Quantum Random Number Generators
Herrero-Collantes, Miguel; Garcia-Escartin, Juan Carlos
2016-01-01
Random numbers are a fundamental resource in science and engineering with important applications in simulation and cryptography. The inherent randomness at the core of quantum mechanics makes quantum systems a perfect source of entropy. Quantum random number generation is one of the most mature quantum technologies with many alternative generation methods. We discuss the different technologies in quantum random number generation from the early devices based on radioactive decay to the multipl...
Quantum random number generators
Herrero-Collantes, Miguel; Garcia-Escartin, Juan Carlos
2017-01-01
Random numbers are a fundamental resource in science and engineering with important applications in simulation and cryptography. The inherent randomness at the core of quantum mechanics makes quantum systems a perfect source of entropy. Quantum random number generation is one of the most mature quantum technologies with many alternative generation methods. This review discusses the different technologies in quantum random number generation from the early devices based on radioactive decay to the multiple ways to use the quantum states of light to gather entropy from a quantum origin. Randomness extraction and amplification and the notable possibility of generating trusted random numbers even with untrusted hardware using device-independent generation protocols are also discussed.
Multispecies quantum Hurwitz numbers
Harnad, J
2014-01-01
The construction of hypergeometric 2D Toda $\\tau$-functions as generating functions for quantum Hurwitz numbers is extended here to multispecies families. Both the enumerative geometrical significance of these multispecies quantum Hurwitz numbers as weighted enumerations of branched coverings of the Riemann sphere and their combinatorial significance in terms of weighted paths in the Cayley graph of $S_n$ are derived.
Quantum random number generation
Ma, Xiongfeng; Yuan, Xiao; Cao, Zhu; Qi, Bing; Zhang, Zhen
2016-06-01
Quantum physics can be exploited to generate true random numbers, which have important roles in many applications, especially in cryptography. Genuine randomness from the measurement of a quantum system reveals the inherent nature of quantumness—coherence, an important feature that differentiates quantum mechanics from classical physics. The generation of genuine randomness is generally considered impossible with only classical means. On the basis of the degree of trustworthiness on devices, quantum random number generators (QRNGs) can be grouped into three categories. The first category, practical QRNG, is built on fully trusted and calibrated devices and typically can generate randomness at a high speed by properly modelling the devices. The second category is self-testing QRNG, in which verifiable randomness can be generated without trusting the actual implementation. The third category, semi-self-testing QRNG, is an intermediate category that provides a tradeoff between the trustworthiness on the device and the random number generation speed.
Quantum Mechanics interpreted in Quantum Real Numbers
Corbett, J V; Corbett, John V; Durt, Thomas
2002-01-01
The concept of number is fundamental to the formulation of any physical theory. We give a heuristic motivation for the reformulation of Quantum Mechanics in terms of non-standard real numbers called Quantum Real Numbers. The standard axioms of quantum mechanics are re-interpreted. Our aim is to show that, when formulated in the language of quantum real numbers, the laws of quantum mechanics appear more natural, less counterintuitive than when they are presented in terms of standard numbers.
Quantum random number generator
Pooser, Raphael C.
2016-05-10
A quantum random number generator (QRNG) and a photon generator for a QRNG are provided. The photon generator may be operated in a spontaneous mode below a lasing threshold to emit photons. Photons emitted from the photon generator may have at least one random characteristic, which may be monitored by the QRNG to generate a random number. In one embodiment, the photon generator may include a photon emitter and an amplifier coupled to the photon emitter. The amplifier may enable the photon generator to be used in the QRNG without introducing significant bias in the random number and may enable multiplexing of multiple random numbers. The amplifier may also desensitize the photon generator to fluctuations in power supplied thereto while operating in the spontaneous mode. In one embodiment, the photon emitter and amplifier may be a tapered diode amplifier.
Quantum random number generator
Stipcevic, M
2006-01-01
We report upon a novel principle for realization of a fast nondeterministic random number generator whose randomness relies on intrinsic randomness of the quantum physical processes of photonic emission in semiconductors and subsequent detection by the photoelectric effect. Timing information of detected photons is used to generate binary random digits-bits. The bit extraction method based on restartable clock theoretically eliminates both bias and autocorrelation while reaching efficiency of almost 0.5 bits per random event. A prototype has been built and statistically tested.
Expected number of quantum channels in quantum networks
Chen, Xi; Wang, He-Ming; Ji, Dan-Tong; Mu, Liang-Zhu; Fan, Heng
2015-07-01
Quantum communication between nodes in quantum networks plays an important role in quantum information processing. Here, we proposed the use of the expected number of quantum channels as a measure of the efficiency of quantum communication for quantum networks. This measure quantified the amount of quantum information that can be teleported between nodes in a quantum network, which differs from classical case in that the quantum channels will be consumed if teleportation is performed. We further demonstrated that the expected number of quantum channels represents local correlations depicted by effective circles. Significantly, capacity of quantum communication of quantum networks quantified by ENQC is independent of distance for the communicating nodes, if the effective circles of communication nodes are not overlapped. The expected number of quantum channels can be enhanced through transformations of the lattice configurations of quantum networks via entanglement swapping. Our results can shed lights on the study of quantum communication in quantum networks.
Quantum random number generator using photon-number path entanglement
Kwon, Osung; Cho, Young-Wook; Kim, Yoon-Ho
2010-08-01
We report an experimental implementation of quantum random number generator based on the photon-number-path entangled state. The photon-number-path entangled state is prepared by means of two-photon Hong-Ou-Mandel quantum interference at a beam splitter. The randomness in our scheme is of truly quantum mechanical origin as it comes from the projection measurement of the entangled two-photon state. The generated bit sequences satisfy the standard randomness test.
Understanding Quantum Numbers in General Chemistry Textbooks
Niaz, Mansoor; Fernandez, Ramon
2008-01-01
Quantum numbers and electron configurations form an important part of the general chemistry curriculum and textbooks. The objectives of this study are: (1) Elaboration of a framework based on the following aspects: (a) Origin of the quantum hypothesis, (b) Alternative interpretations of quantum mechanics, (c) Differentiation between an orbital and…
Understanding Quantum Numbers in General Chemistry Textbooks
Niaz, Mansoor; Fernandez, Ramon
2008-01-01
Quantum numbers and electron configurations form an important part of the general chemistry curriculum and textbooks. The objectives of this study are: (1) Elaboration of a framework based on the following aspects: (a) Origin of the quantum hypothesis, (b) Alternative interpretations of quantum mechanics, (c) Differentiation between an orbital and…
Ramsey numbers and adiabatic quantum computing.
Gaitan, Frank; Clark, Lane
2012-01-06
The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color Ramsey numbers R(m,n) with m, n≥3, only nine are currently known. We present a quantum algorithm for the computation of the Ramsey numbers R(m,n). We show how the computation of R(m,n) can be mapped to a combinatorial optimization problem whose solution can be found using adiabatic quantum evolution. We numerically simulate this adiabatic quantum algorithm and show that it correctly determines the Ramsey numbers R(3,3) and R(2,s) for 5≤s≤7. We then discuss the algorithm's experimental implementation, and close by showing that Ramsey number computation belongs to the quantum complexity class quantum Merlin Arthur.
Quantum Statistical Testing of a Quantum Random Number Generator
Energy Technology Data Exchange (ETDEWEB)
Humble, Travis S [ORNL
2014-01-01
The unobservable elements in a quantum technology, e.g., the quantum state, complicate system verification against promised behavior. Using model-based system engineering, we present methods for verifying the opera- tion of a prototypical quantum random number generator. We begin with the algorithmic design of the QRNG followed by the synthesis of its physical design requirements. We next discuss how quantum statistical testing can be used to verify device behavior as well as detect device bias. We conclude by highlighting how system design and verification methods must influence effort to certify future quantum technologies.
Quantum Statistical Testing of a Quantum Random Number Generator
Energy Technology Data Exchange (ETDEWEB)
Humble, Travis S [ORNL
2014-01-01
The unobservable elements in a quantum technology, e.g., the quantum state, complicate system verification against promised behavior. Using model-based system engineering, we present methods for verifying the opera- tion of a prototypical quantum random number generator. We begin with the algorithmic design of the QRNG followed by the synthesis of its physical design requirements. We next discuss how quantum statistical testing can be used to verify device behavior as well as detect device bias. We conclude by highlighting how system design and verification methods must influence effort to certify future quantum technologies.
Quantum statistical testing of a quantum random number generator
Humble, Travis S.
2014-10-01
The unobservable elements in a quantum technology, e.g., the quantum state, complicate system verification against promised behavior. Using model-based system engineering, we present methods for verifying the operation of a prototypical quantum random number generator. We begin with the algorithmic design of the QRNG followed by the synthesis of its physical design requirements. We next discuss how quantum statistical testing can be used to verify device behavior as well as detect device bias. We conclude by highlighting how system design and verification methods must influence effort to certify future quantum technologies.
Classical to quantum in large number limit
Modi, Kavan; Pascazio, Saverio; Vedral, Vlatko; Yuasa, Kazuya
2011-01-01
We construct a quantumness witness following the work of Alicki and van Ryn (AvR) in "A simple test of quantumness for a single system" [J. Phys. A: Math. Theor., 41, 062001 (2008)]. The AvR test is designed to detect quantumness. We reformulate the AvR test by defining it for quantum states rather than for observables. This allows us to identify the necessary quantities and resources to detect quantumness for any given system. The first quantity turns out to be the purity of the system. When applying the witness to a system with even moderate mixedness the protocol is unable to reveal any quantumness. We then show that having many copies of the system leads the witness to reveal quantumness. This seems contrary to the Bohr correspondence, which asserts that in the large number limit quantum systems become classical, while the witness shows quantumness when several non-quantum systems, as determined by the witness, are considered together. However, the resources required to detect the quantumness increase dra...
Quantum numbers and band topology of nanotubes
Damnjanovic, M; Vukovic, T; Maultzsch, J
2003-01-01
Nanotubes as well as polymers and quasi-1D subsystems of 3D crystals have line group symmetry. This allows two types of quantum numbers: roto-translational and helical. The roto-translational quantum numbers are linear and total angular (not conserved) momenta, while the helical quantum numbers are helical and complementary angular momenta. Their mutual relations determine some topological properties of energy bands, such as systematic band sticking or van Hove singularities related to parities. The importance of these conclusions is illustrated by the optical absorption in carbon nanotubes: parity may prevent absorption peaks at van Hove singularities.
Random Numbers and Quantum Computers
McCartney, Mark; Glass, David
2002-01-01
The topic of random numbers is investigated in such a way as to illustrate links between mathematics, physics and computer science. First, the generation of random numbers by a classical computer using the linear congruential generator and logistic map is considered. It is noted that these procedures yield only pseudo-random numbers since…
Bethe's quantum numbers and rigged configurations
Directory of Open Access Journals (Sweden)
Anatol N. Kirillov
2016-04-01
Full Text Available We propose a method to determine the quantum numbers, which we call the rigged configurations, for the solutions to the Bethe ansatz equations for the spin-1/2 isotropic Heisenberg model under the periodic boundary condition. Our method is based on the observation that the sums of Bethe's quantum numbers within each string behave particularly nicely. We confirm our procedure for all solutions for length 12 chain (totally 923 solutions.
Generalized Ramsey numbers through adiabatic quantum optimization
Ranjbar, Mani; Macready, William G.; Clark, Lane; Gaitan, Frank
2016-09-01
Ramsey theory is an active research area in combinatorics whose central theme is the emergence of order in large disordered structures, with Ramsey numbers marking the threshold at which this order first appears. For generalized Ramsey numbers r( G, H), the emergent order is characterized by graphs G and H. In this paper we: (i) present a quantum algorithm for computing generalized Ramsey numbers by reformulating the computation as a combinatorial optimization problem which is solved using adiabatic quantum optimization; and (ii) determine the Ramsey numbers r({{T}}m,{{T}}n) for trees of order m,n = 6,7,8, most of which were previously unknown.
Complex numbers in quantum theory
Maynard, Glenn
In 1927, Nobel prize winning physicist, E. Schrodinger, in correspondence with Ehrenfest, wrote the following about the new theory: "What is unpleasant here, and indeed directly to be objected to, is the use of complex numbers. Psi is surely fundamentally a real function." This seemingly simple issue remains unexplained almost ninety years later. In this dissertation I elucidate the physical and theoretical origins of the complex requirement. (Abstract shortened by ProQuest.).
Quantum abacus for counting and factorizing numbers
Suslov, M. V.; Lesovik, G. B.; Blatter, G.
2011-05-01
We generalize the binary quantum counting algorithm of Lesovik, Suslov, and Blatter [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.82.012316 82, 012316 (2010)] to higher counting bases. The algorithm makes use of qubits, qutrits, and qudits to count numbers in a base-2, base-3, or base-d representation. In operating the algorithm, the number n
High speed optical quantum random number generation.
Fürst, Martin; Weier, Henning; Nauerth, Sebastian; Marangon, Davide G; Kurtsiefer, Christian; Weinfurter, Harald
2010-06-07
We present a fully integrated, ready-for-use quantum random number generator (QRNG) whose stochastic model is based on the randomness of detecting single photons in attenuated light. We show that often annoying deadtime effects associated with photomultiplier tubes (PMT) can be utilized to avoid postprocessing for bias or correlations. The random numbers directly delivered to a PC, generated at a rate of up to 50 Mbit/s, clearly pass all tests relevant for (physical) random number generators.
True random numbers from amplified quantum vacuum
Jofre, M; Steinlechner, F; Anzolin, G; Torres, J P; Mitchell, M W; Pruneri, V; 10.1364/OE.19.020665
2011-01-01
Random numbers are essential for applications ranging from secure communications to numerical simulation and quantitative finance. Algorithms can rapidly produce pseudo-random outcomes, series of numbers that mimic most properties of true random numbers while quantum random number generators (QRNGs) exploit intrinsic quantum randomness to produce true random numbers. Single-photon QRNGs are conceptually simple but produce few random bits per detection. In contrast, vacuum fluctuations are a vast resource for QRNGs: they are broad-band and thus can encode many random bits per second. Direct recording of vacuum fluctuations is possible, but requires shot-noise-limited detectors, at the cost of bandwidth. We demonstrate efficient conversion of vacuum fluctuations to true random bits using optical amplification of vacuum and interferometry. Using commercially-available optical components we demonstrate a QRNG at a bit rate of 1.11 Gbps. The proposed scheme has the potential to be extended to 10 Gbps and even up t...
Self-Testing Quantum Random Number Generator
Lunghi, Tommaso; Brask, Jonatan Bohr; Lim, Charles Ci Wen; Lavigne, Quentin; Bowles, Joseph; Martin, Anthony; Zbinden, Hugo; Brunner, Nicolas
2015-04-01
The generation of random numbers is a task of paramount importance in modern science. A central problem for both classical and quantum randomness generation is to estimate the entropy of the data generated by a given device. Here we present a protocol for self-testing quantum random number generation, in which the user can monitor the entropy in real time. Based on a few general assumptions, our protocol guarantees continuous generation of high quality randomness, without the need for a detailed characterization of the devices. Using a fully optical setup, we implement our protocol and illustrate its self-testing capacity. Our work thus provides a practical approach to quantum randomness generation in a scenario of trusted but error-prone devices.
Source-Independent Quantum Random Number Generation
Cao, Zhu; Zhou, Hongyi; Yuan, Xiao; Ma, Xiongfeng
2016-01-01
Quantum random number generators can provide genuine randomness by appealing to the fundamental principles of quantum mechanics. In general, a physical generator contains two parts—a randomness source and its readout. The source is essential to the quality of the resulting random numbers; hence, it needs to be carefully calibrated and modeled to achieve information-theoretical provable randomness. However, in practice, the source is a complicated physical system, such as a light source or an atomic ensemble, and any deviations in the real-life implementation from the theoretical model may affect the randomness of the output. To close this gap, we propose a source-independent scheme for quantum random number generation in which output randomness can be certified, even when the source is uncharacterized and untrusted. In our randomness analysis, we make no assumptions about the dimension of the source. For instance, multiphoton emissions are allowed in optical implementations. Our analysis takes into account the finite-key effect with the composable security definition. In the limit of large data size, the length of the input random seed is exponentially small compared to that of the output random bit. In addition, by modifying a quantum key distribution system, we experimentally demonstrate our scheme and achieve a randomness generation rate of over 5 ×103 bit /s .
Quantum Hurwitz numbers and Macdonald polynomials
Harnad, J
2015-01-01
Parametric families in the centre ${\\bf Z}({\\bf C}[S_n])$ of the group algebra of the symmetric group are obtained by identifying the indeterminates in the generating function for Macdonald polynomials as commuting Jucys-Murphy elements. Their eigenvalues provide coefficients in the double Schur function expansion of 2D Toda $\\tau$-functions of hypergeometric type. Expressing these in the basis of products of power sum symmetric functions, the coefficients may be interpreted geometrically as parametric families of quantum Hurwitz numbers, enumerating weighted branched coverings of the Riemann sphere. Combinatorially, they give quantum weighted sums over paths in the Cayley graph of $S_n$ generated by transpositions. Dual pairs of bases for the algebra of symmetric functions with respect to the scalar product in which the Macdonald polynomials are orthogonal provide both the geometrical and combinatorial significance of these quantum weighted enumerative invariants.
True random numbers from amplified quantum vacuum.
Jofre, M; Curty, M; Steinlechner, F; Anzolin, G; Torres, J P; Mitchell, M W; Pruneri, V
2011-10-10
Random numbers are essential for applications ranging from secure communications to numerical simulation and quantitative finance. Algorithms can rapidly produce pseudo-random outcomes, series of numbers that mimic most properties of true random numbers while quantum random number generators (QRNGs) exploit intrinsic quantum randomness to produce true random numbers. Single-photon QRNGs are conceptually simple but produce few random bits per detection. In contrast, vacuum fluctuations are a vast resource for QRNGs: they are broad-band and thus can encode many random bits per second. Direct recording of vacuum fluctuations is possible, but requires shot-noise-limited detectors, at the cost of bandwidth. We demonstrate efficient conversion of vacuum fluctuations to true random bits using optical amplification of vacuum and interferometry. Using commercially-available optical components we demonstrate a QRNG at a bit rate of 1.11 Gbps. The proposed scheme has the potential to be extended to 10 Gbps and even up to 100 Gbps by taking advantage of high speed modulation sources and detectors for optical fiber telecommunication devices.
Quantum Field Theories and Prime Numbers Spectrum
Menezes, G
2012-01-01
The Riemann hypothesis states that all nontrivial zeros of the zeta function lie on the critical line $\\Re(s)=1/2$. Hilbert and P\\'olya suggested a possible approach to prove it, based on spectral theory. Within this context, some authors formulated the question: is there a quantum mechanical system related to the sequence of prime numbers? In this Letter we assume that there is a class of hypothetical physical systems described by self-adjoint operators with countable infinite number of degrees of freedom with spectra given by the sequence of primes numbers. We prove a no-go theorem. We show that the generating functional of connected Schwinger functions of such theories cannot be constructed.
Tangency quantum cohomology and characteristic numbers
Directory of Open Access Journals (Sweden)
KOCK JOACHIM
2001-01-01
Full Text Available This work establishes a connection between gravitational quantum cohomology and enumerative geometry of rational curves (in a projective homogeneous variety subject to conditions of infinitesimal nature like, for example, tangency. The key concept is that of modified psi classes, which are well suited for enumerative purposes and substitute the tautological psi classes of 2D gravity. The main results are two systems of differential equations for the generating function of certain top products of such classes. One is topological recursion while the other is Witten-Dijkgraaf-Verlinde-Verlinde. In both cases, however, the background metric is not the usual Poincaré metric but a certain deformation of it, which surprisingly encodes all the combinatorics of the peculiar way modified psi classes restrict to the boundary. This machinery is applied to various enumerative problems, among which characteristic numbers in any projective homogeneous variety, characteristic numbers for curves with cusp, prescribed triple contact, or double points.
Experimental realization of quantum random number generator
Soubusta, Jan; Haderka, Ondrej; Hendrych, Martin; Pavlicek, Pavel
2003-11-01
We present our experimental realization of a quantum random number generator (RNG) based on the quantum random process of division of light pulse on a fiber coupler. Our prototype consists of fiber optics elements: a pigtailcd laser diode, two mechanical attenuators, a fiber coupler, and two single photon detectors. The RNG contains all necessary electronics for the generation of light pulses, synchronized reading of detectors' states, processing of these results, and transfer of data to a host computer. The connection to the computer is done via a 25-pin parallel port, that makes our device easy to use with any personal computer (PC). The RNG can be operated in four different modes, that arc selected by the PC. The zeroth mode is just for the device control, the first mode serves for appropriate setting of generation efficiency, the second mode is designed for raw data sequence generation at a rate of 114 kByte/s, and the last mode provides balanced data sequence at a rate of 28 kByte/s utilizing von Ncumann's extraction procedure. This procedure is used to gain a properly balanced ratio between '0's and '1's. The balanced data sequence generated by the RNG in the third mode passes all kinds of tests we arc using [for example 15 tests proposed by G. Marsaglia, WWW: http://stat.fsu.edu/ geo/diehard.html 1. The raw data sequence can be used for purposes that do not need properly balanced data, because raw data passes tests that arc not inspecting the sequence balance.
Miszczak, J. A.
2012-01-01
We present a new version of TRQS package for Mathematica computing system. The package allows harnessing quantum random number generators (QRNG) for investigating the statistical properties of quantum states. It implements a number of functions for generating random states. The new version of the package adds the ability to use the on-line quantum random number generator service and implements new functions for retrieving lists of random numbers. Thanks to the introduced improvements, the new...
Enhanced security for multi-detector Quantum Random Number Generators
Marangon, Davide G.; Vallone, Giuseppe; Zanforlin, Ugo; Villoresi, Paolo
2016-01-01
Quantum random number generators (QRNG) represent an advanced solution for randomness generation, essential in every cryptographic applications. In this context, integrated arrays of single photon detectors have promising applications as QRNGs based on the spatial detection of photons. For the employment of QRNGs in Cryptography, it is necessary to have efficient methods to evaluate the so called quantum min-entropy that corresponds to the amount of the true extractable quantum randomness fro...
Quantum Random Number Generation on a Mobile Phone
Sanguinetti, Bruno; Martin, Anthony; Zbinden, Hugo; Gisin, Nicolas
2014-07-01
Quantum random number generators (QRNGs) can significantly improve the security of cryptographic protocols by ensuring that generated keys cannot be predicted. However, the cost, size, and power requirements of current Quantum random number generators have prevented them from becoming widespread. In the meantime, the quality of the cameras integrated in mobile telephones has improved significantly so that now they are sensitive to light at the few-photon level. We demonstrate how these can be used to generate random numbers of a quantum origin.
A Robust Quantum Random Number Generator Based on Bosonic Stimulation
H, Akshata Shenoy; Srikanth, R; Srinivas, T
2011-01-01
We propose a method to realize a robust quantum random number generator based on bosonic stimulation. A particular implementation that employs weak coherent pulses and conventional avalanche photo-diode detectors (APDs) is discussed.
Topological recursion and a quantum curve for monotone Hurwitz numbers
Do, Norman; Dyer, Alastair; Mathews, Daniel V.
2017-10-01
Classical Hurwitz numbers count branched covers of the Riemann sphere with prescribed ramification data, or equivalently, factorisations in the symmetric group with prescribed cycle structure data. Monotone Hurwitz numbers restrict the enumeration by imposing a further monotonicity condition on such factorisations. In this paper, we prove that monotone Hurwitz numbers arise from the topological recursion of Eynard and Orantin applied to a particular spectral curve. We furthermore derive a quantum curve for monotone Hurwitz numbers. These results extend the collection of enumerative problems known to be governed by the paradigm of topological recursion and quantum curves, as well as the list of analogues between monotone Hurwitz numbers and their classical counterparts.
Quantum Random Number Generation on a Mobile Phone
Sanguinetti, Bruno; Martin, Anthony; Zbinden, Hugo; Gisin, Nicolas
2014-01-01
Quantum random number generators (QRNGs) can significantly improve the security of cryptographic protocols by ensuring that generated keys cannot be predicted. However, the cost, size, and power requirements of current Quantum random number generators have prevented them from becoming widespread. In the meantime, the quality of the cameras integrated in mobile telephones has improved significantly so that now they are sensitive to light at the few-photon level. We demonstrate how these can be...
Miszczak, J A
2012-01-01
We present a new version of TRQS package for Mathematica computing system. The package allows harnessing quantum random number generators (QRNG) for investigating the statistical properties of quantum states. It implements a number of functions for generating random states. The new version of the package adds the ability to use the on-line quantum random number generator service and implements new functions for retrieving lists of random numbers. Thanks to the introduced improvements, the new version provides faster access to high-quality sources of random numbers and can be used in simulations requiring large amount of random data.
Ultra-fast Quantum Random Number Generator
Yicheng, Shi
We describe a series of Randomness Extractors for removing bias and residual correlations in random numbers generated from measurements on noisy physical systems. The structures of the randomness extractors are based on Linear Feedback Shift Registers (LFSR). This leads to a significant simplification in the implementation of randomness extractors.
Fault tolerant quantum random number generator certified by Majorana fermions
Deng, Dong-Ling; Duan, Lu-Ming
2013-03-01
Braiding of Majorana fermions gives accurate topological quantum operations that are intrinsically robust to noise and imperfection, providing a natural method to realize fault-tolerant quantum information processing. Unfortunately, it is known that braiding of Majorana fermions is not sufficient for implementation of universal quantum computation. Here we show that topological manipulation of Majorana fermions provides the full set of operations required to generate random numbers by way of quantum mechanics and to certify its genuine randomness through violation of a multipartite Bell inequality. The result opens a new perspective to apply Majorana fermions for robust generation of certified random numbers, which has important applications in cryptography and other related areas. This work was supported by the NBRPC (973 Program) 2011CBA00300 (2011CBA00302), the IARPA MUSIQC program, the ARO and the AFOSR MURI program.
Enhanced security for multi-detector quantum random number generators
Marangon, Davide G.; Vallone, Giuseppe; Zanforlin, Ugo; Villoresi, Paolo
2016-11-01
Quantum random number generators (QRNG) represent an advanced solution for randomness generation, which is essential in every cryptographic application. In this context, integrated arrays of single-photon detectors have promising applications as QRNGs based on the spatial detection of photons. For the employment of QRNGs in cryptography, it is necessary to have efficient methods to evaluate the so-called quantum min-entropy that corresponds to the amount of the true extractable quantum randomness from the QRNG. Here, we present an efficient method that allows the estimation of the quantum min-entropy for a multi-detector QRNG. In particular, we consider a scenario in which an attacker can control the efficiency of the detectors and knows the emitted number of photons. Eventually, we apply the method to a QRNG with 103 detectors.
Two-bit quantum random number generator based on photon-number-resolving detection
Jian, Yi; Ren, Min; Wu, E.; Wu, Guang; Zeng, Heping
2011-07-01
Here we present a new fast two-bit quantum random number generator based on the intrinsic randomness of the quantum physical phenomenon of photon statistics of coherent light source. Two-bit random numbers were generated according to the number of detected photons in each light pulse by a photon-number-resolving detector. Poissonian photon statistics of the coherent light source guaranteed the complete randomness of the bit sequences. Multi-bit true random numbers were generated for the first time based on the multi-photon events from a coherent light source.
Towards a high-speed quantum random number generator
Stucki, Damien; Burri, Samuel; Charbon, Edoardo; Chunnilall, Christopher; Meneghetti, Alessio; Regazzoni, Francesco
2013-10-01
Randomness is of fundamental importance in various fields, such as cryptography, numerical simulations, or the gaming industry. Quantum physics, which is fundamentally probabilistic, is the best option for a physical random number generator. In this article, we will present the work carried out in various projects in the context of the development of a commercial and certified high speed random number generator.
Excitons in conjugated polymers: wavefunctions, symmetries, and quantum numbers.
Barford, William; Paiboonvorachat, Nattapong
2008-10-28
We introduce a mapping from configuration interaction singles wavefunctions, expressed as linear combinations of particle-hole excitations between Hartree-Fock molecular orbitals, to real-space exciton wavefunctions, expressed as linear combinations of particle-hole excitations between localized Wannier functions. The exciton wavefunction is a two-dimensional amplitude for the exciton center-of-mass coordinate, R, and the electron-hole separation (or relative coordinate), r, having an exact analogy to one-dimensional hydrogenlike wavefunctions. We describe the excitons by their appropriate quantum numbers, namely, the principle quantum number, n, associated with r and the center-of-mass pseudomomentum quantum number, j, associated with R. In addition, for models with particle-hole symmetry, such as the Pariser-Parr-Pople model, we emphasize the connection between particle-hole symmetry and particle-hole parity. The method is applied to the study of excitons in trans-polyacetylene and poly(para-phenylene).
Quantum random number generation for loophole-free Bell tests
Mitchell, Morgan; Abellan, Carlos; Amaya, Waldimar
2015-05-01
We describe the generation of quantum random numbers at multi-Gbps rates, combined with real-time randomness extraction, to give very high purity random numbers based on quantum events at most tens of ns in the past. The system satisfies the stringent requirements of quantum non-locality tests that aim to close the timing loophole. We describe the generation mechanism using spontaneous-emission-driven phase diffusion in a semiconductor laser, digitization, and extraction by parity calculation using multi-GHz logic chips. We pay special attention to experimental proof of the quality of the random numbers and analysis of the randomness extraction. In contrast to widely-used models of randomness generators in the computer science literature, we argue that randomness generation by spontaneous emission can be extracted from a single source.
Pseudo random number generator based on quantum chaotic map
Akhshani, A.; Akhavan, A.; Mobaraki, A.; Lim, S.-C.; Hassan, Z.
2014-01-01
For many years dissipative quantum maps were widely used as informative models of quantum chaos. In this paper, a new scheme for generating good pseudo-random numbers (PRNG), based on quantum logistic map is proposed. Note that the PRNG merely relies on the equations used in the quantum chaotic map. The algorithm is not complex, which does not impose high requirement on computer hardware and thus computation speed is fast. In order to face the challenge of using the proposed PRNG in quantum cryptography and other practical applications, the proposed PRNG is subjected to statistical tests using well-known test suites such as NIST, DIEHARD, ENT and TestU01. The results of the statistical tests were promising, as the proposed PRNG successfully passed all these tests. Moreover, the degree of non-periodicity of the chaotic sequences of the quantum map is investigated through the Scale index technique. The obtained result shows that, the sequence is more non-periodic. From these results it can be concluded that, the new scheme can generate a high percentage of usable pseudo-random numbers for simulation and other applications in scientific computing.
Quantum random number generators and their use in cryptography
Stipcevic, Mario
2011-01-01
Random number generators (RNG) are an important resource in many areas: cryptography (both quantum and classical), probabilistic computation (Monte Carlo methods), numerical simulations, industrial testing and labeling, hazard games, scientific research, etc. Because today's computers are deterministic, they can not create random numbers unless complemented with a RNG. Randomness of a RNG can be precisely, scientifically characterized and measured. Especially valuable is the information-theoretic provable RNG (True RNG - TRNG) which, at state of the art, seem to be possible only by use of physical randomness inherent to certain (simple) quantum systems. On the other hand, current industry standard dictates use of RNG's based on free running oscillators (FRO) whose randomness is derived from electronics noise present in logic circuits and which cannot be strictly proven. This approach is currently used in 3-rd and 4-th generation FPGA and ASIC hardware, unsuitable for realization of quantum TRNG. We compare we...
Photon-number correlation for quantum enhanced imaging and sensing
Meda, A.; Losero, E.; Samantaray, N.; Scafirimuto, F.; Pradyumna, S.; Avella, A.; Ruo-Berchera, I.; Genovese, M.
2017-09-01
In this review we present the potentialities and the achievements of the use of non-classical photon-number correlations in twin-beam states for many applications, ranging from imaging to metrology. Photon-number correlations in the quantum regime are easily produced and are rather robust against unavoidable experimental losses, and noise in some cases, if compared to the entanglement, where losing one photon can completely compromise the state and its exploitable advantages. Here, we will focus on quantum enhanced protocols in which only phase-insensitive intensity measurements (photon-number counting) are performed, which allow probing the transmission/absorption properties of a system, leading, for example, to innovative target detection schemes in a strong background. In this framework, one of the advantages is that the sources experimentally available emit a wide number of pair-wise correlated modes, which can be intercepted and exploited separately, for example by many pixels of a camera, providing a parallelism, essential in several applications, such as wide-field sub-shot-noise imaging and quantum enhanced ghost imaging. Finally, non-classical correlation enables new possibilities in quantum radiometry, e.g. the possibility of absolute calibration of a spatial resolving detector from the on-off single-photon regime to the linear regime in the same setup.
Dynamics of Quantum Adiabatic Evolution Algorithm for Number Partitioning
Smelyanskiy, Vadius; vonToussaint, Udo V.; Timucin, Dogan A.; Clancy, Daniel (Technical Monitor)
2002-01-01
We have developed a general technique to study the dynamics of the quantum adiabatic evolution algorithm applied to random combinatorial optimization problems in the asymptotic limit of large problem size n. We use as an example the NP-complete Number Partitioning problem and map the algorithm dynamics to that of an auxiliary quantum spin glass system with the slowly varying Hamiltonian. We use a Green function method to obtain the adiabatic eigenstates and the minimum exitation gap, gmin = O(n2(sup -n/2)), corresponding to the exponential complexity of the algorithm for Number Partitioning. The key element of the analysis is the conditional energy distribution computed for the set of all spin configurations generated from a given (ancestor) configuration by simultaneous flipping of a fixed number of spins. For the problem in question this distribution is shown to depend on the ancestor spin configuration only via a certain parameter related to the energy of the configuration. As the result, the algorithm dynamics can be described in terms of one-dimensional quantum diffusion in the energy space. This effect provides a general limitation of a quantum adiabatic computation in random optimization problems. Analytical results are in agreement with the numerical simulation of the algorithm.
A Quantum Random Number Generator Certified by Value Indefiniteness
Abbott, Alastair A; Svozil, Karl
2010-01-01
In this paper we propose a quantum random number generator (QRNG) which utilizes an entangled photon pair in a Bell singlet state, and is certified explicitly by value indefiniteness. While "true randomness" is a mathematical impossibility, the certification by value indefiniteness ensures the quantum random bits are incomputable in the strongest sense. This is the first QRNG setup in which a physical principle (Kochen-Specker value indefiniteness) guarantees that no single quantum bit produced can be classically computed (reproduced and validated), the mathematical form of bitwise physical unpredictability. The effects of various experimental imperfections are discussed in detail, particularly those related to detector efficiencies, context alignment and temporal correlations between bits. The analysis is to a large extent relevant for the construction of any QRNG based on beam-splitters. By measuring the two entangled photons in maximally misaligned contexts and utilizing the fact that two rather than one b...
Source-Device-Independent Ultrafast Quantum Random Number Generation
Marangon, Davide G.; Vallone, Giuseppe; Villoresi, Paolo
2017-02-01
Secure random numbers are a fundamental element of many applications in science, statistics, cryptography and more in general in security protocols. We present a method that enables the generation of high-speed unpredictable random numbers from the quadratures of an electromagnetic field without any assumption on the input state. The method allows us to eliminate the numbers that can be predicted due to the presence of classical and quantum side information. In particular, we introduce a procedure to estimate a bound on the conditional min-entropy based on the entropic uncertainty principle for position and momentum observables of infinite dimensional quantum systems. By the above method, we experimentally demonstrated the generation of secure true random bits at a rate greater than 1.7 Gbit /s .
Experimental Certification of Random Numbers via Quantum Contextuality
Um, Mark; Zhang, Xiang; Zhang, Junhua; Wang, Ye; Yangchao, Shen; Deng, D.-L.; Duan, Lu-Ming; Kim, Kihwan
2013-04-01
The intrinsic unpredictability of measurements in quantum mechanics can be used to produce genuine randomness. Here, we demonstrate a random number generator where the randomness is certified by quantum contextuality in connection with the Kochen-Specker theorem. In particular, we generate random numbers from measurements on a single trapped ion with three internal levels, and certify the generated randomness by showing a bound on the minimum entropy through observation of violation of the Klyachko-Can-Binicioglu-Shumovsky (KCBS) inequality. Concerning the test of the KCBS inequality, we close the detection efficiency loophole for the first time and make it relatively immune to the compatibility loophole. In our experiment, we generate 1 × 105 random numbers that are guaranteed to have 5.2 × 104 bits of minimum entropy with a 99% confidence level.
Quantization and Quantum-Like Phenomena: A Number Amplitude Approach
Robinson, T. R.; Haven, E.
2015-12-01
Historically, quantization has meant turning the dynamical variables of classical mechanics that are represented by numbers into their corresponding operators. Thus the relationships between classical variables determine the relationships between the corresponding quantum mechanical operators. Here, we take a radically different approach to this conventional quantization procedure. Our approach does not rely on any relations based on classical Hamiltonian or Lagrangian mechanics nor on any canonical quantization relations, nor even on any preconceptions of particle trajectories in space and time. Instead we examine the symmetry properties of certain Hermitian operators with respect to phase changes. This introduces harmonic operators that can be identified with a variety of cyclic systems, from clocks to quantum fields. These operators are shown to have the characteristics of creation and annihilation operators that constitute the primitive fields of quantum field theory. Such an approach not only allows us to recover the Hamiltonian equations of classical mechanics and the Schrödinger wave equation from the fundamental quantization relations, but also, by freeing the quantum formalism from any physical connotation, makes it more directly applicable to non-physical, so-called quantum-like systems. Over the past decade or so, there has been a rapid growth of interest in such applications. These include, the use of the Schrödinger equation in finance, second quantization and the number operator in social interactions, population dynamics and financial trading, and quantum probability models in cognitive processes and decision-making. In this paper we try to look beyond physical analogies to provide a foundational underpinning of such applications.
c -number quantum generalized Langevin equation for an open system
Kantorovich, L.; Ness, H.; Stella, L.; Lorenz, C. D.
2016-11-01
We derive a c -number generalized Langevin equation (GLE) describing the evolution of the expectation values xixit of the atomic position operators xi of an open system. The latter is coupled linearly to a harmonic bath kept at a fixed temperature. The equations of motion contain a non-Markovian friction term with the classical kernel [L. Kantorovich, Phys. Rev. B 78, 094304 (2008), 10.1103/PhysRevB.78.094304] and a zero mean non-Gaussian random force with correlation functions that depend on the initial preparation of the open system. We used a density operator formalism without assuming that initially the combined system was decoupled. The only approximation made in deriving quantum GLE consists of assuming that the Hamiltonian of the open system at time t can be expanded up to the second order with respect to operators of atomic displacements ui=xi-t (the "harmonization" approximation). The noise is introduced to ensure that sampling many quantum GLE trajectories yields exactly the average one. An explicit expression for the pair correlation function of the noise, consistent with the classical limit, is also proposed. Unlike the usually considered quantum operator GLE, the proposed c -number quantum GLE can be used in direct molecular dynamic simulations of open systems under general equilibrium or nonequilibrium conditions.
Quantum random number generators and their applications in cryptography
Stipcevic, Mario
2012-06-01
Random number generators (RNG) are an important resource in many areas: cryptography (both quantum and classical), probabilistic computation (Monte Carlo methods), numerical simulations, industrial testing and labeling, hazard games, scientific research etc. Because today's computers are deterministic, they can not create random numbers unless complemented with a physical RNG. Randomness of a RNG can be defined and scientifically characterized and measured. Especially valuable is the information-theoretic provable RNG which, at state of the art, seem to be possible only by harvest of randomness inherent to certain (simple) quantum systems and such a generator we call Quantum RNG (QRNG). On the other hand, current industry standards dictate use of RNGs based on free running oscillators (FRO) whose randomness is derived from electronics noise present in logic circuits and which, although quantum in nature, cannot be strictly proven. This approach is currently used in FPGA and ASIC chips. We compare weak and strong aspects of the two approaches for use in cryptography and in general. We also give an alternative definition of randomness, discuss usage of single photon detectors in realization of QRNGs and give several examples where QRNG can significantly improve security of a cryptographic system.
On Evaluation of Overlap Integrals with Noninteger Principal Quantum Numbers
Institute of Scientific and Technical Information of China (English)
I.I.Guseinov; B.A.Mamedov
2004-01-01
By use of complete orthonormal sets of ψα exponential-type orbitals (ψα-ETOs,α=1,0,-1,-2,...) the series expansion formulas for the noninteger n Slater-type orbitals (NISTOs) in terms of integer n Slater-type orbitals (ISTOs) are derived. These formulas enable us to express the overlap integrals with NISTOs through the overlap integrals over ISTOs with the same and different screening constants. By calculating concrete cases the convergence of the series for arbitrary values of noninteger principal quantum numbers and screening constants of NISTOs and internuclear distances is tested. The accuracy of the results is quite high for quantum numbers, screening constants and location of STOs.
On Evaluation of Overlap Integrals with Noninteger Principal Quantum Numbers
Institute of Scientific and Technical Information of China (English)
I.I. Guseinov; B.A. Mamedov
2004-01-01
By use of complete orthonormal sets of ψα exponential-type orbitals (ψα-ETOs, α = 1, 0,-1,-2, ...) the series expansion formulas for the noninteger n* Slater-type orbitals (NISTOs) in terms of integer n Slater-type orbitals(ISTOs) are derived. These formulas enable us to express the overlap integrals with NISTOs through the overlap integrals over ISTOs with the same and different screening constants. By calculating concrete cases the convergence of the series for arbitrary values of noninteger principal quantum numbers and screening constants of NISTOs and internuclear distances is tested. The accuracy of the results is quite high for quantum numbers, screening constants and location of STOs.
Quantum Reality, Complex Numbers and the Meteorological Butterfly Effect
Palmer, T N
2004-01-01
A not-too-technical version of the paper: "A Granular Permutation-based Representation of Complex Numbers and Quaternions: Elements of a Realistic Quantum Theory" - Proc. Roy. Soc.A (2004) 460, 1039-1055. The phrase "meteorological butterfly effect" is introduced to illustrate, not the familiar loss of predictability in low-dimensional chaos, but the much less familiar and much more radical paradigm of the finite-time predictability horizon, associated with upscale transfer of uncertainty in certain multi-scale systems (such as the 3D atmosphere). The meteorological butterfly effect is then used to provide a novel reinterpretation of complex algebra in terms of a family of self-similar permutation operators. Finally, a realistic deterministic reformulation of the foundations of quantum theory is given using this reinterpretation of complex numbers. Despite determinism, this reformulation has the emergent property of counterfactual indefiniteness.
Conservation of the K-quantum number in warm nuclei
Energy Technology Data Exchange (ETDEWEB)
Bracco, A.; Benzoni, G.; Leoni, S.; Blasi, N.; Camera, F.; Grassi, C.; Million, B.; Paleni, A.; Pignanelli, M.; Vigezzi, E.; Wieland, O. [Dipartimento di Fisica and INFN Sez. Milano, Via Celoria 16, 20133 Milan (Italy); Matsuo, M. [Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan); Doessing, T. [Niels Bohr Institute, Blegdamsvej 15-17, 2100, Copenhagen (Denmark); Herskind, B.; Hagemann, G.B.; Wilson, J. [Niels Bohr Institute, Blegdamsvej 15-17, 2100, Copenhagen (Denmark); Maj, A. [Niewodniczanski Institute of Nuclear Physics, Polish Academy of Science, 31-342 Cracow (Poland); Kmiecik, M. [Niewodniczanski Institute of Nuclear Physics, Polish Academy of Science, 31-342 Cracow (Poland); Lo Bianco, G. [Dipartimento di Fisica Universita di Camerino and INFN sez. Perugia, Via Madonna delle Carceri 9, 62032 Camerino (Italy); Petrache, C.M. [Dipartimento di Fisica Universita di Camerino and INFN sez. Perugia, Via Madonna delle Carceri 9, 62032 Camerino (Italy); Castoldi, M. [INFN sez. Genova, Genova (Italy); Zucchiati, A. [INFN sez. Genova, Genova (Italy); DeAngelis, G. [Laboratori Nazionali di Legnaro, viale dell' Universita 2, 35020 Legnaro (PD) (Italy); Napoli, D. [Laboratori Nazionali di Legnaro, viale dell' Universita 2, 35020 Legnaro (PD) (Italy); Curien, D. [Istitute de Recherches Subatomic, F-67037 Strasbourg Cedex 2 (France); Bednarczyk, P. [Niewodniczanski Institute of Nuclear Physics, Polish Academy of Science, 31-342 Cracow (Poland)]|[Istitute de Recherches Subatomic, F-67037 Strasbourg Cedex 2 (France)
2005-04-18
The selection rules on the K-quantum number in rapidly rotating warm nuclei are investigated analyzing quasi-continuum spectra feeding into low-K and high-K bands in {sup 163}Er. The data are compared to simulated spectra obtained using the band mixing model predictions including the residual interaction and a term representing the effect of the K-quantum number on the rotational energy. K-selection rules are found to be obeyed by the decay along excited unresolved rotational bands of heat energy up to around 1.2 MeV and angular momentum 30-bar =
Quantum random-number generator based on a photon-number-resolving detector
Ren, Min; Wu, E.; Liang, Yan; Jian, Yi; Wu, Guang; Zeng, Heping
2011-02-01
We demonstrated a high-efficiency quantum random number generator which takes inherent advantage of the photon number distribution randomness of a coherent light source. This scheme was realized by comparing the photon flux of consecutive pulses with a photon number resolving detector. The random bit generation rate could reach 2.4 MHz with a system clock of 6.0 MHz, corresponding to a random bit generation efficiency as high as 40%. The random number files passed all the stringent statistical tests.
Experimental measurement-device-independent quantum random-number generation
Nie, You-Qi; Guan, Jian-Yu; Zhou, Hongyi; Zhang, Qiang; Ma, Xiongfeng; Zhang, Jun; Pan, Jian-Wei
2016-12-01
The randomness from a quantum random-number generator (QRNG) relies on the accurate characterization of its devices. However, device imperfections and inaccurate characterizations can result in wrong entropy estimation and bias in practice, which highly affects the genuine randomness generation and may even induce the disappearance of quantum randomness in an extreme case. Here we experimentally demonstrate a measurement-device-independent (MDI) QRNG based on time-bin encoding to achieve certified quantum randomness even when the measurement devices are uncharacterized and untrusted. The MDI-QRNG is randomly switched between the regular randomness generation mode and a test mode, in which four quantum states are randomly prepared to perform measurement tomography in real time. With a clock rate of 25 MHz, the MDI-QRNG generates a final random bit rate of 5.7 kbps. Such implementation with an all-fiber setup provides an approach to construct a fully integrated MDI-QRNG with trusted but error-prone devices in practice.
Quantum Random Number Generation Using a Quanta Image Sensor
Directory of Open Access Journals (Sweden)
Emna Amri
2016-06-01
Full Text Available A new quantum random number generation method is proposed. The method is based on the randomness of the photon emission process and the single photon counting capability of the Quanta Image Sensor (QIS. It has the potential to generate high-quality random numbers with remarkable data output rate. In this paper, the principle of photon statistics and theory of entropy are discussed. Sample data were collected with QIS jot device, and its randomness quality was analyzed. The randomness assessment method and results are discussed.
Quantum Random Number Generation Using a Quanta Image Sensor
Amri, Emna; Felk, Yacine; Stucki, Damien; Ma, Jiaju; Fossum, Eric R.
2016-01-01
A new quantum random number generation method is proposed. The method is based on the randomness of the photon emission process and the single photon counting capability of the Quanta Image Sensor (QIS). It has the potential to generate high-quality random numbers with remarkable data output rate. In this paper, the principle of photon statistics and theory of entropy are discussed. Sample data were collected with QIS jot device, and its randomness quality was analyzed. The randomness assessment method and results are discussed. PMID:27367698
An ultrafast quantum random number generator based on quantum phase fluctuations
Xu, Feihu; Ma, Xiongfeng; Xu, He; Zheng, Haoxuan; Lo, Hoi-Kwong
2012-01-01
A quantum random number generator (QRNG) can generate true randomness by exploiting the fundamental indeterminism of quantum mechanics. Most approaches to QRNG employ single-photon detection technologies and are limited in speed. Here, we propose and experimentally demonstrate an ultrafast QRNG at a rate over 6 Gb/s based on the quantum phase fluctuations of a laser operating near threshold. Moreover, we consider a potential adversary who has partial knowledge on the raw data and discuss how one can rigorously remove such partial knowledge with post-processing. We quantify the quantum randomness through min-entropy by modeling our system, and employ two extractors, Trevisan's extractor and Toeplitz-hashing, to distill the randomness, which is information-theoretically provable. The simplicity and high-speed of our experimental setup show the feasibility of a robust, low-cost, high-speed QRNG.
Prime numbers, quantum field theory and the Goldbach conjecture
Sanchis-Lozano, Miguel-Angel; Navarro-Salas, Jose
2012-01-01
Motivated by the Goldbach and Polignac conjectures in Number Theory, we propose the factorization of a classical non-interacting real scalar field (on a two-cylindrical spacetime) as a product of either two or three (so-called primer) fields whose Fourier expansion exclusively contains prime modes. We undertake the canonical quantization of such primer fields and construct the corresponding Fock space by introducing creation operators $a_p^{\\dag}$ (labeled by prime numbers $p$) acting on the vacuum. The analysis of our model, based on the standard rules of quantum field theory, suggests intriguing connections between different topics in Number Theory, notably the Riemann hypothesis and the Goldbach and Polignac conjectures. Our analysis also suggests that the (non) renormalizability properties of the proposed model could be linked to the possible validity or breakdown of the Goldbach conjecture for large integer numbers.
A hybrid-type quantum random number generator
Hai-Qiang, Ma; Wu, Zhu; Ke-Jin, Wei; Rui-Xue, Li; Hong-Wei, Liu
2016-05-01
This paper proposes a well-performing hybrid-type truly quantum random number generator based on the time interval between two independent single-photon detection signals, which is practical and intuitive, and generates the initial random number sources from a combination of multiple existing random number sources. A time-to-amplitude converter and multichannel analyzer are used for qualitative analysis to demonstrate that each and every step is random. Furthermore, a carefully designed data acquisition system is used to obtain a high-quality random sequence. Our scheme is simple and proves that the random number bit rate can be dramatically increased to satisfy practical requirements. Project supported by the National Natural Science Foundation of China (Grant Nos. 61178010 and 11374042), the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China, and the Fundamental Research Funds for the Central Universities of China (Grant No. bupt2014TS01).
Matrix product purifications for canonical ensembles and quantum number distributions
Barthel, Thomas
2016-09-01
Matrix product purifications (MPPs) are a very efficient tool for the simulation of strongly correlated quantum many-body systems at finite temperatures. When a system features symmetries, these can be used to reduce computation costs substantially. It is straightforward to compute an MPP of a grand-canonical ensemble, also when symmetries are exploited. This paper provides and demonstrates methods for the efficient computation of MPPs of canonical ensembles under utilization of symmetries. Furthermore, we present a scheme for the evaluation of global quantum number distributions using matrix product density operators (MPDOs). We provide exact matrix product representations for canonical infinite-temperature states, and discuss how they can be constructed alternatively by applying matrix product operators to vacuum-type states or by using entangler Hamiltonians. A demonstration of the techniques for Heisenberg spin-1 /2 chains explains why the difference in the energy densities of canonical and grand-canonical ensembles decays as 1 /L .
Prime Numbers, Quantum Field Theory and the Goldbach Conjecture
Sanchis-Lozano, Miguel-Angel; Barbero G., J. Fernando; Navarro-Salas, José
2012-09-01
Motivated by the Goldbach conjecture in number theory and the Abelian bosonization mechanism on a cylindrical two-dimensional space-time, we study the reconstruction of a real scalar field as a product of two real fermion (so-called prime) fields whose Fourier expansion exclusively contains prime modes. We undertake the canonical quantization of such prime fields and construct the corresponding Fock space by introducing creation operators bp\\dag — labeled by prime numbers p — acting on the vacuum. The analysis of our model, based on the standard rules of quantum field theory and the assumption of the Riemann hypothesis, allows us to prove that the theory is not renormalizable. We also comment on the potential consequences of this result concerning the validity or breakdown of the Goldbach conjecture for large integer numbers.
Quantum entanglement of angular momentum states with quantum numbers up to 10,010.
Fickler, Robert; Campbell, Geoff; Buchler, Ben; Lam, Ping Koy; Zeilinger, Anton
2016-11-29
Photons with a twisted phase front carry a quantized amount of orbital angular momentum (OAM) and have become important in various fields of optics, such as quantum and classical information science or optical tweezers. Because no upper limit on the OAM content per photon is known, they are also interesting systems to experimentally challenge quantum mechanical prediction for high quantum numbers. Here, we take advantage of a recently developed technique to imprint unprecedented high values of OAM, namely spiral phase mirrors, to generate photons with more than 10,000 quanta of OAM. Moreover, we demonstrate quantum entanglement between these large OAM quanta of one photon and the polarization of its partner photon. To our knowledge, this corresponds to entanglement with the largest quantum number that has been demonstrated in an experiment. The results may also open novel ways to couple single photons to massive objects, enhance angular resolution, and highlight OAM as a promising way to increase the information capacity of a single photon.
Determination of the $X(3872)$ meson quantum numbers
Aaij, R; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Burducea, I; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Craik, D; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Oyanguren Campos, M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Dogaru, M; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Elsby, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Hill, D; Hoballah, M; Hombach, C; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Leverington, B; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lohn, S; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurice, E; Mazurov, A; McCarthy, J; McNulty, R; Mcnab, A; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B K; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Smith, M; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urner, D; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A
2013-01-01
The quantum numbers of the $X(3872)$ meson are determined to be $J^{PC} = 1^{++}$ based on angular correlations in $B^+\\to X(3872) K^+$ decays, where $X(3872)\\to \\pi^+\\pi^- J/\\psi$ and $J/\\psi \\to\\mu^+\\mu^-$. The data correspond to 1.0 fb$^{-1}$ of $pp$ collisions collected by the LHCb detector. The only alternative assignment allowed by previous measurements, $J^{PC}=2^{-+}$, is rejected with a confidence level equivalent to more than eight Gaussian standard deviations using the likelihood-ratio test in the full angular phase space. This result favors exotic explanations of the $X(3872)$ state.
Natural occupation numbers in two-electron quantum rings
Energy Technology Data Exchange (ETDEWEB)
Tognetti, Vincent, E-mail: vincent.tognetti@univ-rouen.fr [Normandy Univ., COBRA UMR 6014 & FR 3038, Université de Rouen, INSA Rouen, CNRS, 1 rue Tesniére, 76821 Mont Saint Aignan, Cedex (France); Loos, Pierre-François [Research School of Chemistry, Australian National University, Canberra ACT 2601 (Australia)
2016-02-07
Natural orbitals (NOs) are central constituents for evaluating correlation energies through efficient approximations. Here, we report the closed-form expression of the NOs of two-electron quantum rings, which are prototypical finite-extension systems and new starting points for the development of exchange-correlation functionals in density functional theory. We also show that the natural occupation numbers for these two-electron paradigms are in general non-vanishing and follow the same power law decay as atomic and molecular two-electron systems.
Natural occupation numbers in two-electron quantum rings
Tognetti, Vincent; Loos, Pierre-François
2016-02-01
Natural orbitals (NOs) are central constituents for evaluating correlation energies through efficient approximations. Here, we report the closed-form expression of the NOs of two-electron quantum rings, which are prototypical finite-extension systems and new starting points for the development of exchange-correlation functionals in density functional theory. We also show that the natural occupation numbers for these two-electron paradigms are in general non-vanishing and follow the same power law decay as atomic and molecular two-electron systems.
Natural occupation numbers in two-electron quantum rings.
Tognetti, Vincent; Loos, Pierre-François
2016-02-07
Natural orbitals (NOs) are central constituents for evaluating correlation energies through efficient approximations. Here, we report the closed-form expression of the NOs of two-electron quantum rings, which are prototypical finite-extension systems and new starting points for the development of exchange-correlation functionals in density functional theory. We also show that the natural occupation numbers for these two-electron paradigms are in general non-vanishing and follow the same power law decay as atomic and molecular two-electron systems.
Quantum state discrimination using the minimum average number of copies
Slussarenko, Sergei; Li, Jun-Gang; Campbell, Nicholas; Wiseman, Howard M; Pryde, Geoff J
2016-01-01
In the task of discriminating between nonorthogonal quantum states from multiple copies, the key parameters are the error probability and the resources (number of copies) used. Previous studies have considered the task of minimizing the average error probability for fixed resources. Here we consider minimizing the average resources for a fixed admissible error probability. We derive a detection scheme optimized for the latter task, and experimentally test it, along with schemes previously considered for the former task. We show that, for our new task, our new scheme outperforms all previously considered schemes.
Experimental quantum "Guess my Number" protocol using multiphoton entanglement
Zhang, J; Chen, T Y; Yang, T; Cabello, A; Pan, J W; Zhang, Jun; Bao, Xiao-Hui; Chen, Teng-Yun; Yang, Tao; Cabello, Adan; Pan, Jian-Wei
2007-01-01
We present an experimental demonstration of a modified version of the entanglement-assisted "Guess my Number" protocol for the reduction of communication complexity among three separated parties. The results of experimental measurements imply that the separated parties can compute a function of distributed inputs by exchanging less classical information than by using any classical strategy. And the results also demonstrate the advantages of entanglement-enhanced communication, which is very close to quantum communication. The advantages are based on the properties of Greenberger-Horne-Zeilinger states.
Fast quantum-optical random-number generators
Durt, Thomas; Belmonte, Carlos; Lamoureux, Louis-Philippe; Panajotov, Krassimir; Van den Berghe, Frederik; Thienpont, Hugo
2013-02-01
In this paper we study experimentally the properties of three types of quantum -optical random-number generators and characterize them using the available National Institute for Standards and Technology statistical tests, as well as four alternate tests. The generators are characterized by a trade-off between, on one hand, the rate of generation of random bits and, on the other hand, the degree of randomness of the series which they deliver. We describe various techniques aimed at maximizing this rate without diminishing the quality (degree of randomness) of the series generated by it.
A Random Number Generator Based on Quantum Entangled Photon Pairs
Institute of Scientific and Technical Information of China (English)
MA Hai-Qiang; WANG Su-Mei; ZHANG Da; CHANG Jun-Tao; JI Ling-Ling; HOU Yan-Xue; WU Ling-An
2004-01-01
A new scheme for a random number generator based on quantum entangled photon pairs is demonstrated.Signal photons produced by optical parametric down-conversion are detected at two single-photon detectors after transmission or reflection at a 50/50% beamsplitter, to form a truly random binary sequence. Their arrival is signalled by their twin idler photons, so that a cw laser source may be used instead of attenuated laser pulses.Coincidence measurement is employed to obtain the bit sequences, which are shown to fully satisfy the standard tests for randomness.
Quantum Random Numbers Guaranteed by Kochen-Specker Theorem
Um, Mark; Zhang, Xiang; Zhang, Junhua; Wang, Ye; Shen, Yang-Chao; Deng, Dong-Ling; Duan, Lu-Ming; Kim, Kihwan; CQI Team
2013-05-01
We present a random number generator certified by Kochen-Specker (KS) theorem with a trapped ion system. Outcomes of quantum theory are intrinsically random and can be used to produce genuine randomness. In real implementation, however, the true randomness is inevitably mingled with classical noise or control imperfection and cannot be decisively certified. The KS inequality differentiates the results of quantum mechanics from those of classical theory, non-contextual in nature. We demonstrate the experimental violations of the KS inequality, in particular, the Klyachko-Can-Binicioglu-Shumovsky (KCBS) inequality without the detection loophole and reasonably without the compatibility loophole. The violations are used to certify the randomness of a generated string. As a proof of principle, we produce 1 × 105 random numbers that contain 5.2 × 104 bits of minimum entropy. This work was supported by the National Basic Research Program of China Grant 2011CBA00300, 2011CBA00301, 2011CBA00302, the National Natural Science Foundation of China Grant 61073174, 61033001, 61061130540. KK acknowledges the support of the Thousand Young Talents plan.
Robust Quantum Random Number Generator Based on Avalanche Photodiodes
Wang, Fang-Xiang; Wang, Chao; Chen, Wei; Wang, Shuang; Lv, Fu-Sheng; He, De-Yong; Yin, Zhen-Qiang; Li, Hong-Wei; Guo, Guang-Can; Han, Zheng-Fu
2015-08-01
We propose and demonstrate a scheme to realize a high-efficiency truly quantum random number generator (RNG) at room temperature (RT). Using an effective extractor with simple time bin encoding method, the avalanche pulses of avalanche photodiode (APD) are converted into high-quality random numbers (RNs) that are robust to slow varying noise such as fluctuations of pulse intensity and temperature. A light source is compatible but not necessary in this scheme. Therefor the robustness of the system is effective enhanced. The random bits generation rate of this proof-of-principle system is 0.69 Mbps with double APDs and 0.34 Mbps with single APD. The results indicate that a high-speed RNG chip based on the scheme is potentially available with an integrable APD array.
From c-number to q-numbers the classical analogy in the history of quantum theory
Darrigol, Olivier
1992-01-01
The history of quantum theory is a maze of conceptual problems, through which Olivier Darrigol provides a lucid and learned guide, tracking the role of formal analogies between classical and quantum theory. From Planck's first introduction of the quantum of action to Dirac's formulation of quantum mechanics, Darrigol illuminates not only the history of quantum theory but also the role of analogies in scientific thinking and theory change. Unlike previous works, which have tended to focus on qualitative, global arguments, Darrigol's study follows the lines of mathematical reasoning and symbolizing and so is able to show the motivations of early quantum theorists more precisely—and provocatively—than ever before. Erudite and original, From c-Numbers to q-Numbers sets a new standard as a philosophically perceptive and mathematically precise history of quantum mechanics. For years to come it will influence historical and philosophical discussions of twentieth-century physics.
Miszczak, Jarosław Adam
2013-01-01
The presented package for the Mathematica computing system allows the harnessing of quantum random number generators (QRNG) for investigating the statistical properties of quantum states. The described package implements a number of functions for generating random states. The new version of the package adds the ability to use the on-line quantum random number generator service and implements new functions for retrieving lists of random numbers. Thanks to the introduced improvements, the new version provides faster access to high-quality sources of random numbers and can be used in simulations requiring large amount of random data. New version program summaryProgram title: TRQS Catalogue identifier: AEKA_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKA_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 18 134 No. of bytes in distributed program, including test data, etc.: 2 520 49 Distribution format: tar.gz Programming language: Mathematica, C. Computer: Any supporting Mathematica in version 7 or higher. Operating system: Any platform supporting Mathematica; tested with GNU/Linux (32 and 64 bit). RAM: Case-dependent Supplementary material: Fig. 1 mentioned below can be downloaded. Classification: 4.15. External routines: Quantis software library (http://www.idquantique.com/support/quantis-trng.html) Catalogue identifier of previous version: AEKA_v1_0 Journal reference of previous version: Comput. Phys. Comm. 183(2012)118 Does the new version supersede the previous version?: Yes Nature of problem: Generation of random density matrices and utilization of high-quality random numbers for the purpose of computer simulation. Solution method: Use of a physical quantum random number generator and an on-line service providing access to the source of true random
Proposed experiment for the quantum "Guess my number" protocol
Cabello, A; Cabello, Adan; Lopez-Tarrida, Antonio J.
2005-01-01
An experimental realization of the entanglement-assisted "Guess my number" protocol for the reduction of communication complexity, introduced by Steane and van Dam, would require producing and detecting three-qubit GHZ states with an efficiency eta > 0.70, which would require single photon detectors of efficiency sigma > 0.89. We propose a modification of the protocol which can be translated into a real experiment using present-day technology. In the proposed experiment, the quantum reduction of the multi-party communication complexity would require an efficiency eta > 0.05, achievable with detectors of sigma > 0.47, for four parties, and eta > 0.17 (sigma > 0.55) for three parties.
Von Neumann Normalisation of a Quantum Random Number Generator
Abbott, Alastair A
2011-01-01
In this paper we study von Neumann un-biasing normalisation for ideal and real quantum random number generators, operating on finite strings or infinite bit sequences. In the ideal cases one can obtain the desired un-biasing. This relies critically on the independence of the source, a notion we rigorously define for our model. In real cases, affected by imperfections in measurement and hardware, one cannot achieve a true un-biasing, but, if the bias "drifts sufficiently slowly", the result can be arbitrarily close to un-biasing. For infinite sequences, normalisation can both increase or decrease the (algorithmic) randomness of the generated sequences. A successful application of von Neumann normalisation-in fact, any un-biasing transformation-does exactly what it promises, un-biasing, one (among infinitely many) symptoms of randomness; it will not produce "true" randomness.
Efficient and robust quantum random number generation by photon number detection
Applegate, M. J.; Thomas, O.; Dynes, J. F.; Yuan, Z. L.; Ritchie, D. A.; Shields, A. J.
2015-08-01
We present an efficient and robust quantum random number generator based upon high-rate room temperature photon number detection. We employ an electric field-modulated silicon avalanche photodiode, a type of device particularly suited to high-rate photon number detection with excellent photon number resolution to detect, without an applied dead-time, up to 4 photons from the optical pulses emitted by a laser. By both measuring and modeling the response of the detector to the incident photons, we are able to determine the illumination conditions that achieve an optimal bit rate that we show is robust against variation in the photon flux. We extract random bits from the detected photon numbers with an efficiency of 99% corresponding to 1.97 bits per detected photon number yielding a bit rate of 143 Mbit/s, and verify that the extracted bits pass stringent statistical tests for randomness. Our scheme is highly scalable and has the potential of multi-Gbit/s bit rates.
Postprocessing for quantum random number generators: entropy evaluation and randomness extraction
Ma, Xiongfeng; Xu, Feihu; Xu, He; Tan, Xiaoqing; Qi, Bing; Lo, Hoi-Kwong
2012-01-01
Quantum random-number generators (QRNGs) can offer a means to generate information-theoretically provable random numbers, in principle. In practice, unfortunately, the quantum randomness is inevitably mixed with classical randomness due to classical noises. To distill this quantum randomness, one needs to quantify the randomness of the source and apply a randomness extractor. Here, we propose a generic framework for evaluating quantum randomness of real-life QRNGs by min-entropy, and apply it...
L^2-Betti numbers of rigid C*-tensor categories and discrete quantum groups (preprint)
DEFF Research Database (Denmark)
Kyed, David; Raum, Sven; Vaes, Stefaan;
2017-01-01
We compute the $L^2$-Betti numbers of the free $C^*$-tensor categories, which are the representation categories of the universal unitary quantum groups $A_u(F)$. We show that the $L^2$-Betti numbers of the dual of a compact quantum group $G$ are equal to the $L^2$-Betti numbers of the representat...
Efficient numerical solution of excitation number conserving quantum systems
Zhang, Zheyong; Ding, Jianping; Wang, Hui-Tian
2017-08-01
A system composed of a harmonic oscillator coupled to a two-level atom is one of the quantum systems, which can be completely solved. Although this system is simple, it is never a easy work for the quantum calculations, especially when the system consists of many such simple constituent parts. In this paper, we present a programming method, by which the calculation tasks for the matrix representation of the Hamiltonian of system can be automatically fulfilled. Coupled-cavity array systems are used to demonstrate our programming method. Some quantum properties of these systems are also discussed.
Nondigital implementation of the arithmetic of real numbers by means of quantum computer media
Litvinov, Grigori; Maslov, Viktor; Shpiz, Grigori
1999-01-01
In the framework of a model for quantum computer media, a nondigital implementation of the arithmetic of the real numbers is described. For this model, an elementary storage "cell" is an ensemble of qubits (quantum bits). It is found that to store an arbitrary real number it is sufficient to use four of these ensembles and the arithmetic operations can be implemented by fixed quantum circuits.
Yang, Yu-Guang; Xu, Peng; Yang, Rui; Zhou, Yi-Hua; Shi, Wei-Min
2016-01-29
Quantum information and quantum computation have achieved a huge success during the last years. In this paper, we investigate the capability of quantum Hash function, which can be constructed by subtly modifying quantum walks, a famous quantum computation model. It is found that quantum Hash function can act as a hash function for the privacy amplification process of quantum key distribution systems with higher security. As a byproduct, quantum Hash function can also be used for pseudo-random number generation due to its inherent chaotic dynamics. Further we discuss the application of quantum Hash function to image encryption and propose a novel image encryption algorithm. Numerical simulations and performance comparisons show that quantum Hash function is eligible for privacy amplification in quantum key distribution, pseudo-random number generation and image encryption in terms of various hash tests and randomness tests. It extends the scope of application of quantum computation and quantum information.
Yang, Yu-Guang; Xu, Peng; Yang, Rui; Zhou, Yi-Hua; Shi, Wei-Min
2016-01-01
Quantum information and quantum computation have achieved a huge success during the last years. In this paper, we investigate the capability of quantum Hash function, which can be constructed by subtly modifying quantum walks, a famous quantum computation model. It is found that quantum Hash function can act as a hash function for the privacy amplification process of quantum key distribution systems with higher security. As a byproduct, quantum Hash function can also be used for pseudo-random number generation due to its inherent chaotic dynamics. Further we discuss the application of quantum Hash function to image encryption and propose a novel image encryption algorithm. Numerical simulations and performance comparisons show that quantum Hash function is eligible for privacy amplification in quantum key distribution, pseudo-random number generation and image encryption in terms of various hash tests and randomness tests. It extends the scope of application of quantum computation and quantum information.
Yang, Yu-Guang; Xu, Peng; Yang, Rui; Zhou, Yi-Hua; Shi, Wei-Min
2016-01-01
Quantum information and quantum computation have achieved a huge success during the last years. In this paper, we investigate the capability of quantum Hash function, which can be constructed by subtly modifying quantum walks, a famous quantum computation model. It is found that quantum Hash function can act as a hash function for the privacy amplification process of quantum key distribution systems with higher security. As a byproduct, quantum Hash function can also be used for pseudo-random number generation due to its inherent chaotic dynamics. Further we discuss the application of quantum Hash function to image encryption and propose a novel image encryption algorithm. Numerical simulations and performance comparisons show that quantum Hash function is eligible for privacy amplification in quantum key distribution, pseudo-random number generation and image encryption in terms of various hash tests and randomness tests. It extends the scope of application of quantum computation and quantum information. PMID:26823196
Determination of the X(3872) meson quantum numbers
Gui, Bin
The Large Hadron Collider beauty (LHCb) is one of the several experiments located at the ring of the Large Hadron Collider (LHC) in Geneva. The LHCb detector is a single arm forward spectrometer and is designed to perform high precision measurements of Charge Parity (CP) violation parameters and rare decays of the beauty and charm hadrons. The detector was successfully operated at a center-of-mass energy of 7 TeV in 2010 and 2011 and at 8 TeV in 2012. Over 3 fb-1 of data has been collected by the LHCb. The LHCb experiment is also well suited for studies on hadron spectroscopy. Besides the well established mesons consisting of quark-antiquark pairs (qq), it has been proposed that "exotic" qqqq mesons could exist. One of the candidates for a four-quark state is the charmonium-like state X(3872) which was first observed by the Belle experiment in 2003. This narrow state has a mass of about 3872 MeV which is located in a region of excited charmonium states (cc). However its mass does not match to any theoretically predicted charmonium state. In order to investigate the nature of this anomalous state, we analyze its quantum number which is the key for its interpretation. The X(3872) events are reconstructed from B+ → X(3872)K+, where X(3872) → pi + pi J/psi, J/psi → mu+mu -; based on 1 fb-1 of 2011 data collected by LHCb detector. We implement a method which is guaranteed by statistics to be the most powerful way to discriminate between spin hypotheses; namely unbinned likelihood ratio test using full angular phase-space. The 5-dimensional analysis shows that 1++ hypothesis is preferred with overwhelming significance. The only alternative assignment allowed by the previous measurements, JPC = 2 -+, is rejected with a confidence level equivalent to more than eight Gaussian standard deviations. This result favors exotic explanations of the X(3872) state, such as a mesonic molecule or a tetraquark.
Large numbers hypothesis. IV - The cosmological constant and quantum physics
Adams, P. J.
1983-01-01
In standard physics quantum field theory is based on a flat vacuum space-time. This quantum field theory predicts a nonzero cosmological constant. Hence the gravitational field equations do not admit a flat vacuum space-time. This dilemma is resolved using the units covariant gravitational field equations. This paper shows that the field equations admit a flat vacuum space-time with nonzero cosmological constant if and only if the canonical LNH is valid. This allows an interpretation of the LNH phenomena in terms of a time-dependent vacuum state. If this is correct then the cosmological constant must be positive.
Large numbers hypothesis. IV - The cosmological constant and quantum physics
Adams, P. J.
1983-01-01
In standard physics quantum field theory is based on a flat vacuum space-time. This quantum field theory predicts a nonzero cosmological constant. Hence the gravitational field equations do not admit a flat vacuum space-time. This dilemma is resolved using the units covariant gravitational field equations. This paper shows that the field equations admit a flat vacuum space-time with nonzero cosmological constant if and only if the canonical LNH is valid. This allows an interpretation of the LNH phenomena in terms of a time-dependent vacuum state. If this is correct then the cosmological constant must be positive.
Quantum assembly semantics: The fallacious lingo of occupation numbers
Park, James L.
1991-01-01
The usual heuristic description of quantum mechanical assemblies features so-called “occupation numbers” interpreted quite literally. This essay critically compares that point of view with a more rigorous understanding of composite systems based upon a principal lesson of Einstein's paradox and Bell's inequality, viz., that it is fallacious to regard a subsystem as possessing or “occupying” any state whatever.
Effects of Dirac's Negative Energy Sea on Quantum Numbers
Jackiw, R.
1999-01-01
One route towards understanding both fractional charges and chiral anomalies delves into Dirac's negative energy sea. Usually we think of Dirac's negative energy sea as an unphysical construct, invented to render quantum field theory physically acceptable by hiding the negative energy solutions. I suggest that in fact physical consequences can be drawn from Dirac's construction.
Physics of lateral triple quantum-dot molecules with controlled electron numbers.
Hsieh, Chang-Yu; Shim, Yun-Pil; Korkusinski, Marek; Hawrylak, Pawel
2012-11-01
We review the recent progress in theory and experiments with lateral triple quantum dots with controlled electron numbers down to one electron in each dot. The theory covers electronic and spin properties as a function of topology, number of electrons, gate voltage and external magnetic field. The orbital Hund's rules and Nagaoka ferromagnetism, magnetic frustration and chirality, interplay of quantum interference and electron-electron interactions and geometrical phases are described and related to charging and transport spectroscopy. Fabrication techniques and recent experiments are covered, as well as potential applications of triple quantum-dot molecule in coherent control, spin manipulation and quantum computation.
Fault-tolerant quantum random-number generator certified by Majorana fermions
Deng, Dong-Ling; Duan, Lu-Ming
2013-07-01
Braiding of Majorana fermions gives accurate topological quantum operations that are intrinsically robust to noise and imperfection, providing a natural method to realize fault-tolerant quantum information processing. Unfortunately, it is known that braiding of Majorana fermions is not sufficient for the implementation of universal quantum computation. Here we show that topological manipulation of Majorana fermions provides the full set of operations required to generate random numbers by way of quantum mechanics and to certify its genuine randomness through violation of a multipartite Bell inequality. The result opens a perspective to apply Majorana fermions for the robust generation of certified random numbers, which has important applications in cryptography and other related areas.
Quantum random number generation using an on-chip plasmonic beamsplitter
Francis, Jason; Özdemir, Şahin K; Tame, Mark
2016-01-01
We report an experimental realisation of a quantum random number generator using a plasmonic beamsplitter. Free-space single photons are converted into propagating single surface plasmon polaritons on a gold stripe waveguide via a grating. The surface plasmons are then guided to a region where they are scattered into one of two possible outputs. The presence of a plasmonic excitation in a given output determines the value of a random bit generated from the quantum scattering process. Using a stream of single surface plasmons injected into the beamsplitter we achieve a quantum random number generation rate of 2.37 Mbits/s even in the presence of loss. We characterise the quality of the random number sequence generated, finding it to be comparable to sequences from other quantum photonic-based devices. The compact nature of our nanophotonic device makes it suitable for tight integration in on-chip applications, such as in quantum computing and communication schemes.
Quantum random number generation using an on-chip plasmonic beamsplitter
Francis, Jason T.; Zhang, Xia; Özdemir, Şahin K.; Tame, Mark
2017-09-01
We report an experimental realisation of a quantum random number generator using a plasmonic beamsplitter. Free-space single photons are converted into propagating single surface plasmon polaritons on a gold stripe waveguide via a grating. The surface plasmons are then guided to a region where they are scattered into one of two possible outputs. The presence of a plasmonic excitation in a given output determines the value of a random bit generated from the quantum scattering process. Using a stream of single surface plasmons injected into the beamsplitter we achieve a quantum random number generation rate of 2.37 Mbits s-1 even in the presence of loss. We characterise the quality of the random number sequence generated, finding it to be comparable to sequences from other quantum photonic-based devices. The compact nature of our nanophotonic device makes it suitable for tight integration in on-chip applications, such as in quantum computing and communication schemes.
Postprocessing for quantum random-number generators: Entropy evaluation and randomness extraction
Ma, Xiongfeng; Xu, Feihu; Xu, He; Tan, Xiaoqing; Qi, Bing; Lo, Hoi-Kwong
2013-06-01
Quantum random-number generators (QRNGs) can offer a means to generate information-theoretically provable random numbers, in principle. In practice, unfortunately, the quantum randomness is inevitably mixed with classical randomness due to classical noises. To distill this quantum randomness, one needs to quantify the randomness of the source and apply a randomness extractor. Here, we propose a generic framework for evaluating quantum randomness of real-life QRNGs by min-entropy, and apply it to two different existing quantum random-number systems in the literature. Moreover, we provide a guideline of QRNG data postprocessing for which we implement two information-theoretically provable randomness extractors: Toeplitz-hashing extractor and Trevisan's extractor.
Sharp transitions in low-number quantum dots Bayesian magnetometry
Mazurek, Paweł; Horodecki, Michał; Czekaj, Łukasz; Horodecki, Paweł
2016-01-01
We consider Bayesian estimate of static magnetic field, characterized by a prior Gaussian probability distribution, in systems of a few electron quantum dot spins interacting with infinite temperature spin environment via hyperfine interaction. Sudden transitions among optimal states and measurements are observed. Usefulness of measuring occupation levels is shown for all times of the evolution, together with the role of entanglement in the optimal scenario. For low values of magnetic field, memory effects stemming from the interaction with environment provide limited metrological advantage. PMID:27686417
InGaN/GaN laser diode characterization and quantum well number effect
Institute of Scientific and Technical Information of China (English)
S. M. Thahab; H. Abu Hassan; Z. Hassan
2009-01-01
The effect of quantum well number on the quantum efficiency and temperature characteristics of In-GaN/GaN laser diodes (LDs) is determined and investigated. The 3-nm-thick In0.13Ga0.87TN wells and two 6-nm-thick GaN barriers are selected as an active region for Fabry-Perot (FP) cavity waveguide edge emitting LD. The internal quantum efficiency and internal optical loss coefficient are extracted through the simulation software for single, double, and triple InGaN/GaN quantum wells. The effects of device temperature on the laser threshold current, external differential quantum efficiency (DQE), and output wavelength are also investigated. The external quantum efficiency and characteristic temperature are improved significantly when the quantum well number is two. It is indicated that the laser structures with many quantum wells will suffer from the inhomogeneity of the carrier density within the quantum well itself which affects the LD performance.
Generation of a superposition of odd photon number states for quantum information networks
DEFF Research Database (Denmark)
Neergaard-Nielsen, Jonas Schou; Nielsen, B.; Hettich, C.
2006-01-01
Quantum information networks, quantum memories, quantum repeaters, linear optics quantum computers Udgivelsesdato: 25 August......Quantum information networks, quantum memories, quantum repeaters, linear optics quantum computers Udgivelsesdato: 25 August...
On the number of entangled qubits in quantum wireless sensor networks
Mohapatra, Amit Kumar; Balakrishnan, S.
2016-08-01
Wireless sensor networks (WSNs) can take the advantages by utilizing the security schemes based on the concepts of quantum computation and cryptography. However, quantum wireless sensor networks (QWSNs) are shown to have many practical constraints. One of the constraints is the number of entangled qubits which is very high in the quantum security scheme proposed by [Nagy et al., Nat. Comput. 9 (2010) 819]. In this work, we propose a modification of the security scheme introduced by Nagy et al. and hence the reduction in the number of entangled qubits is shown. Further, the modified scheme can overcome some of the constraints in the QWSNs.
Efficient Raman generation in a waveguide: A route to ultrafast quantum random number generation
England, D. G.; Bustard, P. J.; Moffatt, D. J.; Nunn, J.; Lausten, R.; Sussman, B. J.
2014-02-01
The inherent uncertainty in quantum mechanics offers a source of true randomness which can be used to produce unbreakable cryptographic keys. We discuss the development of a high-speed random number generator based on the quantum phase fluctuations in spontaneously initiated stimulated Raman scattering (SISRS). We utilize the tight confinement and long interaction length available in a Potassium Titanyl Phosphate waveguide to generate highly efficient SISRS using nanojoule pulse energies, reducing the high pump power requirements of the previous approaches. We measure the random phase of the Stokes output using a simple interferometric setup to yield quantum random numbers at 145 Mbps.
A generator for unique quantum random numbers based on vacuum states
Gabriel, Christian; Wittmann, Christoffer; Sych, Denis; Dong, Ruifang; Mauerer, Wolfgang; Andersen, Ulrik L.; Marquardt, Christoph; Leuchs, Gerd
2010-10-01
Random numbers are a valuable component in diverse applications that range from simulations over gambling to cryptography. The quest for true randomness in these applications has engendered a large variety of different proposals for producing random numbers based on the foundational unpredictability of quantum mechanics. However, most approaches do not consider that a potential adversary could have knowledge about the generated numbers, so the numbers are not verifiably random and unique. Here we present a simple experimental setup based on homodyne measurements that uses the purity of a continuous-variable quantum vacuum state to generate unique random numbers. We use the intrinsic randomness in measuring the quadratures of a mode in the lowest energy vacuum state, which cannot be correlated to any other state. The simplicity of our source, combined with its verifiably unique randomness, are important attributes for achieving high-reliability, high-speed and low-cost quantum random number generators.
Theory, Methods and Tools for Statistical Testing of Pseudo and Quantum Random Number Generators
Jakobsson, Krister Sune
2014-01-01
Statistical random number testing is a well studied field focusing on pseudo-random number generators, that is to say algorithms that produce random-looking sequences of numbers. These generators tend to have certain kinds of flaws, which have been exploited through rigorous testing. Such testing has led to advancements, and today pseudo random number generators are both very high-speed and produce seemingly random numbers. Recent advancements in quantum physics have opened up new doors, wher...
Quantum non-demolition measurement of photon number using weak nonlinearities
Energy Technology Data Exchange (ETDEWEB)
Gerry, Christopher C. [Department of Physics and Astronomy, Lehman College, City University of New York, Bronx, NY 10468-1589 (United States)], E-mail: christopher.gerry@lehman.cuny.edu; Bui, Trung [Department of Physics and Astronomy, Lehman College, City University of New York, Bronx, NY 10468-1589 (United States)
2008-12-08
We propose an alternative method for the quantum non-demolition measurement of photon numbers wherein weak cross-Kerr nonlinearities are to be used. The usual approach to quantum non-demolition measurements of quantum number involves encoding the photon number, through a cross-Kerr interaction, into a phase shift of a probe coherent state which is then detected through balanced homodyning. Weak nonlinearities produce small phase shifts which are difficult to detect and distinguish. In the method we propose, unbalanced homodyning acts as a displacement operator on the probe beam coherent state such that the cross-Kerr interaction encodes the photon number into the amplitude of a new coherent state. The value of the photon number can be determined by inefficient photon counting on the new coherent state. Our proposed method requires fewer resources than does the usual approach.
Banerjee, Dhruba; Bag, Bidhan Chandra; Banik, Suman Kumar; Ray, Deb Shankar
2003-01-01
Based on a coherent state representation of noise operator and an ensemble averaging procedure we have recently developed [Phys. Rev. E {\\bf 65}, 021109 (2002); {\\it ibid.} 051106 (2002)] a scheme for quantum Brownian motion to derive the equations for time evolution of {\\it true} probability distribution functions in $c$-number phase space. We extend the treatment to develop a numerical method for generation of $c$-number noise with arbitrary correlation and strength at any temperature, alon...
Quantum Flows for Secret Key Distribution in the Presence of the Photon Number Splitting Attack
Directory of Open Access Journals (Sweden)
Luis A. Lizama-Pérez
2014-06-01
Full Text Available Physical implementations of quantum key distribution (QKD protocols, like the Bennett-Brassard (BB84, are forced to use attenuated coherent quantum states, because the sources of single photon states are not functional yet for QKD applications. However, when using attenuated coherent states, the relatively high rate of multi-photonic pulses introduces vulnerabilities that can be exploited by the photon number splitting (PNS attack to brake the quantum key. Some QKD protocols have been developed to be resistant to the PNS attack, like the decoy method, but those define a single photonic gain in the quantum channel. To overcome this limitation, we have developed a new QKD protocol, called ack-QKD, which is resistant to the PNS attack. Even more, it uses attenuated quantum states, but defines two interleaved photonic quantum flows to detect the eavesdropper activity by means of the quantum photonic error gain (QPEG or the quantum bit error rate (QBER. The physical implementation of the ack-QKD is similar to the well-known BB84 protocol.
Photon-number-resolving detectors and their role in quantifying quantum correlations
Tan, Si-Hui; Krivitsky, Leonid A.; Englert, Berthold-Georg
2016-09-01
Harnessing entanglement as a resource is the main workhorse of many quantum protocols, and establishing the degree of quantum correlations of quantum states is an important certification process that has to take place prior to any implementations of these quantum protocols. The emergence of photodetectors known as photon-number-resolving detectors (PNRDs) that allow for accounting of photon numbers simultaneously arriving at the detectors has led to the need for modeling accurately and applying them for use in the certification process. Here we study the variance of difference of photocounts (VDP) of two PNRDs, which is one measure of quantum correlations, under the effects of loss and saturation. We found that it would be possible to distinguish between the classical correlation of a two-mode coherent state and the quantum correlation of a twin-beam state within some photo count regime of the detector. We compare the behavior of two such PNRDs. The first for which the photocount statistics follow a binomial distribution accounting for losses, and the second is that of Agarwal, Vogel, and Sperling for which the incident beam is first split and then separately measured by ON/OFF detectors. In our calculations, analytical expressions are derived for the variance of difference where possible. In these cases, Gauss' hypergeometric function appears regularly, giving an insight to the type of quantum statistics the photon counting gives in these PNRDs. The different mechanisms of the two types of PNRDs leads to quantitative differences in their VDP.
A generator for unique quantum random numbers based on vacuum states
DEFF Research Database (Denmark)
Gabriel, C.; Wittmann, C.; Sych, D.
2010-01-01
unpredictability of quantum mechanics(4-11). However, most approaches do not consider that a potential adversary could have knowledge about the generated numbers, so the numbers are not verifiably random and unique(12-15). Here we present a simple experimental setup based on homodyne measurements that uses...... the purity of a continuous-variable quantum vacuum state to generate unique random numbers. We use the intrinsic randomness in measuring the quadratures of a mode in the lowest energy vacuum state, which cannot be correlated to any other state. The simplicity of our source, combined with its verifiably...... unique randomness, are important attributes for achieving high-reliability, high-speed and low-cost quantum random number generators....
Real time demonstration of high bitrate quantum random number generation with coherent laser light
Symul, T; Lam, P K; 10.1063/1.3597793
2011-01-01
We present a random number generation scheme that uses broadband measurements of the vacuum field contained in the radio-frequency sidebands of a single-mode laser. Even though the measurements may contain technical noise, we show that suitable algorithms can transform the digitized photocurrents into a string of random numbers that can be made arbitrarily correlated with a subset of the quantum fluctuations (high quantum correlation regime) or arbitrarily immune to environmental fluctuations (high environmental immunity). We demonstrate up to 2 Gbps of real time random number generation that were verified using standard randomness tests.
DEFF Research Database (Denmark)
Lorke, Michael; Nielsen, Torben Roland; Mørk, Jesper
2011-01-01
A microscopic theory is used to study the dynamical properties of semiconductor quantum dot based nanocavity laser systems. The carrier kinetics and photon populations are determined using a fully quantum mechanical treatment of the light‐matter coupling. In this work, we investigate the dependen...... of the modulation response in such devices on the number of emitters coupled to the cavity mode. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)...
The generation of 68 Gbps quantum random number by measuring laser phase fluctuations
Energy Technology Data Exchange (ETDEWEB)
Nie, You-Qi; Liu, Yang; Zhang, Jun, E-mail: zhangjun@ustc.edu.cn; Pan, Jian-Wei [Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Huang, Leilei; Payne, Frank [Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ (United Kingdom)
2015-06-15
The speed of a quantum random number generator is essential for practical applications, such as high-speed quantum key distribution systems. Here, we push the speed of a quantum random number generator to 68 Gbps by operating a laser around its threshold level. To achieve the rate, not only high-speed photodetector and high sampling rate are needed but also a very stable interferometer is required. A practical interferometer with active feedback instead of common temperature control is developed to meet the requirement of stability. Phase fluctuations of the laser are measured by the interferometer with a photodetector and then digitalized to raw random numbers with a rate of 80 Gbps. The min-entropy of the raw data is evaluated by modeling the system and is used to quantify the quantum randomness of the raw data. The bias of the raw data caused by other signals, such as classical and detection noises, can be removed by Toeplitz-matrix hashing randomness extraction. The final random numbers can pass through the standard randomness tests. Our demonstration shows that high-speed quantum random number generators are ready for practical usage.
The generation of 68 Gbps quantum random number by measuring laser phase fluctuations
Nie, You-Qi; Huang, Leilei; Liu, Yang; Payne, Frank; Zhang, Jun; Pan, Jian-Wei
2015-06-01
The speed of a quantum random number generator is essential for practical applications, such as high-speed quantum key distribution systems. Here, we push the speed of a quantum random number generator to 68 Gbps by operating a laser around its threshold level. To achieve the rate, not only high-speed photodetector and high sampling rate are needed but also a very stable interferometer is required. A practical interferometer with active feedback instead of common temperature control is developed to meet the requirement of stability. Phase fluctuations of the laser are measured by the interferometer with a photodetector and then digitalized to raw random numbers with a rate of 80 Gbps. The min-entropy of the raw data is evaluated by modeling the system and is used to quantify the quantum randomness of the raw data. The bias of the raw data caused by other signals, such as classical and detection noises, can be removed by Toeplitz-matrix hashing randomness extraction. The final random numbers can pass through the standard randomness tests. Our demonstration shows that high-speed quantum random number generators are ready for practical usage.
Random number generators tested on quantum Monte Carlo simulations.
Hongo, Kenta; Maezono, Ryo; Miura, Kenichi
2010-08-01
We have tested and compared several (pseudo) random number generators (RNGs) applied to a practical application, ground state energy calculations of molecules using variational and diffusion Monte Carlo metheds. A new multiple recursive generator with 8th-order recursion (MRG8) and the Mersenne twister generator (MT19937) are tested and compared with the RANLUX generator with five luxury levels (RANLUX-[0-4]). Both MRG8 and MT19937 are proven to give the same total energy as that evaluated with RANLUX-4 (highest luxury level) within the statistical error bars with less computational cost to generate the sequence. We also tested the notorious implementation of linear congruential generator (LCG), RANDU, for comparison.
Gaidash, A. A.; Egorov, V. I.; Gleim, A. V.
2016-08-01
Quantum cryptography allows distributing secure keys between two users so that any performed eavesdropping attempt would be immediately discovered. However, in practice an eavesdropper can obtain key information from multi-photon states when attenuated laser radiation is used as a source of quantum states. In order to prevent actions of an eavesdropper, it is generally suggested to implement special cryptographic protocols, like decoy states or SARG04. In this paper, we describe an alternative method based on monitoring photon number statistics after detection. We provide a useful rule of thumb to estimate approximate order of difference of expected distribution and distribution in case of attack. Formula for calculating a minimum value of total pulses or time-gaps to resolve attack is shown. Also formulas for actual fraction of raw key known to Eve were derived. This method can therefore be used with any system and even combining with mentioned special protocols.
Significance of the Formal Quantum Number in the Highly Excited Vibration of the DCN Molecule
Institute of Scientific and Technical Information of China (English)
郑敦胜; 吴国祯
2002-01-01
For the eigenstates of the highly excited vibration of the simple molecule DCN with two stretching modes, a classical approach in a multi-dimensional coset phase space is employed to show that the formal quantum numbers are related to regular or 1east "irregular" trajectories, with zero or least Lyapunov exponents, and are always located in the inner regions of the phase space. This property reflects that they are the approximate constants of motion. It is also demonstrated that formal quantum numbers correspond to the significant phase space density.
A novel quantum random number generation algorithm used by smartphone camera
Wu, Nan; Wang, Kun; Hu, Haixing; Song, Fangmin; Li, Xiangdong
2015-05-01
We study an efficient algorithm to extract quantum random numbers (QRN) from the raw data obtained by charge-coupled device (CCD) or complementary metal-oxide semiconductor (CMOS) based sensors, like a camera used in a commercial smartphone. Based on NIST statistical test for random number generators, the proposed algorithm has a high QRN generation rate and high statistical randomness. This algorithm provides a kind of simple, low-priced and reliable devices as a QRN generator for quantum key distribution (QKD) or other cryptographic applications.
Novel pseudo-random number generator based on quantum random walks
Yang, Yu-Guang; Zhao, Qian-Qian
2016-02-01
In this paper, we investigate the potential application of quantum computation for constructing pseudo-random number generators (PRNGs) and further construct a novel PRNG based on quantum random walks (QRWs), a famous quantum computation model. The PRNG merely relies on the equations used in the QRWs, and thus the generation algorithm is simple and the computation speed is fast. The proposed PRNG is subjected to statistical tests such as NIST and successfully passed the test. Compared with the representative PRNG based on quantum chaotic maps (QCM), the present QRWs-based PRNG has some advantages such as better statistical complexity and recurrence. For example, the normalized Shannon entropy and the statistical complexity of the QRWs-based PRNG are 0.999699456771172 and 1.799961178212329e-04 respectively given the number of 8 bits-words, say, 16Mbits. By contrast, the corresponding values of the QCM-based PRNG are 0.999448131481064 and 3.701210794388818e-04 respectively. Thus the statistical complexity and the normalized entropy of the QRWs-based PRNG are closer to 0 and 1 respectively than those of the QCM-based PRNG when the number of words of the analyzed sequence increases. It provides a new clue to construct PRNGs and also extends the applications of quantum computation.
Quantum-like Chaos in Prime Number Distribution and in Turbulent Fluid Flows
Selvam, A M
2000-01-01
Recent studies indicate a close association between the distribution of prime numbers and quantum mechanical laws governing the subatomic dynamics of quantum systems such as the electron or the photon. Number theoretical concepts are intrinsically related to the quantitative description of dynamical systems of all scales ranging from the microscopic subatomic dynamics to macroscale turbulent fluid flows such as the atmospheric flows. It is now recognised that Cantorian fractal spacetime characterise all dynamical systems in nature. A cell dynamical system model developed by the author shows that the continuum dynamics of turbulent fluid flows consist of a broadband continuum spectrum of eddies which follow quantumlike mechanical laws. The model concepts enable to show that the continuum real number field contains unique structures, namely prime numbers which are analogous to the dominant eddies in the eddy continuum in turbulent fluid flows. In this paper it is shown that the prime number frequency spectrum f...
Quantum dynamics for classical systems with applications of the number operator
Bagarello, Fabio
2013-01-01
Mathematics is increasingly applied to classical problems in finance, biology, economics, and elsewhere. Quantum Dynamics for Classical Systems describes how quantum tools—the number operator in particular—can be used to create dynamical systems in which the variables are operator-valued functions and whose results explain the presented model. The book presents mathematical results and their applications to concrete systems and discusses the methods used, results obtained, and techniques developed for the proofs of the results. The central ideas of number operators are illuminated while avoiding excessive technicalities that are unnecessary for understanding and learning the various mathematical applications. The presented dynamical systems address a variety of contexts and offer clear analyses and explanations of concluded results. Additional features in Quantum Dynamics for Classical Systems include: Applications across diverse fields including stock markets and population migration as well as a uniqu...
Waveguide photon-number-resolving detectors for quantum photonic integrated circuits
Sahin, D; Zhou, Z; Jahanmirinejad, S; Mattioli, F; Leoni, R; Beetz, J; Lermer, M; Kamp, M; Höfling, S; Fiore, A
2013-01-01
Quantum photonic integration circuits are a promising approach to scalable quantum processing with photons. Waveguide single-photon-detectors (WSPDs) based on superconducting nanowires have been recently shown to be compatible with single-photon sources for a monolithic integration. While standard WSPDs offer single-photon sensitivity, more complex superconducting nanowire structures can be configured to have photon-number-resolving capability. In this work, we present waveguide photon-number-resolving detectors (WPNRDs) on GaAs/Al0.75Ga0.25As ridge waveguides based on a series connection of nanowires. The detection of 0-4 photons has been demonstrated with a four-wire WPNRD, having a single electrical read-out. A device quantum efficiency ~24 % is reported at 1310 nm for the TE polarization.
Multi-bit quantum random number generation by measuring positions of arrival photons
Yan, Qiurong; Zhao, Baosheng; Liao, Qinghong; Zhou, Nanrun
2014-10-01
We report upon the realization of a novel multi-bit optical quantum random number generator by continuously measuring the arrival positions of photon emitted from a LED using MCP-based WSA photon counting imaging detector. A spatial encoding method is proposed to extract multi-bits random number from the position coordinates of each detected photon. The randomness of bits sequence relies on the intrinsic randomness of the quantum physical processes of photonic emission and subsequent photoelectric conversion. A prototype has been built and the random bit generation rate could reach 8 Mbit/s, with random bit generation efficiency of 16 bits per detected photon. FPGA implementation of Huffman coding is proposed to reduce the bias of raw extracted random bits. The random numbers passed all tests for physical random number generator.
Maximization of Extractable Randomness in a Quantum Random-Number Generator
Haw, J. Y.; Assad, S. M.; Lance, A. M.; Ng, N. H. Y.; Sharma, V.; Lam, P. K.; Symul, T.
2015-05-01
The generation of random numbers via quantum processes is an efficient and reliable method to obtain true indeterministic random numbers that are of vital importance to cryptographic communication and large-scale computer modeling. However, in realistic scenarios, the raw output of a quantum random-number generator is inevitably tainted by classical technical noise. The integrity of the device can be compromised if this noise is tampered with or even controlled by some malicious party. To safeguard against this, we propose and experimentally demonstrate an approach that produces side-information-independent randomness that is quantified by min-entropy conditioned on this classical noise. We present a method for maximizing the conditional min entropy of the number sequence generated from a given quantum-to-classical-noise ratio. The detected photocurrent in our experiment is shown to have a real-time random-number generation rate of 14 (Mb i t /s )/MHz . The spectral response of the detection system shows the potential to deliver more than 70 Gbit /s of random numbers in our experimental setup.
How do quantum numbers generally vary in the adiabatic transformation of an ideal gas?
Yarman, T.; L. Kholmetskii, A.
2011-10-01
We continue to analyse the known law of adiabatic transformation for an ideal gas PV5/3 = Constant, where P is the pressure and V is the volume, and following the approach of non-relativistic quantum mechanics which we suggested in a previous work (Yarman et al. 2010 Int. J. Phys. Sci. 5 1524). We explicitly determine the constant for the general parallelepiped geometry of a container. We also disclose how the quantum numbers associated with molecules of an ideal gas vary through an arbitrary adiabatic transformation. Physical implications of the results obtained are discussed.
How do quantum numbers generally vary in the adiabatic transformation of an ideal gas?
Institute of Scientific and Technical Information of China (English)
T. Yarman; A. L. Kholmetskii
2011-01-01
We continue to analyse the known law of adiabatic transformation for an ideal gas PV5/3 =Constant,where P is the pressure and V is the volume,and following the approach of non-relativistic quantum mechanics which we suggested in a previous work (Yarman et al.2010 Int.J.Phys.Sci.5 1524).We explicitly determine the constant for the general parallelepiped geometry of a container.We also disclose how the quantum numbers associated with molecules of an ideal gas vary through an arbitrary adiabatic transformation.Physical implications of the results obtained are discussed.
Attacks exploiting deviation of mean photon number in quantum key distribution and coin tossing
Sajeed, Shihan; Radchenko, Igor; Kaiser, Sarah; Bourgoin, Jean-Philippe; Pappa, Anna; Monat, Laurent; Legré, Matthieu; Makarov, Vadim
2015-03-01
The security of quantum communication using a weak coherent source requires an accurate knowledge of the source's mean photon number. Finite calibration precision or an active manipulation by an attacker may cause the actual emitted photon number to deviate from the known value. We model effects of this deviation on the security of three quantum communication protocols: the Bennett-Brassard 1984 (BB84) quantum key distribution (QKD) protocol without decoy states, Scarani-Acín-Ribordy-Gisin 2004 (SARG04) QKD protocol, and a coin-tossing protocol. For QKD we model both a strong attack using technology possible in principle and a realistic attack bounded by today's technology. To maintain the mean photon number in two-way systems, such as plug-and-play and relativistic quantum cryptography schemes, bright pulse energy incoming from the communication channel must be monitored. Implementation of a monitoring detector has largely been ignored so far, except for ID Quantique's commercial QKD system Clavis2. We scrutinize this implementation for security problems and show that designing a hack-proof pulse-energy-measuring detector is far from trivial. Indeed, the first implementation has three serious flaws confirmed experimentally, each of which may be exploited in a cleverly constructed Trojan-horse attack. We discuss requirements for a loophole-free implementation of the monitoring detector.
Number-Phase Wigner Representation for Scalable Stochastic Simulations of Controlled Quantum Systems
Hush, M R; Hope, J J
2011-01-01
Simulation of conditional master equations is important to describe systems under continuous measurement and for the design of control strategies in quantum systems. For large bosonic systems, such as BEC and atom lasers, full quantum field simulations must rely on scalable stochastic methods whose convergence time is restricted by the use of representations based on coherent states. Here we show that typical measurements on atom-optical systems have a common form that allows for an efficient simulation using the number-phase Wigner (NPW) phase-space representation. We demonstrate that a stochastic method based on the NPW can converge over an order of magnitude longer and more precisely than its coherent equivalent. This opens the possibility of realistic simulations of controlled multi-mode quantum systems.
Acin, A; Scarani, V; Acin, Antonio; Gisin, Nicolas; Scarani, Valerio
2004-01-01
A new class of quantum cryptography (QC) protocols that are robust against the most general photon number splitting attacks in a weak coherent pulse implementation has been recently proposed. In this article we give a quite exhaustive analysis of several eavesdropping attacks on these schemes. The eavesdropper (Eve) is supposed to have unlimited technological power while the honest parties (Alice and Bob) use present day technology, in particular an attenuated laser as an approximation of a single-photon source. They exploit the nonorthogonality of quantum states for decreasing the information accessible to Eve in the multi-photon pulses accidentally produced by the imperfect source. An implementation of some of these protocols using present day technology allow for a secure key distribution up to distances of $\\sim$ 150 km. We also show that strong-pulse implementations, where a strong pulse is included as a reference, allow for key distribution robust against photon number splitting attacks.
Niwa, Kazuki
2016-01-01
Quantum yield (QY), which is defined as the probability of photon production by a single bio/chemiluminescence reaction, is an important factor to characterize luminescence light intensity emitted diffusively from the reaction solution mixture. Here, methods to measure number of photons to determine QY according to the techniques of national radiometry standards are described. As an example, experiments using firefly bioluminescence reactions are introduced.
Energy Technology Data Exchange (ETDEWEB)
Barrett, B.R. (Department of Physics, University of Arizona, Tucson, Arizona 85719 (United States)); Casten, R.F. (Department of Physics, Brookhaven National Laboratory, Upton, New York 11973 (United States)); Ginocchio, J.N. (Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)); Seligman, T. (Department of Physics, Universidad Autonoma de Mexico, Guemavaca (Mexico)); Weidenmueller, H.A. (Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany))
1992-04-01
A recent publication claimed incomplete mixing of states with different {ital K} quantum numbers in the neutron resonance region. We discuss the theoretical implications of such a claim and show that it leads to serious discrepancies with the statistical model. We, therefore, reexamine the experimental data on which such a claim is based. The totality of the evidence invalidates the claim that {ital K} mixing in the resonance region is incomplete.
Effect of the number of stacking layers on the characteristics of quantum-dash lasers
Khan, Mohammed Zahed Mustafa
2011-01-01
A theoretical model is evaluated to investigate the characteristics of InAs/InP quantum dash (Qdash) lasers as a function of the stack number. The model is based on multimode carrier-photon rate equations and accounts for both inhomogeneous and homogeneous broadenings of the optical gain. The numerical results show a non monotonic increase in the threshold current density and a red shift in the lasing wavelength on increasing the stack number, which agrees well with reported experimental results. This observation may partly be attributed to an increase of inhomogeneity in the active region. © 2011 Optical Society of America.
54 Gbps real time quantum random number generator with simple implementation
Yang, Jie; Liu, Jinlu; Su, Qi; Li, Zhengyu; Fan, Fan; Xu, Bingjie; Guo, Hong
2016-11-01
We present a random number generation scheme based on measuring the phase fluctuations of a laser with a simple and compact experimental setup. A simple model is established to analyze the randomness and the simulation result based on this model fits well with the experiment data. After the analog to digital sampling and suitable randomness extraction integrated in the field programmable gate array, the final random bits are delivered to a PC, realizing a 5.4 Gbps real time quantum random number generation. The final random bit sequences have passed all the NIST and DIEHARD tests.
Effect of the number of stacking layers on the characteristics of quantum-dash lasers
Khan, Mohammed Zahed Mustafa
2011-06-27
A theoretical model is evaluated to investigate the characteristics of InAs/InP quantum dash (Qdash) lasers as a function of the stack number. The model is based on multimode carrier-photon rate equations and accounts for both inhomogeneous and homogeneous broadenings of the optical gain. The numerical results show a non monotonic increase in the threshold current density and a red shift in the lasing wavelength on increasing the stack number, which agrees well with reported experimental results. This observation may partly be attributed to an increase of inhomogeneity in the active region.
Cantorian Fractal Patterns, Quantum-Like Chaos and Prime Numbers in Atmospheric Flows
Selvam, A M; Fadnavis, Suvarna
1998-01-01
Atmospheric flows exhibit cantorian fractal space-time fluctuations signifying long-range spatiotemporal correlations. A recently developed cell dynamical system model shows that such non-local connections are intrinsic to quantum-like chaos governing flow dynamics. The dynamical evolution of fractal structures can be quantified in terms of ordered energy flow described by mathematical functions which occur in the field of number theory. The quantum-like chaos in atmospheric flows can be quantified in terms of the following mathematical functions / concepts: (1) The fractal structure of the flow pattern is resolved into an overall logarithmic spiral trajectory with the quasiperiodic Penrose tiling pattern for the internal structure and is equivalent to a hierarchy of vortices. The incorporation of Fibonacci mathematical series, representative of ramified bifurcations, indicates ordered growth of fractal patterns. (2) The steady state emergence of progressively larger fractal structures incorporates unique pri...
Mckenzie, R. L.
1976-01-01
A semiclassical model of the inelastic collision between a vibrationally excited anharmonic oscillator and a structureless atom is used to predict the variation of thermally averaged vibrational-translational rate coefficients with temperature and initial-state quantum number. Multiple oscillator states are included in a numerical solution for collinear encounters. The results are compared with CO-He experimental values for both ground and excited initial states using several simplified forms of the interaction potential. The numerical model is also used as a basis for evaluating several less complete, but analytic, models. Two computationally simple analytic approximations are found that successfully reproduce the numerical rate coefficients for a wide range of molecular properties and collision partners. Their limitations are identified, and the relative rates of multiple-quantum transitions from excited states are evaluated for several molecular types.
Mckenzie, R. L.
1975-01-01
A semiclassical model of the inelastic collision between a vibrationally excited anharmonic oscillator and a structureless atom was used to predict the variation of thermally averaged vibration-translation rate coefficients with temperature and initial-state quantum number. Multiple oscillator states were included in a numerical solution for collinear encounters. The results are compared with CO-He experimental values for both ground and excited initial states using several simplified forms of the interaction potential. The numerical model was also used as a basis for evaluating several less complete but analytic models. Two computationally simple analytic approximations were found that successfully reproduced the numerical rate coefficients for a wide range of molecular properties and collision partners. Their limitations were also identified. The relative rates of multiple-quantum transitions from excited states were evaluated for several molecular types.
A quantum entropy source on an InP photonic integrated circuit for random number generation
Abellan, Carlos; Domenech, David; Muñoz, Pascual; Capmany, Jose; Longhi, Stefano; Mitchell, Morgan W; Pruneri, Valerio
2016-01-01
Random number generators are essential to ensure performance in information technologies, including cryptography, stochastic simulations and massive data processing. The quality of random numbers ultimately determines the security and privacy that can be achieved, while the speed at which they can be generated poses limits to the utilisation of the available resources. In this work we propose and demonstrate a quantum entropy source for random number generation on an indium phosphide photonic integrated circuit made possible by a new design using two-laser interference and heterodyne detection. The resulting device offers high-speed operation with unprecedented security guarantees and reduced form factor. It is also compatible with complementary metal-oxide semiconductor technology, opening the path to its integration in computation and communication electronic cards, which is particularly relevant for the intensive migration of information processing and storage tasks from local premises to cloud data centre...
High quantum-efficiency photon-number-resolving detector for photonic on-chip information processing
Calkins, Brice; Lita, Adriana E; Metcalf, Benjamin J; Kolthammer, W Steven; Linares, Antia Lamas; Spring, Justin B; Humphreys, Peter C; Mirin, Richard P; Gates, James C; Smith, Peter G R; Walmsley, Ian A; Gerrits, Thomas; Nam, Sae Woo
2013-01-01
The integrated optical circuit is a promising architecture for the realization of complex quantum optical states and information networks. One element that is required for many of these applications is a high-efficiency photon detector capable of photon-number discrimination. We present an integrated photonic system in the telecom band at 1550 nm based on UV-written silica-on-silicon waveguides and modified transition-edge sensors capable of number resolution and over 40% efficiency. Exploiting the mode transmission failure of these devices, we multiplex three detectors in series to demonstrate a combined 79% +/- 2% detection efficiency with a single pass, and 88% +/- 3% at the operating wavelength of an on-chip terminal reflection grating. Furthermore, our optical measurements clearly demonstrate no significant unexplained loss in this system due to scattering or reflections. This waveguide and detector design therefore allows the placement of number-resolving single-photon detectors of predictable efficienc...
Practical quantum random number generator based on measuring the shot noise of vacuum states
Shen, Yong; Tian, Liang; Zou, Hongxin
2010-06-01
The shot noise of vacuum states is a kind of quantum noise and is totally random. In this paper a nondeterministic random number generation scheme based on measuring the shot noise of vacuum states is presented and experimentally demonstrated. We use a homodyne detector to measure the shot noise of vacuum states. Considering that the frequency bandwidth of our detector is limited, we derive the optimal sampling rate so that sampling points have the least correlation with each other. We also choose a method to extract random numbers from sampling values, and prove that the influence of classical noise can be avoided with this method so that the detector does not have to be shot-noise limited. The random numbers generated with this scheme have passed ent and diehard tests.
Quantum Numbers of AGUT Higgs Fields from the Quark-Lepton Spectrum
Froggatt, Colin D; Smith, D J
2002-01-01
A series of Higgs field quantum numbers in the anti-grand unification model, based on the gauge group $SMG^3 \\times U(1)_f$, is tested against the spectrum of quark and lepton masses and mixing angles. A more precise formulation of the statement that the couplings are assumed of order unity is given. It is found that the corrections coming from this more precise assumption do not contain factors of order of the number of colours, $N_c= 3$, as one could have feared. We also include a combinatorial correction factor, taking account of the distinct internal orderings within the chain Feynman diagrams in our statistical estimates. Strictly speaking our model predicts that the uncertainty in its predictions and thus the accuracy of our fits should be $\\pm 60\\%$. Many of the best fitting quantum numbers give a higher accuracy fit to the masses and mixing angles, although within the expected fluctuations in a $\\chi^2$. This means that our fit is as good as it can possibly be.
Particle number conservation in quantum many-body simulations with matrix product operators
Muth, Dominik
2011-01-01
Incorporating conservation laws explicitly into Matrix product states (MPS) has proven to make numerical simulations of quantum many-body systems much less resources consuming. We will discuss here, to what extent this concept can be used in matrix product operators (MPO). Quite counter-intuitively the expectation of gaining in speed by sacrificing information about all but a single symmetry sector is not in all cases fulfilled. It turns out that often the entanglement imposed by the global constraint of fixed particle number is the limiting factor in the canonical ensemble.
Energy Technology Data Exchange (ETDEWEB)
Nie, You-Qi; Zhang, Jun, E-mail: zhangjun@ustc.edu.cn; Pan, Jian-Wei [Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhang, Hong-Fei; Wang, Jian [Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhang, Zhen; Ma, Xiongfeng [Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084 (China)
2014-02-03
We present a practical high-speed quantum random number generator, where the timing of single-photon detection relative to an external time reference is measured as the raw data. The bias of the raw data can be substantially reduced compared with the previous realizations. The raw random bit rate of our generator can reach 109 Mbps. We develop a model for the generator and evaluate the min-entropy of the raw data. Toeplitz matrix hashing is applied for randomness extraction, after which the final random bits are able to pass the standard randomness tests.
Multicenter molecular integrals for Slater orbitals of higher principal quantum numbers
Tai, H.
1989-01-01
As was shown earlier by Tai (1979), by using the Fourier-transform technique and properly coupling a pair of two-center exchange integrals, the multicenter molecular integrals can be cast into a simple expression upon which numerical procedures can be directly applied. In this paper, the procedure of Tai is extended to integrals involving orbitals with arbitrarily higher principal quantum number. The derivation is outlined, and the explicit expressions are presented for a three-center nuclear attraction integral and a four-center two-electron Coulomb repulsion integral of arbitrary higher states.
Nie, You-Qi; Zhang, Hong-Fei; Zhang, Zhen; Wang, Jian; Ma, Xiongfeng; Zhang, Jun; Pan, Jian-Wei
2014-02-01
We present a practical high-speed quantum random number generator, where the timing of single-photon detection relative to an external time reference is measured as the raw data. The bias of the raw data can be substantially reduced compared with the previous realizations. The raw random bit rate of our generator can reach 109 Mbps. We develop a model for the generator and evaluate the min-entropy of the raw data. Toeplitz matrix hashing is applied for randomness extraction, after which the final random bits are able to pass the standard randomness tests.
Semi-device independent random number expansion protocol with n to 1 quantum random access codes
Li, Hong-Wei; Yin, Zhen-Qiang; Guo, Guang-Can; Han, Zheng-Fu
2011-01-01
We study random number expansion protocols based on the n to 1 quantum random access codes (QRACs). We consider them in the semi-device independent scenario where the inner workings of the devices are unknown to us but we can certify the dimensions of the systems being communicated. This approach does not require the use of the entanglement and makes the physical realization of these protocols much easier than in the standard device independent scenario. We calculate the dependence of the effectiveness of the randomness generation on $n$ and find it optimal for n=3. We provide the explanation for this fact.
Induced quantum numbers of a magnetic vortex at non-zero temperature
Energy Technology Data Exchange (ETDEWEB)
Sitenko, Yurii A. [Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, 14-b Metrologichna str., Kyiv 03143 (Ukraine)]. E-mail: yusitenko@bitp.kiev.ua; Gorkavenko, Volodymyr M. [Department of Physics, Taras Shevchenko National University of Kyiv, 6 Academician Glushkov ave., Kyiv 03680 (Ukraine)]. E-mail: gorka@univ.kiev.ua
2005-05-16
The phenomenon of the finite-temperature induced quantum numbers in fermionic systems with topological defects is analyzed. We consider an ideal gas of two-dimensional relativistic massive electrons in the background of a defect in the form of a pointlike magnetic vortex with arbitrary flux. This system is found to acquire, in addition to fermion number, also orbital angular momentum, spin, and induced magnetic flux, and we determine the functional dependence of the appropriate thermal averages and correlations on the temperature, the vortex flux, and the continuous parameter of the boundary condition at the location of the defect. We find that non-negativeness of thermal quadratic fluctuations imposes a restriction on the admissible range of values of the boundary parameter. The long-standing problem of the adequate definition of total angular momentum for the system considered is resolved.
Lai, Hong; Orgun, Mehmet A.; Pieprzyk, Josef; Li, Jing; Luo, Mingxing; Xiao, Jinghua; Xiao, Fuyuan
2016-08-01
We propose an approach that achieves high-capacity quantum key distribution using Chebyshev-map values corresponding to Lucas numbers coding. In particular, we encode a key with the Chebyshev-map values corresponding to Lucas numbers and then use k-Chebyshev maps to achieve consecutive and flexible key expansion and apply the pre-shared classical information between Alice and Bob and fountain codes for privacy amplification to solve the security of the exchange of classical information via the classical channel. Consequently, our high-capacity protocol does not have the limitations imposed by orbital angular momentum and down-conversion bandwidths, and it meets the requirements for longer distances and lower error rates simultaneously.
Quantum mechanical potentials related to the prime numbers and Riemann zeros.
Schumayer, Dániel; van Zyl, Brandon P; Hutchinson, David A W
2008-11-01
Prime numbers are the building blocks of our arithmetic; however, their distribution still poses fundamental questions. Riemann showed that the distribution of primes could be given explicitly if one knew the distribution of the nontrivial zeros of the Riemann zeta(s) function. According to the Hilbert-Pólya conjecture, there exists a Hermitian operator of which the eigenvalues coincide with the real parts of the nontrivial zeros of zeta(s) . This idea has encouraged physicists to examine the properties of such possible operators, and they have found interesting connections between the distribution of zeros and the distribution of energy eigenvalues of quantum systems. We apply the Marchenko approach to construct potentials with energy eigenvalues equal to the prime numbers and to the zeros of the zeta(s) function. We demonstrate the multifractal nature of these potentials by measuring the Rényi dimension of their graphs. Our results offer hope for further analytical progress.
Lai, Hong; Orgun, Mehmet A.; Pieprzyk, Josef; Li, Jing; Luo, Mingxing; Xiao, Jinghua; Xiao, Fuyuan
2016-11-01
We propose an approach that achieves high-capacity quantum key distribution using Chebyshev-map values corresponding to Lucas numbers coding. In particular, we encode a key with the Chebyshev-map values corresponding to Lucas numbers and then use k-Chebyshev maps to achieve consecutive and flexible key expansion and apply the pre-shared classical information between Alice and Bob and fountain codes for privacy amplification to solve the security of the exchange of classical information via the classical channel. Consequently, our high-capacity protocol does not have the limitations imposed by orbital angular momentum and down-conversion bandwidths, and it meets the requirements for longer distances and lower error rates simultaneously.
High-speed quantum-random number generation by continuous measurement of arrival time of photons
Yan, Qiurong; Zhao, Baosheng; Hua, Zhang; Liao, Qinghong; Yang, Hao
2015-07-01
We demonstrate a novel high speed and multi-bit optical quantum random number generator by continuously measuring arrival time of photons with a common starting point. To obtain the unbiased and post-processing free random bits, the measured photon arrival time is converted into the sum of integral multiple of a fixed period and a phase time. Theoretical and experimental results show that the phase time is an independent and uniform random variable. A random bit extraction method by encoding the phase time is proposed. An experimental setup has been built and the unbiased random bit generation rate could reach 128 Mb/s, with random bit generation efficiency of 8 bits per detected photon. The random numbers passed all tests in the statistical test suite.
Loss-tolerant measurement-device-independent quantum random number generation
Cao, Zhu; Zhou, Hongyi; Ma, Xiongfeng
2015-12-01
Quantum random number generators (QRNGs) output genuine random numbers based upon the uncertainty principle. A QRNG contains two parts in general—a randomness source and a readout detector. How to remove detector imperfections has been one of the most important questions in practical randomness generation. We propose a simple solution, measurement-device-independent QRNG, which not only removes all detector side channels but is robust against losses. In contrast to previous fully device-independent QRNGs, our scheme does not require high detector efficiency or nonlocality tests. Simulations show that our protocol can be implemented efficiently with a practical coherent state laser and other standard optical components. The security analysis of our QRNG consists mainly of two parts: measurement tomography and randomness quantification, where several new techniques are developed to characterize the randomness associated with a positive-operator valued measure.
Note: Fully integrated 3.2 Gbps quantum random number generator with real-time extraction
Zhang, Xiao-Guang; Nie, You-Qi; Zhou, Hongyi; Liang, Hao; Ma, Xiongfeng; Zhang, Jun; Pan, Jian-Wei
2016-07-01
We present a real-time and fully integrated quantum random number generator (QRNG) by measuring laser phase fluctuations. The QRNG scheme based on laser phase fluctuations is featured for its capability of generating ultra-high-speed random numbers. However, the speed bottleneck of a practical QRNG lies on the limited speed of randomness extraction. To close the gap between the fast randomness generation and the slow post-processing, we propose a pipeline extraction algorithm based on Toeplitz matrix hashing and implement it in a high-speed field-programmable gate array. Further, all the QRNG components are integrated into a module, including a compact and actively stabilized interferometer, high-speed data acquisition, and real-time data post-processing and transmission. The final generation rate of the QRNG module with real-time extraction can reach 3.2 Gbps.
Yamazoe, M.; Kato, T.; Suzuki, K.; Adachi, M.; Shibayama, A.; Hoshi, K.; Itou, M.; Tsuji, N.; Sakurai, Y.; Sakurai, H.
2016-11-01
Spin selective magnetic hysteresis (SSMH) curves, orbital selective magnetic hysteresis (OSMH) curves and magnetic quantum number selective SSMH curves are obtained for CoFeB/MgO multilayer films by combining magnetic Compton profile measurements and superconducting quantum interference device (SQUID) magnetometer measurements. Although the SQUID magnetometer measurements do not show perpendicular magnetic anisotropy (PMA) in the CoFeB/MgO multilayer film, PMA behavior is observed in the OSMH and SSMH curves for the |m| = 2 magnetic quantum number states. These facts indicate that magnetization switching behavior is dominated by the orbital magnetization of the |m| = 2 magnetic quantum number states.
How to implement a quantum algorithm on a large number of qubits by controlling one central qubit
Zagoskin, Alexander; Ashhab, Sahel; Johansson, J. R.; Nori, Franco
2010-03-01
It is desirable to minimize the number of control parameters needed to perform a quantum algorithm. We show that, under certain conditions, an entire quantum algorithm can be efficiently implemented by controlling a single central qubit in a quantum computer. We also show that the different system parameters do not need to be designed accurately during fabrication. They can be determined through the response of the central qubit to external driving. Our proposal is well suited for hybrid architectures that combine microscopic and macroscopic qubits. More details can be found in: A.M. Zagoskin, S. Ashhab, J.R. Johansson, F. Nori, Quantum two-level systems in Josephson junctions as naturally formed qubits, Phys. Rev. Lett. 97, 077001 (2006); and S. Ashhab, J.R. Johansson, F. Nori, Rabi oscillations in a qubit coupled to a quantum two-level system, New J. Phys. 8, 103 (2006).
Lee, Su-Yong; Lee, Hai-Woong; Lee, Jae-Weon; Bergou, Janos A
2009-01-01
Quantum key distribution schemes which employ encoding on vacuum-one-photon qubits are capable of transferring more information bits per particle than the standard schemes employing polarization or phase coding. We calculate the maximum number of classical bits per particle that can be securely transferred when the key distribution is performed with the BB84 and B92 protocols, respectively, using the vacuum-one-photon qubits. In particular, we show that for a generalized B92 protocol with the vacuum-one-photon qubits, a maximum of two bits per particle can be securely transferred. We also demonstrate the advantage brought about by performing a generalized measurement that is optimized for unambiguous discrimination of the encoded states: the parameter range where the transfer of two bits per particle can be achieved is dramatically enhanced as compared to the corresponding parameter range of projective measurements.
Quantum dots with even number of electrons: kondo effect in a finite magnetic field
Pustilnik; Avishai; Kikoin
2000-02-21
We show that the Kondo effect can be induced by an external magnetic field in quantum dots with an even number of electrons. If the Zeeman energy B is close to the single-particle level spacing Delta in the dot, the scattering of the conduction electrons from the dot is dominated by an anisotropic exchange interaction. A Kondo resonance then occurs despite the fact that B exceeds by far the Kondo temperature T(K). As a result, at low temperatures T
Probing the charged Higgs quantum numbers through the decay H^+ -> W^+ h^0
Cruz, J L D; Hernández-Sánchez, J; Barradas-Guevara, E
2003-01-01
The vertex H^+_\\alpha W^-h^0_\\beta, involving the gauge boson W^+- and the charged (H^+-_\\alpha) and neutral Higgs bosons (h^0_\\beta), arises within the context of many extensions of the SM, and it can be used to probe the quantum numbers of the Higgs multiplet. After presenting a general discusion for the expected form of this vertex with arbitrary Higgs representations, we discuss its strength for several specific models, which include: i) the Two-Higgs Doublet Model (THDM), both the generic and the SUSY case, and ii) models with additional Higgs triplets, including both SUSY and non-SUSY cases. We find that in these models, there are regions of parameters where the decay H^+_\\alpha -> W^+ h^0_\\beta, is kinematically allowed, and reaches Branching Ratios (BR) that may be detectable, thus allowing to test the properties of the Higgs sector.
Minimalist design of a robust real-time quantum random number generator
Kravtsov, K. S.; Radchenko, I. V.; Kulik, S. P.; Molotkov, S. N.
2015-08-01
We present a simple and robust construction of a real-time quantum random number generator (QRNG). Our minimalist approach ensures stable operation of the device as well as its simple and straightforward hardware implementation as a stand-alone module. As a source of randomness the device uses measurements of time intervals between clicks of a single-photon detector. The obtained raw sequence is then filtered and processed by a deterministic randomness extractor, which is realized as a look-up table. This enables high speed on-the-fly processing without the need of extensive computations. The overall performance of the device is around 1 random bit per detector click, resulting in 1.2 Mbit/s generation rate in our implementation.
The splitting of atomic orbitals with a common principal quantum number revisited: np vs. ns.
Katriel, Jacob
2012-04-14
Atomic orbitals with a common principal quantum number are degenerate, as in the hydrogen atom, in the absence of interelectronic repulsion. Due to the virial theorem, electrons in such orbitals experience equal nuclear attractions. Comparing states of several-electron atoms that differ by the occupation of orbitals with a common principal quantum number, such as 1s(2) 2s vs. 1s(2) 2p, we find that although the difference in energies, ΔE, is due to the interelectronic repulsion term in the Hamiltonian, the difference between the interelectronic repulsions, ΔC, makes a smaller contribution to ΔE than the corresponding difference between the nuclear attractions, ΔL. Analysis of spectroscopic data for atomic isoelectronic sequences allows an extensive investigation of these issues. In the low nuclear charge range of pertinent isoelectronic sequences, i.e., for neutral atoms and mildly positively charged ions, it is found that ΔC actually reverses its sign. About 96% of the nuclear attraction difference between the 6p (2)P and the 6s (2)S states of the Cs atom is cancelled by the corresponding interelectronic repulsion difference. From the monotonic increase of ΔE with Z it follows (via the Hellmann-Feynman theorem) that ΔL > 0. Upon increasing the nuclear charge along an atomic isoelectronic sequence with a single electron outside a closed shell from Z(c), the critical charge below which the outmost electron is not bound, to infinity, the ratio ΔC/ΔL increases monotonically from lim(Z→Z(c)(+))ΔC/ΔL=-1 to lim(Z→∞)ΔC/ΔL=1. These results should allow for a more nuanced discussion than is usually encountered of the crude electronic structure of many-electron atoms and the structure of the periodic table.
Energy Technology Data Exchange (ETDEWEB)
Suzuki, Kosuke, E-mail: kosuzuki@gunma-u.ac.jp; Takubo, Shota; Kato, Tadashi; Yamazoe, Masatoshi; Hoshi, Kazushi; Sakurai, Hiroshi [Department of Electronics and Informatics, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 (Japan); Homma, Yoshiya [International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University, 2145-2 Narita-cho, Oarai-machi, Higashiibaraki-gun, Ibaraki 311-1313 (Japan); Itou, Masayoshi; Sakurai, Yoshiharu [Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan)
2014-08-18
A spin specific magnetic hysteresis (SSMH) curve and an orbital specific magnetic hysteresis (OSMH) curve are obtained for Fe/Au/Fe/MgO multilayers by magnetic Compton scattering and SQUID magnetometer measurements. The SSMH curve with each contribution of magnetic quantum number |m| = 0, 1, and 2 states is obtained by decomposition analyses of magnetic Compton profiles. Residual magnetization is observed for the SSMH curve with magnetic quantum number |m| = 0, 2 and the OSMH curve. Although the SQUID magnetometer measurements do not show perpendicular magnetic anisotropy (PMA) in the present Fe/Au/Fe/MgO multilayer film, the SSMH curve with magnetic quantum number |m| = 0, 2 and OSMH curve show switching behaviors of PMA.
Riemann Zeta Zeros and Prime Number Spectra in Quantum Field Theory
Menezes, G.; Svaiter, B. F.; Svaiter, N. F.
2013-10-01
The Riemann hypothesis states that all nontrivial zeros of the zeta function lie in the critical line Re(s) = 1/2. Hilbert and Pólya suggested that one possible way to prove the Riemann hypothesis is to interpret the nontrivial zeros in the light of spectral theory. Using the construction of the so-called super-zeta functions or secondary zeta functions built over the Riemann nontrivial zeros and the regularity property of one of this function at the origin, we show that it is possible to extend the Hilbert-Pólya conjecture to systems with countably infinite number of degrees of freedom. The sequence of the nontrivial zeros of the Riemann zeta function can be interpreted as the spectrum of a self-adjoint operator of some hypothetical system described by the functional approach to quantum field theory. However, if one considers the same situation with numerical sequences whose asymptotic distributions are not "far away" from the asymptotic distribution of prime numbers, the associated functional integral cannot be constructed. Finally, we discuss possible relations between the asymptotic behavior of a sequence and the analytic domain of the associated zeta function.
An On-Demand Optical Quantum Random Number Generator with In-Future Action and Ultra-Fast Response
Mario Stipčević; Rupert Ursin
2015-01-01
Random numbers are essential for our modern information based society e.g. in cryptography. Unlike frequently used pseudo-random generators, physical random number generators do not depend on complex algorithms but rather on a physical process to provide true randomness. Quantum random number generators (QRNG) do rely on a process, which can be described by a probabilistic theory only, even in principle. Here we present a conceptually simple implementation, which offers a 100% efficiency of p...
Quantum distance and the Euler number index of the Bloch band in a one-dimensional spin model.
Ma, Yu-Quan
2014-10-01
We study the Riemannian metric and the Euler characteristic number of the Bloch band in a one-dimensional spin model with multisite spins exchange interactions. The Euler number of the Bloch band originates from the Gauss-Bonnet theorem on the topological characterization of the closed Bloch states manifold in the first Brillouin zone. We study this approach analytically in a transverse field XY spin chain with three-site spin coupled interactions. We define a class of cyclic quantum distance on the Bloch band and on the ground state, respectively, as a local characterization for quantum phase transitions. Specifically, we give a general formula for the Euler number by means of the Berry curvature in the case of two-band models, which reveals its essential relation to the first Chern number of the band insulators. Finally, we show that the ferromagnetic-paramagnetic phase transition in zero temperature can be distinguished by the Euler number of the Bloch band.
Energy Technology Data Exchange (ETDEWEB)
Kaiser, Uwe; Jimenez de Aberasturi, Dorleta; Vázquez-González, Margarita; Carrillo-Carrion, Carolina; Niebling, Tobias; Parak, Wofgang J.; Heimbrodt, Wolfram, E-mail: Wolfram.Heimbrodt@physik.uni-marburg.de [Department of Physics and Material Sciences Center, Philipps-University Marburg, Renthof 5, D-35032 Marburg (Germany)
2015-01-14
Semiconductor quantum dots functionalized with organic dye molecules are important tools for biological sensor applications. Energy transfer between the quantum dot and the attached dyes can be utilized for sensing. Though important, the determination of the real number of dye molecules attached per quantum dot is rather difficult. In this work, a method will be presented to determine the number of ATTO-590 dye molecules attached to CdSe/ZnS quantum dots based on time resolved spectral analysis. The energy transfer from the excited quantum dot to the attached ATTO-590 dye leads to a reduced lifetime of the quantum dot's excitons. The higher the concentration of dye molecules, the shorter the excitonic lifetime becomes. However, the number of dye molecules attached per quantum dot will vary. Therefore, for correctly explaining the decay of the luminescence upon photoexcitation of the quantum dot, it is necessary to take into account the distribution of the number of dyes attached per quantum dot. A Poisson distribution of the ATTO-590 dye molecules not only leads to excellent agreement between experimental and theoretical decay curves but also additionally yields the average number of dye molecules attached per quantum dot. In this way, the number of dyes per quantum dot can be conveniently determined.
DEFF Research Database (Denmark)
Lorke, Michael; Nielsen, Torben Roland; Mørk, Jesper
2011-01-01
A microscopic theory is used to study the dynamical properties of semiconductor quantum dot based nanocavity laser systems. The carrier kinetics and photon populations are determined using a fully quantum mechanical treatment of the light‐matter coupling. In this work, we investigate the dependency...
Post-processing Free Quantum Random Number Generator Based on Avalanche Photodiode Array
Yang, Li; Sheng-Kai, Liao; Fu-Tian, Liang; Qi, Shen; Hao, Liang; Cheng-Zhi, Peng
2016-03-01
Not Available Supported by the Chinese Academy of Sciences Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, Shanghai Branch, University of Science and Technology of China, and the National Natural Science Foundation of China under Grant No 11405172.
Real-time quantum feedback prepares and stabilizes photon number states
Sayrin, Clément; Zhou, Xingxing; Peaudecerf, Bruno; Rybarczyk, Théo; Gleyzes, Sébastien; Rouchon, Pierre; Mirrahimi, Mazyar; Amini, Hadis; Brune, Michel; Raimond, Jean-Michel; Haroche, Serge
2011-01-01
Feedback loops are at the heart of most classical control procedures. A controller compares the signal measured by a sensor with the target value. It adjusts then an actuator in order to stabilize the signal towards its target. Generalizing this scheme to stabilize a micro-system's quantum state relies on quantum feedback, which must overcome a fundamental difficulty: the measurements by the sensor have a random back-action on the system. An optimal compromise employs weak measurements providing partial information with minimal perturbation. The controller should include the effect of this perturbation in the computation of the actuator's unitary operation bringing the incrementally perturbed state closer to the target. While some aspects of this scenario have been experimentally demonstrated for the control of quantum or classical micro-system variables, continuous feedback loop operations permanently stabilizing quantum systems around a target state have not yet been realized. We have implemented such a rea...
New quantum number for the many-electron Dirac-Coulomb Hamiltonian
Komorovsky, Stanislav; Repisky, Michal; Bučinský, Lukáš
2016-11-01
By breaking the spin symmetry in the relativistic domain, a powerful tool in physical sciences was lost. In this work, we examine an alternative of spin symmetry for systems described by the many-electron Dirac-Coulomb Hamiltonian. We show that the square of many-electron operator K+, defined as a sum of individual single-electron time-reversal (TR) operators, is a linear Hermitian operator which commutes with the Dirac-Coulomb Hamiltonian in a finite Fock subspace. In contrast to the square of a standard unitary many-electron TR operator K , the K+2 has a rich eigenspectrum having potential to substitute spin symmetry in the relativistic domain. We demonstrate that K+ is connected to K through an exponential mapping, in the same way as spin operators are mapped to the spin rotational group. Consequently, we call K+ the generator of the many-electron TR symmetry. By diagonalizing the operator K+2 in the basis of Kramers-restricted Slater determinants, we introduce the relativistic variant of configuration state functions (CSF), denoted as Kramers CSF. A new quantum number associated with K+2 has potential to be used in many areas, for instance, (a) to design effective spin Hamiltonians for electron spin resonance spectroscopy of heavy-element containing systems; (b) to increase efficiency of methods for the solution of many-electron problems in relativistic computational chemistry and physics; (c) to define Kramers contamination in unrestricted density functional and Hartree-Fock theory as a relativistic analog of the spin contamination in the nonrelativistic domain.
Ozdogan, Telhat
2006-01-01
In a recent publication (Telhat Ozdogan, Int. J. Quantum Chem., 92 (2003) 419), we presented a unified algorithm for the evaluation of multicenter multielectron integrals over Slater type orbitals with noninteger principal quantum numbers, using the one center expansion formula for Slater type orbitals with integer principal quantum numbers (E. Oztekin et. all., J. Mol. Struct. Theochem, 544 (2001) 69; I.I. Guseinov et all., Z. Struct. Khim., 23 (1987) 148 (in Russian)). Guseinov in his comme...
Wahl, Michael; Leifgen, Matthias; Berlin, Michael; Röhlicke, Tino; Rahn, Hans-Jürgen; Benson, Oliver
2011-04-01
We report the implementation of a quantum random number generator based on photon arrival times. Due to fast and high resolution timing we are able to generate the highest bitrate of any current generator based on photon arrival times. Bias in the raw data due to the exponential distribution of the arrival times is removed by postprocessing which is directly integrated in the field programmable logic of the timing electronics.
Inspection of the number of electrons in the ring of a quantum dot
Institute of Scientific and Technical Information of China (English)
黄钢明; 鲍诚光
2003-01-01
On the electronic structures of quantum dots, there is a new viewpoint saying that, in some specific states, a few electrons might behave as valence electrons moving outside surrounding a core. To clarify the validity of this viewpoint,a numerical calculation was performed in this paper. The results are against this viewpoint.
Inspection of the number of electrons in the ring of a quantum dot
Institute of Scientific and Technical Information of China (English)
HuangGang-Ming; BaoCheng-Guang
2003-01-01
On the electronic structures of quantum dots, there is a new viewpoint saying that, in some specific states a few electrons might behave as valence electrons moving outside surrounding a core. To clarify the validity of this viewpoint, a numerical calculation was performed in this paper. The results are against this viewpoint.
FPGA and USB based control board for quantum random number generator
Institute of Scientific and Technical Information of China (English)
WANG Jian; WAN Xu; ZHANG Hong-fei; GAO Yuan; CHEN Teng-yun; LIANG Hao
2009-01-01
.Programmable controlled signal input and output ports are implemented.The error-detections of data frame header and frame length ale designed.This board has been used in our decoy-state based quantum key distribution(QKD)system successfully.
Three criteria for quantum random number generators based on beam splitters
Svozil, Karl
2009-01-01
We propose three criteria for the generation of random digital strings from quantum beam splitters: (i) three or more mutually exclusive outcomes corresponding to the invocation of three- and higher dimensional Hilbert spaces; (ii) the mandatory use of pure states in conjugated bases for preparation and detection; and (iii) the use of entangled singlet (unique) states for elimination of bias.
Energy Technology Data Exchange (ETDEWEB)
Yang, Jing; Zhao, Degang, E-mail: dgzhao@red.semi.ac.cn; Jiang, Desheng; Chen, Ping; Zhu, Jianjun; Liu, Zongshun; Le, Lingcong; He, Xiaoguang; Li, Xiaojing [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, PO BOX 912, Beijing 100083 (China); Wang, Hui; Yang, Hui [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123 (China); Jahn, Uwe [Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5–7, 10117 Berlin (Germany)
2014-09-01
Cathodoluminescence (CL) characteristics on 30-period InGaN/GaN multiple quantum well (MQW) solar cell structures are investigated, revealing the relationship between optical and structural properties of the MQW structures with a large number of quantum wells. In the bottom MQW layers, a blueshift of CL peak along the growth direction is found and attributed to the decrease of indium content due to the compositional pulling effect. An obvious split of emission peak and a redshift of the main emission energy are found in the top MQW layers when the MQW grows above the critical layer thickness. They are attributed to the segregation of In-rich InGaN clusters rather than the increase of indium content in quantum well layer. The MQW structure is identified to consist of two regions: a strained one in the bottom, where the indium content is gradually decreased, and a partly relaxed one in the top with segregated In-rich InGaN clusters.
An On-Demand Optical Quantum Random Number Generator with In-Future Action and Ultra-Fast Response.
Stipčević, Mario; Ursin, Rupert
2015-06-09
Random numbers are essential for our modern information based society e.g. in cryptography. Unlike frequently used pseudo-random generators, physical random number generators do not depend on complex algorithms but rather on a physical process to provide true randomness. Quantum random number generators (QRNG) do rely on a process, which can be described by a probabilistic theory only, even in principle. Here we present a conceptually simple implementation, which offers a 100% efficiency of producing a random bit upon a request and simultaneously exhibits an ultra low latency. A careful technical and statistical analysis demonstrates its robustness against imperfections of the actual implemented technology and enables to quickly estimate randomness of very long sequences. Generated random numbers pass standard statistical tests without any post-processing. The setup described, as well as the theory presented here, demonstrate the maturity and overall understanding of the technology.
Institute of Scientific and Technical Information of China (English)
Liu Su-Mei; He An-Zhi; Ji Yun-Jing
2008-01-01
In this paper the evolution characteristics of the fidelity of quantum information for the Ⅴ-type three-level atom interacting with number state light field in Kerr medium are investigated. It shows that the periodicity of the evolutions of fidelity of quantum information is influenced by the Kerr coefficient, the photon number of the initial field and intensity of light. The evolutions of the fidelity of quantum information are modulated by the initial number state field. The Rabi oscillation frequency and the modulation frequency of fidelity for the field and the system vary with the value of the Kerr coefficient. The evolutions of fidelity of quantum information obviously show the quantum collapse and revival behaviours in the system of atom interacting with light field.
Henriet, Loïc; Sclocchi, Antonio; Orth, Peter P.; Le Hur, Karyn
2017-02-01
We analyze the topological deformations of the ground state manifold of a quantum spin-1/2 in a magnetic field H =H (sinθ cosϕ ,sinθ sinϕ ,cosθ ) induced by a coupling to an ohmic quantum dissipative environment at zero temperature. From Bethe ansatz results and a variational approach, we confirm that the Chern number associated with the geometry of the reduced spin ground state manifold is preserved in the delocalized phase for α <1 . We report a divergence of the Berry curvature at αc=1 for magnetic fields aligned along the equator θ =π /2 . This divergence is caused by the complete quenching of the transverse magnetic field by the bath associated with a gap closing that occurs at the localization Kosterlitz-Thouless quantum phase transition in this model. Recent experiments in quantum circuits have engineered nonequilibrium protocols to access topological properties from a measurement of a dynamical Chern number defined via the out-of-equilibrium spin expectation values. Applying a numerically exact stochastic Schrödinger approach we find that, for a fixed field sweep velocity θ (t )=v t , the bath induces a crossover from (quasi)adiabatic to nonadiabatic dynamical behavior when the spin bath coupling α increases. We also investigate the particular regime H /ωc≪v /H ≪1 with large bath cutoff frequency ωc, where the dynamical Chern number vanishes already at α =1 /2 . In this regime, the mapping to an interacting resonance level model enables us to analytically describe the behavior of the dynamical Chern number in the vicinity of α =1 /2 . We further provide an intuitive physical explanation of the bath-induced breakdown of adiabaticity in analogy to the Faraday effect in electromagnetism. We demonstrate that the driving of the spin leads to the production of a large number of bosonic excitations in the bath, which strongly affect the spin dynamics. Finally, we quantify the spin-bath entanglement and formulate an analogy with an effective
Al-Khalili, Jim
2003-01-01
In this lively look at quantum science, a physicist takes you on an entertaining and enlightening journey through the basics of subatomic physics. Along the way, he examines the paradox of quantum mechanics--beautifully mathematical in theory but confoundingly unpredictable in the real world. Marvel at the Dual Slit experiment as a tiny atom passes through two separate openings at the same time. Ponder the peculiar communication of quantum particles, which can remain in touch no matter how far apart. Join the genius jewel thief as he carries out a quantum measurement on a diamond without ever touching the object in question. Baffle yourself with the bizzareness of quantum tunneling, the equivalent of traveling partway up a hill, only to disappear then reappear traveling down the opposite side. With its clean, colorful layout and conversational tone, this text will hook you into the conundrum that is quantum mechanics.
Lowdin, Per-Olov; Ohrn, N. Y.; Sabin, John R.; Zerner, Michael C.
1993-03-01
The topics covered at the 33rd annual Sanibel Symposium, organized by the faculty and staff of the Quantum Theory Project of the University of Florida, and held March 13 - 20, 1993, include advanced scientific computing, interaction of photons and matter, quantum molecular dynamics, electronic structure methods, polymeric systems, and quantum chemical methods for extended systems.
Perfect random number generator is unnecessary for secure quantum key distribution
Wang, X B
2004-01-01
Game G: Clare passes a string s which is either from perfect random number generator R0 or from good imperfect number generator R1, with equal probability. Alice's information about whether it is from R0 or R1 is bounded by small value h. Alice use s as the input random numbers for QKD protocol with Bob. Suppose Eve may have very small information about the final key if s is from R0 and Eve has large information if s is from R1, then after the protocol, Alice announce the final key, Eve's information about whether s is from R0 or R1 is unreasonablly large, i.e., breaks the known bound, h. Explicit formulas are given in the article.
Institute of Scientific and Technical Information of China (English)
ZHANGLi; Hong-Jing; CHENChuan-Yu
2003-01-01
By using determinant method as in our recent work, the IO phonon modes, the orthogonal relation for polarization vector, electron-IO phonon F~6hlich interaction Hamiltonian, the dispersion relation, and the electron-phonon coupling function in an arbitrary layer-number quantum well system have been derived and investigated within the framework of dielectric continuum approximation. Numerical calculation on seven-layer AlxGal-xAs/GaAs systems have been performed. Via the numerical results in this work and previous works, the general characters of the IO phonon modes in an n-layer coupling quantum well system were concluded and summarized. This work can be regarded as a generalization of previous works on IO phonon modes in some fLxed layer-number quantum well systems, and it provides a uniform method to investittate the effects of IO phonons on the multi-layer coupling quantum well systems.
Quantum numbers of the $X(3872)$ state and orbital angular momentum in its $\\rho^0 J/\\psi$ decays
Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; d'Argent, Philippe; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Bel, Lennaert; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Birnkraut, Alex; Bizzeti, Andrea; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casanova Mohr, Raimon; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cavallero, Giovanni; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Di Ruscio, Francesco; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gastaldi, Ugo; Gauld, Rhorry; Gavardi, Laura; Gazzoni, Giulio; Geraci, Angelo; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Gianì, Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, Vladimir; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Humair, Thibaud; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kelsey, Matthew; Kenyon, Ian; Kenzie, Matthew; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Lohn, Stefan; Longstaff, Iain; Lopes, Jose; Lowdon, Peter; Lucchesi, Donatella; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Maciuc, Florin; Maev, Oleg; Maguire, Kevin; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Manning, Peter Michael; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathad, Abhijit; Mathe, Zoltan; Matteuzzi, Clara; Mauri, Andrea; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Mitzel, Dominik Stefan; Molina Rodriguez, Josue; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Janine; Müller, Katharina; Müller, Vanessa; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Ninci, Daniele; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Osorio Rodrigues, Bruno; Otalora Goicochea, Juan Martin; Otto, Adam; Owen, Patrick; Oyanguren, Maria Aranzazu; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parkes, Christopher; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Pescatore, Luca; Petridis, Konstantinos; Petrolini, Alessandro; Petruzzo, Marco; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Poikela, Tuomas; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Quagliani, Renato; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Lopez, Jairo Alexis; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruiz, Hugo; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santimaria, Marco; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmelzer, Timon; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skillicorn, Ian; Skwarnicki, Tomasz; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Steinkamp, Olaf; Stenyakin, Oleg; Sterpka, Christopher Francis; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szumlak, Tomasz; T'Jampens, Stephane; Tekampe, Tobias; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Todd, Jacob; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Trabelsi, Karim; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Weiden, Andreas; Whitehead, Mark; Wiedner, Dirk; Wilkinson, Guy; Wilkinson, Michael; Williams, Mark Richard James; Williams, Matthew; Williams, Mike; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xu, Zhirui; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang
2015-01-01
Angular correlations in $B^+\\to X(3872) K^+$ decays, with $X(3872)\\to \\rho^0 J/\\psi$, $\\rho^0\\to\\pi^+\\pi^-$ and $J/\\psi \\to\\mu^+\\mu^-$, are used to measure orbital angular momentum contributions and to determine the $J^{PC}$ value of the $X(3872)$ meson. The data correspond to an integrated luminosity of 3.0 fb$^{-1}$ of proton-proton collisions collected with the LHCb detector. This determination, for the first time performed without assuming a value for the orbital angular momentum, confirms the quantum numbers to be $J^{PC}=1^{++}$. The $X(3872)$ is found to decay predominantly through S wave and an upper limit of $4\\%$ at $95\\%$ C.L. is set on the fraction of D wave.
Quezada, L. F.; Nahmad-Achar, E.
2017-01-01
We show how the use of variational states to approximate the ground state of a system can be employed to study a multimode Dicke model. One of the main contributions of this work is the introduction of a not very commonly used quantity, the cooperation number, and the study of its influence on the behavior of the system, paying particular attention to the quantum phase transitions and the accuracy of the used approximations. We also show how these phase transitions affect the dependence of the expectation values of some of the observables relevant to the system and the entropy of entanglement with respect to the energy difference between atomic states and the coupling strength between matter and radiation, thus characterizing the transitions in different ways.
Determining the Quantum Numbers of Simplified Models in $t\\bar{t}X$ production at the LHC
Dolan, Matthew J; Wang, Qi; Yu, Zhao-Huan
2016-01-01
Simplified models provide an avenue for characterising and exploring New Physics for large classes of UV theories. In this article we study the ability of the LHC to probe the spin and parity quantum numbers of a new light resonance $X$ which couples predominantly to the third generation quarks in a variety of simplified models through the $t\\bar t X$ channel. After evaluating the LHC discovery potential for $X$, we suggest several kinematic variables sensitive to the spin and CP properties of the new resonance. We show how an analysis exploiting differential distributions in the semi-leptonic channel can discriminate among various possibilities. We find that the potential to discriminate a scalar from a pseudoscalar or (axial) vector to be particularly promising.
Possible conservation of the K-quantum number in excited rotating nuclei
Energy Technology Data Exchange (ETDEWEB)
Bracco, A.; Bosetti, P.; Leoni, S. [Universita di Milano (Italy)]|[INFN, Milano (Italy)] [and others
1996-12-31
The {gamma}-cascades feeding into low-K and high-K bands in the nucleus {sup 163}Er are investigated by analyzing variances and covariances of the spectrum fluctuations. The study of the covariance between pairs of gated spectra reveals that the cascades feeding into the low-K bands are completely different from those feeding the high-K bands. In addition, the number of decay paths obtained analyzing the ridge and the valley in spectra gated by high-K transitions is different than that deduced from the total spectrum. This result is well reproduced with microscopic calculations of strongly interacting bands. It is concluded that the K-selection rules are effective for the excited rotational bands within the angular momentum region probed by the experiment, 30{Dirac_h} {le} I {le} 40{Dirac_h}.
Quantum mechanics in a space with a finite number of points
Arik, Metin; Ildes, Medine
2016-04-01
We define a deformed kinetic energy operator for a discrete position space with a finite number of points. The structure may be either periodic or nonperiodic with well-defined end points. It is shown that for the nonperiodic case the translation operator becomes nonunitary due to the end points. This uniquely defines an algebra that has the desired unique representation. Energy eigenvalues and energy wave functions for both cases are found. As expected, in the continuum limit the solution for the nonperiodic case becomes the same as the solution of an infinite one-dimensional square well and the periodic case solution becomes the same as the solution of a particle in a box with periodic boundary conditions.
Deguchi, Tetsuo; Ranjan Giri, Pulak
2016-04-01
Every solution of the Bethe-ansatz equations (BAEs) is characterized by a set of quantum numbers, by which we can evaluate it numerically. However, no general rule is known how to give quantum numbers for the physical solutions of BAE. For the spin-1/2 XXX chain we rigorously derive all the quantum numbers for the complete set of the Bethe-ansatz eigenvectors in the two down-spin sector with any chain length N. Here we obtain them both for real and complex solutions. We also show that all the solutions associated with them are distinct. Consequently, we prove the completeness of the Bethe ansatz and give an exact expression for the number of real solutions which correspond to collapsed bound-state solutions (i.e., two-string solutions) in the sector: 2[(N-1)/2-(N/π ){{tan}}-1(\\sqrt{N-1})] in terms of Gauss’ symbol. Moreover, we prove in the sector the scheme conjectured by Takahashi for solving BAE systematically. We also suggest that by applying the present method we can derive the quantum numbers for the spin-1/2 XXZ chain.
DEFF Research Database (Denmark)
Clausen, Christoph; Sangouard, N.; Drewsen, M.
2013-01-01
The ability to detect single photons with a high efficiency is a crucial requirement for various quantum information applications. By combining the storage process of a quantum memory for photons with fluorescence-based quantum state measurement, it is, in principle, possible to achieve high...... on an ion Coulomb crystal inside a moderately high-finesse optical cavity. The cavity enhancement leads to an effective optical depth of 15 for a finesse of 3000 with only about 1500 ions interacting with the light field. We show that these values allow for essentially noiseless detection with an efficiency......-efficiency photon counting in large ensembles of atoms. The large number of atoms can, however, pose significant problems in terms of noise stemming from imperfect initial state preparation and off-resonant fluorescence. We identify and analyse a concrete implementation of a photon number resolving detector based...
Qi, Bing; Lo, Hoi-Kwong; Qian, Li
2009-01-01
In this paper, we present a high speed random number generation scheme based on measuring the quantum phase noise of a single mode diode laser operating at a low intensity level near the lasing threshold. A delayed self-heterodyning system has been developed to measure the random phase fluctuation. We experimentally investigate this random number generation scheme under two different operating conditions: with or without active phase stabilization of the fiber interferometer in the self-heterodyning system. The achieved random number generation rates are 500Mbit/s and 50Mbit/s, respectively. The generated random numbers have passed all the DIEHARD tests.
Descartes, R.; Rota, G.-C.; Euler, L.; Bernoulli, J. D.; Siegel, Edward Carl-Ludwig
2011-03-01
Quantum-statistics Dichotomy: Fermi-Dirac(FDQS) Versus Bose-Einstein(BEQS), respectively with contact-repulsion/non-condensation(FDCR) versus attraction/ condensationBEC are manifestly-demonstrated by Taylor-expansion ONLY of their denominator exponential, identified BOTH as Descartes analytic-geometry conic-sections, FDQS as Elllipse (homotopy to rectangle FDQS distribution-function), VIA Maxwell-Boltzmann classical-statistics(MBCS) to Parabola MORPHISM, VS. BEQS to Hyperbola, Archimedes' HYPERBOLICITY INEVITABILITY, and as well generating-functions[Abramowitz-Stegun, Handbook Math.-Functions--p. 804!!!], respectively of Euler-numbers/functions, (via Riemann zeta-function(domination of quantum-statistics: [Pathria, Statistical-Mechanics; Huang, Statistical-Mechanics]) VS. Bernoulli-numbers/ functions. Much can be learned about statistical-physics from Euler-numbers/functions via Riemann zeta-function(s) VS. Bernoulli-numbers/functions [Conway-Guy, Book of Numbers] and about Euler-numbers/functions, via Riemann zeta-function(s) MORPHISM, VS. Bernoulli-numbers/ functions, visa versa!!! Ex.: Riemann-hypothesis PHYSICS proof PARTLY as BEQS BEC/BEA!!!
Orbital-exchange and fractional quantum number excitations in an f-electron metal, Yb2Pt2Pb
Wu, L. S.; Gannon, W. J.; Zaliznyak, I. A.; Tsvelik, A. M.; Brockmann, M.; Caux, J.-S.; Kim, M. S.; Qiu, Y.; Copley, J. R. D.; Ehlers, G.; Podlesnyak, A.; Aronson, M. C.
2016-06-01
Exotic quantum states and fractionalized magnetic excitations, such as spinons in one-dimensional chains, are generally expected to occur in 3d transition metal systems with spin 1/2. Our neutron-scattering experiments on the 4f-electron metal Yb2Pt2Pb overturn this conventional wisdom. We observe broad magnetic continuum dispersing in only one direction, which indicates that the underlying elementary excitations are spinons carrying fractional spin-1/2. These spinons are the emergent quantum dynamics of the anisotropic, orbital-dominated Yb moments. Owing to their unusual origin, only longitudinal spin fluctuations are measurable, whereas the transverse excitations such as spin waves are virtually invisible to magnetic neutron scattering. The proliferation of these orbital spinons strips the electrons of their orbital identity, resulting in charge-orbital separation.
Heo, Jino; Kang, Min-Sung; Hong, Chang-Ho; Yang, Hyeon; Choi, Seong-Gon
2016-12-01
We present a scheme for implementing discrete quantum Fourier transform (DQFT) with robustness against the decoherence effect using weak cross-Kerr nonlinearities (XKNLs). The multi-photon DQFT scheme can be achieved by operating the controlled path and merging path gates that are formed with weak XKNLs and linear optical devices. To enhance feasibility under the decoherence effect, in practice, we utilize a displacement operator and photon-number-resolving measurement in the optical gate using XKNLs. Consequently, when there is a strong amplitude of the coherent state, we demonstrate that it is possible to experimentally implement the DQFT scheme, utilizing current technology, with a certain probability of success under the decoherence effect.
Energy Technology Data Exchange (ETDEWEB)
Diaz-Cruz, J L [Cuerpo Academico de PartIculas, Campos y Relatividad de la BUAP (Mexico); Felix-Beltran, O [Instituto de Fisica, UNAM, Apdo. Postal 20-364, Mexico 01000 D.F. (Mexico); Hernandez-Sanchez, J [Universidad Autonoma del Estado de Hidalgo, Carretera a Pachuca Tulancingo Km. 4.5, C. U., C.P. 42020, Pachuca Hidalgo (Mexico); Barradas-Guevara, E [Cuerpo Academico de PartIculas, Campos y Relatividad de la BUAP (Mexico)
2006-05-15
The vertex H{sup +}{sub {alpha}} {yields} W{sup -}h{sup 0}{sub s}s, involving the gauge boson W{sup {+-}} and the charged (H{sup {+-}}{sub {alpha}}) and neutral Higgs bosons (h{sup 0}{sub s}s), arises within the context of many extensions of the SM, and it can be used to probe the quantum numbers of the Higgs multiplet. After presenting a general discussion for the expected form of this vertex for arbitrary Higgs representations, we discuss its strength for an extended MSSM with one complex triplet. We find that in this model, there are regions of parameters where the decay H{sup +}{sub {alpha}} {yields} W{sup +}h{sup 0}{sub s}s, is kinematically allowed, and reaches Branching Ratios (BR) that may be detectable, thus allowing to test the properties of the Higgs sector.
Energy Technology Data Exchange (ETDEWEB)
Koenneker, Carsten (comp.)
2013-11-01
The following topics are dealt with: The hunting for the quark-gluon plasma, the long way to the Higgs, the LHC after the Higgs, life in the quantum world, Schroedinger's cat on the test, on the way to quantum gravity, with a computational trick to the comprehensive theory of natural forces, antirealistic maverick, exotic numbers and string theory, physics as a ramshackle tower of Babel. (HSI)
Garcia-Cortes, Marta; Sotelo González, Emma; Fernández-Argüelles, María T; Encinar, Jorge Ruiz; Costa-Fernández, José M; Sanz-Medel, Alfredo
2017-06-27
Colloidal Mn(2+)-doped ZnS quantum dots (QDs) were synthesized, surface modified, and thoroughly characterized using a pool of complementary techniques. Cap exchange of the native l-cysteine coating of the QDs with dihydrolipoic acid (DHLA) ligands is proposed as a strategy to produce nanocrystals with a strong phosphorescent-type emission and improved aqueous stability. Moreover, such a stable DHLA coating can facilitate further bioconjugation of these QDs to biomolecules using established reagents such as cross-linker molecules. First, a structural and morphological characterization of the l-cysteine QD core was performed by resorting to complementary techniques, including X-ray powder diffraction (XRD) and microscopy tools. XRD patterns provided information about the local structure of ions within the nanocrystal structure and the number of metal atoms constituting the core of a QD. The judicious combination of the data obtained from these complementary characterization tools with the analysis of the QDs using inductively coupled plasma-mass spectrometry (ICP-MS) allowed us to assess the number concentration of nanoparticles in an aqueous sample, a key parameter when such materials are going to be used in bioanalytical or toxicological studies. Asymmetric flow field-flow fractionation (AF4) coupled online to ICP-MS detection proved to be an invaluable tool to compute the number of DHLA molecules attached to the surface of a single QD, a key feature that is difficult to estimate in nanoparticles and that critically affects the behavior of nanoparticles when entering the biological media (e.g., cellular uptake, biodistribution, or protein corona formation). This hybrid technique also allowed us to demonstrate that the elemental composition of the nanoparticle core remains unaffected after the ligand exchange process. Finally, the photostability and robustness of the DHLA-capped QDs, critical parameters for bioanalytical applications, were assessed by molecular
Bencédi, Gyula; Molnár, Levente
2015-01-01
In this paper we continue the investigation of the effect of quantum number conservations of pions, kaons, and protons, with very high transverse momenta (up to 25 GeV/c), during parton fragmentation and hadronization in p-p and Pb-Pb collisions at LHC energies. The strength of the conservation effects are studied by identified two-particle correlations in Monte Carlo generated events in the mid-rapidity region ($|\\eta| < 1$). The simulated p-p events were generated with PYTHIA 8, using its main default settings, at $\\sqrt{s}=200$~GeV, $\\sqrt{s}=2.76$~TeV, $\\sqrt{s}=7$~TeV, and $\\sqrt{s}=14$~TeV. In parallel to this, HIJING 1.36 was used to generate Pb-Pb events at $\\sqrt{s_{\\rm NN}}=2.76$~TeV with centralities $0-10\\%$, $30-40\\%$ and $80-90\\%$. The extracted identified associated hadron spectra for charged pion, kaon, and proton show identified trigger-hadron dependent splitting between oppositely charged associated particle species in any nucleus-nucleus collisions. The Pb-Pb data exhibits a peculiar spl...
Energy Technology Data Exchange (ETDEWEB)
Rodgers, P
1998-03-01
There is more to information than a string of ones and zeroes the ability of ''quantum bits'' to be in two states at the same time could revolutionize information technology. In the mid-1930s two influential but seemingly unrelated papers were published. In 1935 Einstein, Podolsky and Rosen proposed the famous EPR paradox that has come to symbolize the mysteries of quantum mechanics. Two years later, Alan Turing introduced the universal Turing machine in an enigmatically titled paper, On computable numbers, and laid the foundations of the computer industry one of the biggest industries in the world today. Although quantum physics is essential to understand the operation of transistors and other solid-state devices in computers, computation itself has remained a resolutely classical process. Indeed it seems only natural that computation and quantum theory should be kept as far apart as possible surely the uncertainty associated with quantum theory is anathema to the reliability expected from computers? Wrong. In 1985 David Deutsch introduced the universal quantum computer and showed that quantum theory can actually allow computers to do more rather than less. The ability of particles to be in a superposition of more than one quantum state naturally introduces a form of parallelism that can, in principle, perform some traditional computing tasks faster than is possible with classical computers. Moreover, quantum computers are capable of other tasks that are not conceivable with their classical counterparts. Similar breakthroughs in cryptography and communication followed. (author)
Ventura, D; Ventura, Dan; Martinez, Tony
1998-01-01
This paper combines quantum computation with classical neural network theory to produce a quantum computational learning algorithm. Quantum computation uses microscopic quantum level effects to perform computational tasks and has produced results that in some cases are exponentially faster than their classical counterparts. The unique characteristics of quantum theory may also be used to create a quantum associative memory with a capacity exponential in the number of neurons. This paper combines two quantum computational algorithms to produce such a quantum associative memory. The result is an exponential increase in the capacity of the memory when compared to traditional associative memories such as the Hopfield network. The paper covers necessary high-level quantum mechanical and quantum computational ideas and introduces a quantum associative memory. Theoretical analysis proves the utility of the memory, and it is noted that a small version should be physically realizable in the near future.
Broadband Quantum Cryptography
Rogers, Daniel
2010-01-01
Quantum cryptography is a rapidly developing field that draws from a number of disciplines, from quantum optics to information theory to electrical engineering. By combining some fundamental quantum mechanical principles of single photons with various aspects of information theory, quantum cryptography represents a fundamental shift in the basis for security from numerical complexity to the fundamental physical nature of the communications channel. As such, it promises the holy grail of data security: theoretically unbreakable encryption. Of course, implementing quantum cryptography in real br
Greiner, Walter
1989-01-01
"Quantum Dynamics" is a major survey of quantum theory based on Walter Greiner's long-running and highly successful courses at the University of Frankfurt. The key to understanding in quantum theory is to reinforce lecture attendance and textual study by working through plenty of representative and detailed examples. Firm belief in this principle led Greiner to develop his unique course and to transform it into a remarkable and comprehensive text. The text features a large number of examples and exercises involving many of the most advanced topics in quantum theory. These examples give practical and precise demonstrations of how to use the often subtle mathematics behind quantum theory. The text is divided into five volumes: Quantum Mechanics I - An Introduction, Quantum Mechanics II - Symmetries, Relativistic Quantum Mechanics, Quantum Electrodynamics, Gauge Theory of Weak Interactions. These five volumes take the reader from the fundamental postulates of quantum mechanics up to the latest research in partic...
Randomness: Quantum versus classical
Khrennikov, Andrei
2016-05-01
Recent tremendous development of quantum information theory has led to a number of quantum technological projects, e.g. quantum random generators. This development had stimulated a new wave of interest in quantum foundations. One of the most intriguing problems of quantum foundations is the elaboration of a consistent and commonly accepted interpretation of a quantum state. Closely related problem is the clarification of the notion of quantum randomness and its interrelation with classical randomness. In this short review, we shall discuss basics of classical theory of randomness (which by itself is very complex and characterized by diversity of approaches) and compare it with irreducible quantum randomness. We also discuss briefly “digital philosophy”, its role in physics (classical and quantum) and its coupling to the information interpretation of quantum mechanics (QM).
Advanced quantum communication systems
Jeffrey, Evan Robert
Quantum communication provides several examples of communication protocols which cannot be implemented securely using only classical communication. Currently, the most widely known of these is quantum cryptography, which allows secure key exchange between parties sharing a quantum channel subject to an eavesdropper. This thesis explores and extends the realm of quantum communication. Two new quantum communication protocols are described. The first is a new form of quantum cryptography---relativistic quantum cryptography---which increases communication efficiency by exploiting a relativistic bound on the power of an eavesdropper, in addition to the usual quantum mechanical restrictions intrinsic to quantum cryptography. By doing so, we have observed over 170% improvement in communication efficiency over a similar protocol not utilizing relativity. A second protocol, Quantum Orienteering, allows two cooperating parties to communicate a specific direction in space. This application shows the possibility of using joint measurements, or projections onto an entangled state, in order to extract the maximum useful information from quantum bits. For two-qubit communication, the maximal fidelity of communication using only separable operations is 73.6%, while joint measurements can improve the efficiency to 78.9%. In addition to implementing these protocols, we have improved several resources for quantum communication and quantum computing. Specifically, we have developed improved sources of polarization-entangled photons, a low-loss quantum memory for polarization qubits, and a quantum random number generator. These tools may be applied to a wide variety of future quantum and classical information systems.
Quantum Entropy and Its Applications to Quantum Communication and Statistical Physics
Directory of Open Access Journals (Sweden)
Masanori Ohya
2010-05-01
Full Text Available Quantum entropy is a fundamental concept for quantum information recently developed in various directions. We will review the mathematical aspects of quantum entropy (entropies and discuss some applications to quantum communication, statistical physics. All topics taken here are somehow related to the quantum entropy that the present authors have been studied. Many other fields recently developed in quantum information theory, such as quantum algorithm, quantum teleportation, quantum cryptography, etc., are totally discussed in the book (reference number 60.
Hey, J. D.
2014-08-01
As a sequel to an earlier study (Hey 2009 J. Phys. B: At. Mol. Opt. Phys. 42 125701), we consider further the application of the line strength formula derived by Watson (2006 J. Phys. B: At. Mol. Opt. Phys. 39 L291) to transitions arising from states of very high principal quantum number in hydrogenic atoms and ions (Rydberg-Rydberg transitions, n > 1000). It is shown how apparent difficulties associated with the use of recurrence relations, derived (Hey 2006 J. Phys. B: At. Mol. Opt. Phys. 39 2641) by the ladder operator technique of Infeld and Hull (1951 Rev. Mod. Phys. 23 21), may be eliminated by a very simple numerical device, whereby this method may readily be applied up to n ≈ 10 000. Beyond this range, programming of the method may entail greater care and complexity. The use of the numerically efficient McLean-Watson formula for such cases is again illustrated by the determination of radiative lifetimes and comparison of present results with those from an asymptotic formula. The question of the influence on the results of the omission or inclusion of fine structure is considered by comparison with calculations based on the standard Condon-Shortley line strength formula. Interest in this work on the radial matrix elements for large n and n‧ is related to measurements of radio recombination lines from tenuous space plasmas, e.g. Stepkin et al (2007 Mon. Not. R. Astron. Soc. 374 852), Bell et al (2011 Astrophys. Space Sci. 333 377), to the calculation of electron impact broadening parameters for such spectra (Watson 2006 J. Phys. B: At. Mol. Opt. Phys. 39 1889) and comparison with other theoretical methods (Peach 2014 Adv. Space Res. in press), to the modelling of physical processes in H II regions (Roshi et al 2012 Astrophys. J. 749 49), and the evaluation bound-bound transitions from states of high n during primordial cosmological recombination (Grin and Hirata 2010 Phys. Rev. D 81 083005, Ali-Haïmoud and Hirata 2010 Phys. Rev. D 82 063521, Ali
Finite and profinite quantum systems
Vourdas, Apostolos
2017-01-01
This monograph provides an introduction to finite quantum systems, a field at the interface between quantum information and number theory, with applications in quantum computation and condensed matter physics. The first major part of this monograph studies the so-called `qubits' and `qudits', systems with periodic finite lattice as position space. It also discusses the so-called mutually unbiased bases, which have applications in quantum information and quantum cryptography. Quantum logic and its applications to quantum gates is also studied. The second part studies finite quantum systems, where the position takes values in a Galois field. This combines quantum mechanics with Galois theory. The third part extends the discussion to quantum systems with variables in profinite groups, considering the limit where the dimension of the system becomes very large. It uses the concepts of inverse and direct limit and studies quantum mechanics on p-adic numbers. Applications of the formalism include quantum optics and ...
Ladd, T D; Jelezko, F; Laflamme, R; Nakamura, Y; Monroe, C; O'Brien, J L
2010-03-04
Over the past several decades, quantum information science has emerged to seek answers to the question: can we gain some advantage by storing, transmitting and processing information encoded in systems that exhibit unique quantum properties? Today it is understood that the answer is yes, and many research groups around the world are working towards the highly ambitious technological goal of building a quantum computer, which would dramatically improve computational power for particular tasks. A number of physical systems, spanning much of modern physics, are being developed for quantum computation. However, it remains unclear which technology, if any, will ultimately prove successful. Here we describe the latest developments for each of the leading approaches and explain the major challenges for the future.
1998-01-01
quantum mechanical effect predicted by Felix Bloch decades ago. The prediction was that an electron experiencing a constant force, and hence constant...Kohler, L. Mandel, J. Opt. Soc. Am. 63, 126 (1972). [30] P. DeSantis, F. Gori, G. Guattari , C. Palma, J.M. Webster, J. Photo. Sc. 33, 197 (1985). 178
D. Cho; W.L. Mattice; L.J. Porter; Richard W. Hemingway
1989-01-01
Excitation at 280 nm produces a structureless emission band with a maximum at 321-324 nm for dilute solutions of catechin, epicatechin, and their oligomers in l,4-dioxane or water. The fluorescence quantum yield, Q, has been measured in these two solvents for five dimers, a trimer, a tetramer, a pentamer, a hexamer, and a polymer in which the monomer...
Quantum algorithms for quantum field theories.
Jordan, Stephen P; Lee, Keith S M; Preskill, John
2012-06-01
Quantum field theory reconciles quantum mechanics and special relativity, and plays a central role in many areas of physics. We developed a quantum algorithm to compute relativistic scattering probabilities in a massive quantum field theory with quartic self-interactions (φ(4) theory) in spacetime of four and fewer dimensions. Its run time is polynomial in the number of particles, their energy, and the desired precision, and applies at both weak and strong coupling. In the strong-coupling and high-precision regimes, our quantum algorithm achieves exponential speedup over the fastest known classical algorithm.
Maximally incompatible quantum observables
Energy Technology Data Exchange (ETDEWEB)
Heinosaari, Teiko, E-mail: teiko.heinosaari@utu.fi [Turku Centre for Quantum Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Schultz, Jussi, E-mail: jussi.schultz@gmail.com [Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Toigo, Alessandro, E-mail: alessandro.toigo@polimi.it [Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Ziman, Mario, E-mail: ziman@savba.sk [RCQI, Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 84511 Bratislava (Slovakia); Faculty of Informatics, Masaryk University, Botanická 68a, 60200 Brno (Czech Republic)
2014-05-01
The existence of maximally incompatible quantum observables in the sense of a minimal joint measurability region is investigated. Employing the universal quantum cloning device it is argued that only infinite dimensional quantum systems can accommodate maximal incompatibility. It is then shown that two of the most common pairs of complementary observables (position and momentum; number and phase) are maximally incompatible.
Randomness: quantum versus classical
Khrennikov, Andrei
2015-01-01
Recent tremendous development of quantum information theory led to a number of quantum technological projects, e.g., quantum random generators. This development stimulates a new wave of interest in quantum foundations. One of the most intriguing problems of quantum foundations is elaboration of a consistent and commonly accepted interpretation of quantum state. Closely related problem is clarification of the notion of quantum randomness and its interrelation with classical randomness. In this short review we shall discuss basics of classical theory of randomness (which by itself is very complex and characterized by diversity of approaches) and compare it with irreducible quantum randomness. The second part of this review is devoted to the information interpretation of quantum mechanics (QM) in the spirit of Zeilinger and Brukner (and QBism of Fuchs et al.) and physics in general (e.g., Wheeler's "it from bit") as well as digital philosophy of Chaitin (with historical coupling to ideas of Leibnitz). Finally, w...
Quantum state revivals in quantum walks on cycles
Directory of Open Access Journals (Sweden)
Phillip R. Dukes
2014-01-01
Full Text Available Recurrence in the classical random walk is well known and described by the Pólya number. For quantum walks, recurrence is similarly understood in terms of the probability of a localized quantum walker to return to its origin. Under certain circumstances the quantum walker may also return to an arbitrary initial quantum state in a finite number of steps. Quantum state revivals in quantum walks on cycles using coin operators which are constant in time and uniform across the path have been described before but only incompletely. In this paper we find the general conditions for which full-quantum state revival will occur.
Reconstructing quantum states efficiently
Cramer, M; Plenio, M. B.
2010-01-01
Quantum state tomography, the ability to deduce the density matrix of a quantum system from measured data, is of fundamental importance for the verification of present and future quantum devices. It has been realized in systems with few components but for larger systems it becomes rapidly infeasible because the number of quantum measurements and computational resources required to process them grow exponentially in the system size. Here we show that we can gain an exponential advantage over d...
Foundations of quantum theory and quantum information applications
Galvão, E F
2002-01-01
This thesis establishes a number of connections between foundational issues in quantum theory, and some quantum information applications. It starts with a review of quantum contextuality and non-locality, multipartite entanglement characterisation, and of a few quantum information protocols. Quantum non-locality and contextuality are shown to be essential for different implementations of quantum information protocols known as quantum random access codes and quantum communication complexity protocols. I derive sufficient experimental conditions for tests of these quantum properties. I also discuss how the distribution of quantum information through quantum cloning processes can be useful in quantum computing. Regarding entanglement characterisation, some results are obtained relating two problems, that of additivity of the relative entropy of entanglement, and that of identifying different types of tripartite entanglement in the asymptotic regime of manipulations of many copies of a given state. The thesis end...
Quantum signatures of chaos or quantum chaos?
Energy Technology Data Exchange (ETDEWEB)
Bunakov, V. E., E-mail: bunakov@VB13190.spb.edu [St. Petersburg State University (Russian Federation)
2016-11-15
A critical analysis of the present-day concept of chaos in quantum systems as nothing but a “quantum signature” of chaos in classical mechanics is given. In contrast to the existing semi-intuitive guesses, a definition of classical and quantum chaos is proposed on the basis of the Liouville–Arnold theorem: a quantum chaotic system featuring N degrees of freedom should have M < N independent first integrals of motion (good quantum numbers) specified by the symmetry of the Hamiltonian of the system. Quantitative measures of quantum chaos that, in the classical limit, go over to the Lyapunov exponent and the classical stability parameter are proposed. The proposed criteria of quantum chaos are applied to solving standard problems of modern dynamical chaos theory.
Energy Technology Data Exchange (ETDEWEB)
Bernardini, Alex Eduardo de [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Fisica Gleb Wataghin (IFGW). Dept. de Raios Cosmicos]. E-mail: alexeb@ifi.unicamp.br
2002-07-01
This work presents a briefly discussion on the chirality, a important quantum character of the neutrinos and particles physics. A SU(4) symmetry base is establish for the study on the chiral oscillation 'left-right' for the determination the quantum numbers related to the different representations of the SU(4) symmetry group.
Addition on a Quantum Computer
Draper, Thomas G
2000-01-01
A new method for computing sums on a quantum computer is introduced. This technique uses the quantum Fourier transform and reduces the number of qubits necessary for addition by removing the need for temporary carry bits. This approach also allows the addition of a classical number to a quantum superposition without encoding the classical number in the quantum register. This method also allows for massive parallelization in its execution.
Research on Quantum Algorithms at the Institute for Quantum Information and Matter
2016-05-29
Research on Quantum Algorithms at the Institute for Quantum Information and Matter The central goals of our project are (1) to bring large-scale... quantum algorithms , quantum complexity, fault-tolerant quantum computing REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR...Research on Quantum Algorithms at the Institute for Quantum Information and Matter Report Title The central goals of our project are (1) to bring large
Baaquie, Belal E.
2007-09-01
Foreword; Preface; Acknowledgements; 1. Synopsis; Part I. Fundamental Concepts of Finance: 2. Introduction to finance; 3. Derivative securities; Part II. Systems with Finite Number of Degrees of Freedom: 4. Hamiltonians and stock options; 5. Path integrals and stock options; 6. Stochastic interest rates' Hamiltonians and path integrals; Part III. Quantum Field Theory of Interest Rates Models: 7. Quantum field theory of forward interest rates; 8. Empirical forward interest rates and field theory models; 9. Field theory of Treasury Bonds' derivatives and hedging; 10. Field theory Hamiltonian of forward interest rates; 11. Conclusions; Appendix A: mathematical background; Brief glossary of financial terms; Brief glossary of physics terms; List of main symbols; References; Index.
Guseinov, I. I.
2005-01-01
Ozdogan (Int. J. Quantum Chem., 92 (2003) 419) published formulas for evaluating the multielectron multicenter molecular integrals over Slater-type orbitals (STOs). It is demonstrated that the formulas presented in this work are not original and they can easily be derived by means of a simple algebra from the relationship of our published papers (I.I.Guseinov, J.Mol.Struct.(Theochem), 417(1997)117; J.Mol.Struct.(Theochem), 593 (2002) 65; I.I.Guseinov,B.A.Mamedov,F.Oner,S.Huseyin, J.Mol.Struct...
Guseinov, I. I.
2005-01-01
In a recent paper Ozdogan (Z. Naturforsch, 59a(2004)743) published formulas for evaluating the two-center overlap and nuclear attraction integrals over integer and noninteger Slater type orbitals. The purpose of this article is to point out that the same formulas have previously been established by Guseinov et al. (J.Mol.Model.,8(2002)272) by using the same method. As we demonstrated in our Comment (Int.J.Quantum Chem., 91(2003)62), the expansion formula for the product of two normalized asso...
Classical and Quantum Polyhedra
Schliemann, John
2014-01-01
Quantum polyhedra constructed from angular momentum operators are the building blocks of space in its quantum description as advocated by Loop Quantum Gravity. Here we extend previous results on the semiclassical properties of quantum polyhedra. Regarding tetrahedra, we compare the results from a canonical quantization of the classical system with a recent wave function based approach to the large-volume sector of the quantum system. Both methods agree in the leading order of the resulting effective operator (given by an harmonic oscillator), while minor differences occur in higher corrections. Perturbative inclusion of such corrections improves the approximation to the eigenstates. Moreover, the comparison of both methods leads also to a full wave function description of the eigenstates of the (square of the) volume operator at negative eigenvalues of large modulus. For the case of general quantum polyhedra described by discrete angular momentum quantum numbers we formulate a set of quantum operators fulfill...
Problems and solutions in quantum computing and quantum information
Steeb, Willi-Hans
2012-01-01
Quantum computing and quantum information are two of the fastest growing and most exciting research fields in physics. Entanglement, teleportation and the possibility of using the non-local behavior of quantum mechanics to factor integers in random polynomial time have also added to this new interest. This book supplies a huge collection of problems in quantum computing and quantum information together with their detailed solutions, which will prove to be invaluable to students as well as researchers in these fields. All the important concepts and topics such as quantum gates and quantum circuits, product Hilbert spaces, entanglement and entanglement measures, deportation, Bell states, Bell inequality, Schmidt decomposition, quantum Fourier transform, magic gate, von Neumann entropy, quantum cryptography, quantum error corrections, number states and Bose operators, coherent states, squeezed states, Gaussian states, POVM measurement, quantum optics networks, beam splitter, phase shifter and Kerr Hamilton opera...
Ranchin, André
2016-01-01
We introduce a new board game based on the ancient Chinese game of Go (Weiqi, Igo, Baduk). The key difference from the original game is that players no longer alternatively play single stones on the board but instead they take turns placing pairs of entangled go stones. A phenomenon of quantum-like collapse occurs when a stone is placed in an intersection directly adjacent to one or more other stones. For each neighboring stone in an entangled pair, each player then chooses which stone of the pair is kept on the board and which stone is removed. The aim of the game is still to surround more territory than the opponent and as the number of stones increases, all the entangled pairs of stones eventually reduce to single stones. Quantum Go provides an interesting and tangible illustration of quantum concepts such as superposition, entanglement and collapse.
Energy Technology Data Exchange (ETDEWEB)
Aihara, Taketo; Fukuyama, Atsuhiko; Ikari, Tetsuo [Faculty of Engineering, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki 889-2192 (Japan); Suzuki, Hidetoshi [Interdisciplinary Research Organization, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki 889-2192 (Japan); Fujii, Hiromasa; Nakano, Yoshiaki [Research Center for Advanced Science and Technology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032 (Japan); Sugiyama, Masakazu [School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032 (Japan)
2015-02-28
Three non-destructive methodologies, namely, surface photovoltage (SPV), photoluminescence, and piezoelectric photothermal (PPT) spectroscopies, were adopted to detect the thermal carrier escape from quantum well (QW) and radiative and non-radiative carrier recombinations, respectively, in strain-balanced InGaAs/GaAsP multiple-quantum-well (MQW)-inserted GaAs p-i-n solar cell structure samples. Although the optical absorbance signal intensity was proportional to the number of QW stack, the signal intensities of the SPV and PPT methods decreased at high number of stack. To explain the temperature dependency of these signal intensities, we proposed a model that considers the three carrier dynamics: the thermal escape from the QW, and the non-radiative and radiative carrier recombinations within the QW. From the fitting procedures, it was estimated that the activation energies of the thermal escape ΔE{sub barr} and non-radiative recombination ΔE{sub NR} were 68 and 29 meV, respectively, for a 30-stacked MQW sample. The estimated ΔE{sub barr} value agreed well with the difference between the first electron subband and the top of the potential barrier in the conduction band. We found that ΔE{sub barr} remained constant at approximately 70 meV even with increasing QW stack number. However, the ΔE{sub NR} value monotonically increased with the increase in the number of stack. Since this implies that non-radiative recombination becomes improbable as the number of stack increases, we found that the radiative recombination probability for electrons photoexcited within the QW increased at a large number of QW stack. Additional processes of escaping and recapturing of carriers at neighboring QW were discussed. As a result, the combination of the three non-destructive methodologies provided us new insights for optimizing the MQW components to further improve the cell performance.
AUTHOR|(INSPIRE)INSPIRE-00225109
Search and discovery of the Standard Model Higgs Boson, with the ATLAS experiment at the Large Hadron Collider, with up to 25 inverse femtobarns of data, in the WW -> lnulnu final state. The search has been conducted with a multivariate technique, namely the Boosted Decision Tree one, to fully exploit the topology of the final state and enhance the sensitivity. In addition, the measurement of the spin and parity quantum numbers of the newly found resounacne, has been performed, to assess its compatibility with the Higgs Boson as predicted by the Standard Model.
Quantum Memory as Light Pulses Quantum States Transformer
Directory of Open Access Journals (Sweden)
Vetlugin A.N.
2015-01-01
Full Text Available Quantum memory can operate not only as a write-in/readout device [1] for quantum light pulses and non-classical states generation [2] device but also as a quantum states of light transformer. Here the addressable parallel quantum memory [3] possibilities for this type of transformation are researched. Quantum memory operates as a conventional N-port interferometer with N equals to the number of the involved spin waves. As example we consider the ability to transform quantum states of two light pulses – in this case the quantum memory works as a mirror with a controlled transmission factor.
Quartic quantum theory: an extension of the standard quantum mechanics
Zyczkowski, Karol
2008-01-01
We propose an extended quantum theory, in which the number K of parameters necessary to characterize a quantum state behaves as fourth power of the number N of distinguishable states. As the simplex of classical N-point probability distributions can be embedded inside a higher dimensional convex body of mixed quantum states, one can further increase the dimensionality constructing the set of extended quantum states. The embedding proposed corresponds to an assumption that the physical system ...
Avoiding Quantum Chaos in Quantum Computation
Berman, G P; Izrailev, F M; Tsifrinovich, V I
2001-01-01
We study a one-dimensional chain of nuclear $1/2-$spins in an external time-dependent magnetic field. This model is considered as a possible candidate for experimental realization of quantum computation. According to the general theory of interacting particles, one of the most dangerous effects is quantum chaos which can destroy the stability of quantum operations. According to the standard viewpoint, the threshold for the onset of quantum chaos due to an interaction between spins (qubits) strongly decreases with an increase of the number of qubits. Contrary to this opinion, we show that the presence of a magnetic field gradient helps to avoid quantum chaos which turns out to disappear with an increase of the number of qubits. We give analytical estimates which explain this effect, together with numerical data supporting
Li, Shu-Shen; Long, Gui-lu; Bai, Feng-Shan; Feng, Song-Lin; Zheng, Hou-Zhi
2001-01-01
Quantum computing is a quickly growing research field. This article introduces the basic concepts of quantum computing, recent developments in quantum searching, and decoherence in a possible quantum dot realization.
Villari, Leone Di Mauro; Biancalana, Fabio; Conti, Claudio
2016-01-01
We have very little experience of the quantum dynamics of the ubiquitous nonlinear waves. Observed phenomena in high energy physics are perturbations to linear waves, and classical nonlinear waves, like solitons, are barely affected by quantum effects. We know that solitons, immutable in classical physics, exhibit collapse and revivals according to quantum mechanics. However this effect is very weak and has never been observed experimentally. By predicting black hole evaporation Hawking first introduced a distinctly quantum effect in nonlinear gravitational physics.Here we show the existence of a general and universal quantum process whereby a soliton emits quantum radiation with a specific frequency content, and a temperature given by the number of quanta, the soliton Schwarzschild radius, and the amount of nonlinearity, in a precise and surprisingly simple way. This result may ultimately lead to the first experimental evidence of genuine quantum black hole evaporation. In addition, our results show that bla...
Yard, J; Devetak, I; Yard, Jon; Hayden, Patrick; Devetak, Igor
2006-01-01
We analyze quantum broadcast channels, which are quantum channels with a single sender and many receivers. Focusing on channels with two receivers for simplicity, we generalize a number of results from the network Shannon theory literature which give the rates at which two senders can receive a common message, while a personalized one is sent to one of them. Our first collection of results applies to channels with a classical input and quantum outputs. The second class of theorems we prove concern sending a common classical message over a quantum broadcast channel, while sending quantum information to one of the receivers. The third group of results we obtain concern communication over an isometry, giving the rates at quantum information can be sent to one receiver, while common quantum information is sent to both, in the sense that tripartite GHZ entanglement is established. For each scenario, we provide an additivity proof for an appropriate class of channels, yielding single-letter characterizations of the...
2015-07-15
Progress Report (ONR Award No. N00014-14-1-0804) Quantum Spin Gyroscope August 2014-July 2015 Report Type: Annual Report Primary Contact E-mail... Quantum Spin Gyroscope Grant/Contract Number: N00014-14-1-0804 Principal Investigator Name: Paola Cappellaro Program Manager: Richard Tommy Willis...required large volumes. Our project aims at overcoming these drawbacks by developing a novel solid-state quantum spin gyro- scope associated with the
Vidotto, Francesca
2015-01-01
The application of quantum theory to cosmology raises a number of conceptual questions, such as the role of the quantum-mechanical notion of "observer" or the absence of a time variable in the Wheeler-DeWitt equation. I point out that a relational formulation of quantum mechanics, and more in general the observation that evolution is always relational, provides a coherent solution to this tangle of problems.
Quantum Distinction: Quantum Distinctiones!
Zeps, Dainis
2009-01-01
10 pages; How many distinctions, in Latin, quantum distinctiones. We suggest approach of anthropic principle based on anthropic reference system which should be applied equally both in theoretical physics and in mathematics. We come to principle that within reference system of life subject of mathematics (that of thinking) should be equated with subject of physics (that of nature). For this reason we enter notions of series of distinctions, quantum distinction, and argue that quantum distinct...
Siddiqui, Imran; Khan, Shamim; Windholz, Laurentius
2016-03-01
We present 39 even and 60 odd parity newly discovered fine structure levels of Pr I with angular momentum quantum numbers J = 7 / 2, 9/2, 11/2 and 13/2. Spectral lines in the wavelength range of 4200 Å to 7500 Å were investigated experimentally using laser-induced fluorescence spectroscopy or optogalvanic spectroscopy. Free Pr atoms were produced in a hollow cathode discharge. A high resolution Fourier transform spectrum of Pr was used to extract excitation wavelengths. From an analysis of the recorded hyperfine patterns, together with excitation and fluorescence wavelengths, we were able to find the unknown levels involved in the formation of the investigated lines. More than 500 spectral lines could be classified by the new levels. Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2016-60485-2
Continuous Variable Quantum State Sharing via Quantum Disentanglement
Lance, A M; Bowen, W P; Sanders, B C; Tyc, T; Ralph, T C; Lam, P K; Lance, Andrew M.; Symul, Thomas; Bowen, Warwick P.; Sanders, Barry C.; Tyc, Tomas; Ralph, Timothy C.; Lam, Ping Koy
2004-01-01
Quantum state sharing is a protocol where perfect reconstruction of quantum states is achieved with incomplete or partial information in a multi-partite quantum networks. Quantum state sharing allows for secure communication in a quantum network where partial information is lost or acquired by malicious parties. This protocol utilizes entanglement for the secret state distribution, and a class of "quantum disentangling" protocols for the state reconstruction. We demonstrate a quantum state sharing protocol in which a tripartite entangled state is used to encode and distribute a secret state to three players. Any two of these players can collaborate to reconstruct the secret state, whilst individual players obtain no information. We investigate a number of quantum disentangling processes and experimentally demonstrate quantum state reconstruction using two of these protocols. We experimentally measure a fidelity, averaged over all reconstruction permutations, of F = 0.73. A result achievable only by using quan...
Wang, Wei; Yu, Yong-Jiang; Zhao, Gang; Yang, Chuan-Lu
2016-08-01
The stereodynamical properties of H(2S) + NH(v = 0, j = 0, 2, 5, 10) → N(4S) + H2 reactions are studied in this paper by using the quasi-classical trajectory (QCT) method with different collision energies on the double many-body expansion (DMBE) potential energy surface (PES) (Poveda L A and Varandas A J C 2005 Phys. Chem. Chem. Phys. 7 2867). In a range of collision energy from 2 to 20 kcal/mol, the vibrational rotational quantum numbers of the NH molecules are specifically investigated on v = 0 and j = 0, 2, 5, 10 respectively. The distributions of P(θ r ), P(ϕ r ), P(θ r ,ϕ r ), (2π/σ)(dσ 00/dω t ) differential cross-section (DCSs) and integral cross-sections(ICSs) are calculated. The ICSs, computed for collision energies from 2 kcal/mol to 20 kcal/mol, for the ground state are in good agreement with the cited data. The results show that the reagent rotational quantum number and initial collision energy both have a significant effect on the distributions of the k - j ‧, the k - k ‧- j ‧, and the k - k ‧ correlations. In addition, the DCS is found to be susceptible to collision energy, but it is not significantly affected by the rotational excitation of reagent. Project supported by the Natural Science Foundation of Shandong Province, China (Grant No. 2016ZRB01066) and the University Student’s Science and Technology Innovation Fund of Ludong University, China (Grant No. 131007).
1993-03-20
defining a transition for a certain number of atoms that depends * Permanent address. Proyecto Quinor, Facultad de Ciencias Exactas , Universidad Nacional...Universidade Federal de Uberlandia 205 CPL PRC Depto. de Ciencias Fisicas Bartlesv2le, OK 74004 Campus Santa Monica Uberlandia, MG 38400-902 RICHARD...considering the tip, sample and * On leave from: Escuela de Quimica, Facultad de Ciencias . Universidad Central de Venezuela. Apar- tado 47102, Caracas 1020 A
Quantum transport in carbon nanotubes
DEFF Research Database (Denmark)
Laird, Edward A.; Kuemmeth, Ferdinand; Steele, Gary A.
2015-01-01
. In single quantum dots defined in short lengths of nanotube, the energy levels associated with each degree of freedom, and the spin-orbit coupling between them, are revealed by Coulomb blockade spectroscopy. In double quantum dots, the combination of quantum numbers modifies the selection rules of Pauli...
On Classical and Quantum Cryptography
Volovich, I V; Volovich, Ya.I.
2001-01-01
Lectures on classical and quantum cryptography. Contents: Private key cryptosystems. Elements of number theory. Public key cryptography and RSA cryptosystem. Shannon`s entropy and mutual information. Entropic uncertainty relations. The no cloning theorem. The BB84 quantum cryptographic protocol. Security proofs. Bell`s theorem. The EPRBE quantum cryptographic protocol.
Allowable Generalized Quantum Gates
Institute of Scientific and Technical Information of China (English)
LONG Gui-Lu; LIU Yang; WANG Chuan
2009-01-01
In this paper, we give the most general duality gates, or generalized quantum gates in duality quantum computers. Here we show by explicit construction that a n-bit duality quantum computer with d slits can be simulated perfectly with an ordinary quantum computer with n qubits and one auxiliary qudit. Using this model, we give the most general form of duality gates which is of the form Σ(d-1)(i=0)piUi, and the Pi's are complex numbers with module less or equal to I and constrained by |Σipi|≤1.
Quantum Transport in Semiconductors
1991-10-01
SRS i 91 4. TITLE AND SUBTITLE Quantum Transport in Semiconductors 5. FUNDING NUMBER söMtos-rizk-ooss 6. AUTHOR(S) D. K. Ferry ©fte ELECTE...OF ABSTRACT UL NSN 7540-01-280-5500 O 1 9 Standard Form 298 (Rev. 2-89) Presented by ANSI Std «9-18 298-102 Final Report Quantum Transport in... Quantum Transport in Semiconductor Devices This final report describes a program of research investigating quantum effects which become important in
Quantum physics meets biology.
Arndt, Markus; Juffmann, Thomas; Vedral, Vlatko
2009-12-01
Quantum physics and biology have long been regarded as unrelated disciplines, describing nature at the inanimate microlevel on the one hand and living species on the other hand. Over the past decades the life sciences have succeeded in providing ever more and refined explanations of macroscopic phenomena that were based on an improved understanding of molecular structures and mechanisms. Simultaneously, quantum physics, originally rooted in a world-view of quantum coherences, entanglement, and other nonclassical effects, has been heading toward systems of increasing complexity. The present perspective article shall serve as a "pedestrian guide" to the growing interconnections between the two fields. We recapitulate the generic and sometimes unintuitive characteristics of quantum physics and point to a number of applications in the life sciences. We discuss our criteria for a future "quantum biology," its current status, recent experimental progress, and also the restrictions that nature imposes on bold extrapolations of quantum theory to macroscopic phenomena.
Robinett, R W
2004-01-01
The numerical prediction, theoretical analysis, and experimental verification of the phenomenon of wave packet revivals in quantum systems has flourished over the last decade and a half. Quantum revivals are characterized by initially localized quantum states which have a short-term, quasi-classical time evolution, which then can spread significantly over several orbits, only to reform later in the form of a quantum revival in which the spreading reverses itself, the wave packet relocalizes, and the semi-classical periodicity is once again evident. Relocalization of the initial wave packet into a number of smaller copies of the initial packet (`minipackets' or `clones') is also possible, giving rise to fractional revivals. Systems exhibiting such behavior are a fundamental realization of time-dependent interference phenomena for bound states with quantized energies in quantum mechanics and are therefore of wide interest in the physics and chemistry communities. We review the theoretical machinery of quantum w...
Goswami, Debashish
2016-01-01
This book offers an up-to-date overview of the recently proposed theory of quantum isometry groups. Written by the founders, it is the first book to present the research on the “quantum isometry group”, highlighting the interaction of noncommutative geometry and quantum groups, which is a noncommutative generalization of the notion of group of isometry of a classical Riemannian manifold. The motivation for this generalization is the importance of isometry groups in both mathematics and physics. The framework consists of Alain Connes’ “noncommutative geometry” and the operator-algebraic theory of “quantum groups”. The authors prove the existence of quantum isometry group for noncommutative manifolds given by spectral triples under mild conditions and discuss a number of methods for computing them. One of the most striking and profound findings is the non-existence of non-classical quantum isometry groups for arbitrary classical connected compact manifolds and, by using this, the authors explicitl...
Chang, Mou-Hsiung
2015-01-01
The classical probability theory initiated by Kolmogorov and its quantum counterpart, pioneered by von Neumann, were created at about the same time in the 1930s, but development of the quantum theory has trailed far behind. Although highly appealing, the quantum theory has a steep learning curve, requiring tools from both probability and analysis and a facility for combining the two viewpoints. This book is a systematic, self-contained account of the core of quantum probability and quantum stochastic processes for graduate students and researchers. The only assumed background is knowledge of the basic theory of Hilbert spaces, bounded linear operators, and classical Markov processes. From there, the book introduces additional tools from analysis, and then builds the quantum probability framework needed to support applications to quantum control and quantum information and communication. These include quantum noise, quantum stochastic calculus, stochastic quantum differential equations, quantum Markov semigrou...
Steane, A M
1998-01-01
The subject of quantum computing brings together ideas from classical information theory, computer science, and quantum physics. This review aims to summarise not just quantum computing, but the whole subject of quantum information theory. It turns out that information theory and quantum mechanics fit together very well. In order to explain their relationship, the review begins with an introduction to classical information theory and computer science, including Shannon's theorem, error correcting codes, Turing machines and computational complexity. The principles of quantum mechanics are then outlined, and the EPR experiment described. The EPR-Bell correlations, and quantum entanglement in general, form the essential new ingredient which distinguishes quantum from classical information theory, and, arguably, quantum from classical physics. Basic quantum information ideas are described, including key distribution, teleportation, data compression, quantum error correction, the universal quantum computer and qua...
Institute of Scientific and Technical Information of China (English)
王建民; 谢天宇; 张鸿飞; 谢超; 杨东旭; 王坚
2015-01-01
In this article, a random number generator without post-processing, which uses the randomness of photon in optics quantum random source,is designed.The designemploys feeble light to detect at single photon level.The pulse number detected by in fixed period obeys Possion distribution,but effect of electronic compo-nents and readout electronics distortsPossion distribution.Controlling mean count can eliminate bias to achieve unbiased in statistics.High quality and high speed random numbers using automatic bias-correcting technique is producedwithout post-processing and passes all standard tests relevant for random number generators,like NIST,Diehard.%利用光学量子随机源中光子的随机性，设计了一种无需后处理的随机数产生器。在设计中，用弱光源进行单光子水平的探测，利用单光子水平的光源在半导体探测器上一定周期内探测到的脉冲个数服从泊松分布的基本原理，而元器件和读出电子学造成理想泊松分布的变形，通过控制平均计数消除偏差，达到统计学上的无偏。本设计具有自动纠偏功能，产生无后处理的高质量高速真随机数，并通过了NIST、Diehard等多种技术测试标准。
Quantum Mechanical Earth: Where Orbitals Become Orbits
Keeports, David
2012-01-01
Macroscopic objects, although quantum mechanical by nature, conform to Newtonian mechanics under normal observation. According to the quantum mechanical correspondence principle, quantum behavior is indistinguishable from classical behavior in the limit of very large quantum numbers. The purpose of this paper is to provide an example of the…
Quantum Mechanical Earth: Where Orbitals Become Orbits
Keeports, David
2012-01-01
Macroscopic objects, although quantum mechanical by nature, conform to Newtonian mechanics under normal observation. According to the quantum mechanical correspondence principle, quantum behavior is indistinguishable from classical behavior in the limit of very large quantum numbers. The purpose of this paper is to provide an example of the…
Critically damped quantum search.
Mizel, Ari
2009-04-17
Although measurement and unitary processes can accomplish any quantum evolution in principle, thinking in terms of dissipation and damping can be powerful. We propose a modification of Grover's algorithm in which the idea of damping plays a natural role. Remarkably, we find that there is a critical damping value that divides between the quantum O(sqrt[N]) and classical O(N) search regimes. In addition, by allowing the damping to vary in a fashion we describe, one obtains a fixed-point quantum search algorithm in which ignorance of the number of targets increases the number of oracle queries only by a factor of 1.5.
Energy Technology Data Exchange (ETDEWEB)
Kapustin, Anton [California Institute of Technology, Pasadena, California 91125 (United States)
2013-06-15
We formulate physically motivated axioms for a physical theory which for systems with a finite number of degrees of freedom uniquely lead to quantum mechanics as the only nontrivial consistent theory. Complex numbers and the existence of the Planck constant common to all systems arise naturally in this approach. The axioms are divided into two groups covering kinematics and basic measurement theory, respectively. We show that even if the second group of axioms is dropped, there are no deformations of quantum mechanics which preserve the kinematic axioms. Thus, any theory going beyond quantum mechanics must represent a radical departure from the usual a priori assumptions about the laws of nature.
Gosson, Maurice A. de
2012-01-01
Quantum blobs are the smallest phase space units of phase space compatible with the uncertainty principle of quantum mechanics and having the symplectic group as group of symmetries. Quantum blobs are in a bijective correspondence with the squeezed coherent states from standard quantum mechanics, of which they are a phase space picture. This allows us to propose a substitute for phase space in quantum mechanics. We study the relationship between quantum blobs with a certain class of level set...
Nonlinear Dynamics In Quantum Physics -- Quantum Chaos and Quantum Instantons
Kröger, H.
2003-01-01
We discuss the recently proposed quantum action - its interpretation, its motivation, its mathematical properties and its use in physics: quantum mechanical tunneling, quantum instantons and quantum chaos.
Nonlinear Dynamics In Quantum Physics -- Quantum Chaos and Quantum Instantons
Kröger, H.
2003-01-01
We discuss the recently proposed quantum action - its interpretation, its motivation, its mathematical properties and its use in physics: quantum mechanical tunneling, quantum instantons and quantum chaos.
An overview of quantum computation models: quantum automata
Institute of Scientific and Technical Information of China (English)
2008-01-01
Quantum automata,as theoretical models of quantum computers,include quantum finite automata (QFA),quantum sequential machines (QSM),quantum pushdown automata (QPDA),quantum Turing machines (QTM),quantum cellular automata (QCA),and the others,for example,automata theory based on quantum logic (orthomodular lattice-valued automata).In this paper,we try to outline a basic progress in the research on these models,focusing on QFA,QSM,QPDA,QTM,and orthomodular lattice-valued automata.Also,other models closely relative to them are mentioned.In particular,based on the existing results in the literature,we finally address a number of problems to be studied in future.
Mastriani, Mario
2017-01-01
This paper presents a number of problems concerning the practical (real) implementation of the techniques known as quantum image processing. The most serious problem is the recovery of the outcomes after the quantum measurement, which will be demonstrated in this work that is equivalent to a noise measurement, and it is not considered in the literature on the subject. It is noteworthy that this is due to several factors: (1) a classical algorithm that uses Dirac's notation and then it is coded in MATLAB does not constitute a quantum algorithm, (2) the literature emphasizes the internal representation of the image but says nothing about the classical-to-quantum and quantum-to-classical interfaces and how these are affected by decoherence, (3) the literature does not mention how to implement in a practical way (at the laboratory) these proposals internal representations, (4) given that quantum image processing works with generic qubits, this requires measurements in all axes of the Bloch sphere, logically, and (5) among others. In return, the technique known as quantum Boolean image processing is mentioned, which works with computational basis states (CBS), exclusively. This methodology allows us to avoid the problem of quantum measurement, which alters the results of the measured except in the case of CBS. Said so far is extended to quantum algorithms outside image processing too.
Gupta, S; Gupta, Sanjay
2002-01-01
This paper initiates the study of quantum computing within the constraints of using a polylogarithmic ($O(\\log^k n), k\\geq 1$) number of qubits and a polylogarithmic number of computation steps. The current research in the literature has focussed on using a polynomial number of qubits. A new mathematical model of computation called \\emph{Quantum Neural Networks (QNNs)} is defined, building on Deutsch's model of quantum computational network. The model introduces a nonlinear and irreversible gate, similar to the speculative operator defined by Abrams and Lloyd. The precise dynamics of this operator are defined and while giving examples in which nonlinear Schr\\"{o}dinger's equations are applied, we speculate on its possible implementation. The many practical problems associated with the current model of quantum computing are alleviated in the new model. It is shown that QNNs of logarithmic size and constant depth have the same computational power as threshold circuits, which are used for modeling neural network...
Recoverability in quantum information theory
Wilde, Mark M
2015-01-01
The fact that the quantum relative entropy is non-increasing with respect to quantum physical evolutions lies at the core of many optimality theorems in quantum information theory and has applications in other areas of physics. In this work, we establish improvements of this entropy inequality in the form of physically meaningful remainder terms. One of the main results can be summarized informally as follows: if the decrease in quantum relative entropy between two quantum states after a quantum physical evolution is relatively small, then it is possible to perform a recovery operation, such that one can perfectly recover one state while approximately recovering the other. This can be interpreted as quantifying how well one can reverse a quantum physical evolution. Our proof method is elementary, relying on the method of complex interpolation, basic linear algebra, and the recently introduced Renyi generalization of a relative entropy difference. The theorem has a number of applications in quantum information...
Quantum Computing over Finite Fields
James, Roshan P; Sabry, Amr
2011-01-01
In recent work, Benjamin Schumacher and Michael~D. Westmoreland investigate a version of quantum mechanics which they call "modal quantum theory" but which we prefer to call "discrete quantum theory". This theory is obtained by instantiating the mathematical framework of Hilbert spaces with a finite field instead of the field of complex numbers. This instantiation collapses much the structure of actual quantum mechanics but retains several of its distinguishing characteristics including the notions of superposition, interference, and entanglement. Furthermore, discrete quantum theory excludes local hidden variable models, has a no-cloning theorem, and can express natural counterparts of quantum information protocols such as superdense coding and teleportation. Our first result is to distill a model of discrete quantum computing from this quantum theory. The model is expressed using a monadic metalanguage built on top of a universal reversible language for finite computations, and hence is directly implementab...
Handbook of relativistic quantum chemistry
Energy Technology Data Exchange (ETDEWEB)
Liu, Wenjian (ed.) [Peking Univ., Beijing (China). Center for Computational Science and Engineering
2017-03-01
This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.
Quantum Computing and Shor`s Factoring Algorithm
Volovich, Igor V.
2001-01-01
Lectures on quantum computing. Contents: Algorithms. Quantum circuits. Quantum Fourier transform. Elements of number theory. Modular exponentiation. Shor`s algorithm for finding the order. Computational complexity of Schor`s algorithm. Factoring integers. NP-complete problems.
Energy Technology Data Exchange (ETDEWEB)
Robinett, R.W
2004-03-01
The numerical prediction, theoretical analysis, and experimental verification of the phenomenon of wave packet revivals in quantum systems has flourished over the last decade and a half. Quantum revivals are characterized by initially localized quantum states which have a short-term, quasi-classical time evolution, which then can spread significantly over several orbits, only to reform later in the form of a quantum revival in which the spreading reverses itself, the wave packet relocalizes, and the semi-classical periodicity is once again evident. Relocalization of the initial wave packet into a number of smaller copies of the initial packet ('minipackets' or 'clones') is also possible, giving rise to fractional revivals. Systems exhibiting such behavior are a fundamental realization of time-dependent interference phenomena for bound states with quantized energies in quantum mechanics and are therefore of wide interest in the physics and chemistry communities. We review the theoretical machinery of quantum wave packet construction leading to the existence of revivals and fractional revivals, in systems with one (or more) quantum number(s), as well as discussing how information on the classical period and revival time is encoded in the energy eigenvalue spectrum. We discuss a number of one-dimensional model systems which exhibit revival behavior, including the infinite well, the quantum bouncer, and others, as well as several two-dimensional integrable quantum billiard systems. Finally, we briefly review the experimental evidence for wave packet revivals in atomic, molecular, and other systems, and related revival phenomena in condensed matter and optical systems.
Robinett, R. W.
2004-03-01
The numerical prediction, theoretical analysis, and experimental verification of the phenomenon of wave packet revivals in quantum systems has flourished over the last decade and a half. Quantum revivals are characterized by initially localized quantum states which have a short-term, quasi-classical time evolution, which then can spread significantly over several orbits, only to reform later in the form of a quantum revival in which the spreading reverses itself, the wave packet relocalizes, and the semi-classical periodicity is once again evident. Relocalization of the initial wave packet into a number of smaller copies of the initial packet (‘minipackets’ or ‘clones’) is also possible, giving rise to fractional revivals. Systems exhibiting such behavior are a fundamental realization of time-dependent interference phenomena for bound states with quantized energies in quantum mechanics and are therefore of wide interest in the physics and chemistry communities. We review the theoretical machinery of quantum wave packet construction leading to the existence of revivals and fractional revivals, in systems with one (or more) quantum number(s), as well as discussing how information on the classical period and revival time is encoded in the energy eigenvalue spectrum. We discuss a number of one-dimensional model systems which exhibit revival behavior, including the infinite well, the quantum bouncer, and others, as well as several two-dimensional integrable quantum billiard systems. Finally, we briefly review the experimental evidence for wave packet revivals in atomic, molecular, and other systems, and related revival phenomena in condensed matter and optical systems.
Towards quantum chemistry on a quantum computer.
Lanyon, B P; Whitfield, J D; Gillett, G G; Goggin, M E; Almeida, M P; Kassal, I; Biamonte, J D; Mohseni, M; Powell, B J; Barbieri, M; Aspuru-Guzik, A; White, A G
2010-02-01
Exact first-principles calculations of molecular properties are currently intractable because their computational cost grows exponentially with both the number of atoms and basis set size. A solution is to move to a radically different model of computing by building a quantum computer, which is a device that uses quantum systems themselves to store and process data. Here we report the application of the latest photonic quantum computer technology to calculate properties of the smallest molecular system: the hydrogen molecule in a minimal basis. We calculate the complete energy spectrum to 20 bits of precision and discuss how the technique can be expanded to solve large-scale chemical problems that lie beyond the reach of modern supercomputers. These results represent an early practical step toward a powerful tool with a broad range of quantum-chemical applications.
(Hybrid) Baryons Quantum Numbers and Adiabatic Potentials
Page, P R
1999-01-01
We construct (hybrid) baryons in the flux-tube model of Isgur and Paton. In the limit of adiabatic quark motion, we build proper eigenstates of orbital angular momentum and indicate the flavour, spin, chirality and J^P of (hybrid) baryons. The adiabatic potential is calculated as a function of the quark positions.
Lanzagorta, Marco
2011-01-01
This book offers a concise review of quantum radar theory. Our approach is pedagogical, making emphasis on the physics behind the operation of a hypothetical quantum radar. We concentrate our discussion on the two major models proposed to date: interferometric quantum radar and quantum illumination. In addition, this book offers some new results, including an analytical study of quantum interferometry in the X-band radar region with a variety of atmospheric conditions, a derivation of a quantum radar equation, and a discussion of quantum radar jamming.This book assumes the reader is familiar w
de Gosson, Maurice A
2011-01-01
Quantum blobs are the smallest phase space units of phase space compatible with the uncertainty principle of quantum mechanics and having the symplectic group as group of symmetries. Quantum blobs are in a bijective correspondence with the squeezed coherent states from standard quantum mechanics, of which they are a phase space picture. This allows us to propose a substitute for phase space in quantum mechanics. We study the relationship between quantum blobs with a certain class of level sets defined by Fermi for the purpose of representing geometrically quantum states.
Wu, L A; Wu, Lian-Ao; Lidar, Daniel
2005-01-01
Quantum computation and communication offer unprecedented advantages compared to classical information processing. Currently, quantum communication is moving from laboratory prototypes into real-life applications. When quantum communication networks become more widespread it is likely that they will be subject to attacks by hackers, virus makers, and other malicious intruders. Here we introduce the concept of "quantum malware" to describe such human-made intrusions. We offer a simple solution for storage of quantum information in a manner which protects quantum networks from quantum malware.
Anisimov, Petr M; McCracken, S Blane; Dowling, Jonathan P
2010-01-01
We present here a quantum tripwire, which is a quantum optical interrogation technique capable of detecting an intrusion with very low probability of the tripwire being revealed to the intruder. Our scheme combines interaction-free measurement with the quantum Zeno effect in order to interrogate the presence of the intruder without interaction. The tripwire exploits a curious nonlinear behavior of the quantum Zeno effect we discovered, which occurs in a lossy system. We also employ a statistical hypothesis testing protocol, allowing us to calculate a confidence level of interaction-free measurement after a given number of trials. As a result, our quantum intruder alert system is robust against photon loss and dephasing under realistic atmospheric conditions and its design minimizes the probabilities of false positives and false negatives as well as the probability of becoming visible to the intruder.
Inductive Supervised Quantum Learning
Monràs, Alex; Sentís, Gael; Wittek, Peter
2017-05-01
In supervised learning, an inductive learning algorithm extracts general rules from observed training instances, then the rules are applied to test instances. We show that this splitting of training and application arises naturally, in the classical setting, from a simple independence requirement with a physical interpretation of being nonsignaling. Thus, two seemingly different definitions of inductive learning happen to coincide. This follows from the properties of classical information that break down in the quantum setup. We prove a quantum de Finetti theorem for quantum channels, which shows that in the quantum case, the equivalence holds in the asymptotic setting, that is, for large numbers of test instances. This reveals a natural analogy between classical learning protocols and their quantum counterparts, justifying a similar treatment, and allowing us to inquire about standard elements in computational learning theory, such as structural risk minimization and sample complexity.
Arndt, Markus; Vedral, Vlatko
2009-01-01
Quantum physics and biology have long been regarded as unrelated disciplines, describing nature at the inanimate microlevel on the one hand and living species on the other hand. Over the last decades the life sciences have succeeded in providing ever more and refined explanations of macroscopic phenomena that were based on an improved understanding of molecular structures and mechanisms. Simultaneously, quantum physics, originally rooted in a world view of quantum coherences, entanglement and other non-classical effects, has been heading towards systems of increasing complexity. The present perspective article shall serve as a pedestrian guide to the growing interconnections between the two fields. We recapitulate the generic and sometimes unintuitive characteristics of quantum physics and point to a number of applications in the life sciences. We discuss our criteria for a future quantum biology, its current status, recent experimental progress and also the restrictions that nature imposes on bold extrapolat...
Quantum chaos in nuclear physics
Energy Technology Data Exchange (ETDEWEB)
Bunakov, V. E., E-mail: bunakov@VB13190.spb.edu [St. Petersburg State University (Russian Federation)
2016-07-15
A definition of classical and quantum chaos on the basis of the Liouville–Arnold theorem is proposed. According to this definition, a chaotic quantum system that has N degrees of freedom should have M < N independent first integrals of motion (good quantum numbers) that are determined by the symmetry of the Hamiltonian for the system being considered. Quantitative measures of quantum chaos are established. In the classical limit, they go over to the Lyapunov exponent or the classical stability parameter. The use of quantum-chaos parameters in nuclear physics is demonstrated.
Quantum Hilbert matrices and orthogonal polynomials
DEFF Research Database (Denmark)
Andersen, Jørgen Ellegaard; Berg, Christian
2009-01-01
Using the notion of quantum integers associated with a complex number q≠0 , we define the quantum Hilbert matrix and various extensions. They are Hankel matrices corresponding to certain little q -Jacobi polynomials when |q|matrices...... of reciprocal Fibonacci numbers called Filbert matrices. We find a formula for the entries of the inverse quantum Hilbert matrix....
Scarani, Valerio; Iblisdir, Sofyan; Gisin, Nicolas; Acin, Antonio
2005-01-01
The impossibility of perfectly copying (or cloning) an arbitrary quantum state is one of the basic rules governing the physics of quantum systems. The processes that perform the optimal approximate cloning have been found in many cases. These "quantum cloning machines" are important tools for studying a wide variety of tasks, e.g. state estimation and eavesdropping on quantum cryptography. This paper provides a comprehensive review of quantum cloning machines (both for discrete-dimensional an...
Wave Packets can Factorize Numbers
Mack, H; Haug, F; Freyberger, M; Schleich, W P; Mack, Holger; Bienert, Marc; Haug, Florian; Freyberger, Matthias; Schleich, Wolfgang P.
2002-01-01
We draw attention to various aspects of number theory emerging in the time evolution of elementary quantum systems with quadratic phases. Such model systems can be realized in actual experiments. Our analysis paves the way to a new, promising and effective method to factorize numbers.
Quantum CPU and Quantum Algorithm
Wang, An Min
1999-01-01
Making use of an universal quantum network -- QCPU proposed by me\\upcite{My1}, it is obtained that the whole quantum network which can implement some the known quantum algorithms including Deutsch algorithm, quantum Fourier transformation, Shor's algorithm and Grover's algorithm.
Quantum Computer Games: Quantum Minesweeper
Gordon, Michal; Gordon, Goren
2010-01-01
The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical…
Quantum Computer Games: Quantum Minesweeper
Gordon, Michal; Gordon, Goren
2010-01-01
The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical…
Simulated Quantum Computation of Molecular Energies
Aspuru-Guzik, A; Love, P J; Head-Gordon, M; Aspuru-Guzik, Al\\'an; Dutoi, Anthony D.; Love, Peter J.; Head-Gordon, Martin
2005-01-01
The calculation time for the energy of atoms and molecules scales exponentially with system size on a classical computer but polynomially using quantum algorithms. We demonstrate that such algorithms can be applied to problems of chemical interest using modest numbers of quantum bits. Calculations of the water and lithium hydride molecular ground-state energies have been carried out on a quantum computer simulator using a recursive phase-estimation algorithm. The recursive algorithm reduces the number of quantum bits required for the readout register from about 20 to 4. Mappings of the molecular wave function to the quantum bits are described. An adiabatic method for the preparation of a good approximate ground-state wave function is described and demonstrated for a stretched hydrogen molecule. The number of quantum bits required scales linearly with the number of basis functions, and the number of gates required grows polynomially with the number of quantum bits.
Experimental Satellite Quantum Communications.
Vallone, Giuseppe; Bacco, Davide; Dequal, Daniele; Gaiarin, Simone; Luceri, Vincenza; Bianco, Giuseppe; Villoresi, Paolo
2015-07-24
Quantum communication (QC), namely, the faithful transmission of generic quantum states, is a key ingredient of quantum information science. Here we demonstrate QC with polarization encoding from space to ground by exploiting satellite corner cube retroreflectors as quantum transmitters in orbit and the Matera Laser Ranging Observatory of the Italian Space Agency in Matera, Italy, as a quantum receiver. The quantum bit error ratio (QBER) has been kept steadily low to a level suitable for several quantum information protocols, as the violation of Bell inequalities or quantum key distribution (QKD). Indeed, by taking data from different satellites, we demonstrate an average value of QBER=4.6% for a total link duration of 85 s. The mean photon number per pulse μ_{sat} leaving the satellites was estimated to be of the order of one. In addition, we propose a fully operational satellite QKD system by exploiting our communication scheme with orbiting retroreflectors equipped with a modulator, a very compact payload. Our scheme paves the way toward the implementation of a QC worldwide network leveraging existing receivers.
Fully nonlocal quantum correlations
Aolita, Leandro; Acín, Antonio; Chiuri, Andrea; Vallone, Giuseppe; Mataloni, Paolo; Cabello, Adán
2011-01-01
Quantum mechanics is a nonlocal theory, but not as nonlocal as the no-signalling principle allows. However, there exist quantum correlations that exhibit maximal nonlocality: they are as nonlocal as any non-signalling correlations and thus have a local content, quantified by the fraction $p_L$ of events admitting a local description, equal to zero. Previous examples of maximal quantum nonlocality between two parties require an infinite number of measurements, and the corresponding Bell violation is not robust against noise. We show how every proof of the Kochen-Specker theorem gives rise to maximally nonlocal quantum correlations that involve a finite number of measurements and are robust against noise. We perform the experimental demonstration of a Bell test originating from the Peres-Mermin Kochen-Specker proof, providing an upper bound on the local content $p_L\\lesssim 0.22$.
Wu, Jiang
2013-01-01
The third generation of solar cells includes those based on semiconductor quantum dots. This sophisticated technology applies nanotechnology and quantum mechanics theory to enhance the performance of ordinary solar cells. Although a practical application of quantum dot solar cells has yet to be achieved, a large number of theoretical calculations and experimental studies have confirmed the potential for meeting the requirement for ultra-high conversion efficiency. In this book, high-profile scientists have contributed tutorial chapters that outline the methods used in and the results of variou
Quantum frequency downconversion experiment
Takesue, Hiroki
2010-01-01
We report the first quantum frequency downconversion experiment. Using the difference frequency generation process in a periodically poled lithium niobate waveguide, we successfully observed the phase-preserved frequency downconversion of a coherent pulse train with an average photon number per pulse of $<$1, from the 0.7-$\\mu$m visible wavelength band to the 1.3-$\\mu$m telecom band. We expect this technology to become an important tool for flexible photonic quantum networking, including the realization of quantum repeater systems over optical fiber using atom-photon entanglement sources for the visible wavelength bands.
Anonymous Quantum Communication
Brassard, Gilles; Broadbent, Anne; Fitzsimons, Joseph; Gambs, Sébastien; Tapp, Alain
We introduce the first protocol for the anonymous transmission of a quantum state that is information-theoretically secure against an active adversary, without any assumption on the number of corrupt participants. The anonymity of the sender and receiver is perfectly preserved, and the privacy of the quantum state is protected except with exponentially small probability. Even though a single corrupt participant can cause the protocol to abort, the quantum state can only be destroyed with exponentially small probability: if the protocol succeeds, the state is transferred to the receiver and otherwise it remains in the hands of the sender (provided the receiver is honest).
Energy Technology Data Exchange (ETDEWEB)
Audenaert, Koenraad M. R., E-mail: koenraad.audenaert@rhul.ac.uk [Department of Mathematics, Royal Holloway University of London, Egham TW20 0EX, United Kingdom and Department of Physics and Astronomy, University of Ghent, S9, Krijgslaan 281, B-9000 Ghent (Belgium)
2014-11-15
In this paper, we study the quantum generalisation of the skew divergence, which is a dissimilarity measure between distributions introduced by Lee in the context of natural language processing. We provide an in-depth study of the quantum skew divergence, including its relation to other state distinguishability measures. Finally, we present a number of important applications: new continuity inequalities for the quantum Jensen-Shannon divergence and the Holevo information, and a new and short proof of Bravyi's Small Incremental Mixing conjecture.
Relativistic quantum information
Mann, R. B.; Ralph, T. C.
2012-11-01
Over the past few years, a new field of high research intensity has emerged that blends together concepts from gravitational physics and quantum computing. Known as relativistic quantum information, or RQI, the field aims to understand the relationship between special and general relativity and quantum information. Since the original discoveries of Hawking radiation and the Unruh effect, it has been known that incorporating the concepts of quantum theory into relativistic settings can produce new and surprising effects. However it is only in recent years that it has become appreciated that the basic concepts involved in quantum information science undergo significant revision in relativistic settings, and that new phenomena arise when quantum entanglement is combined with relativity. A number of examples illustrate that point. Quantum teleportation fidelity is affected between observers in uniform relative acceleration. Entanglement is an observer-dependent property that is degraded from the perspective of accelerated observers moving in flat spacetime. Entanglement can also be extracted from the vacuum of relativistic quantum field theories, and used to distinguish peculiar motion from cosmological expansion. The new quantum information-theoretic framework of quantum channels in terms of completely positive maps and operator algebras now provides powerful tools for studying matters of causality and information flow in quantum field theory in curved spacetimes. This focus issue provides a sample of the state of the art in research in RQI. Some of the articles in this issue review the subject while others provide interesting new results that will stimulate further research. What makes the subject all the more exciting is that it is beginning to enter the stage at which actual experiments can be contemplated, and some of the articles appearing in this issue discuss some of these exciting new developments. The subject of RQI pulls together concepts and ideas from
Pfeiffer, P.; Egusquiza, I. L.; di Ventra, M.; Sanz, M.; Solano, E.
2016-07-01
Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. The proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems.
Fluctuations in quantum devices
Directory of Open Access Journals (Sweden)
H.Haken
2004-01-01
Full Text Available Logical gates can be formalized by Boolean algebra whose elementary operations can be realized by devices that employ the interactions of macroscopic numbers of elementary excitations such as electrons, holes, photons etc. With increasing miniaturization to the nano scale and below, quantum fluctuations become important and can no longer be ignored. Based on Heisenberg equations of motion for the creation and annihilation operators of elementary excitations, I determine the noise sources of composite quantum systems.
Effectively calculable quantum mechanics
Bolotin, Arkady
2015-01-01
According to mathematical constructivism, a mathematical object can exist only if there is a way to compute (or "construct") it; so, what is non-computable is non-constructive. In the example of the quantum model, whose Fock states are associated with Fibonacci numbers, this paper shows that the mathematical formalism of quantum mechanics is non-constructive since it permits an undecidable (or effectively impossible) subset of Hilbert space. On the other hand, as it is argued in the paper, if...
Investigating Quantum Modulation States
2016-03-01
3. DATES COVERED (From - To) OCT 2012 – SEP 2015 4. TITLE AND SUBTITLE INVESTIGATING QUANTUM MODULATION STATES 5a. CONTRACT NUMBER IN-HOUSE 5b...Coherent states are the most classical of quantum states. Generation and detection of their polarization and phase modulations are well...stream cipher maps message bits onto random blocks of bits producing modulated states that are intrinsically noisy. The ciphertext so generated is
Geneva University - Superconducting flux quantum bits: fabricated quantum objects
2007-01-01
Ecole de physique Département de physique nucléaire et corspusculaire 24, Quai Ernest-Ansermet 1211 GENEVE 4 Tél: (022) 379 62 73 Fax: (022) 379 69 92 Lundi 29 janvier 2007 COLLOQUE DE LA SECTION DE PHYSIQUE 17 heures - Auditoire Stueckelberg Superconducting flux quantum bits: fabricated quantum objects Prof. Hans Mooij / Kavli Institute of Nanoscience, Delft University of Technology The quantum conjugate variables of a superconductor are the charge or number of Cooper pairs, and the phase of the order parameter. In circuits that contain small Josephson junctions, these quantum properties can be brought forward. In Delft we study so-called flux qubits, superconducting rings that contain three small Josephson junctions. When a magnetic flux of half a flux quantum is applied to the loop, there are two states with opposite circulating current. For suitable junction parameters, a quantum superposition of those macroscopic states is possible. Transitions can be driven with resonant microwaves. These quantum ...
Quantum Teichm\\"uller space from quantum plane
Frenkel, Igor B
2010-01-01
We derive the quantum Teichm\\"uller space, previously constructed by Kashaev and by Fock and Chekhov, from tensor products of a single canonical representation of the modular double of the quantum plane. We show that the quantum dilogarithm function appears naturally in the decomposition of the tensor square, the quantum mutation operator arises from the tensor cube, the pentagon identity from the tensor fourth power of the canonical representation, and an operator of order three from isomorphisms between canonical representation and its left and right duals. We also show that the quantum universal Teichm\\"uller space is realized in the infinite tensor power of the canonical representation naturally indexed by rational numbers including the infinity. This suggests a relation to the same index set in the classification of projective modules over the quantum torus, the unitary counterpart of the quantum plane, and points to a new quantization of the universal Teichm\\"uller space.
Multilayer microwave integrated quantum circuits for scalable quantum computing
Brecht, Teresa; Pfaff, Wolfgang; Wang, Chen; Chu, Yiwen; Frunzio, Luigi; Devoret, Michel H.; Schoelkopf, Robert J.
2016-02-01
As experimental quantum information processing (QIP) rapidly advances, an emerging challenge is to design a scalable architecture that combines various quantum elements into a complex device without compromising their performance. In particular, superconducting quantum circuits have successfully demonstrated many of the requirements for quantum computing, including coherence levels that approach the thresholds for scaling. However, it remains challenging to couple a large number of circuit components through controllable channels while suppressing any other interactions. We propose a hardware platform intended to address these challenges, which combines the advantages of integrated circuit fabrication and the long coherence times achievable in three-dimensional circuit quantum electrodynamics. This multilayer microwave integrated quantum circuit platform provides a path towards the realisation of increasingly complex superconducting devices in pursuit of a scalable quantum computer.
Quantum cloning attacks against PUF-based quantum authentication systems
Yao, Yao; Gao, Ming; Li, Mo; Zhang, Jian
2016-08-01
With the advent of physical unclonable functions (PUFs), PUF-based quantum authentication systems have been proposed for security purposes, and recently, proof-of-principle experiment has been demonstrated. As a further step toward completing the security analysis, we investigate quantum cloning attacks against PUF-based quantum authentication systems and prove that quantum cloning attacks outperform the so-called challenge-estimation attacks. We present the analytical expression of the false-accept probability by use of the corresponding optimal quantum cloning machines and extend the previous results in the literature. In light of these findings, an explicit comparison is made between PUF-based quantum authentication systems and quantum key distribution protocols in the context of cloning attacks. Moreover, from an experimental perspective, a trade-off between the average photon number and the detection efficiency is discussed in detail.
Chattaraj, Pratim Kumar
2010-01-01
The application of quantum mechanics to many-particle systems has been an active area of research in recent years as researchers have looked for ways to tackle difficult problems in this area. The quantum trajectory method provides an efficient computational technique for solving both stationary and time-evolving states, encompassing a large area of quantum mechanics. Quantum Trajectories brings the expertise of an international panel of experts who focus on the epistemological significance of quantum mechanics through the quantum theory of motion.Emphasizing a classical interpretation of quan
A Structurally Relativistic Quantum Theory. Part 1: Foundations
Grgin, Emile
2012-01-01
The apparent impossibility of extending non-relativistic quantum mechanics to a relativistic quantum theory is shown to be due to the insufficient structural richness of the field of complex numbers over which quantum mechanics is built. A new number system with the properties needed to support an inherently relativistic quantum theory is brought to light and investigated to a point sufficient for applications.
Mendonça, J. Ricardo G.
2012-01-01
We define a new class of numbers based on the first occurrence of certain patterns of zeros and ones in the expansion of irracional numbers in a given basis and call them Sagan numbers, since they were first mentioned, in a special case, by the North-american astronomer Carl E. Sagan in his science-fiction novel "Contact." Sagan numbers hold connections with a wealth of mathematical ideas. We describe some properties of the newly defined numbers and indicate directions for further amusement.
Vorob'ev, Nikolai Nikolaevich
2011-01-01
Fibonacci numbers date back to an 800-year-old problem concerning the number of offspring born in a single year to a pair of rabbits. This book offers the solution and explores the occurrence of Fibonacci numbers in number theory, continued fractions, and geometry. A discussion of the ""golden section"" rectangle, in which the lengths of the sides can be expressed as a ration of two successive Fibonacci numbers, draws upon attempts by ancient and medieval thinkers to base aesthetic and philosophical principles on the beauty of these figures. Recreational readers as well as students and teacher
Number names and number understanding
DEFF Research Database (Denmark)
Ejersbo, Lisser Rye; Misfeldt, Morten
2014-01-01
through using mathematical names for the numbers such as one-ten-one for 11 and five-ten-six for 56. The project combines the renaming of numbers with supporting the teaching with the new number names. Our hypothesis is that Danish children have more difficulties learning and working with numbers, because...... the Danish number names are more complicated than in other languages. Keywords: A research project in grade 0 and 1th in a Danish school, Base-10 system, two-digit number names, semiotic, cognitive perspectives....
Quantum robots and quantum computers
Energy Technology Data Exchange (ETDEWEB)
Benioff, P.
1998-07-01
Validation of a presumably universal theory, such as quantum mechanics, requires a quantum mechanical description of systems that carry out theoretical calculations and systems that carry out experiments. The description of quantum computers is under active development. No description of systems to carry out experiments has been given. A small step in this direction is taken here by giving a description of quantum robots as mobile systems with on board quantum computers that interact with different environments. Some properties of these systems are discussed. A specific model based on the literature descriptions of quantum Turing machines is presented.
Energy Technology Data Exchange (ETDEWEB)
Zurek, Wojciech H [Los Alamos National Laboratory
2008-01-01
Quantum Darwinism - proliferation, in the environment, of multiple records of selected states of the system (its information-theoretic progeny) - explains how quantum fragility of individual state can lead to classical robustness of their multitude.
Putz, Volkmar
2015-01-01
We consider ways of conceptualizing, rendering and perceiving quantum music, and quantum art in general. Thereby we give particular emphasis to its non-classical aspects, such as coherent superposition and entanglement.
Experimental realization of quantum illumination.
Lopaeva, E D; Ruo Berchera, I; Degiovanni, I P; Olivares, S; Brida, G; Genovese, M
2013-04-12
We present the first experimental realization of the quantum illumination protocol proposed by Lloyd [Science 321, 1463 (2008)] and S. Tan et al. [Phys. Rev. Lett. 101, 253601 (2008)], achieved in a simple feasible experimental scheme based on photon-number correlations. A main achievement of our result is the demonstration of a strong robustness of the quantum protocol to noise and losses that challenges some widespread wisdom about quantum technologies.
Vianna, R O; Monken, C H; Vianna, Reinaldo O.; Rabelo, Wilson R. M.
2003-01-01
We discuss the performance of the Search and Fourier Transform algorithms on a hybrid computer constituted of classical and quantum processors working together. We show that this semi-quantum computer would be an improvement over a pure classical architecture, no matter how few qubits are available and, therefore, it suggests an easier implementable technology than a pure quantum computer with arbitrary number of qubits.
Cheon, T
2004-01-01
We show that the U(2) family of point interactions on a line can be utilized to provide the U(2) family of qubit operations for quantum information processing. Qubits are realized as localized states in either side of the point interaction which represents a controllable gate. The manipulation of qubits proceeds in a manner analogous to the operation of an abacus. Keywords: quantum computation, quantum contact interaction, quantum wire
Esteban Guevara
2006-01-01
The relationships between game theory and quantum mechanics let us propose certain quantization relationships through which we could describe and understand not only quantum but also classical, evolutionary and the biological systems that were described before through the replicator dynamics. Quantum mechanics could be used to explain more correctly biological and economical processes and even it could encloses theories like games and evolutionary dynamics. This could make quantum mechanics a...
2008-01-01
Quantum Nanomechanics is the emerging field which pertains to the mechanical behavior of nanoscale systems in the quantum domain. Unlike the conventional studies of vibration of molecules and phonons in solids, quantum nanomechanics is defined as the quantum behavior of the entire mechanical structure, including all of its constituents--the atoms, the molecules, the ions, the electrons as well as other excitations. The relevant degrees of freedom of the system are described by macroscopic var...
Petersen, T Kyle
2015-01-01
This text presents the Eulerian numbers in the context of modern enumerative, algebraic, and geometric combinatorics. The book first studies Eulerian numbers from a purely combinatorial point of view, then embarks on a tour of how these numbers arise in the study of hyperplane arrangements, polytopes, and simplicial complexes. Some topics include a thorough discussion of gamma-nonnegativity and real-rootedness for Eulerian polynomials, as well as the weak order and the shard intersection order of the symmetric group. The book also includes a parallel story of Catalan combinatorics, wherein the Eulerian numbers are replaced with Narayana numbers. Again there is a progression from combinatorics to geometry, including discussion of the associahedron and the lattice of noncrossing partitions. The final chapters discuss how both the Eulerian and Narayana numbers have analogues in any finite Coxeter group, with many of the same enumerative and geometric properties. There are four supplemental chapters throughout, ...
Adiabatic quantum computation and quantum phase transitions
Latorre, J I; Latorre, Jose Ignacio; Orus, Roman
2003-01-01
We analyze the ground state entanglement in a quantum adiabatic evolution algorithm designed to solve the NP-complete Exact Cover problem. The entropy of entanglement seems to obey linear and universal scaling at the point where the mass gap becomes small, suggesting that the system passes near a quantum phase transition. Such a large scaling of entanglement suggests that the effective connectivity of the system diverges as the number of qubits goes to infinity and that this algorithm cannot be efficiently simulated by classical means. On the other hand, entanglement in Grover's algorithm is bounded by a constant.
Programmable Multimode Quantum Networks
Armstrong, Seiji; Janousek, Jiri; Hage, Boris; Treps, Nicolas; Lam, Ping Koy; Bachor, Hans-A
2012-01-01
Entanglement between large numbers of quantum modes is the quintessential resource for quantum information processing and future applications such as the quantum internet. Conventionally the generation of multimode entanglement in optics requires complex layouts of beam-splitters and phase shifters in order to transform the input modes in to entangled modes. These networks need substantial modification for every new set of entangled modes to be generated. Further, the complexity grows rapidly with the number of entangled modes as the number of detectors, phase locks and optical components needs to be increased. Here we report on the highly efficient and versatile generation of various multimode entangled states within one optical beam. By defining our modes to be combinations of different spatial regions of the beam, we may use just one pair of multi-pixel detectors and one local oscillator to measure an orthogonal set of modes. The transformation of this set into a desired set of entangled modes is calculate...
Fehr, S.
2010-01-01
Quantum cryptography makes use of the quantum-mechanical behavior of nature for the design and analysis of cryptographic schemes. Optimally (but not always), quantum cryptography allows for the design of cryptographic schemes whose security is guaranteed solely by the laws of nature. This is in shar
Arrighi, Pablo
2016-01-01
Consider a graph having quantum systems lying at each node. Suppose that the whole thing evolves in discrete time steps, according to a global, unitary causal operator. By causal we mean that information can only propagate at a bounded speed, with respect to the distance given by the graph. Suppose, moreover, that the graph itself is subject to the evolution, and may be driven to be in a quantum superposition of graphs---in accordance to the superposition principle. We show that these unitary causal operators must decompose as a finite-depth circuit of local unitary gates. This unifies a result on Quantum Cellular Automata with another on Reversible Causal Graph Dynamics. Along the way we formalize a notion of causality which is valid in the context of quantum superpositions of time-varying graphs, and has a number of good properties. Keywords: Quantum Lattice Gas Automata, Block-representation, Curtis-Hedlund-Lyndon, No-signalling, Localizability, Quantum Gravity, Quantum Graphity, Causal Dynamical Triangula...
Beyond Moore's law: towards competitive quantum devices
Troyer, Matthias
2015-05-01
A century after the invention of quantum theory and fifty years after Bell's inequality we see the first quantum devices emerge as products that aim to be competitive with the best classical computing devices. While a universal quantum computer of non-trivial size is still out of reach there exist a number commercial and experimental devices: quantum random number generators, quantum simulators and quantum annealers. In this colloquium I will present some of these devices and validation tests we performed on them. Quantum random number generators use the inherent randomness in quantum measurements to produce true random numbers, unlike classical pseudorandom number generators which are inherently deterministic. Optical lattice emulators use ultracold atomic gases in optical lattices to mimic typical models of condensed matter physics. In my talk I will focus especially on the devices built by Canadian company D-Wave systems, which are special purpose quantum simulators for solving hard classical optimization problems. I will review the controversy around the quantum nature of these devices and will compare them to state of the art classical algorithms. I will end with an outlook towards universal quantum computing and end with the question: which important problems that are intractable even for post-exa-scale classical computers could we expect to solve once we have a universal quantum computer?
Quantum Kolmogorov complexity and the quantum Turing machine
Energy Technology Data Exchange (ETDEWEB)
Mueller, M.
2007-08-31
The purpose of this thesis is to give a formal definition of quantum Kolmogorov complexity and rigorous mathematical proofs of its basic properties. Classical Kolmogorov complexity is a well-known and useful measure of randomness for binary strings. In recent years, several different quantum generalizations of Kolmogorov complexity have been proposed. The most natural generalization is due to A. Berthiaume et al. (2001), defining the complexity of a quantum bit (qubit) string as the length of the shortest quantum input for a universal quantum computer that outputs the desired string. Except for slight modifications, it is this definition of quantum Kolmogorov complexity that we study in this thesis. We start by analyzing certain aspects of the underlying quantum Turing machine (QTM) model in a more detailed formal rigour than was done previously. Afterwards, we apply these results to quantum Kolmogorov complexity. Our first result is a proof of the existence of a universal QTM which simulates every other QTM for an arbitrary number of time steps and than halts with probability one. In addition, we show that every input that makes a QTM almost halt can be modified to make the universal QTM halt entirely, by adding at most a constant number of qubits. It follows that quantum Kolmogorov complexity has the invariance property, i.e. it depends on the choice of the universal QTM only up to an additive constant. Moreover, the quantum complexity of classical strings agrees with classical complexity, again up to an additive constant. The proofs are based on several analytic estimates. Furthermore, we prove several incompressibility theorems for quantum Kolmogorov complexity. Finally, we show that for ergodic quantum information sources, complexity rate and entropy rate coincide with probability one. The thesis is finished with an outlook on a possible application of quantum Kolmogorov complexity in statistical mechanics. (orig.)
Institute of Scientific and Technical Information of China (English)
鄢秋荣; 赵宝升; 刘永安; 盛立志
2012-01-01
提出了一种基于单光子脉冲时间随机性的光量子随机源.利用衰减成单光子态的光强恒定光源和一个单光子探测器产生单光子随机脉冲,通过连续比较单光子随机脉冲序列中相邻两个脉冲的时间间隔来提取随机位.通过设计高速响应的微通道板单光子探测器和基于现场可编程门阵列(FPGA)的随机位提取电路,获得了超过10 M bit/s的随机位产生速率.通过采用恒比定时和对计数时钟倍频的方法提高时间间隔的测量精度,从而减小随机位序列的相关系数.当光量子随机源的随机位产生速率在10 k bit/s以下时,所获得的二进制随机位序列的相关系数小于0.001.运用随机性测试程序ENT和DIEHARD对所获的随机位序列进行测试,测试结果表明序列的随机性非常好且不需要后续处理,完全满足真随机数的标准.%An optical quantum random number generator based on the time randomness of single-photon pulse is proposed. A constant-intensity light source attenuating into single-photon state and a single photon detector are used to generate single-photon random pulses. The random bits are extracted by continuously comparing the time intervals between two adjacent pulses in the single-photon random pulses sequence. A random number generation rate of more than 10 M bit/s is obtained by designing high-speed single-photon detector based on micro-channel plate and field programmable gate arry (FPGA) based random bit extraction circuit. In order to reduce the correlation coefficient of random bit sequence* measurement accuracy of the time interval is improved by using a constant fraction discriminator and a frequency-multiplied counting clock. Correlation coefficient of the random bit sequence is less than 0.001, when the random bit generation rate is less than 10 k bit/s. The random bit sequences are tested by random number test program ENT and DIEHARD. The test results show that random bit sequences
Quantum Computing for Quantum Chemistry
2010-09-01
This three-year project consisted on the development and application of quantum computer algorithms for chemical applications. In particular, we developed algorithms for chemical reaction dynamics, electronic structure and protein folding. The first quantum computing for
Quantum Operations as Quantum States
Arrighi, P; Arrighi, Pablo; Patricot, Christophe
2004-01-01
In this article we formalize the correspondence between quantum states and quantum operations, and harness its consequences. This correspondence was already implicit in Choi's proof of the operator sum representation of Completely Positive-preserving linear maps; we go further and show that all of the important theorems concerning quantum operations can be derived as simple corollaries of those concerning quantum states. As we do so the discussion first provides an elegant and original review of the main features of quantum operations. Next (in the second half of the paper) we search for more results to arise from the correspondence. Thus we propose a factorizability condition and an extremal trace-preservedness condition for quantum operations, give two novel Schmidt-type decompositions of bipartite pure states and two interesting composition laws for which the set of quantum operations and quantum states remain stable. The latter enables us to define a group structure upon the set of totally entangled state...
Quantum memory in quantum cryptography
Mor, T
1999-01-01
[Shortened abstract:] This thesis investigates the importance of quantum memory in quantum cryptography, concentrating on quantum key distribution schemes. In the hands of an eavesdropper -- a quantum memory is a powerful tool, putting in question the security of quantum cryptography; Classical privacy amplification techniques, used to prove security against less powerful eavesdroppers, might not be effective when the eavesdropper can keep quantum states for a long time. In this work we suggest a possible direction for approaching this problem. We define strong attacks of this type, and show security against them, suggesting that quantum cryptography is secure. We start with a complete analysis regarding the information about a parity bit (since parity bits are used for privacy amplification). We use the results regarding the information on parity bits to prove security against very strong eavesdropping attacks, which uses quantum memories and all classical data (including error correction codes) to attack th...
DEFF Research Database (Denmark)
Gauthier Umana, Valérie
The security of almost all the public-key cryptosystems used in practice depends on the fact that the prime factorization of a number and the discrete logarithm are hard problems to solve. In 1994, Peter Shor found a polynomial-time algorithm which solves these two problems using quantum computers....... The public key cryptosystems that can resist these emerging attacks are called quantum resistant or post-quantum cryptosystems. There are mainly four classes of public-key cryptography that are believed to resist classical and quantum attacks: code-based cryptography, hash-based cryptography, lattice......-cyclic alternant codes and quasi-dyadic codes (joint work with Gregor Leander). We also present a deterministic polynomial-time algorithm to solve the Goppa Code Distinguisher problem for high rate codes (joint work with Jean-Charles Faugere, Ayoub Otmani, Ludovic Perret and Jean-Pierre Tillich). In the second...
Concurrent Quantum Computation
Yamaguchi, F; Yamamoto, Y
2000-01-01
A quantum computer is a multi-particle interferometer that comprises beam splitters at both ends and arms, where the n two-level particles undergo the interactions among them. The arms are designed so that relevant functions required to produce a computational result is stored in the phase shifts of the 2^n arms. They can be detected by interferometry that allows us to utilize quantum parallelism. Quantum algorithms are accountable for what interferometers to be constructed to compute particular problems. A standard formalism for constructing the arms has been developed by the extension of classical reversible gate arrays. By its nature of sequential applications of logic operations, the required number of gates increases exponentially as the problem size grows. This may cause a crucial obstacle to perform a quantum computation within a limited decoherence time. We propose a direct and concurrent construction of the interferometer arms by one-time evolution of a physical system with arbitrary multi-particle i...
Razavy, Mohsen
2014-01-01
In this revised and expanded edition, in addition to a comprehensible introduction to the theoretical foundations of quantum tunneling based on different methods of formulating and solving tunneling problems, different semiclassical approximations for multidimensional systems are presented. Particular attention is given to the tunneling of composite systems, with examples taken from molecular tunneling and also from nuclear reactions. The interesting and puzzling features of tunneling times are given extensive coverage, and the possibility of measurement of these times with quantum clocks are critically examined. In addition by considering the analogy between evanescent waves in waveguides and in quantum tunneling, the times related to electromagnetic wave propagation have been used to explain certain aspects of quantum tunneling times. These topics are treated in both non-relativistic as well as relativistic regimes. Finally, a large number of examples of tunneling in atomic, molecular, condensed matter and ...
Quantum Interferometric Sensors
Kapale, K T; Lee, H; Kok, P; Dowling, J P; Kapale, Kishore T.; Didomenico, Leo D.; Lee, Hwang; Kok, Pieter; Dowling, Jonathan P.
2005-01-01
Quantum entanglement has the potential to revolutionize the entire field of interferometric sensing by providing many orders of magnitude improvement in interferometer sensitivity. The quantum-entangled particle interferometer approach is very general and applies to many types of interferometers. In particular, without nonlocal entanglement, a generic classical interferometer has a statistical-sampling shot-noise limited sensitivity that scales like $1/\\sqrt{N}$, where $N$ is the number of particles passing through the interferometer per unit time. However, if carefully prepared quantum correlations are engineered between the particles, then the interferometer sensitivity improves by a factor of $\\sqrt{N}$ to scale like 1/N, which is the limit imposed by the Heisenberg Uncertainty Principle. For optical interferometers operating at milliwatts of optical power, this quantum sensitivity boost corresponds to an eight-order-of-magnitude improvement of signal to noise. This effect can translate into a tremendous s...
Marklof, J
2005-01-01
The central objective in the study of quantum chaos is to characterize universal properties of quantum systems that reflect the regular or chaotic features of the underlying classical dynamics. Most developments of the past 25 years have been influenced by the pioneering models on statistical properties of eigenstates (Berry 1977) and energy levels (Berry and Tabor 1977; Bohigas, Giannoni and Schmit 1984). Arithmetic quantum chaos (AQC) refers to the investigation of quantum system with additional arithmetic structures that allow a significantly more extensive analysis than is generally possible. On the other hand, the special number-theoretic features also render these systems non-generic, and thus some of the expected universal phenomena fail to emerge. Important examples of such systems include the modular surface and linear automorphisms of tori (`cat maps') which will be described below.
Sentís, Gael; Bagan, Emilio; Calsamiglia, John; Chiribella, Giulio; Muñoz-Tapia, Ramon
2016-10-01
Sudden changes are ubiquitous in nature. Identifying them is crucial for a number of applications in biology, medicine, and social sciences. Here we take the problem of detecting sudden changes to the quantum domain. We consider a source that emits quantum particles in a default state, until a point where a mutation occurs that causes the source to switch to another state. The problem is then to find out where the change occurred. We determine the maximum probability of correctly identifying the change point, allowing for collective measurements on the whole sequence of particles emitted by the source. Then, we devise online strategies where the particles are measured individually and an answer is provided as soon as a new particle is received. We show that these online strategies substantially underperform the optimal quantum measurement, indicating that quantum sudden changes, although happening locally, are better detected globally.
Zurek, Wojciech Hubert
2009-03-01
Quantum Darwinism describes the proliferation, in the environment, of multiple records of selected states of a quantum system. It explains how the quantum fragility of a state of a single quantum system can lead to the classical robustness of states in their correlated multitude; shows how effective `wave-packet collapse' arises as a result of the proliferation throughout the environment of imprints of the state of the system; and provides a framework for the derivation of Born's rule, which relates the probabilities of detecting states to their amplitudes. Taken together, these three advances mark considerable progress towards settling the quantum measurement problem.
Adiabatic quantum simulation of quantum chemistry.
Babbush, Ryan; Love, Peter J; Aspuru-Guzik, Alán
2014-10-13
We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular properties. We describe a procedure to map electronic structure Hamiltonians to 2-body qubit Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-body, we obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale polynomially in the problem size. Hence our mapping is efficient. The required set of controllable interactions includes only two types of interaction beyond the Ising interactions required to apply the quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may also be of interest to chemists directly as it defines a dictionary from electronic structure to spin Hamiltonians with physical interactions.
Quantum Logic between Remote Quantum Registers
Yao, Norman Y; Laumann, Chris R; Bennett, Steven D; Duan, L -M; Lukin, Mikhail D; Jiang, Liang; Gorshkov, Alexey V
2012-01-01
We analyze two approaches to quantum state transfer in solid-state spin systems. First, we consider unpolarized spin-chains and extend previous analysis to various experimentally relevant imperfections, including quenched disorder, dynamical decoherence, and uncompensated long range coupling. In finite-length chains, the interplay between disorder-induced localization and decoherence yields a natural optimal channel fidelity, which we calculate. Long-range dipolar couplings induce a finite intrinsic lifetime for the mediating eigenmode; extensive numerical simulations of dipolar chains of lengths up to L=12 show remarkably high fidelity despite these decay processes. We further consider the extension of the protocol to bosonic systems of coupled oscillators. Second, we introduce a quantum mirror based architecture for universal quantum computing which exploits all of the spins in the system as potential qubits. While this dramatically increases the number of qubits available, the composite operations required...
Quantum entanglement and quantum operation
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
It is a simple introduction to quantum entanglement and quantum operations. The authors focus on some applications of quantum entanglement and relations between two-qubit entangled states and unitary operations. It includes remote state preparation by using any pure entangled states, nonlocal operation implementation using entangled states, entanglement capacity of two-qubit gates and two-qubit gates construction.
Quantum structure and human thought.
Aerts, Diederik; Broekaert, Jan; Gabora, Liane; Sozzo, Sandro
2013-06-01
We support the authors' claims, except that we point out that also quantum structure different from quantum probability abundantly plays a role in human cognition. We put forward several elements to illustrate our point, mentioning entanglement, contextuality, interference, and emergence as effects, and states, observables, complex numbers, and Fock space as specific mathematical structures.
Horodecki, R; Horodecki, M; Horodecki, K; Horodecki, Ryszard; Horodecki, Pawel; Horodecki, Michal; Horodecki, Karol
2007-01-01
All our former experience with application of quantum theory seems to say: {\\it what is predicted by quantum formalism must occur in laboratory}. But the essence of quantum formalism - entanglement, recognized by Einstein, Podolsky, Rosen and Schr\\"odinger - waited over 70 years to enter to laboratories as a new resource as real as energy. This holistic property of compound quantum systems, which involves nonclassical correlations between subsystems, is a potential for many quantum processes, including ``canonical'' ones: quantum cryptography, quantum teleportation and dense coding. However, it appeared that this new resource is very complex and difficult to detect. Being usually fragile to environment, it is robust against conceptual and mathematical tools, the task of which is to decipher its rich structure. This article reviews basic aspects of entanglement including its characterization, detection, distillation and quantifying. In particular, the authors discuss various manifestations of entanglement via ...
Weaver, Nik
2010-01-01
We define a "quantum relation" on a von Neumann algebra M \\subset B(H) to be a weak* closed operator bimodule over its commutant M'. Although this definition is framed in terms of a particular representation of M, it is effectively representation independent. Quantum relations on l^\\infty(X) exactly correspond to subsets of X^2, i.e., relations on X. There is also a good definition of a "measurable relation" on a measure space, to which quantum relations partially reduce in the general abelian case. By analogy with the classical setting, we can identify structures such as quantum equivalence relations, quantum partial orders, and quantum graphs, and we can generalize Arveson's fundamental work on weak* closed operator algebras containing a masa to these cases. We are also able to intrinsically characterize the quantum relations on M in terms of families of projections in M \\otimes B(l^2).
Second Quantization of Cini Model for High Order Quantum Decoherence in Quantum Measurement
Zhou, D L; Sun, C P
2001-01-01
By making the second quantization for the Cini Model of quantum measurement without wave function collapse [M. Cini, Nuovo Cimento, B73 27(1983)], the second order quantum decoherence (SOQD) is studied with a two mode boson system interacting with an idealized apparatus composed by two quantum oscillators. In the classical limit that the apparatus is prepared in a Fock state with a very large quantum number, or in a coherent state with average quantum numbers large enough, the SOQD phenomenon appears similar to the first order case of quantum decoherence.
Institute of Scientific and Technical Information of China (English)
无
2004-01-01
THE last digit of my home phone number in Beijing is 4. “So what?” European readers might ask.This was my attitude when I first lived in China; I couldn't understand why Chinese friends were so shocked at my indifference to the number 4. But China brings new discoveries every day, and I have since seen the light. I know now that Chinese people have their own ways of preserving their well being, and that they see avoiding the number 4 as a good way to stay safe.
Andrews, George E
1994-01-01
Although mathematics majors are usually conversant with number theory by the time they have completed a course in abstract algebra, other undergraduates, especially those in education and the liberal arts, often need a more basic introduction to the topic.In this book the author solves the problem of maintaining the interest of students at both levels by offering a combinatorial approach to elementary number theory. In studying number theory from such a perspective, mathematics majors are spared repetition and provided with new insights, while other students benefit from the consequent simpl
Lloyd, Seth
2012-01-01
This letter analyzes the limits that quantum mechanics imposes on the accuracy to which spacetime geometry can be measured. By applying the fundamental physical bounds to measurement accuracy to ensembles of clocks and signals moving in curved spacetime -- e.g., the global positioning system -- I derive a covariant version of the quantum geometric limit: the total number of ticks of clocks and clicks of detectors that can be contained in a four volume of spacetime of radius r and temporal extent t is less than or equal to rt/\\pi x_P t_P, where x_P, t_P are the Planck length and time. The quantum geometric limit bounds the number of events or `ops' that can take place in a four-volume of spacetime: each event is associated with a Planck-scale area. Conversely, I show that if each quantum event is associated with such an area, then Einstein's equations must hold. The quantum geometric limit is consistent with and complementary to the holographic bound which limits the number of bits that can exist within a spat...
Quantum Computing with Electron Spins in Quantum Dots
Vandersypen, L M K; Van Beveren, L H W; Elzerman, J M; Greidanus, J S; De Franceschi, S; Kouwenhoven, Leo P
2002-01-01
We present a set of concrete and realistic ideas for the implementation of a small-scale quantum computer using electron spins in lateral GaAs/AlGaAs quantum dots. Initialization is based on leads in the quantum Hall regime with tunable spin-polarization. Read-out hinges on spin-to-charge conversion via spin-selective tunneling to or from the leads, followed by measurement of the number of electron charges on the dot via a charge detector. Single-qubit manipulation relies on a microfabricated wire located close to the quantum dot, and two-qubit interactions are controlled via the tunnel barrier connecting the respective quantum dots. Based on these ideas, we have begun a series of experiments in order to demonstrate unitary control and to measure the coherence time of individual electron spins in quantum dots.
Quantum BCH Codes Based on Spectral Techniques
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
When the time variable in quantum signal processing is discrete, the Fourier transform exists on the vector space of n-tuples over the Galois field F2, which plays an important role in the investigation of quantum signals. By using Fourier transforms, the idea of quantum coding theory can be described in a setting that is much different from that seen that far. Quantum BCH codes can be defined as codes whose quantum states have certain specified consecutive spectral components equal to zero and the error-correcting ability is also described by the number of the consecutive zeros. Moreover, the decoding of quantum codes can be described spectrally with more efficiency.
Gossip algorithms in quantum networks
Siomau, Michael
2017-01-01
Gossip algorithms is a common term to describe protocols for unreliable information dissemination in natural networks, which are not optimally designed for efficient communication between network entities. We consider application of gossip algorithms to quantum networks and show that any quantum network can be updated to optimal configuration with local operations and classical communication. This allows to speed-up - in the best case exponentially - the quantum information dissemination. Irrespective of the initial configuration of the quantum network, the update requiters at most polynomial number of local operations and classical communication.
Nano and Biological Technology Panel: Quantum Information Science
2008-12-03
Electrical Engineering & Telecommunications The University of New South Wales Nano and Biological Technology Panel: Quantum Information Science 26th US Army...Technology Panel: Quantum Information Science 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK...Business School Summary – Quantum Information Science • Quantum information technologies now a reality • First impacts will be secure communications
Barnes, John
2016-01-01
In this intriguing book, John Barnes takes us on a journey through aspects of numbers much as he took us on a geometrical journey in Gems of Geometry. Similarly originating from a series of lectures for adult students at Reading and Oxford University, this book touches a variety of amusing and fascinating topics regarding numbers and their uses both ancient and modern. The author intrigues and challenges his audience with both fundamental number topics such as prime numbers and cryptography, and themes of daily needs and pleasures such as counting one's assets, keeping track of time, and enjoying music. Puzzles and exercises at the end of each lecture offer additional inspiration, and numerous illustrations accompany the reader. Furthermore, a number of appendices provides in-depth insights into diverse topics such as Pascal’s triangle, the Rubik cube, Mersenne’s curious keyboards, and many others. A theme running through is the thought of what is our favourite number. Written in an engaging and witty sty...
Quantum Games and Quantum Discord
Nawaz, Ahmad
2010-01-01
We quantize prisoners dilemma and chicken game by our generalized quantization scheme to explore the role of quantum discord in quantum games. In order to establish this connection we use Werner-like state as an initial state of the game. In this quantization scheme measurement can be performed in entangled as well as in product basis. For the measurement in entangled basis the dilemma in both the games can be resolved by separable states with non-zero quantum discord. Similarly for product basis measurement the payoffs are quantum mechanical only for nonzero values of quantum discord.
Quantum fluctuations in mesoscopic systems
Benatti, F.; Carollo, F.; Floreanini, R.; Narnhofer, H.
2017-10-01
Recent experimental results point to the existence of coherent quantum phenomena in systems made of a large number of particles, despite the fact that for many-body systems the presence of decoherence is hardly negligible and emerging classicality is expected. This behaviour hinges on collective observables, named quantum fluctuations, that retain a quantum character even in the thermodynamic limit: they provide useful tools for studying properties of many-body systems at the mesoscopic level, in-between the quantum microscopic scale and the classical macroscopic one. We herein present the general theory of quantum fluctuations in mesoscopic systems, and study their dynamics in a quantum open system setting, taking into account the unavoidable effects of dissipation and noise induced by the external environment. As in the case of microscopic systems, decoherence is not always the only dominating effect at the mesoscopic scale: certain types of environment can provide means for entangling collective fluctuations through a purely noisy mechanism.
Quantum information with Rydberg atoms
DEFF Research Database (Denmark)
Saffman, Mark; Walker, T.G.; Mølmer, Klaus
2010-01-01
qubits. The availability of a strong long-range interaction that can be coherently turned on and off is an enabling resource for a wide range of quantum information tasks stretching far beyond the original gate proposal. Rydberg enabled capabilities include long-range two-qubit gates, collective encoding...... of multiqubit registers, implementation of robust light-atom quantum interfaces, and the potential for simulating quantum many-body physics. The advances of the last decade are reviewed, covering both theoretical and experimental aspects of Rydberg-mediated quantum information processing.......Rydberg atoms with principal quantum number n»1 have exaggerated atomic properties including dipole-dipole interactions that scale as n4 and radiative lifetimes that scale as n3. It was proposed a decade ago to take advantage of these properties to implement quantum gates between neutral atom...
Moll, Nikolaj; Fuhrer, Andreas; Staar, Peter; Tavernelli, Ivano
2016-07-01
Quantum chemistry simulations on a quantum computer suffer from the overhead needed for encoding the Fermionic problem in a system of qubits. By exploiting the block diagonality of a Fermionic Hamiltonian, we show that the number of required qubits can be reduced while the number of terms in the Hamiltonian will increase. All operations for this reduction can be performed in operator space. The scheme is conceived as a pre-computational step that would be performed prior to the actual quantum simulation. We apply this scheme to reduce the number of qubits necessary to simulate both the Hamiltonian of the two-site Fermi-Hubbard model and the hydrogen molecule. Both quantum systems can then be simulated with a two-qubit quantum computer. Despite the increase in the number of Hamiltonian terms, the scheme still remains a useful tool to reduce the dimensionality of specific quantum systems for quantum simulators with a limited number of resources.
DEFF Research Database (Denmark)
Bialynicki-Birula, I; Cirone, M.A.; Dahl, Jens Peder
2002-01-01
) a singular quantum force located at the origin, and (iii) the centrifugal force associated with non-vanishing angular momentum. Moreover, we use Heisenberg's uncertainty relation to introduce a lower bound for the kinetic energy of an ensemble of neutral particles. This bound is quadratic in the number......We present Heisenberg's equation of motion for the radial variable of a free non-relativistic particle in D dimensions. The resulting radial force consists of three contributions: (i) the quantum fictitious force which is either attractive or repulsive depending on the number of dimensions, (ii...... of atoms and can be traced back to the repulsive quantum fictitious potential. All three forces arise for a free particle: "Force without force"....
DEFF Research Database (Denmark)
Bialynicki-Birula, I; Cirone, M.A.; Dahl, Jens Peder
2002-01-01
We present Heisenberg's equation of motion for the radial variable of a free non-relativistic particle in D dimensions. The resulting radial force consists of three contributions: (i) the quantum fictitious force which is either attractive or repulsive depending on the number of dimensions, (ii......) a singular quantum force located at the origin, and (iii) the centrifugal force associated with non-vanishing angular momentum. Moreover, we use Heisenberg's uncertainty relation to introduce a lower bound for the kinetic energy of an ensemble of neutral particles. This bound is quadratic in the number...... of atoms and can be traced back to the repulsive quantum fictitious potential. All three forces arise for a free particle: "Force without force"....
Energy Technology Data Exchange (ETDEWEB)
Bialynicki-Birula, I. [Center for Theoretical Physics, Polish Academy of Sciences, Warsaw (Poland); Abt. fuer Quantenphysik, Univ. Ulm, Ulm (Germany); Cirone, M.A.; Straub, F.; Schleich, W.P. [Abt. fuer Quantenphysik, Univ. Ulm, Ulm (Germany); Dahl, J.P. [Abt. fuer Quantenphysik, Univ. Ulm, Ulm (Germany); Chemical Physics, Dept. of Chemistry, Technical Univ. of Denmark, Lyngby (Denmark); Seligman, T.H. [Centro de Ciencias Fisicas, Univ. of Mexico (UNAM), Cuernavaca (Mexico)
2002-07-01
We present Heisenberg's equation of motion for the radial variable of a free non-relativistic particle in D dimensions. The resulting radial force consists of three contributions: (i) the quantum fictitious force which is either attractive or repulsive depending on the number of dimensions, (ii) a singular quantum force located at the origin, and (iii) the centrifugal force associated with non-vanishing angular momentum. Moreover, we use Heisenberg's uncertainty relation to introduce a lower bound for the kinetic energy of an ensemble of neutral particles. This bound is quadratic in the number of atoms and can be traced back to the repulsive quantum fictitious potential. All three forces arise for a free particle: ''Force without force''. (orig.)
The Quantum Socket: Three-Dimensional Wiring for Extensible Quantum Computing
Béjanin, J H; Rinehart, J R; Earnest, C T; McRae, C R H; Shiri, D; Bateman, J D; Rohanizadegan, Y; Penava, B; Breul, P; Royak, S; Zapatka, M; Fowler, A G; Mariantoni, M
2016-01-01
Quantum computing architectures are on the verge of scalability, a key requirement for the implementation of a universal quantum computer. The next stage in this quest is the realization of quantum error correction codes, which will mitigate the impact of faulty quantum information on a quantum computer. Architectures with ten or more quantum bits (qubits) have been realized using trapped ions and superconducting circuits. While these implementations are potentially scalable, true scalability will require systems engineering to combine quantum and classical hardware. One technology demanding imminent efforts is the realization of a suitable wiring method for the control and measurement of a large number of qubits. In this work, we introduce an interconnect solution for solid-state qubits: The quantum socket. The quantum socket fully exploits the third dimension to connect classical electronics to qubits with higher density and better performance than two-dimensional methods based on wire bonding. The quantum ...
Assessments of macroscopicity for quantum optical states
DEFF Research Database (Denmark)
Laghaout, Amine; Neergaard-Nielsen, Jonas Schou; Andersen, Ulrik Lund
2015-01-01
With the slow but constant progress in the coherent control of quantum systems, it is now possible to create large quantum superpositions. There has therefore been an increased interest in quantifying any claims of macroscopicity. We attempt here to motivate three criteria which we believe should...... enter in the assessment of macroscopic quantumness: The number of quantum fluctuation photons, the purity of the states, and the ease with which the branches making up the state can be distinguished. © 2014....
Bohmian mechanics and quantum field theory.
Dürr, Detlef; Goldstein, Sheldon; Tumulka, Roderich; Zanghì, Nino
2004-08-27
We discuss a recently proposed extension of Bohmian mechanics to quantum field theory. For more or less any regularized quantum field theory there is a corresponding theory of particle motion, which, in particular, ascribes trajectories to the electrons or whatever sort of particles the quantum field theory is about. Corresponding to the nonconservation of the particle number operator in the quantum field theory, the theory describes explicit creation and annihilation events: the world lines for the particles can begin and end.
Random numbers from vacuum fluctuations
Shi, Yicheng; Chng, Brenda; Kurtsiefer, Christian
2016-07-01
We implement a quantum random number generator based on a balanced homodyne measurement of vacuum fluctuations of the electromagnetic field. The digitized signal is directly processed with a fast randomness extraction scheme based on a linear feedback shift register. The random bit stream is continuously read in a computer at a rate of about 480 Mbit/s and passes an extended test suite for random numbers.
Murty, M Ram
2014-01-01
This book provides an introduction to the topic of transcendental numbers for upper-level undergraduate and graduate students. The text is constructed to support a full course on the subject, including descriptions of both relevant theorems and their applications. While the first part of the book focuses on introducing key concepts, the second part presents more complex material, including applications of Baker’s theorem, Schanuel’s conjecture, and Schneider’s theorem. These later chapters may be of interest to researchers interested in examining the relationship between transcendence and L-functions. Readers of this text should possess basic knowledge of complex analysis and elementary algebraic number theory.
Gilbert, Gerald; Hamrick, Michael
2013-01-01
This book provides a detailed account of the theory and practice of quantum cryptography. Suitable as the basis for a course in the subject at the graduate level, it crosses the disciplines of physics, mathematics, computer science and engineering. The theoretical and experimental aspects of the subject are derived from first principles, and attention is devoted to the practical development of realistic quantum communications systems. The book also includes a comprehensive analysis of practical quantum cryptography systems implemented in actual physical environments via either free-space or fiber-optic cable quantum channels. This book will be a valuable resource for graduate students, as well as professional scientists and engineers, who desire an introduction to the field that will enable them to undertake research in quantum cryptography. It will also be a useful reference for researchers who are already active in the field, and for academic faculty members who are teaching courses in quantum information s...
Arrighi, P
2003-01-01
Alice communicates with words drawn uniformly amongst $\\{\\ket{j}\\}_{j=1..n}$, the canonical orthonormal basis. Sometimes however Alice interleaves quantum decoys $\\{\\frac{\\ket{j}+i\\ket{k}}{\\sqrt{2}}\\}$ between her messages. Such pairwise superpositions of possible words cannot be distinguished from the message words. Thus as malevolent Eve observes the quantum channel, she runs the risk of damaging the superpositions (by causing a collapse). At the receiving end honest Bob, whom we assume is warned of the quantum decoys' distribution, checks upon their integrity with a measurement. The present work establishes, in the case of individual attacks, the tradeoff between Eve's information gain (her chances, if a message word was sent, of guessing which) and the disturbance she induces (Bob's chances, if a quantum decoy was sent, to detect tampering). Besides secure channel protocols, quantum decoys seem a powerful primitive for constructing n-dimensional quantum cryptographic applications. Moreover the methods emp...
Busch, Paul; Pellonpää, Juha-Pekka; Ylinen, Kari
2016-01-01
This is a book about the Hilbert space formulation of quantum mechanics and its measurement theory. It contains a synopsis of what became of the Mathematical Foundations of Quantum Mechanics since von Neumann’s classic treatise with this title. Fundamental non-classical features of quantum mechanics—indeterminacy and incompatibility of observables, unavoidable measurement disturbance, entanglement, nonlocality—are explicated and analysed using the tools of operational quantum theory. The book is divided into four parts: 1. Mathematics provides a systematic exposition of the Hilbert space and operator theoretic tools and relevant measure and integration theory leading to the Naimark and Stinespring dilation theorems; 2. Elements develops the basic concepts of quantum mechanics and measurement theory with a focus on the notion of approximate joint measurability; 3. Realisations offers in-depth studies of the fundamental observables of quantum mechanics and some of their measurement implementations; and 4....
Mekhov, Igor B.; Ritsch, Helmut
2012-05-01
Although the study of ultracold quantum gases trapped by light is a prominent direction of modern research, the quantum properties of light were widely neglected in this field. Quantum optics with quantum gases closes this gap and addresses phenomena where the quantum statistical natures of both light and ultracold matter play equally important roles. First, light can serve as a quantum nondemolition probe of the quantum dynamics of various ultracold particles from ultracold atomic and molecular gases to nanoparticles and nanomechanical systems. Second, due to the dynamic light-matter entanglement, projective measurement-based preparation of the many-body states is possible, where the class of emerging atomic states can be designed via optical geometry. Light scattering constitutes such a quantum measurement with controllable measurement back-action. As in cavity-based spin squeezing, the atom number squeezed and Schrödinger cat states can be prepared. Third, trapping atoms inside an optical cavity, one creates optical potentials and forces, which are not prescribed but quantized and dynamical variables themselves. Ultimately, cavity quantum electrodynamics with quantum gases requires a self-consistent solution for light and particles, which enriches the picture of quantum many-body states of atoms trapped in quantum potentials. This will allow quantum simulations of phenomena related to the physics of phonons, polarons, polaritons and other quantum quasiparticles.
Thelin, John R.
2013-01-01
What topic would you choose if you had the luxury of writing forever? In this article, John Thelin provides his response: He would opt to write about the history of higher education in a way that relies on quantitative data. "Numbers, please!" is his research request in taking on a longitudinal study of colleges and universities over…
Thelin, John R.
2013-01-01
What topic would you choose if you had the luxury of writing forever? In this article, John Thelin provides his response: He would opt to write about the history of higher education in a way that relies on quantitative data. "Numbers, please!" is his research request in taking on a longitudinal study of colleges and universities over…
Galbraith, Mary J.
1974-01-01
Examination of models for representing integers demonstrates that formal operational thought is required for establishing the operations on integers. Advocated is the use of many models for introducing negative numbers but, apart from addition, it is recommended that operations on integers be delayed until the formal operations stage. (JP)
2010-03-04
efficient or less costly than their classical counterparts. A large-scale quantum computer is certainly an extremely ambi- tious goal, appearing to us...outperform the largest classical supercomputers in solving some specific problems important for data encryption. In the long term, another application...which the quantum computer depends, causing the quantum mechanically destructive process known as decoherence . Decoherence comes in several forms
Hughes, R J; Dyer, P L; Luther, G G; Morgan, G L; Schauer, M M; Hughes, Richard J; Dyer, P; Luther, G G; Morgan, G L; Schauer, M
1995-01-01
Quantum cryptography is a new method for secret communications offering the ultimate security assurance of the inviolability of a Law of Nature. In this paper we shall describe the theory of quantum cryptography, its potential relevance and the development of a prototype system at Los Alamos, which utilises the phenomenon of single-photon interference to perform quantum cryptography over an optical fiber communications link.
Quantum contextuality in complex systems
Cabello, Adan
2010-01-01
We show that, for a system of several qubits, there is an inequality for the correlations between three compatible dichotomic measurements which must be satisfied by any noncontextual theory, but is violated by any quantum state. Remarkably, the violation grows exponentially with the number of qubits, and the tolerated error per correlation also increases with the number of qubits, showing that state-independent quantum contextuality is experimentally observable in complex systems.
Directory of Open Access Journals (Sweden)
Rovelli Carlo
2008-07-01
Full Text Available The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime, is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization of general relativity, with its conventional matter couplings. Today research in loop quantum gravity forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained so far are: (i The computation of the spectra of geometrical quantities such as area and volume, which yield tentative quantitative predictions for Planck-scale physics. (ii A physical picture of the microstructure of quantum spacetime, characterized by Planck-scale discreteness. Discreteness emerges as a standard quantum effect from the discrete spectra, and provides a mathematical realization of Wheeler’s “spacetime foam” intuition. (iii Control of spacetime singularities, such as those in the interior of black holes and the cosmological one. This, in particular, has opened up the possibility of a theoretical investigation into the very early universe and the spacetime regions beyond the Big Bang. (iv A derivation of the Bekenstein–Hawking black-hole entropy. (v Low-energy calculations, yielding n-point functions well defined in a background-independent context. The theory is at the roots of, or strictly related to, a number of formalisms that have been developed for describing background-independent quantum field theory, such as spin foams, group field theory, causal spin networks, and others. I give here a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.
Quantum Networks for Generating Arbitrary Quantum States
Kaye, Phillip; Mosca, Michele
2004-01-01
Quantum protocols often require the generation of specific quantum states. We describe a quantum algorithm for generating any prescribed quantum state. For an important subclass of states, including pure symmetric states, this algorithm is efficient.
Quantum physics without quantum philosophy
Energy Technology Data Exchange (ETDEWEB)
Duerr, Detlef [Muenchen Univ. (Germany). Mathematisches Inst.; Goldstein, Sheldon [Rutgers State Univ., Piscataway, NJ (United States). Dept. of Mathematics; Zanghi, Nino [Genova Univ. (Italy); Istituto Nazionale Fisica Nucleare, Genova (Italy)
2013-02-01
Integrates and comments on the authors' seminal papers in the field. Emphasizes the natural way in which quantum phenomena emerge from the Bohmian picture. Helps to answer many of the objections raised to Bohmian quantum mechanics. Useful overview and summary for newcomers and students. It has often been claimed that without drastic conceptual innovations a genuine explanation of quantum interference effects and quantum randomness is impossible. This book concerns Bohmian mechanics, a simple particle theory that is a counterexample to such claims. The gentle introduction and other contributions collected here show how the phenomena of non-relativistic quantum mechanics, from Heisenberg's uncertainty principle to non-commuting observables, emerge from the Bohmian motion of particles, the natural particle motion associated with Schroedinger's equation. This book will be of value to all students and researchers in physics with an interest in the meaning of quantum theory as well as to philosophers of science.
Quantum entanglement and quantum operation
Institute of Scientific and Technical Information of China (English)
2008-01-01
It is a simple introduction to quantum entanglement and quantum operations.The authors focus on some applications of quantum entanglement and relations between two-qubit entangled states and unitary operations.It includes remote state preparation by using any pure entangled states,nonlocal operation implementation using entangled states,entanglement capacity of two-qubit gates and two-qubit gates construction.
Number names and number understanding
DEFF Research Database (Denmark)
Ejersbo, Lisser Rye; Misfeldt, Morten
2014-01-01
This paper concerns the results from the first year of a three-year research project involving the relationship between Danish number names and their corresponding digits in the canonical base 10 system. The project aims to develop a system to help the students’ understanding of the base 10 syste...
Quantum Physics Without Quantum Philosophy
Dürr, Detlef; Zanghì, Nino
2013-01-01
It has often been claimed that without drastic conceptual innovations a genuine explanation of quantum interference effects and quantum randomness is impossible. This book concerns Bohmian mechanics, a simple particle theory that is a counterexample to such claims. The gentle introduction and other contributions collected here show how the phenomena of non-relativistic quantum mechanics, from Heisenberg's uncertainty principle to non-commuting observables, emerge from the Bohmian motion of particles, the natural particle motion associated with Schrödinger's equation. This book will be of value to all students and researchers in physics with an interest in the meaning of quantum theory as well as to philosophers of science.
Abrams, D.; Williams, C.
1999-01-01
This thesis describes several new quantum algorithms. These include a polynomial time algorithm that uses a quantum fast Fourier transform to find eigenvalues and eigenvectors of a Hamiltonian operator, and that can be applied in cases for which all know classical algorithms require exponential time.
Manning, Phillip
2011-01-01
The study of quantum theory allowed twentieth-century scientists to examine the world in a new way, one that was filled with uncertainties and probabilities. Further study also led to the development of lasers, the atomic bomb, and the computer. This exciting new book clearly explains quantum theory and its everyday uses in our world.
Sastry, R R
1999-01-01
The infinite dimensional generalization of the quantum mechanics of extended objects, namely, the quantum field theory of extended objects is employed to address the hitherto nonrenormalizable gravitational interaction following which the cosmological constant problem is addressed. The response of an electron to a weak gravitational field (linear approximation) is studied and the order $\\alpha$ correction to the magnetic gravitational moment is computed.
Advances in quantum electronics
Goodwin, D W
1974-01-01
Advances in Quantum Electronics, Volume 2 deals with the effects of quantum mechanics on the behavior of electrons in matter. This book is divided into three chapters. Chapter 1 reviews the statistical properties of optical fields and spectral processing techniques, including the use of photon correlation techniques to measure scattering effects in a number of different media. The use of optical E.P.R. and excitation spectroscopic techniques and techniques for establishing the location of impurity ions in the chalcogenides are describe in Chapter 2. The last chapter surveys the field of mode l
Recurrence in coined quantum walks
Energy Technology Data Exchange (ETDEWEB)
Kiss, T; Kecskes, L [Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, Konkoly-Thege M. u. 29-33, H-1121 Budapest (Hungary); Stefanak, M; Jex, I [Department of Physics, FJFI CVUT v Praze, Brehova 7, 115 19 Praha 1-Stare Mesto (Czech Republic)], E-mail: tkiss@szfki.hu
2009-07-15
Recurrence of quantum walks on lattices can be characterized by the generalized Polya number. Its value reflects the difference between a classical and a quantum system. The dimension of the lattice is not a unique parameter in the quantum case; both the coin operator and the initial quantum state of the coin influence the recurrence in a nontrivial way. In addition, the definition of the Polya number involves measurement of the system. Depending on how measurement is included in the definition, the recurrence properties vary. We show that in the limiting case of frequent, strong measurements, one can approach the classical dynamics. Comparing various cases, we have found numerical indication that our previous definition of the Polya number provides an upper limit.
Hadjiivanov, Ludmil
2015-01-01
Expository paper providing a historical survey of the gradual transformation of the "philosophical discussions" between Bohr, Einstein and Schr\\"odinger on foundational issues in quantum mechanics into a quantitative prediction of a new quantum effect, its experimental verification and its proposed (and loudly advertised) applications. The basic idea of the 1935 paper of Einstein-Podolsky-Rosen (EPR) was reformulated by David Bohm for a finite dimensional spin system. This allowed John Bell to derive his inequalities that separate the prediction of quantum entanglement from its possible classical interpretation. We reproduce here their later (1971) version, reviewing on the way the generalization (and mathematical derivation) of Heisenberg's uncertainty relations (due to Weyl and Schr\\"odinger) needed for the passage from EPR to Bell. We also provide an improved derivation of the quantum theoretic violation of Bell's inequalities. Soon after the experimental confirmation of the quantum entanglement (culminati...
Richter, Johannes; Farnell, Damian; Bishop, Raymod
2004-01-01
The investigation of magnetic systems where quantum effects play a dominant role has become a very active branch of solid-state-physics research in its own right. The first three chapters of the "Quantum Magnetism" survey conceptual problems and provide insights into the classes of systems considered, namely one-dimensional, two-dimensional and molecular magnets. The following chapters introduce the methods used in the field of quantum magnetism, including spin wave analysis, exact diagonalization, quantum field theory, coupled cluster methods and the Bethe ansatz. The book closes with a chapter on quantum phase transitions and a contribution that puts the wealth of phenomena into the context of experimental solid-state physics. Closing a gap in the literature, this volume is intended both as an introductory text at postgraduate level and as a modern, comprehensive reference for researchers in the field.
Pearsall, Thomas P
2017-01-01
This textbook employs a pedagogical approach that facilitates access to the fundamentals of Quantum Photonics. It contains an introductory description of the quantum properties of photons through the second quantization of the electromagnetic field, introducing stimulated and spontaneous emission of photons at the quantum level. Schrödinger’s equation is used to describe the behavior of electrons in a one-dimensional potential. Tunneling through a barrier is used to introduce the concept of nonlocality of an electron at the quantum level, which is closely-related to quantum confinement tunneling, resonant tunneling, and the origin of energy bands in both periodic (crystalline) and aperiodic (non-crystalline) materials. Introducing the concepts of reciprocal space, Brillouin zones, and Bloch’s theorem, the determination of electronic band structure using the pseudopotential method is presented, allowing direct computation of the band structures of most group IV, group III-V, and group II-VI semiconducto...
Kiefer, Claus
2012-01-01
The search for a quantum theory of the gravitational field is one of the great open problems in theoretical physics. This book presents a self-contained discussion of the concepts, methods and applications that can be expected in such a theory. The two main approaches to its construction - the direct quantisation of Einstein's general theory of relativity and string theory - are covered. Whereas the first attempts to construct a viable theory for the gravitational field alone, string theory assumes that a quantum theory of gravity will be achieved only through a unification of all the interactions. However, both employ the general method of quantization of constrained systems, which is described together with illustrative examples relevant for quantum gravity. There is a detailed presentation of the main approaches employed in quantum general relativity: path-integral quantization, the background-field method and canonical quantum gravity in the metric, connection and loop formulations. The discussion of stri...
Rae, Alastair I M
2016-01-01
A Thorough Update of One of the Most Highly Regarded Textbooks on Quantum Mechanics Continuing to offer an exceptionally clear, up-to-date treatment of the subject, Quantum Mechanics, Sixth Edition explains the concepts of quantum mechanics for undergraduate students in physics and related disciplines and provides the foundation necessary for other specialized courses. This sixth edition builds on its highly praised predecessors to make the text even more accessible to a wider audience. It is now divided into five parts that separately cover broad topics suitable for any general course on quantum mechanics. New to the Sixth Edition * Three chapters that review prerequisite physics and mathematics, laying out the notation, formalism, and physical basis necessary for the rest of the book * Short descriptions of numerous applications relevant to the physics discussed, giving students a brief look at what quantum mechanics has made possible industrially and scientifically * Additional end-of-chapter problems with...
Quantum correlations beyond entanglement and their role in quantum information theory
Streltsov, Alexander
2015-01-01
Quantum correlations are not restricted to the well known entanglement investigated in Bell-type experiments. Other forms of correlations, for example quantum discord, have recently been shown to play an important role in several aspects of quantum information theory. First experiments also support these findings. This book is an introduction into this up-and-coming research field and its likely impact on quantum technology. After giving a general introduction to the concept of quantum correlations and their role in quantum information theory, the author describes a number of pertinent results and their implications.
Corda, Christian
2012-01-01
By introducing a black hole's effective temperature, which takes into account both of the non-strictly thermal and non-strictly continuous characters of Hawking radiation, we recently re-analyzed black hole's quasi-normal modes and interpreted them naturally in terms of quantum levels for emissions of particles. After a careful review of previous results, in this work we improve such an analysis by removing an approximation that we implicitly used in our previous work and by obtaining the corrected expressions for the formulas of the horizon's area quantization and the number of quanta of area and hence also for Bekenstein-Hawking entropy, its sub-leading corrections and the number of micro-states, i.e. quantities which are fundamental to realize unitary quantum gravity theory, like functions of the quantum overtone number e (emission) and, in turn,of the black hole's quantum excited level. Another approximation concerning the maximum value of e is also corrected. We also consider quasi-normal modes in terms ...
Quantum Computation Toward Quantum Gravity
Zizzi, P. A.
2001-08-01
The aim of this paper is to enlighten the emerging relevance of Quantum Information Theory in the field of Quantum Gravity. As it was suggested by J. A. Wheeler, information theory must play a relevant role in understanding the foundations of Quantum Mechanics (the "It from bit" proposal). Here we suggest that quantum information must play a relevant role in Quantum Gravity (the "It from qubit" proposal). The conjecture is that Quantum Gravity, the theory which will reconcile Quantum Mechanics with General Relativity, can be formulated in terms of quantum bits of information (qubits) stored in space at the Planck scale. This conjecture is based on the following arguments: a) The holographic principle, b) The loop quantum gravity approach and spin networks, c) Quantum geometry and black hole entropy. From the above arguments, as they stand in the literature, it follows that the edges of spin networks pierce the black hole horizon and excite curvature degrees of freedom on the surface. These excitations are micro-states of Chern-Simons theory and account of the black hole entropy which turns out to be a quarter of the area of the horizon, (in units of Planck area), in accordance with the holographic principle. Moreover, the states which dominate the counting correspond to punctures of spin j = 1/2 and one can in fact visualize each micro-state as a bit of information. The obvious generalization of this result is to consider open spin networks with edges labeled by the spin -1/ 2 representation of SU(2) in a superposed state of spin "on" and spin "down." The micro-state corresponding to such a puncture will be a pixel of area which is "on" and "off" at the same time, and it will encode a qubit of information. This picture, when applied to quantum cosmology, describes an early inflationary universe which is a discrete version of the de Sitter universe.
Quantum Computing with Very Noisy Devices
Knill, E
2004-01-01
There are quantum algorithms that can efficiently simulate quantum physics, factor large numbers and estimate integrals. As a result, quantum computers can solve otherwise intractable computational problems. One of the main problems of experimental quantum computing is to preserve fragile quantum states in the presence of errors. It is known that if the needed elementary operations (gates) can be implemented with error probabilities below a threshold, then it is possible to efficiently quantum compute with arbitrary accuracy. Here we give evidence that for independent errors the theoretical threshold is well above 3%, which is a significant improvement over that of earlier calculations. However, the resources required at such high error probabilities are excessive. Fortunately, they decrease rapidly with decreasing error probabilities. If we had quantum resources comparable to the considerable resources available in today's digital computers, we could implement non-trivial quantum algorithms at error probabil...
Quantum scaling in many-body systems an approach to quantum phase transitions
Continentino, Mucio
2017-01-01
Quantum phase transitions are strongly relevant in a number of fields, ranging from condensed matter to cold atom physics and quantum field theory. This book, now in its second edition, approaches the problem of quantum phase transitions from a new and unifying perspective. Topics addressed include the concepts of scale and time invariance and their significance for quantum criticality, as well as brand new chapters on superfluid and superconductor quantum critical points, and quantum first order transitions. The renormalisation group in real and momentum space is also established as the proper language to describe the behaviour of systems close to a quantum phase transition. These phenomena introduce a number of theoretical challenges which are of major importance for driving new experiments. Being strongly motivated and oriented towards understanding experimental results, this is an excellent text for graduates, as well as theorists, experimentalists and those with an interest in quantum criticality.
Simultaneous classical-quantum capacities of quantum multiple access channels
Yard, J
2005-01-01
The rates at which classical and quantum information can be simultaneously transmitted from two spatially separated senders to a single receiver over an arbitrary quantum channel are characterized. Two main results are proved in detail. The first describes the region of rates at which one sender can send classical information while the other sends quantum information. The second describes those rates at which both senders can send quantum information. For each of these situations, an example of a channel is given for which the associated region admits a single-letter description. This is the author's Ph.D. dissertation, submitted to the Department of Electrical Engineering at Stanford University in March, 2005. It represents an expanded version of the paper quant-ph/0501045, containing a number of tutorial chapters which may be of independent interest for those learning about quantum Shannon theory.
Pankovic, Vladan
2009-01-01
In this work we consider remarkable experiment of the quantum dynamical interaction between a photon and fixed beam splitter with additional two optical fibers. Given fibers, having "circular", almost completely closed loop forms, admit that both superposition terms, corresponding to reflecting and passing photon, interact unlimitedly periodically with splitter. For increasing number of given interactions final state of the photon tends to superposition of reflecting and passing photon with equivalent superposition coefficients quite independently of their initial values. So, many time repeated unitary quantum dynamical evolution implies an unexpected degeneration. Feynman ingeniously observed that a time of the degeneration of the ideas will come, known to any great geographer-explorer (e.g. Magellan that first circumnavigate Earth), when he thinks about the army of the tourists that will come after him. For this reason mentioned dynamical degeneration will be called quantum Magellan effect. Also, we conside...
Gaussian quantum marginal problem
Eisert, J; Sanders, B C; Tyc, T
2007-01-01
The quantum marginal problem asks what local spectra are consistent with a given state of a composite quantum system. This setting, also referred to as the question of the compatibility of local spectra, has several applications in quantum information theory. Here, we introduce the analogue of this statement for Gaussian states for any number of modes, and solve it in generality, for pure and mixed states, both concerning necessary and sufficient conditions. Formally, our result can be viewed as an analogue of the Sing-Thompson Theorem (respectively Horn's Lemma), characterizing the relationship between main diagonal elements and singular values of a complex matrix: We find necessary and sufficient conditions for vectors (d1, ..., dn) and (c1, ..., cn) to be the symplectic eigenvalues and symplectic main diagonal elements of a strictly positive real matrix, respectively. More physically speaking, this result determines what local temperatures or entropies are consistent with a pure or mixed Gaussian state of ...
Continuous-variable quantum computing in optical time-frequency modes using quantum memories.
Humphreys, Peter C; Kolthammer, W Steven; Nunn, Joshua; Barbieri, Marco; Datta, Animesh; Walmsley, Ian A
2014-09-26
We develop a scheme for time-frequency encoded continuous-variable cluster-state quantum computing using quantum memories. In particular, we propose a method to produce, manipulate, and measure two-dimensional cluster states in a single spatial mode by exploiting the intrinsic time-frequency selectivity of Raman quantum memories. Time-frequency encoding enables the scheme to be extremely compact, requiring a number of memories that are a linear function of only the number of different frequencies in which the computational state is encoded, independent of its temporal duration. We therefore show that quantum memories can be a powerful component for scalable photonic quantum information processing architectures.
Cariolaro, Gianfranco
2015-01-01
This book demonstrates that a quantum communication system using the coherent light of a laser can achieve performance orders of magnitude superior to classical optical communications Quantum Communications provides the Masters and PhD signals or communications student with a complete basics-to-applications course in using the principles of quantum mechanics to provide cutting-edge telecommunications. Assuming only knowledge of elementary probability, complex analysis and optics, the book guides its reader through the fundamentals of vector and Hilbert spaces and the necessary quantum-mechanical ideas, simply formulated in four postulates. A turn to practical matters begins with and is then developed by: · development of the concept of quantum decision, emphasizing the optimization of measurements to extract useful information from a quantum system; · general formulation of a transmitter–receiver system · particular treatment of the most popular quantum co...
Pirandola, Stefano; Lupo, Cosmo; Giovannetti, Vittorio; Mancini, Stefano; Braunstein, Samuel L.
2011-11-01
The readout of a classical memory can be modelled as a problem of quantum channel discrimination, where a decoder retrieves information by distinguishing the different quantum channels encoded in each cell of the memory (Pirandola 2011 Phys. Rev. Lett. 106 090504). In the case of optical memories, such as CDs and DVDs, this discrimination involves lossy bosonic channels and can be remarkably boosted by the use of nonclassical light (quantum reading). Here we generalize these concepts by extending the model of memory from single-cell to multi-cell encoding. In general, information is stored in a block of cells by using a channel-codeword, i.e. a sequence of channels chosen according to a classical code. Correspondingly, the readout of data is realized by a process of ‘parallel’ channel discrimination, where the entire block of cells is probed simultaneously and decoded via an optimal collective measurement. In the limit of a large block we define the quantum reading capacity of the memory, quantifying the maximum number of readable bits per cell. This notion of capacity is nontrivial when we suitably constrain the physical resources of the decoder. For optical memories (encoding bosonic channels), such a constraint is energetic and corresponds to fixing the mean total number of photons per cell. In this case, we are able to prove a separation between the quantum reading capacity and the maximum information rate achievable by classical transmitters, i.e. arbitrary classical mixtures of coherent states. In fact, we can easily construct nonclassical transmitters that are able to outperform any classical transmitter, thus showing that the advantages of quantum reading persist in the optimal multi-cell scenario.
Automating quantum experiment control
Stevens, Kelly E.; Amini, Jason M.; Doret, S. Charles; Mohler, Greg; Volin, Curtis; Harter, Alexa W.
2017-03-01
The field of quantum information processing is rapidly advancing. As the control of quantum systems approaches the level needed for useful computation, the physical hardware underlying the quantum systems is becoming increasingly complex. It is already becoming impractical to manually code control for the larger hardware implementations. In this chapter, we will employ an approach to the problem of system control that parallels compiler design for a classical computer. We will start with a candidate quantum computing technology, the surface electrode ion trap, and build a system instruction language which can be generated from a simple machine-independent programming language via compilation. We incorporate compile time generation of ion routing that separates the algorithm description from the physical geometry of the hardware. Extending this approach to automatic routing at run time allows for automated initialization of qubit number and placement and additionally allows for automated recovery after catastrophic events such as qubit loss. To show that these systems can handle real hardware, we present a simple demonstration system that routes two ions around a multi-zone ion trap and handles ion loss and ion placement. While we will mainly use examples from transport-based ion trap quantum computing, many of the issues and solutions are applicable to other architectures.
Quantum Computers and Quantum Computer Languages: Quantum Assembly Language and Quantum C Language
Blaha, Stephen
2002-01-01
We show a representation of Quantum Computers defines Quantum Turing Machines with associated Quantum Grammars. We then create examples of Quantum Grammars. Lastly we develop an algebraic approach to high level Quantum Languages using Quantum Assembly language and Quantum C language as examples.
Quantum Computers and Quantum Computer Languages: Quantum Assembly Language and Quantum C
Blaha, Stephen
2002-01-01
We show a representation of Quantum Computers defines Quantum Turing Machines with associated Quantum Grammars. We then create examples of Quantum Grammars. Lastly we develop an algebraic approach to high level Quantum Languages using Quantum Assembly language and Quantum C language as examples.
Quantum Computers and Quantum Computer Languages: Quantum Assembly Language and Quantum C
Blaha, Stephen
2002-01-01
We show a representation of Quantum Computers defines Quantum Turing Machines with associated Quantum Grammars. We then create examples of Quantum Grammars. Lastly we develop an algebraic approach to high level Quantum Languages using Quantum Assembly language and Quantum C language as examples.
Quantum Computers and Quantum Computer Languages: Quantum Assembly Language and Quantum C Language
Blaha, Stephen
2002-01-01
We show a representation of Quantum Computers defines Quantum Turing Machines with associated Quantum Grammars. We then create examples of Quantum Grammars. Lastly we develop an algebraic approach to high level Quantum Languages using Quantum Assembly language and Quantum C language as examples.
Institute of Scientific and Technical Information of China (English)
ZHOU Nan-run; GONG Li-hua; LIU Ye
2006-01-01
In this letter a cascade quantum teleportation scheme is proposed. The proposed scheme needs less local quantum operations than those of quantum multi-teleportation. A quantum teleportation scheme based on entanglement swapping is presented and compared with the cascade quantum teleportation scheme. Those two schemes can effectively teleport quantum information and extend the distance of quantum communication.
Schwinger Algebra for Quaternionic Quantum Mechanics
Horwitz, L P
1997-01-01
It is shown that the measurement algebra of Schwinger, a characterization of the properties of Pauli measurements of the first and second kinds, forming the foundation of his formulation of quantum mechanics over the complex field, has a quaternionic generalization. In this quaternionic measurement algebra some of the notions of quaternionic quantum mechanics are clarified. The conditions imposed on the form of the corresponding quantum field theory are studied, and the quantum fields are constructed. It is shown that the resulting quantum fields coincide with the fermion or boson annihilation-creation operators obtained by Razon and Horwitz in the limit in which the number of particles in physical states $N \\to \\infty$.
Playing a quantum game with a qutrit
Energy Technology Data Exchange (ETDEWEB)
Sinha, Urbasi [Institute for Quantum Computing, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L3G1 and Raman Research Institute, Sadashivanagar, Bangalore 560080 (India); Kolenderski, Piotr [Institute for Quantum Computing, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L3G1 and Institute of Physics, Copernicus University, Grudziqdzka 5, 87-100 Torun (Poland); Youning, Li [Department of Physics, Tsinghua University, Beijing 100084, P.R. (China); Zhao, Tong; Volpini, Matthew; Laflamme, Raymond; Jennewein, Thomas [Institute for Quantum Computing, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L3G1 (Canada); Cabello, Adan [Departmento de Fisica Aplicada II, Universidad de Sevilla, E-41012, Sevilla, Spain and Department of Physics, Stockholm University, S-10691 Stockholm (Sweden)
2014-12-04
The Aharon Vaidman (AV) quantum game [1] demonstrates the advantage of using simple quantum systems to outperform classical strategies. We present an experimental test of this quantum advantage by using a three-state quantum system (qutrit) encoded in a spatial mode of a single photon passing through a system of three slits [2,3]. We prepare its states by controlling the photon propagation and the number of open and closed slits. We perform POVM measurements by placing detectors in the positions corresponding to near and far field. These tools allow us to perform tomographic reconstructions of qutrit states and play the AV game with compelling evidence of the quantum advantage.
Numerical computation for teaching quantum statistics
Price, Tyson; Swendsen, Robert H.
2013-11-01
The study of ideal quantum gases reveals surprising quantum effects that can be observed in macroscopic systems. The properties of bosons are particularly unusual because a macroscopic number of particles can occupy a single quantum state. We describe a computational approach that supplements the usual analytic derivations applicable in the thermodynamic limit. The approach involves directly summing over the quantum states for finite systems and avoids the need for doing difficult integrals. The results display the unusual behavior of quantum gases even for relatively small systems.
Quantum adiabatic algorithm for factorization and its experimental implementation.
Peng, Xinhua; Liao, Zeyang; Xu, Nanyang; Qin, Gan; Zhou, Xianyi; Suter, Dieter; Du, Jiangfeng
2008-11-28
We propose an adiabatic quantum algorithm capable of factorizing numbers, using fewer qubits than Shor's algorithm. We implement the algorithm in a NMR quantum information processor and experimentally factorize the number 21. In the range that our classical computer could simulate, the quantum adiabatic algorithm works well, providing evidence that the running time of this algorithm scales polynomially with the problem size.
Canonical Quantum Teleportation of Two-Particle Arbitrary State
Institute of Scientific and Technical Information of China (English)
HAO Xiang; ZHU Shi-Qun
2005-01-01
The canonical quantum teleportation of two-particle arbitrary state is realized by means of phase operator and number operator. The maximally entangled eigenstates between the difference of phase operators and the sum of number operators are considered as the quantum channels. In contrast to the standard quantum teleportation, the different unitary local operation of canonical teleportation can be simplified by a general expression.
Gudder, Stanley P
2014-01-01
Quantum probability is a subtle blend of quantum mechanics and classical probability theory. Its important ideas can be traced to the pioneering work of Richard Feynman in his path integral formalism.Only recently have the concept and ideas of quantum probability been presented in a rigorous axiomatic framework, and this book provides a coherent and comprehensive exposition of this approach. It gives a unified treatment of operational statistics, generalized measure theory and the path integral formalism that can only be found in scattered research articles.The first two chapters survey the ne
Powell, John L
2015-01-01
Suitable for advanced undergraduates, this thorough text focuses on the role of symmetry operations and the essentially algebraic structure of quantum-mechanical theory. Based on courses in quantum mechanics taught by the authors, the treatment provides numerous problems that require applications of theory and serve to supplement the textual material.Starting with a historical introduction to the origins of quantum theory, the book advances to discussions of the foundations of wave mechanics, wave packets and the uncertainty principle, and an examination of the Schrödinger equation that includ
Garrison, J C
2008-01-01
Quantum optics, i.e. the interaction of individual photons with matter, began with the discoveries of Planck and Einstein, but in recent years it has expanded beyond pure physics to become an important driving force for technological innovation. This book serves the broader readership growing out of this development by starting with an elementary description of the underlying physics and then building up a more advanced treatment. The reader is led from the quantum theory of thesimple harmonic oscillator to the application of entangled states to quantum information processing. An equally impor
Lowe, John P
1993-01-01
Praised for its appealing writing style and clear pedagogy, Lowe's Quantum Chemistry is now available in its Second Edition as a text for senior undergraduate- and graduate-level chemistry students. The book assumes little mathematical or physical sophistication and emphasizes an understanding of the techniques and results of quantum chemistry, thus enabling students to comprehend much of the current chemical literature in which quantum chemical methods or concepts are used as tools. The book begins with a six-chapter introduction of standard one-dimensional systems, the hydrogen atom,
The non-local content of quantum operations
Collins, D; Popescu, S; Collins, Daniel; Linden, Noah; Popescu, Sandu
2000-01-01
We show that quantum operations on multi-particle systems have a non-local content; this mirrors the non-local content of quantum states. We introduce a general framework for discussing the non-local content of quantum operations, and give a number of examples. Quantitative relations between quantum actions and the entanglement and classical communication resources needed to implement these actions are also described. We also show how entanglement can catalyse classical communication from a quantum action.
Implement Quantum Random Walks with Linear Optics Elements
Zhao, Z; Li, H; Yang, T; Chen, Z B; Pan, J W; Zhao, Zhi; Du, Jiangfeng; Li, Hui; Yang, Tao; Chen, Zeng-Bing; Pan, Jian-Wei
2002-01-01
The quantum random walk has drawn special interests because its remarkable features to the classical counterpart could lead to new quantum algorithms. In this paper, we propose a feasible scheme to implement quantum random walks on a line using only linear optics elements. With current single-photon interference technology, the steps that could be experimentally implemented can be extended to very large numbers. We also show that, by decohering the quantum states, our scheme for quantum random walk tends to be classical.
Quantum Dots and Their Multimodal Applications: A Review
Holloway, Paul H; Teng-Kuan Tseng; Lei Qian; Debasis Bera
2010-01-01
Semiconducting quantum dots, whose particle sizes are in the nanometer range, have very unusual properties. The quantum dots have band gaps that depend in a complicated fashion upon a number of factors, described in the article. Processing-structure-properties-performance relationships are reviewed for compound semiconducting quantum dots. Various methods for synthesizing these quantum dots are discussed, as well as their resulting properties. Quantum states and confinement of their excitons ...
Understanding quantum work in a quantum many-body system.
Wang, Qian; Quan, H T
2017-03-01
Based on previous studies in a single-particle system in both the integrable [Jarzynski, Quan, and Rahav, Phys. Rev. X 5, 031038 (2015)2160-330810.1103/PhysRevX.5.031038] and the chaotic systems [Zhu, Gong, Wu, and Quan, Phys. Rev. E 93, 062108 (2016)1539-375510.1103/PhysRevE.93.062108], we study the the correspondence principle between quantum and classical work distributions in a quantum many-body system. Even though the interaction and the indistinguishability of identical particles increase the complexity of the system, we find that for a quantum many-body system the quantum work distribution still converges to its classical counterpart in the semiclassical limit. Our results imply that there exists a correspondence principle between quantum and classical work distributions in an interacting quantum many-body system, especially in the large particle number limit, and further justify the definition of quantum work via two-point energy measurements in quantum many-body systems.
Quantum algorithmic information theory
Svozil, Karl
1995-01-01
The agenda of quantum algorithmic information theory, ordered `top-down,' is the quantum halting amplitude, followed by the quantum algorithmic information content, which in turn requires the theory of quantum computation. The fundamental atoms processed by quantum computation are the quantum bits which are dealt with in quantum information theory. The theory of quantum computation will be based upon a model of universal quantum computer whose elementary unit is a two-port interferometer capa...
Corda, Christian
2013-12-01
Introducing a black hole (BH) effective temperature, which takes into account both the non-strictly thermal character of Hawking radiation and the countable behavior of emissions of subsequent Hawking quanta, we recently re-analysed BH quasi-normal modes (QNMs) and interpreted them naturally in terms of quantum levels. In this work we improve such an analysis removing some approximations that have been implicitly used in our previous works and obtaining the corrected expressions for the formulas of the horizon's area quantization and the number of quanta of area and hence also for Bekenstein-Hawking entropy, its subleading corrections and the number of micro-states, i.e. quantities which are fundamental to realize the underlying quantum gravity theory, like functions of the QNMs quantum "overtone" number n and, in turn, of the BH quantum excited level. An approximation concerning the maximum value of n is also corrected. On the other hand, our previous results were strictly corrected only for scalar and gravitational perturbations. Here we show that the discussion holds also for vector perturbations. The analysis is totally consistent with the general conviction that BHs result in highly excited states representing both the "hydrogen atom" and the "quasi-thermal emission" in quantum gravity. Our BH model is somewhat similar to the semi-classical Bohr's model of the structure of a hydrogen atom. The thermal approximation of previous results in the literature is consistent with the results in this paper. In principle, such results could also have important implications for the BH information paradox.
Buhrman, H; Watrous, J; De Wolf, R; Buhrman, Harry; Cleve, Richard; Watrous, John; Wolf, Ronald de
2001-01-01
Classical fingerprinting associates with each string a shorter string (its fingerprint), such that, with high probability, any two distinct strings can be distinguished by comparing their fingerprints alone. The fingerprints can be exponentially smaller than the original strings if the parties preparing the fingerprints share a random key, but not if they only have access to uncorrelated random sources. In this paper we show that fingerprints consisting of quantum information can be made exponentially smaller than the original strings without any correlations or entanglement between the parties: we give a scheme where the quantum fingerprints are exponentially shorter than the original strings and we give a test that distinguishes any two unknown quantum fingerprints with high probability. Our scheme implies an exponential quantum/classical gap for the equality problem in the simultaneous message passing model of communication complexity. We optimize several aspects of our scheme.
Curran, Stephen
2009-01-01
In arXiv:0807.0677, K\\"ostler and Speicher observed that de Finetti's theorem on exchangeable sequences has a free analogue if one replaces exchangeability by the stronger condition of invariance under quantum permutations. In this paper we study sequences of noncommutative random variables whose joint distribution is invariant under quantum orthogonal transformations. We prove a free analogue of Freedman's characterization of conditionally independent Gaussian families, namely an infinite sequence of self-adjoint random variables is quantum orthogonally invariant if and only if they form an operator-valued free centered equivariant semicircular family. Similarly, we show that an infinite sequence of noncommutative random variables is quantum unitarily invariant if and only if they form an operator-valued free centered equivariant circular family. We provide an example to show that, as in the classical case, these results fail for finite sequences. We then give an approximation to how far the distribution of ...
Mershin, A; Skoulakis, E M C
2000-01-01
In order to create a novel model of memory and brain function, we focus our approach on the sub-molecular (electron), molecular (tubulin) and macromolecular (microtubule) components of the neural cytoskeleton. Due to their size and geometry, these systems may be approached using the principles of quantum physics. We identify quantum-physics derived mechanisms conceivably underlying the integrated yet differentiated aspects of memory encoding/recall as well as the molecular basis of the engram. We treat the tubulin molecule as the fundamental computation unit (qubit) in a quantum-computational network that consists of microtubules (MTs), networks of MTs and ultimately entire neurons and neural networks. We derive experimentally testable predictions of our quantum brain hypothesis and perform experiments on these.
Quantum metamaterials in the microwave and optical ranges
Zagoskin, A M; Rousseau, Emmanuel
2016-01-01
Quantum metamaterials generalize the concept of metamaterials (artificial optical media) to the case when their optical properties are determined by the interplay of quantum effects in the constituent 'artificial atoms' with the electromagnetic field modes in the system. The theoretical investigation of these structures demonstrated that a number of new effects (such as quantum birefringence, strongly nonclassical states of light, etc) are to be expected, prompting the efforts on their fabrication and experimental investigation. Here we provide a summary of the principal features of quantum metamaterials and review the current state of research in this quickly developing field, which bridges quantum optics, quantum condensed matter theory and quantum information processing.
CERN Bulletin
2013-01-01
On April Fools' Day, CERN Quantum Diaries blogger Pauline Gagnon held a giveaway of microscopic proportion. Up for grabs? Ten Higgs bosons, courtesy of CERN. Pauline announced the winners last week; let's see what they'll really be getting in the mail... Custom-made Particle Zoo Higgs bosons were sent out to the winners. Read more about the prize in the Quantum Diaries post "Higgs boson lottery: when CERN plays April Fools' jokes".
Haroche, Serge
2013-01-01
Mr Administrator,Dear colleagues,Ladies and gentlemen, “I think I can safely say that nobody understands quantum mechanics”. This statement, made by physicist Richard Feynman, expresses a paradoxical truth about the scientific theory that revolutionised our understanding of Nature and made an extraordinary contribution to our means of acting on and gaining information about the world. In this lecture, I will discuss quantum physics with you by attempting to resolve this paradox. And if I don’...
DEFF Research Database (Denmark)
Andersen, Ulrik Lund
2013-01-01
Further sensitivity improvements are required before advanced optical interferometers will be able to measure gravitational waves. A team has now shown that introducing quantum squeezing of light may help to detect these elusive waves.......Further sensitivity improvements are required before advanced optical interferometers will be able to measure gravitational waves. A team has now shown that introducing quantum squeezing of light may help to detect these elusive waves....
Diego Martin-Cano, Paloma A. Huidobro, Esteban Moreno; Diego Martin-Cano; Huidobro, Paloma A.; Esteban Moreno; Garcia-Vidal, F.J.
2014-01-01
Quantum plasmonics is a rapidly growing field of research that involves the study of the quantum properties of light and its interaction with matter at the nanoscale. Here, surface plasmons - electromagnetic excitations coupled to electron charge density waves on metal-dielectric interfaces or localized on metallic nanostructures - enable the confinement of light to scales far below that of conventional optics. In this article we review recent progress in the experimental and theoretical inve...
DEFF Research Database (Denmark)
Andersen, Ulrik Lund
2013-01-01
Further sensitivity improvements are required before advanced optical interferometers will be able to measure gravitational waves. A team has now shown that introducing quantum squeezing of light may help to detect these elusive waves.......Further sensitivity improvements are required before advanced optical interferometers will be able to measure gravitational waves. A team has now shown that introducing quantum squeezing of light may help to detect these elusive waves....
Recoverability in quantum information theory
Wilde, Mark
The fact that the quantum relative entropy is non-increasing with respect to quantum physical evolutions lies at the core of many optimality theorems in quantum information theory and has applications in other areas of physics. In this work, we establish improvements of this entropy inequality in the form of physically meaningful remainder terms. One of the main results can be summarized informally as follows: if the decrease in quantum relative entropy between two quantum states after a quantum physical evolution is relatively small, then it is possible to perform a recovery operation, such that one can perfectly recover one state while approximately recovering the other. This can be interpreted as quantifying how well one can reverse a quantum physical evolution. Our proof method is elementary, relying on the method of complex interpolation, basic linear algebra, and the recently introduced Renyi generalization of a relative entropy difference. The theorem has a number of applications in quantum information theory, which have to do with providing physically meaningful improvements to many known entropy inequalities. This is based on arXiv:1505.04661, now accepted for publication in Proceedings of the Royal Society A. I acknowledge support from startup funds from the Department of Physics and Astronomy at LSU, the NSF under Award No. CCF-1350397, and the DARPA Quiness Program through US Army Research Office award W31P4Q-12-1-0019.
Quantum correlations and distinguishability of quantum states
Spehner, Dominique
2014-07-01
A survey of various concepts in quantum information is given, with a main emphasis on the distinguishability of quantum states and quantum correlations. Covered topics include generalized and least square measurements, state discrimination, quantum relative entropies, the Bures distance on the set of quantum states, the quantum Fisher information, the quantum Chernoff bound, bipartite entanglement, the quantum discord, and geometrical measures of quantum correlations. The article is intended both for physicists interested not only by collections of results but also by the mathematical methods justifying them, and for mathematicians looking for an up-to-date introductory course on these subjects, which are mainly developed in the physics literature.
Quantum transport in carbon nanotubes
DEFF Research Database (Denmark)
Laird, Edward A.; Kuemmeth, Ferdinand; Steele, Gary A.;
2015-01-01
by recent advances in theory. As well as the well-understood overall picture, we also state clearly open questions for the field. These advances position nanotubes as a leading system for the study of spin and valley physics in one dimension where electronic disorder and hyperfine interaction can both...... and valley degrees of freedom. This review describes the modern understanding of transport through nanotube devices. Unlike conventional semiconductors, electrons in nanotubes have two angular momentum quantum numbers, arising from spin and from valley freedom. We focus on the interplay between the two....... In single quantum dots defined in short lengths of nanotube, the energy levels associated with each degree of freedom, and the spin-orbit coupling between them, are revealed by Coulomb blockade spectroscopy. In double quantum dots, the combination of quantum numbers modifies the selection rules of Pauli...
Fuchs, Christopher A
2009-01-01
This pseudo-paper consists of excerpts drawn from two of my quantum-email samizdats. Section 1 draws a picture of a physical world whose essence is ``Darwinism all the way down.'' Section 2 outlines how quantum theory should be viewed in light of this, i.e., as being an expression of probabilism (in Bruno de Finetti or Richard Jeffrey's sense) all the way back up. Section 3 describes how the idea of ``identical'' quantum measurement outcomes, though sounding atomistic in character, nonetheless meshes well with a Jamesian style ``radical pluralism.'' Sections 4 and 5 further detail how quantum theory should not be viewed so much as a ``theory of the world,'' but rather as a theory of decision-making for agents immersed within a world of a particular character--the quantum world. Finally, Sections 6 and 7 attempt to sketch the very positive sense in which quantum theory is incomplete, but still just as complete is it can be. In total, I hope these heady speculations convey some of the excitement and potential I...
Quantum Computation and Quantum Spin Dynamics
Raedt, Hans De; Michielsen, Kristel; Hams, Anthony; Miyashita, Seiji; Saito, Keiji
2001-01-01
We analyze the stability of quantum computations on physically realizable quantum computers by simulating quantum spin models representing quantum computer hardware. Examples of logically identical implementations of the controlled-NOT operation are used to demonstrate that the results of a quantum
Quantum Central Processing Unit and Quantum Algorithm
Institute of Scientific and Technical Information of China (English)
王安民
2002-01-01
Based on a scalable and universal quantum network, quantum central processing unit, proposed in our previous paper [Chin. Phys. Left. 18 (2001)166], the whole quantum network for the known quantum algorithms,including quantum Fourier transformation, Shor's algorithm and Grover's algorithm, is obtained in a unitied way.
Quantum Computation and Quantum Spin Dynamics
Raedt, Hans De; Michielsen, Kristel; Hams, Anthony; Miyashita, Seiji; Saito, Keiji
2001-01-01
We analyze the stability of quantum computations on physically realizable quantum computers by simulating quantum spin models representing quantum computer hardware. Examples of logically identical implementations of the controlled-NOT operation are used to demonstrate that the results of a quantum
Preconditioned quantum linear system algorithm.
Clader, B D; Jacobs, B C; Sprouse, C R
2013-06-21
We describe a quantum algorithm that generalizes the quantum linear system algorithm [Harrow et al., Phys. Rev. Lett. 103, 150502 (2009)] to arbitrary problem specifications. We develop a state preparation routine that can initialize generic states, show how simple ancilla measurements can be used to calculate many quantities of interest, and integrate a quantum-compatible preconditioner that greatly expands the number of problems that can achieve exponential speedup over classical linear systems solvers. To demonstrate the algorithm's applicability, we show how it can be used to compute the electromagnetic scattering cross section of an arbitrary target exponentially faster than the best classical algorithm.
Coherent control of quantum dots
DEFF Research Database (Denmark)
Johansen, Jeppe; Lodahl, Peter; Hvam, Jørn Märcher
In recent years much effort has been devoted to the use of semiconductor quantum dotsystems as building blocks for solid-state-based quantum logic devices. One importantparameter for such devices is the coherence time, which determines the number ofpossible quantum operations. From earlier...... measurements the coherence time of the selfassembledquantum dots (QDs) has been reported to be limited by the spontaneousemission rate at cryogenic temperatures1.In this project we propose to alter the coherence time of QDs by taking advantage of arecent technique on modifying spontaneous emission rates...
Coherent control of quantum dots
DEFF Research Database (Denmark)
Johansen, Jeppe; Lodahl, Peter; Hvam, Jørn Märcher
In recent years much effort has been devoted to the use of semiconductor quantum dotsystems as building blocks for solid-state-based quantum logic devices. One importantparameter for such devices is the coherence time, which determines the number ofpossible quantum operations. From earlier...... measurements the coherence time of the selfassembledquantum dots (QDs) has been reported to be limited by the spontaneousemission rate at cryogenic temperatures1.In this project we propose to alter the coherence time of QDs by taking advantage of arecent technique on modifying spontaneous emission rates...
Inequalities for quantum skew information
DEFF Research Database (Denmark)
Audenaert, Koenraad; Cai, Liang; Hansen, Frank
2008-01-01
We study quantum information inequalities and show that the basic inequality between the quantum variance and the metric adjusted skew information generates all the multi-operator matrix inequalities or Robertson type determinant inequalities studied by a number of authors. We introduce an order...... relation on the set of functions representing quantum Fisher information that renders the set into a lattice with an involution. This order structure generates new inequalities for the metric adjusted skew informations. In particular, the Wigner-Yanase skew information is the maximal skew information...... with respect to this order structure in the set of Wigner-Yanase-Dyson skew informations....
Quantum Electronics for Atomic Physics
Nagourney, Warren
2010-01-01
Quantum Electronics for Atomic Physics provides a course in quantum electronics for researchers in atomic physics. The book covers the usual topics, such as Gaussian beams, cavities, lasers, nonlinear optics and modulation techniques, but also includes a number of areas not usually found in a textbook on quantum electronics. It includes such practical matters as the enhancement of nonlinear processes in a build-up cavity, impedance matching into a cavity, laser frequencystabilization (including servomechanism theory), astigmatism in ring cavities, and atomic/molecular spectroscopic techniques
Contextuality supplies the 'magic' for quantum computation.
Howard, Mark; Wallman, Joel; Veitch, Victor; Emerson, Joseph
2014-06-19
Quantum computers promise dramatic advantages over their classical counterparts, but the source of the power in quantum computing has remained elusive. Here we prove a remarkable equivalence between the onset of contextuality and the possibility of universal quantum computation via 'magic state' distillation, which is the leading model for experimentally realizing a fault-tolerant quantum computer. This is a conceptually satisfying link, because contextuality, which precludes a simple 'hidden variable' model of quantum mechanics, provides one of the fundamental characterizations of uniquely quantum phenomena. Furthermore, this connection suggests a unifying paradigm for the resources of quantum information: the non-locality of quantum theory is a particular kind of contextuality, and non-locality is already known to be a critical resource for achieving advantages with quantum communication. In addition to clarifying these fundamental issues, this work advances the resource framework for quantum computation, which has a number of practical applications, such as characterizing the efficiency and trade-offs between distinct theoretical and experimental schemes for achieving robust quantum computation, and putting bounds on the overhead cost for the classical simulation of quantum algorithms.
Rebuilding mathematics on a quantum logical foundation
DeJonghe, Richard J., III
We construct a rich first-order quantum logic which generalizes the standard classical predicate logic used in the development of virtually all of modern mathematics, and we use this quantum logic to build the foundations of a new quantum mathematics. First, we prove both soundness and completeness for the quantum logic we develop, and also prove a powerful new completeness result which heretofore had been known to hold for classical, but not quantum, first-order logic. We then use our quantum logic to develop multiple areas of mathematics, including abstract algebra, axiomatic set theory, and arithmetic. In some preliminary investigations into quantum mathematics, Dunn found that the Peano axioms for arithmetic yield the same theorems using either classical or quantum logic. We prove a similar result for certain classes of abstract algebras, and then show that Dunn's result is not generic by presenting examples of quantum monoids, groups, lattices, vector spaces, and operator algebras, all which differ from their classical counterparts. Moreover, we find natural classes of quantum lattices, vector spaces, and operator algebras which all have a beautiful inter-relationship, and make some preliminary investigations into using these structures as a basis for a new mathematical formulation of quantum mechanics. We also develop a quantum set theory (equivalent to ZFC under classical logic) which is far more tractable than quantum set theory previously developed. We then use this set theory to construct a quantum version of the natural numbers, and develop an arithmetic of these numbers based upon an alternative to Peano's axioms (which avoids Dunn's theorem). Surprisingly, we find that these "quantum natural numbers" satisfy our arithmetical axioms if and only if the underlying truth values form a modular lattice, giving a new arithmetical characterization of this important lattice-theoretic property. Finally, we show that these numbers have a natural interpretation as
Potoček, Václav; Miatto, Filippo M.; Mirhosseini, Mohammad; Magaña-Loaiza, Omar S.; Liapis, Andreas C.; Oi, Daniel K. L.; Boyd, Robert W.; Jeffers, John
2015-10-01
In 1924 David Hilbert conceived a paradoxical tale involving a hotel with an infinite number of rooms to illustrate some aspects of the mathematical notion of "infinity." In continuous-variable quantum mechanics we routinely make use of infinite state spaces: here we show that such a theoretical apparatus can accommodate an analog of Hilbert's hotel paradox. We devise a protocol that, mimicking what happens to the guests of the hotel, maps the amplitudes of an infinite eigenbasis to twice their original quantum number in a coherent and deterministic manner, producing infinitely many unoccupied levels in the process. We demonstrate the feasibility of the protocol by experimentally realizing it on the orbital angular momentum of a paraxial field. This new non-Gaussian operation may be exploited, for example, for enhancing the sensitivity of NOON states, for increasing the capacity of a channel, or for multiplexing multiple channels into a single one.
Potoček, Václav; Miatto, Filippo M; Mirhosseini, Mohammad; Magaña-Loaiza, Omar S; Liapis, Andreas C; Oi, Daniel K L; Boyd, Robert W; Jeffers, John
2015-10-16
In 1924 David Hilbert conceived a paradoxical tale involving a hotel with an infinite number of rooms to illustrate some aspects of the mathematical notion of "infinity." In continuous-variable quantum mechanics we routinely make use of infinite state spaces: here we show that such a theoretical apparatus can accommodate an analog of Hilbert's hotel paradox. We devise a protocol that, mimicking what happens to the guests of the hotel, maps the amplitudes of an infinite eigenbasis to twice their original quantum number in a coherent and deterministic manner, producing infinitely many unoccupied levels in the process. We demonstrate the feasibility of the protocol by experimentally realizing it on the orbital angular momentum of a paraxial field. This new non-Gaussian operation may be exploited, for example, for enhancing the sensitivity of NOON states, for increasing the capacity of a channel, or for multiplexing multiple channels into a single one.
Wigner function of the thermo number states
Institute of Scientific and Technical Information of China (English)
Hu Li-Yun; Fan Hong-Yi
2009-01-01
Based on thermo field dynamics (TFD) and using the thermo Wigner operator in the thermo entangled state representation we derive the Wigner function of number states at finite temperature (named thermo number states). The figure of Wigner function shows that its shape gets smoothed as the temperature rises, implying that the quantum noise becomes larger.
Simulation of n-qubit quantum systems. III. Quantum operations
Radtke, T.; Fritzsche, S.
2007-05-01
During the last decade, several quantum information protocols, such as quantum key distribution, teleportation or quantum computation, have attracted a lot of interest. Despite the recent success and research efforts in quantum information processing, however, we are just at the beginning of understanding the role of entanglement and the behavior of quantum systems in noisy environments, i.e. for nonideal implementations. Therefore, in order to facilitate the investigation of entanglement and decoherence in n-qubit quantum registers, here we present a revised version of the FEYNMAN program for working with quantum operations and their associated (Jamiołkowski) dual states. Based on the implementation of several popular decoherence models, we provide tools especially for the quantitative analysis of quantum operations. Apart from the implementation of different noise models, the current program extension may help investigate the fragility of many quantum states, one of the main obstacles in realizing quantum information protocols today. Program summaryTitle of program: Feynman Catalogue identifier: ADWE_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWE_v3_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: None Operating systems: Any system that supports MAPLE; tested under Microsoft Windows XP, SuSe Linux 10 Program language used:MAPLE 10 Typical time and memory requirements: Most commands that act upon quantum registers with five or less qubits take ⩽10 seconds of processor time (on a Pentium 4 processor with ⩾2 GHz or equivalent) and 5-20 MB of memory. Especially when working with symbolic expressions, however, the memory and time requirements critically depend on the number of qubits in the quantum registers, owing to the exponential dimension growth of the associated Hilbert space. For example, complex (symbolic) noise models (with several Kraus operators) for multi-qubit systems
Quantum Physics for Beginners.
Strand, J.
1981-01-01
Suggests a new approach for teaching secondary school quantum physics. Reviews traditional approaches and presents some characteristics of the three-part "Quantum Physics for Beginners" project, including: quantum physics, quantum mechanics, and a short historical survey. (SK)
Quantum Transmemetic Intelligence
Piotrowski, Edward W.; Sładkowski, Jan
The following sections are included: * Introduction * A Quantum Model of Free Will * Quantum Acquisition of Knowledge * Thinking as a Quantum Algorithm * Counterfactual Measurement as a Model of Intuition * Quantum Modification of Freud's Model of Consciousness * Conclusion * Acknowledgements * References
Quantum Physics for Beginners.
Strand, J.
1981-01-01
Suggests a new approach for teaching secondary school quantum physics. Reviews traditional approaches and presents some characteristics of the three-part "Quantum Physics for Beginners" project, including: quantum physics, quantum mechanics, and a short historical survey. (SK)
Mandl, F.
1992-07-01
The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition F. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw The Physics of Stars Second Edition A. C. Phillips Computing for Scientists R. J. Barlow and A. R. Barnett Quantum Mechanics aims to teach those parts of the subject which every physicist should know. The object is to display the inherent structure of quantum mechanics, concentrating on general principles and on methods of wide applicability without taking them to their full generality. This book will equip students to follow quantum-mechanical arguments in books and scientific papers, and to cope with simple cases. To bring the subject to life, the theory is applied to the all-important field of atomic physics. No prior knowledge of quantum mechanics is assumed. However, it would help most readers to have met some elementary wave mechanics before. Primarily written for students, it should also be of interest to experimental research workers who require a good grasp of quantum mechanics without the full formalism needed by the professional theorist. Quantum Mechanics features: A flow diagram allowing topics to be studied in different orders or omitted altogether. Optional "starred" and highlighted sections containing more advanced and specialized material for the more ambitious reader. Sets of problems at the end of each chapter to help student understanding. Hints and solutions to the problems are given at the end of the book.
Realizing Controllable Quantum States
Takayanagi, Hideaki; Nitta, Junsaku
1. Entanglement in solid states. Orbital entanglement and violation of bell inequalities in mesoscopic conductors / M. Büttiker, P. Samuelsson and E. V. Sukhoruk. Teleportation of electron spins with normal and superconducting dots / O. Sauret, D. Feinberg and T. Martin. Entangled state analysis for one-dimensional quantum spin system: singularity at critical point / A. Kawaguchi and K. Shimizu. Detecting crossed Andreev reflection by cross-current correlations / G. Bignon et al. Current correlations and transmission probabilities for a Y-shaped diffusive conductor / S. K. Yip -- 2. Mesoscopic electronics. Quantum bistability, structural transformation, and spontaneous persistent currents in mesoscopic Aharonov-Bohm loops / I. O. Kulik. Many-body effects on tunneling of electrons in magnetic-field-induced quasi one-dimensional systems in quantum wells / T. Kubo and Y. Tokura. Electron transport in 2DEG narrow channel under gradient magnetic field / M. Hara et al. Transport properties of a quantum wire with a side-coupled quantum dot / M. Yamaguchi et al. Photoconductivity- and magneto-transport studies of single InAs quantum wires / A. Wirthmann et al. Thermoelectric transports in charge-density-wave systems / H. Yoshimoto and S. Kurihara -- 3. Mesoscopic superconductivity. Parity-restricted persistent currents in SNS nanorings / A. D. Zaikin and S. V. Sharov. Large energy dependence of current noise in superconductingh/normal metal junctions / F. Pistolesi and M. Houzet. Generation of photon number states and their superpositions using a superconducting qubit in a microcavity / Yu-Xi Liu, L. F. Wei and F. Nori. Andreev interferometry for pumped currents / F. Taddei, M. Governale and R. Fazio. Suppression of Cooper-pair breaking against high magnetic fields in carbon nanotubes / J. Haruyama et al. Impact of the transport supercurrent on the Josephson effect / S. N. Shevchenko. Josephson current through spin-polarized Luttinger liquid / N. Yokoshi and S. Kurihara
Precision Quantum Control and Error-Suppressing Quantum Firmware for Robust Quantum Computing
2014-09-24
Dynamical decoupling sequence construction as a filter-design problem, Journal of Physics B: Atomic, Molecular and Optical Physics, (08 2011... Hamiltonian quantum simulation with bounded-strength controls,”, New Journal of Physics, (04 2014): 0. doi: 3 Number of Papers published in peer...Programmable quantum simulation by dynamic Hamiltonian engineering,”, New Journal of Physics, (08 2014): 0. doi: K.Khodjasteh, J.Sastrawan, D
Quantum theory informational foundations and foils
Spekkens, Robert
2016-01-01
This book provides the first unified overview of the burgeoning research area at the interface between Quantum Foundations and Quantum Information. Topics include: operational alternatives to quantum theory, information-theoretic reconstructions of the quantum formalism, mathematical frameworks for operational theories, and device-independent features of the set of quantum correlations. Powered by the injection of fresh ideas from the field of Quantum Information and Computation, the foundations of Quantum Mechanics are in the midst of a renaissance. The last two decades have seen an explosion of new results and research directions, attracting broad interest in the scientific community. The variety and number of different approaches, however, makes it challenging for a newcomer to obtain a big picture of the field and of its high-level goals. Here, fourteen original contributions from leading experts in the field cover some of the most promising research directions that have emerged in the new wave of quant...
Effects of quantum gravity on black holes
Chen, Deyou; Yang, Haitang; Yang, Shuzheng
2014-01-01
In this review, we discuss effects of quantum gravity on black hole physics. After a brief review of the origin of the minimal observable length from various quantum gravity theories, we present the tunneling method. To incorporate quantum gravity effects, we modify the Klein-Gordon equation and Dirac equation by the modified fundamental commutation relations. Then we use the modified equations to discuss the tunneling radiation of scalar particles and fermions. The corrected Hawking temperatures are related to the quantum numbers of the emitted particles. Quantum gravity corrections slow down the increase of the temperatures. The remnants are observed as $M_{\\hbox{Res}}\\gtrsim \\frac{M_p}{\\sqrt{\\beta_0}}$. The mass is quantized by the modified Wheeler-DeWitt equation and is proportional to $n$ in quantum gravity regime. The thermodynamical property of the black hole is studied by the influence of quantum gravity effects.
Amplification, Redundancy, and Quantum Chernoff Information
Zwolak, Michael; Riedel, C. Jess; Zurek, Wojciech H.
2014-04-01
Amplification was regarded, since the early days of quantum theory, as a mysterious ingredient that endows quantum microstates with macroscopic consequences, key to the "collapse of the wave packet," and a way to avoid embarrassing problems exemplified by Schrödinger's cat. Such a bridge between the quantum microworld and the classical world of our experience was postulated ad hoc in the Copenhagen interpretation. Quantum Darwinism views amplification as replication, in many copies, of the information about quantum states. We show that such amplification is a natural consequence of a broad class of models of decoherence, including the photon environment we use to obtain most of our information. This leads to objective reality via the presence of robust and widely accessible records of selected quantum states. The resulting redundancy (the number of copies deposited in the environment) follows from the quantum Chernoff information that quantifies the information transmitted by a typical elementary subsystem of the environment.
A quantum analog of Huffman coding
Braunstein, S L; Gottesman, D; Lo, H K; Braunstein, Samuel L.; Fuchs, Christopher A.; Gottesman, Daniel; Lo, Hoi-Kwong
1998-01-01
We analyse a generalization of Huffman coding to the quantum case. In particular, we notice various difficulties in using instantaneous codes for quantum communication. However, for the storage of quantum information, we have succeeded in constructing a Huffman-coding inspired quantum scheme. The number of computational steps in the encoding and decoding processes of N quantum signals can be made to be polynomial in log N by a massively parallel implementation of a quantum gate array. This is to be compared with the N^3 computational steps required in the sequential implementation by Cleve and DiVincenzo of the well-known quantum noiseless block coding scheme by Schumacher. The powers and limitations in using this scheme in communication are also discussed.
A reconfigurable spintronic device for quantum and classical logic
Bhowmik, Debanjan; Sarkar, Angik; Bhattacharyya, Tarun Kanti
2010-01-01
Quantum superposition and entanglement of physical states can be harnessed to solve some problems which are intractable on a classical computer implementing binary logic. Several algorithms have been proposed to utilize the quantum nature of physical states and solve important problems. For example, Shor's quantum algorithm is extremely important in the field of cryptography since it factors large numbers exponentially faster than any known classical algorithm. Another celebrated example is the Grovers quantum algorithm. These algorithms can only be implemented on a quantum computer which operates on quantum bits (qubits). Rudimentary implementations of quantum processor have already been achieved through linear optical components, ion traps, NMR etc. However demonstration of a solid state quantum processor had been elusive till DiCarlo et al demonstrated two qubit algorithms in superconducting quantum processor. Though this has been a significant step, scalable semiconductor based room temperature quantum co...
Coherent Dynamics of Complex Quantum Systems
Akulin, Vladimir M
2006-01-01
A large number of modern problems in physics, chemistry, and quantum electronics require a consideration of population dynamics in complex multilevel quantum systems. The purpose of this book is to provide a systematic treatment of these questions and to present a number of exactly solvable problems. It considers the different dynamical problems frequently encountered in different areas of physics from the same perspective, based mainly on the fundamental ideas of group theory and on the idea of ensemble average. Also treated are concepts of complete quantum control and correction of decoherence induced errors that are complementary to the idea of ensemble average. "Coherent Dynamics of Complex Quantum Systems" is aimed at senior-level undergraduate students in the areas of Atomic, Molecular, and Laser Physics, Physical Chemistry, Quantum Optics and Quantum Informatics. It should help them put particular problems in these fields into a broader scientific context and thereby take advantage of the well-elabora...
Quantum theory allows for absolute maximal contextuality
Amaral, Barbara; Cunha, Marcelo Terra; Cabello, Adán
2015-12-01
Contextuality is a fundamental feature of quantum theory and a necessary resource for quantum computation and communication. It is therefore important to investigate how large contextuality can be in quantum theory. Linear contextuality witnesses can be expressed as a sum S of n probabilities, and the independence number α and the Tsirelson-like number ϑ of the corresponding exclusivity graph are, respectively, the maximum of S for noncontextual theories and for the theory under consideration. A theory allows for absolute maximal contextuality if it has scenarios in which ϑ /α approaches n . Here we show that quantum theory allows for absolute maximal contextuality despite what is suggested by the examination of the quantum violations of Bell and noncontextuality inequalities considered in the past. Our proof is not constructive and does not single out explicit scenarios. Nevertheless, we identify scenarios in which quantum theory allows for almost-absolute-maximal contextuality.
Novel quantum inspired binary neural network algorithm
Indian Academy of Sciences (India)
OM PRAKASH PATEL; ARUNA TIWARI
2016-11-01
In this paper, a quantum based binary neural network algorithm is proposed, named as novel quantum binary neural network algorithm (NQ-BNN). It forms a neural network structure by deciding weights and separability parameter in quantum based manner. Quantum computing concept represents solution probabilistically and gives large search space to find optimal value of required parameters using Gaussian random number generator. The neural network structure forms constructively having three number of layers input layer: hidden layer and output layer. A constructive way of deciding the network eliminates the unnecessary training of neural network. A new parameter that is a quantum separability parameter (QSP) is introduced here, which finds an optimal separability plane to classify input samples. During learning, it searches for an optimal separability plane. This parameter is taken as the threshold of neuron for learning of neural network. This algorithm is tested with three benchmark datasets and produces improved results than existing quantum inspired and other classification approaches.
Quantum correlation and quantum phase transition in the one-dimensional extended Ising model
Zhang, Xi-Zheng; Guo, Jin-Liang
2017-09-01
Quantum phase transitions can be understood in terms of Landau's symmetry-breaking theory. Following the discovery of the quantum Hall effect, a new kind of quantum phase can be classified according to topological rather than local order parameters. Both phases coexist for a class of exactly solvable quantum Ising models, for which the ground state energy density corresponds to a loop in a two-dimensional auxiliary space. Motivated by this we study quantum correlations, measured by entanglement and quantum discord, and critical behavior seen in the one-dimensional extended Ising model with short-range interaction. We show that the quantum discord exhibits distinctive behaviors when the system experiences different topological quantum phases denoted by different topological numbers. Quantum discords capability to detect a topological quantum phase transition is more reliable than that of entanglement at both zero and finite temperatures. In addition, by analyzing the divergent behaviors of quantum discord at the critical points, we find that the quantum phase transitions driven by different parameters of the model can also display distinctive critical behaviors, which provides a scheme to detect the topological quantum phase transition in practice.
Sensitivity, quantum limits, and quantum enhancement of noise spectroscopies
Lucivero, Vito Giovanni; Kong, Jia; Jiménez-Martínez, Ricardo; Mitchell, Morgan W
2016-01-01
We study the fundamental limits of noise spectroscopy using estimation theory, Faraday rotation probing of an atomic spin system, and squeezed light. We find a simple and general expression for the Fisher information, which quantifies the sensitivity to spectral parameters such as resonance frequency and linewidth. For optically-detected spin noise spectroscopy, we find that shot noise imposes "local" standard quantum limits for any given probe power and atom number, and also "global" standard quantum limits when probe power and atom number are taken as free parameters. We confirm these estimation theory results using non-destructive Faraday rotation probing of hot Rb vapor, observing the predicted optima and finding good quantitative agreement with a first-principles calculation of the spin noise spectra. Finally, we show sensitivity beyond the atom- and photon-number-optimized global standard quantum limit using squeezed light.
Classifying the Quantum Phases of Matter
2015-01-01
2013), arXiv:1305.2176. [10] J. Haah, Lattice quantum codes and exotic topological phases of matter , arXiv:1305.6973. [11[ M. Hastings and S...CLASSIFYING THE QUANTUM PHASES OF MATTER CALIFORNIA INSTITUTE OF TECHNOLOGY JANUARY 2015 FINAL TECHNICAL REPORT...REPORT 3. DATES COVERED (From - To) JAN 2012 – AUG 2014 4. TITLE AND SUBTITLE CLASSIFYING THE QUANTUM PHASES OF MATTER 5a. CONTRACT NUMBER FA8750-12-2
Quantum stream cipher based on optical communications
Hirota, Osamu; Kato, Kentaro; Sohma, Masaki; Usuda, Tsuyoshi S.; HARASAWA, Katsuyoshi
2004-01-01
In 2000, an attractive new quantum cryptography was discovered by H.P.Yuen based on quantum communication theory. It is applicable to direct encryption, for example quantum stream cipher based on Yuen protocol(Y-00), with high speeds and for long distance by sophisticated optical devices which can work under the average photon number per signal light pulse:$ = 1000 \\sim 10000$. In addition, it may provide information-theoretic security against known/chosen plaintext attack, which has no class...
Rotational and vibrational spectra of quantum rings
Koskinen, M.; Manninen, M.; Mottelson, B.; Reimann, S. M.
2000-01-01
One can confine the two-dimensional electron gas in semiconductor heterostructures electrostatically or by etching techniques such that a small electron island is formed. These man-made ``artificial atoms'' provide the experimental realization of a text-book example of many-particle physics: a finite number of quantum particles in a trap. Much effort was spent on making such "quantum dots" smaller and going from the mesoscopic to the quantum regime. Far-reaching analogies to the physics of at...
Quantum Byzantine Agreement with a Single Qutrit
Bourennane, Mohamed; Zukowski, Marek
2010-01-01
Quantum mechanics provides several methods to generate and securely distribute private lists of numbers suitably correlated to solve the Three Byzantine Generals Problem. So far, these methods are based on three-qutrit singlet states, four-qubit entangled states, and three or two pairwise quantum key distribution channels. Here we show that the problem can be solved using a single qutrit. This scheme presents some advantages over previous schemes, and emphasizes the specific role of qutrits in basic quantum information processing.
Mullin, William J
2017-01-01
Quantum mechanics allows a remarkably accurate description of nature and powerful predictive capabilities. The analyses of quantum systems and their interpretation lead to many surprises, for example, the ability to detect the characteristics of an object without ever touching it in any way, via "interaction-free measurement," or the teleportation of an atomic state over large distances. The results can become downright bizarre. Quantum mechanics is a subtle subject that usually involves complicated mathematics -- calculus, partial differential equations, etc., for complete understanding. Most texts for general audiences avoid all mathematics. The result is that the reader misses almost all deep understanding of the subject, much of which can be probed with just high-school level algebra and trigonometry. Thus, readers with that level of mathematics can learn so much more about this fundamental science. The book starts with a discussion of the basic physics of waves (an appendix reviews some necessary class...
Fitzpatrick, Richard
2015-01-01
Quantum mechanics was developed during the first few decades of the twentieth century via a series of inspired guesses made by various physicists, including Planck, Einstein, Bohr, Schroedinger, Heisenberg, Pauli, and Dirac. All these scientists were trying to construct a self-consistent theory of microscopic dynamics that was compatible with experimental observations. The purpose of this book is to present quantum mechanics in a clear, concise, and systematic fashion, starting from the fundamental postulates, and developing the theory in as logical manner as possible. Topics covered in the book include the fundamental postulates of quantum mechanics, angular momentum, time-dependent and time-dependent perturbation theory, scattering theory, identical particles, and relativistic electron theory.
Yoshida, Z
2016-01-01
Quantum systems often exhibit fundamental incapability to entertain vortex. The Meissner effect, a complete expulsion of the magnetic field (the electromagnetic vorticity), for instance, is taken to be the defining attribute of the superconducting state. Superfluidity is another, close-parallel example; fluid vorticity can reside only on topological defects with a limited (quantized) amount. Recent developments in the Bose-Einstein condensates produced by particle traps further emphasize this characteristic. We show that the challenge of imparting vorticity to a quantum fluid can be met through a nonlinear mechanism operating in a hot fluid corresponding to a thermally modified Pauli-Schroedinger spinor field. In a simple field-free model, we show that the thermal effect, represented by a nonlinear, non-Hermitian Hamiltonian, in conjunction with spin vorticity, leads to new interesting quantum states; a spiral solution is explicitly worked out.
Exner, Pavel
2015-01-01
This monograph explains the theory of quantum waveguides, that is, dynamics of quantum particles confined to regions in the form of tubes, layers, networks, etc. The focus is on relations between the confinement geometry on the one hand and the spectral and scattering properties of the corresponding quantum Hamiltonians on the other. Perturbations of such operators, in particular, by external fields are also considered. The volume provides a unique summary of twenty five years of research activity in this area and indicates ways in which the theory can develop further. The book is fairly self-contained. While it requires some broader mathematical physics background, all the basic concepts are properly explained and proofs of most theorems are given in detail, so there is no need for additional sources. Without a parallel in the literature, the monograph by Exner and Kovarik guides the reader through this new and exciting field.
Feng, Chao-Jun; Li, Xin-Zhou
In this paper, we will give a short review on quantum spring, which is a Casimir effect from the helix boundary condition that proposed in our earlier works. The Casimir force parallel to the axis of the helix behaves very much like the force on a spring that obeys the Hooke's law when the ratio r of the pitch to the circumference of the helix is small, but in this case, the force comes from a quantum effect, so we would like to call it quantum spring. On the other hand, the force perpendicular to the axis decreases monotonously with the increasing of the ratio r. Both forces are attractive and their behaviors are the same in two and three dimensions.
Barbara, Bernard; Sawatzky, G; Stamp, P. C. E
2008-01-01
This book is based on some of the lectures during the Pacific Institute of Theoretical Physics (PITP) summer school on "Quantum Magnetism", held during June 2006 in Les Houches, in the French Alps. The school was funded jointly by NATO, the CNRS, and PITP, and entirely organized by PITP. Magnetism is a somewhat peculiar research field. It clearly has a quantum-mechanical basis – the microsopic exchange interactions arise entirely from the exclusion principle, in conjunction with respulsive interactions between electrons. And yet until recently the vast majority of magnetism researchers and users of magnetic phenomena around the world paid no attention to these quantum-mechanical roots. Thus, eg., the huge ($400 billion per annum) industry which manufactures hard discs, and other components in the information technology sector, depends entirely on room-temperature properties of magnets - yet at the macroscopic or mesoscopic scales of interest to this industry, room-temperature magnets behave entirely classic...
Ghosh, P K
2014-01-01
Quantum mechanics, designed for advanced undergraduate and graduate students of physics, mathematics and chemistry, provides a concise yet self-contained introduction to the formal framework of quantum mechanics, its application to physical problems and the interpretation of the theory. Starting with a review of some of the necessary mathematics, the basic concepts are carefully developed in the text. After building a general formalism, detailed treatment of the standard material - the harmonic oscillator, the hydrogen atom, angular momentum theory, symmetry transformations, approximation methods, identical particle and many-particle systems, and scattering theory - is presented. The concluding chapter discusses the interpretation of quantum mechanics. Some of the important topics discussed in the book are the rigged Hilbert space, deformation quantization, path integrals, coherent states, geometric phases, decoherene, etc. This book is characterized by clarity and coherence of presentation.
Quartic quantum theory: an extension of the standard quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Zyczkowski, Karol [Institute of Physics, Jagiellonian University, Krakow (Poland); Center for Theoretical Physics, Polish Academy of Sciences, Warsaw (Poland)], E-mail: karol@tatry.if.uj.edu.pl
2008-09-05
We propose an extended quantum theory, in which the number K of parameters necessary to characterize a quantum state behaves as fourth power of the number N of distinguishable states. As the simplex of classical N-point probability distributions can be embedded inside a higher-dimensional convex body M{sub N}{sup Q} of mixed quantum states, one can further increase the dimensionality constructing the set of extended quantum states. The embedding proposed corresponds to an assumption that the physical system described in the N-dimensional Hilbert space is coupled with an auxiliary subsystem of the same dimensionality. The extended theory works for simple quantum systems and is shown to be a non-trivial generalization of the standard quantum theory for which K = N{sup 2}. Imposing certain restrictions on initial conditions and dynamics allowed in the quartic theory one obtains quadratic theory as a special case. By imposing even stronger constraints one arrives at the classical theory, for which K = N.
Division Algebras and Quantum Theory
Baez, John C
2011-01-01
Quantum theory may be formulated using Hilbert spaces over any of the three associative normed division algebras: the real numbers, the complex numbers and the quaternions. Indeed, these three choices appear naturally in a number of axiomatic approaches. However, there are internal problems with real or quaternionic quantum theory. Here we argue that these problems can be resolved if we treat real, complex and quaternionic quantum theory as part of a unified structure. Dyson called this structure the "three-fold way". It is perhaps easiest to see it in the study of irreducible unitary representations of groups on complex Hilbert spaces. These representations come in three kinds: those that are not isomorphic to their own dual (the truly "complex" representations), those that are self-dual thanks to a symmetric bilinear pairing (which are "real", in that they are the complexifications of representations on real Hilbert spaces), and those that are self-dual thanks to an antisymmetric bilinear pairing (which are...
Rae, Alastair I M
2007-01-01
PREFACESINTRODUCTION The Photoelectric Effect The Compton Effect Line Spectra and Atomic Structure De Broglie Waves Wave-Particle Duality The Rest of This Book THE ONE-DIMENSIONAL SCHRÖDINGER EQUATIONS The Time-Dependent Schrödinger Equation The Time-Independent Schrödinger Equation Boundary ConditionsThe Infinite Square Well The Finite Square Well Quantum Mechanical Tunneling The Harmonic Oscillator THE THREE-DIMENSIONAL SCHRÖDINGER EQUATIONS The Wave Equations Separation in Cartesian Coordinates Separation in Spherical Polar Coordinates The Hydrogenic Atom THE BASIC POSTULATES OF QUANTUM MEC
Zagoskin, Alexandre
2015-01-01
Written by Dr Alexandre Zagoskin, who is a Reader at Loughborough University, Quantum Mechanics: A Complete Introduction is designed to give you everything you need to succeed, all in one place. It covers the key areas that students are expected to be confident in, outlining the basics in clear jargon-free English, and then providing added-value features like summaries of key ideas, and even lists of questions you might be asked in your exam. The book uses a structure that is designed to make quantum physics as accessible as possible - by starting with its similarities to Newtonian physics, ra
de Bianchi, Massimiliano Sassoli
2013-01-01
In a letter to Born, Einstein wrote: "Quantum mechanics is certainly imposing. But an inner voice tells me that it is not yet the real thing. The theory says a lot, but does not really bring us any closer to the secret of the old one. I, at any rate, am convinced that He does not throw dice." In this paper we take seriously Einstein's famous metaphor, and show that we can gain considerable insight into quantum mechanics by doing something as simple as rolling dice. More precisely, we show how...
Bojowald, Martin
1999-01-01
A complete model of the universe needs at least three parts: (1) a complete set of physical variables and dynamical laws for them, (2) the correct solution of the dynamical laws, and (3) the connection with conscious experience. In quantum cosmology, item (2) is the quantum state of the cosmos. Hartle and Hawking have made the `no-boundary' proposal, that the wavefunction of the universe is given by a path integral over all compact Euclidean 4-dimensional geometries and matter fields that hav...
Buhrman, Harry
2006-01-01
École thématique; Quantum Information, Computation and Complexity * Programme at the Institut Henri Poincaré, January 4th – April 7th, 2006 * Organizers: Ph.Grangier, M.Santha and D.L.Shepelyansky * Lectures have been filmed by Peter Rapcan and Michal Sedlak from Bratislava with the support of the Marie Curie RTN "CONQUEST" A trimester at the Centre Emile Borel - Institut Henri Poincaré is devoted to modern developments in a rapidly growing field of quantum information and communication, quan...
Bernstein, Jeremy
1991-01-01
For the prominent science writer Jeremy Bernstein, the profile is the most congenial way of communicating science. Here, in what he labels a "series of conversations carried on in the reader's behalf and my own," he evokes the tremendous intellectual excitement of the world of modern physics, especially the quantum revolution. Drawing on his well-known talent for explaining the most complex scientific ideas for the layperson, Bernstein gives us a lively sense of what the issues of quantum mechanics are and of various ways in which individual physicists approached them.The author begins this se
Multiparty Quantum Secret Sharing of Quantum States Using Entanglement States
Institute of Scientific and Technical Information of China (English)
GUO Ying; HUANG Da-Zu; ZENG Gui-Hua; LEE Moon Ho
2008-01-01
A multi-partite-controlled quantum secret sharing scheme using several non-orthogonal entanglement states is presented with unconditional security.In this scheme,the participants share the secret quantum state by exchanging the secret polarization angles of the disordered travel particles.The security of the secret quantum state is also guaranteed by the non-orthogonal multi-partite-controlled entanglement states,the participants'secret polarizations,and the disorder of the travelling particles.Moreover,the present scheme is secure against the particle-number splitting attack and the intercept-and-resend attack.It may be still secure even if the distributed quantum state is embedded in a not-so-weak coherent-state pulse.
Blind Quantum Signature with Blind Quantum Computation
Li, Wei; Shi, Ronghua; Guo, Ying
2017-04-01
Blind quantum computation allows a client without quantum abilities to interact with a quantum server to perform a unconditional secure computing protocol, while protecting client's privacy. Motivated by confidentiality of blind quantum computation, a blind quantum signature scheme is designed with laconic structure. Different from the traditional signature schemes, the signing and verifying operations are performed through measurement-based quantum computation. Inputs of blind quantum computation are securely controlled with multi-qubit entangled states. The unique signature of the transmitted message is generated by the signer without leaking information in imperfect channels. Whereas, the receiver can verify the validity of the signature using the quantum matching algorithm. The security is guaranteed by entanglement of quantum system for blind quantum computation. It provides a potential practical application for e-commerce in the cloud computing and first-generation quantum computation.
Blind Quantum Signature with Blind Quantum Computation
Li, Wei; Shi, Ronghua; Guo, Ying
2016-12-01
Blind quantum computation allows a client without quantum abilities to interact with a quantum server to perform a unconditional secure computing protocol, while protecting client's privacy. Motivated by confidentiality of blind quantum computation, a blind quantum signature scheme is designed with laconic structure. Different from the traditional signature schemes, the signing and verifying operations are performed through measurement-based quantum computation. Inputs of blind quantum computation are securely controlled with multi-qubit entangled states. The unique signature of the transmitted message is generated by the signer without leaking information in imperfect channels. Whereas, the receiver can verify the validity of the signature using the quantum matching algorithm. The security is guaranteed by entanglement of quantum system for blind quantum computation. It provides a potential practical application for e-commerce in the cloud computing and first-generation quantum computation.
Quantum annealing with manufactured spins.
Johnson, M W; Amin, M H S; Gildert, S; Lanting, T; Hamze, F; Dickson, N; Harris, R; Berkley, A J; Johansson, J; Bunyk, P; Chapple, E M; Enderud, C; Hilton, J P; Karimi, K; Ladizinsky, E; Ladizinsky, N; Oh, T; Perminov, I; Rich, C; Thom, M C; Tolkacheva, E; Truncik, C J S; Uchaikin, S; Wang, J; Wilson, B; Rose, G
2011-05-12
Many interesting but practically intractable problems can be reduced to that of finding the ground state of a system of interacting spins; however, finding such a ground state remains computationally difficult. It is believed that the ground state of some naturally occurring spin systems can be effectively attained through a process called quantum annealing. If it could be harnessed, quantum annealing might improve on known methods for solving certain types of problem. However, physical investigation of quantum annealing has been largely confined to microscopic spins in condensed-matter systems. Here we use quantum annealing to find the ground state of an artificial Ising spin system comprising an array of eight superconducting flux quantum bits with programmable spin-spin couplings. We observe a clear signature of quantum annealing, distinguishable from classical thermal annealing through the temperature dependence of the time at which the system dynamics freezes. Our implementation can be configured in situ to realize a wide variety of different spin networks, each of which can be monitored as it moves towards a low-energy configuration. This programmable artificial spin network bridges the gap between the theoretical study of ideal isolated spin networks and the experimental investigation of bulk magnetic samples. Moreover, with an increased number of spins, such a system may provide a practical physical means to implement a quantum algorithm, possibly allowing more-effective approaches to solving certain classes of hard combinatorial optimization problems.
Secret Sharing of a Quantum State.
Lu, He; Zhang, Zhen; Chen, Luo-Kan; Li, Zheng-Da; Liu, Chang; Li, Li; Liu, Nai-Le; Ma, Xiongfeng; Chen, Yu-Ao; Pan, Jian-Wei
2016-07-15
Secret sharing of a quantum state, or quantum secret sharing, in which a dealer wants to share a certain amount of quantum information with a few players, has wide applications in quantum information. The critical criterion in a threshold secret sharing scheme is confidentiality: with less than the designated number of players, no information can be recovered. Furthermore, in a quantum scenario, one additional critical criterion exists: the capability of sharing entangled and unknown quantum information. Here, by employing a six-photon entangled state, we demonstrate a quantum threshold scheme, where the shared quantum secrecy can be efficiently reconstructed with a state fidelity as high as 93%. By observing that any one or two parties cannot recover the secrecy, we show that our scheme meets the confidentiality criterion. Meanwhile, we also demonstrate that entangled quantum information can be shared and recovered via our setting, which shows that our implemented scheme is fully quantum. Moreover, our experimental setup can be treated as a decoding circuit of the five-qubit quantum error-correcting code with two erasure errors.
Random numbers certified by Bell's theorem.
Pironio, S; Acín, A; Massar, S; de la Giroday, A Boyer; Matsukevich, D N; Maunz, P; Olmschenk, S; Hayes, D; Luo, L; Manning, T A; Monroe, C
2010-04-15
Randomness is a fundamental feature of nature and a valuable resource for applications ranging from cryptography and gambling to numerical simulation of physical and biological systems. Random numbers, however, are difficult to characterize mathematically, and their generation must rely on an unpredictable physical process. Inaccuracies in the theoretical modelling of such processes or failures of the devices, possibly due to adversarial attacks, limit the reliability of random number generators in ways that are difficult to control and detect. Here, inspired by earlier work on non-locality-based and device-independent quantum information processing, we show that the non-local correlations of entangled quantum particles can be used to certify the presence of genuine randomness. It is thereby possible to design a cryptographically secure random number generator that does not require any assumption about the internal working of the device. Such a strong form of randomness generation is impossible classically and possible in quantum systems only if certified by a Bell inequality violation. We carry out a proof-of-concept demonstration of this proposal in a system of two entangled atoms separated by approximately one metre. The observed Bell inequality violation, featuring near perfect detection efficiency, guarantees that 42 new random numbers are generated with 99 per cent confidence. Our results lay the groundwork for future device-independent quantum information experiments and for addressing fundamental issues raised by the intrinsic randomness of quantum theory.
Self consistent, absolute calibration technique for photon number resolving detectors.
Avella, A; Brida, G; Degiovanni, I P; Genovese, M; Gramegna, M; Lolli, L; Monticone, E; Portesi, C; Rajteri, M; Rastello, M L; Taralli, E; Traina, P; White, M
2011-11-07
Well characterized photon number resolving detectors are a requirement for many applications ranging from quantum information and quantum metrology to the foundations of quantum mechanics. This prompts the necessity for reliable calibration techniques at the single photon level. In this paper we propose an innovative absolute calibration technique for photon number resolving detectors, using a pulsed heralded photon source based on parametric down conversion. The technique, being absolute, does not require reference standards and is independent upon the performances of the heralding detector. The method provides the results of quantum efficiency for the heralded detector as a function of detected photon numbers. Furthermore, we prove its validity by performing the calibration of a Transition Edge Sensor based detector, a real photon number resolving detector that has recently demonstrated its effectiveness in various quantum information protocols.
Dissipative Dynamics of Quantum Fluctuations
Benatti, F; Floreanini, R
2015-01-01
One way to look for complex behaviours in many-body quantum systems is to let the number $N$ of degrees of freedom become large and focus upon collective observables. Mean-field quantities scaling as $1/N$ tend to commute, whence complexity at the quantum level can only be inherited from complexity at the classical level. Instead, fluctuations of microscopic observables scale as $1/\\sqrt{N}$ and exhibit collective Bosonic features, typical of a mesoscopic regime half-way between the quantum one at the microscopic level and the classical one at the level of macroscopic averages. Here, we consider the mesoscopic behaviour emerging from an infinite quantum spin chain undergoing a microscopic dissipative, irreversible dynamics and from global states without long-range correlations and invariant under lattice translations and dynamics. We show that, from the fluctuations of one site spin observables whose linear span is mapped into itself by the dynamics, there emerge bosonic operators obeying a mesoscopic dissipa...
Quantum processes on phase space
Anastopoulos, C
2003-01-01
Quantum theory predicts probabilities as well as relative phases between different alternatives of the system. A unified description of both probabilities and phases comes through a generalisation of the notion of a density matrix for histories; this object is the decoherence functional of the consistent histories approach. If we take phases as well as probabilities as primitive elements of our theory, we abandon Kolmogorov probability and can describe quantum theory in terms of fundamental commutative observables, without being obstructed by Bell's and related theorems. Generalising the theory of stochastic processes, we develop the description of relative phases and probabilities for paths on the classical phase space. This description provides a theory of quantum processes. We identify a number of basic postulates and study its corresponding properties. We strongly emphasise the notion of conditioning and are able to write ``quantum differential equations'' as analogous to stochastic differential equations...
Entanglement properties of quantum polaritons
Suárez-Forero, D. G.; Cipagauta, G.; Vinck-Posada, H.; Fonseca Romero, K. M.; Rodríguez, B. A.; Ballarini, D.
2016-05-01
Exciton polaritons are coupled states of matter and light, originated by the strong interaction between an optical mode and semiconductor excitons. This interaction can be obtained also at a single-particle level, in which case it has been shown that a quantum treatment is mandatory. In this work we study the light-matter entanglement of polaritons from a fully quantum formalism including pumping and dissipation. We find that the entanglement is completely destroyed if the exciton and photon are tuned at the resonance condition, even under very low pumping rates. Instead, the best condition for maximizing entanglement and purity of the steady state is when the exciton and photon are out of resonance and when incoherent pumping exactly compensates the dissipation rate. In the presence of multiple quantum dots coupled to the light mode, matter-light entanglement survives only at larger detuning for a higher number of quantum dots considered.
Energy Technology Data Exchange (ETDEWEB)
Salini, K. [School of Physics, IISER TVM, CET Campus, Thiruvananthapuram, Kerala 695 016 (India); Prabhu, R.; Sen, Aditi [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211 019 (India); Sen, Ujjwal, E-mail: ujjwal@hri.res.in [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211 019 (India)
2014-09-15
Monogamy of quantum correlation measures puts restrictions on the sharability of quantum correlations in multiparty quantum states. Multiparty quantum states can satisfy or violate monogamy relations with respect to given quantum correlations. We show that all multiparty quantum states can be made monogamous with respect to all measures. More precisely, given any quantum correlation measure that is non-monogamic for a multiparty quantum state, it is always possible to find a monotonically increasing function of the measure that is monogamous for the same state. The statement holds for all quantum states, whether pure or mixed, in all finite dimensions and for an arbitrary number of parties. The monotonically increasing function of the quantum correlation measure satisfies all the properties that are expected for quantum correlations to follow. We illustrate the concepts by considering a thermodynamic measure of quantum correlation, called the quantum work deficit.
Ashmead, John
2010-01-01
Normally we quantize along the space dimensions but treat time classically. But from relativity we expect a high level of symmetry between time and space. What happens if we quantize time using the same rules we use to quantize space? To do this, we generalize the paths in the Feynman path integral to include paths that vary in time as well as in space. We use Morlet wavelet decomposition to ensure convergence and normalization of the path integrals. We derive the Schr\\"odinger equation in four dimensions from the short time limit of the path integral expression. We verify that we recover standard quantum theory in the non-relativistic, semi-classical, and long time limits. Quantum time is an experiment factory: most foundational experiments in quantum mechanics can be modified in a way that makes them tests of quantum time. We look at single and double slits in time, scattering by time-varying electric and magnetic fields, and the Aharonov-Bohm effect in time.
1993-05-14
Barbara , California, March 1993. I Carrier Dynamics in Quantum Wires Investigators: Wolfgang Porod I I Using the Monte Carlo technique, we have...8217.ubtle correlations between impunty scanenng events tin the "res;ence oft a ma.’neuc fle!dlp which are beyond Fermi’s Golden Rule. In this caper . we
Raedt, Hans De; Binder, K; Ciccotti, G
1996-01-01
The purpose of this set of lectures is to introduce the general concepts that are at the basis of the computer simulation algorithms that are used to study the behavior of condensed matter quantum systems. The emphasis is on the underlying concepts rather than on specific applications. Topics treate
Lanzagorta, Marco O.; Gomez, Richard B.; Uhlmann, Jeffrey K.
2003-08-01
In recent years, computer graphics has emerged as a critical component of the scientific and engineering process, and it is recognized as an important computer science research area. Computer graphics are extensively used for a variety of aerospace and defense training systems and by Hollywood's special effects companies. All these applications require the computer graphics systems to produce high quality renderings of extremely large data sets in short periods of time. Much research has been done in "classical computing" toward the development of efficient methods and techniques to reduce the rendering time required for large datasets. Quantum Computing's unique algorithmic features offer the possibility of speeding up some of the known rendering algorithms currently used in computer graphics. In this paper we discuss possible implementations of quantum rendering algorithms. In particular, we concentrate on the implementation of Grover's quantum search algorithm for Z-buffering, ray-tracing, radiosity, and scene management techniques. We also compare the theoretical performance between the classical and quantum versions of the algorithms.
Energy Technology Data Exchange (ETDEWEB)
Sassoli de Bianchi, Massimiliano, E-mail: autoricerca@gmail.com
2013-09-15
In a letter to Born, Einstein wrote [42]: “Quantum mechanics is certainly imposing. But an inner voice tells me that it is not yet the real thing. The theory says a lot, but does not really bring us any closer to the secret of the ‘old one.’ I, at any rate, am convinced that He does not throw dice.” In this paper we take seriously Einstein’s famous metaphor, and show that we can gain considerable insight into quantum mechanics by doing something as simple as rolling dice. More precisely, we show how to perform measurements on a single die, to create typical quantum interference effects, and how to connect (entangle) two identical dice, to maximally violate Bell’s inequality. -- Highlights: •Rolling a die is a quantum process admitting a Hilbert space representation. •Rolling experiments with a single die can produce interference effects. •Two connected dice can violate Bell’s inequality. •Correlations need to be created by the measurement, to violate Bell’s inequality.
Cheon, Taksu; Tsutsui, Izumi; Fülöp, Tamás
2004-09-01
We show that the point interactions on a line can be utilized to provide U(2) family of qubit operations for quantum information processing. Qubits are realized as states localized in either side of the point interaction which represents a controllable gate. The qubit manipulation proceeds in a manner analogous to the operation of an abacus.
Keimer, Bernhard; Sachdev, Subir
2011-01-01
This is a review of the basic theoretical ideas of quantum criticality, and of their connection to numerous experiments on correlated electron compounds. A shortened, modified, and edited version appeared in Physics Today. This arxiv version has additional citations to the literature.
Peschanski, R
1993-01-01
Phenomenological and theoretical aspects of fragmentation for elementary particles (resp. nuclei) are discussed. It is shown that some concepts of classical fragmentation remain relevant in a microscopic framework, exhibiting non-trivial properties of quantum relativistic field theory (resp. lattice percolation). Email contact: pesch@amoco.saclay.cea.fr
Directory of Open Access Journals (Sweden)
Alessandro Sergi
2009-06-01
Full Text Available A critical assessment of the recent developmentsof molecular biology is presented.The thesis that they do not lead to a conceptualunderstanding of life and biological systems is defended.Maturana and Varela's concept of autopoiesis is briefly sketchedand its logical circularity avoided by postulatingthe existence of underlying living processes,entailing amplification from the microscopic to the macroscopic scale,with increasing complexity in the passage from one scale to the other.Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces,is criticized. It is suggested that the correct interpretationof quantum dispersion forces (van der Waals, hydrogen bonding, and so onas quantum coherence effects hints at the necessity of includinglong-ranged forces (or mechanisms for them incondensed matter theories of biological processes.Some quantum effects in biology are reviewedand quantum mechanics is acknowledged as conceptually important to biology since withoutit most (if not all of the biological structuresand signalling processes would not even exist. Moreover, it is suggested that long-rangequantum coherent dynamics, including electron polarization,may be invoked to explain signal amplificationprocess in biological systems in general.
Quantum biological information theory
Djordjevic, Ivan B
2016-01-01
This book is a self-contained, tutorial-based introduction to quantum information theory and quantum biology. It serves as a single-source reference to the topic for researchers in bioengineering, communications engineering, electrical engineering, applied mathematics, biology, computer science, and physics. The book provides all the essential principles of the quantum biological information theory required to describe the quantum information transfer from DNA to proteins, the sources of genetic noise and genetic errors as well as their effects. Integrates quantum information and quantum biology concepts; Assumes only knowledge of basic concepts of vector algebra at undergraduate level; Provides a thorough introduction to basic concepts of quantum information processing, quantum information theory, and quantum biology; Includes in-depth discussion of the quantum biological channel modelling, quantum biological channel capacity calculation, quantum models of aging, quantum models of evolution, quantum models o...