantum noise using carefully tailored ensembles of input states.
Cooper, Merlin; Slade, Eirion; Karpiński, Michał; Smith, Brian J.
2015-03-01
Conditional quantum optical processes enable a wide range of technologies from generation of highly non-classical states to implementation of quantum logic operations. The process fidelity that can be achieved in a realistic implementation depends on a number of system parameters. Here we experimentally examine Fock state filtration, a canonical example of a broad class of conditional quantum operations acting on a single optical field mode. This operation is based upon interference of the mode to be manipulated with an auxiliary single-photon state at a beam splitter, resulting in the entanglement of the two output modes. A conditional projective measurement onto a single photon state at one output mode heralds the success of the process. This operation, which implements a measurement-induced nonlinearity, is capable of suppressing particular photon-number probability amplitudes of an arbitrary quantum state. We employ coherent-state process tomography to determine the precise operation realized in our experiment, which is mathematically represented by a process tensor. To identify the key sources of experimental imperfection, we develop a realistic model of the process and identify three main contributions that significantly hamper its efficacy. The experimentally reconstructed process tensor is compared with the model, yielding a fidelity better than 0.95. This enables us to identify three key challenges to overcome in realizing a filter with optimal performance—namely the single-photon nature of the auxiliary state, high mode overlap of the optical fields involved, and the need for photon-number-resolving detection when heralding. The results show that the filter does indeed exhibit a non-linear response as a function of input photon number and preserves the phase relation between Fock layers of the output state, providing promise for future applications.
Cooper, Merlin; Slade, Eirion; Karpinski, Michal; Smith, Brian J.
2014-01-01
Conditional quantum optical processes enable a wide range of technologies from generation of highly non-classical states to implementation of quantum logic operations. The process fidelity that can be achieved in a realistic implementation depends on a number of system parameters. Here we experimentally examine Fock-state filtration, a canonical example of a broad class of conditional quantum operations acting on a single optical field mode. This operation is based upon interference of the mo...
Quantum control and process tomography of a semiconductor quantum dot hybrid qubit.
Kim, Dohun; Shi, Zhan; Simmons, C B; Ward, D R; Prance, J R; Koh, Teck Seng; Gamble, John King; Savage, D E; Lagally, M G; Friesen, Mark; Coppersmith, S N; Eriksson, Mark A
2014-07-03
The similarities between gated quantum dots and the transistors in modern microelectronics--in fabrication methods, physical structure and voltage scales for manipulation--have led to great interest in the development of quantum bits (qubits) in semiconductor quantum dots. Although quantum dot spin qubits have demonstrated long coherence times, their manipulation is often slower than desired for important future applications, such as factoring. Furthermore, scalability and manufacturability are enhanced when qubits are as simple as possible. Previous work has increased the speed of spin qubit rotations by making use of integrated micromagnets, dynamic pumping of nuclear spins or the addition of a third quantum dot. Here we demonstrate a qubit that is a hybrid of spin and charge. It is simple, requiring neither nuclear-state preparation nor micromagnets. Unlike previous double-dot qubits, the hybrid qubit enables fast rotations about two axes of the Bloch sphere. We demonstrate full control on the Bloch sphere with π-rotation times of less than 100 picoseconds in two orthogonal directions, which is more than an order of magnitude faster than any other double-dot qubit. The speed arises from the qubit's charge-like characteristics, and its spin-like features result in resistance to decoherence over a wide range of gate voltages. We achieve full process tomography in our electrically controlled semiconductor quantum dot qubit, extracting high fidelities of 85 per cent for X rotations (transitions between qubit states) and 94 per cent for Z rotations (phase accumulation between qubit states).
Non-Markovian memory in quantum process tomography and a preparation independent map
Modi, Kavan
2010-01-01
Recently it has been pointed out how differences in preparation procedures for quantum experiments can lead to non-trivial differences in the results of the experiment. The difference arise from the initial correlations between the system and environment. Therefore, any quantum experiment that is prone to the influences from the environment must be prepared carefully. In this paper, we study a quantum process tomography procedure that yields a result independent of the preparation procedure. We investigate the properties of this map and find an approach to distinguish the role of initial correlation in the dynamics of the system.
Quantum Process Tomography of a Universal Entangling Gate Implemented with Josephson Phase Qubits
Bialczak, Radoslaw C; Hofheinz, Max; Lucero, Erik; Neeley, Matthew; O'Connell, Aaron; Sank, Daniel; Wang, Haohua; Wenner, James; Steffen, Matthias; Cleland, Andrew; Martinis, John
2009-01-01
Quantum logic gates must perform properly when operating on their standard input basis states, as well as when operating on complex superpositions of these states. Experiments using superconducting qubits have validated the truth table for particular implementations of e.g. the controlled-NOT gate [1,2], but have not fully characterized gate operation for arbitrary superpositions of input states. Here we demonstrate the use of quantum process tomography (QPT) [3,4] to fully characterize the performance of a universal entangling gate between two superconducting quantum bits. Process tomography permits complete gate analysis, but requires precise preparation of arbitrary input states, control over the subsequent qubit interaction, and simultaneous single-shot measurement of the output states. We use QPT to measure the fidelity of the entangling gate and to quantify the decoherence mechanisms affecting the gate performance. In addition to demonstrating a promising fidelity, our entangling gate has a on/off ratio...
Kampermann, H; Veeman, W S
2005-06-01
NMR quantum computing with qubit systems represented by nuclear spins (I=12) in small molecules in liquids has led to the most successful experimental quantum information processors so far. We use the quadrupolar spin-32 sodium nuclei of a NaNO3 single crystal as a virtual two-qubit system. The large quadrupolar coupling in comparison with the environmental interactions and the usage of strongly modulating pulses allow us to manipulate the system fast enough and at the same time keeping the decoherence reasonably slow. The experimental challenge is to characterize the "calculation" behavior of the quantum processor by process tomography which is here adapted to the quadrupolar spin system. The results of a selection of quantum gates and algorithms are presented as well as a detailed analysis of experimental results.
Rebentrost, Patrick; Yuen-Zhou, Joel; Aspuru-Guzik, Alán
2010-01-01
Long-lived electronic coherences in various photosynthetic complexes at cryogenic and room temperature have generated vigorous efforts both in theory and experiment to understand their origins and explore their potential role to biological function. The ultrafast signals resulting from the experiments that show evidence for these coherences result from many contributions to the molecular polarization. Quantum process tomography (QPT) was conceived in the context of quantum information processing to characterize and understand general quantum evolution of controllable quantum systems, for example while carrying out quantum computational tasks. We introduce our QPT method for ultrafast experiments, and as an illustrative example, apply it to a simulation of a two-chromophore subsystem of the Fenna-Matthews-Olson photosynthetic complex, which was recently shown to have long-lived quantum coherences. Our Fenna-Matthews-Olson model is constructed using an atomistic approach to extract relevant parameters for the s...
Experimental adaptive process tomography
Pogorelov, I. A.; Struchalin, G. I.; Straupe, S. S.; Radchenko, I. V.; Kravtsov, K. S.; Kulik, S. P.
2017-01-01
Adaptive measurements were recently shown to significantly improve the performance of quantum state tomography. Utilizing information about the system for the online choice of optimal measurements allows one to reach the ultimate bounds of precision for state reconstruction. In this article we generalize an adaptive Bayesian approach to the case of process tomography and experimentally show its superiority in the task of learning unknown quantum operations. Our experiments with photonic polarization qubits cover all types of single-qubit channels. We also discuss instrumental errors and the criteria for evaluation of the ultimate achievable precision in an experiment. It turns out that adaptive tomography provides a lower noise floor in the presence of strong technical noise.
Quantum State Tomography and Quantum Games
Institute of Scientific and Technical Information of China (English)
Ahmad Nawaz
2012-01-01
A technique is developed for single qubit quantum state tomography using the mathematical setup of generalized quantization scheme for games. In this technique,Alice sends an unknown pure quantum state to Bob who appends it with |0><0| and then applies the unitary operators on the appended quantum state and finds the payoffs for Alice and himself.It is shown that for a particular set of unitary operators,these payoffs are equal to Stokes parameters for an unknown quantum state.In this way an unknown quantum state can be measured and reconstructed.Strictly speaking,this technique is not a game as no strategic competitions are involved.
Quantum tomography protocols with positivity are compressed sensing protocols
Kalev, Amir; Kosut, Robert L.; Deutsch, Ivan H.
2015-12-01
Characterising complex quantum systems is a vital task in quantum information science. Quantum tomography, the standard tool used for this purpose, uses a well-designed measurement record to reconstruct quantum states and processes. It is, however, notoriously inefficient. Recently, the classical signal reconstruction technique known as ‘compressed sensing’ has been ported to quantum information science to overcome this challenge: accurate tomography can be achieved with substantially fewer measurement settings, thereby greatly enhancing the efficiency of quantum tomography. Here we show that compressed sensing tomography of quantum systems is essentially guaranteed by a special property of quantum mechanics itself—that the mathematical objects that describe the system in quantum mechanics are matrices with non-negative eigenvalues. This result has an impact on the way quantum tomography is understood and implemented. In particular, it implies that the information obtained about a quantum system through compressed sensing methods exhibits a new sense of ‘informational completeness.’ This has important consequences on the efficiency of the data taking for quantum tomography, and enables us to construct informationally complete measurements that are robust to noise and modelling errors. Moreover, our result shows that one can expand the numerical tool-box used in quantum tomography and employ highly efficient algorithms developed to handle large dimensional matrices on a large dimensional Hilbert space. Although we mainly present our results in the context of quantum tomography, they apply to the general case of positive semidefinite matrix recovery.
Finite Quantum Tomography and Semidefinite Programming
Mirzaee, M.; Rezaee, M.; Jafarizadeh, M. A.
2007-06-01
Using the convex semidefinite programming method and superoperator formalism we obtain the finite quantum tomography of some mixed quantum states such as: truncated coherent states tomography, phase tomography and coherent spin state tomography, qudit tomography, N-qubit tomography, where that obtained results are in agreement with those of References (Buzek et al., Chaos, Solitons and Fractals 10 (1999) 981; Schack and Caves, Separable states of N quantum bits. In: Proceedings of the X. International Symposium on Theoretical Electrical Engineering, 73. W. Mathis and T. Schindler, eds. Otto-von-Guericke University of Magdeburg, Germany (1999); Pegg and Barnett Physical Review A 39 (1989) 1665; Barnett and Pegg Journal of Modern Optics 36 (1989) 7; St. Weigert Acta Physica Slov. 4 (1999) 613).
Bayesian nonparametric estimation for Quantum Homodyne Tomography
Naulet, Zacharie; Barat, Eric
2016-01-01
We estimate the quantum state of a light beam from results of quantum homodyne tomography noisy measurements performed on identically prepared quantum systems. We propose two Bayesian nonparametric approaches. The first approach is based on mixture models and is illustrated through simulation examples. The second approach is based on random basis expansions. We study the theoretical performance of the second approach by quantifying the rate of contraction of the posterior distribution around ...
Computer processing of tomography data
Konečný, Jan
2011-01-01
Computer processing of tomography data Tomographs are one of the most important diagnostic devices, which are used in every hospital nowadays; they have already been so for a considerable period of time. The different types of tomographs and the processing of tomographic data and imaging of these data are the subject of this thesis. I have described the four most common types of tomography: X-ray Computed Tomography, Magnetic Resonance Imaging, Positron Emission Tomography and Single Photon E...
Quantum State Tomography Based on Quantum Games Theoretic Setup
Nawaz, Ahmad
2009-01-01
We develop a technique for single qubit quantum state tomography using the mathematical setup of generalized quantization scheme for games. In our technique Alice sends an unknown pure quantum state to Bob who appends it with |0><0| and then applies the unitary operators on the appended quantum state and finds the payoffs for Alice and himself. It is shown that for a particular set of unitary operators these elements become equal to Stokes parameters for an unknown quantum state. In this way an unknown quantum state can be measured and reconstructed. Strictly speaking this technique is not a game as no strategic competitions are involved.
Single-electron quantum tomography in quantum Hall edge channels
Energy Technology Data Exchange (ETDEWEB)
Grenier, Ch; Degiovanni, P [Universite de Lyon, Federation de Physique Andre Marie Ampere, CNRS-Laboratoire de Physique de l' Ecole Normale Superieure de Lyon, 46 Allee d' Italie, 69364 Lyon Cedex 07 (France); Herve, R; Bocquillon, E; Parmentier, F D; Placais, B; Berroir, J M; Feve, G, E-mail: Pascal.Degiovanni@ens-lyon.fr [Laboratoire Pierre Aigrain, Departement de Physique de l' Ecole Normale Superieure, 24 rue Lhomond, 75231 Paris Cedex 05 (France)
2011-09-15
We propose a quantum tomography protocol to measure single-electron coherence in quantum Hall edge channels, and therefore access for the first time the wavefunction of single-electron excitations propagating in ballistic quantum conductors. Its implementation would open the way to quantitative studies of single-electron decoherence and would provide a quantitative tool for analyzing single- to few-electron sources. We show how this protocol could be implemented using ultrahigh-sensitivity noise measurement schemes.
Stochastic processes - quantum physics
Energy Technology Data Exchange (ETDEWEB)
Streit, L. (Bielefeld Univ. (Germany, F.R.))
1984-01-01
The author presents an elementary introduction to stochastic processes. He starts from simple quantum mechanics and considers problems in probability, finally presenting quantum dynamics in terms of stochastic processes.
Optimal evolution models for quantum tomography
Czerwiński, Artur
2016-02-01
The research presented in this article concerns the stroboscopic approach to quantum tomography, which is an area of science where quantum physics and linear algebra overlap. In this article we introduce the algebraic structure of the parametric-dependent quantum channels for 2-level and 3-level systems such that the generator of evolution corresponding with the Kraus operators has no degenerate eigenvalues. In such cases the index of cyclicity of the generator is equal to 1, which physically means that there exists one observable the measurement of which performed a sufficient number of times at distinct instants provides enough data to reconstruct the initial density matrix and, consequently, the trajectory of the state. The necessary conditions for the parameters and relations between them are introduced. The results presented in this paper seem to have considerable potential applications in experiments due to the fact that one can perform quantum tomography by conducting only one kind of measurement. Therefore, the analyzed evolution models can be considered optimal in the context of quantum tomography. Finally, we introduce some remarks concerning optimal evolution models in the case of n-dimensional Hilbert space.
Review: Characterizing and quantifying quantum chaos with quantum tomography
Madhok, Vaibhav; Riofrío, Carlos A.; Deutsch, Ivan H.
2016-11-01
We explore quantum signatures of classical chaos by studying the rate of information gain in quantum tomography. The tomographic record consists of a time series of expectation values of a Hermitian operator evolving under application of the Floquet operator of a quantum map that possesses (or lacks) time reversal symmetry. We find that the rate of information gain, and hence the fidelity of quantum state reconstruction, depends on the symmetry class of the quantum map involved. Moreover, we find an increase in information gain and hence higher reconstruction fidelities when the Floquet maps employed increase in chaoticity. We make predictions for the information gain and show that these results are well described by random matrix theory in the fully chaotic regime. We derive analytical expressions for bounds on information gain using random matrix theory for different class of maps and show that these bounds are realized by fully chaotic quantum systems.
Review: Characterizing and quantifying quantum chaos with quantum tomography
Indian Academy of Sciences (India)
VAIBHAV MADHOK; CARLOS A RIOFRÍO; IVAN H DEUTSCH
2016-11-01
We explore quantum signatures of classical chaos by studying the rate of information gain in quantum tomography. The tomographic record consists of a time series of expectation values of a Hermitian operator evolving under the application of the Floquet operator of a quantum map that possesses (or lacks) time-reversal symmetry. We find that the rate of information gain, and hence the fidelity of quantum state reconstruction, depends on the symmetry class of the quantum map involved. Moreover, we find an increase in informationgain and hence higher reconstruction fidelities when the Floquet maps employed increase in chaoticity. We make predictions for the information gain and show that these results are well described by random matrix theory inthe fully chaotic regime. We derive analytical expressions for bounds on information gain using random matrix theory for different classes of maps and show that these bounds are realized by fully chaotic quantum systems.
Self-calibrating Quantum State Tomography
Branczyk, Agata M; Rozema, Lee A; Darabi, Ardavan; Steinberg, Aephraim M; James, Daniel F V
2011-01-01
We introduce and experimentally demonstrate a technique for performing quantum state tomography on multiple-qubit states using unknown unitary operations to perform measurements in different bases. Using our method, it is possible to reconstruct the density matrix of the state up to local sigma-z rotations as well as recover the magnitude of the unknown rotation angle. We demonstrate high-fidelity self-calibrating tomography on polarization-encoded one- and two-photon states. The unknown unitary operations are realized in two ways: using a birefringent polymer sheet--an inexpensive smartphone screen protector--or alternatively a liquid crystal wave plate with a tuneable retardance.
How noise affects quantum detector tomography
Energy Technology Data Exchange (ETDEWEB)
Wang, Q., E-mail: wang@physics.leidenuniv.nl; Renema, J. J.; Exter, M. P.van; Dood, M. J. A. de [Huygens Kamerlingh-Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden (Netherlands); Gaggero, A.; Mattioli, F.; Leoni, R. [Istituto di Fotonica e Nanotecnologie (IFN), CNR, via Cineto Romano 42, 00156 Roma (Italy)
2015-10-07
We determine the full photon number response of a NbN superconducting nanowire single photon detector via quantum detector tomography, and the results show the separation of linear, effective absorption efficiency from the internal detection efficiencies. In addition, we demonstrate an error budget for the complete quantum characterization of the detector. We find that for short times, the dominant noise source is shot noise, while laser power fluctuations limit the accuracy for longer timescales. The combined standard uncertainty of the internal detection efficiency derived from our measurements is about 2%.
Tomography and spectroscopy as quantum computations
Miquel, C; Saraceno, M; Knill, E H; Laflamme, R; Negrevergne, C; Miquel, Cesar; Paz, Juan Pablo; Saraceno, Marcos; Knill, Emmanuel; Laflamme, Raymond; Negrevergne, Camille
2001-01-01
Determining the state of a system and measuring properties of its evolution are two of the most important tasks a physicist faces. For the first purpose one can use tomography, a method that after subjecting the system to a number of experiments determines all independent elements of the density matrix. For the second task, one can resort to spectroscopy, a set of techniques used to determine the spectrum of eigenvalues of the evolution operator. In this letter, we show that tomography and spectroscopy can be naturally interpreted as dual forms of quantum computation. We show how to adapt the simplest case of the well-known phase estimation quantum algorithm to perform both tasks, giving it a natural interpretation as a simulated scattering experiment. We show how this algorithm can be used to implement an interesting form of tomography by performing a direct measurement of the Wigner function of a quantum system. We present results of such measurements performed on a system of three qubits using liquid state...
Quantum Central Processing Unit and Quantum Algorithm
Institute of Scientific and Technical Information of China (English)
王安民
2002-01-01
Based on a scalable and universal quantum network, quantum central processing unit, proposed in our previous paper [Chin. Phys. Left. 18 (2001)166], the whole quantum network for the known quantum algorithms,including quantum Fourier transformation, Shor's algorithm and Grover's algorithm, is obtained in a unitied way.
Hybrid quantum information processing
Energy Technology Data Exchange (ETDEWEB)
Furusawa, Akira [Department of Applied Physics, School of Engineering, The University of Tokyo (Japan)
2014-12-04
I will briefly explain the definition and advantage of hybrid quantum information processing, which is hybridization of qubit and continuous-variable technologies. The final goal would be realization of universal gate sets both for qubit and continuous-variable quantum information processing with the hybrid technologies. For that purpose, qubit teleportation with a continuousvariable teleporter is one of the most important ingredients.
Mastriani, Mario
2017-01-01
This paper presents a number of problems concerning the practical (real) implementation of the techniques known as quantum image processing. The most serious problem is the recovery of the outcomes after the quantum measurement, which will be demonstrated in this work that is equivalent to a noise measurement, and it is not considered in the literature on the subject. It is noteworthy that this is due to several factors: (1) a classical algorithm that uses Dirac's notation and then it is coded in MATLAB does not constitute a quantum algorithm, (2) the literature emphasizes the internal representation of the image but says nothing about the classical-to-quantum and quantum-to-classical interfaces and how these are affected by decoherence, (3) the literature does not mention how to implement in a practical way (at the laboratory) these proposals internal representations, (4) given that quantum image processing works with generic qubits, this requires measurements in all axes of the Bloch sphere, logically, and (5) among others. In return, the technique known as quantum Boolean image processing is mentioned, which works with computational basis states (CBS), exclusively. This methodology allows us to avoid the problem of quantum measurement, which alters the results of the measured except in the case of CBS. Said so far is extended to quantum algorithms outside image processing too.
Quantum independent increment processes
Franz, Uwe
2005-01-01
This volume is the first of two volumes containing the revised and completed notes lectures given at the school "Quantum Independent Increment Processes: Structure and Applications to Physics". This school was held at the Alfried-Krupp-Wissenschaftskolleg in Greifswald during the period March 9 – 22, 2003, and supported by the Volkswagen Foundation. The school gave an introduction to current research on quantum independent increment processes aimed at graduate students and non-specialists working in classical and quantum probability, operator algebras, and mathematical physics. The present first volume contains the following lectures: "Lévy Processes in Euclidean Spaces and Groups" by David Applebaum, "Locally Compact Quantum Groups" by Johan Kustermans, "Quantum Stochastic Analysis" by J. Martin Lindsay, and "Dilations, Cocycles and Product Systems" by B.V. Rajarama Bhat.
High-Confidence Quantum Gate Tomography
Johnson, Blake; da Silva, Marcus; Ryan, Colm; Kimmel, Shelby; Donovan, Brian; Ohki, Thomas
2014-03-01
Debugging and verification of high-fidelity quantum gates requires the development of new tools and protocols to unwrap the performance of the gate from the rest of the sequence. Randomized benchmarking tomography[2] allows one to extract full information of the unital portion of the gate with high confidence. We report experimental confirmation of the technique's applicability to quantum gate tomography. We show that the method is robust to common experimental imperfections such as imperfect single-shot readout and state preparation. We also demonstrate the ability to characterize non-Clifford gates. To assist in the experimental implementation we introduce two techniques. ``Atomic Cliffords'' use phase ramping and frame tracking to allow single-pulse implementation of the full group of single-qubit Clifford gates. Domain specific pulse sequencers allow rapid implementation of the many thousands of sequences needed. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), through the Army Research Office contract no. W911NF-10-1-0324.
Quantum processes in semiconductors
Ridley, B K
2013-01-01
Aimed at graduate students, this is a guide to quantum processes of importance in the physics and technology of semiconductors. The fifth edition includes new chapters that expand the coverage of semiconductor physics relevant to its accompanying technology.
Quantum information processing through nuclear magnetic resonance
Energy Technology Data Exchange (ETDEWEB)
Bulnes, J.D.; Sarthour, R.S.; Oliveira, I.S. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Bonk, F.A.; Azevedo, E.R. de; Bonagamba, T.J. [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Fisica; Freitas, J.C.C. [Espirito Santo Univ., Vitoria, ES (Brazil). Dept. de Fisica
2005-09-15
We discuss the applications of Nuclear Magnetic Resonance (NMR) to quantum information processing, focusing on the use of quadrupole nuclei for quantum computing. Various examples of experimental implementation of logic gates are given and compared to calculated NMR spectra and their respective density matrices. The technique of Quantum State Tomography for quadrupole nuclei is briefly described, and examples of measured density matrices in a two-qubit I = 3/2 spin system are shown. Experimental results of density matrices representing pseudo-Bell states are given, and an analysis of the entropy of theses states is made. Considering an NMR experiment as a depolarization quantum channel we calculate the entanglement fidelity and discuss the criteria for entanglement in liquid state NMR quantum information. A brief discussion on the perspectives for NMR quantum computing is presented at the end. (author)
Experimental Monte Carlo Quantum Process Certification
Steffen, L; Fedorov, A; Baur, M; Wallraff, A
2012-01-01
Experimental implementations of quantum information processing have now reached a level of sophistication where quantum process tomography is impractical. The number of experimental settings as well as the computational cost of the data post-processing now translates to days of effort to characterize even experiments with as few as 8 qubits. Recently a more practical approach to determine the fidelity of an experimental quantum process has been proposed, where the experimental data is compared directly to an ideal process using Monte Carlo sampling. Here we present an experimental implementation of this scheme in a circuit quantum electrodynamics setup to determine the fidelity of two qubit gates, such as the cphase and the cnot gate, and three qubit gates, such as the Toffoli gate and two sequential cphase gates.
Errors in quantum tomography: diagnosing systematic versus statistical errors
Langford, Nathan K.
2013-03-01
A prime goal of quantum tomography is to provide quantitatively rigorous characterization of quantum systems, be they states, processes or measurements, particularly for the purposes of trouble-shooting and benchmarking experiments in quantum information science. A range of techniques exist to enable the calculation of errors, such as Monte-Carlo simulations, but their quantitative value is arguably fundamentally flawed without an equally rigorous way of authenticating the quality of a reconstruction to ensure it provides a reasonable representation of the data, given the known noise sources. A key motivation for developing such a tool is to enable experimentalists to rigorously diagnose the presence of technical noise in their tomographic data. In this work, I explore the performance of the chi-squared goodness-of-fit test statistic as a measure of reconstruction quality. I show that its behaviour deviates noticeably from expectations for states lying near the boundaries of physical state space, severely undermining its usefulness as a quantitative tool precisely in the region which is of most interest in quantum information processing tasks. I suggest a simple, heuristic approach to compensate for these effects and present numerical simulations showing that this approach provides substantially improved performance.
Statistical estimation of the efficiency of quantum state tomography protocols.
Bogdanov, Yu I; Brida, G; Genovese, M; Kulik, S P; Moreva, E V; Shurupov, A P
2010-07-02
A novel operational method for estimating the efficiency of quantum state tomography protocols is suggested. It is based on a priori estimation of the quality of an arbitrary protocol by means of universal asymptotic fidelity distribution and condition number, which takes minimal value for better protocol. We prove the adequacy of the method both with numerical modeling and through the experimental realization of several practically important protocols of quantum state tomography.
Imperfect measurements settings: implications on quantum state tomography and entanglement witnesses
Rosset, Denis; Bancal, Jean-Daniel; Gisin, Nicolas; Liang, Yeong-Cherng
2012-01-01
Reliable and well-characterized quantum resources are indispensable ingredients in quantum information processing. Typically, in a realistic characterization of these resources, imperfect apparatuses result in unavoidable uncertainties and thus give rise to systematic errors. While this is usually accounted for through careful calibration, the effect of such imperfections on the characterization of quantum resources has been largely overlooked in the literature. In this paper, we investigate the effect of systematic errors that arise from imperfect alignment of measurement bases. We show that characterization of quantum resources using quantum state tomography or entanglement witnesses can be undermined with an amount of systematic error that is not uncommon in the laboratories. Curiously, for quantum state tomography, we found that having entanglement can help to reduce the susceptibility to this kind of error. We also briefly discuss how a given entanglement witness can be modified to incorporate the effect...
Quantum thermodynamics of general quantum processes.
Binder, Felix; Vinjanampathy, Sai; Modi, Kavan; Goold, John
2015-03-01
Accurately describing work extraction from a quantum system is a central objective for the extension of thermodynamics to individual quantum systems. The concepts of work and heat are surprisingly subtle when generalizations are made to arbitrary quantum states. We formulate an operational thermodynamics suitable for application to an open quantum system undergoing quantum evolution under a general quantum process by which we mean a completely positive and trace-preserving map. We derive an operational first law of thermodynamics for such processes and show consistency with the second law. We show that heat, from the first law, is positive when the input state of the map majorizes the output state. Moreover, the change in entropy is also positive for the same majorization condition. This makes a strong connection between the two operational laws of thermodynamics.
Quantum detector tomography of a single-photon frequency upconversion detection system.
Ma, Jianhui; Chen, Xiuliang; Hu, Huiqin; Pan, Haifeng; Wu, E; Zeng, Heping
2016-09-05
We experimentally presented a full quantum detector tomography of a synchronously pumped infrared single-photon frequency upconversion detector. A maximum detection efficiency of 37.6% was achieved at the telecom wavelength of 1558 nm with a background noise about 1.0 × 10-3 counts/pulse. The corresponding internal quantum conversion efficiency reached as high as 84.4%. The detector was then systematically characterized at different pump powers to investigate the quantum decoherence behavior. Here the reconstructed positive operator valued measure elements were equivalently illustrated with the Wigner function formalism, where the quantum feature of the detector is manifested by the presence of negative values of the Wigner function. In our experiment, pronounced negativities were attained due to the high detection efficiency and low background noise, explicitly showing the quantum feature of the detector. Such quantum detector could be useful in optical quantum state engineering, quantum information processing and communication.
Quantum information processing in nanostructures Quantum optics; Quantum computing
Reina-Estupinan, J H
2002-01-01
Since information has been regarded os a physical entity, the field of quantum information theory has blossomed. This brings novel applications, such as quantum computation. This field has attracted the attention of numerous researchers with backgrounds ranging from computer science, mathematics and engineering, to the physical sciences. Thus, we now have an interdisciplinary field where great efforts are being made in order to build devices that should allow for the processing of information at a quantum level, and also in the understanding of the complex structure of some physical processes at a more basic level. This thesis is devoted to the theoretical study of structures at the nanometer-scale, 'nanostructures', through physical processes that mainly involve the solid-state and quantum optics, in order to propose reliable schemes for the processing of quantum information. Initially, the main results of quantum information theory and quantum computation are briefly reviewed. Next, the state-of-the-art of ...
Two-photon tomography using on-chip quantum walks
Titchener, James; Sukhorukov, Andrey
2016-01-01
We present a conceptual approach to quantum tomography based on first expanding a quantum state across extra degrees of freedom and then exploiting the introduced sparsity to perform reconstruction. We formulate its application to photonic circuits, and show that measured spatial photon correlations at the output of a specially tailored discrete-continuous quantum-walk can enable full reconstruction of any two-photon spatially entangled and mixed state at the input. This approach does not require any tunable elements, so is well suited for integration with on-chip superconducting photon detectors.
Statistical estimation of the quality of quantum-tomography protocols
Energy Technology Data Exchange (ETDEWEB)
Bogdanov, Yu. I.; Bukeev, I. D. [Institute of Physics and Technology, Russian Academy of Sciences, 117218, Moscow (Russian Federation); Brida, G.; Genovese, M.; Shurupov, A. P. [INRIM, Strada delle Cacce 91 I-10135, Torino (Italy); Kravtsov, K. S. [Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow, 119991 (Russian Federation); Kulik, S. P.; Soloviev, A. A. [Faculty of Physics, Moscow State University, 119992, Moscow (Russian Federation); Moreva, E. V. [Moscow National Research Nuclear University ' ' MEPHI' ' , 115409, Moscow (Russian Federation)
2011-10-15
We present a complete methodology for testing the performances of quantum tomography protocols. The theory is validated by several numerical examples and by the comparison with experimental results achieved with various protocols for whole families of polarization states of qubits and ququarts including pure, mixed, entangled, and separable.
Application of Quantum Process Calculus to Higher Dimensional Quantum Protocols
Directory of Open Access Journals (Sweden)
Simon J. Gay
2014-07-01
Full Text Available We describe the use of quantum process calculus to describe and analyze quantum communication protocols, following the successful field of formal methods from classical computer science. We have extended the quantum process calculus to describe d-dimensional quantum systems, which has not been done before. We summarise the necessary theory in the generalisation of quantum gates and Bell states and use the theory to apply the quantum process calculus CQP to quantum protocols, namely qudit teleportation and superdense coding.
Quantum quadratic operators and processes
Mukhamedov, Farrukh
2015-01-01
Covering both classical and quantum approaches, this unique and self-contained book presents the most recent developments in the theory of quadratic stochastic operators and their Markov and related processes. The asymptotic behavior of dynamical systems generated by classical and quantum quadratic operators is investigated and various properties of quantum quadratic operators are studied, providing an insight into the construction of quantum channels. This book is suitable as a textbook for an advanced undergraduate/graduate level course or summer school in quantum dynamical systems. It can also be used as a reference book by researchers looking for interesting problems to work on, or useful techniques and discussions of particular problems. Since it includes the latest developments in the fields of quadratic dynamical systems, Markov processes and quantum stochastic processes, researchers at all levels are likely to find the book inspiring and useful.
BRICS and Quantum Information Processing
DEFF Research Database (Denmark)
Schmidt, Erik Meineche
1998-01-01
BRICS is a research centre and international PhD school in theoretical computer science, based at the University of Aarhus, Denmark. The centre has recently become engaged in quantum information processing in cooperation with the Department of Physics, also University of Aarhus. This extended...... abstract surveys activities at BRICS with special emphasis on the activities in quantum information processing....
Path integrals and quantum processes
Swanson, Marc S
1992-01-01
In a clearly written and systematic presentation, Path Integrals and Quantum Processes covers all concepts necessary to understand the path integral approach to calculating transition elements, partition functions, and source functionals. The book, which assumes only a familiarity with quantum mechanics, is ideal for use as a supplemental textbook in quantum mechanics and quantum field theory courses. Graduate and post-graduate students who are unfamiliar with the path integral will also benefit from this contemporary text. Exercise sets are interspersed throughout the text to facilitate self-
Quantum tomography of arbitrary spin states of particles: root approach
Bogdanov, Yu. I.
2006-05-01
A method of quantum tomography of arbitrary spin particle states is developed on the basis of the root approach. It is shown that the set of mutually complementary distributions of angular momentum projections can be naturally described by a set of basis functions based on the Kravchuk polynomials. The set of Kravchuk basis functions leads to a multiparametric statistical distribution that generalizes the binomial distribution. In order to analyze a statistical inverse problem of quantum mechanics, we investigated the likelihood equation and the statistical properties of the obtained estimates. The conclusions of the analytical researches are approved by the results of numerical calculations.
A reconstruction algorithm for compressive quantum tomography using various measurement sets.
Zheng, Kai; Li, Kezhi; Cong, Shuang
2016-12-14
Compressed sensing (CS) has been verified that it offers a significant performance improvement for large quantum systems comparing with the conventional quantum tomography approaches, because it reduces the number of measurements from O(d(2)) to O(rd log(d)) in particular for quantum states that are fairly pure. Yet few algorithms have been proposed for quantum state tomography using CS specifically, let alone basis analysis for various measurement sets in quantum CS. To fill this gap, in this paper an efficient and robust state reconstruction algorithm based on compressive sensing is developed. By leveraging the fixed point equation approach to avoid the matrix inverse operation, we propose a fixed-point alternating direction method algorithm for compressive quantum state estimation that can handle both normal errors and large outliers in the optimization process. In addition, properties of five practical measurement bases (including the Pauli basis) are analyzed in terms of their coherences and reconstruction performances, which provides theoretical instructions for the selection of measurement settings in the quantum state estimation. The numerical experiments show that the proposed algorithm has much less calculating time, higher reconstruction accuracy and is more robust to outlier noises than many existing state reconstruction algorithms.
A reconstruction algorithm for compressive quantum tomography using various measurement sets
Zheng, Kai; Li, Kezhi; Cong, Shuang
2016-12-01
Compressed sensing (CS) has been verified that it offers a significant performance improvement for large quantum systems comparing with the conventional quantum tomography approaches, because it reduces the number of measurements from O(d2) to O(rd log(d)) in particular for quantum states that are fairly pure. Yet few algorithms have been proposed for quantum state tomography using CS specifically, let alone basis analysis for various measurement sets in quantum CS. To fill this gap, in this paper an efficient and robust state reconstruction algorithm based on compressive sensing is developed. By leveraging the fixed point equation approach to avoid the matrix inverse operation, we propose a fixed-point alternating direction method algorithm for compressive quantum state estimation that can handle both normal errors and large outliers in the optimization process. In addition, properties of five practical measurement bases (including the Pauli basis) are analyzed in terms of their coherences and reconstruction performances, which provides theoretical instructions for the selection of measurement settings in the quantum state estimation. The numerical experiments show that the proposed algorithm has much less calculating time, higher reconstruction accuracy and is more robust to outlier noises than many existing state reconstruction algorithms.
Understanding boundary effects in quantum state tomography - One qubit case
Sugiyama, Takanori; Turner, Peter S.; Murao, Mio
2014-12-01
For classical and quantum estimation with finite data sets, the estimation error can deviate significantly from its asymptotic (large data set) behavior. In quantum state tomography, a major reason for this is the existence of a boundary in the parameter space imposed by constraints, such as the positive semidefiniteness of density matrices. Intuitively, we should be able to reduce the estimation error by using our knowledge of these constraints. This intuition is correct for maximumlikelihood estimators, but the size of the reduction has not been evaluated quantitatively. In this proceeding, we evaluate the improvement in one qubit state tomography by using mathematical tools in classical statistical estimation theory. In particular, we show that the effect of the reduction decreases exponentially with respect to the number of data sets when the true state is mixed, and it remains at arbitrarily large data set when the true state is pure.
Quantum tomography meets dynamical systems and bifurcations theory
Energy Technology Data Exchange (ETDEWEB)
Goyeneche, D., E-mail: dardo.goyeneche@cefop.udec.cl [Departamento de Fisíca, Universidad de Concepción, Casilla 160-C, Concepción, Chile and Center for Optics and Photonics, Universidad de Concepción, Casilla 4012, Concepción (Chile); Torre, A. C. de la [Departamento de Física, Universidad Nacional de Mar del Plata, IFIMAR-CONICET, Dean Funes 3350, 7600 Mar del Plata (Argentina)
2014-06-01
A powerful tool for studying geometrical problems in Hilbert spaces is developed. We demonstrate the convergence and robustness of our method in every dimension by considering dynamical systems theory. This method provides numerical solutions to hard problems involving many coupled nonlinear equations in low and high dimensions (e.g., quantum tomography problem, existence and classification of Pauli partners, mutually unbiased bases, complex Hadamard matrices, equiangular tight frames, etc.). Additionally, this tool can be used to find analytical solutions and also to implicitly prove the existence of solutions. Here, we develop the theory for the quantum pure state tomography problem in finite dimensions but this approach is straightforwardly extended to the rest of the problems. We prove that solutions are always attractive fixed points of a nonlinear operator explicitly given. As an application, we show that the statistics collected from three random orthonormal bases is enough to reconstruct pure states from experimental (noisy) data in every dimension d ⩽ 32.
Quantum communication and information processing
Beals, Travis Roland
Quantum computers enable dramatically more efficient algorithms for solving certain classes of computational problems, but, in doing so, they create new problems. In particular, Shor's Algorithm allows for efficient cryptanalysis of many public-key cryptosystems. As public key cryptography is a critical component of present-day electronic commerce, it is crucial that a working, secure replacement be found. Quantum key distribution (QKD), first developed by C.H. Bennett and G. Brassard, offers a partial solution, but many challenges remain, both in terms of hardware limitations and in designing cryptographic protocols for a viable large-scale quantum communication infrastructure. In Part I, I investigate optical lattice-based approaches to quantum information processing. I look at details of a proposal for an optical lattice-based quantum computer, which could potentially be used for both quantum communications and for more sophisticated quantum information processing. In Part III, I propose a method for converting and storing photonic quantum bits in the internal state of periodically-spaced neutral atoms by generating and manipulating a photonic band gap and associated defect states. In Part II, I present a cryptographic protocol which allows for the extension of present-day QKD networks over much longer distances without the development of new hardware. I also present a second, related protocol which effectively solves the authentication problem faced by a large QKD network, thus making QKD a viable, information-theoretic secure replacement for public key cryptosystems.
A Universal Quantum Network Quantum Central Processing Unit
Institute of Scientific and Technical Information of China (English)
WANG An-Min
2001-01-01
A new construction scheme of a universal quantum network which is compatible with the known quantum gate- assembly schemes is proposed. Our quantum network is standard, easy-assemble, reusable, scalable and even potentially programmable. Moreover, we can construct a whole quantum network to implement the generalquantum algorithm and quantum simulation procedure. In the above senses, it is a realization of the quantum central processing unit.
Quantum processes on phase space
Anastopoulos, C
2003-01-01
Quantum theory predicts probabilities as well as relative phases between different alternatives of the system. A unified description of both probabilities and phases comes through a generalisation of the notion of a density matrix for histories; this object is the decoherence functional of the consistent histories approach. If we take phases as well as probabilities as primitive elements of our theory, we abandon Kolmogorov probability and can describe quantum theory in terms of fundamental commutative observables, without being obstructed by Bell's and related theorems. Generalising the theory of stochastic processes, we develop the description of relative phases and probabilities for paths on the classical phase space. This description provides a theory of quantum processes. We identify a number of basic postulates and study its corresponding properties. We strongly emphasise the notion of conditioning and are able to write ``quantum differential equations'' as analogous to stochastic differential equations...
Practical and Reliable Error Bars in Quantum Tomography.
Faist, Philippe; Renner, Renato
2016-07-01
Precise characterization of quantum devices is usually achieved with quantum tomography. However, most methods which are currently widely used in experiments, such as maximum likelihood estimation, lack a well-justified error analysis. Promising recent methods based on confidence regions are difficult to apply in practice or yield error bars which are unnecessarily large. Here, we propose a practical yet robust method for obtaining error bars. We do so by introducing a novel representation of the output of the tomography procedure, the quantum error bars. This representation is (i) concise, being given in terms of few parameters, (ii) intuitive, providing a fair idea of the "spread" of the error, and (iii) useful, containing the necessary information for constructing confidence regions. The statements resulting from our method are formulated in terms of a figure of merit, such as the fidelity to a reference state. We present an algorithm for computing this representation and provide ready-to-use software. Our procedure is applied to actual experimental data obtained from two superconducting qubits in an entangled state, demonstrating the applicability of our method.
Practical and Reliable Error Bars in Quantum Tomography
Faist, Philippe; Renner, Renato
2016-07-01
Precise characterization of quantum devices is usually achieved with quantum tomography. However, most methods which are currently widely used in experiments, such as maximum likelihood estimation, lack a well-justified error analysis. Promising recent methods based on confidence regions are difficult to apply in practice or yield error bars which are unnecessarily large. Here, we propose a practical yet robust method for obtaining error bars. We do so by introducing a novel representation of the output of the tomography procedure, the quantum error bars. This representation is (i) concise, being given in terms of few parameters, (ii) intuitive, providing a fair idea of the "spread" of the error, and (iii) useful, containing the necessary information for constructing confidence regions. The statements resulting from our method are formulated in terms of a figure of merit, such as the fidelity to a reference state. We present an algorithm for computing this representation and provide ready-to-use software. Our procedure is applied to actual experimental data obtained from two superconducting qubits in an entangled state, demonstrating the applicability of our method.
Toward quantum state tomography of a single polariton state of an atomic ensemble
DEFF Research Database (Denmark)
Christensen, S.L.; Béguin, J.B.; Sørensen, H.L.
2013-01-01
We present a proposal and a feasibility study for the creation and quantum state tomography of a single polariton state of an atomic ensemble. The collective non-classical and non-Gaussian state of the ensemble is generated by detection of a single forward-scattered photon. The state...... the feasibility of the proposed method for the detection of a non-classical and non-Gaussian state of the mesoscopic atomic ensemble. This work represents the first attempt at hybrid discrete-continuous variable quantum state processing with atomic memories....... is subsequently characterized by atomic state tomography performed using strong dispersive light-atom interaction followed by a homodyne measurement on the transmitted light. The proposal is backed by preliminary experimental results showing projection noise limited sensitivity and a simulation demonstrating...
Polarization-Sensitive Quantum Optical Coherence Tomography: Experiment
Booth, Mark C; Teich, Malvin Carl
2010-01-01
Polarization-sensitive quantum optical coherence tomography (PS-QOCT) makes use of a Type-II twin-photon light source for carrying out optical sectioning with polarization sensitivity. A BBO nonlinear optical crystal pumped by a Ti:sapphire psec-pulsed laser is used to confirm the theoretical underpinnings of this imaging paradigm. PS-QOCT offers even-order dispersion cancellation with simultaneous access to the group-velocity dispersion characteristics of the interstitial medium between the reflecting surfaces of the sample.
Quantum-optical coherence tomography with collinear entangled photons.
Lopez-Mago, Dorilian; Novotny, Lukas
2012-10-01
Quantum-optical coherence tomography (QOCT) combines the principles of classical OCT with the correlation properties of entangled photon pairs [Phys. Rev. A 65, 053817 (2002)]. The standard QOCT configuration is based on the Hong-Ou-Mandel interferometer, which uses entangled photons propagating in separate interferometer arms. This noncollinear configuration imposes practical limitations, e.g., misalignment due to drift and low signal-to-noise. Here, we introduce and implement QOCT based on collinear entangled photons. It makes use of a two-photon Michelson interferometer and offers several advantages, such as simplicity, robustness, and adaptability.
Quantum Information Processing and Quantum Error Correction An Engineering Approach
Djordjevic, Ivan
2012-01-01
Quantum Information Processing and Quantum Error Correction is a self-contained, tutorial-based introduction to quantum information, quantum computation, and quantum error-correction. Assuming no knowledge of quantum mechanics and written at an intuitive level suitable for the engineer, the book gives all the essential principles needed to design and implement quantum electronic and photonic circuits. Numerous examples from a wide area of application are given to show how the principles can be implemented in practice. This book is ideal for the electronics, photonics and computer engineer
Fluctuation theorems for quantum processes
Albash, Tameem; Marvian, Milad; Zanardi, Paolo
2013-01-01
We present fluctuation theorems and moment generating function equalities for generalized thermodynamic observables and quantum dynamics described by completely positive trace preserving (CPTP) maps, with and without feedback control. Our results include the quantum Jarzynski equality and Crooks fluctuation theorem, and clarify the special role played by the thermodynamic work and thermal equilibrium states in previous studies. We show that unitality replaces micro-reversibility as the condition for the physicality of the reverse process in our fluctuation theorems. We present an experimental application of our theory to the problem of extracting the system-bath coupling magnitude, which we do for a system of pairs of coupled superconducting flux qubits undergoing quantum annealing.
Quantum Process in Living Cells
Finkel, Robert W
2012-01-01
Quantum effects have been confirmed in photosynthesis and other biological phenomena. Here we explore the idea of a cooperative quantum process in cells and introduce a model based on coherent waves of established ultrafast energy transfers in water. We compute wave speed, ~156 km/s, and wavelength, ~9.3 nm, and determine that the waves retain local coherence. Diverse numerical applications lend support to the hypothesis that rapid energy transfers in water are characteristic of living cells. Close agreements are found for the dipole moment of water dimers, microwave radiation on yeast, and the Kleiber law of metabolic rates. We find a sphere with diameter ~20 nm is a lower bound for life in this theory. The quantum properties of the model suggest that cellular chemistry favors reactions that support perpetuation of the energy waves
Ion trapping for quantum information processing
Institute of Scientific and Technical Information of China (English)
WAN Jin-yin; WANG Yu-zhu; LIU Liang
2007-01-01
In this paper we have reviewed the recent pro-gresses on the ion trapping for quantum information process-ing and quantum computation. We have first discussed the basic principle of quantum information theory and then fo-cused on ion trapping for quantum information processing.Many variations, especially the techniques of ion chips, have been investigated since the original ion trap quantum compu-tation scheme was proposed. Full two-dimensional control of multiple ions on an ion chip is promising for the realization of scalable ion trap quantum computation and the implemen-tation of quantum networks.
Quantum Process Algebra with Priorities
Ren, Xingtian; Wang, Yong; Dai, Guiping
2017-08-01
One of the most fascinating characteristics is the modularity of ACP (Algebra of Communicating Processes), that is, ACP can be extended easily. qACP also inherents the modularity characteristics of ACP. By introducing new operators or new constants, qACP can have more properties. In this paper, we extend the quantum process algebra qACP with priorities support in an elegant way. And we obtain the soundness and completeness of the extension.
Quantum state tomography of a single qubit: comparison of methods
Schmied, Roman
2016-10-01
The tomographic reconstruction of the state of a quantum-mechanical system is an essential component in the development of quantum technologies. We present an overview of different tomographic methods for determining the quantum-mechanical density matrix of a single qubit: (scaled) direct inversion, maximum likelihood estimation (MLE), minimum Fisher information distance and Bayesian mean estimation (BME). We discuss the different prior densities in the space of density matrices, on which both MLE and BME depend, as well as ways of including experimental errors and of estimating tomography errors. As a measure of the accuracy of these methods, we average the trace distance between a given density matrix and the tomographic density matrices it can give rise to through experimental measurements. We find that the BME provides the most accurate estimate of the density matrix, and suggest using either the pure-state prior, if the system is known to be in a rather pure state, or the Bures prior if any state is possible. The MLE is found to be slightly less accurate. We comment on the extrapolation of these results to larger systems.
Okano, Masayuki; Okamoto, Ryo; Nishizawa, Norihiko; Kurimura, Sunao; Takeuchi, Shigeki
2016-01-01
Quantum information technologies harness the intrinsic nature of quantum theory to beat the limitations of the classical methods for information processing and communication. Recently, the application of quantum features to metrology has attracted much attention. Quantum optical coherence tomography (QOCT), which utilizes two-photon interference between entangled photon pairs, is a promising approach to overcome the problem with optical coherence tomography (OCT): As the resolution of OCT becomes higher, degradation of the resolution due to dispersion within the medium becomes more critical. Here we report on the realization of 0.54 $\\mu$m resolution two-photon interference, which surpasses the current record resolution 0.75 $\\mu$m of low-coherence interference for OCT. In addition, the resolution for QOCT showed almost no change against the dispersion of a 1 mm thickness of water inserted in the optical path, whereas the resolution for OCT dramatically degrades. For this experiment, a highly-efficient chirpe...
Experimental Quantum Randomness Processing Using Superconducting Qubits
Yuan, Xiao; Liu, Ke; Xu, Yuan; Wang, Weiting; Ma, Yuwei; Zhang, Fang; Yan, Zhaopeng; Vijay, R.; Sun, Luyan; Ma, Xiongfeng
2016-07-01
Coherently manipulating multipartite quantum correlations leads to remarkable advantages in quantum information processing. A fundamental question is whether such quantum advantages persist only by exploiting multipartite correlations, such as entanglement. Recently, Dale, Jennings, and Rudolph negated the question by showing that a randomness processing, quantum Bernoulli factory, using quantum coherence, is strictly more powerful than the one with classical mechanics. In this Letter, focusing on the same scenario, we propose a theoretical protocol that is classically impossible but can be implemented solely using quantum coherence without entanglement. We demonstrate the protocol by exploiting the high-fidelity quantum state preparation and measurement with a superconducting qubit in the circuit quantum electrodynamics architecture and a nearly quantum-limited parametric amplifier. Our experiment shows the advantage of using quantum coherence of a single qubit for information processing even when multipartite correlation is not present.
Experimental Quantum Randomness Processing Using Superconducting Qubits.
Yuan, Xiao; Liu, Ke; Xu, Yuan; Wang, Weiting; Ma, Yuwei; Zhang, Fang; Yan, Zhaopeng; Vijay, R; Sun, Luyan; Ma, Xiongfeng
2016-07-01
Coherently manipulating multipartite quantum correlations leads to remarkable advantages in quantum information processing. A fundamental question is whether such quantum advantages persist only by exploiting multipartite correlations, such as entanglement. Recently, Dale, Jennings, and Rudolph negated the question by showing that a randomness processing, quantum Bernoulli factory, using quantum coherence, is strictly more powerful than the one with classical mechanics. In this Letter, focusing on the same scenario, we propose a theoretical protocol that is classically impossible but can be implemented solely using quantum coherence without entanglement. We demonstrate the protocol by exploiting the high-fidelity quantum state preparation and measurement with a superconducting qubit in the circuit quantum electrodynamics architecture and a nearly quantum-limited parametric amplifier. Our experiment shows the advantage of using quantum coherence of a single qubit for information processing even when multipartite correlation is not present.
Quantum logical operations for spin 3/2 quadrupolar nuclei monitored by quantum state tomography.
Bonk, F A; deAzevedo, E R; Sarthour, R S; Bulnes, J D; Freitas, J C C; Guimarães, A P; Oliveira, I S; Bonagamba, T J
2005-08-01
This article presents the realization of many self-reversible quantum logic gates using two-qubit quadrupolar spin 3/2 systems. Such operations are theoretically described using propagation matrices for the RF pulses that include the effect of the quadrupolar evolution during the pulses. Experimental demonstrations are performed using a generalized form of the recently developed method for quantum state tomography in spin 3/2 systems. By doing so, the possibility of controlling relative phases of superimposed pseudo-pure states is demonstrated. In addition, many aspects of the effect of the quadrupolar evolution, occurring during the RF pulses, on the quantum operations performance are discussed. Most of the procedures presented can be easily adapted to describe selective pulses of higher spin systems (>3/2) and for spin 1/2 under J couplings.
Information Processing Structure of Quantum Gravity
Gyongyosi, Laszlo; Imre, Sandor
2014-05-01
The theory of quantum gravity is aimed to fuse general relativity with quantum theory into a more fundamental framework. Quantum gravity provides both the non-fixed causality of general relativity and the quantum uncertainty of quantum mechanics. In a quantum gravity scenario, the causal structure is indefinite and the processes are causally non-separable. We provide a model for the information processing structure of quantum gravity. We show that the quantum gravity environment is an information resource-pool from which valuable information can be extracted. We analyze the structure of the quantum gravity space and the entanglement of the space-time geometry. We study the information transfer capabilities of quantum gravity space and define the quantum gravity channel. We characterize the information transfer of the gravity space and the correlation measure functions of the gravity channel. We investigate the process of stimulated storage for quantum gravity memories, a phenomenon that exploits the information resource-pool property of quantum gravity. The results confirm that the benefits of the quantum gravity space can be exploited in quantum computations, particularly in the development of quantum computers. The results are supported by the grant COST Action MP1006.
Quantum state tomography for quadrupole nuclei and its applications on a two-qubit system
Energy Technology Data Exchange (ETDEWEB)
Bonk, F.A.; Azevedo, E.R. de; Mantovani, G.L.; Bonagamba, T.J. [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Fisica]. E-mail: azevedo@if.sc.usp.br; Sarthour, R.S.; Bulnes, J.D.; Guimaraes, A.P.; Oliveira, I.S. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mails: sarthour@cbpf.br; apguima@cbpf.br; ivan@cbpf.br; Freitas, J.C.C. [Espirito Santo Univ., Vitoria (Brazil). Dept. de Fisica
2004-05-01
A method for performing quantum state tomography for quadrupole nuclei is presented in this paper. First, it is shown that upon appropriate phase cycling, the NMR intensities of quadrupole nuclei depend only on diagonal elements of the density matrix. Thus, a method for obtaining the density matrix elements, which consists of dragging off-diagonal elements into the main diagonal using fine phase-controlled selective radiofrequency pulses, was derived. The use of the method is exemplified through {sup 23} Na NMR (nuclear spin I = 3/2) in a lyotropic liquid-crystal at room temperature, in three applications: (a) the tomography of pseudo-pure states; (b) the tomography of the quadrupole free evolution of the density matrix, and (c) the unitary state evolution of each qubit in the system over the Bloch sphere upon the application of a Hadamard gate. Further applications in the context of pure NMR and in the context of quantum information processing, as well as generalizations for higher spins, are discussed. (author)
Local solutions of Maximum Likelihood Estimation in Quantum State Tomography
Gonçalves, Douglas S; Lavor, Carlile; Farías, Osvaldo Jiménez; Ribeiro, P H Souto
2011-01-01
Maximum likelihood estimation is one of the most used methods in quantum state tomography, where the aim is to find the best density matrix for the description of a physical system. Results of measurements on the system should match the expected values produced by the density matrix. In some cases however, if the matrix is parameterized to ensure positivity and unit trace, the negative log-likelihood function may have several local minima. In several papers in the field, authors associate a source of errors to the possibility that most of these local minima are not global, so that optimization methods can be trapped in the wrong minimum, leading to a wrong density matrix. Here we show that, for convex negative log-likelihood functions, all local minima are global. We also show that a practical source of errors is in fact the use of optimization methods that do not have global convergence property or present numerical instabilities. The clarification of this point has important repercussion on quantum informat...
Rank-based model selection for multiple ions quantum tomography
Guţă, Mădălin; Kypraios, Theodore; Dryden, Ian
2012-10-01
The statistical analysis of measurement data has become a key component of many quantum engineering experiments. As standard full state tomography becomes unfeasible for large dimensional quantum systems, one needs to exploit prior information and the ‘sparsity’ properties of the experimental state in order to reduce the dimensionality of the estimation problem. In this paper we propose model selection as a general principle for finding the simplest, or most parsimonious explanation of the data, by fitting different models and choosing the estimator with the best trade-off between likelihood fit and model complexity. We apply two well established model selection methods—the Akaike information criterion (AIC) and the Bayesian information criterion (BIC)—two models consisting of states of fixed rank and datasets such as are currently produced in multiple ions experiments. We test the performance of AIC and BIC on randomly chosen low rank states of four ions, and study the dependence of the selected rank with the number of measurement repetitions for one ion states. We then apply the methods to real data from a four ions experiment aimed at creating a Smolin state of rank 4. By applying the two methods together with the Pearson χ2 test we conclude that the data can be suitably described with a model whose rank is between 7 and 9. Additionally we find that the mean square error of the maximum likelihood estimator for pure states is close to that of the optimal over all possible measurements.
Quantum state tomography and fidelity estimation via Phaselift
Energy Technology Data Exchange (ETDEWEB)
Lu, Yiping; Liu, Huan; Zhao, Qing, E-mail: qzhaoyuping@bit.edu.cn
2015-09-15
Experiments of multi-photon entanglement have been performed by several groups. Obviously, an increase on the photon number for fidelity estimation and quantum state tomography causes a dramatic increase in the elements of the positive operator valued measures (POVMs), which results in a great consumption of time in measurements. In practice, we wish to obtain a good estimation of fidelity and quantum states through as few measurements as possible for multi-photon entanglement. Phaselift provides such a chance to estimate fidelity for entangling states based on less data. In this paper, we would like to show how the Phaselift works for six qubits in comparison to the data given by Pan’s group, i.e., we use a fraction of the data as input to estimate the rest of the data through the obtained density matrix, and thus goes beyond the simple fidelity analysis. The fidelity bound is also provided for general Schrödinger Cat state. Based on the fidelity bound, we propose an optimal measurement approach which could both reduce the copies and keep the fidelity bound gap small. The results demonstrate that the Phaselift can help decrease the measured elements of POVMs for six qubits. Our conclusion is based on the prior knowledge that a pure state is the target state prepared by experiments.
Superfast maximum-likelihood reconstruction for quantum tomography
Shang, Jiangwei; Zhang, Zhengyun; Ng, Hui Khoon
2017-06-01
Conventional methods for computing maximum-likelihood estimators (MLE) often converge slowly in practical situations, leading to a search for simplifying methods that rely on additional assumptions for their validity. In this work, we provide a fast and reliable algorithm for maximum-likelihood reconstruction that avoids this slow convergence. Our method utilizes the state-of-the-art convex optimization scheme, an accelerated projected-gradient method, that allows one to accommodate the quantum nature of the problem in a different way than in the standard methods. We demonstrate the power of our approach by comparing its performance with other algorithms for n -qubit state tomography. In particular, an eight-qubit situation that purportedly took weeks of computation time in 2005 can now be completed in under a minute for a single set of data, with far higher accuracy than previously possible. This refutes the common claim that MLE reconstruction is slow and reduces the need for alternative methods that often come with difficult-to-verify assumptions. In fact, recent methods assuming Gaussian statistics or relying on compressed sensing ideas are demonstrably inapplicable for the situation under consideration here. Our algorithm can be applied to general optimization problems over the quantum state space; the philosophy of projected gradients can further be utilized for optimization contexts with general constraints.
Mapping coherence in measurement via full quantum tomography of a hybrid optical detector
Zhang, Lijian; Datta, Animesh; Puentes, Graciana; Lundeen, Jeff S; Jin, Xian-Min; Smith, Brian J; Plenio, Martin B; Walmsley, Ian A
2012-01-01
Quantum states and measurements exhibit wave-like --- continuous, or particle-like --- discrete, character. Hybrid discrete-continuous photonic systems are key to investigating fundamental quantum phenomena, generating superpositions of macroscopic states, and form essential resources for quantum-enhanced applications, e.g. entanglement distillation and quantum computation, as well as highly efficient optical telecommunications. Realizing the full potential of these hybrid systems requires quantum-optical measurements sensitive to complementary observables such as field quadrature amplitude and photon number. However, a thorough understanding of the practical performance of an optical detector interpolating between these two regions is absent. Here, we report the implementation of full quantum detector tomography, enabling the characterization of the simultaneous wave and photon-number sensitivities of quantum-optical detectors. This yields the largest parametrization to-date in quantum tomography experiments...
Bogdanov, Yu I; Gavrichenko, A K
2011-01-01
A throughout study of statistical characteristics of fidelity in different protocols of quantum tomography is given. We consider protocols based on geometry of platonic solids and other polyhedrons with high degree of symmetry such as fullerene and its dual polyhedron. Characteristics of fidelity in different protocols are compared to the theoretical level of the minimum possible level of fidelity loss. Tomography of pure and mixed states in Hilbert spaces of different dimension is analyzed. Results of this work could be used for a better control of quantum gates and quantum states in quantum information technologies.
Thermodynamics of discrete quantum processes
Anders, Janet; Giovannetti, Vittorio
2013-03-01
We define thermodynamic configurations and identify two primitives of discrete quantum processes between configurations for which heat and work can be defined in a natural way. This allows us to uncover a general second law for any discrete trajectory that consists of a sequence of these primitives, linking both equilibrium and non-equilibrium configurations. Moreover, in the limit of a discrete trajectory that passes through an infinite number of configurations, i.e. in the reversible limit, we recover the saturation of the second law. Finally, we show that for a discrete Carnot cycle operating between four configurations one recovers Carnot's thermal efficiency.
Quantum Control of Molecular Processes
Shapiro, Moshe
2012-01-01
Written by two of the world's leading researchers in the field, this is a systematic introduction to the fundamental principles of coherent control, and to the underlying physics and chemistry.This fully updated second edition is enhanced by 80% and covers the latest techniques and applications, including nanostructures, attosecond processes, optical control of chirality, and weak and strong field quantum control. Developments and challenges in decoherence-sensitive condensed phase control as well as in bimolecular control are clearly described.Indispensable for atomic, molecular and chemical
Quantum information processing and relativistic quantum fields
Benincasa, Dionigi M. T.; Borsten, Leron; Buck, Michel; Dowker, Fay
2014-04-01
It is shown that an ideal measurement of a one-particle wave packet state of a relativistic quantum field in Minkowski spacetime enables superluminal signalling. The result holds for a measurement that takes place over an intervention region in spacetime whose extent in time in some frame is longer than the light-crossing time of the packet in that frame. Moreover, these results are shown to apply not only to ideal measurements but also to unitary transformations that rotate two orthogonal one-particle states into each other. In light of these observations, possible restrictions on the allowed types of intervention are considered. A more physical approach to such questions is to construct explicit models of the interventions as interactions between the field and other quantum systems such as detectors. The prototypical Unruh-DeWitt detector couples to the field operator itself and so most likely respects relativistic causality. On the other hand, detector models which couple to a finite set of frequencies of field modes are shown to lead to superluminal signalling. Such detectors do, however, provide successful phenomenological models of atom-qubits interacting with quantum fields in a cavity but are valid only on time scales many orders of magnitude larger than the light-crossing time of the cavity.
Spatiotemporal computed tomography of dynamic processes
Kaestner, Anders; Münch, Beat; Trtik, Pavel; Butler, Les
2011-12-01
Modern computed tomography (CT) equipment allowing fast 3-D imaging also makes it possible to monitor dynamic processes by 4-D imaging. Because the acquisition time of various 3-D-CT systems is still in the range of at least milliseconds or even hours, depending on the detector system and the source, the balance of the desired temporal and spatial resolution must be adjusted. Furthermore, motion artifacts will occur, especially at high spatial resolution and longer measuring times. We propose two approaches based on nonsequential projection angle sequences allowing a convenient postacquisition balance of temporal and spatial resolution. Both strategies are compatible with existing instruments, needing only a simple reprograming of the angle list used for projection acquisition and care with the projection order list. Both approaches will reduce the impact of artifacts due to motion. The strategies are applied and validated with cold neutron imaging of water desorption from originally saturated particles during natural air-drying experiments and with x-ray tomography of a polymer blend heated during imaging.
Fractional Fourier processing of quantum light.
Sun, Yifan; Tao, Ran; Zhang, Xiangdong
2014-01-13
We have extended Fourier transform of quantum light to a fractional Fourier processing, and demonstrated that a classical optical fractional Fourier processor can be used for the shaping of quantum correlations between two or more photons. Comparing the present method with that of Fourier processing, we find that fractional Fourier processing for quantum light possesses many advantages. Based on such a method, not only quantum correlations can be shaped more rich, but also the initial states can be easily identified. Moreover, the twisted phase information can be recovered and quantum states are easily controlled in performing quantum information experiments. Our findings open up new avenues for the manipulation of correlations between photons in optical quantum information processing.
Automatic processing of multimodal tomography datasets.
Parsons, Aaron D; Price, Stephen W T; Wadeson, Nicola; Basham, Mark; Beale, Andrew M; Ashton, Alun W; Mosselmans, J Frederick W; Quinn, Paul D
2017-01-01
With the development of fourth-generation high-brightness synchrotrons on the horizon, the already large volume of data that will be collected on imaging and mapping beamlines is set to increase by orders of magnitude. As such, an easy and accessible way of dealing with such large datasets as quickly as possible is required in order to be able to address the core scientific problems during the experimental data collection. Savu is an accessible and flexible big data processing framework that is able to deal with both the variety and the volume of data of multimodal and multidimensional scientific datasets output such as those from chemical tomography experiments on the I18 microfocus scanning beamline at Diamond Light Source.
Information Processing Structure of Quantum Gravity
Gyongyosi, Laszlo
2014-01-01
The theory of quantum gravity is aimed to fuse general relativity with quantum theory into a more fundamental framework. The space of quantum gravity provides both the non-fixed causality of general relativity and the quantum uncertainty of quantum mechanics. In a quantum gravity scenario, the causal structure is indefinite and the processes are causally non-separable. In this work, we provide a model for the information processing structure of quantum gravity. We show that the quantum gravity environment is an information resource-pool from which valuable information can be extracted. We analyze the structure of the quantum gravity space and the entanglement of the space-time geometry. We study the information transfer capabilities of quantum gravity space and define the quantum gravity channel. We reveal that the quantum gravity space acts as a background noise on the local environment states. We characterize the properties of the noise of the quantum gravity space and show that it allows the separate local...
Quantum Information Processing and Relativistic Quantum Fields
Benincasa, Dionigi M T; Buck, Michel; Dowker, Fay
2014-01-01
It is shown that an ideal measurement of a one-particle wave packet state of a relativistic quantum field in Minkowski spacetime enables superluminal signalling. The result holds for a measurement that takes place over an intervention region in spacetime whose extent in time in some frame is longer than the light-crossing time of the packet in that frame. Moreover, these results are shown to apply not only to ideal measurements but also to unitary transformations that rotate two orthogonal one-particle states into each other. In light of these observations, possible restrictions on the allowed types of intervention are considered. A more physical approach to such questions is to construct explicit models of the interventions as interactions between the field and other quantum systems such as detectors. The prototypical Unruh-DeWitt detector couples to the field operator itself and so most likely respects relativistic causality. On the other hand, detector models which couple to a finite set of frequencies of ...
Application of electrical capacitance tomography for imaging industrial processes
Institute of Scientific and Technical Information of China (English)
DYAKOWSKI Tom
2005-01-01
Electrical tomography is, in certain cases, the most attractive method for real imaging of industrial processes, because of its inherent simplicity, rugged cons truction of the tomographer and high-speed capability. This paper presents examples illustrating applications of electrical tomography for imaging fluidized beds, bubble columns and pneumatic conveyors. Electrical tomography opens up new ways for processing, imaging and modelling multi-phase flows as shown by 2D and 3D images illustrating the various types of flow morphology.
Introduction to quantum physics and information processing
Vathsan, Radhika
2016-01-01
An Elementary Guide to the State of the Art in the Quantum Information FieldIntroduction to Quantum Physics and Information Processing guides beginners in understanding the current state of research in the novel, interdisciplinary area of quantum information. Suitable for undergraduate and beginning graduate students in physics, mathematics, or engineering, the book goes deep into issues of quantum theory without raising the technical level too much.The text begins with the basics of quantum mechanics required to understand how two-level systems are used as qubits. It goes on to show how quant
A Process Model of Quantum Mechanics
Sulis, William
2014-01-01
A process model of quantum mechanics utilizes a combinatorial game to generate a discrete and finite causal space upon which can be defined a self-consistent quantum mechanics. An emergent space-time M and continuous wave function arise through a non-uniform interpolation process. Standard non-relativistic quantum mechanics emerges under the limit of infinite information (the causal space grows to infinity) and infinitesimal scale (the separation between points goes to zero). The model has th...
Fast ion swapping for quantum-information processing
Kaufmann, H.; Ruster, T.; Schmiegelow, C. T.; Luda, M. A.; Kaushal, V.; Schulz, J.; von Lindenfels, D.; Schmidt-Kaler, F.; Poschinger, U. G.
2017-05-01
We demonstrate a swap gate between laser-cooled ions in a segmented microtrap via fast physical swapping of the ion positions. This operation is used in conjunction with qubit initialization, manipulation, and readout and with other types of shuttling operations such as linear transport and crystal separation and merging. Combining these operations, we perform quantum process tomography of the swap gate, obtaining a mean process fidelity of 99.5(5)%. The swap operation is demonstrated with motional excitations below 0.05(1) quantum for all six collective modes of a two-ion crystal for a process duration of 42 μ s . Extending these techniques to three ions, we reverse the order of a three-ion crystal and reconstruct the truth table for this operation, resulting in a mean process fidelity of 99.96(13)% in the logical basis.
Generated dynamics of Markov and quantum processes
Janßen, Martin
2016-01-01
This book presents Markov and quantum processes as two sides of a coin called generated stochastic processes. It deals with quantum processes as reversible stochastic processes generated by one-step unitary operators, while Markov processes are irreversible stochastic processes generated by one-step stochastic operators. The characteristic feature of quantum processes are oscillations, interference, lots of stationary states in bounded systems and possible asymptotic stationary scattering states in open systems, while the characteristic feature of Markov processes are relaxations to a single stationary state. Quantum processes apply to systems where all variables, that control reversibility, are taken as relevant variables, while Markov processes emerge when some of those variables cannot be followed and are thus irrelevant for the dynamic description. Their absence renders the dynamic irreversible. A further aim is to demonstrate that almost any subdiscipline of theoretical physics can conceptually be put in...
Bistatic SAR tomography: processing and experimental results
Duque Biarge, Sergio; López Dekker, Francisco J.; Merlano Duncan, Juan Carlos; Mallorquí Franquet, Jordi Joan
2010-01-01
This paper presents across-track tomography applied to a bistatic geometry with fixed receivers. This kind of geometry can overcome some of the classical monostatic tomography limitations such as temporal decorrelation and irregular baseline distribution. The Remote Sensing Laboratory (RSLab)of the Universitat Politècnica de Catalunya (UPC) has implemented a SAR Bistatic Receiver for INterferometric Applications,SABRINA, with 4-channels. SABRINA has been used to carry out a bistatic tomogr...
Quantum Darwinism as a Darwinian process
Campbell, John
2010-01-01
The Darwinian nature of Wojciech Zurek's theory of Quantum Darwinism is evaluated against the criteria of a Darwinian process as understood within Universal Darwinism. The characteristics of a Darwinian process are developed including the consequences of accumulated adaptations resulting in adaptive systems operating in accordance with Friston's free energy principle and employing environmental simulations. Quantum theory, as developed in Zurek's research program and encapsulated by his theory of Quantum Darwinism is discussed from the view that Zurek's derivation of the measurement axioms implies that the evolution of a quantum system entangled with environmental entities is determined solely by the nature of the entangled system. There need be no further logical foundation. Quantum Darwinism is found to conform to the Darwinian paradigm in unexpected detail and is thus may be considered a theory within the framework of Universal Darwinism. With the inclusion of Quantum Darwinism within Universal Darwinism a...
Silicon Quantum Dots for Quantum Information Processing
2013-11-01
NeillConcelman CNOT Controlled-not gate CPU Central processing unit DC Direct current DCE dichloroethylene EBL Electron beam lithography ESR Electron spin...Electron Beam Lithography of Gates and Alignment Markers The main electron beam lithography ( EBL ) machine used for fabricating the devices in this thesis...vided additional support for patterning parameters such as drawing sequences, drawing directions and area dose, and controlling the EBL writing
Quantum Information Processing in Disordered and Complex Quantum Systems
De, A S; Ahufinger, V; Briegel, H J; Sanpera, A; Lewenstein, M; De, Aditi Sen; Sen, Ujjwal; Ahufinger, Veronica; Briegel, Hans J.; Sanpera, Anna; Lewenstein, Maciej
2005-01-01
We investigate quantum information processing and manipulations in disordered systems of ultracold atoms and trapped ions. First, we demonstrate generation of entanglement and local realization of quantum gates in a quantum spin glass system. Entanglement in such systems attains significantly high values, after quenched averaging, and has a stable positive value for arbitrary times. Complex systems with long range interactions, such as ion chains or dipolar atomic gases, can be modeled by neural network Hamiltonians. In such systems, we find the characteristic time of persistence of quenched averaged entanglement, and also find the time of its revival.
Quantum information processing and nuclear magnetic resonance
Cummins, H K
2001-01-01
as spectrometer pulse sequence programs. Quantum computers are information processing devices which operate by and exploit the laws of quantum mechanics, potentially allowing them to solve problems which are intractable using classical computers. This dissertation considers the practical issues involved in one of the more successful implementations to date, nuclear magnetic resonance (NMR). Techniques for dealing with systematic errors are presented, and a quantum protocol is implemented. Chapter 1 is a brief introduction to quantum computation. The physical basis of its efficiency and issues involved in its implementation are discussed. NMR quantum information processing is reviewed in more detail in Chapter 2. Chapter 3 considers some of the errors that may be introduced in the process of implementing an algorithm, and high-level ways of reducing the impact of these errors by using composite rotations. Novel general expressions for stabilising composite rotations are presented in Chapter 4 and a new class o...
Quantum-Information Processing with Semiconductor Macroatoms
Biolatti, E; Zanardi, P; Rossi, F; Biolatti, Eliana; Iotti, Rita C.; Zanardi, Paolo; Rossi, Fausto
2000-01-01
An all optical implementation of quantum information processing with semiconductor macroatoms is proposed. Our quantum hardware consists of an array of semiconductor quantum dots and the computational degrees of freedom are energy-selected interband optical transitions. The proposed quantum-computing strategy exploits exciton-exciton interactions driven by ultrafast sequences of multi-color laser pulses. Contrary to existing proposals based on charge excitations, the present all-optical implementation does not require the application of time-dependent electric fields, thus allowing for a sub-picosecond, i.e. decoherence-free, operation time-scale in realistic state-of-the-art semiconductor nanostructures.
Virtual Processes and Quantum Tunnelling as Fictions
Arthur, Richard T. W.
2012-01-01
In this paper it is argued that virtual processes are dispensable fictions. The argument proceeds by a comparison with the phenomenon of quantum tunnelling. Building on an analysis of Levy-Leblond and Balibar, it is argued that, although the phenomenon known as quantum tunnelling certainly occurs and is at the basis of many paradigmatic quantum…
Quantum optical signal processing in diamond
Fisher, Kent A G; Maclean, Jean-Phillipe W; Bustard, Philip J; Resch, Kevin J; Sussman, Benjamin J
2015-01-01
Controlling the properties of single photons is essential for a wide array of emerging optical quantum technologies spanning quantum sensing, quantum computing, and quantum communications. Essential components for these technologies include single photon sources, quantum memories, waveguides, and detectors. The ideal spectral operating parameters (wavelength and bandwidth) of these components are rarely similar; thus, frequency conversion and spectral control are key enabling steps for component hybridization. Here we perform signal processing of single photons by coherently manipulating their spectra via a modified quantum memory. We store 723.5 nm photons, with 4.1 nm bandwidth, in a room-temperature diamond crystal; upon retrieval we demonstrate centre frequency tunability over 4.2 times the input bandwidth, and bandwidth modulation between 0.5 to 1.9 times the input bandwidth. Our results demonstrate the potential for diamond, and Raman memories in general, to be an integrated platform for photon storage ...
Coherent signal processing in optical coherence tomography
Kulkarni, Manish Dinkarrao
1999-09-01
Optical coherence tomography (OCT) is a novel method for non-invasive sub-surface imaging of biological tissue micro-structures. OCT achieves high spatial resolution ( ~ 15 m m in three dimensions) using a fiber-optically integrated system which is suitable for application in minimally invasive diagnostics, including endoscopy. OCT uses an optical heterodyne detection technique based on white light interferometry. Therefore extremely faint reflections ( ~ 10 fW) are routinely detected with high spatial localization. The goal of this thesis is twofold. The first is to present a theoretical model for describing image formation in OCT, and attempt to enhance the current level of understanding of this new modality. The second objective is to present signal processing methods for improving OCT image quality. We present deconvolution algorithms to obtain improved longitudinal resolution in OCT. This technique may be implemented without increasing system complexity as compared to current clinical OCT systems. Since the spectrum of the light backscattered from bio-scatterers is closely associated with ultrastructural variations in tissue, we propose a new technique for measuring spectra as a function of depth. This advance may assist OCT in differentiating various tissue types and detecting abnormalities within a tissue. In addition to depth resolved spectroscopy, Doppler processing of OCT signals can also improve OCT image contrast. We present a new technique, termed color Doppler OCT (CDOCT). It is an innovative extension of OCT for performing spatially localized optical Doppler velocimetry. Micron-resolution imaging of blood flow in sub-surface vessels in living tissue using CDOCT is demonstrated. The fundamental issues regarding the trade- off between the velocity estimation precision and image acquisition rate are presented. We also present novel algorithms for high accuracy velocity estimation. In many blood vessels velocities tend to be on the order of a few cm
Enhancing multi-step quantum state tomography by PhaseLift
Lu, Yiping; Zhao, Qing
2017-09-01
Multi-photon system has been studied by many groups, however the biggest challenge faced is the number of copies of an unknown state are limited and far from detecting quantum entanglement. The difficulty to prepare copies of the state is even more serious for the quantum state tomography. One possible way to solve this problem is to use adaptive quantum state tomography, which means to get a preliminary density matrix in the first step and revise it in the second step. In order to improve the performance of adaptive quantum state tomography, we develop a new distribution scheme of samples and extend it to three steps, that is to correct it once again based on the density matrix obtained in the traditional adaptive quantum state tomography. Our numerical results show that the mean square error of the reconstructed density matrix by our new method is improved to the level from 10-4 to 10-9 for several tested states. In addition, PhaseLift is also applied to reduce the required storage space of measurement operator.
Bose, Ranojoy
In this thesis, we study solution-processed lead sulfide quantum dots for near-infrared quantum information and communication applications. Quantum dots processed through synthetic routes and colloidally suspended in solution offer far-reaching device application possibilities that are unparalelled in traditional self-assembled quantum dots. Lead sulfide quantum dots are especially promising for near-infrared quantum optics due to their optical emission at the wavelengths of fiber-optic communications (1.3--1.5 microm). The broad absorption spectrum of these quantum dots can be used for solar light-harvesting applications, to which end the results of Chapter 2---where we study Forster resonance energy transfer in quantum dot solids---provide remarkable insights into photon emission from quantum-dot based solar cells. In subsequent chapters, we explore quantum-dot photonic crystal applications, where exciton-photon interactions in the cavity environment remarkably allow for the emission of indistinguishable single photons that are important for distribution of high-security quantum keys---being highly sensitive to 'eavesdropping'. Particularly, the suggestion of the solution-processed QED system is novel compared to traditional self-assembled systems, and as we will discuss, offer integration and processing capabilities that are unprecedented, and perform well at wavelength ranges where standard QED systems scale poorly. The results of chapters 3--6 are therefore significant in the general field of cavity quantum electrodynamics.
Feynman integral and perturbation theory in quantum tomography
Fedorov, Aleksey
2013-11-01
We present a definition for tomographic Feynman path integral as representation for quantum tomograms via Feynman path integral in the phase space. The proposed representation is the potential basis for investigation of Path Integral Monte Carlo numerical methods with quantum tomograms. Tomographic Feynman path integral is a representation of solution of initial problem for evolution equation for tomograms. The perturbation theory for quantum tomograms is constructed.
Continuous-variable quantum information processing
DEFF Research Database (Denmark)
Andersen, Ulrik Lund; Leuchs, G.; Silberhorn, C.
2010-01-01
Observables of quantum systems can possess either a discrete or a continuous spectrum. For example, upon measurements of the photon number of a light state, discrete outcomes will result whereas measurements of the light's quadrature amplitudes result in continuous outcomes. If one uses the conti......Observables of quantum systems can possess either a discrete or a continuous spectrum. For example, upon measurements of the photon number of a light state, discrete outcomes will result whereas measurements of the light's quadrature amplitudes result in continuous outcomes. If one uses...... the continuous degree of freedom of a quantum system for encoding, processing or detecting information, one enters the field of continuous-variable (CV) quantum information processing. In this paper we review the basic principles of CV quantum information processing with main focus on recent developments...... in the field. We will be addressing the three main stages of a quantum information system; the preparation stage where quantum information is encoded into CVs of coherent states and single-photon states, the processing stage where CV information is manipulated to carry out a specified protocol and a detection...
Quantum information processing with mesoscopic photonic states
DEFF Research Database (Denmark)
Madsen, Lars Skovgaard
2012-01-01
The thesis is built up around a versatile optical experimental setup based on a laser, two optical parametric ampliers, a few sets of modulators and two sets of homodyne detectors, which together with passive linear optics generate, process and characterize various types of Gaussian quantum states...... in the mixture of coherent states. Further we investigate the robustness of the discord of a broader range of states and suggest a toolbox of states which can be used to test if a protocol is discord based, before performing a rigid proof. Gaussian quantum key distribution can be implemented with current....... Using this setup we have experimentally and theoretically investigated Gaussian quantum discord, continuous variable quantum key distribution and quantum polarization. The Gaussian discord broadens the definition of non-classical correlations from entanglement, to all types of correlations which cannot...
Quantum metrology with unitary parametrization processes.
Liu, Jing; Jing, Xiao-Xing; Wang, Xiaoguang
2015-02-24
Quantum Fisher information is a central quantity in quantum metrology. We discuss an alternative representation of quantum Fisher information for unitary parametrization processes. In this representation, all information of parametrization transformation, i.e., the entire dynamical information, is totally involved in a Hermitian operator H. Utilizing this representation, quantum Fisher information is only determined by H and the initial state. Furthermore, H can be expressed in an expanded form. The highlights of this form is that it can bring great convenience during the calculation for the Hamiltonians owning recursive commutations with their partial derivative. We apply this representation in a collective spin system and show the specific expression of H. For a simple case, a spin-half system, the quantum Fisher information is given and the optimal states to access maximum quantum Fisher information are found. Moreover, for an exponential form initial state, an analytical expression of quantum Fisher information by H operator is provided. The multiparameter quantum metrology is also considered and discussed utilizing this representation.
Fourier processing of quantum light
Poem, Eilon; Lahini, Yoav; Silberberg, Yaron
2012-01-01
It is shown that a classical optical Fourier processor can be used for the shaping of quantum correlations between two or more photons, and the class of Fourier masks applicable in the multiphoton Fourier space is identified. This concept is experimentally demonstrated using two types of periodic phase masks illuminated with path-entangled photon pairs, a highly non-classical state of light. Applied first were sinusoidal phase masks, emulating two-particle quantum walk on a periodic lattice, yielding intricate correlation patterns with various spatial bunching and anti-bunching effects depending on the initial state. Then, a periodic Zernike-like filter was applied on top of the sinusoidal phase masks. Using this filter, phase information lost in the original correlation measurements was retrieved.
Electrical process tomography: seeing "without eyes" inside stirred vessels
Institute of Scientific and Technical Information of China (English)
MANN R.
2005-01-01
Body-scanning exploiting 3-D imaging has revolutionised diagnostics and treatment in medicine. Process engineers would like to be similarly able to image chemical process units in 3-D, but without the ￡multi-million price tag. UMIST and Leeds University have together, through the Virtual Centre for Industrial Process Tomography (http://www. vcipt.org), pioneered several electrical process tomography techniques and used them in a variety of applications. Illustrations are presented to show how electrical resistance tomography (ERT) has been developed for typical stirred vessels widely encountered in batch process manufacturing. The technique is potentially fast and inexpensive and capable of imaging both dynamic and pseudo-stationary processes. Examples from UMIST's two-tonne vessel will be presented for miscible tracer mixing, as well as gas-liquid and solid-liquid mixing.
Relativistic systems and their evolution in quantum tomography
Arkhipov, AS; Man'ko, [No Value
2004-01-01
We propose a method of writing the relativistic equation for the probability-distribution function in the tomographic representation. The connection with the quantum-mechanical description of a zero-spin particle is discussed.
Quantum control, quantum information processing, and quantum-limited metrology with trapped ions
Wineland, D J; Barrett, M D; Ben-Kish, A; Bergquist, J C; Blakestad, R B; Bollinger, J J; Britton, J L; Chiaverini, J; De Marco, B L; Hume, D; Itano, W M; Jensen, M; Jost, J D; Knill, E; Koelemeij, J C J; Langer, C; Oskay, W; Ozeri, R; Reichle, R; Rosenband, T; Schätz, T; Schmidt, P O; Seidelin, S
2005-01-01
We briefly discuss recent experiments on quantum information processing using trapped ions at NIST. A central theme of this work has been to increase our capabilities in terms of quantum computing protocols, but we have also applied the same concepts to improved metrology, particularly in the area of frequency standards and atomic clocks. Such work may eventually shed light on more fundamental issues, such as the quantum measurement problem.
Quantum theory of elementary processes
Galiautdinov, Andrei
2002-01-01
In modern physics, one of the greatest divides is that between space-time and quantum fields, as the fiber bundle of the Standard Model indicates. However on the operational grounds the fields and spacetime are not very different. To describe a field in an experimental region we have to assign coordinates to the points of that region in order to speak of the "when" and "where" of the field itself. But to operationally study the topology and to coordinatize the region of spacetime, the use of ...
Quantum information processing by weaving quantum Talbot carpets
Farías, Osvaldo Jiménez; de Melo, Fernando; Milman, Pérola; Walborn, Stephen P.
2015-06-01
Single-photon interference due to passage through a periodic grating is considered in a novel proposal for processing D -dimensional quantum systems (quDits) encoded in the spatial degrees of freedom of light. We show that free-space propagation naturally implements basic single-quDit gates by means of the Talbot effect: an intricate time-space carpet of light in the near-field diffraction regime. By adding a diagonal phase gate, we show that a complete set of single-quDit gates can be implemented. We then introduce a spatially dependent beam splitter that allows for projective measurements in the computational basis and can be used for the implementation of controlled operations between two quDits. Universal quantum information processing can then be implemented with linear optics and ancilla photons via postselection and feed-forward following the original proposal of Knill-Laflamme and Milburn. Although we consider photons, our scheme should be directly applicable to a number of other physical systems. Interpretation of the Talbot effect as a quantum logic operation provides a beautiful and interesting way to visualize quantum computation through wave propagation and interference.
Complete Characterization of a Quantum Process: The Two-Bit Quantum Gate
Energy Technology Data Exchange (ETDEWEB)
Poyatos, J.; Cirac, J. [Departamento de Fisica Aplicada, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Zoller, P. [Institut fuer Theoretisch Physik, Universitaet Innsbruck, A-6020, Innsbruck (Austria)
1997-01-01
We show how to fully characterize a quantum process in an open quantum system. We particularize the procedure to the case of a universal two-qubit gate in a quantum computer. We illustrate the method with a numerical simulation of a quantum gate in the ion trap quantum computer. {copyright} {ital 1997} {ital The American Physical Society}
Complete Characterization of a Quantum Process the Two-Bit Quantum Gate
Poyatos, J F; Zoller, P
1997-01-01
We show how to fully characterize a quantum process in an open quantum system. We particularize the procedure to the case of a universal two-qubit gate in a quantum computer. We illustrate the method with a numerical simulation of a quantum gate in the ion trap quantum computer.
Revealed Quantum Information in Weak Interaction Processes
Hiesmayr, B C
2014-01-01
We analyze the achievable limits of the quantum information processing of the weak interaction revealed by hyperons with spin. We find that the weak decay process corresponds to an interferometric device with a fixed visibility and fixed phase difference for each hyperon. Nature chooses rather low visibilities expressing a preference to parity conserving or violating processes (except for the decay $\\Sigma^+\\longrightarrow p \\pi^0$). The decay process can be considered as an open quantum channel that carries the information of the hyperon spin to the angular distribution of the momentum of the daughter particles. We find a simple geometrical information theoretic interpretation of this process: two quantization axes are chosen spontaneously with probabilities $\\frac{1\\pm\\alpha}{2}$ where $\\alpha$ is proportional to the visibility times the real part of the phase shift. Differently stated the weak interaction process corresponds to spin measurements with an imperfect Stern-Gerlach apparatus. Equipped with this...
Quantum information processing with noisy cluster states
Tame, M S; Kim, M S; Vedral, V
2005-01-01
We provide an analysis of basic quantum information processing protocols under the effect of intrinsic non-idealities in cluster states. These non-idealities are based on the introduction of randomness in the entangling steps that create the cluster state and are motivated by the unavoidable imperfections faced in creating entanglement using condensed-matter systems. Aided by the use of an alternative and very efficient method to construct cluster state configurations, which relies on the concatenation of fundamental cluster structures, we address quantum state transfer and various fundamental gate simulations through noisy cluster states. We find that a winning strategy to limit the effects of noise, is the management of small clusters processed via just a few measurements. Our study also reinforces recent ideas related to the optical implementation of a one-way quantum computer.
Quantum information processing with optical vortices
Energy Technology Data Exchange (ETDEWEB)
Khoury, Antonio Z. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)
2012-07-01
Full text: In this work we discuss several proposals for quantum information processing using the transverse structure of paraxial beams. Different techniques for production and manipulation of optical vortices have been employed and combined with polarization transformations in order to investigate fundamental properties of quantum entanglement as well as to propose new tools for quantum information processing. As an example, we have recently proposed and demonstrated a controlled NOT (CNOT) gate based on a Michelson interferometer in which the photon polarization is the control bit and the first order transverse mode is the target. The device is based on a single lens design for an astigmatic mode converter that transforms the transverse mode of paraxial optical beams. In analogy with Bell's inequality for two-qubit quantum states, we propose an inequality criterion for the non-separability of the spin-orbit degrees of freedom of a laser beam. A definition of separable and non-separable spin-orbit modes is used in consonance with the one presented in Phys. Rev. Lett. 99, 2007. As the usual Bell's inequality can be violated for entangled two-qubit quantum states, we show both theoretically and experimentally that the proposed spin-orbit inequality criterion can be violated for non-separable modes. The inequality is discussed both in the classical and quantum domains. We propose a polarization to orbital angular momentum teleportation scheme using entangled photon pairs generated by spontaneous parametric down conversion. By making a joint detection of the polarization and angular momentum parity of a single photon, we are able to detect all the Bell-states and perform, in principle, perfect teleportation from a discrete to a continuous system using minimal resources. The proposed protocol implementation demands experimental resources that are currently available in quantum optics laboratories. (author)
Versatile Wideband Balanced Detector for Quantum Optical Homodyne Tomography
Kumar, Ranjeet; MacRae, Andrew; Cairns, E; Huntington, E H; Lvovsky, A I
2011-01-01
We present a comprehensive theory and an easy to follow method for the design and construction of a wideband homodyne detector for time-domain quantum measurements. We show how one can evaluate the performance of a detector in a specific time-domain experiment based on electronic spectral characteristic of that detector. We then present and characterize a high-performance detector constructed using inexpensive, commercially available components such as low-noise high-speed operational amplifiers and high-bandwidth photodiodes. Our detector shows linear behavior up to a level of over 13 dB clearance between shot noise and electronic noise, in the range from DC to 100 MHz. The detector can be used for measuring quantum optical field quadratures both in the continuous-wave and pulsed regimes with pulse repetition rates up to about 250 MHz.
Efficient Quantum State Estimation with Over-complete Tomography
Zhang, Chi; Xiang, Guo-Yong; Zhang, Yong-Sheng; Li, Chuan-Feng; Guo, Guang-Can
2011-01-01
It is widely accepted that the selection of measurement bases can affect the efficiency of quantum state estimation methods, precision of estimating an unknown state can be improved significantly by simply introduce a set of symmetrical measurement bases. Here we compare the efficiencies of estimations with different numbers of measurement bases by numerical simulation and experiment in optical system. The advantages of using a complete set of symmetrical measurement bases are illustrated mor...
Optimal Hamiltonian Simulation by Quantum Signal Processing
Low, Guang Hao; Chuang, Isaac L.
2017-01-01
The physics of quantum mechanics is the inspiration for, and underlies, quantum computation. As such, one expects physical intuition to be highly influential in the understanding and design of many quantum algorithms, particularly simulation of physical systems. Surprisingly, this has been challenging, with current Hamiltonian simulation algorithms remaining abstract and often the result of sophisticated but unintuitive constructions. We contend that physical intuition can lead to optimal simulation methods by showing that a focus on simple single-qubit rotations elegantly furnishes an optimal algorithm for Hamiltonian simulation, a universal problem that encapsulates all the power of quantum computation. Specifically, we show that the query complexity of implementing time evolution by a d -sparse Hamiltonian H ^ for time-interval t with error ɛ is O [t d ∥H ^ ∥max+log (1 /ɛ ) /log log (1 /ɛ ) ] , which matches lower bounds in all parameters. This connection is made through general three-step "quantum signal processing" methodology, comprised of (i) transducing eigenvalues of H ^ into a single ancilla qubit, (ii) transforming these eigenvalues through an optimal-length sequence of single-qubit rotations, and (iii) projecting this ancilla with near unity success probability.
Applications of quantum stochastic processes in quantum optics
Bouten, Luc
2008-01-01
These lecture notes provide an introduction to quantum filtering and its applications in quantum optics. We start with a brief introduction to quantum probability, focusing on the spectral theorem. Then we introduce the conditional expectation and quantum stochastic calculus. In the last part of the notes we discuss the filtering problem.
Tomography vs quantum control for a three-level atom
Energy Technology Data Exchange (ETDEWEB)
Aguilar, O. [Departamento de Fisica, Universidad de Guadalajara, Revolucion 1500, 44420 Guadalajara, Jalisco (Mexico)]. E-mail: caronte30@yahoo.com; Klimov, A.B. [Departamento de Fisica, Universidad de Guadalajara, Revolucion 1500, 44420 Guadalajara, Jalisco (Mexico); Guise, Hubert de [Department of Physics, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada)
2006-12-04
We investigate the possibilities of controlling and reconstructing the state of a single three-level atom. We propose a physical scheme where information about the atomic state is extracted by measuring the total number of excitations after successive application of electromagnetic field pulses. We show that, in the non-degenerate case (different transition frequencies for different atomic transitions), a three-level atom is completely controllable and its state can be completely reconstructed. In the degenerate case (when both atomic transitions are identical), we consider two dynamically inequivalent configurations, {lambda} and {xi}. In this case, we show that the density matrix can always be completely reconstructed whereas their respective system cannot be completely controlled. We explain why this last incompatibility between control and tomography arises.
Introduction to the theory of quantum information processing
Bergou, János A
2013-01-01
Introduction to the Theory of Quantum Information Processing provides the material for a one-semester graduate level course on quantum information theory and quantum computing for students who have had a one-year graduate course in quantum mechanics. Many standard subjects are treated, such as density matrices, entanglement, quantum maps, quantum cryptography, and quantum codes. Also included are discussions of quantum machines and quantum walks. In addition, the book provides detailed treatments of several underlying fundamental principles of quantum theory, such as quantum measurements, the no-cloning and no-signaling theorems, and their consequences. Problems of various levels of difficulty supplement the text, with the most challenging problems bringing the reader to the forefront of active research. This book provides a compact introduction to the fascinating and rapidly evolving interdisciplinary field of quantum information theory, and it prepares the reader for doing active research in this area.
Moulding process characterization of paper bottles using computed tomography
DEFF Research Database (Denmark)
Saxena, Prateek; Bissacco, Giuliano
2016-01-01
The paper presents an approach of evaluating the moulding process for production of paper bottlesusing Computed Tomography (CT). Moulded Pulp Products (MPP) are made of a formed, dewateredand dried mixture of pulp fibers and water. Modern industrial pulp moulding is datedback to the year 1903 when...... a patent for MPP production was acquired by Martin L. Keyes1. Withan increasing demand for environmental friendly products, researchers are now focusing on investigatingadvance manufacturing process for production of MPP2....
An improved robust ADMM algorithm for quantum state tomography
Li, Kezhi; Zhang, Hui; Kuang, Sen; Meng, Fangfang; Cong, Shuang
2016-06-01
In this paper, an improved adaptive weights alternating direction method of multipliers algorithm is developed to implement the optimization scheme for recovering the quantum state in nearly pure states. The proposed approach is superior to many existing methods because it exploits the low-rank property of density matrices, and it can deal with unexpected sparse outliers as well. The numerical experiments are provided to verify our statements by comparing the results to three different optimization algorithms, using both adaptive and fixed weights in the algorithm, in the cases of with and without external noise, respectively. The results indicate that the improved algorithm has better performances in both estimation accuracy and robustness to external noise. The further simulation results show that the successful recovery rate increases when more qubits are estimated, which in fact satisfies the compressive sensing theory and makes the proposed approach more promising.
Nicolas, Adrien; Giacobino, Elisabeth; Maxein, Dominik; Laurat, Julien
2014-01-01
While measuring the orbital angular momentum state of bright light beams can be performed using imaging techniques, a full characterization at the single-photon level is challenging. For applications to quantum optics and quantum information science, such characterization is an essential capability. Here, we present a setup to perform the quantum state tomography of photonic qubits encoded in this degree of freedom. The method is based on a projective technique using spatial mode projection via fork holograms and single-mode fibers inserted into an interferometer. The alignment and calibration of the device is detailed as well as the measurement sequence to reconstruct the associated density matrix. Possible extensions to higher-dimensional spaces are discussed.
Proton computed tomography from multiple physics processes
Bopp, C.; Colin, J.; Cussol, D.; Finck, Ch; Labalme, M.; Rousseau, M.; Brasse, D.
2013-10-01
Proton CT (pCT) nowadays aims at improving hadron therapy treatment planning by mapping the relative stopping power (RSP) of materials with respect to water. The RSP depends mainly on the electron density of the materials. The main information used is the energy of the protons. However, during a pCT acquisition, the spatial and angular deviation of each particle is recorded and the information about its transmission is implicitly available. The potential use of those observables in order to get information about the materials is being investigated. Monte Carlo simulations of protons sent into homogeneous materials were performed, and the influence of the chemical composition on the outputs was studied. A pCT acquisition of a head phantom scan was simulated. Brain lesions with the same electron density but different concentrations of oxygen were used to evaluate the different observables. Tomographic images from the different physics processes were reconstructed using a filtered back-projection algorithm. Preliminary results indicate that information is present in the reconstructed images of transmission and angular deviation that may help differentiate tissues. However, the statistical uncertainty on these observables generates further challenge in order to obtain an optimal reconstruction and extract the most pertinent information.
A proposal for the optimal estimation of states in Quantum Information Processing
Mastriani, Mario
2015-01-01
An optimal estimator of quantum states based on a modified Kalman's Filter is proposed in this work. Such estimator acts after state measurement, allowing obtain an optimal estimation of quantum state resulting in the output of any quantum algorithm. This method is much more accurate than other types of quantum measurements, such as, weak measurement, strong measurement, quantum state tomography, among others.
Quantum state tomography for quadrupolar nuclei using global rotations of the spin system.
Teles, J; deAzevedo, E R; Auccaise, R; Sarthour, R S; Oliveira, I S; Bonagamba, T J
2007-04-21
In this paper, we describe a quantum state tomography method based on global rotations of the spin system which, together with a coherence selection scheme, enables the complete density matrix reconstruction. The main advantage of this technique, in respect to previous proposals, is the use of much shorter rf pulses, which decreases significantly the time necessary for algorithm quantum state tomography. In this case, under adequate experimental conditions, the rf pulses correspond to simple spatial rotations of the spin states, and its analytical description is conveniently given in the irreducible tensor formalism. Simulated results show the feasibility of the method for a single spin 72 nucleus. As an experimental result, we exemplify the application of this method by tomographing the steps during the implementation of the Deutsch algorithm. The algorithm was implemented in a (23)Na quadrupole nucleus using the strongly modulated pulses technique. We also extended the tomography method for a 3-coupled homonuclear spin 12 system, where an additional evolution under the internal Hamiltonian is necessary for zero order coherences evaluation.
Quantum Information Processing using Nonlinear Optical Effects
DEFF Research Database (Denmark)
Andersen, Lasse Mejling
of the converted idler depends on the other pump. This allows for temporal-mode-multiplexing. When the effects of nonlinear phase modulation (NPM) are included, the phases of the natural input and output modes are changed, reducing the separability. These effects are to some degree mediated by pre......This PhD thesis treats applications of nonlinear optical effects for quantum information processing. The two main applications are four-wave mixing in the form of Bragg scattering (BS) for quantum-state-preserving frequency conversion, and sum-frequency generation (SFG) in second-order nonlinear...... to obtain a 100 % conversion efficiency is to use multiple stages of frequency conversion, but this setup suffers from the combined effects of NPM. This problem is circumvented by using asymmetrically pumped BS, where one pump is continuous wave. For this setup, NPM is found to only lead to linear phase...
Ilahi, Bouraoui; Zribi, Jihene; Guillotte, Maxime; Arès, Richard; Aimez, Vincent; Morris, Denis
2016-01-01
We report on Chemical Beam Epitaxy (CBE) growth of wavelength tunable InAs/GaAs quantum dots (QD) based superluminescent diode’s active layer suitable for Optical Coherence Tomography (OCT). The In-flush technique has been employed to fabricate QD with controllable heights, from 5 nm down to 2 nm, allowing a tunable emission band over 160 nm. The emission wavelength blueshift has been ensured by reducing both dots’ height and composition. A structure containing four vertically stacked height-engineered QDs have been fabricated, showing a room temperature broad emission band centered at 1.1 µm. The buried QD layers remain insensitive to the In-flush process of the subsequent layers, testifying the reliability of the process for broadband light sources required for high axial resolution OCT imaging. PMID:28773633
High-speed optical coherence tomography signal processing on GPU
Energy Technology Data Exchange (ETDEWEB)
Li Xiqi; Shi Guohua; Zhang Yudong, E-mail: lixiqi@yahoo.cn [Laboratory on Adaptive Optics, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209 (China)
2011-01-01
The signal processing speed of spectral domain optical coherence tomography (SD-OCT) has become a bottleneck in many medical applications. Recently, a time-domain interpolation method was proposed. This method not only gets a better signal-to noise ratio (SNR) but also gets a faster signal processing time for the SD-OCT than the widely used zero-padding interpolation method. Furthermore, the re-sampled data is obtained by convoluting the acquired data and the coefficients in time domain. Thus, a lot of interpolations can be performed concurrently. So, this interpolation method is suitable for parallel computing. An ultra-high optical coherence tomography signal processing can be realized by using graphics processing unit (GPU) with computer unified device architecture (CUDA). This paper will introduce the signal processing steps of SD-OCT on GPU. An experiment is performed to acquire a frame SD-OCT data (400A-linesx2048 pixel per A-line) and real-time processed the data on GPU. The results show that it can be finished in 6.208 milliseconds, which is 37 times faster than that on Central Processing Unit (CPU).
Quantum optical coherence tomography using three time-energy entangled photons
Lopez-Mago, Dorilian; Burguete, Arturo; Campos, Eernesto
2016-09-01
Quantum Optical Coherence Tomography can achieve a greater image resolution compared to its classical counterpart, due to the entanglement of the photon pairs. Following the idea that higher the number of entangled photons, higher the resolution, we study the physical underpinnings that appear when using photon triplets. Unlike the usual Hong-Ou-Mandel interferometer used for QOCT, a much simpler implementation in the form of a Michelson interferometer is used in this work. We find that axial resolution can be improved by a factor of four. Additionally, we provide the numerical method to reconstruct the image given the triple coincidence rate.
Quantum process discrimination with information from environment
Wang, Yuan-Mei; Li, Jun-Gang; Zou, Jian; Xu, Bao-Ming
2016-12-01
In quantum metrology we usually extract information from the reduced probe system but ignore the information lost inevitably into the environment. However, K. Mølmer [Phys. Rev. Lett. 114, 040401 (2015)] showed that the information lost into the environment has an important effect on improving the successful probability of quantum process discrimination. Here we reconsider the model of a driven atom coupled to an environment and distinguish which of two candidate Hamiltonians governs the dynamics of the whole system. We mainly discuss two measurement methods, one of which obtains only the information from the reduced atom state and the other obtains the information from both the atom and its environment. Interestingly, for the two methods the optimal initial states of the atom, used to improve the successful probability of the process discrimination, are different. By comparing the two methods we find that the partial information from the environment is very useful for the discriminations. Project supported by the National Natural Science Foundation of China (Grant Nos. 11274043, 11375025, and 11005008).
Experimental determination of the segregation process using computer tomography
Directory of Open Access Journals (Sweden)
Konstantin Beckmann
2016-07-01
Full Text Available Modelling methods such as DEM and CFD are increasingly used for developing high efficient combine cleaning systems. For this purpose it is necessary to verify the complex segregation and separation processes in the combine cleaning system. One way is to determine the segregation and separation function using 3D computer tomography (CT. This method makes it possible to visualize and analyse the movement behaviour of the components of the mixture during the segregation and separation process as well as the derivation of descriptive process parameters. A mechanically excited miniature test rig was designed and built at the company CLAAS Selbstfahrende Erntemaschinen GmbH to achieve this aim. The investigations were carried out at the Fraunhofer Institute for Integrated Circuits IIS. Through the evaluation of the recorded images the segregation process is described visually. A more detailed analysis enabled the development of segregation and separation function based on the different densities of grain and material other than grain.
Experimental determination of the segregation process using computer tomography
Directory of Open Access Journals (Sweden)
Konstantin Beckmann
2016-08-01
Full Text Available Modelling methods such as DEM and CFD are increasingly used for developing high efficient combine cleaning systems. For this purpose it is necessary to verify the complex segregation and separation processes in the combine cleaning system. One way is to determine the segregation and separation function using 3D computer tomography (CT. This method makes it possible to visualize and analyse the movement behaviour of the components of the mixture during the segregation and separation process as well as the derivation of descriptive process parameters. A mechanically excited miniature test rig was designed and built at the company CLAAS Selbstfahrende Erntemaschinen GmbH to achieve this aim. The investigations were carried out at the Fraunhofer Institute for Integrated Circuits IIS. Through the evaluation of the recorded images the segregation process is described visually. A more detailed analysis enabled the development of segregation and separation function based on the different densities of grain and material other than grain.
An Architecture of Deterministic Quantum Central Processing Unit
Xue, Fei; Chen, Zeng-Bing; Shi, Mingjun; Zhou, Xianyi; Du, Jiangfeng; Han, Rongdian
2002-01-01
We present an architecture of QCPU(Quantum Central Processing Unit), based on the discrete quantum gate set, that can be programmed to approximate any n-qubit computation in a deterministic fashion. It can be built efficiently to implement computations with any required accuracy. QCPU makes it possible to implement universal quantum computation with a fixed, general purpose hardware. Thus the complexity of the quantum computation can be put into the software rather than the hardware.
What are the Hidden Quantum Processes Behind Newton's Laws?
Ostoma, Tom; Trushyk, Mike
1999-01-01
We investigate the hidden quantum processes that are responsible for Newton's laws of motion and Newton's universal law of gravity. We apply Electro-Magnetic Quantum Gravity or EMQG to investigate Newtonian classical physics. EQMG is a quantum gravity theory that is manifestly compatible with Cellular Automata (CA) theory, a new paradigm for physical reality. EMQG is also based on a theory of inertia proposed by R. Haisch, A. Rueda, and H. Puthoff, which we modified and called Quantum Inertia...
Cavity quantum networks for quantum information processing in decoherence-free subspace
Institute of Scientific and Technical Information of China (English)
Hua WEI; Zhi-jiao DENG; Wan-li YANG; Fei ZHOU
2009-01-01
We give a brief review on the quantum infor- mation processing in decoherence-free subspace (DFS). We show how to realize the initialization of the entangled quantum states, information transfer and teleportation of quantum states, two-qubit Grover search and how to construct the quantum network in DFS, within the cav- ity QED regime based on a cavity-assisted interaction by single-photon pulses.
Adaptive-optics Optical Coherence Tomography Processing Using a Graphics Processing Unit*
Shafer, Brandon A.; Kriske, Jeffery E.; Kocaoglu, Omer P.; Turner, Timothy L.; Liu, Zhuolin; Lee, John Jaehwan; Miller, Donald T.
2015-01-01
Graphics processing units are increasingly being used for scientific computing for their powerful parallel processing abilities, and moderate price compared to super computers and computing grids. In this paper we have used a general purpose graphics processing unit to process adaptive-optics optical coherence tomography (AOOCT) images in real time. Increasing the processing speed of AOOCT is an essential step in moving the super high resolution technology closer to clinical viability. PMID:25570838
Adaptive-optics optical coherence tomography processing using a graphics processing unit.
Shafer, Brandon A; Kriske, Jeffery E; Kocaoglu, Omer P; Turner, Timothy L; Liu, Zhuolin; Lee, John Jaehwan; Miller, Donald T
2014-01-01
Graphics processing units are increasingly being used for scientific computing for their powerful parallel processing abilities, and moderate price compared to super computers and computing grids. In this paper we have used a general purpose graphics processing unit to process adaptive-optics optical coherence tomography (AOOCT) images in real time. Increasing the processing speed of AOOCT is an essential step in moving the super high resolution technology closer to clinical viability.
Designing quantum information processing via structural physical approximation
Bae, Joonwoo
2017-10-01
In quantum information processing it may be possible to have efficient computation and secure communication beyond the limitations of classical systems. In a fundamental point of view, however, evolution of quantum systems by the laws of quantum mechanics is more restrictive than classical systems, identified to a specific form of dynamics, that is, unitary transformations and, consequently, positive and completely positive maps to subsystems. This also characterizes classes of disallowed transformations on quantum systems, among which positive but not completely maps are of particular interest as they characterize entangled states, a general resource in quantum information processing. Structural physical approximation offers a systematic way of approximating those non-physical maps, positive but not completely positive maps, with quantum channels. Since it has been proposed as a method of detecting entangled states, it has stimulated fundamental problems on classifications of positive maps and the structure of Hermitian operators and quantum states, as well as on quantum measurement such as quantum design in quantum information theory. It has developed efficient and feasible methods of directly detecting entangled states in practice, for which proof-of-principle experimental demonstrations have also been performed with photonic qubit states. Here, we present a comprehensive review on quantum information processing with structural physical approximations and the related progress. The review mainly focuses on properties of structural physical approximations and their applications toward practical information applications.
Pseudo-random unitary operators for quantum information processing.
Emerson, Joseph; Weinstein, Yaakov S; Saraceno, Marcos; Lloyd, Seth; Cory, David G
2003-12-19
In close analogy to the fundamental role of random numbers in classical information theory, random operators are a basic component of quantum information theory. Unfortunately, the implementation of random unitary operators on a quantum processor is exponentially hard. Here we introduce a method for generating pseudo-random unitary operators that can reproduce those statistical properties of random unitary operators most relevant to quantum information tasks. This method requires exponentially fewer resources, and hence enables the practical application of random unitary operators in quantum communication and information processing protocols. Using a nuclear magnetic resonance quantum processor, we were able to realize pseudorandom unitary operators that reproduce the expected random distribution of matrix elements.
Quantum Chemical Strain Analysis For Mechanochemical Processes.
Stauch, Tim; Dreuw, Andreas
2017-03-24
The use of mechanical force to initiate a chemical reaction is an efficient alternative to the conventional sources of activation energy, i.e., heat, light, and electricity. Applications of mechanochemistry in academic and industrial laboratories are diverse, ranging from chemical syntheses in ball mills and ultrasound baths to direct activation of covalent bonds using an atomic force microscope. The vectorial nature of force is advantageous because specific covalent bonds can be preconditioned for rupture by selective stretching. However, the influence of mechanical force on single molecules is still not understood at a fundamental level, which limits the applicability of mechanochemistry. As a result, many chemists still resort to rules of thumb when it comes to conducting mechanochemical syntheses. In this Account, we show that comprehension of mechanochemistry at the molecular level can be tremendously advanced by quantum chemistry, in particular by using quantum chemical force analysis tools. One such tool is the JEDI (Judgement of Energy DIstribution) analysis, which provides a convenient approach to analyze the distribution of strain energy in a mechanically deformed molecule. Based on the harmonic approximation, the strain energy contribution is calculated for each bond length, bond angle and dihedral angle, thus providing a comprehensive picture of how force affects molecules. This Account examines the theoretical foundations of quantum chemical force analysis and provides a critical overview of the performance of the JEDI analysis in various mechanochemical applications. We explain in detail how this analysis tool is to be used to identify the "force-bearing scaffold" of a distorted molecule, which allows both the rationalization and the optimization of diverse mechanochemical processes. More precisely, we show that the inclusion of every bond, bending and torsion of a molecule allows a particularly insightful discussion of the distribution of mechanical
Photonic Architecture for Scalable Quantum Information Processing in Diamond
Directory of Open Access Journals (Sweden)
Kae Nemoto
2014-08-01
Full Text Available Physics and information are intimately connected, and the ultimate information processing devices will be those that harness the principles of quantum mechanics. Many physical systems have been identified as candidates for quantum information processing, but none of them are immune from errors. The challenge remains to find a path from the experiments of today to a reliable and scalable quantum computer. Here, we develop an architecture based on a simple module comprising an optical cavity containing a single negatively charged nitrogen vacancy center in diamond. Modules are connected by photons propagating in a fiber-optical network and collectively used to generate a topological cluster state, a robust substrate for quantum information processing. In principle, all processes in the architecture can be deterministic, but current limitations lead to processes that are probabilistic but heralded. We find that the architecture enables large-scale quantum information processing with existing technology.
Granade, Christopher; Cory, D G
2015-01-01
In recent years, Bayesian methods have been proposed as a solution to a wide range of issues in quantum state and process tomography. State-of- the-art Bayesian tomography solutions suffer from three problems: numerical intractability, a lack of informative prior distributions, and an inability to track time-dependent processes. Here, we solve all three problems. First, we use modern statistical methods, as pioneered by Husz\\'ar and Houlsby and by Ferrie, to make Bayesian tomography numerically tractable. Our approach allows for practical computation of Bayesian point and region estimators for quantum states and channels. Second, we propose the first informative priors on quantum states and channels. Finally, we develop a method that allows online tracking of time-dependent states and estimates the drift and diffusion processes affecting a state. We provide source code and animated visual examples for our methods.
Quantum Information Processing in the Radical-Pair Mechanism
Mouloudakis, K
2016-01-01
Radical-ion-pair reactions, central for understanding the avian magnetic compass and spin transport in photosynthetic reaction centers, were recently shown to be a fruitful paradigm of the new synthesis of quantum information science with biological processes. We here show that the master equation so far constituting the theoretical foundation of spin chemistry violates fundamental bounds for the entropy of quantum systems, in particular the Ozawa bound. In contrast, a recently developed theory based on quantum measurements, quantum coherence measures and quantum retrodiction, thus exemplifying the paradigm of quantum biology, satisfies the Ozawa bound as well as the Lanford-Robinson bound on information extraction. By considering the quantum information extracted during the reaction we unravel new magnetic-field effects not conveyed by reaction yields.
Process Physics From Quantum Foam to General Relativity
Cahill, R T
2002-01-01
Progress in the new information-theoretic process physics is reported in which the link to the phenomenology of general relativity is made. In process physics the fundamental assumption is that reality is to be modelled as self-organising semantic (or internal or relational) information using a self-referentially limited neural network model. Previous progress in process physics included the demonstration that space and quantum physics are emergent and unified, with time a distinct non-geometric process, that quantum phenomena are caused by fractal topological defects embedded in and forming a growing three-dimensional fractal process-space, which is essentially a quantum foam. Other features of the emergent physics were: quantum field theory with emergent flavour and confined colour, limited causality and the Born quantum measurement metarule, inertia, time-dilation effects, gravity and the equivalence principle, a growing universe with a cosmological constant, black holes and event horizons, and the emergen...
Limitations on post-processing assisted quantum programming
Heinosaari, Teiko; Miyadera, Takayuki; Tukiainen, Mikko
2017-03-01
A quantum multimeter is a programmable device that can implement measurements of different observables depending on the programming quantum state inserted into it. The advantage of this arrangement over a single-purpose device is in its versatility: one can realize various measurements simply by changing the programming state. The classical manipulation of measurement output data is known as post-processing. In this work we study the post-processing assisted quantum programming, which is a protocol where quantum programming and classical post-processing are combined. We provide examples showing that these two processes combined can be more efficient than either of them used separately. Furthermore, we derive an inequality relating the programming resources to their corresponding programmed observables, thereby enabling us to study the limitations on post-processing assisted quantum programming.
Quantum Matter-Photonics Framework: Analyses of Chemical Conversion Processes
Tapia, O
2014-01-01
A quantum Matter-Photonics framework is adapted to help scrutinize chemical reaction mechanisms and used to explore a process mapped from chemical tree topological model. The chemical concept of bond knitting/breaking is reformulated via partitioned base sets leading to an abstract and general quantum presentation. Pivotal roles are assigned to entanglement, coherence,de-coherence and Feshbach resonance quantum states that permit apprehend gating states in conversion processes. A view from above in the state energy eigenvalue ladder, belonging to full system spectra complement the standard view from ground state. A full quantum physical view supporting chemical change obtains.
Process tomography via sequential measurements on a single quantum system
CSIR Research Space (South Africa)
Bassa, H
2015-09-01
Full Text Available . Audretsch, T. Konrad, and A. Scherer, Phys. Rev. A 63, 052102 (2001). [15] J. Audretsch, F. Klee, and T. Konrad, Phys. Lett. A 361, 212 (2007). [16] T. Konrad and H. Uys, Phys. Rev. A 85, 012102 (2012). [17] L. Dio´si, T. Konrad, A. Scherer, and J. Audretsch...
Quantum System Identification by Bayesian Analysis of Noisy Data: Beyond Hamiltonian Tomography
Schirmer, S G
2009-01-01
We consider how to characterize the dynamics of a quantum system from a restricted set of initial states and measurements using Bayesian analysis. Previous work has shown that Hamiltonian systems can be well estimated from analysis of noisy data. Here we show how to generalize this approach to systems with moderate dephasing in the eigenbasis of the Hamiltonian. We illustrate the process for a range of three-level quantum systems. The results suggest that the Bayesian estimation of the frequencies and dephasing rates is generally highly accurate and the main source of errors are errors in the reconstructed Hamiltonian basis.
Quantum Transport in Solids: Two-Electron Processes.
1995-06-01
The central objective of this research program has been to study theoretically the underlying principles of quantum transport in solids. The area of...research investigated has emphasized the understanding of two electron processes in quantum transport . The problems have been treated analytically to...the extent possible through the use of dynamical localized Wannier functions. These results have been and are being incorporated in a full quantum
Schrodinger cats and their power for quantum information processing
Gilchrist, A; Munro, W J; Ralph, T C; Glancy, S; Braunstein, S L; Milburn, G J; Nemoto, Kae; Braunstein, Samuel. L.
2003-01-01
We outline a toolbox comprised of passive optical elements, single photon detection and superpositions of coherent states (Schrodinger cat states). Such a toolbox is a powerful collection of primitives for quantum information processing tasks. We illustrate its use by outlining a proposal for universal quantum computation. We utilize this toolbox for quantum metrology applications, for instance weak force measurements and precise phase estimation. We show in both these cases that a sensitivity at the Heisenberg limit is achievable.
Optimal design of measurement settings for quantum-state-tomography experiments
Li, Jun; Huang, Shilin; Luo, Zhihuang; Li, Keren; Lu, Dawei; Zeng, Bei
2017-09-01
Quantum state tomography is an indispensable but costly part of many quantum experiments. Typically, it requires measurements to be carried out in a number of different settings on a fixed experimental setup. The collected data are often informationally overcomplete, with the amount of information redundancy depending on the particular set of measurement settings chosen. This raises a question about how one should optimally take data so that the number of measurement settings necessary can be reduced. Here, we cast this problem in terms of integer programming. For a given experimental setup, standard integer-programming algorithms allow us to find the minimum set of readout operations that can realize a target tomographic task. We apply the method to certain basic and practical state-tomographic problems in nuclear-magnetic-resonance experimental systems. The results show that considerably fewer readout operations can be found using our technique than by using the previous greedy search strategy. Therefore, our method could be helpful for simplifying measurement schemes to minimize the experimental effort.
Modular quantum-information processing by dissipation
Marshall, Jeffrey; Campos Venuti, Lorenzo; Zanardi, Paolo
2016-11-01
Dissipation can be used as a resource to control and simulate quantum systems. We discuss a modular model based on fast dissipation capable of performing universal quantum computation, and simulating arbitrary Lindbladian dynamics. The model consists of a network of elementary dissipation-generated modules and it is in principle scalable. In particular, we demonstrate the ability to dissipatively prepare all single-qubit gates, and the controlled-not gate; prerequisites for universal quantum computing. We also show a way to implement a type of quantum memory in a dissipative environment, whereby we can arbitrarily control the loss in both coherence, and concurrence, over the evolution. Moreover, our dissipation-assisted modular construction exhibits a degree of inbuilt robustness to Hamiltonian and, indeed, Lindbladian errors, and as such is of potential practical relevance.
Using quantum filters to process images of diffuse axonal injury
Pineda Osorio, Mateo
2014-06-01
Some images corresponding to a diffuse axonal injury (DAI) are processed using several quantum filters such as Hermite Weibull and Morse. Diffuse axonal injury is a particular, common and severe case of traumatic brain injury (TBI). DAI involves global damage on microscopic scale of brain tissue and causes serious neurologic abnormalities. New imaging techniques provide excellent images showing cellular damages related to DAI. Said images can be processed with quantum filters, which accomplish high resolutions of dendritic and axonal structures both in normal and pathological state. Using the Laplacian operators from the new quantum filters, excellent edge detectors for neurofiber resolution are obtained. Image quantum processing of DAI images is made using computer algebra, specifically Maple. Quantum filter plugins construction is proposed as a future research line, which can incorporated to the ImageJ software package, making its use simpler for medical personnel.
Quantum information processing with superconducting circuits: a review
Wendin, G.
2017-10-01
During the last ten years, superconducting circuits have passed from being interesting physical devices to becoming contenders for near-future useful and scalable quantum information processing (QIP). Advanced quantum simulation experiments have been shown with up to nine qubits, while a demonstration of quantum supremacy with fifty qubits is anticipated in just a few years. Quantum supremacy means that the quantum system can no longer be simulated by the most powerful classical supercomputers. Integrated classical-quantum computing systems are already emerging that can be used for software development and experimentation, even via web interfaces. Therefore, the time is ripe for describing some of the recent development of superconducting devices, systems and applications. As such, the discussion of superconducting qubits and circuits is limited to devices that are proven useful for current or near future applications. Consequently, the centre of interest is the practical applications of QIP, such as computation and simulation in Physics and Chemistry.
Limit theorems for dilute quantum systems leading to quantum poisson processes
Alicki, Robert; Rudnicki, Sławomir; Sadowski, Sławomir
1993-12-01
The limit theorems for sums of independent or correlated operators representing observables of dilute quantum systems and leading to quantum Poisson processes are proved. Examples of systems of unstable particles and a Fermi lattice gas are discussed. For the latter, relations between low density limit and central limit are given.
Why genetic information processing could have a quantum basis
Indian Academy of Sciences (India)
Apoorva Patel
2001-06-01
Living organisms are not just random collections of organic molecules. There is continuous information processing going on in the apparent bouncing around of molecules of life. Optimization criteria in this information processing can be searched for using the laws of physics. Quantum dynamics can explain why living organisms have 4 nucleotide bases and 20 amino acids, as optimal solutions of the molecular assembly process. Experiments should be able to tell whether evolution indeed took advantage of quantum dynamics or not.
X-Ray Computed Tomography for Advanced Materials and Processes.
1992-06-30
percent. In this example, we have assumed $I M, $5(X)K and $200K CT systems operating at 10 percent of the capital investment per year for maintenance...Computed Tomo &:aphy of Composites," WRDC-TR-90-4014, July 1990. 5. P. Burstein and R. H. Bossi, "A Guide to Computed Tomography System Specifications," WRDC...Lannutti, "Applications of High- Resolution Computed Tomography," Proceedings of the 1991 Industrial Computed Tomography II Topical Conference, May 20-24
Quantum Processes Which Do Not Use Coherence
Directory of Open Access Journals (Sweden)
Benjamin Yadin
2016-11-01
Full Text Available A major signature of quantum mechanics beyond classical physics is coherence, the existence of superposition states. The recently developed resource theory of quantum coherence allows the formalization of incoherent operations—those operations which cannot create coherence. We identify the set of operations which additionally do not use coherence. These are such that coherence cannot be exploited by a classical observer, who measures incoherent properties of the system, to go beyond classical dynamics. We give a physical interpretation in terms of interferometry and prove a dilation theorem, showing how these operations can always be constructed by the system interacting, in an incoherent way, with an ancilla. Such a physical justification is not known for the incoherent operations; thus, our results lead to a physically well-motivated resource theory of coherence. Next, we investigate the implications for coherence in multipartite systems. We show that quantum correlations can be defined naturally with respect to a fixed basis, providing a link between coherence and quantum discord. We demonstrate the interplay between these two quantities in the operations that we study and suggest implications for the theory of quantum discord by relating these operations to those which cannot create discord.
Computed tomography perfusion imaging denoising using Gaussian process regression
Zhu, Fan; Carpenter, Trevor; Rodriguez Gonzalez, David; Atkinson, Malcolm; Wardlaw, Joanna
2012-06-01
Brain perfusion weighted images acquired using dynamic contrast studies have an important clinical role in acute stroke diagnosis and treatment decisions. However, computed tomography (CT) images suffer from low contrast-to-noise ratios (CNR) as a consequence of the limitation of the exposure to radiation of the patient. As a consequence, the developments of methods for improving the CNR are valuable. The majority of existing approaches for denoising CT images are optimized for 3D (spatial) information, including spatial decimation (spatially weighted mean filters) and techniques based on wavelet and curvelet transforms. However, perfusion imaging data is 4D as it also contains temporal information. Our approach using Gaussian process regression (GPR), which takes advantage of the temporal information, to reduce the noise level. Over the entire image, GPR gains a 99% CNR improvement over the raw images and also improves the quality of haemodynamic maps allowing a better identification of edges and detailed information. At the level of individual voxel, GPR provides a stable baseline, helps us to identify key parameters from tissue time-concentration curves and reduces the oscillations in the curve. GPR is superior to the comparable techniques used in this study.
Scalable quantum information processing with photons and atoms
Pan, Jian-Wei
Over the past three decades, the promises of super-fast quantum computing and secure quantum cryptography have spurred a world-wide interest in quantum information, generating fascinating quantum technologies for coherent manipulation of individual quantum systems. However, the distance of fiber-based quantum communications is limited due to intrinsic fiber loss and decreasing of entanglement quality. Moreover, probabilistic single-photon source and entanglement source demand exponentially increased overheads for scalable quantum information processing. To overcome these problems, we are taking two paths in parallel: quantum repeaters and through satellite. We used the decoy-state QKD protocol to close the loophole of imperfect photon source, and used the measurement-device-independent QKD protocol to close the loophole of imperfect photon detectors--two main loopholes in quantum cryptograph. Based on these techniques, we are now building world's biggest quantum secure communication backbone, from Beijing to Shanghai, with a distance exceeding 2000 km. Meanwhile, we are developing practically useful quantum repeaters that combine entanglement swapping, entanglement purification, and quantum memory for the ultra-long distance quantum communication. The second line is satellite-based global quantum communication, taking advantage of the negligible photon loss and decoherence in the atmosphere. We realized teleportation and entanglement distribution over 100 km, and later on a rapidly moving platform. We are also making efforts toward the generation of multiphoton entanglement and its use in teleportation of multiple properties of a single quantum particle, topological error correction, quantum algorithms for solving systems of linear equations and machine learning. Finally, I will talk about our recent experiments on quantum simulations on ultracold atoms. On the one hand, by applying an optical Raman lattice technique, we realized a two-dimensional spin-obit (SO
Optomechanical transducers for quantum information processing
Stannigel, K; Sørensen, A S; Lukin, M D; Zoller, P
2011-01-01
We discuss the implementation of optical quantum networks where the interface between stationary and photonic qubits is realized by optomechanical transducers [K. Stannigel et al., PRL 105, 220501 (2010)]. This approach does not rely on the optical properties of the qubit and thereby enables optical quantum communication applications for a wide range of solid-state spin- and charge-based systems. We present an effective description of such networks for many qubits and give a derivation of a state transfer protocol for long-distance quantum communication. We also describe how to mediate local on-chip interactions by means of the optomechanical transducers that can be used for entangling gates. We finally discuss experimental systems for the realization of our proposal.
Reconstructing quantum states efficiently
Cramer, M; Plenio, M. B.
2010-01-01
Quantum state tomography, the ability to deduce the density matrix of a quantum system from measured data, is of fundamental importance for the verification of present and future quantum devices. It has been realized in systems with few components but for larger systems it becomes rapidly infeasible because the number of quantum measurements and computational resources required to process them grow exponentially in the system size. Here we show that we can gain an exponential advantage over d...
Acetylcholine molecular arrays enable quantum information processing
Tamulis, Arvydas; Majauskaite, Kristina; Talaikis, Martynas; Zborowski, Krzysztof; Kairys, Visvaldas
2017-09-01
We have found self-assembly of four neurotransmitter acetylcholine (ACh) molecular complexes in a water molecules environment by using geometry optimization with DFT B97d method. These complexes organizes to regular arrays of ACh molecules possessing electronic spins, i.e. quantum information bits. These spin arrays could potentially be controlled by the application of a non-uniform external magnetic field. The proper sequence of resonant electromagnetic pulses would then drive all the spin groups into the 3-spin entangled state and proceed large scale quantum information bits.
A quantum computer based on recombination processes in microelectronic devices
Theodoropoulos, K.; Ntalaperas, D.; Petras, I.; Konofaos, N.
2005-01-01
In this paper a quantum computer based on the recombination processes happening in semiconductor devices is presented. A "data element" and a "computational element" are derived based on Schokley-Read-Hall statistics and they can later be used to manifest a simple and known quantum computing process. Such a paradigm is shown by the application of the proposed computer onto a well known physical system involving traps in semiconductor devices.
A quantum computer based on recombination processes in microelectronic devices
Energy Technology Data Exchange (ETDEWEB)
Theodoropoulos, K [Computer Engineering and Informatics Department, University of Patras, Patras (Greece); Ntalaperas, D [Computer Engineering and Informatics Department, University of Patras, Patras (Greece); Research Academic Computer Technology Institute, Riga Feraiou 61, 26110, Patras (Greece); Petras, I [Computer Engineering and Informatics Department, University of Patras, Patras (Greece); Konofaos, N [Computer Engineering and Informatics Department, University of Patras, Patras (Greece)
2005-01-01
In this paper a quantum computer based on the recombination processes happening in semiconductor devices is presented. A 'data element' and a 'computational element' are derived based on Schokley-Read-Hall statistics and they can later be used to manifest a simple and known quantum computing process. Such a paradigm is shown by the application of the proposed computer onto a well known physical system involving traps in semiconductor devices.
Ultrafast optical signal processing using semiconductor quantum dot amplifiers
DEFF Research Database (Denmark)
Berg, Tommy Winther; Mørk, Jesper
2002-01-01
The linear and nonlinear properties of quantum dot amplifiers are discussed on the basis of an extensive theoretical model. These devices show great potential for linear amplification as well as ultrafast signal processing.......The linear and nonlinear properties of quantum dot amplifiers are discussed on the basis of an extensive theoretical model. These devices show great potential for linear amplification as well as ultrafast signal processing....
Scalable Quantum Information Processing and Applications
2008-01-19
technique to accelerate the computation of states of the non-separable Schroedinger operator. The development of the iterative method was...from fully 3-dimensional self-consistent Poisson- Schroedinger calculations. The effects of Coulomb interaction on the quantum dot states and hence
Quantum information processing with finite resources mathematical foundations
Tomamichel, Marco
2016-01-01
This book provides the reader with the mathematical framework required to fully explore the potential of small quantum information processing devices. As decoherence will continue to limit their size, it is essential to master the conceptual tools which make such investigation possible. A strong emphasis is given to information measures that are essential for the study of devices of finite size, including Rényi entropies and smooth entropies. The presentation is self-contained and includes rigorous and concise proofs of the most important properties of these measures. The first chapters will introduce the formalism of quantum mechanics, with particular emphasis on norms and metrics for quantum states. This is necessary to explore quantum generalizations of Rényi divergence and conditional entropy, information measures that lie at the core of information theory. The smooth entropy framework is discussed next and provides a natural means to lift many arguments from information theory to the quantum setting. F...
Physics Colloquium: The optical route to quantum information processing
Université de Genève
2011-01-01
Geneva University Physics Department 24, Quai Ernest Ansermet CH-1211 Geneva 4 Monday 11 April 2011 17h00 - Ecole de Physique, Auditoire Stückelberg The optical route to quantum information processing Prof. Terry Rudolph/Imperial College, London Photons are attractive as carriers of quantum information both because they travel, and can thus transmit information, but also because of their good coherence properties and ease in undergoing single-qubit manipulations. The main obstacle to their use in information processing is inducing an effective interaction between them in order to produce entanglement. The most promising approach in photon-based information processing architectures is so-called measurement-based quantum computing. This relies on creating upfront a multi-qubit highly entangled state (the cluster state) which has the remarkable property that, once prepared, it can be used to perform quantum computation by making only single qubit measurements. In this talk I will discuss generically the...
Integrated System Technologies for Modular Trapped Ion Quantum Information Processing
Crain, Stephen G.
Although trapped ion technology is well-suited for quantum information science, scalability of the system remains one of the main challenges. One of the challenges associated with scaling the ion trap quantum computer is the ability to individually manipulate the increasing number of qubits. Using micro-mirrors fabricated with micro-electromechanical systems (MEMS) technology, laser beams are focused on individual ions in a linear chain and steer the focal point in two dimensions. Multiple single qubit gates are demonstrated on trapped 171Yb+ qubits and the gate performance is characterized using quantum state tomography. The system features negligible crosstalk to neighboring ions (system photon collection efficiency is increased from 2.2% to 3.4%, which allows for fast state detection of the qubit. For a detection beam intensity of 11 mW/cm 2, the average detection time is 23.7 mus with 99.885(7)% detection fidelity. The technologies demonstrated in this thesis can be integrated to form a single quantum register with all of the necessary resources to perform local gates as well as high fidelity readout and provide a photon link to other systems.
Ultrafast Quantum Control and Quantum Processing in the Vibronic States of Molecules and Solids
Sussman, Benjamin; Bustard, Philip; England, Duncan; Lausten, Rune
2014-05-01
The unusual features of quantum mechanics are enabling the development of technologies not possible with classical physics, including applications in secure communications, quantum processing, and enhanced measurement. Efforts to build these devices utilize nonclassical states in numerous quantum systems, including cavity quantum electrodynamics, trap ions, nuclear spins, etc. as the basis for many prototypes. Here we investigate vibronic states in both molecules and bulk solids as distinct alternatives. We demonstrate a memory for light based on storing photons in the vibrations of hydrogen molecules and the optical phonons of diamond. Both classical and nonclassical photon states are used. These THz-bandwidth memories can be used to store femtosecond pulses for many operational time bins before the states decohere, making them viable for local photonic processing. We investigate decoherence and major sources of competing noise. While sustaining quantum coherence is critical for most quantum processing, rapid dephasing can also be used as a resource in these systems for rapid quantum random number generation, suitable for high-performance cryptography. NSERC
Survey of control performance in quantum information processing
Hocker, David; Zheng, Yicong; Kosut, Robert; Brun, Todd; Rabitz, Herschel
2016-11-01
There is a rich variety of physics underlying the fundamental gating operations for quantum information processing (QIP). A key aspect of a QIP system is how noise may enter during quantum operations and how suppressing or correcting its effects can best be addressed. Quantum control techniques have been developed to specifically address this effort, although a detailed classification of the compatibility of controls schemes with noise sources found in common quantum systems has not yet been performed. This work numerically examines the performance of modern control methods for suppressing decoherence in the presence of noise forms found in viable quantum systems. The noise-averaged process matrix for controlled one-qubit and two-qubit operations are calculated across noise found in systems driven by Markovian open quantum dynamics. Rather than aiming to describe the absolute best control scheme for a given physical circumstance, this work serves instead to classify quantum control behavior across a large class of noise forms so that opportunities for improving QIP performance may be identified.
Survey of control performance in quantum information processing
Hocker, David; Zheng, Yicong; Kosut, Robert; Brun, Todd; Rabitz, Herschel
2016-08-01
There is a rich variety of physics underlying the fundamental gating operations for quantum information processing (QIP). A key aspect of a QIP system is how noise may enter during quantum operations and how suppressing or correcting its effects can best be addressed. Quantum control techniques have been developed to specifically address this effort, although a detailed classification of the compatibility of controls schemes with noise sources found in common quantum systems has not yet been performed. This work numerically examines the performance of modern control methods for suppressing decoherence in the presence of noise forms found in viable quantum systems. The noise-averaged process matrix for controlled one-qubit and two-qubit operations are calculated across noise found in systems driven by Markovian open quantum dynamics. Rather than aiming to describe the absolute best control scheme for a given physical circumstance, this work serves instead to classify quantum control behavior across a large class of noise forms so that opportunities for improving QIP performance may be identified.
Quantum correlation dynamics in photosynthetic processes assisted by molecular vibrations
Energy Technology Data Exchange (ETDEWEB)
Giorgi, G.L., E-mail: g.giorgi@inrim.it [INRIM, Strada delle Cacce 91, I-10135 Torino (Italy); Roncaglia, M. [INRIM, Strada delle Cacce 91, I-10135 Torino (Italy); Raffa, F.A. [Politecnico di Torino, Dipartimento di Scienza Applicata e Tecnologia, Corso Duca degli Abruzzi 24, I-10129 Torino (Italy); Genovese, M. [INRIM, Strada delle Cacce 91, I-10135 Torino (Italy)
2015-10-15
During the long course of evolution, nature has learnt how to exploit quantum effects. In fact, recent experiments reveal the existence of quantum processes whose coherence extends over unexpectedly long time and space ranges. In particular, photosynthetic processes in light-harvesting complexes display a typical oscillatory dynamics ascribed to quantum coherence. Here, we consider the simple model where a dimer made of two chromophores is strongly coupled with a quasi-resonant vibrational mode. We observe the occurrence of wide oscillations of genuine quantum correlations, between electronic excitations and the environment, represented by vibrational bosonic modes. Such a quantum dynamics has been unveiled through the calculation of the negativity of entanglement and the discord, indicators widely used in quantum information for quantifying the resources needed to realize quantum technologies. We also discuss the possibility of approximating additional weakly-coupled off-resonant vibrational modes, simulating the disturbances induced by the rest of the environment, by a single vibrational mode. Within this approximation, one can show that the off-resonant bath behaves like a classical source of noise.
Quantum Processes and Dynamic Networks in Physical and Biological Systems.
Dudziak, Martin Joseph
Quantum theory since its earliest formulations in the Copenhagen Interpretation has been difficult to integrate with general relativity and with classical Newtonian physics. There has been traditionally a regard for quantum phenomena as being a limiting case for a natural order that is fundamentally classical except for microscopic extrema where quantum mechanics must be applied, more as a mathematical reconciliation rather than as a description and explanation. Macroscopic sciences including the study of biological neural networks, cellular energy transports and the broad field of non-linear and chaotic systems point to a quantum dimension extending across all scales of measurement and encompassing all of Nature as a fundamentally quantum universe. Theory and observation lead to a number of hypotheses all of which point to dynamic, evolving networks of fundamental or elementary processes as the underlying logico-physical structure (manifestation) in Nature and a strongly quantized dimension to macroscalar processes such as are found in biological, ecological and social systems. The fundamental thesis advanced and presented herein is that quantum phenomena may be the direct consequence of a universe built not from objects and substance but from interacting, interdependent processes collectively operating as sets and networks, giving rise to systems that on microcosmic or macroscopic scales function wholistically and organically, exhibiting non-locality and other non -classical phenomena. The argument is made that such effects as non-locality are not aberrations or departures from the norm but ordinary consequences of the process-network dynamics of Nature. Quantum processes are taken to be the fundamental action-events within Nature; rather than being the exception quantum theory is the rule. The argument is also presented that the study of quantum physics could benefit from the study of selective higher-scale complex systems, such as neural processes in the brain
Solution-Processed Nanocrystal Quantum Dot Tandem Solar Cells
Choi, Joshua J.
2011-06-03
Solution-processed tandem solar cells created from nanocrystal quantum dots with size-tuned energy levels are demonstrated. Prototype devices featuring interconnected quantum dot layers of cascaded energy gaps exhibit IR sensitivity and an open circuit voltage, V oc, approaching 1 V. The tandem solar cell performance depends critically on the optical and electrical properties of the interlayer. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Solution-processed nanocrystal quantum dot tandem solar cells
Energy Technology Data Exchange (ETDEWEB)
Choi, Joshua J.; Lim, Yee-Fun [School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853 (United States); Wenger, Whitney N.; Hoffman, Rachel S.; Hanrath, Tobias [School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853 (United States); Luria, Justin; Marohn, John A. [Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853 (United States); Jasieniak, Jacek [CSIRO Materials Science and Engineering, Bayview Ave, Clayton, Victoria 3168 (Australia)
2011-07-26
Solution-processed tandem solar cells created from nanocrystal quantum dots with size-tuned energy levels are demonstrated. Prototype devices featuring interconnected quantum dot layers of cascaded energy gaps exhibit IR sensitivity and an open circuit voltage, V{sub oc}, approaching 1 V. The tandem solar cell performance depends critically on the optical and electrical properties of the interlayer. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Quantum information processing using designed defect states in
DEFF Research Database (Denmark)
Pedersen, Jesper; Flindt, Christian; Mortensen, Niels Asger
2007-01-01
We propose a new physical implementation of spin qubits for quantum information processing, namely defect states in antidot lattices de¯ned in the two-dimensional electron gas at a semiconductor heterostructure. Calculations of the band structure of the periodic antidot lattice are presented......-coupled defect states is calculated numerically.We ¯nd results reminiscent of double quantum dot structures, indicating that the suggested structure is a feasible physical implementation of spin qubits....
Robust randomized benchmarking of quantum processes
Magesan, Easwar; Emerson, Joseph
2010-01-01
We describe a simple randomized benchmarking protocol for quantum information processors and obtain a sequence of models for the observable fidelity decay as a function of a perturbative expansion of the errors. We are able to prove that the protocol provides an efficient and reliable estimate of an average error-rate for a set operations (gates) under a general noise model that allows for both time and gate-dependent errors. We determine the conditions under which this estimate remains valid and illustrate the protocol through numerical examples.
Quantum Dynamics as a Stochastic Process
Figueiredo, J M A
2002-01-01
We study the classical motion of a particle subject to a stochastic force. We then present a perturbative schema for the associated Fokker-Planck equation where, in the limit of a vanishingly small noise source, a consistent dynamical model is obtained. The resulting theory is similar to Quantum Mechanics, having the same field equations for probability measures, the same operator structure and symmetric ordering of operators. The model is valid for general electromagnetic interaction as well as many body systems with mutual interactions of general nature.
Pure sources and efficient detectors for optical quantum information processing
Zielnicki, Kevin
Over the last sixty years, classical information theory has revolutionized the understanding of the nature of information, and how it can be quantified and manipulated. Quantum information processing extends these lessons to quantum systems, where the properties of intrinsic uncertainty and entanglement fundamentally defy classical explanation. This growing field has many potential applications, including computing, cryptography, communication, and metrology. As inherently mobile quantum particles, photons are likely to play an important role in any mature large-scale quantum information processing system. However, the available methods for producing and detecting complex multi-photon states place practical limits on the feasibility of sophisticated optical quantum information processing experiments. In a typical quantum information protocol, a source first produces an interesting or useful quantum state (or set of states), perhaps involving superposition or entanglement. Then, some manipulations are performed on this state, perhaps involving quantum logic gates which further manipulate or entangle the intial state. Finally, the state must be detected, obtaining some desired measurement result, e.g., for secure communication or computationally efficient factoring. The work presented here concerns the first and last stages of this process as they relate to photons: sources and detectors. Our work on sources is based on the need for optimized non-classical states of light delivered at high rates, particularly of single photons in a pure quantum state. We seek to better understand the properties of spontaneous parameteric downconversion (SPDC) sources of photon pairs, and in doing so, produce such an optimized source. We report an SPDC source which produces pure heralded single photons with little or no spectral filtering, allowing a significant rate enhancement. Our work on detectors is based on the need to reliably measure single-photon states. We have focused on
Influence of scattering processes on electron quantum states in nanowires
Directory of Open Access Journals (Sweden)
Pozdnyakov Dmitry
2007-01-01
Full Text Available AbstractIn the framework of quantum perturbation theory the self-consistent method of calculation of electron scattering rates in nanowires with the one-dimensional electron gas in the quantum limit is worked out. The developed method allows both the collisional broadening and the quantum correlations between scattering events to be taken into account. It is an alternativeper seto the Fock approximation for the self-energy approach based on Green’s function formalism. However this approach is free of mathematical difficulties typical to the Fock approximation. Moreover, the developed method is simpler than the Fock approximation from the computational point of view. Using the approximation of stable one-particle quantum states it is proved that the electron scattering processes determine the dependence of electron energy versus its wave vector.
NMR Based Quantum Information Processing Achievements and Prospects
Cory, D G; Knill, E H; Viola, L; Havel, T F; Boulant, N; Boutis, G; Fortunato, E M; Lloyd, S; Martínez, R; Negrevergne, C; Pravia, M A; Sharf, Y; Teklemariam, G; Weinstein, Yu S; Zurek, W H
2000-01-01
Nuclear magnetic resonance (NMR) provides an experimental setting to explore physical implementations of quantum information processing (QIP). Here we introduce the basic background for understanding applications of NMR to QIP and explain their current successes, limitations and potential. NMR spectroscopy is well known for its wealth of diverse coherent manipulations of spin dynamics. Ideas and instrumentation from liquid state NMR spectroscopy have been used to experiment with QIP. This approach has carried the field to a complexity of about 10 qubits, a small number for quantum computation but large enough for observing and better understanding the complexity of the quantum world. While liquid state NMR is the only present-day technology about to reach this number of qubits, further increases in complexity will require new methods. We sketch one direction leading towards a scalable quantum computer using spin 1/2 particles. The next step of which is a solid state NMR-based QIP capable of reaching 10-30 qub...
Semiconductor quantum dot amplifiers for optical signal processing
DEFF Research Database (Denmark)
Berg, Tommy Winther; Uskov, A. V.; Bischoff, Svend
2001-01-01
The dynamics of quantum dot semiconductor amplifiers are investigated theoretically with respect to the potential for ultrafast signal processing. The high-speed signal processing capacity of these devices is found to be limited by the wetting layer dynamics in case of electrical pumping, while...
Semiconductor quantum dot amplifiers for optical signal processing
DEFF Research Database (Denmark)
Berg, Tommy Winther; Uskov, A. V.; Bischoff, Svend
2001-01-01
The dynamics of quantum dot semiconductor amplifiers are investigated theoretically with respect to the potential for ultrafast signal processing. The high-speed signal processing capacity of these devices is found to be limited by the wetting layer dynamics in case of electrical pumping, while...
Quantum-Classical Hybrid for Information Processing
Zak, Michail
2011-01-01
Based upon quantum-inspired entanglement in quantum-classical hybrids, a simple algorithm for instantaneous transmissions of non-intentional messages (chosen at random) to remote distances is proposed. The idea is to implement instantaneous transmission of conditional information on remote distances via a quantum-classical hybrid that preserves superposition of random solutions, while allowing one to measure its state variables using classical methods. Such a hybrid system reinforces the advantages, and minimizes the limitations, of both quantum and classical characteristics. Consider n observers, and assume that each of them gets a copy of the system and runs it separately. Although they run identical systems, the outcomes of even synchronized runs may be different because the solutions of these systems are random. However, the global constrain must be satisfied. Therefore, if the observer #1 (the sender) made a measurement of the acceleration v(sub 1) at t =T, then the receiver, by measuring the corresponding acceleration v(sub 1) at t =T, may get a wrong value because the accelerations are random, and only their ratios are deterministic. Obviously, the transmission of this knowledge is instantaneous as soon as the measurements have been performed. In addition to that, the distance between the observers is irrelevant because the x-coordinate does not enter the governing equations. However, the Shannon information transmitted is zero. None of the senders can control the outcomes of their measurements because they are random. The senders cannot transmit intentional messages. Nevertheless, based on the transmitted knowledge, they can coordinate their actions based on conditional information. If the observer #1 knows his own measurements, the measurements of the others can be fully determined. It is important to emphasize that the origin of entanglement of all the observers is the joint probability density that couples their actions. There is no centralized source
Quantum Dot Devices for Optical Signal Processing
DEFF Research Database (Denmark)
Chen, Yaohui
. Additional to the static linear amplication properties, we focus on exploring the gain dynamics on the time scale ranging from sub-picosecond to nanosecond. In terms of optical signals that have been investigated, one is the simple sinusoidally modulated optical carrier with a typical modulation frequency...... range of 1-100 gigahertz. Our simulations reveal the role of ultrafast intradot carrier dynamics in enhancing modulation bandwidth of quantum dot semiconductor optical ampliers. Moreover, the corresponding coherent gain response also provides rich dispersion contents over a broad bandwidth. One...... important implementation is recently boosted by the research in slow light. The idea is to migrate such dynamical gain knowledge for the investigation of microwave phase shifter based on semiconductor optical waveguide. Our study reveals that phase shifting based on the conventional semiconductor optical...
Introduction to NMR Quantum Information Processing
Laflamme, R; Cory, D G; Fortunato, E M; Havel, T F; Miquel, C; Martínez, R; Negrevergne, C; Ortiz, G; Pravia, M A; Sharf, Y; Sinha, S; Somma, R D; Viola, L
2002-01-01
After a general introduction to nuclear magnetic resonance (NMR), we give the basics of implementing quantum algorithms. We describe how qubits are realized and controlled with RF pulses, their internal interactions, and gradient fields. A peculiarity of NMR is that the internal interactions (given by the internal Hamiltonian) are always on. We discuss how they can be effectively turned off with the help of a standard NMR method called ``refocusing''. Liquid state NMR experiments are done at room temperature, leading to an extremely mixed (that is, nearly random) initial state. Despite this high degree of randomness, it is possible to investigate QIP because the relaxation time (the time scale over which useful signal from a computation is lost) is sufficiently long. We explain how this feature leads to the crucial ability of simulating a pure (non-random) state by using ``pseudopure'' states. We discuss how the ``answer'' provided by a computation is obtained by measurement and how this measurement differs f...
Colloidal quantum dot solids for solution-processed solar cells
Yuan, Mingjian
2016-02-29
Solution-processed photovoltaic technologies represent a promising way to reduce the cost and increase the efficiency of solar energy harvesting. Among these, colloidal semiconductor quantum dot photovoltaics have the advantage of a spectrally tuneable infrared bandgap, which enables use in multi-junction cells, as well as the benefit of generating and harvesting multiple charge carrier pairs per absorbed photon. Here we review recent progress in colloidal quantum dot photovoltaics, focusing on three fronts. First, we examine strategies to manage the abundant surfaces of quantum dots, strategies that have led to progress in the removal of electronic trap states. Second, we consider new device architectures that have improved device performance to certified efficiencies of 10.6%. Third, we focus on progress in solution-phase chemical processing, such as spray-coating and centrifugal casting, which has led to the demonstration of manufacturing-ready process technologies.
Colloidal quantum dot solids for solution-processed solar cells
Yuan, Mingjian; Liu, Mengxia; Sargent, Edward H.
2016-03-01
Solution-processed photovoltaic technologies represent a promising way to reduce the cost and increase the efficiency of solar energy harvesting. Among these, colloidal semiconductor quantum dot photovoltaics have the advantage of a spectrally tuneable infrared bandgap, which enables use in multi-junction cells, as well as the benefit of generating and harvesting multiple charge carrier pairs per absorbed photon. Here we review recent progress in colloidal quantum dot photovoltaics, focusing on three fronts. First, we examine strategies to manage the abundant surfaces of quantum dots, strategies that have led to progress in the removal of electronic trap states. Second, we consider new device architectures that have improved device performance to certified efficiencies of 10.6%. Third, we focus on progress in solution-phase chemical processing, such as spray-coating and centrifugal casting, which has led to the demonstration of manufacturing-ready process technologies.
Tomography of the quantum state of photons entangled in high dimensions
CSIR Research Space (South Africa)
Agnew, M
2011-12-01
Full Text Available Systems entangled in high dimensions have recently been proposed as important tools for various quantum information protocols, such as multibit quantum key distribution and loophole-free tests of nonlocality. It is therefore important to have...
The series product for gaussian quantum input processes
Gough, John E.; James, Matthew R.
2017-02-01
We present a theory for connecting quantum Markov components into a network with quantum input processes in a Gaussian state (including thermal and squeezed). One would expect on physical grounds that the connection rules should be independent of the state of the input to the network. To compute statistical properties, we use a version of Wicks' theorem involving fictitious vacuum fields (Fock space based representation of the fields) and while this aids computation, and gives a rigorous formulation, the various representations need not be unitarily equivalent. In particular, a naive application of the connection rules would lead to the wrong answer. We establish the correct interconnection rules, and show that while the quantum stochastic differential equations of motion display explicitly the covariances (thermal and squeezing parameters) of the Gaussian input fields we introduce the Wick-Stratonovich form which leads to a way of writing these equations that does not depend on these covariances and so corresponds to the universal equations written in terms of formal quantum input processes. We show that a wholly consistent theory of quantum open systems in series can be developed in this way, and as required physically, is universal and in particular representation-free.
Quantum steering in cascaded four-wave mixing processes.
Wang, Li; Lv, Shuchao; Jing, Jietai
2017-07-24
Quantum steering is used to describe the "spooky action-at-a-distance" nonlocality raised in the Einstein-Podolsky-Rosen (EPR) paradox, which is important for understanding entanglement distribution and constructing quantum networks. Here, in this paper, we study an experimentally feasible scheme for generating quantum steering based on cascaded four-wave-mixing (FWM) processes in hot rubidium (Rb) vapor. Quantum steering, including bipartite steering and genuine tripartite steering among the output light fields, is theoretically analyzed. We find the corresponding gain regions in which the bipartite and tripartite steering exist. The results of bipartite steering can be used to establish a hierarchical steering model in which one beam can steer the other two beams in the whole gain region; however, the other two beams cannot steer the first beam simultaneously. Moreover, the other two beams cannot steer with each other in the whole gain region. More importantly, we investigate the gain dependence of the existence of the genuine tripartite steering and we find that the genuine tripartite steering exists in most of the whole gain region in the ideal case. Also we discuss the effect of losses on the genuine tripartite steering. Our results pave the way to experimental demonstration of quantum steering in cascaded FWM process.
Imaging wet gas separation process by capacitance tomography
Yang, Wuqiang; Nguyen, Van T.; Betting, Marco; Chondronasios, Athanasios; Nattras, Steve; Okimoto, Fred; McCann, Hugh
2002-03-01
Natural gas from a well contains water and hydrocarbons. It is necessary to separate the liquid components from such gas streams before use. An innovative type of separation facility, called Twister, has been developed for this purpose, and CFD models have been developed to assist in the design of Twister. However, it is difficult to verify the mathematical models directly and experimentally. To investigate the behavior of Twister and to verify the CFD models, a simulator using air and water vapor was set up in the laboratory. This simulator was instrumented with a highly sensitive electrical capacitance tomography (ECT) system based on an HP LCR meter and a purpose-designed multiplexer. Two ECT sensors, each with 8 measurement electrodes, were built taking into consideration the demanding operational conditions, such as sensitivity, temperature, pressure, geometry and location. This paper presents the first experimental results, showing that water droplets distributions in a flowing gas can be visualized using ECT, and the tomography system developed is robust and offers the possibility for further development to field operations.
Quantum Lévy Processes and Fractional Kinetics
Kusnezov, D; Dang, G D; Kusnezov, Dimitri; Bulgac, Aurel; Dang, Giu Do
1999-01-01
Exotic stochastic processes are shown to emerge in the quantum evolution of complex systems. Using influence function techniques, we consider the dynamics of a system coupled to a chaotic subsystem described through random matrix theory. We find that the reduced density matrix can display dynamics given by fractional kinetic equations. In particular we derive a fractional extension of Kramers equation.
Fast Quantum Algorithms for Numerical Integrals and Stochastic Processes
Abrams, D.; Williams, C.
1999-01-01
We discuss quantum algorithms that calculate numerical integrals and descriptive statistics of stochastic processes. With either of two distinct approaches, one obtains an exponential speed increase in comparison to the fastest known classical deterministic algotithms and a quadratic speed increase incomparison to classical Monte Carlo methods.
Counting statistics of non-markovian quantum stochastic processes
DEFF Research Database (Denmark)
Flindt, Christian; Novotny, T.; Braggio, A.
2008-01-01
We derive a general expression for the cumulant generating function (CGF) of non-Markovian quantum stochastic transport processes. The long-time limit of the CGF is determined by a single dominating pole of the resolvent of the memory kernel from which we extract the zero-frequency cumulants of t...
Post-processing procedure for industrial quantum key distribution systems
Kiktenko, Evgeny; Trushechkin, Anton; Kurochkin, Yury; Fedorov, Aleksey
2016-08-01
We present algorithmic solutions aimed on post-processing procedure for industrial quantum key distribution systems with hardware sifting. The main steps of the procedure are error correction, parameter estimation, and privacy amplification. Authentication of classical public communication channel is also considered.
Quantum states for quantum processes: A toy model for ammonia inversion spectra
Energy Technology Data Exchange (ETDEWEB)
Arteca, Gustavo A. [Departement de Chimie et Biochimie and Biomolecular Sciences Programme, Laurentian University, Ramsey Lake Road, Sudbury, Ontario, Canada P3E 2C6 (Canada); Department of Physical Chemistry, Uppsala University, A ring ngstroemlaboratoriet, Box 259, S-751 05 Uppsala (Sweden); Tapia, O. [Department of Physical Chemistry, Uppsala University, A ring ngstroemlaboratoriet, Box 259, S-751 05 Uppsala (Sweden)
2011-07-15
Chemical transformations are viewed here as quantum processes modulated by external fields, that is, as shifts in reactant to product amplitudes within a quantum state represented by a linear (coherent) superposition of electronuclear basis functions; their electronic quantum numbers identify the ''chemical species.'' This basis set can be mapped from attractors built from a unique electronic configurational space that is invariant with respect to the nuclear geometry. In turn, the quantum numbers that label these basis functions and the semiclassical potentials for the electronic attractors may be used to derive reaction coordinates to monitor progress as a function of the applied field. A generalization of Feynman's three-state model for the ammonia inversion process illustrates the scheme; to enforce symmetry for the entire inversion process model and ensure invariance with respect to nuclear configurations, the three attractors and their basis functions are computed with a grid of fixed floating Gaussian functions. The external-field modulation of the effective inversion barrier is discussed within this conceptual approach. This analysis brings the descriptions of chemical processes near modern technologies that employ molecules to encode information by means of confinement and external fields.
Quantum states for quantum processes: A toy model for ammonia inversion spectra
Arteca, Gustavo A.; Tapia, O.
2011-07-01
Chemical transformations are viewed here as quantum processes modulated by external fields, that is, as shifts in reactant to product amplitudes within a quantum state represented by a linear (coherent) superposition of electronuclear basis functions; their electronic quantum numbers identify the “chemical species.” This basis set can be mapped from attractors built from a unique electronic configurational space that is invariant with respect to the nuclear geometry. In turn, the quantum numbers that label these basis functions and the semiclassical potentials for the electronic attractors may be used to derive reaction coordinates to monitor progress as a function of the applied field. A generalization of Feynman's three-state model for the ammonia inversion process illustrates the scheme; to enforce symmetry for the entire inversion process model and ensure invariance with respect to nuclear configurations, the three attractors and their basis functions are computed with a grid of fixed floating Gaussian functions. The external-field modulation of the effective inversion barrier is discussed within this conceptual approach. This analysis brings the descriptions of chemical processes near modern technologies that employ molecules to encode information by means of confinement and external fields.
Formal Analysis of Quantum Systems using Process Calculus
Directory of Open Access Journals (Sweden)
Timothy A.S. Davidson
2011-07-01
Full Text Available Quantum communication and cryptographic protocols are well on the way to becoming an important practical technology. Although a large amount of successful research has been done on proving their correctness, most of this work does not make use of familiar techniques from formal methods, such as formal logics for specification, formal modelling languages, separation of levels of abstraction, and compositional analysis. We argue that these techniques will be necessary for the analysis of large-scale systems that combine quantum and classical components, and summarize the results of initial investigation using behavioural equivalence in process calculus. This paper is a summary of Simon Gay's invited talk at ICE'11.
Novel classical post-processing for quantum key distribution-based quantum private query
Yang, Yu-Guang; Liu, Zhi-Chao; Chen, Xiu-Bo; Cao, Wei-Feng; Zhou, Yi-Hua; Shi, Wei-Min
2016-09-01
Existing classical post-processing (CPP) schemes for quantum key distribution (QKD)-based quantum private queries (QPQs) including the kN→ N, N→ N, and rM→ N ones have been found imperfect in terms of communication efficiency and security. In this paper, we propose a novel CPP scheme for QKD-based QPQs. The proposed CPP scheme reduces the communication complexity and improves the security of QKD-based QPQ protocols largely. Furthermore, the proposed CPP scheme can provide a multi-bit query efficiently.
Fast Quantum Algorithm for Predicting Descriptive Statistics of Stochastic Processes
Williams Colin P.
1999-01-01
Stochastic processes are used as a modeling tool in several sub-fields of physics, biology, and finance. Analytic understanding of the long term behavior of such processes is only tractable for very simple types of stochastic processes such as Markovian processes. However, in real world applications more complex stochastic processes often arise. In physics, the complicating factor might be nonlinearities; in biology it might be memory effects; and in finance is might be the non-random intentional behavior of participants in a market. In the absence of analytic insight, one is forced to understand these more complex stochastic processes via numerical simulation techniques. In this paper we present a quantum algorithm for performing such simulations. In particular, we show how a quantum algorithm can predict arbitrary descriptive statistics (moments) of N-step stochastic processes in just O(square root of N) time. That is, the quantum complexity is the square root of the classical complexity for performing such simulations. This is a significant speedup in comparison to the current state of the art.
Quantum mechanics of molecular rate processes
Levine, Raphael D
1999-01-01
This survey of applications of the theory of collisions and rate processes to molecular problems explores collisions of molecules with internal structure, generalized Ehrenfest theorem, theory of reactive collisions, and role of symmetry. It also reviews partitioning technique, equivalent potentials and quasibound states, theory of direct reactions, more. 1969 edition.
A computable branching process for the Wigner quantum dynamics
Shao, Sihong
2016-01-01
A branching process treatment for the nonlocal Wigner pseudo-differential operator and its numerical applications in quantum dynamics is proposed and analyzed. We start from the discussion on two typical truncations of the nonlocal term, i.e., the $k$-truncated and $y$-truncated models. After introducing an auxiliary function $\\gamma(\\bm{x})$, the (truncated) Wigner equation is reformulated into the integral formulation as well as its adjoint correspondence, both of which can be regarded as the renewal-type equations and have transparent stochastic interpretation. We prove that the moment of a branching process happens to be the solution for the adjoint equation, which connects rigorously the Wigner quantum dynamics to the stochastic branching process, and thus a sound mathematical framework for the Wigner Monte Carlo methods is established. Within the framework, the branching process for the $y$-truncated model recovers the popular signed particle Monte Carlo method which needs a discretization of the moment...
Evolution of quantum-like modeling in decision making processes
Khrennikova, Polina
2012-12-01
The application of the mathematical formalism of quantum mechanics to model behavioral patterns in social science and economics is a novel and constantly emerging field. The aim of the so called 'quantum like' models is to model the decision making processes in a macroscopic setting, capturing the particular 'context' in which the decisions are taken. Several subsequent empirical findings proved that when making a decision people tend to violate the axioms of expected utility theory and Savage's Sure Thing principle, thus violating the law of total probability. A quantum probability formula was devised to describe more accurately the decision making processes. A next step in the development of QL-modeling in decision making was the application of Schrödinger equation to describe the evolution of people's mental states. A shortcoming of Schrödinger equation is its inability to capture dynamics of an open system; the brain of the decision maker can be regarded as such, actively interacting with the external environment. Recently the master equation, by which quantum physics describes the process of decoherence as the result of interaction of the mental state with the environmental 'bath', was introduced for modeling the human decision making. The external environment and memory can be referred to as a complex 'context' influencing the final decision outcomes. The master equation can be considered as a pioneering and promising apparatus for modeling the dynamics of decision making in different contexts.
The role of quantum measurements in physical processes and protocols
Cruikshank, Benjamin; Jacobs, Kurt
2017-09-01
In this mainly pedagogical article, we discuss under what circumstances measurements play a special role in quantum processes. In particular, we discuss the following facts that appear to be a common area of confusion. (i) From a fundamental point of view, measurements play no special role whatsoever: all dynamics that can be generated by measurements can be generated by unitary processes (for which post-selection is no exception). (ii) From a purely physical point of view, measurements are not ‘outside’ of quantum mechanics. (iii) The only difference between the abilities of measurement-based protocols and unitary circuits for quantum computing comes from practical (technology dependent) constraints. We emphasise the importance of distinguishing between differences that are (i) fundamental but without physical import; (ii) fundamental and possess physical import; and (iii) are not fundamental but have practical import. We also emphasise the importance of separating theoretical and experimental elements of measurement, primarily projection and amplification, which are physically very different. Note that since we are concerned with facts regarding physical processes, this article has little if anything to do with interpretations of quantum mechanics.
Nonparametric estimation of quantum states, processes and measurements
Lougovski, Pavel; Bennink, Ryan
Quantum state, process, and measurement estimation methods traditionally use parametric models, in which the number and role of relevant parameters is assumed to be known. When such an assumption cannot be justified, a common approach in many disciplines is to fit the experimental data to multiple models with different sets of parameters and utilize an information criterion to select the best fitting model. However, it is not always possible to assume a model with a finite (countable) number of parameters. This typically happens when there are unobserved variables that stem from hidden correlations that can only be unveiled after collecting experimental data. How does one perform quantum characterization in this situation? We present a novel nonparametric method of experimental quantum system characterization based on the Dirichlet Process (DP) that addresses this problem. Using DP as a prior in conjunction with Bayesian estimation methods allows us to increase model complexity (number of parameters) adaptively as the number of experimental observations grows. We illustrate our approach for the one-qubit case and show how a probability density function for an unknown quantum process can be estimated.
Lu, Yun-Gang
1995-01-01
The present article is devoted to the explanation of the irreversible behavior of quantum systems as a limiting case (in a sense to be made precise) of usual quantum dynamics. One starts with a system, whose Hamiltonian has a continuous spectrum, interacting with a reservoir and studies the limits of quantities related to the whole compound system. A macroscopic equation is obtained for the limit of the compound system, which is a quantum stochastic differential equation of Poisson type on some Hilbert module (no longer a space) and whose coefficients are uniquely determined by the one-particle Hamiltonian of the original system and whose driving noises are the creation, annihilation, and number (or gauge) processes living on the Fock module over this module.
Generalized Poisson processes in quantum mechanics and field theory
Energy Technology Data Exchange (ETDEWEB)
Combe, P.; Rodriguez, R. (Centre National de la Recherche Scientifique, 13 - Marseille (France). Faculte des Sciences de Luminy); Hoegh-Krohn, R.; Sirugue, M.; Sirugue-Collin, M.
1981-11-01
In section 2 we describe more carefully the generalized Poisson processes, giving a realization of the underlying probability space, and we characterize these processes by their characteristic functionals. Section 3 is devoted to the proof of the previous formula for quantum mechanical systems, with possibly velocity dependent potentials and in section 4 we give an application of the previous theory to some relativistic Bose field models.
Surface processes during purification of InP quantum dots
Directory of Open Access Journals (Sweden)
Natalia Mordvinova
2014-08-01
Full Text Available Recently, a new simple and fast method for the synthesis of InP quantum dots by using phosphine as phosphorous precursor and myristic acid as surface stabilizer was reported. Purification after synthesis is necessary to obtain samples with good optical properties. Two methods of purification were compared and the surface processes which occur during purification were studied. Traditional precipitation with acetone is accompanied by a small increase in photoluminescence. It occurs that during the purification the hydrolysis of the indium precursor takes place, which leads to a better surface passivation. The electrophoretic purification technique does not increase luminescence efficiency but yields very pure quantum dots in only a few minutes. Additionally, the formation of In(OH3 during the low temperature synthesis was explained. Purification of quantum dots is a very significant part of postsynthetical treatment that determines the properties of the material. But this subject is not sufficiently discussed in the literature. The paper is devoted to the processes that occur at the surface of quantum dots during purification. A new method of purification, electrophoresis, is investigated and described in particular.
Surface processes during purification of InP quantum dots.
Mordvinova, Natalia; Emelin, Pavel; Vinokurov, Alexander; Dorofeev, Sergey; Abakumov, Artem; Kuznetsova, Tatiana
2014-01-01
Recently, a new simple and fast method for the synthesis of InP quantum dots by using phosphine as phosphorous precursor and myristic acid as surface stabilizer was reported. Purification after synthesis is necessary to obtain samples with good optical properties. Two methods of purification were compared and the surface processes which occur during purification were studied. Traditional precipitation with acetone is accompanied by a small increase in photoluminescence. It occurs that during the purification the hydrolysis of the indium precursor takes place, which leads to a better surface passivation. The electrophoretic purification technique does not increase luminescence efficiency but yields very pure quantum dots in only a few minutes. Additionally, the formation of In(OH)3 during the low temperature synthesis was explained. Purification of quantum dots is a very significant part of postsynthetical treatment that determines the properties of the material. But this subject is not sufficiently discussed in the literature. The paper is devoted to the processes that occur at the surface of quantum dots during purification. A new method of purification, electrophoresis, is investigated and described in particular.
Computed tomography: acquisition process, technology and current state
Directory of Open Access Journals (Sweden)
Óscar Javier Espitia Mendoza
2016-02-01
Full Text Available Computed tomography is a noninvasive scan technique widely applied in areas such as medicine, industry, and geology. This technique allows the three-dimensional reconstruction of the internal structure of an object which is lighted with an X-rays source. The reconstruction is formed with two-dimensional cross-sectional images of the object. Each cross-sectional is obtained from measurements of physical phenomena, such as attenuation, dispersion, and diffraction of X-rays, as result of their interaction with the object. In general, measurements acquisition is performed with methods based on any of these phenomena and according to various architectures classified in generations. Furthermore, in response to the need to simulate acquisition systems for CT, software dedicated to this task has been developed. The objective of this research is to determine the current state of CT techniques, for this, a review of methods, different architectures used for the acquisition and some of its applications is presented. Additionally, results of simulations are presented. The main contributions of this work are the detailed description of acquisition methods and the presentation of the possible trends of the technique.
Unknown Quantum States and Operations, a Bayesian View
Fuchs, C; Fuchs, Christopher A.; Schack, Ruediger
2004-01-01
The classical de Finetti theorem provides an operational definition of the concept of an unknown probability in Bayesian probability theory, where probabilities are taken to be degrees of belief instead of objective states of nature. In this paper, we motivate and review two results that generalize de Finetti's theorem to the quantum mechanical setting: Namely a de Finetti theorem for quantum states and a de Finetti theorem for quantum operations. The quantum-state theorem, in a closely analogous fashion to the original de Finetti theorem, deals with exchangeable density-operator assignments and provides an operational definition of the concept of an "unknown quantum state" in quantum-state tomography. Similarly, the quantum-operation theorem gives an operational definition of an "unknown quantum operation" in quantum-process tomography. These results are especially important for a Bayesian interpretation of quantum mechanics, where quantum states and (at least some) quantum operations are taken to be states ...
Classical Wave Model of Quantum-Like Processing in Brain
Khrennikov, A.
2011-01-01
We discuss the conjecture on quantum-like (QL) processing of information in the brain. It is not based on the physical quantum brain (e.g., Penrose) - quantum physical carriers of information. In our approach the brain created the QL representation (QLR) of information in Hilbert space. It uses quantum information rules in decision making. The existence of such QLR was (at least preliminary) confirmed by experimental data from cognitive psychology. The violation of the law of total probability in these experiments is an important sign of nonclassicality of data. In so called "constructive wave function approach" such data can be represented by complex amplitudes. We presented 1,2 the QL model of decision making. In this paper we speculate on a possible physical realization of QLR in the brain: a classical wave model producing QLR . It is based on variety of time scales in the brain. Each pair of scales (fine - the background fluctuations of electromagnetic field and rough - the cognitive image scale) induces the QL representation. The background field plays the crucial role in creation of "superstrong QL correlations" in the brain.
Surface processes during purification of InP quantum dots
2014-01-01
Recently, a new simple and fast method for the synthesis of InP quantum dots by using phosphine as phosphorous precursor and myristic acid as surface stabilizer was reported. Purification after synthesis is necessary to obtain samples with good optical properties. Two methods of purification were compared and the surface processes which occur during purification were studied. Traditional precipitation with acetone is accompanied by a small increase in photoluminescence. It occurs that during ...
A sub-ensemble theory of ideal quantum measurement processes
Allahverdyan, Armen E.; Balian, Roger; Nieuwenhuizen, Theo M.
2017-01-01
In order to elucidate the properties currently attributed to ideal measurements, one must explain how the concept of an individual event with a well-defined outcome may emerge from quantum theory which deals with statistical ensembles, and how different runs issued from the same initial state may end up with different final states. This so-called "measurement problem" is tackled with two guidelines. On the one hand, the dynamics of the macroscopic apparatus A coupled to the tested system S is described mathematically within a standard quantum formalism, where " q-probabilities" remain devoid of interpretation. On the other hand, interpretative principles, aimed to be minimal, are introduced to account for the expected features of ideal measurements. Most of the five principles stated here, which relate the quantum formalism to physical reality, are straightforward and refer to macroscopic variables. The process can be identified with a relaxation of S + A to thermodynamic equilibrium, not only for a large ensemble E of runs but even for its sub-ensembles. The different mechanisms of quantum statistical dynamics that ensure these types of relaxation are exhibited, and the required properties of the Hamiltonian of S + A are indicated. The additional theoretical information provided by the study of sub-ensembles remove Schrödinger's quantum ambiguity of the final density operator for E which hinders its direct interpretation, and bring out a commutative behaviour of the pointer observable at the final time. The latter property supports the introduction of a last interpretative principle, needed to switch from the statistical ensembles and sub-ensembles described by quantum theory to individual experimental events. It amounts to identify some formal " q-probabilities" with ordinary frequencies, but only those which refer to the final indications of the pointer. The desired properties of ideal measurements, in particular the uniqueness of the result for each individual
Birth and death processes and quantum spin chains
Grünbaum, Alberto F; Zhedanov, Alexei
2012-01-01
This papers underscores the intimate connection between the quantum walks generated by certain spin chain Hamiltonians and classical birth and death processes. It is observed that transition amplitudes between single excitation states of the spin chains have an expression in terms of orthogonal polynomials which is analogous to the Karlin-McGregor representation formula of the transition probability functions for classes of birth and death processes. As an application, we present a characterization of spin systems for which the probability to return to the point of origin at some time is 1 or almost 1.
Memory effects in attenuation and amplification quantum processes
Lupo, Cosmo; Giovannetti, Vittorio; Mancini, Stefano
2010-09-01
With increasing communication rates via quantum channels, memory effects become unavoidable whenever the use rate of the channel is comparable to the typical relaxation time of the channel environment. We introduce a model of a bosonic memory channel, describing correlated noise effects in quantum-optical processes via attenuating or amplifying media. To study such a channel model, we make use of a proper set of collective field variables, which allows us to unravel the memory effects, mapping the n-fold concatenation of the memory channel to a unitarily equivalent, direct product of n single-mode bosonic channels. We hence estimate the channel capacities by relying on known results for the memoryless setting. Our findings show that the model is characterized by two different regimes, in which the cross correlations induced by the noise among different channel uses are either exponentially enhanced or exponentially reduced.
Memory effects in attenuation and amplification quantum processes
Lupo, Cosmo; Mancini, Stefano
2010-01-01
With increasing communication rates via quantum channels, memory effects become unavoidable whenever the use rate of the channel is comparable with the typical relaxation time of the channel environment. We then introduce a model of bosonic memory channel, describing correlated noise effects in quantum optical processes via attenuating or amplifying media. To study such a channel model we make use of a proper set of collective field variables, which allows us to unravel the memory effects, mapping the n-fold concatenation of the memory channel to a, unitarily equivalent, direct product of n single-mode bosonic channels. We hence estimate the channel capacities by relying on known results for the memoryless setting. Our findings show that the model is characterized by two different regimes, in which the cross-correlations induced by the noise among different channel uses are either exponentially enhanced or exponentially reduced.
A measure theoretical approach to quantum stochastic processes
Energy Technology Data Exchange (ETDEWEB)
Waldenfels, Wilhelm von
2014-04-01
Authored by a leading researcher in the field. Self-contained presentation of the subject matter. Examines a number of worked examples in detail. This monograph takes as starting point that abstract quantum stochastic processes can be understood as a quantum field theory in one space and in one time coordinate. As a result it is appropriate to represent operators as power series of creation and annihilation operators in normal-ordered form, which can be achieved using classical measure theory. Considering in detail four basic examples (e.g. a two-level atom coupled to a heat bath of oscillators), in each case the Hamiltonian of the associated one-parameter strongly continuous group is determined and the spectral decomposition is explicitly calculated in the form of generalized eigen-vectors. Advanced topics include the theory of the Hudson-Parthasarathy equation and the amplified oscillator problem. To that end, a chapter on white noise calculus has also been included.
Planar ion chip design for scalable quantum information processing
Institute of Scientific and Technical Information of China (English)
Wan Jin-Yin; Wang Yu-Zhu; Liu Liang
2008-01-01
We investigate a planar ion chip design with a two-dimensional array of linear ion traps for scalable quantum information processing.Qubits are formed from the internal electronic states of trapped 40Ca+ ions.The segmented electrodes reside in a single plane on a substrate and a grounded metal plate separately,a combination of appropriaterf and DC potentials is applied to them for stable ion confinement.Every two adjacent electrodes can generate a linear ion trap in and between the electrodes above the chip at a distance dependent on the geometrical scale and other considerations.The potential distributions are calculated by using a static electric field qualitatively.This architecture provides a conceptually simple avenue to achieving the microfabrication and large-scale quantum computation based on the axrays of trapped ions.
Evolution prediction from tomography
Dominy, Jason M.; Venuti, Lorenzo Campos; Shabani, Alireza; Lidar, Daniel A.
2017-03-01
Quantum process tomography provides a means of measuring the evolution operator for a system at a fixed measurement time t. The problem of using that tomographic snapshot to predict the evolution operator at other times is generally ill-posed since there are, in general, infinitely many distinct and compatible solutions. We describe the prediction, in some "maximal ignorance" sense, of the evolution of a quantum system based on knowledge only of the evolution operator for finitely many times 0evolution at times away from the measurement times. Even if the original evolution is unitary, the predicted evolution is described by a non-unitary, completely positive map.
Decoherence-Free Quantum Information Processing with Four-Photon Entangled States
Bourennane, M; Gaertner, S; Kurtsiefer, C; Cabello, A; Weinfurter, H; Bourennane, Mohamed; Eibl, Manfred; Gaertner, Sascha; Kurtsiefer, Christian; Cabello, Adan; Weinfurter, Harald
2004-01-01
Decoherence-free states protect quantum information from collective noise, the predominant cause of decoherence in current implementations of quantum communication and computation. Here we demonstrate that spontaneous parametric down-conversion can be used to generate four-photon states which enable the encoding of one qubit in a decoherence-free subspace. The immunity against noise is verified by quantum state tomography of the encoded qubit. We show that particular states of the encoded qubit can be distinguished by local measurements on the four photons only.
Tomography of the quantum state of photons entangled in high dimensions
Energy Technology Data Exchange (ETDEWEB)
Agnew, Megan; Leach, Jonathan [Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario, K1N 6N5 Canada (Canada); McLaren, Melanie; Roux, F. Stef [CSIR National Laser Centre, Pretoria 0001 (South Africa); Boyd, Robert W. [Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario, K1N 6N5 Canada (Canada); Institute of Optics, University of Rochester, Rochester, New York 14627 (United States)
2011-12-15
Systems entangled in high dimensions have recently been proposed as important tools for various quantum information protocols, such as multibit quantum key distribution and loophole-free tests of nonlocality. It is therefore important to have precise knowledge of the nature of such entangled quantum states. We tomographically reconstruct the quantum state of the two photons produced by parametric downconversion that are entangled in a d-dimensional orbital angular momentum basis. We determine exactly the density matrix of the entangled two-qudit state with d ranging from 2 to 8. The recording of higher-dimensional states is limited only by the number of data points required and therefore the length of time needed to complete the measurements. We find all the measured states to have fidelities and linear entropies that satisfy the criteria required for a violation of the appropriate high-dimensional Bell inequality. Our results therefore precisely characterize the nature of the entanglement, thus establishing the suitability of such states for applications in quantum information science.
Bartkiewicz, Karol; Lemr, Karel; Černoch, Antonín; Miranowicz, Adam
2017-03-01
We propose and experimentally implement an efficient procedure based on entanglement swapping to determine the Bell nonlocality measure of Horodecki et al. [Phys. Lett. A 200, 340 (1995), 10.1016/0375-9601(95)00214-N] and the fully entangled fraction of Bennett et al. [Phys. Rev. A 54, 3824 (1996), 10.1103/PhysRevA.54.3824] of an arbitrary two-qubit polarization-encoded state. The nonlocality measure corresponds to the amount of the violation of the Clauser-Horne-Shimony-Holt (CHSH) optimized over all measurement settings. By using simultaneously two copies of a given state, we measure directly only six parameters. This is an experimental determination of these quantities without quantum state tomography or continuous monitoring of all measurement bases in the usual CHSH inequality tests. We analyze how well the measured degrees of Bell nonlocality and other entanglement witnesses (including the fully entangled fraction and a nonlinear entropic witness) of an arbitrary two-qubit state can estimate its entanglement. In particular, we measure these witnesses and estimate the negativity of various two-qubit Werner states. Our approach could especially be useful for quantum communication protocols based on entanglement swapping.
Arbitrary Waveform Generator for Quantum Information Processing with Trapped Ions
Bowler, R; Britton, J W; Sawyer, B C; Amini, J
2013-01-01
Atomic ions confined in multi-electrode traps have been proposed as a basis for scalable quantum information processing. This scheme involves transporting ions between spatially distinct locations by use of time-varying electric potentials combined with laser or microwave pulses for quantum logic in specific locations. We report the development of a fast multi-channel arbitrary waveform generator for applying the time-varying electric potentials used for transport and for shaping quantum logic pulses. The generator is based on a field-programmable gate array controlled ensemble of 16-bit digital-to-analog converters with an update frequency of 50 MHz and an output range of $\\pm$10 V. The update rate of the waveform generator is much faster than relevant motional frequencies of the confined ions in our experiments, allowing diabatic control of the ion motion. Numerous pre-loaded sets of time-varying voltages can be selected with 40 ns latency conditioned on real-time signals. Here we describe the device and de...
Quantum Tomography via Compressed Sensing: Error Bounds, Sample Complexity and Efficient Estimators
2012-09-27
renormalize the state, ρ̂ →̂ρ/Tr(ρ̂). 5.1. Setting the estimator parameters λ and µ From theorem 1 we know roughly how we should choose the free...quite large, so that it is barely possible to make enough independent measurements that tomography is possible within the allotted time T . In this...informationally complete measurement, there is barely enough time to make one measurement per setting, so the measurement results are dominated by
Bogdanov, Yu. I.; Galeev, R. F.; Kulik, S. P.; Moreva, E. V.
A model that approximately takes into account instrumental errors in problems of precision reconstruction of quantum states is considered. The model is based on the notion of coherence volume, which characterizes the quality of the experimental and technological realization of the measurement
QUANTUM STOCHASTIC PROCESSES: BOSON AND FERMION BROWNIAN MOTION
Directory of Open Access Journals (Sweden)
A.E.Kobryn
2003-01-01
Full Text Available Dynamics of quantum systems which are stochastically perturbed by linear coupling to the reservoir can be studied in terms of quantum stochastic differential equations (for example, quantum stochastic Liouville equation and quantum Langevin equation. In order to work it out one needs to define the quantum Brownian motion. As far as only its boson version has been known until recently, in the present paper we present the definition which makes it possible to consider the fermion Brownian motion as well.
Quantum processes in short and intensive electromagnetic fields
Titov, Alexander I; Hosaka, Atsushi; Takabe, Hideaki
2015-01-01
This work provides an overview of our recent results in studying two most important and widely discussed quantum processes: electron-positron pairs production off a probe photon propagating through a polarized short-pulsed electromagnetic (e.g.\\ laser) wave field or generalized Breit-Wheeler process, and a single a photon emission off an electron interacting with the laser pules, so-called non-linear Compton scattering. We show that the probabilities of particle production in both processes are determined by interplay of two dynamical effects, where the first one is related to the shape and duration of the pulse and the second one is non-linear dynamics of the interaction of charged fermions with a strong electromagnetic field. We elaborate suitable expressions for the production probabilities and cross sections, convenient for studying evolution of the plasma in presence of strong electromagnetic fields
Quantum processes in short and intensive electromagnetic fields
Titov, A. I.; Kämpfer, Burkhard; Hosaka, Atsushi; Takabe, Hideaki
2016-05-01
This work provides an overview of our recent results in studying two most important and widely discussed quantum processes: electron-positron pairs production off a probe photon propagating through a polarized short-pulsed electromagnetic (e.g. laser) wave field or generalized Breit-Wheeler process, and a single a photon emission off an electron interacting with the laser pules, so-called non-linear Compton scattering. We show that the probabilities of particle production in both processes are determined by interplay of two dynamical effects, where the first one is related to the shape and duration of the pulse and the second one is non-linear dynamics of the interaction of charged fermions with a strong electromagnetic field. We elaborate suitable expressions for the production probabilities and cross sections, convenient for studying evolution of the plasma in presence of strong electromagnetic fields.
Decay Process of Quantum Open System at Finite Temperatures
Institute of Scientific and Technical Information of China (English)
肖骁; 高一波
2012-01-01
Starting from the formal solution to the Heisenberg equation, we revisit an universal model for a quantum open system with a harmonic oscillator linearly coupled to a boson bath. The analysis of the decay process for a Fock state and a coherent state demonstrate that this method is very useful in dealing with the problems in decay process of the open system. For finite temperatures, the calculations of the reduced density matrix and the mean excitation number for the open system show that an initiaJ coherent state will evolve into a temperature-dependant coherent state after tracing over the bath variables. Also in short-time limit, a temperature-dependant effective Hamiltonian for the open system characterizes the decay process of the open system.
Many Time Interpretation Of the Quantum Measurement Process
Dugic, M
1998-01-01
Many Time Interpretation (MTI) proposes that each stochastic "quantum jump" ("reduction") concerning each single object (of an ensemble) represents a consequence of a (stochastic) choice (change) of Time. Therefore, each single object experiences its own (local), stochastically chosen Time, which is as real for it, as the macroscopic Time is real in classical physics. Therefore, instead of the "indeterminism" with regard to the macroscopic Time, MTI proposes "determinism", but with regard to the set(s) of (stochastically chosen) local Times. Within an axiomatization, which includes the composite system "single object+apparatus+environment, MTI leads to : (i) Recognizing the amplification process as the fundamental "part" of the measurement process, (ii) Nonvalidity of the Schrodinger equation concerning the "whole", O+A+E, which makes the "state reduction process" unnecessary and unphysical, (iii) Natural deducibility of the macroscopic irreversibility, and (iv) Nonequivalence of MTI with any existing measure...
Analog CMOS circuit design and characterization for optical coherence tomography signal processing.
Kariya, Rajesh; Mathine, David L; Barton, Jennifer K
2004-12-01
We have developed a custom analog CMOS circuit to perform the signal processing for an optical coherence tomography imaging system. The circuit is realized in a 1.5 microm low-noise analog CMOS technology. The circuitry extracts the Doppler frequency from the signal and electrically mixes this with the original signal to provide a filtered A-scan. The circuitry was used to produce a two-dimensional image of an onion.
MMX-I: data-processing software for multimodal X-ray imaging and tomography
Energy Technology Data Exchange (ETDEWEB)
Bergamaschi, Antoine, E-mail: antoine.bergamaschi@synchrotron-soleil.fr; Medjoubi, Kadda [Synchrotron SOLEIL, BP 48, Saint-Aubin, 91192 Gif sur Yvette (France); Messaoudi, Cédric; Marco, Sergio [Université Paris-Saclay, CNRS, Université Paris-Saclay, F-91405 Orsay (France); Institut Curie, INSERM, PSL Reseach University, F-91405 Orsay (France); Somogyi, Andrea [Synchrotron SOLEIL, BP 48, Saint-Aubin, 91192 Gif sur Yvette (France)
2016-04-12
The MMX-I open-source software has been developed for processing and reconstruction of large multimodal X-ray imaging and tomography datasets. The recent version of MMX-I is optimized for scanning X-ray fluorescence, phase-, absorption- and dark-field contrast techniques. This, together with its implementation in Java, makes MMX-I a versatile and friendly user tool for X-ray imaging. A new multi-platform freeware has been developed for the processing and reconstruction of scanning multi-technique X-ray imaging and tomography datasets. The software platform aims to treat different scanning imaging techniques: X-ray fluorescence, phase, absorption and dark field and any of their combinations, thus providing an easy-to-use data processing tool for the X-ray imaging user community. A dedicated data input stream copes with the input and management of large datasets (several hundred GB) collected during a typical multi-technique fast scan at the Nanoscopium beamline and even on a standard PC. To the authors’ knowledge, this is the first software tool that aims at treating all of the modalities of scanning multi-technique imaging and tomography experiments.
Myoelectric control of artificial limb inspired by quantum information processing
Siomau, Michael; Jiang, Ning
2015-03-01
Precise and elegant coordination of a prosthesis across many degrees of freedom represents a significant challenge to efficient rehabilitation of people with limb deficiency. Processing the electrical neural signals collected from the surface of the remnant muscles of the stump is a common way to initiate and control the different movements available to the artificial limb. Based on the assumption that there are distinguishable and repeatable signal patterns among different types of muscular activation, the problem of prosthesis control reduces to one of pattern recognition. Widely accepted classical methods for pattern recognition, however, cannot provide simultaneous and proportional control of the artificial limb. Here we show that, in principle, quantum information processing of the neural signals allows us to overcome the above-mentioned difficulties, suggesting a very simple scheme for myoelectric control of artificial limb with advanced functionalities.
Myoelectric Control of Artificial Limb by Quantum Information Processing
Siomau, Michael
2013-01-01
Precise and elegant coordination of a prosthesis across many degrees of freedom is highly desired for rehabilitation of people with limb deficiency. Processing the electrical neural signals, collected from the surface of the remnant muscles of the stump, is a common way to activate certain function of the artificial limb. Based on the assumption that there are distinguishable and repeatable signal patterns among different types of muscular activation, the problem of the prosthesis control reduces to the pattern recognition. Widely accepted classical methods for pattern recognition, however, can not provide simultaneous and proportional control of the artificial limb. Here we show that quantum information processing of the neural signals allows us to overcome above difficulties suggesting a very simple scheme for myoelectric control of artificial limb with advanced functionalities.
Multi-Well Potentials in Quantum Mechanics and Stochastic Processes
Directory of Open Access Journals (Sweden)
Victor P. Berezovoj
2010-12-01
Full Text Available Using the formalism of extended N=4 supersymmetric quantum mechanics we consider the procedure of the construction of multi-well potentials. We demonstrate the form-invariance of Hamiltonians entering the supermultiplet, using the presented relation for integrals, which contain fundamental solutions. The possibility of partial N=4 supersymmetry breaking is determined. We also obtain exact forms of multi-well potentials, both symmetric and asymmetric, using the Hamiltonian of harmonic oscillator as initial. The modification of the shape of potentials due to variation of parameters is also discussed, as well as application of the obtained results to the study of tunneling processes. We consider the case of exact, as well as partially broken N=4 supersymmetry. The distinctive feature of obtained probability densities and potentials is a parametric freedom, which allows to substantially modify their shape. We obtain the expressions for probability densities under the generalization of the Ornstein-Uhlenbeck process.
All-optical quantum computing with a hybrid solid-state processing unit
Pei, Pei; Li, Chong
2011-01-01
We develop an architecture of hybrid quantum solid-state processing unit for universal quantum computing. The architecture allows distant and nonidentical solid-state qubits in distinct physical systems to interact and work collaboratively. All the quantum computing procedures are controlled by optical methods using classical fields and cavity QED. Our methods have prominent advantage of the insensitivity to dissipation process due to the virtual excitation of subsystems. Moreover, the QND measurements and state transfer for the solid-state qubits are proposed. The architecture opens promising perspectives for implementing scalable quantum computation in a broader sense that different solid systems can merge and be integrated into one quantum processor afterwards.
Directory of Open Access Journals (Sweden)
V. S. Olkhovsky
2009-01-01
Full Text Available Recent developments are reviewed and some new results are presented in the study of time in quantum mechanics and quantum electrodynamics as an observable, canonically conjugate to energy. This paper deals with the maximal Hermitian (but nonself-adjoint operator for time which appears in nonrelativistic quantum mechanics and in quantum electrodynamics for systems with continuous energy spectra and also, briefly, with the four-momentum and four-position operators, for relativistic spin-zero particles. Two measures of averaging over time and connection between them are analyzed. The results of the study of time as a quantum observable in the cases of the discrete energy spectra are also presented, and in this case the quasi-self-adjoint time operator appears. Then, the general foundations of time analysis of quantum processes (collisions and decays are developed on the base of time operator with the proper measures of averaging over time. Finally, some applications of time analysis of quantum processes (concretely, tunneling phenomena and nuclear processes are reviewed.
Energy Technology Data Exchange (ETDEWEB)
Song, Ji-Tao; Yang, Xiao-Quan; Zhang, Xiao-Shuai; Yan, Dong-Mei; Yao, Ming-Hao; Qin, Meng-Yao; Zhao, Yuan-Di, E-mail: zydi@mail.hust.edu.cn [Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology (China)
2015-12-15
In this study, composite nanoparticles comprising Au nanoparticle and quantum dots were built and used for contrast-enhanced computed tomography imaging (CT) and fluorescence dual-mode imaging in vivo. The nanoparticle exhibited good monodispersity and good biocompatibility, and had excellent CT contrast-enhancement effect and fluorescence imaging capability. They were appropriate for being used as dual-mode imaging probe in vivo.
Scalable Engineering of Quantum Optical Information Processing Architectures (SEQUOIA)
2016-12-13
interfacing with telecom quantum networks /qubit distribution 4. DV quantum computing using CV cluster Embed circuit model quantum computing into CV...linear-optics mode transformations Realizing scalable, high-fidelity interferometric networks is a central challenge to be addressed on the path...methods for characterizing these large interferometric networks . Figure 1:Photonic integrated circuit. Left: programmable PIC. Right: Transmission at
A Scalable Microfabricated Ion Trap for Quantum Information Processing
Maunz, Peter; Haltli, Raymond; Hollowell, Andrew; Lobser, Daniel; Mizrahi, Jonathan; Rembetski, John; Resnick, Paul; Sterk, Jonathan D.; Stick, Daniel L.; Blain, Matthew G.
2016-05-01
Trapped Ion Quantum Information Processing (QIP) relies on complex microfabricated trap structures to enable scaling of the number of quantum bits. Building on previous demonstrations of surface-electrode ion traps, we have designed and characterized the Sandia high-optical-access (HOA-2) microfabricated ion trap. This trap features high optical access, high trap frequencies, low heating rates, and negligible charging of dielectric trap components. We have observed trap lifetimes of more than 100h, measured trap heating rates for ytterbium of less than 40quanta/s, and demonstrated shuttling of ions from a slotted to an above surface region and through a Y-junction. Furthermore, we summarize demonstrations of high-fidelity single and two-qubit gates realized in this trap. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. This work was supported by the Intelligence Advanced Research Projects Activity (IARPA).
Integrated optics architecture for trapped-ion quantum information processing
Kielpinski, D.; Volin, C.; Streed, E. W.; Lenzini, F.; Lobino, M.
2016-12-01
Standard schemes for trapped-ion quantum information processing (QIP) involve the manipulation of ions in a large array of interconnected trapping potentials. The basic set of QIP operations, including state initialization, universal quantum logic, and state detection, is routinely executed within a single array site by means of optical operations, including various laser excitations as well as the collection of ion fluorescence. Transport of ions between array sites is also routinely carried out in microfabricated trap arrays. However, it is still not possible to perform optical operations in parallel across all array sites. The lack of this capability is one of the major obstacles to scalable trapped-ion QIP and presently limits exploitation of current microfabricated trap technology. Here we present an architecture for scalable integration of optical operations in trapped-ion QIP. We show theoretically that diffractive mirrors, monolithically fabricated on the trap array, can efficiently couple light between trap array sites and optical waveguide arrays. Integrated optical circuits constructed from these waveguides can be used for sequencing of laser excitation and fluorescence collection. Our scalable architecture supports all standard QIP operations, as well as photon-mediated entanglement channels, while offering substantial performance improvements over current techniques.
Sato, K; Kobayashi, Y
2015-05-01
Enhancement of molecular sensitivity in positron emission tomography (PET) has long been discussed with respect to imaging instrumentation and algorithms for data treatment. Here, the molecular sensitivity in PET is discussed on the basis of 2-dimensional coincident measurements of 511 keV γ ray photons resultant from two-photon annihilation. Introduction of an additional selection window based on the energy sum and difference of the coincidently measured γ ray photons, without any significant instrumental and algorithmic changes, showed an improvement in the signal-to-noise ratio (SNR) by an order of magnitude. Improvement of performance characteristics in the PET imaging system was demonstrated by an increase in the noise equivalent count rate (NECR) which takes both the SNR and the detection efficiency into consideration. A further improvement of both the SNR and the NECR is expected for the present system in real clinical and in-vivo environments, where much stronger positron sources are employed.
CERN. Geneva. Audiovisual Unit
2002-01-01
Composite quantum systems cannot generally be analysed as a juxtaposition of separate entities, each described by its own wave function. They are described instead by a global entangled state. Entanglement appears thus as an essential concept, lying at the heart of quantum physics. At a fundamental level it is closely related to non-locality, quantum measurement, complementarity and decoherence, concepts that the founding fathers of quantum physics have analysed in various 'thought experiments'. At a more applied level, the engineering of entanglement in systems of increasing complexity could in principle open the way to various kinds of fascinating quantum information processing applications (quantum cryptography, teleportation, quantum computation). The study of entanglement has recently evolved as a very competitive field of research, both theoretical and experimental. In quantum optics, entanglement has been studied with twin-photon beams, trapped ions and with atoms and photons in cavities. After a gener...
Quantum thermodynamic processes energy and information flow at the nanoscale
Mahler, Guenter
2015-01-01
The point of departure of this book is a triad of themes: information theory, thermodynamics, and quantum mechanics. These are related: thermodynamics and quantum mechanics form the basis of quantum thermodynamics; information and quantum mechanics underly, inter alia, the notorious quantum measurement problem; and information and thermodynamics have much to say about control limits in the tension between micro- and macro-descriptions.Why does the world around us typically look thermal-from cosmology down to individual embedded spins? Do informational measures constitute additional (independen
Hybrid quantum repeater protocol with fast local processing
DEFF Research Database (Denmark)
Borregaard, Johannes; Brask, Jonatan Bohr; Sørensen, Anders Søndberg
2012-01-01
the need for classical communication during growth. Entanglement is generated in subsequent connection processes. Furthermore the growth procedure is optimized. We review the main elements of the original protocol and present the two modifications. Finally the two protocols are compared and the modified......We propose a hybrid quantum repeater protocol combining the advantages of continuous and discrete variables. The repeater is based on the previous work of Brask et al. [ Phys. Rev. Lett. 105 160501 (2010)] but we present two ways of improving this protocol. In the previous protocol entangled single......-photon states are produced and grown into superpositions of coherent states, known as two-mode cat states. The entanglement is then distributed using homodyne detection. To improve the protocol, we replace the time-consuming nonlocal growth of cat states with local growth of single-mode cat states, eliminating...
Quantum signal processing-based visual cryptography with unexpanded shares
Das, Surya Sarathi; Sharma, Kaushik Das; Chandra, Jayanta K.; Bera, Jitendra Nath
2015-09-01
This paper proposes a visual cryptography scheme (VCS) based on quantum signal processing (QSP). VCS is an image encryption technique that is very simple in formulation and is secure. In (k,n)-VCS, a secret binary image is encoded into n share images and minimum k shares are needed to decrypt the secret image. The efforts to encrypt a grayscale image are few in number and the majority are related to grayscale to binary conversion. Thus, a generalized approach of encryption for all types of images, i.e., binary, gray, and color is needed. Here, a generic VCS is proposed based on QSP where all types of images can be encrypted without pixel expansion along with a smoothing technique to enhance the quality of the decrypted image. The proposed scheme is tested and compared for benchmark images, and the result shows the effectiveness of the scheme.
Indium clustering in a-plane InGaN quantum wells as evidenced by atom probe tomography
Energy Technology Data Exchange (ETDEWEB)
Tang, Fengzai; Zhu, Tongtong; Oehler, Fabrice; Fu, Wai Yuen; Griffiths, James T.; Massabuau, Fabien C.-P.; Kappers, Menno J.; Oliver, Rachel A., E-mail: rao28@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Martin, Tomas L.; Bagot, Paul A. J.; Moody, Michael P., E-mail: michael.moody@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)
2015-02-16
Atom probe tomography (APT) has been used to characterize the distribution of In atoms within non-polar a-plane InGaN quantum wells (QWs) grown on a GaN pseudo-substrate produced using epitaxial lateral overgrowth. Application of the focused ion beam microscope enabled APT needles to be prepared from the low defect density regions of the grown sample. A complementary analysis was also undertaken on QWs having comparable In contents grown on polar c-plane sample pseudo-substrates. Both frequency distribution and modified nearest neighbor analyses indicate a statistically non-randomized In distribution in the a-plane QWs, but a random distribution in the c-plane QWs. This work not only provides insights into the structure of non-polar a-plane QWs but also shows that APT is capable of detecting as-grown nanoscale clustering in InGaN and thus validates the reliability of earlier APT analyses of the In distribution in c-plane InGaN QWs which show no such clustering.
Effects of image processing on the detective quantum efficiency
Park, Hye-Suk; Kim, Hee-Joung; Cho, Hyo-Min; Lee, Chang-Lae; Lee, Seung-Wan; Choi, Yu-Na
2010-04-01
Digital radiography has gained popularity in many areas of clinical practice. This transition brings interest in advancing the methodologies for image quality characterization. However, as the methodologies for such characterizations have not been standardized, the results of these studies cannot be directly compared. The primary objective of this study was to standardize methodologies for image quality characterization. The secondary objective was to evaluate affected factors to Modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) according to image processing algorithm. Image performance parameters such as MTF, NPS, and DQE were evaluated using the international electro-technical commission (IEC 62220-1)-defined RQA5 radiographic techniques. Computed radiography (CR) images of hand posterior-anterior (PA) for measuring signal to noise ratio (SNR), slit image for measuring MTF, white image for measuring NPS were obtained and various Multi-Scale Image Contrast Amplification (MUSICA) parameters were applied to each of acquired images. In results, all of modified images were considerably influence on evaluating SNR, MTF, NPS, and DQE. Modified images by the post-processing had higher DQE than the MUSICA=0 image. This suggests that MUSICA values, as a post-processing, have an affect on the image when it is evaluating for image quality. In conclusion, the control parameters of image processing could be accounted for evaluating characterization of image quality in same way. The results of this study could be guided as a baseline to evaluate imaging systems and their imaging characteristics by measuring MTF, NPS, and DQE.
On refractive processes in strong laser field quantum electrodynamics
Di Piazza, A
2013-01-01
Refractive processes in strong-field QED are pure quantum processes, which involve only external photons and the background electromagnetic field. We show analytically that such processes occurring in a plane-wave field are all characterized by a surprisingly modest net exchange of laser photons even at ultrarelativistic laser intensities. We obtain this result by a direct calculation of the transition matrix element of an arbitrary refractive QED process and accounting exactly for the background plane-wave field. A simple physical explanation of this modest net exchange of laser photons is provided, based on the fact that the laser field couples with the external photons only indirectly through virtual electron-positron pairs. For stronger and stronger laser fields, the pairs cover a shorter and shorter distance before they annihilate again, such that the laser can transfer to them an energy corresponding to only a few photons. These results apply to both optical and x-free electron lasers, and are relevant ...
A trajectory description of quantum processes. II. Applications. A Bohmian perspective
Energy Technology Data Exchange (ETDEWEB)
Sanz, Angel S.; Miret-Artes, Salvador [CSIC, Madrid (Spain). Inst. de Fisica Fundamental (IFF-CSIC)
2014-07-01
Presents a thorough introduction to, and treatment of, trajectory-based quantum-mechanical calculations. Useful for a wide range of scattering problems. Presents the applications of the trajectory description of basic quantum processes. Trajectory-based formalisms are an intuitively appealing way of describing quantum processes because they allow the use of ''classical'' concepts. Beginning as an introductory level suitable for students, this two-volume monograph presents (1) the fundamentals and (2) the applications of the trajectory description of basic quantum processes. This second volume is focussed on simple and basic applications of quantum processes such as interference and diffraction of wave packets, tunneling, diffusion and bound-state and scattering problems. The corresponding analysis is carried out within the Bohmian framework. By stressing its interpretational aspects, the book leads the reader to an alternative and complementary way to better understand the underlying quantum dynamics.
Energy Technology Data Exchange (ETDEWEB)
Hirano, Shigeru; Naito, Yasushi; Kojima, Hisayoshi [Kyoto Univ. (Japan)
1996-03-01
We review the literature on speech processing in the central nervous system as demonstrated by positron emission tomography (PET). Activation study using PET has been proved to be a useful and non-invasive method of investigating the speech processing system in normal subjects. In speech recognition, the auditory association areas and lexico-semantic areas called Wernicke`s area play important roles. Broca`s area, motor areas, supplementary motor cortices and the prefrontal area have been proved to be related to speech output. Visual speech stimulation activates not only the visual association areas but also the temporal region and prefrontal area, especially in lexico-semantic processing. Higher level speech processing, such as conversation which includes auditory processing, vocalization and thinking, activates broad areas in both hemispheres. This paper also discusses problems to be resolved in the future. (author) 42 refs.
Tamulis, A; Tretiak, S; Berman, G P; Allara, D L
2003-01-01
Implementation of quantum information processing based on spatially localized electronic spins in stable molecular radicals is discussed. The necessary operating conditions for such molecules are formulated in self-assembled monolayer (SAM) systems. As a model system we start with 1, 3 -diketone types of neutral radicals. Using first principles quantum chemical calculations we prove that these molecules have the stable localized electron spin, which may represent a qubit in quantum information processing.
Quantum entanglement and the dissociation process of diatomic molecules
Energy Technology Data Exchange (ETDEWEB)
Esquivel, Rodolfo O; Molina-Espiritu, Moyocoyani [Departamento de Quimica, Universidad Autonoma Metropolitana, 09340-Mexico DF (Mexico); Flores-Gallegos, Nelson [Unidad Profesional Interdisciplinaria de IngenierIa, Campus Guanajuato del Instituto Politecnico Nacional, 36275-Guanajuato (Mexico); Plastino, A R; Angulo, Juan Carlos; Dehesa, Jesus S [Instituto Carlos I de Fisica Teorica y Computacional, and Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, 18071-Granada (Spain); Antolin, Juan, E-mail: esquivel@xanum.uam.mx, E-mail: arplastino@ugr.es [Departamento de Fisica Aplicada, EUITIZ, Universidad de Zaragoza, 50018-Zaragoza (Spain)
2011-09-14
In this work, we investigate quantum entanglement-related aspects of the dissociation process of some selected, representative homo- and heteronuclear diatomic molecules. This study is based upon high-quality ab initio calculations of the (correlated) molecular wavefunctions involved in the dissociation processes. The values of the electronic entanglement characterizing the system in the limit cases corresponding to (i) the united-atom representation and (ii) the asymptotic region when atoms dissociate are discussed in detail. It is also shown that the behaviour of the electronic entanglement as a function of the reaction coordinate R exhibits remarkable correspondences with the phenomenological description of the physically meaningful regimes comprising the processes under study. In particular, the extrema of the total energies and the electronic entanglement are shown to be associated with the main physical changes experienced by the molecular spatial electronic density, such as charge depletion and accumulation or bond cleavage regions. These structural changes are characterized by several selected descriptors of the density, such as the Laplacian of the electronic molecular distributions (LAP), the molecular electrostatic potential (MEP) and the atomic electric potentials fitted to the MEP.
Effects of image processing on the detective quantum efficiency
Energy Technology Data Exchange (ETDEWEB)
Park, Hye-Suk; Kim, Hee-Joung; Cho, Hyo-Min; Lee, Chang-Lae; Lee, Seung-Wan; Choi, Yu-Na [Yonsei University, Wonju (Korea, Republic of)
2010-02-15
The evaluation of image quality is an important part of digital radiography. The modulation transfer function (MTF), the noise power spectrum (NPS), and the detective quantum efficiency (DQE) are widely accepted measurements of the digital radiographic system performance. However, as the methodologies for such characterization have not been standardized, it is difficult to compare directly reported the MTF, NPS, and DQE results. In this study, we evaluated the effect of an image processing algorithm for estimating the MTF, NPS, and DQE. The image performance parameters were evaluated using the international electro-technical commission (IEC 62220-1)-defined RQA5 radiographic techniques. Computed radiography (CR) posterior-anterior (PA) images of a hand for measuring the signal to noise ratio (SNR), the slit images for measuring the MTF, and the white images for measuring the NPS were obtained, and various multi-Scale image contrast amplification (MUSICA) factors were applied to each of the acquired images. All of the modifications of the images obtained by using image processing had a considerable influence on the evaluated image quality. In conclusion, the control parameters of image processing can be accounted for evaluating characterization of image quality in same way. The results of this study should serve as a baseline for based on evaluating imaging systems and their imaging characteristics by MTF, NPS, and DQE measurements.
Khrennikov, Andrei
2010-01-01
We propose a model of quantum-like (QL) processing of mental information. This model is based on quantum information theory. However, in contrast to models of ``quantum physical brain'' reducing mental activity (at least at the highest level) to quantum physical phenomena in the brain, our model matches well with the basic neuronal paradigm of the cognitive science. QL information processing is based (surprisingly) on classical electromagnetic signals induced by joint activity of neurons. This novel approach to quantum information is based on representation of quantum mechanics as a version of classical signal theory which was recently elaborated by the author. The brain uses the QL representation (QLR) for working with abstract concepts; concrete images are described by classical information theory. Two processes, classical and QL, are performed parallely. Moreover, information is actively transmitted from one representation to another. A QL concept given in our model by a density operator can generate a var...
Quantum Dot-Photonic Crystal Cavity QED Based Quantum Information Processing
2012-08-14
Physical Review A, 2012] 3. Study of the off-resonant quantum dot-cavity coupling in solid-state cavity QED system, and the phonon mediated off...resonant interaction between two quantum dots [Majumdar et al., Physical Review B , 2012] 4. Coherent optical spectroscopy of a single quantum dot via an off...Resonant cavity - much simpler than in conventional approaches [Majumdar et al, Physical Review B, 2011; Papageorge et al., New. Journal of Physics
A two-dimensional dual-modality tomography technique for a radioactive waste separation process
Energy Technology Data Exchange (ETDEWEB)
Cattle, Brian A. [Nexia Solutions Limited, Hinton House, Risley, Warrington WA3 6AS (United Kingdom)]. E-mail: brian.a.cattle@nexiasolutions.com; West, Robert M. [Nexia Solutions University Research Alliance, University of Leeds, Leeds LS2 9JT (United Kingdom)
2006-09-15
The monitoring of a waste separation process in the nuclear power industry is considered. Recent advances in gamma ray emission and electrical impedance tomography mean that it is now feasible to unite these two modalities into a novel dual-modality monitoring method. This paper considers a simple model problem for the identification of a boundary between two distinct waste streams in a semi-continuous rotation separator. The simplicity of the problem affords the opportunity to demonstrate the general feasibility of the approach whilst avoiding unnecessary complications.
Mouloudakis, K; Kominis, I K
2017-02-01
Radical-ion-pair reactions, central for understanding the avian magnetic compass and spin transport in photosynthetic reaction centers, were recently shown to be a fruitful paradigm of the new synthesis of quantum information science with biological processes. We show here that the master equation so far constituting the theoretical foundation of spin chemistry violates fundamental bounds for the entropy of quantum systems, in particular the Ozawa bound. In contrast, a recently developed theory based on quantum measurements, quantum coherence measures, and quantum retrodiction, thus exemplifying the paradigm of quantum biology, satisfies the Ozawa bound as well as the Lanford-Robinson bound on information extraction. By considering Groenewold's information, the quantum information extracted during the reaction, we reproduce the known and unravel other magnetic-field effects not conveyed by reaction yields.
Nonlinear quantum electrodynamic and electroweak processes in strong laser fields
Energy Technology Data Exchange (ETDEWEB)
Meuren, Sebastian
2015-06-24
Various nonlinear electrodynamic and electroweak processes in strong plane-wave laser fields are considered with an emphasis on short-pulse effects. In particular, the momentum distribution of photoproduced electron-positron pairs is calculated numerically and a semiclassical interpretation of its characteristic features is established. By proving the optical theorem, compact double-integral expressions for the total pair-creation probability are obtained and numerically evaluated. The exponential decay of the photon wave function in a plane wave is included by solving the Schwinger-Dyson equations to leading-order in the quasistatic approximation. In this respect, the polarization operator in a plane wave is investigated and its Ward-Takahashi identity verified. A classical analysis indicates that a photoproduced electron-positron pair recollides for certain initial conditions. The contributions of such recollision processes to the polarization operator are identified and calculated both analytically and numerically. Furthermore, the existence of nontrivial electron-spin dynamics induced by quantum fluctuations is verified for ultra-short laser pulses. Finally, the exchange of weak gauge bosons is considered, which is essential for neutrino-photon interactions. In particular, the axial-vector-vector coupling tensor is calculated and the so-called Adler-Bell-Jackiw (ABJ) anomaly investigated.
Controlling Atomic, Solid-State and Hybrid Systems for Quantum Information Processing
Gullans, Michael John
Quantum information science involves the use of precise control over quantum systems to explore new technologies. However, as quantum systems are scaled up they require an ever deeper understanding of many-body physics to achieve the required degree of control. Current experiments are entering a regime which requires active control of a mesoscopic number of coupled quantum systems or quantum bits (qubits). This thesis describes several approaches to this goal and shows how mesoscopic quantum systems can be controlled and utilized for quantum information tasks. The first system we consider is the nuclear spin environment of GaAs double quantum dots containing two electrons. We show that the through appropriate control of dynamic nuclear polarization one can prepare the nuclear spin environment in three distinct collective quantum states which are useful for quantum information processing with electron spin qubits. We then investigate a hybrid system in which an optical lattice is formed in the near field scattering off an array of metallic nanoparticles by utilizing the plasmonic resonance of the nanoparticles. We show that such a system would realize new regimes of dense, ultra-cold quantum matter and can be used to create a quantum network of atoms and plasmons. Finally we investigate quantum nonlinear optical systems. We show that the intrinsic nonlinearity for plasmons in graphene can be large enough to make a quantum gate for single photons. We also consider two nonlinear optical systems based on ultracold gases of atoms. In one case, we demonstrate an all-optical single photon switch using cavity quantum electrodynamics (QED) and slow light. In the second case, we study few photon physics in strongly interacting Rydberg polariton systems, where we demonstrate the existence of two and three photon bound states and study their properties.
Quantum processes, space-time representation and brain dynamics
Roy, Sisir; Roy, Sisir; Kafatos, Menas
2003-01-01
The recent controversy of applicability of quantum formalism to brain dynamics has been critically analysed. The prerequisites for any type of quantum formalism or quantum field theory is to investigate whether the anatomical structure of brain permits any kind of smooth geometric notion like Hilbert structure or four dimensional Minkowskian structure for quantum field theory. The present understanding of brain function clearly denies any kind of space-time representation in Minkowskian sense. However, three dimensional space and one time can be assigned to the neuromanifold and the concept of probabilistic geometry is shown to be appropriate framework to understand the brain dynamics. The possibility of quantum structure is also discussed in this framework.
Photolithographic process for the patterning of quantum dots
Energy Technology Data Exchange (ETDEWEB)
Na, Young Joo; Park, Sang Joon; Lee, Sang Wha [Department of Chemical and Bioengineering, Kyungwon University, Seongnam-si, Gyeonggi-Do 461-701 (Korea, Republic of); Kim, Jong Sung [Department of Chemical and Bioengineering, Kyungwon University, Seongnam-si, Gyeonggi-Do 461-701 (Korea, Republic of)], E-mail: jskim@kyungwon.ac.kr
2008-09-15
Recently, quantum dots have been used as molecular probes substituting for conventional organic fluorophores. Quantum dots are stable against photobleaching and have more controllable emission bands, broader absorption spectra, and higher quantum yields. In this study, an array of ZnS-coated CdSe quantum dots on a slide glass has been prepared by photolithographic method. The array pattern was prepared using a positive photoresist (AZ1518) and developer (AZ351). The patterned glass was silanized with 3-aminopropyltriethoxysilane (APTES), and carboxyl-coated quantum dots were selectively attached onto the array pattern. The silanization was examined by measuring contact angle and the surface of the array pattern was analyzed using AFM and fluorescent microscope.
Quantifying the Contribution of Post-Processing in Computed Tomography Measurement Uncertainty
DEFF Research Database (Denmark)
Stolfi, Alessandro; Thompson, Mary Kathryn; Carli, Lorenzo;
2016-01-01
This paper evaluates and quantifies the repeatability of post-processing settings, such as surface determination, data fitting, and the definition of the datum system, on the uncertainties of Computed Tomography (CT) measurements. The influence of post-processing contributions was determined...... by calculating the standard deviation of 10 repeated measurement evaluations on the same data set. The evaluations were performed on an industrial assembly. Each evaluation includes several dimensional and geometrical measurands that were expected to have different responses to the various post......-processing settings. It was found that the definition of the datum system had the largest impact on the uncertainty with a standard deviation of a few microns. The surface determination and data fitting had smaller contributions with sub-micron repeatability....
Picturing quantum processes a first course in quantum theory and diagrammatic reasoning
Coecke, Bob
2017-01-01
The unique features of the quantum world are explained in this book through the language of diagrams, setting out an innovative visual method for presenting complex theories. Requiring only basic mathematical literacy, this book employs a unique formalism that builds an intuitive understanding of quantum features while eliminating the need for complex calculations. This entirely diagrammatic presentation of quantum theory represents the culmination of ten years of research, uniting classical techniques in linear algebra and Hilbert spaces with cutting-edge developments in quantum computation and foundations. Written in an entertaining and user-friendly style and including more than one hundred exercises, this book is an ideal first course in quantum theory, foundations, and computation for students from undergraduate to PhD level, as well as an opportunity for researchers from a broad range of fields, from physics to biology, linguistics, and cognitive science, to discover a new set of tools for studying proc...
On the quantum information processing in nuclear magnetic resonance quantum computing experiments
Energy Technology Data Exchange (ETDEWEB)
Azevedo, E.R. de; Bonk, F.A.; Vidoto, E.L.G.; Bonagamba, T.J. [Universidade de Sao Paulo (IFSC/USP), Sao Carlos, SP (Brazil). Inst. de Fisica; Sarthour, R.S.; Guimaraes, A.P.; Oliveira, I.S. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Freitas, J.C.C. [Universidade Federal do Espirito Santo (UFES), Vitoria, ES (Brazil). Dept. de Fisica
2003-07-01
Full text: Nuclear Magnetic Resonance appeared in the late nineties to be the most promising candidate to run quantum computing algorithms. An impressive number of experiments demonstrating the implementation of all logic gates and quantum algorithms in systems with a small number of qubits stimulated the general excitement about the technique, and greatly promoted the field. Particularly important were those experiments where entanglement of particles were aimed at. Entanglement is the most fundamental (and weird !) aspect of quantum systems, and is at the basis of quantum teleportation and quantum cryptography, yet impossible to prove in NMR experiments. The hardcore of NMR quantum computing are the so-called pseudo-pure states, upon which radiofrequency (RF) pulses act to implement quantum mechanical unitary transformations, promoting changes in both, Zeeman level populations and coherences in the density matrix. Whereas pseudo-pure states are special non-equilibrium diagonal states, coherences encode information about superposition states. Now, one could safely say that the whole business of quantum computing goes about controlling relative ket phases. In spite of the impossibility to univocally associating a given quantum state to a NMR spectrum, it is possible to demonstrate the phase action of RF pulses over relative ket phases, even if no population changes take place. In this talk these issues will be addressed, and we will show experimental results of our own where this is done in the two-qubit quadrupole nuclei {sup 23}Na in C{sub 10}H{sub 21}NaO{sub 4}S liquid crystal. We demonstrate the reversibility of the Hadamard gate, and of a quantum circuit which generates pseudo-Bell states. The success of the operation reaches almost 100% in the case of the state |01+|10, 80% in the cases of |00> + |01> and |10> + |11>, and 65% for the cat-state |00> + |11>. (author)
Physical Meaning of the Optimum Measurement Process in Quantum Detection Theory
Osaki, Masao; Kozuka, Haruhisa; Hirota, Osamu
1996-01-01
The optimum measurement processes are represented as the optimum detection operators in the quantum detection theory. The error probability by the optimum detection operators goes beyond the standard quantum limit automatically. However the optimum detection operators are given by pure mathematical descriptions. In order to realize a communication system overcoming the standard quantum limit, we try to give the physical meaning of the optimum detection operators.
Energy transfer processes in semiconductor quantum dots: bacteriorhodopsin hybrid system
Rakovich, Aliaksandra; Sukhanova, Alyona; Bouchonville, Nicolas; Molinari, Michael; Troyon, Michel; Cohen, Jacques H. M.; Rakovich, Yury; Donegan, John F.; Nabiev, Igor
2009-05-01
The potential impact of nanoscience on energy transfer processes in biomolecules was investigated on the example of a complex between fluorescent semiconductor nanocrystals and photochromic membrane protein. The interactions between colloidal CdTe quantum dots (QDs) and bacteriorhodopsin (bR) protein were studied by a variety of spectroscopic techniques, including integrated and time-resolved fluorescence spectroscopies, zeta potential and size measurement, and fluorescence correlation spectroscopy. QDs' luminescence was found to be strongly modulated by bacteriorhodopsin, but in a controllable way. Decreasing emission lifetimes and blue shifts in QDs' emission at increasing protein concentrations suggest that quenching occurs via Förster resonance energy transfer. On the other hand, concave Stern-Volmer plots and sigmoidal photoluminescence quenching curves imply that the self-assembling of NCs and bR exists, and the number of nanocrystals (NCs) per bacteriorhodopsin contributing to energy transfer can be determined from the inflection points of sigmoidal curves. This number was found to be highly dependent not only on the spectral overlap between NC emission and bR absorption bands, but also on nanocrystal surface charge. These results demonstrate the potential of how inorganic nanoscale materials can be employed to improve the generic molecular functions of biomolecules. The observed interactions between CdTe nanocrystals and bacteriorhodopsin can provide the basis for the development of novel functional materials with unique photonic properties and applications in areas such as all-optical switching, photovoltaics and data storage.
Photo-activated biological processes as quantum measurements
Imamoglu, Atac
2014-01-01
We outline a framework for describing photo-activated biological reactions as generalized quantum measurements of external fields, for which the biological system takes on the role of a quantum meter. By using general arguments regarding the Hamiltonian that describes the measurement interaction, we identify the cases where it is essential for a complex chemical or biological system to exhibit non-equilibrium quantum coherent dynamics in order to achieve the requisite functionality. We illustrate the analysis by considering measurement of the solar radiation field in photosynthesis and measurement of the earth's magnetic field in avian magnetoreception.
Quantum Simulation of Dissipative Processes without Reservoir Engineering.
Di Candia, R; Pedernales, J S; del Campo, A; Solano, E; Casanova, J
2015-05-29
We present a quantum algorithm to simulate general finite dimensional Lindblad master equations without the requirement of engineering the system-environment interactions. The proposed method is able to simulate both Markovian and non-Markovian quantum dynamics. It consists in the quantum computation of the dissipative corrections to the unitary evolution of the system of interest, via the reconstruction of the response functions associated with the Lindblad operators. Our approach is equally applicable to dynamics generated by effectively non-Hermitian Hamiltonians. We confirm the quality of our method providing specific error bounds that quantify its accuracy.
Robust Quantum Error Correction via Convex Optimization
Kosut, R L; Lidar, D A
2007-01-01
Quantum error correction procedures have traditionally been developed for specific error models, and are not robust against uncertainty in the errors. Using a semidefinite program optimization approach we find high fidelity quantum error correction procedures which present robust encoding and recovery effective against significant uncertainty in the error system. We present numerical examples for 3, 5, and 7-qubit codes. Our approach requires as input a description of the error channel, which can be provided via quantum process tomography.
Institute of Scientific and Technical Information of China (English)
Pang Chao-Yang; Hu Ben-Qiong
2008-01-01
The discrete Fourier transform(DFT)is the base of modern signal processing.1-dimensional fast Fourier transform (1D FFT)and 2D FFT have time complexity O(N log N)and O(N2 log N)respectively.Since 1965,there has been no more essential breakthrough for the design of fast DFT algorithm.DFT has two properties.One property is that DFT is energy conservation transform.The other property is that many DFT coefficients are close to zero.The basic idea of this paper is that the generalized Grover's iteration can perform the computation of DFT which acts on the entangled states to search the big DFT coefficients until these big coefficients contain nearly all energy.One-dimensional quantum DFT(1D QDFT)and two-dimensional quantum DFT(2D QDFT)are presented in this paper.The quantum algorithm for convolution estimation is also presented in this paper.Compared with FFT,1D and 2D QDFT have time complexity O(√N)and O(N)respectively.QDFT and quantum convolution demonstrate that quantum computation to process classical signal is possible.
Chen, Maomao; Zhang, Jiulou; Cai, Chuangjian; Gao, Yang; Luo, Jianwen
2016-06-01
Dynamic fluorescence molecular tomography (DFMT) is a valuable method to evaluate the metabolic process of contrast agents in different organs in vivo, and direct reconstruction methods can improve the temporal resolution of DFMT. However, challenges still remain due to the large time consumption of the direct reconstruction methods. An acceleration strategy using graphics processing units (GPU) is presented. The procedure of conjugate gradient optimization in the direct reconstruction method is programmed using the compute unified device architecture and then accelerated on GPU. Numerical simulations and in vivo experiments are performed to validate the feasibility of the strategy. The results demonstrate that, compared with the traditional method, the proposed strategy can reduce the time consumption by ˜90% without a degradation of quality.
Acceleration of Early-Photon Fluorescence Molecular Tomography with Graphics Processing Units
Directory of Open Access Journals (Sweden)
Xin Wang
2013-01-01
Full Text Available Fluorescence molecular tomography (FMT with early-photons can improve the spatial resolution and fidelity of the reconstructed results. However, its computing scale is always large which limits its applications. In this paper, we introduced an acceleration strategy for the early-photon FMT with graphics processing units (GPUs. According to the procedure, the whole solution of FMT was divided into several modules and the time consumption for each module is studied. In this strategy, two most time consuming modules (Gd and W modules were accelerated with GPU, respectively, while the other modules remained coded in the Matlab. Several simulation studies with a heterogeneous digital mouse atlas were performed to confirm the performance of the acceleration strategy. The results confirmed the feasibility of the strategy and showed that the processing speed was improved significantly.
Quantum information processing in phase space: A modular variables approach
Ketterer, A.; Keller, A.; Walborn, S. P.; Coudreau, T.; Milman, P.
2016-08-01
Binary quantum information can be fault-tolerantly encoded in states defined in infinite-dimensional Hilbert spaces. Such states define a computational basis, and permit a perfect equivalence between continuous and discrete universal operations. The drawback of this encoding is that the corresponding logical states are unphysical, meaning infinitely localized in phase space. We use the modular variables formalism to show that, in a number of protocols relevant for quantum information and for the realization of fundamental tests of quantum mechanics, it is possible to loosen the requirements on the logical subspace without jeopardizing their usefulness or their successful implementation. Such protocols involve measurements of appropriately chosen modular variables that permit the readout of the encoded discrete quantum information from the corresponding logical states. Finally, we demonstrate the experimental feasibility of our approach by applying it to the transverse degrees of freedom of single photons.
Topological Quantum Information Processing Mediated Via Hybrid Topogical Insulator Structures
2014-03-28
Matthew J. Gilbert, and Benjamin L. Lev, "Imaging Topologically Protected Transport with Quantum Degenerate Gases," Physical Review B 85 205422 (2012...from the Entanglement Spectrum," Physical Review B: Rapid Communications 86, 041401 (2012). 3 Qinglei Meng, Taylor L. Hughes, Matthew J. Gilbert...Josephson Effect and Electrically Controlled Magnetization in Quantum Spin Hall Edges," Physical Review B 86, 165110 (2012). 5 Youngseok Kim, E. M
The Effect of Fatty Amine Chain Length on Synthesis Process of Inp/Zns Quantum Dots
2016-01-01
Obtaining narrow size distribution through conventional methods used for quantum dots of group II-VI semiconductors is impractical in the case of III-V semiconductors speciallyInP/ZnS quantum dots because of molecular precursors depletion and growth stage continuation through Ostwald ripening process. Using fatty amines as activator along with precursors can lead to more monodispersed quantum dots. In this work, the effect of fatty amine chain length on InP/ZnS quantum dots synthesis was inve...
DEFF Research Database (Denmark)
Mørk, Jesper; Berg, Tommy Winther; Magnúsdóttir, Ingibjörg
2003-01-01
We discuss the dynamical properties of semiconductor optical amplifiers and the importance for all-optical signal processing. In particular, the dynamics of quantum dot amplifiers is considered and it is suggested that these may be operated at very high bit-rates without significant patterning...... effects, as opposed to quantum well or bulk devices....
Recent advances in exciton-based quantum information processing in quantum dot nanostructures
Krenner, Hubert J.; Stufler, Stefan; Sabathil, Matthias; Clark, Emily C.; Ester, Patrick; Bichler, Max; Abstreiter, Gerhard; Finley, Jonathan J.; Zrenner, Artur
2005-08-01
Recent experimental developments in the field of semiconductor quantum dot (QD) spectroscopy are discussed. Firstly, we report about single QD exciton two-level systems and their coherent properties in terms of single-qubit manipulations. In the second part, we report on coherent quantum coupling in a prototype 'two-qubit' system consisting of a vertically stacked pair of QDs. The interaction can be tuned in such QD molecule devices using an applied voltage as external parameter.
Recent advances in exciton-based quantum information processing in quantum dot nanostructures
Energy Technology Data Exchange (ETDEWEB)
Krenner, Hubert J [Physik Department and Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall 3, 85748 Garching (Germany); Stufler, Stefan [Universitaet Paderborn, Warburger Str. 100, D-33098 Paderborn (Germany); Sabathil, Matthias [Physik Department and Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall 3, 85748 Garching (Germany); Clark, Emily C [Physik Department and Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall 3, 85748 Garching (Germany); Ester, Patrick [Universitaet Paderborn, Warburger Str. 100, D-33098 Paderborn (Germany); Bichler, Max [Physik Department and Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall 3, 85748 Garching (Germany); Abstreiter, Gerhard [Physik Department and Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall 3, 85748 Garching (Germany); Finley, Jonathan J [Physik Department and Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall 3, 85748 Garching (Germany); Zrenner, Artur [Universitaet Paderborn, Warburger Str. 100, D-33098 Paderborn (Germany)
2005-08-01
Recent experimental developments in the field of semiconductor quantum dot (QD) spectroscopy are discussed. Firstly, we report about single QD exciton two-level systems and their coherent properties in terms of single-qubit manipulations. In the second part, we report on coherent quantum coupling in a prototype 'two-qubit' system consisting of a vertically stacked pair of QDs. The interaction can be tuned in such QD molecule devices using an applied voltage as external parameter.
De Raedt, H.; De Raedt, K.; Michielsen, K.
2005-01-01
We demonstrate that networks of locally connected processing units with a primitive learning capability exhibit behavior that is usually only attributed to quantum systems. We describe networks that simulate single-photon beam-splitter and Mach-Zehnder interferometer experiments on a causal, event-b
Quantum fields and Poisson processes: interaction of a cut-off boson field with a quantum particle
Energy Technology Data Exchange (ETDEWEB)
Bertrand, J.; Rideau, G.; Gaveau, B.
1985-01-01
The solution of the Schroedinger equation for a boson field interacting with a quantum particle is written as an expectation on a Poisson process counting the variations of the boson-occupation numbers for each momentum. An energy cut-off is needed for the expectation to be meaningful.
Quantum fields and poisson processes: Interaction of a cut-off boson field with a quantum particle
Bertrand, Jacqueline; Gaveau, Bernard; Rideau, Guy
1985-01-01
The solution of the Schrödinger equation for a boson field interacting with a quantum particle is written as an expectation on a Poisson process counting the variations of the boson-occupation numbers for each momentum. An energy cut-off is needed for the expectation to be meaningful.
Towards Realising Secure and Efficient Image and Video Processing Applications on Quantum Computers
Directory of Open Access Journals (Sweden)
Abdullah M. Iliyasu
2013-07-01
Full Text Available Exploiting the promise of security and efficiency that quantum computing offers, the basic foundations leading to commercial applications for quantum image processing are proposed. Two mathematical frameworks and algorithms to accomplish the watermarking of quantum images, authentication of ownership of already watermarked images and recovery of their unmarked versions on quantum computers are proposed. Encoding the images as 2n-sized normalised Flexible Representation of Quantum Images (FRQI states, with n-qubits and 1-qubit dedicated to capturing the respective information about the colour and position of every pixel in the image respectively, the proposed algorithms utilise the flexibility inherent to the FRQI representation, in order to confine the transformations on an image to any predetermined chromatic or spatial (or a combination of both content of the image as dictated by the watermark embedding, authentication or recovery circuits. Furthermore, by adopting an apt generalisation of the criteria required to realise physical quantum computing hardware, three standalone components that make up the framework to prepare, manipulate and recover the various contents required to represent and produce movies on quantum computers are also proposed. Each of the algorithms and the mathematical foundations for their execution were simulated using classical (i.e., conventional or non-quantum computing resources, and their results were analysed alongside other longstanding classical computing equivalents. The work presented here, combined together with the extensions suggested, provide the basic foundations towards effectuating secure and efficient classical-like image and video processing applications on the quantum-computing framework.
Watanabe, Yuuki; Itagaki, Toshiki
2009-01-01
Fourier domain optical coherence tomography (FD-OCT) requires resampling of spectrally resolved depth information from wavelength to wave number, and the subsequent application of the inverse Fourier transform. The display rates of OCT images are much slower than the image acquisition rates due to processing speed limitations on most computers. We demonstrate a real-time display of processed OCT images using a linear-in-wave-number (linear-k) spectrometer and a graphics processing unit (GPU). We use the linear-k spectrometer with the combination of a diffractive grating with 1200 lines/mm and a F2 equilateral prism in the 840-nm spectral region to avoid calculating the resampling process. The calculations of the fast Fourier transform (FFT) are accelerated by the GPU with many stream processors, which realizes highly parallel processing. A display rate of 27.9 frames/sec for processed images (2048 FFT size x 1000 lateral A-scans) is achieved in our OCT system using a line scan CCD camera operated at 27.9 kHz.
Witnessing Quantum Coherence: from solid-state to biological systems
Li, Che-Ming; Chen, Yueh-Nan; Chen, Guang-Yin; Nori, Franco; 10.1038/srep00885
2012-01-01
Quantum coherence is one of the primary non-classical features of quantum systems. While protocols such as the Leggett-Garg inequality (LGI) and quantum tomography can be used to test for the existence of quantum coherence and dynamics in a given system, unambiguously detecting inherent "quantumness" still faces serious obstacles in terms of experimental feasibility and efficiency, particularly in complex systems. Here we introduce two "quantum witnesses" to efficiently verify quantum coherence and dynamics in the time domain, without the expense and burden of non-invasive measurements or full tomographic processes. Using several physical examples, including quantum transport in solid-state nanostructures and in biological organisms, we show that these quantum witnesses are robust and have a much finer resolution in their detection window than the LGI has. These robust quantum indicators may assist in reducing the experimental overhead in unambiguously verifying quantum coherence in complex systems.
Metastable States of Josepshon Vortices: Thermal Processes and Quantum Effects
Wallraff, A.; Kemp, A.; Koval, Yu.; Ustinov, A. V.; Fistul, M. V.
2001-03-01
We experimentally study the dynamics of a single Josephson vortex in a tilted periodic potential. In the presence of a bias current applied uniformly to a long Josephson junction, metastable vortex-states are induced by the interaction of the vortex with an artificially formed inhomogeneity in the junction, or by shaping the junction subject to a small external magnetic field [1]. At high temperatures, we observe the thermal escape of the vortex out of the metastable state. As temperature and damping is reduced, the macroscopic quantum properties of Josephson vortices, such as energy level quantization and quantum tunneling, are expected to manifest themselves [2,3]. We report on our current experimental work to observe these effects. Our interest in this macroscopic quantum system is related to the possibility of using quantum states of Josephson vortices for performing quantum computation. We have suggested that a vortex trapped in a double-well potential in a narrow long junction can be used as a scalable and well-controllable qubit [1]. [1] A. Wallraff et al. , J. Low Temp. Phys. J. Low Temp. Phys. 188, 543 (2000). [2] T. Kato and M. Imada, J. Phys. Soc. Japan 65, 2963 (1996). [3] A. Shnirman, E. Ben-Jacob, and B. Malomed, Phys. Rev. B 56, 14677 (1997).
Van der Jeught, Sam; Bradu, Adrian; Podoleanu, Adrian Gh
2010-01-01
Fourier domain optical coherence tomography (FD-OCT) requires either a linear-in-wavenumber spectrometer or a computationally heavy software algorithm to recalibrate the acquired optical signal from wavelength to wavenumber. The first method is sensitive to the position of the prism in the spectrometer, while the second method drastically slows down the system speed when it is implemented on a serially oriented central processing unit. We implement the full resampling process on a commercial graphics processing unit (GPU), distributing the necessary calculations to many stream processors that operate in parallel. A comparison between several recalibration methods is made in terms of performance and image quality. The GPU is also used to accelerate the fast Fourier transform (FFT) and to remove the background noise, thereby achieving full GPU-based signal processing without the need for extra resampling hardware. A display rate of 25 framessec is achieved for processed images (1,024 x 1,024 pixels) using a line-scan charge-coupled device (CCD) camera operating at 25.6 kHz.
Analog CMOS design for optical coherence tomography signal detection and processing.
Xu, Wei; Mathine, David L; Barton, Jennifer K
2008-02-01
A CMOS circuit was designed and fabricated for optical coherence tomography (OCT) signal detection and processing. The circuit includes a photoreceiver, differential gain stage and lock-in amplifier based demodulator. The photoreceiver consists of a CMOS photodetector and low noise differential transimpedance amplifier which converts the optical interference signal into a voltage. The differential gain stage further amplifies the signal. The in-phase and quadrature channels of the lock-in amplifier each include an analog mixer and switched-capacitor low-pass filter with an external mixer reference signal. The interferogram envelope and phase can be extracted with this configuration, enabling Doppler OCT measurements. A sensitivity of -80 dB is achieved with faithful reproduction of the interferometric signal envelope. A sample image of finger tip is presented.
Energy Technology Data Exchange (ETDEWEB)
Lee, N.Y. [Radioisotope Research Division, Korea Atomic Energy Research Institute, P.O. Box 105, Yuseong, Daejeon 305-353 (Korea, Republic of)], E-mail: nayoung4493@gmail.com; Jung, S.H. [Radioisotope Research Division, Korea Atomic Energy Research Institute, P.O. Box 105, Yuseong, Daejeon 305-353 (Korea, Republic of)], E-mail: shjung3@kaeri.re.kr; Kim, J.B. [Radioisotope Research Division, Korea Atomic Energy Research Institute, P.O. Box 105, Yuseong, Daejeon 305-353 (Korea, Republic of)], E-mail: jong@kaeri.re.kr
2009-07-15
In this paper, we evaluated the measurement geometries and data processing algorithms for industrial gamma tomography technology. Several phantoms simulating industrial objects were tested in various conditions with the gamma-ray CT system developed in KAERI (Korea Atomic Energy Research Institute). Radiation was measured with lead shielded 24 1x1 in Nal detectors. Regarding the parallel beam geometry, the EM algorithm showed the best resolution among the algebraic reconstruction technique (ART), simultaneous iterative reconstructive technique (SIRT) and expectation maximization (EM). However, the fan beam scanning was more time efficient than the parallel projection for the similar quality of reconstructed image. Future developments of the industrial gamma ray CT will be focused on a large-scale application which is more practical for a diagnosis in the petrochemical industry.
Wang, Kun; Kao, Yu-Jiun; Chou, Cheng-Ying; Oraevsky, Alexander A; Anastasio, Mark A; 10.1118/1.4774361
2013-01-01
Purpose: Optoacoustic tomography (OAT) is inherently a three-dimensional (3D) inverse problem. However, most studies of OAT image reconstruction still employ two-dimensional (2D) imaging models. One important reason is because 3D image reconstruction is computationally burdensome. The aim of this work is to accelerate existing image reconstruction algorithms for 3D OAT by use of parallel programming techniques. Methods: Parallelization strategies are proposed to accelerate a filtered backprojection (FBP) algorithm and two different pairs of projection/backprojection operations that correspond to two different numerical imaging models. The algorithms are designed to fully exploit the parallel computing power of graphic processing units (GPUs). In order to evaluate the parallelization strategies for the projection/backprojection pairs, an iterative image reconstruction algorithm is implemented. Computer-simulation and experimental studies are conducted to investigate the computational efficiency and numerical a...
Deterministic multimode photonic device for quantum-information processing
DEFF Research Database (Denmark)
Nielsen, Anne Ersbak Bang; Mølmer, Klaus
2010-01-01
We propose the implementation of a light source that can deterministically generate a rich variety of multimode quantum states. The desired states are encoded in the collective population of different ground hyperfine states of an atomic ensemble and converted to multimode photonic states...... by excitation to optically excited levels followed by cooperative spontaneous emission. Among our examples of applications, we demonstrate how two-photon-entangled states can be prepared and implemented in a protocol for a reference-frame-free quantum key distribution and how one-dimensional as well as higher...
Al-Khalili, Jim
2003-01-01
In this lively look at quantum science, a physicist takes you on an entertaining and enlightening journey through the basics of subatomic physics. Along the way, he examines the paradox of quantum mechanics--beautifully mathematical in theory but confoundingly unpredictable in the real world. Marvel at the Dual Slit experiment as a tiny atom passes through two separate openings at the same time. Ponder the peculiar communication of quantum particles, which can remain in touch no matter how far apart. Join the genius jewel thief as he carries out a quantum measurement on a diamond without ever touching the object in question. Baffle yourself with the bizzareness of quantum tunneling, the equivalent of traveling partway up a hill, only to disappear then reappear traveling down the opposite side. With its clean, colorful layout and conversational tone, this text will hook you into the conundrum that is quantum mechanics.
Sylwestrzak, Marcin; Szlag, Daniel; Marchand, Paul J.; Kumar, Ashwin S.; Lasser, Theo
2017-08-01
We present an application of massively parallel processing of quantitative flow measurements data acquired using spectral optical coherence microscopy (SOCM). The need for massive signal processing of these particular datasets has been a major hurdle for many applications based on SOCM. In view of this difficulty, we implemented and adapted quantitative total flow estimation algorithms on graphics processing units (GPU) and achieved a 150 fold reduction in processing time when compared to a former CPU implementation. As SOCM constitutes the microscopy counterpart to spectral optical coherence tomography (SOCT), the developed processing procedure can be applied to both imaging modalities. We present the developed DLL library integrated in MATLAB (with an example) and have included the source code for adaptations and future improvements. Catalogue identifier: AFBT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AFBT_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPLv3 No. of lines in distributed program, including test data, etc.: 913552 No. of bytes in distributed program, including test data, etc.: 270876249 Distribution format: tar.gz Programming language: CUDA/C, MATLAB. Computer: Intel x64 CPU, GPU supporting CUDA technology. Operating system: 64-bit Windows 7 Professional. Has the code been vectorized or parallelized?: Yes, CPU code has been vectorized in MATLAB, CUDA code has been parallelized. RAM: Dependent on users parameters, typically between several gigabytes and several tens of gigabytes Classification: 6.5, 18. Nature of problem: Speed up of data processing in optical coherence microscopy Solution method: Utilization of GPU for massively parallel data processing Additional comments: Compiled DLL library with source code and documentation, example of utilization (MATLAB script with raw data) Running time: 1,8 s for one B-scan (150 × faster in comparison to the CPU
Comparisons of nozzle orifice processing methods using synchrotron X-ray micro-tomography
Institute of Scientific and Technical Information of China (English)
Zhi-jun WU; Zhi-long LI; Wei-di HUANG; Hui-feng GONG; Ya GAO; Jun DENG; Zong-jie HU
2012-01-01
Based on the high flux synchrotron X-ray of the Shanghai Synchrotron Radiation Facility (SSRF),high precision 3D digital models of diesel nozzle tips have been established by X-ray micro-tomography technology,which reveal the internal surfaces and structures of orifices.To analyze the machining precision and characteristics of orifice processing methods,an approach is presented based on the parameters of the internal structures of nozzle orifices,including the nozzle diameter,the orifice inner surface waviness,the eccentricity distance and the angle between orifices.Using this approach,two kinds of nozzle orifice processing methods,computerized numerical control drilling and electric discharge machining,have been studied and compared.The results show that this approach enables a simple,direct,and comprehensive contrastive analysis of nozzle orifice processing methods.When processing a single orifice,the electric discharge machining method has obvious advantages.However,when there are multiple orifices,the error levels of the two methods are similar in relation to the symmetry of distribution of the orifices.
Lee, Kenneth K. C.; Mariampillai, Adrian; Yu, Joe X. Z.; Cadotte, David W.; Wilson, Brian C.; Standish, Beau A.; Yang, Victor X. D.
2012-01-01
Abstract: Advances in swept source laser technology continues to increase the imaging speed of swept-source optical coherence tomography (SS-OCT) systems. These fast imaging speeds are ideal for microvascular detection schemes, such as speckle variance (SV), where interframe motion can cause severe imaging artifacts and loss of vascular contrast. However, full utilization of the laser scan speed has been hindered by the computationally intensive signal processing required by SS-OCT and SV calculations. Using a commercial graphics processing unit that has been optimized for parallel data processing, we report a complete high-speed SS-OCT platform capable of real-time data acquisition, processing, display, and saving at 108,000 lines per second. Subpixel image registration of structural images was performed in real-time prior to SV calculations in order to reduce decorrelation from stationary structures induced by the bulk tissue motion. The viability of the system was successfully demonstrated in a high bulk tissue motion scenario of human fingernail root imaging where SV images (512 × 512 pixels, n = 4) were displayed at 54 frames per second. PMID:22808428
Pattern-recalling processes in quantum Hopfield networks far from saturation
Energy Technology Data Exchange (ETDEWEB)
Inoue, Jun-ichi, E-mail: j_inoue@complex.ist.hokudai.ac.jp [Graduate School of Information Science and Technology, Hokkaido University, N14-W9, Kita-ku, Sapporo 060-0814 (Japan)
2011-05-01
As a mathematical model of associative memories, the Hopfield model was now well-established and a lot of studies to reveal the pattern-recalling process have been done from various different approaches. As well-known, a single neuron is itself an uncertain, noisy unit with a finite unnegligible error in the input-output relation. To model the situation artificially, a kind of 'heat bath' that surrounds neurons is introduced. The heat bath, which is a source of noise, is specified by the 'temperature'. Several studies concerning the pattern-recalling processes of the Hopfield model governed by the Glauber-dynamics at finite temperature were already reported. However, we might extend the 'thermal noise' to the quantum-mechanical variant. In this paper, in terms of the stochastic process of quantum-mechanical Markov chain Monte Carlo method (the quantum MCMC), we analytically derive macroscopically deterministic equations of order parameters such as 'overlap' in a quantum-mechanical variant of the Hopfield neural networks (let us call quantum Hopfield model or quantum Hopfield networks). For the case in which non-extensive number p of patterns are embedded via asymmetric Hebbian connections, namely, p/N {yields} 0 for the number of neuron N {yields} {infinity} ('far from saturation'), we evaluate the recalling processes for one of the built-in patterns under the influence of quantum-mechanical noise.
Vogel, Dayton Jon; Kryjevski, Andrei; Inerbaev, Talgat M; Kilin, Dmitri S
2017-03-21
Methyl-ammonium lead iodide perovskite (MAPbI3) is a promising material for photovoltaic devices. A modification of the MAPbI3 into confined nanostructures is expected to further increase efficiency of solar energy conversion. Photo-excited dynamic processes in a MAPbI3 quantum dot (QD) have been modeled by many-body perturbation theory and nonadiabatic dynamics. A photoexcitation is followed by either exciton cooling (EC), its radiative (RR) or non-radiative recombination (NRR), or multi-exciton generation (MEG) processes. Computed times of these processes fall in the order of MEG < EC < RR < NRR, where MEG is in the order of a few femtoseconds, EC at the picosecond range while RR and NRR are in the order of nanoseconds. Computed timescales indicate which electronic transition pathways can contribute to increase in charge collection efficiency. Simulated mechanism relaxation rates show that quantum confinement promotes MEG in MAPbI3 QDs.
Generation of optical coherent state superpositions for quantum information processing
DEFF Research Database (Denmark)
Tipsmark, Anders
2012-01-01
I dette projektarbejde med titlen “Generation of optical coherent state superpositions for quantum information processing” har målet været at generere optiske kat-tilstande. Dette er en kvantemekanisk superpositions tilstand af to koherente tilstande med stor amplitude. Sådan en tilstand er...
Energy Technology Data Exchange (ETDEWEB)
Mounaim-Rouselle, Ch.; Higelin, P.; Pajot, O. [Orleans Univ., Lab. de Mecanique et d' Energetique, ESEM, 45 (France)
1999-07-01
The objective of this paper is to show a droplet sizing technique. This method based on Mie Scattering interferometry, allows to easily get spatial droplets repartition in relatively sparse medium. It has been, in particular, applied inside an I.C. engine combustion chamber. Theoretical bases of the out-of-focus tomography are briefly reminded and also experimental limits. The image processing software is developed with Matlab and gives automatically sizing repartition for frame sequence, taken with same experimental set-up. (authors)
Computed tomography study of VAPEX process in laboratory 3D model
Energy Technology Data Exchange (ETDEWEB)
Wu, G.Q.; Kantzas, A. [Calgary Univ., AB (Canada). Tomographic Imaging and Porous Media Laboratory; Salama, D. [Nexen Inc., Calgary, AB (Canada)
2008-07-01
This paper provided details of a 3-D laboratory model of the VAPEX process that used computerized tomography (CT) to examine vapour chamber expansion behaviour in longitudinal and radial directions. The model was comprised of an aluminum cylinder with 2 slotted tubes installed inside to act as injection and production wells. Propane was used as a solvent with heavy oil. The results of experiments conducted with the model showed that the V shape vapour chamber expansion pattern predicted by the 2-D model was a localized phenomenon. The dominant characteristic of the vapour chamber was an overriding of the injected solvent at the top of the model. The overriding was attributed to gravity segregation. The study also showed that longitudinal expansion was more significant than upwards expansion during the early stages of the VAPEX process. Oil production performance was then examined using different solvent injection rates. An analysis of the CT images was conducted to obtain model porosity, density, and oil saturation profiles. The study demonstrated that pressure cycles caused oil to be produced intermittently. Oil swelling by solvent gas dissolution was an important recovery mechanism. It was concluded that solvent soaking can be used to recover additional residual oil during the VAPEX process. 19 refs., 1 tab., 24 figs.
Li, Jian; Bloch, Pavel; Xu, Jing; Sarunic, Marinko V; Shannon, Lesley
2011-05-01
Fourier domain optical coherence tomography (FD-OCT) provides faster line rates, better resolution, and higher sensitivity for noninvasive, in vivo biomedical imaging compared to traditional time domain OCT (TD-OCT). However, because the signal processing for FD-OCT is computationally intensive, real-time FD-OCT applications demand powerful computing platforms to deliver acceptable performance. Graphics processing units (GPUs) have been used as coprocessors to accelerate FD-OCT by leveraging their relatively simple programming model to exploit thread-level parallelism. Unfortunately, GPUs do not "share" memory with their host processors, requiring additional data transfers between the GPU and CPU. In this paper, we implement a complete FD-OCT accelerator on a consumer grade GPU/CPU platform. Our data acquisition system uses spectrometer-based detection and a dual-arm interferometer topology with numerical dispersion compensation for retinal imaging. We demonstrate that the maximum line rate is dictated by the memory transfer time and not the processing time due to the GPU platform's memory model. Finally, we discuss how the performance trends of GPU-based accelerators compare to the expected future requirements of FD-OCT data rates.
Sylwestrzak, Marcin; Szlag, Daniel; Szkulmowski, Maciej; Gorczynska, Iwona; Bukowska, Danuta; Wojtkowski, Maciej; Targowski, Piotr
2012-10-01
The authors present the application of graphics processing unit (GPU) programming for real-time three-dimensional (3-D) Fourier domain optical coherence tomography (FdOCT) imaging with implementation of flow visualization algorithms. One of the limitations of FdOCT is data processing time, which is generally longer than data acquisition time. Utilizing additional algorithms, such as Doppler analysis, further increases computation time. The general purpose computing on GPU (GPGPU) has been used successfully for structural OCT imaging, but real-time 3-D imaging of flows has so far not been presented. We have developed software for structural and Doppler OCT processing capable of visualization of two-dimensional (2-D) data (2000 A-scans, 2048 pixels per spectrum) with an image refresh rate higher than 120 Hz. The 3-D imaging of 100×100 A-scans data is performed at a rate of about 9 volumes per second. We describe the software architecture, organization of threads, and optimization. Screen shots recorded during real-time imaging of a flow phantom and the human eye are presented.
Polycarpou, Constantina; Venturi, Giovanni; Zavatta, Alessandro; Bellini, Marco
2011-01-01
A photon is the single excitation of a particular spatiotemporal mode of the electromagnetic field. A precise knowledge of the mode structure is therefore essential for its processing and detection, as well as for applying generic quantum light states to novel technologies. Here we demonstrate an adaptive scheme for reconstructing the arbitrary amplitude and phase spectro-temporal profile of an ultrashort single-photon pulse. The method combines techniques from the fields of ultrafast coherent control and quantum optics to map the mode of a fragile quantum state onto that of an intense coherent field. In addition, we show that the possibility of generating and detecting quantum states in multiple spectro-temporal modes may serve as a basis for encoding qubits (and qudits) into single, broadband, ultrashort, photons. Providing access to a much larger Hilbert space, this scheme may boost the capacity of current quantum information protocols.
Nonlinearities in the quantum measurement process of superconducting qubits
Energy Technology Data Exchange (ETDEWEB)
Serban, Ioana
2008-05-15
The work described in this thesis focuses on the investigation of decoherence and measurement backaction, on the theoretical description of measurement schemes and their improvement. The study presented here is centered around quantum computing implementations using superconducting devices and most important, the Josephson effect. The measured system is invariantly a qubit, i. e. a two-level system. The objective is to study detectors with increasing nonlinearity, e. g. coupling of the qubit to the frequency a driven oscillator, or to the bifurcation amplifier, to determine the performance and backaction of the detector on the measured system and to investigate the importance of a strong qubit-detector coupling for the achievement of a quantum non-demolition type of detection. The first part gives a very basic introduction to quantum information, briefly reviews some of the most promising physical implementations of a quantum computer before focusing on the superconducting devices. The second part presents a series of studies of different qubit measurements, describing the backaction of the measurement onto the measured system and the internal dynamics of the detector. Methodology adapted from quantum optics and chemical physics (master equations, phase-space analysis etc.) combined with the representation of a complex environment yielded a tool capable of describing a nonlinear, non-Markovian environment, which couples arbitrarily strongly to the measured system. This is described in chapter 3. Chapter 4 focuses on the backaction on the qubit and presents novel insights into the qubit dephasing in the strong coupling regime. Chapter 5 uses basically the same system and technical tools to explore the potential of a fast, strong, indirect measurement, and determine how close such a detection would ideally come to the quantum non-demolition regime. Chapter 6 focuses on the internal dynamics of a strongly driven Josephson junction. The analytical results are based on
Zhang, Kang
2011-12-01
In this dissertation, real-time Fourier domain optical coherence tomography (FD-OCT) capable of multi-dimensional micrometer-resolution imaging targeted specifically for microsurgical intervention applications was developed and studied. As a part of this work several ultra-high speed real-time FD-OCT imaging and sensing systems were proposed and developed. A real-time 4D (3D+time) OCT system platform using the graphics processing unit (GPU) to accelerate OCT signal processing, the imaging reconstruction, visualization, and volume rendering was developed. Several GPU based algorithms such as non-uniform fast Fourier transform (NUFFT), numerical dispersion compensation, and multi-GPU implementation were developed to improve the impulse response, SNR roll-off and stability of the system. Full-range complex-conjugate-free FD-OCT was also implemented on the GPU architecture to achieve doubled image range and improved SNR. These technologies overcome the imaging reconstruction and visualization bottlenecks widely exist in current ultra-high speed FD-OCT systems and open the way to interventional OCT imaging for applications in guided microsurgery. A hand-held common-path optical coherence tomography (CP-OCT) distance-sensor based microsurgical tool was developed and validated. Through real-time signal processing, edge detection and feed-back control, the tool was shown to be capable of track target surface and compensate motion. The micro-incision test using a phantom was performed using a CP-OCT-sensor integrated hand-held tool, which showed an incision error less than +/-5 microns, comparing to >100 microns error by free-hand incision. The CP-OCT distance sensor has also been utilized to enhance the accuracy and safety of optical nerve stimulation. Finally, several experiments were conducted to validate the system for surgical applications. One of them involved 4D OCT guided micro-manipulation using a phantom. Multiple volume renderings of one 3D data set were
Quantum information processing using acceptors in silicon and phonon entanglement
Clark, Susan; Reinke, Charles; McGuinness, Hayden; El-Kady, Ihab
2014-03-01
Quantum computing with large numbers of qubits remains challenging due to the decoherence and complexity that arise as more qubits are added to a system. Here I propose a new platform for semiconductor quantum computing which may be robust to common sources of decoherence and may not be difficult to fabricate repeatedly. This system consists of a hole bound to an acceptor in silicon which has been implanted in the center of a mechanical cavity (similar to a photonic crystal cavity) and connected to other cavities by a system of waveguides. I will outline a basic entangling gate and calculations showing the promise of this platform as the ideal qubit. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U. S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Theoretical Study of Solid State Quantum Information Processing
2013-08-28
Physical Review A, (02 2013): 0. doi: 10.1103/PhysRevA.87.022332 08/28/2013 30.00 Peihao Huang, Xuedong Hu. Spin qubit relaxation in a moving quantum dot, Physical Review B, (08 2013): 0. doi: 10.1103/PhysRevB.88.075301 08/28/2013 29.00 Lukasz Cywinski, Xuedong Hu, S. Das Sarma, Jo-Tzu Hung. Hyperfine interaction induced dephasing of coupled spin qubits in semiconductor double quantum dots, Physical Review B, (08 2013): 0. doi: 10.1103/PhysRevB.88.085314 08/28/2013 28.00 Ting Yu, WenXian Zhang, XueDong Hu,
Quantum electron transfer processes induced by thermo-coherent state
Indian Academy of Sciences (India)
Sumana Banerjee; Gautam Gangopadhyay
2007-09-01
When the reactant surface is not in a thermal equilibrium, but in a thermo-coherent state we have derived the rate and discussed about the quantum features of the rate. In the limit of very low and very high temperature the expressions are derived analytically and compared with the case of thermal distribution. We have investigated the dependence of temperature on the rate due to displacement, distortion of the harmonic potential energy surfaces of the reactant and product manifold.
Topological Quantum Information Processing Mediated Via Hybrid Topological Insulator Structures
2013-11-13
Matthew J. Gilbert, and Benjamin L. Lev, "Imaging Topologically Protected Transport with Quantum Degenerate Gases," Physical Review B 85 205422...from the Entanglement Spectrum," Physical Review B: Rapid Communications 86, 041401 (2012). 3 Qinglei Meng, Taylor L. Hughes, Matthew J. Gilbert...34 Physical Review B 86, 155110 (2012). 4 Qinglei Meng, Vasudha Shivamoggi, Taylor L. Hughes, Matthew J. Gilbert and S. Vishveshwara, "Fractional Spin
Hypercomputability of quantum adiabatic processes: Fact versus Prejudices
Kieu, T D
2005-01-01
We give an overview of a quantum adiabatic algorithm for Hilbert's tenth problem, including some discussions on its fundamental aspects and the emphasis on the probabilistic correctness of its findings. For the purpose of illustration, the numerical simulation results of some simple Diophantine equations are presented. We also discuss some prejudicial misunderstandings as well as some plausible difficulties faced by the algorithm in its physical implementation.
Quantum Image Processing and Storage with Four Wave Mixing
2016-08-10
quantum correlations between the twin beams from the source survive. When the gain is higher than the loss in the testing arm we need to renormalize the...the attainment of low- frequency squeezing will be critical to our being able to apply squeezed light technology to problems in the real world. In...measurements but the apparatus has not yet been rebuilt in our new labs due to a lack of space and personnel at the present time. Other In addition
Nori, Franco
2008-03-01
Superconducting (SC) circuits can behave like atoms making transitions between a few energy levels. Such circuits can test quantum mechanics at macroscopic scales and be used to conduct atomic-physics experiments on a silicon chip. This talk overviews a few of our theoretical studies on SC circuits and quantum information processing (QIP) including: SC qubits for single photon generation and for lasing; controllable couplings among qubits; how to increase the coherence time of qubits using a capacitor in parallel to one of the qubit junctions; hybrid circuits involving both charge and flux qubits; testing Bell's inequality in SC circuits; generation of GHZ states; quantum tomography in SC circuits; preparation of macroscopic quantum superposition states of a cavity field via coupling to a SC qubit; generation of nonclassical photon states using a SC qubit in a microcavity; scalable quantum computing with SC qubits; and information processing with SC qubits in a microwave field. Controllable couplings between qubits can be achieved either directly or indirectly. This can be done with and without coupler circuits, and with and without data-buses like EM fields in cavities (e.g., we will describe both the variable-frequency magnetic flux approach and also a generalized double-resonance approach that we introduced). It is also possible to ``turn a quantum bug into a feature'' by using microscopic defects as qubits, and the macroscopic junction as a controller of it. We have also studied ways to implement radically different approaches to QIP by using ``cluster states'' in SC circuits. For a general overview of this field, see, J.Q. You and F. Nori, Phys. Today 58 (11), 42 (2005)
A Model of the Creative Process Based on Quantum Physics and Vedic Science.
Rose, Laura Hall
1988-01-01
Using tenets from Vedic science and quantum physics, this model of the creative process suggests that the unified field of creation is pure consciousness, and that the development of the creative process within individuals mirrors the creative process within the universe. Rational and supra-rational creative thinking techniques are also described.…
Pore structure of ore granular media by computerized tomography image processing
Institute of Scientific and Technical Information of China (English)
WU Ai-xiang; YANG Bao-hua; XI Yong; JIANG Huai-chun
2007-01-01
The pore structure images of ore particles located at different heights of leaching column were scanned with X-ray computerized tomography (CT) scanner, the porosity and pore size distribution were calculated and the geometrical shape and connectivity of pores were analyzed based on image process method, and the three dimensional reconstruction of pore structure images was realized. The results show that the porosity of ore particles bed in leaching column is 42.92%, 41.72%, 39.34% at top,middle and bottom zone, respectively. Obviously it has spatial variability and decreases appreciably along the height of the column.The overall average porosity obtained by image processing is 41.33% while the porosity gotten from general measurement method in laboratory is 42.77% showing the results of both methods are consistent well. The pore structure of ore granular media is characterized as a dynamical space network composed of interconnected pore bodies and pore throats. The ratio of throats with equivalent diameter less than 1.91 mm to the total pores is 29.31%, and that of the large pores with equivalent diameter more than 5.73 mm is 2.90%.
Interacting Photons in Waveguide-QED and Applications in Quantum Information Processing
Zheng, Huaixiu
Strong coupling between light and matter has been demonstrated both in classical cavity quantum electrodynamics (QED) systems and in more recent circuit-QED experiments. This enables the generation of strong nonlinear photon-photon interactions at the single-photon level, which is of great interest for the observation of quantum nonlinear optical phenomena, the control of light quanta in quantum information protocols such as quantum networking, as well as the study of strongly correlated quantum many-body systems using light. Recently, strong coupling has also been realized in a variety of one-dimensional (1D) waveguide- QED experimental systems, which in turn makes them promising candidates for quantum information processing. Compared to cavity-QED systems, there are two new features in waveguide-QED: the existence of a continuum of states and the restricted 1D phase space, which together bring in new physical effects, such as the bound-state effects. This thesis consists of two parts: 1) understanding the fundamental interaction between local quantum objects, such as two-level systems and four-level systems, and photons confined in the waveguide; 2) exploring its implications in quantum information processing, in particular photonic quantum computation and quantum key distribution. First, we demonstrate that by coupling a two-level system (TLS) or three/four-level system to a 1D continuum, strongly-correlated photons can be generated inside the waveguide. Photon-photon bound states, which decay exponentially as a function of the relative coordinates of photons, appear in multiphoton scattering processes. As a result, photon bunching and antibunching can be observed in the photon-photon correlation function, and nonclassical light source can be generated on demand. In the case of an N-type four-level system, we show that the effective photon-photon interaction mediated by the four-level system, gives rise to a variety of nonlinear optical phenomena, including
Lorentz covariant reduced-density-operator theory for relativistic quantum information processing
Ahn, D; Hwang, S W; Ahn, Doyeol; Lee, Hyuk-jae; Hwang, Sung Woo
2003-01-01
In this paper, we derived Lorentz covariant quantum Liouville equation for the density operator which describes the relativistic quantum information processing from Tomonaga-Schwinger equation and an exact formal solution for the reduced-density-operator is obtained using the projector operator technique and the functional calculus. When all the members of the family of the hypersurfaces become flat hyperplanes, it is shown that our results agree with those of non-relativistic case which is valid only in some specified reference frame. The formulation presented in this work is general and might be applied to related fields such as quantum electrodynamics and relativistic statistical mechanics.
Modeling of phonon- and Coulomb-mediated capture processes in quantum dots
DEFF Research Database (Denmark)
Magnúsdóttir, Ingibjörg
2003-01-01
of higher dimensionality. Here, we investigate carrier capture processes into quantum dots, mediated by emission of one and two LO phonons. In these investigations is is assumed that the dot is empty initially. In the Case of single-phonon capture we also investigate the influence of the presence...... are performed by assuming that the incident carrier is a free carrier described by a plane wave. Therefore, the influence of waves are scattered by the quantum dot have been neglected. At certain wavelengths and dot sizes, the quantum dot can act as a Fabry-Perot mirror in which the incident carrier travels...
Quantum learning of classical stochastic processes: The completely positive realization problem
Energy Technology Data Exchange (ETDEWEB)
Monràs, Alex [Física Teòrica: Informació i Fenòmens Quàntics, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona) (Spain); Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore); Winter, Andreas [Física Teòrica: Informació i Fenòmens Quàntics, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona) (Spain); Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore); ICREA—Institució Catalana de Recerca i Estudis Avançats, Pg. Lluis Companys, 23, 08010 Barcelona (Spain)
2016-01-15
Among several tasks in Machine Learning, a specially important one is the problem of inferring the latent variables of a system and their causal relations with the observed behavior. A paradigmatic instance of this is the task of inferring the hidden Markov model underlying a given stochastic process. This is known as the positive realization problem (PRP), [L. Benvenuti and L. Farina, IEEE Trans. Autom. Control 49(5), 651–664 (2004)] and constitutes a central problem in machine learning. The PRP and its solutions have far-reaching consequences in many areas of systems and control theory, and is nowadays an important piece in the broad field of positive systems theory. We consider the scenario where the latent variables are quantum (i.e., quantum states of a finite-dimensional system) and the system dynamics is constrained only by physical transformations on the quantum system. The observable dynamics is then described by a quantum instrument, and the task is to determine which quantum instrument — if any — yields the process at hand by iterative application. We take as a starting point the theory of quasi-realizations, whence a description of the dynamics of the process is given in terms of linear maps on state vectors and probabilities are given by linear functionals on the state vectors. This description, despite its remarkable resemblance with the hidden Markov model, or the iterated quantum instrument, is however devoid of any stochastic or quantum mechanical interpretation, as said maps fail to satisfy any positivity conditions. The completely positive realization problem then consists in determining whether an equivalent quantum mechanical description of the same process exists. We generalize some key results of stochastic realization theory, and show that the problem has deep connections with operator systems theory, giving possible insight to the lifting problem in quotient operator systems. Our results have potential applications in quantum machine
Temporal inequalities for sequential multi-time actions in quantum information processing
Żukowski, Marek
2014-10-01
A new kind of temporal inequalities are discussed, which apply to algorithmic processes, involving a finite memory processing unit. They are an alternative to the Leggett-Grag ones, as well as to the modified ones by Brukner et al. If one considers comparison of quantum and classical processes involving systems of finite memory (of the same capacity in both cases), the inequalities give a clear message why we can expect quantum speed-up. In a classical process one always has clearly defined values of possible measurements, or in terms of the information processing language, if we have a sequential computations of some function depending on data arriving at each step on an algorithm, the function always has a clearly defined value. In the quantum case only the final value, after the end of the algorithm, is defined. All intermediate values, in agreement with Bohr's complementarity, cannot be ascribed a definite value.
2014-04-25
motivate many applications from sensing to quantum information processing. Still, external electron and nuclear spin sensing are limited by weak...2014. 3. D.D. Awschalom, “Quantum spintronics”, The International Meeting on Spintronics for Integrated Circuit Application and Beyond, Tokyo...Japan, March 13, 2014. 4. D.D. Awschalom, “Mobile electron spin resonance with spins in optically-trapped nanodiamonds ”, Symposium on Exploring the
Hybrid quantum repeater protocol with fast local processing
DEFF Research Database (Denmark)
Borregaard, Johannes; Brask, Jonatan Bohr; Sørensen, Anders Søndberg
2012-01-01
We propose a hybrid quantum repeater protocol combining the advantages of continuous and discrete variables. The repeater is based on the previous work of Brask et al. [ Phys. Rev. Lett. 105 160501 (2010)] but we present two ways of improving this protocol. In the previous protocol entangled single......-photon states are produced and grown into superpositions of coherent states, known as two-mode cat states. The entanglement is then distributed using homodyne detection. To improve the protocol, we replace the time-consuming nonlocal growth of cat states with local growth of single-mode cat states, eliminating...
Quantum Coherent Multielectron Processes in an Atomic Scale Contact
DEFF Research Database (Denmark)
Peters, Peter-Jan; Xu, Fei; Kaasbjerg, Kristen
2017-01-01
The light emission from a scanning tunneling microscope operated on a Ag(111) surface at 6 K is analyzed from low conductances to values approaching the conductance quantum. Optical spectra recorded at sample voltages V reveal emission with photon energies hv > 2eV. A model of electrons interacting...... coherently via a localized plasmon-polariton mode reproduces the experimental data, in particular, the kinks in the spectra at eV and 2eV as well as the scaling of the intensity at low and intermediate conductances....
Quantum Coherent Multielectron Processes in an Atomic Scale Contact
Peters, Peter-Jan; Xu, Fei; Kaasbjerg, Kristen; Rastelli, Gianluca; Belzig, Wolfgang; Berndt, Richard
2017-08-01
The light emission from a scanning tunneling microscope operated on a Ag(111) surface at 6 K is analyzed from low conductances to values approaching the conductance quantum. Optical spectra recorded at sample voltages V reveal emission with photon energies h ν >2 e V . A model of electrons interacting coherently via a localized plasmon-polariton mode reproduces the experimental data, in particular, the kinks in the spectra at e V and 2 e V as well as the scaling of the intensity at low and intermediate conductances.
Solution-processed, high-performance light-emitting diodes based on quantum dots
Dai, Xingliang; Zhang, Zhenxing; Jin, Yizheng; Niu, Yuan; Cao, Hujia; Liang, Xiaoyong; Chen, Liwei; Wang, Jianpu; Peng, Xiaogang
2014-11-01
Solution-processed optoelectronic and electronic devices are attractive owing to the potential for low-cost fabrication of large-area devices and the compatibility with lightweight, flexible plastic substrates. Solution-processed light-emitting diodes (LEDs) using conjugated polymers or quantum dots as emitters have attracted great interest over the past two decades. However, the overall performance of solution-processed LEDs--including their efficiency, efficiency roll-off at high current densities, turn-on voltage and lifetime under operational conditions--remains inferior to that of the best vacuum-deposited organic LEDs. Here we report a solution-processed, multilayer quantum-dot-based LED with excellent performance and reproducibility. It exhibits colour-saturated deep-red emission, sub-bandgap turn-on at 1.7 volts, high external quantum efficiencies of up to 20.5 per cent, low efficiency roll-off (up to 15.1 per cent of the external quantum efficiency at 100 mA cm-2), and a long operational lifetime of more than 100,000 hours at 100 cd m-2, making this device the best-performing solution-processed red LED so far, comparable to state-of-the-art vacuum-deposited organic LEDs. This optoelectronic performance is achieved by inserting an insulating layer between the quantum dot layer and the oxide electron-transport layer to optimize charge balance in the device and preserve the superior emissive properties of the quantum dots. We anticipate that our results will be a starting point for further research, leading to high-performance, all-solution-processed quantum-dot-based LEDs ideal for next-generation display and solid-state lighting technologies.
Detectability of hepatic tumors during 3D post-processed ultrafast cone-beam computed tomography
Paul, Jijo; Vogl, Thomas J.; Chacko, Annamma
2015-10-01
To evaluate hepatic tumor detection using ultrafast cone-beam computed tomography (UCBCT) cross-sectional and 3D post-processed image datasets. 657 patients were examined using UCBCT during hepatic transarterial chemoembolization (TACE), and data were collected retrospectively from January 2012 to September 2014. Tumor detectability, diagnostic ability, detection accuracy and sensitivity were examined for different hepatic tumors using UCBCT cross-sectional, perfusion blood volume (PBV) and UCBCT-MRI (magnetic resonance imaging) fused image datasets. Appropriate statistical tests were used to compare collected sample data. Fused image data showed the significantly higher (all P color display. Fused image data produced 100% tumor sensitivity due to the simultaneous availability of MRI and UCBCT information during tumor diagnosis. Fused image data produced excellent hepatic tumor sensitivity, detectability and diagnostic ability compared to other datasets assessed. Fused image data is extremely reliable and useful compared to UCBCT cross-sectional or PBV image datasets to depict hepatic tumors during TACE. Partial anatomical visualization on cross-sectional images was compensated by fused image data during tumor diagnosis.
Yu, Fengchao; Liu, Huafeng; Hu, Zhenghui; Shi, Pengcheng
2012-04-01
As a consequence of the random nature of photon emissions and detections, the data collected by a positron emission tomography (PET) imaging system can be shown to be Poisson distributed. Meanwhile, there have been considerable efforts within the tracer kinetic modeling communities aimed at establishing the relationship between the PET data and physiological parameters that affect the uptake and metabolism of the tracer. Both statistical and physiological models are important to PET reconstruction. The majority of previous efforts are based on simplified, nonphysical mathematical expression, such as Poisson modeling of the measured data, which is, on the whole, completed without consideration of the underlying physiology. In this paper, we proposed a graphics processing unit (GPU)-accelerated reconstruction strategy that can take both statistical model and physiological model into consideration with the aid of state-space evolution equations. The proposed strategy formulates the organ activity distribution through tracer kinetics models and the photon-counting measurements through observation equations, thus making it possible to unify these two constraints into a general framework. In order to accelerate reconstruction, GPU-based parallel computing is introduced. Experiments of Zubal-thorax-phantom data, Monte Carlo simulated phantom data, and real phantom data show the power of the method. Furthermore, thanks to the computing power of the GPU, the reconstruction time is practical for clinical application.
Wang, Kun; Huang, Chao; Kao, Yu-Jiun; Chou, Cheng-Ying; Oraevsky, Alexander A; Anastasio, Mark A
2013-02-01
Optoacoustic tomography (OAT) is inherently a three-dimensional (3D) inverse problem. However, most studies of OAT image reconstruction still employ two-dimensional imaging models. One important reason is because 3D image reconstruction is computationally burdensome. The aim of this work is to accelerate existing image reconstruction algorithms for 3D OAT by use of parallel programming techniques. Parallelization strategies are proposed to accelerate a filtered backprojection (FBP) algorithm and two different pairs of projection/backprojection operations that correspond to two different numerical imaging models. The algorithms are designed to fully exploit the parallel computing power of graphics processing units (GPUs). In order to evaluate the parallelization strategies for the projection/backprojection pairs, an iterative image reconstruction algorithm is implemented. Computer simulation and experimental studies are conducted to investigate the computational efficiency and numerical accuracy of the developed algorithms. The GPU implementations improve the computational efficiency by factors of 1000, 125, and 250 for the FBP algorithm and the two pairs of projection/backprojection operators, respectively. Accurate images are reconstructed by use of the FBP and iterative image reconstruction algorithms from both computer-simulated and experimental data. Parallelization strategies for 3D OAT image reconstruction are proposed for the first time. These GPU-based implementations significantly reduce the computational time for 3D image reconstruction, complementing our earlier work on 3D OAT iterative image reconstruction.
Sargent, Edward H.
2006-02-01
We apply discoveries in nanoscience towards applications relevant to health, environment, security, and connectedness. A materials fundamental to our research is the quantum dot. Each quantum dot is a particle of semiconductor only a few nanometers in diameter. These semiconductor nanoparticles confine electrons to within their characteristic wavelength. Thus, just as changing the length of a guitar string changes the frequency of sound produced, so too does changing the size of a quantum dot alter the frequency - hence energy - the electron can adopt. As a result, quantum dots are tunable matter (Fig. 2). We work with colloidal quantum dots, nanoparticles produced in, and processed from, solution. They can be coated onto nearly anything - a semiconductor substrate, a window, a wall, fabric. Compared to epitaxially-grown semiconductors used to make optical detectors, lasers, and modulators, they are cheap, safe to work with, and easy to produce. Much of our work with quantum dots involves infrared light - its measurement, production, modulation, and harnessing. While there exists an abundance of work in colloidal quantum dots active in the visible, there are fewer results in the infrared. The wavelengths between 1000 and 2000 nm are nonetheless of great practical importance: half of the sun's power reaching the earth lies in this wavelength range; 'biological windows' in which tissue is relatively transparent and does not emit background light (autofluorescence) exist in the infrared; fiber-optic networks operate at 1.3 and 1.5 um.
Understanding chemically processed solar cells based on quantum dots.
Malgras, Victor; Nattestad, Andrew; Kim, Jung Ho; Dou, Shi Xue; Yamauchi, Yusuke
2017-01-01
Photovoltaic energy conversion is one of the best alternatives to fossil fuel combustion. Petroleum resources are now close to depletion and their combustion is known to be responsible for the release of a considerable amount of greenhouse gases and carcinogenic airborne particles. Novel third-generation solar cells include a vast range of device designs and materials aiming to overcome the factors limiting the current technologies. Among them, quantum dot-based devices showed promising potential both as sensitizers and as colloidal nanoparticle films. A good example is the p-type PbS colloidal quantum dots (CQDs) forming a heterojunction with a n-type wide-band-gap semiconductor such as TiO2 or ZnO. The confinement in these nanostructures is also expected to result in marginal mechanisms, such as the collection of hot carriers and generation of multiple excitons, which would increase the theoretical conversion efficiency limit. Ultimately, this technology could also lead to the assembly of a tandem-type cell with CQD films absorbing in different regions of the solar spectrum.
Understanding chemically processed solar cells based on quantum dots
Malgras, Victor; Nattestad, Andrew; Kim, Jung Ho; Dou, Shi Xue; Yamauchi, Yusuke
2017-01-01
Abstract Photovoltaic energy conversion is one of the best alternatives to fossil fuel combustion. Petroleum resources are now close to depletion and their combustion is known to be responsible for the release of a considerable amount of greenhouse gases and carcinogenic airborne particles. Novel third-generation solar cells include a vast range of device designs and materials aiming to overcome the factors limiting the current technologies. Among them, quantum dot-based devices showed promising potential both as sensitizers and as colloidal nanoparticle films. A good example is the p-type PbS colloidal quantum dots (CQDs) forming a heterojunction with a n-type wide-band-gap semiconductor such as TiO2 or ZnO. The confinement in these nanostructures is also expected to result in marginal mechanisms, such as the collection of hot carriers and generation of multiple excitons, which would increase the theoretical conversion efficiency limit. Ultimately, this technology could also lead to the assembly of a tandem-type cell with CQD films absorbing in different regions of the solar spectrum. PMID:28567179
Determining the Optimum Time Quantum Value in Round Robin Process Scheduling Method
Directory of Open Access Journals (Sweden)
Shahram Saeidi
2012-09-01
Full Text Available The process scheduling, is one of the most important tasks of the operating system. One of the most common scheduling algorithms used by the most operating systems is the Round Robin method in which, the ready processes waiting in ready queue, seize the processor for a short period of time known as the quantum (or time slice circularly. In this paper, a non-linear programming mathematical model is developed to determine the optimum value of the time quantum, in order to minimize the average waiting time of the processes. The model is implemented and solved by Lingo 8.0 software on four selected problems from the literature.
Tamulis, Arvydas; Majauskaite, Kristina; Kairys, Visvaldas; Zborowski, Krzysztof; Adhikari, Kapil; Krisciukaitis, Sarunas
2016-09-01
Implementation of liquid state quantum information processing based on spatially localized electronic spin in the neurotransmitter stable acetylcholine (ACh) neutral molecular radical is discussed. Using DFT quantum calculations we proved that this molecule possesses stable localized electron spin, which may represent a qubit in quantum information processing. The necessary operating conditions for ACh molecule are formulated in self-assembled dimer and more complex systems. The main quantum mechanical research result of this paper is that the neurotransmitter ACh systems, which were proposed, include the use of quantum molecular spintronics arrays to control the neurotransmission in neural networks.
Shibata, Hiroshi; Ozaki, Nobuhiko; Yasuda, Takuma; Ohkouchi, Shunsuke; Ikeda, Naoki; Ohsato, Hirotaka; Watanabe, Eiichiro; Sugimoto, Yoshimasa; Furuki, Kenji; Miyaji, Kunio; Hogg, Richard A.
2015-04-01
We developed a low-coherence light source based on self-assembled InAs quantum dots (QDs) with controlled emission wavelengths and applied it to optical coherence tomography (OCT) imaging. A current-driven superluminescent diode (SLD) light source including four layers of QDs exhibits a broadband (80-nm-bandwidth) emission centered at approximately 1.2 µm with a Gaussian-like spectral shape at room temperature. Spectral-domain OCT (SD-OCT) using the QD-SLD as a light source was developed and imaging with the SD-OCT was demonstrated. The axial resolution was estimated to be approximately 8 µm in air and no apparent side lobes appeared beside the point spread function, indicating the effectiveness of the QD-SLD for high-resolution, noise-reduced OCT imaging.
Quantum field kinetics of QCD quark-gluon transport theory for light-cone dominated processes
Kinder-Geiger, Klaus
1996-01-01
A quantum kinetic formalism is developed to study the dynamical interplay of quantum and statistical-kinetic properties of non-equilibrium multi-parton systems produced in high-energy QCD processes. The approach provides the means to follow the quantum dynamics in both space-time and energy-momentum, starting from an arbitrary initial configuration of high-momentum quarks and gluons. Using a generalized functional integral representation and adopting the `closed-time-path' Green function techniques, a self-consistent set of equations of motions is obtained: a Ginzburg-Landau equation for a possible color background field, and Dyson-Schwinger equations for the 2-point functions of the gluon and quark fields. By exploiting the `two-scale nature' of light-cone dominated QCD processes, i.e. the separation between the quantum scale that specifies the range of short-distance quantum fluctuations, and the kinetic scale that characterizes the range of statistical binary inter- actions, the quantum-field equations of ...
Bruschi, David Edward; Sabín, Carlos; Paraoanu, Gheorghe Sorin
2017-06-01
We study the properties of bisqueezed tripartite Gaussian states created by two spontaneous parametric down-conversion processes that share a common idler. We give a complete description of the quantum correlations across all partitions, as well as of the genuine multipartite entanglement, obtaining analytical expressions for most of the quantities of interest. We find that the state contains genuine tripartite entanglement, in addition to the bipartite entanglement among the modes that are directly squeezed. We also investigate the effect of homodyne detection of the photons in the common idler mode, and analyze the final reduced state of the remaining two signal modes. We find that this measurement leads to a conversion of the coherence of the two signal modes into entanglement, a phenomenon that can be regarded as a redistribution of quantum resources between the modes. The applications of these results to quantum optics and circuit quantum electrodynamics platforms are also discussed.
Debnath, Ratan; Tang, Jiang; Barkhouse, D Aaron; Wang, Xihua; Pattantyus-Abraham, Andras G; Brzozowski, Lukasz; Levina, Larissa; Sargent, Edward H
2010-05-05
We report colloidal quantum dot solar cells fabricated under ambient atmosphere with an active area of 2.9 mm(2) that exhibit 3.6% solar power conversion efficiency. The devices are based on PbS tuned via the quantum size effect to have a first excitonic peak at 950 nm. Because the formation of native oxides and sulfates on PbS leads to p-type doping and deep trap formation and because such dopants and traps dramatically influence device performance, prior reports of colloidal quantum dot solar cells have insisted on processing under an inert atmosphere. Here we report a novel ligand strategy in which we first encapsulate the quantum dots in the solution phase with the aid of a strongly bound N-2,4,6-trimethylphenyl-N-methyldithiocarbamate ligand. This allows us to carry out film formation and all subsequent device fabrication under an air atmosphere.
Debnath, Ratan
2010-05-05
We report colloidal quantum dot solar cells fabricated under ambient atmosphere with an active area of 2.9 mm2 that exhibit 3.6% solar power conversion efficiency. The devices are based on PbS tuned via the quantum size effect to have a first excitonic peak at 950 nm. Because the formation of native oxides and sulfates on PbS leads to p-type doping and deep trap formation and because such dopants and traps dramatically influence device performance, prior reports of colloidal quantum dot solar cells have insisted on processing under an inert atmosphere. Here we report a novel ligand strategy in which we first encapsulate the quantum dots in the solution phase with the aid of a strongly bound N-2,4,6-trimethylphenyl-N-methyldithiocarbamate ligand. This allows us to carry out film formation and all subsequent device fabrication under an air atmosphere. © 2010 American Chemical Society.
Quantum trajectories, real, surreal or an approximation to a deeper process?
Hiley, B J; Maroney, O
2000-01-01
The proposal that the one-parameter solutions of the real part of the Schrodinger equation (quantum Hamilton-Jacobi equation) can be regarded as `quantum particle trajectories' has received considerable attention recently. Opinions as to their significance differ. Some argue that they do play a fundamental role as actual particle trajectories, others regard them as mere metaphysical appendages without any physical significance. Recent work has claimed that in some cases the Bohm approach gives results that disagree with those obtained from standard quantum mechanics and, in consequence, with experiment. Furthermore it is claimed that these trajectories have such unacceptable properties that they can only be considered as `surreal'. We re-examine these questions and show that the specific objections raised by Englert, Scully, Sussmann and Walther cannot be sustained. We also argue that contrary to their negative view, these trajectories can provide a deeper insight into quantum processes.
Rinkel, Jean; Gerfault, Laurent; Estève, François; Dinten, Jean-Marc
2006-03-01
In order to obtain accurate quantitative results, flat panel detectors require specific calibration and correction of acquisitions. Main artefacts are due to bad pixels, variations of photodiodes characteristics and inhomogeneity of X-rays sensitivity of the scintillator layer. Other limitations for quantification are the non-linearity of the detector due to charge trapping in the transistors and the scattering generated inside the detector, called detector scattering. Based on physical models of artefacts generation, this paper presents an unified framework for the calibration and correction of these artefacts. The following specific algorithms have been developed to correct them. A new method for correction of deviation to linearity is based on the comparison between experimental and simulated data. A method of detector scattering correction is performed in two steps: off-line characterization of detector scattering by considering its spatial distribution through a convolution model and on-line correction based on a deconvolution approach. Radiographic results on an anthropomorphic thorax phantom imaged with a flat panel detector, that convert X-rays into visible light using scintillator coupled to an amorphous silicon transistor frame for photons to electrons conversion, demonstrate that experimental X-rays attenuation images are significantly improved qualitatively and quantitatively by applying non-linearity correction and detector scattering correction. Results obtained on tomographic reconstructions from pre-processed acquisitions of the phantom are in very good agreement with expected attenuation coefficients values obtained with a multi-slice CT scanner. Thus, this paper demonstrates the efficiency of the proposed pre-processings to perform accurate quantification on radiographies and tomographies.
2015-02-16
Microwave-driven coherent operation of a semiconductor quantum dot charge qubit Dohun Kim,1 D. R. Ward,1 C. B. Simmons,1 John King Gamble,2 Robin...Fig.4a. Coherent microwave ac-gating of a semiconductor quantum dot charge qubit offers fast ( >GHz) manip- ulation rates for all elementary rotation...2014). [12] Kim, D. et al. Quantum control and process tomography of a semiconductor quantum dot hybrid qubit. Nature 511, 70–74 (2014). [13] Vion, D
Chip-scale Photonic Devices for Light-matter Interactions and Quantum Information Processing
Gao, Jie
Chip-scale photonic devices such as microdisks, photonic crystal cavities and slow-light photonic crystal waveguides possess strong light localization and long photon lifetime, which will significantly enhance the light-matter interactions and can be used to implement new functionalities for both classical and quantum information processing, optical computation and optical communication in integrated nanophotonic circuits. This thesis will focus on three topics about light matter interactions and quantum information processing with chip-scale photonic devices, including 1) Design and characterization of asymmetric resonate cavity with radiation directionality and air-slot photonic crystal cavity with ultrasmall effective mode volume, 2) Exciton-photon interactions between quantum dots and photonic crystal devices and non-classical photon source from a single quantum dot, and 3) Quantum controlled phase gate and phase switching based on quantum dots and photonic crystal waveguide. The first topic is engineered control of radiation directionality and effective mode volume for optical mode in chip-scale silicon micro-/nano-cavities. High quality factor (Q), subwavelength mode volume ( V) and controllable radiation directionality are the major properties for optical cavities designs. In Chapter 2, asymmetric resonant cavities with rational caustics are proposed and interior whispering gallery modes in monolithic silicon mesoscopic microcavities are experimentally demonstrated. These microcavities possess unique robustness of cavity quality factor against roughness Rayleigh scattering. In Chapter 3, air-slot mode-gap photonic crystal cavities with quality factor of 104 and effective mode volume ˜ 0.02 cubic wavelengths are experimentally demonstrated. The origin of the high Q air-slot cavity mode is the mode-gap effect from the slotted photonic crystal waveguide mode with negative dispersion. The second topic is exciton-photon coupling between quantum dots and
Rare-earth-doped materials for applications in quantum information storage and signal processing
Energy Technology Data Exchange (ETDEWEB)
Thiel, C.W., E-mail: thiel@physics.montana.ed [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Boettger, Thomas, E-mail: tbottger@usfca.ed [Department of Physics and Astronomy, University of San Francisco, 2130 Fulton St., San Francisco, CA 94117 (United States); Cone, R.L., E-mail: cone@montana.ed [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)
2011-03-15
Realization of practical quantum memory and optical signal processing systems critically depends on suitable materials that offer specific combinations of properties. Solid-state materials such as rare-earth ions doped into dielectric crystals are one of the most promising candidates for several quantum information storage protocols, including quantum storage of single photons. This article provides an overview of rare-earth-doped material properties and summarizes some of the most promising materials studied in our laboratory and by other groups for applications in quantum information storage and for ultra-wide bandwidth signal processing. Understanding and controlling spectral diffusion in these materials, which ultimately limits the achievable performance of any quantum memory system, is also briefly reviewed. Applications in quantum information impose stringent requirements on laser phase and frequency stability, and employing a narrow spectral hole in the inhomogeneous absorption profile in these materials as a frequency reference can dramatically improve laser stability. We review our work on laser frequency and phase stabilization and report our recent results on using a narrow spectral hole as a passive dynamic spectral filter for laser phase noise suppression, which can dramatically narrow the laser linewidth with or without the requirement of active feedback. - Research highlights: Rare-earth materials offer key properties for quantum memory and signal processing. Physics and properties of rare-earth optical transitions in solids are reviewed. Details of 47 promising optical transitions are tabulated and compared. A new narrow-band dynamic filtering method using spectral hole burning is discussed. Results of successful passive laser phase noise suppression are presented.
Effect of Multiphoton Processes on Geometric Quantum Computation in Superconducting Circuit QED
Institute of Scientific and Technical Information of China (English)
CHEN Chang-Yong
2012-01-01
We study the influence of multi-photon processes on the geometric quantum computation in the systems of superconducting qubits based on the displacement-like and the general squeezed operator methods. As an example, we focus on the question about how to implement a two-qubit geometric phase gate using superconducting circuit quantum electrodynamics with both single- and two-photon interaction between the qubits and the cavity modes. We find that the multiphoton processes are not only controllable but also improve the gating speed. The comparison with other physical systems and experimental feasibility are discussed in detail.
Generating higher-order quantum dissipation from lower-order parametric processes
Mundhada, S. O.; Grimm, A.; Touzard, S.; Vool, U.; Shankar, S.; Devoret, M. H.; Mirrahimi, M.
2017-06-01
The stabilisation of quantum manifolds is at the heart of error-protected quantum information storage and manipulation. Nonlinear driven-dissipative processes achieve such stabilisation in a hardware efficient manner. Josephson circuits with parametric pump drives implement these nonlinear interactions. In this article, we propose a scheme to engineer a four-photon drive and dissipation on a harmonic oscillator by cascading experimentally demonstrated two-photon processes. This would stabilise a four-dimensional degenerate manifold in a superconducting resonator. We analyse the performance of the scheme using numerical simulations of a realisable system with experimentally achievable parameters.
A New Method Based on Graphics Processing Units for Fast Near-Infrared Optical Tomography.
Jiang, Jingjing; Ahnen, Linda; Kalyanov, Alexander; Lindner, Scott; Wolf, Martin; Majos, Salvador Sanchez
2017-01-01
The accuracy of images obtained by Diffuse Optical Tomography (DOT) could be substantially increased by the newly developed time resolved (TR) cameras. These devices result in unprecedented data volumes, which present a challenge to conventional image reconstruction techniques. In addition, many clinical applications require taking photons in air regions like the trachea into account, where the diffusion model fails. Image reconstruction techniques based on photon tracking are mandatory in those cases but have not been implemented so far due to computing demands. We aimed at designing an inversion algorithm which could be implemented on commercial graphics processing units (GPUs) by making use of information obtained with other imaging modalities. The method requires a segmented volume and an approximately uniform value for the reduced scattering coefficient in the volume under study. The complex photon path is reduced to a small number of partial path lengths within each segment resulting in drastically reduced memory usage and computation time. Our approach takes advantage of wavelength normalized data which renders it robust against instrumental biases and skin irregularities which is critical for realistic clinical applications. The accuracy of this method has been assessed with both simulated and experimental inhomogeneous phantoms showing good agreement with target values. The simulation study analyzed a phantom containing a tumor next to an air region. For the experimental test, a segmented cuboid phantom was illuminated by a supercontinuum laser and data were gathered by a state of the art TR camera. Reconstructions were obtained on a GPU-installed computer in less than 2 h. To our knowledge, it is the first time Monte Carlo methods have been successfully used for DOT based on TR cameras. This opens the door to applications such as accurate measurements of oxygenation in neck tumors where the presence of air regions is a problem for conventional approaches.
Hawe, David; Hernández Fernández, Francisco R.; O’Suilleabháin, Liam; Huang, Jian; Wolsztynski, Eric; O’Sullivan, Finbarr
2012-01-01
In dynamic mode, positron emission tomography (PET) can be used to track the evolution of injected radio-labelled molecules in living tissue. This is a powerful diagnostic imaging technique that provides a unique opportunity to probe the status of healthy and pathological tissue by examining how it processes substrates. The spatial aspect of PET is well established in the computational statistics literature. This article focuses on its temporal aspect. The interpretation of PET time-course da...
Non-Hermitian heat engine with all-quantum-adiabatic-process cycle
Lin, S.; Song, Z.
2016-11-01
As a quantum device, a quantum heat engine (QHE) is described by a Hermitian Hamiltonian. However, since it is an open system, reservoirs must be imposed phenomenologically without any description in the context of quantum mechanics. A non-Hermitian system is expected to describe an open system that exchanges energy and particles with external reservoirs. Correspondingly, such an exchange can be adiabatic in the context of quantum mechanics. We first propose a non-Hermitian QHE by a concrete simple two-level system, which is an S=1/2 spin in a complex external magnetic field. The non-Hermitian { P }{ T }-symmetric Hamiltonian, as a self-contained one, describes both the working medium and reservoirs. A heat engine cycle is composed of completely quantum adiabatic processes. Surprisingly, the heat efficiency is obtained to be the same as that of the Hermitian quantum Otto cycle. A classical analog of this scheme is also presented. Our finding paves the way for revealing the role of a non-Hermitian Hamiltonian in physics.
Quantum-Dot-Based Telecommunication-Wavelength Quantum Relay
Huwer, J.; Stevenson, R. M.; Skiba-Szymanska, J.; Ward, M. B.; Shields, A. J.; Felle, M.; Farrer, I.; Ritchie, D. A.; Penty, R. V.
2017-08-01
The development of quantum relays for long-haul and attack-proof quantum communication networks operating with weak coherent laser pulses requires entangled photon sources at telecommunication wavelengths with intrinsic single-photon emission for most practical implementations. Using a semiconductor quantum dot emitting entangled photon pairs in the telecommunication O band, we demonstrate a quantum relay fulfilling both of these conditions. The system achieves a maximum fidelity of 94.5% for implementation of a standard four-state protocol with input states generated by a laser. We further investigate robustness against frequency detuning of the narrow-band input and perform process tomography of the teleporter, revealing operation for arbitrary pure input states, with an average gate fidelity of 83.6%. The results highlight the potential of semiconductor light sources for compact and robust quantum-relay technology that is compatible with existing communication infrastructures.
Phonon induced pure dephasing process of excitonic state in colloidal semiconductor quantum dots
Huang, Tongyun; Han, Peng; Wang, Xinke; Feng, Shengfei; Sun, Wenfeng; Ye, Jiasheng; Zhang, Yan
2016-04-01
We present a theoretical study on the pure dephasing process of colloidal semiconductor quantum dots induced by lattice vibrations using continuum model calculations. By solving the time dependent Liouville-von Neumann equation, we present the ultrafast Rabi oscillations between excitonic state and virtual state via exciton-phonon interaction and obtain the pure dephasing time from the fast decayed envelope of the Rabi oscillations. The interaction between exciton and longitudinal optical phonon vibration is found to dominate the pure dephasing process and the dephasing time increases nonlinearly with the reduction of exciton-phonon coupling strength. We further find that the pure dephasing time of large quantum dots is more sensitive to temperature than small quantum dots.
Experimentally modeling stochastic processes with less memory by the use of a quantum processor.
Palsson, Matthew S; Gu, Mile; Ho, Joseph; Wiseman, Howard M; Pryde, Geoff J
2017-02-01
Computer simulation of observable phenomena is an indispensable tool for engineering new technology, understanding the natural world, and studying human society. However, the most interesting systems are often so complex that simulating their future behavior demands storing immense amounts of information regarding how they have behaved in the past. For increasingly complex systems, simulation becomes increasingly difficult and is ultimately constrained by resources such as computer memory. Recent theoretical work shows that quantum theory can reduce this memory requirement beyond ultimate classical limits, as measured by a process' statistical complexity, C. We experimentally demonstrate this quantum advantage in simulating stochastic processes. Our quantum implementation observes a memory requirement of Cq = 0.05 ± 0.01, far below the ultimate classical limit of C = 1. Scaling up this technique would substantially reduce the memory required in simulations of more complex systems.
Wang, Hailong; Cao, Leiming; Jing, Jietai
2017-01-10
We theoretically characterize the performance of the pairwise correlations (PCs) from multiple quantum correlated beams based on the cascaded four-wave mixing (FWM) processes. The presence of the PCs with quantum corre- lation in these systems can be verified by calculating the degree of intensity difference squeezing for any pair of all the output fields. The quantum correlation characteristics of all the PCs under different cascaded schemes are also discussed in detail and the repulsion effect between PCs in these cascaded FWM processes is theoretically predicted. Our results open the way for the classification and application of quantum states generated from the cascaded FWM processes.
Ma, Xin
This dissertation focuses on solution-processed light-emitting devices based on polymer, polymer/PbS quantum dot, and polymer/silver nanoparticle hybrid materials. Solution based materials and organic/inorganic hybrid light emitting diodes attracted significant interest recently due to many of their advantages over conventional light emitting diodes (LEDs) including low fabrication cost, flexible, high substrate compatibility, as well as tunable emission wavelength of the quantum dot materials. However, the application of these novel solution processed materials based devices is still limited due to their low performances. Material properties and fabrication parameters need to be carefully examined and understood for further device improvement. This thesis first investigates the impact of solvent property and evaporation rate on the polymer molecular chain morphology and packaging in device structures. Solvent is a key component to make the active material solution for spin coating fabrication process. Their impacts are observed and examined on both polymer blend system and mono-polymer device. Secondly, PbS colloidal quantum dot are introduced to form hybrid device with polymer and to migrate the device emission into near-IR range. As we show, the dithiol molecules used to cross-link quantum dots determine the optical and electrical property of the resulting thin films. By choosing a proper ligand for quantum dot ligand exchange, a high performance polymer/quantum dot hybrid LED is fabricated. In the end, the interaction of polymer exciton with surface plasmon mode in colloidal silver nanoparticles and the use of this effect to enhance solution processed LEDs' performances are investigated.
X-Ray Computed Tomography: The First Step in Mars Sample Return Processing
Welzenbach, L. C.; Fries, M. D.; Grady, M. M.; Greenwood, R. C.; McCubbin, F. M.; Zeigler, R. A.; Smith, C. L.; Steele, A.
2017-01-01
The Mars 2020 rover mission will collect and cache samples from the martian surface for possible retrieval and subsequent return to Earth. If the samples are returned, that mission would likely present an opportunity to analyze returned Mars samples within a geologic context on Mars. In addition, it may provide definitive information about the existence of past or present life on Mars. Mars sample return presents unique challenges for the collection, containment, transport, curation and processing of samples [1] Foremost in the processing of returned samples are the closely paired considerations of life detection and Planetary Protection. In order to achieve Mars Sample Return (MSR) science goals, reliable analyses will depend on overcoming some challenging signal/noise-related issues where sparse martian organic compounds must be reliably analyzed against the contamination background. While reliable analyses will depend on initial clean acquisition and robust documentation of all aspects of developing and managing the cache [2], there needs to be a reliable sample handling and analysis procedure that accounts for a variety of materials which may or may not contain evidence of past or present martian life. A recent report [3] suggests that a defined set of measurements should be made to effectively inform both science and Planetary Protection, when applied in the context of the two competing null hypotheses: 1) that there is no detectable life in the samples; or 2) that there is martian life in the samples. The defined measurements would include a phased approach that would be accepted by the community to preserve the bulk of the material, but provide unambiguous science data that can be used and interpreted by various disciplines. Fore-most is the concern that the initial steps would ensure the pristine nature of the samples. Preliminary, non-invasive techniques such as computed X-ray tomography (XCT) have been suggested as the first method to interrogate and
Rahmat, Mohd Fua'ad; Isa, Mohd Daud; Rahim, Ruzairi Abdul; Hussin, Tengku Ahmad Raja
2009-01-01
Electrical charge tomography (EChT) is a non-invasive imaging technique that is aimed to reconstruct the image of materials being conveyed based on data measured by an electrodynamics sensor installed around the pipe. Image reconstruction in electrical charge tomography is vital and has not been widely studied before. Three methods have been introduced before, namely the linear back projection method, the filtered back projection method and the least square method. These methods normally face ill-posed problems and their solutions are unstable and inaccurate. In order to ensure the stability and accuracy, a special solution should be applied to obtain a meaningful image reconstruction result. In this paper, a new image reconstruction method - Least squares with regularization (LSR) will be introduced to reconstruct the image of material in a gravity mode conveyor pipeline for electrical charge tomography. Numerical analysis results based on simulation data indicated that this algorithm efficiently overcomes the numerical instability. The results show that the accuracy of the reconstruction images obtained using the proposed algorithm was enhanced and similar to the image captured by a CCD Camera. As a result, an efficient method for electrical charge tomography image reconstruction has been introduced.
Inclusive and Exclusive Compton Processes in Quantum Chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Psaker, Ales [Old Dominion Univ., Norfolk, VA (United States)
2005-12-01
In our work, we describe two types of Compton processes. As an example of an inclusive process, we consider the high-energy photoproduction of massive muon pairs off the nucleon. We analyze the process in the framework of the QCD parton model, in which the usual parton distributions emerge as a tool to describe the nucleon in terms of quark and gluonic degrees of freedom. To study its exclusive version, a new class of phenomenological functions is required, namely, generalized parton distributions. They can be considered as a generalization of the usual parton distributions measured in deeply inelastic lepton-nucleon scattering. Generalized parton distributions (GPDs) may be observed in hard exclusive reactions such as deeply virtual Compton scattering. We develop an extension of this particular process into the weak interaction sector. We also investigate a possible application of the GPD formalism to wide-angle real Compton scattering.
Marewski, Julian N; Hoffrage, Ulrich
2013-06-01
A lot of research in cognition and decision making suffers from a lack of formalism. The quantum probability program could help to improve this situation, but we wonder whether it would provide even more added value if its presumed focus on outcome models were complemented by process models that are, ideally, informed by ecological analyses and integrated into cognitive architectures.
Two-phonon capture processes into quantum dots: The role of intermediate states
DEFF Research Database (Denmark)
Magnúsdóttir, Ingibjörg; Uskov, A. V.; Bischoff, Svend;
2003-01-01
We present a study of carrier capture into quantum dots via emission of longitudinal optical phonons. Two-phonon capture times are found to be of the order of some picoseconds at carrier densities 10^1^7cm^-^3 in situations where single-phonon capture processes are energetically prohibited. The i...
Relaxation of the electron spin in quantum dots via one- and two-phonon processes
Energy Technology Data Exchange (ETDEWEB)
Calero, C. [Department of Physics and Astronomy, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468-1589 (United States)]. E-mail: carlos.calero-borrallo@lehman.cuny.edu; Chudnovsky, E.M. [Department of Physics and Astronomy, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468-1589 (United States); Garanin, D.A. [Department of Physics and Astronomy, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468-1589 (United States)
2007-09-15
We have studied direct and Raman processes of the decay of electron spin states in a quantum dot via radiation of phonons corresponding to elastic twists. Universal dependence of the spin relaxation rate on the strength and direction of the magnetic field has been obtained in terms of the electron gyromagnetic tensor and macroscopic elastic constants of the solid.
Chang, Mou-Hsiung
2015-01-01
The classical probability theory initiated by Kolmogorov and its quantum counterpart, pioneered by von Neumann, were created at about the same time in the 1930s, but development of the quantum theory has trailed far behind. Although highly appealing, the quantum theory has a steep learning curve, requiring tools from both probability and analysis and a facility for combining the two viewpoints. This book is a systematic, self-contained account of the core of quantum probability and quantum stochastic processes for graduate students and researchers. The only assumed background is knowledge of the basic theory of Hilbert spaces, bounded linear operators, and classical Markov processes. From there, the book introduces additional tools from analysis, and then builds the quantum probability framework needed to support applications to quantum control and quantum information and communication. These include quantum noise, quantum stochastic calculus, stochastic quantum differential equations, quantum Markov semigrou...
Generating Optical Schrödinger Kittens for Quantum Information Processing
Ourjoumtsev, Alexei; Tualle-Brouri, Rosa; Laurat, Julien; Grangier, Philippe
2006-04-01
We present a detailed experimental analysis of a free-propagating light pulse prepared in a ``Schrödinger kitten'' state, which is defined as a quantum superposition of ``classical'' coherent states with small amplitudes. This kitten state is generated by subtracting one photon from a squeezed vacuum beam, and it clearly presents a negative Wigner function. The predicted influence of the experimental parameters is in excellent agreement with the experimental results. The amplitude of the coherent states can be amplified to transform our ``Schrödinger kittens'' into bigger Schrödinger cats, providing an essential tool for quantum information processing.
Generating optical Schrödinger kittens for quantum information processing.
Ourjoumtsev, Alexei; Tualle-Brouri, Rosa; Laurat, Julien; Grangier, Philippe
2006-04-07
We present a detailed experimental analysis of a free-propagating light pulse prepared in a "Schrödinger kitten" state, which is defined as a quantum superposition of "classical" coherent states with small amplitudes. This kitten state is generated by subtracting one photon from a squeezed vacuum beam, and it clearly presents a negative Wigner function. The predicted influence of the experimental parameters is in excellent agreement with the experimental results. The amplitude of the coherent states can be amplified to transform our "Schrödinger kittens" into bigger Schrödinger cats, providing an essential tool for quantum information processing.
Quantum-chemical approach to defect formation processes in non-metallic crystals
Energy Technology Data Exchange (ETDEWEB)
Kotomin, E.A.; Shluger, A.L. (Latvijskij Gosudarstvennyj Univ., Riga (USSR))
1989-01-01
Results of the quantum-chemical simulation of the formation of structural and radiation defects are reviewed, using ice, silicon, and silicon dioxide as examples. The relationship between the structural elements of these crystals and the structural defects is analysed. Models of the main defects, their optical characteristics, and the activation energy of their migration are discussed. The relationship between the characteristics obtained by quantum-chemical calculations and the parameters of the macroscopic kinetics of the processes induced by defects in dielectric crystals is considered. (author).
Microwave tomography for GPR data processing in archaeology and cultural heritages diagnostics
Soldovieri, F.
2009-04-01
Ground Penetrating Radar (GPR) is one of the most feasible and friendly instrumentation to detect buried remains and perform diagnostics of archaeological structures with the aim of detecting hidden objects (defects, voids, constructive typology; etc..). In fact, GPR technique allows to perform measurements over large areas in a very fast way thanks to a portable instrumentation. Despite of the widespread exploitation of the GPR as data acquisition system, many difficulties arise in processing GPR data so to obtain images reliable and easily interpretable by the end-users. This difficulty is exacerbated when no a priori information is available as for example arises in the case of historical heritages for which the knowledge of the constructive modalities and materials of the structure might be completely missed. A possible answer to the above cited difficulties resides in the development and the exploitation of microwave tomography algorithms [1, 2], based on more refined electromagnetic scattering model with respect to the ones usually adopted in the classic radaristic approach. By exploitation of the microwave tomographic approach, it is possible to gain accurate and reliable "images" of the investigated structure in order to detect, localize and possibly determine the extent and the geometrical features of the embedded objects. In this framework, the adoption of simplified models of the electromagnetic scattering appears very convenient for practical and theoretical reasons. First, the linear inversion algorithms are numerically efficient thus allowing to investigate domains large in terms of the probing wavelength in a quasi real- time also in the case of 3D case also by adopting schemes based on the combination of 2D reconstruction [3]. In addition, the solution approaches are very robust against the uncertainties in the parameters of the measurement configuration and on the investigated scenario. From a theoretical point of view, the linear models allow
Quantum teleportation from light beams to vibrational states of a macroscopic diamond
Hou, P.-Y.; Huang, Y.-Y.; Yuan, X.-X.; Chang, X.-Y.; Zu, C.; He, L.; Duan, L.-M.
2016-05-01
With the recent development of optomechanics, the vibration in solids, involving collective motion of trillions of atoms, gradually enters into the realm of quantum control. Here, building on the recent remarkable progress in optical control of motional states of diamonds, we report an experimental demonstration of quantum teleportation from light beams to vibrational states of a macroscopic diamond under ambient conditions. Through quantum process tomography, we demonstrate average teleportation fidelity (90.6+/-1.0)%, clearly exceeding the classical limit of 2/3. The experiment pushes the target of quantum teleportation to the biggest object so far, with interesting implications for optomechanical quantum control and quantum information science.
Experimentally modeling stochastic processes with less memory by the use of a quantum processor
Palsson, Matthew S.; Gu, Mile; Ho, Joseph; Wiseman, Howard M.; Pryde, Geoff J.
2017-01-01
Computer simulation of observable phenomena is an indispensable tool for engineering new technology, understanding the natural world, and studying human society. However, the most interesting systems are often so complex that simulating their future behavior demands storing immense amounts of information regarding how they have behaved in the past. For increasingly complex systems, simulation becomes increasingly difficult and is ultimately constrained by resources such as computer memory. Recent theoretical work shows that quantum theory can reduce this memory requirement beyond ultimate classical limits, as measured by a process’ statistical complexity, C. We experimentally demonstrate this quantum advantage in simulating stochastic processes. Our quantum implementation observes a memory requirement of Cq = 0.05 ± 0.01, far below the ultimate classical limit of C = 1. Scaling up this technique would substantially reduce the memory required in simulations of more complex systems. PMID:28168218
Phuc, Huynh Vinh; Hien, Nguyen Dinh; Dinh, Le; Phong, Tran Cong
2016-06-01
The effect of confined phonons on the phonon-assisted cyclotron resonance (PACR) via both one and two photon absorption processes in a quantum well is theoretically studied. We consider cases when electrons are scattered by confined optical phonons described by the Fuchs-Kliewer slab, Ridley's guided, and Huang-Zhu models. The analytical expression of the magneto-optical absorption coefficient (MOAC) is obtained by relating it to the transition probability for the absorption of photons. It predicts resonant peaks caused by transitions between Landau levels and electric subband accompanied by confined phonons emission in the absorption spectrum. The MOAC and the full-width at half-maximum (FWHM) for the intra- and inter-subband transitions are given as functions of the magnetic field, temperature, and quantum well width. In narrow quantum wells, the phonon confinement becomes more important and should be taken into account in studying FWHM.
Kerman, Andrew J
2012-01-01
Electrical resonators are widely used in quantum information processing with any qubits that are manipulated via electromagnetic interactions. In nearly all examples to date they are engineered to interact with qubits via real or virtual exchange of (typically microwave) photons, and the resonator must therefore have both a high quality factor and strong quantum fluctuations, corresponding to the strong-coupling limit of cavity QED. Although great strides in the control of quantum information have been made using this so-called "circuit QED" architecture, it also comes with some important disadvantages. In this paper, we discuss a new paradigm for coupling qubits electromagnetically via resonators, in which the qubits do not exchange photons with the resonator, but instead where the qubits exert quasi-classical, effective "forces" on it. We show how this type of interaction is similar to that induced between the internal state of a trapped atomic ion and its center-of-mass motion by the photon recoil momentum...
Multiphonon capture processes in self-assembled quantum dots
DEFF Research Database (Denmark)
Magnúsdóttir, Ingibjörg; Uskov, A.; Bischoff, Svend;
2001-01-01
We investigate capture of carriers from states in the continuous part of the energy spectrum into the discrete states of self-assembled InAs/GaAs QDs via emission of one or two phonons. We are not aware of any other investigations of two-phonon mediated capture processes in QDs, but we show that ...
No Quantum Process Can Explain the Existence of the Preferred Basis: Decoherence Is Not Universal
Inamori, Hitoshi
2016-01-01
Environment induced decoherence, and other quantum processes, have been proposed in the literature to explain the apparent spontaneous selection - out of the many mathematically eligible bases - of a privileged measurement basis that corresponds to what we actually observe. This paper describes such processes, and demonstrates that - contrary to common belief - no such process can actually lead to a preferred basis in general. The key observation is that environment induced decoherence implicitly assumes a prior independence of the observed system, the observer and the environment. However, such independence cannot be guaranteed, and we show that environment induced decoherence does not succeed in establishing a preferred measurement basis in general. We conclude that the existence of the preferred basis must be postulated in quantum mechanics, and that changing the basis for a measurement is, and must be, described as an actual physical process.
Manipulation of multi-photon-entanglement. Applications in quantum information processing
Energy Technology Data Exchange (ETDEWEB)
Goebel, Alexander Matthias
2008-07-16
Over the last twenty years the field of quantum information processing (QIP) has attracted the attention of many scientists, due to the promise of impressive improvements in the areas of computational speed, communication security and the ability to simulate nature on the micro scale. This thesis describes an experimental work on the physics of multi-photon entanglement and its application in the field of QIP. We have thoroughly developed the necessary techniques to generate multipartite entanglement between up to six photons. By exploiting the developed six-photon interferometer, in this thesis we report for the first time the experimental quantum teleportation of a two-qubit composite system, the realization of multi-stage entanglement swapping, the implementation of a teleportation-based controlled-NOT gate for fault-tolerant quantum computation, the first generation of entanglement in sixpartite photonic graph states and the realization of 'one-way' quantum computation with two-photon four-qubit cluster states. The methods developed in these experiments are of great significance both for exploring the field of QIP and for future experiments on the fundamental tests of quantum mechanics. (orig.)
Yang, Yuxiang; Chiribella, Giulio; Adesso, Gerardo
2014-10-01
Quantum technology promises revolutionary advantages in information processing and transmission compared to classical technology; however, determining which specific resources are needed to surpass the capabilities of classical machines often remains a nontrivial problem. To address such a problem, one first needs to establish the best classical solutions, which set benchmarks that must be beaten by any implementation claiming to harness quantum features for an enhanced performance. Here we introduce and develop a self-contained formalism to obtain the ultimate, generally probabilistic benchmarks for quantum information protocols including teleportation and approximate cloning, with arbitrary ensembles of input states generated by a group action, so-called Gilmore-Perelomov coherent states. This allows us to construct explicit fidelity thresholds for the transmission of multimode Gaussian and non-Gaussian states of continuous-variable systems, as well as qubit and qudit pure states drawn according to nonuniform distributions on the Bloch hypersphere, which accurately model the current laboratory facilities. The performance of deterministic classical procedures such as square-root measurement strategies is further compared with the optimal probabilistic benchmarks, and the state-of-the-art performance of experimental quantum implementations against our newly derived thresholds is discussed. This work provides a comprehensive collection of directly useful criteria for the reliable certification of quantum communication technologies.
A quantum mechanics-based framework for image processing and its application to image segmentation
Youssry, Akram; El-Rafei, Ahmed; Elramly, Salwa
2015-10-01
Quantum mechanics provides the physical laws governing microscopic systems. A novel and generic framework based on quantum mechanics for image processing is proposed in this paper. The basic idea is to map each image element to a quantum system. This enables the utilization of the quantum mechanics powerful theory in solving image processing problems. The initial states of the image elements are evolved to the final states, controlled by an external force derived from the image features. The final states can be designed to correspond to the class of the element providing solutions to image segmentation, object recognition, and image classification problems. In this work, the formulation of the framework for a single-object segmentation problem is developed. The proposed algorithm based on this framework consists of four major steps. The first step is designing and estimating the operator that controls the evolution process from image features. The states associated with the pixels of the image are initialized in the second step. In the third step, the system is evolved. Finally, a measurement is performed to determine the output. The presented algorithm is tested on noiseless and noisy synthetic images as well as natural images. The average of the obtained results is 98.5 % for sensitivity and 99.7 % for specificity. A comparison with other segmentation algorithms is performed showing the superior performance of the proposed method. The application of the introduced quantum-based framework to image segmentation demonstrates high efficiency in handling different types of images. Moreover, it can be extended to multi-object segmentation and utilized in other applications in the fields of signal and image processing.
Ambrosino, F; Antonelli, M; Bacci, C; Beltrame, P; Bencivenni, G; Bertolucci, S; Bini, C; Bloise, C; Bocchetta, S; Bocci, V; Bossi, F; Bowring, D; Branchini, P; Caloi, R; Campana, P; Capon, G; Capussela, T; Ceradini, F; Chi, S; Chiefari, G; Ciambrone, P; Conetti, S; De Lucia, E; De Santis, A; De Simone, P; De Zorzi, G; Dell'Agnello, S; Denig, A; Di Domenico, A; Di Donato, C; Di Falco, S; Di Micco, B; Doria, A; Dreucci, M; Felici, G; Ferrari, A; Ferrer, M L; Finocchiaro, G; Fiore, S; Forti, C; Franzini, P; Gatti, C; Gauzzi, P; Giovannella, S; Gorini, E; Graziani, E; Incagli, M; Kluge, W; Kulikov, V; Lacava, F; Lanfranchi, G; Lee-Franzini, J; Leone, D; Martini, M; Massarotti, P; Mei, W; Meola, S; Miscetti, S; Moulson, M; Müller, S; Murtas, F; Napolitano, M; Nguyen, F; Palutan, M; Pasqualucci, E; Passeri, A; Patera, V; Perfetto, F; Pontecorvo, L; Primavera, M; Santangelo, P; Santovetti, E; Saracino, G; Sciascia, B; Sciubba, A; Scuri, F; Sfiligoi, I; Sibidanov, A L; Spadaro, T; Testa, M; Tortora, L; Valente, P; Valeriani, B; Venanzoni, G; Veneziano, Stefano; Ventura, A; Versaci, R; Xu, G
2006-01-01
We present the first observation of quantum interference in the process phi -> KS KL ->pi+pi-pi+pi-. This analysis is based on data collected with the KLOE detector at the e^+e^- collider DAFNE in 2001--2002 for an integrated luminosity of about 380pb^-1. Fits to the distribution of Delta t, the difference between the two kaon decay times, allow tests of the validity of quantum mechanics and CPT symmetry. No deviations from the expectations of quantum mechanics and CPT symmetry have been observed. New or improved limits on various decoherence and CPT violation parameters have been obtained
Experimental one-way quantum computing.
Walther, P; Resch, K J; Rudolph, T; Schenck, E; Weinfurter, H; Vedral, V; Aspelmeyer, M; Zeilinger, A
2005-03-10
Standard quantum computation is based on sequences of unitary quantum logic gates that process qubits. The one-way quantum computer proposed by Raussendorf and Briegel is entirely different. It has changed our understanding of the requirements for quantum computation and more generally how we think about quantum physics. This new model requires qubits to be initialized in a highly entangled cluster state. From this point, the quantum computation proceeds by a sequence of single-qubit measurements with classical feedforward of their outcomes. Because of the essential role of measurement, a one-way quantum computer is irreversible. In the one-way quantum computer, the order and choices of measurements determine the algorithm computed. We have experimentally realized four-qubit cluster states encoded into the polarization state of four photons. We characterize the quantum state fully by implementing experimental four-qubit quantum state tomography. Using this cluster state, we demonstrate the feasibility of one-way quantum computing through a universal set of one- and two-qubit operations. Finally, our implementation of Grover's search algorithm demonstrates that one-way quantum computation is ideally suited for such tasks.
Schröder, D.; Bender, C. L.; Arlt, T.; Osenberg, M.; Hilger, A.; Risse, S.; Ballauff, M.; Manke, I.; Janek, J.
2016-10-01
Computed tomography with x-rays is a powerful tool to analyze the complex reaction and transport processes that occur inside electrochemical storage devices. To this day, a better insight into the occurring processes is needed and will yield improvements in energy density and cycling stability of next-generation batteries. Herein we present general considerations for the use of x-ray tomography of batteries to gain a detailed insight during operation. Furthermore, we present examples for the tomography of zinc-oxygen batteries, sodium-oxygen batteries and metal-sulfur batteries, elucidating performance limiting degradation processes such as dendrite formation and loss of liquid electrolyte. With the method applied, we aim to establish an effective link between the battery and x-ray community by offering a guideline on how to apply x-ray tomography to propel research on battery materials and entire batteries.
Energy Technology Data Exchange (ETDEWEB)
Maunz, Peter Lukas Wilhelm [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sterk, Jonathan David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lobser, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Parekh, Ojas D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ryan-Anderson, Ciaran [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2016-01-01
In recent years, advanced network analytics have become increasingly important to na- tional security with applications ranging from cyber security to detection and disruption of ter- rorist networks. While classical computing solutions have received considerable investment, the development of quantum algorithms to address problems, such as data mining of attributed relational graphs, is a largely unexplored space. Recent theoretical work has shown that quan- tum algorithms for graph analysis can be more efficient than their classical counterparts. Here, we have implemented a trapped-ion-based two-qubit quantum information proces- sor to address these goals. Building on Sandia's microfabricated silicon surface ion traps, we have designed, realized and characterized a quantum information processor using the hyperfine qubits encoded in two 171 Yb + ions. We have implemented single qubit gates using resonant microwave radiation and have employed Gate set tomography (GST) to characterize the quan- tum process. For the first time, we were able to prove that the quantum process surpasses the fault tolerance thresholds of some quantum codes by demonstrating a diamond norm distance of less than 1 . 9 x 10 [?] 4 . We used Raman transitions in order to manipulate the trapped ions' motion and realize two-qubit gates. We characterized the implemented motion sensitive and insensitive single qubit processes and achieved a maximal process infidelity of 6 . 5 x 10 [?] 5 . We implemented the two-qubit gate proposed by Molmer and Sorensen and achieved a fidelity of more than 97 . 7%.
The Schrödinger problem, Levy processes noise in relativistic quantum mechanics
Garbaczewski, P; Olkiewicz, R
1995-01-01
The main purpose of the paper is an essentially probabilistic analysis of relativistic quantum mechanics. It is based on the assumption that whenever probability distributions arise, there exists a stochastic process that is either responsible for temporal evolution of a given measure or preserves the measure in the stationary case. Our departure point is the so-called Schr\\"{o}dinger problem of probabilistic evolution, which provides for a unique Markov stochastic interpolation between any given pair of boundary probability densities for a process covering a fixed, finite duration of time, provided we have decided a priori what kind of primordial dynamical semigroup transition mechanism is involved. In the nonrelativistic theory, including quantum mechanics, Feyman-Kac-like kernels are the building blocks for suitable transition probability densities of the process. In the standard "free" case (Feynman-Kac potential equal to zero) the familiar Wiener noise is recovered. In the framework of the Schr\\"{o}dinge...
Quantum computation and the physical computation level of biological information processing
Castagnoli, Giuseppe
2009-01-01
On the basis of introspective analysis, we establish a crucial requirement for the physical computation basis of consciousness: it should allow processing a significant amount of information together at the same time. Classical computation does not satisfy the requirement. At the fundamental physical level, it is a network of two body interactions, each the input-output transformation of a universal Boolean gate. Thus, it cannot process together at the same time more than the three bit input of this gate - many such gates in parallel do not count since the information is not processed together. Quantum computation satisfies the requirement. At the light of our recent explanation of the speed up, quantum measurement of the solution of the problem is analogous to a many body interaction between the parts of a perfect classical machine, whose mechanical constraints represent the problem to be solved. The many body interaction satisfies all the constraints together at the same time, producing the solution in one ...
Process design of microdomains with quantum mechanics for giant pulse lasers.
Sato, Yoichi; Akiyama, Jun; Taira, Takunori
2017-09-06
The power scaling of laser devices can contribute to the future of humanity. Giant microphotonics have been advocated as a solution to this issue. Among various technologies in giant microphotonics, process control of microdomains with quantum mechanical calculations is expected to increase the optical power extracted per unit volume in gain media. Design of extensive variables influencing the Gibbs energy of controlled microdomains in materials can realize desired properties. Here we estimate the angular momentum quantum number of rare-earth ions in microdomains. Using this process control, we generate kilowatt-level laser output from orientation-controlled microdomains in a laser gain medium. We also consider the limitations of current samples, and discuss the prospects of power scaling and applications of our technology. This work overturns at least three common viewpoints in current advanced technologies, including material processing based on magnetohydrodynamics, grain-size control of transparent polycrystals in fine ceramics, and the crystallographic symmetry of laser ceramics in photonics.
Processing of Photonic Crystal Nanocavity for Quantum Information in Diamond
Bayn, Igal; Lahav, Alex; Salzman, Joseph; Kalish, Rafi; Fairchild, Barbara A; Prawer, Steven; Barth, Michael; Benson, Oliver; Wolf, Thomas; Siyushev, Petr; Jelezko, Fedor; Wrachtrup, Jorg
2010-01-01
The realization of photonic crystals (PC) in diamond is of major importance for the entire field of spintronics based on fluorescent centers in diamond. The processing steps for the case of diamond differ from those commonly used, due to the extreme chemical and mechanical properties of this material. The present work summarizes the state of the art in the realization of PC's in diamond. It is based on the creation of a free standing diamond membrane into which the desired nano-sized patterns are milled by the use of Focused-Ion-Beam (FIB). The optimal fabrication-oriented structure parameters are predicted by simulations. The milling strategies, the method of formation the diamond membrane, recipes for dielectric material-manipulation in FIB and optical characterization constraints are discussed in conjunction with their implication on PC cavity design. The thus produced structures are characterized via confocal photoluminescence.
Induced gravity with Higgs potential. Elementary interactions and quantum processes
Energy Technology Data Exchange (ETDEWEB)
Bezares Roder, Nils Manuel
2010-07-01
This work is intended to first serve as introduction in fundamental subjects of physics in order to be then able to review the mechanism of symmetry breakdown and its essential character in physics. It introduces the concept of scalar-tensor theories of gravity based on Bergmann-Wagoner models with a Higgs potential. The main physical context aimed is the problem of Dark Matter and Dark Energy. On the one hand, there is gravitation. Within this context, we have Dark Matter as an especially relevant concept. This work entails the following main contributions: - General features of Einstein's theory are introduced together with generalities of the different elementary interactions of physics from which the concepts of dark sectors and Higgs Mechanism are derived. - The concept of symmetry breaking and especially the Higgs Mechanism of mass generation are discussed in their relevance for the most different subjects of physics, especially in relation to the Standard Model of elementary particle physics with elementary Higgs fields. - Scalar-Tensor Theories are introduced in order to build in them the process of Higgs Mechanism. This is then fulfilled with a theory of induced gravity with a Higgs potential which seems renormalizable according to deWitt's power counting criterion, and with mass-generating Higgs fields which only couple gravitationally as well as with Higgs fields which act analogously to cosmon fields. - Further, the energy density of the gravitational field is derived for the specific model of induced gravity from an analogy to electrodynamics. It is shown that a nonvanishing value of pressure related to the scalar field is necessary in order to reproduce standard linear solar-relativistic dynamics. Within astrophysical considerations for flat rotation curves of galaxies, a possible dark-matter behavior is concluded within spherical symmetry. The scalar field and the dark-matter profile of total energy density are derived. An analogous
Ozaki, Nobuhiko; Childs, David T. D.; Sarma, Jayanta; Roberts, Timothy S.; Yasuda, Takuma; Shibata, Hiroshi; Ohsato, Hirotaka; Watanabe, Eiichiro; Ikeda, Naoki; Sugimoto, Yoshimasa; Hogg, Richard A.
2016-02-01
We report a broadband-gain superluminescent diode (SLD) based on self-assembled InAs quantum dots (QDs) for application in a high-resolution optical coherence tomography (OCT) light source. Four InAs QD layers, with sequentially shifted emission wavelengths achieved by varying the thickness of the In0.2Ga0.8As strain-reducing capping layers, were embedded in a conventional p-n heterojunction comprising GaAs and AlGaAs layers. A ridge-type waveguide with segmented contacts was formed on the grown wafer, and an as-cleaved 4-mm-long chip (QD-SLD) was prepared. The segmented contacts were effective in applying a high injection current density to the QDs and obtaining emission from excited states of the QDs, resulting in an extension of the bandwidth of the electroluminescence spectrum. In addition, gain spectra deduced with the segmented contacts indicated a broadband smooth positive gain region spanning 160 nm. Furthermore, OCT imaging with the fabricated QD-SLD was performed, and OCT images with an axial resolution of ˜4 μm in air were obtained. These results demonstrate the effectiveness of the QD-SLD with segmented contacts as a high-resolution OCT light source.
Leung, Nelson; Abdelhafez, Mohamed; Koch, Jens; Schuster, David
2017-04-01
We implement a quantum optimal control algorithm based on automatic differentiation and harness the acceleration afforded by graphics processing units (GPUs). Automatic differentiation allows us to specify advanced optimization criteria and incorporate them in the optimization process with ease. We show that the use of GPUs can speedup calculations by more than an order of magnitude. Our strategy facilitates efficient numerical simulations on affordable desktop computers and exploration of a host of optimization constraints and system parameters relevant to real-life experiments. We demonstrate optimization of quantum evolution based on fine-grained evaluation of performance at each intermediate time step, thus enabling more intricate control on the evolution path, suppression of departures from the truncated model subspace, as well as minimization of the physical time needed to perform high-fidelity state preparation and unitary gates.
Novotny, J; Jex, I
2006-01-01
The structure of all completely positive quantum operations is investigated which transform pure two-qubit input states of a given degree of entanglement in a covariant way. Special cases thereof are quantum NOT operations which transform entangled pure two-qubit input states of a given degree of entanglement into orthogonal states in an optimal way. Based on our general analysis all covariant optimal two-qubit quantum NOT operations are determined. In particular, it is demonstrated that only in the case of maximally entangled input states these quantum NOT operations can be performed perfectly.
PEET: a Matlab tool for estimating physical gate errors in quantum information processing systems
Hocker, David; Kosut, Robert; Rabitz, Herschel
2016-09-01
A Physical Error Estimation Tool (PEET) is introduced in Matlab for predicting physical gate errors of quantum information processing (QIP) operations by constructing and then simulating gate sequences for a wide variety of user-defined, Hamiltonian-based physical systems. PEET is designed to accommodate the interdisciplinary needs of quantum computing design by assessing gate performance for users familiar with the underlying physics of QIP, as well as those interested in higher-level computing operations. The structure of PEET separates the bulk of the physical details of a system into Gate objects, while the construction of quantum computing gate operations are contained in GateSequence objects. Gate errors are estimated by Monte Carlo sampling of noisy gate operations. The main utility of PEET, though, is the implementation of QuantumControl methods that act to generate and then test gate sequence and pulse-shaping techniques for QIP performance. This work details the structure of PEET and gives instructive examples for its operation.
Spin-Flip Process through Double Quantum Dots Coupled to Ferromagnetic Leads
Institute of Scientific and Technical Information of China (English)
YAN Cong-Hua; WU Shao-Quan; HUANG Rui; SUN Wei-Li
2006-01-01
@@ We investigate the spin-flip process through double quantum dots coupled to two ferromagnetic leads in series.By means of the slave-boson mean-field approximation, we calculate the density of states in the Kondo regime for two different configurations of the leads. It is found that transport shows some remarkable properties depending on the spin-flip strength. These effects may be useful in exploiting the role of electronic correlation in spintronics.
Directory of Open Access Journals (Sweden)
I.I. Grygorchak
2011-06-01
Full Text Available Thermodynamics and kinetics of lithium intercalation into C-SiO2 nanocomposites are investigated. Dependencies of both differential capacity and intercalation kinetics on the nanocomposite size are established. The processes are analyzed in terms of the impedance model. The obtained results are explained based on the quantum effect of interference blockade of electron tunneling into a nonmetallic nanoparticle. Propositions for the new electrochemical energy storage technology are presented.
Data processing for the fluid flow tomography method; Ryutai ryudo den`iho no data kaiseki
Energy Technology Data Exchange (ETDEWEB)
Ushijima, K.; Mizunaga, H.; Tanaka, T. [Kyushu University, Fukuoka (Japan). Faculty of Engineering; Hashimoto, K. [Kyushu Electric Power Co. Inc., Fukuoka (Japan)
1997-05-27
An automatic measurement system by means of conductive potential and self-potential methods (fluid flow tomography method) has been developed to measure the change of geothermal steam fluid during production and injection. For the fluid flow tomography method, the four-electrode configuration of the conductive potential method is adopted using the casing pipe of well as a current source. A lot of potential receiving electrodes are connected to the earth, preliminarily. The surface potential profile is measured, which is formed during the injection and production of the fluid through the well. Artificial and spontaneous potential profiles were continuously measured using this system during the hydraulic crushing tests at the test field of hot dry rock power generation at Ogachi-machi, Akita Prefecture. As a result of inversion analysis of self-potential data using a four-layer structural model of specific resistance, it was observed that the fluid injected at the depth of 711 m in the borehole permeated into the depth between 700 and 770 m in the south-eastern part of the well, and that the fractures propagated into the deeper part, gradually with the progress of hydraulic crushing test. 3 figs.
Kadar, Julian
Next generation superconducting wires have been studied to obtain more information on the evolution of phase growth, crystallite size and strain state during wire processing. The high energy scattering beam line ID15 at the European Synchrotron Radiation Facility provides a very high flux of high energy photons for very fast in situ X-ray diffraction and micro-tomography studies of Bi-2212/Ag and Nb$_3$S/Cu wire samples. The typical wire processing conditions could be imitated in the X-ray transparent furnace at ID15 for diffraction and tomography studies. Efficient data analysis is mandatory in order to handle the very fast data acquisition rate. For this purpose an Excel-VBA based program was developed that allows a semi-automated fitting and tracking of peaks with pre-set constraints. With this method, more than one thousand diffraction patterns have been analysed to extract d-spacing, peak intensity and peak width values. X ray absorption micro tomograms were recorded simultaneously with the X-ray diffrac...
Schommers, Wolfram
2011-01-01
Space and time are probably the most important elements in physics. Within the memory of man, all essential things are represented within the frame of space-time pictures. This is obviously the most basic information. What can we say about space and time? It is normally assumed that the space is a container filled with matter and that the time is just that which we measure with our clocks. However, there are some reasons to take another standpoint and to consider this container-conception as unrealistic, as prejudice so to say. Already the philosopher Immanuel Kant pointed on this serious prob
X-ray Tomography Characterisation of Lattice Structures Processed by Selective Electron Beam Melting
Directory of Open Access Journals (Sweden)
Everth Hernández-Nava
2017-08-01
Full Text Available Metallic lattice structures intentionally contain open porosity; however, they can also contain unwanted closed porosity within the structural members. The entrained porosity and defects within three different geometries of Ti-6Al-4V lattices, fabricated by Selective Electron Beam Melting (SEBM, is assessed from X-ray computed tomography (CT scans. The results suggest that horizontal struts that are built upon loose powder show particularly high (~20 × 10−3 vol % levels of pores, as do nodes at which many (in our case 24 struts meet. On the other hand, for struts more closely aligned (0° to 54° to the build direction, the fraction of porosity appears to be much lower (~0.17 × 10−3% arising mainly from pores contained within the original atomised powder particles.
Practical experimental certification of computational quantum gates via twirling
Moussa, Osama; Ryan, Colm A; Laflamme, Raymond
2011-01-01
Due to the technical difficulty of building large quantum computers, it is important to be able to estimate how faithful a given implementation is to an ideal quantum computer. The common approach of completely characterizing the computation process via quantum process tomography requires an exponential amount of resources, and thus is not practical even for relatively small devices. We solve this problem by demonstrating that twirling experiments previously used to characterize the average fidelity of quantum memories efficiently can be easily adapted to estimate the average fidelity of the experimental implementation of important quantum computation processes, such as unitaries in the Clifford group, in a practical and efficient manner with applicability in current quantum devices. Using this procedure, we demonstrate state-of-the-art coherent control of an ensemble of magnetic moments of nuclear spins in a single crystal solid by implementing the encoding operation for a 3 qubit code with only a 1% degrada...
Scarani, Valerio; Iblisdir, Sofyan; Gisin, Nicolas; Acin, Antonio
2005-01-01
The impossibility of perfectly copying (or cloning) an arbitrary quantum state is one of the basic rules governing the physics of quantum systems. The processes that perform the optimal approximate cloning have been found in many cases. These "quantum cloning machines" are important tools for studying a wide variety of tasks, e.g. state estimation and eavesdropping on quantum cryptography. This paper provides a comprehensive review of quantum cloning machines (both for discrete-dimensional an...
Quantum algorithmic information theory
Svozil, Karl
1995-01-01
The agenda of quantum algorithmic information theory, ordered `top-down,' is the quantum halting amplitude, followed by the quantum algorithmic information content, which in turn requires the theory of quantum computation. The fundamental atoms processed by quantum computation are the quantum bits which are dealt with in quantum information theory. The theory of quantum computation will be based upon a model of universal quantum computer whose elementary unit is a two-port interferometer capa...
A Compact Source for Quantum Image Processing with Four-wave Mixing in Rubidium-85
Vogl, Ulrich; Lett, Paul D; 10.1117/12.907333
2012-01-01
We have built a compact light source for bright squeezed twin-beams at 795\\,nm based on four-wave-mixing in atomic $^{85}$Rb vapor. With a total optical power of 400\\,mW derived from a free running diode laser and a tapered amplifier to pump the four-wave-mixing process, we achieve 2.1\\,dB intensity difference squeezing of the twin beams below the standard quantum limit, without accounting for losses. Squeezed twin beams generated by the type of source presented here could be used as reference for the precise calibration of photodetectors. Transferring the quantum correlations from the light to atoms in order to generate correlated atom beams is another interesting prospect. In this work we investigate the dispersion that is generated by the employed four-wave-mixing process with respect to bandwidth and dependence on probe detuning. We are currently using this squeezed light source to test the transfer of spatial information and quantum correlations through media of anomalous dispersion.
Surface ion trap structures with excellent optical access for quantum information processing
Maunz, P.; Blain, M.; Benito, F.; Chou, C.; Clark, C.; Descour, M.; Ellis, R.; Haltli, R.; Heller, E.; Kemme, S.; Sterk, J.; Tabakov, B.; Tigges, C.; Stick, D.
2013-05-01
Microfabricated surface electrode ion traps are necessary for the advancement of trapped ion quantum information processing as it offers a scalable way for realizing complex trap structures capable of storing and controlling many ions. The most promising way of performing two-qubit quantum gates in a chain of trapped ions is to focus laser beams on individual ions of the chain to drive gates. However, in surface ion traps the close proximity of the ions to the surface and the size of the chips usually cannot accommodate the tightly focused laser beams necessary to address individual ions parallel to the chip surface. Here we present a surface electrode ion trap monolithically fabricated in standard silicon technology that implements a linear quadrupole trap on a bowtie shaped chip with a narrow section that is only 1.2 mm wide. Laser beams parallel to the surface can be focused down to a waist of 4 μm with enough separation from the trap chip to prevent light scattering. The trap structure incorporates two Y-junctions for reordering ions and is optimized for quantum information processing. This work was supported by the Intelligence Advanced Research Projects Activity (IARPA). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Wu, L A; Wu, Lian-Ao; Lidar, Daniel
2005-01-01
Quantum computation and communication offer unprecedented advantages compared to classical information processing. Currently, quantum communication is moving from laboratory prototypes into real-life applications. When quantum communication networks become more widespread it is likely that they will be subject to attacks by hackers, virus makers, and other malicious intruders. Here we introduce the concept of "quantum malware" to describe such human-made intrusions. We offer a simple solution for storage of quantum information in a manner which protects quantum networks from quantum malware.
Readout of a superconducting qubit. A problem of quantum escape processes for driven systems
Energy Technology Data Exchange (ETDEWEB)
Verso, Alvise
2010-10-27
We started this work with a description of two devices that were recently developed in the context of quantum information processing. These devices are used as read-out for superconducting quantum bits based on Josephson junctions. The classical description has to be extended to the quantum regime. As the main result we calculate the leading order corrections in {Dirac_h} on the escape rate. We took into account a standard metastable potential with a static energy barrier and showed how to derive an extension of the classical diffusion equation. We did this within a systematic semiclassical formalism starting from a quantum mechanical master equation. This master equation contains an extra term for the loss of population due to tunneling through the barrier and, in contrast to previous approaches, finite barrier transmission which also affects the transition probabilities between the states. The escape rate is obtained from the stationary non-equilibrium solution of the diffusion equation. The quantum corrections on the escape rate are captured by two factors, the first one describes zero-point fluctuations in the well, while the second one describes the impact of finite barrier transmission close to the top. Interestingly, for weak friction there exists a temperature range, where the latter one can actually prevail and lead to a reduction of the escape compared to the classical situation due to finite reflection from the barrier even for energies above the barrier. Only for lower temperatures does the quantum result exceed the classical one. The approach can not strictly be used for the Duffing oscillator because of the time dependent term in its Hamiltonian. But it is possible to move in a frame rotating with a frequency equal to the response frequency of the Duffing oscillator in order to obtain a time-independent Hamiltonian. Therefore a system plus reservoir model was applied to consistently derive in the weak coupling limit the master equation for the reduced
Theory on single molecule_photon cryocooler—— Conception and quantum transition processes
Institute of Scientific and Technical Information of China (English)
秦伟平; 陈宝玖; 秦冠仕; 杜国同; 许武; 黄世华
2001-01-01
The micro mechanism of anti_Stokes fluorescent cooling was investigated on molecular or ionic scale. A new conception of single molecule_photon cryocooler (SMPC) was given, and the smallest cryocooler in the world was predicted. We described SMPC and its running principle in detail. The quantum transition processes of SMPC and the largest cooling coefficient that SMPC can get in an optical transition were given. Also we studied the random property of SMPC in cooling processes. The thermodynamic behavior of single Yb3+ ion as a photon cryocooler was imitated.
Photonic crystal fibre source of photon pairs for quantum information processing
Fulconis, J; O'Brien, J L; Rarity, J G; Wadsworth, W J; Alibart, Olivier; Brien, Jeremy L. O'; Fulconis, Jeremie; Rarity, John G.; Wadsworth, William J.
2006-01-01
We demonstrate two key components for optical quantum information processing: a bright source of heralded single photons; and a bright source of entangled photon pairs. A pair of pump photons produces a correlated pair of photons at widely spaced wavelengths (583 nm and 900 nm), via a $\\chi^{(3)}$ four-wave mixing process. We demonstrate a non-classical interference between heralded photons from independent sources with a visibility of 95%, and an entangled photon pair source, with a fidelity of 89% with a Bell state.
A microfabricated surface-electrode ion trap for scalable quantum information processing
Seidelin, S; Bollinger, J J; Britton, J; Chiaverini, J; Epstein, R J; Hume, D B; Jost, J D; Langer, C; Leibfried, D; Ozeri, R; Reichle, R; Shiga, N; Wesenberg, J H; Wineland, D J
2006-01-01
We demonstrate confinement of individual atomic ions in a radio-frequency Paul trap with a novel geometry where the electrodes are located in a single plane and the ions confined above this plane. This device is realized with a relatively simple fabrication procedure and has important implications for quantum state manipulation and quantum information processing using large numbers of ions. We confine laser-cooled Mg-24 ions approximately 40 micrometer above planar gold electrodes. We measure the ions' motional frequencies and compare them to simulations. From measurements of the escape time of ions from the trap, we also determine a heating rate of approximately five motional quanta per millisecond for a trap frequency of 5.3 MHz.
Indian Academy of Sciences (India)
Dipika Barbadikar; Rashmi Gautam; Sanjay Sahare; Rajendra Patrikar; Jatin Bhatt
2013-06-01
Si quantum dots-based structures are studied recently for performance enhancement in electronic devices. This paper presents an attempt to get high density quantum dots (QDs) by low pressure chemical vapour deposition (LPCVD) on SiO2 substrate. Surface treatment, annealing and rapid thermal processing (RTP) are performed to study their effect on size and density of QDs. The samples are also studied using Fourier transformation infrared spectroscopy (FTIR), atomic force microscopy (AFM), scanning electron microscopy (SEM) and photoluminescence study (PL). The influence of Si–OH bonds formed due to surface treatment on the density of QDs is discussed. Present study also discusses the influence of surface treatment and annealing on QD formation.
A low temperature processed Si-quantum-dot poly-Si TFT nonvolatile memory device
Institute of Scientific and Technical Information of China (English)
Sun Wei
2013-01-01
This paper reports on a successful demonstration of poly-Si TFT nonvolatile memory with a much reduced thermal-budget.The TFT uses uniform Si quantum-dots (size ～10 nm and density ～1011 cm-2) asstorage media,obtained via LPCVD by flashing SiH4/H2 at 580 ℃ for 15 s on a Si3N4 surface.The poly-Si grain-enlargement step was shifted after source/drain formation.The NiSix-silicided source/drain enables a fast lateral-recrystallization,and thus grain-enlargement can be accomplished by a much reduced thermal-cycle (i.e.,550 ℃/4 h).The excellent memory characteristics suggest that the proposed poly-Si TFT Si quantum-dot memory and associated processes are promising for use in wider TFT applications,such as system-on-glass.
Zeng, Xiancheng; Hu, Hao; Hu, Xiangqian; Cohen, Aron J; Yang, Weitao
2008-03-28
Electron transfer (ET) reactions are one of the most important processes in chemistry and biology. Because of the quantum nature of the processes and the complicated roles of the solvent, theoretical study of ET processes is challenging. To simulate ET processes at the electronic level, we have developed an efficient density functional theory (DFT) quantum mechanical (QM)/molecular mechanical (MM) approach that uses the fractional number of electrons as the order parameter to calculate the redox free energy of ET reactions in solution. We applied this method to study the ET reactions of the aqueous metal complexes Fe(H(2)O)(6)(2+/3+) and Ru(H(2)O)(6)(2+/3+). The calculated oxidation potentials, 5.82 eV for Fe(II/III) and 5.14 eV for Ru(II/III), agree well with the experimental data, 5.50 and 4.96 eV, for iron and ruthenium, respectively. Furthermore, we have constructed the diabatic free energy surfaces from histogram analysis based on the molecular dynamics trajectories. The resulting reorganization energy and the diabatic activation energy also show good agreement with experimental data. Our calculations show that using the fractional number of electrons (FNE) as the order parameter in the thermodynamic integration process leads to efficient sampling and validate the ab initio QM/MM approach in the calculation of redox free energies.
Korang-Yeboah, Maxwell; Srinivasan, Charudharshini; Siddiqui, Akhtar; Awotwe-Otoo, David; Cruz, Celia N; Muhammad, Ashraf
2017-08-07
Optical coherence tomography freeze-drying microscopy (OCT-FDM) is a novel technique that allows the three-dimensional imaging of a drug product during the entire lyophilization process. OCT-FDM consists of a single-vial freeze dryer (SVFD) affixed with an optical coherence tomography (OCT) imaging system. Unlike the conventional techniques, such as modulated differential scanning calorimetry (mDSC) and light transmission freeze-drying microscopy, used for predicting the product collapse temperature (Tc), the OCT-FDM approach seeks to mimic the actual product and process conditions during the lyophilization process. However, there is limited understanding on the application of this emerging technique to the design of the lyophilization process. In this study, we investigated the suitability of OCT-FDM technique in designing a lyophilization process. Moreover, we compared the product quality attributes of the resulting lyophilized product manufactured using Tc, a critical process control parameter, as determined by OCT-FDM versus as estimated by mDSC. OCT-FDM analysis revealed the absence of collapse even for the low protein concentration (5 mg/ml) and low solid content formulation (1%w/v) studied. This was confirmed by lab scale lyophilization. In addition, lyophilization cycles designed using Tc values obtained from OCT-FDM were more efficient with higher sublimation rate and mass flux than the conventional cycles, since drying was conducted at higher shelf temperature. Finally, the quality attributes of the products lyophilized using Tc determined by OCT-FDM and mDSC were similar, and product shrinkage and cracks were observed in all the batches of freeze-dried products irrespective of the technique employed in predicting Tc.
Zhang, Jingfu; Laflamme, Raymond; Suter, Dieter
2012-09-07
Large-scale universal quantum computing requires the implementation of quantum error correction (QEC). While the implementation of QEC has already been demonstrated for quantum memories, reliable quantum computing requires also the application of nontrivial logical gate operations to the encoded qubits. Here, we present examples of such operations by implementing, in addition to the identity operation, the NOT and the Hadamard gate to a logical qubit encoded in a five qubit system that allows correction of arbitrary single-qubit errors. We perform quantum process tomography of the encoded gate operations, demonstrate the successful correction of all possible single-qubit errors, and measure the fidelity of the encoded logical gate operations.
The two-qubit amplitude damping channel: Characterization using quantum stabilizer codes
Omkar, S.; Srikanth, R.; Banerjee, Subhashish; Shaji, Anil
2016-10-01
A protocol based on quantum error correction based characterization of quantum dynamics (QECCD) is developed for quantum process tomography on a two-qubit system interacting dissipatively with a vacuum bath. The method uses a 5-qubit quantum error correcting code that corrects arbitrary errors on the first two qubits, and also saturates the quantum Hamming bound. The dissipative interaction with a vacuum bath allows for both correlated and independent noise on the two-qubit system. We study the dependence of the degree of the correlation of the noise on evolution time and inter-qubit separation.
Demonstration of a quantum controlled-NOT gate in the telecommunications band.
Chen, Jun; Altepeter, Joseph B; Medic, Milja; Lee, Kim Fook; Gokden, Burc; Hadfield, Robert H; Nam, Sae Woo; Kumar, Prem
2008-04-04
We present the first quantum controlled-not (cnot) gate realized using a fiber-based indistinguishable photon-pair source in the 1.55 microm telecommunications band. Using this free-space cnot gate, all four Bell states are produced and fully characterized by performing quantum-state tomography, demonstrating the gate's unambiguous entangling capability and high fidelity. Telecom-band operation makes this cnot gate particularly suitable for quantum-information-processing tasks that are at the interface of quantum communication and linear optical quantum computing.
Processing-optimised imaging of analog geological models by electrical capacitance tomography
Ortiz Alemán, C.; Espíndola-Carmona, A.; Hernández-Gómez, J. J.; Orozco Del Castillo, MG
2017-06-01
In this work, the electrical capacitance tomography (ECT) technique is applied in monitoring internal deformation of geological analog models, which are used to study structural deformation mechanisms, in particular for simulating migration and emplacement of allochtonous salt bodies. A rectangular ECT sensor was used for internal visualization of analog geologic deformation. The monitoring of analog models consists in the reconstruction of permittivity images from the capacitance measurements obtained by introducing the model inside the ECT sensor. A simulated annealing (SA) algorithm is used as a reconstruction method, and is optimized by taking full advantage of some special features in a linearized version of this inverse approach. As a second part of this work our SA image reconstruction algorithm is applied to synthetic models, where its performance is evaluated in comparison to other commonly used algorithms such as linear back-projection and iterative Landweber methods. Finally, the SA method is applied to visualise two simple geological analog models. Encouraging results were obtained in terms of the quality of the reconstructed images, as interfaces corresponding to main geological units in the analog model were clearly distinguishable in them. We found reliable results quite useful for real time non-invasive monitoring of internal deformation of analog geological models.
Fractal analysis of granular ore media based on computed tomography image processing
Institute of Scientific and Technical Information of China (English)
WU Ai-xiang; YANG Bao-hua; ZHOU Xu
2008-01-01
The cross-sectional images of nine groups of ore samples were obtained by X-ray computed tomography(CT) scanner.Based on CT image analysis,the fractal dimensions of solid matrix,pore space and matrix/pore interface of each sample were measured by using box counting method.The correlation of the three fractal dimensions with particle size,porosity,and seepage coefficient was investigated.The results show that for all images of these samples,the matrix phase has the highest dimension,followed by the pore phase,and the dimension of matrix-pore interface has the smallest value; the dimensions of matrix phase and matrix-pore interface are negatively and linearly correlated with porosity while the dimension of pore phase relates positively and linearly with porosity; the fractal dimension of matrix-pore interface relates negatively and linearly with seepage coefficient.Larger fractal dimension of matrix/pore interface indicates more irregular complicated channels for solution flow,resulting in low permeability.
The aging process in the sacroiliac joint. Helical computed tomography analysis
Energy Technology Data Exchange (ETDEWEB)
Shibata, Yasuaki; Shirai, Yasumasa; Miyamoto, Masabumi [Nippon Medical School, Tokyo (Japan)
2002-07-01
The purpose of this study was to compare the frequency of degenerative changes in the sacroiliac joint by age, sex, laterality, body mass index, and childbearing experience, based on computed tomography (CT) images obtained from the lower back of symptom-free subjects in different age groups. These data were used to trace the development of the sacroiliac joint until the occurrence of osteoarthritis with aging. CT transverse and coronal images were examined for the presence of the following degenerative signs: joint space narrowing, sclerosis, osteophytes, cysts, and erosion. The results indicated that joint degeneration begins in the 20s and tends to progress with age. Each form of degeneration was markedly more frequent in the 40s or older, and some type of degeneration was observed in the joints of all subjects aged 50 years or older. In terms of the localization of the joint degeneration, sclerosis was common on the upper and middle anterior of the articular surface of the ilium, osteophytes were common on the anterior surface of the sacrum. Degeneration had progressed further in women than in men in every age group, and tended to progress faster in parous than in nulliparous women, It was presumed that the birth of the first child, rather than subsequent births had the greatest effect on the sacroiliac joint. (author)
Energy Technology Data Exchange (ETDEWEB)
Raguvarun, K., E-mail: prajagopal@iitm.ac.in; Balasubramaniam, Krishnan, E-mail: prajagopal@iitm.ac.in; Rajagopal, Prabhu, E-mail: prajagopal@iitm.ac.in [Centre for NDE, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu (India); Palanisamy, Suresh [Swinburne University of Technology, Faculty of Engineering, Science and Technology, Hawthorn, Victoria 3122 Australia and Defence Materials Technology Centre, Hawthorn, Victoria 3122 (Australia); Nagarajah, Romesh; Kapoor, Ajay [Swinburne University of Technology, Faculty of Engineering, Science and Technology, Hawthorn, Victoria 3122 (Australia); Hoye, Nicholas; Curiri, Dominic [University of Wollongong, Faculty of Engineering, New South Wales 2522, Australia and Defence Materials Technology Centre, Hawthorn, Victoria 3122 (Australia)
2015-03-31
Additive manufacturing methods are gaining increasing popularity for rapidly and efficiently manufacturing parts and components in the industrial context, as well as for domestic applications. However, except when used for prototyping or rapid visualization of components, industries are concerned with the load carrying capacity and strength achievable by additive manufactured parts. In this paper, the wire-arc additive manufacturing (AM) process based on gas tungsten arc welding (GTAW) has been examined for the internal structure and constitution of components generated by the process. High-resolution 3D X-ray tomography is used to gain cut-views through wedge-shaped parts created using this GTAW additive manufacturing process with titanium alloy materials. In this work, two different control conditions for the GTAW process are considered. The studies reveal clusters of porosities, located in periodic spatial intervals along the sample cross-section. Such internal defects can have a detrimental effect on the strength of the resulting AM components, as shown in destructive testing studies. Closer examination of this phenomenon shows that defect clusters are preferentially located at GTAW traversal path intervals. These results highlight the strong need for enhanced control of process parameters in ensuring components with minimal defects and higher strength.
Solution-Processed Gas Sensors Employing SnO2 Quantum Dot/MWCNT Nanocomposites.
Liu, Huan; Zhang, Wenkai; Yu, Haoxiong; Gao, Liang; Song, Zhilong; Xu, Songman; Li, Min; Wang, Yang; Song, Haisheng; Tang, Jiang
2016-01-13
Solution-processed SnO2 colloidal quantum dots (CQDs) have emerged as an important new class of gas-sensing materials due to their potential for low-cost and high-throughput fabrication. Here we employed the design strategy based on the synergetic effect from highly sensitive SnO2 CQDs and excellent conductive properties of multiwalled carbon nanotubes (MWCNTs) to overcome the transport barrier in CQD gas sensors. The attachment and coverage of SnO2 CQDs on the MWCNT surfaces were achieved by simply mixing the presynthesized SnO2 CQDs and MWCNTs at room temperature. Compared to the pristine SnO2 CQDs, the sensor based on SnO2 quantum dot/MWCNT nanocomposites exhibited a higher response upon exposure to H2S, and the response toward 50 ppm of H2S at 70 °C was 108 with the response and recovery time being 23 and 44 s. Because of the favorable energy band alignment, the MWCNTs can serve as the acceptor of the electrons that are injected from H2S into SnO2 quantum dots in addition to the charge transport highway to direct the electron flow to the electrode, thereby enhancing the sensor response. Our research results open an easy pathway for developing highly sensitive and low-cost gas sensors.
(Quantum) Fractional Brownian Motion and Multifractal Processes under the Loop of a Tensor Networks
Descamps, Benoît
2016-01-01
We derive fractional Brownian motion and stochastic processes with multifractal properties using a framework of network of Gaussian conditional probabilities. This leads to the derivation of new representations of fractional Brownian motion. These constructions are inspired from renormalization. The main result of this paper consists of constructing each increment of the process from two-dimensional gaussian noise inside the light-cone of each seperate increment. Not only does this allows us to derive fractional Brownian motion, we can introduce extensions with multifractal flavour. In another part of this paper, we discuss the use of the multi-scale entanglement renormalization ansatz (MERA), introduced in the study critical systems in quantum spin lattices, as a method for sampling integrals with respect to such multifractal processes. After proper calibration, a MERA promises the generation of a sample of size $N$ of a multifractal process in the order of $O(N\\log(N))$, an improvement over the known method...
Experimental demonstration of a quantum router
Yuan, X X; Hou, P -Y; Chang, X -Y; Zu, C; Duan, L -M
2015-01-01
The router is a key element for a network. We describe a scheme to realize genuine quantum routing of single-photon pulses based on cascading of conditional quantum gates in a Mach-Zehnder interferometer and report a proof-of-principle experiment for its demonstration using linear optics quantum gates. The polarization of the control photon routes in a coherent way the path of the signal photon while preserving the qubit state of the signal photon represented by its polarization. We demonstrate quantum nature of this router by showing entanglement generated between the initially unentangled control and signal photons, and confirm that the qubit state of the signal photon is well preserved by the router through quantum process tomography.
Experimental demonstration of a quantum router.
Yuan, X X; Ma, J-J; Hou, P-Y; Chang, X-Y; Zu, C; Duan, L-M
2015-07-22
The router is a key element for a network. We describe a scheme to realize genuine quantum routing of single-photon pulses based on cascading of conditional quantum gates in a Mach-Zehnder interferometer and report a proof-of-principle experiment for its demonstration using linear optics quantum gates. The polarization of the control photon routes in a coherent way the path of the signal photon while preserving the qubit state of the signal photon represented by its polarization. We demonstrate quantum nature of this router by showing entanglement generated between the initially unentangled control and signal photons, and confirm that the qubit state of the signal photon is well preserved by the router through quantum process tomography.
Experimental demonstration of a quantum router
Yuan, X. X.; Ma, J.-J.; Hou, P.-Y.; Chang, X.-Y.; Zu, C.; Duan, L.-M.
2015-01-01
The router is a key element for a network. We describe a scheme to realize genuine quantum routing of single-photon pulses based on cascading of conditional quantum gates in a Mach-Zehnder interferometer and report a proof-of-principle experiment for its demonstration using linear optics quantum gates. The polarization of the control photon routes in a coherent way the path of the signal photon while preserving the qubit state of the signal photon represented by its polarization. We demonstrate quantum nature of this router by showing entanglement generated between the initially unentangled control and signal photons, and confirm that the qubit state of the signal photon is well preserved by the router through quantum process tomography. PMID:26197928
Bessudnova, Nadezda O.; Shlyapnikova, Olga A.; Venig, Sergey B.; Genina, Elina A.; Sadovnikov, Alexandr V.
2015-03-01
Durability of bonded interfaces between dentin and a polymer material in resin-based composite restorations remains a clinical dentistry challenge. In the present study the evolution of bonded interfaces in biological active environment is estimated in vivo. A novel in vivo method of visual diagnostics that involves digital processing of color images of composite restorations and allows the evaluation of adhesive interface quality over time, has been developed and tested on a group of volunteers. However, the application of the method is limited to the analysis of superficial adhesive interfaces. Low-coherent optical computer tomography (OCT) has been tested as a powerful non-invasive tool for in vivo, in situ clinical diagnostics of adhesive interfaces over time. In the long-term perspective adhesive interface monitoring using standard methods of clinical diagnostics along with colour image analysis and OCT could make it possible to objectivise and prognosticate the clinical longevity of composite resin-based restorations with adhesive interfaces.
Vergnole, Sébastien; Lévesque, Daniel; Lamouche, Guy
2010-05-10
We evaluate various signal processing methods to handle the non-linearity in wavenumber space exhibited by most laser sources for swept-source optical coherence tomography. The following methods are compared for the same set of experimental data: non-uniform discrete Fourier transforms with Vandermonde matrix or with Lomb periodogram, resampling with linear interpolation or spline interpolation prior to fast-Fourier transform (FFT), and resampling with convolution prior to FFT. By selecting an optimized Kaiser-Bessel window to perform the convolution, we show that convolution followed by FFT is the most efficient method. It allows small fractional oversampling factor between 1 and 2, thus a minimal computational time, while retaining an excellent image quality. (c) 2010 Optical Society of America.
Rivers, M. L.; Gualda, G. A.
2009-05-01
One of the challenges in tomography is the availability of suitable software for image processing and analysis in 3D. We present here 'tomo_display' and 'vol_tools', two packages created in IDL that enable reconstruction, processing, and visualization of tomographic data. They complement in many ways the capabilities offered by Blob3D (Ketcham 2005 - Geosphere, 1: 32-41, DOI: 10.1130/GES00001.1) and, in combination, allow users without programming knowledge to perform all steps necessary to obtain qualitative and quantitative information using tomographic data. The package 'tomo_display' was created and is maintained by Mark Rivers. It allows the user to: (1) preprocess and reconstruct parallel beam tomographic data, including removal of anomalous pixels, ring artifact reduction, and automated determination of the rotation center, (2) visualization of both raw and reconstructed data, either as individual frames, or as a series of sequential frames. The package 'vol_tools' consists of a series of small programs created and maintained by Guilherme Gualda to perform specific tasks not included in other packages. Existing modules include simple tools for cropping volumes, generating histograms of intensity, sample volume measurement (useful for porous samples like pumice), and computation of volume differences (for differential absorption tomography). The module 'vol_animate' can be used to generate 3D animations using rendered isosurfaces around objects. Both packages use the same NetCDF format '.volume' files created using code written by Mark Rivers. Currently, only 16-bit integer volumes are created and read by the packages, but floating point and 8-bit data can easily be stored in the NetCDF format as well. A simple GUI to convert sequences of tiffs into '.volume' files is available within 'vol_tools'. Both 'tomo_display' and 'vol_tools' include options to (1) generate onscreen output that allows for dynamic visualization in 3D, (2) save sequences of tiffs to disk
Plasmonic Control of Radiation and Absorption Processes in Semiconductor Quantum Dots
Energy Technology Data Exchange (ETDEWEB)
Paiella, Roberto [Boston Univ., MA (United States); Moustakas, Theodore D. [Boston Univ., MA (United States)
2017-07-31
This document reviews a research program funded by the DOE Office of Science, which has been focused on the control of radiation and absorption processes in semiconductor photonic materials (including III-nitride quantum wells and quantum dots), through the use of specially designed metallic nanoparticles (NPs). By virtue of their strongly confined plasmonic resonances (i.e., collective oscillations of the electron gas), these nanostructures can concentrate incident radiation into sub-wavelength “hot spots” of highly enhanced field intensity, thereby increasing optical absorption by suitably positioned absorbers. By reciprocity, the same NPs can also dramatically increase the spontaneous emission rate of radiating dipoles located within their hot spots. The NPs can therefore be used as optical antennas to enhance the radiation output of the underlying active material and at the same time control the far-field pattern of the emitted light. The key accomplishments of the project include the demonstration of highly enhanced light emission efficiency as well as plasmonic collimation and beaming along geometrically tunable directions, using a variety of plasmonic excitations. Initial results showing the reverse functionality (i.e., plasmonic unidirectional absorption and photodetection) have also been generated with similar systems. Furthermore, a new paradigm for the near-field control of light emission has been introduced through rigorous theoretical studies, based on the use of gradient metasurfaces (i.e., optical nanoantenna arrays with spatially varying shape, size, and/or orientation). These activities have been complemented by materials development efforts aimed at the synthesis of suitable light-emitting samples by molecular beam epitaxy. In the course of these efforts, a novel technique for the growth of III-nitride quantum dots has also been developed (droplet heteroepitaxy), with several potential advantages in terms of compositional and geometrical
Bradu, Adrian; Kapinchev, Konstantin; Barnes, Fred; Podoleanu, Adrian G.
2015-03-01
We present further improvements on the Master Slave (MS) interferometry method since our first communication [1]. In this paper, we present more data collection and additionally demonstrate an important feature of the MS method, that of tolerance to dispersion. MS interferometry produces the interference of a selected point in depth based on principles of spectral domain (SD) interferometry, but without the need of a Fast Fourier transformation (FFT). The method can be used to directly produce en-face optical coherence tomography (OCT) images but also as a tool to accurately measure distances in low coherence interferometry for sensing applications [1]. In the MS-OCT method, cross-correlation is applied to both methods of SD-OCT, spectrometer based (SP) or swept source (SS) OCT. The channelled spectrum provided by an OCT system is correlated with the signal produced by reading a stored mask. Several such masks can be used simultaneously. The masks operate as adaptive filters. Each mask (filter) determines recognition in the measured channelled spectrum delivered by the interferometer, of the pattern corresponding to each optical path difference to be recognized. The method presents net advantages in comparison with the classical method of producing axial reflectivity profiles by FFT: no need for resampling of data, possibility to tailor the trade-off between depth resolution and sensitivity. Here, using a swept source, the MS method is used to obtain axial reflectivity profiles, which are compared to the axial profiles obtained by calibration of data and FFT. The tolerance to dispersion of the MS method was assumed in [1] but not demonstrated. Here, measurements are performed to demonstrate its axial resolution independence on dispersion.
Institute of Scientific and Technical Information of China (English)
Zhou Bing-Ju; Liu Xiao-Juan; Zhou Qing-Ping; Liu Ming-Wei
2007-01-01
Based on the quantum information theory, we have investigated the entropy squeezing of a moving two-level atom interacting with the coherent field via the quantum mechanical channel of the two-photon process. The results are compared with those of atomic squeezing based on the Heisenberg uncertainty relation. The influences of the atomic motion and field-mode structure parameter on the atomic entropy squeezing and on the control of noise of the quantum mechanical channel via the two-photon process are examined. Our results show that the squeezed period,duration of optimal entropy squeezing of a two-level atom and the noise of the quantum mechanical channel can be controlled by appropriately choosing the atomic motion and the field-mode structure parameter, respectively. The quantum mechanical channel of two-photon process is an ideal channel for quantum information (atomic quantum state) transmission. Quantum information entropy is a remarkably accurate measure of the atomic squeezing.
Spin-flip process through double quantum dots coupled to two half-metallic ferromagnetic leads
Institute of Scientific and Technical Information of China (English)
Yan Cong-Hua; Wu Shao-Quan; Huang Rui; Sun Wei-Li
2008-01-01
We investigate the spin-flip process through double quantum dots coupled to two half-metallic ferromagnetic leads in series.By means of the slave-boson mean-field approximation,we calculate the density of states in the Kondo regime for two different configurations of the leads.It is found that the transport shows some remarkable properties depending on the spin-flip strength.These effects may be useful in exploiting the role of electronic correlation in spintronics.
Heating the coffee by looking at it. Or why quantum measurements are physical processes
Echenique-Robba, Pablo
2014-01-01
Using a very simple Gedankenexperiment, I remind the reader that (contrary to what happens in classical mechanics) the energy of a quantum system is inevitably increased just by performing (some) textbook measurements on it. As a direct conclusion, this means that some measurements require the expenditure of a finite amount of energy to be carried out. I also argue that this makes it very difficult to regard measurements as disembodied, immaterial, informational operations, and it forces us to look at them as physical processes just like any other one.
Ness, H; Dash, L K
2012-03-23
We calculate the nonequilibrium charge transport properties of nanoscale junctions in the steady state and extend the concept of charge susceptibility to the nonequilibrium conditions. We show that the nonequilibrium charge susceptibility is related to the nonlinear dynamical conductance. In spectroscopic terms, both contain the same features versus applied bias when charge fluctuation occurs in the corresponding electronic resonances. However, we show that, while the conductance exhibits features at biases corresponding to inelastic scattering with no charge fluctuations, the nonequilibrium charge susceptibility does not. We suggest that measuring both the nonequilibrium conductance and charge susceptibility in the same experiment will permit us to differentiate between different scattering processes in quantum transport.
The Branch Process of Skyrmions in the Fractional Quantum Hall Effect
Institute of Scientific and Technical Information of China (English)
DUAN Yi-Shi; ZHANG Xiu-Ming; TIAN Miao
2005-01-01
@@ The branch process of the skyrmions in the fractional quantum Hall effect is studied from the φ-mapping topo logical current. It is shown that there exists a field ζ whose Hopf indices and Brouwer degrees characterize thetopological structure of the skyrmions. Based on the bifurcation theory of the φ-mapping theory, it is found that the skyrmions can be generated or annihilated at the limit points and they encounter, split or merge at the bifurcation points of the new field ζ.
MMX-I: A data-processing software for multi-modal X-ray imaging and tomography
Bergamaschi, A.; Medjoubi, K.; Messaoudi, C.; Marco, S.; Somogyi, A.
2017-06-01
Scanning hard X-ray imaging allows simultaneous acquisition of multimodal information, including X-ray fluorescence, absorption, phase and dark-field contrasts, providing structural and chemical details of the samples. Combining these scanning techniques with the infrastructure developed for fast data acquisition at Synchrotron Soleil permits to perform multimodal imaging and tomography during routine user experiments at the Nanoscopium beamline. A main challenge of such imaging techniques is the online processing and analysis of the generated very large volume (several hundreds of Giga Bytes) multimodal data-sets. This is especially important for the wide user community foreseen at the user oriented Nanoscopium beamline (e.g. from the fields of Biology, Life Sciences, Geology, Geobiology), having no experience in such data-handling. MMX-I is a new multi-platform open-source freeware for the processing and reconstruction of scanning multi-technique X-ray imaging and tomographic datasets. The MMX-I project aims to offer, both expert users and beginners, the possibility of processing and analysing raw data, either on-site or off-site. Therefore we have developed a multi-platform (Mac, Windows and Linux 64bit) data processing tool, which is easy to install, comprehensive, intuitive, extendable and user-friendly. MMX-I is now routinely used by the Nanoscopium user community and has demonstrated its performance in treating big data.
Basharov, A M
2011-01-01
The effective Hamiltonian describing resonant interaction of an ensemble of identical quantum particles with a photon-free vacuum electromagnetic field has been obtained with allowance for the second-order terms over the coupling constant (the Stark interaction) by means of the perturbation theory on the basis of the unitary transformation of the system quantum state. It has been shown that in the Markov approximation the effective Hamiltonian terms of the first-order coupling constant are represented as the quantum Wiener process, whereas the second-order terms are expressed by the quantum Poisson process. In the course of investigation it was established that the Stark interaction played a significant role in the ensemble dynamics, thus influencing the collective spontaneous decay of the ensemble of an appreciably high number of identical particles. New fundamental effects have been discovered, i.e., the excitation conservation in a sufficiently dense ensemble of identical particles and superradiance suppre...
Acquisition of Information is achieved by the Measurement Process in Classical and Quantum Physics
Rocchi, Paolo; Panella, Orlando
2007-12-01
No consensus seems to exist as to what constitutes a measurement which is still considered somewhat mysterious in many respects in quantum mechanics. At successive stages mathematical theory of measure, metrology and measurement theory tried to systematize this field but significant questions remain open about the nature of measurement, about the characterization of the observer, about the reliability of measurement processes etc. The present paper attempts to talk about these questions through the information science. We start from the idea, rather common and intuitive, that the measurement process basically acquires information. Next we expand this idea through four formal definitions and infer some corollaries regarding the measurement process from those definitions. Relativity emerges as the basic property of measurement from the present logical framework and this rather surprising result collides with the feeling of physicists who take measurement as a myth. In the closing this paper shows how the measurement relativity wholly consists with some effects calculated in QM and in Einstein's theory.
Verma, Amit
2009-01-01
Single photon sources to be used in quantum cryptography must show higher order antibunching (HOA). HOA is reported by us in several many wave mixing processes. In the present work we have investigated the possibility of observing HOA in multiwave mixing processes in general. The generalized Hamiltonian is solved for several particular cases in Heisenberg picture and possibility of observing HOA is investigated with the help of criterion of Pathak and Garcia. Several particular cases of the generalized Hamiltonian are solved with the help of short time approximation technique and HOA is reported for pump modes of different multiwave mixing processes. It is also found that HOA can not be observed for the signal and stokes modes in of the cases studied here.
Peng, Huiren; Jiang, Yibin; Chen, Shuming
2016-10-20
Colloidal quantum dot light-emitting diodes (QLEDs) are recognized as promising candidates for next generation displays. QLEDs can be fabricated by low-cost solution processing except for the metal electrodes, which, in general, are deposited by costly vacuum evaporation. To be fully compatible with the low-cost solution process, we herein demonstrate vacuum-free and solvent-free fabrication of electrodes using a printable liquid metal. With eutectic gallium-indium (EGaIn) based liquid metal cathodes, vacuum-free-processed QLEDs are demonstrated with superior external quantum efficiencies of 11.51%, 12.85% and 5.03% for red, green and blue devices, respectively, which are about 2-, 1.5- and 1.1-fold higher than those of the devices with thermally evaporated Al cathodes. The improved performance is attributable to the reduction of electron injection by the native oxide of EGaIn, which serves as an electron-blocking layer for the devices and thus improves the balance of carrier injection. Also, the T50 half-lifetime of the vacuum-free-processed QLEDs is about 2-fold longer than that of the devices with Al cathodes. Our results demonstrate that EGaIn-based solvent-free liquid metals are promising printable electrodes for realizing efficient, low-cost and vacuum-free-processed QLEDs. The elimination of vacuum and high-temperature processes significantly reduces the production cost and paves the way for industrial roll-to-roll manufacturing of large area displays.
Bourgoin, Jean-Philippe; Gigov, Nikolay; Higgins, Brendon L.; Yan, Zhizhong; Meyer-Scott, Evan; Khandani, Amir K.; Lütkenhaus, Norbert; Jennewein, Thomas
2015-11-01
Quantum key distribution (QKD) has the potential to improve communications security by offering cryptographic keys whose security relies on the fundamental properties of quantum physics. The use of a trusted quantum receiver on an orbiting satellite is the most practical near-term solution to the challenge of achieving long-distance (global-scale) QKD, currently limited to a few hundred kilometers on the ground. This scenario presents unique challenges, such as high photon losses and restricted classical data transmission and processing power due to the limitations of a typical satellite platform. Here we demonstrate the feasibility of such a system by implementing a QKD protocol, with optical transmission and full post-processing, in the high-loss regime using minimized computing hardware at the receiver. Employing weak coherent pulses with decoy states, we demonstrate the production of secure key bits at up to 56.5 dB of photon loss. We further illustrate the feasibility of a satellite uplink by generating a secure key while experimentally emulating the varying losses predicted for realistic low-Earth-orbit satellite passes at 600 km altitude. With a 76 MHz source and including finite-size analysis, we extract 3374 bits of a secure key from the best pass. We also illustrate the potential benefit of combining multiple passes together: while one suboptimal "upper-quartile" pass produces no finite-sized key with our source, the combination of three such passes allows us to extract 165 bits of a secure key. Alternatively, we find that by increasing the signal rate to 300 MHz it would be possible to extract 21 570 bits of a secure finite-sized key in just a single upper-quartile pass.
Kim, D. W.; Park, T. J.; Jang, S. J.; You, S. J.; Oh, W. Y.
2016-12-01
Non-thermal atmospheric pressure plasma holds promise for promoting wound healing. However, plasma-induced angiogenesis, which is important to better understand the underlying physics of plasma treatment effect on wound healing, remains largely unknown. We therefore evaluated the effect of non-thermal plasma on angiogenesis during wound healing through longitudinal monitoring over 30 days using non-invasive angiographic optical coherence tomography imaging in vivo. We demonstrate that the plasma-treated vascular wound area of mouse ear was noticeably decreased as compared to that of control during the early days in the wound healing process. We also observed that the vascular area density was increased in the plasma affected region near the wound as compared to the plasma unaffected region. The difference in the vascular wound area and the vascular area density peaked around day 3. This indicates that the plasma treatment induced additional angiogenic effects in the wound healing process especially during the early days. This non-invasive optical angiographic approach for in vivo time-lapse imaging provides further insights into elucidating plasma-induced angiogenesis in the wound healing process and its application in the biomedical plasma evaluation.
Versatile microwave-driven trapped ion spin system for quantum information processing.
Piltz, Christian; Sriarunothai, Theeraphot; Ivanov, Svetoslav S; Wölk, Sabine; Wunderlich, Christof
2016-07-01
Using trapped atomic ions, we demonstrate a tailored and versatile effective spin system suitable for quantum simulations and universal quantum computation. By simply applying microwave pulses, selected spins can be decoupled from the remaining system and, thus, can serve as a quantum memory, while simultaneously, other coupled spins perform conditional quantum dynamics. Also, microwave pulses can change the sign of spin-spin couplings, as well as their effective strength, even during the course of a quantum algorithm. Taking advantage of the simultaneous long-range coupling between three spins, a coherent quantum Fourier transform-an essential building block for many quantum algorithms-is efficiently realized. This approach, which is based on microwave-driven trapped ions and is complementary to laser-based methods, opens a new route to overcoming technical and physical challenges in the quest for a quantum simulator and a quantum computer.
Energy Technology Data Exchange (ETDEWEB)
Madsen, Marianne Sloth [Department of Chemistry, H.C. Orsted Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen O (Denmark); Danish Meteorological Institute, Lyngbyvej 100, DK-2100 Copenhagen O (Denmark)], E-mail: msm@dmi.dk; Gross, Allan [Department of Chemistry, H.C. Orsted Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen O (Denmark); Danish Meteorological Institute, Lyngbyvej 100, DK-2100 Copenhagen O (Denmark); Falsig, Hanne [Department of Chemistry, H.C. Orsted Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen O (Denmark); Kongsted, Jacob [Department of Theoretical Chemistry, Chemical Center, University of Lund, P.O. Box 124, S-22100 Lund (Sweden); Osted, Anders; Mikkelsen, Kurt V. [Department of Chemistry, H.C. Orsted Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen O (Denmark); Christiansen, Ove [Department of Chemistry, University of Aarhus, Langelandsgade 140, DK-8000 Aarhus C (Denmark)
2008-06-02
We present a combined quantum mechanics/molecular mechanics and quantum statistical investigation of the interactions between a molecule (SO{sub 2}) and an aerosol particle including rate constants for the uptake process. A coupled cluster/molecular mechanics method including explicit polarization is used along with a quantum statistical method for calculating sticking coefficients. The importance of the polarization of the classical subsystem (the aerosol particle), the size of the classical subsystem and the size of one-electron basis sets are studied. The interaction energy is divided into van der Waals, electrostatic and polarization contributions. Relevant binding sites for the evaluation of the sticking coefficient are identified. These are classified into three groups according to the strength of the molecule-aerosol particle interaction energy. The identification of binding sites provides relevant information used in the quantum statistical method and thereby knowledge of the magnitude of the sticking coefficients for the different binding sites along with the total rates for the uptake processes between the aerosol particle and the SO{sub 2} molecule.
Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells
Wang, Nana; Cheng, Lu; Ge, Rui; Zhang, Shuting; Miao, Yanfeng; Zou, Wei; Yi, Chang; Sun, Yan; Cao, Yu; Yang, Rong; Wei, Yingqiang; Guo, Qiang; Ke, You; Yu, Maotao; Jin, Yizheng; Liu, Yang; Ding, Qingqing; di, Dawei; Yang, Le; Xing, Guichuan; Tian, He; Jin, Chuanhong; Gao, Feng; Friend, Richard H.; Wang, Jianpu; Huang, Wei
2016-11-01
Organometal halide perovskites can be processed from solutions at low temperatures to form crystalline direct-bandgap semiconductors with promising optoelectronic properties. However, the efficiency of their electroluminescence is limited by non-radiative recombination, which is associated with defects and leakage current due to incomplete surface coverage. Here we demonstrate a solution-processed perovskite light-emitting diode (LED) based on self-organized multiple quantum wells (MQWs) with excellent film morphologies. The MQW-based LED exhibits a very high external quantum efficiency of up to 11.7%, good stability and exceptional high-power performance with an energy conversion efficiency of 5.5% at a current density of 100 mA cm-2. This outstanding performance arises because the lower bandgap regions that generate electroluminescence are effectively confined by perovskite MQWs with higher energy gaps, resulting in very efficient radiative decay. Surprisingly, there is no evidence that the large interfacial areas between different bandgap regions cause luminescence quenching.
Solution-processed PbS quantum dot infrared photodetectors and photovoltaics.
McDonald, Steven A; Konstantatos, Gerasimos; Zhang, Shiguo; Cyr, Paul W; Klem, Ethan J D; Levina, Larissa; Sargent, Edward H
2005-02-01
In contrast to traditional semiconductors, conjugated polymers provide ease of processing, low cost, physical flexibility and large area coverage. These active optoelectronic materials produce and harvest light efficiently in the visible spectrum. The same functions are required in the infrared for telecommunications (1,300-1,600 nm), thermal imaging (1,500 nm and beyond), biological imaging (transparent tissue windows at 800 nm and 1,100 nm), thermal photovoltaics (>1,900 nm), and solar cells (800-2,000 nm). Photoconductive polymer devices have yet to demonstrate sensitivity beyond approximately 800 nm (refs 2,3). Sensitizing conjugated polymers with infrared-active nanocrystal quantum dots provides a spectrally tunable means of accessing the infrared while maintaining the advantageous properties of polymers. Here we use such a nanocomposite approach in which PbS nanocrystals tuned by the quantum size effect sensitize the conjugated polymer poly[2-methoxy-5-(2'-ethylhexyloxy-p-phenylenevinylene)] (MEH-PPV) into the infrared. We achieve, in a solution-processed device and with sensitivity far beyond 800 nm, harvesting of infrared-photogenerated carriers and the demonstration of an infrared photovoltaic effect. We also make use of the wavelength tunability afforded by the nanocrystals to show photocurrent spectra tailored to three different regions of the infrared spectrum.
Dissipative tunneling in structures with quantum dots and quantum molecules
Dahnovsky, Yu. I.; Krevchik, V. D.; Semenov, M. B.; Yamamoto, K.; Zhukovsky, V. Ch.; Aringazin, A. K.; Kudryashov, E. I.; Mayorov, V. G.
2005-01-01
The problem of tunneling control in systems "quantum dot - quantum well" (as well as "quantum dot - quantum dot" or quantum molecule) and "quantum dot - bulk contact" is studied as a quantum tunneling with dissipation process in the semiclassical (instanton) approximation. For these systems temperature and correlation between a quantum dot radius and a quantum well width (or another quantum dot radius) are considered to be control parameters. The condition for a single electron blockade is fo...
On the Automation of Encoding Processes in the Quantum IO Monad
Directory of Open Access Journals (Sweden)
James Barratt
2012-10-01
Full Text Available It is now clear that the use of resilient encoding schemes will be required for any quantum computing device to be realised. However, quantum programmers of the future will not wish to be tied up in the particulars of such encoding schemes. Quantum programming languages and libraries are already being developed, one of which is the Quantum IO Monad. QIO, as it is often abbreviated to, provides an interface to define and simulate quantum computations via a library of functions written in Haskell, a purely functional programming language. A solution is presented that takes an arbitrary QIO program and returns an equivalent program incorporating some specified quantum error correction techniques.
An application of image processing techniques in computed tomography image analysis
DEFF Research Database (Denmark)
McEvoy, Fintan
2007-01-01
An estimate of the thickness of subcutaneous adipose tissue at differing positions around the body was required in a study examining body composition. To eliminate human error associated with the manual placement of markers for measurements and to facilitate the collection of data from a large...... number of animals and image slices, automation of the process was desirable. The open-source and free image analysis program ImageJ was used. A macro procedure was created that provided the required functionality. The macro performs a number of basic image processing procedures. These include an initial...... process designed to remove the scanning table from the image and to center the animal in the image. This is followed by placement of a vertical line segment from the mid point of the upper border of the image to the image center. Measurements are made between automatically detected outer and inner...
Processing optimization with parallel computing for the J-PET tomography scanner
Krzemień, W; Bednarski, T; Białas, P; Czerwiński, E; Gajos, A; Gorgol, M; Jasińska, B; Kamińska, D; Kapłon, Ł; Korcyl, G; Kowalski, P; Kozik, T; Kubicz, E; Niedźwiecki, Sz; Pałka, M; Raczyński, L; Rudy, Z; Rundel, O; Sharma, N G; Silarski, M; Słomski, A; Stola, K; Strzelecki, A; Trybek, D; Wieczorek, Anna; Wiślicki, W; Zieliński, M; Zgardzińska, B K; Moskal, P
2015-01-01
The Jagiellonian-PET (J-PET) collaboration is developing a prototype TOF-PET detector based on long polymer scintillators. This novel approach exploits the excellent time properties of the plastic scintillators, which permit very precise time measurements. The very fast, FPGA-based front-end electronics and the data acquisition system, as well as, low- and high-level reconstruction algorithms were specially developed to be used with the J-PET scanner. The TOF-PET data processing and reconstruction are time and resource demanding operations, especially in case of a large acceptance detector, which works in triggerless data acquisition mode. In this article, we discuss the parallel computing methods applied to optimize the data processing for the J-PET detector. We begin with general concepts of parallel computing and then we discuss several applications of those techniques in the J-PET data processing.
Materials and devices for quantum information processing in Si/SiGe
Energy Technology Data Exchange (ETDEWEB)
Sailer, Juergen
2010-12-15
In this thesis, we cover and discuss the complete way from material science, the fabrication of two-dimensional electron systems (2DES) in Si/SiGe heterostructures in molecular beam epitaxy (MBE), to quantum effects in few-electron devices based on these samples. We applied and compared two different approaches for the creation of pseudo-substrates that are as smooth, relaxed and defect free as possible. In the 'graded buffer' concept, starting from pure Si, the Ge content of the SiGe alloy is slowly and linearly increased until the desired Ge content is reached. In contrast, in the so-called 'low-temperature Si' concept, the SiGe alloy is deposited directly with the final Ge content, but onto a layer of highly defective Si. In terms of crystal defects, the 'graded buffer' turned out to be superior in comparison to the 'low-temperature Si' concept at the expense of a significantly higher material consumption. By continued optimization of the growth process, aiming at reducing the influence of the impurity, it nevertheless became possible to improve the charge carrier mobility from a mere 2000 cm{sup 2}/(Vs) to a record mobility exceeding 100 000 cm{sup 2}/(Vs). Within this work, we extended our MBE system with an electron beam evaporator for nuclear spin free {sup 28}Si. Together with the already existing effusion cell for {sup 70}Ge we were able to realize first 2DES in a nuclear spin free environment after successfully putting it to operation. The highest mobility 2DES in a nuclear spin free environment which have been realized in this thesis exhibited electron mobilities of up to 55 000 cm{sup 2}/(Vs). Quantum effects in Si/SiGe have been investigated in two- and zero-dimensional nanostructures. A remarkable phenomenon in the regime of the integer quantum Hall effect in Si/SiGe 2DES has been discovered and researched. For applications in quantum information processing and for the creation of qubits it is mandatory to
Efficient bit sifting scheme of post-processing in quantum key distribution
Li, Qiong; Le, Dan; Wu, Xianyan; Niu, Xiamu; Guo, Hong
2015-10-01
Bit sifting is an important step in the post-processing of quantum key distribution (QKD). Its function is to sift out the undetected original keys. The communication traffic of bit sifting has essential impact on the net secure key rate of a practical QKD system. In this paper, an efficient bit sifting scheme is presented, of which the core is a lossless source coding algorithm. Both theoretical analysis and experimental results demonstrate that the performance of the scheme is approaching the Shannon limit. The proposed scheme can greatly decrease the communication traffic of the post-processing of a QKD system, which means the proposed scheme can decrease the secure key consumption for classical channel authentication and increase the net secure key rate of the QKD system, as demonstrated by analyzing the improvement on the net secure key rate. Meanwhile, some recommendations on the application of the proposed scheme to some representative practical QKD systems are also provided.
Ultrafast signal processing in quantum dot amplifiers through effective spectral holeburning
DEFF Research Database (Denmark)
Berg, Tommy Winther; Mørk, Jesper; Uskov, A. V.
2002-01-01
Significant progress has been obtained on quantum dot (QD) lasers, but the possible advantages of QD amplifiers are not yet clear. We show here that a relatively slow coupling between the optically active QD carrier states and the surrounding carrier reservoir can lead to efficient gain modulation...... suitable for ultrafast signal processing. The basis of this property is that the process of spectral hole burning (SHB) can become very effective. We consider a traveling wave optical amplifier consisting of the dot states, which interact with the optical signal (no inhomogeneous broadening included......), and the wetting layer (WL), where current is injected. Time evolution is described by two coupled rate equations. Carrier capture from WL to dots is characterized by the capture time /spl tau//sub 0/....
Kissinger, Aleks
2012-01-01
This work is about diagrammatic languages, how they can be represented, and what they in turn can be used to represent. More specifically, it focuses on representations and applications of string diagrams. String diagrams are used to represent a collection of processes, depicted as "boxes" with multiple (typed) inputs and outputs, depicted as "wires". If we allow plugging input and output wires together, we can intuitively represent complex compositions of processes, formalised as morphisms in a monoidal category. [...] The first major contribution of this dissertation is the introduction of a discretised version of a string diagram called a string graph. String graphs form a partial adhesive category, so they can be manipulated using double-pushout graph rewriting. Furthermore, we show how string graphs modulo a rewrite system can be used to construct free symmetric traced and compact closed categories on a monoidal signature. The second contribution is in the application of graphical languages to quantum in...
Directory of Open Access Journals (Sweden)
Yogesh Rao
2015-04-01
Full Text Available OCT is a recently developed optical interferometric technique for non-invasive diagnostic medical imaging in vivo; the most sensitive optical imaging modality.OCT finds its application in ophthalmology, blood flow estimation and cancer diagnosis along with many non biomedical applications. The main advantage of OCT is its high resolution which is in µm range and depth of penetration in mm range. Unlike other techniques like X rays and CT scan, OCT does not comprise any x ray source and therefore no radiations are involved. This research work discusses the basics of spectral domain OCT (SD-OCT, experimental setup, data acquisition and signal processing involved in OCT systems. Simulation of OCT involving modelling and signal processing, carried out on Lab VIEW platform has been discussed. Using the experimental setup, some of the non biomedical samples have been scanned. The signal processing and image processing of the scanned data was carried out in MATLAB and Lab VIEW, some of the results thus obtained have been discussed in the end.
3D computed tomography of an unusual triple ended xiphoid process.
Mosca, Heather; Dross, Peter
2012-03-01
The sternum is the site of frequent variations and anomalies. Knowledge of the plain film and CT appearance of these variations and anomalies is useful in differentiating from pathologic conditions and in surgical planning. We present a rare case of an unusual triple ended xiphoid process with its plain film and 3D CT volume rendered reconstructed imaging.
Watanabe, Yuuki; Maeno, Seiya; Aoshima, Kenji; Hasegawa, Haruyuki; Koseki, Hitoshi
2010-09-01
The real-time display of full-range, 2048?axial pixelx1024?lateral pixel, Fourier-domain optical-coherence tomography (FD-OCT) images is demonstrated. The required speed was achieved by using dual graphic processing units (GPUs) with many stream processors to realize highly parallel processing. We used a zero-filling technique, including a forward Fourier transform, a zero padding to increase the axial data-array size to 8192, an inverse-Fourier transform back to the spectral domain, a linear interpolation from wavelength to wavenumber, a lateral Hilbert transform to obtain the complex spectrum, a Fourier transform to obtain the axial profiles, and a log scaling. The data-transfer time of the frame grabber was 15.73?ms, and the processing time, which includes the data transfer between the GPU memory and the host computer, was 14.75?ms, for a total time shorter than the 36.70?ms frame-interval time using a line-scan CCD camera operated at 27.9?kHz. That is, our OCT system achieved a processed-image display rate of 27.23 frames/s.
Energy Technology Data Exchange (ETDEWEB)
Ninomiya, Hideaki; Ichimiya, Atsushi; Chen, Chung-Ho; Onitsuka, Toshiaki; Kuwabara, Yasuo; Otsuka, Makoto; Ichiya, Yuichi [Kyushu Univ., Fukuoka (Japan)
1997-10-01
The activated cerebral regions and the timing of information processing in the hemispheres was investigated using event-related potentials (ERP) and regional cerebral blood flow (rCBF) as the neurophysiological indicators. Seven men and one woman (age 19-27 years) were asked to categorize two-syllable Japanese nouns (verbal condition) and to judge the difference between pairs of rectangles (spatial condition), both tests presented on a monochrome display. In the electroencephalogram (EEG) session, EEG were recorded from 16 electrode sites, with linked earlobe electrodes as reference. In the positron emission tomography (PET) session, rCBF were measured by the {sup 15}O-labeled H{sub 2}O bolus injection method. Regions of interest were the frontal, temporal, parietal, occipital and central lobes, and the entire cerebral hemispheres. When the subtracted voltages of the ERP in homologous scalp sites were compared for the verbal and spatial conditions, the significant differences were at F7{center_dot}F8 and T5{center_dot}T6 (the 10-20 system). The latencies of the differences at T5{center_dot}T6 were around 200, 250 and 320 ms. A significant difference in rCBF between the verbal and spatial conditions was found only in the temporal region. It was concluded that early processing of information, that is, registration and simple recognition, may be performed mainly in the left temporal lobe for verbal information and in the right for spatial information. (author)
Mohamad-Saleh, J.; Hoyle, B. S.
2002-12-01
Artificial neural networks (ANNs) have been used to investigate their capabilities at estimating key parameters for the characterization of flow processes, based on electrical capacitance-sensed tomographic (ECT) data. The estimations of the parameters are made directly, without recourse to tomographic images. The parameters of interest include component height and interface orientation of two-component flows, and component fractions of two-component and three-component flows. Separate multi-layer perceptron networks were trained with patterns consisting of pairs of simulated ECT data and the corresponding component heights, interface orientations and component fractions. The networks were then tested with patterns consisting of unlearned simulated ECT data of various flows and with real ECT data of gas-water flows. The neural systems provided estimations having mean absolute errors of less than 1% for oil and water heights and fractions and less than 10° for interface orientations. When tested with real plant ECT data, the mean absolute errors were less than 4% for water height, less than 15° for gas-water interface orientation and less than 3% for water fraction, respectively. The results demonstrate the feasibility of the application of ANNs for flow process parameter estimations based upon tomography data.
Karimi, Davood; Ward, Rabab K.
2016-03-01
Sparse representation of signals in learned overcomplete dictionaries has proven to be a powerful tool with applications in denoising, restoration, compression, reconstruction, and more. Recent research has shown that learned overcomplete dictionaries can lead to better results than analytical dictionaries such as wavelets in almost all image processing applications. However, a major disadvantage of these dictionaries is that their learning and usage is very computationally intensive. In particular, finding the sparse representation of a signal in these dictionaries requires solving an optimization problem that leads to very long computational times, especially in 3D image processing. Moreover, the sparse representation found by greedy algorithms is usually sub-optimal. In this paper, we propose a novel two-level dictionary structure that improves the performance and the speed of standard greedy sparse coding methods. The first (i.e., the top) level in our dictionary is a fixed orthonormal basis, whereas the second level includes the atoms that are learned from the training data. We explain how such a dictionary can be learned from the training data and how the sparse representation of a new signal in this dictionary can be computed. As an application, we use the proposed dictionary structure for removing the noise and artifacts in 3D computed tomography (CT) images. Our experiments with real CT images show that the proposed method achieves results that are comparable with standard dictionary-based methods while substantially reducing the computational time.
Cheon, T
2004-01-01
We show that the U(2) family of point interactions on a line can be utilized to provide the U(2) family of qubit operations for quantum information processing. Qubits are realized as localized states in either side of the point interaction which represents a controllable gate. The manipulation of qubits proceeds in a manner analogous to the operation of an abacus. Keywords: quantum computation, quantum contact interaction, quantum wire
Esteban Guevara
2006-01-01
The relationships between game theory and quantum mechanics let us propose certain quantization relationships through which we could describe and understand not only quantum but also classical, evolutionary and the biological systems that were described before through the replicator dynamics. Quantum mechanics could be used to explain more correctly biological and economical processes and even it could encloses theories like games and evolutionary dynamics. This could make quantum mechanics a...
Accardi, Luigi; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro
2016-07-01
Recently a novel quantum information formalism — quantum adaptive dynamics — was developed and applied to modelling of information processing by bio-systems including cognitive phenomena: from molecular biology (glucose-lactose metabolism for E.coli bacteria, epigenetic evolution) to cognition, psychology. From the foundational point of view quantum adaptive dynamics describes mutual adapting of the information states of two interacting systems (physical or biological) as well as adapting of co-observations performed by the systems. In this paper we apply this formalism to model unconscious inference: the process of transition from sensation to perception. The paper combines theory and experiment. Statistical data collected in an experimental study on recognition of a particular ambiguous figure, the Schröder stairs, support the viability of the quantum(-like) model of unconscious inference including modelling of biases generated by rotation-contexts. From the probabilistic point of view, we study (for concrete experimental data) the problem of contextuality of probability, its dependence on experimental contexts. Mathematically contextuality leads to non-Komogorovness: probability distributions generated by various rotation contexts cannot be treated in the Kolmogorovian framework. At the same time they can be embedded in a “big Kolmogorov space” as conditional probabilities. However, such a Kolmogorov space has too complex structure and the operational quantum formalism in the form of quantum adaptive dynamics simplifies the modelling essentially.
Abstract algebra, projective geometry and time encoding of quantum information
Planat, M R P; Planat, Michel R. P.; Saniga, Metod
2005-01-01
Algebraic geometrical concepts are playing an increasing role in quantum applications such as coding, cryptography, tomography and computing. We point out here the prominent role played by Galois fields viewed as cyclotomic extensions of the integers modulo a prime characteristic $p$. They can be used to generate efficient cyclic encoding, for transmitting secrete quantum keys, for quantum state recovery and for error correction in quantum computing. Finite projective planes and their generalization are the geometric counterpart to cyclotomic concepts, their coordinatization involves Galois fields, and they have been used repetitively for enciphering and coding. Finally the characters over Galois fields are fundamental for generating complete sets of mutually unbiased bases, a generic concept of quantum information processing and quantum entanglement. Gauss sums over Galois fields ensure minimum uncertainty under such protocols. Some Galois rings which are cyclotomic extensions of the integers modulo 4 are al...
Zeng, R. Q.; Meng, X. M.; Zhang, F. Y.; Wang, S. Y.; Cui, Z. J.; Zhang, M. S.; Zhang, Y.; Chen, G.
2016-10-01
From the perspective of engineering geology, loess has long been considered as a homogeneous and porous material. It is commonly believed that water penetrates loess via pores and in some cases causing mass movements. However, several researchers have expressed doubts about this mechanism as a cause of slope failures in loess, and moreover the actual hydrological processes operating in loess deposits and their effect on slope failures have not been fully investigated. Here we present the results of an electrical resistivity survey of the Heifangtai loess terrace in northwestern China, designed to characterize the hydrological processes in loess slopes and their relationship with slope failures. The Heifangtai loess terrace is located on the fourth terrace of the Yellow River and consists of 57-m-thickness of aeolian loess. 2D and 3D electrical resistivity tomography (ERT) was used to monitor the movement of ground water before and after irrigation and rainfall events and the evolution of a sink hole in the toe of the landslide deposits. Our main findings are as follows: (1) Based on the 2D ERT results, the depth of infiltration into the thick unsaturated loess is not more than 5 m in the profile at the top of the landslide. (2) Electrical resistivity decreased as a result of water infiltration through sinkholes, and this process can increase the soil water content and induce soil liquefaction which can eventually result in land sliding. (3) Landslide deposits block the groundwater drainage channels through the loess, which results in the concentration of water in the toe of the landslide. Consequently, groundwater together with rainfall, triggers the failure of sinkholes or cracks, which may induce a continuing process of new slope failures at the sites of past landslide.
A quantum Fredkin gate (Conference Presentation)
Patel, Raj B.; Ho, Joseph; Ferreyrol, Franck; Ralph, Timothy C.; Pryde, Geoff J.
2016-10-01
One of the greatest challenges in modern science is the realisation of quantum computers which, as their scale increases, will allow enhanced performance of tasks across many areas of quantum information processing. Quantum logic gates play a vital role in realising these applications by carrying out the elementary operations on the qubits; a key aim is minimising the resources needed to build these gates into useful circuits. While the salient features of a quantum computer have been shown in proof-of-principle experiments, e.g., single- and two-qubit gates, difficulties in scaling quantum systems to encode and manipulate multiple qubits has hindered demonstrations of more complex operations. This is exemplified by the classical Fredkin (or controlled-SWAP) gate [1] for which, despite many theoretical proposals [2,3] relying on concatenating multiple two-qubit gates, a quantum analogue has yet to be realised. Here, by directly adding control to a two-qubit SWAP unitary [4], we use photonic qubit logic to report the first experimental demonstration of a quantum Fredkin gate [5]. Our scheme uses linear optics and improves on the overall probability of success by an order of magnitude over previous proposals [2,3]. This optical approach allows us to add control an arbitrary black-box unitary which is otherwise forbidden in the standard circuit model [6]. Additionally, the action of our gate exhibits quantum coherence allowing the generation of the highest fidelity three-photon GHZ states to date. The quantum Fredkin gate has many applications in quantum computing, quantum measurements [7] and cryptography [8,9]. Using our scheme, we apply the Fredkin gate to the task of direct measurements of the purity and state overlap of a quantum system [7] without recourse to quantum state tomography.
Usefulness of multiqubit W-type states in quantum information processing
Singh, P.; Adhikari, S.; Kumar, A.
2016-10-01
We analyze the efficiency of multiqubit W-type states as resources for quantum information. For this, we identify and generalize four-qubit W-type states. Our results show that these states can be used as resources for deterministic quantum information processing. The utility of results, however, is limited by the availability of experimental setups to perform and distinguish multiqubit measurements. We therefore emphasize protocols where two users want to establish an optimal bipartite entanglement using the partially entangled W-type states. We find that for such practical purposes, four-qubit W-type states can be a better resource in comparison to three-qubit W-type states. For a dense coding protocol, our states can be used deterministically to send two bits of classical message by locally manipulating a single qubit. In addition, we also propose a realistic experimental method to prepare the four-qubit W-type states using standard unitary operations and weak measurements.
Prigogine, I; George, C
1983-07-01
The second law of thermodynamics, for quantum systems, is formulated, on the microscopic level. As for classical systems, such a formulation is only possible when specific conditions are satisfied (continuous spectrum, nonvanishing of the collision operator, etc.). The unitary dynamical group can then be mapped into two contractive semigroups, reaching equilibrium either for t --> +infinity or for t --> -infinity. The second law appears as a symmetry-breaking selection principle, limiting the observables and density functions to the class that tends to thermodynamic equilibrium in the future (for t --> +infinity). The physical content of the dynamical structure is now displayed in terms of the appropriate semigroup, which is realized through a nonunitary transformation. The superposition principle of quantum mechanics has to be reconsidered as irreversible processes transform pure states into mixtures and unitary transformations are limited by the requirement that entropy remains invariant. In the semigroup representation, interacting fields lead to units that behave incoherently at equilibrium. Inversely, nonequilibrium constraints introduce correlations between these units.
Applications of rigged Hilbert spaces in quantum mechanics and signal processing
Celeghini, E.; Gadella, M.; del Olmo, M. A.
2016-07-01
Simultaneous use of discrete and continuous bases in quantum systems is not possible in the context of Hilbert spaces, but only in the more general structure of rigged Hilbert spaces (RHS). In addition, the relevant operators in RHS (but not in Hilbert space) are a realization of elements of a Lie enveloping algebra and support representations of semigroups. We explicitly construct here basis dependent RHS of the line and half-line and relate them to the universal enveloping algebras of the Weyl-Heisenberg algebra and su(1, 1), respectively. The complete sub-structure of both RHS and of the operators acting on them is obtained from their algebraic structures or from the related fractional Fourier transforms. This allows us to describe both quantum and signal processing states and their dynamics. Two relevant improvements are introduced: (i) new kinds of filters related to restrictions to subspaces and/or the elimination of high frequency fluctuations and (ii) an operatorial structure that, starting from fix objects, describes their time evolution.
Prigogine, I.; George, Cl.
1983-07-01
The second law of thermodynamics, for quantum systems, is formulated, on the microscopic level. As for classical systems, such a formulation is only possible when specific conditions are satisfied (continuous spectrum, nonvanishing of the collision operator, etc.). The unitary dynamical group can then be mapped into two contractive semigroups, reaching equilibrium either for t → +∞ or for t → -∞. The second law appears as a symmetry-breaking selection principle, limiting the observables and density functions to the class that tends to thermodynamic equilibrium in the future (for t → +∞). The physical content of the dynamical structure is now displayed in terms of the appropriate semigroup, which is realized through a nonunitary transformation. The superposition principle of quantum mechanics has to be reconsidered as irreversible processes transform pure states into mixtures and unitary transformations are limited by the requirement that entropy remains invariant. In the semigroup representation, interacting fields lead to units that behave incoherently at equilibrium. Inversely, nonequilibrium constraints introduce correlations between these units.
Benítez, Ricardo Betancourt; Ning, Ruola; Conover, David; Liu, Shaohua
2009-01-01
The physical performance of two Flat Panel Detectors has been evaluated. The first Flat Panel Detector is for Fluoroscopic applications, Varian PaxScan 2520, and the second is for Cone Beam Computer Tomography applications, Varian PaxScan 4030CB. First, the spectrum of the X-ray source was measured. Second, the linearity of the detectors was investigated by using an ionization chamber and the average ADU values of the detectors. Third, the temporal resolution was characterized by evaluating their image lag. Fourth, their spatial resolution was characterized by the pre-sampling Modulation Transfer Function. Fifth, the Normalized Noise Power Spectrum was calculated for various exposures levels. Finally, the Detective Quantum Efficiency was obtained as a function of spatial frequency and entrance exposure. The results illustrate that the physical performance in Detective Quantum Efficiency and Normalized Noise Power Spectrum of the Cone Beam Computer Tomography detector is superior to that of the fluoroscopic detector whereas the latter detector has a higher spatial resolution as demonstrated by larger values of its Modulation Transfer Function at large spatial frequencies.
Quantum Fluctuations and Thermodynamic Processes in the Presence of Closed Timelike Curves
Tanaka, Tsunefumi
1997-10-01
A closed timelike curve (CTC) is a closed loop in spacetime whose tangent vector is everywhere timelike. A spacetime which contains CTC's will allow time travel. One of these spacetimes is Grant space. It can be constructed from Minkowski space by imposing periodic boundary conditions in spatial directions and making the boundaries move toward each other. If Hawking's chronology protection conjecture is correct, there must be a physical mechanism preventing the formation of CTC's. Currently the most promising candidate for the chronology protection mechanism is the back reaction of the metric to quantum vacuum fluctuations. In this thesis the quantum fluctuations for a massive scalar field, a self-interacting field, and for a field at nonzero temperature are calculated in Grant space. The stress-energy tensor is found to remain finite everywhere in Grant space for the massive scalar field with sufficiently large field mass. Otherwise it diverges on chronology horizons like the stress-energy tensor for a massless scalar field. If CTC's exist they will have profound effects on physical processes. Causality can be protected even in the presence of CTC's if the self-consistency condition is imposed on all processes. Simple classical thermodynamic processes of a box filled with ideal gas in the presence of CTC's are studied. If a system of boxes is closed, its state does not change as it travels through a region of spacetime with CTC's. But if the system is open, the final state will depend on the interaction with the environment. The second law of thermodynamics is shown to hold for both closed and open systems. A similar problem is investigated at a statistical level for a gas consisting of multiple selves of a single particle in a spacetime with CTC's.
Quantifying the Contribution of Post-Processing in Computed Tomography Measurement Uncertainty
DEFF Research Database (Denmark)
Stolfi, Alessandro; Thompson, Mary Kathryn; Carli, Lorenzo
2016-01-01
by calculating the standard deviation of 10 repeated measurement evaluations on the same data set. The evaluations were performed on an industrial assembly. Each evaluation includes several dimensional and geometrical measurands that were expected to have different responses to the various post......-processing settings. It was found that the definition of the datum system had the largest impact on the uncertainty with a standard deviation of a few microns. The surface determination and data fitting had smaller contributions with sub-micron repeatability....
Tamaki, Kiyoshi
2010-01-01
One of the simplest security proofs of quantum key distribution is based on the so-called complementarity scenario, which involves the complementarity control of an actual protocol and a virtual protocol [M. Koashi, e-print arXiv:0704.3661 (2007)]. The existing virtual protocol has a limitation in classical postprocessing, i.e., the syndrome for the error-correction step has to be encrypted. In this paper, we remove this limitation by constructing a quantum circuit for the virtual protocol. Moreover, our circuit with a shield system gives an intuitive proof of why adding noise to the sifted key increases the bit error rate threshold in the general case in which one of the parties does not possess a qubit. Thus, our circuit bridges the simple proof and the use of wider classes of classical postprocessing.
Watanabe, Yuuki
2012-05-01
The author presents a graphics processing unit (GPU) programming for real-time Fourier domain optical coherence tomography (FD-OCT) with fixed-pattern noise removal by subtracting mean and median. In general, the fixed-pattern noise can be removed by the averaged spectrum from the many spectra of an actual measurement. However, a mean-spectrum results in artifacts as residual lateral lines caused by a small number of high-reflective points on a sample surface. These artifacts can be eliminated from OCT images by using medians instead of means. However, median calculations that are based on a sorting algorithm can generate a large amount of computation time. With the developed GPU programming, highly reflective surface regions were obtained by calculating the standard deviation of the Fourier transformed data in the lateral direction. The medians and means were then subtracted at the observed regions and other regions, such as backgrounds. When the median calculation was less than 256 positions out of a total 512 depths in an OCT image with 1024 A-lines, the GPU processing rate was faster than that of the line scan camera (46.9 kHz). Therefore, processed OCT images can be displayed in real-time using partial medians.
A Complete Physical Germanium-on-Silicon Quantum Dot Self-Assembly Process
Alkhatib, Amro; Nayfeh, Ammar
2013-06-01
Achieving quantum dot self-assembly at precise pre-defined locations is of vital interest. In this work, a novel physical method for producing germanium quantum dots on silicon using nanoindentation to pre-define nucleation sites is described. Self-assembly of ordered ~10 nm height germanium quantum dot arrays on silicon substrates is achieved. Due to the inherent simplicity and elegance of the proposed method, the results describe an attractive technique to manufacture semiconductor quantum dot structures for future quantum electronic and photonic applications.
Quan, Guotao; Gong, Hui; Deng, Yong; Fu, Jianwei; Luo, Qingming
2011-02-01
High-speed fluorescence molecular tomography (FMT) reconstruction for 3-D heterogeneous media is still one of the most challenging problems in diffusive optical fluorescence imaging. In this paper, we propose a fast FMT reconstruction method that is based on Monte Carlo (MC) simulation and accelerated by a cluster of graphics processing units (GPUs). Based on the Message Passing Interface standard, we modified the MC code for fast FMT reconstruction, and different Green's functions representing the flux distribution in media are calculated simultaneously by different GPUs in the cluster. A load-balancing method was also developed to increase the computational efficiency. By applying the Fréchet derivative, a Jacobian matrix is formed to reconstruct the distribution of the fluorochromes using the calculated Green's functions. Phantom experiments have shown that only 10 min are required to get reconstruction results with a cluster of 6 GPUs, rather than 6 h with a cluster of multiple dual opteron CPU nodes. Because of the advantages of high accuracy and suitability for 3-D heterogeneity media with refractive-index-unmatched boundaries from the MC simulation, the GPU cluster-accelerated method provides a reliable approach to high-speed reconstruction for FMT imaging.
Integrated Technologies for Large-Scale Trapped-Ion Quantum Information Processing
Sorace-Agaskar, C.; Bramhavar, S.; Kharas, D.; Mehta, K. K.; Loh, W.; Panock, R.; Bruzewicz, C. D.; McConnell, R.; Ram, R. J.; Sage, J. M.; Chiaverini, J.
2016-05-01
Atomic ions trapped and controlled using electromagnetic fields hold great promise for practical quantum information processing due to their inherent coherence properties and controllability. However, to realize this promise, the ability to maintain and manipulate large-scale systems is required. We present progress toward the development of, and proof-of-principle demonstrations and characterization of, several technologies that can be integrated with ion-trap arrays on-chip to enable such scaling to practically useful sizes. Of particular use are integrated photonic elements for routing and focusing light throughout a chip without the need for free-space optics. The integration of CMOS electronics and photo-detectors for on-chip control and readout, and methods for monolithic fabrication and wafer-scale integration to incorporate these capabilities into tile-able 2D ion-trap array cells, are also explored.
Conjugated Quantum Dots Inhibit the Amyloid β (1–42 Fibrillation Process
Directory of Open Access Journals (Sweden)
Garima Thakur
2011-01-01
Full Text Available Nanoparticles have enormous potential in diagnostic and therapeutic studies. We have demonstrated that the amyloid beta mixed with and conjugated to dihydrolipoic acid- (DHLA capped CdSe/ZnS quantum dots (QDs of size approximately 2.5 nm can be used to reduce the fibrillation process. Transmission electron microscopy (TEM and atomic force microscopy (AFM were used as tools for analysis of fibrillation. There is a significant change in morphology of fibrils when amyloid β (1–42 (Aβ (1–42 is mixed or conjugated to the QDs. The length and the width of the fibrils vary under modified conditions. Thioflavin T (ThT fluorescence supports the decrease in fibril formation in presence of DHLA-capped QDs.
Rare-earth doped transparent ceramics for spectral filtering and quantum information processing
Directory of Open Access Journals (Sweden)
Nathalie Kunkel
2015-09-01
Full Text Available Homogeneous linewidths below 10 kHz are reported for the first time in high-quality Eu3+ doped Y 2O3 transparent ceramics. This result is obtained on the 7F0→5D0 transition in Eu3+ doped Y 2O3 ceramics and corresponds to an improvement of nearly one order of magnitude compared to previously reported values in transparent ceramics. Furthermore, we observed spectral hole lifetimes of ∼15 min that are long enough to enable efficient optical pumping of the nuclear hyperfine levels. Additionally, different Eu3+ concentrations (up to 1.0% were studied, resulting in an increase of up to a factor of three in the peak absorption coefficient. These results suggest that transparent ceramics can be useful in applications where narrow and deep spectral holes can be burned into highly absorbing lines, such as quantum information processing and spectral filtering.
Liu, Fang; Kulik, Heather J; Martínez, Todd J
2015-01-01
The conductor-like polarization model (C-PCM) with switching/Gaussian smooth discretization is a widely used implicit solvation model in chemical simulations. However, its application in quantum mechanical calculations of large-scale biomolecular systems can be limited by computational expense of both the gas phase electronic structure and the solvation interaction. We have previously used graphical processing units (GPUs) to accelerate the first of these steps. Here, we extend the use of GPUs to accelerate electronic structure calculations including C-PCM solvation. Implementation on the GPU leads to significant acceleration of the generation of the required integrals for C-PCM. We further propose two strategies to improve the solution of the required linear equations: a dynamic convergence threshold and a randomized block-Jacobi preconditioner. These strategies are not specific to GPUs and are expected to be beneficial for both CPU and GPU implementations. We benchmark the performance of the new implementat...
Indian Academy of Sciences (India)
Anil Kumar; K V Ramanathan; T S Mahesh; Neeraj Sinha; K V R Murali
2002-08-01
Use of dipolar and quadrupolar couplings for quantum information processing (QIP) by nuclear magnetic resonance (NMR) is described. In these cases, instead of the individual spins being qubits, the 2 energy levels of the spin-system can be treated as an -qubit system. It is demonstrated that QIP in such systems can be carried out using transition-selective pulses, in CH3CN, 13CH3CN, 7Li ( = 3/2) and 133Cs ( = 7/2), oriented in liquid crystals yielding 2 and 3 qubit systems. Creation of pseudopure states, implementation of logic gates and arithmetic operations (half-adder and subtractor) have been carried out in these systems using transition-selective pulses.
Dell'Anno, F; Illuminati, F; Anno, Fabio Dell'; Siena, Silvio De; Illuminati, Fabrizio
2004-01-01
Extending the scheme developed for a single mode of the electromagnetic field in the preceding paper ``Structure of multiphoton quantum optics. I. Canonical formalism and homodyne squeezed states'', we introduce two-mode nonlinear canonical transformations depending on two heterodyne mixing angles. They are defined in terms of hermitian nonlinear functions that realize heterodyne superpositions of conjugate quadratures of bipartite systems. The canonical transformations diagonalize a class of Hamiltonians describing non degenerate and degenerate multiphoton processes. We determine the coherent states associated to the canonical transformations, which generalize the non degenerate two--photon squeezed states. Such heterodyne multiphoton squeezed are defined as the simultaneous eigenstates of the transformed, coupled annihilation operators. They are generated by nonlinear unitary evolutions acting on two-mode squeezed states. They are non Gaussian, highly non classical, entangled states. For a quadratic nonline...
Rare-earth doped transparent ceramics for spectral filtering and quantum information processing
Kunkel, Nathalie; Ferrier, Alban; Thiel, Charles W.; Ramírez, Mariola O.; Bausá, Luisa E.; Cone, Rufus L.; Ikesue, Akio; Goldner, Philippe
2015-09-01
Homogeneous linewidths below 10 kHz are reported for the first time in high-quality Eu3+ doped Y 2O3 transparent ceramics. This result is obtained on the 7F0→5D0 transition in Eu3+ doped Y 2O3 ceramics and corresponds to an improvement of nearly one order of magnitude compared to previously reported values in transparent ceramics. Furthermore, we observed spectral hole lifetimes of ˜15 min that are long enough to enable efficient optical pumping of the nuclear hyperfine levels. Additionally, different Eu3+ concentrations (up to 1.0%) were studied, resulting in an increase of up to a factor of three in the peak absorption coefficient. These results suggest that transparent ceramics can be useful in applications where narrow and deep spectral holes can be burned into highly absorbing lines, such as quantum information processing and spectral filtering.
Matrix models and growth processes : from viscous flows to the quantum Hall effect
Zabrodin, A V
2006-01-01
We review the recent developments in the theory of normal, normal self-dual and general complex random matrices. The distribution and correlations of the eigenvalues at large scales are investigated in the large $N$ limit. The 1/N expansion of the free energy is also discussed. Our basic tool is a specific Ward identity for correlation functions (the loop equation), which follows from invariance of the partition function under reparametrizations of the complex eigenvalues plane. The method for handling the loop equation requires the technique of boundary value problems in two dimensions and elements of the potential theory. As far as the physical significance of these models is concerned, we discuss, in some detail, the recently revealed applications to diffusion-controlled growth processes (e.g., to the Saffman-Taylor problem) and to the semiclassical behaviour of electronic blobs in the quantum Hall regime.
Process-Dependent Properties in Colloidally Synthesized “Giant” Core/Shell Nanocrystal Quantum Dots
Energy Technology Data Exchange (ETDEWEB)
Hollingsworth, Jennifer A. [Los Alamos National Laboratory; Ghosh, Yagnaseni [Los Alamos National Laboratory; Dennis, Allison M. [Los Alamos National Laboratory; Mangum, Benjamin D. [Los Alamos National Laboratory; Park, Young-Shin [Los Alamos National Laboratory; Kundu, Janardan [Los Alamos National Laboratory; Htoon, Han [Los Alamos National Laboratory
2012-06-07
Due to their characteristic bright and stable photoluminescence, semiconductor nanocrystal quantum dots (NQDs) have attracted much interest as efficient light emitters for applications from single-particle tracking to solid-state lighting. Despite their numerous enabling traits, however, NQD optical properties are frustratingly sensitive to their chemical environment, exhibit fluorescence intermittency ('blinking'), and are susceptible to Auger recombination, an efficient nonradiative decay process. Previously, we showed for the first time that colloidal CdSe/CdS core/shell nanocrystal quantum dots (NQDs) comprising ultrathick shells (number of shell monolayers, n, > 10) grown by protracted successive ionic layer adsorption and reaction (SILAR) leads to remarkable photostability and significantly suppressed blinking behavior as a function of increasing shell thickness. We have also shown that these so-called 'giant' NQDs (g-NQDs) afford nearly complete suppression of non-radiative Auger recombination, revealed in our studies as long biexciton lifetimes and efficient multiexciton emission. The unique behavior of this core/shell system prompted us to assess correlations between specific physicochemical properties - beyond shell thickness - and functionality. Here, we demonstrate the ability of particle shape/faceting, crystalline phase, and core size to determine ensemble and single-particle optical properties (quantum yield/brightness, blinking, radiative lifetimes). Significantly, we show how reaction process parameters (surface-stabilizing ligands, ligand:NQD ratio, choice of 'inert' solvent, and modifications to the SILAR method itself) can be tuned to modify these function-dictating NQD physical properties, ultimately leading to an optimized synthetic approach that results in the complete suppression of blinking. We find that the resulting 'guiding principles' can be applied to other NQD compositions, allowing us to
Schwinger-Dyson equations in large-N quantum field theories and nonlinear random processes
Buividovich, P V
2010-01-01
We study stochastic methods for solving Schwinger-Dyson equations in large-N quantum field theories. Expectation values of single-trace operators are sampled by stationary probability distributions of so-called nonlinear random processes. The set of all histories of such processes corresponds to the set of all planar diagrams in the perturbative expansion of the theory. We describe stochastic algorithms for summation of planar diagrams in matrix-valued scalar field theory and in the Weingarten model of random planar surfaces on the lattice. For compact field variables, the method does not converge in the physically most interesting weak-coupling limit. In this case one can absorb the divergences into the self-consistent redefinition of expansion parameters. Stochastic solution of the self-consistency conditions can be implemented as a random process with memory. We illustrate this idea on the example of two-dimensional O(N) sigma-model. Extension to non-Abelian lattice gauge theories is discussed.
Roland, Paul
Charge separation, transport, and recombination represent fundamental processes for electrons and holes in semiconductor photovoltaic devices. Here, two distinct materials systems, based on lead sulfide quantum dots and on polycrystalline cadmium telluride, are investigated to advance the understanding of their fundamental nature for insights into the material science necessary to improve the technologies. Lead sulfide quantum dots QDs have been of growing interest in photovoltaics, having recently produced devices exceeding 10% conversion efficiency. Carrier transport via hopping through the quantum dot thin films is not only a function of inter-QD distance, but of the QD size and dielectric media of the surrounding materials. By conducting temperature dependent transmission, photoluminescence, and time resolved photoluminescence measurements, we gain insight into photoluminescence quenching and size-dependent carrier transport through QD ensembles. Turning to commercially relevant cadmium telluride (CdTe), we explore the high concentrations of self-compensating defects (donors and acceptors) in polycrystalline thin films via photoluminescence from recombination at defect sites. Low temperature (25 K) photoluminescence measurements of CdTe reveal numerous radiative transitions due to exciton, trap assisted, and donor-acceptor pair recombination events linked with various defect states. Here we explore the difference between films deposited via close space sublimation (CSS) and radio frequency magnetron sputtering, both as-grown and following a cadmium chloride treatment. The as-grown CSS films exhibited a strong donor-acceptor pair transition associated with deep defect states. Constructing photoluminescence spectra as a function of time from time-resolved photoluminescence data, we report on the temporal evolution of this donor-acceptor transition. Having gained insight into the cadmium telluride film quality from low temperature photoluminescence measurements
Matrix-product states for strongly correlated systems and quantum information processing
Energy Technology Data Exchange (ETDEWEB)
Saberi, Hamed
2008-12-12
This thesis offers new developments in matrix-product state theory for studying the strongly correlated systems and quantum information processing through three major projects: In the first project, we perform a systematic comparison between Wilson's numerical renormalization group (NRG) and White's density-matrix renormalization group (DMRG). The NRG method for solving quantum impurity models yields a set of energy eigenstates that have the form of matrix-product states (MPS). White's DMRG for treating quantum lattice problems can likewise be reformulated in terms of MPS. Thus, the latter constitute a common algebraic structure for both approaches. We exploit this fact to compare the NRG approach for the single-impurity Anderson model to a variational matrix-product state approach (VMPS), equivalent to single-site DMRG. For the latter, we use an ''unfolded'' Wilson chain, which brings about a significant reduction in numerical costs compared to those of NRG. We show that all NRG eigenstates (kept and discarded) can be reproduced using VMPS, and compare the difference in truncation criteria, sharp vs. smooth in energy space, of the two approaches. Finally, we demonstrate that NRG results can be improved upon systematically by performing a variational optimization in the space of variational matrix-product states, using the states produced by NRG as input. In the second project we demonstrate how the matrix-product state formalism provides a flexible structure to solve the constrained optimization problem associated with the sequential generation of entangled multiqubit states under experimental restrictions. We consider a realistic scenario in which an ancillary system with a limited number of levels performs restricted sequential interactions with qubits in a row. The proposed method relies on a suitable local optimization procedure, yielding an efficient recipe for the realistic and approximate sequential generation of any
DEFF Research Database (Denmark)
Settnes, Mikkel; Nielsen, Per Kær; Lund, Anders Mølbjerg;
2013-01-01
We show that Auger processes involving wetting layer transitions mediate emission from a cavity that is detuned from a quantum dot by even tens of meV. The wetting layer thus acts as a reservoir, which by Coulomb scattering can supply or absorb the energy difference between emitter and cavity. We...
The Measurement Process in the Generalized Contexts Formalism for Quantum Histories
Losada, Marcelo; Vanni, Leonardo; Laura, Roberto
2016-02-01
In the interpretations of quantum mechanics involving quantum histories there is no collapse postulate and the measurement is considered as a quantum interaction between the measured system and the measured instrument. For two consecutive non ideal measurements on the same system, we prove that both pointer indications at the end of each measurement are compatible properties in our generalized context formalism for quantum histories. Inmediately after the first measurement an effective state for the measured system is deduced from the formalism, generalizing the state that would be obtained by applying the state collapse postulate.
Randall, Elissa; Loeber, Samantha; Kraft, Susan
2014-01-01
18F-Fluoro-deoxyglucose positron emission computed tomography (FDG-PET/CT) is an emerging diagnostic imaging modality in veterinary medicine; however, little published information is available on physiologic variants, benign processes, and artifacts. The purpose of this retrospective study was to describe the number of occurrences of non-neoplastic disease-related FDG-PET/CT lesions in a group of dogs and cats. Archived FDG-PET/CT scans were retrieved and interpreted based on a consensus opinion of two board-certified veterinary radiologists. Non-neoplastic disease-related lesions were categorized as physiologic variant, benign activity, or equipment/technology related artifact. If the exact cause of hypermetabolic areas could not be determined, lesions were put into an indeterminate category. A total of 106 canine and feline FDG-PET/CT scans were included in the study. In 104 of the 106 scans, a total of 718 occurrences of physiologic variant, areas of incidental benign activity, and artifacts were identified. Twenty-two of 23 feline scans and 82 of 83 canine scans had at least one artifact. Previously unreported areas of increased radiopharmaceutical uptake included foci associated with the canine gall bladder, linear uptake along the canine mandible, and focal uptake in the gastrointestinal tract. Benign activity was often seen and related to healing, inflammation, and indwelling implants. Artifacts were most often related to injection or misregistration. Further experience in recognizing the common veterinary FDG physiologic variation, incidental radiopharmaceutical uptake, and artifacts is important to avoid misinterpretation and false-positive diagnoses.
Hawe, David; Hernández Fernández, Francisco R; O'Suilleabháin, Liam; Huang, Jian; Wolsztynski, Eric; O'Sullivan, Finbarr
2012-05-01
In dynamic mode, positron emission tomography (PET) can be used to track the evolution of injected radio-labelled molecules in living tissue. This is a powerful diagnostic imaging technique that provides a unique opportunity to probe the status of healthy and pathological tissue by examining how it processes substrates. The spatial aspect of PET is well established in the computational statistics literature. This article focuses on its temporal aspect. The interpretation of PET time-course data is complicated because the measured signal is a combination of vascular delivery and tissue retention effects. If the arterial time-course is known, the tissue time-course can typically be expressed in terms of a linear convolution between the arterial time-course and the tissue residue. In statistical terms, the residue function is essentially a survival function - a familiar life-time data construct. Kinetic analysis of PET data is concerned with estimation of the residue and associated functionals such as flow, flux, volume of distribution and transit time summaries. This review emphasises a nonparametric approach to the estimation of the residue based on a piecewise linear form. Rapid implementation of this by quadratic programming is described. The approach provides a reference for statistical assessment of widely used one- and two-compartmental model forms. We illustrate the method with data from two of the most well-established PET radiotracers, (15)O-H(2)O and (18)F-fluorodeoxyglucose, used for assessment of blood perfusion and glucose metabolism respectively. The presentation illustrates the use of two open-source tools, AMIDE and R, for PET scan manipulation and model inference.
Quantum biological information theory
Djordjevic, Ivan B
2016-01-01
This book is a self-contained, tutorial-based introduction to quantum information theory and quantum biology. It serves as a single-source reference to the topic for researchers in bioengineering, communications engineering, electrical engineering, applied mathematics, biology, computer science, and physics. The book provides all the essential principles of the quantum biological information theory required to describe the quantum information transfer from DNA to proteins, the sources of genetic noise and genetic errors as well as their effects. Integrates quantum information and quantum biology concepts; Assumes only knowledge of basic concepts of vector algebra at undergraduate level; Provides a thorough introduction to basic concepts of quantum information processing, quantum information theory, and quantum biology; Includes in-depth discussion of the quantum biological channel modelling, quantum biological channel capacity calculation, quantum models of aging, quantum models of evolution, quantum models o...
Vieira, Andreia Espindola; Repeke, Carlos Eduardo; Ferreira Junior, Samuel de Barros; Colavite, Priscila Maria; Biguetti, Claudia Cristina; Oliveira, Rodrigo Cardoso; Assis, Gerson Francisco; Taga, Rumio; Trombone, Ana Paula Favaro; Garlet, Gustavo Pompermaier
2015-01-01
Bone tissue has a significant potential for healing, which involves a significant the interplay between bone and immune cells. While fracture healing represents a useful model to investigate endochondral bone healing, intramembranous bone healing models are yet to be developed and characterized. In this study, a micro-computed tomography, histomorphometric and molecular (RealTimePCRarray) characterization of post tooth-extraction alveolar bone healing was performed on C57Bl/6 WT mice. After the initial clot dominance (0 h), the development of a provisional immature granulation tissue is evident (7 d), characterized by marked cell proliferation, angiogenesis and inflammatory cells infiltration; associated with peaks of growth factors (BMP-2-4-7,TGFβ1,VEGFa), cytokines (TNFα, IL-10), chemokines & receptors (CXCL12, CCL25, CCR5, CXCR4), matrix (Col1a1-2, ITGA4, VTN, MMP1a) and MSCs (CD105, CD106, OCT4, NANOG, CD34, CD146) markers expression. Granulation tissue is sequentially replaced by more mature connective tissue (14 d), characterized by inflammatory infiltrate reduction along the increased bone formation, marked expression of matrix remodeling enzymes (MMP-2-9), bone formation/maturation (RUNX2, ALP, DMP1, PHEX, SOST) markers, and chemokines & receptors associated with healing (CCL2, CCL17, CCR2). No evidences of cartilage cells or tissue were observed, strengthening the intramembranous nature of bone healing. Bone microarchitecture analysis supports the evolving healing, with total tissue and bone volumes as trabecular number and thickness showing a progressive increase over time. The extraction socket healing process is considered complete (21 d) when the dental socket is filled by trabeculae bone with well-defined medullary canals; it being the expression of mature bone markers prevalent at this period. Our data confirms the intramembranous bone healing nature of the model used, revealing parallels between the gene expression profile and the
Lakhotia, Devendra; Swaminathan, Siva; Oh, Jong Keon; Moon, Jun Gyu; Dwivedi, Chirayu; Hong, Suk Joo
2017-01-01
Background Transtrochanteric rotational osteotomy (TRO) is a controversial hip-preserving procedure with a variable success rate. The healing process of femoral head osteonecrosis after TRO has been poorly explained till now. This study aimed to evaluate the healing process of previously transposed necrotic lesion after a TRO for nontraumatic osteonecrosis of the femoral head using computed tomography (CT). Methods Among 52 patients (58 hips) who had preserved original femoral head after TRO, we retrospectively reviewed 27 patients (28 hips) who had undergone sequential CT scans and had no major complication following TRO. The average age was 34 years (range, 18 to 59 years). The mean follow-up period was 9.1 years. We evaluated the reparative process of the transposed osteonecrotic lesion with CT scans. Results Plain radiographs of the osteonecrotic lesion revealed sclerotic and lucent changes in 14 hips (50%) and normal bony architecture in the other 14 hips (50%) at the final follow-up. CT scans of the osteonecrotic lesions showed cystic changes with heterogeneous sclerosis in 13 hips (46%), normal trabecular bone with or without small cysts in 9 hips (32%), and fragmentation of the necrotic lesion in 6 hips (22%). Seventeen hips (60%) showed minimal (13 hips) to mild (4 hips) nonprogressive collapse of the transposed osteonecrotic area. The collapse of the transposed osteonecrotic area on the CT scan was significantly associated with the healing pattern (p = 0.009), as all 6 patients (6 hips) with fragmentation of the necrotic lesion had minimal (5 hips) to mild (1 hip) collapse. Furthermore, a significant association was found between the collapse of the transposed osteonecrotic area on the CT scan of 17 hips (60%) and postoperative Harris hip score (p = 0.021). We observed no differences among the healing patterns on CT scans with regard to age, gender, etiology, staging, preoperative lesion type, preoperative intact area, percentage of necrotic area